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Kurzfassung

In dieser Masterarbeit haben wir eine Client-Server-Architektur zur automatischen FEr-
kennung von Reklametafeln in Videostreams entwickelt. Die Client-Seite wurde mit einer
Android-Anwendung umgesetzt, die dem Zweck dient Videodaten fiir die Server-Seite zu
sammeln. Fiir die Server-Seite hingegen wurde StefanNet entwickelt, wobei es sich um
ein Deep Neural Network handelt. StefanNet kann Reklametafeln in einem Video Frame
erkennen und klassifizieren. StefanNet hat einen Feature Extractor mit 23 konvolutionéren
Ebenen und benutzt einen Single Shot Detector (SSD) zur Objekterkennung. Das Netz
wurde mit dem selbst erstellten BillboardDataset trainiert, welches 4042 Beispielbilder
beinhaltet, die von Reklametafeln in den U-Bahn-Stationen Wiens gemacht wurden. Zu-
sitzlich wurden Data-Augmentation-Techniken angewendet um den Datensatz kiinstlich
um 25% zu vergrofern. Aulerdem wurden Quantisierungstechniken auf StefanNet ange-
wendet um die Bittiefe, die notwendig ist, um die Gewichte des Netzwerks zu speichern,
von float32 auf float16 zu verringern. Wir haben die Performance von StefanNet evaluiert,
indem wir es mit den state of the art Netzwerken ResNet, MobileNet, Inception und
VGG16 verglichen haben. Der Validierungsdatensatz setzt sich zusammen aus Ansichten
der Reklametafeln von vorne und von der Seite. StefanNet erreichte 91% mean average
precision (mAp) auf dem Testdatensatz, 98% mAp fir Ansichten von vorne und 82%
mAp fiir Ansichten von der Seite. Die Inferenzgeschwindigkeit war 40 Bilder pro Sekunde
(FPS) auf einer Nvidia 1080 Grafikkarte. Die quantisierte Version von StefanNet erreichte
91% mAp auf dem Testdatensatz, 96% mAp fiir Ansichten von vorne und 85% mAp fiir
Ansichten von der Seite. Die Inferenzgeschwindigkeit fiir die quantisierte Version war
45 FPS. Sowohl StefanNet als auch dessen quantisierte Version hat eine hohere mAp
als die anderen evaluierten Netzwerke erreicht. Das bestétigt, dass die Architektur von
StefanNet die derzeit am Besten passende Architektur fiir das Problem der automatischen
Reklametafel-Erkennung in einem Video Stream ist.
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Abstract

In this master thesis we designed a client server system for automatic billboard recognition
in video streams. The client side is represented by an Android application which serves
the purpose of collecting various video data streams for the server side. For the server side
a deep neural network, called StefanNet, was designed. StefanNet is a fully convolutional
neural network which is able to properly classify and localize billboard objects within a
video frame. StefanNet has a feature extractor which contains 23 convolutional layers
and uses a single shot detector (SSD) as an object detector. StefanNet has been trained
on the self-designed BillboardDataset which contains 4042 image samples taken from
the billboards located throughout the metro stations in Vienna. Additionally, data
augmentation techniques have been implemented to artificially augment the dataset with
a 25% increase rate. Furthermore, the compression-based quantization technique has
been applied to the StefanNet model to reduce the bit-width necessary for storing the
weights of the network from float32 to float16. We evaluated the performance of StefanNet
by comparing against the state-of-the-art networks ResNet, MobileNet, Inception and
VGG16. The validation dataset contains both side and frontal views of the billboards.
StefanNet achieved 91% mean average precision (mAp) on the test dataset, 98% mAp on
the frontal view validation dataset and 82% mAp on the side view validation dataset.
The inference rate was 40 FPS on a Nvidia 1080 graphics card. The quantized version of
the StefanNet model achieved 91% mAp on the test dataset, 96% mAp on the frontal
view validation dataset and 85% mAp on the side view validation at an inference rate of
45 FPS. In comparison to the other evaluated networks both the StefanNet model and the
quantized version of the model produce superior results and outperform the benchmark
network models on all datasets. This confirms that the architecture of StefanNet is
currently the most suitable for the specific problem of automatic billboard detection in
video streams.
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CHAPTER

Introduction

1.1 Motivation

For humans, visual perception is the sense of most vital importance. Unlike other animals,
that mostly rely on the senses of smell and sound, humans rely heavily on the visual
system in every interaction with the environment. Everyday tasks like moving around
and picking up objects, recognizing a face, driving and reading would not be so easy
without our highly-developed system for visual perception. Essentially, all of these simple
tasks come down to object detection, localization and recognition. To pick up an object,
humans first determine which part of the visual impression corresponds to the desired
object. To recognize a person, humans first locate the person, then the face within the
image and then perform detection.

The human visual system is special, as it has the ability to maintain a stable and
constant perception of the ever-so changing environment. Formally known as perceptual
invariance [LRMO04], this ability is obtained from the complex hierarchical connections
in the human brain. The brain can perform object recognition under a number of
challenging conditions. For instance, person recognition still runs smoothly even if the
person we want to recognize has gained weight, is far away, is illuminated by the sun
or in the shadow. This is only feasible because the human brain learns abstractions of
visual impressions and representations. In turn, these abstractions are invariant to size,
illumination, contrast, rotation, orientation or any combination of them. This makes the
human visual system the ultimate pattern recognition system, unparalleled by any so far
existing, computer vision system.

The processing steps required for object recognition are performed so fast by the brain
that we as humans do not even notice or think about them actively. However, what
might seem so trivially effortless for us, still represents one of the greatest challenges that
computers and the field of computer vision have faced. Currently, the state-of-the-art
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solutions are able to reproduce only a small subset of the various tasks the brain performs
when it comes to image processing and interpretation. The approaches are generally
complex and even mimicking a small fraction of the human perception abilities requires
a combination of several techniques and algorithms. Furthermore, the current solutions
require a massive amount of computational resources, data, storage and runtime. Running
these combined approaches in real time, though proven to be possible, is still not optimal
and easy, and thus poses a big challenge.

Despite these setbacks, the field of object recognition, at the moment has a wide domain
of applications. Some examples include video surveillance, autonomous vehicles, person
and face detection. Regardless of the earlier efforts, it was only in the past few years
that science had a glimpse of how powerful deep convolutional neural networks can be
in supporting complex tasks such as object recognition. With the advances in deep
learning, object recognition has the potential to extend its applicability and usability
to a number of other versatile fields. Hence, it is of crucial importance to proceed with
the research and development of the field of deep learning in order to help the area of
object recognition evolve and grow. This work endeavors to bring us one step closer
towards that goal of designing and training neural network models for performing object
recognition in the field of media. In my diploma thesis I explore various techniques for
preventing and avoiding the challenges neural networks face when dealing with the task
of media (billboard) recognition.

1.2 Problem Statement

This master thesis aims to address the problem of object recognition in video data streams.
In particular, the main focus of this work lies in detecting and localizing billboard objects
with the help of convolutional neural networks in pre-recorded videos. Furthermore,
this master thesis deals with the challenges that convolutional neural networks presently
face, by exploring and analysing the effect of the application of several efficiency and
performance improving techniques. Namely, methods for reducing the amount of storage,
increasing the network inference rate, as well as faster training of neural networks have
been applied and evaluated.

Convolutional neural networks are the reason for the recent breakthroughs and successful
advances in the research area of computer vision (see [KSH12a|, [SEZ"]). Currently,
convolutional neural networks represent the state-of-the-art method for dealing with
the problem of object recognition [KOLWI16]. This is partly due to the hardware
advances and the promotion of the utilization of Graphic Processing Units (GPUs). The
powerful and at the same time parallelizable GPUs have enabled the application of
convolutional neural networks to large datasets (see [DDST09] [EEGT15a] [LMB™14])
and with that achieve outstanding performance (see [SZ14D] [HZRS15] [SLJ14]). These
accomplishments have helped convolutional neural networks establish themselves as
the correct method for dealing with computer vision problems and worthy of further
research and improvement. Hence, the main task of this thesis is to propose a design and
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(a) Front-on view (b) Side view

Figure 1.1: Samples of BillboardDataset

implement a deep convolutional neural network as a solution to the stated problem.

However, to design and implement an efficient deep learning algorithm for the recognition
of billboard objects is a highly complex task. For this reason, the following two aspects
must be taken into consideration: the training image dataset and the structure of the
convolutional neural network.

Firstly, the training dataset can have a large impact on the efficiency and the overall
performance of the object recognition algorithm. Thus, it is of crucial importance that
the gathered data for the training set is diverse and of correct proportion (in terms of
the number of images provisioned). Moreover, the gathering of data and provision of
training samples is also part of this thesis. Since the number of billboard image datasets
online is very small, a BillboardDataset image dataset has been specifically created for
this thesis. The BillboardDataset contains 4.042 images captured from all of the metro
lines in Vienna, Austria. Diversity of the images is ensured in a way that the dataset
contains images taken with a front-on view as well as images with a profile view (or
side-view) of the billboard. Samples of the BillboardDataset are provided in Figure 1.1a;
and Figure [1.1bl. Additionally, to make up for the lack of data, techniques for artificial
augmentation of the image dataset have been applied with an increase rate of 25%.

Secondly, it has been shown that there exists a correlation between the depth of the
convolutional network and the accuracy it achieves with respect to object recognition (see
[SLJ™15], [SZ14al). Additionally, recent studies state that the incorporation of recurrent
connections into convolutional neural networks can help to improve the object recognition
performance (see [LH15], [BAAI16], [AHYT17]). This thesis works towards exploring
the architecture and the depth of convolutional neural networks in order to provide a
convolutional network design that suits the particular problem best. For this reason, a
design of a network that, given the current problem, will improve on the performance of
the current best-performing state-of-the-art convolutional networks is the main task of
this thesis. The evaluation of the performance will be provided with respect to several
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criteria, including the inference rate and accuracy.

Lastly, in order to tackle the current challenges convolutional networks face, compression-
based method like quantization [Kril8] will be executed to fully optimize the designed
convolutional neural network model. Quantization [Kril8] helps in reducing the size of
the model and increasing the speed of both the inference rate and the training of the
convolutional neural network. In addition to that, a thorough analysis will be provided
in order to evaluate the feasibility of the application of the trained model for billboard
object recognition.

1.3 Aim of the work

The aim of this work is to create a client server application, where the client is an Android
application and the server is a deep neural network model used for object recognition.
The server is designed to provide a model which will serve the purpose of detecting,
localizing and properly classifying billboard objects. In other words, this means to create
the image dataset BillboardDataset and develop a deep neural network model which will
be exhaustively trained on the BillboardDataset. This model in turn, will be able to
clearly distinguish, classify and localize a billboard object (against another non-billboard
objects), within the provided video input streams.

The client side, on the other hand, is represented by an Android application which
is responsible for collecting the input video data streams. These collected video data
streams will be exclusively used for testing the performance of the neural network model
on the task of object recognition. The Android application allows sharing of the video
data streams to a cloud storage environment for easier access and memory preservation
purposes. The application has three main functionalities: record, share and play video.
A visual representation of the client server architecture is provided in Figure 1.2l

The BillboardDataset required by the server side has been acquired through the metro
lines, in indoor as well as outdoor settings and in various lightning conditions over
the course of a couple of acquisition days. Thus, the dataset contains fully labeled
diverse data. As this thesis has the goal to study the correlation between the structural
characteristics and the performance of the network, a new self-designed neural network
StefanNet is developed and compared to four distinct state-of-the-art deep neural network
models. StefanNet represents the server side and along with the rest of the models is
trained on the image dataset BillboardDataset. The results of their output are examined
and a thorough comparison of their performance is performed.

Secondary objective of this thesis is to determine whether and to which extent the
compression-based technique quantization affects the performance of trained neural
network models. This method has been applied to the trained neural network model
of StefanNet, after which the model has once again been trained for several epochs to
retrieve its original accuracy. The influence of this technique has been measured by
several criteria and reported respectively. Hence, in the last phase of the practical part
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Figure 1.2: Proposed client server architecture

of this thesis, an extensive testing and comparison of the performance of all of the neural
network models has been executed.

To summarize, the main goals of this thesis are:

e Development of an Android application used for gathering video data streams and
sharing them to a cloud environment (client side).

e Design and implementation of StefanNet (server side).

e Training of all convolutional neural network models used for billboard object
recognition (server side).

e Evaluation of the performance of the different architectures of the distinct convolu-
tional neural networks.

e Implementation of the compression-based quantization technique on the neural
network model of StefanNet and evaluation of its effect on the performance.

1.4 Structure of the work

The rest of this work is organized as follows. First a brief introduction of deep learning
is provided along with a description of the base functionalities and concepts related to
convolutional neural networks. Next, the related work and state-of-the-art achievements
in the field of object recognition with focus on media and billboard recognition are
discussed and reviewed. Afterwards the details regarding the methodology used in
designing the proposed system and the creation of the BillboardDataset are explained.
In chapter 5 the specifics with respect to hardware, software, frameworks as well as
the architecture and design of StefanNet are presented. Furthermore, this chapter also
provides the training details, the implementation process of the quantization technique
as well as the design and specifics of the Android application. The achieved results are
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evaluated and analyzed in the evaluation chapter. Lastly, the thesis is closed with a
summary and a conclusion illuminating both all the achievements accomplished and the
future work to come.



CHAPTER

Background

2.1 Introduction to Artificial Intelligence

Artificial intelligence [PMG97] is formally defined as the study of devices that have the
ability not only to observe the environment, but also to self-define a course of action
that will maximize their chance of achieving a specific goal. In 1955 John McCarthy
[MRSMO6] defined AT as the science and engineering of making intelligent machines that
have the ability to achieve goals like humans do. Since both definitions are rather broad
and general, it is safe to say that any human intelligence performed by a machine is in
fact artificial intelligence. It is believed that it was Alan Turing who started the whole Al
era by simply proposing weather machines can think [Tur50]. Since Alan Turing, there
was a major focus-shift as well as progress in the field of Al from machine bots that
play board games, to smart homes and autonomous vehicles. But what does Al really
encompass?

Al is the future of humanity as well as non-humanity i.e machines. The key ingredient
an artificial machine needs in order to perform well, is data [LGEC17]. Nowadays with
the current evolution of technology, the Internet, social media, cameras and smartphones
capture and provide massive amounts of data constantly. In 1959 Arthur Samuel [Sam59]
recognized Machine Learning as one of the largest subfields of Al and Tom Mitchell
[Mit06] defined it as the study of computer algorithms that improve automatically through
experience. Machine Learning [AIp10] heavily relies on working with large datasets and
performs evaluations and comparisons of the data in order to obtain a common pattern
or to discover variations. Essentially, the practice of machine learning includes learning
from large amounts of parsed data in order to make an intelligent prediction [Alp10].
Thus, instead of hard-coding the actions the machine needs to perform, the machine is
trained with data, utilizing algorithms which specify the form of learning [Bis07]. As a
result, Machine Learning is often thought to be an approach of achieving AI [Alp16]. So
one may ask, where does Deep Learning come into play?
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Deep Learning [DY14] is a sub-branch of Machine Learning that deals and focuses on
the algorithms inspired by the structure and function of the brain called artificial neural
networks. Unlike the common belief, the study of deep learning has a long history and
dates back to the early 1940s [MP43]. The study itself has gone by many names and the
initial perspective of its computational models was to recreate the structure of the human
brain [Hay09]. Even though the original models were intended to capture the process of
biological learning or in other words to mimic the way of how learning and understanding
happens in humans, the models are generally not designed to be a realistic image of the
brain function [GBC16]. The reason why Deep Learning has gained so much attention
lately is due to one of its greatest advantages and that is its ability to generalize and
abstract [KKB18|[Zuc03]. In Deep Learning, this is done by representing the world as a
nested hierarchy of concepts [GBC16]. Hence, every such concept is defined with respect
to simpler, less complex concepts. This is possible as a result of the many successive
layers of neurons which increase in complexity for every newly-learned concept. This
trait of deep learning makes it very suitable and able to tackle computer vision problems
such as image classification and object recognition.

2.2 The Perceptron

In an effort to reproduce the process of human learning in computers, in 1958 Rosenblatt
[Rosh8] revolutionized the field of machine learning and AI by inventing the perceptron.
The perceptron is a linear model intended to perform binary classification and is commonly
known as single-layer neural network. This is because its structure contains one artificial
neuron which is thought to resemble the neurons in the human brain [Ros58]. While in
his original paper Rosenblatt [Ros58| interprets the perceptron with a rather biolgical
motivation, we provide the nowadays more common, mathematical definition of the
preceptron.

The perceptron [PG17] is defined in terms of a set of inputs z1, ..., x,, unique weights
wi, ..., Wp, a bias b which is a constant and an activation function o as shown by the
Equation 2.1.

z= O'(Z w;x; +b) (2.1)
i=1

Essentially, the sum of each input multiplied with its associated weight, also called the
dot product, is sent to the activation function ¢ with a defined threshold 6. The
activation function o then takes the dot product and produces a single output (0 or 1)
with respect to the defined threshold §. While there exist many activation functions
which will be discussed later on in this chapter, the perceptron utilizes the Heavyside
step function which depending on the input, outputs a binary value (0 or 1).[PG17] This
process and architecture of the perceptron are depicted in Figure 2.1}
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Figure 2.1: Perceptron architecture

The perceptron was one of the first algorithms that could self-learn and adjust the weights
[RosH8|. At the beginning of the training, the weight vector is typically initialized to a
small value ranging from -1 to 1. During training, the perceptron learning algorithm
takes each input sample and computes the output classification. If the classification is
correct no changes are necessary, whereas if the classification is incorrect the weights are
updated accordingly. This iterative approach is repeated until all training samples are
correctly classified.

For its time, the perceptron learning algorithm was pretty impressive. However, a major
drawback discovered by Minsky [MP69| is the fact that the perceptron could not model
the simple exclusive (XOR) function. Minsky [MP69] went even further and proved that
it was impossible for the perceptron to ever learn the XOR function. This may come as
no surprise, since the perceptron is a linear model while the XOR function is non-linear
(see Figure 2.2). What this means is, that as linear model, the representational power
of the perceptron is limited. As a result, the perceptron can only work with linearly
separable data i.e. data for which, values of a hyperplane can be found that can be
cleanly divided into two classes by a straight line [MPG69].

