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ABSTRACT: Reinforced concrete hinges, subjected to eccentric compression, are failing in a ductile
fashion (Schlappal et al. 2017). Three-dimensional Finite Element simulations are prime candidates for a
more detailed analysis of this interesting structural behavior. Such nonlinear simulations, however, typi-
cally require pocedures for updating of the underlying models. They involve fitting of input parameters
such that the output of the simulations agree with experimental measurements (Kalliauer et al. 2017). In
the present contribution, it is investigated to which extent fitting procedures, involving time-consuming
nonlinear three-dimensional Finite Element simulations, can be avoided. Therefore, input parameters are
identified by combining (i) results from destructive and nondestructive compression tests on plain con-
crete specimens, (ii) results from centric and eccentric compression tests on concrete hinges subjected
to serviceability loads, (iii) a multiscale model for tensile failure of concrete, and (iv) linear-elastic two-
dimensional Finite Element simulations. Parameter identification aims of (i) quantifying the influence of
damage of concrete (resulting from restrained shrinkage prior to structural testing) on the elastic stiffness,
the tensile strength, and the fracture energy, and of (ii) determination of the characteristic triaxiality of
the compressive stress states, prevailing in the neck region, in order to ensure modeling of the triaxial
compressive strength of concrete in accordance with regulations of Eurocode 2. After parameter identifi-
cation, a nonlinear three-dimensional Finite Element simulation of the bearing capacity tests by Schlap-
pal et al. (2017) is carried out. The obtained numerical results agree well with experimental observations.
This underlines the usefulness of the presented parameter identification strategy.

1 INTRODUCTION 2010, Schacht & Marx 2015, Morgenthal & Olney
2016) and as segment-to-segment interfaces of seg-
Concrete hinges were invented by Freyssinet in  mented linings in mechanized tunnelling (JanBen
the first half of the 20th century (Freyssinet 1923, 1983, Hordijk et al. 1996, De Waal 2000, Blom
Freyssinet 1954). They represent necks of mono- 2002, Maidl et al. 2012, Jusoh et al. 2015).
lithically produced reinforced concrete structures Pioneering design guidelines for concrete hinges
(Marx & Schacht 2010a, Schacht & Marx 2010).  were developed in the 1960s by Leonhardt and
In order to allow these necks to act as structural ~ Reimann (1965). More recently, they were improved
hinges, their bending stiffness must be significantly  in order to be applicable within the presently used
smaller than that of the connected reinforced con-  semi-probabilistic safety concept (Marx & Schacht
crete parts. Therefore, only a few pairs of inclined  2010a, Marx & Schacht 2010b, Marx & Schacht
steel bars run across the center of the neck, whichis ~ 2010c, Schacht & Marx 2010). Still, it is noteworthy
their crossover point. Inaddition, as part of thecon-  that the original guidelines refer to Serviceability-
cept, concrete hinges may exhibit bending-induced  Limit-States rather than to Ultimate-Limit-States.
tensile cracking under regular service loads (Leon-  This was the motivation to carry out experiments
hardt & Reimann 1965, Leonhardt 1986, Marx &  (Schlappaletal.2017)and tore-analyzethem bymeans
Schacht 2010a, Marx & Schacht 2010b, Marx &  of Finite Element simulations (Kalliauer et al. 2017).
Schacht 2010c). Concrete hinges are used as sup-  These simulations were based on default input
ports in integral bridge construction (Sallenbach  parameters. The latter were derived from the uniax-
1967, Marx & Schacht 2010a, Schacht & Marx  ial compressive strength and from Young’s modulus,
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measured on plane concrete specimens 28 days after
their production. Corresponding simulation results
overestimated the load bearing capacity of con-
crete hinges by 80%. This resulted in the need for a
model updating procedure, involving the fitting of
input parameters such that the output from simula-
tions agreed with experimental measurements. The
number of fitting parameters could be reduced
significantly by involving a recently developed mul-
tiscale model for tensile failure of plain concrete
(Hlobil et al. 2017).

