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Abstract

In this thesis, I describe how search engine advertising works in the sponsored search,

the underlying Generalized Second-Price (GSP) Auction, which is the mechanism used

by search engines to sell online advertising, and the difficulties to find an optimal bid.

For that purpose, I present a model to optimize the bids in an advertiser’s campaign

and describe the Generalized Method of Moments (GMM) estimator needed to estimate

necessary parameters for the bid optimization. Moreover, I analyze whether or not it

is possible to improve the performance of a ticket agency’s search engine advertising

by using the bidding policy and by automizing the bid optimization. To validate the

effectiveness of that model, I use a data set from the Google Adwords campaign of that

ticket agency, compute the optimal bids, and implement them into their campaign. It

appears that for the ticket agency the proposed bidding technique is not as effective as

previously imagined. On the contrary, the return on investment of the ticket agency’s

advertising campaign based on a Difference-in-Differences (DiD) approach decreases by

500%. That result shows that it would be necessary to provide much more information

to the model than in this thesis, to be able to improve this ticket agency’s advertising

campaign.
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1 Introduction

Advertising has changed a lot in the past few years. People have altered their behavior:

they are buying less in retail stores and more on the web. Even if they do not buy a certain

product on the internet they often use search engines in advance to receive informations

about brands, prices, and stores. Hence, online advertising has become more and more

important not only for online shops but also for retail stores. It is even possible to reach a

target group at the perfect time. By making use of the internet, companies don’t have to

pay a lot for a TV spot or a huge poster on the road and hope for the intended audience

to see their advertisement, but they can reach people exactly at that moment they are

looking for the product or the service the company is selling. They can achieve that

by using search engine advertising, where advertisers submit bids for a variety of search

terms.

In my diploma thesis I will analyze whether or not it is possible to improve the perfor-

mance of a ticket agency’s search engine advertising by using the bidding policy and by

automizing the bid optimization as proposed by [Abhishek and Hosanagar, 2013].

For that purpose, I had to convince the ticket agency to allow me to use their data of

search engine advertising in Google Adwords. Having that permission I implemented a

daily automated download of a summary of the data from the keywords of the preceding

day on Google Adwords. While collecting a lot of data I started to write a program, which

uses the ticket agency’s search engine advertising data as the input and the optimal bid –

according to the bidding policy of [Abhishek and Hosanagar, 2013] – as the output. After

four months of data collection I was able to implement the computed optimal bid into the

6



CHAPTER 1. INTRODUCTION 7

Google Adwords account of the ticket agency and observe the change in the performance,

which I will describe in Section 4.5.

My diploma thesis is structured as follows: In Chapter 2, I describe how the underlying

mechanism of search engine advertising works and how difficult it is to find an optimal

bid. In Chapter 3, I formulate the analytical model given by [Abhishek and Hosanagar,

2013] and introduce the Generalized Method of Moments (GMM) estimator, which is used

to estimate the parameters of our model required to solve the underlying bid optimization

problem. In Chapter 4, I first present the data set of the ticket agency before applying the

methods of Chapter 3 to the data, compute the optimal bids, present the implementation

of them into Google Adwords, compare the results of the implemented bidding policy

with the advertiser’s previous policy, and finally analyze the results of that comparison.

Chapter 5 concludes with a summary and discussion of the obtained results.



2 Online Advertising

There are two different kinds of search results: the organic and the sponsored search

results, which can be seen in the following example. If someone is looking for shoes on

Google (s)he will receive a search result similar to the one depicted in Figure 2.1. The

goal of Search Engine Marketing (SEM) for a company is to be listed at the highest

possible position both on the organic and on the sponsored search results. Hence SEM

consists of two different sections: Search Engine Optimization (SEO) to appear in the

organic results and Search Engine Advertising (SEA) to be listed in the sponsored search.

There are a lot of possibilities to improve the listing of your Website with SEO but in

this thesis I will concentrate on the second mentioned subgroup. For that purpose, I will

give next an overview of how sponsored search advertising works.

2.1 Sponsored Search Advertising

To be listed in the paid search, each advertiser has to specify search terms, which will

be called ’keywords’ in what follows, that are related to the products (s)he wants to sell,

create text ads, and indicate how much (s)he is willing to pay if a user clicks on the

corresponding ad after searching for a certain keyword. If a user enters a search query,

not only the usual list of links appears but also the ads of some advertisers that are

bidding on that keyword or on a very similar keyword.

8
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Figure 2.1: Search results on Google Adwords; see [Google, 2014c].
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The relative positions of the ads are determined by a function of their bids in an auction

mechanism called Generalized Second-Price (GSP) auction. In contrast to traditional

advertising the advertiser only has to pay if a user clicks on one of the advertiser’s ads,

and the Cost-Per-Click (CPC) will be not more than the bid (s)he has stated for that

keyword. The position of the ad on the search result page is very important for advertisers

because each location has a different Click-Through Rate (CTR), which means that on

each position the likeliness of a user to click is different. The ads placed at the top of

the page are much more likely to be clicked than the ads appearing further down. Every

advertiser wants to be at the top of the page but has a certain maximum willingness to

pay for a click on her/his ad. To determine which text ad appears at which position,

the search engines use an auction mechanism called GSP. At some search engines the

ad position depends only on the bid, while on others such as Google, the quality of the

ads and of the associated web page also plays a significant role. In this Chapter I will

focus on those search engines, which do not consider the quality but only rank the ads

by bids, hence giving the advertiser with the highest bid the position at the top of the

page. In this case, the CTR and the CPC are positively correlated with the position of

the text ad, thus the companies face a trade-off between the amount of clicks and the

cost of each click. Each advertiser has to figure out what is the value of each click for

her/him, and at which bid (s)he has the highest revenue. This is difficult because GSP is

not incentive-compatible, thus it is not optimal to bid truthfully and the advertiser never

knows how many clicks (s)he would have got more or less if her/his bid had been slightly

higher or lower. To be able to concentrate on the bid optimization problem I will first

explain how the underlying auction mechanism works.

2.2 GSP: Generalized Second-Price Auctions

To explain how a generalized second-price auction works, I will use in this Section the

results of [Edelman et al., 2007], [Varian, 2007], and [Varian, 2009]. Every advertiser

specifies how much (s)he is willing to pay per click on her/his ad, where each ad is
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connected with a set of keywords. The search engines rank the advertisers from the

highest to the lowest bid, such that the one with the highest bid receives the first position,

the one with the second-highest bid receives the second position, and so on. It is called

second-price because each advertiser does not have to pay her/his own bid but only

the bid of the company listed in the next-lowest position of her/him plus an increment,

e.g., 0.01$. This type of auction is less susceptible to gaming than the generalized first-

price auction, where anyone has to pay exactly her/his bid. Suppose that there are four

bidders competing for three slots. The values per click of advertisers A, B, C, D are

1.50$, 1.00$, 0.75$, 0.50$, respectively. Advertiser C would start with a bid of 0.51$ to

ensure being at the third position, advertiser B with a bid of 0.52$ to be at the second

position, and advertiser A with 0.53$ to be at the top of the page. Advertiser D would

not be able to participate successfully in that auction because (s)he would spend more

than her/his value per click. A and B would start to bid always 0.01$ more than the

other until the bid reaches 1.00$ and B could not raise her/his bid anymore. After that,

B would lower her/his bid again to 0.52$ to ensure being on the second position. Now

advertiser C would see that (s)he has a chance to obtain the second position and (s)he

would raise her/his bid to 0.53$ to be listed at the second position. Like A and B before,

B and C would now outbid each other until the bid reaches the maximum of advertiser

B.

Figure 2.2 shows this behavior, which is called ’sawtooth’ pattern, on the search engine

Overture. Obviously there is no pure strategy equilibrium in this version of the game

and the advertisers would raise or lower their bids as often as possible.

’Under the generalized first-price auction, the bidder who could react to its competi-

tors’ moves fastest had a substantial advantage. The mechanism therefore encouraged

inefficient investments in gaming the system. It also created volatile prices that in turn

caused allocative inefficiencies. Google addressed these problems when it introduced its

own pay-per-click system, AdWords Select, in February 2002. Google also recognized

that a bidder in position i will never want to pay more than one bid increment above the

bid of the advertiser in position (i + 1), and Google adopted this principle in its newly-
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Figure 2.2: The ’sawtooth’ pattern; see [Edelman et al., 2007], page 21.

designed generalized second price auction mechanism. In the simplest GSP auction, an

advertiser in position i pays a price per click equal to the bid of an advertiser in position

(i + 1) plus a minimum increment (typically $0.01). This second-price structure makes

the market more user friendly and less susceptible to gaming.’1

Another important fact is that truth-telling is not a dominant strategy under GSP. This

property of GSP can be seen in the following example of [Edelman et al., 2007]:

Suppose that there are ’three bidders, with values per click of $10, $4, and $2, and two

positions. However, the click-through rates of these positions are now almost the same:

the first position receives 200 clicks per hour, and the second one gets 199. If all players

bid truthfully, then bidder 1’s payoff is equal to ($10 − $4) ∗ 200 = $1200. If, instead,

(s)he shades her/his bid and bids only $3 per click, (s)he will get the second position,

and her/his payoff will be equal to ($10− $2) ∗ 199 = $1592 > $1200.’

Now we know how GSP works, the reason why Google does not use generalized first-price

auctions, and that finding an optimal bid is not trivial because of the fact that truthful

bidding is not a dominant strategy under GSP.

1[Edelman et al., 2007], page 6.



3 The Model

Each advertiser has a lot of keywords relevant to the products (s)he want to sell. For all

keywords (s)he has to decide on the ad text, the budget, the destination URL to which

the ad is linked, and the bid with which (s)he want to take part in the auctions. All these

factors have to be updated regularly, but I will focus on automizing the bid optimization.

3.1 Notation and Setup

Before I formulate the model I will explain the notation, which will be used for further

analysis as used in [Abhishek and Hosanagar, 2013].

Each advertiser has a set of keywords K = {1, 2, . . . , K} where bk denotes the bid for

keyword k ∈ K on a specific day with the assumption that the advertiser does not change

the bid during the day. The impressions, i.e. the number of searches for keyword k where

the advertiser’s ad has been shown, are denoted by the random variable Sk, and the

expected number of impressions is µk = E[Sk].