@,

O

Figure 2.2: XOR function is non-linear
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2.3 Neural Networks

The drawbacks of the perceptron discovered by Minsky [MP69], prompted the development
of the neural networks. The simplest form of a neural network or artificial neural network
is the feedforward neural network or the Multi-Layer Perceptron (MLP) [RMS86] [Hin&7].
The structure typically consists of multiple perceptrons (referred to as neurons), organized
in several layers. The layers of neurons are connected in a form of a directed acyclic graph.
Consequently, the networks are primarily known as feedforward, meaning information
only flows forward through the network layers until the final output is generated. Hence,
there is no feedback mechanism integrated so that the network could feed its output back
in itself. In addition to the several internal (hidden) layers neural networks traditionally
include an input layer and an output layer. The complexity and size of the neural network
models normally depends on the number of hidden layers the network contains [RMS86].
An example of a neural network architecture is provided in Figure [2.3.

Feedforward neural networks are generally represented by chaining together many (usually
simple) non-linear functions [RHMS86]. For instance, n arbitrary functions fi, fo, ...,
fn can be chained to f(x) = fu(...f2(f1(x))) where f; represents the first layer of the
network, f9 the second and so forth. The total length of the chained function provides the
depth of the network. As witnessed, each layer of the network has an activation function
which takes the dot product of input and weights as input. However, in contrast to the
perceptron, each layer of artificial neurons used in the neural network can have a different
activation function [RHWS8S]. This allows the neural networks to have a far less restrictive
representational power and capabilities. Furthermore, in 1989, Cybenko [Cyb89] proved
that the Multi-Layer Perceptron is a universal approximator. This confirms that neural
networks can learn to approximate any (including non-linear) continuous function and
with that overcome the limitations of the perceptron [Cyb89][RHWSS].

The layers (input, hidden, output) of a neural network are traditionally fully-connected
[RMS86]. That is, from every neuron in the current layer there exists an outgoing
connection to every neuron of the next layer. However, the neurons within the same
layer do not share a connection. The input fed to the input layer is a raw vector whereas
the input fed to the neurons of the other layers is the output of the activation function
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of the neurons of the previous layer. The output layer is the one that returns the final
prediction of the model and typically uses a softmax or a sigmoid activation function
[RHMSG).

The training of neural networks encompases the learning of the weights, similar to
the training of the perceptron [RMS86]. However, the training of neural networks is a
much more complex process when compared to the one of the perceptron as neural
networks include many layers and thus a large number of neurons whose weights must be
updated. The training of neural networks at its core, is a form of the classic gradient
descent algorithm [RMB5I|[KW52]. The gradient descent algorithm [RM51][KW52] is
an optimization algorithm which minimizes the gradient of the loss function. The loss
function is an error metric obtained when comparing the output of the network with
the desired output [RHWSS]. It is defined in terms of the precision the network would
lose (hence the name) if the desired output was substituted with the actual output, the
current state of the network produces. The gradient of the loss function is in fact the
first derivative of the loss function (or the error measure as stated in [RHWSS]) and
provides the rate at which the loss function changes [RHWSS|. To obtain the gradient, the
gradient descent algorithm is often paired with the backpropagation algorithm developed
by Rumelhart [RMS6][RHWSS| which successfully computes the gradient. Another
important aspect of the gradient descent algorithm is its hyperparameter called learning
rate which decides the pace at which the weights are updated [RM86]. With this small
bit of theoretical background in mind, we now provide a description of the actual training
process of neural networks as defined by Rummelhart in [RHWSS].

The first step of the training process is to randomly initialize the learning rate and
the weights of each of the neurons of the neural network layers. Then a training data
sample is forwarded (forward pass) through the network firing the activation functions
of every layer until an output is obtained from the output layer. In the next step the
loss function, as well as the gradient of the loss function are calculated. With the help of
backpropagation the weights of the layer leading to the output layer are updated. The
backpropagation is then continued for every subsequent layer of the network. The error is
propagated and the weights are updated until the input layer is reached (backward pass).
It is very important to note that the weights are always updated in the negative direction
of the gradient, as we opt for a loss value closer to zero. This iterative approach is
continued until the network has converged or some termination criteria has been reached
[RHWSS].

2.3.1 Gradient Descent: Variations

Currently, there exist several variations and optimizations of the Gradient Descent
algorithm [Rud16]. The variants mainly differ in the number of training samples that
need to be processed before performing the backpropagation with the update of the
weights [WMO00]. In this work we cover Batch Gradient Descent, Mini-Batch Gradient
Descent and Stochastic Gradient Descent.

11
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Figure 2.4: Batch gradient descent vs. Mini-batch gradient descent [Dabl17]

e Batch Gradient Descent

Batch Gradient Descent is a form of Gradient Descent [WMO00] in which all train-
ing samples are summed in each iteration when performing the updates to the
parameters. Theoretically speaking, this approach is bound to converge either to
a global minimum if the loss function is convex or to a local minimum if the loss
function is not convex [Rudl6]. The main advantage of this approach is that it
has a fixed learning rate during the training as well as an unbiased estimate of
the gradient. Hence, the greater the number of training samples, the lower the
standard error. However, as learning only happens after processing all training
samples, this approach may be time-consuming especially when dealing with large
datasets [WMOQQ].

e Mini-Batch Gradient Descent

Rather than summing over all training samples like the Batch Gradient Descent,
the Mini-Batch Gradient Descent (also known as Semi-Batch) sums up over a
smaller number of samples based on a provided batch size [WMO00]. As a result,
the learning happens on every mini-batch of n samples. While this approach is
certainly faster than the batch approach, its convergence is not guaranteed [Rud16].

e Stochastic Gradient Descent

The Stochastic Gradient Descent [Rud16] performs updates of the parameters for
each training sample. Thus learning occurs on every training instance. As a result
it is usually much faster then Batch Gradient Descent. On the other hand, the
frequent weight adjustments (after each sample) vastly increase the variance and
lead to heavy fluctuation of the objective function [Rudi6].

2.3.2 Activation Functions

Activation functions are crucial for the training of neural networks as they are used
to propagate the output of the current layer’s nodes forward to the next layer until
the output layer is reached (forward pass) [RHWSS§|. Williams [Wil86] elaborates the
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logic behind activation functions and their importance to feed-forward neural networks.

Basically, activation functions are scalar to scalar functions and produce the activation
of the neuron [Wil86]. They are of crucial importance to feed-forward neural networks
as they are directly connected to the representational power of the neural network

[Wil86][RHWSS|. Currently, there exists a variety of activation functions [BA18][Ped1§].

The most prominent and widely utilized activation functions are thus described below.

e Linear. The linear activation function is a straight line function used mostly as
an activation function for the input layer. The function is defined as f(x) = Wz,
where the dependent variable has a direct and proportional relationship with the
independent variable [PG17].

e Sigmoid. The sigmoid function is a nonlinear function and when depicted on a
graph resembles the letter S (see Figure 2.5). The sigmoid function has the ability
to reduce extreme values or so called outliers without removing them. An advantage
of this function is that its output values are in a range of (0, 1), meaning activations
are bound to a certain range. The sigmoid function is smooth and popular when
dealing with classification problems [PG17].

e Rectified Linear Unit (ReLU). The ReLU activation function is an function
that outputs the input z if z is positive and 0 otherwise. The ReLU activation
function is nonlinear and the current state-of-the-art, as it has been proven to work
well for many computer vision problems. It is less computationally expensive and
trains better than the sigmoid function, as it involves only simple mathematical
operations [ABMM16].

1 sigmoid . ReLU

1
1+e

o(z) =

, R(z) =maz(0, 2)

-1 = o 5 I -1 =5 0 5 [

Figure 2.5: Sigmoid (left) and ReLU (right) activation functions [SHA17]

e Softmax. The softmax activation function is usually used in the output layer
of the neural network. The softmax function is a generalization of the logistic
regression and thus can be applied to continuous data and can involve several
decision boundaries [PG17].

2.3.3 Loss Functions

The loss function determines how close the current state of the trained neural network is
to the ideal, desired state of the same network [RHWS86]. Generally, the loss function
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calculates the error found in the actual predictions of the network for the training data
set. As a result, the goal is to minimize the loss obtained from the errors. This way, the
loss function helps to redefine the training process of a neural network as an optimization
problem [RHWRS6|. For regression problems the most preferred loss functions are the
Mean Squared Error (MSE), Mean Absolute Error and Mean Log Error [RDVC™04]. Loss
functions used for the task of classification are Hinge Loss, Logistic Loss and Negative
Log Likelihood [RDVC™04][JC17].

2.3.4 Regularization

A central problem in the field of deep learning and machine learning in general is to
design and train a model in such a way that it performs well, not only on the training
set but also on new and unseen data [SHK"14]. Regularization [GBCI6] is a measure
performed to help models achieve that goal, be more generalized and prevent overfitting.
Overfitting [Die95] is a common problem in deep learning and typically occurs when
the model learns the training set so well that it cannot generalize to new data inputs.
Overfitted models lack their predictive ability when it comes to unseen data. Consequently,
regularization is utilized to modify the gradient so that it avoids going in directions
that lead to overfitting. Regularization is a wide term and comprises many techniques
including: Dropout, DropConnect, L1 Parameter Regularization (Penalty), L2 Parameter
Regularization (Penalty) and Data Augmentation.

Dropout is a regularization technique introduced recently by Krizevsky et al. [HSK™12]
to prevent overfitting. Essentially the idea of the dropout technique is to learn less in
order to learn better. Hence, the method consists of setting the output of every hidden
layer to zero with a probability of 0.5%. The “dropped out” neurons do not contribute
and participate neither in the forward nor in the backward pass. This technique is
computationally inexpensive and can be applied to any type of neural network. The
main advantage lies in the reduction of co-adaptation between the neurons. The neurons
are thus forced to learn more robust features which results in a more generalized model
that performs better on held-out data. [HSK™12]

DropConnect, on the other hand, performs the same operation as Dropout. DropCon-
nect [WZZ713] is not an actual variant of Dropout as instead of operating on the hidden
layers, it temporarily mutates the connections between the neurons.

The Laplacian L1 and Gaussian L2 penalties [HP89|[KH92|, in contrast, avoid
overfitting by preventing the neural network parameter space from getting too big in one
direction. Fundamentally, they make large weights smaller (weight decay)[HP89|[KH92].
Krogh and Hertz [KH92| were among the first to practically examine the effects of weight
decay. The L1 penalty is computationally inefficient and multiplies the absolute value
of the weights instead of their squares. Interestingly, the L1 penalty has a built-in
mechanism for feature selection. The L1 has a smaller penalty for larger weights, yet
it drives many weights to zero. This means the resulting weight vector can be rather
sparse. Contrary to L1, the L2 penalty is in fact computationally efficient as a result of
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its analytical solutions and non-sparse outputs. The L2 penalizes larger weights heavily
but it does not drive them to zero. It does this by adding a term to the objective function
to decrease the weights. L2 penalty does not have an automatic feature selection but
overall it effectively improves generalization and helps the model ignore unnecessary
weights.

Data augmentation [KSH12a] is the simplest and easiest method to reduce overfitting
of a neural network model. It consists of artificially enlarging the amount of data and
with that allowing the model to train on more data. The technique of data augmentation
has been particularly effective for the specific classification problem of object recognition
[PW17]. There exist many ways to artificially augment a dataset. Techniques like
cropping, scaling, rotating, illuminating can all be used separately or combined to achieve
this task [KSHI12a][PW17].

2.4 Convolutional Neural Networks

Among the artificial neural networks there exists a special kind of neural network called
Convolutional Neural Network (CNN) [KSH12b]. CNNs have been initially developed by
LeCun in 1989 [LBD™89|, but only received the attention and popularity they deserve in
the last decade. By achieving outstanding results in several challenging Computer Vision
tasks [KSHI2D][SEZ"13], CNNs have installed themselves as the go-to method in this
field. As indicated by their name, CNNs employ convolutions which form the core building
blocks of the network [SSMT16]. Convolutions (convolutional layers) separate CNNs
from the traditional neural networks which use general matrix multiplication instead
[GBCI6][SSM™16]. Though this difference might seem small, convolutions do much more
than just substitute the general matrix multiplication. In fact, convolutions provide many
important features that help CNNs outperform the standard neural networks including:
parameter sharing and local connectivity [GBCI6][SSM™16|. Before discussing these
features in detail, we need to explain the notion of convolution and convolutional layer
first.

A convolution is a mathematical operation which is performed on two real-valued functions
with the goal to produce a third function [GBC16]. Essentially, the convolution operation
merges the two inputs in order to produce an output.

s(t) = (z*w)(t) (2.2)

The first argument ( x in the Formula 2.2) is often referred to as input whereas the second
argument w is referred to as kernel [GBCI6]. In terms of CNNs and the field of Computer
Vision, the input argument is an input image represented as a matrix of pixels and the
kernel is defined as a specific set of features, represented as a multi-dimensional matrix
[GBCI6]. The kernel is also known as filter and is responsible for detecting the specific
features within the input image |[ATY™18]. The output produced by the convolution
operation is known as feature map [GBC16]|ATY18]. Finally, the feature map will serve
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Figure 2.6: Convolving 4x4 image with 3x3 kernel results in 2x2 feature map [Zaw18]
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Figure 2.7: Receptive field of a neuron in CNNs [Kar16]

as the input image for another layer of filters. Overall, a convolution can be described as
a process in which the network makes an effort to label the input image by referring to
something previously learned . In Figure 2.6 the process of convolving a 4x4
image with a 3x3 kernel is depicted. The process results in a 2x2 feature map.

We now discuss the advantages that the utilization of convolutions brings.

Local connectivity. In traditional neural networks, every input unit interacts with
every output unit [RHWSS]. This is due to the full connectivity of the layers of the
standard neural networks which is often unnecessary. Convolutional neural networks,
however follow a concept known as sparse interactions or local connectivity [GBC16].
That means that each neuron is connected to and considers only a small region of the
input and disregards the rest. In this way spatial position is not disregarded and only
relations between close pixels are considered. The input region connected to the neuron is
a hyperparameter and is known as receptive field of the neuron [ATY*18]. An
example of the receptive field of a neuron is provided in Figure 2.7, Each receptive field
is represented as a 3D space with equal height and width. Furthermore, the receptive
field of a neuron is not exclusive and can overlap with the receptive field of another
neuron . The concept of local connectivity is tightly connected to the concept
of parameter sharing, which is discussed next.

Parameter sharing is another important concept used in CNNs with the goal to reduce
the number of parameters used in the convolutional layer [GBC16]. The basic idea
behind the concept of parameter sharing is to look for the same recognizable set of
elements or features around the whole input image [GBCT6][SSM*16]. The motivation
for parameter sharing is derived from the assumption that if a feature is useful at some
specific spatial position, then it could be useful at a different position as well ﬂm In
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Figure 2.8: Example of a feature map learned by AlexNet [KSHI12b]

traditional neural networks, each element of the weighted matrix is used exactly once when
computing the output of a layer [GBCI16]. However, in convolutional neural networks

every element of the kernel is used at every position of the input [GBC16][SSM*16].

This makes the training of large networks feasible as the number of weights or filters is
controlled to remain relatively small. It is important to note that the application of a
parameter sharing scheme might not always be reasonable [SSM*16][TYRW14]. This
would be the case where one expects to always learn completely different features from
one side of the image [TYRW14]. A typical example are faces (different eye and hair
color) located centrally within the image [SSMT16][TYRW14]. In that case, only local
connections without weight sharing are used and the layer is called Locally Connected

Layer .

2.4.1 Convolutional layer

When dealing with convolutional neural networks and thus convolutional layers it is
important to mention that every convolutional layer receives an input volume of size
widthl x heightl x depthl [PG17]. Additionally there are four main hyperparameters
that every convolutional layer requires and need to be considered: depth, kernel size,
stride and padding . The hyperparameters are important as they control the
size of the output ﬂm Eventually, every convolutional layer outputs a volume
of size width2 x height2 x depth where the depth of the output volume is equal to the
value of the depth hyperparameter [PG17]. We now discuss the four hyperparameters of
the convolutional layer.

Depth. The depth hyperparameter specifies the number of filters (number of kernels)
to be used within that convolutional layer [PG17]. Each filter would learn to look for
something different within the input volume. Additionally, the depth hyperparameter
sets the depth (the desired number of channels) of the output volume [PGIT].

Kernel size. The kernel size sets the width and the height of the kernel and at the
same time it sets the width and height of the receptive fields of the neurons. The width
and height are usually chosen to be of the same size. [PG17].

Stride. The stride hyperparameter specifies the number of pixels we move the convolution
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Figure 2.9: Applying padding of 1 on an input image of size 5x5

filter at every iteration step [PGI17]. The default value of the stride is 1, meaning the
filter is moved by only one pixel. However, if we want to reduce the overlapping of
the receptive fields between neurons, then choosing a larger stride value would be more
suitable [PG17]. A larger stride value also means skipping of some possible locations and
potential loss of vital information, which eventually results in a feature map of smaller
size [GBC16]. Hence, choosing the right stride value is of crucial importance.

Padding. In order to control the spatial size and avoid fast decrease of dimensionality
of the output volume it is useful to pad the input image with (most oftenly) zeros around
the border [GBC16]|ATY"18]. The padding hyperparameter allows us to specify the size
of the padding we want to be added to the input volume. By padding the input volume
the size of the feature map (output volume) is preserved, which would otherwise shrink
too rapidly [GBCI6]|ATY"18]. Since padding with zeros is the most common pattern,
this hyperparameter is also known as zero-padding [PG17]. Figure 2.9 shows a practical
example of how an image looks after a padding of 1 has been applied.

