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Der wohl größte Dank aber ergeht an meine Eltern, Helga und Engelbert Prager, welche mich

während meines ganzen Studiums unterstützt haben. Ohne sie wäre es mir nicht möglich
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Kurzfassung

Hintergrund: Auf Basis der Kinetischen Modellierung wurde ein Algorithmus entwickelt,

welcher die Quantifizierung physiologischer Vorgänge im Körper erleichtert. Dafür wer-

den mit Positron-Emissions-Tomographie (PET) aufgenommene Zeitaktivitätskurven (TAC)

eingelesen und auf verschiedene mathematischen Charakteristika untersucht. Hierdurch

bekommt man eine erste Einschätzung der Zeitkonstanten, welche für einen weiteren Kurven-

fit verwendet werden können. Methoden: Um Korrelationen zwischen den Zeitkonstanten

und den mathematischen Eigenschaften der TACs zu finden, wurden mit dem Programm

Excel etwa 1200 TACs simuliert. Ein Python Skript diente dabei der mathematischen

Analyse der TACs. Um verschiedene Modelltypen miteinander vergleichen zu können, wurde

ein t-Test durchgeführt. Ergebnisse: Signifikante Korrelationen konnten nur für die ersten

beiden Zeitkonstanten gefunden werden (rk1 > 0.954, rk2 > 0.799). Die restlichen Zeitkon-

stanten wurden daher über Konfidenzintervalle zum Niveau 95% geschätzt. Schlussfolgerun-

gen: Durch eine erste Abschätzung der Zeitkonstanten wird einerseits die Zuverlässigkeit von

Programmen zum Fitten von Kurven erhöht, andererseits können dadurch auch neue Tracer

in der Nuklearmedizin einfacher studiert und ihr Verhalten im Körper analysiert werden.

Abstract

Background: An algorithm was programed to facilitate the quantification of physiological

processes in kinetic modeling. In order to do so, it reads in a measured time activity curve

(TAC) acquired via positron emission tomography (PET), analyzes it for various mathemat-

ical characteristics and outputs values for the rate constants, which can be used for further

curve fitting tools. Methods: Around 1200 TACs with different rate constants and model

types have been simulated via Excel. These TACs were used to find correlations between

their rate constants and mathematical properties, which were calculated by a Python script.

Plus, a t-test was performed to see if there is a connection between different compartment

model types. The obtained information can then be used for the analysis of real measured

TACs, which yields good initial values for the rate constants. Results: Useful correlations

were found for the first two rate constants only (rk1 > 0.954, rk2 > 0.799). The assessment

of the remaining rate constants was done by providing two-sided 95% confidence intervals.

Conclusion: By assessing the rate constants, both the reliability of curve fitting programs

can be increased and new tracers in nuclear medicine can be studied more precisely.
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1 Introduction

Especially in the last decades the demand for imaging modalities in medicine has increased

enormously, as they allow to monitor the human anatomy, visualize organ functions and fa-

cilitate early diagnoses of diseases such as cancer. Furthermore, these imaging techniques are

important to assess the effectiveness of treatments performed. In nuclear medicine, Positron-

Emission-Tomography (PET) is a common imaging technique since it allows to study the

processes going on within the body and also to take a look at the human metabolism. For

this purpose, a so called tracer has to be administered to the patient.

The next step in medical imaging is the quantification of the data acquired by the imaging

device. In the case of monitoring via PET, the quantification is often performed by using ki-

netic modeling. To set up such a kinetic model, the concentration of the incorporated tracer

has to be recorded over time, leading to a so called Time Activity Curve (TAC) representing

the temporal behavior of the tracer. One subspecialty in kinetic modeling is compartmen-

tal modeling. By using compartment models to quantify the obtained data, one can assess

the processes going on within the body. This master thesis concentrates on compartmental

modeling only.

Apart from studying the tracer distribution and concentration, compartmental modeling is

also important when it comes to exploring new tracers, which have to be assessed and an-

alyzed. Thus, compartmental modeling is important for both quantifying human processes

and doing research in nuclear medicine.

1.1 Nuclear Medicine

In medical imaging, there are different methods in order to monitor the human anatomy,

its biological function or both of them simultaneously. Nowadays high-resolution 3D images

can be obtained. Among other imaging techniques there are Computed Tomography (CT),

Magnetic Resonance Imaging (MRI), PET, Single Photon Emission Computed Tomography

(SPECT) and imaging via ultrasound [1]. With each of them having its particular field of

application, the clinician has to decide which imaging modality to use. Fur further reading

of the modalities’ working procedure see [2].

A particular field in medical imaging is nuclear medicine. Here the imaging process is

performed by using radioactive materials, so called tracers, which are incorporated by the
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patient. All these tracers are subject to a certain decay process (for instance α decay, β+

decay, β− decay), which finally results in the emission of γ-photons. By detecting these pho-

tons, the location of the tracer and hence its track can be determined, which yields important

information about the processes going on within the human body. Nuclear medicine thereby

allows to gather information which cannot be drawn by conventional medical imaging [3].

With all the fields of application, nuclear medicine is indispensable when it comes to planning

an appropriate treatment (for example for patients suffering from cancer), making disease

prognoses and assessing the effectiveness of the treatment. Also, visualizing tumor progres-

sion may help the clinician to decide whether to stop, alter or continue the therapy [4, 5].

1.1.1 Imaging via Positron Emission Tomography

In oncology PET is a common imaging method since it allows to visualize the body’s

metabolism which is an essential indicator for evaluating tumor growth. A big advantage

when it comes to imaging via PET is the large number of available tracers. For a PET

scan especially low atomic-number positron emitting nuclides such as 11C, 15O and 18F are

suitable, which can easily be incorporated by the patient in order to visualize the behavior

of various body organs or tumors.

Usually a PET in combination with a CT (PET/CT) is used for three reasons: first, in

addition to the metabolic behavior gained from a PET scan, the anatomy recorded by a CT

can be visualized in parallel. This provides a better understanding and orientation for the

operator. The second important reason is the attenuation correction of a PET scan which

has to be carried out, since the attenuation of γ-photons is a main factor influencing and

worsening the image quality. This can easily be performed using a CT [6]. Another advan-

tage when using PET/CT is both its higher sensitivity and increased specificity compared

to imaging via PET or CT solely [4]. In figure 1.1 the images recorded via a CT and a PET

separately and in parallel are shown.

For imaging via PET, a tracer has to be administered to the patient. This tracer, also called

radiopharmaceutical, is a bonding of a stable molecule and a radioactive nuclide. The stable

molecule is responsible for undergoing normal metabolism, since often the chemical charac-

teristics of these radiopharmaceuticals are the same as for their nonradioactive forms and

the body thus cannot distinguish between these [7]. The radioactive nuclide is important

for subsequent imaging. In order to avoid concentration saturation of the radiopharmaceu-

tical and thereby prevent an alteration of chemical processes going on within the body, the
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amount of incorporated radiopharmaceutical has to be kept low, which justifies the term

”tracer” [8].

With the use of such radiopharmaceuticals it is possible to trace various physiological pro-

cesses [7]. Ideally, the tracer represents one particular physiological parameter such as blood

flow, tissue metabolism or molecular binding. Nevertheless, in reality there are other factors

influencing the tracer’s behavior, leading to a decreased relation between the tracer and the

process of interest. For a proper tracer, however, all external factors having an impact on

the tracer are negligible [8]. So a very important step in nuclear medicine is to decide which

tracer to use.

After a tracer is injected, it accumulates in certain body parts due to its physical, chemical

and biological characteristics. As the decay of the tracer in the end causes an emission of

γ-photons, the location of the tracer can be determined by means of a PET scan or other

imaging modalities. Depending on the desired application, different tracers are used for

imaging (see section 1.1.2).

There are many decay reactions a tracer can be subject to. One important decay mode

especially when using a PET is the β+ decay according to

A
ZX −→ A

Z−1Y + e+ + νe .

By that, a positron (e+) is emitted by the radionuclide which subsequently annihilates with

an electron from the surrounding tissue. This annihilation leads to the emission of two anti-

parallel γ-photons which can be recorded via a PET scan. The γ-photons hereby have an

energy of 511 keV each, which corresponds to the rest masses of the initial particles (electron

and positron) according to the mass-energy-equivalence E = (me+ + me−)c2 = 1022 keV

[9, 10].

Another mode of decay is the electron capture (EC), where the following reaction takes place:

A
ZX + e− −→ A

Z−1Y + νe .

The captured electron often originates from the innermost shell, since it shows the largest

probability for undergoing this process. This absorbed electron leads to a transformation of

a proton to a neutron, causing an emission of a neutrino. Although it is difficult to detect

the neutrino, also characteristic X-rays are emitted when the electron’s void is filled by an
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outer-shell electron. The energy of the γ-photons hereby is linked to the difference in binding

energy of the two electron states. This radiation can be detected and used for further image

formation. Since this reaction, as well as the β+ decay, is preferred by nuclides having too

much protons, the electron capture is considered as competing decay mode to the β+ decay

[11].

In nuclear medicine the decay by isomeric transition (IT) is important as well. A nuclear

isomer is referred to a metastable form of a nuclide due to excited nuclei [12]. An often used

metastable nuclide in nuclear medicine is 99mTc, where the ”m” in the superscript indicates

the metastable state of the atom. When this nuclear isomer falls back into its ground state,

energy in form of γ-photons is emitted according to

A
ZX

∗ −→ A
ZX + γ .

The next step after detecting the photons emitted by a tracer administered to a patient

is the image formation. In order to obtain a useful image of the patient, some kind of

reconstruction of the recorded data has to be performed. Often used methods for data

reconstruction are the filtered back-projection or an iterative reconstruction method based

on a maximum likelihood estimation [6]. It is important to keep in mind that in the process

of data reconstruction there are many factors the image has to be corrected for, such as

detector normalization, photon scattering and attenuation as well as the detector’s dead

time [13]. As already mentioned, the use of a CT in parallel to a PET allows to correct for

photon attenuation [8].

The spatial resolution of a PET is mainly limited by both the detector design and the lifetime

of the ejected positron: with an average lifetime of about 10−10 s the positron has a free mean

path length of a few millimeters resulting in a decreased spatial resolution of the PET scan

[14].

Nevertheless, imaging via PET provides high-quality 3D images of radioactivity, from which

the metabolic processes going on within the patient can be deduced [8].

1.1.2 Tracers used in Nuclear Medicine

As already mentioned above, there are many tracers used for imaging in nuclear medicine.

Since they strongly differ by their behavior within the body, the decision upon a certain

tracer depends on the intended application.
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Figure 1.1: Imaging via PET/CT: the left plot shows the image acquired by a CT, the
middle plot the corresponding PET scan and the right plot represents the fused image of a
PET/CT combination [15]

The fundamental working principle for all tracers is their bonding to a radioactive nuclide,

leading to the emission of γ-photons. By detecting these photons the tracer position can be

determined. The tracers used in PET indirectly emit two anti-parallel photon by a previous

β+ decay (11C, 15O, 18F, etc.). There are many positron emitting nuclides used in nuclear

medicine, each of them having different half-lives. In contrast when performing SPECT,

tracers undergoing isomeric transition (such as 99mTc) and by that emitting a photon are

suitable. In table 1.1 the most common nuclides with their respective half-lives, mode of de-

cays and daughter products are listed. Hereafter, some tracers often used in nuclear medicine

will be mentioned.

For radionuclides subject to β+ decay the two anti-parallel photons are detected via a de-

tector ring which is the main element in a PET scanner. By detecting these two photons,

information about their origin can be obtained. A PET scanner is often operated in 3D

mode, although 2D monitoring is possible as well.

One of the most common tracers used for PET is 18FDG (Fludeoxyglucose), which in its

chemical structure resembles a glucose. As malignant cells are characterized by an increased

metabolism and therefore a higher demand for glucose as well, the 18FDG primarily accumu-

lates in these cells. Once located within cells, 18FDG becomes phosphorylated and due to its

now altered structure it is not able to undergo further metabolism. This state is referred to

as metabolic trapped [16]. Due to its radioactivity, its localization and tracking is possible,

plus the extend of accumulation can be determined as well [17]. After undergoing β+ decay,
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the daughter product 18O is formed, by which further metabolism is now possible again. 18F

has a half-life of about 110 min, which makes 18FDG perfectly suitable for medical imaging.

Besides the increased glucose uptake of cancerous cells, their demand for choline, which

is an important component of cell membranes, increases as well. This property is taken

advantage of by using an analogue of choline, namely the radio-labeled 11C-choline. With
11C-choline being integrated into the membrane, cancerous cells can be identified. 11C-choline

for example is used for diagnosing brain tumors, prostate cancer and lung cancer [18]. The

radionuclide 11C is a positron emitting nuclide with a half-life of about 20 min. Apart from
18FDG and 11C-choline there are many other tracers which are used for PET.

In contrast, for radionuclides emitting photons directly, gamma cameras are used. These

cameras are equipped with a collimator ensuring to only detect photons coming from a

certain direction. Hereby it is possible to perform planar scintigraphy yielding 2D images.

When recording 3D images this imaging modality is referred to as SPECT.

An important tracer hereby is 99mTc-MAG3 (mercaptoacetyltriglycine), which is wielded for

renal tubular scintigraphy. By using 99mTc-MAG3 clear images can be drawn even if the

kidney function is decreased drastically [19]. Due to its low radiation exposure to the patient

as well as its low costs, 99mTc is a favored radionuclide in nuclear medicine. Thus, apart

from 99mTc-MAG3 there are many other radiopharmaceuticals labeled with 99mTc, which is

a metastable nuclide undergoing isomeric transition [7].

Another radiopharmaceutical suitable for SPECT will be ioflupane (123I). Ioflupane is used

for dementia and Alzheimer’s disease as well as for diagnosis of movement disorders such as

Parkinson’s disease. Ioflupane binds on certain nerve cell endings which are responsible for

dopamine transport. In the case of a loss of these nerve cells, the amount of bound ioflu-

pane will be decreased, which can be seen in the SPECT image. Ioflupane comprises of the

radionuclide 123I, which is subject to electron capture leading to an emission of a γ-photon

[20].

All these mentioned radiopharmaceuticals are merely a small selection of the numerous trac-

ers available and used in nuclear medicine.

1.1.3 Quantification

After visualizing a certain tracer by means of a PET scan or SPECT, the interpretation and

quantification of the obtained images is necessary in order to assess a physiological function
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Radionuclide Half-life Decay mode Decay Product
11C 20.4 min β+ 11B
13N 9.97 min β+ 13C
15O 2.03 min β+ 15N
18F 1.83 hr β+ 18O

67Ga 3.26 d EC, γ 67Zn
82Rb 1.27 min β+ 82Kr

99mTc 6.01 hr IT, γ 99Tc
123I 13.2 h EC, γ 123Te

Table 1.1: Most common radionuclides in nuclear medicine with their half-lives, decay modes
and decay products. EC stands for electron capture, IT for isomeric transition [1, 17].

of interest. Usually these particular functions are considered within a certain volume of

interest (VOI) [4]. When imaging via PET, in each recorded plane a two-dimensional region

of interest (ROI) is drawn. These ROIs subsequently are put together to form a three-

dimensional volume of interest (VOI). Since the clinician’s interpretation is very subjective,

the aim is to standardize such assessments by using generalized quantitative methods. Plus,

it turned out that the assessment of processes going on within the body (for instance tumor

response) is more precisely by using such quantitative methods [21].

Common methods for the quantification of images acquired via PET are the standardized

uptake value (SUV) and the fractional uptake rate (FUR), which are both called semiquan-

titative methods [22]. The SUV can easily be inferred from PET images and represents the

tracer uptake within a VOI with respect to the total dose administered to the patient [4]. It

is defined as

SUV =
CPET · w
Cinc

,

where CPET is the radioactivity within a VOI derived from the obtained images given in units

of MBq/g. w is the patient’s body weight in grams and Cinc is the incorporated activity in

units of MBq. Since the body weight is taken into account, the SUV is an index without

unit [5]. For a proper calculation of SUV, both the measured radioactivity CPET and the

incorporated dose Ainc have to be corrected for radioactive decay.

A big advantage of SUV compared to other quantitative methods is its simple and fast

calculation. Plus, the SUV provides a good assessment of therapy effectiveness and also

allows to make reliable prognoses even for more complex problems. The SUV thereby is
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a popular method for image quantification [22]. Up to now there are different approaches

on how to define SUV: the first one is called maximum SUV and uses the maximum tracer

concentration within a VOI. Another possibility for defining the SUV is by calculating the

mean concentration over a VOI. These two approaches for calculating the SUV are the most

common definitions found in literature [4].

For quantification using SUV, the measurement of the tracer concentration CPET should take

place late after tracer injection. Especially when in comes to 18FDG, this is important since

the amount of phosphorylated 18FDG within cells increases with time. By that, a delayed

image acquisition by PET is favored since the signal to noise ratio increases and thereby also

the SUV’s reliability will be enhanced [5].

Another method of quantification to be coarsely introduced is the fractional uptake rate

FUR. As well as the SUV, the FUR is a fast and simple approach for quantifying images

recorded via PET. It is given as

FUR =
CPET(t)∫ t

0
Cinc(s) ds

.

In contrast to the SUV, for the calculation of the FUR however the temporal behavior of the

input function Cinc(t) is needed. The input function defines the tracer concentration over

time measured in the blood or plasma supplying the tissue of interest. In order to measure

the FUR, the tracer concentration CPET has to be computed at a certain time point t only,

while the input function Cinc(t) has to be recorded over a time period. In the case of tracing

with 18FDG, the plasma curve is used as input function [22].