’Every time the key phrase is searched, the advertiser’s ad is placed at some position in

the list of all sponsored results. Let pos
(s)
k be the position at which the ad was shown

in the sth search of the day, with the topmost position denoted position 0. Let δ
(s)
k

be an indicator of whether a person who was searching for the keyword clicked on the

advertiser’s link, or not: δ
(s)
k = I(click

(s)
k ). The advertiser’s value from a click is denoted

by an independent random variable wk. We assume that the precise value from a click is

13
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not known a priori but that its expected value E[wk] is known and equals Ewk
1. [. . . ] Let

v
(s)
k denote the advertiser’s value from the sth impression. Furthermore, v

(s)
k = δ

(s)
k wk,

i.e., it equals wk if the user clicks on the ad or 0 otherwise. Let b
(s)
k be the advertiser’s

cost-per-click, i.e., the bid of the advertiser at the next position pos
(s)
k + 1.2 The cost

associated with impression s may then be expressed as c
(s)
k = δ

(s)
k b

(s)
k . Because consumers

do not know the bids placed by advertisers, it seems reasonable to assume that given an

ad’s position in the list, the probability that a person clicks on the ad does not depend

on the bid of the next advertiser. That is, conditional on the position pos
(i)
k , the vector

(b
(i)
k , δ

(i)
k ) has independent components. We also assume that Sk is independent of other

variables.’3

Nk denotes the number of other advertisers who are bidding for the keyword k. In our

model it is assumed that Nk is known to the advertiser but unfortunately it can not be

observed directly. In Google Adwords you can see a list of advertisers competing for a

specific keyword. When I asked my contact person at Google, he told me that the list

is not complete but certainly offers an insight into how many advertisers have the same

keyword in their portfolio.4

’We note that the number of competitors may in reality vary a bit from one impression

to another due to advertiser budget constraints of the advertisers, but we do not observe

significant variation in this to warrant a random treatment for Nk.

The bids of the competitors cannot be directly observed because the auction is a sealed-bid

auction. The key assumption we make is that the competitors place their bids according to

1The expected value Ewk is estimated from historical data.
2In Google Adwords the advertiser’s cost-per-click depends also on her/his quality score, which depends

on different factors, e.g., the landing page experience and the ad relevance. To simplify the model

the quality score of each advertiser will not be regarded and I will refer to this simplification later in

Section 4.5.
3[Abhishek and Hosanagar, 2013], page 858.
4[Abhishek and Hosanagar, 2013] propose to observe the number of competitors by submitting sample

queries to the search engine and observing the number of ads displayed. In my opinion this is not a

good idea because in reality there are sometimes more than 20 competitors but there are not more

than 11 ads shown in the Google search.
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some distribution Fk(·), and this does not change during the estimation period. The bids

of competing advertisers are based on two factors – their intrinsic valuations for a click and

their competitive responses in the GSP auction. We assume that there is an underlying

valuation distribution (for clicks), which when combined with the advertisers’ bidding

strategies gives rise to the bid distribution Fk(·). Finally, D denotes the advertiser’s

budget in a given time period of interest. Table 3.1 summarizes our notation.’5

Table 3.1: Summary of notation; see [Abhishek and Hosanagar, 2013], page 859.

3.2 Model Formulation

Our goal is to choose the bid bk for each keyword in order to maximize the expected value

we gain from users clicking on the ads and buying something. Our unique constraint is

the daily budget D such that the expected costs of the clicks on the ads must not exceed

this given value by the advertiser. Thus our constrained optimization problem is the

5[Abhishek and Hosanagar, 2013], page 858.
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following:

max
b

E

[∑
k

Sk∑
s=1

v
(s)
k

∣∣∣∣∣b
]
, s.t. E

[∑
k

Sk∑
s=1

c
(s)
k

∣∣∣∣∣b
]
−D ≤ 0, (3.1)

where b = (b1, . . . , bk) and bk ≥ 0,∀k ∈ K. We will search for a solution of this problem

by using the Karush-Kuhn-Tucker (KKT) conditions, which are first order necessary

conditions for a solution of an optimization problem. In addition there are some regularity

conditions that have to be met. According to [Tragler, 2012], our problem is of the form

max
b
f(b)

s.t. g(b) ≤ 0

b ≥ 0

with b ∈ RK , f : RK → R, b 7→ E
[∑

k

∑Sk

s=1 v
(s)
k

∣∣∣b] and g : RK → R,

b 7→ E
[∑

k

∑Sk

s=1 c
(s)
k

∣∣∣b] − D. The condition f, g ∈ C1([0, D]K) is met because of the

continuity of the expectation. Let b∗ be a solution of our optimization problem and

assume the budget constraint is binding (g(b∗) = 0). Because of dim(g(b∗)) = 1 the

regularity condition is

Rk(∇g(b∗)) = Rk

d
(
E
[∑

k

∑Sk

s=1 c
(s)
k

∣∣∣b∗]−D)
db1

, . . . ,
d
(
E
[∑

k

∑Sk

s=1 c
(s)
k

∣∣∣b∗]−D)
dbK

 = 1,

which is also met. From this it follows that there is a Lagrange multiplier λ∗ satisfying

the KKT conditions:

∃λ∗ ∈ R :

∇f(b∗)− λ∗∇g(b∗) = 0,

λ∗g(b∗) = 0,

λ∗ ≥ 0.
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[Abhishek and Hosanagar, 2013] show that the optimization problem always has a solu-

tion and we get the optimality condition

∀k :
d

dbk
E

[
Sk∑
s=1

v
(s)
k

∣∣∣∣∣bk
]

= λ
d

dbk
E

[
Sk∑
s=1

c
(s)
k

∣∣∣∣∣bk
]
,

which can be simplified further by assuming that not only the advertiser’s bidding be-

havior but also the consumer’s click behavior is i.i.d. across the searches s = 1, . . . , Sk,

i.e., v
(s)
k and c

(s)
k are i.i.d., thus our optimality condition is

∀k :
d

dbk
E[vk|bk] = λ

d

dbk
E[ck|bk]. (3.2)

Because of the difficulty of computing E[vk|bk] and E[ck|bk] I will next show how to express

that condition in terms of estimable parameters. First I will focus on the expected value of

a search for a keyword subject to the bid on that keyword (E[vk|bk]). To be able to know

the inter-relation between the bid and the value of a search, the first thing we need to

know is how the probability of a click depends on the bid. This is still too general because

the probability of a click depends in turn on the position of the ad, which depends on

the bids of the other advertisers. Therefore the position is dependent on the advertiser’s

bid bk and the bids of the other competitors. Assuming that the bids of the competitors

have the distribution function Fk(·), we are able to determine the probability of being at

position i conditional on the bid bk:

P{posk = i|bk} =

 Nk

i

 (1− Fk(bk))iFk(bk)Nk−i, (3.3)

where Nk is the number of competitors. As mentioned above we consider 0 as the best

position because there are 0 competitors on a higher position than our advertiser. The

probability of someone bidding higher and therefore being on a better position is 1 −

Fk(bk). To be on the position i there have to be i competitors bidding higher. Therefore

the position conditional on the bid is determined by a Bernoulli process. Now that

we know the probability of being on a certain position we can go one step further and

determine the probability of a click – the Click-Through Rate CTR – conditional on the

position i:

P{δk = 1|posk = i} =
αk

(γk)i
, (3.4)
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where αk denotes the CTR at the best position i = 0. αk varies from keyword to key-

word because it represents the overall attractiveness of the ad to the consumers that

are searching for that keyword. Each keyword has also a specific rate of decay γk at

which the probability of a click decays with the position. It is possible that the ad is so

attractive that the decay rate is very low because a lot of consumers are attracted by

that ad although it is further down than the ad of a competitor. Of course there are

other factors influencing the CTR of the keyword, such as the presence of well-known

competitors or whether the advertiser appears in the organic results or not. In consis-

tency with [Katona and Sarvary, 2010] and [Ghose and Yang, 2009] αk captures a lot of

important factors and holding it constant, γk just incorporates the change in the CTR

while changing the position.6 As [Abhishek and Hosanagar, 2013], [Agarwal et al., 2011],

[Yang and Ghose, 2010], and [Ghose and Yang, 2009] I also assume that consumer behav-

ior is i.i.d. because it is not possible to receive user-level data on impressions and clicks

from the search engine.

Now that we know the probability of being at a position conditional on the bid and the

probability of a click conditional on the position, we are able to state the probability of

a click conditional on the bid bk:

P{δk = 1|bk} =
∑
i

P{δk = 1|posk = i}P{posk = i|bk}

=
∑
i

αk
(γk)i

 Nk

i

 (1− Fk(bk))iFk(bk)Nk−i

= αkγ
−Nk
k (1 + (γk − 1)Fk(bk))

Nk . (3.5)

Using Equation (3.5) the expected value of an impression conditional on the bid, E[vk|bk],

6A very important fact that has to be mentioned is that the first three positions are on the top of the

organic results and the other positions are on the right side. Therefore consumers are much more

likely to click on the ads on the top than on the ones on the side. In addition my experience tells me

that if the ad is at the top, the ad text is much more relevant to the probability of clicking on the

ad than the exact position (0, 1, or 2). A possible solution would be to treat the first three positions

equally, e.g., P{δk = 1|posk = i} = αk(γk)−max{0,i−3}.
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is given by

E[vk|bk] = E[δkwk|bk] = P{δk = 1|bk}E[wk]

= αkγ
−N
k (1 + (γk − 1)Fk(bk))

NkEwk. (3.6)

The derivate of that expected value with respect to bk can be written as

d

dbk
E[vk|bk] = αkNkγ

−Nk
k (γk − 1)fk(bk)(1 + (γk − 1)Fk(bk))

Nk−1Ewk, (3.7)

where fk(·) is the density function of the probability with the distribution function Fk(·).

Now that we are able to express the expected value vk of an impression conditional on

the bid bk in terms of estimable parameters, we will focus on deriving such an expression

for the expected cost of an impression conditional on the bid, E[ck|bk]. The cost of an

impression depends on the probability of someone clicking on the ad and on the bid of

the next advertiser. As we already know P{δk = 1|bk} stated in Equation (3.5), our next

goal is to know the distribution of the bid of the next advertiser, again first conditional on

the bid and the position so then we can characterize the distribution function conditional

on the bid and the indicator variable for click δk. The first distribution function we want

to express in terms of estimable parameters is

Fk(bk = x|bk, posk = i) = P{bk < x|bk, posk = i}

=
P{bk < x, posk = i|bk}

P{posk = i|bk}
.

(3.8)

Obviously the bid of the next advertiser is lower than bk because otherwise (s)he would

not be further down than the advertiser with bid bk, thus x < bk. As stated in Equation

(3.8), the probability of the next bid being less than x < bk conditional on the bid bk

and the position i is equal to the probability of i competitors bidding higher than bk and

Nk − i of them bidding less than x < bk divided by the probability of being at position
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i, which we already know from Equation (3.3), thus

P{bk < x, posk = i|bk}
P{posk = i|bk}

=

=

 Nk

i

 (1− Fk(bk))iFk(x)Nk−i

 Nk

i

 (1− Fk(bk))iFk(bk)Nk−i

=
Fk(x)Nk−i

Fk(bk)Nk−i

⇒ Fk(bk|bk, posk = i) =

(
Fk(bk)

Fk(bk)

)Nk−i

. (3.9)

As mentioned above, the bid of the next advertiser is always less than bk, and no matter

which value bk is, by definition the next advertiser will always be one position further

down than the advertiser bidding bk, because otherwise (s)he would not be the next

advertiser. Moreover, the bid bk is always the bid of the next advertiser no matter who it

is. The consumer only cares about the position i because (s)he is not able to know how

much each advertiser is bidding and therefore her/his click can not be dependent on bk.

