Magnetic properties of $HoCoC_2$, $HoNiC_2$ and their solid solutions

H. Michor^{a,∗∗}, S. Steiner^a, A. Schumer^a, M. Hembara^b, V. Levytskyy^b, V. Babizhetskyy^b, B. Kotur^b

a Institute of Solid State Physics, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

^bDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, UA-79005 Lviv, Ukraine

Abstract

Magnetic properties of single crystalline $HoCoC₂$ and the evolution of magnetic and structural features in a series of polycrystalline solid solutions HoCo_{1−*x*}Ni_{*x*}C₂ (0 ≤ *x* ≤ 1) are investigated by means of x-ray diffraction, magnetization, magnetic susceptibility and specific heat measurements. The crystal structures of all investigated samples refers to the CeNiC₂-type structure (space group *Amm*2 and Pearson symbol oS8). Non-isoelectronic substitution of Co by Ni causes a non-linear increase of the unit cell volume and especially a non-monotonous variation of the *a* and *c* lattice parameters as well as a pronounced reduction of the C-C bond length of carbon dimers. Temperature dependent magnetization and specific heat measurements reveal a crossover from a ferromagnetic for HoCoC₂ with $T_C = 10.6(1)$ K to an antiferromagnetic ground state for HoNiC₂ with $T_N = 2.78(6)$ K and a non-monotonous variation of the magnetic ordering temperature with a minimum at intermediate compositions. Crystalline electric field effects of HoCoC₂ and HoNiC₂ are analysed using combined thermodynamic and magnetic susceptibility data. The electrical resistivity of HoNiC₂ displays a distinct anomaly near room temperature which indicates the formation of a charge density wave (CDW) state as earlier reported for several other rare earth nickel dicarbides.

Keywords: Rare-earth transition metal carbides, Magnetic properties, Crystalline electric field, Charge density wave, Heat capacity

1. Introduction

Carbide intermetallics containing rare earths and 3*d* transition metals attract enduring interest with respect to their large variety of $4f-3d$ magnetic states as well as with respect to charge density wave phenomena, especially in *RNiC*₂ [\[1,](#page-6-0) [2\]](#page-6-1), and unconventional superconductivity in LaNiC_2 [\[3,](#page-6-2) [4\]](#page-6-3). Respective ternary dicarbides, RTC_2 with $R =$ rare earth and $T =$ Fe, Co, and Ni occur in two structure types. The iron and nickel containing rare earth carbide intermetallics, $RFeC_2$ ($R = Sm$, Gd – Er, Lu) and $RNiC_2$ ($R = La - Lu$), crystallize in the noncentrosymmetric orthorhombic CeNiC₂-type structure, space group *Amm*2 [\[5,](#page-6-4) [6\]](#page-6-5). *RCoC*₂ compounds display two structure types. Those with light rare earths $(R = La - Sm)$ adopt the monoclinic $CeCoC_2$ -type structure, space group *Bb* [\[6,](#page-6-5) [7\]](#page-6-6), while those with heavy rare-earths $(R = Gd - Lu)$ crystallize in the orthorhombic $CeNiC₂$ -type structure. Both structure types are closely related to each other, i.e., the monoclinic type can be regarded as a distorted version of the orthorhombic one. Contrary to the $RFeC_2$ carbides, those with Co and Ni are remarkably stable in air.

The magnetic structures of $RCoC_2$ and $RNiC_2$ with $R = Pr$, Nd, Tb – Tm have been extensively studied by powder neutron diffraction (PND). A survey of these results was compiled by Schäfer et al. [\[8\]](#page-6-7). The majority of $RCoC_2$ compounds adopt a ferromagnetic (FM) ground state at low temperatures, e.g. HoCoC₂ with a reported Curie temperature $T_C \approx 9K$ [\[9\]](#page-6-8), whereas $RNiC₂$ compounds show different types of antiferromagnetic (AFM) ground state configurations, e.g. $HoNiC₂$ adopts a two-component non-collinear AFM structure at a Néel temperature reported as $T_N \sim 4$ K [\[10\]](#page-6-9). In all $RCoC_2$ and $RNiC_2$ compounds magnetic order is essentially confined to the rare earth 4 *f* moments while 3*d* moments remain negligible.

Our present interest lies in the crossover from FM to AFM ordering of the rare earth sublattice in quasi-ternary systems $R\text{Co}_{1-x}\text{Ni}_x\text{C}_2$ as well as in crystallographic peculiarities caused by non-isoelectronic substitution of Co by Ni. Recently, the crystal structure and evolution of magnetic properties in the solid solution series DyCo_{1-*x*}Ni_{*x*}C₂ isotypic with orthorhombic $CeNiC₂$ have been reported [\[11\]](#page-6-10). In this series, the substitution of Co by Ni causes a remarkable deviation of the unit cell volume from Vegard's rule and a non-monotonous variation of the *^a* and *^c* lattice parameters with extrema at *^x* [∼] ⁰.35. A crossover from FM to AFM ordering is accompanied with a significant reduction of the magnetic ordering temperature at intermediate compositions near $DyCo_{1/3}Ni_{2/3}C_2$. Here, we report on crystallographic characteristics and on magnetic properties of the series HoCo_{1−*x*}Ni_{*x*}C₂ (0 ≤ *x* ≤ 1) as well as a single crystal study of $HoCoC₂$.