Figure 2.10/ shows an example of a convolutional operation of an input image of size 7x7
and a kernel of size 3x3. Assuming the stride is set to 1 and the padding is set to 0, then
by convolving the input image with the kernel, an output image (feature map) of size 5x5
will be obtained. If a padding of 1 instead of 0 is used, after convolving the input image
with the same kernel, the size of output image (feature map) will be 7x7. This shows
that the utilization of padding prevents the size of the output image to shrink |[ATYT18].
Since convolutions are often stacked, without the use of padding the size of the image
will be reduced fast and the information will be lost.

2.4.2 Architecture

As explained earlier in this chapter, the building blocks of a CNN are the convolutional
layers [SSM™16]. Apart from the convolutional layers, a typical architecture of a convo-
lutional neural network (CNN) also includes a pooling layer and a fully connected layer
[ATY"18]. In Figure 2.11 a common CNN architecture is shown. The first rectangle
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represents the input image, the second rectangle depicts the convolutional layer, the
third rectangle represents the pooling layer and the second to last rectangle is the fully
connected layer. Important to note is that the convolutional and pooling layers have
three dimensions (hence, the input is of size width x height x depth) and the input of
the fully connected layer is a 1D array. The output of the whole CNN is determined by
the softmax function [ATYT18]. The activation function most commonly used in CNNs
is the ReLU activation function and is typically computed after the convolutional layer
or after a stack of convolutional layers [SZI4b|[HZC*17]. Moreover, the ReLU activation
function forms another layer within the convolutional neural network [SZ14b][HZCF17].

We now focus on the other layer types that occur in the architecture of convolutional
neural networks. For each layer type, we will discuss its importance and the purpose it
serves individually.

Pooling layer. As witnessed by the example in Figure 2.9, when using a convolutional
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layer with padding of size 0, the size of the image will rapidly decrease. The typical
layer used for controlling the size of the image in CNNs is the pooling layer [GBC16].
Commonly, the pooling layer is inserted in-between successive convolutional layers or
convolutional layer stacks [PG17]. The core function of the pooling layer is to slowly,
but continuously reduce the spatial size of the output volume in order to reduce the
number of parameters within the network [PG17]. Hence, the pooling layer mainly
helps in reducing the amount of computation required and prevents overfitting [PG17].
The hyperparameters for the pooling layer are: type, kernel and stride [ATY18]. The
parameter type specifies the type of the pooling operation that needs to be performed.
The most common one is maz_pooling [ATY18|. For example when the kernel size is
2x2 and the stride is set to 2, then the image is reduced by a factor of 2 (see Figure [2.12).
With the pooling operation, only the size of the image is spatially downsampled (reduced),
whereas the depth dimension stays the same |[ATY18]. Apart from the max_ pooling,
there exist other types of pooling such as sum pooling and average pooling [ATY"18].

Normalization Layer (optional). This layer is used to normalize the output values of
a layer during the process of training the convolutional neural network [IS15]. Sometimes
during training, the weight values can vary by large margins, so it is always good to have
normalized values. If one of the weights of the neurons becomes drastically larger than the
weights of the other neurons, then this weight will be cascaded through the network and
can generally cause instability of the network leading to the exploding gradient problem.
That is why a new normalization layer is created which is called BatchNormalization
[IS15]. As indicated by its name, this layer performs a batch-wise normalization of the
output values of the activation function of the specific layer it has been applied to. It
takes the output of the activation function of the previous layer, and from it, subtracts
the batch mean and divides it by the batch standard deviation [IS15].

Fully Connected Layer. The Fully Connected Layer is attached at the very end of
the convolutional neural network (see [SZ14Db][HZRS15] [HZC™17]). Before feeding the
output of the previous layer, the output (feature map) matrix is flattened into a vector
and fed into the fully connected layer which corresponds to the ones in traditional neural
networks [PG17]. The fully connected layer outputs an n-dimensional vector where
n is the number of possible target classes the network has to choose from [ATY™18].
Each value of the n-dimensional vector corresponds to the probability of a certain class
(softmax approach) |[ATY™18]. The way the fully connected layer works is that it looks
at the feature map (output of the previous layer) and determines what high level features
correspond most to a particular class [ATY18|. It also has specific weights. Thus,
by multiplying the weights and the previous layer, the probabilities of the classes are
computed.

2.4.3 Types of Convolutions

It is a fact that convolutional neural networks and their convolutional layers have
revolutionized the field of Computer Vision with their speed and powerful performance
[KSH12a][SZ14D] [HZRS15]. The question that remains to be discussed is the following:
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Figure 2.12: An example of a pooling operation on input image 4x4x3 with kernel size
2x2 and stride 2
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Has the top performance been reached with the convolutional layers or can they be further
optimized to unravel their full potential? Hence, in this section we focus on the existing
types of convolutions, reviewing their advantages and the improvement on performance
they bring. Generally, there exist several types of convolutions, the most important
ones of which include normal convolutions and separable convolutions [GLL™18]. The
introduction of separable convolutions has shown that convolutional layers can learn to
use their parameters even more effectively [Chol6]|GLLT18|. There are two well-known
types of separable convolutions: spatial separable convolutions [JVZ14] and depthwise
separable convolutions [Chol6].

Spatial separable convolutions are the simpler kind of separable convolutions [JVZ14].
Essentially, spatial separable convolutions work in the way that they separate the convo-
lution into two convolutions [JVZ14][TXWEIL5|. Spatial separable convolutions deal with
the spatial dimension of the image (height and width) and the kernel [JVZ14][TXWE15].
They divide the original kernel into two smaller kernels with the goal to reduce the number
of multiplications and thus the computational complexity [JVZI14]. Though the idea of
doubling the number of convolutions to reduce the number of multiplications necessary,
might appear counter-intuitive, the practice proves otherwise [JVZ14][TXWE15]. For
instance, if we have an input image and a kernel of size 3x3, the number of multiplications
to be performed is 3*3=9. Now, assuming we split the kernel of size 3x3 into two kernels of
size 3x1 and 1x3 respectively, the number of multiplications goes down to (3*1)+(1*3)=6.
So just by splitting the kernel into two less complex kernels, the number of multiplications
is reduced by 30%. Furthermore, by reducing the number of multiplications, the compu-
tational complexity is reduced and the performance speed is increased [JVZ14]. Spatial
separable convolutions thus provide a great performance gain over normal convolutions.
However, the downside of using spatial separable convolutions is that not all kernels
can be separated into two kernels i.e. convolutions [JVZI4][TXWEI5]. As a result,
spatial separable convolutions do not always come as a first pick when choosing the right
convolution type.

Normal convolutions have been covered by the previous section, hence now we will
just briefly review the core concepts and the process with the help of a practical example.
An input image is represented by three dimensions: width, height and depth, where the

21



2.

BACKGROUND

22

depth dimension is also known as the number of channels of the image. Assume we have
an input image of size 7x7x3 (an image with 3 channels) and a kernel of size 3x3 and
stride of value 1. Convolving the image with the filter will produce an output image of
size 5x5x1 if the number of output channels is one. Clearly, the size of the output has
been reduced. Since in the process of training, many convolutions need to be carried out,
fast downsizing of the number of channels would lead to loss of vital information and
would badly affect the training process in general. Now assume we want to prevent this
and instead of an output image with one channel we wish for an output image with ten
channels. We can achieve this by creating ten 3x3x3 kernels. Each of the kernels would
produce an output image of size 5x5x1, hence we would end up with 10 5x5x1 output
images. If we stack them up together we would end up with an output image of size
5x5x10. Although we achieved the desired number of channels, this process is complex
and requires a large number of multiplications. The number of multiplications necessary
can be calculated with the help of the following formula |[GLL™18]:

outputChannels * kernel x inputChannels x output Image(width, height) (2.3)

Hence in our case we have 10 3x3x3 kernels that we move 5x5 times. The total number
is thus, 6750 multiplications. The way to optimize this process is by using depthwise
separable convolutions [GLL™18].

Depthwise separable convolutions, in contrast to spatial separable convolutions
deal with the depth dimension of the input image (weight, height, depth) [GLL™18§].
Furthermore, they are often preferred over spatial separable convolutions as they are more
powerful and have less constraints to their application. The process of doing depthwise
separable convolution is broken into two parts i.e. convolutions: the first one is depthwise
convolution and the second one is called pointwise convolution |GLL™18| [Chol6].

1. The depthwise convolution is applied to a single channel of the input and focuses
on the spatial relationship modeling |[GLL™18|. For example if the input is 7x7x3,
the kernel is 3x3 and the number of desired output channels is 10, then three 3x3x1
convolutions will be created. Every 3x3x1 kernel iterates over one channel of the
image and produces an output image of size 5xbx1. Stacking the images together
will create a 5xbx3 output image. The complexity of the depthwise convolution
is provided by Equation 2.4/ [GLL™18]. In order to obtain the number of wished
output channels, the pointwise convolution is applied next.

inputChannels x kernel x 1 x outputImage(width, height) (2.4)

2. Pointwise convolution is a convolution with a kernel of size 1x1 and is typically
applied on all of the channels (cross-channel relationship modeling) of the input
image |GLL™18|. Therefore, a 1x1x3 kernel is created that iterates over the 5x5x3
image to get 5x5x1 image. Providing ten kernels of size 1x1x3 will output ten 5x5x1
images and then stacking them would result in the output image of size 5x5x10.
Equation 2.5 provides the complexity of the pointwise convolution |[GLL™18].

outputChannels x 1 x 1 x inputChannels * outputImage(width, height)  (2.5)
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Figure 2.14: Pointwise convolution: input image 7x7x3 and kernel 1x1x3

Essentially, this process is similar to the one of the normal convolutions. In both
cases the image is passed through a 3x3 kernel and from 3 channels is expanded to
10 channels. The main difference is that in normal convolutions the whole image is
transformed n times (where n is the number of wished output channels), whereas in
the depthwise separable convolutions the image is transformed only once, during the
depthwise convolution process [GLLT18|. We have seen that it takes 6750 multiplications
for normal convolutions to compute this example. Depthwise separable convolutions
can compute the same example with 1425 multiplications. (First depthwise convolution
3#3*3*1*5*5=675, Second pointwise convolution 10*1*1*3*5*5=750). Cutting down
the number of multiplications increases the inference speed of the convolutional neural
network and reduces the number of parameters [GLL™18].

2.4.4 Feature Extractors

The computer vision task of object recognition is separated into two main subtasks:
classification and regression [ZZXW18]. The classification task is computed by a CNN
model for classification also known as feature extractor whereas the localization of an
object within an image is performed by a regression task [ZZXW1§|. The regression task
is also computed by a CNN model, called object detector [ZZXW1§|. In the following the
most famous state-of-the-art feature extractors will be analyzed with the accomplishments
they achieved on the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
[RDS™15] classification challenge. ImageNet Large Scale Visual Recognition Competition
(ILSVRC) [RDS™15] is a competition which involves classifying an image into one of
1000 classes.

VGG proposed by Simonyan et al. [SZ14b] is a very deep convolutional neural network
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Figure 2.15: Architecture of VGG [SZ14b]

model. Simonyan et al. [SZ14b] investigate the relationship between the architecture
of a convolutional network and the accuracy it achieves. In their work, they show that
an increased depth and small size convolution filters result in higher efficiency and
better accuracy. The convolutions that VGG uses are configured with a kernel size of
3x3, padding of 1 and a stride of 1. Utilizing convolutions with a kernel size of 3x3
has proven to have many advantages. Their experiments show that stacking three 3x3
convolutions is essentially the same as one 7x7 convolution, however the computation is
more efficient [SZ14b]. The idea behind this is to reduce the number of parameters and
to make the decision function more discriminative. The convolutional neural network
VGG consists of several configurations: VGG-11, VGG-16 and VGG-19 [SZ14b]. At the
end of each configuration there are three fully connected layers and a softmax layer used
for classification. VGG-11 consists of 8 convolutional layers, VGG-16 of 13 convolutional
layers and VGG-19 consists of 16 convolutional layers. The activation function used in
all of the layers is ReLLU. There are 5 pooling layers which are applied after a stack of
convolutions, with type max_pool, kernel 2x2 and stride 2. For Simonyan et al. [SZ14b]
increasing the network depth and decreasing the number of parameters worked well
as VGG won both the first place of the localization challenge and second place in the
classification challenge in the ILSVRC 2014. Figure [2.15, demonstrates the configurations
of the convolutional neural network VGG [SZ14b].

GoogleNet, developed by Szegedy et al. [SLJ™14] won the ILSVRC 2014 by achieving
a top-5 error rate of below 7%. At its core, GoogleNet represents a state-of-the-art
22-layer deep neural network used for classification and detection purposes [SLJ™14].
The authors try to exploit the architectural properties of a convolutional network by
increasing the depth of the network and reducing the dimension of the convolutional
layers. In fact, the network’s great performance is largely due to its massive depth.
The so-called inception modules (sub-networks used by GoogleNet) allow a much more
efficient utilization of the parameters, when compared to the VGG [SZ14b] architecture
[SLJT14]. Each module consists of 1x1, 3x3, 5x5 convolutional layers and a 3x3 max
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Figure 2.16: Inception module [SLIT14]

pooling layer to increase the diversity of the model and obtain different type of patterns.
GoogleNet is also called Inception, because the building blocks of the network are the
inception modules [SZI4b]. The Inception neural network consists of a stack of modules
shown in Figure 2.16), periodically followed by pooling layers of type max_ pooling and
stride 2 to reduce the size of the image. Apart from pooling layers of type max_ pool,
pooling layers of type avg_pool can also be observed within the Inception architecture.
Furthermore, fully connected layers are also used and are followed by a softmax layer
used for classification. Szegedy et al. [SZI14D] explicitly favour 1x1 convolutions in order
to reduce the computational cost, yet achieve a greater depth. The architecture of
GoogleNet keeps the computational costs constant, but at the same time provides a
significant quality gain. [SZ14b

Residual Networks, known as ResNet [HZRS15], which as a winner of the ILSVRC
2015 also takes a significant spot on this list, with an achieved top-5 error of 3.57%.
Developed by Kaiming He et al.[HZRS15] ResNet follows the trend of "deeper is better'
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Figure 2.17: Architecture of ResNet [HZRS15]

and is built up of 152 convolutional layers (see Figure 2.17). This makes ResNet eight
times deeper, but nonetheless, not more complex than VGG [SZ14b][HZRS15]. Instead
of learning unreferenced functions, in this architecture Kaiming et al. [HZRST5|] defined
the layers in terms of learning residual functions with the reference to the input layers.
This means if the target underlying mapping is H(x), then the stack of non-linear layers
are redefined as a residual mapping of the form F(z) = H(z) — x , casting the original
mapping to F(z) + z. In their paper, the authors prove that it is easier to optimize
the residual mapping rather than the initial unreferenced mapping H(x). Due to its
depth, the training of the network posed a massive challenge. For this reason Kaiming et
al. [HZRS15] introduced the so called skip (shortcut) connections to make the training
feasible. Shortcut connections serve the purpose of skipping one or more stacks of
convolutional layers and are essentially represented by the identity function [HZRS15].
Overall this helped ResNet exhibit large accuracy gains and enjoy great increase in depth
while preserving a minimal error rate. The structure of the block of convolutional layers
consist of kernels of sizes: 1x1, 3x3 and 1x1. Furthermore, the convolutional layers
perform downsampling of the size of the image by using a stride of 2. It is important
to note that ResNet utilizes only two pooling layers: as a second layer with kernel 3x3,
stride 2 and type max_ pooling and lastly before the fully connected layer, where the
type of the pooling layer is avg_pooling. [HZRS15]

MobileNet [HZC"17], is an efficient, lightweight convolutional neural network with
significantly less parameters than VGG, Inception and ResNet. The secret behind
MobileNets lies in the fact that Howard et al. [HZCT17] cleverly utilize depth-wise
separable convolutional layers instead of convolutional layers. The kernel used in the
depthwise convolution is of size 3x3, with stride 2 and padding 1. As previously discussed
in Section 2.4.3, after the depthwise convolution, a pointwise convolution with kernel 1x1
is performed, with the goal to adjust the number of output filters. A Batch Normalization
layer [IS15] is also utilized within the architecture of MobileNet and is included after every
depthwise and pointwise convolutional layer [HZCT17]. The activation function used in
MobileNet is ReLLU. At the end of the network there is an average pooling layer and a
fully connected layer followed by a softmax layer used for classification. MobileNet is the
most suitable convolutional neural network to be used in mobile and embedded devices,
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Type / Stride Filter Shape Input Size
Conv / s2 3Ix3x3I =32 224 %224 x 3
Conv dw / s1 3 x 3% 32dw 112 x 112 % 32
Conv /sl 1x1x32x64 112 x 112 % 32
Conv dw / 52 3 x 3 x 64 dw 112 x 112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw / s1 3 x 3% 128 dw 56 x 56 x 128
Conv / sl 1x1x128 x 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv / 51 1 x1x 128 x 256 28 x 28 x 128
Conv dw /sl 3 % 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv / 51 1 x 1 x 256 x 512 14 x 14 x 256
SxConvdwlsl 3 x 3 x512dw 14 x 14 x 512
Conv / sl 1 x1x 512 x 512 14 x 14 x 512
Conv dw / 52 3 x 3 x 512 dw 14 x 14 x 512
Conv / sl 1 x1x 512 x 1024 7 x T x512
Conv dw / 52 3 x 3 x 1024 dw T x T x1024
Conv / s1 1x1x1024 x 1024 | 7x 7 x 1024
Avg Pool /sl Pool 7 = 7 7 x T x 1024
FC /sl 1024 x 1000 1x1x1024
Softmax / s1 Classifier 11 x 1000

Figure 2.18: Architecture of MobileNet [HZC*17]

because of its low complexity and the high accuracy it achieves . Due to the low
complexity and its lightweight architecture MobileNet requires only low computational
power. The great performance of MobileNets has been established across significant
range of applications, including: object detection, large scale geo-localization and face

attributes .

2.4.5 Object detectors

The problem of object recognition differs from the simpler problem of image classification
in that it also requires localization of (possibly multiple) objects within the image
[ZZXW1§|. The focus of this section is on the localization sub-task which, as stated in
the previous section, is essentially a regression task performed by a fast CNN model,
known as object detector [ZZXW18]. In the following, the state-of-the-art object detectors
are discussed.