Considering that fact, the distribution of the bid of the next advertiser conditional on
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the bid bk and the fact that the ad was clicked (δk = 1) is

Fk(bk = x|bk, δk = 1) = P{bk < x|bk, δk = 1)

=

Nk∑
i=0

P{bk < x|bk, δk = 1, posk = i} · P{posk = i|bk, δk = 1}

δk=1 independent of bk=

Nk∑
i=0

Fk(x|bk, posk = i) · P{posk = i, δk = 1|bk}
P{δk = 1|bk}

(3.9)
=

Nk∑
i=0

(
Fk(x)

Fk(bk)

)Nk−i

· P{δk = 1|bk, posk = i}P{posk = i|bk}
P{δk = 1|bk}

(3.3),(3.4),(3.5)
=

Nk∑
i=0

(
Fk(x)

Fk(bk)

)Nk−i

·

αk

(γk)i

 Nk

i

 (1− Fk(bk))iFk(bk)Nk−i

αkγ
−Nk
k (1 + (γk − 1)Fk(bk))Nk

=

Nk∑
i=0

 Nk

i

 (γkFk(x))Nk−i 1− Fk(bk))i

(1 + (γk − 1)Fk(bk))Nk

=
(1− Fk(bk) + γkFk(x))Nk

(1 + (γk − 1)Fk(bk))Nk
. (3.10)

Now we are ready to express the expected cost ck of an impression conditional on the bid

bk with the help of Equation (3.5) and Equation (3.10):

E[ck|bk] = E[δkbk|bk]

= E[bk|bk, δk = 1]P{δk = 1|bk}

= αkγ
−Nk
k (1 + (γk − 1)Fk(bk))

Nk

∫ bk

0

bkd

(
1− Fk(bk) + γkFk(bk)

1 + (γk − 1)Fk(bk)

)Nk

= αkγ
−Nk
k

∫ bk

0

bkd(1− Fk(bk) + γkFk(bk))
Nk

integration by parts
= αkγ

−Nk
k

(
bk(1 + (γk − 1)Fk(bk))

Nk

−
∫ bk

0

(1− Fk(bk) + γkFk(bk))
Nkdbk

)
.

(3.11)
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To express Equation (3.2) we derive (3.11) and get

d

dbk
E[ck|bk] =

= αkγ
−Nk
k

(
(1 + (γk − 1)Fk(bk))

Nk +Nk(γk − 1)bkfk(bk)(1 + (γk − 1)Fk(bk))
Nk−1

− (1− Fk(bk) + γkFk(bk))
Nk · 1 +Nkfk(bk)

∫ bk

0

(1− Fk(bk) + γkFk(bk))
Nk−1dbk

)
= αkNkγ

−Nk
k fk(bk)

(
(γk − 1)bk(1 + (γk − 1)Fk(bk))

Nk−1

+

∫ bk

0

(1− Fk(bk) + γkFk(bk))
Nk−1dbk

)
.

(3.12)

Finally we are able to express the optimality condition (3.2) in terms of estimable pa-

rameters using Equations (3.7) and (3.12):

∀k :
d

dbk
E[vk|bk] = λ

d

dbk
E[ck|bk]

⇔

∀k : const =
1

λ
=

1

Ewk

(
bk +

∫ bk
0

(1− Fk(bk) + γkFk(bk))
Nk−1dbk

(γk − 1)(1 + (γk − 1)Fk(bk))Nk−1

)
, (3.13)

where const is a constant, which we will alter while computing the optimal bid.

We want a unique bid b∗k to satisfy the optimality condition in Equation (3.13) for each

keyword k. A sufficient condition to have a unique bid b∗k is that Ψ(bk) = bk +
( ∫ bk

0
(1−

Fk(bk)+γkFk(bk))
Nk−1dbk

)/(
(γk−1)(1+(γk−1)Fk(bk))

Nk−1
)

is monotonically increasing.

To simplify the illustration of Ψ′(bk) we will use hNk
(bk) =

∫ bk
0

(1−Fk(bk) +γkFk(x))Nkdx

and gNk
(bk) = (1 + (γk − 1)Fk(bk))

Nk . Thus,

Ψ(bk) = bk +
hNk−1(bk)

(γk − 1)gNk−1(bk)

Ψ′(bk) = 1 +
h′Nk−1(bk)

(γk − 1)gNk−1(bk)
−
hNk−1(bk)g

′
Nk−1(bk)

(γk − 1)g2Nk−1(bk)

=
gNk−1(bk)((γk − 1)gNk−1(bk) + h′Nk−1(bk))− hNk−1(bk)g

′
Nk−1(bk)

(γk − 1)g2Nk−1(bk)
.

For (γk − 1) > 0 we get Ψ′(bk) > 0, if

gNk−1(bk)((γk − 1)gNk−1(bk) + h′Nk−1(bk))− hNk−1(bk)g
′
Nk−1(bk) > 0. (3.14)
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We can reformulate Equation (3.14) getting ratios of the form of hNk
(bk)/gNk

(bk), which

is by intuition decreasing in Nk for all Nk ≥ 2. This intuition is reasonable because hNk

is an integral over [0, bk] of the function (1 − Fk(bk) + γkFk(x))Nk that is monotonically

increasing in x, is equal to gNk
at x = bk and is less than gNk

at x ∈ [0, bk), thus

if Nk increases, gNk
will grow faster than hNk

. Taking a sample Weibull distribution7

F (x; θ, λ) = 1− exp
{
− (x/λ)θ

}
with λ = 1.59, θ = 1.37, and γ = 1.42, we see in Figure

3.1 that the ratio hNk
(bk)/gNk

(bk) decreases as Nk increases. To reformulate Equation

Figure 3.1: Illustration of the fact that hNk
/gNk

decreases as Nk increases; see

[Abhishek and Hosanagar, 2013], Appendix, page 38.

(3.14) in the aforementioned manner we need to express g′Nk
(bk) and h′Nk

(bk):

g′Nk
(bk) =

d

dbk

(
(1 + (γk − 1)Fk(bk))

Nk
)

= Nkfk(bk)(γk − 1)(1 + (γk − 1)Fk(bk))
Nk−1

= Nkfk(bk)(γk − 1)gNk−1(bk),

7We will later assume that Fk(·) is a Weibull distribution for all k.
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h′Nk
(bk) =

d

dbk

(∫ bk

0

(1− Fk(bk) + γkFk(x))Nkdx

)
= (1 + (γk − 1)Fk(bk))

Nk · 1−Nkfk(bk)

∫ bk

0

(1− Fk(bk) + γkFk(x))Nk−1dx

= gNk
(bk)−Nkfk(bk)hNk−1(bk).

Equation (3.14) can be written as

gNk−1(bk)
(
(γk − 1)gNk−1(bk) + gNk−1(bk)− (Nk − 1)fk(bk)hNk−2(bk)

)
− hNk−1(bk)(Nk − 1)fk(bk)(γk − 1)gNk−2(bk) > 0

⇔

gNk−1(bk)
(
γkgNk−1(bk)− (Nk − 1)fk(bk)hNk−2(bk)

)
> hNk−1(bk)(Nk − 1)fk(bk)(γk − 1)gNk−2(bk)

⇔

γkgNk−1(bk) >
hNk−1(bk)(Nk − 1)fk(bk)(γk − 1)gNk−2(bk)

gNk−1(bk)

+ (Nk − 1)fk(bk)hNk−2(bk)

⇔
γkgNk−1(bk)

gNk−2(bk)
>
hNk−1(bk)(Nk − 1)fk(bk)(γk − 1)gNk−2(bk)

gNk−1(bk)gNk−2(bk)

+
(Nk − 1)fk(bk)hNk−2(bk)

gNk−2(bk)

⇔

γk(1 + (γk − 1)Fk(bk)) >(Nk − 1)fk(bk)

(
(γk − 1)

hNk−1(bk)

gNk−1(bk)
+
hNk−2(bk)

gNk−2(bk)

)
.

As mentioned above, the ratio hNk
(bk)/gNk

(bk) is decreasing in Nk and therefore

hNk−2(bk)/gNk−2(bk) ≥ hNk−1(bk)/gNk−1(bk) implying Ψ′(bk) > 0 and thus the existence
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of a unique bid b∗k satisfying the optimality condition for keyword k if

γk(1 + (γk − 1)Fk(bk)) > γk(Nk − 1)fk(bk)
hNk−2(bk)

gNk−2(bk)

⇔

γk > 1 +
1

Fk(bk)

(
fk(bk)(Nk − 1)

hNk−2(bk)

gNk−2(bk)
− 1

)
. (3.15)

Equation (3.15) shows that for the existence of a unique bid b∗k satisfying the optimality

condition for keyword k the parameter γk, which is the rate of decay of the Click-Through

Rate CTR with respect to the position posk, has to be high enough. For important

distributions like the Weibull, Gamma, and Log-Normal [Abhishek and Hosanagar, 2013]

numerically find that Ψ(bk) is monotonically increasing in bk and that there always exists

a unique bid, as demonstrated for some sample parameters in Figure 3.2.

Having a parametrical form of the optimality condition we can use Equation (3.13) to

compute the optimal bids. We assume that for our distribution Funktion Fk(·) Equation

(3.15) holds, because that condition is satisfied for several common distributions and a

wide range of parameters.

To compute the optimal bids we do not only need the optimality condition but also the

budget constraint E
[∑

k

∑Sk

s=1 c
(s)
k

∣∣∣b] = D. We assumed that the consumer click and the

competitor bidding behavior is i.i.d. across ad impression and thus the budget constraint

is given by

E

[∑
k

Sk∑
s=1

c
(s)
k

∣∣∣∣∣b
]

= D

µk=E[Sk]⇔∑
k

µkE[ck|bk] = D

⇔∑
k

µkαkγ
−Nk
k

(
bk(1 + (γk − 1)Fk(bk))

Nk

−
∫ bk

0

(1− Fk(bk) + γkFk(bk))
Nkdbk

)
= D.

(3.16)
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Figure 3.2: Ψ(bk) for Weibull, Gamma, and Log-Normal distributions; see

[Abhishek and Hosanagar, 2013], Appendix, page 39.

