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ABSTRACT: Infrastructures made of reinforced concrete such as e.g. tunnels and bridges, must with-
stand exceptional loads, caused by earthquakes, car impacts, accidential blast loads, etc. The latter two 
belong to the high-dynamic loading regime where strain rates are typically larger than 1/s. In this regime, 
the strength of concrete specimens increases significantly with increasing loading rate. The reason for 
this strengthing effect is still debated. This provides the motivation for the present contribution which 
is devoted to the analysis of high-dynamic compression tests on cement pastes, mortars, and concretes. 
An elasto-brittle model for high-dynamic strengthening is employed, which was proposed by Fischer 
et  al.  (2014) and extended towards consideration of the scatter of the quasi-static strength values by 
Binder et al. (2017). The aim of the present contribution is twofold. At first, the quantitative assessment 
of the predictive capabilities of the described model is extended towards consideration of experimental 
data from Hao & Hao (2013). Secondly, the question is tackled how to represent high-dynamic strength 
values of different materials (cement pastes, mortars, and concretes) in one diagram, such that a mean-
ingful direct comparison becomes possible. The latter goal is achieved by comparing two independent 
measures of the increase of the compressive strain during the failure process of a specimen: the first one 
refers to the measured Dynamic strength Increase Factor (DIF), the quasi-static strength, and Young’s 
modulus and the second one to the the strain rate, the characteristic crack propagation length, and the 
crack propagation speed.

significant in the high dynamic testing regime, 
where strain rates are typically larger than 1/s.

The available experimental database has 
resulted in several modeling attempts. The CEB-
recommendation (1993) as well as the models of 
Tedesco and Ross (1998) and of Grote et al. (2001) 
provide empirical formulae for the high-dynamic 
compressive strength of cementitious materials. 
Mihashi and Wittmann (1980) as well as Bažant 
et al. (2000) have developed models based on the 
assumption that micro-cracking depends on the 
strain rate. Cotsovos and Pavlovic (2008), Li and 
Meng (2003), and Gary and Bailly (1998) have 
attributed the strength increase with increasing 
strain rate to inertial confinement which is a struc-
tural effect. Fischer et al. (2014) related the dynamic 
strength increase to the quasi-static strength and to 

1 INTRODUCTION

Current safety standards demand that tunnels and 
bridges must withstand exceptional load cases such 
as impact and blast loads. The latter may result 
from traffic accidents, e.g. from cars crashing into 
a tunnel lining, or from the detonation of so-called 
Improvised Explosive Devices (Ngo, Mendis, 
Gupta, & Ramsay 2007, Solz & Ruiz-Ripoll 2016). 
This provides the motivation to investigate con-
crete subjected to high-dynamic loading.

It was shown in many high-dynamic experi-
ments that the strength of cementitious materials 
increases with increasing loading rate, see, e.g., 
(Bischoff and Perry 1991, Gary and Bailly 1998, 
Grote et al. 2001, Tedesco and Ross 1998, Xu 
et al. 2012, Zhang et al. 2009). This strengthening is 
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the duration of the failure process, lasting from the 
start of crack propagation to the final disintegra-
tion of the tested specimen. Thereby, it was consid-
ered that loading of the specimen increases during 
the evolution of the failure process. The load level 
reached at the end of the failure process is the high-
dynamic strength of the tested specimen.

The aim of the present contribution is twofold. 
At first, the exemplary validation of the model by 
Fischer et al. (2014) is extended towards considera-
tion of experimental data from Hao & Hao (2013). 
Secondly, the question is tackled how to represent 
high-dynamic strength values of different materi-
als (cement pastes, mortars, and concretes) in one 
diagram, such that a reasonable direct comparison 
becomes possible.

The present paper is structured as follows. Sec-
tion 2 contains a brief overview over the necessary 
prerequisites for the present analysis. Section  3 is 
devoted to the assessment of the predictive capabili-
ties of the investigated DIF model. Section 4 estab-
lishes the sought direct compability of high-dynamic 
strength values of different cementitious materials. 
Section  5 contains a summary and conclusions. 
Throughout the entire manuscript, a positive sign 
in mathematical expressions relates to compression.