R-CNN. In 2014 Girshick et al. [GDDMT14] tried to conquer the problem of object
localization and detection jointly, by taking a slightly different approach. They pro-
pose a solution which follows a region-based paradigm which, as the name suggests,
performs recognition within designated regions. The solution presented by Girshick et al.
[GDDM14] first proposes 2000 category-independent regions for each input image. The
region proposals are generated by a fast, selective search algorithm and together represent
a set of candidate detections for the given image. From all of the region proposals, a
feature vector of fixed length is extracted by means of convolutional neural networks.
Lastly, a category-specific linear Support Vector Machine (SVM) [SCO8] is employed to
score the extracted feature vectors and perform the classification of each individual region.
Since this approach successfully employs the utilization of CNNs as well as of region
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Figure 2.19: Architecture of R-CNN [GDDM14

proposals, it has been described as a Region-based CNN or R-CNN [GDDM14]. With
this technique, R-CNNs have achieved the best object detection results so far (62.4%
Mean Average Precision mAp) on the PASCAL VOC 2012 [EVGWT10] dataset. The
method has also been applied and proven to work well on the problem of semantic image

segmentation [CS12][GDDM14].

Fast R-CNN. Even though the R-CNN approach performed well, it was still fairly slow
[GDDM14]. In particular, the training of the R-CNN networks was quite time-consuming,
since for each image 2000 regions had to be classified. Furthermore, the selective search
algorithm, which produced these regions, was fixed and predicted the regions without
any prior knowledge [GDDM14]. Naturally, the algorithm sometimes produced regions
of little interest. This prompted Girshick et al. |[Girl5] to further improve and develop
R-CNN which resulted in a network we now know as Fast R-CNN. The Fast Region-based
Convolutional Neural Network builds upon its predecessor R-CNN and has a couple of
innovations that make it faster. Firstly, the Fast R-CNN utilizes the very deep VGG-16
convolutional neural network [SZ14b] as feature extractor |Girl5]. Secondly, instead
of taking just region proposals like in R-CNN, the Fast R-CNN takes the whole input
image and a set of object proposals [Girl5]. The input image is then processed through
several convolutional and max pooling layers, so that a convolutional feature map is
produced. From the convolutional feature map, a region of interest Rol pooling layer
extracts a feature vector of fixed size for every object proposal. At the end, a softmax
function is used to classify the proposed object and a regressor function to predict the
coordinates of the bounding box. The advantage of this approach lies in the fact that the
convolutional operation is performed only once per image which results in a significant
speed up in both the training and testing of the network [Gir15]. This approach achieved
68.4% mAp (the mAp measure is explained in Section 2.5.2) on the PASCAL VOC 2012
m dataset. Fast R-CNNs suggest that less object proposals increase the quality
and performance of the object detector and the network in general [Girl5].

Faster R-CNN. The attempts to enhance the speed and performance of Region-based
Convolutional Networks did not stop with the Fast R-CNN approach. Despite the
significant improvements, researchers were still unsatisfied with the results Fast R-CNNs
achieved. Cleary, the bottleneck of both of the approaches R-CNN and Fast R-CNN was
the selective search algorithm [Gir15]. Due to the vast number of regions it
proposed, the performance suffered. Therefore, Shaoqing Ren et al. [RHGSI15|] proposed
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Figure 2.21: Architecture of Faster R-CNN [RHGSI5]

Faster R-CNNs to overcome these limitations and achieve the desired performance.

Shaoqing Ren et al. [RHGSI5|] completely eliminate the selective search algorithm for
region proposals and cleverly replace it with another convolutional neural network. This
sophisticated solution is composed of two core modules: a deep fully convolutional
network that provides the region proposals (RPN) and the Fast R-CNN object detector
[Gir15] used to classify the proposed regions [RHGS15]. Both of the modules are elegantly
merged and operate as a single network for object detection. This architecture brought a
massive increase in performance. With a 75.9% mAp score on the PASCAL VOC 2012
[EVGWT10] dataset, the Faster R-CNN method initiated and gave serious hope to the
idea of real-time object detection [RHGST5].

YOLO. In 2016 Redmont et al. [RDGF15] introduced a novel approach with a completely
different approach to solving the problem of object detection. Nowadays, the approach
represents a revelation in the branch of real-time object detection and is primarily known
as YOLO or the "You only look once" neural network. In their paper, Redmont et
al. [RDGF15] redefine the object detection problem to pure regression problem which
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Figure 2.22: Architecture of YOLO [RDGE15]

requires a simple pipeline. A convolutional neural network takes an image as input,
looks at it only once (hence the name) and simultaneously predicts the bounding boxes
and the class probabilities for those boxes. The YOLO CNN model is comprised of 24
convolutional layers, pooling layers of type max_ pool and 2 fully connected layers at the
end [RDGF15]. The YOLO architecture favours convolutional kernels of size 1x1 and 3x3.
Furthermore, YOLO trains the network on full images and sees the full images during
test time as well [RDGF15]. This means, it implicitly encodes contextual and background
information about the classes and the possibilities of their appearances. As a result,
YOLO is highly generalizable and makes 50% less background errors when compared
to Fast R-CNNs |Girl5][RDGE15]. There also exists a reduced, faster version of YOLO
which is called Fast-YOLO and the architecture contains 9 convolutional layers instead of
24. YOLO runs at 45 FPS and can easily process a video data stream in real-time. On
the PASCAL VOC 2007 and 2012 [EVGW 10| datasets, the YOLO approach achieves
63.4% and 57.9% mAp respectively, while running in real time [RDGF15].

YOLO9000 and YOLOv2. Not long after the success of YOLO, Redmont et al. [RF16]
released another paper introducing two new versions of YOLO: YOLO9000 and YOLOv2.
YOLO9000 represents a model with the ability of detecting over 9000 different object
classes [RF16]. The new model could retain its speed and still run in real-time, despite
the large increase in object categories. On the other hand, YOLOv2 introduces slight
changes to the state-of-the-art YOLO architecture, in order to increase the accuracy
[RF16]. In contrast to YOLO, YOLOvV2 takes as input images with higher resolution,
with the goal to enable better object detection of small objects. Furthermore, YOLOv2
uses Darkenet-19 [REF16] as feature extractor and introduces batch normalisation [IS15]
to all convolutional layers of the model in order to prevent overfitting of the network
[RF16]. To predict the bounding boxes, YOLOv2 uses anchor boxes. The anchor boxes
are hard-coded and completely replace the fully-connected layers of the model. This
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Type Filters Size QOutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x128
Convolutional 32 1x1

1x| Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x 1

8x| Convolutional 256 3x3

Residual 32 x 32
Convolutional 512 3x3/2 16x16
Convolutional 256 1 x 1

8x| Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1

4x| Convolutional 1024 3x 3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

Figure 2.23: Architecture of DarkNet-53 [RE18]

makes YOLOv2 a fully-convolutional network and was inspired by the Faster R-CNNs
[RHGS15] which also follow the anchor box approach [RE16]. YOLOv2 obtains the
dimensions of the anchor boxes by the K-Means [AV07] clustering algorithm which is
run on the training set. The utilization of anchor boxes brings a slight drop in the mAp
score of YOLOvV2 but significantly increases the recall. Overall, YOLOv2 outperforms
YOLO and Faster R-CNN achieving 78.6% mAp at 40 FPS on the PASCAL VOC 2007
and PASCAL VOC 2012 [EVGW™10] datasets [RF16].

YOLOv3. The latest version of YOLO is YOLOvV3, released in the likewise named paper
by Redmont et al. [RF1§] in the mid of 2018. The new version of YOLO shows some
significant improvements over YOLOv2 [RF16] in predicting small objects. YOLOv3
performs multilabel classification and predicts the bounding boxes over three different
scales [RF18]. Each of the scales uses three anchor boxes which totals in nine anchor
boxes. From these scales, features are extracted using a novel feature extractor. The
new feature extractor represents a network built as a combination of the network used
in YOLOv2, Darknet-19 [Red16] and a residual network. The network’s architecture
comprises convolutional layers with kernels 3x3 and 1x1 stacked on top of each other as
well as shortcut connections which make the network much larger in size. The resulting
feature extraction network has 53 layers and is called Darknet-53 [RF18]. Darknet-
53 [RF1§| is much more powerful than Darknet-19, 1.5 times faster than ResNet-101
[HZRS15] and 2 times faster than ResNet-152 [HZRS15]. This helps YOLOv3 perform
faster and hence stay competitive and even outperform the current state-of-the-art object
detection systems. Interestingly, Redmont et al. [RE18| report that having solved the
"detection of small objects" problem YOLOv3 now experiences problems with detecting
objects which are medium or larger in size which requires further investigation. [RE1§]

SSD. Similarly to the idea of the YOLO model [RDGFT5|, Liu et al. [LAET15| developed
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Figure 2.24: Architecture of SSD [LAET15]

SSD, the Single Shot Detector model for object recognition. The SSD model uses a single
deep neural network to predict all the bounding boxes and object class probabilities at
once [LAET15]. In Figure 2.24/ the architecture of SSD is shown. SSD utilizes VGG-16
[SZ14D)] as feature extractor and adds a convolutional layers to predict the bounding boxes.
As input, the SSD model accepts an image which is then processed through multiple
convolutional layers with different kernel sizes. While YOLO [RDGFT5] uses a single
scale feature map, the prediction of the bounding boxes in SSD is performed
with the help of multiscale feature maps. The feature maps are processed by special
3x3 convolutional layers (feature layers) to produce bounding boxes which resemble
the anchor boxes used by Faster R-CNNs [RHGS15]. Moreover, during the training
phase, the SSD model utilizes hard negative mining and data augmentation strategies
which result in more stable training and a robust and generalizable model. Liu et al.
distinguish between two variations of the SSD model: SSD300 and SSD512.
The SSD512 is essentially the same as SSD300 except it has an extra convolutional layer
for prediction and the input size of the image is 512 and 300 pixels respectively, with
the aim to enhance the performance. The best models of SSD outperform YOLO and
run at 59 FPS in real time [LAE*15]. The models achieved 73.4% mAp on the PASCAL
VOC 2007 [EVGWT10] for 300 x 300 input images and 76.8% mAp for 512 x 512 input

images. ﬂm

Object detection: Summary

Table 2.1 provides an overview of the most important characteristics of the real time object
detection neural networks discussed in Section 2.4.5. The datasets used for evaluation

are the PASCAL VOCO07 and the PASCAL VOC12 [EVGWT1().
2.5 Evaluation measures
Evaluation metrics are performance measures that provide information and describe how

well a model performs. In the machine learning area there exists a number of possible
ways to measure the performance of a network model. In this section we focus on the



2.5. Evaluation measures

Network Data Shape Feature Extractor Convolutional layers Pooling layers Dataset Accuracy FPS

Faster R-CNN 512 VGG16 16 5 (max_pool) 12 75.9% 5
YOLO 448 YOLO CNN 24 4 (max_ pool) 12 57.9% 45
YOLO9000 and YOLOv2 544 Darknet-19 19 5 (max_ pool) 07+12 78.6% 40
YOLOv3 256 Darknet-53 53 1 (average_pool)  07+12 77.2% 78

SSD 300 VGG16 16 5 (max_pool) 07+12 76.8% 59

Table 2.1: Overview of the real time object detectors.

most common and important metrics used when evaluating convolutional neural network
models for the task of object recognition.

2.5.1 Confusion Matrix

Confusion matrices are used to make an in-depth analysis of the achieved results of the
model and compare them to the ground truth [Faw(6]. They are particularly practical
as they provide a good visual representation of the predictions that the model makes.
Confusion matrices can be used for evaluating binary as well as multi-class classification
problems [Faw06] [Pow1l]. Figure 2.25 demonstrates a sample of a confusion matrix.
It is composed of two columns and two rows. Basically, the matrix consists of four
combinations of predicted and actual values: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN) [Faw06] [Pow1I]. The definition of these
terms is provided below.

e True Positive (TP): ground truth is true and the prediction of the model is
positive.

e True Negative (TN): ground truth is false and the prediction of the model is
negative.

e False Positive (FP): ground truth is false and the prediction of the model is
positive.

e False Negative (FN): ground truth is true and the prediction of the model is
negative.

The case of False Positive (FP) is also known as Type I Error and the case of False
Negative (FN) is known as Type II Error [Powll]. With the help of the confusion matrix,
several evaluation metrics can be calculated [Pow11][Faw06]:

e Accuracy is defined in terms of the ratio of the total number of correctly predicted
observations to the total number of observations the model made in general. The
accuracy measure can often be misleading due to the common case of uneven
distribution of the classes. Hence, in order to get the true evaluation of the model,
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Figure 2.25: Confusion Matrix

the accuracy is often paired with other measures such as Recall and Precision
[Faw(0].
TP+ TN

A =
WY = TP TN + FP+ FN

(2.6)

e Precision provides the ratio of correctly predicted positive observations to the
total predicted positive observations. Precision measures how accurate the positive
predictions of the model are. High precision is related to low numbers of False
Positives [Pow11].

TP
Precision = ————— 2.7
recision = zp s (2.7)

e Recall is defined as the ratio between correctly predicted positive observations and
the total number of actual true instances in the ground truth. Recall measures the
model’s ability of finding all the positive samples. A high recall value means that
the total number of False Negatives (Type II Error) was relatively low [Powl1].

TP
Recall = m (28)

e F-measure is the weighted average of Precision and Recall. As a result it takes
into account both: the False Negatives and the False Positives. The F-measure
is particularly useful when the distribution of true and false samples within the
ground truth is uneven [Faw(0].

2 % Recall * Precision

F — = 2.9
measure Recall + Precision (2.9)

2.5.2 Evaluation in Object Detection

Convolutional neural network models for the task of object detection are commonly
evaluated using either the Average Precision (AP) or the mean Average Precision (mAp)
evaluation metric depending on the number of target classes the model detects [EEG™15b].

For the task of object detection the following aspects must be evaluated [EEGT15b]:
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Intersection

loU =

Union

Figure 2.26: Intersection over Union (IoU)

1. The class of the detected object (classification task: "Is the object class present
within the image?")

2. The localization (bounding box) of the detected object (localization, regression
task: "Where is the object class present within the image?")

The object detection models are evaluated on a "per class” basis, meaning a separate
score is computed for every class the model detects [EEGT15b|. The evaluation of the
object detection task comes down to determining the correctness of the bounding boxes
[EEGT15b]. The metric that provides the information regarding the correctness of a
certain box is commonly known as Intersection over Union (IoU) [BLO§|. The IoU metric
provides the ratio between the intersection and the union of the predicted bounding
boxes and the ground truth bounding boxes (see Figure 2.26). The intersection is the
overlapping area of the predicted and the ground truth bounding box, whereas the union
includes both of the regions (see Equation 2.10)).

BBox, N BBoxgy

IoU =
© BBox, U BBoxgy

(2.10)

A predicted detection is considered correct or regarded as True Positive if the IoU value
for the given instance exceeds 50% [EEGT15b]. Otherwise the predicted detection is
considered a False Positive. The ground truth objects that the model missed, i.e. the
objects with no matching bounding box are counted and represent as False Negatives
[EEGT15b]. With the provided values of True Positives, False Positives and False
Negatives, the Precision and Recall values are calculated according to Equation 2.7/ and
Equation 2.8. The evaluation proceeds with calculating the Average Precision (AP) for
the particular class.

The Average Precision is expressed as the Precision across all Recall values [EEGT15b].
Essentially, this becomes a single value, summarizing the shape of the so-called Precision-
Recall curve. Since 2015, the PASCAL VOC Competition [EEGT15b] recommends to
calculate this by taking the mean Precision, across a set of 11 different, equally spaced
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confidence values for the Recall, such that Recall;=[0, 0.1, 0.2, 0.5, ..., 0.9, 1]. Equation
2.11, provides the mathematical formula for calculating the Average Precision. Thus, the
Precision at Recall level ¢ is taken to be the maximum precision measured at a Recall
greater or equal Recall; [EEGT15b].

1
AP = — Z Precision(Recall;) (2.11)
Recall;

The mean Average Precision (mAp) is then expressed as the mean of the Average Precision
score across all classes the model needs to detect.
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Related Work

With the massive growth and expansion of the global economic markets, good marketing
campaigns and advertisements continue to play a crucial role in keeping the popularity
rate high and gaining advantage over competitors. Nowadays, almost every (marketing)
company benefits from the widely distributed smartphone and social media usage [TAB17].
This enabled an abundance of advertising possibilities as well as a unique way of reaching
the target groups of interest due to the constantly increasing amounts of data social
media companies collect on a daily basis [TAB17]. Though online advertising opened
the door to a large number of new advertisement opportunities, it did not help the
companies understand why specific ads affect people better than others let alone make
the advertisement process less challenging [CSLT16|. A poorly chosen billboard or ad
location, inappropriate size, design or wording could still affect the company’s image and
prosperity negatively. Thus, making the right decision as to where, how and for how long
to place an advertisement or a billboard are all factors which could likely determine a
company’s profitability. As a result, any unconventional or innovative approach to reach
the desired target group or improve on the traditional advertisement process is highly
valuable and sought after.

Luckily, the ongoing revolution in the field of Computer Vision has elicited many research
possibilities and enabled great progress in many vital areas. Since the field of Computer
Vision experienced the breakthrough of convolutional neural networks with AlexNet
[KSHI12b| on the task of image classification, convolutional neural networks have not only
proven their suitability for other computer vision tasks such as detection, recognition and
image segmentation, but also extended their applicability to a larger domain including
the area of (online) advertisements and billboards. With the large amounts of available
data [DDST09|[EEG™15a][LMB™14], convolutional neural networks can be the answer
to many so-far unsolved (or manually executed) problems that the area of advertisement
and billboard placement faces. From automatic billboard classification [HDNT18| and
billboard frame recognition [ZCHCI7] in images and video streams respectively to
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analysing and understanding the context of an ad [HZZ™17|, the application possibilities
of convolutional neural networks in the advertisement domain is almost endless. In this
section, we provide an overview of the related work and the current state-of-the-art CNN
contributions to the area of advertising.