Since the FUR is given in units of 1/min, it can be compared with the rate constants appear-

ing in compartmental modeling (see section 1.2.1). While in compartmental modeling the

aim is to estimate the individual rate constants, the FUR simply quantifies the overall pro-

cess monitored via PET. Due to the FUR’s simplicity, however, it does not provide as much

information on the process going on within the human body as there is in compartmental

modeling [23]. It should be mentioned that, regardless of constants such as the clearance

rate, SUV and FUR can be considered proportional.

The problem when using SUV or FUR is that they only provide information about the

overall process recorded within a certain VOI. However, for more complex structures these

semiquantitative methods reach their limits. Another possibility for quantification are ki-
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netic models, which are described in the next section. Hereby the dynamic processes going

on can be examined, plus different locations and chemical states of the tracer can be taken

into account as well.

1.2 Kinetic Modeling

In contrast to the aforementioned semiquantitative methods, kinetic models allow to inves-

tigate the dynamic behavior of a tracer within a certain VOI. Even though a pixel-by-pixel

analysis is possible as well, performing kinetic modeling on a VOI reduces noise and hence

increases the model’s accuracy [22]. With the sequential images acquired via PET, the tracer

kinetics can be quantified. Therefore a model describing the tracer behavior is needed, by

which a certain physiological parameter of interest can be deduced [8, 24]. With this method

of parameter estimation, kinetic modeling can be seen as the last step in PET data quan-

tification before applying statistical analysis.

Especially in the last few years, kinetic modeling has become a more and more important

tool when it comes to the quantification of PET data. Reason for this development is its

increasing accuracy while keeping low or even reducing the data needed for the model. How-

ever, due to the complex structure of kinetic models, they are limited to medical institutions

having good computation tools on one hand and advanced imaging devices on the other

hand [22].

As already mentioned, a model is needed before one can investigate tracer kinetics. The dif-

ficulty hereby is to find a model, which is simple enough to allow relatively fast calculations

while describing the tracer kinetics properly. For setting up such a model, in the beginning

a complete model gets defined on basis of knowledge regarding the expected tracer behavior

within the VOI. Since this complete model is far too complex for parameter investigation

and thus unsuitable for general application, this model has to be simplified. The next step

is to test the simplified model for its reliability and if necessary to get modified. After the

model is adapted well enough, it now can be used for routine patient examination. A general

difficulty in proposing a useful model is to find a good compromise between its accuracy and

simplicity. While a very complex model tends to be impractical for general use, a simpler

model is less accurate [8].

After defining a proper model, the tracer behavior can be analyzed and thus the physiolog-

ical parameter of interest can be estimated. The tracer kinetics recorded by PET thereby
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can relate to chemical transformations within the tissue (for instance the phosphorylation of
18FDG), degradation or recombination back into the blood vessel. All these processes can be

described by individual functions over time. If the tracer is injected as a bolus, the functions

describing the behavior are usually given as exponentials [22].

After injecting a tracer, it gets delivered to the recorded VOI by arterial blood or plasma.

The temporal behavior of this supplier is referred to as input function. As the monitored

tracer behavior strongly depends on the available tracer amount, it is necessary to know

the underlying input function when it comes to kinetic models. For determining the input

function, different approaches are available. A straightforward method hereby would be the

measurement of arterial blood samples, which however is invasive and challenging to perform

when imaging small animals [25].

Another possibility is the use of population-based input functions, by which the difficulties

encountering in the measurement of the input function are reduced. Hereby a standard input

function is utilized, which comprises of population-averaged blood data. For normalization

and calibration this method still requires at least one blood sample [22, 26]. This technique

turned out to be sufficiently accurate for many applications. Nevertheless, since the nor-

malization factor depends on many parameters such as the patient’s weight, the injected

dose and the tissue recorded, a problem arising when it comes to population-based input

functions is to find the right calibration factor [27].

Another method for assessing the input function is its estimation from the performed PET

scan. Hereby the image derived input functions can be extracted directly from the acquired

data which in contrast to population-based input functions is completely non-invasive. For

this an artery in the PET images is used. For image derived input functions, however, the

data has to be corrected for spillover effects and more analysis has to be performed [22].

A general problem when imaging via PET is the partial volume effect (PVE). Especially

when monitoring an object smaller than the pixel size of the PET detectors, the object’s

intensity gets distributed over the whole pixel resulting in a decreased maximum intensity.

For instance, for a tumor smaller than the pixel size, the PVE leads to an underestimation of

its severity. But also for larger objects, the PVE results in a blurring of the image. Therefore

the PVE has to be corrected for, which can be done by using correction factors derived from

other imaging modalities such as MRI or CT [28].

In kinetic modeling there are different methods to assess the functions describing the tracer
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behavior within a VOI. The most common method is compartmental modeling. It can be

used to analyze complex processes including different chemical states and locations of the

tracer. It also provides information about tracer uptake and clearance within a tissue [8].

This master thesis will concentrate on compartmental modeling only. Apart from compart-

mental modeling there are other approaches in kinetic modeling such as the Patlak method

and the spectral analysis, which will not be discussed [22].

1.2.1 Compartmental Modeling

The most common implementation of kinetic models is the utilization of compartments.

Each compartment thereby represents a different tissue region, body organ or even a certain

chemical state of the tracer. By describing the tracer kinetics between all these compart-

ments, the tracer behavior within the body as well as biochemical transformations can be

investigated [8].

As an example, the behavior of the tracer 18FDG within the body can be described nicely

by compartmental modeling: since the body cannot distinguish between 18FDG and glucose,

both of them show the same transport across the cell membrane. From there they can either

go back to the blood or undergo phosphorylation. In the case of the latter process, the

phosphorylated 18FDG, in contrast to glucose, cannot enter the next step in glycolysis. So

it partly accumulates in the phosphorylated state and partly goes back to the blood by get-

ting dephosphorylated again. Especially in tumors the dephosphorylation takes place very

slowly leading to an increased tracer accumulation within cancerous cells [29]. Each chem-

ical state and location can be described by an individual compartment. The obtained data

from the PET scan thereby represents the tracer concentration in both the interstitial and

phosphorylated state plus a small fraction of the concentration within the blood as well. In

compartmental modeling the overall concentration in the tissue compartments is called Time

Activity Curve (TAC). The TAC represents the temporal behavior of the tracer within that

tissue. By measuring the input function and the tracer concentration within these states, the

tracer kinetics among the individual compartments can be estimated [22]. In the following

the input function will be referred to as B(t).

In the case of tissue modeling, compartment models are designed to describe the tracer

kinetics between different compartments. The concentration within the individual compart-

ments, however, is supposed to be spatially constant. This requirement of the tracer to be

homogeneously distributed over each compartment is called the ”well-mixed assumption”.
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Hence, no concentration gradients are taken into account. Another important assumption

in compartmental modeling is that the tracers do not reach any saturation level. To ensure

this requirement, the tracer has to be injected in negligible doses. As it is difficult to de-

velop a proper kinetic model for heterogeneous tissues including concentration gradients, for

this sort of problems other methods exist such as the spectral analysis or the multiple-time

graphical analysis [4, 24].

Mathematically speaking, the tracer concentration within each compartment can be de-

scribed by a function over time. After both setting up a proper model comprising of different

compartments and defining the possible tracer exchange among them, the tracer concentra-

tion within each compartment can be described by a first-order differential equation (see

next section 1.2.2) [24]. It is to mention that in the following master thesis, when speaking

of kinetic modeling, the approach by compartmental modeling is meant only.

1.2.2 Mathematical Description

Usually, when dealing with compartmental modeling, the blood is presented as an individual

compartment. It is responsible for the delivery of the tracer to the individual compartments.

In literature, however, when speaking of a two-compartment model for instance, the model

comprises of two tissue compartments plus the blood compartment. So the number of com-

partments follows the tissue compartments only.

The aim in compartmental modeling is to assess the tracer kinetics between all compart-

ments. For this, so called rate constants k have to be introduced. These rate constants

describe the fractional rate of change in compartmental tracer concentration and are usually

given in units of 1/min. In figure 1.2, 1.3 and 1.4 a one-, a two- and a three-compartment

model is shown with all possible rate constants ki. The blood compartment is designated

as B(t), while the other compartments are labeled as Ci(t). For a one-compartment model,

there are only two rate constants describing the in- and outflow of the single compartment. A

two-compartment model comprises of six rate constants in total and for a three-compartment

model there are twelve possible rate constants. However, in compartmental modeling usually

the number of rate constants taken into account is small (less than or equal to six) [8].

A further assumption in compartmental modeling is that the rate constants do not change

over time. Hence, the processes going on have to be in a steady state, which allows the

mathematical description by linear differential equations. Even if this assumption cannot be

entirely met, the events are thought of as as being steady if the changes over time are slow
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with respect to the data acquired over time.

As the rate constants define the processes going on, the goal in compartmental modeling

is to assess these rate constants by looking at the measured tracer concentrations acquired

by a PET. This would lead to an understanding of the overall tracer kinetics. However, a

proper estimation of the rate constants can be very difficult [8].

To deduce the set of differential equations describing a compartment model, the total inflow

and outflow of each compartment has to be characterized. The tracer flow from one compart-

ment CA to another compartment CB is governed by the product of the corresponding rate

constant kA→B and the tracer concentration within the source compartment CA. So the flow

from CA to CB can be written as CAkA→B. The net flow into a compartment is given by the

sum of all inflows minus all outflows regarding this compartment [8]. This leads to a set of

differential equations describing the concentration exchange between all the compartments

[24]. In equation (1), (2) and (3) the set of differential equations for a one-compartment, a

two-compartment and a three-compartment model are presented.

What has to be kept in mind is that tracer concentrations in blood are usually presented in

kBq/ml, while the concentrations within the individual compartments are given in kBq/g.

Hence, the rate constants describing the supply from the blood (or plasma) are given in units

of ml/(g·min), while the rate constants among the individual compartments have units of

1/min. To underline this fact, in literature sometimes the constants describing the exchange

between blood and tissue are capitalized [8].

As it is performed in most studies regarding compartmental modeling, this master thesis

as well takes into account only three compartments at most. For more compartments the

computation would get too complex, leading to an increase in statistical uncertainties and

hence a lowered accuracy of the model. Nevertheless, theoretically one can extend the model

to n compartments leading to n ordinary differential equations with each one describing

the net flow into a different compartment [24]. By adding reasonable constraints to certain

rate constants, the calculation of the rate constants will be facilitated leading to a better

understanding of the compartment model [8].

To get familiar with compartmental modeling, a look at the simplest model, namely a one-

compartment model, will be taken. A one-compartment model can be described by the

following differential equation:
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B(t) C1(t)
k1

k2

Figure 1.2: Kinetic model for a one-compartment model defined by two rate constants.

Ċ1(t) = k1B(t)− k2C1(t) . (1)

As one can see, the change in concentration for the compartment C1(t) is governed by the

inflow given as k1B(t) minus the outflow k2C1(t). Figure 1.2 shows a sketch of a one-

compartment model.

Using the Euler method for the corresponding homogeneous differential equation leads to

an exponential function Ae−k2t, where A is a constant. For solving the inhomogeneous

differential equation (1), the method of variation of constants can be applied, providing the

general solution following

C1(t) = k1B(t)⊗ e−k2t .

The operator ⊗ thereby designates the convolution [30] of two functions defined as

(f ⊗ g)(t) :=

∫ ∞
−∞

f(s)g(t− s) ds .

This example simply serves to get a first impression about compartmental modeling. In

section 2.2 the calculation for a two-compartment model including the intermediate math-

ematical steps will be presented more thoroughly. Another elegant method for solving the

inhomogeneous problem could be the Laplace transform [31]. As one can see, C1(t) is given

by a decreasing exponential function convolved with the input function B(t). Since the

tissue concentration C1(t) can be measured via PET and the blood concentration B(t) can

be deduced from blood samples or directly from the PET scan, the rate constants k1 and

k2 can be estimated via deconvolution or by other means. For models considering more

compartments the solution gets more complex as well.

In case of two compartments, the model can be described by the following set of differential

equations:
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B(t) C1(t) C2(t)
k1

k2

k3

k4

k5

k6

Figure 1.3: Kinetic model for a two-compartment model defined by six rate constants.

B(t) C1(t) C2(t) C3(t)
k1

k2

k3

k4

k5

k6

k7 k8

k9

k10

k11

k12

Figure 1.4: Kinetic model for a three-compartment model comprising of twelve rate constants
in total.

Ċ1(t) = k1B(t) + k4C2(t)− (k2 + k3)C1(t)

Ċ2(t) = k5B(t) + k3C1(t)− (k4 + k6)C2(t) .
(2)

Again, for both the first and second compartment, the total change in tracer concentration is

given by the inflow resulting from other compartments minus the outflow of the compartment

itself. The corresponding model is sketched in figure 1.3. As one can see, the number of

rate constants increases to six constants for a two-compartment model. Hence, solving a

two-compartment model is much more difficult than solving a one-compartment model.

The last model considered in this master thesis will be the three-compartment model, which

comprises of twelve rate constants in total (see figure 1.4). This model can be described by

using three linear differential equations:

Ċ1(t) = k1B(t) + k4C2(t) + k12C3(t)− (k2 + k3 + k11)C1(t)

Ċ2(t) = k7B(t) + k3C1(t) + k6C3(t)− (k4 + k5 + k8)C2(t)

Ċ3(t) = k9B(t) + k11C1(t) + k5C2(t)− (k6 + k10 + k12)C3(t) .

(3)
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However, it has to be mentioned that for this type of model not all rate constants are

taken into account since this would explode the model’s complexity. Instead, only a few rate

constants are considered while the other ones are assumed to be zero. As already mentioned,

the number of rate constants used for a model usually is less than or equal to six.

A special scenario in compartmental modeling is when the tracer is trapped within a specific

compartment. For example, this can be the case when the tracer is irreversibly bound in

a certain tissue [8]. Since in this case there is no escape from that compartment, the rate

constants defining its outflow have to be zero. Such models are referred to as trapped model,

otherwise a model is called open model. For a one-compartment model a trapped model is

present if k2 = 0, resulting in a differential equation according to

Ċ1(t) = k1B(t)

with the simple solution

C1(t) = k1

∫ t

0

B(s) ds .

A trapped two-compartment model is present if either k2 = k3 = 0 (tracer is trapped in the

first compartment) or k4 = k6 = 0 (tracer is trapped in the second compartment). For a

three-compartment model at least one compartment has to be characterized by no outflow

in order to be designated as trapped model.

Since some rate constants are set zero in case of a trapped model, further calculation and

estimation of the remaining rate constants will be facilitated. In contrast, for an open model

with no information about the tracer kinetics, the estimation of all rate constants is more

complicated.

To solve such compartment models, different approaches exist such as the equilibrium method

and the reference region method (see [8]). This master thesis, however, deals with a numerical

approach in order to estimate the rate constants. All the models taken into account in this

master thesis will be the trapped and open models for one, two and three compartments.
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2 Motivation

As aforementioned, there are different approaches in solving kinetic models. The first try

performed in this master thesis was done by solving the set of differential equations analyt-

ically (see section 2.1). Since the solution of the differential equation becomes very complex

already for a simplified two-compartment model, this result motivated the approach of solv-

ing the differential equations by numerical means.

The next task was to find constraints for the rate constants ki, which in consequence would

facilitate further numerical calculations. As the TACs comprise of some characteristics re-

garding their shape (see figure 3.6), one can infer conditions which have to be fulfilled in

order to guarantee a reasonably shaped TAC. However, as it turned out in section 2.2, no

useful information could be drawn from this mathematical description. Therefore the set of

differential equations had to be solved by numerical means with no available conditions for

the rate constants at all.

To estimate the rate constants numerically, a curve fitting algorithm is used (see section

2.3). A general drawback of all these algorithms is the dependence of their reliability on the

given initial values. Especially for a two- and a three-compartment model there are many

rate constants to be estimated. Thus, it is important to feed the optimizing algorithm with

proper initial values to enhance the outcome of the curve fit and hence to obtain a good

estimation of the rate constants. The main goal in this master thesis was to program an

algorithm which finds good initial values for the rate constants (see chapter 3).

2.1 Analytical Solution

This section deals with the analytical solution for a set of differential equations and shows

how complex the analytical solutions become with increasing number of compartments. For

simplification, a mono-exponential input function following B(t) = e−bt is assumed. For a

one-compartment model comprising of two rate constants k1 and k2, the analytical solution

for equation (1) is given as

C1(t) =
k1

k2 − b
(e−bt − e−k2t) .

Although this solution is simple, for a two-compartment it worsens dramatically. In case of

a trapped two compartment model with k4 = k5 = k6 = 0, the analytical solution for the
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individual compartments is given as

C1(t) =
k1

k2 + k3 − b
(e−bt − e−(k2+k3)t)

C2(t) =
k1k3

k2 + k3 − b

(
− e−bt

b
+
e−(k2+k3)t

k2 + k3

)
+

k1k3

b(k2 + k3)
.

The TAC concentration C(t), which can be seen as the sum of the two individual compart-

ment concentrations thereby can be written as

C(t) = C1(t) + C2(t)

=
k1

k2 + k3 − b

((
1− k3

b

)
e−bt −

(
1− k3

k2 + k3

)
e−(k2+k3)t

)
+

k1k3

b(k2 + k3)
.

