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Zusammenfassung

Das Verständnis von Quanten-Vielteilchensystemen ist von großer Bedeutung
für viele Teilbereiche der Physik. Während man die grundlegenden mikrosko-
pischen Bewegungsgleichungen solcher Systeme oft einfach aufstellen kann ist
deren exakte Lösung nur in den seltensten Fällen möglich. Für das Verständnis
der Eigenschaften von Quanten-Vielteilchensystemen benötigt man deshalb ef-
fektive theoretische Beschreibungen als auch experimentelle Modellsysteme um
deren Vorhersagen zu testen.

In dieser Dissertation präsentieren wir eine Reihe von Experimenten mit
ultrakalten Bosegasen. Ein solches System stellt ein gut isoliertes, flexibles
und robustes Modellsystem für Quanten-Vielteilchenphysik dar. Zahlreiche er-
probte Methoden zur Manipulation und Vermessung des Systems stehen zur
Verfügung. In unserem speziellen Fall beschäftigen wir uns mit ultrakalten
eindimensionalen Bosegasen bestehend aus Rubidium Atomen.

Wir erzeugen zwei solcher ultrakalten Gase in einem Doppeltopf-Potential.
Die Atome können von einem Topf in den anderen tunneln, was je nach Höhe
der Tunnelrate zu einer mehr oder weniger starken Phasenkohärenz zwischen
den beiden Teilsystemen führt. Der ortsaufgelöste Phasenunterschied zwischen
beiden Gasen kann mit Hilfe von Materiewellen-Interferenz gemessen werden.
Damit lassen sich die räumlichen Korrelationen dieses Phasenunterschieds un-
tersuchen.

Untersucht man ob sich Korrelationsfunktionen höherer Ordnung in Korrela-
tionen niedrigerer Ordnung zerlegen lassen, so kann man daraus Rückschlüsse
auf die Wechselwirkungen im Systems ziehen. Kann man alle Korrelationsfunk-
tionen mit Ordnung größer als zwei zerlegen, so handelt es sich um ein nicht-
wechselwirkendes System und die Fluktuationen folgen einer Gauß-Verteilung.
In dieser Arbeit präsentieren wir die Messung nicht-zerlegbarer Korrelati-
onsfunktionen vierter Ordnung und untersuchen damit die Wechselwirkung
zwischen den kollektiven Anregungen unseres Quanten-Vielteilchensystems.
Durch Einstellen der Tunnelrate zwischen den beiden Teilsystemen im Dop-
peltopf-Potential können wir unterschiedliche Grade von Nicht-Zerlegbarkeit
der Korrelationsfunktionen beobachten.

Ausgehend von einem solchen nicht-Gaußschen Zustand beobachten wir au-
ßerdem eine dynamische Entwicklung zu einem Zustand mit zerlegbaren Kor-
relationsfunktionen (Gaußsche Fluktuationen). Wir starten in einem Doppel-
topf mit Tunneln und fahren dann die Potential-Barriere zwischen den Teil-
systemen hoch um jenes zu unterbinden. Anschließend beobachten wir wie die
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anfänglich nicht-Gaußschen Phasen-Fluktuationen in Gaußsche Fluktuationen
übergehen. Hierbei handelt es sich um die erste experimentelle Beobachtung
eines solchen Prozesses in Quanten-Vielteilchensystemen. Untersuchungen die-
ser Art von Dynamik sind wichtig um zu verstehen wie Gaußsche Gleichge-
wichtszustände erreicht werden können.

Zu guter Letzt diskutieren wir die dynamische Entstehung von Phasen-
kohärenz in einem Doppeltopf-Potential mit Tunneln. Wir beobachten diese
Entwicklung im Experiment ausgehend von zwei unterschiedlichen Anfangs-
zuständen. Einerseits teilen wir eine Wolke in zwei Teilsysteme und regen
globale Oszillationen in deren Phasendifferenz an. Diese Oszillationen werden
daraufhin gedämpft und ein Zustand mit Phasenkohärenz stellt sich ein. Der
zweite Anfangszustand besteht aus zwei unabhängigen Teilsystemen welche
schlagartig durch Tunneln gekoppelt werden. Auch hier sehen wir die Entste-
hung von Phasenkohärenz zwischen beiden Teilsystemen.
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Abstract

Understanding quantum many-body systems is of great importance for many
branches of physics. While it is often easy to state the basic equations for the
microscopic motion of countless particles, their exact solution is only possible
in rare cases. To understand the properties of quantum many-body systems,
one therefore needs effective theoretical descriptions as well as experimental
model systems to test their predictions.

In this thesis, we present a series of experiments with ultracold Bose gases.
Such gases represent a well-isolated, flexible and robust model system for quan-
tum many-body physics. Numerous proven methods for manipulating and
measuring such systems are available. In our particular case, we are working
with ultracold one-dimensional Bose gases consisting of rubidium atoms.

We create two such ultracold gases in a double well potential. The atoms can
tunnel from one well into the other, which leads, depending on the strength of
the tunneling, to various degrees of phase locking between the two subsystems.
Employing matter-wave interference, we can measure the spatially resolved
phase difference between the two gases. This makes it possible to investigate
spatial correlations of this phase difference.

By investigating whether correlation functions of higher order can be factor-
ized into correlations of lower order, we can investigate the interaction prop-
erties of the system. For a non-interacting system, all correlation functions
with orders greater than two factorize and one observes Gaussian fluctuations.
In this thesis, we present the measurement of non-factorizing fourth-order
correlation functions, leading to an experimental characterization of the inter-
actions between the collective excitations of the quantum many-body system.
The degree of non-factorizibility, i.e., the degree of non-Gaussianity of the
phase fluctuations, depends on the tunneling strength, which is tuneable in
the experiment.

Starting from such a non-Gaussian state, we are able to observe the dynam-
ical evolution towards a state with factorizing correlation functions (Gaussian
fluctuations). More precisely, we start in a double well with tunneling and then
abruptly decouple the two subsystems. Subsequently, we observe how the ini-
tially non-Gaussian phase fluctuations become Gaussian. This represents the
first experimental demonstration of ‘Gaussification’ in quantum many-body
systems. Investigating this type of dynamics is important to understand how
Gaussian equilibrium states can be reached by quantum mechanical evolution.

Last but not least, we discuss the dynamical emergence of phase coherence
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in a double well potential with tunneling. We experimentally investigate the
evolution starting from two different initial states. In the first case, we split
a cloud of atoms into two subsystems and trigger global oscillations in their
relative phase. The oscillations subsequently damp and phase coherence sets
in. In the second case, two independent subsystems are suddenly coupled by
tunneling. Again, we see the emergence of phase coherence between the two
subsystems.
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Introduction

The understanding of quantum many-body systems is of great importance for
many different fields, ranging from solid state to high energy physics. Cold
atom experiments have proven to be a valuable tool for investigating quantum
many-body physics [1–4]. They are very well isolated from the environment,
can be manipulated with a number of different techniques and are easily acces-
sible for measurements. A large number of different geometries are possible,
enabling the study of one-, two- and three-dimensional as well as lattice sys-
tems.

In this thesis we study ultracold one-dimensional (1D) Bose gases. Such 1D
systems are of great interest because their dynamics is strongly affected by the
restricted phase space available for scattering [5, 6], which may lead to many
intriguing properties like, for example, integrability [7]. Moreover, the reduced
number of dimensions often makes 1D systems theoretically tractable.

A common method to characterize cold atom systems is to measure cor-
relations. While the measurement of second-order correlation functions has
been part of the experimental toolbox for many years, higher-order correla-
tion functions have rarely been used to analyze experiments so far [8–12].
However, the measurement of correlation functions of order bigger than two
is of particular interest for investigating the interaction properties of quantum
many-body systems. Analyzing whether higher-order correlation functions
factorize into correlations of lower order is a direct test whether the system is
interacting or not [13]. In the absence of interactions, all higher-order corre-
lation functions factorize, the fluctuations follow a Gaussian distribution. If
interactions are present, the fluctuations follow a non-Gaussian distribution
and non-factorizing higher-order correlations appear. In chapter 5, we present
measurements of non-factorizing fourth-order correlation functions. The cor-
relations are calculated for the measured relative phase fluctuations of two
tunnel-coupled 1D Bose gases. Note that we published the results in ref. [14].

Another very active topic where cold atom systems are used is the investi-
gation of equilibration and thermalization [15–17]. It is still an open question
how an isolated quantum many-body system can reach thermal equilibrium
through the unitary evolution inherent to quantum mechanics. One possible
scenario to investigate is the ‘quench’ from an interacting to a free system. In
this case, thermalization leads to an equilibrium state with Gaussian fluctua-
tions, starting from initially non-Gaussian fluctuations. In general, an evolu-
tion from a non-Gaussian to a Gaussian state is often termed ‘Gaussification’

1



Introduction

in the literature; several theoretical studies exist [18–23]. However, an exper-
imental demonstration has been lacking so far. In chapter 6, we give such a
demonstration. The experimental procedure consists of suddenly switching off
the tunneling between two 1D Bose gases and subsequently investigating the
evolution of the relative phase fluctuations. A publication about the results is
currently in preparation.

Investigating the dynamics of two tunnel-coupled 1D Bose gases is of great
interest as well. While the result for the Gaussification as well as many previ-
ous experimental results of our group [11, 24–28] can, at least approximately,
be explained by a non-interacting effective field theory, one has a genuinely
interacting system here. The occurrence and damping of Josephson oscilla-
tions for two tunnel-coupled 1D Bose gases was recently publish by a different
experiment from our group in ref. [29]. We present similar measurements in
chapter 7. With our experimental apparatus, we have access to different ob-
servables and parameter regimes. Our results should therefore be seen as being
complementary to the ones presented in ref. [29]. Moreover, we investigate the
rephasing of two independent clouds after abruptly switching on the tunnel
coupling, a situation theoretically discussed in ref. [30].

Outline of this thesis

Chapter 1 gives a brief overview of the experimental apparatus used in this
thesis. Moreover, it contains a brief discussion of the experimental cycle.

Chapter 2 introduces the basic theoretical concepts and models used in this
thesis.

Chapter 3 discusses the used absorption imaging systems in detail. We focus
on the processes preventing a perfect imaging and discuss how to simu-
late absorption images in order to estimate the influence of the imaging
process onto measured data.

Chapter 4 discusses how we analyze the absorption images taken after time
of flight in order to extract information about the in-situ properties of
the system.

Chapter 5 contains the results for the phase correlation function of two tunnel-
coupled 1D Bose gases. We experimentally measure the second and
fourth-order correlation functions. By analyzing whether the fourth-
order correlation function factorizes into lower-order correlations, we will
investigate the interactions between phononic excitations.

Chapter 6 presents an experimental demonstration of Gaussification by dis-
cussing the dynamics after decoupling two initially tunnel-coupled gases.

2



Chapter 7 shows the results for the dynamics in the double well trap with
tunneling.
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1. Experimental setup

In this chapter, we will give a brief overview of the experimental apparatus
used to obtain the results presented in this thesis. For a detailed description of
the experimental apparatus see the preceding PhD and master’s theses [31–36].
Note that this chapter is meant as a recapitulation for readers who are already
familiar with our setup or similar cold atom experiments. Unfamiliar readers
might want to start by reading the theses cited above.

For a general introduction about cold atom experiments ref. [37] can be
consulted. The thesis [38] also contains a good introduction which is more
focused towards atomchip experiments. To get an overview about atomchips,
see the book [39]. Note that throughout this thesis, we will work with 87Rb
atoms. For its physical properties see ref. [40].

1.1. The experimental cycle in brief

In this section we will give a brief overview of the experimental cycle used
for this thesis. Our experiment consist of two vacuum chambers as can be
seen in fig. 1.1a. The lower chamber contains Rubidium dispensers. The
87Rb atoms evaporated by the dispensers are collected in a six beam magneto
optical trap (MOT). We will refer to it as the ‘lower MOT’. With the help of a
near resonant laser beam, internally referred to as ‘push beam’, the atoms are
pushed from the lower MOT trough a narrow tube connection into the upper
vacuum chamber. There they are collected in another MOT, which we will
call the ‘upper MOT’.

The upper vacuum chamber contains the atomchip mounted up-side-down
from above (see fig. 1.1a). Of course, this obstructs the optical access from
above. Therefore, we are using two beams reflected on the atomchip’s gold
surface in addition to four incoming beams in order to create the upper MOT.
Both the lower and upper MOT are on for approximately 10 s. We will often
refer to this time-span as the ‘MOT phase’. During this time (until about a
second before the MOTs are switched off) the atoms are continuously pushed
up from the lower MOT and collected in the upper MOT. While the size
of the atom cloud in the lower MOT stays more or less the same after a
quick equilibration, the atom cloud in the upper MOT continuously grows by
collecting and cooling more and more atoms. This growth is rather fast at the
beginning and slows down considerably towards the end.
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1. Experimental setup

a b

c

Figure 1.1.: Experimental setup. (a) The two vacuum chambers of our exper-
iment are shown. In the upper chamber one can see the atomchip being mounted
up-side down. Note that the picture was taken before the chambers have been sur-
rounded with coils and optics. (b) Chip-mount without atomchip. One sees the
macroscopic copper structures. (c) Completed mount with the atomchip on top.
Figure adapted from [36].

At the end of the MOT phase, the magnetic fields as well as the laser
intensities and frequencies are ramped to compress and shift the upper MOT.
The purpose of this is to give the atom cloud the right size and position
for being transferred into the magnetic trap later on. Before the transfer,
immediately following the MOT phase, we switch all magnetic fields off and
perform polarization gradient cooling [41]. Afterwards, a bias field is switched
on to provide a quantization axis for the atoms. This is necessary in order to
transfer all 87Rb atoms into the low field seeking [40] F = 2, mF = 2 state
via optical pumping. Subsequently the atoms are loaded into a cigar shaped
macroscopic magnetic trap.

The necessary fields for this macroscopic trap are generated by a Helmholtz
pair located outside of the vacuum chamber and a copper structure mounted
below the atomchip (see fig. 1.1b). Note that it is a bit confusing what is
meant by below/above here as the atomchip is mounted up-side down. With
below, we mean here that the gold surface of the atomchip is on the outside
and the copper structures are sandwiched between atomchip and mount. Note
that the wires on the atomchip are not used for creating the macroscopic trap.

