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ABSTRACT: Structural analysis of segmented tunnel rings is challenging, because displacement discon-
tinuities and relative rotation angles develop at segment-to-segment interfaces. To meet this challenge, a 
hybrid method was recently developed by Zhang et al. (2017). It uses the known external loading and meas-
ured interfacial discontinuities as input for structural analysis. The latter is based on analytical transfer 
relations, representing solutions of the governing equations of the linear theory of slender circular arches. 
The present contribution goes one step further. In order to enable structural analysis without measured 
interfacial discontinuities, the transfer relations are combined with an interface law. The latter represents 
a mathematical relation between the bending moment transmitted across a typical segment-to-segment 
interface and the resulting relative rotation angle. The proposed approach is applied to linear structural 
analysis of the first four load steps of a real-scale test on a segmented tunnel ring. Corresponding results 
are compared with the output of the aforementioned hybrid method. This way, it is shown that the pre-
sented method delivers reasonable estimates of the inner forces. However, the displacements are predicted 
less accurately, because rigid body motions of the segments cannot be quantified by interface laws.

et al. 2012), and for (iii) identifying a non-trivial 
mode of arching thrustline behavior of young top-
heading shotcrete tunnel shells, subjected to both 
ground pressure and ground shear (Ullah et al. 
2013).

As for mechanized tunneling, the first hybrid 
method was recently presented by Zhang et al. 
(2017). The authors re-analyzed the first four 
load steps of  a real-scale laboratory test on a seg-
mented tunnel ring. The structure was subjected 
to 24 hydraulic jack forces, simulating the ground 
pressure. In the experiment, the displacement 
discontinuities and the relative rotation angles at 
all six segment-to-segment interfaces were moni-
tored (Liu et al. 2016). These measurements were 
used as input for hybrid analysis of  the structural 
behavior of  the tested tunnel ring (Zhang et al. 
2017). During regular service of  segmented tunnel 
linings, however, interfacial discontinuities of  dis-
placements and rotation angles are unknown. This 
provides the motivation to apply interface laws to 
structural analysis of  segmented tunnel rings.

1 INTRODUCTION

In hybrid methods, monitored data are used as input 
for structural simulations. Concerning the analy-
sis of tunnel linings, Rokahr (Rokahr and Zachow 
1997) and Hellmich (Hellmich 1999, Hellmich 
et al. 1999, Hellmich et al. 2001) developed the first 
hybrid methods for the New Austrian Tunneling 
Method. They are nowadays frequently applied 
in construction of tunnels (Brandtner et al. 2007), 
in order to quantify stress levels in shotcrete tun-
nel shells on the basis of measured displacements. 
Follow-up research activities were concerned with 
the development of modern multiscale mate-
rial models for hydrating shotcrete (Pichler et al. 
2008). This allowed for (i) reducing the required 
experimental activities to calorimetry testing of 
the binder of the shotcrete (Ullah et al. 2012), 
(ii) assessing the robustness of safety analyses of 
shotcrete tunnel shells with respect to rebound-
related uncertainties of the effective composition of 
shotcrete, finally arriving at the tunnel wall (Ullah 
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Interface laws are mathematical functions relat-
ing the originally unknown relative rotation angles 
at segment-to-segment interfaces to the normal 
force and the bending moment transmitted across 
these interfaces. Popular interface laws were devel-
oped by Leonhardt and Reimann (1965), Glad-
well (1980), and Janßen (1983). As for the special 
case of interfaces subjected to eccentric compres-
sion, these state-of-the-art interface laws suggest 
that relative rotation angles increase linearly with 
increasing loading (Schlappal et al. 2017). This 
allows for a reliable description of Serviceability 
Limit States, but does not account for the non-
linearities associated with Ultimate Limit States 
concerning the bearing capacity of the interfaces 
(Schlappal et al. 2017). As regards the desirable 
development of nonlinear interface laws, only first 
steps are documented in the open literature, see e.g. 
(Liu et al. 2017) and references therein. Generally 
applicable models are still lacking.