The unique bid b has to satisfy not only the optimality condition

const = 1
Ewk

(
bk +

∫ bk
0 (1−Fk(bk)+γkFk(bk))

Nk−1dbk
(γk−1)(1+(γk−1Fk(bk))

Nk−1

)
for a given const and for all k but also

the budget constraint of Equation (3.16). We can compute the optimal bid by altering

const in Equation (3.13). For a chosen value for const we compute the bids bk for all k

satisfying the optimality condition. Using these bids we calculate the left side of Equation

(3.16) and get the total daily costs Db. If Db < D we have to increase the constant const,

if Db > D we decrease the constant in Equation (3.13) and compute a new bid b, which

satisfies the optimality condition with the new const. If the total costs Db are sufficiently
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close to the budget D we stop that process and consider the actual bid as our optimal

bid b∗.

Having the procedure to compute the optimal bid b∗ we still need the estimates for the

Click-Through Rate (CTR) at the top position αk, the expected daily impressions µk,

the rate at which CTR decays with position γk, the expected value per click Ewk, the

distribution function Fk(·) of the bids of the competitors, and the number of competitors

Nk for each keyword k to be able to get the desired result. An estimate for Nk can be

seen – as mentioned before – on a list in Google Adwords. For µk and Ewk we have daily

aggregates in Google Adwords, thus they are estimated directly by computing a sample

mean of our data. In the following Section, I will show how to estimate the parameters

αk, γk, and the distribution function Fk(·).

3.3 Generalized Method of Moments (GMM)

The Generalized Method of Moments (GMM) estimator was first introduced by Hansen

in 1982 [Hansen, 1982]. Some alternative GMM estimators were introduced 1996 by

Hansen, Heaton, and Yaron in [Hansen et al., 1996]. It is used to estimate parameters –

often of econometric models – by making the use of orthogonality conditions ’in which ex-

pected cross products of unobservable disturbances and functions of observable variables

are equated to zero. Heuristically, identification requires at least as many orthogonality

conditions as there are coordinates in the parameter vector to be estimated. The unob-

servable disturbances in the orthogonality conditions can be replaced by an equivalent

expression involving the true parameter vector and the observed variables. Using the

method of moments, sample estimates of the expected cross products can be computed

for any element in an admissible parameter space. A GMM estimator of the true pa-

rameter vector is obtained by finding the element of the parameter space that sets linear

combinations of the sample cross products as close to zero as possible’8.

8[Hansen, 1982], page 1029.
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The notation of the above described method to estimate parameters is the following. We

are supposed to have a p-dimensional stochastic process and we observe a realization

(xt, t ∈ T ) of that process with T = {1, . . . , T}, which means that our sample size is

T . The goal is to estimate certain parameters and let β0 be the q-dimensional vector of

these parameters with β0 ∈ S ⊆ Rq, where S is called the parameter space. Let ξt(β) :=

ξ(xt, β) : Rp×S → Ru be the unobservable disturbances and zt := z(xt) : Rp → Rv be the

function of observable variables, where xt are the observable variables of the process and

u+v = r. The moment conditions, where expected cross products are equated to zero, are

needed to estimate the parameters and state that ∀t ∈ T : Ef(xt, β0) = E[ξt(β0)⊗zt] = 0

with f : Rp×S → Rr and r ≥ q because we need at least as many orthogonality conditions

as there are coordinates in the parameter vector. [Hall, 2010] shows that E[f(xt, β0)] = 0

’must be a unique property of’ β0, thus at any other value of β the expected cross

products must not be zero. The method of moments uses the law of large numbers such

that the sample estimate for the expected cross products ∀t ∈ T : Ef(xt, β) is given by

µT (β) = T−1
∑T

t=1 f(xt, β).

If we had as many orthogonality conditions as there are coordinates in the parameter

vector (r = q) we could solve µT (β) = 0 for β and would have the estimate of the

parameter. But in our case we will have more conditions than coordinates (r > q) and

therefore we will set linear combinations of the sample cross products as close to zero as

possible, thus the GMM estimator is given by

β̂ = arg min
β∈S

µT (β)′WµT (β),

where W is a weighting matrix, the choice of which is a crucial factor for the asymptotic

properties of the GMM estimator. As suggested in [Hall, 2010] and in [Hansen et al., 1996],

we will use the inverse of a consistent estimator of the covariance matrix S(β0) =

limT→∞V[
√
T · µT (β0)] for the computation of the weighting matrix W . [Hall, 2010]

states that the ’variance can be estimated by a member of the class of heteroscedasticity

autocorrelation covariance (HAC) estimators defined as

ŜHAC = Γ̂0 +
T−1∑
i=1

ω(i; bT )(Γ̂i + Γ̂′i) (3.17)
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where Γ̂j = T−1
∑T

t=j+1 f̂tf̂
′
t−j, ’ f̂t = f(xt, β̂T ), ’ω(·) is known as the kernel, and bT

is known as the bandwidth. The kernel and bandwidth must satisfy certain restrictions

to ensure ŜHAC is both consistent and positive semi-definite. As an illustration, Newey

and West’ [Newey and West, 1987] ’propose the use of the kernel ω(i, bt) = {1− i/(bT +

1)}I{i ≤ bT} where I{i ≤ bT} is an indicator variable that takes the value of one if

i ≤ bT and zero otherwise.’ [Newey and West, 1987] suggest the bandwidth bT to be a

function of the sample size T with limT→∞ bT = +∞ and bT = o(T 1/4).9 As we can see,

the consistent estimator ŜHAC of Equation (3.17) is dependent on an estimator β̂ of β0,

which has to be consistent. Thus, to be able to estimate the covariance matrix, which

we need to estimate β0, we need a consistent estimate for β0. As is apparent we will use

a multi-step procedure to estimate the vector of parameters and let V (β̂T ) denote the

consistent estimator ŜHAC obtained using the estimator β̂T .

Summarizing the aforementioned results, the consistent estimator V (β̂jT ) of the covariance

– where j denotes the step of the estimation procedure – is defined as:

V (β̂jT ) = Γ̂0 +

bT∑
i=1

(
1− i

bT + 1

)(
Γ̂j−1i + (Γ̂j−1i )′

)
,

with Γ̂ji =
1

T

T∑
t=i+1

f(xt, β̂
j
T )′f(xt−i, β̂

j
T ) and bT = floor(T 2/9).

(3.18)

[Hansen et al., 1996] compare three alternative GMM estimators: the two-step, the itera-

tive, and the continuous-updating estimator. In the first two variants the identity matrix

is used to weight the moment conditions in the first step, such that

β̂1
T = arg min

β∈S
µT (β)′IrµT (β).

The two-step estimator is given by β̂2
T , which uses the weighting matrix V (β̂1

T ), so that

β̂2
T = arg min

β∈S
µT (β)′V (β̂1

T )µT (β).

To compute the iterative estimator (which will be denoted by β̂∞T ), V (β) is reestimated

again and again to compute every time a new estimator β̂jT using the weighting matrix

9In my calculations I chose bT = floor(T 2/9), which have the required properties.
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V (β̂j−1T ). Following [Hansen et al., 1996] this procedure is repeated until there exists

an ε > 0, which is small enough and β̂jT − β̂j−1T < ε, or until the number of itera-

tions reaches a certain predefined value. [Hansen et al., 1996] describe the continous-

updating estimator as follows: ’Instead of taking the weighting matrix as given in each

step of the GMM estimation, we also consider an estimator in which the covariance

matrix is continuously altered as’ β ’is changed in the minimization’. As suggested by

[Abhishek and Hosanagar, 2013], I will use the iterative GMM estimator because it de-

rives better results than the two-step estimator and is not as difficult to implement as

the continuous-updating estimator.



4 Testing with Real Data

I will test the bid optimization model proposed by [Abhishek and Hosanagar, 2013] using

a data set from a ticket agency, which has a store located in the first district of Vienna

and sells tickets for more than 25,000 events (concerts, operas, musicals, . . . ) worldwide –

thanks to the internet and online advertising. The ticket agency does not only sell tickets

for events worldwide but also serves costumers worldwide. Of course one can book tickets

by phone or by going to the office, but the majority buys their tickets online, many of

them after searching for a certain event like ’John Legend tickets’ or for general terms like

’concerts in vienna’ on Google. The set of keywords of the ticket agency has to be always

up to date so that the potential customer sees the ad of the ticket agency on Google,

clicks on it, finds what (s)he was searching for, and buys the desired tickets. Thus, for

each event the ticket agency creates a so-called ad group with an ad, a destination URL

to which the ad is linked, a set of keywords, and for each keyword the bid with which it

wants to take part in the auctions.

For an imaginary event called ’Optimal Bidding’, which would have taken place in the

Vienna State Opera in May 2014, typical keywords would be ’Optimal Bidding Vienna’,

’Optimal Bidding May 2014’ or ’Optimal Bidding Vienna State Opera’. A possible ad

for that event is shown in Figure 4.1.

For each of these keywords the ticket agency has to decide on the bid and adapt it regu-

larly, which is quite time-consuming regarding the quantity of events on their homepage

and thus the resulting quantity of keywords they have to manage. To support the ad-

vertisers with this challenge, Google Adwords offers different bidding strategies besides

31
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Figure 4.1: Example for an ad of the imaginary event ’Optimal Bidding’

the common cost-per-click bidding where the user determines for each keyword the max-

imum Cost-Per-Click (max. CPC)1: Enhanced Cost-Per-Click (ECPC), automatic CPC

bidding, and many more. Google describes ECPC as ’a bidding feature that raises your

bid for clicks that seem more likely to lead to a sale or conversion2 on your website. That

helps you get more value from your ad budget’3. Google also states that ’Automatic

bidding allows you to put your bidding on autopilot with the goal of getting the most

possible clicks within your budget. [...] Automatic bidding is ideal for advertisers who

don’t want to spend a lot of time setting bids, but would like to get the most clicks

possible for their ads within their budget.’4 Because of Google being a profit oriented

company it is difficult to know how well they really optimize the bids if an advertiser

chooses automatic bidding or ECPC. That’s why the ticket agency handles as much key-

words as possible on manual cost-per-click basis and lets Google support them only on

the remaining keywords using different bidding strategies.

4.1 Data Set

In this Chapter, I will test the bid optimization on a data set containing 255 keywords

that the ticket agency uses to promote their tickets on Google. This data set contains

1In Google Adwords the bid on a keyword is called maximum Cost-Per-Click (max. CPC).
2A conversion is a desired action that the visitor takes like signing up for a newsletter or filling in a

registration form.
3https://support.google.com/adwords/answer/2464964?hl=en (Visited on August 6, 2014)
4https://support.google.com/adwords/answer/2470106?hl=en (Visited on August 6, 2014)
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only keywords, which are related to event venues like ’vienna golden hall’ or ’staatsoper

budapest’, to genres combined with a city like ’musical wien’ or ’oper in prag’, or to

events, which take place regularly like ’spanish riding school’, ’vienna boys choir’ or

’palau de la musica catalana’. The bidding for keywords of events which take place once,

like the concert of John Legend as a part of her/his ’All of me’-Tour in Vienna, has to

be treated differently because the demand for the tickets changes a lot from the start of

the presale to the day of the event. Thus an automatic bid optimization model like the

one of [Abhishek and Hosanagar, 2013] cannot be used, because it needs previous data

collection to estimate the bids, which obviously cannot be collected before the start of the

presale and changes a lot during the sale of the tickets (between the start of the presale

and the day of the event).