The atom cloud is held in the macroscopic trap for about 6 s. During this
time, we perform forced evaporative cooling using radio frequency (390 kHz to
14.9 MHz) magnetic fields. We will often refer to this fields as the ‘cooling (ra-
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1.2. The atomchip and possible trapping geometries

dio frequency) fields’. They are also generated by one of the copper structures
located below the atomchip.

After the first stage of evaporation, the cooling fields are switched off again.
At this point, we have around 2 × 106 atoms at a temperature of a few µK.
The atom cloud is subsequently transferred into a microscopic magnetic trap
produced by the wires on the atomchip (in combination with external bias
fields). In the microscopic magnetic trap we continue with the forced evapo-
rative cooling, preparing the one-dimensional (1D) quasicondensates used for
the experimental investigations. Note that the cooling mechanism is quite dif-
ferent from the standard three-dimensional (3D) case after the cloud becomes
effectively one-dimensional [27, 36]. At the end, the cloud contains around
10000 atoms at a temperature of a few tens of nanokelvin. The features of the
atomchip and the possible trapping geometries will be discussed in the next
section 1.2.

The experimental cycle ends with releasing the cloud from the atomchip
trap and taking absorption images after time of flight (TOF) expansion. The
properties and limitations of the imaging systems will play a crucial role for the
results presented in this thesis. We will therefore devote the whole chapter 3
to discussing the imaging process.

1.2. The atomchip and possible trapping
geometries

The microscopic magnetic trap used for the experiments is produced by the
wires of an atomchip [39]. Our atomchip consists of a single gold layer isolated
from a silicon substrate by a thin layer of silicon dioxide. There were several
wires structured into the gold layer. Figure 1.2 gives a schematic illustration
of selected chip wires (the ones used in this thesis). For more details about
the chip used in this experiment see ref. [31, 34].

Let us now discuss the different structures and currents in fig. 1.2. The
current IW flowing in the z direction in the central trapping wire creates a
circular magnetic field. Together with homogeneous bias fields in the x and
z direction, this gives a tight harmonic confinement in x and y [39]. The
homogeneous bias fields are produced by Helmholtz pairs located outside of
the vacuum chamber. The bias field in the z direction is commonly referred
to as Ioffe-field.

To confine the atoms also in the z direction, we need the currents IU in the
U shaped chip wires. Sending the currents in the appropriate directions (as
marked by the arrows in the figure) leads to a harmonic trap in the z direction.
While the confinement in x and y is very strong (typically around 2.1 kHz),
the confinement in z is quite weak (typically around 12 Hz). This highly elon-
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1. Experimental setup

Figure 1.2.: Wires on the atomchip. A schematic illustration showing only the
wires of the atomchip which were actually used in this thesis. Figure reproduced
with permission from [36].

gated trap, therefore, leads to cigar shaped clouds. In the following, we will
often refer to the elongated direction (the z direction) as the ‘longitudinal’
direction. The perpendicular tightly confined directions will be the ‘trans-
verse’ directions. The trapping frequencies in the longitudinal and transverse
direction will be denoted by ω‖/2π and ω⊥/2π respectively. Note that in the
experimental setup z and x are horizontal and y vertical.

Besides the central trapping wire, two smaller wires (currents Irf1,2) exist.
They are used for generating radio frequency magnetic fields in order to ‘dress’
the atoms, i.e., off-resonantly couple the different Zeeman states leading to a
new eigenbasis of ‘dressed’ state. We will often refer to this magnetic fields
as the ‘dressing (radio frequency) fields’. With the help of the dressing fields,
we can realize, among others, a double well geometry in the x or y direction
[38, 42, 43]. By independently controlling the amplitude and phase of Irf1 and
Irf2, we can change the polarization and amplitude of the radio frequency
magnetic field at the position of the atoms. To get a double well separation in
the horizontal x direction, we need a linear polarization in the y direction. This
is achieved with equal amplitudes1 and a pi phase-shift between the currents.
Note that also the frequency of the dressing field influences the resulting shape
of the dressed state potential. For the results of this thesis, we used a frequency
(360 kHz) about 30 kHz lower than the Zeeman splitting (≈ 390 kHz) in the
center of the trap.

Let us conclude by discussing the longitudinal confinement. Using the U
wires on the atomchip, we unfortunately can only generate harmonic traps.
In order to realize other trapping geometries in the longitudinal z direction,

1Due to technical imperfection we actually have to use slightly different amplitudes for the
two wires.
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1.2. The atomchip and possible trapping geometries

we recently started superimposing optical dipole potentials. In this thesis, we
used only an optical box trap, for which the light was shaped by a simple
mask [28, 36], in some of the measurements. In the future, we will be able
to generate a large variety of optical dipole traps with the help of a digital
micromirror device (DMD) [44].
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2. Theoretical basics

In this chapter we will introduce the theoretical models used in this thesis.
Additional discussions of the specific theoretical calculations done for compar-
ison with the experimental results can be found in the respective chapters 5
to 7.

We will start by discussing the Lieb-Liniger model for Bosons in one di-
mension (1D) in section 2.1. From the Lieb-Liniger Hamiltonian, we will then
derive low energy effective field theories (Bogoliubov theory and Luttinger liq-
uid model) for the quasicondensate regime in section 2.2. How to connect the
three dimensional (3D) theory for a very elongated system to the 1D mod-
els will be the topic of section 2.3. This includes also a discussion about
corrections to the purely 1D models. In section 2.4, we will introduce some
theoretical models describing two clouds in a double well trap. A compari-
son of the thermal fluctuations following from the different models is given in
section 2.5. We conclude the chapter with section 2.6, where we discuss the
expansion after the atom clouds are released from the trap.

2.1. The Lieb-Liniger model

The Hamiltonian for bosonic fields ψ̂(z) in 1D, interacting via a delta-function
potential, is given by

Ĥ =

∫
dz ψ̂†(z)

[
− ~2

2m
∂2
z + U(z)− µ+

g1D

2
ψ̂†(z)ψ̂(z)

]
ψ̂(z). (2.1)

Here, the strength of the delta-function interaction is characterized by the 1D
coupling constant g1D. In our case the interactions are repulsive, i.e., g1D > 0.
In addition to the kinetic energy term (first term) and the interaction energy
term (last term), the Hamiltonian also includes the trapping potential U(z)
and the chemical potential µ, which sets the average number N of Bosons
(atoms) in the system. The Hamiltonian (2.1) (without the trapping potential)
is usually known as Lieb-Liniger model. A solution for the ground state [45]
and excitation spectrum [46] of that model are known.

Depending on the temperature T , the interaction strength g1D, the total
number N of particles (or equivalently the chemical potential µ) and the trap-
ping potential U(z), the system can be in several distinctive regimes [47–49].
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2. Theoretical basics

Detailed discussions following various approaches can be found in the previ-
ously written PhD theses [34–36]. Here we will restrict ourselves to a short
discussion following ref. [48], which treats the case of a uniform gas. In this
case, the relevant parameters are the Lieb-Liniger parameter

γ =
mg1D

~2n1D

(2.2)

and the reduced temperature τ = T/Td, where the degeneracy temperature is
given by

Td =
~2n2

1D

2mkB

. (2.3)

Here the uniform average atomic density is denoted by n1D and the atomic
mass by m. The formula for Td can be understood from n1DΛTd ≈ 1, meaning
that the de Broglie wavelength ΛTd at the degeneracy temperature Td is ap-
proximately equal to the mean interparticle spacing 1/n1D. The Lieb-Liniger
parameter γ quantifies the amount of interactions in the system.

In the experiment, we typically have Td ≈ 10 µK and γ ≈ 2 × 10−3 for the
atomic density in the center of the cloud. This follows from a transverse trap-
ping frequency of ω⊥ ≈ 2π× 1.4 kHz and an atomic density of n1D ≈ 60 µm-1.
The given values are typical for the double well traps. The transverse trapping
frequency determines the interaction strength as discussed in section 2.3. To
be more precise, we have used eq. (2.46) in order to obtain g1D.

We usually work with temperatures T between 10 and 100 nK. The latter
gives a reduces temperature of τ ≈ 10−2. This places us well in the quasicon-
densate regime. In this regime, many of the local properties look similar to
a true condensate. However, quasicondensates lack the global coherence that
true condensates exhibit. The criterion to be in the quasicondensate regime
is [48]

τ 2 . γ . 1. (2.4)

In our case it is well fulfilled (10−4 < 2× 10−3 < 1).

As already mentioned, a uniform gas was assumed in the calculations leading
to the criteria (2.4). However the authors of ref. [48] state that they expect
their conclusion to remain valid when using the local density approximation
for sufficiently slowly varying systems. Note that the condition (2.4) will not
be fulfilled at the edges of the trapped cloud. For example, for a temperature
of T = 100 nK the first inequality is not fulfilled for n1D . 20 µm-1.

In the harmonically trapped case treated in ref. [47, 49] additional compli-
cations arise due to the discrete level-structure. However, for the parameters
in our experiment, the discrete level structure is not so important as the in-
teraction energy is much bigger then the level-spacing.
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2.2. Low energy effective field theories

2.2. Low energy effective field theories

2.2.1. Bogoliubov theory for quasicondensates

Mora and Castin developed a Bogoliubov theory for the quasicondensate regime
in ref. [50]. Their starting point is the discretized version of (2.1),

Ĥ =
∑
z

l ψ̂†(z)

[
− ~2

2m
∆ + U(z)− µ+

g1D

2
ψ̂†(z)ψ̂(z)

]
ψ̂(z). (2.5)

Here, l denotes the distance between the discrete space points. The differential
operators are replaced by the finite differences

∆f(z) =
f(z + l) + f(z − l)− 2f(z)

l2
, ∇f(z) =

f(z + l)− f(z − l)
2l

. (2.6)

Note that it is crucial to work with the discretized version eq. (2.5) instead
of its continuum equivalent (2.1). The reasons for this as well as appropriate
values for l are discussed in ref. [50].

The bosonic operator ψ̂(z) (ψ̂†(z)) of eq. (2.5) annihilates (creates) a particle
in a box of size l at the position z. Their commutation relation is therefore[

ψ̂(z), ψ̂† (z′)
]

=
δz,z′

l
, (2.7)

where δz,z′ is the Kronecker delta. To derive the Bogoliubov theory, the phase
density representation

ψ̂(z) ≈ eiθ̂(z)
√
ρ̂(z). (2.8)

is used. Here, θ̂(z) and ρ̂(z) are the Hermitian phase and density operators
respectively. They fulfill the commutation relations[

ρ̂(z), θ̂ (z′)
]
≈ iδzz′

l
, [ρ̂(z), ρ̂ (z′)] = 0,

[
θ̂(z), θ̂ (z′)

]
= 0 (2.9)

for conjugate variables. Note that the operator giving the number of atoms in
the box of length l at position z is given by

l ψ̂†(z)ψ̂(z) = l ρ̂(z). (2.10)

Also note that defining a hermitian phase operator is problematic and can only
be done approximately in certain limits. Therefore the approximate equality
in equation (2.8) and (2.9). For a detailed discussion of the phase operator see
ref. [50, 51].

To continue with the derivation of the Bogoliubov theory, the density oper-
ator ρ̂ is split into a background density ρ0 and fluctuations δρ̂ on top of this
background density, i.e.

ρ̂(z) = ρ0(z) + δρ̂(z). (2.11)

13



2. Theoretical basics

The operator δρ̂ fulfills the same commutation relations (2.9) as ρ̂ itself. Sub-
sequently the Hamiltonian is expanded in the small parameters

|δρ̂|
ρ0

� 1, |l∇θ̂| 6 1. (2.12)

In other words, one assumes the density fluctuations and the phase gradient
to be small. Furthermore, it is assumed that both small parameters are of
the same order. One can then sort the terms in the Hamiltonian according to
their order in the small parameters.

The zeroth order only depends on the background density ρ0(z). Minimizing
it with respect to ρ0(z) gives the Gross-Pitaevskii equation[

− ~2

2m
∆ + U(z)− µ+ g1D ρ0(z)

]√
ρ0(z) = 0. (2.13)

For a density profile ρ0(z) fulfilling this equation the first order contribution
to the Hamiltonian always gives 0. The leading order contribution to the
fluctuations is therefore given by the second-order Hamiltonian

H
(2)
Bogo =

∑
z

l

− ~2

2m

δρ̂

2
√
ρ0

∆

(
δρ̂

2
√
ρ0

)
+

~2δρ̂2

8mρ
3/2
0

∆
√
ρ0

+
g1D

2
δρ̂2 +

~2

2m

√
ρ0(z)ρ0 (z + l)

[
θ̂ (z + l)− θ̂(z)

]2

l2

.
(2.14)

Here we omitted a complex number contribution as it does not affect the
dynamics of the phase or density fluctuations.

Starting from (2.13) and (2.14) we can do further approximations. One is
the Thomas-Fermi approximation [52] consisting of neglecting the derivative
of the density profile, i.e., ∆ρ0 = 0. One neglects the corresponding terms in
eq. (2.13) as well as eq. (2.14). A second approximation is to assume density
fluctuations to be of short wavelength, i.e., neglecting the first term in (2.14).
Employing both approximations leads to the the Luttinger liquid Hamiltonian

H
(2)
LL =

∑
z

l

g1D

2
δρ̂2(z) +

~2

2m

√
ρ0(z)ρ0 (z + l)

[
θ̂ (z + l)− θ̂(z)

]2

l2

 . (2.15)
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2.2. Low energy effective field theories

For simplicity we will often use the continuum version (lim l → 0) of this
Hamiltonian:

H
(2)
LL =

∫
dz

g1D

2
δρ̂2(z) +

~2

2m
ρ0(z)

(
∂θ̂(z)

∂z

)2
 . (2.16)

Note that in general, we will always use the same symbols for the fields in the
continuum as well as the discretized models. This includes the bosonic fields
ψ̂ as well as the phase (θ̂) and density (δρ̂) fields. Also, the letter z denotes
the spatial coordinate in the continuum as well as the sites in the discretized
space.