In this paper, a linear interface law taken from 
(Liu et al. 2017) is combined with transfer rela-
tions representing analytical solutions of  the gov-
erning equations of  the linear theory of  slender 
circular arches (Zhang et al. 2017). Because of  the 
linear nature of  the performed structural analyses, 
the present focus is resting on segmented tunnel 
rings subjected to external loads which are sig-
nificantly smaller than the bearing capacity. This 
was the motivation to restrict the analyses to the 
first four load steps of  the aforementioned real-
scale laboratory test on a segmented tunnel ring. 
Notably, the segments showed no sign of  bending-
induced tensile cracking during the analyzed ini-
tial phase of  the test (Liu et al. 2016). Therefore, 
linear elastic behavior of  the reinforced concrete 
segments and a linear interface law are reasonable 
assumptions.

The experimentally applied hydraulic jack forces 
enter the structural analysis as input, while the 
interfacial discontinuities are predicted by the inter-
face law. This results in classical load-controlled 
simulations. Corresponding numerical results are 
compared with available results from the hybrid 

method. This allows for assessing both qualitatively 
and quantitatively to which extent a classical struc-
tural analysis, i.e. one without use of measured dis-
placements, can provide insight into the structural 
behavior of a segmented tunnel ring.

The paper is structured as follows. Section  2 
refers to analytical solutions for segmented tun-
nel rings. The transfer relations for such struc-
tures and the proposed interface law are briefly 
summarized. In addition, analytical solutions for 
integration constants and relative rotation angles 
are derived. In Section 3, the proposed mode of 
analysis is applied to the first four load steps of 
a real-scale test on a segmented tunnel ring. Sec-
tion  4 contains the conclusions drawn from the 
present research.

2 ANALYTICAL SOLUTIONS FOR 
SEGMENTED TUNNEL RINGS

2.1 Transfer relations (Zhang et al. 2017)

In this paper, structural analysis of segmented tun-
nel rings is based on transfer relations, representing 
analytical solutions of the governing equations of 
the linear theory of slender circular arches (Zhang 
et al. 2017). Eq. (1), see above, contains the matrix-
vector representation of the transfer relations, 
following the notation used by Rubin and Vogel 
(1993). The components T13 to T46 of the transfer 
matrix read as (Zhang et al. 2017)
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In Eqs.  (1)–(14), R, EA, and EI denote the 
radius of  the neutral axis of  the arch, the exten-
sional stiffness, and the bending stiffness, respec-
tively. The vector on the left-hand-side of Eq. (1) 
contains the kinematic and static variables, refer-
ring to the cross-section at an arbitrary value of 
the angular coordinate ϕ, i.e. the radial displace-
ment u, the circumferential displacement υ, the 
cross-sectional rotation θ, the bending moment 
M, the normal force N, and the shear force V. 
The summation symbols in the last column of the 
transfer matrix in Eq.  (1) refer to the superposi-
tion of so-called “load integrals”. The latter rep-
resent analytical solutions for (i) radial point loads 
and (ii) relative rotation angles at segment-to-
segment interfaces. The load integrals for a radial 
point load P, acting at position ϕp, read as (Zhang 
et al. 2017):
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where H(ϕ – ϕp) stands for the Heaviside function. 
The load integrals for a relative rotation angle, Δθj, 
across an interface positioned at the angular coor-
dinate ϕj, read as (Zhang et al. 2017):
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The state vector on the right-hand-side of 
Eq.  (1) refers to the initial cross-section, marked 
by the index “i”. The corresponding kinematic 
and static variables, ui, υi, θi, Mi, Ni, and Vi, repre-
sent unknown integration constants (Zhang et al. 
2017). Further unknowns are the relative rotation 
angles at the interfaces. They intervene in the inter-
face law, introduced next.

2.2 Linear interface law

In the present contribution, a simple interface law 
is used for the description of the six segment-to-
segment interfaces of a segmented tunnel ring. The 
interface law relates the bending moments transmit-
ted across the six interfaces, Mj, j = 1, 2, …, 6, to the 
resulting relative rotation angles of the interfaces, 
Δθj, j  =  1, 2, …, 6, using a rotational spring stiff-
ness as the proportionality factor. In this context, 
it is emphasized that the analyzed segment-to-
segment interfaces is unsymmetric with respect to 
the  horizontal middle axis of the cross-section of 
the segment. This is the consequence of eccentric 
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bolts, used to connect neighboring segments. There-
fore, the effective rotational spring stiffnesses of the 
interfaces depends on the orientation of the bend-
ing moments transmitted across the interfaces. The 
designations K+ and K− are used for a positive and 
a negative bending moment, respectively. Thus, the 
interface law reads as