Google Adwords submits a lot of data regarding each keyword in the form of daily sum-

mary measures, but does not provide the advertisers with the information about clicks,

position, or CPC for each individual ad impression. The daily data for each keyword,

which we will use to optimize the bids, consists of the following fields:

(id, t, avgpos, avgcpc, i, cl, ctr, b, w, c, n),

where

• id identifies the keyword,

• t is the variable that indexes the date,

• avgpos shows the average position during the day,

• avgcpc is the average cost-per-click on the day,

• i is the number of impressions during the day,

• cl is the number of clicks during the day,

• ctr (= cl/i) is the click-through rate on the day,
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• b is the bid, which the advertiser has chosen for that day,

• w gives the average value per click on the day,

• c are the total costs for the clicks cl, and

• n is the number of competitors bidding for keyword id.

The 255 keywords belong to 35 product categories like event venues, genres (combined

with a city), and regular events. To test the analytical model of Chapter 3, I randomly

divided the 35 product categories into two distinct groups: a control group and an ex-

perimental group. The bids of the control group are computed the same way as before

and this group is ’used to account for any time trends that might enter the analysis due

to seasonality in retail, search engine design changes, and other such factors.’5 The bids

of the experimental group are computed by the bidding policy of Chapter 3.

We further divide our data set into three periods: the ’before’, the estimation, and the

’after’ period. Our ’before’ period runs from February 2, 2014 until May 16, 2014. During

this period the ticket agency computed their bids as usual. We can see in Table 4.1 that

the data of the two randomly divided groups are quite similar during this period.6

Both Groups Control Group Experimental Group

Impressions ic+e 50.1% ·ic+e 49.9% ·ic+e
Clicks clc+e 38.2% ·clc+e 61.8% ·clc+e
CTR ctrc+e ctrc+e − 1.63pp ctrc+e + 1.63pp

Avg. CPC avgcpcc+e 85.7% ·avgcpcc+e 114.3% ·avgcpcc+e
Avg. Position avgposc+e avgposc+e − 0.5 avgposc+e + 0.5

Avg. RPC7 wc+e 110.7% ·wc+e 89.3% ·wc+e

Table 4.1: Summary for the different groups in the ’before’ period

5[Abhishek and Hosanagar, 2013], page 861.
6Differences between two percentages are denoted by pp (percentage point).
7Let Avg. RPC be the Average Revenue Per Click, thus the revenue that the firm yields in average
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The data of the ’before’ period are used ’to compute the expected value per-click (Ew)

and the expected daily impressions (µ) for each keyword’8 by taking the daily aggregates

and computing the sample mean over this period of 90 days.

During the estimation period [Abhishek and Hosanagar, 2013] suppose to ’submit ran-

dom bids for the keywords. [...] The bids are uniformly drawn from $0.10 × [1, 30].’,

where this period runs from May 18, 2014 until June 30, 2014. In the case of the ticket

agency this is not useful because the company is satisfied with their bids, clicks, and

average revenue per click, so they comprehensibly do not want to risk a decrease in the

profitability of their Google Adwords campaign. However, the ticket agency agreed to use

exclusively the manual CPC strategy and to change the bids weekly during this period

of time to help us with the identification of the parameters with GMM. As one can see

in Table 4.2, the variation in the position, avg. CTR, and avg. CPC did not change

a lot (and even decreased for the average position), but I think that for data collection

it is more important to observe the variation using various but realistic bids than using

randomly drawn bids of such a great range from $0.10 to $3.00.

’before’ period estimation period

S.D.9 of pos 0.89 0.80

S.D. of CTR 0.11 0.13

S.D. of CPC 0.19 0.20

Table 4.2: Variation for experimental group in ’before’ and estimation periods

The ’after’ period runs from July 7, 2014 until August 4, 2014. In this last period,

the bids are computed by estimating the parameters with the generalized method of

moments and optimizing the bids using Equations (3.13) and (3.16) of Chapter 3. The

data from this period are used to determine whether the bidding policies proposed by

when someone clicks on their ad.
8[Abhishek and Hosanagar, 2013], page 862.

9Let S.D. denote the Standard Deviation of the sample given by
√

(T − 1)−1
∑T

t=1(xt − x), where xt

is the sample data from which we want to compute the standard deviation.
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[Abhishek and Hosanagar, 2013] are effective or not.

4.2 Applying GMM to the Model

The central goal of this section is to calculate the GMM estimator as described in Section

3.3 for αk, γk, and the distribution function Fk(·) for an individual keyword k. For ease

of exposition, I will omit the subscript k in this section.

The observable variables of the process (xt, t ∈ T ) are the average position avgpost, the

average cost-per-click avgcpct, the click-through rate ctrt, the vector of bids for each key-

word bt, and the number of competitors Nt, such that xt = (avgpost, avgcpct, ctrt, bt, Nt)

has the dimension p = 5. To get equivalent expressions involving the true parame-

ter vector and the observed variables for the unobservable disturbances [Abhishek and

Hosanagar, 2013] suggest: ’Following the idea of the method of moments, we derive ana-

lytical expressions for the moments we observe empirically, namely, the expected position

(avgpost), cost-per-click (avgcpct), and click-through rate (ctrt = clt/it), given the bid

for each keyword. These moments are as follows:

E[post|bt] = Nt(1− F (bt)),

E[bt|bt, δt = 1] =

∫
x<bt

xd

(
1− F (bt) + γF (x)

1− (1− γ)F (bt)

)Nt

,

E[δt|bt] = αγ−Nt(1− (1− γ)F (bt))
Nt .

(4.1)

The observed moments can be expressed in terms of the analytical moments as follows:

avgpost = E[post|bt] + ξ1t,

avgcpct = E[bt|bt, δt = 1] + ξ2t,

ctrt = E[δt|bt] + ξ3t,

(4.2)

where ξt = (ξ1t, ξ2t, ξ3t)
′ are the random shocks.’ To be able to express the unobservable

disturbances as a function of the parameters we need to know the vector of parameters

we want to estimate. Beside of the click-through rate at the top position α and the rate γ
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at which CTR decays with position, another unknown factor is the distribution function

of the bids of the competitors F (·).

’Because the data set contains only daily aggregates, we cannot directly estimate the

distribution function F (·) using non-parametric approaches because we have very few

bids for each keyword. We therefore use a parametric form for F (·), and estimate its

parameters using the first moments associated with the position, cost-per-click, and click-

through rate. For the parametric form of the distribution F (·), we choose the Weibull

distribution. This choice is based on two factors. Firstly, the Weibull distribution can

take on diverse shapes and offers a great deal of flexibility. Secondly, an analysis of

a secondary data set of bids submitted to a search engine for several keywords in the

insurance sector [Abhishek et al., 2012] shows that the Weibull distribution is reasonably

good for modeling the bids. Note that we are not assuming that the distribution of bids

for keywords is the same across the two data sets, rather the bids are from the same

family (Weibull) and the parameters can vary across keywords. The Weibull distribution

has the following cumulative distribution function

F (x; θ, λ) = 1− exp

{
−
(x
λ

)θ}
. (4.3)

It is defined by two parameters θ and λ.’10

Therefore, additionally to the two parameters α and γ, we also want to estimate the

parameters θ and λ of the distribution function F (·). The parameter vector β is in the

parameter space S ⊆ R4, which can be defined as S = {(α, γ, λ, θ)|α, λ, θ ≥ 0∧γ ∈ [0, 1]}.

Thus the unobservable disturbances can be denoted as the function of the parameters

ξt(β0) =


avgpost − E[post|bt]

avgcpct − E[bt|bt, δt = 1]

ctrt − E[δt|bt]

 , (4.4)

with ξt(β) : R5 × S → R3.

10[Abhishek and Hosanagar, 2013], page 863.
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[Hansen, 1982] supposes: ’A common way to obtain orthogonality conditions is to exploit

the assumption that disturbances in an econometric model are orthogonal to functions

of a set of variables that the econometrician observes.’ In our model we can exploit the

assumption that the random shocks are orthogonal to the bids E[bξ] = 0 to find a function

zt such that E[ξt(β0) ⊗ zt] = 0, which is stated by the moment conditions. Let b̃ be a

vector, which contains each bid of {bt|t ∈ T } only once such that the dimension T̃ of b̃

equals the cardinality of {bt|t ∈ T }. I choose the function zt : R5 → RT̃ to be of the form

zt = (bt · δ(bt, b̃i))i∈{1,...,T̃},

where δ(·, ·) is the Kronecker delta11, because the expectation E[biξt] obviously only equals

zero if bi was the bid set at the day t. Otherwise we just have the trivial orthogonality

condition E[0 · ξt] = 0.

Therefore we can define the function f : R5 × S → R3·T̃ as

f(xt, β) = ξt(β)⊗ zt, with Ef(xt, β0) = 0,

having three moment conditions for each unique bid. To satisfy the necessary condition

r ≥ q – where r = 3T̃ is the dimension of f(xt, β) and q = 4 is the dimension of the vector

of parameters – we need the minimum of two unique bids per keyword (T̃ = 2) to have six

moment conditions, which is enough to estimate the parameter vector β0 = (α0, γ0, λ0, θ0).

As stated in Section 4.1, the ticket agency changes their bids weekly during the 4-week

estimation period. Thus we have the required minimum of two unique bids per keyword

and are ready to estimate our parameters with the generalized method of moments.

4.3 Computing the Optimal Bids

I implemented a daily automated download of a summary of the aggregated data from

the keywords of the experimental group with the data of the preceding day on Google

11The Kronecker delta is defined as δ(t, i) =

{
1 if i = t

0 otherwise
.
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Adwords and an extract of such a summary is shown in Figure 4.2. As one can see there

are a lot more informations than I actually need, and for each day there is a different file.

I used a pivot table in Excel to get the data in a way I could easily use in MATLAB,

which can be seen in Table 4.3.12 Using the data from the ’before’ period I compute

the sample means µk and Ewk, the daily budget Dk based on the mean daily spent,

and I got the data for the number of competitors Nk for each keyword, which I also

included in my pivot table. Having the data this way, they can be loaded easily into

Avg. position Avg. CPC CTR bid mu Ew D N

musical wien 50 1.5 0.80 14

18.05.14 2.8 0.50 0.02 0.55

19.05.14 2.5 0.55 0.03 0.60

20.05.14 2.6 0.53 0.03 0.60
...

...
...