With taking into account one more rate constant, namely k4, the complexity of the analytical

solution explodes. With the computer algebra system Maxima and the abbreviations ξ =

k2 + k3 + k4 and ζ =
√
µ2 − 4k2k4 one obtains

C1(t) =
1

k2k4 + b(b− µ)

[
e−

µ
2
t
(k1[−µk4 + b(k4 − k2 − k3)]

ζ
sinh

(ζ
2
t
)

− k1(k4 − b) cosh
(ζ

2
t
))

+ k1(k4 − b)e−bt
]

C2(t) =
1

k2k4 + b(b− µ)

[
e−

µ
2
t
(k1k3(2b− µ)

ζ
sinh(

ζ

2
t)− k1k3 cosh(

ζ

2
t)
)

+ k1k3e
−bt

]
.

Again, the measured TAC would be the sum of these two compartments. This example shows

that by taking into account one more rate constant, the complexity of the analytical solution

increases drastically. So for more complex compartment models and a more sophisticated

input function, the solution could hardly be calculated by analytical means. Therefore, this

master thesis concentrates on the solution via numerical techniques only.

2.2 Mathematical Examination for the Rate Constants

In the previous chapter the set of differential equations describing a kinetic model have

already been presented (see equations (1), (2) and (3)). The more rate constants ki considered

in the model, the more complex the mathematical equations. Nevertheless, one can solve

these differential equations non-explicitly by means of mathematical methods. Below, this
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is done for a two-compartment model only. One would hope the solution to reveal some

information about the rate constants, since some conditions have to be fulfilled as it will be

explained hereafter.

For a two-compartment model the set of differential equations is given as

Ċ1(t) = k4C2(t)− (k2 + k3)C1(t) + k1B(t) (4)

Ċ2(t) = k3C1(t)− (k4 + k6)C2(t) + k5B(t) . (5)

As one can see, equation (4) for Ċ1(t) also comprises of the term C2(t) and vice versa for

equation (5). Therefore the first step is to uncouple these equations. This, for example, can

be done by differentiating equation (4) and subsequently inserting equation (5) for the term

Ċ2(t):

C̈1(t) = k4Ċ2(t)− (k2 + k3)Ċ1(t) + k1Ḃ(t)

= k4[k3C1(t)− (k4 + k6)C2(t) + k5B(t)]− (k2 + k3)Ċ1(t) + k1Ḃ(t)

= k3k4C1(t) + (k4 + k6)[−(k2 + k3)C1(t)− Ċ1(t) + k1B(t)]

− (k2 + k3)Ċ1(t) + k4k5B(t) + k1Ḃ(t) .

By that one obtains a second-order differential equation with an inhomogeneity, hereafter

referred to as forcing function F1(t). For a better view, this equation can be rearranged:

C̈1(t) + (k2 + k3 + k4 + k6)︸ ︷︷ ︸
=:γ

Ċ1(t) + (k2k4 + k2k6 + k3k6)︸ ︷︷ ︸
=:ω2

0

C1(t) = (k1k4 + k1k6 + k4k5)B(t) + k1Ḃ(t)︸ ︷︷ ︸
=:F1(t)

.

The same can be done for the second differential equation (5), leading to a similar equation

with a different forcing function F2(t) only. With the abbreviations

γ = k2 + k3 + k4 + k6

ω2
0 = k2k4 + k2k6 + k3k6

F1(t) = (k1k4 + k1k6 + k4k5)B(t) + k1Ḃ(t)

F2(t) = (k1k3 + k2k5 + k3k5)B(t) + k5Ḃ(t)
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one obtains two uncoupled second-order differential equations with different forcing functions

F1(t) and F2(t):

C̈1(t) + γĊ1(t) + ω2
0C1(t) = F1(t) (6)

C̈2(t) + γĊ2(t) + ω2
0C2(t) = F2(t) . (7)

The corresponding homogeneous differential equation C̈i(t) + γĊi(t) + ω2
0Ci(t) = 0 with

i = 1, 2 is the same for both equations (6) and (7). To solve these equations, the Euler

approach Ci(t) = Aeλt is utilized, leading to

λ2
���Aeλt + λγ���Aeλt + ω2

0 �
��Aeλt = 0

λ2 + λγ + ω2
0 = 0

λ1,2 = −γ
2
± ξ

2
,

where ξ is given by ξ =
√
γ2 − 4ω2

0. The two possibilities for λ yield two individual functions

y1(t) = eλ1t = e(− γ
2

+ ξ
2

)t

y2(t) = eλ2t = e(− γ
2
− ξ

2
)t

solving the homogeneous differential equations. Since all the considered equations describing

the kinetic model are linear, the general solutions for the homogeneous differential equations

are given by a linear combination of those using the constants [32]:

Ch
1 (t) = A1y1(t) +B1y2(t) = A1e

λ1t +B1e
λ2t

Ch
2 (t) = A2y1(t) +B2y2(t) = A2e

λ1t +B2e
λ2t .

Hereby A1, A2, B1 and B2 are constants and the h in the superscript indicates that these are

the solutions for the homogeneous differential equations. The inhomogeneous equations (6)

and (7) with their forcing functions F1(t) and F2(t), respectively, can be solved by means

of the method of variation of constants, considering the constants A1, A2, B1 and B2 as

functions A1(t), A2(t), B1(t), B2(t) over time.
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By that, one obtains a system of equations according to(
y1(t) y2(t)

ẏ1(t) ẏ2(t)

)
·

(
Ȧi(t)

Ḃi(t)

)
=

(
0

Fi(t)

)
,

where the index i again represents the compartment considered [33]. The solution of this

system of equations is given by

Ȧi(t) =
1

λ1 − λ2

e−λ1tFi(t)

Ḃi(t) =
1

λ2 − λ1

e−λ2tFi(t)

and thus

Ai(t) =
1

ξ

∫ t

0

e−λ1sFi(s) ds

Bi(t) = −1

ξ

∫ t

0

e−λ2sFi(s) ds .

One can write the general solution for equations (6) and (7) as following:

C1(t) =
1

ξ

∫ t

0

eλ1(t−s)F1(s) ds− 1

ξ

∫ t

0

eλ2(t−s)F1(s) ds

=
1

ξ

∫ t

0

e−
γ
2

(t−s)
[
e
ξ
2

(t−s) − e−
ξ
2

(t−s)
]
F1(s) ds

=
2

ξ

∫ t

0

e−
γ
2

(t−s) sinh
(ξ

2
(t− s)

)
F1(s) ds (8)

C2(t) =
2

ξ

∫ t

0

e−
γ
2

(t−s) sinh
(ξ

2
(t− s)

)
F2(s) ds . (9)

By using the convolution operator ⊗, the solutions for C1(t) and C2(t) (equation (8) and

(9)) can be rewritten as

Ci(t) =
2

ξ

(
e−

γ
2
t sinh

(ξ
2
t
)
θ(t)

)
⊗ Fi(t)
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with θ(t) being the Heaviside function defined as

θ(t) =

0 , for t < 0

1 , for t ≥ 0 .

Since the upper integration limit in equation (8) and (9) is t, the Heaviside function θ(t) is

important in order to consider this integration limit. The lower limit is set zero, as for the

forcing function holds Fi(t) = 0 for t < 0. With the response function

X(t) =
2

ξ
e−

γ
2
t sinh

(ξ
2
t
)
θ(t) (10)

the solutions for C1(t) and C2(t) can also be written as

C1(t) = (X ⊗ F1)(t)

C2(t) = (X ⊗ F2)(t) .

With having these solutions for the first and second compartment, one can try to infer

some informations about the rate constants, as there are some important mathematical

characteristics which have to be fulfilled. More precisely, there are two main conditions

which have to be met by the individual compartments:

• By taking a look at real TACs (see figure 3.6), one can see that all these TACs are rather

smooth, except for statistical noise leading to a jagged curve. Hence, the argument

in the sine hyperbolic term in equation (10) needs to be real. Otherwise, in the case

of a complex ξ, the sine hyperbolic would transform to a sine causing a sinusoidal

oscillation within the TAC which is not reasonable.

Since the argument ξ in the sine hyperbolic is defined by ξ =
√
γ2 − 4ω2

0, its radicand

needs to be positive in order to guarantee a real ξ. By inserting the definitions of γ

and ω2
0, one obtains the following condition:

γ2 − 4ω2
0 ≥ 0

(k2 + k3 + k4 + k6)2 − 4(k2k4 + k2k6 + k3k6) ≥ 0

k2
2 + k2

3 + k2
4 + k2

6 + 2(k2k3 − k2k4 − k2k6 + k3k4 − k3k6 + k4k6) ≥ 0 . (11)

This inequality can now be rearranged for the rate constants k2, k3, k4 and k6:
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◦ Rearranging for k2: the inequality can be rewritten as

k2
2 + 2k2(k3 − k4 − k6) + k2

3 + k2
4 + k2

6 + 2(k3k4 − k3k6 + k4k6) ≥ 0 , (12)

which is only fulfilled for k2 being not located within the interval

k2 /∈ [k4 + k6 − k3 −
√
−4k3k4 , k4 + k6 − k3 +

√
−4k3k4] .

As all rate constants are supposed to be positive, the radicand −4k3k4 is nega-

tive, leading to two complex interval boundaries for k2. Graphically spoken the

quadratic function in equation (12) is positive for all values of k2. So there is no

real forbidden interval for k2, which would result in a negative value for ξ and by

that cause a sinusoidal oscillation within the response function X(t). Hence, ξ is

positive regardless of the rate constant k2 (see left picture in figure 2.1).

◦ Rearranging for k3: after rewriting inequality (11), one gets

k2
3 + 2k3(k2 + k4 − k6) + k2

2 + k2
4 + k2

6 + 2(−k2k4 − k2k6 + k4k6) ≥ 0 .

By solving this quadratic inequality for k3, one obtains the forbidden interval for

k3, where ξ would be negative and hence X(t) would comprise of a sinusoidal

oscillation:

k3 /∈ [k6 − k2 − k4 − 2
√
k4(k2 − k6) , k6 − k2 − k4 + 2

√
k4(k2 − k6)] .

For k2 < k6, the radicand again would be negative leading to complex interval

boundaries. In this case, ξ would be positive for all choices of k3 and therefore no

forbidden interval would exist similar to the previous outcome for k2.

In the case of k2 ≥ k6, the radicand now would be positive causing a real forbidden

interval for k3 where ξ would become negative. The lower interval boundary

k6 − k2︸ ︷︷ ︸
≤0

−k4 − 2
√
k4(k2 − k6)

is negative, as all individual terms are negative. One would hope the upper

interval boundary to be positive to obtain a feasible forbidden interval for k3.

Otherwise, the forbidden interval is completely located at negative values of k3
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Figure 2.1: Dependence of ξ on the rate constants k2 (left plot) and k3 (middle and right
plot). As one can see, ξ is positive for all values of k2. For the dependence on k3 it is
important to distinguish between the cases k2 < k6 (middle plot) and k2 ≥ k6 (right plot).
While for k2 < k6 the radicand ξ is positive for all values of k3, in the case of k2 ≥ k6 there
is a forbidden interval for k3 highlighted in the right plot. However, since this interval is
located in the negative range, no useful information can be drawn.

only, providing no useful restriction for k3. So it remains to check if the upper

boundary is positive:

k6 − k2 − k4 + 2
√
k4(k2 − k6)

?
> 0

(k2 + k4 − k6)2 < 4k4(k2 − k6)

k2
2 + k2

4 + k2
6 + 2k2k4 − 2k2k6 − 2k4k6 < 4k2k4 − 4k4k6

k2
2 + k2

4 + k2
6 + 2(−k2k4 − k2k6 + k4k6) < 0

(k2 − k4 − k6)2 < 0 .

Obviously this inequality is not fulfilled, since the left-hand term is positive due

to the square. Hence, in the case of k2 ≥ k6, a forbidden interval for k3 exists,

however, since this interval is located in the negative range (both boundaries

are negative), this interval only rules out negative values for k3 and therefore no

further information about k3 can be drawn. In figure 2.1 the dependence of ξ on

k3 is shown for the case k2 < k6 (middle plot) as well as for k2 ≥ k6 (right plot). In

the right plot the forbidden interval for k3 leading to a negative ξ is highlighted.

◦ Rearranging for k4 and k6: since k4 plays the same role as k3 and k6 the same as

k2 (see figure 1.3), rearranging for k4 and k6 would provide the same results as it

does for k2 and k3.
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In conclusion, the condition for ξ =
√
γ2 − 4ω2

0 to be real and thus γ2 − 4ω2
0 to be

positive does not yield any useful information for the individual rate constants, since

ξ is real for all positives values of k2, k3, k4 and k6.

• The other important factor which has to be considered in the response function (10)

is the interaction between the exponential and the sine hyperbolic term. While the

exponential term e−
γ
2
t causes a decrease, the sine hyperbolic sinh( ξ

2
t) is responsible for

an increase of X(t). By rewriting the sine hyperbolic term and omitting the factor 2
ξ

and the Heaviside function θ(t), which do not contribute to the overall shape of X(t),

one obtains the simplified response function X:

X(t) = e−
γ
2
t sinh

(ξ
2
t
)

=
1

2
e−

γ
2
t(e

ξ
2
t − e−

ξ
2
t)

=
1

2
(e−

1
2

(γ−ξ)t − e−
1
2

(γ+ξ)t) (13)

Since the response function must not explode, both exponential terms have to define a

decrease of X(t) and by that also of X(t). As the power in the second term e−
1
2

(γ+ξ)t

is negative due to the positive γ and ξ, this term causes a decrease anyway. What one

has to concentrate on is the first term e−
1
2

(γ−ξ)t. To guarantee a negative power for

this first term, γ must surpass ξ leading to the following condition:

γ > ξ

γ >
√
γ2 − 4ω2

0

��γ
2 > ��γ

2 − 4ω2
0

0 < ω2
0 = k2k4 + k2k6 + k3k6

The last inequality is fulfilled as all the rate constants are supposed to be positive,

hence the sum of the products is positive as well. Thus, both terms in equation (13)

define a decrease of X(t) and X(t), respectively.

The only case where the power in the first term transforms to zero is for a trapped

model with k4 = k6 = 0 (see section 1.2.2). Inserting these rate constants into ω2
0, one
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Figure 2.2: Shown are the different scenarios for the simplified response function X(t) (for
different values of ξ and γ leading to the solid and the dashed line). In the left plot both
exponential terms contribute to a decrease of X(t). The middle plot represents a trapped
model, where the response function converges to a certain level and the right plot shows the
forbidden case for X(t). Since all rate constants are positive, this will not be the case.

can easily see that ω2
0 = 0 and by that γ = ξ. In this case X(t) can be written as

X(t) =
1

2
(1− e−

1
2

(γ+ξ)t)

To analyze the temporal behavior of X(t), one let t go to infinity according to

lim
t→∞

X(t) = lim
t→∞

1

2
(1− e−

1
2

(γ+ξ)t) =
1

2
.

For a trapped model with k4 = k6 = 0 the response function X(t) = 2
ξ
X(t)θ(t)

converges to the constant value limt→∞X(t) = 1
ξ
. In contrast, for an open model both

terms in equation (13) cause a decrease of X(t). To sum up, the condition that X(t)

must not explode yields no information about the rate constants either. In figure 2.2

all three cases for the simplified response function X(t) are shown.

Above the attempt was made to solve a two-compartment model analytically. Although

the response function has to fulfill some conditions, no useful information about the rate

constants ki can be drawn. This is due to the fact that the initial assumption of the rate

constants to be non-negative already ensures that all other conditions are fulfilled already.

So, apart from the rate constants being ki ≥ 0, all the conditions providing a reasonable

shape of the response function do not yield any further information about the rate constants.

As the attempt of solving a kinetic model analytically is a dead end, another approach has
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to be performed. This leads to the numerical solution of that problem, which is examined

in this master thesis.

2.3 Numerical Approach

This master thesis follows up with a numerical estimation of the rate constants. There

already are numerous optimization tools which adapt the rate constants ki in such a way

that the simulated TAC generated with the estimated rate constants (see section 3.1) matches

the measured TAC as well as possible. For this, the optimization software takes initial values

for all rate constants and gradually modifies them in order to increase the accordance with

the measured TAC.

An often used optimization method for curve fitting is the Nelder-Mead simplex method,

also called downhill simplex method [34]. With TACreal(t) being the real measured TAC and

TACsim(ti) being the simulated TAC defined on a discrete time line and depending on the

rate constants ki, the objective function f to be minimized usually is defined as the sum of

squared errors [35]:

f(k1, k2, ...) =

tend∑
t=0

(TACreal(t)− TACsim(t, k1, k2, ...))
2 .

The Nelder-Mead simplex method gradually adapts the rate constants ki in order to minimize

f . This yields the rate constants providing the best local fit. A big advantage compared

to other optimization tools is that the Nelder-Mead simplex method does not require any

derivatives for its calculation. Plus, this method is rather robust against initial values. An

accurate description of the setup of the Nelder-Mead simplex method is given in [36, 37].

While TACreal(t) is known, the discrete function TACsim(t, k1, k2, ...) has to be simulated.