2.2.2. Derivation in classical fields approximation

Note that the derivation in ref. [50], which we discussed above was done for
the quantum fields. However, as discussed in ref. [53] and section 2.2.5, the
fluctuations observable in the experiment are dominated by thermal noise.
We therefore can also simply start form the classical fields approximation of
(2.1), i.e., simply omit the hats in the Hamiltonian. Using the phase density
representation for the classical fields, we can write eq. (2.1) as

H =

∫
dz

[
~2

2m
ρ

(
∂θ

∂z

)2

+
~2

2m

1

4ρ

(
∂ρ

∂z

)2

+ (U(z)− µ) ρ+
g1D

2
ρ2

]
. (2.17)

Here we have assumed that the field ψ(z) vanishes at integration boundaries.
This is fulfilled for a finite number of particles in an appropriate trapping
potential with the integration boundaries far enough away.

Starting from (2.17) we can then derive the Bogoliubov theory by doing
an expansion around the minimum solutions θ0(z) and ρ0(z). To find this
minimum solutions one simply sets the first functional derivative of (2.17) to
0. The functional derivative with respect to θ(z) is zero for the phase field being
a constant (along z). Inserting this into the functional derivative with respect
to ρ(z) and setting it to zero gives the Gross-Pitaevskii equation (2.13). The
second-order term in the Taylor series around this minimum solutions gives
then exactly the continuum and classical field version of (2.14).

2.2.3. Numerical calculations

The quadratic Hamiltonians (2.14) and (2.15) in discretized space are conve-
nient for numerical calculations, while their respective continuum limits are
often more suitable for analytical calculations (section 2.2.5).

In order to do numerical calculations, we write the discretized quadratic
Hamiltonians (2.14) and (2.15) in matrix vector form. We collect the fields on
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2. Theoretical basics

the N different discretized space points into vectors, i.e.,

~̂
θ =

 θ̂(1)
...

θ̂(N)

 ,
~̂
θ
T

=
(
θ̂(1) . . . θ̂(N)

)
(2.18)

for phase fields and analogous for the density fluctuations δρ(z). The Hamil-
tonians can then be written in the form

Ĥ(2) =
1

2
~̂
θ
T

K
~̂
θ +

1

2
δ~̂p

T
Lδ~̂ρ, (2.19)

where the matrices K and L depend on what particular quadratic Hamiltonian
we are looking at. Note that the models discussed so far do not have any
cross-terms between phase and density, therefore we also have no cross-terms
in eq. (2.19). Note that a general quadratic Hamiltonian could have such
cross-terms [54].

Starting from (2.19), it is easy to calculate thermal expectation values as
discussed in section 2.2.4, eq. (2.23). The Heisenberg equations of motion are
also easily derived as

∂t δ~̂ρ =
1

~l
K
~̂
θ, ∂t

~̂
θ = − 1

~l
Lδ~̂ρ. (2.20)

Note that these are basically the same as the Hamilton equations of motion,
as expected for conjugate variables. The only difference is the factor 1/~l. It
stems from the fact that eq. (2.9) differs from the usual commutation relation
for conjugate variables by exactly that factor.

Starting from eqs. (2.19), (2.20) and (2.23) a set of codes was developed as
part of this PhD and applied in chapters 5 to 7 as well as ref. [28,36,55]. Let
us conclude by noting that similar equations like eqs. (2.19), (2.20) and (2.23)
also exist for quadratic Hamiltonians in continuous space [13].

2.2.4. Thermal expectation values

Let us start by discussing the thermal expectation values in classical fields
approximation. There, we simply omit the hats in the Hamiltonian. The
thermal probability density for a certain field configuration is then given by

ρ = exp(−βH)/Z, (2.21)

where H is the Hamiltonian depending on the classical fields, Z is the partition
function and β = 1/kBT . If the Hamiltonian, for example, depends on the
phase θ(z) and density fluctuations δρ(z), the partition function is written as
the functional integral [13]

Z =

∫
Dθ
∫
Dδρ e−βH . (2.22)
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2.2. Low energy effective field theories

It is easy to see that eq. (2.21) with a quadratic Hamiltonian leads to Gaus-
sian fluctuations for the fields. Gaussian fluctuations are fully determined by
their mean values and covariance matrix [56]. The covariance matrix can be
easily obtained by kernel inversion [13]. For example, starting from (2.19) the
thermal expectation values of the conjugate fields are

〈ρ(n)〉 = 〈θ(n)〉 = 〈ρ(m)θ(n)〉 = 0

〈ρ(m)ρ(n)〉 = kBT
(
L−1

)
mn
, 〈θ(m)θ(n)〉 = kBT

(
K−1

)
mn

(2.23)

Be aware that the expectation values of the cross-terms only vanish because
there are no cross-terms in the Hamiltonian (2.19). Note that the matrix
vector form (2.19) for the Hamiltonian was introduced for the discretized space.
However, also the Hamiltonians for a finite continous system will have a similar
form when represented in their eigenbasis. Therefore, eq. (2.23) will also be
useful in this case as can be seen from section 2.2.5.

Also in the quantum case, a quadratic Hamiltonian leads to a Gaussian
thermal state. One can see this from the fact that a quadratic Hamiltonian
leads to a quadratic euclidean action [13].

2.2.5. Homogeneous background density

In this section, we will discuss the case of a homogeneous background density
ρ0(z) = n1D. Note that we will in general denote the background density by
ρ0(z) while n1D is always only used for the value of the atomic density in the
homogeneous case. Using ρ0(z) = n1D in (2.14) and taking the continuum
limit gives

Ĥ(2) =

∫
dz

 ~2

8mn1D

(
∂δρ̂

∂z

)2

+
g1D

2
δρ̂2 +

~2n1D

2m

(
∂θ̂

∂z

)2
 . (2.24)

Here we also rewrote the first term containing derivations of the density fluc-
tuations. For this we assumed the surface term to vanish, which requires
appropriate boundary conditions, like Neumann boundary conditions, peri-
odic boundary conditions or vanishing density fluctuations on the boundary.
Remember that neglecting the first term in eq. (2.24) gives the Luttinger liquid
Hamiltonian (2.16).

In the following, we want to discuss the case of Neumann boundary condi-
tions:

∂θ̂

∂z

∣∣∣∣∣
z= 0, L

=
∂δρ̂

∂z

∣∣∣∣
z= 0, L

= 0 (2.25)

Having Neumann boundary conditions for the phase implies that the particle
current on the boundaries vanishes. This corresponds to the physical situa-
tion of having a hard-walled box. For the density fluctuations, there is no
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2. Theoretical basics

similar argument. However, the numerically obtained eigenmodes for a box
with finite wall-width (not shown) look very similar to the ones obtained with
the Neumann boundary conditions. We therefore conclude that the Neumann
boundary conditions are also a sensible choice for the density fluctuations when
investigating the case of a hard-walled box.

Keeping eq. (2.25) in mind we can expand the phase fluctuations as

θ̂(z) =

√
2

L

∞∑
n=1

cos
(
n
π

L
z
)
θ̂n +

θ̂0√
L
. (2.26)

The same we do for the density fluctuations. Inserting the expansions into
eq. (2.24) and using the orthonormality of the cosine modes gives

Ĥ(2) =
∞∑
n=1

[(
g1D

2
+

~2k2
n

8mn1D

)
δρ̂2

n +
~2k2

n

2m
n1D θ̂

2
n

]
+
g1D

2
δρ̂2

0. (2.27)

Here we denoted the wavenumber of the cosine modes as

kn = n
π

L
. (2.28)

By using eq. (2.23), we can directly see from eq. (2.27) that the thermal
expectation values in classical fields approximation are

〈θn〉 = 〈δρn〉 = 0 (2.29)

〈θnθm〉CF = δn,m
kBT

2

2m

~2k2
nn1D

= δn,m
2

λT

1

k2
n

(2.30)

〈δρnδρm〉CF = δn,m
kBT

2

(
g1D

2
+

~2k2
n

8mn1D

)−1

= δn,m
kBT

g1D

(
1 +

ξ2
hk

2
n

4

)−1

.

(2.31)

Here the indices n, m run from 0 to ∞ for the density fluctuations, and
from 1 to ∞ for the phase fluctuations. Note that the expectation values
for the zero mode θ0 of the phase are not defined, which does not lead to any
complications since a global phase offset of a single condensate has no physical
meaning. Furthermore, we have used the thermal coherence length given by

λT =
2~2n1D

mkBT
(2.32)

in eq. (2.30) and the healing length

ξh =
~

√
g1Dn1Dm

(2.33)

in eq. (2.31).
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2.2. Low energy effective field theories

As discussed in section 2.2.4, the expectation values eqs. (2.29) to (2.31)
are all that is necessary to characterize the Gaussian thermal state following
from the quadratic Hamiltonian (2.27). Note that eqs. (2.29) to (2.31) are the
result for the full Bogoliubov theory (2.24). In case of the first moments (2.29)
and the second moments (2.30) of the phase fluctuations, the results coincide
with the ones for the Luttinger liquid model. For the second moments of the
density fluctuations on the other hand, we have to neglect the second term in
the brackets in eq. (2.31) in order to get the results for the Luttinger liquid
Hamiltonian.

Of course, one can also define bosonic creation and annihilation operators
in order to bring the Hamiltonian (2.24) into the form

Ĥ(2) =
∞∑
n=1

εn

(
b̂†nb̂n +

1

2

)
. (2.34)

Starting from this, one can calculate quantum expectation values. We will here
not go into details but only state the mode energies. For the full Bogoliubov
theory, they are given by

εn = ~knc
√

1 +
ξ2

hk
2
n

4
. (2.35)

By neglecting the term ξ2
hk

2
n/4 under the square root we get the results for the

Luttinger liquid theory:
εn = ~knc (2.36)

From this, we see that c is the speed of sound for the Luttinger liquid theory
(long wavelength excitations). Its value can be calculated with

c =

√
g1Dn1D

m
. (2.37)

In general, we obtain the Luttinger liquid theory from the Bogoliubov theory
by neglecting the term ξ2

hk
2
n/4. This is true for eqs. (2.27), (2.31) and (2.35).

We can therefore argue that Luttinger liquid and Bogoliubov theory give the
same results when

ξ2
hk

2

4
� 1 (2.38)

leading to the criteria

k � 2

ξh

. (2.39)

For typical experimental parameters we have ξh ≈ 0.35 µm. This means that
the limiting length scale below which the difference between Luttinger liq-
uid and full Bogoliubov theory becomes important is way below the imaging
resolution (see discussion in sections 3.6 and 5.4.2).
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So far we discussed the homogeneous case with Neumann boundary con-
ditions. Note that for the homogeneous system with periodic boundary con-
ditions we can do an expansion into plane waves and get basically the same
result. To be more precise, the form of eqs. (2.27), (2.30), (2.31) and (2.35)
stays the same, however, the allowed values of the wavenumber k are different:

k̃n = n
2π

L
with n = −∞ . . .∞. (2.40)

We see that the spacing of the k-modes is twice as big as in eq. (2.28). On the
other hand also negative k-values exist, which leads to the same mode density
with respect to |k|.

Using eq. (2.30) with eq. (2.40) and considering the limit of infinite system
size, we can calculate the variance of the phase difference between two spatial
points as 〈

[θ(z + ∆z)− θ(z)]2
〉

=
2

λT
|∆z| . (2.41)

Validity of the classical fields approximation

Doing the classical fields approximation, i.e., leaving out the hats, corresponds
to making two approximations: Firstly, the quantum (zero temperature) fluc-
tuations are neglected. Secondly, the Bose-Einstein distribution is replaced
by the Rayleigh-Jeans distribution. Both approximations are good when the
occupation of the modes under consideration is sufficiently large. This leads
to the criterion

β εn � 1, (2.42)

where εn are the mode energies and β = 1/kBT . Using the mode energies
(2.36) for the Luttinger liquid Hamiltonian, eq. (2.42) leads to the criterion

k � kBT

~c
≡ kc. (2.43)

In other words, the investigated or relevant length scales must be bigger than
λc = 2π/kc.

For a typical experimental transverse trap frequency and atomic density, the
speed of sound (2.37) is c ≈ 2×10−3 m/s. The lowest temperature achieved so
far is about 10 nK, leading to kc = 0.65 1/µm. This is on the limit of what we
can resolve with our imaging systems (see chapter 3 and section 5.4.2 as well
as ref. [32]). Therefore, it is very challenging to resolve quantum fluctuations
with the current setup (see also the discussion in ref. [53]). Even if we would
have the necessary imaging resolution, there would still be the problem of
technical noise. In short, we could not yet observe the quantum fluctuations
of the system in thermal equilibrium.
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2.3. From 3D to 1D

In most measurements, the experimental temperatures are quite a bit higher
(around 30 nK) than the lowest achieved 10 nK. Therefore, we will apply the
classical fields approximation in the theoretical modeling of the experimental
investigation described in chapters 5 to 7.

2.3. From 3D to 1D

We introduced the Hamiltonian for the 1D case in (2.1) but so far did not
discuss how it is connected to the 3D world and its scattering properties. As
already discussed in section 1.2, we work with highly elongated traps with
two tightly confined transverse directions (x and y) and the longitudinal z
direction. This means that dynamics in the transverse direction is basically
frozen out and we are left with an effectively 1D system with coordinate z.

In ref. [57], a relation between the 3D scattering length as and the 1D
interaction constant g1D was developed:

g1D = 2~ω⊥as

(
1− 1.03

as

a⊥

)−1

(2.44)

Here, we assume that the trap frequency in both transverse directions is the
same and given by ω⊥. The harmonic oscillator length in the transverse direc-
tion is

a⊥ =
√

~/(mω⊥). (2.45)

For our typical experimental parameters the ratio as/a⊥ < 0.02. We will
therefore in the following always use the approximate formula

g1D ≈ 2~ω⊥as for as/a⊥ � 1. (2.46)

Note that the condition as/a⊥ � 1 means that the scattering has 3D char-
acter. In this case we can also start from the 3D Hamiltonian of interacting
Bosons and assume that the atoms are in the ground state of the transverse
harmonic potential. Integrating out the transverse direction then leads to
(2.46).