2 ELASTO-BRITTLE PREDICTION OF 
HIGH-DYNAMIC STRENGTH, BASED 
ON QUASI-STATIC STRENGTH DATA

In this section, the developments of Fischer 
et al. (2014), Pichler et al. (2014), and Binder 
et al. (2017) are briefly summarized. The respective 
elasto-brittle model for the dynamic increase fac-
tor (DIF) of the compressive strength of cementi-
tious materials was derived, based on the following 
considerations:

• Cracking is considered to start also under high-
dynamic loading, once the quasi-static strength 
is reached.

• The failure process of the specimen starts at the 
onset of cracking and ends once the first crack 
splits the specimen such that it disintegrates into 
pieces.

• During the failure process, it is possible to fur-
ther increase the loading.

• Cracks are considered to propagate along nano-
scopic interfaces at a speed, estimated to be 
equal to the shear wave velocity υs.  Notably, 
υs  is only by a few percent greater than the 
Rayleigh wave speed, and the latter is frequently 
considered to be a good estimate of the crack 
propagation velocity (Freund 1998).

• The shear wave velocity can be quantified, based 
on known values of the shear modulus G and the 

mass density ρ, as υ ρsυυ G/ρG .  The shear modu-
lus, in turn, is related to the Young’s modulus E 
and Poisson’s ratio v as G E= /E +[ ( )].1( ν ))

• The loading reached at the end of the failure 
process, i.e. immediately before disintegration 
of the specimen, is equal to its high-dynamic 
strength.

This line of arguments has led to the follwoing 
closed-form expression of the DIF, defined as the 
dynamic-to-static strength ratio, see Fischer et al. 
Fischer et al. (2014).
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In Eq.  (1), fdyn, fstat, �ε,  and lc stand for the 
dynamic strength, the quasi-static strength, the 
strain rate, and the relevant crack propagation 
length. In the context of elasto-brittle modeling, 
the products E �ε  and lc sl /υ  can be interpreted as 
the elastic stress rate and the duration of the fail-
ure process, respectively.

2.1 Uncertainty regarding the position of crack 
nucleation

The crack length, lc, is equal to the distance along 
which a crack must propagate in order to split 
the specimen. Therefore, lc depends on the geo-
metrical properties of the tested specimen and on 
the (a priori unknown) position at which the first 
crack nucleates. Lack of knowledge of the latter is 
a source of uncertainty. Still, considering that axial 
splitting is the typical failure mode under uniaxial 
compression, lc is bounded as follows:

• The smallest value of lc is obtained, if  the crack 
nucleates in the middle of the specimen, such 
that both crack tips have to propagate along 
half  of the specimen height. Therefore, the lower 
bound is given as lc = h/2.

• The largest value of lc is obtained if  the crack 
nucleates right at one of the interfaces between 
the specimen and the adjacent load application 
system, such that the crack tip has to propagate 
along the total height of the specimen. There-
fore, the upper bound is given as lc = h.

2.2 Uncertainty regarding the quasi-static 
strength

As regards quantification of the statistical scat-
ter of the quasi-static strength, see fstat in Eq.  (1), 
the estimation of statistical quantiles is desirable. 
Unfortunately, this is often impossible, because 
experimentalists frequently only communicate the 
mean value of the quasi-static strenght. As a remedy, 
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Binder et al. (2017) combined the statistical scatter 
considered by Eurocode  2 (EN 1992-1-1 (2011)), 
which refers to a Gaussian distribution, with quan-
tiles of a corresponding lognormal distribution.

Eurocode  2 defines the characteristic strength 
for ultimate limit state design as the 5%-quan-
tile of the strength distribution. Concerning the 
compressive strength of concrete, the 5%-quantile 
is set equal to a value which is by 8 MPa smaller 
than the mean strength determined by laboratory 
testing. Considering a Gaussian distribution, this 
approach is related to a standard deviation of 
the uniaxial compressive strength amounting to 
ˆ 4 865s MPaˆ 4 865= . .865 MPa4 865

A lognormal distribution appears to be more 
appropriate to describe the statistical properties 
of the compressive strength, which is a strictly 
positive quantity. In order to convert the standard 
deviation from Eurocode  2 to the one from the 
envisioned lognormal distribution, it is proposed 
to set the 5%-quantile of the Gaussian distribution 
equal to the 5%-quantile of the lognormal distribu-
tion. Denoting the value of the mean strength from 
the experiments as f̂  and the standard deviation 
of the Eurocode as ˆ,s  the proposed approach from 
Binder et  al.  (2017) yields the sought standard 
deviation of the natural logarithm of the quasi-
static compressive strength distribution as,

2
5 ( ) 2 ln2

% %55s
⎛ ⎞5ˆ
1 %s u
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where u5% = −1.645 is the value that cuts an area of 
5% of the standardized normal distribution, exhib-
iting a vanishing mean value.

