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Abstract

Cutting stock problems occur in many industrial applications where parts have to be cut
out of raw materials. Most of the algorithms for solving such problems involve producing
many cutting patterns during their execution. We propose a set cover approach which
makes use of those produced patterns and searches for the best combination of a subset
of them to cover all demands.

To solve the problem we propose four methods: an integer linear program (ILP) model, a
greedy construction heuristic, a PILOT approach, and a beam search procedure. These
algorithms are relatively independent from many specifics of the concrete variant of
cutting stock problem to be solved. Furthermore, we propose a hybrid combination of
the greedy set cover approach and a problem dependent construction heuristic.

The methods work especially well on problems with setup costs, which are costs for each
type of used pattern. In cases with setup costs it is enough to have a problem specific
algorithm which ignores pattern setup costs. The set cover approach then optimizes the
solution with regard to the pattern setup costs.

We test our approaches for the K-staged two-dimensional cutting stock problem with
variable sheet size and pattern setup costs. As a result of the testing, we can statistically
significantly conclude that the ILP model works best on small instances, the greedy and
the hybrid algorithms work best on large instances and the PILOT and beam search
approach work better than the greedy and hybrid on small and medium-sized instances.
Furthermore, the algorithms can improve over 50% of the tested solutions given by a
problem specific algorithm if pattern setup costs are active.
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CHAPTER 1
Introduction

One of the most natural tasks in many production processes in various economic areas is
processing raw materials to obtain various kinds of goods. Often, such a task involves
cutting out parts from the raw material in predefined sizes. Deciding how to cut the
raw materials into parts such that the unusable raw material waste gets minimized is
clearly an economic incentive. This task was and is in simple cases solved by humans,
but especially when the number and the different types of needed parts is large it can
be hard to manually find satisfactory solutions. Therefore, many companies start to
use computer based solutions for calculating good cutting patterns. This lightens their
employees workloads and often the algorithms find better cutting patterns than a human
would ever be able to and therefore save costs.

In the literature, such problems are called cutting stock problems. They deal with cutting
small items out of larger raw materials, given some specified demand for each item size.
Some example industries which heavily need to solve this kind of problems are paper, film,
metal, glass, and wood industries. The area of cutting stock problems is widely studied in
the literature. The classical problems but also many highly specialized problem variants
are considered and sophisticated solution approaches for solving them got developed.

Many of those solution approaches generate many cutting patterns during their execution.
For example so called improvement heuristics try to improve a given solution by exchanging
some cutting patterns by other cutting patterns. This leads naturally to a pool of patterns
which may be much larger than just the patterns used in the final solution. The main
idea of this thesis is to exploit this pool of potentially promising cutting patterns and
find a good solution using just those cutting patterns in a postprocessing step. This
idea follows the very general concept of solution merging, which uses multiple solutions
for a problem and merges them together to one superior solution. For more details on
the concept of solution merging see [BPRR11]. The advantage of this approach for our
problem is that selecting the best combination of patterns from the pattern pool does
not need to know the specific restrictions on the patterns which depend on the specific
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1. Introduction

problem variant we are considering. Therefore, the postprocessing is independent of
the problem variant and the pattern restrictions, except for restrictions which relate to
combinations of patterns. This implies that solution approaches for the postprocessing
can be applied to a big variety of problem variants in the area of cutting stock problems.

In this thesis we will propose a general cutting stock model which covers many cutting
stock problem formulations and variants. Then we will formulate a set covering problem
which tries to find the best combination of patterns from a given pattern pool. Fur-
thermore, we will propose four different approaches for solving the set covering problem
and one hybrid approach which uses a set covering approach in combination with a
construction approach for solving the underlying cutting stock problem.

This thesis was developed as part of a project which was financed by LodeStar Technology
Ges.m.b.H. In this project an approach for solving a two-dimensional variant of the
cutting stock problem was developed by Dusberger and Raidl [DR14, DR15, DR17]. The
implementation of this approach was integrated in the software package by LodeStar
Technology and is used by many clients from different industries, especially the wood
cutting industry, to optimize their cutting patterns. A machine used for executing
such cutting patterns in the wood cutting industry is shown in Figure 1.1. Because of

Figure 1.1: A cut-to-size saw for the wood cutting industry. (Image by SCHELLING Anlagenbau
GmbH)

this tight relationship with the industry we have a set of real world instances for the
given two-dimensional variant of a cutting stock problem and can use the algorithm by
Dusberger and Raidl to generate pattern sets which can be used as instances for the set
covering problem.
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1.1. Related Work

One of the weaknesses of the algorithm by Dusberger and Raidl is the rather weak ability
to consider so called pattern setup costs. They occur in practice if a human has to adjust
the cutting machine whenever it should cut a structurally different pattern. Because we
want to minimize the human workload, we assign costs for changing the pattern which
effectively assigns costs to each structurally different pattern. Another situation which
can be modeled with pattern setup costs is when raw materials can be stacked and cut
simultaneously. In this case we assign costs to the amount of time a machine needs for a
cutting plan. Minimizing the time leads to a more efficient production process. Therefore,
we want to have patterns with a high multiplicity so that we can stack the raw materials
when cutting those patterns. In the end also leads to assigning costs to each structurally
different pattern, although there may be a maximum stack size. In this case those costs
have to get multiplied by the number of stacks needed for one pattern.

As already mentioned the approach by Dusberger and Raidl does not work well together
with pattern setup costs. This was the main reason for us to solve this set covering problem
in a postprocessing step which can then improve the solution quality by focusing on large
stacks of good patterns. For testing our approaches we use the pattern sets generated
by the algorithm of Dusberger and Raidl applied to different real world instances. As
we will see in the test results the postprocessing is able to improve the solution for over
50% of the instances if pattern setup costs dominate the other costs. Also, with lower
pattern setup costs or with no pattern setup costs the postprocessing is able to find
improvements for many instances.

We also propose integrating our hybrid approach as a neighborhood into the algorithm
by Dusberger and Raidl such that it is not just used as a postprocessing but regularly
in the iterations of the improvement algorithm. This helps to guide the search towards
solutions with good pattern setup costs and can improve the performance of the algorithm
especially for instances with a strong focus on pattern setup costs.

1.1 Related Work

There is much literature in the area of cutting stock problems. Due to the high number
of problem variants Dyckhoff [Dyc90] developed a typology to categorize cutting stock
problems and Wäscher et al. [WHS07] extended it later on. We will look at this typology
in Chapter 2 to show to what categories of cutting stock problems our set cover approach
is applicable. The work by Sweeney and Paternoster [SP92] tries to summarize the
research done in the field of cutting and packing problems, although this work is already
quite outdated. For a survey of two-dimensional cutting stock problems see [LMM02].

There exist quite a few scientific publications about pattern setup costs in cutting stock
problems. Henn and Wäscher [HW13] analyze setup costs for different cutting stock
problems and consider how to adapt existing models to be able to handle setup costs.
Furthermore, Belov and Scheithauer [BS07] developed an approach for solving the one
dimensional cutting stock problem with setup costs.

3



1. Introduction

There are already approaches in the literature which are based on the idea of reusing
already generated patterns and combine them to potentially better solutions. Cui et
al. [CZY15] developed a two phase approach for solving the one-dimensional cutting
stock problem with pattern setup costs. The first phase generates good patterns and the
second phase searches for the best solution composed out of those generated patterns
which is done with an integer linear program (ILP) model. Their ILP model is similar to
our model although they consider only the one dimensional case and also a slightly less
general problem. For example, the problem has no availabilities of raw materials.

Another two-phase approach for the one-dimensional cutting stock problem with setup
costs was proposed by Förster and Wäscher [FW00] and the second phase tries to combine
patterns in a given solution into one pattern which is then used multiple times. The
approach of reducing the number of different patterns in a given solution is based on the
work of Diegel et al [DCVSN93].

There exist a lot of research results and many algorithms concerning the classical set
covering problem [CTF00]. Our set covering problem is similar to the general weighted
set covering problem, although there is no concept like setup costs for this problem. A
theoretical analysis of the general weighted set covering problem was done by Yang and
Leung [YL05].

TheK-staged two-dimensional cutting stock problem, from which the problem we consider
in our tests is derived, was already studied early by Gilmore and Gomory [GG65]. To
solve this problem they introduced the general technique of column generation which
is used today for many combinatorial problems in a large number of other application
domains. For generating patterns for our considered variant with setup costs we use the
algorithm proposed by Dusberger and Raidl [DR14, DR15, DR17].

We presented a part of the approaches and results discussed in this thesis at the sixteenth
international conference on computer aided systems theory and published the work in
the conference proceedings [KR18].

1.2 Structure of the Work
In the following chapter, we will explore the area of cutting stock problems and present
some basic problem types. In Chapter 3 we introduce a general cutting stock problem
formulation and the related cutting stock set cover problem which will be the main
problem variants we consider. Chapter 4 presents four different solution approaches for
solving the cutting stock set cover problem and one hybrid solution approach for solving
the general cutting stock problem. The approach by Dusberger and Raidl is described
in detail in Chapter 5. Chapter 6 shows the results of the approaches and evaluate the
performance when adding a neighborhood based on our hybrid approach to the algorithm
by Dusberger and Raidl. Finally, we conclude the thesis in Chapter 7 and present some
ideas for future work.
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CHAPTER 2
Cutting Stock Problems

In many economic areas a manufacturer has to cut out objects of specific sizes from raw
materials, as these objects are needed in the production process. An economic incentive
is to use as few raw materials as possible or equivalently to have as little waste as possible
remaining after cutting the objects out. Therefore, planning how to cut the raw materials
is crucial and one can consider the optimization problem of finding a good cutting plan
such that the amount of used raw materials is minimal. Such optimization problems are
called cutting stock problems and because of their wide variety of applications there exist
many variants of them and a lot of research is done in this area.

To classify the different types and varieties of cutting and packing problems Dyck-
hoff [Dyc90] formulated 1990 a typology for cutting and packing problems which was
later extended by Wäscher et al [WHS07]. Note that both typologies also include packing
problems which can frequently be modeled in the same way as cutting problems but have
other applications. Cutting problems represent the problem of cutting some parts out
of bigger parts and packing problems represent packing items into bigger items, but for
modeling both problems are strongly related. All problems of this type have in common
that there is given a set of large objects (input, supply) and a set of small items (output,
demand) have to be grouped together into possibly multiple groups to fit onto/into the
large objects. Dyckhoff typology is based on four characteristics of the problems:

• The dimensionality of the objects and the items. One- and two-dimensional problems
are the most common problems, although there are problem formulations for three
dimensions or in general N dimensions.

• Kind of assignment: There are two possibilities. Either one has to fit all the given
items onto a selection of the given objects or one has to fill all given objects with a
selection of the given items.
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2. Cutting Stock Problems

• Assortment of large objects: There are three possibilities. Either there is only one
large object, multiple objects all having the same shape, or multiple objects with
different shapes

• Assortment of small items:

– Few items with different shapes
– Many items with many different shapes
– Many items with few different shapes
– All items have the same shape

The extension of Wäscher et al. distinguishes five categories:

• The dimensionality as in Dyckhoff’s typology

• Kind of assignment as in Dyckhoff’s typology. We will call the first case when we
have to use all items and a subset of the objects input minimization and the second
case when all objects have to be used and a subset of items output maximization.

• Assortment of small items:

– identical: All items have the same shape
– weakly heterogeneous: Items can be grouped in a small number of classes of

the same shape
– strongly heterogeneous: Only few items have same shapes

• Assortment of large objects:

– One large object
∗ The size of the object is fixed
∗ The size of the object in at least one dimension is variable: Occurs most
of the time with input minimization where the size of the single object
has to be minimized

– Several large objects: Here we only consider fixed size objects in contrast to
the case of one large object, where we allow a single object of variable size
∗ identical
∗ weakly heterogeneous
∗ strongly heterogeneous

• Shape of small objects:

– regular small items: rectangles, circles, boxes, cylinders, balls, etc.
– irregular small items

6



In this work we want to focus on problems dealing with input minimization as kind
of assignment. In the case of input minimization using only identical small items is
normally not considered since this would strongly reduce the problem and in many cases
it would be trivial to solve. Therefore, we only consider the weakly heterogeneous and
strongly heterogeneous type for the assortment of small items. Wäscher et al. called
the problem classes with fixed kind of assignment and assortment of small items basic
problem types. In our case we are interested in two basic problem types, the one with
input minimization and weakly heterogeneous items, which Wäscher et al. simply called
Cutting Stock Problem, and the one with input minimization and strongly heterogeneous
items, which Wäscher et al. called Bin Packing Problem.

As the chapter title suggests we will focus mainly on different types of cutting stock
problems but since bin packing problems are closely related to cutting stock problems we
will present first the basic bin packing problem.

Bin Packing Problem. Given a bin size V and a set of items I with sizes ai ∈ R+
for each i ∈ I. Find a minimal number of bins B and a partitioning of I into B sets
I1, . . . , IB such that ∑

i∈Ik

ai ≤ V ∀k ∈ {1, . . . , B}.

This simple formulation of the bin packing problem can be classified by the classification
of Wäscher et al. as follows. The dimensionality is one (the size), the kind of assignment
is input minimization as we already fixed this before, the assortment of small items is
strongly heterogeneous (every item has possibly another size), the assortment of large
objects is several identical large objects (the bins), and the shapes of the small objects
are regular (one dimensional with a size).

In the following we will focus on cutting stock problems, i.e. where we fix the assignment
type to input minimization and the assortment of small items to weakly heterogeneous.
The one-dimensional case has among others applications in paper, film and metal
industries. In those applications large rolls of some material get produced and then have
to be cut into smaller rolls with different widths, depending on the demand. Figure 2.1
shows a roll slitting machine which can cut a paper roll into smaller paper rolls.

For the two-dimensional cutting stock problems, application areas are for example the
wood and glass industry. In those applications often appearing problems are of the
form given a number of rectangular shaped sheets of material the question is how to
cut out smaller rectangular shaped pieces with minimal waste. One could also consider
non-rectangular shaped sheets or pieces, although most of the existing literature on
2-dimensional cutting stock problems considers only rectangles.

In the following we present some important standard problems.
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2. Cutting Stock Problems

Figure 2.1: A roll slitting machine which cuts paper rolls into smaller rolls. (Image by Soma
Engineering is licensed under CC BY-SA 3.0)

2.1 One-dimensional Cutting Stock Problems
In the context of one-dimensional cutting stock problems we will call the large objects
the input rods and the small items the pieces. The most basic one-dimensional problem
is stated as follows.

One-dimensional cutting stock problem (1DCSP). Let T be a set of different
input rod types, Lt ∈ R+ the length of the input rod of type t ∈ T and ct ∈ R+ the
cost of the input rod of type t ∈ T . Furthermore, let E be a set of pieces and for each
i ∈ E let li ∈ R+ be the length of the piece and di ∈ N \ {0} the demand of the piece.
A solution S to the problem is now a set of patterns PS , and for each pattern P ∈ PS

an amount aS
P . Furthermore each pattern P ∈ PS is associated with an input rod type

tP ∈ T . Each pattern P ∈ PS can be represented by an element vector (eP
i )i∈E ∈ N|E|

where each entry of the vector is the amount of pieces of the corresponding length which
get cut out of the input rod, i.e., eP

i is the amount of pieces of length lj used in the
pattern. A solution is feasible if it covers all pieces, i.e.,∑

P∈PS

aS
P · eP

i = Ni ∀i ∈ E

and if all patterns are valid, i.e.,∑
i∈E

li · eP
i ≤ LtP ∀P ∈ PS .

The problem is now to find a feasible solution S which minimizes the costs of the used
input rods

c(S) :=
∑

P∈PS

aS
P ctP .
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2.2. Two-dimensional Cutting Stock Problems

Remark 2.1.1. In the formulation of 1DCSP we implicitly assumed that the amount of
available input rods of each length is unlimited.

This basic problem was one of the first problems which got introduced in the context of
cutting stock problems. A classical solution approach for solving it is column generation
introduced by Gilmore and Gomory [GG61]. The problem was one of the first applications
of column generation and is still a classical example for the usage of column generation.

Many authors formulate classical one-dimensional cutting stock problems where all input
rods have the same length. Since this is just the restriction k = 1 in our problem
formulation, we use the more general formulation as our base problem. In the typology of
Wäscher et al. [WHS07] the problem as we defined it is called one-dimensional multiple
stock size cutting stock problem (1DMSSCSP) which can then be distinguished from the
one-dimensional single stock size cutting stock problem (1DSSSCSP). As we will mostly
operate on multiple stock sizes, we will not use this extended terminology.

There are a lot of extensions of 1DCSP many of them originating from different real world
applications. In this work we focus on one special kind of extension called setup costs.
Modern cutting machines often need significant time to switch between two different
patterns, therefore it is encouraged to minimize the number of different patterns such
that associated costs with these times get minimized. This leads to a second objective
and in general therefore leads to a multi objective optimization problem. One variant
which considers this situation is the one-dimensional cutting stock problem with pattern
reduction (1DCSPPR) [FW00]. It only considers input rods of the same length L and
searches for a solution with minimal number of used input rods and within all those
solutions it searches for the solution with a minimal number of different patterns. Another
approach is to use cost weights measured in a currency instead of using the number
of different patterns as second level objective. This combined objective was considered
among others by Mobasher and Ekici [ME13] but is not covered as well as the 1DCSPPR
in the literature. Since there are different names for this problem in the literature, we
will call it the one-dimensional cutting stock problem with setup costs (1DCSPSC).

We want to mention that there are many more variants of the One-Dimensional Cutting
Stock Problem and what we presented in this section are just a few selected variants
which are important for our approach later on.

2.2 Two-dimensional Cutting Stock Problems

For two-dimensional cutting stock problems we will call the large objects the sheets and
the small items the pieces or elements. There are many categories of two-dimensional
cutting stock problems, one of the most basic distinctions being regularity.

Two-dimensional regular cutting stock problem (2DRCSP). Given a sheet size
(W,H) of width W and height H and a set of rectangular pieces where each piece i has
a width wi ∈ R+, a height hi ∈ R+ and a demand di ∈ N \ {0}. The problem is now to

9



2. Cutting Stock Problems

distribute all the pieces (multiplied by their demand amount) inside a minimal amount
of sheets of width W and height H such that no piece overlaps with another piece.

Two-dimensional irregular cutting stock problem (2DICSP). Given a sheet size
(W,H) of width W and height H and a set of pieces where each piece has a demand
and can be described by a (irregular) polygon without holes. The problem is again to
distribute all the pieces (multiplied by their demand amount) inside a minimal amount
of sheets of width W and height H such that no piece overlaps with another piece.