[∗]©2017. This is the peer reviewed version of the following article: Michor, H., Steiner, S., Schumer, A., Hembara, M., Levytskyy, V., Babizhetskyy, V., Kotur, B, Magnetic properties of $HoCoC_2$, $HoNiC_2$ and their solid solutions. Journal of Magnetism and Magnetic Materials, 441, 69 – 75 (2017) which has been published in final form at https://doi.org/10.1016/j.jmmm.2017.05.038. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

^{∗∗}Corresponding author

Email address: michor@ifp.tuwien.ac.at (H. Michor)

Preprint submitted to Journal of Magnetism and Magnetic Materials April 10, 2017

2. Material and methods

2.1. Synthesis

The polycrystalline samples HoCo_{1−*x*}Ni_{*x*}C₂ with compositions $x = 0, 0.25, 0.50, 0.75, 1.0$ have been prepared by arc melting with subsequent homogenization at 1070 K for one month using a procedure described earlier [\[11\]](#page-6-10). Commercially available elements, Ho sublimed bulk pieces (Alfa Aesar, 99.9 at.%), powders of electrolytic nickel and cobalt (Strem Chemicals, purity of 99.99 at.%) and graphite powder (Aldrich, 99.98 at.%), were used. Single crystalline $HoCoC₂$ has been grown from stoichiometric polycrystalline starting material via the Czochralski technique in a tetra-arc furnace from Techno Search Corp.

*2.2. Di*ff*raction and sample characterization*

Powder X-ray diffraction (XRD) patterns for full profile refinements of the series HoCo1−*x*Ni*x*C² were collected on a STOE STADI P powder diffractometer with monochromated Cu-K_{α1} radiation ($10° \le 2\Theta \le 100°$, step size 0.05°) to check
the samples homogeneity. For precise lattice perspectors refine the samples homogeneity. For precise lattice parameters refinements the data were collected at room temperature on a Siemens D5000 powder diffractometer with graphite monochromated Cu-K_α radiation (20° \leq 20 \leq 120°, step size 0.02°) a powder of germanium (99.9999%, $a_{Ge} = 5.657905 \text{ Å}$) served as internal standard. All polycrystalline samples HoCo1−*x*Ni*x*C² were examined using energy dispersive X-ray spectroscopy analysis with a scanning electron microscope REMMA-102-02, whereby only Ho, Ni and Co concentrations were examined.

Czochralski grown, single crystalline $HoCoC₂$ was oriented by means of a standard Laue technique and cut accordingly into a set of three bar shape single crystals with their longest edges oriented parallel to the principal *a*, *b* and *c* axis directions, with masses of 10 to 20 mg. Another crystal was cut in approximately cubic shape with a mass near 70 mg.

2.3. Low temperature physical properties

Specific heat measurements on polycrystalline samples of about 1 g were performed by means of a home-made adiabatic step heating technique at temperatures ranging from 2 K to 140 K and in magnetic fields up to 2 T (see Ref. [\[12\]](#page-6-11) for details of the set-up). Additional specific heat measurements based on relaxation-type technique were carried out with a Quantum Design PPMS for a $HoCoC₂$ single crystal oriented with *c*-axis parallel to the externally applied field $(2-200)$ K and 0 to 5 T). Single crystal and polycrystal specific heat data of $HoCoC₂$ are essentially matching, just the adiabatic measurement of the polycrystalline sample provides a much higher resolution in the temperature steps. For $HoNiC₂$ additional zerofield heat capacity data down to 0.4 K were collected using a PPMS ³He heat capacity insert. Temperature and field dependent magnetic measurements were carried out on a CRYO-GENIC SQUID magnetometer with a temperature range from 3 K to room temperature applying static magnetic fields up to 6 T. Additional temperature dependent magnetisation measurements $(3 - 400 \text{ K})$ as well as field dependent isothermal magnetization measurement at 2 K and fields up to 9 T were performed

Figure 1: Variation of the lattice parameters of solid solutions HoCo1−*x*Ni*x*C² (dotted lines are guides to the eye).

for $HoCoC₂$ single crystals with principal crystallographic orientations parallel to the applied field using a PPMS vibrating sample magnetometer. Temperature dependent resistivity measurements for polycrystalline $HoNiC₂$ were performed using a Quantum Design PPMS set-up in a temperature range from 2 – 360 K. All other samples of the series HoCo1−*x*Ni*x*C² including a HoCoC² single crystal (current parallel to the orthorhombic *a* axis) were measured in a home-made set-up in the temperature range from 4.2 K to room temperature. All resistivity measurements were conducted with a four-point ac measuring technique on bar shape samples with spot welded gold contacts.

3. Results and Discussion

3.1. Structural characterization

XRD data of the HoCo_{1−*x*}Ni_{*x*}C₂ series were indexed in the $CeNiC₂$ structure type, space group $Amm2$, thus, confirming a continuous solid solubility between $HoCoC₂$ and $HoNiC₂$. Refined cell parameters of the series are summarized in Table [1.](#page-2-0) The present results of $HoCoC₂$ and $HoNiC₂$ are in good agreement with earlier reported data in Ref. [\[6\]](#page-6-5).

The unit cell parameters of pseudo-ternary series HoCo1−*x*Ni*x*C² are displayed in Fig[.1.](#page-1-0) The unit cell volume increases with increasing Ni content with a negative deviation from Vegard's rule, as it was observed for the related series DyCo_{1−*x*}Ni_{*x*}C₂ [\[11\]](#page-6-10). Again, a non-linear variation of the *a* and *b* lattice parameters is observed which may result from the non-isoelectronic substitution of Co by Ni where one extra electron is progressively added in the series HoCo_{1−*x*}Ni_{*x*}C₂. The latter may also be responsible for a systematic reduction of the C–C bond length which is indicated by the present XRD results. The C–C inter-atomic distances of $HoCoC₂$ and $HoNiC₂$ have, of course, been determined more accurately via earlier PND studies [\[9,](#page-6-8) [10\]](#page-6-9) yielding 1.422 Å and 1.373 Å, respectively, thus, indicating a change of the bonding character of C–C dimers by Co/Ni substitution. Reference values of single and double C–C bond lengths are e.g. 1.54 Å in diamond and 1.34 Å in alkene, respectively. This indicates some change of the electronic structure due to Co/Ni substitution in the series HoCo1−*x*Ni*x*C2.