Using the standard deviation of the natural 
logarithm of the quasi-static compressive strength 
distribution according to Eq. (2), any p-quantile 
of the lognormal distribution can be calculated 
according to the following standard relation:

( )ˆln( ) .)p p(f exp ln( ))(p (exp ln( ))(exp ln( ))(exp ln( ))(  (3)

In the following, the 5% and 95%-quantiles of 
the lognormal distribution will be used as upper 
and lower bounds of the quasi-static compressive 
strength. To this end, p in Eq. (3) is set equal to 5% 
and to 95%, respectively, noting that u95% amounts 
to +1:645.

3 QUANTITATIVE ASSESSMENT OF THE 
INVESTIGATED DIF MODEL

The investigated DIF model is applied to cement 
pastes, mortars, and concretes. In order to assess 

the predictive capabilities of the model, experi-
mental material was selected that provides the nec-
essary input for the model, such that no parameter 
needs to be fitted.

3.1 Cement paste tested by Fischer et al. (2014)

Fischer et  al.  (2014) crushed cement paste cylin-
ders under quasi-static conditions and with a Split 
Hopkinson Pressure Bar (SHPB), see Table 1 for 
the experimental data. Corresponding model pre-
dictions agree qualitatively and quantitatively very 
well with the experimental data, see Fig. 1.

3.2 Mortar tested by Zhang et al. (2009)

Zhang et al. (2009) crushed mortar cylinders with 
two different sizes: one group exhibited h1 = 18 mm 
and ∅1 =  37 mm, the other one h2 =  25 mm and 
∅2 = 50 mm, see Table 2 for the experimental data. 
Corresponding model predictions agree both 
qualitatively and quantitatively very well with 

Table  1. Experimental data regarding high-dynamic 
strength testing by Fischer et al. (2014) from cement paste 
cylinders: fstat = 48.16 MPa; E = 14.24 GPa; G = 5.53 GPa; 
∅ = 10 mm; h = 6.6 mm; ρ = 1593 kg/m3.

fdyn [MPa] �ε  [s−1] fdyn [MPa] �ε  [s−1]

 74.15  700 132.73 1900
 42.01  200 164.39 2100
 74.41  500 156.36 2100
 48.60  500 133.73 2100
 65.40  500 152.64 2100
114.26 5000 143.78 1900

Figure  1. Comparison of increase of the model-
predicted high-dynamic strength according to Eq.  (1) 
with measured dynamic strength increase factors from 
Fischer et al. (2014), see Table 1.
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the experimental data, see Fig. 2 as well as Wang 
et al. (2017).

3.3 Concrete tested by Hao and Hao (2013)

In this contribution, exemplary model validation 
is extended to high-dynamic strength tests per-
formed by Hao & Hao (2013). They tested plain 
concrete cylinders with a diameter of  50 mm and 
a height of  80 mm, see Table 3 for the experimen-
tal data. Because they have neither reported the 
shear modulus nor Poisson’s ratio of  the tested 
concrete, the latter is estimated as the standard 
value of  concrete: v = 0.2. Corresponding model 
predictions agree both qualitatively and quanti-
tatively very well with the experimental data, see 
Fig. 3.

Table  2. Experimental data regarding high-dynamic 
strength testing by Zhang et al. (2009) from mortar cylin-
ders: fstat = 51 MPa; E = 23.1 GPa; v = 0.19; ρ = 2116 kg/
m3; (a) h  =  18  mm; ∅  =  37  mm, and (b) h  =  25  mm; 
∅ = 50 mm.

fdyn [MPa] ε  [s−1] fdyn [MPa] �ε  [s−1]

70.56  49  86.57 205
73.82  71  90.44 295
74.75  85  96.52 338
75.11 131  98.16 346
75.69 153  99.45 323
79.67 184 101.67 330
81.66 220 109.04 453
64.45  37  79.14 126
71.22  69  82.03 165
71.47  76  88.80 192
75.02  86  93.34 165
72.13  89  93.75 229
76.01 126  98.62 261
77.00 153

Figure 2. Comparison of increase of the model-predicted high-dynamic strength according to Eq. (1) with measured 
dynamic strength increase factors from Zhang et al. (2009): (a) h = 18 mm, and (b) h = 25 mm, see Table 2.