Note that 2DICSP is sometimes also called nesting problem in the literature. It is easy
to see that 2DICSP is a generalization of 2DRCSP, although in the literature 2DRCSP
is considered far more often than 2DICSP. This is probably because the regular version
is easier to solve and maybe also because many problems occurring in practice naturally
contain only rectangular pieces. Note that one could even further generalize 2DICSP
by allowing also holes in the polygons or even allow pieces of other forms which are not
polygons. Allowing pieces would increase the complexity of the problem even more since
items could now also be placed within the wholes of other items. Relaxing the condition
that all items are polygons would lead to problems which are hard to even formulate
and even harder to solve. Furthermore, one can argue that all geometrical forms can be
approximated by polygons since we allow arbitrary number of sides. One of the few works
which consider the 2DICSP is the work of Albano and Sapuppo [AS80] who presented
heuristics to solve the problem.

Next we will further investigate some categories of two-dimensional regular cutting stock
problems. A common restriction in this class of problems is that each side of each piece is
aligned parallel to one of the sides of the containing sheet. We call the 2DRCSP together
with this restriction the two-dimensional orthogonal cutting stock problem (2DOCSP).
Although De Cani [DC78] showed that this restriction may lead to substantially worse
solutions than non-orthogonal solutions for some problem instances, most literature is
only concerned with the orthogonal case of the problem.

A further restriction of the 2DOCSP which is common are so called guillotine cuts. The
main idea behind this restriction is that many cutting machines can only cut through
the whole material. Therefore, a guillotine cut is a cut (a straight line) which goes from
one end of the sheet to the opposite end of the sheet. Note that it is allowed to do
guillotine cuts in multiple stages, e.g. first cutting the sheet vertically and then cutting
the resulting components horizontally where each component can be cut individually.

An example pattern is shown in Figure 2.2. In the first stage the red horizontal lines are
cut. Then, the remaining components get cut along the blue vertical lines and last but
not least the green horizontal lines get cut. Note that all the cuts always go from one side
of the component to the other side and are therefore guillotine cuts. An example of a
pattern which cannot be cut by guillotine cuts only is illustrated in Figure 2.3. This can
easily be seen by the fact that except of the waste on the right side nothing can be cut
with a guillotine cut without cutting through an output piece. We call the problem when

10



2.2. Two-dimensional Cutting Stock Problems

restricted to only guillotine cuts the two-dimensional guillotine cutting stock problem
(2DGCSP).

Figure 2.2: An example pattern using guillotine cuts.

Figure 2.3: An example pattern which cannot be cut by only guillotine cuts.

If we consider only guillotine cuts, one can also consider the number of cutting stages
of the patterns. For example the pattern in Figure 2.2 has three cutting stages, the
red lines are cut in the first stage, the blue in the second and the green in the third.
One can now restrict the number of cutting stages in the patterns to at most K stages
for a K > 0. This problem is then called the K-staged two-dimensional cutting stock
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2. Cutting Stock Problems

problem (K2DCSP) [GG65]. This restriction may be inclined because of a simpler
solution representation or because of practical limitations.

Up until now all two-dimensional problems presented here only use one sheet type with
a given width W and height H, but many applications use sheets of different sizes in
practice. Therefore, we introduce the following extension of the K2DCSP. A similar
extension could be formulated for all presented two-dimensional problems until now.

K-staged two-dimensional cutting stock problem with variable sheet size
(K2DCSPV). Given a set of sheet types T with widths Wt ∈ R+, heights Ht ∈ R+,
available quantities qt ∈ N ∪ {∞}, and costs ct ∈ R+ for t ∈ T . Furthermore, let E be a
set of different element types. Each element type i ∈ E has a width wi ∈ R+, a height
hi ∈ R+, and a demand di ∈ N\{0}. A solution S to the problem is now a set of patterns
PS and for each pattern P ∈ PS an amount aS

P . Furthermore, each pattern P ∈ PS

is associated with a sheet type tP . Each pattern describes how to cut elements out of
the associated sheet type only using guillotine cuts. We can associate with each pattern
P ∈ PS an element vector (eP

i )i∈E ∈ N|E| which describes how often the i-th element
occurs in the pattern P . A solution is feasible if all element demands are satisfied, i.e.∑

P∈PS

aS
P · eP

i = di ∀i ∈ E,

and all available sheet quantities are not exceeded, i.e.∑
P∈PS :tP =t

aS
P ≤ qt ∀t ∈ T.

The problem is now to find a feasible solution which minimizes the costs∑
P∈PS

aS
P · ctP . (2.1)

As in the one-dimensional case, we can again consider the variant of the K2DCSPV where
we add pattern setup costs. As input, we get an instance of the K2DCSPV together with
stacking/setup costs cS

t for each sheet type t and a maximum stack size smax ∈ N ∪ {∞}.
Then the new objective is the old objective (2.1) plus the pattern setup costs

∑
P∈PS

aS
P · ctP +

⌈
aS

P

smax

⌉
· cS

tP
(2.2)

where in the case of smax =∞ the expression
⌈

aS
P

smax

⌉
is defined as 1 if aS

P > 0 and as 0
otherwise.

The K-staged two-dimensional cutting stock problem with variable sheet size and pattern
setup costs (K2DCSPVSC) is then defined by replacing the objecitve (2.1) by (2.2).
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CHAPTER 3
The Cutting Stock Set Cover

Problem

Most of the methods from the literature for solving a set cover problem, especially
improvement heuristics, generate many patterns during the execution of the algorithm,
more than the ones that are used in the final solution. The idea of the cutting stock set
cover problem is now to make use of this variety of generated patterns and find the best
solution consisting of some of those patterns. The advantages of this method are that the
problem is not concerned with the concrete structure of the patterns, it only is interested
in the number of items on a pattern. Therefore, all problem-specific constraints for the
pattern construction do not need to be considered, except of those constraints which
operate on multiple patterns or on how they can be combined.

Before we can formulate the cutting stock set cover problem we formulate a general
variant of the cutting stock problem which we will use as the base problem.

General cutting stock problem (GCSP). Let E be a set of elements, (di)i∈E ∈ N|E|
a demand vector and smax ∈ N ∪ {∞} the maximum stack size. Further, let T be a set
of stock materials and qt ∈ N ∪ {∞} the maximal available quantities for each stock
material t ∈ T .

A solution is represented by a multiset of patterns. A pattern is in general a structural
collection of elements in E which satisfies some problem-specific constraints. The structure
of the pattern is also problem-specific, but irrelevant for this approach. We can associate
with each pattern P an element vector (eP

i )i∈E ∈ N|E| which describes how often the
element i is contained in the pattern P . Furthermore, a pattern P is associated to a
stock material tP ∈ T out of which it gets cut. A pattern P has associated problem
specific production costs cP

P ≥ 0 and stacking costs cS
P ≥ 0. Note that the set of possible

patterns, its production costs and stacking costs are not part of the problem instance,
since depending on which problem the possible patterns are described by problem-specific

13



3. The Cutting Stock Set Cover Problem

structural rules and constraints and the costs are described as formulas possibly depending
on the structure of the pattern and the used stock materials and elements.

We define a solution S as a set of feasible patterns PS and an amounts vector (aS
P )P∈PS ∈

N|PS |. The goal is to find an optimal solution S which satisfies the demand constraints∑
P∈PS

eP
i · aS

P ≥ di ∀i ∈ E, (3.1)

the stock material availability constraints∑
P∈PS :tP =t

aS
P ≤ qt ∀t ∈ T, (3.2)

and minimizes the total costs

c(s) :=
∑

P∈PS

cP
P · aS

P +
∑

P∈PS

⌈
aS

P

smax

⌉
· cS

P . (3.3)

If smax =∞ we define
⌈

aS
P

smax

⌉
equals 1 if aS

P > 0 and 0 if aS
P = 0.

We further consider the problem variant general cutting stock problem with exact demands
(GCSPE) in which demands must exactly be satisfied, which means we replace condition
(3.1) by ∑

P∈PS

eP
i · aS

P = di ∀i ∈ E. (3.4)

If we compare the GCSP with the typology of Wäscher et al., see chapter 2, we see that
many problem types fit into the framework of GCSP. The only restrictions are that the
kind of assignment is input minimization and that the dimensions of the large objects
(the stock material) are fixed. All problems presented in chapter 2 fit into the framework.
Moreover, many problem variants and extensions deal with special constraints for the
pattern construction, especially for problem formulations closer to real world situations.
All those restrictions on the pattern structure can be considered in the GCSP since it
makes no assumptions on the problem-specific constraints for the pattern structure.

Note that the classical cutting stock problems do not allow overproduction as it is allowed
in GCSP in contrast to GCSPE. If we do not have any setup costs overproduction makes
no sense since you could simply remove the overproduced elements without increasing
the costs, this is why all classical problems do not consider overproduction. But, as soon
as we introduce pattern setup costs overproduction makes sense, since it may be useful
to overproduce some elements to be able to stack the patterns together. Removing the
overproduced elements would lead to more stacks and therefore higher costs.

Since the costs are non-negative, we can assume that patterns in an optimal solution
are not empty. In fact in most applications patterns always have positive costs, so an

14



optimal solution never has empty patterns. This assumption implies that the maximal
amount of stock materials used is limited by D :=

∑
i∈E di. Therefore instead of using

smax =∞ we can always equivalently use smax = D. In the same way we can use qt = D
instead of qt = ∞. To simplify the algorithms presented in this thesis we will assume
from now on that smax ∈ N and qt ∈ N for all t ∈ T .

Using the GCSP we can now formulate the cutting stock set cover problem.

Cutting stock set cover problem (CSSCP). Let E, (di)i∈E , smax, T and qt for
t ∈ T be given as in the GCSP. Furthermore, let P be a given finite set of feasible
patterns (e.g. collected from different heuristic solutions). The CSSCP asks for a solution
S to the underlying GCSP consisting of patterns in P, i.e. PS ⊆ P which satisfies the
conditions (3.1) and (3.2) and minimizes the costs c(S) as defined in (3.3).

If we replace condition (3.1) by (3.4), we call the problem cutting stock set cover problem
with exact demands (CSSCPE).

15





CHAPTER 4
Solution Approaches

In this chapter we present four different approaches for solving the CSSCP, which are
an integer linear program for solving the problem exactly, a greedy approach for finding
reasonable solutions fast, a PILOT-approach, and a beam search.

4.1 Integer Linear Programming Formulation

We start by modeling the CSSCP as integer linear program (ILP). Theoretically it can
solve the problem exactly, but in practice the approach does not scale well to large
instances. Therefore, if we use a time limit it may produce solutions with large optimality
gaps. We use integer variables aP for the amount of each pattern P and integer variables
sP for the number of stacks of the pattern P .

min
(aP )P∈P ,(sP )P∈P

∑
P∈P

aP · cP
P + sP · cS

P

s.t.
∑
P∈P

aP · eP
i ≥ di ∀i ∈ E (4.1)

∑
P∈P:tP =t

aP ≤ qt ∀t ∈ T (4.2)

sP · smax ≥ aP ∀P ∈ P (4.3)
aP ∈ N, sP ∈ N ∀P ∈ P

If we want to solve CSSCPE, we replace constraint (4.1) by∑
P∈P

aP · eP
i = di ∀i ∈ E. (4.4)
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4. Solution Approaches

The constraints (4.1) or (4.4) ensure that the demands get satisfied and the inequalities
(4.2) guarantee that the maximal amounts for each stock material get respected. Fur-
thermore, the constraints (4.3) couple the sP variables with the aP variables by ensuring
that there are enough stacks, so that the maximal stack size smax gets not exceeded.

4.2 Greedy Heuristic

Since the ILP model can only compute solutions for small instances in reasonable time, we
need other approaches for larger instances. The idea of the following greedy construction
heuristic is to rate each pattern depending on the current unsatisfied demands and pick
the best pattern as the next one greedily.

We greedily add patterns to a partial solution until the demands are all satisfied. Because
of the greedy nature and the restricted pattern possibilities of the CSSCP/CSSCPE, it
is easier to design a greedy heuristic for the CSSCP than the CSSCPE. Therefore, we
will present in the following a greedy construction heuristic for the CSSCP and will talk
afterwards how we could modify it to solve the CSSCPE.

Before we can describe the algorithm, we formalize what a partial solution is.

Definition 4.2.1 (Partial Solution of CSSCP, CSSCPE, GCSP, and GCSPE). Let E,
(di)i∈E , smax, T and qt for t ∈ T be an instance of the GCSP. A partial solution S for
this instance is a multiset of feasible patterns, described by PS together with an amounts
vector (aS

P )P∈PS which satisfies (3.2) but not necessarily (3.1). Such an S is a partial
solution of the GCSPE if additionally∑

P∈PS

eP
i · aS

P ≤ di ∀i ∈ E (4.5)

holds.

If we are further given a set P of feasible patterns forming an instance of CSSCP, a
partial solution for that instance is a partial solution of the underlying GCSP which
only consists of patterns in P. Furthermore, for the CSSCPE a partial solution must
additionally satisfy (4.5).

Note that the empty set is always a partial solution of all four problems. Therefore, the
greedy heuristic starts with a valid partial solution S = ∅ of CSSCP, and adds patterns
to it until the partial solution is a feasible solution, i.e. it satisfies (3.1).

We give now in each iteration based on the current partial solution S each pattern a
rating and then add the pattern with the highest rating to S. To also consider stacking
costs we allow to add a pattern with a given amount at once. Thus, we do not only pick
a pattern but also an amount for this pattern greedily. Therefore, we need to define a
rating for each pair (P, a) ∈ P × N consisting of a pattern and an amount.
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4.2. Greedy Heuristic

For this rating we will use a problem-depending volume value vi ∈ R+ which represents
the volume of element i or in general how difficult it is to add the element i to some
pattern. In most applications we can use a volume (length for one-dimensional, area for
two-dimensional, volume for three-dimensional, . . . ), but in theory one could use any
values here, even values which dynamically change during the execution of the algorithm.

Using this volume value vi we can define the rating of a pattern and an amount by the
sum of all volume values of all elements on the pattern whose demand is not yet satisfied
divided by the cost of the pattern and the pattern stack. Formally we define, based on a
partial solution S, the rating rS(P, a) for the pair (P, a) ∈ P × N by

rS(P, a) :=
∑

i∈E min(a · eP
i , r

S
i ) · vi

cP
P · a+ cS

P

(⌈
a+aS

P
smax

⌉
−
⌈

aS
P

smax

⌉) (4.6)

where the remaining demand rS
i of element i is defined by

rS
i := max

(
0, di −

∑
P∈P

eP
i · aS

P

)
.

It might happen that pattern P is already used in S, i.e. aS
P > 0. Therefore, we may

be able to add some amount of patterns to S without creating a new stack. Thus, to
calculate the amount of new stacks introduced, we use the difference of the stacks for
pattern P used in the old solution with the stacks for pattern P used in the new solution
after adding a times the pattern P .

In the case where cP
P = 0 it may happen that the rating is not well-defined since the

denominator may be 0. In this case we have no costs for adding that amount of patterns.
Therefore, we can add a maximal amount of those patterns such that we still have no
costs without comparing to any other ratings. From now on assume therefore that the
denominator is always larger than zero.

We also have to consider the remaining amount of the stock material and therefore we are
only interested in amounts a ∈ AS

P := {n ∈ N : n ≤ RS
tP
} where the remaining amount of

stock material RS
t is defined by

RS
t := qt −

∑
P∈P:tP =t

aS
P .

What we want now to find is a pair (P0, a0) ∈ P×N with a0 ∈ AS
P0

whose rating rS(P0, a0)
is maximal, i.e.

rS(P0, a0) = max
(P,a)∈P×N:a0∈AS

P0

rS(P, a).

If one of the stock materials have an infinite available quantity qt then AS
P will be all

natural numbers for all patterns using this material t. In this case there are infinitely
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4. Solution Approaches

many possible pairs (P, a) and therefore we need to only consider relevant ones to find
the maximum. The following theorems establish properties of the rating function and
help us to develop an efficient algorithm for finding an optimal amount a for a pattern P .

Theorem 4.2.1. Let E, (di)i∈E, smax, T , and qt for t ∈ T together with P be an instance
of CSSCP and S a partial solution of this instance. Furthermore, let P ∈ P be a pattern
with AS

P 6= ∅ and r be the remaining amount of the pattern P in a not yet finished stack
in S, i.e. 0 ≤ r < smax and r ≡ aS

P mod smax. Then it holds

rS(P, smax − r) ≥ rS(P, a) ∀a ≥ smax − r.

Proof. We distinguish the cases r = 0 and r > 0. If r = 0 we have

rS(P, a) =
∑

i∈E min(a · eP
i , r

S
i ) · vi

cP
P · a+ cS

P

⌈
a

smax
⌉ ≤

∑
i∈E min(a · eP

i , r
S
i ) · vi

cP
P · a+ cS

P
a

smax

=
∑

i∈E min(eP
i ,

rS
i
a ) · vi

cP
P + cS

P
smax

≤
∑

i∈E min(eP
i ,

rS
i

smax ) · vi

cP
P + cS

P
smax

=
∑

i∈E min(smax · eP
i , r

S
i ) · vi

smax · cP
P + cS

P
smax·
smax

=
∑

i∈E min(smax · eP
i , r

S
i ) · vi

smax · cP
P + cS

P

⌈
smax·
smax

⌉ .

= rS(P, smax) = rS(P, smax − r).

For r > 0 it holds ⌈
smax − r + aS

P

smax

⌉
−
⌈
aS

P

smax

⌉
= 0

and therefore we can calculate

rS(P, a) =
∑

i∈E min(a · eP
i , r

S
i ) · vi

cP
P · a+ cS

P

(⌈
a+aS

P
smax

⌉
−
⌈

aS
P

smax

⌉) ≤ ∑
i∈E min(a · eP

i , r
S
i ) · vi

cP
P · a

=
∑

i∈E min(eP
i ,

rS
i
a ) · vi

cP
P

≤
∑

i∈E min(eP
i ,

rS
i

smax−r ) · vi

cP
P · a

=
∑

i∈E min((smax − r) · eP
i , r

S
i ) · vi

cP
P · (smax − r)

=
∑

i∈E min((smax − r) · eP
i , r

S
i ) · vi

cP
P · (smax − r) + cS

P

(⌈
smax−r+aS

P
smax

⌉
−
⌈

aS
P

smax

⌉) = rS (P, smax − r) .