x(Ni)	lattice parameters (\tilde{A})			$V(\AA^3)$
	a	h	ϵ	
0.00	3.5156(1)	4.5087(1)	6.0262(1)	95.5197(3)
0.25	3.5098(2)	4.5076(2)	6.0424(2)	95.5954(6)
0.50	3.5149(1)	4.5063(2)	6.0447(2)	95.7432(5)
0.75	3.5287(2)	4.5054(2)	6.0340(2)	95.9298(6)
1.00	3.5465(1)	4.5003(2)	6.0285(1)	96.2157(4)

Table 1: Room temperature lattice parameters of solid solutions HoCo_{1−*x*}Ni_{*x*}C₂ as labeled. Structure type CeNiC2, space group *Amm*2.

*3.2. Specific heat and magnetic susceptibility of the solid solution series HoCo*1−*xNixC*²

The evolution of magnetic ordering temperatures in the solid solution HoCo_{1−*x*}Ni_{*x*}C₂ is revealed by the specific heat results depicted in Fig. [2.](#page-2-1) The magnetic phase transition temperatures determined from the magnetic specific heat anomalies display a non-monotonous variation from $T_C = 10.6(1)$ K for HoCoC₂ to T_N = 2.78(5) K for HoNiC₂. The lowest transition temperature is observed for $HoCo_{0.25}Ni_{0.75}C_2$ with a presumably AFM Néel temperature, $T_N = 2.4(1)$ K. Accordingly, we expect a minimum of the ordering temperature somewhere on the Ni-richer side, most likely in the composition range $0.5 < x < 0.75$. We note, that the Curie temperature of HoCoC₂, $T_C = 10.6(1)$ K obtained from the present thermodynamic data, is markedly higher than the earlier reported value, $T_C \approx 9$ K, evaluated from PND data [\[9\]](#page-6-8). For the other end of the solid solution, $HoNiC₂$, specific heat data indicate a distinctly lower phase transition temperature T_N = 2.78(5) K as compared to $T_N \sim 4$ K reported from PND studies [\[10\]](#page-6-9). The latter value may relate to short range correlations which possibly cause the pronounced tail which appears above the distinct second order anomaly of HoNi C_2 in Fig. [2](#page-2-1) (i.e. above 2.8 K). The present specific heat data of $HoNiC₂$ are in fair agreement with data reported earlier [\[13\]](#page-6-12) where an ordering temperature of 3 K has been determined from a slightly less distinct specific heat anomaly.

Figure 2: Temperature dependent specific heat, *C*(*T*), of polycrystalline samples of solid solutions HoCo1−*x*Ni*x*C² as labeled. The solid blue line indicates a Ho nuclear Schottky contribution (see section [3.4\)](#page-3-0).

The temperature dependent inverse dc magnetic susceptibilities, $H/M \equiv 1/\chi$, of single crystalline HoCoC₂ averaged with respect to the principal orientations and of fixed powders of polycrystalline HoNiC² and solid solutions HoCo1−*x*Ni*x*C² is displayed in Fig. [3.](#page-3-1) For the temperature interval from 30 K to room temperature, a modified Curie-Weiss model, $\chi(T)$ = $\chi_0 + C/(T - \theta_p)$, applies well to describe the temperature dependence of the inverse susceptibility data (fits are indicated as solid lines in Fig. [3\)](#page-3-1). Thereby, χ_0 stands for a temperature independent, Pauli-like component of the susceptibility, θ_p for the paramagnetic Curie-Weiss temperature, and *C* is the Curie constant which relates to the effective paramagnetic moment, μ_{eff} , by $C = N_A \mu_{\text{eff}}^2 / 3k_B$.
Several features

Several features and trends revealed by the analysis of the $1/\chi$ data in Fig. [3](#page-3-1) in terms of the modified Curie-Weiss model are closely following our earlier observations on the related series DyCo_{1−*x*}Ni_{*x*}C₂ [\[11\]](#page-6-10): The Pauli paramagnetic components χ_0 vary from about 3×10^{-3} emu/mol for HoCoC₂ to about 0.8×10^{-3} emu/mol for HoNiC₂. The effective paraabout 0.8×10^{-3} emu/mol for HoNiC₂. The effective para-
magnetic moment of HoNiC₂. $\mu_{\infty} = 10.6 \mu_{\infty}/f_{\text{H}}$ essentially magnetic moment of HoNiC₂, $\mu_{\text{eff}} = 10.6 \mu_{\text{B}}/\text{f.u.}$, essentially matches the theoretical free ion value of $Ho³⁺$ (10.58 μ_B), and
is in close agreement with a directional average of the effecis in close agreement with a directional average of the effective moment, $\mu_{\text{eff}} = 10.5 \mu_{\text{B}}/\text{f.u.}$, evaluated from single crystal susceptibility data of $HoNiC₂$ by Koshikawa et al. [\[14\]](#page-6-13). All cobalt containing solid solutions HoCo1−*x*Ni*x*C² and their parent compound $HoCoC₂$ exhibit slightly reduced effective paramagnetic moments ranging from 10.2 to $10.5 \mu_{\text{B}}$. From orientation averaged single crystal SQUID data of $HoCoC₂$ we obtain $\mu_{\text{eff}} = 10.3(1) \mu_{\text{B}}/\text{f.u.}$ and using orientation averaged VSM susceptibility data of a $70 \text{ mg } H_0^2$ single crystal and an extended temperature interval $30 - 390$ K (see section [3.5\)](#page-4-0) for this fit, we obtain $\mu_{\text{eff}} = 10.5(1) \mu_{\text{B}}/\text{f.u.}$ and slightly lower $\chi_0 \simeq 2 \times 10^{-3}$ emu/mol For the corresponding Dy-based solid solutions a similar but more propounced and monotonous insolutions a similar, but more pronounced and monotonous increase of the effective moment from $DyCoC_2$ towards $DyNiC_2$ has been reported [\[11\]](#page-6-10). The paramagnetic Curie-Weiss temperatures θ_p obtained for HoCo_{1−*x*}Ni_{*x*}C₂ finally reveal a sign