Table  3. Experimental data regarding high-dynamic 
strength testing by Hao & Hao (2013) from concrete 
cylinders: fstat = 35.5 MPa; E = 28.29 GPa; ∅ = 75 mm; 
h = 37.5 mm; ρ = 2201 kg/m3.

fdyn [MPa] �ε  [s−1] fdyn [MPa] �ε  [s−1]

36.57  1.31 10−4 68.52  99.4
34.44  1.35 10−4 58.93 103.8
53.25 65.4 63.55 131.3
45.09 70.5 64.61 135.6
53.96 79.1 62.84 141.9
46.51 79.2 90.53 163.6
57.16 90.2 81.65 177.3
65.68 98.7 81.65 175.4
61.77 99.1

Figure  3. Comparison of increase of the model-
predicted highdynamic strength according to Eq. (1) with 
measured dynamic strength increase factors from Hao & 
Hao (2013) see Table 3.
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4 COMPARISON OF HIGH-DYNAMIC 
STRENGTH VALUES OF DIFFERENT 
CEMENTITIOUS MATERIALS

The analyzed cement pastes, mortars, and con-
cretes are based on different elastic stiffnesses, 
quasi-static strengths, and specimen dimensions. 
This renders a direct comparison of the different 
test results a challenging task. In order to compare 
data from all analyzed high-dynamic testing series 
in one diagram, Eq. (1) is rearranged as 
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v

stff at cl

s

=) stat .
�ε  (4)

The left-hand-side of Eq. (4) can be interpreted 
as the increase of dynamic strain during the failure 
process. It is based on the measured DIF values, 
the quasi-static strength, and on Young’s modu-
lus. The right-hand-side of Eq.  (4) represents the 
increase of the dynamic strain, predicted by means 
of the strain rate, the crack propagation length, 
and the crack propagation speed.

When it comes to displaying the experimental 
data summarized in Tables 1, 2, and 3 according to 
Eq. (4), each one of the high dynamic compression 
tests is represented by two points: one obtained for 
lc = h/2, the other one for lc = h, see Fig. 4. All of 
these data points form a quite dense data cloud. 
This underlines that Eq. (4) is indeed well suited to 
compare high-dynamic strength data referring to 
different materials.

5 SUMMARY AND CONCLUSIONS

The model used in the present contribution con-
siders that the duration of a compressive strength 
tests consists of (i) the period of time until crack 
nucleation and (ii) the duration of the failure proc-
ess. In the quasi-static regime, the latter is negligi-
bly short compared to the former period of time. 
In the high-dynamic regime, however, both contri-
butions are of the same order of magnitude.

The good qualitative and quantitative agreement 
between model predictions and independent exper-
imental data corroborates the essential modeling 
assumptions that (i) cracking starts, independent 
of the loading rate, once the quasi-static strength 
is reached, (ii) cracks propagate approximately at 
a speed which can be estimated on the basis of the 
shear wave speed, and (iii) the maximum load of a 
specimen is reached, once the first crack has prop-
agated such that it splits the specimen.

It is concluded that the high-dynamic strength-
ening effect of  cementitous materials is directly 
proportional to the duration of the failure proc-
ess. This was exploited in the context of  develop-
ing a strategy that allows for a direct comparison 
of high-dynamic strength tests carried out on dif-
ferent cementitious materials. It is based on the 
comparison of two independent modes of quan-
tifying the increase of  the strain during the failure 
process.

As for bridges and tunnels, it is concluded 
that concrete will be damaged if  the quasi-static 
strength is reached or exceeded, no matter how 
fast the loading is applied. Therefore, infrastruc-
tural facilities must be inspected very carefully, 
even after non-catastrophic high-dynamic loading 
events.
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