The previous theorem showed us that it is enough to search for amounts smaller or
equal to smax − r to find one with a maximum rating. In the next steps we want to
analyze the development of the sequence (ra)amax

a=1 where ra := rS(P, a) for a ∈ AS
P and

amax := min
(
smax − r,RS

tP

)
.
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4.2. Greedy Heuristic

Lemma 4.2.2. Let E, (di)i∈E, smax, T , and qt for t ∈ T , P, S, P , and r be as in
Theorem 4.2.1. Furthermore, let 1 ≤ a < amax be fixed. Using the three element index
sets

Ia
1 := {i ∈ E : aeP

i > rS
i },

Ia
2 := {i ∈ E : aeP

i ≤ rS
i < (a+ 1)eP

i },
Ia

3 := {i ∈ E : (a+ 1)eP
i ≤ rS

i }

it holds for each relation ∼∈ {<,≤,=,≥, >} that ra+1 ∼ ra if and only if 0 ∼ Sa with

Sa :=
∑
i∈Ia

1

vixi,1 +
∑
i∈Ia

2

vix
a
i,2 +

∑
i∈Ia

3

vixi,3,

xi,1 :=rS
i c

P
P ∀i = 1, . . . , n,

xa
i,2 :=

(
cP

Pa+ cS
P1r=0 + cP

P

)
aeP

i −
(
cP

Pa+ cS
P1r=0

)
rS

i ∀i = 1, . . . , n,

xi,3 :=− eP
i c

S
P1r=0 ∀i = 1, . . . , n.

Proof. Because a ≤ a+ 1 ≤ amax ≤ smax − r, we get that⌈
a+ aS

P

smax

⌉
−
⌈
aS

P

smax

⌉
= 1r=0 and

⌈
a+ 1 + aS

P

smax

⌉
−
⌈
aS

P

smax

⌉
= 1r=0.

With that we can calculate

ra+1 ∼ ra ⇔
∑

i∈E min
(
(a+ 1)eP

i , r
S
i

)
vi

cP
P (a+ 1) + cS

P1r=0
∼
∑

i∈E min
(
aeP

i , r
S
i

)
vi

cP
Pa+ cS

P1r=0

⇔

(
cP

Pa+ cS
P1r=0

)∑
i∈E

min
(
(a+ 1)eP

i , r
S
i

)
vi

∼
(
cP

P (a+ 1) + cS
P1r=0

)∑
i∈E

min
(
aeP

i , r
S
i

)
vi

⇔
0 ∼

∑
i∈E

vi

((
cP

P (a+ 1) + cS
P1r=0

)
min

(
aeP

i , r
S
i

)
−

(
cP

Pa+ cS
P1r=0

)
min

(
(a+ 1)eP

i , r
S
i

))

⇔

0 ∼
∑
i∈Ia

1

vir
S
i c

P
P +

∑
i∈Ia

2

vi

((
cP

Pa+ cS
P1r=0 + cP

P

)
aeP

i −
(
cP

Pa+ cS
P1r=0

)
rS

i

)
+

∑
i∈Ia

3

vie
P
i

((
cP

Pa+ cS
P1r=0 + cP

P

)
a−

(
cP

Pa+ cS
P1r=0

)
(a+ 1)

)
.

The fact that(
cP

Pa+ cS
P1r=0 + cP

P

)
a−

(
cP

Pa+ cS
P1r=0

)
(a+ 1) = cP

Pa− cP
Pa− cS

P1r=0 = −cS
P1r=0
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completes the proof.

Theorem 4.2.3. Let E, (di)i∈E, smax, T , and qt for t ∈ T , P, S, P , and r be as in
Theorem 4.2.1. Then there exists an amount 1 ≤ a0 ≤ amax such that the sequence
r1, . . . , ra0 is monotonically increasing and the sequence ra0 , . . . , ramax is monotonically
decreasing. Furthermore, if r > 0 we can choose a0 = 1.

Proof. Let a0 be the first element in [1, amax) for which ra0 > ra0+1. If no such a0 exists
we can choose a0 = amax and are done. We prove now that ra+1 ≤ ra holds for all
a0 ≤ a < amax by induction on a.

Induction basis a = a0: ra0+1 ≤ ra0 is true by definition of a0.

Induction step a→ a+ 1: We consider the equivalent condition 0 ≤ Sa+1 of Lemma 4.2.2.
Note that xi,3 ≤ xa

i,2 ≤ xi,1 for all i regardless of the value a. Furthermore, we have
Ia+1

1 = Ia
1 ∪ Ia

2 , and Ia
3 = Ia+1

2 ∪ Ia+1
3 . Therefore, we get

Sa+1 =
∑

i∈Ia+1
1

vixi,1 +
∑

i∈Ia+1
2

vix
a+1
i,2 +

∑
i∈Ia+1

3

vixi,3

≥
∑
i∈Ia

1

vixi,1 +
∑
i∈Ia

2

vixi,1 +
∑

i∈Ia+1
2

vixi,3 +
∑

i∈Ia+1
3

vixi,3

≥
∑
i∈Ia

1

vixi,1 +
∑
i∈Ia

2

vix
a
i,2 +

∑
i∈Ia

3

vixi,3 = Sa ≥ 0

The last inequality follows from the induction hypothesis with Lemma 4.2.2 and therefore
we get all in all 0 ≤ Sa+1 which is equivalent to ra+2 ≤ ra+1.

Therefore, we finished proving the monotonicity properties, what remains to prove is
that we can choose a0 = 1 if r > 0 which is the case if the values r1, . . . , ramax are
monotonically decreasing. Note that in the case of r > 0 we have 1r=0 = 0 and therefore
xi,3 = 0 ≤ xa

i,2 ≤ xi,1 for all elements i and amounts a < amax. This implies that all terms
of the sum Sa are non-negative for all a < amax and therefore 0 ≤ Sa for all a < amax.
Using now Lemma 4.2.2 gives us that ra+1 ≤ ra for all a < amax which is what we wanted
to show.

Theorem 4.2.4. Let E, (di)i∈E, smax, T , and qt for t ∈ T , P, S, P , and r be as in
Theorem 4.2.1. Then, there exists an amount a0 in

AS,0
P := {amax} ∪

{⌊
rS

i

eP
i

⌋
,

⌈
rS

i

eP
i

⌉
: i ∈ E, eP

i > 0
}
∩ {a ∈ AS

P : a ≤ amax}

which has a maximum rating, i.e. rS(P, a0) ≥ rS(P, a) for all a ∈ AS
P , and it is the

largest of all amounts that have a maximum rating and are smaller or equal to amax.

Proof. Let a0 be the first element in [1, amax) for which ra0 > ra0+1. If such an a0 does
not exist, then a0 := amax satisfies all properties. Note that in this case amax must have
a maximum rating because of Theorem 4.2.1.
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In the other case if an a0 < amax with ra0 > ra0+1 exists we know b9 Theorem 4.2.3
together with Theorem 4.2.1 that a0 must have a maximum rating and that it is the
largest of all amounts with this property which are smaller or equal to amax.

The only thing remaining to show is that a0 ∈ AS,0
P . If a0 = 1, then we know by

Lemma 4.2.2 that either I1
1 or I1

2 are not empty since r2 < r1 implies that 0 < S1. If I1
1

is not empty, then there exists an element i with eP
i > rS

i which implies

a0 = 1 =
⌈
rS

i

eP
i

⌉
∈ AS,0

P .

On the other hand if I1
2 is not empty then there exists an element i with eP

i ≤ rS
i < 2eP

i

which implies

a0 = 1 =
⌊
rS

i

eP
i

⌋
∈ AS,0

P .

The only remaining case is now if a0 > 1. In this case we know that ra0−1 ≤ ra0 and
ra0+1 < ra0 and therefore, we get that Sa0−1 ≤ 0 < Sa0 which implies Sa0 6= Sa0−1.
Assume now there would not exist an i with (a−1)ep

i < rS
i < (a0 +1)ep

i . This would imply
that Ia0

2 is empty and that there may only be elements i ∈ Ia0−1
2 with (a0 − 1)eP

i = rS
i .

But for those i we get xi,1 = xa0−1
i,2 and we get

Sa0−1 =
∑

i∈I
a0−1
1

vixi,1 +
∑

i∈I
a0−1
2

vixi,1 +
∑

i∈I
a0−1
3

vixi,3 =
∑

i∈I
a0
1

vixi,1 +
∑

i∈I
a0
3

vixi,3

= Sa0

which is a contradiction. Therefore, there exists an i with (a0 − 1)ep
i < rS

i < (a0 + 1)ep
i .

If rS
i ≤ a0e

p
i we get that

a0 =
⌈
rS

i

ep
i

⌉
∈ AS,0

P

and otherwise if rS
i > a0e

p
i we get that

a0 =
⌊
rS

i

ep
i

⌋
∈ AS,0

P .

Theorem 4.2.5. Let E, (di)i∈E, smax, T , and qt for t ∈ T , P, S, P , and r, AS,0
P be as

in Theorem 4.2.4. Furthermore, let a0 be the largest amount in AS
P which has a maximum

rating, i.e. rS(P, a0) ≥ rS(P, a) for all a ∈ AS
P . If r > 0 and cS

P > 0 then it holds
a0 ∈ AS,0

P . If r = 0 and cS
P > 0 then it holds that either a0 ∈ AS,0

P or a0 = k · smax for
some k ∈ N \ {0} and j · smax has a maximum rating for all 1 ≤ j ≤ k.
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Proof. We consider the proof of Theorem 4.2.1. If r > 0 and cS
P > 0 then rS(P, a0) =

rS(P, smax − r) can only be true if⌈
a0 + aS

P

smax

⌉
−
⌈
aS

P

smax

⌉
= 0⇔ a0 ≤ smax − r.

Therefore, a0 ≤ amax which implies by Theorem 4.2.3 that a0 ∈ AS,0
P . On the other hand

if r = 0 and cS
P > 0 then rS(P, a0) = rS(P, smax) can only be true if⌈

a0
smax

⌉
= a0
smax ⇔ ∃k ∈ N : a0 = k · smax.

For 1 ≤ j ≤ k we get

rS(P, j · smax) =
∑

i∈E min(j · smax · eP
i , r

S
i ) · vi

cP
P · j · smax + j · cS

P

=
∑

i∈E min(smax · eP
i ,

rS
i
j ) · vi

cP
P · smax + cS

P

≥
∑

i∈E min(smax · eP
i ,

rS
i
k ) · vi

cP
P · smax + cS

P

= rS(P, k · smax)

which implies that j · smax has a maximum rating for all 1 ≤ j ≤ k.

Using Theorems 4.2.1–4.2.5 we can verify that Algorithm 1 correctly computes for a given
pattern P the largest amount a0 ∈ AS

P with a maximum rating. The running time of
Algorithm 1 is in O(m2) where m ≤ n is the amount of item types on the input pattern
P , i.e. all i ∈ E with eP

i > 0. Note that line 18 of Algorithm 1 can be implemented
efficiently by iterating through the different relevant item types and check for which k
they get saturated. Therefore, the bottlenecks of the algorithm are the lines 16 and 18
which both need O(m2) time since computing rS(P, a) needs O(m) time and |AS,0

P | ≤ m.

The whole greedy approach is described in Algorithm 2.

Lemma 4.2.6. Let a, b ∈ N, 0 < a ≤ b, then

a

⌊
b

a

⌋
>
b

2 .

Proof. Since a > 0, the statement is equivalent to⌊
b

a

⌋
>

1
2 ·

b

a
.

Since a ≤ b, we know
⌊

b
a

⌋
≥ 1. If b

a < 2 we are therefore done. On the other hand if
b
a ≥ 2 then we can calculate⌊

b

a

⌋
>
b

a
− 1 ≥ b

a
− 1

2 ·
b

a
= 1

2 ·
b

a
.
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4.2. Greedy Heuristic

Algorithm 1 FindBestA(S, P )

INPUT: An instance of CSSCP, a partial solution S, and a pattern P
OUTPUT: The largest a0 ∈ AS

P with a maximum rating
1: if cS

P = 0 then

2: a0 ← mini∈E:eP
i >0∧rS

i >0

⌊
rS

i

eP
i

⌋
3: if a0 = 0 then
4: a0 ← 1 . Already the first pattern overproduces some elements
5: end if
6: if a0 > RS

tP
then

7: a0 ← RS
tP

8: end if
9: return a0

10: else
11: Compute r as in Theorem 4.2.1.
12: if r > 0 and cP

P = 0 then
13: return a0 := amax . No costs for filling the stack
14: end if
15: Compute the set AS,0

P

16: Find first a0 in AS,0
P where either a0 = amax or rS(P, a0) > rS(P, a0 + 1)

17: if r = 0 and a0 = smax then
18: Find first k ∈ N with (k + 1)smax > RS

tP
or rS(P, smax) > rS(P, (k + 1)smax)

19: a0 ← ksmax

20: end if
21: return a0
22: end if

Theorem 4.2.7. The worst case run time of Algorithm 2 is

O
([
n
(

log(max
i∈E

di) + 1
)

+ |T |
(

log(max
t∈T

qt) + 1
)]
· |P| · n2

)

Proof. If we can prove that the number of iterations of the while loop is in

O
(
n
(

log(max
i∈E

di) + 1
)

+ |T |
(

log(max
t∈T

qt) + 1
))

,

we are done since FindBestA is in O(n2). Next we prove the following statement. In
each iteration of the while loop, when we add pattern Pbest with amount abest then at
least one of the following happens:

1. There exists an element i for which the remaining demand is non-zero and gets
more than halved.
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Algorithm 2 Greedy Construction Heuristic

INPUT: An instance of CSSCP
OUTPUT: A solution to the CSSCP or INFEASIBLE if no solution could be found

1: Set S to the empty partial solution
2: while S does not satisfy (3.1) do
3: rbest ← −1
4: for P ∈ P do
5: if RS

tP
> 0 then

6: a← FindBestA(S, P )
7: if rS(P, a) > rbest then
8: rbest ← rS(P, a)
9: (Pbest, abest)← (P, a)

10: end if
11: end if
12: end for
13: if rbest = −1 then
14: return INFEASIBLE
15: else
16: add pattern Pbest with amount abest to the partial solution S
17: end if
18: end while
19: return S

2. There exists a material type t ∈ T for which the remaining available amount is
non-zero and gets more than halved.

3. A previously not completely filled stack in S gets completely filled.

There are six different cases for where the return value gets set the last time in Algorithm 1
which computes abest:

1. Line 2: In this case the remaining demand of item i for which the minimum is
achieved is reduced by

eP
i

⌊
rS

i

eP
i

⌋

which is greater than rS
i
2 by Lemma 4.2.6 and the fact that since we know that

a0 > 0 it must hold eP
i < rS

i . Therefore, the remaining demand of item i got more
than halved.

2. Line 4: In this case the remaining demand of item i for which the minimum in line
2 was achieved is set to 0 which is also more than halved.
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4.2. Greedy Heuristic

3. Line 7: In this case the remaining available amount of type tP is set to 0 and
therefore more than halved.

4. Line 13: A previously not completely filled stack got completely filled or all the
remaining amount of material type tP is used.

5. Line 16: Either a0 = amax, in which case the same happens as in the previous case,
or a0 =

⌊
rS

i

eP
i

⌋
for some element type i, in which case the remaining demand of i

gets more than halved, or a0 =
⌈

rS
i

eP
i

⌉
in which case the remaining demand of i gets

set to 0.

6. Line 19: If (k+ 1)smax > RS
tP

we know that the remaining available amount of type
tP gets more than halved. On the other hand if rS(P, smax) > rS(P, (k + 1)smax)
this implies that at least one element type i was not overproduced by adding
the pattern ksmax times but gets overproduced by adding it (k + 1)smax times.
Therefore, we know rS

i ≥ ksmaxeP
i and rS

i < (k + 1)smaxeP
i which implies that

ksmaxeP
i ≥

k + 1
2 smaxeP

i >
rS

i

2 .

Therefore, the remaining demand of item type i gets more than halved.

A natural number n can only get more than halved no more than log2(n) + 1 many times
before it hits 0. To see this let ak be the natural number after k steps of more than
halving. Since a0 = n, we get ak <

1
2

k
n. If ak ≥ 1 this implies 1 < 1

2
k
n which implies

n > 2k and therefore k < log2(n). Therefore, for k ≥ log2(n) the value of ak must be 0.

Using this fact we see that case 1 can only happen in at most n(log2(maxi∈E di) + 1)
iterations and case 2 can only happen in at most |T |(log2(maxt∈T qt) + 1) iterations.
Since case 3 can only happen in at most half of the iterations, we are done.

Note that the running time proven in Theorem 4.2.7 is only the worst case running time
and in most cases the running time is much closer to |P |n3.

To further reduce the running time we can use the following fact:

Theorem 4.2.8. Let E, (di)i∈E, smax, T , and qt for t ∈ T together with P be an
instance of CSSCP. Furthermore, let Sj be the partial solution of iteration j when
running Algorithm 2 on this instance.

Then it holds that

max
a∈A

Sj
P

rSj (P, a) ≥ max
a∈A

Sk
P

rSk(P, a) ∀(P, a) ∈ P × N, j ≤ k.

To prove Theorem 4.2.8 we use the following Lemma.
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4. Solution Approaches

Lemma 4.2.9. Let a, b, c, d ∈ R+ ∪ {0} and b 6= 0, c 6= 0. Then it holds
a

b
≥ a+ c

b+ d
⇔ a

b
≥ c

d

Proof. It simply follows by the following basic equivalent transformation:
a

b
≥ a+ c

b+ d
⇔ ab+ ad ≥ ab+ bc⇔ ab ≥ bc⇔ a

b
≥ c

d
.

Proof of Theorem 4.2.8. It is enough to show the statement for k = j + 1 since then
everything else follows by the transitivity of the inequality. We fix j and k = j + 1. Since
we always only add patterns to a partial solution in Algorithm 2, we know that aSk

P ≥ a
Sj

P

for all P ∈ P. From that it directly follows

r
Sj

i ≥ r
Sk
i .

Furthermore, it follows RSj

tP
≥ RSk

tP
and therefore ASj

P ⊇ A
Sk
P . Let P̃ be the pattern added

to Sk in iteration j, i.e. Sk consists of all patterns in Sj plus some amount of the pattern
P̃ .

We distinguish now the cases P̃ 6= P and P̃ = P . In the first case we know that aSj

P = aSk
P

and therefore

rSj (P, a) =
∑

i∈E min(a · eP
i , r

Sj

i ) · vi

cP
P · a+ cS

P

(⌈
a+a

Sj
P

smax

⌉
−
⌈

a
Sj
P

smax

⌉)

=
∑

i∈E min(a · eP
i , r

Sj

i ) · vi

cP
P · a+ cS

P

(⌈
a+a

Sk
P

smax

⌉
−
⌈

a
Sk
P

smax

⌉)
≥

∑
i∈E min(a · eP

i , r
Sk
i ) · vi

cP
P · a+ cS

P

(⌈
a+a

Sk
P

smax

⌉
−
⌈

a
Sk
P

smax

⌉) = rSk(P, a) ∀a ∈ Asj

P ⊇ A
sk
P .