Figure 3: Temperature dependent inverse magnetic susceptibility, *^H*/*M*, measured at 1 T on fixed powder samples of the series HoCo_{1−*x*}Ni_{*x*}C₂ as labeled. For HoCoC₂, the average of single crystal measurements in principal orientations is displayed. Solid lines are fits by a modified Curie-Weiss law (see text). Insert: magnetic phase diagram of composition dependent transition temperatures, T_M , and paramagnetic Curie temperatures, θ_p ; dashed lines connecting *T*_M are guides to the eye.

change (in line with the transition from a FM to an AFM ground state) which was also observed for the related Dy-based series [\[11\]](#page-6-10). The Co/Ni composition dependent variation of the magnetic phase transition temperatures, T_M , and the paramagnetic Curie-Weiss temperatures, θ_p , are summarized as a magnetic phase diagram depicted as insert in Fig. [3.](#page-3-1)

*3.3. Single crystal study of the magnetic anisotropy of HoCoC*²

While details of the magnetic anisotropy of single crystalline $HoNiC₂$ have been reported earlier [\[14\]](#page-6-13), a corresponding investigation was still pending for $HoCoC₂$. Ferromagnetism with Ho-4*f* spontaneously ordered magnetic moments, $\mu_{\rm so} = 6.6(1) \mu_{\rm B}$ (at 1.7 K), oriented in the crystallographic *a* axis direction has been proposed from powder neutron diffraction on $HoCoC₂$ by Schäfer *et al.* [\[9\]](#page-6-8). The 2 K magnetic isotherms, $M(H)$, of the present HoCoC₂ single crystal displayed in Fig. [4](#page-3-2) for $H||a$, $H||b$, and $H||c$ confirm the *a* axis as the easy direction of magnetization, but reveal a slightly larger spontaneously ordered magnetic moment, $\mu_{so} = 7.10(6) \mu_B$, at 2 K. Corresponding temperature dependent inverse magnetic susceptibility data, *^H*/*M*(*T*), presented for the same principal orientations in Sec. [3.5](#page-4-0) further reveals the *a* axis as the easy direction of the single ion CEF anisotropy (see below).

Additional temperature and field dependent specific heat data of a HoCoC₂ single crystal measured with $H||a$ -axis orientation (not shown) reveal a magnetic field induced broadening and shift of the magnetic specific heat anomaly towards elevated temperatures which is well in line with the behavior of a collinear FM state.

3.4. Magnetic specific heat contribution and magnetic entropy gain

The $4f$ magnetic specific heat contributions of $HoCoC₂$ and $HoNiC₂$ are extracted from the total heat capacities displayed in

Figure 4: Isothermal, field dependent magnetization of single crystalline $HoCoC₂$ measured at 2 K for principal orientations of the magnetic field as labeled.

Fig. [2](#page-2-1) by subtracting conduction electron and lattice contributions via specific heat reference data of $LuCoC₂$ and $LuNiC₂$, respectively [\[15\]](#page-6-14). For the evaluation of the magnetic entropy gain, in particular for $HoNiC₂$, it is further necessary to evaluate and subtract the magnetic contributions of $^{(165)}$ Ho nuclei with $I = 7/2$ nuclear spin, saturated nuclear moment μ_{sn} 2.108×10^{-26} J/T and rather large hyperfine interaction. The hyperfine splitting of the $J = 7/2$ multiplet causes a nuclear Schottky specific heat anomaly well below 1 K whose tail, however, is clearly visible as low temperature upturn of the specific heat data in Fig. [2.](#page-2-1) For elemental Ho metal nuclear specific heat contributions have been studied by Gordon *et al.* [\[16\]](#page-6-15) and they proposed a simple Curie-type (non-interacting) paramagnetic model to account for the nuclear specific heat contribution. Accordingly, we adjust and subtract this contribution by the relation, $C_{nuc}(T) = Rx^2B'_1(x)$, with $x = \mu_0\mu_{sn}H/k_BT$, $B'_1(x)$
being the derivative of the Brillouin function and R the gas conbeing the derivative of the Brillouin function and R the gas constant. Using $\Delta_{nuc} \equiv \mu_0 \mu_{sn} H/k_B$ as a fitting parameter, we obtain $\Delta_{nuc} \simeq 0.86$ K for HoCoC₂ from data starting at 2.3 K and almost identical Δ_{nuc} \simeq 0.84 K for HoNiC₂ from lower temperature data down to 0.4 K. The latter, $C_{nuc}(T)$ for HoNiC₂, is shown as solid line in Fig. [2.](#page-2-1) The present values for the overall splitting of the Ho nuclear multiplet are of similar magnitude as $\Delta_{nuc} \simeq 1.36$ K obtained for elemental Ho metal [\[16\]](#page-6-15).