As the derivatives of the individual compartments are given explicitly (see equations (1), (2)

and (3) in section 1.2.2), the simulation of the TAC can be performed by the Euler method,

which can be seen as a first-order Runge-Kutta method [38]. This method provides a stepwise

solution of the differential equations leading to the approximated TACsim(t, k1, k2, ...): for a

two-compartment model the set of equations (2) can be written as(
Ċ1(t)

Ċ2(t)

)
=

(
f1(t, C1(t), C2(t), B(t))

f2(t, C1(t), C2(t), B(t))

)
, (14)
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where f1 and f2 represent the respective right-hand sides in (2) [39]. Since a derivative can

be approximated by

Ċi(t) =
1

h
(Ci(t+ h)− Ci(t))

with step size h, equation (14) can be rewritten as(
C1(t+ h)

C2(t+ h)

)
=

(
C1(t) + hf1(t, C1(t), C2(t), B(t))

C2(t) + hf2(t, C1(t), C2(t), B(t))

)
. (15)

With the initial condition C1(0) = C2(0) = 0 and the input function B(t) being known,

the concentrations in the individual compartments can be approximated [32]. For a three-

compartment model the set of equations (3) can be rewritten analogously. A crucial factor

hereby is the step size h: the smaller the step size, the better the approximation but the

larger the computation time [40]. In section 3.1.2 the simulation of the TAC is performed

with a step size h = 1 s.

For a better approximation of the derivative, other methods exist such as the trapezoidal

rule, which belongs to the class of second-order Runge-Kutta methods or the Adams method,

which takes into account not only one time point t for calculating the value at t + h, but

rather the last s time points to increase the accuracy of the numerical calculation [38, 41].

Although the simulation of a TAC as well as the optimization tool for minimizing the ob-

jective function f can be easily computed, a fundamental problem hereby is the strong

dependence of the outcome for the rate constants on their initial values. Hence, the main

goal is to find a reasonable estimation of the rate constants in order to feed the optimization

software with good initial values. In this master thesis the attempt was made to find such a

good estimation by numerical means.

By taking a look at equation (14) and (15), respectively, one can see that each compartment

depends on the input function B(t). Hence, the shape of the input function (described in

section 3.1.1) is supposed to have a large impact on the shape of the simulated TAC.

With all the mathematical background being specified, chapter 3 deals with the step-by-step

approach performed in this master thesis.

28



3 Methods

This chapter concentrates on the approach of programming an algorithm to obtain good ini-

tial values for the rate constants ki. The whole procedure is divided into different subtasks

with each one being described in the following sections. First, it was necessary to simulate

both an input function and a TAC for several different rate constants, which was done by

the Euler method explained in the previous chapter. These functions have then been used

for gathering relations between the TACs and their underlying rate constants. In the next

step these relations underwent several statistical analyses resulting in specific correlations

between the rate constants ki and the corresponding shape of the TAC. These connections

have been used to estimate the rate constants by examining the TAC only. Finally, an

algorithm was programmed which takes into account all the obtained information and by

that provides good initial values for the rate constants ki, which can be used for further

optimization programs (see section 2.3).

In parallel, the results of all subtasks performed are mentioned and analyzed in the corre-

sponding sections in chapter 4.

3.1 Simulation of Time Activity Curves

The first aim was the generation of TACs, which in consequence can be used for further ex-

amination. However, before simulating the compartment concentrations via the spreadsheet

program Excel, it was important to generate different input functions B(t), which repre-

sent suppliers for the various compartments in the kinetic model described in section 1.2.1.

These input functions have then been used for the calculation of the individual compartment

concentrations.

3.1.1 Generation of Input Functions

Since the collective behavior of the tracer concentration in the compartments strongly de-

pends on the shape of the input function, first it was necessary to generate different input

functions which then can be used for the following simulations of TACs. By that, one can

abstract from the input function and investigate the compartment behavior solely. It turned

out that for the problem considered in this master thesis there are three main types of input

functions:
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The first type shows a quick rise, then reaches a maximum followed by a rapid decrease of

concentration as it can be observed for example with the tracer 68Ga-PSMA, which is used

for prostate imaging in nuclear medicine [42]. This input function hereafter will be called

pointed input function Bp(t) and is characterized by a sharp peak. To generate an input

function of this shape, the following mathematical formula is used:

Bp(t) = θ′(t− 10)θ′(25− t) · 10(t− 10)︸ ︷︷ ︸
=:A(t)

+θ′(t− 25) · (143e−0.05(t−25) + 7) , (16)

where θ′(t) is the half-maximum convention of the Heaviside function defined by

θ′(t) =


0 , for t < 0

1
2

, for t = 0

1 , for t > 0 .

The term A(t) in equation (16) can be thought of as the beginning term of the input function.

A(t) is the same for all input functions considered in this master thesis and defines a constant

value of B(t) = 0 for 0 ≤ t ≤ 10 followed by a linear rise from B(10) = 0 up to B(25) = 150

in the time interval 10 < t ≤ 25. The constant phase can be thought of as starting the

concentration measurement before injecting the tracer. In this master thesis this delay was

assumed to be 10 s, hence B(t) = 0 for 0 ≤ t ≤ 10. At t = 10 the injection takes place, thus

from there on the concentration of the input function starts to rise.

For t > 25 the decreasing term is different for each type of input function. In case of a pointed

input function Bp(t) the quick exponential decrease is given by the term 143e−0.05(t−25) in

equation (16). With increasing time t the concentration converges to the constant level of

limt→∞Bp(t) = 7. In conclusion, the function Bp(t) consists of a constant phase in the

beginning with value B(t) = 0, then increases linearly until it reaches a maximum and from

then on exponentially decreases rapidly again to a certain level. In the left graphic in figure

3.1 one can see the shape of the pointed input function.

The second type of input function, referred to as blunt input function Bb(t), is similar to the

pointed one. It is present for example when imaging via 18FDG, a main tracer in oncology.

The only difference to the pointed input function is the slower decrease after the peak. It is
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given by

Bb(t) = A(t) + θ′(t− 25) · (143e−0.01(t−25) + 7) , (17)

where A(t) is the beginning term mentioned above. By comparison of equation (16) and

(17), one can see that the only difference is the power in the exponential term. While for the

pointed input function Bp(t) the power is −0.05(t− 25), for the blunt input function Bb(t)

it is given as −0.01(t− 25). This smaller decay constant leads to a slower decrease after the

peak, which can be seen in the middle plot in figure 3.1.

While the first two types of input functions comprise of a mono-exponential decreasing term,

the third type is defined by a tri-exponential term. With these additional terms the shape

of the input function can be changed tremendously. By varying the decay constants in each

term a buckled input function can be generated. The third input function used for further

simulations of TACs is defined by

Bk(t) = A(t) + θ′(t− 25) ·
[
143
(1

2
e−0.1(t−25) +

1

4
e−0.01(t−25) +

1

4
e−0.001(t−25)

)
+ 7
]

(18)

and will be called kinky input function Bk(t). This type can be found in measurements with

the tracer 99mTc-MAG3, which is typically used for kidney examinations in nuclear medicine.

While the constant and ascending phase is the same as for the pointed and blunt input

function, the decreasing term differs drastically. In Bk(t) there are three exponential terms

leading to a fall down, each of them weighted with a factor. The first term e−0.1(t−25) causes

a quick drop of concentration, while the second and in particular the third term, e−0.01(t−25)

and e−0.001(t−25), are responsible for a slower decrease. After reaching the maximum, the

concentration therefore drops down rapidly due to the first decreasing term. However, after

a short time the input function shows a kink from where on a slower decrease can be pointed

out. In the right plot in figure 3.1 the shape for a kinky input function Bk(t) with its

pronounced kink can be seen.

The main difference between the first two types and the third one is that for the kinky input

function the concentration decreases slowly enough to not reach a constant level over a long

time period. Due to that fact, the input function Bk(t) continuously supplies the individual

compartments with a relatively high tracer concentration, whereas for the pointed and the

blunt input function the supply for large times is rather negligible.
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Figure 3.1: Shape of the different input functions B(t). On the left-hand side the pointed
input function with its sharp peak and the rapid fall down is shown. The middle figure
represents the blunt input function comprising of a broader peak and a slower decrease
afterwards. Both the sharp and the blunt input function reach a constant level after a
certain time. On the right-hand side the kinky input function is shown. As one can see,
after the peak it comprises of a rapid concentration decrease followed by a significant slower
decrease leading to a kink in its shape.

3.1.2 Stepwise Solution of the Differential Equations

For the calculation of the individual compartment concentrations over time a stepwise solu-

tion of the set of differential equations (1), (2) and (3) described in section 1.2.2 has been

established. For this, the Euler method with step of size h = 1 s was used. A smaller step

size would increase the computation time while not yielding any further information, since

dynamic measurements are usually recorded every second. In contrast, a larger step size

could omit useful information. Plus, if h is chosen too large, the simulated TAC could com-

prise of oscillations which are not reasonable when looking at real TACs.

For a one-compartment model (see figure 1.2) the Euler approach with step h = 1 s has the

following form:

C1(t) = C1(t− 1) + k1B(t− 1)− k2C1(t− 1) . (19)

The compartment concentrations within a two-compartment model (see figure 1.3) can be

calculated by

C1(t) = C1(t− 1) + k1B(t− 1) + k4C2(t− 1)− (k2 + k3)C1(t− 1)

C2(t) = C2(t− 1) + k5B(t− 1) + k3C1(t− 1)− (k4 + k6)C2(t− 1) .
(20)
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For a three-compartment model (see figure 1.4) the set of equations above is expanded by

a third compartment, hence also the number of rate constants ki increases. The stepwise

approach for the three-compartment model with step h = 1 s is given by:

C1(t) = C1(t− 1) + k1B(t− 1) + k4C2(t− 1) + k12C3(t− 1)− (k2 + k3 + k11)C1(t− 1)

C2(t) = C2(t− 1) + k7B(t− 1) + k3C1(t− 1) + k6C3(t− 1)− (k4 + k5 + k8)C2(t− 1)

C3(t) = C3(t− 1) + k9B(t− 1) + k11C1(t− 1) + k5C2(t− 1)− (k6 + k10 + k12)C3(t− 1) .

(21)

While the one- and two-compartment models comprise of two and six rate constants, re-

spectively, the expansion to a three-compartment model increases the number of possible

rate constants to up to twelve. However, as already mentioned, in compartmental modeling

usually the number of rate constants is kept less than or equal to six. Hence, for a suitable

model only some of the rate constants are of interest while the other ones are assumed to be

zero.

For the discrete calculation of the compartment concentrations from the input function B(t),

the initial values for the compartments were set zero, which meets the biological requirement

that there is no tracer concentration in the tissue before injection (Ci(t0) = 0). It is to men-

tion that the rate constants ki in the models above are given in units of 1/sec while in

medicine they are presented in units of 1/min. So it has to be kept in mind that one has

to convert the results properly. The simulation was performed via Excel and subsequently

exported to a csv-file, hereafter referred to as ”TAC-simulation.csv”.

The TAC representing the cumulated compartment concentration C(t) thereby is given as

the sum over all compartments Ci(t) multiplied with a weighting factor w ∈ [0, 1] plus the

concentration of the input function B(t) multiplied with (1− w):

C(t) = w ·
n∑
i=1

Ci(t) + (1− w)B(t) .

For this master thesis a weighting factor of w = 0.95 was used. n thereby stands for the

number of compartments. With the last term (1 − w)B(t) an impact of the input function

on the acquired PET data of the tracer concentration is considered as well.

With the set of equations (19), (20) and (21), around 1200 different TACs have been gener-

ated by varying the rate constants ki and using different number of compartments. In figure
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4.1 simulated TACs for the two- and the three-compartment model are shown for the three

types of input functions, while the ki remain unchanged. In figure 4.2 the dependence of the

TAC shape on a small change in the rate constants ki is pointed out.

3.2 Generation of Information regarding Curve Shape

The next aim was to examine the generated TACs for various mathematical properties. For

this purpose, a Python script has been written which reads in the TACs from the ”TAC-

simulation.csv” file mentioned above, calculates values for specific mathematical properties

and exports the obtained information into a new csv-file, called ”information.csv”. In the

next step of writing the algorithm there was an attempt to find possible correlations between

the rate constants ki and the obtained information about mathematical characteristics.

Below the approach to calculate specific mathematical properties via a Python script is

explained. These procedures apply for the one- and two-compartment as well as for the

three-compartment model. Before examining various mathematical characteristics, it was

necessary to read in external parameters which then can be used for further calculations.

The advantage of using external parameters is that they simply can be changed in an external

file. Otherwise, the operator would have to change them in every Python script separately

when necessary. Each external parameters used will be explained in the corresponding

subsection.

3.2.1 Relative Slope and Intercept before a certain Time Point

An interesting characteristic of the TAC is its slope in the beginning phase. It is supposed

to represent to which extend the TAC is linked to the input function. This concentration

exchange is governed by the rate constants, thus the slope of the TAC can be seen as

an important indicator. One would think of high constants k1 and k2 in the case of a

relatively high slope value leading to a rapid exchange between the input function and the

first compartment (see the models described in figure 1.2, 1.3 and 1.4). In contrast, low

values for k1 and k2 are expected to cause a slow concentration exchange inducing a small

slope.

For the calculation of the slope of the TACs, a linear regression via the Least-Squares method

of the TAC data has been performed. From the obtained best fit line the slope and intercept

could be read off. For this purpose not the whole dataset but only the data within a certain
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time window has been used. This window was given as the time interval [t1, t2]. Since the

aim was to calculate the relative slope and intercept in the beginning phase, one had to

decide which time points to use for t1 and t2.

The time t2 defining the end of the time window was set as the peak time tpeak with tpeak

being the time where the input function B(t) reaches its maximum:

tpeak = argmax
t
{B(t)} .

The other time point t1 was defined as the start of the measurement, which is determined

by the input function B(t). The measurement start time tstart is given as the time where the

input function exceeds a certain level defined by an external parameter called threshold level

cth. This is inevitable, since in real measurements the input function comprises of noise even

before tracer injection. Hence, to disregard that noise before starting the measurement, a

starting time is necessary. tstart is the minimum time where B(t) ≥ cthB(tpeak) holds, thus

tstart = min{t : B(t) ≥ cthB(tpeak)} .

In other words, cth defines a certain percentage value with respect to the maximum of the

input function B(tpeak) which has to be exceeded in order to be designated as a measurement

start. By this, the time window began at t1 = tstart. In equations (16), (17) and (18) it is

obvious that the measurement start time was given as tstart = 11 s.

With the two time points t1 = tstart and t2 = tpeak the slope and intercept of a linear best fit

(y = mx+ b) within the time window [tstart, tpeak] for both the input function and the TAC

could be computed. By performing such a linear best fit, one obtained the slopes mTAC,mB

and the intercepts bTAC, bB for the TAC and the input function B(t), respectively. Since the

slope mTAC strongly depends on the input function and hence on its slope mB as well, the

relative slope mrel = mTAC

mB
has been calculated. This is also done for the relative intercept

brel = bTAC

bB
. In the left graphic in figure 3.2 the time window [tstart, tpeak] and the linear best

fit lines for the input function and the TAC are presented as dotted lines. Since the input

function B(t) is already linear in the considered time window, it matches with its linear best

fit, thus it is not visible in figure 3.2.
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Figure 3.2: Relative slope and intercept before (left) and after (right) a certain time point.
In the left graphic the time window is given as [tstart, tpeak], while in the right one it is defined
by [tpeak, tend]. The linear best fit functions are shown as dotted lines for the input function
B(t) (red) and the TAC (black).

3.2.2 Relative Slope and Intercept after a certain Time Point

For calculating the relative slope and intercept of a linear best fit function after a specific

time point the same procedure as described above has been performed. The only difference

was the time window considered. For that purpose, the time points t1 and t2 of the time

window had to be shifted. While t1 now is set t1 = tpeak, the determination of t2 requires

another time point, referred to as window end time tend. To define the window end time

tend, both tstart and tpeak as well as the slope range rs are necessary with rs being an external

parameter. The window end time thereby is given as

tend = tstart + rs(tpeak − tstart) .

As one can see, rs determines the width of the integral with respect to the time difference of

the measurement start time tstart and the peak time tpeak. Within the time window [tpeak, tend]

again a linear best fit has been performed for the TAC and the input function B(t) yielding

the slopes mTAC,mB and the intercepts bTAC, bB of the linear regression lines y = mx+b. For

further analysis described in section 3.3, the relative slope mTAC

mB
and the relative intercept

bTAC

bB
were calculated similarly to the relative slope and intercept before a certain time point.

In the right graphic in figure 3.2 one can see the shifted time window compared to the time

window for the calculation before a certain time point. The dotted lines correspond to the

linear best fit functions for both the input function and the TAC.
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3.2.3 Relative Integral

The next mathematical characteristic considered was the integral ITAC of the TAC in a certain

time region. However, since the area under the TAC also depends on the input function B(t),

the relative integral Irel = ITAC

IB
had to be calculated. To set the time interval [tstart, tend] for

calculating the integral, tend has to be defined again. With the external parameter integral

range rI the window end time tend is given as

tend = tstart + rI(tpeak − tstart) .

For continuous TACs and input functions one would calculate the relative integral by

Irel =

∫ tend

tstart

TAC(t) dt∫ tend

tstart

B(t) dt

.

However, since the TACs generated in section 3.1 are not continuous but discrete instead,

the integrals above are replaced by sums. Therefore, the relative integral above transforms

to

Irel =

tend∑
t=tstart

TAC(t)

tend∑
t=tstart

B(t)

.

One would think of a high correlation between the relative integral and the rate constants

ki, especially k1 and k2, since they are mainly responsible for the general in- and outflow of

the compartments.