M
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2.3 Derivation of a linear system of equations 
allowing for the analytical calculation of the 
integration constants and the relative rotation 
angles

Identification of the six integration constants ui, υi, 
θi, Mi, Ni, and Vi and of the six relative rotation 
angles at the six interfaces of a segmented tunnel 
ring requires
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twelve equations. Notably, the kinematic variables 
ui, υi, and θi refer to rigid body motions of the seg-
mented tunnel ring. Without loss of generality, 
they may be set equal to zero, i.e.

ui i i= = ,υ θi i= 0  (27)

reducing the number of required equations to nine.
As for the identification of the three static vari-

ables Mi, Ni, and Vi, three geometric continuity 
conditions are formulated for the closed segmented 
tunnel ring (Zhang et al. 2017). To this end, the 
transfer relations are specified for ϕ =  2π, result-
ing in a relation between the state variables at the 
initial and the final (index “f”) cross-section. Since 
the final cross-section is equal to the initial cross-
section, the geometric compatibility conditions are 
obtained as uf = ui, υf = υi, and θf = θi. This delivers 
three linear equations for the nine unknowns.

(26)

The remaining six equations are obtained 
from formulating the interface law (25) for all 
six interfaces. To this end, the fourth line of the 
transfer relations (1) is specified for the position 
of the interfaces, i.e. for ϕ = ϕj, j =  1,2,…,6. The 
obtained expression for the six bending moments 
Mj, j = 1,2,…,6, are inserted into the interface law 
(25). This delivers additional six linear equations 
for the nine unknowns.

The described nine linear equations can be 
solved analytically, see Eq.  (47). Therein, K1, K2, 
…, K6 stand for the rotational spring stiffnesses of 
the six interfaces. They are either equal to K+ or 
to K−, depending on the sign of the correspond-
ing bending moments M1, M2, …, M6, see Eq. (25). 
Notably, these signs are originally unknown.

2.4 Solution strategy for the system 
of equations (26)

Generally, a typical trial-and-error approach is 
required for solving the system of equations (26). 

As for the examples presented in the sequel, such 
a trial-and-error approach could be completed in 
two steps. As for the first step, the stiffnesses of all 
six interfaces is set equal to the arithmetic mean of 
K+ and K−:

K K K K K
1 2K KK K 6K

2
=K2K = =K6K .

−K…  (28)

After the solution of  Eq. (26), the integra-
tion constants and the relative rotation angles 
are known. Inserting them into the transfer rela-
tions (1), allows for calculation of  the bending 
moments transmitted at the interfaces. The math-
ematical signs of  these bending moments allows 
for assigning either K+ or K− to each one of  the 
interfaces. These updated values are inserted into 
Eq. (26).
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The second solution of Eq. (26), based on the 
updated values of the spring stiffnesses, delivers 
updated values of the integration constants and 
the relative rotation angles. Inserting them into the 
transfer relations (1), allows for calculation of the 
bending moments transmitted at the interfaces. As 
for the examples presented in the sequel, the signs of 
the bending moments did not change from the first 
to the second solution. This proves that proper val-
ues of the spring stiffnesses were used for the second 
step. The obtained transfer relations allow for com-
putation of the state vector at an arbitrary cross-
section of interest simply by multiplying the known 
transfer matrix with the known vector of kinematic 
and static variables of the initial cross-section.

3 STRUCTURAL ANALYSIS OF A REAL-
SCALE TEST OF A SEGMENTED 
TUNNEL RING

3.1 Application of the proposed analysis method

The proposed mode of structural analysis is applied 
to re-analysis of the initial phase of a real-scale test of 
a segmented tunnel ring (Liu et al. 2016), see Fig. 1. 
The structural analysis focuses on the first four load 
steps, during which the reinforced concrete segments 
remained uncracked. Therefore, linear elastic behav-
ior of the reinforced concrete segments and a linear 
interface law appear as reasonable assumptions.

The radius of the tested ring, R, is equal to 
2.925 m see Fig. 2(a). The ring is an assembly of six 
precast reinforced concrete segments, named K, A, 

Figure  1. Setup of the analyzed real-scale experiment 
on a segmented tunnel ring (Liu et al. 2016).