The temperature dependent magnetic specific heat contributions $C_{4} f(T)$ of HoCoC₂ and HoNiC₂, obtained by subtracting conduction electron, phonon, and nuclear contributions via the above explained procedure, are presented in Fig. [5.](#page-4-1) The applicability of the subtraction procedure is corroborated by the possibility to smoothly extrapolate these data by appropriate spin-wave models. For ferromagnetic $HoCoC₂$ we apply an extrapolation based on a gaped FM spin-wave dispersion, $\omega = \Delta + D^2 k^2$, where Δ is the spin-wave excitation gap and *D* a spin wave stiffness factor. The resulting inner energy contria spin wave stiffness factor. The resulting inner energy contribution of spin-wave excitations in the low temperature limit is

Figure 5: Temperature dependent magnetic specific heat contributions $C_{4f}(T)$ of $HoCoC₂$ and $HoNiC₂$, strong solid, bright yellow and dark blue lines are fits by spin-wave models, Eqn. [2](#page-4-2) and [3,](#page-4-3) respectively (see text); insert: corresponding entropy functions $S_{4f}(T)$ evaluated via Eqn. [4.](#page-4-4)

then given by,

$$
U_{\text{FMsw}}(T) \propto \int_{\Delta}^{\infty} \frac{\omega \sqrt{\omega - \Delta}}{e^{\omega/T} - 1} \, \text{d}\omega, \tag{1}
$$

where the factor $\sqrt{\omega - \Delta}$ relates to the magnon density of states and for a simple fitting of ω and Δ these parameters are taken and for a simple fitting of ω and Δ these parameters are taken in units of Kelvin. The specific heat contribution, $C_{\text{FMsw}}(T)$, is then computed via

$$
C_{\text{FMsw}}(T) = \frac{\partial U_{\text{FMsw}}(T)}{\partial T} = \int_{\Delta}^{\infty} \frac{A(\frac{\omega}{T})^2 e^{\omega/T} \sqrt{\omega - \Delta}}{[e^{\omega/T} - 1]^2} d\omega, \quad (2)
$$

where *A* is a factor $\propto 1/D^3$. The corresponding fit in the temper-
ature range 2.3 – 5 K displayed as bright vellow line in Fig. 5. ature range $2.3 - 5$ K displayed as bright yellow line in Fig. [5,](#page-4-1) thus, yields a spin-wave excitation gap, $\Delta = 17.1$ K, which essentially relates to the significant crystal field anisotropy, and factor $A = 0.259$ J/mol $K^{5/2}$.
For antiferromagnetic Ho

For antiferromagnetic HoNiC₂ we apply a relativistic form of the AFM spin-wave dispersion, $\omega = \sqrt{\Delta^2 + D^2 k^2}$, as e.g.
derived by Batist *et al.* [17] In this case, the magnon denderived by Batist *et al.* [\[17\]](#page-6-16). In this case, the magnon density of states is proportional $\omega \sqrt{\omega^2 - \Delta^2}$ and the corresponding
specific heat contribution. C_{CP} (T) can be calculated via an specific heat contribution, $C_{\text{AFsw}}(T)$, can be calculated via an expansion of the improper integral yielding a low temperature approximation [\[18\]](#page-6-17)

$$
C_{\text{AFsw}}(T) \simeq A\Delta^{\frac{7}{2}}T^{\frac{1}{2}}e^{-\frac{\Delta}{T}}\left[1+\frac{39}{20}\left(\frac{T}{\Delta}\right)+\frac{51}{32}\left(\frac{T}{\Delta}\right)^{2}\right].
$$
 (3)

The corresponding fit to the magnon specific heat contributions for $T \leq 0.5T_N$ (displayed as dark blue solid line in Fig. [5\)](#page-4-1) via Eqn. [\(3\)](#page-4-3) yields an estimate for the spin-wave gap $\Delta \simeq 1.26$ K, and a prefactor $A = 0.46$ J/mol K⁵ related to the spin-wave stiff-
ness D. The subtraction of a relatively large nuclear contriness *D*. The subtraction of a relatively large nuclear contribution in the relevant temperature interval (compare Fig. [2\)](#page-2-1),

Figure 6: Temperature and field orientation dependent inverse magnetic susceptibility data of $HoCoC₂$ given as symbols and the CEF fit (see text) as lines as labeled; insert: temperature dependent $4f$ magnetic entropy $S_{4f}(T)$ of $HoCoC_2$ given as symbols and the result of the CEF fit as a solid line.

of course, introduces some ambiguity for the spin-wave parameters of $HoNiC₂$ while such ambiguities are negligible for HoCoC₂.

The temperature dependent $4f$ magnetic entropy gain, $S_{4f}(T)$, of HoCoC₂ and HoNiC₂ is evaluated by integrating the 4 *f* magnetic specific heat contributions displayed Fig. [5](#page-4-1) via the basic relation

$$
S_{4f}(T) = \int_{0}^{T} \frac{C_{4f}}{T'} dT',
$$
 (4)

including the $T \rightarrow 0$ extrapolations of $C_{4f}(T)$ by the corresponding spin-wave models (strong solid lines in Fig. [5\)](#page-4-1). The resulting entropy functions are displayed in the insert of Fig. [5.](#page-4-1) The overall CEF splitting of $HoNiC₂$ is clearly reduced as compared to HoCoC₂.

3.5. Crystalline electric field

The above presented magnetic specific heat and entropy functions combined with single crystal susceptibility data of $HoCoC₂$ in section [3.3](#page-3-3) and single crystal susceptibility data of HoNiC₂ reported by Koshikawa *et al.* [\[14\]](#page-6-13) provide an experimental basis for analysing CEF effects.