3.2.4 Curvature

Despite the slope, the intercept and the integral of the TAC, the curvature is an interest-

ing characteristic as well. It determines the bending of the curve and therefore represents

the interaction between the input function and the TAC. For calculating the curvature, an
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approximative approach similar to the centered difference quotient for a derivative was used:

∂2f(t)

∂t2

∣∣∣∣∣
t=t0

=
∂

∂t

(
lim

∆t→0

f(t0 + ∆t)− f(t0 −∆t)

2∆t

)

= lim
∆t→0

1

2∆t

(
lim

∆s→0

f(t0 + ∆t+ ∆s)− f(t0 + ∆t−∆s)

2∆s
−

f(t0 −∆t+ ∆s)− f(t0 −∆t−∆s)

2∆s

)
.

(22)

This equation can be approximated numerically by small ∆t and ∆s. For simplification

∆t = ∆s is assumed. Equation (22) thereby transforms to

∂2f(t)

∂t2

∣∣∣∣∣
t=t0

≈ 1

4∆t
(f(t0 + 2∆t)− 2f(t0) + f(t0 − 2∆t)) . (23)

Since a real TAC comprises of noise caused by the measurement itself, it is difficult to

calculate a reasonable curvature within a small time frame. To disregard such noise a wider

time window for the calculation had been used. For the TACs the curvature C in the

Python script is defined as

C = TAC(t1) + TAC(t0)− 2TAC
(t0 + t1

2

)
, (24)

where the factor 1
4∆t

in equation (23) is constant for fixed values of t0 and t1 and therefore

can be ignored, as it only leads to a proportional modification. Since one was interested in

the TAC curvature in the beginning only, t0 was set t0 = tstart according to the measurement

start time explained in section 3.1. The other time point t1 was defined by the peak time tpeak,

the measurement start time tstart and the curvature range rC given as external parameter.

Again the window end time is defined by

tend = tstart + rC(tpeak − tstart) .

Hence, the term t0+t1
2

in equation (24) is the mean value tmean of tstart and tend ensuring

equidistant time points. By this, the approximate curvature was calculated according to

equation (24) with t0 = tstart, t1 = tend and t0+t1
2

= tmean. In figure 3.3 one can see the

time window defined by the marginal and the intermediate time points. The calculation of

the curvature according to equation (24) can be thought of as the mean value of the slope
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Figure 3.3: Curvature calculated for a certain time window [tstart, tend]. The curvature within
the time window is approximated by the difference of the slopes of two linear best fit functions
defined by the corresponding time points. The linear regression functions are shown as
dashed lines.

differences of the linear lines from tstart to tmean and tmean to tend, which are shown as dashed

lines.

3.2.5 1C/2C/3C and Trapped/Open

Another important characteristic for the TAC is its underlying model type. Therefore the

Python script read in the rate constants ki of the individual TACs and determined the type

of kinetic model. For the differentiation between a one-, a two- and a three-compartment

model the script simply checked if all the additional rate constants appearing in the respective

model (two- or three-compartment model) are equal to ki = 0. Depending on that, the

underlying model was known.

The rate constants ki also allow to investigate if the model is open or trapped. In section

1.2.2 the difference between an open and a trapped model is described. A trapped model

is given if it comprises of at least one compartment having an inflow but no outflow. This

information about the underlying model type was important for further analysis described

in section 3.3. Therefore the Python script exported this information as well.

3.2.6 TAC Shape

Another characteristic was the general shape of the TAC. For this purpose, it has been

investigated if the TAC comprises of a maximum in the beginning phase (hereafter referred

to as max1), if it shows a maximum at a later time (called max2) and if if falls down at the
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end of the measurement.

The main difference between a max1 and a max2 is their time point of appearance. While

a max1 has to occur before a certain time point called limit time tlimit, which is defined by

the external parameter limit range rlimit, a max2 needs to appear after tlimit. Therefore tlimit

designates a time point distinguishing a max1 from a max2. The limit time is defined by

tlimit = tstart + rlimit(tpeak − tstart) (25)

with tstart being the measurement start time and tpeak being the peak time. Another impor-

tant external parameter for the examination of these maximums is the percentage step p.

For a max1 first the maximum concentration within the time region [tstart, tlimit] was deter-

mined. If the time point of the maximum lay in-between this time interval, the TAC was

considered as having a maximum in the beginning phase. However, if the time point of the

maximum matched the upper interval boundary tlimit, then in the next step the considered

time interval got shortened by a factor p and the search for a maximum started again. The

shortening of the time window was done by reducing the upper boundary tlimit while leaving

tstart unchanged. In this case the procedure started all over again with the new time interval.

By that one avoids a wrong consideration of a maximum which in fact was only the maximal

value on the upper boundary. In figure 3.4 one can see the strategy of this procedure. For

better understanding a pseudo code is shown below:

# reading in external parameters/already calculated values:

1: p := percentage step

2: rlimit := limit range

3: tstart := measurement start time, tpeak := peak time

# procedure start:

4: i := 0

5: while i ≥ 0:

6: tlimit := tstart + rlimit(tpeak − tstart) · (1− p · i)
7: if tlimit ≤ tstart: return ”max1 does not exist”

8: tmax := time of maximum concentration in interval [tstart, tlimit]

9: if tmax 6= tlimit: return ”max1 exists”

10: else: i = i+ 1
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In the code above the lines 1-3 refer to the input of both the external parameters, namely

p and rlimit as well as the previously calculated values for tstart and tpeak. The procedure to

determine whether the TAC comprises of a max1 or not starts at line 4. With each round

in the while loop the limit time tlimit gets decreased due to the term (1− p · i) in line 6. The

while loop ends if either a maximum is found in-between the interval (line 9) or tlimit is lower

than tstart due to the increasing number of i leading to an unfeasible interval (line 7). Thus,

the output of the procedure can be ”max1 exists” or ”max1 does not exist”.

Comparing the pseudo code and the plots in figure 3.4, one can see that the left plot refers

to the first run (i = 0) of the procedure. Since the maximum is found at the upper interval

boundary, tlimit gets reduced to t′limit and the while loop starts again. In the next run (i = 1)

again the maximum is located at the upper boundary leading to a further reduction of t′limit

to t′′limit. In the third run (i = 2) the new maximum is found in between the interval, forcing

the while loop to stop and return ”max1 exists”.

The existence of a maximum max2 after a certain time point has been determined using a

similar approach as for max1. For a max2, however, an additional external parameter of

importance was the concentration difference ε. The time interval considered now was given

by [tlimit, tend] with tend being the measurement end time (in contrast to the previous sections,

where tend designated the window end time of a certain time interval).

Like for the max1 the procedure for finding a max2 starts with the search for the maximum

concentration within the time interval [tlimit, tend]. In contrast to the max1, for a max2 three

conditions have to be fulfilled: the time point of the maximum must not be located at the

lower interval boundary tlimit, nor is it allowed to be at the upper boundary tend and the

concentration value of the maximum has to exceed the concentrations given at the boundaries

t = tlimit and t = tend by at least ε ·B(tpeak), where the concentration difference ε is defined

on a percentage basis. The last condition guarantees the existence of a significant maximum

rather than a maximum appearing due to noise only.

The Python code for the max2 is similar to the code for finding a max1 with an additional

line including the third condition, namely

• TAC(tmax)− TAC(tlimit) > ε ·B(tpeak) and

• TAC(tmax)− TAC(tend) > ε ·B(tpeak).
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Figure 3.4: Examining the TAC for the existence of a maximum in the beginning phase
(max1). Shown are the first three runs (i = 0 to i = 2) according to the procedure mentioned
in the text. The calculated maximum in each run is marked by a dot. One can see that with
increasing number i of runs the interval gets shortened until the real maximum is found in
between the considered time interval (right plot).

Again, the considered time region [tlimit, tend] got shortened for each run: if the maximum

was found at the lower boundary, tlimit was shifted towards tend. In contrast, if the maximum

was located at the upper boundary, tend has been reduced towards tlimit. In both events the

considered time window got shortened by the factor p and the procedure started again.

For examining the TAC for a fall off at the end, a linear regression has been performed. For

this, the last i data points (determined by the external parameter called fall off range rfall off)

of the TAC were utilized. Hence, the considered time window was given by [tfall off start, tend],

where tend is the measurement end time and tfall off start is defined as

tfall off start = tend − rfall off(tend − tstart) .

If the slope of the linear regression line was negative, the TAC is designated to comprise of

a fall off at the end.

By examining whether or not the TAC comprises of a max1, a max2 or a fall off at the end, one

can classify the TAC shape. In figure 3.5 all possible combinations of these characteristics

are shown. As one can see, there are only five possible classes considered in this master

thesis.
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Figure 3.5: All five possible combinations of a max1, a max2 and a fall off at the end. In
figure A a max1 exists with a fall off at the end, figure B comprises of a max1, a max2 and a
fall off as well. Figure C shows both a max2 and a fall off. In figure D only a max1 is visible
and in figure E no max1, no max2 nor a fall off at the end is present. In all plots the limit
time tlimit distinguishing a max1 from a max2 and the maximums, if present, are shown.
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3.2.7 Rate Constants ki and underlying Input Function

In addition to the underlying model type the rate constants ki and the type of input func-

tion B(t), by which the TACs had been generated, were important. Since in the next step

described in the following section 3.3 the evaluation of all these mathematical properties

and the rate constants took place, the rate constants had to be written in the exported

csv-file ”information.csv” as well. For that, the Python script simply took the rate con-

stants from the ”TAC-simulations.csv” file (see section 3.1.2) and transfered them to the

”information.csv” file.

The type of the input function (pointed, blunt or kinky) has been extracted as well. By

this, further analysis could concentrate on individual input function types solely. For the

determination of the input function type the exponential terms defining the input function

were examined. All input functions described in section 3.1.1 comprise either of a mono-

exponential or a tri-exponential decreasing term of the form ae−bt or ae−bt + ce−dt + fe−gt,

respectively. The Python script therefore checked, if the input function consists of a tri-

exponential term, which corresponds to a kinky input function Bk(t). Otherwise the power

b in the first term was considered. Depending on b either a pointed input function Bp(t)

(b = 0.05) or a blunt input function Bb(t) (b = 0.01) was present.

In summary, all the calculated mathematical information (relative slope and intercept before

and after a certain time point, relative integral, curvature) as well as the information about

the underlying model type (1C, 2C or 3C, open or trapped, TAC shape, rate constants ki,

input function type B(t)) have been written into an external ”information.csv” file. In the

next quest this csv-file has been used for further analysis described in the following section.

In section 4.2 an overview of the calculated values for all aforementioned mathematical prop-

erties is given. Table 4.1 gives a rough insight into the ”information.csv” file generated by

the Python script.

3.3 Evaluation of obtained Data

The next goal was the analysis of the obtained data described in the previous section. The

aim was to find correlations between the rate constants ki and the specific mathematical

properties such as the relative slope and intercept before and after a certain time point, the

relative integral, the curvature and the TAC shape. Another method performed was the

analysis via a Student’s t-test to determine whether the obtained mathematical values differ
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for different kinds of input functions B(t) and model types.

Hereafter both the correlation coefficient and the Student’s t-test with their application to

the obtained data are closer examined.

3.3.1 Correlation Coefficient

The correlation coefficient has been used to determine if there is a relationship between the

rate constants ki of the underlying model type and the obtained mathematical data.

In general, the correlation coefficient rxy for two datasets xi and yi, i = 1, ..., n is defined as

rxy =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2

n∑
i=1

(yi − y)2

. (26)

Hereby, x and y present the arithmetic mean of the set of values xi and yi, respectively.

For an according to amount high correlation coefficient (|rxy| close to 1) a strong correlation

between the two datasets is valid. In contrast, for rxy ≈ 0 no clear correlation can be pointed

out leading to a negligible linear relation between the individual datasets.

Since one is interested in the correlation between the rate constants ki and the various

mathematical properties of the simulated TAC, each property had to set into relation with

each rate constant. In section 4.3 the individual correlations are listed and discussed. The

computation of all these correlation coefficients provided a good estimation whether a specific

rate constant ki has an identifiable influence on a particular mathematical property.

If there happened to be a good correlation between a certain rate constant ki and a specific

mathematical value vi, there had to be a good linear fit according to vi = miki+bi. Therefore,

one was able to estimate the rate constant by back calculation of the mathematical value

according to

ki =
vi − bi
mi

.

In table 4.2 all correlation coefficients rxy are listed with their significance coded by color.

45



3.3.2 Student’s t-Test

Besides the interest in significant correlations between the mathematical properties and the

rate constants, the existence of possible impacts of the model type and input function on

the TAC shape were of high importance as well. For this, all the information written in the

”information.csv” file has been subdivided into different classes.

The dataset could be sorted by different characteristics, such as the type of input func-

tion B(t) (pointed, blunt or kinky), the number of compartments #C (one-, two- or three-

compartment model), the presence of an open or trapped model as well as the general shape

of the TAC (max1, max2, fall off). The various classifications considered are listed in section

4.3.

After sorting the dataset, one was interested in whether there is a connection between two

different classes or not. For example, is there a remarkable difference in the relative inte-

gral Irel when having a pointed or a kinky input function? If so, then the input function is

supposed to have a considerable influence on the relative integral. However, if there is no

significant difference in the data between the two considered classes, one would expect the

input functions to have no impact on the relative integral.

Mathematically speaking, the aim was to compare two samples {x1, ..., xnx} and {y1, ..., yny}
with nx and ny being the size of the respective samples. For the example mentioned above,

xi would be the data of the relative integral Irel for a pointed input function and yi that one

for a kinky input function. The comparison was done by looking at the sample means x and

y. According to the Central Limit theorem, the sample means can be thought of as being

normally distributed due to the large sample sizes nx and ny, even though the data entries

themselves are not [43]. Since both the sample means and variances had to be estimated by

the sample itself, the datasets were no longer normally distributed but t-distributed instead.

By using the t-test one could determine whether the two datasets are significantly different

from each other. Since the datasets presumably were unpaired with different variances, the

Welch’s t-test had to be used instead of a Student’s t-test [44].

The null hypothesis H0 and the alternative hypothesis H1 hereby were given as

H0 : x = y

H1 : x 6= y ,
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therefore a double-ended t-test was necessary. By this, one tested the null hypothesis whether

the two sample means can be considered equal against the alternative hypothesis. The t-

statistic for the Welch’s t-test is given by

T =
x− y√
s2x
nx

+
s2y
ny

,

where s2
x and s2

y are the respective sample variances. The degrees of freedom k have to be

approximated using the Welch-Satterthwaite equation (see [45, 46]).

With the test statistic T and the degrees of freedom k the p-value is given as

p = 2(1− Ft,k(|T |)) , (27)

where Ft,k describes the cumulative distribution function of a t-distribution with k degrees of

freedom. A high p-value would state that the two datasets can be thought of as being equal,

therefore the classification would have no significant impact on the data. In contrast, if a

low p-value is present there seems to be a not negligible difference between the two datasets.

In this case the classification is supposed to have an influence on the individual data.

In table 4.4 the results of the t-test with their p-values are shown. The entries are highlighted

by color according to their significance.

3.4 Programming the Algorithm

The aim of this master thesis was to implement an algorithm which reads in an external

TAC, analyzes it by different methods already mentioned above and outputs feasible values

for the rate constants ki. These values can then be used as initial values for an optimization

tool such as the Nelder-Mead simplex method (see section 2.3). Since the reliability of these

optimization programs strongly depends on the initial values, it is necessary to feed them

with reasonable values appropriate for the specific model type.

In the previous section first the attempt was made to find reasonable correlations between

the rate constants and the various mathematical properties. Secondly, the equality of these

properties between any two classifications was tested via a Student’s t-test (or more precisely

a Welch’s t-test). As one can see in section 4.3, the presence of reasonable correlations be-

tween the rate constants ki and the various mathematical properties only applied for the first
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two rate constants k1 and k2. For the other rate constants there seemed to be no significant

relation. The analysis via a t-test pointed out that there is no remarkable connection among

the various mathematical properties between different classifications. Thus, the mathemati-

cal properties were assumed to not only depend on the rate constants ki, but on the number

of compartments #C, the input function B(t), the existence of an open or trapped model

and the TAC shape as well. Therefore, the rate constants had to be estimated for each model

type individually.

Since for k1 and k2 good results of the correlation coefficients have been obtained, these rate

constants were analyzed separately from the other ones. This led to a subdivision of the

algorithm’s implementation into two subtasks, namely the determination of feasible inter-

vals for all rate constants for one thing and secondly the estimation of the rate constants

k1 and k2. The first task was done by the determination of confidence intervals for each

rate constant, since for calculating an exact value there were too many uncertainties in the

statistical methods. The latter task has been performed by taking a look at the correlation

coefficients and subsequently estimating k1 and k2 via back-calculation of the corresponding

mathematical properties.

For a three-compartment model with twelve possible rate constants the algorithm is limited

to the rate constants k1, k2, k3, k4, k7 and k8, which comply with the rate constants k1 to k6 of

a two-compartment model (see figure 1.4). All other rate constants in a three-compartment

model were not considered since the analysis of the data via statistical methods turned out

to be less informative than expected. In contrast to a three-compartment model, for the one-

compartment model there is no limitation in the algorithm since the model only comprises

of two rate constants anyway.

3.4.1 General Structure of the Algorithm

As mentioned in section 4.3, the outcome of the t-test showed that there are relevant dif-

ferences between each classification. Hence, for the algorithm the data from the ”informa-

tion.csv” file was subdivided into different subclasses. Since this classification had to be done

for the t-test anyway, the data used for calculating the correlation coefficients was classified

as well to increase the algorithm’s reliability.

