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ABSTRACT: Reinforced concrete hinges, subjected to eccentric compression, are failing in a ductile 
fashion (Schlappal et al. 2017). Three-dimensional Finite Element simulations are prime candidates for a 
more detailed analysis of this interesting structural behavior. Such nonlinear simulations, however, typi-
cally require pocedures for updating of the underlying models. They involve fitting of input parameters 
such that the output of the simulations agree with experimental measurements (Kalliauer et al. 2017). In 
the present contribution, it is investigated to which extent fitting procedures, involving time-consuming 
nonlinear three-dimensional Finite Element simulations, can be avoided. Therefore, input parameters are 
identified by combining (i) results from destructive and nondestructive compression tests on plain con-
crete specimens, (ii) results from centric and eccentric compression tests on concrete hinges subjected 
to serviceability loads, (iii) a multiscale model for tensile failure of concrete, and (iv) linear-elastic two-
dimensional Finite Element simulations. Parameter identification aims of (i) quantifying the influence of 
damage of concrete (resulting from restrained shrinkage prior to structural testing) on the elastic stiffness, 
the tensile strength, and the fracture energy, and of (ii) determination of the characteristic triaxiality of 
the compressive stress states, prevailing in the neck region, in order to ensure modeling of the triaxial 
compressive strength of concrete in accordance with regulations of Eurocode 2. After parameter identifi-
cation, a nonlinear three-dimensional Finite Element simulation of the bearing capacity tests by Schlap-
pal et al. (2017) is carried out. The obtained numerical results agree well with experimental observations. 
This underlines the usefulness of the presented parameter identification strategy.

2010, Schacht & Marx 2015, Morgenthal & Olney 
2016) and as segment-to-segment interfaces of seg-
mented linings in mechanized tunnelling (Janßen 
1983, Hordijk et al. 1996, De Waal 2000, Blom 
2002, Maidl et al. 2012, Jusoh et al. 2015).

Pioneering design guidelines for concrete hinges 
were developed in the 1960s by Leonhardt and 
Reimann (1965). More recently, they were improved 
in order to be applicable within the presently used 
semi-probabilistic safety concept (Marx & Schacht 
2010a, Marx & Schacht 2010b, Marx & Schacht 
2010c, Schacht & Marx 2010). Still, it is noteworthy 
that the original guidelines refer to Serviceability-
Limit-States rather than to Ultimate-Limit-States. 
This was the motivation to carry out experiments 
(Schlappal et al. 2017) and to re-analyze them by means 
of Finite Element simulations (Kalliauer et al. 2017). 
These simulations were based on default input 
parameters. The latter were derived from the uniax-
ial compressive strength and from Young’s modulus, 

1 INTRODUCTION

Concrete hinges were invented by Freyssinet in 
the first half  of the 20th century (Freyssinet 1923, 
Freyssinet 1954). They represent necks of mono-
lithically produced reinforced concrete structures 
(Marx & Schacht 2010a, Schacht & Marx 2010). 
In order to allow these necks to act as structural 
hinges, their bending stiffness must be significantly 
smaller than that of the connected reinforced con-
crete parts. Therefore, only a few pairs of inclined 
steel bars run across the center of the neck, which is 
their crossover point. In addition, as part of the con-
cept, concrete hinges may exhibit bending-induced 
tensile cracking under regular service loads (Leon-
hardt & Reimann 1965, Leonhardt 1986, Marx & 
Schacht 2010a, Marx & Schacht 2010b, Marx & 
Schacht 2010c). Concrete hinges are used as sup-
ports in integral bridge construction (Sallenbach 
1967, Marx & Schacht 2010a, Schacht & Marx 
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measured on plane concrete specimens 28 days after 
their production. Corresponding simulation results 
overestimated the load bearing capacity of con-
crete hinges by 80%. This resulted in the need for a 
model updating procedure, involving the fitting of 
input parameters such that the output from simula-
tions agreed with experimental measurements. The 
number of fitting parameters could be reduced 
significantly by involving a recently developed mul-
tiscale model for tensile failure of plain concrete 
(Hlobil et al. 2017).