The aim of the present contribution is to check
to which extent a thorough analysis of experiments,
carried out on plane concrete prisms and on rein-
forced concrete hinges, allows for identification of
material properties of concrete that yield satisfac-
tory Finite Element simulation results without the
need of a fitting procedure on the level of nonlinear
three-dimensional structural analyses. To this end,
the contribution is structured as follows. Section 2
contains a collection of experimental data on plain
concrete prisms and on concrete hinges subjected
to centric and eccentric compression. In Section 3,
a thorough analysis of the experimental data is car-
ried out in order to quantify input parameters for
subsequent Finite Element simulations. Section 4
is devoted to the Finite Element simulation of the
bearing capacity of concrete hinges subjected to
eccentric compression. Conclusions drawn from
this study are presented in Section 5.

2 EXPERIMENTAL DATA

Schlappal et al. (2017) carried out compression
experiments on plain concrete specimens and rein-
forced concrete hinges.

2.1  Properties of reinforced concrete hinges

The shape of the tested concrete hinges and the
arrangement of the steel reinforcement (Fig. 1)
were designed in accordance with guidelines by

front view side view

o~
T p—
N —_—— A e oo [ PN | JR Y | N R L I —
] \l [ | | i i U] !
bl [ I W I} T T T |
1 v | I n (1l 1 |
FoomThoof|lliocdlethooiooq
N N7 il nl 1
g v —> I e
~ T T T
iy o — i — -t — == — -]
- 1 R 1 1 i 0 in 1
=N I |
! . I\ 1 ! il ! 1) |
N B e T " MT T T T T m T T T
5@)%* H
875 750,875 | L5, 30 L5 ]
# 7 7 7
1 2 11 40 1
# A+ A /-
[ concrete [em)]

N steel plates

- — = reinforcement,

Figure . Formwork drawing of the analyzed concrete
hinges; after (Schlappal et al. 2017).

Leonhardt and Reimann (1965). The reinforce-
ment ratio amounted to

p:%:l.s%, (1)

where 4, and 4 =7.5 cm x 30 cm = 225 cm?, respec-
tively, denote the cross-sectional area, occupied
by steel and the reinforced neck (Fig. 1). Young’s
modulus of the structural steel amounted to (Brit-
ish Standards Institution and CEN European
Committee for Standardization 2015b)

E =210 GPa. @)

To avoid that the concrete hinges, subjected to
compressive line loads, will crush locally in the
immediate vicinity of the load application system,
steel plates were welded onto the top and bottom
reinforcement cages before casting (Fig. 1). Three
nominally identical concrete hinges were tested,
one after the other.

In order to quantify structural creep of concrete
hinges, they were subjected, for four hours each,
to centric compression, amounting to 200 kN. The
changes of the opening of the lateral notches were
measured by six inductive displacement sensors
(Schlappal et al. 2017). Test results have indicated
that the experiments could be reproduced satisfac-
tory, see the thick solid lines in Fig. 2 for the creep
strain evolution under sustained loading, normal-
ized with respect to the creep strain reached at the
end of the loading process.

In order to quantify bending-induced tensile
cracking, each of the three concrete hinges were
subjected to three consecutive eccentric compres-
sion tests, using line loads, incrementally increased
by 25 kN up to 200 kN. The three tests for each spec-
imen referred to three different load eccentricities:

e={20 mm, 22mm, 24 mm}. 3)

After each load increment, the tests were inter-
rupted for 10 seconds, in order to take images of the
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Figure 2. Evolution of creep deformations under sus-
tained loading, normalized by the averaged deformation at
the end of the loading process; after (Schlappal et al. 2017).
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Figure 3. Bending-induced cracking of concrete hinges
under eccentric compression: crack length as a function
of eccentricity and load level; after (Schlappal et al. 2017).
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Figure 4. Rotation angles across the neck regions of
three concrete hinges, as a function of eccentric load-
ing (e = 25 mm) up to the load-carrying capacity; after
(Schlappal et al. 2017).

front-side and the back-side notches, using cameras
of a Digital Image Correlation system. This way,
the crack length could be determined as a function
of the eccentricity and the load level, see Fig. 3.