In conclusion the data from the ”information.csv” file had to be subdivided into the type of

input function B(t), the number of compartments #C and the existence of either an open or

a trapped model. For the TAC shape the existence or absence of a max1, a max2 and a fall
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off at the end had been considered separately. For a one-compartment model the distinction

between an open and a trapped model was not performed due to its simple structure. This

led to the following classes considered in the algorithm for each type of input function B(t):

• 1C

• 2C open

• 2C trapped

• 3C open

• 3C trapped

So the first goal of the algorithm is to analyze the input function and figure out if it rather is

a pointed, a blunt or a kinky input function. By knowing that, the algorithm then analyzes

the recorded TAC via the Python script for various mathematical properties necessary for

both the correlation coefficient and the TAC shape. With this information it determines

feasible intervals for the rate constants on the one hand and on the other hand finds values

for k1 and k2 via back-calculation of the already computed correlation coefficients. This is

done for each compartment model listed above.

Since the type of input function is known by then (see section 3.4.2), the algorithm performs

all the calculations on basis of the specific input function. Hence, the output of the algorithm

has the following form:

Approximated Input Function Type: (pointed, blunt, kinky)

a = , b = , c =

1C:

k1 = , k2 =

2C open:

k1 = , k2 = , k3 : [ , ], k4 : [ , ], k5 : [ , ], k6 : [ , ]

2C trapped:

k1 = , k2 = , k3 : [ , ], k5 : [ , ]

3C open:

k1 = , k2 = , k3 : [ , ], k4 : [ , ], k7 : [ , ], k8 : [ , ]

3C trapped:

k1 = , k2 = , k3 : [ , ], k4 : [ , ], k7 : [ , ], k8 : [ , ]

49



The parameters a, b and c are the constants of the approximated input function described

in the following subsection. By this, the input function can be determined. With respect to

this input function the algorithm provides values and feasible intervals for the rate constants

for all model types. Due to the lack of information about the underlying model type, the

algorithm does not confine itself to determine the model type but provides the values and

feasible intervals for all model types instead. Therefore, the operator has to decide which

model type could fit best for the specific problem.

3.4.2 Determination of the Input Function and the TAC shape

First of all the algorithm needs to determine the type of the measured input function. Since

neither of the equations (16), (17) and (18) will exactly describe the measured input function,

it is approximated by a shifted mono-exponential function Bapp(t) following

Bapp(t) = ae−bt + c . (28)

This is done via the least squares method yielding values for the constants a, b and c. These

values are displayed by the algorithm (see the boxed sketch above). To distinguish between

a pointed, a blunt and a kinky input function, one needs to consider these parameters. As

both the parameters a and c depend on the injected tracer concentrations, their absolute

values themselves are not representative. Therefore the relative value c
a

is considered instead.

For a pointed and blunt input function (see equations (16) and (17)) with ap = 143, bp =

0.05, cp = 7 and ab = 143, bb = 0.01, cb = 7, this ratio is given as cp
ap

= cb
ab

= 49.0 · 10−3.

For a kinky input function following equation (18) the best mono-exponential fit including

a shift yields the constants ak = 58.13, bk = 2.179 · 10−3 and ck = 10.45 leading to a ratio of
ck
ak

= 179.7 · 10−3. Thus, to discriminate between a kinky input function and the other two

types, a threshold of c
a

= 100 · 10−3 is used. The threshold for the power b differentiating

between a pointed and a blunt input function is set b = 3 · 10−2.

So the measured input function is approximated by Bapp = ae−bt+c providing the parameters

a, b and c. For c
a
≥ 100·10−3, the input function is thought of as being a kinky input function.

In the case of c
a
< 100 · 10−3 the input function could either be pointed or blunt. Therefore,

in the next step the power b is considered. For b ≥ 3 · 10−2 a pointed input function is

assumed and for b < 3 · 10−2 the input function is supposed to be blunt. The type of the

approximated input function (pointed, blunt or kinky) is displayed in the algorithm as well.

50



The TAC shape can easily be determined by means of the Python script. Thereby it can

be figured out whether or not the TAC comprises of a max1, a max2 and a fall off at the

end. Knowing that, the TAC can be categorized as one of the five considered TAC shapes

(see figure 3.5).

By knowing both the input function best describing the measured input function and the

TAC shape, the rate constants can now be estimated for each model type (1C, 2C open, 2C

trapped, 3C open, 3C trapped).

3.4.3 Determination of Feasible Intervals for the Rate Constants

To obtain confidence intervals for the rate constants, besides the input function and the TAC

shape the model type is considered as well. Hence, the data from the ”information.csv” file

had to be classified by all these categories. Subsequently a two-sided 95% confidence interval

has been calculated for all combinations of input function, model type and TAC shape by

means of a Student’s t-statistic. The t-statistic was necessary due to the unknown variance

which therefore had to be estimated by the sample itself leading to a Student’s t-distribution.

To determine the 95% confidence interval, the sample mean x, the sample variance s and the

sample size n as well as the level of significance α = 0.05 were necessary. By calculating the

confidence intervals for all model types (1C, 2C open, 2C trapped, 3C open, 3C trapped),

all types of input functions (sharp, blunt, kinky) and the various TAC shapes (existence

or absence of a max1, a max2 and a fall off at the end), one obtained feasible ranges for

the rate constants k1 and k2 in a one-compartment model, k1 to k6 in a two-compartment

model and k1, k2, k3, k4, k7 and k8 in a three-compartment model. Since in the computation

of confidence intervals it is possible for the lower boundary to be negative, in this case they

were set 0 instead.

For example, for the first TAC shape (plot A in figure 3.5) comprising of a max1 and a fall

off at the end but without any max2, one obtains three confidence intervals for each rate

constant and each input function according to

I
(max1)
i = [a

(max1)
i , b

(max1)
i ]

I
(no max2)
i = [a

(no max2)
i , b

(no max2)
i ]

I
(fall off)
i = [a

(fall off)
i , b

(fall off)
i ] .

51



Hereby the subscript i stands for the rate constant ki considered. To obtain one single

interval of feasibility, the intersection of the three confidence intervals is taken. This was

performed for each rate constant ki, for each possible TAC shape (see figure 3.5), for all

model types and for all input functions as well. All the feasible intervals are shown in tables

4.5, 4.6 and 4.7.

For the rate constants k3 to k6 in a two-compartment model, respectively k3, k4, k7 and k8 in

a three-compartment model, the algorithm outputs the corresponding feasible intervals. In

addition, for the first two rate constants a back-calculation using the correlation coefficients

is performed.

3.4.4 Calculating Values for k1 and k2

Apart from determining feasible intervals, for the rate constants k1 and k2 explicit values

can be calculated. Table 4.2 states that there are high correlations between the first two rate

constants and specific mathematical properties. Hence, a look at the corresponding linear

regression lines can be taken. Since for both k1 and k2 there is no solely but a few mathe-

matical properties having a good correlation, these rate constants are determined with their

best two correlating mathematical properties via back-calculation of the regression lines.

With the linear regression lines for the two mathematical properties showing the best corre-

lation coefficient, one obtains two equations for both k1 and k2 according to

v
(1)
1 = m

(1)
1 k

(1)
1 + b

(1)
1 , v

(2)
1 = m

(2)
1 k

(2)
1 + b

(2)
1

v
(1)
2 = m

(1)
2 k

(1)
2 + b

(1)
2 , v

(2)
2 = m

(2)
2 k

(2)
2 + b

(2)
2 .

Hereby m
(i)
1 and b

(i)
1 are the slopes and intercepts of the two linear regression lines applying

for the first rate constant k1. The superscript indicates whether it belongs to the first

mathematical property v
(1)
1 or the second one given as v

(2)
1 . The same holds for the second

rate constant k2. These equations can be rearranged to define the rate constants k
(1)
1 , k

(2)
1

and k
(1)
2 , k

(2)
2 . Since the equations yield two values for each constant ki, the arithmetic mean

is taken according to

ki =
k

(1)
i + k

(2)
i

2
=

1

2

(v(1)
i − b

(1)
i

m
(1)
i

+
v

(2)
i − b

(2)
i

m
(2)
i

)
. (29)

The arithmetic mean provides a good estimation for k1 and k2.

52



The slopes m
(j)
i and intercepts b

(j)
i depend on the TAC shape, the model type as well as on

the input function. Since both the TAC shape and the input function can be determined

by the Python script (see section 3.4.2), the values for k1 and k2 have to be calculated for

each model type (1C, 2C open, 2C trapped, 3C open, 3C trapped) separately. The task of

the algorithm therefore is to analyze the TAC for the various mathematical properties v
(j)
i

and use these values together with the corresponding slopes and intercepts to estimate the

rate constants according to equation (29).

By computing the rate constants via back-calculation of the mathematical values, it cannot

be guaranteed that this method results in values for k1 and k2 which are located in their

feasible intervals I1 = [a1, b1] and I2 = [a2, b2] calculated before. If the rate constants ki

lie below their lower boundaries ai, they are simply set ki = ai. In the case of too large

constants ki > bi, they are set ki = bi. By that, on the one hand the rate constants k1 and

k2 are calculated by means of a linear regression line resulting in a good estimation. On the

other hand it is ensured that they lie within their feasible intervals.

In figure 4.4 the linear regression lines for both k1 and k2 for an open two-compartment

model supplied by a kinky input function are shown.

3.5 Testing the Algorithm

As the implementation of the algorithm was done on basis of perfect input functions on the

one hand and ideal TACs without any measurement uncertainties on the other hand, after

programming the algorithm it had to be tested for its reliability. Therefore the algorithm

had to be applied on real measurement curves.

There are some remarkable differences between real and simulated input functions and TACs:

for one thing, the simulated input functions described in section 3.1.1 comprise of a perfect

mono- or tri-exponential term, respectively. They also show a constant beginning term,

namely B(t) = 0. In contrast to these simulated input functions an input function appearing

in real measurements comprises of not negligible fluctuations. These are carried forward to

the individual compartments leading to a noise in the TAC as well. Moreover, one would

expect the approximation via a mono- or tri-exponential function including an shift (see

equation (28)) to be rather poor, since real input functions show a noteworthy difference

from the simulated ones.

Another important factor is the TAC analyzed by the algorithm: while the generated TACs
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Figure 3.6: Real TACs and their input functions: the left plot shows a TAC of a right
kidney with its input function coming from a heart. As tracer 99mTc-MAG3 is used. The
kink within the input function is clearly visible. The right graphic uses the tracer 18F-PSMA
for imaging. The input function originates from the iliac artery and the TAC represents the
concentration within a prostate tumor.

described in section 3.1 are supplied by an input function defined on a discrete time line,

real TACs are continuously fed by their input functions. In addition, due to measurement

uncertainties real TACs comprise of noise which affects the information calculated by the

algorithm and therefore possibly alters the outcome for the rate constants ki tremendously.

In figure 3.6 two examples of real TACs with their input functions are shown. These two

recordings are completely different regarding their input function, the tracer used as well

as the observed VOI for measuring the TAC. As one can see in the left graphic, the TAC

did not undergo a smoothing procedure and therefore comprises of large fluctuations. In

contrast, the right plot shows a smoothed TAC. Furthermore the input function in the left

plot comprises of a pronounced kink and hence is expected to be classified as kinky input

function. The graphic on the right-hand side shows an input function, which one would refer

to as pointed input function.
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4 Results

This chapter follows up with the results of each subtask explained in the previous chapter.

Since the specific overall progress of this master thesis was not fixed in the beginning, the

outcome of each task determined the next approaches to be performed and therefore had an

influence on the course of programming the algorithm.

4.1 Simulation of Time Activity Curves

For the simulation of TACs, first it was necessary to generate different input functions which

reasonably cover all sorts of input functions considered in this master thesis. In reality, there

are many more possibilities for injecting a tracer, for example a constant injection over time.

Nevertheless, the input functions observed in nuclear medicine can be classified roughly into

three types described in section 3.1.1.

To generate the TACs, a stepwise solution according to equation (19), (20) and (21) was

performed. By varying the rate constants ki around 400 TACs have been generated for

each kind of input function. So in total approximately 1200 TACs were simulated which

subsequently have been used for the examination of various mathematical properties.

In figure 4.1 one can see the impact of the input functions on the shape of the TACs. In

addition to the TACs and the input functions the tracer concentrations in the individual

compartments are shown as well. By this, a better understanding of the overall process is

provided. For the pointed input function (upper plots), after the peak there is a rapid fall

down which leads to a low tracer inflow into the various compartments for later time points t.

In this case the TAC shows a peak almost simultaneously to the peak of the input function,

whereas after the peak no significant events can be pointed out. The blunt input function

(middle plots) comprises of a broader peak which in consequence leads to a broader peak

in the TAC as well. The tracer inflow into the compartments hereby is more pronounced

than for a pointed input function. In contrast to the pointed and the blunt input function

which are quite similar regarding their shape, the kinky input function (lower plots) has a

significant impact on the TAC even for later time points t. This is due to the fact that the

kinky input function has a comparatively slow descending phase. Thereby the input function

continuously supplies the individual compartments with a relatively high tracer amount, by

which the shape of the TACs can be altered tremendously. All the properties described

above can be seen in figure 4.1.
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Figure 4.2 shows the dependence of the TAC shape on the choice of the rate constants ki

for a kinky input function in a two-compartment model. This is done by slightly changing

the rate constants k1 and k6 while leaving the other constants k2 to k5 unchanged. While

k1 is responsible for the inflow into the first compartment, k6 determines the outflow of the

second compartment (see figure 1.3). Therefore a large k1 in combination with a low k6 leads

to a high tracer accumulation in the compartments and hence a high maximum of the TAC

whereas a low k1 and a high k6 induce a relatively small maximum. Figure 4.2 comprises of

four individual plots with different k1 and k6. Upper left plot: k1 = 1, k6 = 0.1, upper right:

k1 = 0.3, k6 = 0.1, lower left: k1 = 1, k6 = 0.3 and lower right: k1 = 0.3, k6 = 0.3.

It can be pointed out that higher rate constants ki lead to a TAC shape which roughly follows

the shape of the input function B(t). This is shown in figure 4.3. For high rate constants

the concentration exchange between the compartments and the input function as well as

among the compartments themselves is rather quick. Hence the TAC more or less resembles

the shape of the input function. For low rate constant values, however, the exchange is

considerably slower causing a temporal delay and by that leading to a completely different

TAC shape.

As it is apparent in figures 4.1 and 4.2 both the input function and the rate constants ki have

a large effect on the shape of the TACs. However, since one is interested in the impact of the

rate constants ki only, it is necessary to abstract from the influence of the input functions.

Therefore TACs have been generated for each kind of input function in a one-, a two- and a

three-compartment model.

By taking a look at the TACs generated for a specific input function, it was possible to

investigate the dependence of the TAC shape on the ki solely. For this examination a total

of around 1200 TACs has been simulated.

56



0

50

100

150

0 1000 2000 3000

Time t in [s]

C
on

ce
n
tr

at
io

n

Bp(t)
C(t)
C1(t)
C2(t)

0

50

100

150

0 1000 2000 3000

Time t in [s]

C
on

ce
n
tr

at
io

n

Bp(t)
C(t)
C1(t)
C2(t)
C3(t)

0

50

100

150

0 1000 2000 3000

Time t in [s]

C
on

ce
n
tr

at
io

n

0

50

100

150

0 1000 2000 3000

Time t in [s]

C
on

ce
n
tr

at
io

n

0

50

100

150

0 1000 2000 3000

Time t in [s]

C
on

ce
n
tr

at
io

n

0

50

100

150

0 1000 2000 3000

Time t in [s]

C
on

ce
n
tr

at
io

n

Figure 4.1: Generated TACs via Excel: On the left-hand side the TACs for a two-
compartment model and on the right-hand side these for a three-compartment model are
shown. From up to down the TACs are simulated for a pointed, a blunt and a kinky input
function, respectively.
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Figure 4.2: The dependence of the curve shape on the rate constants ki. Upper left: k1 =
1, k6 = 0.1, upper right: k1 = 0.3, k6 = 0.1, lower left: k1 = 1, k6 = 0.3, lower right:
k1 = 0.3, k6 = 0.3. The other rate constants are set k2 = 2, k3 = 0.1, k4 = 0.1, k5 = 0.3 for
all graphics above. For this simulation a two-compartment model supplied by a kinky input
function has been utilized.
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Figure 4.3: The impact of generally high and low rate constants ki. In the left plot k1 =
2, k2 = 1, k3 = 4, k4 = 1, k5 = 1, k6 = 2 holds, whereas in the right plot all rate constants are
divided by the factor 10. One can see that for high values of ki the TAC rather follows the
input function than for low values.
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4.2 Generation of Information regarding Curve Shape

For the mathematical analysis of the TAC shape a Python script has been written in

order to read in the TAC data from the ”TAC-simulation.csv” file. This data was then

investigated for mathematical properties such as the relative slope and intercept of a linear

best fit function before and after a certain time point, the relative integral, the curvature

as well as the overall TAC shape described in section 3.2. Subsequently the information

obtained together with the parameters of the underlying model has been written into a new

csv-file named ”information.csv”. In table 4.1 a small selection of this csv-file is shown.

Apart from the entries displayed, the ”information.csv” file also contained information such

as the residual sum of squares (RSS) for the linear regression lines used, which are not shown

in the table. The so called RSS is defined by

RSS =

t1∑
t=t0

(TAC(t)− f(t))2 ,

where TAC(t) is the exact value of the simulated TAC, f(t) is the approximated value of

the linear regression line and t0 and t1 being the boundaries of the time interval considered

for the linear regression. The lower the RSS, the better the linear fit [47].