Note that eq. (2.1) is only valid in the 1D regime. In other words, the
thermal energy kBT and the mean interaction energy g1Dρ0/2 (ρ0 is the 1D
density of atoms) per particle should be much smaller than the transverse level
spacing ~ω⊥. In the experiment, we typically have a temperature of T = 40 nK
leading to kBT/(2π~) = 833 Hz compared with the trap frequency of typically
1.4 kHz. The ratio between the mean interaction energy per particle and the
level spacing is simply given by

g1Dρ0(z)

2~ω⊥
= asρ0(z), (2.47)
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where we have used eq. (2.46). With a typical 1D atomic density of ρ0(z =
0) = 60 µm-1 for the center of the trap (maximum density) and as = 5.2 nm [58]
this gives asρ0 = 0.31. The inequalities ~ω⊥ > g1Dρ0/2 and ~ω⊥ > kBT are
therefore only approximately fulfilled.

Some of the consequences following from the only approximate fulfillment
of ~ω⊥ > g1Dρ0/2 can be considered using the approach discussed in [59]1. It
is based on an approximate consideration of the broadening of the transverse
wavefunction. Starting point is the Hamiltonian for Bosons in 3D, interacting
via a delta functional potential. For an arbitrary potential in the longitudinal z
direction and a harmonic potential in the transverse direction, the Hamiltonian
is given by

Ĥ =

∫
d~r Ψ̂†(~r)

[
− ~2

2m
∂2
~r +

mω2
⊥ (x2 + y2)

2
+ U(z)− µ+ g3D|Ψ̂(~r)|2

]
Ψ̂(~r).

(2.48)
Here ∂2

~r = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
and the 3D coupling constant is given by g3D =

4π~2as/m.
We will now use the classical fields approximation and make the ansatz

Ψ(~r) = ψ(z)× 1

σ2(z)
√
π
e
−

(x2+y2)
2σ2(z) (2.49)

of having a Gaussian wavefunction in the transverse direction. Furthermore,
we will assume the width of the Gaussian to fluctuate slowly in the transverse
direction, i.e., we will neglect ∂zσ(z). After integrating out the transverse
direction, one gets a Hamiltonian depending on σ(z) and ψ(z):

H =

∫
dz ψ∗(z)

[
− ~2

2m

∂2

∂z2
+ U(z)− µ+

1

2
g3D

σ−2(z)

2π
|ψ(z)|2

+
~2

2m
σ−2(z) +

mω2
⊥

2
σ2(z)

]
ψ(z). (2.50)

Minimizing it with respect to σ(z) gives

σ2(z) = a2
⊥

√
1 + 2as|ψ(z)|2. (2.51)

Inserting this into eqs. (2.48) and (2.49) gives

H =

∫
dz ψ∗(z)

[
− ~2

2m

∂2

∂z2
+ U(z)− µ+ ~ω⊥

√
1 + 2as|ψ(z)|2

]
ψ(z). (2.52)

1Note that there is a vast body of literature discussing similar approaches like ref. [59] or
extending its findings. In particular, we want to mention [60–63].
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2.4. Theory for the double well

In the limit of as|ψ(z)|2 � 1, i.e., the mean interaction energy per particle is
much smaller than the transverse level spacing, this reduces to eq. (2.1) with
the 1D coupling strength given by eq. (2.46). Note that in section 2.5, the
implications of the density broadening for the phase fluctuations are discussed.

Starting from eq. (2.52) and using functional derivatives along the lines of
section 2.2.2, we can find the modified Gross-Pitaevskii equation[

− ~2

2m
∆ + U(z)− µ+ ~ω⊥

1 + 3asρ0√
1 + 2asρ0

]
√
ρ0 = 0. (2.53)

Moreover we can obtain a modified second-order Hamiltonian. It is given by
replacing

g1D

2
δρ2(z) → 1

2
~ω⊥as

2 + 3asρ0(z)

(1 + 2asρ0(z))3/2
δρ2(z) (2.54)

in (2.14). Similarly one can proceed with the other low energy effective field
theories discussed in sections 2.2 and 2.4. Note that we only sketched the
derivation in the continuum using the classical fields approximation. However,
one can do a calculation similar to the one in ref. [50] in the discretized space
starting from a quantum version of eq. (2.52) [36].

2.4. Theory for the double well

As discussed in chapter 1, we can create a double well potential where we trap
two clouds separated along one of the strongly confined directions. Tunneling
of atoms between the two wells can occur if the separating barrier is finite. In
this section we will therefore extend the discussions of the previous sections
to models for the tunnel-coupled double well.

The starting point for the different effective models will again be the Lieb-
Liniger Hamiltonian. To get a description for the double well, the Hamiltonian
for a single cloud (2.1) is simply duplicated to describe the left/right cloud
respectively, and a linear tunneling term is added [64]:

ĤDW = Ĥ1 + Ĥ2 + Ĥt (2.55)

with

Ĥ1,2 =

∫
dz ψ̂†1,2(z)

[
− ~2

2m
∂2
z + U(z)− µ+

g1D

2
ψ̂†1,2(z)ψ̂1,2(z)

]
ψ̂1,2(z) (2.56)

Ĥt = −~J
∫
dz
[
ψ̂†1(z)ψ̂2(z) + ψ̂†2(z)ψ̂1(z)

]
. (2.57)

Here the single particle tunneling rate J sets the strength of the tunnel cou-
pling. The first term in Ĥt describes a particle being annihilated in well 2 at
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2. Theoretical basics

longitudinal position z and one particle being created in well 1 also at longi-
tudinal position z, i.e., tunneling from well 2 into well 1. The second term
describes tunneling in the opposite direction.

We will now again assume to be in the quasicondensate regime (see discus-
sion in section 2.1) and discuss the corresponding low energy effective field
theories for the two clouds in sections 2.4.1 to 2.4.3.

2.4.1. Uncoupled double well

In the case of zero tunnel coupling (Ĥt = 0), we get the low energy description
simply by replacing each of the Hamiltonians Ĥ1,2 in eq. (2.55) by one of the
quadratic Hamiltonians discussed in section 2.2.1. Each of the condensates is
then described by independent Hamiltonians (eqs. (2.14) to (2.16)), which are
quadratic in the respective phase and density fluctuations of the individual
condensates. For example, in case of the Luttinger liquid Hamiltonian (2.16)
we have

H
(2)
LL 1,2 =

∫
dz

g1D

2
δρ̂2

1,2(z) +
~2

2m
ρ0(z)

(
∂θ̂1,2(z)

∂z

)2
 . (2.58)

Here we have assumed the same density profile ρ0(z) for both clouds.
Starting from such a description, it is often convenient to introduce relative

and common density and phase fluctuations:

δρ̂±(z) =
1

2
[δρ̂1(z)± δρ̂2(z)] , ϕ̂±(z) = θ̂1(z)± θ̂2(z). (2.59)

Here the common fluctuations are marked by the subscript + and the relative
fluctuations by the subscript −. The commutation relations are

[δρ̂+(z), ϕ̂+(z′)] = [δρ̂−(z), ϕ̂−(z′)] = [δρ̂1(z), ϕ̂1(z′)] = [δρ̂2(z), ϕ̂2(z′)]

[δρ̂+(z), ϕ̂−(z′)] = [δρ̂−(z), ϕ̂+(z′)] = [δρ̂1(z), ϕ̂2(z′)] = [δρ̂2(z), ϕ̂1(z′)] = 0.
(2.60)

Note that chapters 5 to 7 are mostly concerned with the relative phase fluc-
tuation. In these chapters, we will therefore, for brevity, drop the minus sign
when denoting the relative degrees of freedom. However, for now, we will keep
it.

Using the definitions of eq. (2.59), we can also write the low energy effective
Hamiltonian for the uncoupled double well system as sum of two independent
Hamiltonians depending only on the common or relative fluctuations respec-
tively (instead of the fluctuations of the individual condensates):

Ĥ
(2)
DW = Ĥ

(2)
1 + Ĥ

(2)
2 = Ĥ

(2)
+ + Ĥ

(2)
− . (2.61)
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2.4. Theory for the double well

Note that for this step it is important to assume a symmetric double well lead-
ing to the same density profile ρ0(z) for both wells. The case of an asymmetry
in the density profile and its effect on non-equilibrium dynamics is extensively
discussed in ref. [65].

Due to our particular definition (2.59), the pre-factors in Ĥ
(2)
± are different

compared to Ĥ
(2)
1,2 . For example, in case of the continuous Luttinger liquid

Hamiltonian we have

H
(2)
LL± =

∫
dz

[
g1D δρ̂

2
±(z) +

~2

4m
ρ0(z)

(
∂ϕ̂±(z)

∂z

)2
]
. (2.62)

2.4.2. Non-vanishing tunnel coupling

Deriving a low energy description for the case of non-vanishing tunnel cou-
pling is not so simple. One way would be to completely neglect the density
fluctuations in the tunnel coupling term, i.e.,

ψ̂1,2(z) ≈ eiθ̂1,2(z)
√
ρ0(z). (2.63)

leading to

Ĥt = −2~J
∫
dzρ0(z) cos (ϕ̂−(z)) . (2.64)

Together with the Luttinger liquid model for H1,2 this leads to the sine-Gordon
Hamiltonian for the relative degrees of freedom:

ĤSG =

∫
dz

[
g1D δρ̂

2
−(z) +

~2ρ0(z)

4m

(
∂ϕ̂−(z)

∂z

)2

− 2~Jρ0(z) cos (ϕ̂−(z))

]
.

(2.65)
The common degrees of freedom are described by the Luttinger liquid Hamil-
tonian (2.62).

It was was proposed in ref. [66] that eq. (2.65) often describes the relevant
physics for the coupled double well. The validity of eq. (2.65) as an approx-
imation for eq. (2.55) is discussed in section 2.5 and ref. [67]. The thermal
fluctuations following from HSG will be the topic of the next section 2.4.3.

Within the classical fields approximation, we can also expand the tunneling
term up to second order in the density fluctuations following the procedure
outlined in section 2.2.2. Expanding up to second order leads to

Ht = −2~J
∫
dz

[
ρ0(z) + δρ+(z)− 1

2

δρ2
−(z)

ρ0(z)

]
cos(ϕ−(z)). (2.66)

Note that the first order term does not vanish for ρ0(z) being a solution of
the Gross-Pitaevskii equation (2.13), it is therefore unclear whether δρ is still
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2. Theoretical basics

a small parameter. The usefulness and validity of (2.66) is therefore ques-
tionable. It is only mentioned for completeness and to argue that the tunnel
coupling term can lead to coupling between common and relative degrees of
freedom, which might potentially be important for explaining the results pre-
sented in chapter 7.

In the case of strong tunnel coupling one can assume the relative phase
ϕ−(z) itself to be small and of the same order as the other small parame-
ters eq. (2.12). With this a Bogoliubov theory for the strong tunneling was
developed in ref. [64]. Starting from eq. (2.66), we can replace cos(ϕ−(z))
with 1 − ϕ2

−(z)/2. We then can account for the zeroth and first order terms
by rescaling the chemical potential. The leading order term is therefore the
second-order term

H
(2)
t = ~J

∫
dz ρ0(z)ϕ2

−(z). (2.67)

2.4.3. Thermal fluctuations within the sine-Gordon model

Let us start by noting that the sine-Gordon Hamiltonian eq. (2.65) is non-
quadratic, which leads to non-Gaussian phase fluctuations. For the classical
fields approximation, this connection is apparent from eq. (2.21). Investigating
the non-Gaussianity will be a big part of chapter 5.

Let us continue by discussing some theoretical predictions following from
the sine-Gordon Hamiltonian eq. (2.65) in classical fields approximation and
thermal equilibrium. Moreover, we assume an infinite system with homoge-
neous background density, i.e., ρ0(z) = n1D. One can then obtained some
analytical results via the transfer-matrix method. We will here not get into
details about the used method, but just present some relevant results. For
details about the calculations and additional results see ref. [14, 67,68].

In the classical fields approximation, the thermal phase fluctuations follow-
ing from the sine-Gordon model eq. (2.65) are characterized by two length
scales [68]: The phase coherence length

λT =
2~2n1D

mkBT

describing the randomization of the phase due to the temperature T , and the
healing length of the relative phase

lJ =

√
~

4mJ

determining the restoration of the phase coherence through the tunnel coupling
J .

The dimensionless ratio

q =
λT
lJ

(2.68)
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2.5. Comparison of the different models

is directly related to the observable quantity 〈cos(ϕ−)〉, which we usually call
‘coherence factor’. It determines the relevance of non-quadratic contributions
to the Hamiltonian (2.65) and is used to quantify the ‘phase locking’ in the
experiment (see discussion in section 5.3). The dependence of 〈cos(ϕ−)〉 on
q is shown in fig. 5.4. Note that the ratio q is the actual physically relevant
parameter. Changing the thermal coherence length λT just simply leads to a
rescaling of the spatial coordinate z. For the same value of q, but different
values of λT , one gets the same results when using the normalized coordinate
z/λT .

Starting from the transfer matrix method, an efficient numerical method was
developed in ref. [67]. It consists of a stochastic evolution along the spatial
coordinate z and delivers numerical realizations for classical fields, following
the thermal distribution for a particular Hamiltonian. The method can be
applied to a large class of different Hamiltonians. However, certain criteria
have to be fulfilled. For example, we can generally only apply it to infinite
homogeneous systems. None of the parameters in the Hamiltonian may depend
on z. The numerical realizations represent a part of the homogeneous infinite
system.

For the sine-Gordon Hamiltonian eq. (2.65) with constant background den-
sity ρ0(z) = n1D all criteria for the applicability of the method are fulfilled.
Note that in classical fields approximation the thermal distribution eq. (2.21)
for the sine-Gordon Hamiltonian will factorize in a part concerning phase fluc-
tuations and a part concerning density fluctuations only. The thermal phase
fluctuations are therefore completely independent from the thermal density
fluctuations. This means that we can have a stochastic process giving us nu-
merical realizations for the relative phase ϕ−(z) only. In the following, we will
often refer to this stochastic process as the ‘sine-Gordon stochastic process’.
Note that the phase profiles produced by it have a global ambiguity of 2πn,
where n is an integer. Therefore, only periodic functions of the phase ϕ−(z) or
functions of phase differences ϕ−(z)−ϕ−(z′) between two spatial points should
be calculated from them (see also the discussion in section 4.2 and fig. 4.4).