The aim of the present contribution is to check 
to which extent a thorough analysis of experiments, 
carried out on plane concrete prisms and on rein-
forced concrete hinges, allows for identification of  
material properties of concrete that yield satisfac-
tory Finite Element simulation results without the 
need of a fitting procedure on the level of nonlinear 
three-dimensional structural analyses. To this end, 
the contribution is structured as follows. Section 2 
contains a collection of experimental data on plain 
concrete prisms and on concrete hinges subjected 
to centric and eccentric compression. In Section 3, 
a thorough analysis of the experimental data is car-
ried out in order to quantify input parameters for 
subsequent Finite Element simulations. Section 4 
is devoted to the Finite Element simulation of the 
bearing capacity of concrete hinges subjected to 
eccentric compression. Conclusions drawn from 
this study are presented in Section 5.

2 EXPERIMENTAL DATA

Schlappal et al. (2017) carried out compression 
experiments on plain concrete specimens and rein-
forced concrete hinges.

2.1 Properties of reinforced concrete hinges

The shape of the tested concrete hinges and the 
arrangement of the steel reinforcement (Fig.  1) 
were designed in accordance with guidelines by 

Leonhardt and Reimann (1965). The reinforce-
ment ratio amounted to

ρ = =A
A

sA 1 3. %3 ,  (1)

where As and A = 7.5 cm × 30 cm = 225 cm2, respec-
tively, denote the cross-sectional area, occupied 
by steel and the reinforced neck (Fig. 1). Young’s 
modulus of the structural steel amounted to (Brit-
ish Standards Institution and CEN European 
Committee for Standardization 2015b)

EsE = 210 GPa.  (2)

To avoid that the concrete hinges, subjected to 
compressive line loads, will crush locally in the 
immediate vicinity of the load application system, 
steel plates were welded onto the top and bottom 
reinforcement cages before casting (Fig. 1). Three 
nominally identical concrete hinges were tested, 
one after the other.

In order to quantify structural creep of concrete 
hinges, they were subjected, for four hours each, 
to centric compression, amounting to 200 kN. The 
changes of the opening of the lateral notches were 
measured by six inductive displacement sensors 
(Schlappal et al. 2017). Test results have indicated 
that the experiments could be reproduced satisfac-
tory, see the thick solid lines in Fig. 2 for the creep 
strain evolution under sustained loading, normal-
ized with respect to the creep strain reached at the 
end of the loading process.

In order to quantify bending-induced tensile 
cracking, each of the three concrete hinges were 
subjected to three consecutive eccentric compres-
sion tests, using line loads, incrementally increased 
by 25 kN up to 200 kN. The three tests for each spec-
imen referred to three different load eccentricities:

e = .{ }mm mm mm20 22 24, mm, mm22 24  (3)

After each load increment, the tests were inter-
rupted for 10 seconds, in order to take images of the 

Figure 1. Formwork drawing of the analyzed concrete 
hinges; after (Schlappal et al. 2017).

Figure  2. Evolution of creep deformations under sus-
tained loading, normalized by the averaged deformation at 
the end of the loading process; after (Schlappal et al. 2017).
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front-side and the back-side notches, using cameras 
of a Digital Image Correlation system. This way, 
the crack length could be determined as a function 
of the eccentricity and the load level, see Fig. 3.

In order to quantify the bearing capacity of the 
concrete hinges, they were subjected to eccentric 
compression with an eccentricity of e  =  25  mm. 
Ultimate load levels amounted to 654 kN, 695 kN 
and 756 kN, see Fig. 4.

2.2 Properties of plain concrete specimens

The cube compressive strength, fc,cube, and the 
Young’s modulus, Ec, were determined 28  days 
after production, following the Austrian standards 
for testing of concrete (Austrian Standards Insti-
tute 2010):

f Ec cff ube c, .EcE =E 34 75 GPa.  (4)

As for characterization of creep, concrete prisms 
were subjected, for four hours each, to centric com-
pression, equal to nearly 20% of the short-term 
uniaxial compressive strength. Five tests on nomi-
nally identical specimens were carried out. Three 

tests delivered nearly the same creep response, 
bounded by the results from the other two tests. 
The thin solid lines in Fig. 2 refer to the evolution 
of the creep strains under sustained loading, nor-
malized with respect to the creep strain reached 
end the end of the loading process.