Therefore, the remaining case is when P̃ = P . Let aj be the amount of pattern P̃
which got added to Sj in iteration j. That implies that aj has a maximum rating for Sj .
Furthermore, let ak be an amount with maximum rating for Sk. Then we know since aj

was maximal for Sj that rSj (P, aj) ≥ rSj (P, aj + ak). From that we get

rsj (P, aj) ≥ rsj (P, aj + ak) =
∑

i∈E min((aj + ak) · eP
i , r

sj

i ) · vi

cP
P · (aj + ak) + cS

P

(⌈
aj+ak+a

sj
P

smax

⌉
−
⌈

a
sj
P

smax

⌉)
=

∑
i∈E min(aj · eP

i , r
sj

i ) · vi +
∑

i∈E min(ak · eP
i , r

sk
i ) · vi

cP
P · aj + cS

P

(⌈
aj+a

sj
P

smax

⌉
−
⌈

a
sj
P

smax

⌉)
+ cP

P · ak + cS
P

(⌈
ak+a

sk
P

smax

⌉
−
⌈

a
sk
P

smax

⌉)
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4.2. Greedy Heuristic

We can apply now Lemma 4.2.9 and get that rsj (P, aj) ≥ rsk(P, ak).

Theorem 4.2.8 basically tells us that we can use the calculated ratings from previous
iterations as upper bounds for the current rating of a pattern. Therefore, we store the
latest calculated rating rlatest

P of each pattern. Then when we iterate through all patterns
in P in an iteration we start with the patterns with the highest rating rlatest

P . Whenever
we calculate a new rating we replace rlatest

P for this pattern. If the currently best rating
of the patterns already calculated in the current iteration is higher than rlatest

P for some
pattern P we do not have to recalculate that pattern since it will always be worse than
the currently best pattern. Therefore, in each iteration we only have to calculate some of
the ratings for the best patterns and in many practical cases this reduces the running
time drastically, although the worst-case running time complexity stays the same.

4.2.1 Greedy Approach with Exact Demands

In this section we will present how to modify the presented greedy approach to be able
to solve CSSCPE, which uses exact demands.

The naive way to modify the greedy approach is to modify 1 such that the found amount
a is always such that no items get overproduced. That means that we change amax to

amax := min
(
smax − r,RS

tP
, min

i∈E:eP
i >0

⌊
rS

i

eP
i

⌋)
.

Although this would give us a correct algorithm for CSSCPE, in many practical cases and
for many instances it would not be able to find a feasible solution. To improve solution
qualities for exact demands we therefore formulate a new problem variant of the cutting
stock set cover problem.

Cutting stock sub set cover problem for exact demands (CSSSCPE). Let E,
(di)i∈E , smax, T and qt for t ∈ T be given as in the GCSP. Furthermore, let P be a
given finite set of feasible patterns (e.g. collected from different heuristic solutions). The
CSSSCPE asks for a solution to the underlying GCSPE consisting of patterns derived
from patterns in P. By derived, we mean that for each pattern P0 in the solution there
exists a pattern P ∈ P such that eP0

i ≤ eP
i , i.e. P0 can be derived from P by deleting

some elements from the pattern.

We can modify now our greedy algorithm in a simple way to efficiently solve the CSSSCPE.
The only thing we have to do is whenever we add a pattern in line 16 of Algorithm 2
we remove unneeded elements from the patterns. Note that we also need to change the
calculation of the amount a since we only can increase the amount a until before the
next element on the pattern gets overproduced. So we can use the same calculation but
only allow values in AS,0

P which do not overproduce any elements with still open demands
(the elements which have no open demand get removed from the pattern anyway and are
therefore not relevant for the stack calculation).
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Note that the solving approaches for CSSCP were completely independent of the problem
specific constraints on patterns. But for the CSSSCPE we may now also consider some
problem specific constraints to not be violated when removing elements from a pattern.
Therefore, it may happen that removing some elements from the best pattern P will
fail in the greedy approach. In that case we will search for the second best pattern P2
according to the greedy criterion. If removing unneeded elements from P2 also fails we
search for the third best pattern and so on until either we found a pattern for which the
removal works or we stop the greedy algorithm with an infeasible partial solution.

4.3 PILOT-Approach

The preferred iterative look ahead technique (PILOT) is a well studied method to improve
the performance of a construction heuristic. The method was proposed by Duin and
Voß [DV99]. Its idea is to use an embedded simpler heuristic to complete a partial
solution and use the objective value from the completed solution to rate the partial
solution.

In the classical PILOT approach in each iteration the partial solution obtained after
adding every possible extension is completed by a given construction heuristic. Then
the extension corresponding to the best obtained complete solution gets applied. In
Algorithm 3 a generic classical PILOT approach is presented.

Algorithm 3 Classical PILOT

INPUT: An instance of a discrete optimization problem
OUTPUT: A solution to the problem

1: Set the partial solution S ← ∅ to the empty solution.
2: while S is not complete do
3: for e possible extension of S do
4: S′ ← S ∪ {e} . the partial solution after applying the extension e to S
5: complete S′ with a construction heuristic and remember rating re

6: end for
7: Apply the extension e with the best rating re to S, i.e. S ← S ∪ {e}
8: end while

To apply the classical PILOT approach for our problems CSSCP and CSSSCPE we use
as construction heuristic the greedy heuristic presented in Section 4.2. Furthermore,
as extensions of a partial solution we consider for each pattern P ∈ P only the pair
(P, a) with a = FindBestA(S, P ). That means we do not consider every pair (P, a) as
an extension, but for each pattern only one pair with the largest amount a which has a
maximum greedy rating for this pattern.

It is easy to see that the worst case running time of the classical PILOT is the maximum
number of extensions which have to be applied until a solution is complete times the
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4.3. PILOT-Approach

maximum number of extensions of a partial solution times the worst case running time
of the construction heuristic. In our case this leads to a worst case running time of

O
([
n
(

log(max
i∈E

di) + 1
)

+ |T |
(

log(max
t∈T

qt) + 1
)]2
· |P|2 · n2

)
.

Although, as already mentioned in Section 4.2, the worst case running time is not reached
in many practical applications the running time of the classical PILOT is often too slow
for large scale real-world instances. Therefore, we also consider a parameterized version of
PILOT which restricts the possible extensions in each iteration to the best β extensions
by the greedy criterion. Note that this restriction holds only for the PILOT outer loop,
not for the extension ratings within the greedy construction heuristic.

The modified version of the PILOT applied to CSSCP is described in Algorithm 4. The

Algorithm 4 Restricted PILOT with Parameter β

INPUT: An instance of a discrete optimization problem
OUTPUT: A solution to the problem

1: set the partial solution S ← ∅ to the empty solution
2: while S is not complete do
3: compute for all patterns P ∈ P the amount aP ← FindBestA(S, P )
4: compute for all patterns P ∈ P the rating rP ← rS(P, aP )
5: set P0 to the β best patterns according to rP

6: for P ∈ P0 do
7: copy S to S′ and add pattern P with amount aP to S′
8: complete S′ with Algorithm 2
9: store objective of complete solution oP

10: end for
11: set P0 to the pattern with the best corresponding objective oP

12: add P0 with amount aP0 to S
13: end while

worst-case running time of the restricted version is now

O
([
n
(

log(max
i∈E

di) + 1
)

+ |T |
(

log(max
t∈T

qt) + 1
)]2
· β · |P| · n2

)
which makes a big difference in practical applications, depending on β.

To solve CSSSCPE we can modify the PILOT approach in a similar way as we did for
the greedy approach in Section 4.2.1. First of all we replace Algorithm 2 by the greedy
algorithm which solves CSSSCPE as described in Section 4.2.1. Furthermore, on line 7
we need to remove overproduced elements from the pattern before we add it to S′. If
that fails, we skip the pattern P and add the next best pattern to P0, beginning with
the k + 1-th pattern, if one more exists. We also need to remove overproduced elements
before we add the pattern P0 to S in line 12. If that fails, we consider for P0 the next
best pattern in P0 according to the objective values oP .
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4.4 Beam Search Approach
Beam Search is well-known extension of greedy construction heuristics with the goal to
improve the exploration of the search space [Low76, MCF+77]. Instead of only storing
the best solution and following the best extensions it stores the best β solutions for a
parameter β.

Algorithm 5 Beam Search

INPUT: An instance of a discrete optimization problem
OUTPUT: A solution to the problem

1: Initialize the set of current partial solutions S ← ∅
2: Add the empty partial solution S = ∅ to S
3: while S is not empty do
4: for S ∈ S do
5: for e possible extension of S do Compute a rating r(S′) for S′ ← S ∪ {e}
6: end for
7: end for
8: Clear S
9: Store the β best partial solutions S′, according to r(S′), in S

10: If any S′ is complete store the best objective obest and its solution
11: Remove all partial solutions from S which cannot be better than obest

12: end while
13: return the best found complete solution

In the beam search approach in each iteration it checks all possible extensions of all
stored solutions, applies them and keeps the best β partial solutions in the memory. The
whole beam search approach is presented in Algorithm 5 in a generic manner.

To apply Algorithm 5 to our problem we have to decide how we rate partial solutions.
We propose to do that similarly as we rated extensions, volume of all satisfied demands
divided through the costs. For a partial solution S′ we define the rating r(S′) by

r(S′) :=
∑

i∈E max
(
di,
∑

P∈P e
P
i · aS′

P

)
· vi∑

P∈P c
P
P · aS′

P + cS
P ·
⌈

aS′
P

smax

⌉ .

Furthermore, as extensions we use the same as we did for the PILOT approach. That
means for each pattern P there is one extension consisting of adding the pattern with the
largest amount that has a maximum rating aP = FindBestA(S, P ). Finally, to check if a
partial solution can still be better than the best objective found until now, we just have
to compare the costs, since the costs may only get worse to complete the partial solution.

Using the beam search as formulated above for our problem leads to unsatisfactory
solution qualities compared to the time spent in the beam search. The problem is that
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4.4. Beam Search Approach

since we compute for each pattern different amounts a, and also since different patterns
may be of completely different sizes and costs (depending on the used raw material),
it happens that some partial solutions have already much more item demands satisfied
than other partial solutions in the same stage. Since the rating of the patterns always
decreases when more patterns get added, see Theorem 4.2.8, the solutions which satisfy
more demands have in average lower ratings than the solutions which satisfy fewer
demands (and also have fewer costs). This leads to a bias of the rating function for partial
solutions which satisfy few demands but also have few costs, compared to solutions which
satisfy more demands and have higher costs. This is intuitively also clear since the fewer
demands are left, the harder it gets to find a good pattern which satisfies exactly those
demands. Furthermore, also stacking gets more difficult the fewer demands are left.

But this bias is exactly what we do not want since the solutions which have high stacks,
i.e. they get filled in a few iterations, since each iteration adds a high stack of patterns,
are potentially the best solutions. Therefore, we propose a variant of the beam search
approach which distinguishes partial solutions by levels. One can also think of this variant
in the sense that normal beam search is a form of tree search where in each iteration we
operate on the best k nodes on the same tree level. In a normal tree an edge connects a
node from level n to level n+ 1, but in our case we want to allow edges in the tree which
have different lengths. That means an edge does not always connect a node from level n
with a node from level n+ 1 but in general a node from level n with a node from level
n+ k. We then say the length of the edge is k.

For our problem we define the level of a partial solution S by

l(s) :=
⌊
c(s)
cunit

⌋
where c(s) are the costs of the partial solution S and cunit > 0 is the cost granularity of
the tree. That means what we do is to choose a cost granularity and then group partial
solutions into buckets based on their costs. In our case we propose to use the smallest
pattern cost cunit := cP

P . In the edge case that there are patterns with no costs we could
also consider the stacking costs divided through the maximum stack of those patterns. If
there is a pattern which has no costs and no stacking costs, then we just use the costs of
the first pattern which has some costs, but this does not occur in any practical situations.

Algorithm 6 describes the whole beam search approach with levels for the CSSCP. Note
that since we have a minimization problem and solutions are grouped by their objective
values it is enough to stop the beam search as soon as we found the first complete solution
and finished going through the bucket of this solution, since the best solution we can find
is of course in the first bucket, which contains a complete solution. If the solutions in a
bucket are sorted by cost, we can even stop the algorithm as soon as the first complete
solution is encountered.

The running time of the beam search approach heavily depends on the number of patterns
in the solutions since this is in the worst case the number of times the outer while loop is
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Algorithm 6 Set Cover Beam Search Approach
1: Add empty solution to storage of level 0
2: l← 0
3: F ← ∅
4: while |F| = ∅ and partial solution for a level larger or equal l exists do
5: for S in storage of level l do
6: if S is complete then
7: F ← F ∪ {S}
8: else
9: for P ∈ P do

10: compute best amount aP ← FindBestA(S, P ) for pattern P
11: create copy S′ of S and add P with amount a to S′
12: if r(S′) is one of the best β ratings in level l(S′) then
13: add S′ to storage of level l(S′)
14: if storage of level l(S′) has more than β solutions then
15: Remove the worst solution from storage of level l(S′)
16: end if
17: end if
18: end for
19: end if
20: end for
21: increase l
22: end while
23: return best solution in F

iterated. Although in general the number of patterns in the found solutions are much
less, a worst case upper bound for the number of patterns in a partial solution is the
sum of all element demands

D :=
∑
i∈E

di.

Using that we get that the worst case running time of the beam search algorithm is

O(D · β · |P| · n2).

For solving problem CSSSCPE we can modify the beam search algorithm in a similar
way as we did for the Greedy and the PILOT approach. When we add a pattern to a
solution copy in line 11, we remove overproduced items from the pattern. If the removal
fails we skip the pattern P and continue with the next pattern in P.

4.5 Hybridizing With a Construction Heuristic
One of the main drawbacks of constructing a solution for problem CSSCP is that at the
end when the partial solution is almost complete and only few demands are left it is
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unlikely that there is a suitable pattern in P which suits the remaining demand. Therefore,
the longer the construction algorithm runs the poorer the quality of the best pattern in P
gets, as was also shown by Theorem 4.2.8. To counterfeit this drawback we can hybridize
a construction heuristic for CSSCP with a construction heuristic for GCSP. Ideally at the
beginning the construction heuristic for CSSCP finds good patterns which can be stacked
frequently and then when the demand decreases at some point the construction heuristic
for GCSP takes over and constructs new patterns which directly suit the remaining
demand.

Clearly this approach does not solve the problem CSSCP since the construction heuristic
for GCSP will construct patterns which are not in P . But the solution produced by this
approach is still a valid solution for the GCSP. Therefore, the approach presented in this
section is a construction approach to find a promising solution for the GCSP under the
assumption that we already found a lot of good patterns P through other methods.

To formalize the approach we assume that we already are given the set P of patterns and
additionally we are given a construction method constructPattern which constructs
one new pattern according to the remaining demand. That means the method gets as
input an instance of GCSP and a partial solution S of GCSP and returns a new pattern
P which may not be in P anymore.

Using this construction method we can formalize a hybrid approach which is presented
in Algorithm 7.

Note that the only difference to the greedy algorithm are the lines 3 and 4. In each
iteration of the hybrid a new pattern gets generated with constructPattern and
added to the pattern set P. Since this pattern is directly constructed for the remaining
demands, it will be the best pattern in P if all other patterns do not suite the remaining
demands well and at that point the generated patterns will be used instead of the given
patterns at the beginning of the algorithm.

The worst-case running time of the hybrid approach depends on the worst case running
time of constructPattern, if that is in O(g(I)) for some function g(I)) we get for the
whole hybrid approach a worst case running time of

O
([
n
(

log(max
i∈E

di) + 1
)

+ |T |
(

log(max
t∈T

qt) + 1
)]
· (g(I) + |P| · n2)

)
.

That implies that in the case that if constructPattern is in O(|P | · n2) then the
worst case running time of the hybrid approach is the same as for the greedy approach.
For practical purposes having a fast construction method implies that the hybrid needs
almost the same time as the greedy, but gives us better solution qualities.

To solve the problem with exact demands, i.e. GCSPE, we can use the same modifications
as presented for the greedy in Section 4.2.1. This even works if constructPattern
does not consider exact demands, but of course if it also considers exact demands the
patterns produced by it will be much more useful in the hybrid and therefore it will
increase the solution quality of the hybrid.
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Algorithm 7 Hybrid Greedy Construction Heuristic

INPUT: An instance I of CSSCP
OUTPUT: A solution to the GCSP or INFEASIBLE if no solution could be found

1: Set S to the empty partial solution
2: while S does not satisfy (3.1) do
3: P0 ← constructPattern(I, S)
4: P ← P ∪ {P0}
5: rbest ← −1
6: for P ∈ P do
7: if RS

tP
> 0 then

8: a← FindBestA(S, P )
9: if rS(P, a) > rbest then

10: rbest ← rS(P, a)
11: (Pbest, abest)← (P, a)
12: end if
13: end if
14: end for
15: if rbest = −1 then
16: return INFEASIBLE
17: else
18: add pattern Pbest with amount abest to the partial solution S
19: end if
20: end while
21: return S
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CHAPTER 5
Solving the K-staged

Two-Dimensional Cutting Stock
Problem with Variable Sheet Size

In this chapter we will present an approach for solving the K-staged two-dimensional
cutting stock problem with variable sheet size, which was developed by Dusberger and
Raidl [DR14, DR15, DR17]. We will use this approach to generate instances of CSSCP
and CSSSCPE for which we then test our approaches. Furthermore, we present how to
incorporate our hybrid construction heuristic, Algorithm 7, as a new neighborhood into
the solving procedure of Dusberger and Raidl and test how this improves the algorithm.

As a reminder we repeat in the following the problem formulation of the K2DCSPV as
presented in Chapter 2.

K-staged two-dimensional cutting stock problem with variable sheet size
(K2DCSPV). Given a set of sheet types T with widths Wt ∈ R+, heights Ht ∈ R+,
available quantities qt ∈ N ∪ {∞}, and costs ct ∈ R+ for t ∈ T . Furthermore, let E
be a set of different element types. Each element type i ∈ E has a width wi ∈ R+, a
height hi ∈ R+, and a demand di ∈ N \ {0}. A solution S to the problem is now a set
of patterns PS and for each pattern P ∈ PS an amount aS

P . Furthermore, each pattern
P ∈ PS is associated with a sheet type tP . Each pattern describes how to cut output
elements out of the associated sheet type only using guillotine cuts. We can associate
with each pattern P ∈ PS an element vector (eP

i )i∈E ∈ N|E| which describes how often
the i-th element occurs in the pattern P . A solution is feasible if all element demands
are satisfied, i.e. ∑

P∈PS

aS
P · eP

i = di ∀i ∈ E,
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and all available sheet quantities are not exceeded, i.e.∑
P∈PS :tP =t

aS
P ≤ qt ∀t ∈ T.