In order to avoid the tedious and undesirable (pre-, mid- or post-) insertion of adver-
tisements in online videos and movies and yet still expand the target audience range,
the current focus of advertising lies in a technique known as embedded marketing or
product placement [KUETT][LLI5[HDNT18|. Embedded marketing involves integrating
advertisements directly into the scenes of the video stream, in a way that specific products
and brands are purposely inserted within the video settings [KUEII][HDN"18]. While
this technique allows an uninterrupted viewing experience, as well as reaching out to
specific demographic regions or markets it has mostly been executed manually. That
means manually analysing every video frame and investigating the possible frames for ad
placement. This triggered Hossari et al. [HDNT18] to propose a solution that automates
the otherwise time-consuming and expensive frame identification task. Hossari et al.
[HDN™18| developed ADNet, a deep convolutional neural network that specializes in
classifying billboard advertisements in video streams. Hence, ADNet has the ability to
successfully distinguish a billboard-frame from a non-billboard frame. The architecture of
ADNet was inspired by and based on the powerful deep neural network VGG19 [SZ14a].
At its core ADNet contains 16 convolutional layers with a kernel size of 3x3 and a stack
of 3 fully connected layers at the end of the network [HDNT18|. The first two fully
connected layers contain 1024 channels each and use ReLU as their activation function.
The last fully connected layer utilizes the softmax function which outputs the probabilities
of the billboard or non-billboard classes. To prevent overfitting, ADNet also employs
a dropout layer as a regularization technique with a rate of 0.5. For evaluating the
performance of the proposed model, the authors also trained the Inception-v3 [AHYT17]
model on the same dataset and parameter configuration and used the achieved results as a
benchmark. ADNet achieved 94% classification accuracy and outperformed Inception-v3
which achieved 56% accuracy on the billboard frame classification task [HDN™18].

Similarly to the motivation of Hossari et al., Covell et al. [CBF06] proposed a method for
automatic detection of TV advertisements that appear during TV shows and movies. Since
television material is redistributed globally it may come as no surprise that the original TV
advertisements are replaced with new ads depending on many criteria including: region,
broadcast time and season [CBF06]. To properly detect the starting and ending point of
a TV commercial Covell et al. developed a three-stages approach which relies on audio
and video features. In the first stage, the authors extract the audio features and perform
audio-repetition detection. This is achieved by performing acoustic matching on the
audio features in order to determine the potential advertisement matches. In the second
stage, the candidate matches are verified and validated against an advertisement database
with the help of video feature extraction. In the final stage, the candidate matches that
passed the audio and the video checks, undergo a so-called endpoint detection (using
forced Viterbi [GM99]) in order to correctly locate the advertisement boundaries. With



the proposed method Covell et al. [CBF06] achieved 99% precision and 95% recall rates
in extracting advertisements from video sequences.

Almgren et al. [AKALI8] proposed a simple convolutional neural network based approach
for advertisement classification in newspapers and magazines. In their paper Almgren
et al. define their proposed solution as a two-step approach, consisting of a feature
extraction step and a classification step. The feature extraction layer in the CNN model
includes a convolutional layer with a 5x5 kernel, a ReLLU activation function and a
max__pooling layer with window size of 2x2. For the classification on the other hand,
the CNN model employs a fully connected layer with 10000 neurons. The input of the
network is a grayscale image of size 100x100 pixels, while the output is defined by the
two target classes: “advertisement” or “non-advertisement”. With their CNN model,
the authors achieved 78% accuracy, 57% recall and 87% specificity, outperforming the
standard machine learning algorithms such as Random Forest, Multilayer Perceptron
(MLP) and Support Vector Machines (SVM).

Bianco et al. [BBMS17] introduced a method for logo recognition based on deep learning.

Their method is composed of a recall-oriented logo region proposal and a convolutional
neural network trained specifically for logo classification [BBMS17]. Since there is no
way of knowing the precise location of logos in an image, for each image the authors
generate a set of object proposals. Essentially, an object proposal is a region that is
more likely to contain the objects of interest i.e. logos in this context. The object
proposals are obtained with the help of the highly recall-oriented Selective Search
algorithm [vdSUGST1][USGS13]. Once generated, the object proposals are then cropped
to match the input size dimension of the convolutional neural network. Afterwards, the
cropped object proposals are contrast normalized and passed to the convolutional neural
network model used for logo classification. The architecture of the CNN consists of three
convolutional and pooling layers, followed by two fully connected layers and the softmax
function used for classification. The activation function used in the convolutional layers
is ReLU. The CNN model was trained on an extension of the FlickrLogos-32 [RPLvZ11]
dataset (Logos-32plus) which was designed by the authors. The Logos-32plus dataset
contains 12312 images and was enlarged using data augmentation techniques. At the
end, the dataset contained 32 classes with circa 400 training samples per class. With
their best configuration, Bianco et al. achieved a 95.8% accuracy, 98.9% precision, 90.6%
recall and 94.6% F1 score.

Analysing and understanding the content of an image or a video is a complex computer
vision task. In their paper, Hussain et al. [HZZ"17] proposed the novel problem
of automatic advertisement understanding. The problem of automatic advertisement
understanding goes beyond the problem of object recognition and task of producing
sentences about images as it requires a special skill set to determine what, how and why
objects are depicted in a certain way in order to correctly understand the meaning of an ad
[HZZ717). Hussain et al. delivered a new solution for the problems of automatic image as
well as video advertvertisment understanding. For the automatic ad image understanding
problem they created a dataset containing 65000 images, most of which were labelled (as
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ad or non-ad) using the ResNet neural network [HZRS16] for classification. Furthermore,
each image was manually tagged with additional annotations regarding the topic of the
ad, the sentiment it conveys, the strategy and symbolism it uses, as well as answers to
two questions (“What should the viewer do?” and “Why should he do it?”) [HZZ"17].
For the automatic video ad understanding problem a separate dataset containing 3000
video ads was created. The videos contained the same label types as the ones used in the
image dataset, omitting the symbolic labels, but included answers to some additional
questions such as “Is the video funny?” [HZZ"17|. As a solution, the authors developed
a neural network model which combines the layers of the LSTM [HS97] and the VGG
[SZ14a] network. They are followed by a softmax layer which determines the output of
the network. In their study the authors evaluate their neural network on the following
tasks: Questions and Answers (regarding ads), Symbolism prediction and Topic and
Sentiment Analysis. On the ad image questions and answers (QA) task, their model
achieved an accuracy rate of 11.48%. Moreover, on the task of symbolism prediction in ad
images their model achieved 15.79% F-measure. The model scored an even lower accuracy
on the QA task regarding video ads. For the topic and sentiment analysis in image
and video advertisements the authors utilized 152-ResNet [HZRS16] and achieved an
accuracy of 60.34% and 27.92% respectively. In their work the authors show that existing
methods still do not have the ability to perform the high level QA task when it comes
to advertisements. However, their research results on Topic and Sentiment Analysis in
advertisements give hope and provide room for further improvement [HZZ'17].

According to Zhang et al. |[ZCHCI17], one of the primary objectives of video online
advertising is to create a relevant ad that meets the interest of the target customers at
the right place and time without intrusion of uninterested viewers. Hence, to increase
the attractiveness and lower the intrusion of an ad, the authors suggest to make the
advertised products relevant to the contents (objects) in the video. For this reason, the
authors propose Object Level Video Advertising (OLVA), an optimization framework
for target online advertising in video sequences. The underlying idea of the framework
is to locate the potential shot for advertising in the video sequence and compute the
sentiment of the shot in order to determine the advertisement type [ZCHCI7]. The
framework itself is composed of the following components: shot segmentation, object
detection, optimization-based object selection and ad retrieval. For detecting potential
shots in the video the authors utilized a threshold-based method which relies on the
Histogram of Oriented Gradient (HOG) features as well as on a color histogram and the
Local Binary Patterns (LBP) features to calculate the distance between two adjacent
frames. A distance larger than some predefined threshold determines the boundaries of
the two shots. For each shot, object detection is performed using the HOG features. The
OLVA framework was tested with five object classes: person, car, bottle, dog and bicycles.
In the case where the detected object belongs to the person class, gender recognition
is performed using a convolutional neural network with 4 convolutional layers and 2
fully connected layers [ZCHCI7]. The authors formulate the decision as to which shot
to add which ads as an optimization problem, which is dependent on the object class.
The potential frames for ad-insertion are usually the ones containing fewer objects. To



solve the optimization problem Zhang et al. propose a Heuristic Algorithm as well as a
Genetic Algorithm which solves the global optimization problem. In the end, the ads are
placed as hyperlinks in the right lower corner of the video. The achieved results from the
conducted experiment show that the OLVA framework can improve the attractiveness of
the advertisements and the level of comfort in watching the videos [ZCHCIT].

As witnessed by the previous paper contributions, presenting relevant advertisements
through the content i.e. frames of the video is not an easy task. Youtube as a world-leading
application for video content and advertising desires to trick the users into spending more
time on the application and watch video content i.e. more advertisements [CAST6]. The
primary method that achieves this is the personalized recommendation of videos presented
to the target user, prompting him to use the application longer. Covington et al. [CAS16]
designed a system architecture based on deep neural networks that computes Youtube
recommendations. The system is composed of two deep neural networks: a candidate

generation deep neural network and a candidate ranking deep neural network [CAS16].

The task of the candidate generation deep neural network is to propose personalized
candidate videos based on the viewing history of the user [CAS16]. This is a simple feed
forward neural network composed of fully connected layers using ReLLU as an activation
function. The candidate ranking deep neural network is designed with the aim to rank
the proposed videos which were generated by the candidate generation neural network
[CAST6]. Furthermore, the structure of the candidate ranking deep neural network is
similar to the structure of the candidate generation deep neural network. The only
difference is that the candidate generation CNN is used for classification and the task of
the candidate ranking CNN is to perform logistic regression. The final ranking score of a
video depends on the viewing time of the user regarding a specific video. As a result,
another model for predicting the viewing time of the user with respect to a specific
video is defined with the goal to perform a weighted regression task [CAS16]. The best
configuration for predicting the expected watch time of the user was obtained by making
the model not only deeper but also wider in size. It included a 1024-wide ReLLU which was
followed by a 512-wide ReLLU and a 256-wide ReLLU. With this configuration, Covington
et al. achieved a 34.6% “weighted, per user loss” which represents the total amount of
mispredicted watch time per user. These results prove that increasing the width of the
hidden layers can also have a positive impact on the performance. With the proposed
system, Covington et al. [CAS16] achieved an outstanding and effective performance for
recommendation of videos on the Youtube application.
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CHAPTER

Methodology

4.1 System design

In this master thesis a system for automatic billboard detection is designed. Specifically,
the main focus of the designed system lies in automatically detecting billboards that
are located in metro stations. The proposed system design represents a deep learning
based approach and is composed of two core components that we refer to as the client
(side) and the server (side) of the system (see Figure 4.1). Both the client side and the
server side are responsible for and carry out subtasks equally important for achieving the
ultimate goal of automatic billboard detection.

The client is designed as a lightweight Android application with the goal of recording
and providing video sequences to the server. For this reason, the client is developed with
three main functionalities: record, play and share video as depicted by Figure 4.2. The
feature of sharing of videos to a Cloud platform is purposefully integrated in the Android

Client Server
Record | video stream .
Hlesvice | 5 Training
i, Evaluation
User E

. video stream . |
b s s s s s s i + L s s e s e i
bounding boxes

Figure 4.1: Proposed client server architecture
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Figure 4.2: Features of the client side

application in order to enable memory preservation on the mobile device. Moreover the
sharing functionality also allows for an easier access to the recorded videos which can be
synchronized with the server. The main idea behind the Android application is that the
user employs it to record a video which is then transferred to the server for automatic
billboard detection. Afterwards, the user receives the same video sequence with the
detected billboards (if any) in bounding boxes, together with a confidence score of the
detection. Hence, the video streams recorded and provided by the client side serve only
for testing and evaluation purposes.

The server, on the other hand, is responsible for the automatic billboard detection. It is
represented by a self-designed deep convolutional neural network model, which is called
StefanNet. StefanNet is a fully convolutional neural network (CNN) which means its
architecture is composed of convolutional layers only, not including any fully connected
layers. The model is based and inspired by the architecture of the state-of-the-art deep
convolutional neural network model VGG [SZ14a]. The input of the model is a 2D image
of size 300x300 pixels. The output of the model is a list of (possibly multiple) bounding
boxes with confidence scores for the given input image. The bounding box is defined as a
list containing the following information: classld, confidence score, rmin, ymin, Tmax
and ymaz. The bounding box is determined by its four coordinates (xmin, ymin, xmax,
ymax) which form a rectangle.

StefanNet is exhaustively trained on a dataset containing billboard images called the
BillboardDataset which will be discussed in detail in Section 4.2. Furthermore, compression
in the form of quantization is applied to StefanNet in order to reduce its size and
improve its performance. Quantization [HMD15] represents an explorative performance
optimization method that enables faster training of StefanNet and a significant increase
in its inference rate. This is achieved by transforming the data type of the layers from
float32 to floatl6, resulting in a reduction of the network size. The overall performance
of StefanNet is evaluated on a separate dataset and compared to the performance of four
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Figure 4.3: Functionalities of the server side

other state-of-the-art deep neural networks, which were trained and evaluated on the
same datasets as StefanNet. Hence, StefanNet is designed to successfully and efficiently
detect and localize billboards in videos provided by the client. In Figure 4.3|the three
main tasks executed by the CNN model StefanNet (server side) are shown.

The flowchart depicted in Figure 4.4 demonstrates the interaction between the client and
the server side as well as the actual order of the execution of actions i.e. tasks. The
user records a video sequence using the Android application. Afterwards the user has
the option to either share the video content to a Cloud platform or to store it on the
mobile device. From the storage the video is then passed to the server. Once the server
obtains the video sequence from the client, it loads the StefanNet model which processes
the video sequence on a frame-wise basis. For each frame of the video, the CNN model
tries to localize and detect any present billboards in the given frame. The next step is to
filter the obtained detections. Detections with a confidence score lower than 50% are
considered unreliable and are therefore rejected. On the other hand, detections with a
confidence score greater or equal to 50% are taken into consideration and thus imported
into the frame as bounding boxes. At the end, the same video frame together with the
imported detections (with confidence scores) of billboards is presented to the user. The
iterative process continues for every frame of the video until the processing of the whole
video is finished.

4.2 Data engineering

The first step towards building an efficient and accurate deep neural network model
is collecting a sufficient amount of problem-specific data. As a result, the process of
data engineering plays a crucial role not only in the scope of this master thesis, but in
the field of Deep Learning in general. Depending on the problem domain, collecting
the right amount of data could either be trivial or extremely problematic. Due to the
lack of billboard data and pure billboard image datasets online, the images used for
the training process in this master thesis are self-collected. StefanNet is trained on the
BillboardDataset which consists of billboard images gathered from the metro stations of
all metro lines in Vienna, Austria. Since the process of collecting the data was very time-
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Class #train  #test Hinfront #side
billboard 2340 1002 350 350

Table 4.1: Separation of BillboardDataset for training, testing and validation (infront,
side) in number of images

consuming, the dataset was collected batch-wise in a certain period of time. Diversity of
the data is ensured by capturing images under different lightning conditions as well as
taking images from different angles. Furthermore, the images were captured not only
indoor, but also in outdoor settings. Figure |4.5 demonstrates a couple of samples of
the BillboardDataset. While the images 4.5b, |4.5¢/ and 4.5f represent samples taken in
outdoor settings, the images |4.5a), |4.5¢ and 4.5d represent samples captured in indoor
settings. Important to note is that the background of the images depends on the metro
station they belong to.

The image samples from the BillboardDataset are categorized into two main groups.

There exist image samples taken with a front-on view of the billboard such as the sample
images in [4.5d| and [4.5f in Figure [4.5 Additionally, there are image samples captured
from a side angle i.e. images with a profile view or side view of the billboard (see images
4.5a, 4.5b, |4.5¢, 4.5e in Figure 4.5). Moreover, in both of the categories, there exist

images depicting a single billboard as well as images that show multiple billboard objects.

The sizes of the image samples in the BillboardDataset are: 3024x4032, 4128x2322 and
4032x3024 pixels. The whole BillboardDataset contains 4042 image samples of billboards.

The BillboardDataset is carefully split into three smaller datasets which are used for
training, testing and validation of the StefanNet model. The pie chart in Figure [4.6 and
Table 4.1| depict the separation of the BillboardDataset in percentage and number of
images respectively. The largest dataset is used for training of StefanNet and contains
2340 image samples (57% of the BillboardDataset). The dataset used for testing of
StefanNet contains 1002 image samples and represents 25% of the BillboardDataset. The
smallest dataset is used for validation of the model and contains 700 images samples
(18% of the BillboardDataset). Fifty percent of the images used in the validation dataset
(350 image samples) belong to the group of images with a front-on view of a billboard
object, whereas the other half of the validation images have a profile or side view of the
billboard objects.

Since developing a high performance model depends on correctly labeled data, the task
of labeling the collected data is an important part of the data engineering process. The
labeling of the image samples from the BillboardDataset is executed with the help of the
Labelme application [Labl6]. The labeling of a billboard object in an image captured
from a front-on angle is an easy task (see Figure 4.7). This is due to the fact that
the rectangle from the label matches the billboard object shape perfectly. In contrast,
labeling the images that have a side or profile view of the billboard object correctly posed
a certain challenge. Since the shape of the billboard is no longer a perfect rectangle, it
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Figure 4.6: Separation of BillboardDataset for training, testing and validation, in percent

(a)
Figure 4.7: Labeling images with frontal view of billboard objects

does not correctly match label shape. Hence we are left with two scenarios: the label
shape includes parts of the background or the label shape does not cover the whole
billboard image completely (see Figure 4.8). The question that remained was: "Which of
these two scenarios is the preferable one?". In this case, we chose the scenario in which
the label shape includes parts of the background as shown in Figure 4.9, because the
achieved results with this method were particularly high (for more details on the achieved
results see Chapter 6). Lastly, the labeling of billboard objects with little or no distance
between them was also a delicate task.