3 INPUT PARAMETERS FOR 
STRUCTURAL SIMULATIONS

Reinforced concrete hinges are prone to develop 
shrinkage-induced damage in the neck region 
(Leonhardt and Reimann 1965), reducing the elas-
tic stiffness, the tensile strength, and the fracture 
energy of concrete. In addition, concrete hinges are 
known to exhibit triaxial compressive stress states 
in the neck region. This calls for realistic modeling 
of the triaxial compressive strength of concrete.

As for material modeling of concrete, the 
“CC3DNonLinCementitious” model (Červenka 
and Papanikolaou 2008) of the Finite Element 
software “Atena Science” (Červenka Consulting 
et al. 2016) was used. It is based on a Menétrey–
Willam failure surface (Menétrey and Willam 
1995). Corresponding input values for Finite Ele-
ment simulations of the bearing capacity tests 
(Fig. 4) requires identification of input values for 
the mentioned concrete model.

3.1 Identification of the elastic stiffness 
of damaged concrete

On average the plain concrete prisms exhibited 
a creep activity which was by 12.7% larger than 
that of the reinforce concrete hinges (Fig. 2). This 
experimental observation will be used for identifi-
cation of the damaged elastic stiffness of concrete 
in the neck region of the concrete hinges. It is based 
on considerations regarding stress-concentration, 
see Ross (1958) for a similar approach.

Consider that (i) the plain concrete prisms were 
subjected to a compressive stress σ, and that (ii) the 
reinforced neck region is subjected to the same 
average stress, such that the compressive force F 
amounts to σ ⋅ A, where A denotes to total cross-
section of the neck of the concrete hinges. Decom-
posing A into the areas occupied by concrete, Ac, 
and the one by steel, As, delivers

Ac sA+AcA .  (5)

Introducing the average stress within the con-
crete, σc, and the steel, σs, respectively, and formu-
lating force equilibrium in loading direction yields

σ σ σA Aσσ Ac c s sA+Aσ c cA .  (6)

In order to establish a relation between σc and σs, 
firm bond between concrete and steel is assumed. 

Figure 3. Bending-induced cracking of concrete hinges 
under eccentric compression: crack length as a function 
of eccentricity and load level; after (Schlappal et al. 2017).

Figure  4. Rotation angles across the neck regions of 
three concrete hinges, as a function of eccentric load-
ing (e = 25 mm) up to the load-carrying capacity; after 
(Schlappal et al. 2017).
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This results in the following strain compatibility 
condition

ε εc sε εε .  (7)

Considering elastic deformations, the strains 
in Eq. (7) are linked to the stresses in Eq. (6) by 
means of Hooke’s law, such that Eq. (7) can be re-
written as

σ σcσσ
cd

s

sE Ecd s

= ,  (8)

where Ecd denotes the damaged stiffness of concrete 
in the neck region. Solving Eq. (8) for σs, inserting 
the resulting expression into Eq. (6), and solving the 
obtained expression for the stress ratio σ/σc delivers

σ
σ c

c s

cd

sAcc

A
Es

Ec

Ass

A
= +c .  (9)

Using Eqs. (1) and (5), Eq. (9) can be reformu-
lated as follows:

σ
σ

ρ ρ
c

s

cd

Es

Ec

= +( )ρρ− .  (10)

Eq. (10) underlines that the average stress in the 
neck region is by a factor of σ/σc larger than the 
average stress within the creeping concrete.

The experimental results of Fig. 2 are interpreted 
as follows: creeping of the reinforced concrete neck 
was smaller than in the plane concrete prisms, 
because the average stress level of the creeping con-
crete is by a factor of σ/σc smaller than the average 
stress of the reinforced neck region. This is the moti-
vation to set σ/σc in Eq. (10) equal to the experi-
mentally observed normalized creep strain ratio, 
amounting to 1.127, see Fig. 2. Solving the resulting 
expression for the stiffness of damaged concrete and 
specializing the results for Eqs. (1) and (2), delivers

E E
cdE sE=

−
=ρ

ρ1 1
19

. (−127 )ρ
. G5 Pa.  (11)

3.2 Identification of the crack density parameter

The elastic stiffness of undamaged concrete, see 
Eq. (4), and of damaged concrete, see Eq. (11) 
allows for estimation of Budiansky and O’Connel’s 
crack density parameter ω. To this end, concrete is 
considered to be damaged by parallel open cracks. 
Young’s modulus in the direction normal to the 
crack plane is estimated, using a multiscale model 
for damaged concrete, see (Pichler et  al. 2007, 
Hlobil et al. 2017), as