In order to quantify the bearing capacity of the
concrete hinges, they were subjected to eccentric
compression with an eccentricity of e¢ = 25 mm.
Ultimate load levels amounted to 654 kN, 695 kN
and 756 kN, see Fig. 4.

2.2 Properties of plain concrete specimens

The cube compressive strength, f, .. and the
Young’s modulus, E, were determined 28 days
after production, following the Austrian standards
for testing of concrete (Austrian Standards Insti-
tute 2010):

foowe =5625MPa,  E, =34.75GPa. @)

As for characterization of creep, concrete prisms
were subjected, for four hours each, to centric com-
pression, equal to nearly 20% of the short-term
uniaxial compressive strength. Five tests on nomi-
nally identical specimens were carried out. Three
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tests delivered nearly the same creep response,
bounded by the results from the other two tests.
The thin solid lines in Fig. 2 refer to the evolution
of the creep strains under sustained loading, nor-
malized with respect to the creep strain reached
end the end of the loading process.

3 INPUT PARAMETERS FOR
STRUCTURAL SIMULATIONS

Reinforced concrete hinges are prone to develop
shrinkage-induced damage in the neck region
(Leonhardt and Reimann 1965), reducing the elas-
tic stiffness, the tensile strength, and the fracture
energy of concrete. In addition, concrete hinges are
known to exhibit triaxial compressive stress states
in the neck region. This calls for realistic modeling
of the triaxial compressive strength of concrete.

As for material modeling of concrete, the
“CC3DNonLinCementitious” model (Cervenka
and Papanikolaou 2008) of the Finite Element
software “Atena Science” (Cervenka Consulting
et al. 2016) was used. It is based on a Menétrey—
Willam failure surface (Menétrey and Willam
1995). Corresponding input values for Finite Ele-
ment simulations of the bearing capacity tests
(Fig. 4) requires identification of input values for
the mentioned concrete model.

3.1 Identification of the elastic stiffness
of damaged concrete

On average the plain concrete prisms exhibited
a creep activity which was by 12.7% larger than
that of the reinforce concrete hinges (Fig. 2). This
experimental observation will be used for identifi-
cation of the damaged elastic stiffness of concrete
in the neck region of the concrete hinges. It is based
on considerations regarding stress-concentration,
see Ross (1958) for a similar approach.

Consider that (i) the plain concrete prisms were
subjected to a compressive stress o, and that (ii) the
reinforced neck region is subjected to the same
average stress, such that the compressive force F
amounts to o - A, where 4 denotes to total cross-
section of the neck of the concrete hinges. Decom-
posing A into the areas occupied by concrete, 4,
and the one by steel, 4, delivers

A=A+ A, (5)
Introducing the average stress within the con-

crete, o,, and the steel, o, respectively, and formu-
lating force equilibrium in loading direction yields

O-A = O-uA(: + 0-.\ A.v' (6)

In order to establish a relation between o, and o,
firm bond between concrete and steel is assumed.



This results in the following strain compatibility
condition

E =€

c s (7)

Considering elastic deformations, the strains
in Eq. (7) are linked to the stresses in Eq. (6) by
means of Hooke’s law, such that Eq. (7) can be re-
written as

®)

where E , denotes the damaged stiffness of concrete
in the neck region. Solving Eq. (8) for ¢, inserting
the resulting expression into Eq. (6), and solving the
obtained expression for the stress ratio o/, delivers

A

c

A

E A
=

cd

(€

o
2

Using Eqgs. (1) and (5), Eq. (9) can be reformu-
lated as follows:

E
Z=(-pr+—p. (10)
o, E

cd

Eq. (10) underlines that the average stress in the
neck region is by a factor of o/o, larger than the
average stress within the creeping concrete.