The first column in table 4.1 called Input describes the type of input function: this can

either be a pointed, blunt or kinky input function. The second and third column specify

the underlying kinetic model, so either open or trapped and a one-, a two- or a three-

compartment model. For a three-compartment model the csv-file comprised of twelve rate

constants ki instead of six, which is not shown in the table.

For a two-compartment model 195 TACs and for a three-compartment model 209 have been

generated for each input function type. In contrast, for a one-compartment model only 13

TACs have been simulated for each kind of input function due to the model’s simplicity. By

analyzing all these TACs, the generated ”information.csv” file containing all mathematical

properties mentioned in section 3.2 comprised of 1251 entries in total. This large number

of data was necessary for increasing the significance and reliability when it comes to further

analysis via statistical methods.
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Model type Rate Constants Shape Before After
Irel C

Input #C t/o k1 k2 k3 k4 k5 k6 max1 max2 fall mrel brel mrel brel

p 2 o 0.2 0.5 0.1 0.05 0.1 0.6 × × 0.084 0.095 -0.021 0.063 0.142 -14.488
p 2 o 0.5 0.3 0.1 0.5 0.03 0 × × 0.112 0.130 -0.106 0.061 0.221 -19.370
p 2 t 0.2 0.1 0 0 0.06 0 × 0.081 0.090 -0.039 0.051 0.138 -11.876
b 2 o 0.2 0.5 0.1 0.05 0.1 0.02 × × 0.085 0.095 -0.380 0.014 0.132 -8.680
b 2 t 1 0.7 0 0 0.05 0 × × 0.169 0.205 -1.216 -0.033 0.320 -17.892
k 2 o 0.2 0.6 0.1 0.8 0.5 0.4 × × 0.131 0.155 -0.385 0.037 0.253 -16.885
k 2 t 0.2 1 0 0 0.05 0 × 0.078 0.087 -0.081 0.051 0.118 -10.077
k 2 t 0.1 0.01 0.2 0 0 0 × 0.062 0.065 -0.033 0.042 0.082 -6.213

Table 4.1: A small selection of the ”information.csv” file written by the Python script.
Besides the mathematical properties (relative slope mrel and intercept brel before and after
a certain time point, relative integral Irel, curvature C) and the overall TAC shape (max1,
max2, fall off) the model parameters are recorded as well. This table is valid for a two-
compartment model. For a three-compartment model there would be twelve rate constants
ki and for a one-compartment model only k1 and k2 would be present.

4.3 Evaluation of obtained Data

For the examination of significant relations between the rate constants ki and the calculated

mathematical properties, the corresponding correlation coefficients according to equation

(26) had to be calculated. This was performed for all the one-, the two- and the three-

compartment model. The mathematical properties considered have been the relative slope

mrel and intercept brel before and after a certain time point, the relative integral Irel as well

as the curvature C. These properties were set into relation to all rate constants ki. In table

4.2 the correlation coefficients rxy for all rate constants ki and mathematical properties are

shown. Since an in amount high coefficient |rxy| ≈ 1 corresponds to a strong dependence,

for a better overview the coefficients of high significance are color coded. For |rxy| ≥ 0.95

the cells are marked as dark-gray, for |rxy| ≥ 0.75 the cells are highlighted as light-gray.

With table 4.2 one can see that there are high correlations between the first two rate con-

stants and specific mathematical properties. Especially for k1 there is a strong relation

between the relative slope mrel, intercept brel and curvature C. Furthermore, it is apparent

that for all other rate constants there is no significant relation.

This result justifies the estimation of k1 and k2 by using these mathematical properties for

back-calculation. The other rate constants had to be estimated by alternative methods,

which leads to the Student’s t-test.

As described in section 3.3.2, first it was necessary to sort the ”information.csv” file shown

in table 4.1 by different characteristics, namely the type of input function B(t), the number
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of compartments #C, the presence of an open or trapped model as well as the TAC shape.

All the considered classifications are listed in table 4.3. For classifying the data a two-step

classification was performed, meaning first the dataset has been sorted by a primary charac-

teristic and then optionally these classes could be further divided into different subclasses.

For example, with #C being the main class and B(t) being the secondary class, the datasets

between different input function types within either a one-, a two- or a three-compartment

model were compared. By that, it could be determined whether or not there is a difference

between a pointed, a blunt and a kinky input function for a certain compartment model. If

table 4.3 shows a × in the secondary class, it means that only a first classification has been

performed. Since there are many different combinations for the input function, the number

of compartments, the existence of an open or trapped model and the TAC shape, the t-test

had to be conducted for all mathematical properties for all feasible combinations of these

classifications.

By means of the t-test one was able to determine if there is a significant difference in math-

ematical values between two different classifications. If so, these classes seemed to have a

considerable influence on the specific mathematical properties.

The unpaired, two-sided t-test has been performed with the spreadsheet software Excel.

The output of the t-test hereby is the p-value described in equation (27). In table 4.4 the

outcome of the t-test for the first class being the number of compartments #C and the

secondary being the type of input function B(t) is shown. The fields with high significance

are highlighted: light-gray for p < 0.05 and dark-gray for p < 0.01. For a low p-value the

null hypothesis H0 describing the equality of datasets between two classes could be rejected.

It should be underlined that for the relative slope mrel and the relative intercept brel before

a certain time point the p-value equals 1 for different input functions, meaning there is no

difference between them at all. This result was due to the fact that mrel and brel were calcu-

lated for a regression line within the time interval [tstart, tpeak], where the input functions are

the same (see the beginning term A(t) in section 3.2.1). The TAC values within this time

region therefore were the same as well, leading to equal relative slopes and intercepts before

tpeak.

Apart from the one-compartment model, where only two rate constants ki are present, for

the two- and the three-compartment model table 4.4 consists of many fields with a low

p-value. Even though the relative integral Irel did not have as small p-values as other math-

ematical properties, the different classes seemed to have an influence on the relative integral
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Irel
Before After

C
mrel brel mrel brel

k1 0.859 0.958 0.954 0.068 0.906 -0.928
k2 0.647 0.799 0.792 0.219 0.849 -0.786
k3 -0.053 -0.065 -0.065 -0.010 -0.061 0.055
k4 -0.203 -0.221 -0.220 -0.011 -0.209 0.219
k5 0.135 0.048 0.052 -0.252 -0.118 0.010
k6 0.168 0.115 0.119 -0.134 0.032 -0.111

Table 4.2: Correlation coefficients rxy between the rate constants ki and the calculated
mathematical properties. The correlations with |rxy| ≥ 0.95 are highlighted as dark-gray,
signaling a high relationship. In light-gray the cells are marked where |rxy| ≥ 0.75 holds.

1st class 2nd class 1st class 2nd class 1st class 2nd class 1st class 2nd class

B(t)

×

#C

×

TAC shape

×

t/o

×
#C B(t) B(t) B(t)
TAC shape TAC shape #C #C
t/o t/o t/o TAC shape

Table 4.3: Possible classifications of the ”information.csv” file for further analysis via a
Student’s t-test. The considered classes were the type of input function B(t), the number of
compartments #C, the presence of either an open or trapped model and the general TAC
shape. Each of them could either be used as a main class or as a secondary one. A ×
illustrates that no secondary classification has been performed.

anyway. Such a table comprising of p-values for the various mathematical properties had to

be generated for all feasible combinations of classes (see table 4.3). Thereby, one got a good

overview of the importance of the performed subdivision. Since for all classifications there

were many fields comprising of low p-values, there seemed to be a large dependence of the

mathematical properties on the type of input function B(t), the number of compartments

#C, the presence of an open or trapped model as well as the TAC shape. This result clearly

stated that it is necessary to look at all classes one by one.

4.4 Programming the Algorithm

In the previous section the results pointed out that the investigations via statistical methods

are less informative than expected. Thus, the data needed to be classified by its input func-

tion, the model type and the TAC shape. By that the algorithm has to output values and

feasible intervals for the rate constants on basis of the underlying characteristic, leading to a

more complex structure of the algorithm than initially presumed. Another drawback is the

limitation of the algorithm on the rate constants k1 and k2 for a one-compartment model, k1
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1st class 2nd class Irel
Before After

C
mrel brel mrel brel

1C
Bp(t)↔ Bb(t) 0.817 1 1 0.003 0.451 0.711
Bp(t)↔ Bk(t) 0.913 1 1 0.185 0.819 0.672
Bb(t)↔ Bk(t) 0.903 1 1 0.035 0.604 0.969

2C
Bp(t)↔ Bb(t) 0.077 1 1 < 10−5 < 10−5 < 10−3

Bp(t)↔ Bk(t) 0.415 1 1 < 10−5 0.010 0.002
Bb(t)↔ Bk(t) 0.336 1 1 < 10−5 < 10−5 0.389

3C
Bp(t)↔ Bb(t) 0.056 1 1 < 10−5 < 10−5 < 10−3

Bp(t)↔ Bk(t) 0.374 1 1 < 10−5 0.018 0.001
Bb(t)↔ Bk(t) 0.303 1 1 < 10−5 < 10−5 0.562

Table 4.4: Calculation of the p-value of a Student’s t-test for the data with Excel. As an
example, the first classification is the number of compartments #C, the secondary being the
type of input function B(t). Highlighted as light-gray and dark-gray are the fields of high
significance where p < 0.05 and p < 0.01, respectively, holds.

to k6 for a two-compartment model and k1 to k4, k7 and k8 in a three-compartment model

due to the poor information obtained by statistical methods such as the Student’s t-test and

the correlation coefficient. The other six rate constants appearing in a three-compartment

model remain unconsidered.

As already described in section 3.4, the first task of the algorithm is to determine the type

of input function as well as examining the measured TAC for its shape. In the next step the

Python script analyzes the TAC for various mathematical properties such as the relative

slope mrel and intercept brel before and after a certain time point, the relative integral Irel as

well as its curvature C.

Since there happened to be a high correlation between the first two rate constants k1, k2 and

various mathematical characteristics, the attempt was made to compute these rate constants

by back-calculation. In figure 4.4 the data points with their linear regression lines are shown

for an open two-compartment model supplied by a kinky input function. As one can see, in

this case the two mathematical properties showing the best correlation coefficients were the

relative slope before and the relative intercept after a certain time point for the first rate

constant k1 (left plot). For the second constant k2 (right plot) the best correlating properties

were the relative intercept after a certain time point as well as the curvature. In the case of

some other compartment model and input function type the linear regression were different.

All these linear regression lines have been used for determining k1 and k2 via back-calculation

according to equation (29).
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Figure 4.4: Linear regression lines for an open two-compartment model supplied by a kinky
input function: the two mathematical properties having the best correlation with k1 (left)
and k2 (right) are shown.

As one can see in table 4.2, the other rate constants did not comprise of such a good corre-

lation coefficient. Thus, a linear fit of the data points and the subsequent back-calculation

were not expected to yield trustworthy values for these rate constants. Nevertheless, to make

an estimation for the rate constants k3 to k6 in a two-compartment model and k3, k4, k7 and

k8 in a three-compartment model, two-sided 95% confidence intervals have been calculated.

These intervals provide a good first assessment for the values of these rate constants.

As described in section 3.4, to generate such confidence intervals, the data has been classified

and afterwards the confidence interval to the significance level α = 5% was computed. These

intervals have then been intersected to obtain feasible intervals for each rate constant for all

types of input functions, all compartment models and all TAC shapes as well. In tables 4.5,

4.6 and 4.7 all the feasible intervals are shown. These intervals were imported into the algo-

rithm in order to provide the estimated values for k1 and k2 as well as the feasible intervals

for the other rate constants. An example for an output of the algorithm is shown in figure

4.5.
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Pointed Input Function

max1

no max2

fall off

max1

max2

fall off

no max1

max2

fall off

max1

no max2

no fall off

no max1

no max2

no fall off

1C
0 < k1 < 3.257
0 < k2 < 3.226

0 < k1 < 3.519
0 < k2 < 3.494

0 < k1 < 5.274
0 < k2 < 5.235

0.042 < k1 < 0.178
0 < k2 < 0.017

0.042 < k1 < 0.178
0 < k2 < 0.017

2C open

0.878 < k1 < 1.190
1.199 < k2 < 1.634
0.458 < k3 < 0.633
0.325 < k4 < 0.446
0.091 < k5 < 0.162
0.361 < k6 < 0.487

0.878 < k1 < 1.257
1.199 < k2 < 1.711
0.458 < k3 < 0.634
0.325 < k4 < 0.446
0.091 < k5 < 0.174
0.361 < k6 < 0.527

0.458 < k3 < 0.718
0.325 < k4 < 0.488

0.878 < k1 < 1.190
1.199 < k2 < 1.634
0.426 < k3 < 0.483
0.310 < k4 < 0.446

0.426 < k3 < 0.483
0.310 < k4 < 0.490

2C trapped

1.101 < k1 < 1.792
1.497 < k2 < 2.611
0.042 < k3 < 0.170
0.012 < k5 < 0.029

1.101 < k1 < 2.044
1.497 < k2 < 3.003
0.035 < k3 < 0.183
0.011 < k5 < 0.029

0.147 < k1 < 1.253
0.041 < k2 < 0.247

0 < k3 < 0.198
0 < k5 < 0.062

1.101 < k1 < 1.792
1.497 < k2 < 2.602
0.043 < k3 < 0.170
0.012 < k5 < 0.029

0.043 < k3 < 0.170
0.012 < k5 < 0.030

3C open

1.049 < k1 < 1.255
1.599 < k2 < 2.015
0.515 < k3 < 0.605
0.327 < k4 < 0.472
0.058 < k7 < 0.099
0.183 < k8 < 0.348

1.049 < k1 < 1.255
1.599 < k2 < 2.015
0.515 < k3 < 0.606
0.327 < k4 < 0.472
0.058 < k7 < 0.100
0.183 < k8 < 0.350

0.779 < k1 < 1.255
1.278 < k2 < 2.015
0.515 < k3 < 0.756
0.304 < k4 < 0.472
0.047 < k7 < 0.113
0.153 < k8 < 0.412

1.107 < k1 < 1.407
1.614 < k2 < 2.127
0.457 < k3 < 0.546
0.327 < k4 < 0.497
0.058 < k7 < 0.099
0.183 < k8 < 0.348

1.107 < k1 < 1.407
1.614 < k2 < 2.127
0.457 < k3 < 0.546
0.325 < k4 < 0.497
0.058 < k7 < 0.099
0.182 < k8 < 0.348

3C trapped

1.092 < k1 < 2.103
1.284 < k2 < 2.654
0.219 < k3 < 0.681
0.131 < k4 < 0.565
0.005 < k7 < 0.052
0.091 < k8 < 0.869

1.092 < k1 < 2.317
1.284 < k2 < 2.942
0.201 < k3 < 0.712
0.131 < k4 < 0.565
0.005 < k7 < 0.058
0.091 < k8 < 0.972

0 < k3 < 1.691
0 < k4 < 7.070
0 < k8 < 0.210

1.092 < k1 < 2.103
1.284 < k2 < 2.654
0.219 < k3 < 0.681
0.131 < k4 < 0.565
0.005 < k7 < 0.052
0.091 < k8 < 0.869

0.219 < k3 < 0.681
0.111 < k4 < 0.812
0.004 < k7 < 0.052
0.087 < k8 < 0.210

Table 4.5: Feasible intervals for a pointed input function: for each model type and each TAC shape there are different
intervals.
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Blunt Input Function

max1

no max2

fall off

max1

max2

fall off

no max1

max2

fall off

max1

no max2

no fall off

no max1

no max2

no fall off

1C
0 < k1 < 5.274
0 < k2 < 5.235

0 < k1 < 5.274
0 < k2 < 5.235

0.042 < k1 < 0.178
0 < k2 < 0.017

0.042 < k1 < 0.178
0 < k2 < 0.017

0.042 < k1 < 0.178
0 < k2 < 0.017

2C open

0.847 < k1 < 1.190
1.146 < k2 < 1.634
0.442 < k3 < 0.633
0.310 < k4 < 0.470
0.082 < k5 < 0.162
0.292 < k6 < 0.487

0.847 < k1 < 1.204
1.146 < k2 < 1.666
0.442 < k3 < 0.635
0.309 < k4 < 0.470
0.082 < k5 < 0.168
0.292 < k6 < 0.503

0.442 < k3 < 0.661
0.309 < k4 < 0.490

0.847 < k1 < 1.190
1.146 < k2 < 1.634
0.426 < k3 < 0.523
0.310 < k4 < 0.470

0.426 < k3 < 0.523
0.310 < k4 < 0.490

2C trapped

1.107 < k1 < 1.792
1.461 < k2 < 2.611
0.042 < k3 < 0.070
0.015 < k5 < 0.030

1.107 < k1 < 2.072
1.461 < k2 < 3.021
0.021 < k3 < 0.070
0.015 < k5 < 0.036

0.041 < k1 < 1.534
0.065 < k2 < 0.837
0.068 < k3 < 0.734

1.107 < k1 < 1.792
1.461 < k2 < 2.602
0.043 < k3 < 0.070
0.015 < k5 < 0.030

0.068 < k3 < 0.170
0.012 < k5 < 0.030

3C open

1.051 < k1 < 1.399
1.598 < k2 < 2.127
0.457 < k3 < 0.597
0.325 < k4 < 0.484
0.064 < k7 < 0.099
0.184 < k8 < 0.310

1.051 < k1 < 1.399
1.598 < k2 < 2.147
0.452 < k3 < 0.597
0.314 < k4 < 0.484
0.064 < k7 < 0.100
0.184 < k8 < 0.310