The orthorhombic CEF acting on the 17-fold degenerate, non-Kramers ${}^{5}I_8$ ground multiplet of the $4f^{10}$ orbital of Ho³⁺ is described by the Hamiltonian [\[19\]](#page-6-18)

$$
H_{CF} = B_2^0 O_2^0 + B_2^2 O_2^2 + B_4^4 O_4^4 + B_4^0 O_4^0 + B_4^2 O_6^2 + B_4^4 O_4^4 + B_6^0 O_6^0 + B_6^2 O_6^2 + B_6^4 O_6^4 + B_6^6 O_6^6 \tag{5}
$$

where B_l^m are the CF parameters and O_l^m are the Stevens operators (for a review, see e.g. Ref. [\[20\]](#page-6-19)).

Using the software McPhase [\[21\]](#page-6-20) we performed a simultaneous fit of $C_{4f}(T)$, $S_{4f}(T)$, $1/\chi^{H||a}(T)$, $1/\chi^{H||b}(T)$, and $1/\chi^{H||c}(T)$, for $T > 12$ K in the case of HoCoC_c and $T > 5$ K in the case of for $T > 12$ K in the case of HoCoC₂ and $T > 5$ K in the case of

Figure 7: Temperature dependent $4f$ magnetic entropy $S_{4f}(T)$ of HoNiC₂ where experimental data are shown as symbols and the fit by the CEF model (see text) as solid line; insert: single crystal inverse magnetic susceptibility data according to Ref. [\[14\]](#page-6-13) are indicated as symbols and the corresponding CEF fit as lines as labeled.

 HoNiC_2 , with respect to the nine CEF parameters B_l^m , whereby a simulated annealing algorithm as described in Ref. [\[22\]](#page-6-21) has been employed. The variation of initial parameter settings and 'annealing conditions' revealed approximately reproducible results for the two lowest order parameters B_2^0 and B_2^2 , while seven higher order parameters B_4^0 to B_6^6 remained ambiguous.

The best fit of the experimental susceptibility and entropy data of $HoCoC₂$ is displayed in Fig. [6.](#page-4-5) An isotropic molecular field, $\lambda = 0.4$ meV and a temperature independent component $\chi_0 = 1.3 \times 10^{-3}$ emu/mol have been taken into account (compare
section 3.2). The resulting relevant crystal field parameters are section [3.2\)](#page-2-2). The resulting relevant crystal field parameters are $B_2^0 \simeq -0.018$ meV and $B_2^2 = -0.099$ meV. The CEF model fit
displayed in Fig. 6 suggests a singlet ground state followed by displayed in Fig. [6](#page-4-5) suggests a singlet ground state followed by a quasi-doublet $\Delta_{1,2} \simeq 2.5$ meV.

For the fit of $HoNiC₂$ we combined the magnetic entropy results of Fig. [5](#page-4-1) with susceptibility data generated from the parameters given in Table 1 of Ref. [\[14\]](#page-6-13). The corresponding best fit of the experimental data employing an isotropic antiferromagnetic molecular field, $\lambda = -0.3$ meV, is displayed in Fig. [7](#page-5-0) yielding the crystal field parameters $B_2^0 = -0.019 \text{ meV}$
and $B_2^2 = +0.063 \text{ meV}$. The corresponding level scheme of 17 and $B_2^2 = +0.063$ meV. The corresponding level scheme of 17
singlets reveals a singlet ground state followed by lowest levsinglets reveals a singlet ground state followed by lowest levels Δ_1 = 0.8, and Δ_2 = 1.7 meV which contribute to the AFM ordered ground state of $HoNiC₂$ at below 2.8 K. The circumstance that Δ_1 > T_N , may explain the significant reduction of the specific heat anomaly at T_N .

*3.6. Charge density wave anomaly in HoNiC*²

Temperature dependent electrical resistivity data, ρ(*T*), of the HoCo_{1−*x*}Ni_{*x*}C₂ series reveal a typical metal-like behavior with, of course, a strong increase of the temperature independent residual resistivity due to substitutional disorder in the solid solutions. Most relevant $\rho(T)$ data of HoCoC₂ and HoNiC₂ are shown in Fig. [8.](#page-5-1) Among all samples investigated, single crystalline $HoCoC₂$ displays the most distinct magnetic anomaly and the highest room temperature to residual resistivity ratio,

Figure 8: Temperature dependent electrical resistivity, $\rho(T)$, of single crystalline $HoNiC₂$ (scale on right side) and polycrystalline $HoNiC₂$ (scale on left side) with vertical arrow indicating the onset of CDW formation.

RRR ∼ 8 (*RRR* ∼ 4 for polycrystalline HoCoC₂) while all other samples of the HoCo_{1−*x*}Ni_{*x*}C₂ series exhibit *RRR* \leq 2.5, including HoNiC₂ with *RRR* \sim 2.3. The latter, HoNiC₂, displays an anomaly at about 317 K (marked by the vertical arrow in Fig. [8\)](#page-5-1), while the corresponding feature further broadens for $HoCo_{0.25}Ni_{0.75}C_2$ (not shown) and cannot be traced for other investigated compositions HoCo_{1−*x*}Ni_{*x*}C₂ (0.5 ≤ *x* ≤ 1). The CDW transition temperature, $T_{CDW} \approx 317$ K fits well to the extrapolated trend of multiple CDW transitions in the series $RNiC_2$ which were recently re-evaluated for $R = Ce - Tb$ by Shimomura et al. [\[2\]](#page-6-1). Thereby, multiple CDW transitions observed for $R = Gd$ and Tb appear to merge in one single transition of $HoNiC₂$ visible in Fig. [8.](#page-5-1) A significant enhancement of the residual resistivity, ρ_0 , resulting from CDW instabilities (e.g. compared to $RCoC_2$) is a general feature of the series $RNiC_2$ ($R = Ce - Tb$) [\[1\]](#page-6-0) which also applies for HoNiC₂.