Figure 2. Geometric dimensions of the analyzed segmented tunnel ring and its external loading: (a) axonometric 
sketch of the ring, (b) top view of the ring, illustrating the layout of the hydraulic jacks (Zhang et al. 2017).

B, C, D, E. The segment-to-segment interfaces were 
positioned at angular coordinates ϕj  =  1,2,…,6  =  [8°, 
73°, 138°, 222°, 287°, 352°], whereby the angular 
coordinate ϕ is measured from the crown of the 
segmented tunnel ring, i.e. from the cross-section 
in the middle of segment K. The thickness and the 
axial length of the segments amount to 0.35 m and 
1.2  m, respectively. The extensional stiffness EA 
and the bending stiffness EI of  the steel-reinforced 
concrete segments are given as 18,260  MN and 
186 MNm2, respectively. Compressive loading was 
imposed by 24 equally distributed hydraulic jacks, 
see Fig.  2(b). The point loads were imposed at 
angular positions ϕp = 1,2,…,24 = [0°, 15°, 30°, … 345°]. 
They simulate the anisotropic ground pressure, 
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the circumferential directions, respectively. The 
distribution of the normal stresses (Fig. 4) follows 
from (Melan 1913).

σ ϕ ϕ
ϕϕσσ ( )ϕ ( )ϕϕ ( )ϕ ( )=) + ϕ )ϕ ( ,N

A
M

I
 (32)

where A and I denote the cross-sectional area and 
the moment of inertia, respectively.

3.2 Comparison of results from the presented 
analysis with results from hybrid analysis of 
the same structural test

It is interesting to compare the results from the 
presented structural analysis with the correspond-
ing results from hybrid analysis of the same test, 
where both the imposed jack forces and the meas-
ured interfacial discontinuities were used as input 
(Zhang et al. 2017). The results obtained from 
structural analysis, described in Subsection  3.1, 
refer to a symmetric answer of  the symmetrically 
loaded segmented tunnel ring. Results from the 

Table  2. Numerical values of (i)  the internal forces at 
the crown of the ring and (ii) the relative rotation angles 
at the interfaces, obtained from the numerical evaluation 
of Eq. (26).

Loadstep 1 2 3 4

Mi [MNm] −0.0172 −0.0383 −0.0594 −0.0864
Ni [MN] −0.0627 −0.1489 −0.2351 −0.3158
Vi [MN] 0.0128 0.0277 0.0427 0.0586
Δθ1 [10−3 rad] −1.25 −2.84 −4.43 −6.50
Δθ2 [10−3 rad] 2.01 4.62 7.25 10.64
Δθ3 [10−3 rad] −0.64 −1.53 −2.42 −3.56
Δθ4 [10−3 rad] −0.64 −1.53 −2.42 −3.56
Δθ5 [10−3 rad] 2.01 4.62 7.25 10.64
Δθ6 [10−3 rad] −1.25 −2.84 −4.43 −6.50

Table 1. Properties of the segmented tunnel ring, occur-
ring in the transfer relations.

quantity Numerical value

radius of the axis of the ring R = 2.925 m
bending stiffness EI = 186 MNm2

extensional stiffness EA = 18,260 MN
position of interface 1 ϕ1 = 8°
position of interface 2 ϕ2 = 73°
position of interface 3 ϕ3 = 138°
position of interface 4 ϕ4 = 222°
position of interface 5 ϕ5 = 287°
position of interface 6 ϕ6 = 352°
position of the kth hydraulic jack ϕk = (k – 1) ⋅ 15°

Figure 3. Numerical values of the hydraulic jack forces 
imposed onto the segmented tunnel ring during the first 
four load steps of the test (Zhang et al. 2017).

see Fig. 3. The numerical values of the rotational 
spring stiffnesses of the interfaces are taken from 
(Liu et al. 2017). They read as

− = . / ,11 0MNm // d  (29)

K + = . / .6 5. MNm / d  (30)