...
...

spanische hofreitschule 100 3.0 1.50 20

18.05.14 3.8 1.50 0.12 1.55

19.05.14 3.5 1.55 0.13 1.60

20.05.14 3.6 1.53 0.13 1.60
...

...
...

...
...

Table 4.3: Table with daily summary measures

MATLAB. To compute the optimal bid I wrote a function named computeBid, which

needs as an input the name of the excel file filename, the number of estimation days

the data contains numDays, the number of keywords numKws, and the row row1 where

the table with the data begins. The output of computeBid are the optimal bids Bid and

the estimated parameters Beta. I upload the file with the function xlsread, define the

vectors µ,Ew,D, and N and set the matrix Data including the columns ’Avg. position’,

’Avg. CPC’, ’CTR’, and ’bid’ of the pivot table.

12The data in the table are only for the purpose of illustration and not the real data of the ticket agency.
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Figure 4.2: Part of daily summary of aggregated data
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To estimate the parameter vector β I use the function estimate beta, which needs the

starting value Beta0 and the maximum number of iterations of the GMM estimation

maxConvNumb. Having the estimated parameters, I finally use the function optimal bid

to compute the bid using the bidding policy of Chapter 3. This is my main function and

of course I will also explain my functions estimate beta and optimal bid.13

Listing 4.1: computeBid.m

1 f unc t i on [ Bid , Beta ] = computeBid ( ...

f i l ename , numDays ,numKws, row1 )

2

3 Range = ...

[ 'B ' , num2str ( row1 ) , ' : I ' , num2str ( ( numDays+1)∗numKws+row1 - 1 ) ] ;

4 Keywords=x l s r e ad ( f i l ename , 1 , Range ) ;

5

6 Beta=ze ro s (numKws, 4 ) ;

7 mu=ze ro s (1 ,numKws) ;

8 Ew=ze ro s (1 ,numKws) ;

9 D=0;

10 N=ze ro s (1 ,numKws) ;

11

12 Beta0 = [ 0 .03 , 1 .3 , 0 .07 , 1 . 2 ] ;

13 maxConvNumb=15;

14

15 f o r k=1:numKws

16 mu( k )=Keywords ( ( k - 1 ) ∗(numDays+1)+1 ,5) ;

17 Ew( k )=Keywords ( ( k - 1 ) ∗(numDays+1)+1 ,6) ;

18 D=D + Keywords ( ( k - 1 ) ∗(numDays+1)+1 ,7) ;

19 N( k )=Keywords ( ( k - 1 ) ∗(numDays+1)+1 ,8) ;

20 Data k=Keywords ( ( k - 1 ) ∗(numDays+1)+2:k∗(numDays+1) , 1 : 4 ) ;

21 [ Beta (k , : ) ]= e s t imate be ta ( Data k ,N( k ) , Beta0 , maxConvNumb) ;

22 end

23

24 Bid=opt ima l b id ( Beta ,Ew,mu,N,D ) ;

13I used the MATLAB code gmmestimation.m by Zhiguang Cao, which can be

downloaded from http://www.mathworks.com/matlabcentral/fileexchange/12114-

gmm/content/gmmestimation.m (Visited on August 7, 2014). To write my functions and

to present the MATLAB codes I used the M-Code LaTeX Package by Florian Knorn on

http://www.mathworks.com/matlabcentral/fileexchange/8015-m-code-latex-package (Visited on

August 1, 2014).
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25 end

First of all, to estimate the parameter vector β0 for each keyword we have to compute

the unobservable disturbances as a function of the parameters ξt(β0), which is shown in

Equation (4.4). For the purpose of using this equation in MATLAB we have to write the

integral E[bt|bt, δt = 1] =
∫
x<bt

xd
(

1−F (bt)+γF (x)
1−(1−γ)F (bt)

)Nt

differently, namely as a integral over

x, which I achieve by using integration by parts:∫
x<bt

xd

(
1− F (bt) + γF (x)

1− (1− γ)F (bt)

)Nt

= bt −
∫
x<bt

(
1− F (bt) + γF (x)

1− (1− γ)F (bt)

)Nt

dx.

I will use N with the data of the ’before’ period instead of the daily data Nt because it is

not possible to obtain the exact information of everyday’s competitors for each keyword

on Google Adwords. In estimate beta I will use the function called moment with the

input of Data, N, the function z which is orthogonal to ξt, Beta, the weighting matrix W,

and type defining whether we want f(xt, β) or the objective function µT (β)′WµT (β) as

the output f or obj.

Listing 4.2: moment.m

1 f unc t i on f o r o b j = moment ( Data ,N, z , Beta ,W, type )

2

3 % check i f the input parameters are a l l >= 0 and i f gamma

4 % i s >1 and not to h i g h .

5 i f ( ( sum( Beta <= 1e - 2 ) > 0) | | Beta (2 )<=1.0001 | | Beta (2 )>=5)

6 value = 1000 ; %i s m u l t i p l i c a t e d with the o b j e c t i v e ...

f unc t i on i f nece s sa ry

7 e l s e

8 value =1;

9 end

10

11 T = s i z e ( Data , 1 ) ;

12 alpha=Beta (1 ) ;

13 gamma=Beta (2 ) ;

14

15 b=Data ( : , 4 ) ;

16

17 %computation o f x i t

18 x i=ze ro s (T, 3 ) ;
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19 x i ( : , 1 )=Data ( : , 1 ) - N. ∗(1 -F(b , Beta ) ) ;

20

21 f o r t =1:T

22 Ecpc = . . .

23 b( t ) - i n t e g r a l (@( x ) (1 -F(b( t ) , Beta )+gamma∗F(x , Beta ) ) / . . .

24 (1 - (1 -gamma) ∗F(b( t ) , Beta ) ) . ˆN, 0 , b ( t ) ) ;

25 x i ( t , 2 ) = Data ( t , 2 ) - Ecpc ;

26 end

27

28 x i ( : , 3 )=Data ( : , 3 ) - alpha ∗gamma.ˆ( -N) . ∗ (1 - (1 -gamma) . ∗F(b , Beta ) ) . ˆN;

29

30 %computation o f the kronecker product f = x i x z

31 f=ze ro s (T, s i z e ( z , 2 ) ∗3) ;

32 f o r t =1:T

33 f ( t , : )=kron ( x i ( t , : ) , z ( t , : ) ) ;

34 end

35 mu=mean( f , 1 ) ' ;

36 obj=mu' ∗W∗mu;

37

38 i f type== ' obj '
39 f o r o b j=value ∗ obj ;%to avoid g e t t i n g unwanted parameters

40 e l s e i f type== ' f '
41 f o r o b j=f ;

42 end

43

44 end

The distribution function of Equation (4.3) is given by F.m.

Listing 4.3: F.m

1 f unc t i on Fx = F ( x , Beta )

2 lambda = Beta (3 ) ;

3 theta = Beta (4 ) ;

4

5 Fx = 1 - exp ( - ( x . /lambda ) . ˆ theta ) ;

6

7 end

The computation of the weighting matrix as defined in Equation (3.18) is carried out in

WeightingMatrix.m.
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Listing 4.4: WeightingMatrix.m

1 f unc t i on W = WeightingMatrix ( f )

2 T=s i z e ( f , 1 ) ; %number o f days

3

4 b T = f l o o r (Tˆ(2/9) ) ; % ' f unc t i on o f T that grows s low ly enough ...

with T' (Newey and West )

5

6 V=f ' ∗ f ∗1/T;

7 w=ze ro s ( b T ) ;

8 f o r i =1:b T

9 Gamma = f ( ( i +1) :T , : ) '∗ f ( 1 : (T- i ) , : ) ∗1/T;

10 w=1- i /( b T+1) ;

11 V=V + w∗(Gamma + Gamma' ) ;

12 end

13

14 W=pinv (V) ;

15 end

Having specified these functions, it is finally possible to present you my MATLAB code

estimate beta.m for the estimation of β0.

Listing 4.5: estimate beta.m

1 f unc t i on [ Beta dach ] = es t imate be ta ( ...

Data ,N, Beta0 , maxConvNumb )

2

3 Data ( : , 1 )=Data ( : , 1 ) - 1 ; %the top p o s i t i o n i s de f i ned by 0 in ...

our model

4

5 %exc lud ing some i r r e l e v a n t data only caused by too many c l i c k s

6 Data=Data ( f i n d ( Data ( : , 1 )>=0) , : ) ;

7 Data=Data ( f i n d ( Data ( : , 2 )>0) , : ) ;

8 Data=Data ( f i n d ( Data ( : , 3 )>0) , : ) ;

9 Data=Data ( f i n d ( Data ( : , 3 )<1) , : ) ;

10 T = s i z e ( Data , 1 ) ; %number o f days

11

12 % d e f i n e the func t i on z , which i s orthogona l to f

13 b=Data ( : , 4 ) ;%bids

14 b unique = unique (b) ;

15 num bids = length ( b unique ) ;%number o f unique b ids

16 z=ze ro s (T, num bids ) ;

17 f o r i =1:T
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18 f o r j =1: num bids

19 i f b ( i ) == b unique ( j )

20 z ( i , j ) = b( i ) ;

21 end

22 end

23 end

24

25 %i t e r a t e d GMM

26 num mc=3∗num bids ;%number o f moment c o n d i t i o n s

27 W( : , : , 1 ) = eye (num mc) ;

28 moment obj = @( Beta ) moment( Data ,N, z , Beta ,W( : , : , 1 ) , ' obj ' ) ;

29 [ Beta ( : , 1 ) , fminvalue (1 ) ] = fminsearch ( moment obj , Beta0 , . . .

30 opt imset ( ' MaxIter ' ,5000 , 'MaxFunEvals ' , 5000) ) ;

31

32 f o r i =2:maxConvNumb

33 f = moment( Data ,N, z , Beta ( : , i - 1 ) ,W( : , : , i - 1 ) , ' f ' ) ;

34 %compute weight ing matrix and new es t imato r s o f Beta

35 W( : , : , i ) = WeightingMatrix ( f ) ;

36 moment obj = @( Beta ) moment( Data ,N, z , Beta ,W( : , : , i ) , ' obj ' ) ;

37 [ Beta ( : , i ) , fminvalue ( i ) ] = fminsearch ( moment obj , . . .

38 Beta ( : , i - 1 ) , opt imset ( ' MaxIter ' ,5000 , 'MaxFunEvals ' , 5000) ) ;

39

40 %terminat ion c o n d i t i o n s ( a l s o p e r i o d i c a l r e p e t i t i o n s )

41

42 i f abs ( fminvalue ( i ) - fminvalue ( i - 1 ) )<1e - 6 | | . . .

43 fminvalue ( i )<=1e -10 | | . . .

44 ( i>2 && abs ( fminvalue ( i ) - fminvalue ( i - 2 ) )<1e -6 && ...

fminvalue ( i )<fminvalue ( i - 1 ) ) | | . . .