4. Summary and Conclusions

A continuous solid solution occurs in the pseudo-ternary system HoCo_{1−*x*}Ni_{*x*}C₂ (0 ≤ *x* ≤ 1) adopting the orthorhombic $CeNiC₂$ structure type with non-centrosymmetric space group *Amm*2. The lattice volume increases non-linearly within the solid solution with increasing Ni content. Non-isoelectronic substitution of Co by Ni causes also a deviation of variation of *a* and *b* lattice parameters from Vegard's rule and a pronounced increase of the C–C bond number.

Temperature dependent specific heat measurements reveal a non-monotonous variation of the magnetic ordering temperature $T_M(x)$ in the series HoCo_{1−*x*}Ni_{*x*}C₂ starting from HoCoC₂ with T_C = 10.6(1) K and ending at HoNiC₂ with T_N = ².78(6) K, whereby a minimum of the magnetic ordering temperature is passed at intermediate compositions. The analysis of inverse magnetic susceptibility data in terms of a modified Curie-Weiss model further reveals a sign change of the paramagnetic Curie temperature, which appears to roughly coincide with a minimum of $T_M(x)$.

Using $LuCoC_2$ and $LuNiC_2$ as reference materials for the electron and lattice contributions to the total heat capacities of $HoCoC₂$ and $HoNiC₂$ and employing a simple paramagnetic gas model to evaluate the nuclear contributions, we have extracted the 4 f magnetic specific heat, $C_{4f}(T)$, and entropy contributions, $S_{4f}(T)$. Thereby, the magnetic specific heat of FM $HoCoC₂$ reveals a significant spin-wave excitation gap, $\Delta \approx 1.6 T_C$, which is due to the large single ion anisotropy of this compound. Further combining these thermodynamic data, $C_{4f}(T)$ and $S_{4f}(T)$, with results of single crystal susceptibility measurements on $HoCoC₂$ and with earlier reported single crystal data of $HoNiC₂$ we evaluate estimates of the lowest order CEF parameters $B_2^0 \approx -0.018$ meV, $B_2^2 = -0.099$ meV and $B_2^0 = -0.019$ meV, $B_2^2 = +0.063$ meV for HoCoC_e and HoNiCe $B_2^0 = -0.019$ meV, $B_2^2 = +0.063$ meV for HoCoC₂ and HoNiC₂,
respectively respectively.

Temperature dependent electrical resistivity data of $HoNiC₂$ display a distinct anomaly at about 317 K which is in line with the trend of CDW transitions earlier reported for the series isostructural compounds $RNiC_2$ ($R = Ce - Tb$) [\[1,](#page-6-0) [2\]](#page-6-1).

References

- [1] M. Murase, A. Tobo, H. Onodera, Y. Hirano, T. Hosaka, S. Shimomura, N. Wakabayashi, Lattice constants, electrical resistivity and specific heat of RNiC2, J. Phys. Soc. Japan 73 (10) (2004) 2790–2794. [doi:10.1143/](http://dx.doi.org/10.1143/JPSJ.73.2790) [JPSJ.73.2790](http://dx.doi.org/10.1143/JPSJ.73.2790).
- [2] S. Shimomura, C. Hayashi, N. Hanasaki, K. Ohnuma, Y. Kobayashi, H. Nakao, M. Mizumaki, H. Onodera, Multiple charge density wave transitions in the antiferromagnets $RNiC_2$ ($R = Gd$, Tb), Phys. Rev. B 93 (2016) 165108. [doi:10.1103/PhysRevB.93.165108](http://dx.doi.org/10.1103/PhysRevB.93.165108).
- [3] A. D. Hillier, J. Quintanilla, R. Cywinski, Evidence for time-reversal symmetry breaking in the noncentrosymmetric superconductor LaNiC₂, Phys. Rev. Lett. 102 (2009) 117007. [doi:10.1103/PhysRevLett.](http://dx.doi.org/10.1103/PhysRevLett.102.117007) [102.117007](http://dx.doi.org/10.1103/PhysRevLett.102.117007).
- [4] T. Yanagisawa, I. Hase, Nonunitary triplet superconductivity in the noncentrosymmetric rare-earth compound $LaNiC₂$, Journal of the Physical Society of Japan 81 (Suppl.B) (2012) SB039. [doi:10.1143/JPSJS.](http://dx.doi.org/10.1143/JPSJS.81SB.SB039) [81SB.SB039](http://dx.doi.org/10.1143/JPSJS.81SB.SB039).
- [5] I. O. Bodak, E. P. Marusin, V. A. Bruskov, The crystal structure of *R*NiC² compounds $(R = Ce, La, Pr)$, Sov. Phys. Crystallogr. 25 (1980) 355.
- [6] W. Jeitschko, M. Gerss, Ternary carbides of the rare earth and iron group metals with CeCoC2- and CeNiC2-type structure, J. Less Common Metals 116 (1986) 147 – 157. [doi:10.1016/0022-5088\(86\)90225-0](http://dx.doi.org/10.1016/0022-5088(86)90225-0).
- [7] I. O. Bodak, E. P. Marusin, V. A. Bruskov, The crystal structure of compounds *R*CoC2 (*R* = Ce, La, Pr), Dokl. Akad. Nauk Ukr. SSR. Ser. A 12 (1979) 1048, in Russian.
- [8] W. Schäfer, W. Kockelmann, G. Will, J. K. Yakinthos, P. A. Kotsanidis, Magnetic structures of rare earths R in $RCoC_2$ and $RNiC_2$ compounds, Journal of Alloys and Compounds 250 (1997) 565 – 568. [doi:10.1016/](http://dx.doi.org/10.1016/S0925-8388(96)02564-9) [S0925-8388\(96\)02564-9](http://dx.doi.org/10.1016/S0925-8388(96)02564-9).
- [9] W. Schäfer, W. Kockelmann, G. Will, P. Kotsanidis, J. Yakinthos, J. Linhart, Structural and magnetic properties of $RCoC_2$ ($R = Pr$, Dy, Ho) compounds studied by neutron diffraction, Journal of Magnetism and Magnetic Materials 132 (1994) 243 – 248. [doi:10.1016/0304-8853\(94\)](http://dx.doi.org/10.1016/0304-8853(94)90319-0) [90319-0](http://dx.doi.org/10.1016/0304-8853(94)90319-0).
- [10] J. Yakinthos, P. Kotsanidis, W. Schäfer, W. Kockelmann, G. Will, W. Reimers, The two-component non-collinear antiferromagnetic structures of DyNiC₂ and HoNiC₂, Journal of Magnetism and Magnetic Materials 136 (1994) 327 – 334. [doi:10.1016/0304-8853\(94\)00306-8](http://dx.doi.org/10.1016/0304-8853(94)00306-8).
- [11] H. Michor, V. Levytskyy, F. Schwarzböck, V. Babizhetskyy, B. Kotur, Evolution of magnetic properties in the solid solution $DyCo_{1-x}Ni_xC_2$, Journal of Magnetism and Magnetic Materials 374 (2015) 553 – 558. [doi:10.1016/j.jmmm.2014.08.085](http://dx.doi.org/10.1016/j.jmmm.2014.08.085).
- [12] S. Manalo, H. Michor, M. El-Hagary, G. Hilscher, E. Schachinger, Superconducting properties of $Y_xLu_{1-x}Ni_2B_2C$ and $La_3Ni_2B_2N_{3-\delta}$: a compar-