The label of an image sample is saved in an XML file and contains information about
the image sample such as: storage location of the image sample, size in pixels, number
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(a)

Figure 4.8: The challenges of labeling images with a side view of billboard objects. The
label in the image on the left contains parts of the background, wheres the label on the
image on the right does not cover the whole billboard object.

Stephansplatz

(a) (b)

Figure 4.9: The chosen method for labeling images with a side view of a billboard object
(label includes parts of the background).

of labeled billboard objects, label name, i.e. the class name and the coordinates of the
(possibly multiple) labeled billboard objects. The coordinates of a labeled billboard
object form a rectangle and are represented in the following format: [xmin, ymin, xmax,
ymax]. From the XML file a simple text file is created. The text file is named after the
image sample it corresponds to and contains only the coordinates of the labeled billboard
objects for the given image sample and their class. Eventually, the image sample together
with the labels of the image are used for training the CNN model StefanNet. The process
of training StefanNet is explained in Section [5.4.



4.3. Data augmentation

#train  #test #infront #side
number of samples 3300 1002 350 350
% of BillboardDatasetPlus 66% 20% ™% ™%

Table 4.2: Separation of BillboardDatasetPlus for training, testing and validation (frontal,
side) in number of images
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(a) normal image (b) augmented image

Figure 4.10: The effect of adding salt&pepper noise and a Gaussian blur to an input
image.

4.3 Data augmentation

As stated in Section 4.2, the data used during the training process of a CNN model are
of vital importance, as they have a tremendous effect on the performance capabilities
of the resulting convolutional neural network. The process of gathering and collecting
data can be very time consuming and expensive. In the cases where the data is limited
in size or difficult to obtain, the method of data augmentation proves to be useful. Data
augmentation takes an image dataset of limited size and artificially augments it by
performing various transformations on the images already provided [KSH12a]. Some of
the basic transformations which can be performed on images include: scaling, cropping,
rotation, illumination, contrast or a combination of any of them [KSH12a|]. Generally,
the techniques for data augmentation can be applied either during the data preprocessing
stage or during the training process in which they are integrated on the fly [KSHI12a].

Since during the process of creating the BillboardDataset, we also faced difficulties in
obtaining a sufficient amount of data, data augmentation techniques were employed to
artificially increase the number of billboard image samples. The original BillboardDataset,
as already explained in Section 4.2, contains 4042 samples. With the help of the data
augmentation techniques an extension of the BillboardDataset, called BillboardDatasetPlus
was created. In contrast to the BillboardDataset, the BillboardDatasetPlus is circa
25% larger and contains a total of 5002 billboard image samples. Similarly to the
BillboardDataset, the BillboardDatasetPlus is also split into three smaller datasets for
training, testing and validation purposes. Table 4.2 demonstrates the number of billboard
image samples used for each of the three datasets. Important to note is that the StefanNet
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Figure 4.11: An example of reducing the contrast of an input image.
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Figure 4.12: Examples of data augmentation techniques applied on the fly.

model was trained and tested on both: the BillboardDataset as well as the augmented
version BillboardDatasetPlus.

The BillboardDatasetPlus was created using two data augmentation techniques which
were applied during the data preprocessing stage. The first data augmentation method
which was applied represents a two-step approach and includes adding noise to the
images (“salt & pepper”) and then smoothing the images with the help of Gaussian
blurring. The “salt & pepper” noise is defined as sudden occurrences of black and white
pixels throughout the image. Moreover, the kernel size of the GaussianBlur filter is
5x5. The effect of this method can be seen in Figure 4.10, which depicts the pre and
post-application effects on a given input image. The second data augmentation method
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employed adjusts the contrast of the provided input image. This means reducing the
brightness of the input image by a factor of 30%. An example of the application of
reducing the contrast of the input image is shown by Figure |4.11. Furthermore, data
augmentation techniques were also integrated on the fly, during the training process of
StefanNet. The data augmentation methods which were integrated on the fly include
rotation, cropping and scaling the input images. An example of these techniques is
shown in Figure 4.12. Based on the collected data as well as the described processes and
techniques, the network StefanNet explained in Chapter 5, was developed and tested.
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CHAPTER

Implementation

5.1 Introduction

In this chapter the implementation of the client server application designed for automatic
billboard detection is presented and explained in detail. As discussed in Chapter |4,
the client is responsible for gathering and providing videos to the server, which in turn
performs automatic billboard detection on the provided video sequences. We begin this
chapter by providing an overview of the experimental test setup including the technical
details of the hardware and software components utilized. Afterwards, we focus on the
architectural design as well as the implementation details of the server side which is
primarily represented by StefanNet, a deep convolutional neural network implemented in
the MXNet framework. Furthermore, we provide a description of the most important
libraries and frameworks employed (including MXNet) and discuss their advantages.
The CUDA platform together with the cuDNN library are used for acceleration of the
GPU-based computing. The GPU is the main hardware component used for training
StefanNet. We proceed by reviewing the implementation procedure of the compression-
based quantization technique and highlight the effect this method has on deep neural
network models like StefanNet. The end of this chapter shifts its attention to the client
side of the system and discusses the implementation details of its use case. The client
side is represented as a lightweight Android application implemented in Android Studio.

5.2 Test setup

As the modern graphical processing units (GPU) have given rise and essentially enabled
the evolution of the field of deep learning, they are an inevitable hardware component
when it comes to deep neural network models [CWHHI4]. This is mainly due to the
massive number of matrix multiplications as well as weight adjustments that need to
be carried out during the process of training a neural network. As a result, in order to
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allow an execution of the training in a timely manner, it is crucial that some of these
(sub-) procedures are parallelized. This is enabled by the GPU as it contains a very high
number of threads [OHL™08]. The GPU used in our setup is the Nvidia Geforce GTX
1080 which contains 8 GB of memory. The core API for utilizing the GPU is CUDA,
which is also developed by Nvidia. In this master thesis, the CUDA version used is
9.0. Furthermore, the GPU-accelerated cuDNN library, which is specialized in training
deep neural networks on GPU is employed. The version of cuDNN library used in our
experimental test setup is 7.2.1. During the training process of the StefanNet model, the
GPU load was very high and the batch size configuration is 8.

The CPU configuration employed in our test setup is Intel® Core™ i7-7820HK @2.90GHz
and can be overclocked to 3.90GHz. During the training process, the data is stored on an
SSD with a 512GB memory in order to ensure fast and easy data access. All additional
data together with the trained models are stored on the HDD with 1TB storage available.
The RAM memory in the system is 32GB and the operating system used is Windows 10
64Bit.

For the implementation, we utilize Anaconda as a python distribution. From Anaconda,
the python language as well as many data science packages (libraries) are easily installed.
The version of Anaconda used in this master thesis is 4.5.10 and the python version is
2.7.16. The fundamental software employed in this master thesis is the MXNet framework
and the OpenCV library. MXNet is a framework that supports the python programming
language |[CLL™15]. Furthermore, it is used for designing, training and testing deep
neural networks. The MXNet version used in our setup is 1.2.0. Further details regarding
MXNet can be found in Section 5.4, OpenCV, on the other hand, is the goto library
when dealing with computer vision problems [CAPT12|. Additionally, OpenCV provides
computationally efficient functions for real-time computer vision. The version of OpenCV
employed in our setup is 3.4.2. Finally, the Android application is implemented in Android
Studio with version 3.0.1. Table |5.1a and Table |5.1b| summarize the most important
hardware and software (frameworks and libraries) used for the implementation of the
client server application for automatic billboard detection.

5.3 Architecture of StefanNet

Finding an optimal structure and architectural design of deep convolutional neural
networks is still an ongoing research topic (see [SZ14D], [HZRS15], [HZC17]). While
the latest state-of-the-art neural network architectures might perform well on a single
problem domain, they fail to achieve their top performance in the case of a slightly
different or even more specific problem domains. Sadly, as it turns out, there does not
exist a “one size, fits all” deep neural network architecture that would be a solution to
all of the Computer Vision related problem domains. Depending on the complexity of
the problem, the availability of data as well as the main task that needs to be executed,
the architecture of the neural network varies.

In this master thesis, for the task of automatic billboard detection in video sequences we
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Software Version
Windows 10 64bit Hardware Configuration
Anaconda 4.5.10 RAM 39GB

Python 2.7.15

HDD 1TB

CUDA 9.0

CuDNN 7.2.1 55D o12

MXNet 120 CPU  Intel® Core™ i7-7820HK @2.90GHz
OpenCV 349 GPU Nvidia Geforce GTX 1080 8GB

Android Studio 3.0.1 (b)

()

Table 5.1: Software and Hardware specification

propose a self-defined deep neural network model called StefanNet. The architecture of
StefanNet that we present is a result of the multiple experimental architectural decisions
that were carried out in the implementation phase. During the creation process of
StefanNet, we experimented with different structures, number of convolutional layers as
well as number of convolutional filters in each layer and investigated the impact of the
regularization layers and techniques. In order to find the best configuration of StefanNet
and enable it to achieve top results, we also explored and considered the effect each type
of layer has on the performance. As a result, StefanNet is a fully convolutional deep
neural network i.e. it is composed of convolutional layers only and does not contain
a single fully connected layer. The feature extractor of StefanNet is inspired by the
state-of-the-art deep convolutional network VGG [SZ14D] as it uses the same kernel size
3x3. Additionally, StefanNet employs SDD, as a real-time object detector. The StefanNet
neural network model contains 23 convolutional layers, 5 pooling layers of type max_ pool
and one global pooling layer. Furthermore, StefanNet utilizes Batch Normalization layers
and employs ReLU as its activation function. Lastly, the output layer of StefanNet is
characterized by a softmax function which provides the probability of the billboard class
together with the coordinates of the bounding boxes of the detected billboards. Figure
5.1  represents the architecture of the feature extractor of StefanNet.

5.3.1 Types of layers

In the following, we provide an overview over the layer types of StefanNet and discuss
the configuration of the hyperparameters of each layer in detail.

Input layer. The input layer of StefanNet is represented by a 2D input image of size
300x300 pixels. In addition to the input image, the label of the image (see Section 4.2
for more details) containing the bounding boxes of the billboards in the image, is also
provided to the network.

Convolutional layer. As stated earlier, StefanNet contains 23 convolutional layers.
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Figure 5.1: Feature extractor of StefanNet

The first 20 convolutional layers share the same values for the hyperparameters: kernel
size, stride and padding. The kernel size used in each of these layers is set to 3x3. In
these layers we also use zero-padding of size 1. The stride hyperparameter is equal for
all 23 layers and has a size of 1. The depth hyperparameter (number of convolutional
kernels per layer), however, varies between these 20 convolutional layers. The values used
for the depth hyperparameter in the first 20 convolutional layers are: 64, 128, 256 and
512. In contrast to the first 20 convolutional layers, the last three convolutional layers
are configured differently. In the last three convolutional layers we use 1024, 1024 and 1
as number of convolutional kernels (depth values) respectively. The kernel size employed
for these layers is 3x3, 1x1 and 1x1. Furthermore, we use zero-padding of size 6, 0, and
0. The reason for this clear separation between the convolutional layers is reviewed and
explained in detail in Section [5.3.2.

Batch Normalization layer. The batch normalization layer is utilized to perform
normalization of the data by mean and variance on each batch. Furthermore, the batch
normalization layers are configured to apply gamma scaling on the input data. Generally,
we include the batch normalization layer right after the convolutional layer and before
the activation function layer in order to maximize the performance gain of StefanNet.

Pooling layer. StefanNet contains 5 pooling layers of type max_ pool and 1 pooling
layer of type global pool. For the first four pooling layers the hyperparameter kernel size
is 2x2 and the stride is set to the value of 2. The fifth pooling layer has a kernel size 3x3
and stride of size 1. The last pooling layer has kernel size 7x7 and the type of this layer
is global pool.

Dropout layer. StefanNet contains 7 dropout layers with the drop coefficient configured
to 0.2. This means that every time a sample of an image is passed through the network
during training, 20% of the connections are dropped. Overall, the dropout layer helps to
reduce the overfitting of StefanNet and to decrease the amount of time necessary for its
training.

Output layer. The output of StefanNet is represented by a softmax function that
provides the final output of the network. Essentially, the output contains the percentage
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Figure 5.2: Block of StefanNet

of confidence of the billboard class and the four coordinates of the bounding boxes of the
detected billboard in the given input image.

5.3.2 Building blocks

The number of blocks that build up the structure of a network is an important architectural
decision that greatly impacts the overall performance of the network. The whole StefanNet
network is constituted of a total of five blocks. The fundamental component of a StefanNet
Block is represented by a so-called CBA (Convolution - Batch Normalization - Activation)
structure. After conducting several experiments, it has been concluded that four CBA
structures per StefanNet block provide the optimal performance of the network. Hence a
block of StefanNet is composed of four CBA structures plus an additional pooling and a
dropout layer.

Figure 5.2 represents the structure of a characteristic single block used in the StefanNet
network. Each block of StefanNet consists of four CBA structures consisting of a
convolutional layer with kernel of size 3x3 and padding of size 1x1 followed by a batch
normalization layer and a ReLU activation function layer. At the end of each StefanNet
block there is a dropout layer with drop coefficient of 20% and a pooling layer of type
max_ pool with both kernel and stride of size 2x2. All four convolutional layers that
belong to the same StefanNet block have the same number of convolutional filters. Since
StefanNet contains five blocks, the number of convolutional filters used for each block
in the order of appearance in the network is 64, 128, 256, 512 and 512. After the five
blocks, there are two more CBA structures in the network. The number of filters used in
the convolutional layers of these two CBA structures is 1024. The first CBA structure
has a convolutional layer with a kernel of size 3x3 and a padding of size 6x6. The second
CBA structure, on the other hand, has a convolutional layer with kernel of size 1x1 and
padding of size 0x0. Each CBA structure is followed by a dropout layer with a drop
coefficient of 20%. At the very end of the network there is a global pooling layer with a
kernel of size 7x7 and a convolutional layer with a 1x1 kernel in which the number of
convolutional filters is equal to the number of target classes. Lastly, the output layer is
represented by a softmax function which transforms all of the network activations into a
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Figure 5.3: Integration of SSD in StefanNet

series of probabilities.

5.3.3 Object detector

StefanNet employs SSD as object detector. SSD is integrated in StefanNet in the
16th convolutional layer (block 4) called “relub16” and in the 20th convolutional layer
(block 5) called “relub20”. Figure 5.3| depicts the integration of SSD in StefanNet. From
the convolutional layer “relub20” four stacks of convolutional layers are created. The
newly created convolutional layer stacks represent the building blocks of the SSD detection
module. Each stack consists of two convolutional layers with kernel size 1x1 and 3x3
respectively. The number of filters in each of these eight layers (four stacks with 2 layers
per stack) is 256, 512, 128, 256, 128, 256, 128, 256. The names of these layers correspond
to the following naming pattern: multi_feat . _conv_3x3 anchors (where x depicts the
number of the layer). Generally, these layers are used for generating the anchor boxes
and locating the appearance of the bounding box in the input image. Furthermore, from
the convolutional layer “relub16” two more convolutional layers with kernels of size 1x1
and 3x3 are created. These two layers help to improve the class prediction capabilities
of the network. Essentially, the newly generated convolutional layers from relub20 and
relubl6 together with the number of classes serve as input to the integrated module
for SSD detection. The output of the SSD detection module is then a list of outputs
containing the localization regression prediction, the classification prediction and the
generated anchor boxes. Further details about the process of object detection in SSD
can be found in Section [2.4.5.

In this section we provided an overview of the proposed deep neural network architecture
of StefanNet. Table 5.2 presents all layers of StefanNet along with their layer-specific
configuration parameters. Table 5.3, on the other hand, summarizes the most important
characteristics of StefanNet. In the next section, we proceed with elaborating on the
training process of StefaniNet as well as on the frameworks and libraries that were used
in the training phase.
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No. Name Type Pad Stride Filter shape Input size
1. Convl conv 1 1 3x3x3x64 300x300x3
2. Conv?2 conv 1 1 3x3x64x64 300x300x64
3. Conv3 conv 1 1 3x3x64x64 300x300x64
4. Conv4 conv 1 1 3x3x64x64 300x300x64
5. Dropl dropout coefficient = 0.2
6. Pooll max_pool 0 2 Pool 2x2 300x300x64
7. Convb conv 1 1 3x3x64x128 150x150x64
8. Conv6 conv 1 1 3x3x128x128 150x150x128
9. Conv7 conv 1 1 3x3x128x128 150x150x128
10. Conv8 conv 1 1 3x3x128x128 150x150x128
11. Drop2 dropout coefficient = 0.2
12. Pool2 max_pool 0 2 Pool 2x2 150x150x128
13. Conv9 conv 1 1 3x3x128x256 75x75x128
14. Conv10 conv 1 1 3x3x256x256 75x75%256
15. Convll conv 1 1 3x3x256x256 75x75%256
16. Conv12 conv 1 1 3x3x256x256 75x75%256
17. Drop3 dropout coefficient = (0.2
18. Pool3 max_pool 0 2 Pool 2x2 75x75x256
19. Conv13 conv 1 1 3x3x256x512 37x37x256
20. Convl4 conv 1 1 3x3x512x512 37x37x512
21. Convl) conv 1 1 3x3x512x512 37x37x512
22. Conv16 conv 1 1 3x3x512x512 37x37x512
23. Drop4 dropout coeflicient = 0.2
24. Pool4 max_pool 0 2 Pool 2x2 37x37x512
25. Convl7 conv 1 1 3x3x512x512 18x18x512
26. Conv18 conv 1 1 3x3x512x512 18x18x512
27. Conv19 conv 1 1 3x3x512x512 18x18x512
28. Conv20 conv 1 1 3x3x512x512 18x18x512
29. Dropb dropout coefficient = 0.2
30. Poolb max_pool 0 2 Pool 3x3 18x18x512
31. Conv21 conv 6 1 3x3x512x1024 16x16x512
32. Drop6 dropout coefficient = 0.2
33. Conv22 conv 0 1 1x1x1024x1024  16x16x1024
34. Drop6 dropout coeflicient = 0.2
35. Global _pool avg pool Pool 7x7 16x16x1024
36. Conv23 conv 1 1 1x1x1024x1 12x12x1024
37. Flattenl flatten 12x12x1
38. Softmax softmax classifier 1x1

Table 5.2: Layers of StefanNet
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Input size 300x300
No. convolutional layers 23
No. max pooling layers 5
No. global pooling layers 1
Feature extractor StefanNet
Object detector SSD

Table 5.3: Overview of StefanNet

5.4 MXNet

MXNet is an efficient open source deep learning framework specialized in training and
deploying deep neural network models |[CLLT15]. Developed by Apache, MXNet is
highly scalable, portable and flexible, and offers advanced support for GPU optimization
[Apal9]. The core language of MXNet is C++, however MXNet provides embedded
integration for several host programming languages such as Python, R, Julia, Scala,
Matlab, Java, Javascript and Go. The framework represents an approach that combines
both a declarative and an imperative programming paradigm, hence the name MXNet
(“miz - net”) |[CLLT15]. The MXNet library is very lightweight as its source code fits into
a single 50K line C++ source file with no further dependencies required |[CLL™15]. When
compared to the other state-of-the-art deep learning frameworks such as Tensorflow,
Theano, Caffe and Keras, MXNet has the advantage of successfully merging declarative
symbolic expressions together with high performance imperative tensor computations
ICLL™15]. Furthermore, MXNet runs extremely fast on any device and operative system
without setbacks. As a result, MXNet has been Amazon’s choice of deep learning
framework and is offered on its AWS cloud service [aws19]. Before explaining how we
employ the MXNet framework for the training process of StefanNet, we first provide
an overview of the core concepts of MXNet we utilize. The programming interface of
MXNet introduces several APIs including: symbol, ndarray and module [CLL™15].