In chapter 5, the sine-Gordon stochastic process will be used for a compari-
son of experimentally obtained phase correlation functions with the predictions
following from the thermal sine-Gordon model in classical fields approxima-
tion. More theoretical results can therefore be found in that chapter, especially
in section 5.4.

2.5. Comparison of the different models

In the experiment, we routinely probe the phase fluctuations. We will therefore
mostly focus on them in this section. In classical fields approximation and
thermal equilibrium, the Bogoliubov Hamiltonian (2.14) and the Luttinger
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2. Theoretical basics

liquid Hamiltonian (2.15) give the same phase fluctuations, as can be seen from
the discussion in section 2.2.4. For the homogeneous system the variance of
phase fluctuations between two different points was calculated in section 2.2.5,
eq. (2.41) as 〈

[θ(z + ∆z)− θ(z)]2
〉

=
2

λT
|∆z| . (2.69)

The validity of the classical fields approximation was discussed in section 2.2.5.
As discussed in [67], the full Hamiltonian (2.1) in classical field approxima-

tion (2.17) basically leads to the same phase fluctuation, but with the rescaled
thermal coherence length

λ̃T =
λT

n1D 〈1/ρ〉reg

. (2.70)

Here ρ stands for the local one dimensional atomic density. Note that one
has to regularize 〈1/ρ〉 in order to avoid a division by zero (see discussion
in [67]). The relevant parameter determining the rescaling factor in the case
(2.17) without density broadening is given by

α =
λ2
T

4ξ2
h

(2.71)

with the healing length ξh (2.33). This means that we have the proportionality
α ∝ n3

1D/T
2. The dependence of the rescaling factor on α is shown in fig. 2.1a .

One sees that the fluctuations are enhanced in comparison with the Luttinger
liquid theory.

In the case of density broadening (2.52), the rescaling factor also depends
explicitly on the 1D density n1D. The temperature dependence is shown for a
few values of the density in fig. 2.1b. One sees that the phase fluctuations are
even more enhanced than in the case without density broadening.

The validity of the rescaling eq. (2.70) was rechecked in the process of writing
this thesis. For the variance of the cosine-transformed phases (see discussion
in sections 2.2.5 and 5.1.2), good agreement was found up to kc (2.43) for
α = 85 and 525 (not shown). Above kc deviations are visible. However, for
these k-values one does not expect the classical fields approximation to work
anyway.

Note that no simple rescaling law was found for the density fluctuations.
However, it seems that the deviations from Bogoliubov theory are fairly small.
For the variances of the cosine transformed densities the deviations are on the
order of a few percent for k < kc (2.43). Again this was checked for α = 85
and 525 (not shown).

Comparing the phase fluctuations following from the coupled Lieb-Liniger
model (2.55) with the ones following from the sine-Gordon model (2.65) we
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Figure 2.1.: Rescale factors for λT . (a) Shows the rescaling factor n1D 〈1/ρ〉reg

(according to eq. (2.70)), for comparing the phase fluctuations of the full Hamil-
tonian (2.17) to the ones of the Luttinger liquid theory (2.16), as a function of α
(2.71). (b) The red curves represent the same as is shown in (a) as a function of
temperature. The solid/dash-dotted curve is for n1D = 60 and 100 µm-1 respectively.
The blue lines represent the corresponding results for the broadened Hamiltonian
(2.52). The plot was made for a transverse trap frequency of ω⊥ = 2π × 1.4 kHz.
The values for α range from 84 to 8400 for the solid curves and from 390 to 39000
for the dash-dotted ones.

can get agreement in a certain parameter range when rescaling q (2.68) in
addition to λT . The rescaled value is given by [67]

q̃ = q

√ 〈√
ρ1ρ2

〉
〈1/ρ1,2〉reg

, (2.72)

where ρ1,2 are the densities in the left or right cloud respectively. Note that
it doesn’t matter whether we use ρ1 or ρ2 in order to evaluate 〈1/ρ〉reg as we
assume a symmetric double well trap. As discussed in ref. [67], the rescaling
works quite well for the parameter range typically used in the experiment.

2.6. Time of flight expansion

For all measurements presented in this thesis the atomic density after time of
flight (TOF) expansion is probed via absorption imaging (see chapter 3). By
measuring this atomic density, we want to infer quantities of the system before
expansion. This connection is not completely trivial and needs a theoretical
modeling of the expansion in TOF, which will be the topic of this section.
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2.6.1. Expansion without interactions

Let us start by assuming that the quasicondensates in well 1 and 2 before
expansion (t = 0) are described by the classical fields

Ψ1,2(~r, t = 0) = φ1,2(x, y, t = 0)ψ1,2(z, t = 0) (2.73)

respectively. The fields ψ1,2(z, t = 0) are stochastic, i.e., they change from shot
to shot. Their statistics can be given by thermal and/or quantum fluctuations,
or the fluctuations of a non-equilibrium situation. For the transverse part φ1,2

we will assume the harmonic oscillator ground state, i.e.,

φ1,2(x, y, t = 0) =
1√
πa2
⊥

e−((x±d)2+y2)/2a2⊥ , (2.74)

with a⊥ being the harmonic oscillator length (2.45). Note that the two wells
are separated by a distance of 2d in the transverse x direction. We will assume
no separation in the transverse y direction.

By using eq. (2.74) we neglect the interaction induced broadening of the
transverse wavefunction (see discussion in section 2.3). Further, we will also
neglect interactions during the expansion. This is quite well justified for the
parameters in our experiment [36]. The free expansion is independent for the
different spatial directions, meaning that Ψ1,2 will keep its factorizable form.
It will be the product of a freely expanding harmonic oscillator ground state
and a freely expanding longitudinal field ψ1,2(z, t), where t is the TOF.

Free expansion of the harmonic oscillator ground state leads to a growing
Gaussian wavefunction. The wavefunction stays normalized, its standard de-
viation evolves like

σwf = a⊥

√
1 + ω2

⊥t
2. (2.75)

Moreover, a fluctuating phase factor appears, which will be the cause of inter-
ference fringes.

With this assumptions, the atomic density after expansion is [35, 38]

|Ψ1 + Ψ2|2 =
1

πσ2
wf

e−y
2/σ2

wf

{
e−(x+d)2/σ2

wfψ∗1(z)ψ1(z) + e−(x−d)2/σ2
wfψ∗2(z)ψ2(z)

+ 2 e−(x2+d2)/σ2
wf Re

[
exp

(
i 2π

x

λF

)
ψ∗1(z)ψ2(z)

]}
.

(2.76)

Here we omitted the time arguments in ψ1,2(z, t) and σwf(t) for brevity; we
will continue omitting it in the following. The last term in eq. (2.76) leads to
interference fringes with the fringe spacing given by

λF =
πma2

⊥σ
2
wf

~td
. (2.77)

30



2.6. Time of flight expansion

Writing ψ1,2 in phase/density representation (2.8)

ψ1,2(z) =
√
ρ1,2(z) eiθ1,2(z), (2.78)

we can write eq. (2.76) as

|Ψ1 + Ψ2|2 =
1

πσ2
wf

e−y
2/σ2

wf

{
e−(x+d)2/σ2

wfρ1(z) + e−(x−d)2/σ2
wfρ2(z)

+ 2 e−(x2+d2)/σ2
wf

√
ρ1(z)ρ2(z) cos

[
2π

x

λF

− (θ1(z)− θ2(z))

]}
.

(2.79)

For x� d, this can be written in the form

|Ψ1 + Ψ2|2 ≈ A(z) e
−x

2+y2

σ2
wf

{
1 + C(z) cos

[
2π

x

λF

− (θ1(z)− θ2(z))

]}
,

(2.80)
which is used to fit the interference pattern in order to extract the relative
phase ϕ−(z) = θ1(z) − θ2(z) from the measured atomic densities after TOF
(see section 4.2).

Note that a similar treatment of the expansion not making the assumption
of having stochastic classical fields, but working with operators can be found
in ref. [69].

2.6.2. Expansion with interactions

If one wants to consider the density broadening and the interaction during
expansion, the formalism presented in ref. [61] might be an efficient way. How-
ever, here we will only talk about how to get a better guess for the width of
the transverse wavefunction in TOF. We will use this for the discussion of the
imaging resolution in chapter 3.

For the in-situ clouds, we discussed in section 2.3 how to approximately
consider the influence of the interactions with a Gaussian ansatz. This lead to
the broadened transverse width for the in-situ clouds given in eq. (2.51). Let
us denote it here by σb. Using a Gaussian ansatz [61] also for the transverse
expansion and neglecting the dynamics in the longitudinal direction one can
derive an analytic expression for the time evolution of the transverse width
σwf . It is simply given by [36]

σwf = σb

√
1 + ω2

⊥t
2, (2.81)

i.e., by replacing a⊥ in eq. (2.75) with the broadened width σb.
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3. Probing the atom cloud
through absorption imaging

The aim of an absorption imaging system [70, 71] is to measure the atomic
density (integrated along the imaging direction) as well as possible. A big
part of this chapter will be concerned with the unwanted effects preventing a
perfect image. These effects include the optical resolution (section 3.2), the
‘recoil blurring’ due to absorption and re-emission of photons by the atoms
(section 3.3) as well as coarse graining through the finite pixel size of the
camera.

In our experimental setup, we have absorption imaging systems for all spatial
directions x, y and z. See fig. 3.1 for a schematic of the alignment of the
different imaging systems. Remember that z is the direction along the weakly
confined (the longitudinal) direction of the cloud, while y is aligned with the
direction of gravity. For details about the imaging systems see [32, 33, 35].
Some quantities for the different imaging systems are summarized at the end
of the chapter in table 3.1.

In absorption imaging the atom cloud is probed with a resonant laser beam.
The incoming laser beam is attenuated as photons get absorbed by the atom
cloud. For a two level system, the relation between the intensity I0 of the
incoming beam and the intensity I after absorption is given by

ln

(
I0(x, y)

I(x, y)

)
+
I0(x, y)− I(x, y)

Isat

= σρ̃(x, y). (3.1)

Here we have assumed that equilibrium has been reached and the populations
of the ground and excited state do not change anymore. The equation is
therefore not valid shortly after switching the imaging light on or changing its
intensity. Furthermore, without loss of generality, we have assumed to image
in the z direction. The saturation intensity is denoted by Isat, σ represents
the absorption cross-section and ρ̃(x, y) is the atomic density integrated in
imaging direction z. Measuring I(x, y) and I0(x, y) (measured by taking a
second picture without any atoms present) one can determine ρ̃(x, y). Note
that in eq. (3.1) the possible re-absorption of spontaneously emitted photons
is neglected. No literature discussing the importance of this effect is known to
us.
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3. Probing the atom cloud through absorption imaging

Figure 3.1.: Possible imaging directions. The red cigars in the figure illustrate
the in situ atom clouds in a single well (a) and a double well (b) trap. After being
released from the trap, the clouds expand in time of flight (TOF), as illustrated
by the red blob. Subsequently absorption images are taken. The pictures show
typical atomic densities (integrated along the imaging direction) as recorded from
the different directions. The example images in the x direction (‘transverse’ imaging
system) show speckle patterns, which can be used for thermometry as discussed in
section 4.1. The example image in the y direction (‘vertical’ imaging system) in
(b) shows the interference pattern following from the expansion and overlap of
the two clouds released from the double well trap. From such images, the relative
phase ϕ−(z) between the two condensates can be extracted (see section 4.2). The
imaging system in the z direction (‘longitudinal’ imaging system) can be used to
record integrated interference pictures (example image in (b)) or to measure the
imbalance in the atom number between the two wells [36]. Figure reproduced with
permission from [36].
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3.1. Scattering cross section for the different imaging configurations

3.1. Scattering cross section for the different
imaging configurations

We image the cloud of 87Rb by using the D2 (52S1/2→ 52P3/2) transition, which
is also used for laser cooling. The total angular momentum quantum number
is F = 2 for the ground state and F ′ = 3 for the excited state. One therefore
has five ground mF -states and seven excited mF ′-states. This means that
the simple formula (3.1) is not valid anymore. However, for some particular
combinations of polarization and atomic quantization axis (determined by the
applied bias field) one gets an effective two-level system. Typically one chooses
such a configuration for absorption imaging.

One example would be the case of circularly polarized light and quantization
axis aligned with the imaging direction. When the imaging light is switched
on, the populations of the different ground mF and excited mF ′ states will
rearrange and ultimately reach an equilibrium. For the discussed situation,
one always ends up in the |F = 2,mF = ±2〉 → |F ′ = 3,mF ′ = ±3〉 cyclic
transition where the sign of mF and mF ′ depends on whether we have left or
right circularly polarized light.

Equation (3.1) is then valid with the on-resonance cross-section being given
by [40]

σ0 =
3λ2

2π
, (3.2)

where λ is the wavelength of the imaging light. With this σ0, we can then
calculate the saturation intensity using

I0
sat =

~ω
2σ0τ

, (3.3)

where ~ω is the photon energy and τ is the lifetime of the excited state (see [40]
for a numerical value). For off resonant frequencies, the cross-section follows a
Lorentzian function with the natural linewidth 1/τ . Note that the resonance
frequency changes with the magnetic bias field as discussed in eqs. (A.34)
and (A.35) in appendix A.2.1. This configuration is used for the longitudinal
and the vertical imaging systems in our experiment.

A more complicated effective two-level system is achieved with linear polar-
ization along the quantization axis of the atoms [40]. The effective two-level
system is again reached after initial equilibration. In the stationary state all
the different mF states are occupied. The scattering cross-section is reduced
with respect to eq. (3.2) by a factor α, i.e.,

σ =
σ0

α
, (3.4)

which leads to
Isat = I0

satα. (3.5)
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3. Probing the atom cloud through absorption imaging

The numerical value is α = 1.83 [40] for small magnitudes of the magnetic
bias field fixing the atomic quantization axis. It increases with field-strength
as discussed in appendix A.2.3 and presented in fig. A.4. Also the linewidth
increases with field strength (fig. A.5b), while the lineshape stays Lorentzian
(fig. A.5b). That the latter follows from the observation that we have an
effective two-level transition. This configuration is used for the transverse
imaging system in our experiment.