45 ( i>3 && abs ( fminvalue ( i ) - fminvalue ( i - 3 ) )<1e -6 && ...

fminvalue ( i )<fminvalue ( i - 1 ) && ...

fminvalue ( i )<fminvalue ( i - 2 ) ) | | . . .

46 ( i>4 && abs ( fminvalue ( i ) - fminvalue ( i - 4 ) )<1e -6 && ...

fminvalue ( i )<fminvalue ( i - 1 ) && ...

fminvalue ( i )<fminvalue ( i - 2 ) && ...

fminvalue ( i )<fminvalue ( i - 3 ) ) | | . . .

47 ( i>5 && abs ( fminvalue ( i ) - fminvalue ( i - 5 ) )<1e -6 && ...

fminvalue ( i )<fminvalue ( i - 1 ) && ...

fminvalue ( i )<fminvalue ( i - 2 ) && ...

fminvalue ( i )<fminvalue ( i - 3 ) && ...

fminvalue ( i )<fminvalue ( i - 4 ) )

48 break

49 end

50 end

51

52 i f i == maxConvNumb
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53 minvalue=min ( fminvalue ) ;

54 i m inva lue=f i n d ( fminvalue==minvalue ) ;

55 Beta dach = Beta ( : , i minva lue ) ;

56 d i s p l a y ( 'The number o f i t e r a t i o n s equa l s maxConvNumb ' ) ;

57 e l s e

58 Beta dach = Beta ( : , i ) ;

59 end

60

61 end

To be able to compute the optimal bids we still need the function optimal bid. As

stated in Section 3.2, we get the optimal bids by computing the bids with Equation

(3.13) for a chosen value of const and afterwards checking with Equation (3.16) if we are

already sufficiently close to the daily budget D. My MATLAB function bid computes

the bids ∀k : bk for a given const and a starting value b0 using Equation (3.13).

Listing 4.6: bid.m

1 f unc t i on b = bid ( const , b0 , Beta ,N,Ew )

2 K = length (N) ; %number o f keywords

3 b = ze ro s (K, 1 ) ;

4 f o r k=1:K

5 f r a c 1=i n t e g r a l (@( x ) ...

(1 -F(b , Beta (k , : ) )+Beta (k , 2 ) ∗F(x , Beta (k , : ) ) ) . ˆ(N( k ) -1) ,0 , b ) ;

6 f r a c 2 =((Beta (k , 2 ) -1) ∗(1+( Beta (k , 2 ) -1) ∗ . . .

7 F(b , Beta (k , : ) ) ) . ˆ(N( k ) -1) ) ;

8 b( k ) = f s o l v e (@(b) const -1/Ew( k ) ∗(b+f r a c 1 / f r a c 2 ) , b0 ( k ) , . . .

9 opt imset ( 'MaxFunEvals ' ,5000 , ' MaxIter ' , 5000) ) ;

10 end

11 end

Let Db be the left-hand side of Equation (3.16). My MATLAB function budget diff

then computes the difference D −Db.

Listing 4.7: budget diff

1 f unc t i on d i f f = b u d g e t d i f f ( b , Beta ,mu,N,D ) %b u d g e t d i f f e r e n c e

2 K = length (N) ; %number o f keywords
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3 d i f f = D;

4 f o r k=1:K

5 i n t=i n t e g r a l (@( x ) (1 -F(b( k ) , Beta (k , : ) )+Beta (k , 2 ) ∗ . . .

6 F(x , Beta (k , : ) ) ) . ˆN( k ) ,0 , b ( k ) ) ;

7 d i f f=d i f f -mu( k ) ∗Beta (k , 1 ) ∗Beta (k , 2 ) ˆ( -N( k ) ) ∗ . . .

8 (b( k ) ∗(1+( Beta (k , 2 ) -1) ∗F(b( k ) , Beta (k , : ) ) ) ˆN( k ) - i n t ) ;

9 end

10 end

In my function optimal bid I use a bisection method to alter const. I bisect intervals

in the form of [const l,const r] such that the budget difference of const l is always

greater than zero and the one of const r is always less than zero, until one of the budget

differences equals zero or a termination condition is met.14

Listing 4.8: optimal bid.m

1 f unc t i on [ b ] = opt ima l b id ( Beta ,Ew,mu,N,D )

2 %b i s e c t i o n method to f i n d s u i t a b l e constant

3 %f o r the opt ima l i ty cond i t i on

4

5 c o n s t l = 0 ; %at c o n s t l the expected co s t equa l s 0 < D <=> ...

d i f f l=D>0

6 c o n s t r = 5 ;

7

8 K = length (N) ; %number o f keywords

9 b l = ze ro s (K, 1 ) ;

10 d i f f l = D;

11 b0=ones (K, 1 ) ;

12 b r=bid ( cons t r , b0 , Beta ,N,Ew) ;

13

14 d i f f r = b u d g e t d i f f ( b r , Beta ,mu,N,D) ;

15

16 whi le ( d i f f r >=0) %f i n d c o n s t r with d i f f r <0

17 c o n s t r = 2∗ c o n s t r ;

18 b r = bid ( cons t r , b0 , Beta ,N,Ew) ;

19 d i f f r = b u d g e t d i f f ( b r , Beta ,mu,N,D) ;

20 end

21 %now at c o n s t r the expected co s t i s h igher than D <=> d i f f r <0

22

14By definition a budget difference, which is greater than zero, means that the expected cost of the

corresponding const is less than the daily budget D.



CHAPTER 4. TESTING WITH REAL DATA 48

23 whi le ( cons t r - c o n s t l >1e -5 && d i f f l >1e -5 &&. . .

24 abs ( d i f f r - d i f f l ) /abs ( d i f f l )>1e - 4 )

25

26 const m = ( c o n s t l+c o n s t r ) /2 ;

27 b m = bid ( const m , b l , Beta ,N,Ew) ;

28 d i f f m = b u d g e t d i f f (b m , Beta ,mu,N,D) ;

29 % d i s p l a y (b m) ;

30 d i s p l a y ( cons t r - c o n s t l ) ;

31 % d i s p l a y ( d i f f l ) ;

32 % d i s p l a y ( d i f f r ) ;

33

34 i f ( d i f f l ∗ di f f m <0)

35 d i f f r=d i f f m ;

36 b r=b m ;

37 c o n s t r=const m ;

38 e l s e i f ( d i f f l ∗ di f f m >0)

39 d i f f l=d i f f m ;

40 b l=b m ;

41 c o n s t l=const m ;

42 e l s e

43 b=b m ;

44 break ;

45 end

46

47 end

48

49 b=b l ; %expected co s t <= D

50 end

Now that we have specified all functions, we are able to run computeBid of Listing 4.1.

The parameters α, γ, λ, θ, and the optimal bids bk are estimated for all keywords. During

the estimation period I recomputed the bids each week15 using the newly available data to

reestimate the parameters. I figured out that the majority of the bids do not change a lot.

In Figure 4.3 histograms of the estimated parameters are plotted for all keywords of the

experimental group. In Table 4.4 the real value of the estimated parameters, the average

number of competitors Nk, the height of the expected value of a click Ewk, and the height

of the computed bid bk are shown exemplarily for seven keywords of the experimental

group.

15Because of the short duration of that period I only changed the bid once.
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Figure 4.3: Histograms of estimated parameters for the experimental group
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Due to the ticket office’s company secret, I use expressions such as ’low’ and ’high’ instead

of the real values for Ewk and bk comparing the values with their mean value.

Keyword α γ λ θ N Ew b

vienna golden hall 0.0379 1.0593 0.1234 0.5121 13 very high very high

staatsoper budapest 0.1319 1.1832 0.1251 0.8698 7 low low

musical wien 0.1182 4.9994 0.0100 0.2921 14 medium very high

oper in prag 0.0681 1.5668 0.0100 0.2446 20 low low

spanish riding school 0.0100 1.0730 0.1331 0.6295 11 high high

vienna boys’ choir 0.0324 1.1973 0.0271 0.2801 10 high high

palau de la . . . 16 0.0634 1.3685 0.0563 0.5045 4 low low

Table 4.4: Estimated parameters for keywords of the experimental group

The bids of the keywords ’vienna golden hall’, ’musical wien’, ’spanish riding school’, and

’vienna boys’ choir’ range between high and very high, and we can see that the expected

values per click of these keywords range between medium and very high. For all keywords

with a low expected value per click such as ’staatsoper budapest’, ’oper in prag’, or ’palau

de la musica catalana ticket’, the computed bids are also represented by a low value. We

observe that the height of the expected value per click is a very important value for the

decision of the bid, but not the only one as we can see at the keyword ’musical wien’,

which has only a medium expected value per click, yet its bids are given by a very high

value. This makes sense because the estimated parameter γ is very high, thus the number

of clicks decreases dramatically at a lower position, and because of the reasonably good

expected value per click it is worth to pay a high cost-per-click value to attain the highest

possible position.

16The entire name of the keyword is ’palau de la musica catalana ticket’.
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4.4 Implementation into Google Adwords

After computing the optimal bids as described in the previous Section 4.3 they can be

uploaded into Google Adwords after copying the bids into an appropriate excel sheet. I

used the Model of Chapter 3 to compute the bids of the ticket agency for two weeks.

Now I want to compare if it is better for the company to decide on the bids themselves

with the support of google or to compute the bids using the bidding policy suggested by

[Abhishek and Hosanagar, 2013]. To compare this I will use a Difference-in-Differences

(DiD) approach, where ’the average gain in the second (control) group is substracted

from the average gain in the first (treatment) group. This removes biases in second

period comparisons between the treatment and control group that could be the result

from permanent differences between those groups, as well as biases from comparisons

over time in the treatment group that could be the result of trends.’17

I use the Return On Investment (ROI), which is computed by dividing the total revenue by

the total costs to get the average gain for the two groups. The change in the performance

due to the new bidding policy is then given by

δ = ∆ROIExperimental −∆ROIControl (4.5)

= −7.4− (−2.4)

= −5.

Contrary to expectations, the return on investment of the ticket agency’s advertising

campaign decreased by 500% on a DiD basis, indicating that the advertiser’s bidding

policy outperforms the bidding policy as described in Chapter 3 dramatically. In Section

4.5 I will try to analyze what went wrong and why there was such a performance loss.

Additionally, we see that the ROI of the control group also deteriorated (∆ROIControl =

−2.4) in the ’after’ period compared to the ’before’ period. This is mainly because of the

inherent seasonality of ticket sales. The ’after’ period runs from July 7 until August 4,

which is a typical period for holidays. Although people go to concerts and other events

17http://www.nber.org/WNE/lect 10 diffindiffs.pdf (Visited on August 12, 2014)
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during their holidays, they often either book their tickets in advance or spontaneously

at the event site or at the hotel, but there are also clearly less people booking tickets on

the internet during their holidays than at home. What they do, however, is to collect

information about where they could go or which concert they would like to see, not only

offline but also online. They click on a lot of advertisements to get a good overview of

what they could do, but the majority do not actually buy the tickets online, thus the

click-through rate increases while the value per click decreases, and both the average

position and the cost-per-click do not change. As a result, the total costs increase while

the total revenue decreases, which obviously leads to a lower return on investment of the

control group.