5.4.1 Programing APIs for DNN

Symbol API. The Symbol API of MXNet is used to declare the computation graph i.e.
the neural network graph |CLL™15]. The concept of a Symbol in MXNet represents a
declarative multi-output symbolic expression [MXN19¢]. A symbol can be composed of
simple matrix operations such as addition or of more complex mathematical operations
[CLL™15]. The operators are allowed to take more than one variable as input and can
produce several output variables. Furthermore, a Symbol can be represented by a whole
neural network layer of any type. Figure |5.4 demonstrates the use of the Symbol API for
defining the variables data and label (lines 4-5) as well as for creating a convolutional layer,
a batch normalisation layer and an activation layer (lines 8-11). The most important
input parameters of the Convolution() function are: kernel which sets the kernel size, pad
which defines the size of the padding and num__ filters i.e. the number of convolutional
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mxnet mx
( ; ):
data = mx.symbol.Variable( )
label = mx.symbol.Variable( )
net mx. symbol. Convolution(
dataJ ( 2 )J ( J )J 2
net mx.sym.BatchNorm( net, 5
net = mx.sym.Activation( net, s

Figure 5.4: Symbol API

filters for the layer. The activation layer on the other hand, is identified by its type
which is specified in the act_type input parameter of the Activation() function. The
possible values for the act_type input parameter can be either relu, sigmoid, softrelu,
softsign or tanh. When evaluating a symbol, the free variables are bound with data and
the required outputs are declared [CLLT15]. Important to note is that the Symbol API
supports not only evaluation (“forward”) of symbols but also auto symbolic differentiation
(“backward”) |[CLL™15].

NDArray API. To make up for the gap between the declarative symbolic expressions
and the host language MXNet utilizes imperative tensor computation enabled by the
NDArray APT [CLL™15|. Essentially, an NDArray represents a multi-dimensional, fixed-
size homogeneous array [MXNI9d|. The NDArray API thus, provides a number of
functions for manipulating the shape, size and contents of NDArrays. Some of the
operators provided by the NDArray API are quite similar to the ones provided by
the Symbol API [MXN19d]. The main difference is, that the NDArray API utilizes
imperative programming and the Symbol API follows the declarative programming
principles [MXN19d]. However, both APIs can work seamlessly with each other and
mixing them is not forbidden [CLL™15]. The NDArray API also provides great support
for GPU acceleration.

Module API. The Module API represents a high level interface designed to perform
computations on Symbols [MXN19¢c]. The Module() function from the Module API takes
a Symbol as an input parameter and creates a Module [MXN19¢]. The most important
high-level computing functions of the Module API are the fit() and predict() functions
[MXNI9c]. The fit() function initializes the training process of the deep neural network
and will be further elaborated in Section 5.5, In contrast to the fit() function, the predict()
function computes the predictions of the network on new data. Apart from the high-level
fit() and predict() functions, in the Module API there also exist intermediate functions
that perform step by step computations. These include the forward(), backward() and
update() functions [MXNI19¢|. While the forward() function exhibits a forward pass of

True)
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mxnet mx
net = get_symbol_train(network, data_shape[1], num_classes,
nms_thresh, force_suppress,
nms_topk, min_neg_samples)
mod = mx.mod.Module(net, ( .), logger, ctx,

fixed_param_names)

mod. fit(train_iter,

val_iter,
MultiBoxMetric(),
valid_metric,
batch_end_callback,
eval_end_callback,
epoch_end_callback,
opt,

opt_params,
begin_epoch,
end_epoch,
mx.init.Xavier(),
args,
auxs,
True,
monitor)

Figure 5.5: Module API

the data through the network, the backward() function performs a backward pass and
calculates the gradient [MXNI9c]. The update() function then updates the parameters
using the default optimizer [MXN19¢]. Figure 5.5 demonstrates the way we utilized the
Symbol and the Module API. In line 8 the Symbol net representing the deep neural
network is declared. The Symbol net then serves as input to the Module() function which
creates a Module for the given Symbol (line 16). In line 22 the training of the deep neural
network is initiated with the help of the fit() function.

Data Loading API. Before the training process of a deep neural network model is
initialized, the data need to be preprocessed i.e. transformed in a way that corresponds to
the format MXNet supports. Apart from the Symbol, Model and NDArray APIs, MXNet
also provides a so-called Data Loading API that provides common utility functions which
ease the process of iterating and formatting data [MXNI9b]. The file format supported
by MXNet is called Record 10 [MXNI19b]. All Record IO files are named with a .rec
extension and have numerous advantages over plain image file formats. The Record IO
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files compactly pack and store the data for efficient read and write operations [MXNI9D)].
We use the Data Loading API in the way that we create a list of image samples from the
BillboardDataset together with their corresponding labels and pass them as an argument
to the im2rec() (“image to record”) function. The im2rec() function generates record files
from the provided input images which are later on used for training, testing and validation
of the deep neural network model [MXNI19b]. The iteration of the records is performed
with the help of the function ImageDetRecordIter() [MXNI19b]. This function also offers
the possibility for shuffling the data and applying data augmentation techniques on the
fly.

5.5 Training

For the implementation of the StefanNet neural network model, the MXNet SSD frame-
work [Zhal6] was employed. The MXNet SSD framework enables the creation of deep
neural network models with an integration to SSD as object detector. This section focuses
on the training phase of StefanNet and is divided into two subsections. We first provide
an overview of the hyperparameters used for the training and then elaborate the actual
training process of StefanNet in detail.

5.5.1 Hyperparameters

When dealing with a deep neural network like StefanNet, the key to a successful training
phase lies in the hyperparameters. Finding the most suitable values for the hyperparam-
eters is a task of critical importance for obtaining a high performance trained neural
network model. StefanNet uses the Stochastic Gradient Descent as the main training
optimization algorithm. Due to the hardware constraints, the batch size utilized for the
training process is configured to 8. Furthermore, during the training phase of StefanNet,
normalization of the RGB channels of all input images is applied. As a result, the
corresponding hyperparameters used for the RGB channel normalization mean-r, mean-g
and mean-b are set to 123, 117 and 104 respectively.

The hyperparameter of most crucial importance for the behavior of the training process
and the Stochastic Gradient Descent algorithm is the learning rate. This is because
the learning rate controls the speed of learning and with that it controls the velocity of
convergence and the ultimate performance of the network [DBL17]. There exist several
strategies for dealing with the learning rate parameter [CZJL15]. One of the simplest
possibilities includes having a fixed learning rate throughout the whole training process
[CZJL15]. However, changing the learning rate during the training process leads to
a better performance and is thus recommended [CZJL15]. In order to leverage the
possibility of changing the learning rate, MXNet offers schedulers [MXN19a]. Schedulers
are used to define the way of changing the global learning rate and are generally specified
per epoch or batch [MXN19a]. For the training of StefanNet we employ two kinds of
learning rate schedulers: a MultiFactor Scheduler and a Linear Scheduler [MXN19a].
The MultiFactor Scheduler follows a so-called stepwise decay schedule where the learning
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Figure 5.6: Schedulers used for the decay of the learning rate during the training of
StefanNet

rate is decreased by a certain factor at (not necessarily equally spaced) specified intervals
[MXN19a]. StefanNet is trained for 140 epochs. The initial learning rate parameter is
set to 0.004. With the help of the MultiFactor Scheduler, the learning rate is decreased
by a factor of 0.1 in epoch 80. In contrast to the sharp decrease of learning rate the
MultiFactor Scheduler performs, the Linear Scheduler allows for a much smoother and
continuous decay of the learning rate [MXN19a). From the initial learning rate of 0.004
in the first epoch, the Linear Scheduler smoothly reaches a learning rate of 0 in the last
140th epoch during the training process of StefanNet. Figure 5.6a and Figure |5.6b| depict
the learning rate decay per iteration performed by the MultiFactor Scheduler and the
Linear Scheduler.

Another important parameter that has an effect on the intensity of the training of a deep
neural network model is weight decay. The weight decay is a regularization term, that



5.5. Training

causes the weights of the network to exponentially decay to zero [HP89|[KH92]. In this
way the weight decay parameter prevents the weights of the network from getting too
large, and thus helps to reduce overfitting in general (see Section 2.3.4] for more details).
For the training of StefanNet the value of weight decay is set to 0.0005. Furthermore,
for the training process of StefanNet we also apply momentum with a value of 0.9. The
momentum helps the Stochastic Gradient Descent algorithm and the training process
in general as it helps to accelerate the SGD in the relevant directions and decrease
the number of oscillations [Rud16]. This is achieved by taking into consideration the
alignment of the directions of the past gradients to better estimate the next best direction
(momentum-based approach). The momentum acceleration is maximal when all past
gradients are aligned to the same direction [Rud16].

In order to control the evaluation of StefanNet during training, we also utilized non-
mazimum suppression. Basically, the non-maximum suppression technique has the task
of discovering and dealing with the detections with a confidence score lower than some
predefined threshold [HBS17]. The value for the non-maximum suppression hyperparam-
eter is set to 0.45. This means detections with a confidence score lower than 45% are
discarded, as they will only add noise to the training (learning) process of StefanNet.
Lastly, we employ an overlap (IoU) parameter with a value of 0.5 (50%) for the training
phase.

5.5.2 Training process

The training process starts by loading the record files which will be used for the training
of the deep neural neural network model StefanNet. In order to read a record file, an
iterator is defined with the help of the Data Loading API from MXNet. The iterator is
responsible for iterating over the images that are found in the record files for training and
validation. Furthermore, the symbol (see Symbol API in Section 5.4) i.e. the structure
of the StefanNet model is loaded and an executor is defined. The executor sets the
hardware device (such as CPU or GPU) that will be used for the training process of the
network and defines the structure of the data and the labels. Additionally, a module
(see Module API in Section 5.4) for StefanNet is created. Essentially, the module of
StefanNet is used for enabling the training of the network. The most important function
that initiates the training process of the network is the fit() function from the Module
API. The fit() function takes the hyperparameters explained in Section [5.5.1| as input.
These hyperparameters are also known as optimization parameters, as they serve the
purpose of optimizing the performance of StefanNet and the training process in general.
Lastly, the Xavier initializer [MXN19{] is used for initializing the weights of StefanNet.
The Xavier initializer [MXNI19{] initiates the weights with random numbers in the range
of [—¢, c], where c is calculated according to Equation 5.1/ [MXNI9{]. The ni, parameter
in Equation |5.1| represents the number of neurons feeding into the weights whereas the
nout parameter denotes the number of neurons the result is fed into. The flowchart in
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Figure [5.7 depicts the training process of StefanNet.

3
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¢ \/0.5 % (Nin + Nout) (5-1)

The resulting model of StefanNet consist of two files. The first file is a symbol file which
defines the structure of the layers of StefanNet in a JSON format. The second file is a
parameter file which specifies the weights for each of the layers. The extension of this file
is .param. The training process of StefanNet given the provided hardware and software
specifications (see Section 5.2) lasts circa 48 hours. Figure 5.8 shows the training curve of
the training process of StefanNet. The curve demonstrates that the training of StefanNet
runs very smoothly i.e. without drastic oscillations.
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5.6 Server side detection

For testing the performance of the StefanNet model on video sequences a python script
was implemented. The script takes a video file and a neural network model together with
its parameters as input and outputs the same video file with the integrated bounding
boxes of the detected billboards. The pseudocode of the algorithm is shown in the
Algorithm [5.1. The algorithm begins by creating a detector for the StefanNet model
in line 1. It proceeds by loading the video file in line 2. The video sequence is then
evaluated on a frame-wise basis. Hence, each frame is first resized to match the input
size of the StefanNet model (300x300 pixels). Afterwards, detection is performed on the
given resized frame (line 5). If a billboard object is detected in the given frame, the four
coordinates of the bounding box are stored in the bbs variable. Lastly, the frame together
with the bounding box (if any) are presented to the user (line 6). This iterative process
loops over all frames of the video.

Algorithm 5.1: Detect video
Input: video,network, prefiz, epoch, data — shape, thresh, num — class,
mean — pizels
Output: Video sequence with detections of billboards

[y

detector < get_ detector(network, prefix, epoch, data_ shape,
mean__pixels,mz.gpu(0), num__classes, thresh, True)
video < Load video sequence
for frame to video.end() do
image < resize(data__shape);
bbs < detect(detector,image, thresh);
vizulize__detection(image, bbs);
end

N O oA WN

5.7 Quantization

In order to further optimize and improve the performance of the StefanNet neural network
model, compression based quantization was applied. The application of the quantization

method was performed after the training phase of the StefanNet model was completed.

Basically, the method of network quantization helps to compress the neural network
model by decreasing the number of bits (or the bit-width) necessary for representing each
weight of the network [HMD15]. As a result, quantization forces multiple neural network
connections to share the same weight and with that, limits the number of effective
weights which require storing [HMD15]. At the end of the quantization process, the
shared weights are fine-tuned, without any loss of accuracy.

For StefanNet, we use quantization to decrease the number of bits for representing the
weights from 32-bit float to 16-bit float. The flowchart in Figure |5.9 represents the
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application process of the quantization for StefanNet. The process begins by loading the
trained StefanNet model. Then it iteratively takes each layer of the model and performs
a conversion of the data type (bit-width) to float16 in the given layer. Once the decrease
of bit-width was performed for every layer of the StefanNet model, the shared weights
are fine tuned. The fine tuning helps the model to regain its original accuracy. The
application of the quantization method resulted in a reduction of size as well as memory
overhead of StefanNet. Additionally, it provided a speed up of the computation process.
This enabled not only faster training of StefanNet, but also a significant increase in its
inference rate. Further details about the effects and benefits of the quantization can be
found in Chapter 6.

5.8 Android application

The Android application is implemented in Android Studio [Gool9] which is the state-
of-the-art IDE for developing and implementing Android applications. The programing
language used in Android Studio is Java or Kotlin. It offers a Gradle based build support
as well as comprehensive layout editor. The layout editor offers multiple layout preview
options such as Design and Blueprint (see Figure 5.10) [And19a]. Additionally it provides
a drag-and-drop feature that allows the users to easily select and position UI components
[And19a].

5.8.1 Components of an Android application

The two main components of an Android application are the layout and the activity
[And19d| [Andi9¢]. Generally the layout defines the structure of the user interface of the
application [And19¢|. The layout can be created in two ways. The first alternative includes
self-defining the Ul components in an XML file or using the Android Studio’s Layout
Editor to automatically build the XML file with the help of the drag-and-drop interface
[And19¢]. The second alternative for creating the layout of an Android application

70



5.8.  Android application

VideoApp

RECORD SHARE PLAY

(a) Design layout (b) Blueprint layout

Figure 5.10: Android studio design layout

involves programmatically instantiating the UI components at runtime [And19¢|. The
main advantage of the first alternative is that the it separates the presentation layer from
the activity code that controls it.

The elements of the layout are composed of objects that belong to either the View or
the ViewGroup object classes [And19e]. The objects belonging to the View class usually
draw something that the end user of the application can see or interact with [And19e].
Furthermore, the View objects are also known as widgets. Examples of subclasses of
the View class include the classes Button, TextView and VideoView. In contrast to
the View, the ViewGroup objects represent invisible containers that define and set the
layout structure for the View objects [And19e]. Typically, the ViewGroup objects are
called layouts. There exist several types of ViewGroup objects each of which provide
a different layout structure. Examples of ViewGroup objects include the layout classes
LinearLayout, ConstraintLayout and RelativeLayout.

The activity, on the other hand, serves as an entry point to the application’s interaction
with the end user [And19d]. An Android application typically has one main activity
which represents the first screen that appears when the end user opens the application
[And19d]. An Android application can have multiple activities and each activity can
start another activity. Essentially, the activity classes define the logic and the control
code for the Ul components introduced in the layout [And19d]. Each activity has a
certain number of methods that are called in a very specific order, on specific user actions
[And19g]. The methods can be overridden in order to change the way the application
reacts to specific conditions. When an activity is created, the method onCreate() is called
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[And19g]. This is where the layout for the activity is set with the help of the function
setContent View(R.layout.nameOfThe XML LayoutFile). Additionally, in this method, the
initialization of UI components such as buttons takes place. If one activity interrupts the
flow of another activity, the method onPause() is invoked. When the interrupting activity
finishes, the method onResume() is invoked. Furthermore, there also exist methods
like onStop(), onStart() and onDestroy() whose names are considered self-explanatory
[And19g].