1.559 < k2 < 1.997
0.435 < k3 < 0.597
0.308 < k4 < 0.504
0.064 < k7 < 0.112
0.153 < k8 < 0.310

1.051 < k1 < 1.407
1.598 < k2 < 2.127
0.457 < k3 < 0.601
0.325 < k4 < 0.484
0.058 < k7 < 0.081
0.184 < k8 < 0.348

1.581 < k2 < 1.997
0.457 < k3 < 0.605
0.325 < k4 < 0.497
0.058 < k7 < 0.081
0.182 < k8 < 0.348

3C trapped

0.959 < k1 < 2.103
1.108 < k2 < 2.654
0.219 < k3 < 0.681
0.111 < k4 < 0.812
0.004 < k7 < 0.052
0.087 < k8 < 0.869

0.959 < k1 < 2.103
1.108 < k2 < 2.654
0.219 < k3 < 0.681
0.111 < k4 < 0.812
0.004 < k7 < 0.052
0.087 < k8 < 0.869

0.959 < k1 < 1.989
1.108 < k2 < 2.440
0.230 < k3 < 0.681
0.117 < k4 < 0.812
0.004 < k7 < 0.049
0.087 < k8 < 0.869

0.959 < k1 < 1.989
1.108 < k2 < 2.440
0.230 < k3 < 0.681
0.117 < k4 < 0.812
0.004 < k7 < 0.049
0.087 < k8 < 0.869

Table 4.6: Feasible intervals for a blunt input function: for each model type and each TAC shape there are different
intervals.
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Kinky Input Function

max1

no max2

fall off

max1

max2

fall off

no max1

max2

fall off

max1

no max2

no fall off

no max1

no max2

no fall off

1C
0 < k1 < 4.181
0 < k2 < 4.178

0 < k1 < 0.713
0 < k2 < 0.331

0.049 < k1 < 0.385
0 < k2 < 0.139

0.048 < k1 < 0.127
0 < k2 < 0.010

0.049 < k1 < 0.127
0 < k2 < 0.010

2C open

0.963 < k1 < 1.226
1.281 < k2 < 1.681
0.431 < k3 < 0.638
0.321 < k4 < 0.459
0.087 < k5 < 0.168
0.352 < k6 < 0.503

1.281 < k2 < 1.412
0.425 < k3 < 0.557
0.298 < k4 < 0.459

0.425 < k3 < 0.557
0.297 < k4 < 0.471

0.431 < k3 < 0.678
0.321 < k4 < 0.459

0.431 < k3 < 0.600
0.321 < k4 < 0.499

2C trapped
1.645 < k1 < 1.857
2.136 < k2 < 2.714

1.645 < k1 < 2.867
2.136 < k2 < 3.442
0.007 < k5 < 0.012

0.380 < k2 < 0.734
0.008 < k5 < 0.012

1.645 < k1 < 1.748
2.136 < k2 < 2.714
0.052 < k3 < 0.083
0.013 < k5 < 0.030

0.052 < k3 < 0.177
0.013 < k5 < 0.031

3C open

1.175 < k1 < 1.399
1.779 < k2 < 2.138
0.476 < k3 < 0.608
0.321 < k4 < 0.423
0.061 < k7 < 0.104
0.189 < k8 < 0.349

1.175 < k1 < 1.399
1.779 < k2 < 2.138
0.458 < k3 < 0.543
0.321 < k4 < 0.423
0.061 < k7 < 0.104
0.188 < k8 < 0.279

0.458 < k3 < 0.543
0.321 < k4 < 0.498
0.061 < k7 < 0.106
0.184 < k8 < 0.279

1.175 < k1 < 1.429
1.779 < k2 < 2.153
0.476 < k3 < 0.613
0.308 < k4 < 0.423
0.189 < k8 < 0.376

0.476 < k3 < 0.643
0.308 < k4 < 0.447
0.189 < k8 < 0.304

3C trapped

1.340 < k1 < 2.333
1.420 < k2 < 2.877
0.006 < k7 < 0.034
0.091 < k8 < 0.155

1.340 < k1 < 2.082
1.420 < k2 < 3.466
0.095 < k4 < 0.105

0 < k7 < 0.034
0.086 < k8 < 0.155

0.135 < k1 < 0.615
0.079 < k2 < 1.196
0.091 < k3 < 0.114

0 < k4 < 0.105
0 < k7 < 0.130
0 < k8 < 0.155

1.340 < k1 < 1.984
1.420 < k2 < 2.349
0.262 < k3 < 0.731
0.139 < k4 < 0.589
0.006 < k7 < 0.034
0.091 < k8 < 1.012

1.178 < k2 < 1.196
0.262 < k3 < 0.634
0.139 < k4 < 0.589
0.006 < k7 < 0.050
0.091 < k8 < 0.241

Table 4.7: Feasible intervals for a kinky input function: for each model type and each TAC shape there are different
intervals.
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Figure 4.5: Example of an output of the algorithm. Besides the TAC shape (max1, max2,
fall off), the type of input function is presented as well. The algorithm provides values and
feasible intervals for the specific rate constants for all model types (1C, 2C open, 2C trapped,
3C open, 3C trapped) separately.

4.5 Testing the Algorithm

The last step was to test the algorithm’s reliability. For this, the algorithm was fed with

different real measurement curves containing concentration values for both the input func-

tion and the TAC. This is an important step, since the algorithm was built up on basis

of ideal input functions and TACs as well as on a perfect exchange between the individual

compartments. In contrast to the simulated TACs, the ones obtained from real measure-

ments comprise of large fluctuations. These fluctuations in particular can lead to a wrong

assumption of the existence of a max1 and a max2.

While the relative slope mrel and intercept brel before and after a certain time point, the

relative integral Irel, the curvature C as well as the property of falling down at the end are

calculated over a certain time range, the existence of a max1 and max2 is determined on

basis of a maximum appearing at a single time point. Hence, fluctuations in the TAC are

expected of having a possible impact on the existence of the two maximums. This is due to

the fact that an outlier in the TAC concentration can be thought of as being a maximum

although in reality it only appears due to noise and measurement uncertainties. In contrast,

for calculations over a certain time period the fluctuations are supposed to have a less im-

portant impact on the specific mathematical properties.

Another crucial factor to keep in mind were all the external parameters. For adjusting the
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algorithm to real recorded TACs, one had to consider these parameters, since they have a

great influence on the outcome of the algorithm. It turned out that the best results of the

algorithm are obtained with the following choice of external parameters:

• threshold level cth = 0.03: the measurement starts as soon as the concentration exceeds

3% of the input function peak. This level seems to be high enough to ignore noise in

the beginning. On the other hand it is low enough so that the start of the measurement

will be recognized properly.

• slope range rs = 3: the length of the time window for calculating the relative slope and

intercept after a certain time point is three times the interval length [tstart, tpeak].

• integral range rI = 2: for the relative integral, the considered time window is twice as

long as the interval [tstart, tpeak].

• curvature range rC = 4: the time window for computing the curvature is four times as

wide as the time interval [tstart, tpeak]. This relatively large range is necessary since for

shorter time windows the calculated curvature is hardly reliable (see figure 3.3).

• fall off range rfall off = 0.2: for examining the TAC for a fall off at the end, the last

20% of the data points are taken into account. This range turned out to be a good

compromise between considering only a small part of data points for determining a fall

off, which increases its reliability and on the other hand taking into account enough

points to neglect TAC fluctuations which could alter the result of a fall off.

• limit range rlimit = 35 : the time point distinguishing a max1 from a max2 is located

at 35 times the window length of [tpeak, tstart].

• percentage step p = 0.05: with each iteration in finding a maximum (both max1 and

max2), the considered time window gets shortened by 5% of the initial window length

(see section 3.2.6). A smaller percentage step would be more precise while increasing

the computing time. In contrast, a larger p would be faster but less accurate. A value

of 5% is sufficiently precise while keeping the calculation time low.

• concentration difference ε = 0.03: the concentration of a max2 has to exceed 3% of

the concentrations at the boundaries of the considered time window in order to be

designated as max2.

With this choice of the external parameters the algorithm seemed to yield the most reliable

results for the rate constants ki. As aforementioned, one has to ensure that the existence of a

maximum is associated with a real maximum and not only due to concentration fluctuations.
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Therefore for future applications it might be helpful to adapt ε for each measurement in or-

der to obtain better results. The concentration difference ε turned out to be the external

parameter influencing the algorithm most.

With all the external parameters being adapted, the algorithm finally can be used for esti-

mating the rate constants of a kinetic model. In section 3.2 all these external parameters

with their application and implementation is described more precisely.

To sum up, the algorithm outputs both the TAC shape (max1, max2, fall off at the end) and

the parameters and type of the fitted input function Bapp(t) (pointed, blunt or kinky) as well

as initial values and feasible intervals for the rate constants for each type of compartment

model (see figure 4.5). Due to the lack of information the algorithm itself is not able to pro-

pose a certain type best fitting the measured TAC. Hence, the algorithm outputs estimated

values for the rate constant for each type of compartment model, which leaves it up to the

operator to decide which model to use. As already mentioned, the values and intervals pro-

vided by the algorithm are not supposed to be exact values representing the measured TAC.

They rather should present good initial values which can be adapted by an optimization

tool such as the Nelder-Mead simplex method. By that, rate constants providing a good

accordance between the calculated and the real TAC can be obtained.
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5 Discussion

The goal in kinetic modeling is to describe the temporal behavior of a tracer within a VOI.

In compartmental modeling, the quantification takes place by using mathematical models

which are based on compartments as well as on their tracer exchange governed by rate con-

stants. The aim is now to get a good estimation of these rate constants. In order to do so,

simulated TACs are adapted to real measured ones by applying an optimization tool such as

the Nelder-Mead simplex method. The accordance between the simulated and the measured

TAC thereby is gradually increased by altering the rate constants, until a local best fit is

reached.

Since all these optimization tools strongly depend on the initial values given, it is very im-

portant to start with proper rate constants. The algorithm programmed for this master

thesis should provide such good initial values to enhance the general outcome after applying

an optimization method. Nevertheless, there were some issues coming up during the pro-

gramming of this algorithm.

The set of differential equations (1), (2) and (3) can either be solved analytically or numer-

ically. Since the analytical solution turned out to be very complex, even for a simplified

two-compartment model (see section 2.1), the differential equations have been solved by

numerical means. In section 3.1.2 the Euler method with step size h = 1 s was performed.

Even though an analytical solution would be more precise than applying numerical methods,

the errors produced by the Euler method are small and therefore negligible. Besides, with

solving the set of differential equations numerically, the implementation of the algorithm can

be extended to other problems as well (for example when using a constant input function).

In the case of analytical solutions, one would have to start all over again when changing

external conditions having an influence on the TAC behavior.

Apart from the Euler method there are other numerical techniques such as the second-order

Runge-Kutta methods, by which the sets of differential equations could be solved (see sec-

tion 2.3). Nevertheless, the more precise a numerical approach, the more complex and hence

unsuitable for programming the algorithm. The Euler method hereby turned out to yield

good simulated TACs while keeping low the complexity.

Some other issues arising when numerically calculating various mathematical properties by

the Python script are the relative integral and the TAC’s curvature. For the relative in-
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tegral Irel the sum of the discrete TAC values within a certain time window is taken and

divided by that of the input function. This can be seen as a quadrature formula using

polynomial functions of order zero (constant functions) between the individual time points.

A more precise approximation could be obtained by using functions of higher order [48].

Another possibility would be to use a spline interpolation for approximating the TAC by a

polynomial function and subsequently computing its integral [49].

The same could be done for the calculation of the curvature C: instead of estimating the

curvature by calculating the difference quotients twice (see equation (22)), again for bet-

ter results one could approximate the TAC. Nevertheless, since the main errors appearing

during programming the algorithm were caused by statistical uncertainties, the calculation

methods for the relative integral and the curvature are rather unimportant. The use of more

complex formulas would not considerably enhance the reliability of the obtained results, but

the calculation would get more complex. Thus, the most simple techniques for numerically

calculating these mathematical properties were performed.

Two other mathematical values of interest were the relative slope and intercept before a

certain time point. As expected, they turned out to show high correlations with the first

two rate constants k1 and k2, wherefore these values have been used for back-calculation

(see section 3.4.4). Nevertheless, table 4.4 shows that their p-values were equal to 1, stating

that for these mathematical properties there is no difference at all between different types of

input function. This is due to the beginning term A(t) for the various input functions (see

equation (17)). A(t) was the same for all types, hence the calculation of k1 and k2 using the

relative slope and intercept before a certain time point actually was based on the same lin-

ear rising term. Hence, when estimating the first two rate constants via these mathematical

properties, the different types of input function had no effect, which reduces the reliability

of the obtained values for k1 and k2.

A more important drawback appearing in this master thesis was the statistical uncertainty.

After generating the TACs they have been classified by the input function B(t), the number

#C of compartments, the overall TAC shape and whether the underlying model is trapped

or open. Subsequently a t-test was performed to see if there is a noteworthy difference among

these classifications. Since most of the p-values turned out to be very low (see table 4.4), the

classifications were supposed to have a huge impact on the various mathematical properties.

The reason for performing these classifications was to increase the reliability of the obtained

confidence intervals and in consequence to get a better estimation for the rate constants.
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However, due to these classifications, the sample sizes n of the individual classifications were

drastically reduced, sometimes even n < 10. Therefore the reliability of the p-values was

reduced as well. To ensure a better significance and to reduce the statistical uncertainties,

many more TACs would have to be simulated in the beginning, as the original number of

1251 generated TACs turned out to be too low to really provide reliable values.

Another issue in programming the algorithm are the input functions used for simulation.

As explained in section 3.1.1 there have been three different types of input functions which

were used for generating the TACs. Nevertheless, there are other possible types as well.

For instance there is the constant input function, which can be used for tracer delivery but

which is not covered in this master thesis. Using such a constant input function would have

an enormous impact on the TAC shape and thus would alter the obtained rate constants

tremendously.

The last issue discussed is the algorithm’s outcome and the still needed operator’s decision

on which model to use best. Originally, the aim of this master thesis was to program an

algorithm which was supposed to determine both the input function type and the underlying

model (one-, two- or three-compartment model and open or trapped) and to provide good

initial values for the rate constants. Thereby the assessment of the rate constants should not

include the operator’s decision at all. However, due to the lack of statistical information,

one had to abandon this idea. Instead, the algorithm now provides initial values for each

model type (see figure 4.5), which leaves it up to the operator to decide which model to use.

So the estimation of the rate constants still includes a subjective assessment.
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6 Conclusion

In kinetic modeling the aim is to quantify the dynamic behavior of tracers administered

to patients. For a compartment model the mathematical description is based on different

compartments including respective rate constants. To estimate these rate constants, various

curve fitting programs exist and are already in use. Nevertheless, a general problem hereby is

the dependence of these programs’ reliability on the given initial values of the rate constants.

In this master thesis an algorithm was programmed which aim is to asses such rate constants.

For this purpose the algorithm is based on a previously calculated database of linear regres-

sion lines and feasible intervals for different compartment models. By that the algorithm

reads in a measured TAC, collates it with the simulated ones and outputs proper values

which in turn can be used for further curve fitting.

By having good initial values, the examination of physiological processes can be facilitated

and the understanding of the physical, biological and chemical behavior of the tracer within a

VOI can be improved as well. Hence, a first assessment of rate constants is imperative when

it comes to PET data quantification using compartment models. Plus, the investigation and

study of new tracers applicable in nuclear medicine can be supported by using an algorithm

suitable for parameter estimation.
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List of Abbreviations

18FDG Fludeoxyglucose 18F

68Ga-PSMA Prostate Specific Membrane Antigen labeled with 68Ga

99mTc-MAG3 Mercaptoacetyltriglycine labeled with 99mTc

CT Computed Tomography

EC Electron Capture

FUR Fractional Uptake Rate

IT Isomeric Transition

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

PVE Partial Volume Effect

ROI Region of Interest

RSS Residual Sum of Squares

SPECT Single Photon Emission Computed Tomography

SUV Standardized Uptake Value

TAC Time Activity Curve

VOI Volume of Interest
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Nomenclature

#C Number of Compartments

A(t) Beginning Term in the Input Function

B(t) Input Function in Kinetic Modeling

Bapp(t) Approximated Input Function

Bp(t), Bb(t), Bk(t) Pointed, Blunt and Kinky Input Function considered in this Master The-

sis

bTAC, bB, brel Intercept of the Linear Regression Line for the Time Activity Curve, the

Input Function and their Ratio

C Curvature

Ci(t) Concentration in the i-th Compartment

cth Threshold Level to disregard Measurement Noise

ε Concentration Difference

Irel Relative Integral

ki Rate Constants

mTAC,mB,mrel Slope of the Linear Regression Line for the Time Activity Curve, the

Input Function and their Ratio

max1, max2 TAC Maximums before and after tlimit

p Percentage Step

rC , rfall off, rI , rs Curvature Range, Fall Off Range, Integral Range and Slope Range

tend Both the End Time for a certain Time Window and the Measurement

End Time

tfall off start Starting Time for the Fall Off Interval

tlimit Limit Time Distinguishing a max1 from a max2
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tmean Arithmetic Mean Value of tstart and tend

tpeak Peak Time of the Input Function

θ(t), θ′(t) Heaviside Function, Half-Maximum Convention of the Heaviside Func-

tion

w Weighting Factor for Calculating the TAC

X(t), X(t) Response Function, Simplified Response Function
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