To investigate the influence of the initial equilibration as well as pertur-
bations to the configurations (e.g., stray fields), it is useful to simulate the
absorption process with optical Bloch equations. This is done in appendix A,
where calculations using the parameters of the different imaging systems are
presented. Some of the results show substantial deviations from the quanti-
ties for the idealized situations. Unfortunately it would be rather involved to
consider these deviations when analyzing the experimental absorption images.
We will therefore not do that and simply use eq. (3.2) for the longitudinal and
the vertical imaging systems and eq. (3.4) with α = 1.83 for the transverse
imaging system.

Another effect to keep in mind is the Doppler shift due to photon absorption
during the imaging process. When a photon gets absorbed, it transfers its
momentum to the atom which therefore gets accelerated. The difference in
velocity is given by the recoil-velocity, its value for 87Rb is vr = 5.8845 mm/s
[40]. The photon might then be re-emitted by spontaneous or stimulated
emission. The first happens in a random direction, it therefore does not lead
to an average acceleration. The latter happens in the direction of the imaging
light, leading to an acceleration of the atom counteracting the one of the
initial absorption. The number n of photons absorbed and not re-emitted by
stimulated emission therefore leads to an average acceleration of ∆v = n vr in
the imaging direction. This leads to a Doppler shift of the resonance frequency.

For small velocities, the frequency shift is approximately given by ∆f =
−v/c × f0. Here, v is the atomic velocity, c the speed of light and f0 the
unshifted resonance frequency. In our case, this lead to a shift of 7.54 kHz per
scattered photon. Typically around 200 photons per atom are absorbed during
the imaging process. This leads to a Doppler shift of 1.51 MHz, which is still
rather small compared to the natural linewidth of 6.07 MHz. In the experiment
one will set the light frequency approximately to the mean of unshifted and
maximally shifted frequency, i.e., the relevant value for the detuning is half
the Doppler shift. For this value, the scattering cross section is reduced to
about 95%.

However, in the experiment, the imaging intensity is quite inhomogeneous.
There are regions where up to twice as many photons are scattered. For half
of this Doppler shift, the scattering cross section is reduced to about 80%.
The Doppler shift is therefore not necessarily negligible. Despite this, we will
ignore it when analyzing experimental absorption images.
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3.2. Optical imaging resolution for a Gaussian cloud

3.2. Optical imaging resolution for a Gaussian
cloud

All optical imaging systems are fundamentally limited by diffraction. As we
are using laser-light for imaging, we will only discuss coherent image formation.
Coherent image formation deals with the complex amplitudes U of the light-
field rather than with intensities as in incoherent image formation.

Let us again assume that we image in the z direction. For a thin object, the
light field amplitude U3(x3, y3) in the imaging plane is given by the convolution
of the light field amplitude U1(x1, y1) in the object plane (immediately after the
thin object) with the 2D amplitude point spread function (APSF) h(x, y) [72].
We have

U3(x3, y3) ∝
∫ ∫ ∞

−∞
dx1dy1 U1(x1, y1) h(x1 +Mx3, y1 +My3), (3.6)

where M is the magnification of the imaging system. In the expression we
omitted a phase factor depending on x3 and y3 as it is of no importance for
our discussion. We will also omit this phase factor in all other expressions
of this chapter. Note that for eq. (3.6) to be valid, we have to assume that
the lens law is fulfilled and h(x, y) falls off quickly. If the light field U1(x1, y1)
consists only of a single point at x1 = y1 = 0, i.e., is given by the Dirac
delta function δ(x1, y1), then U3(x3, y3) is proportional to the amplitude point
spread function h(Mx3,My3), hence its name. The form of h(x, y) depends
on the details of the imaging system and whether the object is in focus, or
better said on the distance between the object plane and the plane in focus.
For a circular aperture with numerical aperture NA and object in focus, one
has [72]

h(x, y) = h̃(r̃(x, y)) = 2π
J1(r̃)

r̃
(3.7)

where

r̃ =
2π

λ

√
x2 + y2 NA. (3.8)

Here Jn(x) represent the Bessel functions and λ is the wavelength of the light.
Squaring the expression in eq. (3.7) gives the well known airy pattern.

Often it is more convenient to work with the image in the object plane

Ũ3(x̃3, ỹ3) = U3

(
− x̃3

M
,− ỹ3

M

)
. (3.9)

Using this quantity, eq. (3.6) turns into

Ũ3(x̃3, ỹ3) ∝
∫ ∫ ∞

−∞
dx1dy1 U1(x1, y1) h(x1 − x̃3, y1 − ỹ3), (3.10)

37



3. Probing the atom cloud through absorption imaging

which can be written as

Ũ3(x̃3, ỹ3) ∝ F−1 (F(U1(x1, y1))× c(kx, ky)) . (3.11)

Here F and F−1 represent the 2D Fourier transform and its inverse respec-
tively, and we have defined the 2D coherent transfer function (CTF) as

c(kx, ky) = F−1(h(x, y)). (3.12)

Note that a narrow APSF corresponds to a wide CTF and good imaging
resolution.

The APSF in eq. (3.7) becomes narrower, i.e., the resolution becomes better,
for higher values of NA. However, with increasing NA the depth of focus
decreases, meaning that the resolution worsens more and more rapidly with
the defocus distance. Therefore, the optical resolution of imaging systems
with a high numerical aperture can be substantially reduced when imaging
extended objects (extended in the imaging direction). This is the case when
measuring an atom cloud after time of flight (TOF) expansion.

In the following, we will discuss the effective coherent transfer function for
a cloud with Gaussian atomic density in the imaging direction z and arbitrary
dependence on x and y. Note that this case was discussed in [73]. Therefore,
we will only state and discuss the result and the assumptions made in its
derivation here.

We assume that the atomic density after TOF has the form

ρ(x, y, z) =
1√
πσwf

e
− (z−z0)

2

σ2
wf ρ̃(x, y), (3.13)

where z represents the imaging direction, and ρ̃(x, y) is an arbitrary function.
The standard deviation of the atomic wavefunction after TOF is denoted by
σwf leading to a standard deviation of σwf/

√
2 for the Gaussian atomic density.

For information about how to calculate σwf see the discussion in section 2.6
as well as eqs. (2.75) and (2.81). As the origin for the z coordinate we choose
the in-focus plane (fulfilling the lens law), which means that z0 represents the
defocus distance for the center of the Gaussian cloud. Further we assume
that each infinitesimal slice along the z direction of this extended cloud is
imaged independently. For each slice we apply eq. (3.10) and subsequently
obtain the total image as a superposition. By doing so, we neglect that the
incoming/outgoing light is modified through the atoms before/after the slice
under consideration. One speaks of a semi-transparent cloud and calls the
assumption the first Born approximation [72].

We can then model the imaging of the extended cloud like a thin cloud being
imaged with an effective coherent transfer function, i.e., we use eq. (3.11) with
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3.3. Recoil blurring

an effective c(kx, ky) and

U1(x1, y1) = U0 e−σρ̃(x1,y1)/2.1 (3.14)

Here σ represents the atomic scattering cross section and we have assumed a
homogeneous incoming beam with amplitude U0. Moreover, we assumed an
imaging intensity far smaller than the saturation intensity. Note that the factor
1/2 in the exponential of eq. (3.14) appears because we deal with amplitudes
and not intensities.

In case of a circular aperture, we get for the effective CTF

ceff (kx, ky) ∝ Θ

(
NA

λ
− kt

)
e−(π λ2 k2t σwf)

2

e−iπλ k
2
t z0 , (3.15)

where

k2
t = k2

x + k2
y. (3.16)

The first term in eq. (3.15) represents the fundamental diffraction limit of
the optical system. The second term represents the decrease in resolution
due to the finite extend of the Gaussian cloud. As soon as the second term
dominates (is much narrower than the fist term), one cannot improve the
imaging resolution by improving the optical system anymore. The last term
appears if the center of the cloud is not in focus. Note that the proportionality
factor in eq. (3.15) does not depend on the cloud position or extend, this will
become important for a discussion later on.

For some reason only the real part of eq. (3.15) was stated in ref. [73]. For
examples how the effective point spread function looks for various imaging
situations used in the experiment see sections 3.5 and 3.6.

3.3. Recoil blurring

During the imaging process photons are absorbed by the atoms and subse-
quently re-emitted. The absorption only gives a push in the imaging direction.
It therefore does not influence the absorption image per se but can lead to the
cloud being pushed out of focus during imaging. During the spontaneous
emission on the other hand photons are emitted into a completely random di-
rection. This leads to a random walk and a blurring of the image as discussed
in ref. [70]. In the following we will treat this subject a bit more carefully and
discuss some aspects usually overlooked.

1Note that using the exponential in the formula rather than the linear approximation is
somewhat inconsistent with the assumption of semi-transparency used to calculate the
effective CTF.
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3. Probing the atom cloud through absorption imaging

The position of an atom absorbing N photons during the imaging time ∆t
is given by

~r = ~eN vrec
∆t

N
+ ~eN−1 vrec 2

∆t

N
+ · · ·+ ~e1 vrec ∆t. (3.17)

Here vrec represents the recoil velocity and the unit vectors ~ej represent the
directions in which the recoil from the j-th photon kicks the atom. Note that
the lifetime of the 52P3/2 state of 87Rb (the excited state of the D2 line used
for imaging) is 26 ns, which is much shorter then typical imaging durations
(50 and 75 µs are currently used in our experiment). We can therefore neglect
the time lag between absorption and spontaneous emission of the photons.

What we are interested in is the traveled distance squared:

|~r|2 = v2
rec

∆t2

N2

N∑
j=1

j2 + mixed terms containing ~ej · ~ek with j 6= k. (3.18)

The sum can be evaluated to

N∑
j=1

j2 =
1

6
N(N + 1)(2N + 1). (3.19)

For the expectation value of the squared distance all the mixed terms drop
out and we get 〈

|~r|2
〉

= v2
rec ∆t2

1

6N
(N + 1)(2N + 1). (3.20)

For a large number of scattered photons N we can use the approximate formula〈
|~r|2
〉
≈ v2

rec ∆t2
N

3
, (3.21)

which is the expression given in [70].
Note that as eq. (3.17) represents a sum of independent random variables

the distribution of ~r will converge to a Gaussian for many absorbed photons,
i.e.,

P (~r) dx dy dz =
1

(2πσ2
rc)

3/2
e
− |~r|

2

2σ2rc dx dy dz (3.22)

with 〈
|~r|2
〉

= 3σ2
rc. (3.23)

We now have expressions for the blurring at the end of the imaging proce-
dure. However, what really counts for absorption imaging is not the position of
the atoms at the end of the exposure time, but the position of the atoms when
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3.3. Recoil blurring

the photons get absorbed. For the expectation value of the squared distance
for this absorption points we get〈
|~r|2
〉

ab
=

1

N

N∑
n=1

〈
|~r|2
〉
n

=
1

N

N∑
n=1

[
v2

rec

(
∆t

N

)2
1

6
n(n+ 1)(2n+ 1)

]

=
1

N
v2

rec

(
∆t

N

)2
1

12
N(1 +N)2(2 +N) ≈ v2

rec ∆t2
N

12
.

(3.24)

Note that this is a factor 4 smaller than eq. (3.21) which is normally used to
estimate the effect of recoil blurring.

The distribution of the points where the photons are absorbed is not a
Gaussian anymore. Instead, it is an average over Gaussian functions with
different variance. We will now again assume that we image in the z direction
and only discuss the distribution for the 2D plane perpendicular to it. We
have

Pab(x, y) =
1

N

N∑
n=1

1

2πσ2
rcn

e
−x

2+y2

2σ2rcn , (3.25)

with

σrcn =
1

3

〈
|~r|2
〉
n

=
1

3
v2

rec

(
∆t

N

)2
n3

3
= C n3. (3.26)

Equation (3.25) can be written as

Pab(x, y) = C1

N∑
n=1

n−3e−
C2
n3 , (3.27)

where

C1 =
1

N

1

2πC
(3.28)

C2 =
x2 + y2

2C
(3.29)

with C defined in eq. (3.26). The expression can be further simplified when
approximating the sum by an integral, setting the lower integration bound to
zero and making the substitution t = C2/n

3. We get

Pab(x, y) ≈ C1

3C
2
3
2

∫ ∞
C2
N3

dt t
2
3
−1e−t =

C1 Γ(2
3
)

3 C
2
3
2

Γ

(
C2

N3
,
2

3

)
, (3.30)

where Γ(s) represents the Gamma function, and

Γ(x, s) =
1

Γ(s)

∫ ∞
x

ts−1e−t (3.31)

is the upper incomplete gamma function2.

2Note that there are different definitions for the incomplete gamma functions, this is the
definition implemented in MATLAB.
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3. Probing the atom cloud through absorption imaging

3.4. Combining the different effects and
simulating pictures

We will now discuss how to combine the different effects. We will start by as-
suming that the effective 2D coherent transfer function is approximately given
by eq. (3.15) for a Gaussian cloud. The Gaussian shape is a good approxima-
tion for the transverse wavefunction in-situ and after TOF, when having only
a single cloud of atoms [36].

In the case of two clouds in a double well potential, one gets interference
patterns in the direction of the separation. The patterns will have an envelope
of approximately Gaussian shape. If the direction of separation coincides with
the imaging direction, one can strictly speaking not apply eq. (3.15) anymore.
Without real justification, except the Gaussian envelope, we will still apply the
formula in this case to get a rough idea about the effect of the cloud extension.
This situation occurs when measuring two clouds separated in horizontal x
direction with the transverse imaging system.

Note that the spatial resolution of the longitudinal imaging system is not
particularly important for the measurements presented in this thesis. We will
therefore not explicitly discuss it in this chapter. Therefore we will also not
discuss the shape of the longitudinal density profile or the validity of eq. (3.15)
here.

Neglecting any effects but the optical resolution, the field in the imaging
plane is simply calculated by convolving the field in the object plane with the
effective APSF, i.e., by using eq. (3.11) with eqs. (3.14) and (3.15).