The problem is now to find a feasible solution which minimizes the costs∑
P∈PS

aS
P · ctP . (5.1)

The approach by Dusberger and Raidl is a variable neighborhood search (VNS) meta-
heuristic combined with very large neighborhood search (VLNS) techniques. Therefore,
before we present the approach we will shortly introduce what VNS and VLNS is. Then
we present the approach by Dusberger and Raidl.

5.1 Variable Neighborhood Search
Variable neighborhood search (VNS) is a common metaheuristic used for solving many
problems in literature [HM99, HM03]. The approach is an improvement heuristic in
contrast to the approach techniques we used in Chapter 2. That means that the approach
needs an already feasible solution to start with and then tries to improve this solution
iteratively. Its main idea is to use multiple neighborhood structures to escape local
optima of a single neighborhood structure. By a neighborhood structure we formally
mean a function which maps a solution of the search space to a set of neighbors of the
solution, i.e. a subset of the search space. Often neighborhoods are represented by a
move operator which describes how to change a solution to get to its neighbors.

Example 5.1.1 (Traveling salesperson problem (TSP)). Consider the following famous
problem. Given a complete undirected graph G on n vertices together with edge weights
wij . Find a tour which visits each vertex exactly once and returns to the starting vertex,
i.e. a Hamiltonian cycle, in G which has a minimal tour weight.

For this problem many neighborhood structures have been proposed in the literature. A
simple move for the TSP would be moving one city visit to another place in the tour.
This gives us a neighborhood structure, where the neighbors of one tour are all tours
which only differ by one city which is placed at another position. Other moves are the so
called k-exchanges, which remove k edges and add again k edges in such a way that the
result is again a tour which is different from the original tour. For each such k we get a
neighborhood structure which is called k-exchange neighborhood.

If we are given now neighborhood structures N1, . . . , Nk we can iterate through the
neighborhood structures and search through each of the neighborhoods of the current
solution if there exists a neighbor with a better objective value. If we find such a
neighbor we assign the neighbor as the current solution and restart the procedure,
starting again with neighborhood structure N1. When we searched at some point through
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all neighborhoods and could not find a better neighbor we know that the current solution
is a local optimum according to all the neighborhood structures, and we return the
solution. This procedure is called variable neighborhood descend (VND).

One can extend a VND-procedure to a VNS-procedure by using additionally so called
shaking neighborhood structures N1, . . . ,N`. Those additional neighborhood structures
are normally much larger than the neighborhood structures N1, . . . , Nk used for the VND
and are not used for searching through them. Instead, they are used to randomly select a
neighbor and jump to this neighbor. This is done whenever the VND could not improve
anymore and then the VND is applied again to the new solution. If there are multiple
shaking neighborhood structures the procedure uses the next neighborhood structure
for shaking whenever the shaking move plus the succeeding VND could not improve the
current solution and whenever the solution could get improved it starts again with the
first shaking neighborhood structure. Therefore, the shaking part is from the structure
again a VND wrapped around the VND with the difference that moves are applied
randomly instead of searching through the neighborhoods systematically. This whole
procedure is also called general variable neighborhood search (GVNS).

A simplification of the GVNS is the so called reduced variable neighborhood search
(RVNS), which only uses shaking neighborhoods without applying any VND after the
shaking. So it only selects a random neighbor, if it is better applies it and restarts
with the first neighborhood structure and if its not better it uses the next neighborhood
structure. Algorithm 8 shows how a RVNS works in detail.

Algorithm 8 Reduced variable neighborhood search (RVNS)

INPUT: An instance of a given optimization problem, a feasible starting solution S
OUTPUT: A possibly improved solution

1: i← 1
2: while termination criterion is not satisfied do
3: Select random neighbor S′ of S in Ni

4: if S′ has a better objective than S then
5: S ← S′

6: i← 1
7: else if i = ` then
8: i← 1
9: else

10: i← i+ 1
11: end if
12: end while
13: return S

The approach by Dusberger and Raidl which we will present later on in this chapter
can be seen as a RVNS which uses very large neighborhoods as neighborhood struc-
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tures. Although, in this approach moves are not generated completely random but use
construction heuristics.

5.2 Very Large Neighborhood Search
The idea of very large neighborhood search is to have a large neighborhood, for which it
is not feasible to enumerate all neighbors, but for which exists an efficient method to
find the best neighbor or at least heuristically find a good neighbor [AEOP02, PR10].

There are many techniques and approaches for searching through large neighborhoods
efficiently. Often exact approaches using network flows, dynamic programming, or
similar techniques are used. Another kind of large neighborhoods are variable-depth
neighborhoods and again another kind are ruin-and-recreate based neighborhoods. Since
the large neighborhoods used by the approach of Dusberger and Raidl are all ruin-and-
recreate based, we will go further into detail of those kinds of large neighborhoods.

A move in a ruin-and-recreate neighborhood is described by applying a ruin method and
then applying a recreate method. The ruin method randomly removes parts of a solution
or unassigns variables, depending on the structure of the solution. Then, given the
resulting partial solution the recreate method applies a construction heuristic to repair
the solution. If the removed parts of the solution were not optimal, the construction
heuristic may find an improved solution in which case the search continuous from the
improved solution. If the solution could not get improved another ruin and recreate move
is applied until we find one which improves the solution or a termination criterion is
satisfied.

Example 5.2.1. Continuing example 5.1.1 for the TSP we can define a ruin method
by removing a random sub-path from the tour. The length of the sub-path is randomly
selected out of a predefined range and then the first removed city is randomly selected.
To repair now the partial tour we can apply for example the best fit insertion heuristic
which inserts cities at the position in the partial tour where they fit best.

If we consider not just one large neighborhood but many ruin-and-recreate based large
neighborhoods, we can use a variable neighborhood search technique to use them all in
one algorithm. Given ruin-and-recreate based large neighborhoods N1, . . . ,Nk we can use
them in a RVNS framework as described in Algorithm 8 in Section 5.1. It is important
to note that ruin-and-recreate based large neighborhoods always generate random moves
which fits into the framework of RVNS.

5.3 Solution Representation
Before we describe the algorithmic details for solving the K2DCSPV we specify how a
solution gets represented. In this section we describe how a solution gets represented in
the approach by Dusberger and Raidl [DR14].
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S (root)

P1 (V-Comp.)
a: 1
h: 399
w: 209

H-Comp.
a: 1
h: 139
w: 209

H-Comp.
a: 2
h: 130
w: 196

1
a: 1
h: 139
w: 209

2
a: 1
h: 130
w: 152

V-Comp.
a: 1
h: 121
w: 44

3
a: 1
h: 65
w: 44

4
a: 2
h: 28
w: 44

1

2

2

3

4
4

3

4
4

Figure 5.1: The pattern tree and a visualization of an example solution S consisting of
one pattern P1.

One important restriction which changes the nature of the problem a lot is the restriction
of only allowing guillotine cuts. Every guillotine cut cuts a pattern into two halves. This
fact can be used to represent a pattern naturally as a binary tree, where each inner node
represents one cut. Having a discrete representation of a pattern like a tree helps a lot to
deal with solutions. Furthermore, cuts which only cut off some waste from one element
do not need to be part of the cutting tree. With that simplification we can enforce that
the leafs of the cutting tree can each be associated with an element. Moreover, we do
not need to store any positions of the cuts. Since every leaf node represents an element,
we can recursively calculate where we have to place cuts starting from the leaf nodes.

We can transform the binary tree into a tree by storing parallel cuts on the same level.
That implies that each level of the tree either only contains vertical cuts or horizontal
cuts.

Formally a solution of the K2DCSPV is represented by only one tree, where the children
of the root node represent the root nodes of the cutting trees for the respective pattern.
There are three types of inner nodes, the root node of the whole tree, vertical compounds
and horizontal compounds. Leaf nodes are always associated with an element type. All
nodes except the root node, regardless if inner node or leaf node, store a given amount
a ∈ N \ {0}. This helps a lot to scale the solution representation and also the algorithms
which work on the representation, since duplicate patterns or subpatterns get stored
only once with a higher amount. Therefore, an algorithm can improve for example a
subpattern and this gets automatically applied to all copies of this subpattern. See
Figure 5.1 for an example of a cutting tree for a solution which consists of only one
pattern.
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As already mentioned we do not need to specify where the cuts have to be placed, since
the cutting tree already induces a minimal cutting position for each cut. To calculate this
cutting position we calculate and store for each node except for the root node its width
w and its height h. Whenever the tree gets modified, we need to adjust those values.

The width and the height of a leaf node is simply the width wi and the height hi of the
associated element type i. Furthermore, for a horizontal component Ch with children
C1, . . . , C` the width can be calculated by

w(Ch) :=
∑̀
i=1

w(Ci) · a(Ci)

where w(Ci) is the width of child Ci and a(Ci) the amount of child Ci. The height of Ch

is simply the maximum of all heights of the children C1, . . . , C`.

For a vertical component Cv with children C1, . . . , C` the calculations are analogue, the
height is calculated by

h(Cv) :=
∑̀
i=1

h(Ci) · a(Ci)

and the width is the maximum of the widths of the children. Based on the widths or
heights of a components children one can easily calculate where to place the real cuts.

5.3.1 Waste Rectangles

Additional to the width and height we can define so called waste rectangles for all
compounds of a cutting tree. A waste rectangle of a compound basically describes the
largest rectangle which could get added as a child to the compound such that the sheet
of the compound (the level 1 ancestor node of the compound node) still fits into the
sheet type used for this sheet.

Formally, we first define a maximum width wmax
P , a maximum height hmax

P , a slack width
w̃P , and a slack height h̃P for each pattern P (all nodes, except the root node) in the
cutting tree. Note that each pattern P with width wP and height hP is part of a sheet
which is associated with a sheet type t ∈ T with a height Ht and a width Wt. The
maximum width and height of a pattern describes the maximum size of the pattern such
that the containing sheet pattern would still fit into its sheet type of size (Ht,Wt). The
slack height and slack width of a pattern P is simply the difference of the maximum
width and height to the actual width and height, i.e.

(h̃P , w̃P ) := (hmax
P − hP , w

max
P − wP ).

We define the maximum height hmax
P and maximum width wmax

P recursively depending on
type of the containing parent compound C and its slack height h̃C and slack width w̃C :

(hmax
P , wmax

P ) :=


(Ht,Wt), if P is a level 1 node, i.e. a sheet pattern.
(hmax

C , wP + w̃C), if P is a subpattern of hor. compound C.
(hP + h̃C , w

max
C ), if P is a subpattern of vert. compound C.

(5.2)
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Now we can define the waste rectangleWR with dimensions (hW R, wW R) for a compound
C depending on the type of the compound:

(hW R, wW R) :=
{

(hmax
C , w̃C), if C is a horizontal compound.

(h̃C , w
max
C ), if C is a vertical compound.

5.4 Objective value

As in the problem definition of K2DCSPV stated, the main objective is to minimize the
costs of a solution. But to be able to guide the search and to tie-break different solutions
with the same costs we introduce additional secondary objectives. The idea is that if two
solutions have the same cost and possibly use exactly the same sheet types we want to
favor the one solution which has a pattern which is almost empty. We want to favor such
a solution since we hope to be able to remove an almost empty pattern by improving our
solution and therefore reducing the costs. Clearly we cannot just sum over the wastes
since if both solutions contain all elements and use the same sheet types then the sum of
wastes will be the same. By squaring the waste ratios of each pattern we favor solutions
where the wastes are not distributed across multiple sheets but concentrate on few or
even only one sheet. We therefore introduce as secondary objective the sum of squared
waste ratios

c2(S) :=

∑
P∈PS

ctPw(P )2

∑
P∈PS

ctP a
S
P

where w(P ) denotes the waste ratio of the pattern P . For a pattern P the waste ratio is
defined by

w(P ) := HtWt −
∑

i∈E e
P
i hiwi

HtWt
(5.3)

where Ht and Wt are the dimensions of the used sheet type t and eP
i is the element

containment vector of the pattern P . Note that we squared waste ratios by the costs of
the associated sheets and divide the whole sum of weighted squared waste ratios by the
cost of the solution so that we get a value between 0 and 1. We want either to maximize
the sum of squared waste ratios c2(s) or to minimize 1− c2(s), which is still between 0
and 1. We can use this fact to scale the objective such that it is always minor to the
main objective, the costs of the solution. As scaling factor, we use the minimum cost of
all sheet types. Therefore, we always prioritize a solution with one sheet less, regardless
of the waste ratios.

All in all we get as total objective

min o(S) :=
∑

P∈PS

aS
P · ctP +

1−

∑
P∈PS

ctPw(P )2

∑
P∈PS

ctP a
S
P

 ·min
t∈T

ct.
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5.5 Ruin Methods

In this section we will present different ruin methods used in the approach of Dusberger
and Raidl [DR14]. They are then combined with different recreate methods, which we
will present in the next section, and embedded in a variable neighborhood framework.

Each ruin method removes some nodes from the cutting tree. How to select the nodes to
remove depends on the different ruin methods. All ruin methods have a parameter for
the number of decrements δ or a percentage π which indirectly specifies δ by multiplying
π with the total amount of possible nodes to remove, considering also the amounts of the
nodes.

5.5.1 Ruin Random Subtree

This simple form has two variants, either it targets sheet patterns for removal or it targets
leaf nodes for removal. We call the first variant ruin random sheet and the second ruin
random element. In both variants the nodes for removal are selected uniformly random
out of the pool of target nodes. Nodes can be selected multiple times but not more often
than their amount value a. For each selection of a node its amount gets reduced by one
and if it gets zero the node gets removed from the pattern tree.

5.5.2 Ruin by Maximum Waste Ratio

This ruin method is applied to sheet patterns. As defined in Section 5.4 we can associate
with each sheet pattern P a waste ratio w(P ), see (5.3). The waste ratio basically tells us
how dense the sheet type is filled with elements. The smaller the waste ratio the denser
the sheet type is filled. Ideally we would like to remove patterns with high waste ratios
since they are not filled densely, but we want to do that in a randomized way.

To do that we order all sheet patterns, i.e. level 1 nodes, by non-increasing waste ratio.
To select one of the sheet patterns for removal we apply Algorithm 9. It uses a parameter

Algorithm 9 Randomized selection of max waste ratio patterns

INPUT: A partial solution S
OUTPUT: A sheet pattern of S which should get removed

1: for sheet pattern P in S in non-increasing waste ratio order do
2: With probability 1− (1− ruinp)aP return P
3: end for
4: return pattern P with the highest waste ratio

ruinp which determines the probability that the next pattern gets selected. After selecting
a sheet pattern reduce its amount by one and remove it from the tree if the amount is
zero. Repeat that until δ sheet patterns got removed.

44



5.6. Construction Methods

5.5.3 Ruin and Merge

The idea of ruin and merge is to increase the amount of good patterns, i.e. patterns
with low waste ratios. First a sheet pattern with a low waste ratio gets selected in a
randomized way: We shuffle all sheet patterns, select the first one and iterate through
the others in the shuffled order. Whenever we find a sheet pattern with a smaller waste
ratio as the current, we set it to the current with a probability of 75%. The sheet pattern
P0 resulting from this procedure is then considered fixed.

In the next step we compute the total demand dtot
i of all other sheet patterns, assume

that S is the set of all sheet patterns of the current solution:

dtot
i =

∑
P∈PS\{P0}

eP
i · aS

P ∀i ∈ E.

Then the maximum value x for increasing the amount of P0 gets calculated by

x := min
i∈E,e

P0
i >0

⌊
dtot

i

eP0
i

⌋
.

We increase aP0 by x, i.e. aP0 ← aP0 + x and remove enough other sheet patterns from
S to do not overproduce any elements.

5.6 Construction Methods
In this section we will give an overview of the construction methods by Dusberger and
Raidl. Since going too much into detail is out of scope for this work, an interested
reader may read details in [DR14, DR15, DR17]. Construction methods are used for
constructing a starting solution at the beginning and also for repairing partial solutions.
We will present in this section different fill methods, each of them gets a partial solution S
and tries to add elements to the patterns of the partial solution, i.e. tries to fill the partial
solution. But they never add new sheets, they only fill the already existing patterns in S.

We then use such a fill method within a beam search framework where in each level of
the search tree one new empty sheet gets added. After adding the sheet the fill method
is applied for filling everything. We do that for each possible sheet type t, therefore
the selection which sheet type to use next is not done greedily but in a sophisticated
beam search approach. See Algorithm 5 for a generic overview how beam search works.
Let us call the used fill method fill, then the whole construction algorithm is given by
Algorithm 10.

In the following we will present the different fill methods.

5.6.1 Fill Methods

All fill methods except for the dynamic programming approach have the same structure.
In each iteration they insert a grid of elements of one type into a waste rectangle. The
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Algorithm 10 Generic construction method using beam search

INPUT: A partial solution S0
OUTPUT: A completed solution which extends S0

1: S ← fill(S)
2: Initialize the set of current partial solutions S ← {S0}
3: while S is not empty do
4: for S ∈ S do
5: for t ∈ T do
6: if

∑
P∈PS :tP =t a

S
P < qt then

7: Clone S to S′ and add an empty pattern of sheet type t to S′
8: S′ ← fill(S′)
9: Compute objective value o(S′)

10: end if
11: end for
12: end for
13: Clear S
14: Store the β best partial solutions S′, according to o(S′), in S
15: If any S′ is complete store the best objective obest and its solution
16: Remove all partial solutions from S which cannot be better than obest

17: end while
18: return the best found complete solution

used element type must be in the set

ES
R := {i ∈ E : dr,S

i > 0}

where dr,S
i is the residual demand of the element type i in the partial solution S.

How they decide, which element type in ES
R they use, which waste rectangle they use,

and how big the grid is depends on the method. They stop when no element could get
inserted anymore.