In order to be available and used by the Android application, all activities together with
a couple of their most important attributes must be declared in the XML file manifest
called AndroidManifest.zml [And19d] [And19b]. Apart from the list of all activities, the
AndroidManifest file also contains specifications about the permissions, Java packages
and other linked libraries used by the application [And19b].

5.8.2 Video Application

The video application represents the client side of the client server system described
in Chapter 4.1. The video application is employed by the end-users in order to record
videos containing billboard objects. The videos are then transferred to the server side
(whose implementation is described above) for billboard object detection. In this section
we focus our attention on the implementation details of the video application and its
main building components.

The layout of the video application is fairly simple and very user-friendly. It contains
three buttons (View objects or widgets) for recording, playing and sharing a video
file. Furthermore, it contains a VideoView object which is used for displaying a video
file. The ViewGroup object or the type of layout utilized for the video application is
RelativeLayout. The RelativeLayout represents a ViewGroup object that displays child
View objects in relative positions [And19f]. This means that the position of each View
object of the layout (such as the buttons and the VideoView) is specified either relative
to its sibling objects (such as to the left or below View objects) or relative to the parent
area (such as aligned with the bottom, center, etc.) [And19{].

The video application has one main activity that defines the actions that the View
objects need to execute under certain conditions. The onCreate() method of the main
activity of the video application is provided in Figure [5.11l For each of the three buttons
an individual OnClickListener is defined with the help of the method setOnClickLis-
tener(OnClickListener) and the method onClick() is overridden. As a result, the Android
application executes the code (actions) defined in theonClick() method whenever the
end user clicks on the buttons. When the record button is clicked, an Intent is created
with the action set to “MediaStore., ACTION__VIDEO__CAPTURE”. Basically, an Intent
is a messaging object used to request an action from another application [And19¢]. In
this case, a request is sent to the MediaStore for the action of capturing a video. Figure
5.12b| depicts the onClick() action of the record button. When the play button is clicked,
the video content from the VideoView object is started (played). Lastly, when the share
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@0verride

protected wvolid onCreate (Bundle savedInstanceState) |
super.onCreate (savedInstanceState);
setlontentView (R.layout.activity video app main);
mRecordview = ([Button) findViewById(R.id.recordButtan);
mPlayView = (Button) findViewById(R.id.playButtaon);
mVideoView = (VideoView) findViewById(R.id.wvideoView):

mShareView = (Button) findViewBvId(R.id.shareButtan);

mRecordView. setOnClicklListener (new View.OnClickListener() {
#0verrids
public vold onClick(View view) |
Intent callVidecippIntent = new Intent():
callVideckppIntent.sethction (MediaStore. ACTION VIDEQ CAPTURE) ;
startRotivityForResult (callVidecApplIntent, ACTIVITY START CAMERA APF);

Figure 5.11: Android studio onCreate
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Figure 5.12: Video application

button is clicked an Intent for sharing the video content is created. The effect of clicking
the share button can be seen in Figure

In this section we described the implementation process and details of both the server
side and the client side of our proposed system for automatic billboard detection. We
reviewed the training process of StefanNet and described the application process of the
compression based method quantization. In the next section we present the results our
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system obtained on the task of billboard detection and compare them to our benchmarking
results.
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CHAPTER

Evaluation and Results

Based on the created datasets presented in Chapter 4| and the implementation process
described in Chapter 5| in this chapter we provide a detailed overview of the evaluation
and achieved results of our proposed system for automatic billboard detection. We
first describe the methodology used for testing, including the different configurations
of StefanNet as well as the configurations of the state-of-the-art neural network models
we employ as benchmarks. We proceed by presenting the test and validation results
which include the evaluation of both frontal and side view detection of billboard images.
Lastly, we finish this chapter by providing an evaluation of the effects and results of the
application of the quantization method.

6.1 Test methodology

For the testing purposes of our proposed system for automatic billboard detection
three different configuration models of StefanNet were created. Table 6.1 provides
an overview of the configurations of StefanNet. We distinguish between configuration
models A, B and C which mainly differ in the dataset they were trained on and in
the type of learning rate schedule they employed. The configuration model StefanNet-
A was trained on the BillboardDataset using a MultiFactor Scheduler. In contrast
to configuration model A, the configuration model StefanNet - B was trained on the
augmented dataset BillboardDatasetPlus and the learning rate was scheduled by a
MultiFactor Scheduler. Finally, the configuration model StefanNet - C' was also trained
on the BillboardDatasetPlus, but a Linear Scheduler was employed.

In order to be able to compare the results of StefanNet with the performance of the
current state-of-the-art neural networks, we chose four different neural network models
as benchmarks: ResNet [HZRS16], MobileNet [HZC™17|, VGG [SZ14b] and Inception
[AHYT17]. All of the chosen benchmark neural network models have been integrated
with SSD as their object detector. The integration of SSD in these networks has been
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Model Dataset Scheduler

StefanNet - A BillboardDataset MultiFactor
StefanNet - B BillboardDatasetPlus MultiFactor
StefanNet - C  BillboardDatasetPlus Linear

Table 6.1: Configuration models of StefanNet

performed in a similar fashion to the integration process of SSD in StefanNet explained in
Section 5.3.3. The benchmark neural networks have been trained on the BillboardDataset
and have the same configuration of the training hyperparameters as StefanNet. The
Stochastic Gradient Descent with an initial learning rate of 0.004, weight decay of 0.0005
and momentum of 0.9 have been used. Furthermore, a stepwise learning rate decay with
the help of a MultiFactor Scheduler has been employed. The values of the rest of the
hyperparameters can be found in Section [5.5.1. Important to note is that the achieved
results of the state-of-the-art neural networks and the StefanNet models presented below,
are provided in terms of the mean average precision (mAp) metric, the calculation of
which is explained in Section 2.5.2.

6.2 Results

The results presented in Table 6.2 show the overall test performance of the three configu-
rations of StefanNet and the state-of-the-art neural networks. We begin with evaluating
the performance of the three individual StefanNet configurations on the specified test data
explained in Section 4.2 As it can be seen from Table 6.2, the StefanNet configurations
B and C which were trained on the BillboardDatasetPlus, outperform configuration A
which was trained on the standard BillboardDataset. Furthermore, it can be observed
that for the test dataset the type of scheduler does not influence the overall mAp score as
both configurations B and C achieved 91% mAp despite their difference in the scheduler
employed.

The results in Table 6.2 also indicate that our two deep neural network model configu-
rations B and C outperform all state-of-the-art neural network models in terms of the
percentage of mAp achieved. With 91% mAp, the StefanNet models outperform the
best-performing state-of-the-art neural network ResNet by 0.3%. However, the StefanNet
models demonstrate a significantly faster inference rate of 40 frames per second, in
contrast to the ResNet’s 26 frames per second. This is remarkable considering that the
StefanNet models contain only 23 convolutional layers - significantly less than the 152
convolutional layers employed by ResNet. The best inference rate of 67 frames per second
was achieved by the state-of-the-art neural network MobileNet300 with an mAp score of
85.5%. We note that this inference speed is due to the depthwise convolutions that only
MobileNet implements.

Figure [6.1] demonstrates the Precision-Recall curves of the benchmark neural network
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Model Input shape # Conv layers mAp % FPS
Inception 512 22 88 22.5
ResNet 512 152 90.7 26
MobileNet300 300 28 85.5 67
MobileNet512 512 28 88.2 44
VGG16 300 16 89 45
StefanNet - A 300 23 90 40
StefanNet - B 300 23 91 40
StefanNet - C 300 23 91 40

Table 6.2: Test results

models and the best configuration of the StefanNet model. Both Figure 6.1 and the
results presented in Table [6.2| show that our StefanNet architecture achieves competitive
results and outperforms all benchmark neural network models considered on the task of
billboard detection.

6.3 Validation

The process of validation of the StefanNet model is divided into two large tasks: frontal
validation and side validation. The frontal validation consists of validating the StefanNet
as well as the benchmark neural network models on a dataset consisting of images that
have a frontal view of billboard objects. Similarly, the side validation task performs
validation of all neural network models using a dataset which contains image samples
with a side or a profile view of the billboard objects. Furthermore, we want to point
out that the image samples (frontal and side validation dataset) used for validation are
neither used for training nor for testing purposes.

6.3.1 Frontal view validation

Table 6.3| shows the results of the frontal view validation and Figure 6.2 presents the
corresponding Precision-Recall curves of all neural network models. As it can be observed,
there exists a noticeable difference in the performance considering the three configurations
of StefanNet. Similarly to the test results, out of the three configurations on the
frontal validation dataset, configuration A performed worst with an mAp score of 90.7%.
Interestingly, configuration C which was trained on the BillboardDatasetPlus using a
Linear scheduler performed best with an mAp score of 98%. Configuration C outperformed
the StefanNet configuration B by 1.3%, which was trained using a MultiFactor scheduler
instead.

When compared to the state-of-the-art neural networks, both configurations B and C
produced superior results. From the results in Table 6.3 it can be observed that the result
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Figure 6.1: Precision - Recall curves of all models on the test evaluation dataset

78



6.3. Validation

Model Input shape # Conv layers mAp %
Inception 512 22 90.5
ResNet 512 152 88.6
MobileNet300 300 28 89.7
MobileNet512 512 28 92.4
VGG16 300 16 96
StefanNet - A 300 23 90.7
StefanNet - B 300 23 96.7
StefanNet - C 300 23 98

Table 6.3: Frontal validation results

achieved by configuration C (98% mAp) exceeds the results of all benchmark neural
network models by at least 2%. On the other hand, the mAp score of 96.7% achieved
by configuration B outperforms the results achieved by the benchmark neural network
models by at least 0.7%. Out of all benchmark neural network models, VGG16 performed
best with an mAp score of 96%. Surprisingly, the benchmark neural network model
ResNet achieved only 88.6% mAp on the frontal validation dataset i.e. circa 10% less than
our best performing StefanNet model. We believe that the outstanding performance of
StefanNet - C is due to the employment of the Linear scheduler which smoothly decreases
the value of the learning rate during training. Additionally, we note that the increase in
training samples significantly contributes to the performance of configurations B and C
which outperform configuration A.

6.3.2 Side view validation

In a similar manner to the frontal view validation, we now present the results of the side
validation task. Table 6.4 shows the results of the side validation. As it can be seen
by the results in Table 6.4, the mAp score of all neural network models (including the
benchmark and the three StefanNet configurations) on the side validation dataset is lower.
We note that this is due to the increased complexity of the task of detecting billboard
objects in images which have a side or profile view of billboard objects as opposed to
detecting billboards in images which have a frontal view of billboard objects.

Even though the achieved results are lower in terms of mAp, the same performance
pattern can be observed in the three StefanNet configurations. The configurations C and
B outperformed the configuration A (72.6 % mAp) by achieving an mAp score of 82% and
80.5% respectively. Similarly to the results of the frontal validation, both configurations C
and B produced outstanding results outperforming the results of every benchmark neural
network model considered. The best-performing benchmark neural network model on the
side validation dataset is ResNet with an mAp score of 80%. Figure 6.3 depicts the side
validation Precision-Recall curves of all benchmark neural network models including the
best configuration model of StefanNet. Having configuration C achieve the best results,
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Figure 6.2: Precision - Recall curves of all models on the frontal validation dataset
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Model Input shape # Conv layers mAp %
Inception 512 22 74
ResNet 512 152 80
MobileNet300 300 28 68
MobileNet512 512 28 72
VGG16 300 16 78
StefanNet - A 300 23 72.6
StefanNet - B 300 23 80.5
StefanNet - C 300 23 82

Table 6.4: Side validation results

just proves that the Linear scheduler is more robust and produces better performing
models than the MultiFactor scheduler.

6.4 Quantization results

We applied the compression based quantization technique on our best-performing con-
figuration model of StefanNet - configuration C. The details of the application process
can be found in Section [5.7. After the application of the quantization method, the
bit-width necessary for storing the weights of the StefanNet network was reduced by half.
This was achieved by converting the type of the parameters from float32 to float16. We
also experienced a significant improvement in the training speed, which was increased
by a factor of 2. This is due to the fact that we were now able to set the batch size
of the quantized StefanNet model to 16. The application of the quantization method
also resulted in a decrease of the physical size of the StefanNet model. The size of the
StefanNet model was reduced by 30% from 90MB to 60MB. Furthermore, the inference
rate of the StefanNet model was increased by circa 10%, from 40 frames per second to 45
frames per second. These advantages were all achieved without substantial loss of the
high mAp scores of the model.

Figure 6.4 represents the Precision-Recall curves of the performance of the quantized
StefanNet model on the test and validation datasets. Furthermore, Table 6.5/ and Table
6.6 present the achieved results of the quantized StefanNet model together with the
achieved results of the benchmarks considered for comparison. As experienced by the
results shown in Table 6.5 the quantized StefanNet model still achieved the highest
mAp score of 91% on the test dataset. However, its inference rate has been enhanced
to 45 frames per second. Moreover, the quantized variant of StefanNet achieved an
outstanding performance on both validation datasets (see Table [6.6). With an 96%
mAp on the frontal validation dataset and an 85% mAp on the side validation dataset,
the quantized model of StefanNet outperforms the results of all state-of-the-art neural
networks taken into consideration. The exceptional performance of StefanNet on the
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Figure 6.3: Precision - Recall curves of all models on the side validation dataset
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Model Input shape # Conv layers mAp (test) % FPS
Inception 512 22 88 22.5
ResNet 512 152 90.7 26
MobileNet300 300 28 85.5 67
MobileNet512 512 28 88.2 44
VGG16 300 16 89 45
StefanNet-C (quantized) 300 23 91 45

Table 6.5: Quantization results on the test dataset

Model Input shape # Conv layers mAp (frontal view) mAp (side view)
Inception 512 22 90.5 74
ResNet 512 152 88.6 80
MobileNet300 300 28 89.7 68
MobileNet512 512 28 92.4 72
VGG16 300 16 96 78
StefanNet-C (quantized) 300 23 96 85

Table 6.6: Quantization results on the validation datasets

test and validation datasets proves that StefanNet performs on par with the current
state-of-the-art networks. In fact, StefanNet outperforms the benchmark networks in
every evaluation category which confirms that the StefanNet architecture is the most
suitable for the task of automatic billboard detection.

In this section we presented the three different configurations of StefanNet and evaluated
their performance on the test and validation datasets. Furthermore, we presented an
overview of the state-of-the-art neural network models considered as benchmarks and
performed a comparison of their performance to the one achieved by StefanNet. We also
reviewed the benefits and results of the application of the method quantization on the
best model of StefanNet. In the next section we will summarize and conclude the master
thesis by highlighting all of the contributions and accomplishments as well as the future
work to come.
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CHAPTER

Conclusion

In this chapter, I present the main contributions and achievements of this master thesis.
First, we collected image samples containing billboard objects located throughout all
metro stations in Vienna, Austria. We then created two datasets called BillboardDataset
(4042 image samples) and BillboardDatasetPlus (5002 image samples) which represents an
artificially augmented extension of the original BillboardDataset. We then proposed and
implemented a client server system with a deep learning-based architecture for automatic
billboard detection. This included the development of the client side which is represented
by a lightweight Android application used for gathering video data streams and sharing
them to a cloud environment. On the other hand, the implementation of the server
side was executed in the MXNet framework and its main task encompassed the design
and implementation of StefanNet, a self-defined deep neural network model developed
specifically for billboard detection. After the training of StefanNet, we performed a
thorough analysis and evaluation of its performance. For the evaluation, we considered
four state-of-the-art deep neural network models as benchmarks which were trained and
used for comparison purposes. Lastly, we implemented and evaluated the benefits of the
application of the compression-based quantization technique on StefanNet.

On the task of billboard detection, the best configuration of our StefanNet model achieved
91% mAp on the test dataset. It achieved 98% mAp on the validation dataset containing
images with a front view of billboard objects and 82% mAp on the validation dataset
containing images with a side view of billboard objects. The inference rate of the
StefanNet model reached 40 frames per second. The quantized version of this model
achieved the same mAp score on the test dataset. However, it achieved 96% mAp on
the frontal validation dataset and 85% mAp on the side validation dataset. Additionally,
the quantized version of the StefanNet model reached an inference rate of 45 frames per
second. In comparison to the considered benchmark neural networks ResNet, MobileNet,
Inception and VGG16, both the StefanNet model and the quantized version of the model
produce superior results and outperform the state-of-the-art neural network models on the
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test and the validation datasets. For the frontal view validation of the models, StefanNet
with only 23 convolutional layers outperformed the deepest state-of-the-art neural network
ResNet-152 by 10%. Compared to the other models StefanNet outperformed VGG16 by
2%, Inception by 8% and MobileNet by 6% on the images with frontal view. For the side
view evaluation StefanNet outperformed ResNet-152 by 2%, VGG16 by 6%, Inception
by 9% and MobileNet by 10%. This confirms that the architecture of StefanNet is the
most suitable for the specific problem domain of automatic billboard detection in video
streams.

As the current system for automatic billboard detection focuses only on detecting
billboard objects which are located throughout the metro lines, possible future work
includes extending the problem domain to billboards which are located throughout the
city. This would mean extending the size of the two datasets BillboardDataset and
BillboardDatasetPlus with image samples taken from various billboards and different
billboard shapes which can be found throughout Vienna. Furthermore, other data
augmentation techniques can be explored to artificially increase the number of image
samples. Another possibility includes further improvement of the inference rate of the
StefanNet model. This could be achieved by integrating depthwise convolutions in the
StefanNet model instead of the normal convolutions the current model implements.
Additionally, the quantization process can be optimized to compress the model even more
and reduce the bit-width necessary for storing the weights of the network into int8 values.
Moreover, analysis of other compression based methods like pruning can be performed
and applied to the StefanNet model. Finally, the StefanNet model could be used within a
greater scope in the area of augmented reality, such as targeted (personalized) advertising.
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