As already discussed in section 3.3, the photon recoil during the imaging
process modifies the atomic density. During the imaging process the atoms
get pushed in imaging direction and perform a random walk in all three dimen-
sions. The push in the imaging direction leads to different defocus distances
for the different times during imaging. The random walk leads to different
blurring for the different times. To consider the effect of the photon recoil,
one therefore has to incoherently sum up (integrate) the intensities for the
different times in the imaging process.

For simulating pictures, we will divide the imaging duration into several
smaller time intervals (typically 50). We then calculate the defocus distances
z0, the cloud extensions in imaging direction σwf (possibly considering the
modification by the random walk) and the blurred atomic densities ρ̃(x, y)
(integrated in imaging direction) for the mid-point of each time interval. Sub-
sequently, we will assume that these quantities are constant over the duration
of one interval and apply eqs. (3.11), (3.14) and (3.15) for each time inter-
val. The resulting fields Ũ3(x̃3, ỹ3) are then squared and summed up. For the
summing up, it is important to note that the prefactor in eq. (3.15) does not
depend on the cloud position or width as already discussed above.
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3.5. Resolution of the transverse imaging

In addition to the effects already discussed, there is another source limit-
ing the resolution of the longitudinal and transverse imaging system. The
CCDs in the cameras shift during the exposure leading to a smearing of the
image. The shift only happens in one spatial direction which coincides with
the z direction (the longitudinal direction of the atom cloud) for the trans-
verse imaging system and the vertical y direction for the longitudinal imaging
system. For simulating pictures, the shift is simply considered by shifting the
sub-pictures generated to consider the imaging push and recoil blurring (see
the discussion above). The exposure time in the experiment is 75 µs for the
longitudinal and transverse imaging system and one row of the CCD is shifted
every 16 µs. This leads to a smearing of the recorded picture over 4.7 pixels.
Note that this shift is just an insufficiency of the cameras currently used and
could easily (but costly) be fixed by simply exchanging the camera.

After the simulated pictures have been calculated considering all the effects
discussed so far, we add photon shot noise. Before adding the noise, we have a
certain number of detected photons at every pixel. To add the shot noise, we
then assume a Poisson distribution at every pixel, which has that photon count
as its mean value. From this distribution different at every pixel, we then draw
a random variable which represents the pixel of the simulated picture.

In the following, we will discuss the imaging resolution for the transverse
and the vertical imaging system in detail. The longitudinal imaging system
will not be discussed as it is mainly used for checking the overall atom number
difference between the two clouds of a double well potential [36], an application
for which the imaging resolution is not very important.

3.5. Resolution of the transverse imaging

The transverse imaging system images from the horizontal x direction (see
fig. 3.1). The imaging light is switched on for 75 µs and has an intensity of
30% of the on resonance saturation intensity I0

sat (3.3). During this time, every
atom typically absorbs around 200 photons. We usually take images after 2 or
11.2 ms TOF. The short TOF is for example used to measure the approximate
in-situ density profile [28, 36]. The long TOF is used for thermometry via
‘density ripples’ (see discussion in section 4.1 and [74]). A detailed discussion
about how the imaging system influences this thermometry can be found in
section 4.1.1. In the following, we will discuss the imaging resolution for the
two cases separately. We will start by discussing the case of the large TOF as
this is also used for focusing the imaging system in the experiment.
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3. Probing the atom cloud through absorption imaging

3.5.1. Resolution for large time of flight

Let us start by noting that the imaging system has a high resolution objective
with NA ≈ 0.20 [36]. Also note that for long TOF, the imaging light is not
reflected off the atomchip but passes straight through the chamber [32]. This
is in contrast to the case of having small TOF discussed in the next subsection.

The amplitude point spread function (APSF) of a thin object is therefore
very narrow. For a TOF of 11.2 ms the transverse width of the atom cloud
substantially decreases the resolution. For the static trap, a typical transverse
trap frequency would be ω⊥ = 2π× 2.1 kHz, a typical 1D density ρ0(z = 0) =
120 µm-1 in the center of the cloud. Using eq. (2.81)3 with this values gives
σwf = 42.6 µm. In fig. 3.2 a comparison between the APSF for this σwf and for
the case without cloud extension is shown. Remember that σwf is the value
for the standard deviation of the wavefunction, not the density.

Neglecting interactions, one gets σwf = 34.8 µm. This should be a better
value for the edges of the cloud, where densities are low and interactions
therefore are not that important. This means that the transverse width of
the cloud varies quite a bit with the longitudinal z direction in case of a non-
homogeneous background density. Considering this variation when simulating
pictures according to section 3.4 would be quite involved and is therefore not
done in this thesis.

Note that the recoil blurring leads to a further broadening of the transverse
width. Remember that typically around 200 photons get scattered per atom
during the 75 µs exposure time. From eqs. (3.21) to (3.23) we see that at
the end of the imaging process this leads to a blurring of 2.1 µm (standard
deviation of the density). The convolution of two Gaussian function yields a
Gaussian where the variances are summed up. Due to the quadratic summing
up, the standard deviation hardly changes. We therefore just ignore the recoil
blurring in the imaging direction here.

Unfortunately, it is not straight forward to quantify and visualize the im-
portance of all the different effects preventing a perfect image. In particular,
this is true for the imaging push, the recoil blurring and the CCD shift. As
one has to sum the intensities of sub-pictures to consider this effects (see sec-
tion 3.4), one cannot define an overall APSF. In general, the importance of
the effects will depend on the atomic density being imaged and the quantity
one is interested in.

However, we can still compare some numbers. As discussed in section 3.3,
the photon recoil leads to a Gaussian smearing of the atomic density. At the
end of the imaging process, the standard deviation for the Gaussian smearing
typically is σrc = 2.1 µm. This σrc corresponds to a full width at half maximum
(FWHM) of 2σrc

√
2 ln 2 = 4.9 µm. As a comparison, the FWHM of the squared

APSF with cloud extension as shown in fig. 3.2 is 3.5 µm. Of course that does

3Here one has to use ρ0 for |ψ(z)|2 in eq. (2.51) to get σb used in the equation.
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Figure 3.2.: APSF with and without cloud extension for the transverse
imaging. The amplitude point spread function (APSF) following from eq. (3.15) is
shown. Note that the APSF is two dimensional, depending on the two coordinates
ỹ and z̃, which are perpendicular to the imaging direction x. The tildes should
emphasize that we are looking at the coordinates in the object plane. One coordinate
is fixed to zero (ỹ = 0) for plotting. Note that the APSF is rotationally symmetric
around the imaging direction x. Therefore, it does not matter whether we fix ỹ or
z̃ to zero. The blue line presents the result without cloud extension (σwf = 0), the
red line with cloud extension after 11.2 ms TOF (σwf = 42.6 µm). Both functions
have been normalized so that they have a maximum value of one.

not mean that the recoil blurring dominates, as the point of photon absorption
and not the final atom position after the imaging process is relevant (see
discussion in section 3.3).

As already mentioned in section 3.4, the CCD shift of the cameras leads to
a smearing over 4.7 pixel. For the transverse imaging system, this 4.7 pixels
correspond to 4.9 µm in the object plane which is again on the same order of
magnitude as the recoil blurring or the optical resolution.

The imaging push leads to a defocusing which decreases the optical res-
olution. To discuss the magnitude of this decrease, we first need to know
the defocus distance caused by the push. This is not so straightforward as
discussed in the following.

In the experiment, the imaging system is focused by adjusting the position
of the objective. The focusing procedure consists of measuring density ripples
(see section 4.1) with different positions for the objective. We then find the
ideal setting by minimizing the minimum position δzmin (see section 4.1.1) of
the g2 function (4.1). As the cloud is pushed through the focus, it is unclear
what initial defocus distance in the simulations this ideal configuration corre-
sponds to. Therefore, we simulated pictures with density ripples according to
section 3.4 for different initial defocus distances. With this we can simulate
the experimental focusing procedure. The results are shown in fig. 3.3.
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Figure 3.3.: Focusing the transverse imaging system: The minimum position
δzmin of the g2 function (4.1) is plotted as a function of the defocus distance x0.
Remember that we are imaging in the x direction here. Therefore we also denote the
defocus distance with x0 instead of z0 which was used in eq. (3.15). The red bullets
represent the results obtained from 200 simulated pictures (see discussion in main
text). Due to the imaging push, the value for the defocus distance x0 changes during
the exposure time. The values used for the plot are given by the mean of the initial
and final values for x0. The solid red line is a quadratic fit, it’s minimum position is
at x0 = 12.6 µm. The blue bullets represent data from experimental measurements,
agreeing with the results from the simulated pictures quite well. The values for x0

are given by the position of the objective. As the position of the focal plane is not a
priori known for the experimental data, the values for the horizontal axis have been
shifted so that the minimum of the experimental data and the simulated data agree.
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3.5. Resolution of the transverse imaging

The experimental data shown for comparison have been obtained for a dou-
ble well trap with tunnel coupling. The longitudinal confinement was har-
monic. Temperature and atom number were not analyzed. The TOF was
11.2 ms.

Note that the value for δzmin generally depends rather little on the physical
parameters like temperature or atom number [36], as long as they don’t influ-
ence the optical imaging resolution. We therefore simply chose typical values
for the simulation.

We simulated the pictures for two clouds with temperature T = 40 nK in a
double well potential without tunnel coupling. The longitudinal density profile
was chosen to be homogeneous with n1D = 60 µm-1 (in one well) on a length of
62.94 µm. Beyond this range, it falls to zero with sharp edges. The transverse
trap-frequency was chosen as ω⊥ = 2π × 1.4 kHz, which is a typical value
for the double well trap used in the experiment. Note that the 1D atomic
density and especially the transverse trap frequency determine the transverse
width σwf after TOF expansion. This in turn influences the optical imaging
resolution. However, the used values for n1D and ω⊥ should be pretty good
guesses for the true values in the experiment. Using eq. (2.81), they lead to a
transverse width of σwf = 32.1 µm after TOF.

Moreover, note that the classical stochastic ψ1,2(z) fields used to calculate
the atomic density after TOF (see section 2.6.1) follow the thermal statistics
for the Hamiltonian (2.55) without any tunnel coupling. The stochastic process
discussed in ref. [67] was used to obtain the numerical shots.

During the imaging, the atoms are pushed for a total distance of 45 µm
in imaging direction. It turns out that the ideal distance for the midpoint
between initial and final position is shifted approx. 12.5 µm in imaging (=push)
direction when compared to the focal plane (see fig. 3.3). This means that for
the focused imaging system the atom cloud is pushed from 10 µm before the
focus to 35 µm after the focus. This makes sense as the acceleration is constant
and one wants to spent as much time as possible close to the focus. Note
that the minimum position of the g2 functions for the simulated pictures and
measurements agree quite well. For a more general discussions about focusing
imaging systems see the references [75, 76].

Let us now come back to the discussion about the influence of the imaging
push. For a the maximum defocus distance of 35 µm, the FWHM of the
squared APSF with cloud extension increases to 4.0 µm as compared to 3.5 µm
for the in-focus case.

Let us conclude this section by noting that during the imaging time of 75 µs
the cloud falls 8.2 µm due to gravity. This is however not of great importance as
the direction of the fall coincides with one of the transverse trapping directions.
We are usually interested in the fluctuations along the longitudinal direction
for which the fall due to gravity does not decrease the imaging resolution. One
however has to keep it in mind when measuring the transverse cloud width.
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Figure 3.4.: APSF with and without cloud extension for the transverse
imaging. Same as fig. 3.2 but with cloud extension σwf = 7.6 µm after 2 ms TOF
for the red curve.

3.5.2. Resolution for small time of flight

For a short TOF, the transverse width of the atom cloud is still quite small. For
the static trap, a typical transverse trap frequency would be ω⊥ = 2π×2.1 kHz,
a typical 1D density ρ0(z = 0) = 120 µm-1 in the center of the cloud. Using
eq. (2.81) with this values gives σwf = 7.6 µm. Without interactions one gets
σwf = 6.2 µm. Both values are the standard deviation of the wavefunction,
not the density. As discussed above, the recoil blurring leads to a further
broadening of this width, which is however rather small and will therefore
be neglected here. We will simply use σwf = 7.6 µm for the amplitude point
spread function shown in fig. 3.4. As one can see, this transverse width does
not substantially reduce the optical resolution.

For short TOFs the imaging light is reflected on the atomchip [32] under an
angle of approximately two degrees. This leads to a formation of a standing
wave pattern below the atomchip. The atom cloud will be within this stand-
ing wave pattern which creates many problems when analyzing the recorded
images. It also makes a detailed discussions of the imaging push and the recoil-
blurring very difficult. As short TOFs have not really been used for obtaining
the physical results in this thesis, we will not discuss this here.

Note that the atoms fall about 1.5 µm due to gravity during the exposure
time. Also, note that for ρ0 = 120 µm-1 and σwf = 7.6 µm the 3D peak density
after TOF is about 0.66 µm-3, corresponding to a mean distance of d = 1.15 µm
between the atoms. This distance d = 1.5λ0 is comparable to the wavelength
λ0 of the imaging light. Therefore resonant van der Waals interactions between
the atoms might play a role [77]. However, treating this topic goes beyond of
what we want to discuss here.
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3.6. Resolution of the vertical imaging system

3.6. Resolution of the vertical imaging system

The vertical imaging system images from the vertical y direction (see fig. 3.1).
The numerical aperture is NA ≈ 0.079 [36]. One complication is that due to
the unusual imaging method [33] with the imaging beam traversing the optical
system at an angle, there is an astigmatism in the imaging system. This leads
to the the focus in the longitudinal z direction being about 120 µm different
from the focus in the transverse x direction. It is found that the ideal point
for measuring interference fringes lies in the middle between the two focal
points [36]. Some of the data presented in this thesis was obtained using this
point, for other data the transverse focal point was used.