ison between experiment and Eliashberg theory, Phys. Rev. B 63 (2001) 104508. [doi:10.1103/PhysRevB.63.104508](http://dx.doi.org/10.1103/PhysRevB.63.104508).

- [13] Y. Long, C. Z. Zheng, J. L. Luo, Z. J. Cheng, Y. S. He, Heat capacity of the ternary compounds ReNiC₂ (Re= Dy, Ho, Er, and Y), Journal of Applied Physics 89 (2001) 3523–3525. [doi:10.1063/1.1333717](http://dx.doi.org/10.1063/1.1333717).
- [14] Y. Koshikawa, H. Onodera, M. Kosaka, H. Yamauchi, M. Ohashi, Y. Yamaguchi, Crystalline electric fields and magnetic properties of singlecrystalline $RNiC_2$ compounds (R= Ho, Er and Tm), Journal of Magnetism and Magnetic Materials 173 (1997) 72 – 82. [doi:10.1016/](http://dx.doi.org/10.1016/S0304-8853(97)00177-7) [S0304-8853\(97\)00177-7](http://dx.doi.org/10.1016/S0304-8853(97)00177-7).
- [15] S. Steiner, H. Michor, B. Hinterleitner, B. Stöger, O. Sologub, E. Bauer, M. Hembara, V. Levytskyy, V. Babizhetskyy, B. Kotur, Structural and electronic properties of LuCoC₂ and LuNiC₂, Journal of Physics: Condensed Mater, to be submitted.
- [16] J. E. Gordon, C. W. Dempesy, T. Soller, Nuclear specific heat of holmium, Phys. Rev. 124 (1961) 724–725. [doi:10.1103/PhysRev.124.724](http://dx.doi.org/10.1103/PhysRev.124.724).
- [17] R. De Batist, R. Gevers, M. Verschueren, Magnon contribution to the low-temperature specific heat of $UO₂$, physica status solidi (b) 19 (1967) 77–88. [doi:10.1002/pssb.19670190108](http://dx.doi.org/10.1002/pssb.19670190108).
- [18] M. A. Continentino, S. N. de Medeiros, M. T. D. Orlando, M. B. Fontes, E. M. Baggio-Saitovitch, Anisotropic quantum critical behavior in CeCoGe_{3−*x*}Si_{*x*}, Phys. Rev. B 64 (2001) 012404. [doi:10.1103/](http://dx.doi.org/10.1103/PhysRevB.64.012404) [PhysRevB.64.012404](http://dx.doi.org/10.1103/PhysRevB.64.012404).
- [19] M. Hutchings, Point-charge calculations of energy levels of magnetic ions in crystalline electric fields, Vol. 16 of Solid State Physics, Academic Press, 1964, pp. 227 - 273. [doi:10.1016/S0081-1947\(08\)60517-2](http://dx.doi.org/10.1016/S0081-1947(08)60517-2).
- [20] E. Bauer, M. Rotter, Chapter 5: Magnetism of complex metallic alloys: Crystalline electric field effects, in: E. Belin-Ferre (Ed.), Euro-school on materials science; Properties and applications of complex intermetallics, Vol. 2 of Book Series on Complex Metallic Alloys, World Scientific, Singapore, London, 2010, pp. 183 – 248.
- [21] M. Rotter, Using mcphase to calculate magnetic phase diagrams of rare earth compounds, Journal of Magnetism and Magnetic Materials 272– 276, Supplement (2004) e481 – e482, proceedings of the International Conference on Magnetism (ICM 2003). [doi:10.1016/j.jmmm.2003.](http://dx.doi.org/10.1016/j.jmmm.2003.12.1394) [12.1394](http://dx.doi.org/10.1016/j.jmmm.2003.12.1394).
- [22] S. Kirkpatrick, C. Gelatt Jr., M. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671 – 680. [doi:10.1126/science.220.](http://dx.doi.org/10.1126/science.220.4598.671) [4598.671](http://dx.doi.org/10.1126/science.220.4598.671).