E EcdE c c+EcE ⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

−

1 16
3

2
1ω ( )vcv−1 2 .  (12)

Solving Eq. (12) for the damage variable ω 
and consideration of Eqs. (4) and (11) as well as 
the standard value of Poisson’s ratio of concrete, 
vc  =  0.20, see British Standards Institution and 
CEN European Committee for Standardization 
(2015a), delivers

ω = −
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=E
E ⎠⎠⎠

cE

cdE c

1 3
16

15
2( )v− c1 2

. %3 .  (13)

3.3 Identification of the damaged uniaxial tensile 
strength of concrete

Bounds of the damaged tensile strength of con-
crete can be determined, based on the experimen-
tal observation that tensile cracking of the concrete 
hinges starts between the compressive load levels

N ∈[ KN; KN],150 175  (14)

acting with an eccentricity of e  =  20  mm, see 
Fig. 3. The maximum tensile stress, max σt, result-
ing from the combined action of a normal force N 
and a bending moment M = Ne, was quantified by 
Schlappal et al. (2017), by means of results from 
linear-elastic plane-strain Finite Element analyses 
of the investigated concrete hinges:

max . . ( ) ,σ t
N
ab a b

7.2 77 2N − 00 6
2

 (15)

where ab denotes the cross-sectional area of the 
neck and a2b/6 stands for beam theory-related elas-
tic section modulus. Furthermore, 2.77 and 2.00 
are numerically determined stress increase factors 
relative to the stress levels according to beam theory. 
Specializing Eq. (15) for e  =  20  mm, a  =  75  mm, 
b = 300 mm, and for the two bounds of the normal 
force given in (14), delivers experimentally-derived 
bounds of the damaged tensile strength of concrete, 
amounting to

ftff dam, [ . ; . MPa].∈ 2 8. 7 3; 34a  (16)

A more precise estimate of the damaged tensile 
strength is determined by means of a multiscale 
analysis of tensile failure of concrete by Hlobil 
et al. (2017). This model is based on the following 
relation between the tensile strength of the undam-
aged and damaged material:

f f
tff dam

tff
, .

.=
1 1+ 223ω

 (17)
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The tensile strength of undamaged concrete, ft, 
is estimated by the following standard relation (fib 
2013)

f
f

tff
c cff ube= ⋅

( )⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
0 3

0 85 8fc cff ube −(
1

2 3

.
.

.,

/

MPa
MPa

MPa
 (18)

Specializing Eq. (18) for the value of fc,cube from 
Eq. (4), delivers

ftff = 3 5. M57 Pa.  (19)

Specializing Eq. (17) for Eqs. (13) and Eq. (19) 
yields

ftff dam, .= 3 2. 8 MPa.  (20)

Notably, Eq. (20) satisfies the corresponding 
bounds, see Eq. (16).

3.4 Identification of the fracture energy 
of damaged concrete

Atena science (Červenka et al. 2016) suggest the fol-
lowing value of the fracture energy for concrete with 
a cube compressive strength according to Eq. (4):

GfG = 147 2J/ .2m  (21)

Shrinkage-induced cracking reduces this value 
by an increment ΔGf. The latter is quantified on 
the basis of a smeared crack model as

ΔGfG d= ∫ σ dwσσ ,
w

0∫∫  (22)

where σ and w denote the cohesive stress and the 
smeared crack opening displacement, respectively. 
The relation between these two quantities is given 
by Hordijk (1991) as

σ =
⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎡

⎣
⎢
⎡⎡

⎢⎣⎣

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥ −

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

− ( )+

c+
⎛
⎝⎜
⎛⎛
⎝⎝

⎢
⎢
⎢⎢f ⋅ ⎨⎨⎨⎨⎨ ctff 1

3

2
w
w

w
w

w
w

c c⎠ ⎦⎦⎦ ⎝ w

c

exp

exee p ,( )⎫⎬⎫⎫
⎭⎭⎭
⎬⎬⎬⎬  (23)

with (Červenka et al. 2016)

c G fc fG tff1 23 6c2c 93 5 14c2c =.2 62c , c .ftffw  (24)