4.5 Analysis of the Field Experiment

In Section 4.4 we saw that the advertiser’s policy performs much better than the bidding

policy of Chapter 3. Now there are a few questions to be answered: What went wrong?

Which factors lead to the deterioration in the performance of the ticket agency’s Google

Adwords campaign?

Obviously, the model of Chapter 3 is only a simplification of the reality and I think that

some very important aspects of the mechanics of Google Adwords are ignored in that

model.

We assumed that the probability of a click conditional on the position pos is given by

Equation (3.4), which means that the decrease of clicks changes with factor γ from one

position to the lower position. As shown in Figure 4.4, there are advertisements at the top

of the page, which the customer sees before the organic results, and others on the right

side of them. In my opinion this may be an appropriate approach for the advertisements

on the right side but definitely not for the ones on the top of the page. But there is

additionally the difficulty that there are zero to three advertisements on the top of the

page and only Google knows on which factor this depends. It also varies from query to
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query on the same device from one second to another as one can see on Figure 4.4. It

Figure 4.4: Top of Page on Google Adwords; [Google, 2014d].

is basically impossible to model this because of the lack of information, but it would be

very important, because the difference between the click-through rate at the top of page

and at other positions is enormous. For the keyword ’spanische hofreitschule’ the click-
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through rate at the top of page is 13.84%, while at other positions it is only 1.24%. The

keyword ’burgtheater wien’ shows a similar result with a click-through rate of 11.55%

compared to 0.56%. By means of these two keywords also the variance of the amount

of advertisements at the top of page can be shown. The average position for ’spanische

hofreitschule’ is 1.5 at the top of page and 2.6 at other positions, while for ’burgtheater

wien’ the average position at the top of page is 1.0 and the one at other positions is 1.4,

which shows that for the second keyword Google does not seem to show more than one

advertisement at the top of page.

As mentioned in Section 3.1, we simplified our model by ignoring the fact that the qual-

ity score18 plays an important role in the ad rank19 of each advertiser. We assumed that

the only determining factor for the ad rank is the bid of each advertiser, although we

know that Google Adwords weights the bids with the quality score so that it is pos-

sible that the ad of someone who has a higher bid than all other advertiser is not at

the first position. The explanation why the quality score is ignored is the following in

[Abhishek and Hosanagar, 2013]:

’The discussion assumes that ads are ordered by bid and that the advertiser pays the

bid of the next advertiser. A common practice is to use the product of bid and a qual-

ity score to rank order the advertisers, and the payment is the minimum bid needed

to secure the position (e.g., the payment per click for an advertiser in position i is

bid(i + 1) ∗ Quality(i + 1)/Quality(i). This does not affect our model. If we normal-

ize the bid of all competitors by the ratio of their quality score relative to our advertiser

(NormalizedBid = bid ∗ QualityCompetitor/QualityAdvertiser), our analysis can be inter-

preted as based on this normalized bid.’

18The quality score is ’an estimate of the quality of your ads, keywords, and land-

ing page. Higher quality ads can lead to lower prices and better ad positions.’

https://support.google.com/adwords/answer/140351?hl=en (Visited on August 19, 2014)
19The ad rank is ’a value that’s used to determine your ad position (where ads are shown

on a page) and whether your ads will show at all. Ad Rank is calculated using your

bid amount, the components of Quality Score (expected clickthrough rate, ad relevance, and

landing page experience), and the expected impact of extensions and other ad formats.’

https://support.google.com/adwords/answer/1752122?hl=en (Visited on August 19, 2014)
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In my opinion this simplification would only be suitable if the quality of the advertisers

did not change, because as soon as the quality of the ticket agency increases for a key-

word k, the normalized bids of the competitors decrease automatically so that the ticket

agency gets a relatively better ad rank without changing its bid. Also a change in the

quality of another competitor would have effects on the sequence of the ads. Although I

agree with [Abhishek and Hosanagar, 2013] that in general bids for keywords are rarely

updated continuously, our normalized bids are changed continuously because of the ad-

justments in the quality score. They tested the effect of changes in bids on their bidding

policy by computing the mean absolute error (MAE) of the predicted and observed av-

erage position and cost-per-click in the after period, where they use the Equations (4.1)

to obtain the predicted moments. ’If there is competitive reaction then the predicted

average position and CPC would be considerably different from the observed position or

CPC as the competitors might change their bids as a response to the changes in bids by

the advertiser. If the predicted and observed moments of these quantities are not very

different, it suggests that the competitive reaction is subdued.’20 The MAE of the ticket

agency’s data is reported in Table 4.5.

Quantity MAE

position 1.862

CPC $0.05

Table 4.5: Mean absolute errors of the moments

We can see that the MAE between the predicted and observed position is quite high

compared to the value 0.141 in [Abhishek and Hosanagar, 2013], where the one of the

CPC is very close to the predicted value. As indicated above, I do not think that this is

a result of high competitive reaction during the experimental phase. I rather think that

this confirms the impact of the quality changes on the ad rank. The quality affects the

position of the ad but not so much the CPC because the normalized bid of the ticket

agency does not change with quality and therefore the bid of the next advertiser tends

20[Abhishek and Hosanagar, 2013], Appendix, page 39.
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to be similar to their bid and thus similar to the bid before the change of the quality. In

addition, we assumed that the distribution function of the bids of the competitors F (·)

does not change during the estimation period, which is not true because of the function’s

dependency on the quality scores.

Since October 2012 Google Adwords also provides information about the impression

share. ’Impression share (IS) is the number of impressions you’ve received divided by

the estimated number of impressions you were eligible to receive. [...] An easy way to

understand the value of impression share is to think of the online advertising landscape

as a delicious pie. You and your competitors are each trying to grab the biggest slice

of that pie. By tracking your impression share metrics, you’re keeping tabs on the size

of your slice compared to the whole.’21 As mentioned in Section 3.1, the impressions

are defined as the number of searches for keyword k where the advertiser’s ad has been

shown. The daily summary measures of the average position, the average cost-per-click,

and the click-through rate are only based on the number of impressions and not on the

number of searches for a certain search term. If a company wants to be shown at a

higher percentage, it has to either increase its budget because the ad is not shown due to

insufficient budget, or it has to increase its bid for the keyword if the impression share

is low due to a bad ad rank. Thus it is important to observe the impression share and

include that percentage in the company’s bidding policy.

Another fact which is ignored in the model is that there are more and more people

using their mobile phones or tablets to search on the internet. One point is that on a

mobile phone there are less advertisements shown. For the search term ’Winterjacke’

there are shown seven advertisements on a computer and only three on a mobile phone.22

Because there are less advertisements of competitors per search query and the companies

receive only the summary measures based on the impressions, the click-through rate is

considerably higher. Another negative point is that there are fewer people who actually

complete a purchase on their mobile phones or on their tablets because it is not so

21https://support.google.com/adwords/answer/2497703?hl=en (Visited on August 17, 2014)
22This is the result of a the search query on August 8, 2014.
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pleasant to type in all the information for payment and delivery with a virtual keyboard.

Therefore the revenue per click of mobile phones and tablets is about 60% fewer than the

one of computers, and there are less advertisements shown on these devices. The problem

is that only 61% of the searches in the estimation period are made from computers and

our model does not reflect these differences.



5 Conclusions

The ticket agency for which I carried out the analysis has to decide on and has to adapt

regularly the bids for keywords associated with more than 25,000 events. To circumvent

this quite time-consuming activity and to improve the performance of its search engine

advertising I started to collect a lot of data from the ticket agency’s Google Adwords.

I introduced the analytical model described by [Abhishek and Hosanagar, 2013], formu-

lated the underlying decision problem, derived the optimality conditions, and described

the generalized method of moments estimator, which I needed to estimate the parame-

ters required to solve the decision problem. After that, I divided the data set containing

255 of the ticket agency’s keywords into a control group and an experimental group and

observed three periods: the ’before’, the estimation, and the ’after’ period. The bids of

the control group were computed during all periods the same way as before, while the

bids of the experimental group where changed by the ticket agency weekly during the

estimation period. I used my MATLAB program to estimate the required parameters

with the generalized method of moments estimator and to compute the optimal bids

according to the decision problem and the corresponding optimality conditions. During

the ’after’ period, the ticket agency used the bids, which I computed for them weekly.

I used a Difference-in-Differences (DiD) approach to compare the results of the imple-

mented bidding policy with the advertiser’s previous policy and came to the result that

the return on investment of the ticket agency’s search engine advertising decreased by

500% on a DiD basis in the ’after’ period compared to the ’before’ period. I pointed

out that in my opinion the performance of the ticket agency’s Google Adwords campaign

deteriorated because the model ignores the difference between the click-through rate at

58
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the top of page and at other positions, due to the fact that the quality score plays an

important role in the ad rank of each advertiser, because of the importance to observe

the impression share and to include that percentage in the company’s bidding policy, and

finally due to the fact that there are more and more people using their mobile phones

where less advertisements are shown and fewer people complete a purchase.

Now the question remains: Why did the bidding policy work for the meat distributor

treated in [Abhishek and Hosanagar, 2013] but not for the ticket agency? A very impor-

tant point is that the field experiment with the data set of the meat distributor was made

in 2011 and the one with the data of the ticket agency in 2014. Google is continuously

changing the algorithms, the way in which the search results are displayed, adding fea-

tures showing extra business information with the ads (such as phone number, address,

ratings, apps, or additional links), adding new bidding strategies, and making a lot of

other smaller and bigger changes. Additionally, I do not know the previous bidding policy

of the meat distributor, whether the company used only manual bidding, or if they let

Google support them with a bidding strategy like enhanced cost-per-click or automatic

CPC bidding. I just know that the average number of unique bids per keyword were 1.12

during three months, which is much less than the one of the ticket agency. Maybe it is

still possible to improve the Google Adwords performance of a company using the bidding

policy of [Abhishek and Hosanagar, 2013], e.g., if the company normally does not change

their bids very often and does not use the new features, but – as I demonstrated in my

diploma thesis – not for a company that changes the bids regularly and is aware of the

multiple changes in Google Adwords.

Probably it is possible to compute a better bidding policy and automize the bid opti-

mization by extending the model and considering the facts I mentioned in Section 4.5

as well as possible. It would be interesting to implement those changes, where I could

even use the same data of the estimation period, compute the bids using the enhanced

model, compare again the results and check, whether or not it is possible to improve the

performance of the ticket agency’s search engine advertising using the new bidding policy.
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