Critical Fit Insertion Heuristic

In each iteration the critical element type is calculated. The critical element type iSc ∈ ES
R

is defined by the properties

• @i ∈ ES
R : i 6= iSc ∧ wi ≥ wiS

c
∧ hi ≥ hiS

c
,

• the number of sheets in S which contain a waste rectangle into that the element iSc
fits is minimal,

• if multiple element types satisfy the above conditions, use the one with the smallest
index.
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We now fix the critical element type i := iSc and search for a waste rectangle WR of a
compound C and a grid size avert

i × ahor
i with avert

i · ahor
i ≤ dr,S

i , such that the insertion
of the grid into the waste rectangle WR results in a maximal fitness. The fitness of an
insertion with the given grid size into the compound C, resulting in a compound C ′, is
defined by

f(C, avert
i , ahor

i ) := 1
(h̃C′ + 1) · (w̃C′ + 1) · (η(C, avert

i , ahor
i ) + 1)

where h̃C′ is the slack height and w̃C′ the slack width of the new compound C ′ after
inserting the grid. Furthermore, η(C, avert

i , ahor
i ) is defined by

η(C, avert
i , ahor

i ) :=
{

minP∈C |hP − avert
i · hi|, if C is a hor. compound.

minP∈C |wP − ahor
i · wi|, if C is vert. compound.

The value of η tells us how well the grid fits to the other subpatterns of C, since we want
for a horizontal compound that all subpatterns have almost the same height and for a
vertical compound that all subpatterns have almost the same width. When we found an
optimal waste rectangle and grid size according to the fitness criterion we insert the grid
into this waste rectangle and update all data structures (like ES

R, i
S
c , ...).

Fill Heuristic Based on Average-Area Sufficiency

We define the average area ā(X) of a multiset of elements X by the average area of all
elements in X (counted with their occurrence in the multiset). Furthermore, a pattern, a
grid of elements and ES

R can be interpreted as multisets of elements. For ES
R the element

counts are according to the residual demands.

If we want to insert a grid G into a waste rectangle, which is part of a sheet pattern P ,
then we define the average-area sufficiency criterion for this insertion by

ā(G ∪ P ) ≤ ā(ES
R ∪ P )

where the unions are given by interpreting everything as multisets of elements.

If we want to compare two grid insertions, we distinguish the following:

• If both insertions satisfy the criterion, then the one yielding less waste is better

• If only one satisfies the criterion, the one which satisfies it is better

• If both do not satisfy the criterion, the one which violates the criterion the least is
better

Now in each iteration we use the waste rectangle, element type, and grid size which is
the best according to the above comparison criterion.
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Naive Fill Heuristic

This fast heuristic implements a simple first-fit approach. It chooses the element type in
ES

R which has the largest area, the first waste rectangle in post order where the chosen
element fits into and computes the maximum grid size for this element type and waste
rectangle.

Dynamic Programming

Dynamic programming is a well-known technique for computing a recursion, where certain
subproblems occur multiple times in different branches of the recursion tree. The idea is
to store the results of common subproblems and looking up the value in the storage table
instead of recomputing it. We want to use the dynamic programming technique in our
case to develop an exact algorithm, which fills a waste rectangle with elements such that
the filled area is maximal. We apply then that dynamic program to the largest waste
rectangle of each sheet pattern. Note that the most important case is, when a sheet
pattern is empty and therefore only has one waste rectangle of the size of the sheet type.

To be able to formulate a recursive formula for our problem, we need to lift the demands
restriction, i.e. that all elements can be placed on the sheet an unlimited number of times.
If the result overproduces some elements, we can remove those elements from the pattern
afterwards and can apply another fill method to fill the remaining space. Furthermore,
we need to discretize the possible cutting positions, for further details see [DR15]. The
discretization results in a finite set P of possible cutting points for heights and a finite
set Q of possible cutting points for widths.

We use variables V v
k (x, y) and V h

k (x, y) for (x, y) ∈ Q × P and k ∈ {0, . . . ,K}. The
variables V v

k (x, y)(V h
k (x, y)) represents the area of the optimal cutting pattern with width

at most x and height at most y which uses at most k cutting levels and starts with a
horizontal(vertical) cut, i.e. the root compound of the cutting tree is a vertical(horizontal)
compound.

The idea of the recursion is now that a pattern with a horizontal compound as root node
and cutting level k can either have one child or multiple children. If it has one child,
then this is a vertical compound with one cutting level k − 1. Otherwise, we can split off
the last child and get on the left side a horizontal compound with cutting level k and on
the right side a vertical compound with cutting level k − 1. Vertical root compounds
can be handled analogously, and we get all in all for all k > 0 and (x, y) ∈ Q × P the
recursive formulation

V v
k (x, y) = max

(
V h

k−1(x, y), max
x′∈Q,x′<x

(
V v

k (x′, y) + V h
k−1(x− x′, y)

))
,

V h
k (x, y) = max

(
V v

k−1(x, y), max
y′∈P,y′<y

(
V h

k (x, y′) + V v
k−1(x, y − y′)

))
.

48



5.7. Variable Neighborhood Search for Solving K2DCSPV

Table 5.1: List of Ruin and Recreate Neighborhoods

Name Ruin Method π Fill Method

N1 Maximum Waste Ratio π ∈ U(0.05, 0.33) Naive Fill
N2 Maximum Waste Ratio π ∈ U(0.05, 0.33) Critical Fit
N3 Random Sheet π ∈ U(0.05, 0.33) Critical Fit
N4 Random Element π ∈ U(0.05, 0.33) Critical Fit
N5 Random Sheet π ∈ U(0.05, 0.33) Naive Fill
N6 Random Sheet π ∈ U(0.05, 0.33) Dynamic Programming
N7 Ruin and Merge − Dynamic Programming

For k = 0 and (x, y) ∈ Q× P we get

V v
0 (x, y) = V h

0 (x, y) = max
(

0, max
i∈{0,...,n−1},hi≤y,wi≤x

(hi · wi)
)
.

With that recursion we can apply a dynamic program which is implemented as a bottom
up approach. Clearly this approach is exponential in running time but for many small
sheet patterns it is enough fast in practice and returns good sheet patterns. If the amount
of discretization points is too large, we turn off all neighborhoods which use this fill
method.

5.7 Variable Neighborhood Search for Solving K2DCSPV

In the previous two sections we described ruin methods and construction methods. In
this section we give an overview how we combine them to get our ruin and recreate
neighborhoods for our variable neighborhood search procedure. Additionally, we introduce
some other neighborhoods, which are not based on ruin and recreate but also used for our
algorithm. Finally, we give a total overview of the algorithm, including how to construct
initial solutions.

Table 5.1 lists all ruin and recreate neighborhoods used in the approach by Dusberger
and Raidl. As we can see for all neighborhoods which use the parameter π, the parameter
is chosen uniformly randomly from the interval [0.05, 0.33]. Note that π is chosen for
every ruin call independently and stays never fixed. Furthermore, for the construction
methods of the neighborhoods we always use a beam width of β = 1, which means that
we decide greedily which sheet type we use next.

Additionally to the seven ruin and recreate neighborhoods, the approach by Dusberger
and Raidl uses three restructuring neighborhoods which do not change the objective of
the solution but may improve the solution representation. We will only shortly list those
three neighborhoods as they are not the main component of the algorithm.
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• N8: Tries to simplify patterns by using three different rules, merging subcompounds,
reduce compounds with only one child, and rotating a sheet.

• N9: Brings patterns into a normal form and recognizes sibling patterns of the same
structure and unifies them by increasing the amount.

• N10: Merges equivalent sheets, which are sheets which use the same sheet type and
contain exactly the same elements but with different pattern structures.

Now we have described the ten used neighborhoods in the variable neighborhood structure,
what remains is how to construct the initial solution. For that we also use the construction
methods, but this time we also use larger beam widths than 1, depending on the fill
method. We run four different construction methods all starting from the empty partial
solution and chose the best result as starting solution.

• Method C1 uses the critical fit insertion heuristic with beam width β = 10.

• Method C2 uses the fill heuristic based on average-area sufficiency with beam width
β = 10.

• Method C3 also uses the fill heuristic based on average-area sufficiency with beam
width β = 10, but this time we replace areas with a so called value-correction
framework. This framework assigns each element a value instead of an area. Then
it iteratively tries to improve the values such that the solution quality increases.
At the beginning the values equal the areas of the elements.

• Method C4 uses the dynamic programming fill method with beam width β = 1.

Now we presented everything to describe the whole algorithm, which is done in Algo-
rithm 11.

5.8 Considering Pattern Setup Costs
We are especially interested in a variant of the K2DCSPV which uses pattern setup costs.
The algorithm by Dusberger and Raidl which we presented in this chapter is mainly
designed for the K2DCSPV and does not consider pattern setup costs. Although we
can always incorporate pattern setup costs in the solution objective, see Section 5.4, the
solution quality is still not as good as without setup costs. This is also one of the reasons
why we were interested in solving the CSSCP or CSSSCPE as a post processing in a
first place, since the approaches we presented in Chapter 4 specifically consider pattern
setup costs and therefore can improve the solution quality often as we will see in the
computational results chapter.

In the following we state the whole problem formulation, which was already presented at
the end of Section 2.2.
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5.8. Considering Pattern Setup Costs

Algorithm 11 VNS for solving K2DCSPV by Dusberger and Raidl

INPUT: An instance of K2DCSPV
OUTPUT: A solution S

1: for i ∈ {1, 2, 3, 4} do
2: Apply construction method Ci

3: end for
4: S ← best solution found by the four construction methods
5: i← 1
6: while termination criterion is not satisfied do
7: S′ ← apply neigbhorhood Ni to S
8: if S′ has a better objective than S then
9: S ← S′

10: i← 1
11: else if i = ` then
12: i← 1
13: else
14: i← i+ 1
15: end if
16: end while
17: return S

K-staged two-dimensional cutting stock problem with variable sheet size and
pattern setup costs (K2DCSPVSC). Given a set of sheet types T with widths
Wt ∈ R+, heights Ht ∈ R+, available quantities qt ∈ N ∪ {∞}, costs ct ∈ R+, and
stacking costs cS

t for t ∈ T . Furthermore, let smax ∈ N ∪ {∞} be the maximum stacking
size and E be a set of different element types. Each element type i ∈ E has a width
wi ∈ R+, a height hi ∈ R+, and a demand di ∈ N \ {0}. A solution S to the problem
is now a set of patterns PS and for each pattern P ∈ PS an amount aS

P . Furthermore,
each pattern P ∈ PS is associated with a sheet type tP . Each pattern describes how to
cut output elements out of the associated sheet type only using guillotine cuts. We can
associate with each pattern P ∈ PS an element vector (eP

i )i∈E ∈ N|E| which describes
how often the i-th element occurs in the pattern P . A solution is feasible if all element
demands are satisfied, i.e.

∑
P∈PS

aS
P · eP

i = di ∀i ∈ E,

and all available sheet quantities are not exceeded, i.e.

∑
P∈PS :tP =t

aS
P ≤ qt ∀t ∈ T.
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The problem is now to find a feasible solution which minimizes the costs

∑
P∈PS

aS
P · ctP +

⌈
aS

P

smax

⌉
· cS

tP
. (5.4)

To solve this problem we can simply use the approach by Dusberger and Raidl and adapt
the objective function accordingly. To improve the approach in this situation we propose
to add a neighborhood N11 which uses the hybrid method presented in Section 4.5
for finding a neighbor. This special neighborhood does not try to improve the current
solution, but tries to build a new solution using all patterns found so far as pattern set
P . Furthermore, as construction method, we can use any construction method presented
in this chapter in Section 5.6.
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CHAPTER 6
Computational Results

In this chapter we present computational results from applying our techniques to real
world instances. We use 192 instances for K2DCSPVSC originating from real world
applications for many use cases. The algorithm by Dusberger and Raidl described in
Chapter 5 is used to generate instances for CSSCP and CSSSCPE. Afterwards we present
a comparison of our approaches on those generated instances. Furthermore, we compare
the performance of the algorithm by Dusberger and Raidl with the algorithm when we
add our hybrid neighborhood.

The implementations are done in C++ and we use Gurobi 8.1 to solve our ILP approach.
All tests were performed on a single core of an Intel Xeon E5-2640 v4 processor with
2.4GHz using at most 8GB RAM.

6.1 Instances
In this section we present the instances we will use for our tests. As instances for the
original problem, K2DCSPVSC, we use 192 real world instances which got provided by
LodeStar Technology. The instances describe heterogeneous situations arising in different
applications. Most instances have only one sheet type, but there are instances with up
to 145 different sheet types. Furthermore, the number of different element types ranges
from 1 to 176. And if we sum up all element demands the demand sum ranges from 1 to
8511. The instances with demand sum equal to one are trivial to solve but are still part
of our testing portfolio.

For each of the 192 real world instances we consider three variants. The first variant
considers no setup costs at all and the variant is named "N". The second variant considers
setup costs which have medium influence compared to the sheet costs, we call that variant
"M". And the third variant considers setup costs of high influence compared to the sheet
costs, we call that variant "H". Therefore, we get all in all 3 · 192 = 576 instances.
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6. Computational Results

Table 6.1: List of Instance Groups

Group Bounds for P #Instances N #Instances M #Instances H

G1 |P| < 10 71 74 72
G2 10 ≤ |P| < 100 33 32 34
G3 100 ≤ |P| < 500 15 13 15
G4 500 ≤ |P| < 2, 000 11 12 11
G5 2, 000 ≤ |P| < 10, 000 11 12 12
G6 10, 000 ≤ |P| < 50, 000 11 9 10
G7 50, 000 ≤ |P| < 200, 000 12 18 17
G8 200, 000 ≤ |P| < 300, 000 12 11 11
G9 300, 000 ≤ |P| < 500, 000 9 9 8
G10 500, 000 ≤ |P| 7 2 2

6.1.1 Generating Instances for CSSCP and CSSSCPE

We used the algorithm by Dusberger and Raidl described in Chapter 5 to generate
instances for CSSCP and CSSSCPE. For each of the 576 real world instances we generate
one instance for CSSCP and CSSSCPE. We do this by applying the algorithm by
Dusberger and Raidl on each instance with a time limit of one hour and collect all
patterns occurring during the execution of the algorithm. The resulting pattern sets P
range from 1 pattern to 1,384,811 patterns.

As expected the variants "M" and "H" generate in general fewer patterns than the variant
"N", since pattern setup costs lead to patterns being used many times instead of many
different patterns. We group the instances for each variant into ten groups based on the
size of P. Table 6.1 shows the size limits of P for each group and how many instances
are part of the group for each variant.

Note that we generated these instances by running the algorithm once. Since this is a
randomized algorithm, running it multiple times would potentially result in completely
different sets P.

6.2 Comparing Solution Approaches for CSSCP and
CSSSCPE

In this section we will present a comparison of the performance of the approaches
presented in Chapter 3 on the different instance groups as described in the previous
section.

All test runs have a time limit of one hour after which the algorithm returns without a
feasible solution. Note that all our algorithms are deterministic and therefore we only run
every test only once. Since some algorithms are quite time-consuming and the number
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of patterns |P| can be up to 1,000,000 we use a preprocessing which filters the patterns
based on their greedy rating

r(P ) := max
a∈N

rS(P, a)

where S is in this case the empty partial solution. In the following we will analyze the
performances of the algorithms when filtering the pattern set by |P| ≤ X for different
values for X, which means that only the best X patterns remain in the pattern set P
according to the rating r(P ).

6.2.1 Comparing ILP with the Greedy Appraoch and the Hybrid
Approach

Table 6.2 shows the results when we use relatively small pattern sets |P| ≤ X := 500
for the problem CSSCP. It compares the ILP approach with the Greedy approach and
the hybrid approach. Column "G" gives the group index of the instance set, column "V"
the variant abbreviation and "#" the number of instances in this set. Furthermore, for
each of the three algorithms ILP, Greedy, and the Hybrid, the columns "feas." represent
the number of instances in the set for which the respective algorithm returned a feasible
solution. Moreover, the columns "obj." represent the geometric mean of the relative
objectives of the solutions, which is the objective of the solution computed by the set
cover algorithm divided through the objective of the solution computed by the original
algorithm of Dusberger and Raidl, when the set cover instance got created. Therefore, a
value greater than 1.0 represents a worse solution and a value smaller than 1.0 represents
a better solution. We use here the geometric mean, since the values are all relative and
therefore a geometric mean represents the average percentage gain/loss compared to
the original solutions. Last but not least the columns "t(s)" represent the median CPU
running times over the instance set in seconds.

Note that the Hybrid does not solve the CSSCP formally as the other two algorithms
do. Therefore, the direct comparison is not fair, since the hybrid is allowed to add any
feasible pattern compared to the other two algorithms, which only add patterns from P.
Nevertheless we included the hybrid results in the table since it shows how much the
greedy can be improved by hybridizing by a construction heuristic.

As we can see, the results of the greedy algorithm are worse than the ILP results,
regardless of the instance size. The ILP can improve some instances compared to the
original result, even in variant "N" without setup costs, although only few instances could
be improved. For variant "M" and "H" with setup costs significantly more instances could
be improved by the ILP approach. We also see that there are many instances for which
the ILP and the greedy couldn’t find a feasible solution. This is because of the filtering,
which removes too many patterns, especially for large instances, possibly removing all
patterns containing some element types.

The hybrid can compensate those feasibility problems by creating new patterns. It is
able to solve all instances except for one in G9 variant "H" feasibly. Furthermore, the
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Table 6.2: Comparing ILP, Greedy and Hybrid with filter |P| ≤ X := 500 and no exact
demands

ILP Greedy Hybrid

G V # feas. obj. t(s) feas. obj. t(s) feas. obj. t(s)

1 N 73 73 1.00000 0.01 73 1.00758 0.01 73 1.00758 0.01
2 N 31 31 1.00000 0.01 31 1.02749 0.01 31 1.02674 0.01
3 N 14 14 1.00000 0.03 14 1.04896 0.01 14 1.04896 0.03
4 N 12 10 0.99873 0.05 10 1.11779 0.04 12 1.10151 0.07
5 N 11 9 1.01905 0.18 8 1.13303 0.14 11 1.07301 0.14
6 N 10 7 0.99725 0.87 7 1.14021 0.83 10 1.04867 0.87
7 N 14 3 1.00162 2.94 4 1.07954 2.97 14 1.02528 3.43
8 N 9 2 2.26640 9.72 2 2.67964 9.57 9 1.03283 9.55
9 N 9 1 1.18627 16.57 1 1.57516 13.93 9 1.03896 15.45

10 N 9 1 1.03333 36.48 1 1.40000 32.59 9 1.03126 36.05
1 M 71 71 0.99721 0.01 71 1.00436 0.01 71 1.00436 0.01
2 M 35 35 0.95217 0.01 35 0.99385 0.01 35 0.98869 0.01
3 M 12 12 0.95397 0.10 12 0.98068 0.01 12 0.97670 0.02
4 M 12 10 0.97295 0.36 10 1.05713 0.03 12 1.05187 0.04
5 M 12 10 1.00364 0.41 10 1.12505 0.14 12 1.04935 0.14
6 M 10 6 1.00269 0.78 6 1.23805 0.55 10 1.02632 0.55
7 M 18 8 1.01567 7.15 8 1.34714 3.76 18 1.00416 3.68
8 M 8 1 1.04444 13.24 1 1.38611 9.20 8 0.98234 9.13
9 M 12 2 1.66667 14.42 2 1.84257 14.62 12 0.99906 15.49

10 M 2 0 - 35.75 0 - 35.62 2 1.06155 36.64
1 H 72 72 0.97769 0.01 72 0.97769 0.01 72 0.97769 0.01
2 H 32 32 0.83524 0.02 32 0.85845 0.01 32 0.85596 0.01
3 H 17 17 0.78715 0.08 17 0.82515 0.01 17 0.85028 0.01
4 H 12 10 0.89496 0.42 10 0.95264 0.03 12 0.94015 0.04
5 H 9 5 0.91550 0.49 5 1.07336 0.13 9 0.88655 0.15
6 H 13 8 0.98434 0.69 8 1.22177 0.50 13 0.87109 0.56
7 H 15 3 0.79822 3.98 3 1.07307 3.70 15 0.92964 4.14
8 H 12 2 1.11209 15.22 2 1.42074 11.08 12 0.91710 11.17
9 H 8 0 - 15.49 0 - 15.92 7 0.87274 16.04

10 H 2 0 - 40.29 0 - 40.55 2 0.93896 41.82
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hybrid outperforms the ILP for the larger instance sets, regardless of the setup costs.
Note that the running times of the algorithms itself are neglectable for this case, since
the bottleneck for the larger instances is the filtering. This is why all running times look
similar, regardless which algorithm is used.