For each one of the four considered load steps, 
the solution strategy described in Subsection 2.4 
is used. In this context, Eq. (26) is evaluated for 
(i) the load integrals concerning the point loads, 
taken from Eqs. (15)–(18), (ii) the numerical input 
values from Table 1, (iii) the hydraulic jack forces 
from Fig. 3, and (iv) the assigned spring stiffnesses 
K1,2,…,6. Table 2 summarizes the obtained numeri-
cal results for the three integration constants and 
the six relative rotation angles. After the two-step 
solution of Eq. (26), described in Subsection 2.4, 
the transfer relations (1) are specified (i)  for the 
expressions (2)–(14), (ii)  the load integrals (15)–
(24), (iii) the numerical input values from Table 1, 
(iv)  the hydraulic jack forces illustrated in Fig. 3, 
(v) the vanishing kinematic variables at the initial 
cross-section, see (27), and (vi) the results obtained 
from the solution of Eq.  (26), see Table  2. The 
obtained transfer relations may be evaluated 
for any angular position ϕ of  interest. The com-
puted kinematic variables allow for illustrating the 
deformed configuration (Fig. 4), following the for-
mula (Zhang et al. 2017).

u e
e

( ) ( ) ( )
( )

ϕ ϕ) ( ) ϕ )
ϕ )ϕ

)
+[ ]( ) ( ) ( )υ ϕ( θ ϕ( )(−( )υ( )( ,

r  (31)

where u, er, and eϕ stand for the displacement vec-
tor and for the unit base vectors in the radial and 
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Figure 4. Deformed configuration of the analyzed segmented tunnel ring and distribution of the normal stresses 
according to Eqs. (31) and (32): (a) load step 2 and (b) load step 4, analyzed by the presented approach, where the 
interfacial discontinuities are predicted by the interface model (25); (c) load step 2 and (d) load step 4, analyzed by the 
hybrid method (Zhang et al. 2017), where the measured interfacial discontinuities were used as input; the magnification 
factor of the displacements amounts to 50.

hybrid analysis, in turn, indicate a nonsymmetric 
answer of  the symmetrically loaded segmented tun-
nel ring.

The differences concerning the inner forces and 
the corresponding stresses are rather small. The 
largest differences were obtained for the bend-
ing moment, compare Figs.  5(a) and (d). The 
differences between the normal stresses were insig-
nificant (Fig. 4), because the stress states are domi-
nated by the compressive normal forces.

The computed displacements, in turn, show 
quite significant differences, compare Figs. 4(a) 
and (c) as well as Figs. 4(b) and (d). This is because 
the tested ring exhibited initial geometric imperfec-
tions. The latter resulted in nonsymmetric meas-
ured interfacial discontinuities (Zhang et al. 2017). 
Notably, the nonsymmetric part of the measured 
displacement discontinuities refers mostly to 
rigid body motions. This explains why the present 

analysis delivers reliable estimates of the inner 
forces, but underestimates the displacements.

4 SUMMARY AND CONCLUSIONS

A linear interface law, see (25), was combined with 
transfer relations (1). This allowed for performing 
design-like structural simulations of a segmented 
tunnel ring, subjected to known external loading. 
The conceptual advantage of the presented analy-
sis method over the competing hybrid method, see 
(Zhang et al. 2017), is that the latter requires meas-
urements of interfacial discontinuities, while the 
former does not need such measurements.

In the context of the analyzed real-scale test, 
it was shown that the presented method delivers 
good estimates of the inner forces. Thus, the inter-
face law (25) accounted reasonably well for the 
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discontinuities induced by the inner forces, trans-
mitted across the interfaces. The displacements of 
the analyzed tunnel ring, however, were predicted 
with less accuracy. They consist of two parts, one 
of which is caused by the inner forces, while the 
other one is the consequence of discontinuities due 
to rigid body motions, which are not considered by 
the proposed interface law.

As for the analysis of Serviceability Limit States, 
both the inner forces and the displacements must 
be quantified reliably. For such states, the hybrid 
method remains the “gold standard”, because 
interface models cannot predict rigid body motions 
of the segments.

As for the analysis of Ultimate Limit States, a 
reliable quantification of the inner forces is neces-
sary, while accurate values of the displacements 
are less important. In this context, it seems that the 
proposed approach may be useful for engineering 
practice. Anyhow, this requires the development 
of (i) transfer relations, capable of accounting 
for the nonlinear behavior of reinforced concrete 

segments, and of (ii) nonlinear interface laws. The 
latter should be supported by real-scale tests on so-
called “concrete hinges” (Schlappal et al. 2017) and 
corresponding numerical re-analyses, based on the 
Finite Element method (Kalliauer et al. 2017).
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