The experimental results of Fig. 2 are interpreted
as follows: creeping of the reinforced concrete neck
was smaller than in the plane concrete prisms,
because the average stress level of the creeping con-
crete is by a factor of o/c, smaller than the average
stress of the reinforced neck region. This is the moti-
vation to set o/o, in Eq. (10) equal to the experi-
mentally observed normalized creep strain ratio,
amounting to 1.127, see Fig. 2. Solving the resulting
expression for the stiffness of damaged concrete and
specializing the results for Egs. (1) and (2), delivers

Ep

= 2P _19.5GPa.
1.127-(1- p)

(11

cd

3.2 Identification of the crack density parameter

The elastic stiffness of undamaged concrete, see
Eq. (4), and of damaged concrete, see Eq. (11)
allows for estimation of Budiansky and O’Connel’s
crack density parameter @. To this end, concrete is
considered to be damaged by parallel open cracks.
Young’s modulus in the direction normal to the
crack plane is estimated, using a multiscale model
for damaged concrete, see (Pichler et al. 2007,
Hlobil et al. 2017), as
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16w

E,=E, {1+—(17 2)

I

Solving Eq. (12) for the damage variable @
and consideration of Egs. (4) and (11) as well as
the standard value of Poisson’s ratio of concrete,
v. = 0.20, see British Standards Institution and
CEN European Committee for Standardization
(2015a), delivers

Jiet

3.3 Identification of the damaged uniaxial tensile
strength of concrete

(12)

3 153w
16(1-v2)

(13)

_\E

Bounds of the damaged tensile strength of con-
crete can be determined, based on the experimen-
tal observation that tensile cracking of the concrete
hinges starts between the compressive load levels
N e[150 KN; 175KN], (14)
acting with an eccentricity of e = 20 mm, see
Fig. 3. The maximum tensile stress, max o,, result-
ing from the combined action of a normal force N
and a bending moment M = Ne, was quantified by
Schlappal et al. (2017), by means of results from
linear-elastic plane-strain Finite Element analyses
of the investigated concrete hinges:

6(Ne)
2h

max o, = 277—b—200 (15)

where ab denotes the cross-sectional area of the
neck and &’b/6 stands for beam theory-related elas-
tic section modulus. Furthermore, 2.77 and 2.00
are numerically determined stress increase factors
relative to the stress levels according to beam theory.
Specializing Eq. (15) for e = 20 mm, ¢ = 75 mm,
b =300 mm, and for the two bounds of the normal
force given in (14), delivers experimentally-derived
bounds of the damaged tensile strength of concrete,
amounting to

J: om €[2.87 MPa; 3.34 MPa].

(16)
A more precise estimate of the damaged tensile
strength is determined by means of a multiscale
analysis of tensile failure of concrete by Hlobil
et al. (2017). This model is based on the following
relation between the tensile strength of the undam-
aged and damaged material:

A

f,,dam - m

(17



The tensile strength of undamaged concrete, f,,
is estimated by the following standard relation (fib
2013)

£ =03MP 085(/, 8 MPa) )" (18

A 1MPa ' )
Specializing Eq. (18) for the value of f, . from

Eq. (4), delivers

f,=3.57 MPa. (19)

Specializing Eq. (17) for Eqgs. (13) and Eq. (19)
yields

fl.dam = 328 MPa (20)
Notably, Eq. (20) satisfies the corresponding
bounds, see Eq. (16).

3.4 Identification of the fracture energy
of damaged concrete

Atena science (Cervenka et al. 2016) suggest the fol-
lowing value of the fracture energy for concrete with
a cube compressive strength according to Eq. (4):
G, =147 J/m”. (21
Shrinkage-induced cracking reduces this value
by an increment AG,. The latter is quantified on
the basis of a smeared crack model as
AG, = jo ‘ odw, 22)
where o and w denote the cohesive stress and the
smeared crack opening displacement, respectively.