The smeared crack opening displacement wd, 
related to shrinkage-induced damage, is determined 
by specializing Eq. (23) for Eqs. (24), σ = ft,dam, and 
w = wd, and inserting Eqs. (19)–(21) into the resulting 
expression, followed by solving the latter for wd as:

wd = 2 6. μmμμ  (25)

Inserting of the functions of Eqs. (23)–(25) into 
Eq. (22) and consideration of Eqs. (19)–(21) yields

ΔGfG = 8 2. /893 .J m/  (26)

Subtracting ΔGf from Gf, see Eqs. (21) and (26), 
yields the value of the effective fracture energy of 
the damaged concrete as

G G GfdG f fG G−GfG =Δ 138 2. /1 .J m/  (27)

3.5 Identification of the stress triaxiality in the 
neck region

Concrete hinges exhibit triaxial compressive stress 
states in the neck region (Leonhardt & Reimann 
1965). In order to quantify a characteristic princi-
pal stress ratio, a linear-elastic plane-strain Finite 
Element simulation is carried out with an load 
eccentricity e amounting to 25 mm. The principal 
stress ratios are evaluated in the smallest cross-
section of  the neck. Averaging them in the region 
between the surface of  the root of  the compressed 
notch and a distance from that surface, amount-
ing to the maximum aggregate size of  16  mm, 
delivers the average principal stress ratio as

σ σ σ1 2σ σσ 3σ 1 00 0 45 0 30:σ 2σ . :00 . :45 . .30=  (28)

The stress ratios in Eq. (28) allow for calculating 
corresponding Haigh–Westergaard coordinates as 
(Menétrey & Willam 1995, Grassl & Jirásek 2006)

ξ σ σ ϑ =0σ ρσ ρ 0 8421 1ρ σσσσ ρσ ρσσ1σσ |521 |, . r842 ad,  (29)

where σ1 denotes the compressive principal normal 
stress in loading direction and ξ, ρ, and ϑ stand for 
the hydrostatic and deviatoric component of the 
characteristic stress state and for its Lode angle, 
respectively.

3.6 Eurocode-based description of the triaxial 
strength of concrete

The triaxial-to-uniaxial strength ratio of  concrete, 
F, is estimated on the basis of  recommendations 
for partially loaded areas according to Eurocode 
2-1-1 (British Standards Institution and CEN 
European Committee for Standardization 2015a), 
see also (Marx and Schacht 2010a, Marx and Sch-
acht 2010b, Marx and Schacht 2010c, Kalliauer 
et al. 2017). The strength ratio F depends on geo-
metric dimensions and reads as:

F AcA 1 0c/ ,A 0AcA  (30)

where Ac1 is equal to the thickness of the concrete 
hinge (40 cm) times three times the neck width, 3b1, 
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see (British Standards Institution and CEN Euro-
pean Committee for Standardization 2015a), and 
Ac0 denotes the loaded neck-area that is equal to the 
thickness of the neck (30 cm) times the neck width 
b1, see Fig.  5. Therefore, the triaxial-to-uniaxial 
compressive strength ratio of concrete amounts to

F b
b

= ⋅
⋅

=40 3
30

21bb

1bb
cm
cm

.  (31)

3.7 Identification of the slope of the 
Menétrey–Willam failure surface in the 
Haigh–Westergaard stress space

The Menétrey–Willam failure surface is defined as 
(Menétrey and Willam 1995, Červenka and Papan-
ikolaou 2008, Červenka and Červenka 2013)

F
f

m
f

r
cP

p

c cff ff3FF
2

3
2 6 3

0
ρ

ρ
ϑ ξ(ϑϑ

,( )ξ ρ ϑ,ξ ρξ
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠⎠⎠
⎞⎞=

′
+

′
+ −

ξ ⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =  (32)

where m and r(ϑ), respectively, are defined as

m
e

e
f f

f f
c tf ff f

c tf ff f
=

+ ′ff
3

1

2 2f ′σ

σ

,  (33)

and

r
H

( )
( )

cos ( )
)) σecos (

σecos (
= ( )eσ− (

( )eσ− (
4( 2 1−eσe
2( 2 1−eσe

2cos) 2

 (34)

with

H ( )e +4( 5 42) 2
σ) σϑcos .e+ 4−e2
σ+ 5ee σϑ  (35)