If we lift the filter condition, the ILP has problems to solve the larger instances to
optimality within the given time limit. Although the running times of the greedy and
the hybrid do not change that much. Table 6.3 shows the results for the ILP, greedy and
hybrid without a filter.

Although the ILP reaches the time limit often for the large instances it still can solve
many more instances feasibly compared to having a filter of |P| ≤ X = 500. Furthermore,
we also see that the geometric means of the ILP solutions, and also of the greedy and
hybrid solutions, are clearly better than in the other case.

The situation looks similar if we only allow exact demands. In this case all three
algorithms solve different problems. The ILP solves the CSSCPE, the Greedy solves
the CSSSCPE and the Hybrid solves the original problem K2DCSPVSC. This gives the
Greedy approach more flexibility compared to the ILP approach. Nevertheless, the ILP
outperforms the Greedy also in this situation. Table 6.4 shows the results of the ILP,
Greedy, and Hybrid for the unfiltered case with exact demands. Note that for variant
"N" without setup costs the results are similar to the results with no exact demands.
This is because without setup costs every solution with no exact demands can easily be
transformed into a solution with exact demands, by removing overproduced elements,
without decreasing the objective. Therefore, having no exact demands is no advantage.
For the variants "M" and "H" the solution qualities of the algorithms are worse than with
no exact demands, which is because they are now more restricted in what solutions are
allowed. Nevertheless, the ILP can find improvements in many cases and the hybrid
outperforms again the ILP on the large instance sets.

6.2.2 Tuning the β parameter for the PILOT and Beam Search
Approach

Before we compare the ILP, greedy, and hybrid with the PILOT and Beam Search
approach, we want to analyze the influence of the parameter β on their performances
and find the best parameter setting. As we saw already for the ILP, Greedy, and Hybrid,
filtering the patterns in a preprocessing does decrease the solution quality significantly.
Therefore, we focus for the pilot and the beam search approach on the unfiltered instances.

We start with the case of no exact demands. Figure 6.1 compares for each of the variants
"N", "M", and "H" the geometric mean of the objectives, the number of feasible solutions,
the number of improved solutions, and the running times for three different values
β = 10, 30, 100. As we can see the geometric means of the objectives are closely together,
regardless of the β value. The larger β value works well on medium-sized instances and
the smaller β values on larger instances. For the small instances the algorithm often finds
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Table 6.3: Comparing ILP, Greedy and Hybrid without filter and no exact demands

ILP Greedy Hybrid

G V # feas. obj. t(s) feas. obj. t(s) feas. obj. t(s)

1 N 73 73 1.00000 0.01 73 1.00758 0.01 73 1.00758 0.01
2 N 31 31 1.00000 0.01 31 1.02749 0.01 31 1.02674 0.01
3 N 14 14 1.00000 0.02 14 1.04896 0.01 14 1.04896 0.02
4 N 12 12 0.99894 0.08 12 1.11118 0.04 12 1.11123 0.07
5 N 11 11 0.99725 0.37 11 1.07712 0.18 11 1.07712 0.16
6 N 10 10 0.99731 2.49 10 1.07699 1.13 10 1.06509 1.06
7 N 14 14 0.98932 16.56 14 1.03287 4.04 14 1.02647 4.49
8 N 9 9 0.98139 72.47 9 1.02547 11.94 9 1.02410 13.39
9 N 9 8 1.00815 500.04 8 1.07948 19.53 9 1.04895 19.85

10 N 9 9 1.01136 1116.13 9 1.03460 46.50 9 1.00161 47.17
1 M 71 71 0.99721 0.01 71 1.00436 0.01 71 1.00436 0.01
2 M 35 35 0.95217 0.01 35 0.99385 0.01 35 0.98869 0.01
3 M 12 12 0.95397 0.08 12 0.98068 0.01 12 0.97670 0.02
4 M 12 12 0.96246 0.30 12 1.02878 0.03 12 1.04210 0.04
5 M 12 12 0.97260 14.41 12 1.07114 0.19 12 1.04416 0.15
6 M 10 10 0.97860 1843.40 10 1.04364 0.66 10 1.01661 0.72
7 M 18 18 1.00138 3600.00 18 0.99284 5.00 18 0.98429 5.13
8 M 8 8 1.07495 3600.00 8 1.01359 12.68 8 0.98278 12.11
9 M 12 11 1.08796 3600.00 11 1.06636 20.28 12 0.98814 19.03

10 M 2 1 1.37500 1858.78 2 1.06155 50.00 2 1.04628 51.55
1 H 72 72 0.97769 0.01 72 0.97769 0.01 72 0.97769 0.01
2 H 32 32 0.83524 0.01 32 0.85845 0.01 32 0.85596 0.01
3 H 17 17 0.78715 0.08 17 0.82515 0.01 17 0.85028 0.02
4 H 12 12 0.87374 1.47 12 0.93285 0.03 12 0.93180 0.04
5 H 9 9 0.83205 669.91 9 0.86050 0.14 9 0.86050 0.14
6 H 13 13 0.81510 3600.00 13 0.86171 0.57 13 0.86573 0.68
7 H 15 15 0.86497 3600.00 15 0.90709 4.63 15 0.91073 4.97
8 H 12 11 0.97068 3600.00 12 0.96792 15.48 12 0.90360 15.99
9 H 8 7 1.07489 3600.00 7 0.91525 22.09 7 0.83721 21.69

10 H 2 1 1.13146 1862.63 2 0.95304 58.35 2 0.89348 60.39
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Table 6.4: Comparing ILP, Greedy and Hybrid without filter and exact demands

ILP Greedy Hybrid

G V # feas. obj. t(s) feas. obj. t(s) feas. obj. t(s)

1 N 73 73 1.00000 0.01 73 1.00758 0.01 73 1.00758 0.01
2 N 31 31 1.00000 0.01 31 1.02749 0.01 31 1.02674 0.01
3 N 14 14 1.00000 0.03 14 1.04896 0.01 14 1.04896 0.02
4 N 12 12 0.99894 0.09 12 1.11118 0.04 12 1.11123 0.07
5 N 11 11 0.99725 0.44 11 1.07712 0.17 11 1.07712 0.21
6 N 10 10 0.99731 3.38 10 1.07699 1.20 10 1.06509 1.12
7 N 14 14 0.98932 21.63 14 1.03287 3.74 14 1.02647 4.76
8 N 9 9 0.99607 951.46 9 1.02547 13.76 9 1.02410 14.20
9 N 9 7 1.00014 3600.00 8 1.07948 21.52 9 1.04895 21.41

10 N 9 9 1.13108 3600.00 9 1.03460 49.01 9 1.00161 50.31
1 M 71 71 1.00000 0.01 71 1.00886 0.01 71 1.00886 0.01
2 M 35 35 0.99896 0.01 35 1.03266 0.01 35 1.01816 0.01
3 M 12 12 0.98508 0.18 12 1.03428 0.01 12 1.03028 0.02
4 M 12 12 0.99129 0.64 12 1.03018 0.03 12 1.03018 0.04
5 M 12 12 0.99697 6.13 12 1.07454 0.16 12 1.02128 0.19
6 M 10 10 0.99218 51.51 10 1.04163 0.77 10 1.01410 0.80
7 M 18 17 1.08978 3600.00 18 1.01688 5.17 18 0.99756 5.63
8 M 8 6 1.21903 3600.00 8 1.03782 13.53 8 0.98745 12.98
9 M 12 11 1.45684 3600.00 11 1.08120 20.85 12 0.99145 19.87

10 M 2 2 1.84637 3600.00 2 1.10782 53.09 2 1.03078 47.12
1 H 72 72 1.00000 0.01 72 1.01246 0.01 72 1.01246 0.01
2 H 32 32 1.00000 0.01 32 1.00677 0.01 32 0.97817 0.01
3 H 17 17 0.96568 0.08 17 1.01698 0.01 17 1.01698 0.02
4 H 12 12 0.97714 9.50 12 1.01633 0.03 12 0.99729 0.04
5 H 9 9 0.99767 1197.17 9 1.03353 0.11 9 1.00561 0.15
6 H 13 13 1.04216 2505.24 13 0.97739 0.70 13 0.96444 0.68
7 H 15 15 1.19202 3600.00 15 1.00350 5.28 15 0.98096 5.51
8 H 12 10 1.71607 3600.00 12 1.12348 19.09 12 0.97643 17.66
9 H 8 7 1.98132 3600.00 7 1.06027 25.16 8 0.95989 23.89

10 H 2 1 1.74178 3600.00 2 1.10563 57.43 2 0.96376 57.13
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Figure 6.1: Comparison of three different β-values for the PILOT approach for unfiltered
instances and no exact demands

a solution of the same quality regardless what β is. The same observation can be done in
the case of exact demands, which is shown in Figure 6.2.

To verify observation we applied a Wilcoxon signed-rank test with p-value of 5%. All
instance combinations using exact and not exact demands, variants "N", "M" and "H",
but fix no filtering, are grouped together by the instance groups. Then on each instance
group we compare the performance of each pair of the three beta-values. First of all the
value β = 3 is significantly worse than β = 10 for the instance groups G2 to G9 and for
the other two groups there is no significant difference. Because of that we won’t consider
β = 3 in the following and only compare β = 10 to β = 30 and β = 100. On the instance
groups G1, G2, and G3 none of the three β-values is significantly better than the other
one. For group G4 the values β = 30 and β = 100 are significantly better than β = 10.
Furthermore, for group G5 the value β = 100 is significantly better than β = 10 and
for G6 the value β = 100 is significantly better than β = 30. For group G7, the value
β = 10 is significantly better than β = 100, and for group G8 both, β = 10 and β = 30
are significantly better than β = 100. Last but not least for the groups G9 and G10 the
value β = 10 is significantly better than β = 30 which in turn is significantly better than
β = 100.

To always use a good parameter, we will fix the parameter for the PILOT by β = 100
for instances with |P| ≤ 50, 000, i.e. all groups up to G6, and β = 10 for instances with
|P| > 50, 000.

60



6.2. Comparing Solution Approaches for CSSCP and CSSSCPE

100.0%

102.0%

104.0%

106.0%

108.0%

ge
om

et
ric

 o
bj
. m

ea
n

Relative Obj. Value Variant N

0%

25%

50%

75%

100%

Fe
as
ib
ilit
y 
Ra

tio

Feasible Variant N

0.0%

10.0%

20.0%

30.0%

Im
pr
ov
em

en
t R

at
io

Improvements Variant N

0

1000

2000

3000

t(s
)

CPU Time Variant N

100.0%

105.0%

110.0%

ge
om

et
ric

 o
bj
. m

ea
n

Relative Obj. Value Variant M

0%

25%

50%

75%

100%

Fe
as
ib
ilit
y 
Ra

tio

Feasible Variant M

0%

20%

40%

Im
pr
ov
em

en
t R

at
io

Improvements Variant M

0

1000

2000

3000

t(s
)

CPU Time Variant M

2 4 6 8 10
G

95.0%

100.0%

105.0%

110.0%

ge
om

et
ric

 o
bj
. m

ea
n

Relative Obj. Value Variant H

2 4 6 8 10
G

0%

25%

50%

75%

100%

Fe
as
ib
ilit
y 
Ra

tio

Feasible Variant H

2 4 6 8 10
G

0.0%

10.0%

20.0%

30.0%

40.0%

Im
pr
ov
em

en
t R

at
io

Improvements Variant H

2 4 6 8 10
G

0

1000

2000

3000

t(s
)

CPU Time Variant H

β=3 β=10 β=30 β=100

Figure 6.2: Comparison of three different β-values for the PILOT approach for unfiltered
instances and no exact demands.

To tune the β-parameter for the beam search we proceed in the same way as for the
PILOT approach. Figure 6.3 shows the results for the case of no exact demands and
no filtering. As we can see the results are similar than for the PILOT approach. The
large beam widths work well on medium-sized instances and the smaller beam widths
well on the larger instances. Note that already for the instances of the instance group G7
the beam search with beam width β = 100 runs into the time limit of one hour quite
often. For exact demands the differences between the β-values are similar as we can see
in Figure 6.4

We apply again a Wilcoxon signed-rank test with a p-value of 5% for verifying significant
differences. Again the value β = 3 is significantly worse than β = 10 for instance sets
G4, G5, and G7 and is on no instance set significantly better, although, as we can see
in the charts, it can solve more instances feasibly for the largest instance set G10. We
therefore won’t consider β = 3 in the following analysis. For G1, G2, and G3 there
are no significant differences between the three β-values. For G4 the values β = 100
is significantly better than β = 30 which in turn is significantly better than β = 10.
Furthermore, for G5 the values β = 100 and β = 30 are significantly better than β = 10
and for G6 the value β = 30 is significantly better than β = 10. For the larger instance
groups G7, G8, G9, and G10 we have that β = 10 is significantly better than β = 30
which in turn is significantly better than β = 100.

We will use the same optimized parameter settings as for the PILOT also for the beam
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Figure 6.3: Comparison of three different β-values for the beam search approach for
unfiltered instances and no exact demands

search approach. Therefore, if |P| ≤ 50, 000 we use β = 100 and otherwise we use β = 10.

6.2.3 Comparing All Approaches

Finally, we are now able to compare all five approaches, the ILP, the greedy, the hybrid,
the PILOT and the beam search approach. For the PILOT and beam search approach
we use a β-parameter of β = 100 for instances with |P| ≤ 50, 000 and β = 10 otherwise.
Table 6.5 compares the results for all five approaches for no exact demands. The column
"G" describes the group index of the considered instance group, the column "V" the
variant, and the column "#" the number of instances for this group. Furthermore, for
each of the five algorithms the column "f." lists the number of instances for which the
algorithm found a feasible solution, "obj." gives the geometric mean of the objective values,
only considering feasible solutions, the column "i." specifies the number of instances for
which the algorithm found a solution which is better than the best solution found by the
original algorithm when creating the instance, and the column "t(s)" the median running
time in seconds.

We can see that the beam search and the PILOT approach can produce closely as good
solutions as the ILP and for the larger instances even better solutions. Furthermore,
they are often better than the hybrid or the greedy approach except for large instances.
Note that especially for variant "H" the algorithms find for all instance groups except of
the trivial group G1 improvements in over half of the instances compared to the best
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Figure 6.4: Comparison of three different β-values for the beam search approach for
unfiltered instances and exact demands.

solution by the algorithm of Dusberger and Raidl. Therefore, our algorithm can really be
used to improve the solution quality, especially but not only when setup costs are used.

Table 6.6 lists the results if we enforce exact demands. Note again that the ILP is more
restricted than the other algorithms when we enforce exact demands. The results show
similar properties, although not as many solutions could get improved as with no exact
demands.

To compare the algorithms statistically we applied a Wilcoxon signed-rank test for each
pair of algorithms grouping again all instances of each instance groups with both exact
and not exact demands together. The ILP is significantly better than the greedy, PILOT,
and the hybrid for the instance groups G1 to G6 and compared to the beam search it is
significantly better on instance groups G2 to G5. On the other hand for instance groups
G8 to G10 the greedy and the hybrid are significantly better than ILP, on instance group
G7 to G9 the pilot is significantly better than the ILP and finally the beam search is
significantly better than the ILP on instance group G7.