The relation between these two quantities is given
by Hordijk (1991) as

w

w

a=f,-ﬂl+[ g]slexp[—cz—c

G

c

_i(l+ cf)exp(—cz)}, (23)
WC
with (Cervenka et al. 2016)
q=3 ¢=693 w,=514G,/f,. 24)

The smeared crack opening displacement w,,
related to shrinkage-induced damage, is determined
by specializing Eq. (23) for Egs. (24), o=f,,,,» and
w=w,, and inserting Eqgs. (19)+(21) into the resulting
expression, followed by solving the latter for w, as:

w,=2.6 4m (25)

693

Inserting of the functions of Egs. (23)—(25) into
Eq. (22) and consideration of Eqgs. (19)-(21) yields
AG, =8.8931/m>. (26)

Subtracting AG, from G, see Egs. (21) and (26),
yields the value of the effective fracture energy of
the damaged concrete as

G, =G, ~AG, =138.1]/m”. 27)

3.5 Identification of the stress triaxiality in the
neck region

Concrete hinges exhibit triaxial compressive stress
states in the neck region (Leonhardt & Reimann
1965). In order to quantify a characteristic princi-
pal stress ratio, a linear-elastic plane-strain Finite
Element simulation is carried out with an load
eccentricity e amounting to 25 mm. The principal
stress ratios are evaluated in the smallest cross-
section of the neck. Averaging them in the region
between the surface of the root of the compressed
notch and a distance from that surface, amount-
ing to the maximum aggregate size of 16 mm,
delivers the average principal stress ratio as
0,:.0,:0,=1.00:0.45:0.30. (28)

The stress ratios in Eq. (28) allow for calculating
corresponding Haigh—Westergaard coordinates as
(Menétrey & Willam 1995, Grassl & Jirasek 2006)
£=1010,, p=0521]0,], £#=0.842rad, (29)
where o, denotes the compressive principal normal
stress in loading direction and &, p, and 9 stand for
the hydrostatic and deviatoric component of the
characteristic stress state and for its Lode angle,
respectively.

3.6 Eurocode-based description of the triaxial
strength of concrete

The triaxial-to-uniaxial strength ratio of concrete,
F, is estimated on the basis of recommendations
for partially loaded areas according to Eurocode
2-1-1 (British Standards Institution and CEN
European Committee for Standardization 2015a),
see also (Marx and Schacht 2010a, Marx and Sch-
acht 2010b, Marx and Schacht 2010c, Kalliauer
et al. 2017). The strength ratio F depends on geo-
metric dimensions and reads as:

F=\A4,/4,,

where A, is equal to the thickness of the concrete
hinge (40 cm) times three times the neck width, 3,,,

(30)



see (British Standards Institution and CEN Euro-
pean Committee for Standardization 2015a), and
A, denotes the loaded neck-area that is equal to the
thickness of the neck (30 cm) times the neck width
b,, see Fig. 5. Therefore, the triaxial-to-uniaxial
compressive strength ratio of concrete amounts to

Fe 40cm-3 b, _9
30cm- b,

3.7 Identification of the slope of the
Menétrey—Willam failure surface in the
Haigh—Westergaard stress space

(31

The Menétrey—Willam failure surface is defined as
(Menétrey and Willam 1995, Cervenka and Papan-
ikolaou 2008, Cervenka and Cervenka 2013)

m(;p,zﬂ)%(fﬁ.,j +%(p“j?+%]—c=0, (32)

where m and (), respectively, are defined as

_ 3 [P 17

= s 33
e,+1  fIff (33)
S ) Aco

Figure 5. Application of regulations of Eurocode 2
regarding partially loaded areas to concrete hinges; after
(Kalliauer et al. 2017).

2

—— failure meridian
loading path

deviatoric stress p/f! [-]

8 6 4 2 0 2
hydrostatic stress £/ f. [-]
(a)

and
4(1-e2)cos? ##+(2¢, —1)?

()= ( ea)c057 (2Ze,-1) (34)
2(1-e2)cos 9+ (2e, 1) H

with

H = J4(1-¢2)cos” 9+ 5¢2 — 4e,. (35)

see also Fig. 6.