see also Fig. 6.
The initial value of the hardening/softening 

parameter c is given as cini = 1 (Červenka et al. 2016). 
The “eccentricity” eσ = 0.52 controls the shape of 
the failure surface in the deviatoric planes. The 
elastic limit stress under uniaxial compression, ′fcff ,  
increases—during strain hardening—from its initial 
value, fc0, up to the uniaxial compressive strength, 
fc. The uniaxial tensile strength of the Menétrey–
Willam failure surface, ′ftff ,  is an auxiliary value, 
because it is larger than the actual uniaxial tensile 
strength, ft. The latter is modeled by a Rankine 
criterion. The ratio of the auxiliary-toreal uniaxial 
tensile strength

λtλ t

t

ft

ft

= ′,  (36)

is another input parameter for Finite Element 
simulations with Atena science. In order to obtain 
a triaxial-to-uniaxial strength ratio F = 2, see Eqs. 
(31), for the characteristic triaxial compressive 
stress state defined in Eq. (28), the numerical value 
of λt must amount to

tλ = 8 9. ,9  (37)

see also Fig. 6.

4 STRUCTURAL SIMULATIONS BY 
MEANS OF THE FINITE ELEMENT 
METHOD

The bearing capacity tests described in Section  2 
are simulated by Atena science, the material model 

Figure  5. Application of regulations of Eurocode 2 
regarding partially loaded areas to concrete hinges; after 
(Kalliauer et al. 2017).

Figure 6. Representation of the Menétrey–Willam failure surface in the Haigh–Westergaard stress space (a) section con-
taining the hydrostatic axis (see abscissa), and (b) deviatoric plane; the blue graph represents (the projection of ) the stress 
path resulting from proportional increase of a triaxial compressive stress state with principal stress ratios given in Eq. (28).
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“CC3DNonLinCementitious”, and the previously 
derived input parameters. Default values are used for 
those input values that have not been discussed above.

The Finite Element mesh shown in Fig. 7, consists 
of 27 776 hexahedral elements with trilinear displace-
ment interpolation, 31 730 nodes, and 95 190 degrees 
of freedom. This mesh was the result of a conver-
gence study, documented in (Kalliauer 2016).

The numerical simulations reproduce the experi-
mentally observed behavior both qualitatively and 
quantitatively in a satisfactory fashion, and they 
provide insight into the post-peak softening behav-
ior of the concrete hinges, which was not quanti-
fied experimentally, see Fig. 8.

5 DISCUSSION AND CONCLUSIONS

The bearing capacity of reinforced concrete 
hinges, subjected to eccentric compression, was 
investigated by means of experiments and three-
dimensional Finite Element simulations. The 
required input parameters for nonlinear numerical 

simulations were identified a priori, by combin-
ing (i) results from destructive and nondestructive 
compression tests on plain concrete specimens, 
(ii) results from centric and eccentric compression 
tests on concrete hinges subjected to serviceability 
loads, (iii) a multiscale model for tensile failure of 
concrete, and (iv) linear-elastic plane-strain Finite 
Element simulations. In other words, identification 
of input parameters was carried out without fitting 
the results from nonlinear structural simulations to 
the experimentally observed behavior. Therefore, 
the described nonlinear three-dimensional numeri-
cal simulation represents a nontrivial quantitative 
test of the predictive capabilities of the developed 
Finite Element model. This test was passed success-
fully. Hence, the developed Finite Element model is 
validated. This is useful for the future development 
of nonlinear interface laws that are necessary pre-
requisites for the analysis of Ultimate Limit States 
of integral bridges and of segmented tunnel rings.
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Figure 7. Three-dimensional Finite Element mesh consisting of 27 776 hexahedral elements with a characteristic ele-
ment size of 1.25 mm in the neck region: (a) front view, (b) lateral view; exploiting double symmetry of the problem, 
only one fourth of the reinforced concrete hinge is discretized.

Figure  8. Behavior of concrete hinges subjected to 
eccentric compression (e  =  25  mm) up to their bearing 
capacity: comparison of experimental observations (see 
the blue graphs) with results from nonlinear three-dimen-
sional Finite Element simulations using Atena science, 
the material model “CC3DNonLinCementitious”, and 
the input parameters derived above.
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