The greedy is significantly worse than the pilot on all instance groups except G10 and
significantly worse than the beam search on instance groups G1 to G7. Compared to
the hybrid it is significantly worse on the instance groups G2 and G5 to G10. When we
compare the PILOT approach with the beam search approach we get that the PILOT is
significantly better for instance group G9 and significantly worse on instance groups G2
to G7. Furthermore, the PILOT and the beam search approach are significantly better
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Table 6.5: Comparing all five approaches without filter and no exact demands

ILP Greedy PILOT Beam Search Hybrid

G V # f. obj. i. t(s) f. obj. i. t(s) f. obj. i. t(s) f. obj. i. t(s) f. obj. i. t(s)

1 N 73 73 1.000 0 < 1 73 1.008 0 < 1 73 1.000 0 < 1 73 1.000 0 < 1 73 1.008 0 < 1
2 N 31 31 1.000 0 < 1 31 1.027 0 < 1 31 1.000 0 < 1 31 1.002 0 < 1 31 1.027 0 < 1
3 N 14 14 1.000 0 < 1 14 1.049 0 < 1 14 1.000 0 1 14 1.001 0 2 14 1.049 0 < 1
4 N 12 12 0.999 1 < 1 12 1.111 0 < 1 12 1.054 1 6 12 1.009 1 23 12 1.111 0 < 1
5 N 11 11 0.997 3 < 1 11 1.077 0 < 1 11 0.999 2 16 11 1.004 2 11 11 1.077 0 < 1
6 N 10 10 0.997 4 2 10 1.077 0 1 10 1.023 0 123 10 1.025 1 229 10 1.065 0 1
7 N 14 14 0.989 8 17 14 1.033 0 4 14 1.007 3 155 14 1.012 2 247 14 1.026 0 4
8 N 9 9 0.981 5 72 9 1.025 0 12 8 1.001 1 345 8 1.005 0 528 9 1.024 0 13
9 N 9 8 1.008 4 500 8 1.079 0 20 8 1.041 0 1204 8 1.083 0 620 9 1.049 0 20

10 N 9 9 1.011 2 1116 9 1.035 0 46 7 1.001 0 2164 9 1.029 0 1491 9 1.002 0 47
1 M 71 71 0.997 2 < 1 71 1.004 2 < 1 71 0.997 2 < 1 71 0.997 2 < 1 71 1.004 2 < 1
2 M 35 35 0.952 10 < 1 35 0.994 6 < 1 35 0.960 9 < 1 35 0.952 10 < 1 35 0.989 6 < 1
3 M 12 12 0.954 7 < 1 12 0.981 5 < 1 12 0.955 7 < 1 12 0.962 6 1 12 0.977 5 < 1
4 M 12 12 0.962 8 < 1 12 1.029 1 < 1 12 0.964 7 2 12 0.969 7 14 12 1.042 0 < 1
5 M 12 12 0.973 6 14 12 1.071 2 < 1 12 0.985 5 9 12 0.973 6 22 12 1.044 2 < 1
6 M 10 10 0.979 4 1843 10 1.044 4 1 10 0.985 4 59 10 0.983 4 181 10 1.017 4 1
7 M 18 18 1.001 7 3600 18 0.993 9 5 18 0.981 13 85 17 0.973 13 373 18 0.984 11 5
8 M 8 8 1.075 2 3600 8 1.014 3 13 8 0.998 3 264 7 0.996 2 553 8 0.983 4 12
9 M 12 11 1.088 1 3600 11 1.066 2 20 12 1.002 3 489 11 0.998 3 876 12 0.988 6 19

10 M 2 1 1.375 0 1859 2 1.062 0 50 2 1.046 0 897 2 1.031 0 1572 2 1.046 0 52
1 H 72 72 0.978 4 < 1 72 0.978 4 < 1 72 0.978 4 < 1 72 0.978 4 < 1 72 0.978 4 < 1
2 H 32 32 0.835 18 < 1 32 0.858 16 < 1 32 0.841 18 < 1 32 0.835 18 < 1 32 0.856 16 < 1
3 H 17 17 0.787 13 < 1 17 0.825 11 < 1 17 0.793 13 < 1 17 0.792 13 1 17 0.850 10 < 1
4 H 12 12 0.874 9 1 12 0.933 5 < 1 12 0.922 6 2 12 0.912 7 9 12 0.932 5 < 1
5 H 9 9 0.832 7 670 9 0.860 7 < 1 9 0.842 7 7 9 0.835 7 25 9 0.860 7 < 1
6 H 13 13 0.815 11 3600 13 0.862 9 1 13 0.832 10 44 13 0.825 10 239 13 0.866 9 1
7 H 15 15 0.865 12 3600 15 0.907 10 5 15 0.878 10 51 15 0.840 12 285 15 0.911 10 5
8 H 12 11 0.971 5 3600 12 0.968 5 15 12 0.883 10 188 9 0.855 8 718 12 0.904 9 16
9 H 8 7 1.075 1 3600 7 0.915 6 22 7 0.868 7 395 5 0.839 5 1799 7 0.837 7 22

10 H 2 1 1.131 0 1863 2 0.953 2 58 2 0.941 2 854 1 0.911 1 2974 2 0.893 2 60
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Table 6.6: Comparing all five approaches without filter and exact demands

ILP Greedy PILOT Beam Search Hybrid

G V # f. obj. i. t(s) f. obj. i. t(s) f. obj. i. t(s) f. obj. i. t(s) f. obj. i. t(s)

1 N 73 73 1.000 0 < 1 73 1.008 0 < 1 73 1.000 0 < 1 73 1.000 0 < 1 73 1.008 0 < 1
2 N 31 31 1.000 0 < 1 31 1.027 0 < 1 31 1.000 0 < 1 31 1.002 0 < 1 31 1.027 0 < 1
3 N 14 14 1.000 0 < 1 14 1.049 0 < 1 14 1.000 0 1 14 1.001 0 5 14 1.049 0 < 1
4 N 12 12 0.999 1 < 1 12 1.111 0 < 1 12 1.054 1 6 12 1.009 1 54 12 1.111 0 < 1
5 N 11 11 0.997 3 < 1 11 1.077 0 < 1 11 0.999 2 15 11 1.004 2 27 11 1.077 0 < 1
6 N 10 10 0.997 4 3 10 1.077 0 1 10 1.023 0 124 8 1.021 1 356 10 1.065 0 1
7 N 14 14 0.989 8 22 14 1.033 0 4 14 1.007 3 157 14 1.012 2 599 14 1.026 0 5
8 N 9 9 0.996 3 951 9 1.025 0 14 8 1.001 1 337 7 1.003 0 858 9 1.024 0 14
9 N 9 7 1.000 3 3600 8 1.079 0 22 8 1.041 0 1218 7 1.079 0 880 9 1.049 0 21

10 N 9 9 1.131 1 3600 9 1.035 0 49 7 1.001 0 2278 8 1.025 0 2387 9 1.002 0 50
1 M 71 71 1.000 0 < 1 71 1.009 0 < 1 71 1.002 0 < 1 71 1.000 0 < 1 71 1.009 0 < 1
2 M 35 35 0.999 1 < 1 35 1.033 0 < 1 35 1.014 1 < 1 35 0.999 1 < 1 35 1.018 0 < 1
3 M 12 12 0.985 4 < 1 12 1.034 0 < 1 12 1.026 0 < 1 12 0.992 3 2 12 1.030 0 < 1
4 M 12 12 0.991 4 1 12 1.030 0 < 1 12 1.001 3 2 12 0.993 3 22 12 1.030 0 < 1
5 M 12 12 0.997 2 6 12 1.075 0 < 1 12 1.010 1 10 12 0.999 2 38 12 1.021 2 < 1
6 M 10 10 0.992 3 52 10 1.042 3 1 10 1.017 3 64 9 0.991 3 245 10 1.014 4 1
7 M 18 17 1.090 4 3600 18 1.017 7 5 18 0.997 9 92 17 0.982 11 599 18 0.998 10 6
8 M 8 6 1.219 0 3600 8 1.038 3 14 8 1.008 3 296 6 1.009 1 842 8 0.987 4 13
9 M 12 11 1.457 0 3600 11 1.081 1 21 11 1.013 2 513 9 1.001 3 1436 12 0.991 5 20

10 M 2 2 1.846 0 3600 2 1.108 0 53 2 1.092 0 1142 2 1.077 0 2080 2 1.031 0 47
1 H 72 72 1.000 0 < 1 72 1.012 0 < 1 72 1.009 0 < 1 72 1.001 0 < 1 72 1.012 0 < 1
2 H 32 32 1.000 1 < 1 32 1.007 1 < 1 32 1.020 1 < 1 32 1.001 1 < 1 32 0.978 3 < 1
3 H 17 17 0.966 4 < 1 17 1.017 2 < 1 17 1.028 2 < 1 17 0.923 6 3 17 1.017 2 < 1
4 H 12 12 0.977 3 10 12 1.016 3 < 1 12 1.010 2 2 12 0.978 3 25 12 0.997 3 < 1
5 H 9 9 0.998 3 1197 9 1.034 0 < 1 9 1.056 0 7 9 0.998 3 50 9 1.006 0 < 1
6 H 13 13 1.042 3 2505 13 0.977 4 1 13 0.991 3 49 13 0.935 6 842 13 0.964 5 1
7 H 15 15 1.192 1 3600 15 1.003 5 5 15 0.999 6 77 14 0.961 7 525 15 0.981 8 6
8 H 12 10 1.716 0 3600 12 1.123 1 19 12 1.067 2 217 9 0.988 4 915 12 0.976 4 18
9 H 8 7 1.981 0 3600 7 1.060 0 25 7 1.050 0 486 4 0.977 2 2075 8 0.960 5 24

10 H 2 1 1.742 0 3600 2 1.106 0 57 2 1.060 0 1061 2 1.005 0 2804 2 0.964 1 57
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Table 6.7: Instance properties of the instance set

Instance Sheet Types Element Types Total Demand

1 1 30 153
2 1 10 59
3 1 20 132
4 1 15 56
5 1 7 36
6 1 64 278
7 3 21 8511
8 2 10 6660
9 3 60 86

10 1 176 522
11 1 50 2371
12 4 5 56
13 1 10 2000
14 1 41 130
15 1 97 1224
16 1 39 118
17 1 60 710
18 3 24 350
19 1 18 19
20 1 26 79

than the hybrid approach on instance groups G1 to G7 and significantly worse on the
groups G9 and G10.

As we can see all algorithms have their advantages and disadvantages depending on the
instance sizes compared to the others. For the smaller instances the ILP performs the
best and the PILOT and beam search perform better than the greedy and hybrid. On
the other hand for the large instances the fast greedy and hybrid approaches beat the
other approaches.

6.3 Evaluating the Performance of the Hybrid
Neighborhood

In this section we want to compare how adding the hybrid neighborhood as explained
at the end of Section 5.8 changes the performance of the algorithm by Dusberger and
Raidl. Since the set of 192 instances for the K2DCSPVSC is diverse we don’t group them
together but select 20 representative instances on which we compare the two algorithm
variants. Table 6.7 shows the properties of those instances.
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Since the algorithm by Dusberger and Raidl only considers exact demands, we also only
allow exact demands, which has to be considered in the hybrid neighborhood. Since
the base algorithm by Dusberger and Raidl is a randomized algorithm we run all our
tests 30 times. Each run has a running time limit of one hour which is also always fully
used, since time is the only termination criterion. Since the neighborhood should be
fast, we use again filters to only keep at most the best X patterns during the execution.
We tested the algorithm for different filters with X = 500, X = 2000, X = 10000, and
X =∞.

Table 6.8 shows the results for the instances 1 to 10 and table 6.8 for the instances 11
to 20. The column "I" is the instance number, "V" the variant and "#" the number of
runs. Every further column represents the average objective over all runs for the different
algorithm settings.

As we can see the original algorithm works quite well for the variant "N" without setup
costs. Although for the other two variants, including the hybrid neighborhood often leads
to better solutions. To verify that we apply a Wilcoxon signed-rank test on all pairs of
algorithm settings for each variant. With that we could verify that the original algorithm
without a hybrid neighborhood performs significantly better than all other algorithm
variants for variant "N", i.e. with no setup costs. On the other hand for variant "H" all
other algorithm variants perform significantly better than the original and for variant "M"
there is no significant difference. Furthermore, the different X values have no significant
differences.
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Table 6.8: Performance of the neighborhood structures of the hybrid approach with
different filters compared to original algorithm on instances 1 to 10

I V # no hybrid |P| ≤ 500 |P| ≤ 2000 |P| ≤ 10000 |P| <∞

1 N 30 44.98 44.98 44.98 44.98 44.98
2 N 30 19.98 19.99 19.99 19.99 19.99
3 N 30 38.99 38.99 38.99 38.99 38.99
4 N 30 22.85 22.86 22.86 22.86 22.86
5 N 30 7.97 7.97 7.97 7.97 7.97
6 N 30 80.63 81.93 81.93 81.93 81.93
7 N 30 544.38 547.85 548.05 548.16 547.91
8 N 30 184.56 185.18 185.17 185.06 185.20
9 N 30 16.67 17.38 17.38 17.40 17.40

10 N 30 64.00 65.26 65.42 65.39 65.19
1 M 30 29.50 29.00 29.00 29.00 29.00
2 M 30 13.99 13.99 13.99 13.99 13.99
3 M 30 25.73 25.41 25.33 25.29 25.21
4 M 30 15.44 16.08 16.13 16.10 16.18
5 M 30 5.49 5.49 5.49 5.49 5.49
6 M 30 58.26 60.45 60.27 60.87 60.95
7 M 30 286.65 283.09 283.50 281.77 282.95
8 M 30 98.96 98.93 99.03 98.83 98.75
9 M 30 15.17 15.07 15.14 15.14 15.14

10 M 30 48.49 48.36 48.41 48.44 48.34
1 H 30 14.60 13.65 13.65 13.65 13.65
2 H 30 8.54 7.04 7.10 7.04 7.04
3 H 30 11.50 11.50 11.50 11.50 11.50
4 H 30 7.99 8.15 8.15 8.15 8.03
5 H 30 3.25 3.25 3.25 3.25 3.25
6 H 30 28.91 27.74 27.66 27.97 27.62
7 H 30 40.55 38.50 38.65 38.67 38.63
8 H 30 16.14 15.52 15.57 15.52 15.53
9 H 30 13.24 13.26 13.26 13.26 13.25

10 H 30 29.01 29.03 28.96 28.95 28.87
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Table 6.9: Performance of the neighborhood structures of the hybrid approach with
different filters compared to original algorithm on instances 11 to 20

I V # no hybrid |P| ≤ 500 |P| ≤ 2000 |P| ≤ 10000 |P| <∞

11 N 30 173.26 180.64 181.34 180.88 180.35
12 N 30 191.39 193.99 193.93 193.99 193.96
13 N 30 5.40 5.41 5.41 5.42 5.41
14 N 30 4.59 4.73 4.73 4.72 4.72
15 N 30 134.39 137.56 137.66 137.69 137.56
16 N 30 13.93 13.95 13.95 13.95 13.95
17 N 30 77.98 81.03 80.97 81.00 80.90
18 N 30 73.74 74.03 74.05 74.04 74.04
19 N 30 5.60 5.74 5.80 5.80 5.74
20 N 30 62.77 62.77 62.77 62.77 62.77
11 M 30 101.73 101.54 101.36 101.66 101.34
12 M 30 100.28 100.01 100.13 100.06 99.88
13 M 30 4.76 4.76 4.76 4.75 4.76
14 M 30 4.06 4.36 4.36 4.36 4.34
15 M 30 83.06 82.36 82.33 82.29 82.61
16 M 30 10.98 10.94 10.96 10.96 10.96
17 M 30 48.57 48.17 48.49 48.25 47.97
18 M 30 43.72 43.48 43.50 43.41 43.56
19 M 30 5.07 5.11 5.11 5.11 5.04
20 M 30 41.38 41.40 41.43 41.38 41.40
11 H 30 23.86 22.03 21.83 21.72 22.25
12 H 30 17.08 14.71 14.90 14.93 14.77
13 H 30 4.08 4.08 4.08 4.08 4.08
14 H 30 3.84 4.04 3.97 4.04 4.04
15 H 30 27.62 26.71 26.63 26.52 26.50
16 H 30 7.55 7.43 7.39 7.42 7.43
17 H 30 15.39 14.92 15.09 14.94 15.14
18 H 30 14.55 13.01 12.99 13.01 13.07
19 H 30 4.74 4.61 4.91 4.88 4.71
20 H 30 22.20 22.20 22.14 22.14 22.26
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CHAPTER 7
Conclusion

At the beginning of this thesis we explored the different types of cutting stock problems
using the typology by Dyckhoff [Dyc90] and the extension of it by Wäscher et al [WHS07].
We presented some basic problems and also some variants of those, especially considering
pattern setup costs. Despite the diversity of the different cutting stock problems we
formulated a general problem GCSP which covers most of the previously presented
problem variants.

Based on this GCSP we came up with a set covering problem CSSCP which receives as
input a set of patterns and tries to find a solution for the GCSP which only uses a best
subset of these patterns. In this way we omit the pattern construction part of the GCSP,
which may be done with any problem specific solver for the underlying cutting stock
problem, and only focus on the pattern selection part. We also always consider problem
variants with exact demands compared to allowing overproduction.

To solve the set cover problem we propose five different approaches. The first one is an
integer linear program which can solve the problem to optimality, although the running
time increases exponentially for larger instances. Furthermore, we developed a greedy
heuristic which rates different patterns based on the sum of area ratings of all elements
on the pattern whose demand is not yet satisfied divided through the pattern costs. A
sophisticated algorithm was developed for calculating the optimal amount for a pattern
as fast as possible. We then used the greedy approach to extend it to a PILOT method
which executes the greedy algorithm to rate an extension. Moreover, we used the greedy
rating of patterns in a beam search which stores not only the best, but the best β partial
solutions in each iteration. Last but not least we developed a hybrid method which uses
the greedy approach in combination with a problem specific construction method which
helps to improve the greedy if there are no suiting patterns left in the given instance
pattern set. Note that the hybrid does not solve the CSSCP formally anymore, since it
is able to construct new patterns which were not in the pattern set. Nevertheless, it is
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7. Conclusion

still a valuable extension to the other algorithms, especially in practice since it is fast
and often can find good solutions.

To test and apply our algorithms we presented the K-staged two-dimensional cutting
stock problem with variable sheet size and pattern setup costs (K2DCSPVSC) which is a
problem occurring in real world applications. We presented a sophisticated algorithm
by Dusberger and Raidl [DR14, DR15, DR17] based on variable neighborhood search in
combination with ruin-and-recreate based very large neighborhoods. They developed
different ruin methods and many construction methods based on different greedy criteria
but also one based on dynamic programming. We could then use this approach to
generate pattern sets for different real world instances of the K2DCSPVSC which led to
a set of testing instances for the CSSCP and its variant with exact demands.

Finally, we tested our algorithms on those generated instances. We applied all five
algorithms to all instances and optimized the parameters, especially the β parameters
for the PILOT and the beam search, by testing different values and applying a Wilcoxon
signed-rank test for identifying significant differences. We then compared all five algo-
rithms on different instances, grouped by their pattern set size. Again, we applied a
Wilcoxon signed-rank test to identify significant differences. The algorithms perform
differently depending on the instance sizes. For the small instances the ILP is significantly
better than the others and the PILOT and beam search are significantly better than the
greedy and the hybrid. On the other hand for the larger instances the greedy and the
hybrid are significantly better than the other approaches. Especially if the pattern setup
costs are high compared to the other costs the algorithms were able to improve over 50%
of the interesting instances, i.e. the instances consisting of at least 10 patterns.

Last but not least we also tested the effects of incorporating the hybrid method as an
own neighborhood search into the variable neighborhood search by Dusberger and Raidl.
If there are no pattern setup costs including the new neighborhood leads to significantly
worse solutions, since the neighborhood needs a lot of time and therefore reducing the
amount of iterations which can be done within the time limit. On the other hand if the
setup costs are high compared to the other costs the hybrid neighborhood leads to a
significant overall improvement of the solutions.

For future work it would be interesting to apply our algorithms also to other cutting stock
problems and to find out if it is also possible to improve algorithms for other problems.
Furthermore, it would be interesting to develop improvement based or population based
metaheuristics for the set covering problem and compare them with our approaches.
Another idea would be to find good methods for producing a diverse set of patterns. In
this thesis we used an algorithm by Dusberger and Raidl which was optimized for finding
an as good solution as possible, but finding a diverse set of good patterns may lead to
completely different algorithms.
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