The initial value of the hardening/softening
parameter cis given as c,,,= 1 (Cervenka et al. 2016).
The “eccentricity” e, = 0.52 controls the shape of
the failure surface in the deviatoric planes. The
elastic limit stress under uniaxial compression, f,
increases—during strain hardening—from itsinitial
value, f,,, up to the uniaxial compressive strength,
/.. The uniaxial tensile strength of the Menétrey—
Willam failure surface, f’ is an auxiliary value,
because it is larger than the actual uniaxial tensile
strength, f,. The latter is modeled by a Rankine
criterion. The ratio of the auxiliary-toreal uniaxial
tensile strength

1L
i

is another input parameter for Finite Element
simulations with Atena science. In order to obtain
a triaxial-to-uniaxial strength ratio F = 2, see Egs.
(31), for the characteristic triaxial compressive
stress state defined in Eq. (28), the numerical value
of A, must amount to

4,=89,

(36)

(37

see also Fig. 6.

4 STRUCTURAL SIMULATIONS BY
MEANS OF THE FINITE ELEMENT
METHOD

The bearing capacity tests described in Section 2
are simulated by Atena science, the material model

9=0

9 =n/6 9 =n/6

L =1

I=n/3 d=n/3

?=r/6 9 =r/6

9 =7/6 9=n/6

9=n/3

(b)

Figure 6. Representation of the Menétrey—Willam failure surface in the Haigh—Westergaard stress space (a) section con-
taining the hydrostatic axis (see abscissa), and (b) deviatoric plane; the blue graph represents (the projection of ) the stress
path resulting from proportional increase of a triaxial compressive stress state with principal stress ratios given in Eq. (28).
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(a)

Figure 7.

(b)

Three-dimensional Finite Element mesh consisting of 27 776 hexahedral elements with a characteristic ele-

ment size of 1.25 mm in the neck region: (a) front view, (b) lateral view; exploiting double symmetry of the problem,
only one fourth of the reinforced concrete hinge is discretized.
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Figure 8. Behavior of concrete hinges subjected to
eccentric compression (e = 25 mm) up to their bearing
capacity: comparison of experimental observations (see
the blue graphs) with results from nonlinear three-dimen-
sional Finite Element simulations using Atena science,
the material model “CC3DNonLinCementitious”, and
the input parameters derived above.

“CC3DNonLinCementitious”, and the previously
derived input parameters. Default values are used for
those input values that have not been discussed above.

The Finite Element mesh shown in Fig. 7, consists
of 27 776 hexahedral elements with trilinear displace-
ment interpolation, 31 730 nodes, and 95 190 degrees
of freedom. This mesh was the result of a conver-
gence study, documented in (Kalliauer 2016).

The numerical simulations reproduce the experi-
mentally observed behavior both qualitatively and
quantitatively in a satisfactory fashion, and they
provide insight into the post-peak softening behav-
ior of the concrete hinges, which was not quanti-
fied experimentally, see Fig. 8.

5 DISCUSSION AND CONCLUSIONS

The bearing capacity of reinforced concrete
hinges, subjected to eccentric compression, was
investigated by means of experiments and three-
dimensional Finite Element simulations. The
required input parameters for nonlinear numerical
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simulations were identified a priori, by combin-
ing (i) results from destructive and nondestructive
compression tests on plain concrete specimens,
(ii) results from centric and eccentric compression
tests on concrete hinges subjected to serviceability
loads, (iii) a multiscale model for tensile failure of
concrete, and (iv) linear-elastic plane-strain Finite
Element simulations. In other words, identification
of input parameters was carried out without fitting
the results from nonlinear structural simulations to
the experimentally observed behavior. Therefore,
the described nonlinear three-dimensional numeri-
cal simulation represents a nontrivial quantitative
test of the predictive capabilities of the developed
Finite Element model. This test was passed success-
fully. Hence, the developed Finite Element model is
validated. This is useful for the future development
of nonlinear interface laws that are necessary pre-
requisites for the analysis of Ultimate Limit States
of integral bridges and of segmented tunnel rings.
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