The imaging system is focused by adjusting the TOF. For the longitudinal
focus we have 15.2 ms TOF and for the transverse focus it is 16 ms. The ideal
TOF for recording interference patterns was measured as TOF= 15.6 ms [36],
i.e., it lies right in the middle between the two focus points. Using eq. (2.81)
with this TOF gives σwf = 59.4 µm for the width of the cloud after expansion,
when using the parameters ω⊥ = 2 π × 2.1 kHz and ρ0(z = 0) = 120 µm-1

typical for the static trap. As discussed in section 3.5 the recoil blurring does
not substantially alter the transverse width.

The imaging light is switched on for 50 µs with an intensity of typically
0.22 I0

sat. For that intensity, every atom scatters 171 photons on average. Dur-
ing the exposure time, the atoms fall for 7.7 µm in the imaging direction and
are pushed for 25 µm in the same direction. It is unclear how to treat the astig-
matism with the formalism discussed in this chapter. For the discussion here
and the simulation of pictures in chapter 5, we will therefore simply assume
to be 100 µm defocused in both directions and ignore the effect of the imaging
push. Note that contrary to the cameras used for the transverse and longitu-
dinal imaging system, the CCD of the camera used for the vertical imaging
system does not shift during the exposure.

The APSF for a defocus distance y0 = 100 µm4 and a cloud width of σwf =
59.4 µm is plotted in fig. 3.5. As one can see, the cloud extension has only
a minor influence on the imaging resolution. As a comparison, a Gaussian
with σ′PSF =

√
2 × 3 µm is plotted. This ‘corresponds’ to a Gaussian with

σPSF = 3 µm for the atomic density (squaring reduces the standard deviation
by a factor

√
2). Such a Gaussian is used to smear out theoretical phase profiles

in order to approximately consider the imaging resolution (see discussion in
section 5.4.2).

Note that the optical resolution is quite a bit worse than for the transverse
imaging system (see section 3.5). The FWHM of the squared APSF without
cloud extension is 5.2 µm. In comparison, the FWHM for the recoil blurring is

4Remember that we are imaging in the y direction here. Therefore we also denote the
defocus distance with y0 instead of z0 which was used in eq. (3.15).

49



3. Probing the atom cloud through absorption imaging
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Figure 3.5.: APSF with and without cloud extension for the vertical imag-
ing. Similar to fig. 3.2 but for the vertical imaging system. The blue line shows
the APSF without cloud extension, the red line with cloud extension σwf = 59.4 µm
after 15.6 ms TOF. Both functions are calculated for a defocus distance y0 = 100 µm
and have been normalized so that they have a maximum value of one. For compar-
ison, a Gaussian with standard deviation σ′PSF =

√
2× 3 µm is shown in green (see

discussion in the main text).

around 3.6 µm at the end of the imaging procedure (see eqs. (3.21) to (3.23)).
Considering that the blurring at the time of photon absorption and not at the
end of the imaging process is relevant, we expect the recoil blurring to be of
only minor influence.
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3.6. Resolution of the vertical imaging system

parameter imaging system

transverse vertical

NA 0.2 0.079

typical TOF (ms) 11.2 15.6

typical σwf after TOF (µm) 42.6 59.4

imaging duration (µs) 75 50

photons scattered per atom 200 171

FWHM recoil blurring (µm) 4.9 3.6

imaging push distance (µm) 45 25

fall distance (µm) 8.2 7.7

CCD shift (µm) 4.9 0

optical resolution

FWHM w/o cloud extension (µm) 2.0 5.2

FWHM w/ cloud extension (µm) 3.5 5.6

Table 3.1.: Parameters for the transverse and vertical imaging systems.
Note that the stated values for the photons scattered per atom and the values for
the quantities depending on it (FWHM of the recoil blurring and imaging push
distance) should only be understood as an order of magnitude. The FWHM of
the recoil blurring is given for the end of the imaging duration. For the optical
resolution, the FWHM of the squared APSF is given. The values for the transverse
imaging system were calculated with zero defocus distance, for the vertical imaging
system a defocus distance of 100 µm was assumed. In order to avoid misinterpreting
the given numbers, please consult sections 3.5 and 3.6 for details.
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4. Extracting information from the
absorption images

4.1. Thermometry via density ripples

In-situ phase fluctuations lead to pronounced density fluctuations (density
ripples) in time of flight (TOF). This can be used for thermometry. For a
detailed discussion and illustrations of how the density ripples emerge, see
ref. [36, 74, 78]. We will here only shortly recapitulate some basics and then
focus on the influence of the imaging system and the case of density ripples
for two clouds in a double well potential.

To get a value for the temperature, we will analyze the g2 function

g2(δz) =

∫
dz〈n(z + δz)n(z)〉∫

dz〈n(z + δz)〉〈n(z)〉
, (4.1)

where n(z) is the density after TOF integrated over the transverse x and y
directions. The averaging is done over many experimental realizations.

4.1.1. Effect off the imaging system onto the density ripples

For typical TOFs, the density ripple pattern is dominated by rather short
wavelength fluctuations [78]. The imaging resolution therefore heavily influ-
ences the measured pattern. Note that we can in principle measure the den-
sity ripple patterns with the transverse as well as the vertical imaging system.
However, we will always use the transverse imaging system, because its spatial
resolution is quite a bit better.

In the following, we will investigate the influence of the imaging process
by analyzing simulated pictures (see section 3.4). As we use the transverse
imaging system in the experiment, we will also use the appropriate imaging
parameters (see section 3.5) in the simulation. The results presented in fig. 4.1a
show that the g2 function is greatly modified by the simulated imaging process.
Previously [27,36,79] it was always assumed that the influence of the imaging
system can be modeled by convolving the numerical realizations for the 1D
density profiles after TOF with a Gaussian of a certain width. The minimum
position δzmin of the g2 function is then used to determine the width of this
Gaussian point spread function (PSF) and the contrast (the difference between

53



4. Extracting information from the absorption images

the minimum and the maximum) of the g2 function determines the measured
temperature. Note that under the minimum position δzmin we understand the
first local minimum of the g2 function as shown in fig. 4.1. As can be seen
from figs. 4.1b and 4.1d, the assumption of an effective Gaussian PSF seems
to be fulfilled rather well, but not perfectly, leading to a small systematic error
(see fig. 4.2).

It can be seen from fig. 4.1c that the in-situ density fluctuations1 only have
a minor influence on the g2 function. In the following we will therefore neglect
them when fitting the g2 function to get the temperature.

4.1.2. Extracting a temperature

The temperature is extracted by checking which g2 function from a number
of guesses for the temperature and the width of the Gaussian PSF fits the
experimental result best. In the fit, the point for δz = 0 is neglected as it
contains a large contribution coming from the shot noise during imaging. The
fit is performed considering the first point with δz > 0 up to the second point
after the minimum of the g2 function, all with the same weight.

As can be seen from fig. 4.2, the extraction of the temperature from the
simulated pictures works fairly well. However there is a small systematic
deviation, stemming from the fact that a Gaussian PSF does not perfectly
model the imaging process. Also neglecting the density fluctuations in the
fitting process seems to lead to an error stemming at least partly from fitting
the wrong width of the Gaussian PSF. Considering the density fluctuations
in the theory used for fitting will probably reduce this error. However it is
not completely clear what theory best describes the density fluctuations on
the relevant length scales. Therefore only phase fluctuations were considered
when calculating the theory used to fit the experimental data with.

4.1.3. Density ripples in the double well

From absorption imaging, one gets the atomic density integrated in the direc-
tion of the imaging. Using the transverse imaging system, we get the atomic
density integrated along the transverse x direction. Integrating along the other
transverse direction (y) during data analysis gives the one dimensional density
profiles for the single experimental realizations.

In the framework of classical fields we can write the one dimensional density
profile as

n(z) =

∫
dxdy |Ψ1 + Ψ2|2 . (4.2)

1Note that we used a transverse trapping frequency of ω⊥ = 2π × 1.4 kHz (typical for the
double well) to calculate the density fluctuations.
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Figure 4.1.: Influence of the imaging system onto the density ripples. (a)
The g2 function (4.1) is shown without any consideration of the imaging resolution
(blue line), extracted from simulated pictures (red bullets) and for the effective con-
sideration of the imaging process through convolution with a Gaussian as discussed
in the main text (green line). The width of the Gaussian was chosen so that the
minimum for the g2 function agrees with the minimum following from the simulated
pictures. (b) Represents a detailed view of (a). One sees that the influence of the
imaging is fairly well, but not perfectly modeled by the Gaussian point spread func-
tion (PSF) for the densities. It seems like the g2 contrast for the simulated pictures
is increased compared to the g2 function with Gaussian PSF. The deviation of the
value for δz = 0 is due to photon shot noise. (d) Presents the same as (b), but for a
higher temperature. (c) Considering the in-situ density fluctuations (blue crosses)
also leads to a small difference in the g2 function. The results have been calculated
from 1000 realizations for the Bogoliubov theory (2.14) in classical field approxima-
tion. A box-like profile (n1D = 60 µm-1) of a length of 62 µm with smoothed edges
was used. The thermal coherence length λT is stated below the pictures.
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Figure 4.2.: Testing density ripple thermometry on the simulated pictures:
1000 simulated pictures have been produced for various temperatures. The g2 func-
tions (4.1) extracted from the simulated pictures were then fitted with g2 functions
calculated from the Luttinger liquid model in classical field approximation where
the initial density fluctuations have been neglected. For this, 104 numerical realiza-
tions have been used. For a discussion of the fitting procedure see the main text.
In the upper plot, the ratios of the extracted temperatures Tfit and the input tem-
peratures T for the simulated pictures are shown. The red markers show the results
when the pictures have been simulated from classical thermal fluctuations following
the Luttinger liquid model without initial density fluctuations. The extraction of
the temperature works fairly well. However, there is a small systematic deviation,
stemming from the fact that a Gaussian PSF does not perfectly model the imaging
process. For the blue markers, initial density fluctuations following the Bogoliubov
model in classical fields approximation have been considered. One sees an additional
systematic error, which at least partly is due to fitting the wrong width σPSF of the
effective Gaussian PSF (lower plot). A box-like density profile (n1D = 60 µm-1) of a
length of 62 µm with smoothed edges was used. The transverse trapping frequency
was ω⊥ = 2π × 1.4 kHz, which is a typical value for the double well. The error-bars
represent the 80% confidence intervals for the fitted quantities obtained by using
bootstrapping.
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4.1. Thermometry via density ripples

Here Ψ1,2(~r, t) represent the fields for the two wells after TOF. As in sec-
tion 2.6.1, we will then assume them to be separable into a function of the
transverse coordinates x and y times a function of the longitudinal coordinate
z:

Ψ1,2(~r, t) = φ1,2(x, y, t)ψ1,2(z, t) (4.3)

To be more precise, we assume separability for the initial fields before TOF
expansion and we assume an independent free expansion for the transverse
and longitudinal directions.

We will choose the transverse functions φ1,2(x, y, t = 0) to be normalized
before TOF expansion. Due to the assumed separable unitary evolution, they
will stay normalized in our model during the TOF expansion, i.e.,∫

dx dy |φ1,2|2 = 1 (4.4)

for all times t.
Inserting (4.3) into (4.2) gives

n(z, t) = |ψ1(z, t)|2 + |ψ2(z, t)|2 + 2Re

[
ψ1(z, t)ψ∗2(z, t)

∫
dx dy φ1φ

∗
2

]
(4.5)

If we assume zero initial overlap between the two clouds in the double well,
the last term vanishes. Due to the assumed separable unitary evolution, this
implies that it vanished for all times t, even if the fields overlap and interfere
in TOF. In the following we will therefore always use

n(z, t) ≈ |ψ1(z, t)|2 + |ψ2(z, t)|2 . (4.6)

Here we used the approximately equal sign as the two clouds will also initially
overlap slightly.

For the expanding harmonic oscillator ground state we have (see section 2.6.1)

φ1,2(x, y, t) =
1√

πσ2
wf(t)

e−((x±d)2+y2)/2σ2
wf(t) with σwf(t) = a⊥

√
1 + ω2

⊥t
2,

which gives ∫
dx dy φ1φ

∗
2 = e−[d/(2a⊥)]2 (4.7)

for all times t. For typical experimental parameters the double well separation
d is much larger than the harmonic oscillator length a⊥ (2.45), meaning that
the use of eq. (4.6) is justified.

Let us use the short-hand notation

n1,2 = |ψ1,2(z, t)|2 , (4.8)
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4. Extracting information from the absorption images

and make the assumptions

〈n1(z)〉 = 〈n2(z)〉
〈n1(z)n1 (z′)〉 = 〈n2(z)n2 (z′)〉 , 〈n1(z)n2 (z′)〉 = 〈n2(z)n1 (z′)〉 (4.9)

valid for the symmetric double well. Inserting (4.6) into (4.1) we then get

g2 =
1

2
·
∫

dz [〈n1(z + δz)n1(z)〉+ 〈n1(z + δz)n2(z)〉]∫
dz 〈n1(z + δz)〉 〈n1(z)〉

. (4.10)

In the case of two independent condensates we have

〈n1(z)n2 (z′)〉 = 〈n1(z)〉 〈n2 (z′)〉 (4.11)

leading to

g2 =
1

2

(
1 +

∫
dz〈n1(z + δz)n1(z)〉∫

dz〈n1(z + δz) 〉〈n1(z)〉

)
. (4.12)

This means that for two independent condensates the g2 contrast is reduced
by one half compared to the single condensate.

When looking at the double well system in terms of common and relative
degrees of freedom (2.59), we see (as illustrated in fig. 4.3) that the density
ripples are dominated by the common phase fluctuations. The influence of
the relative phase fluctuations on the g2 contrast Cg2 seems to be only minor
unless the magnitude of the relative fluctuations is much larger than the one
of the common fluctuations. Note that apart from the discussed small influ-
ence on the g2 contrast the relative phase fluctuations also slightly influence
the minimum positions of the g2 function (not shown), which will also slightly
change the extracted temperature. The minor influence of the relative fluctu-
ation onto the g2 function also means that it is rather insensitive to a possible
tunnel coupling between the wells as this, in the low energy effective theory,
only influences the relative phase fluctuations.

4.2. Measuring the relative phase

Many of the experimental results presented in this thesis have been obtained
for the horizontally (x direction) split double well. As discussed in section 2.6,
TOF expansion leads to interference fringes in the direction of separation.
Imaging in y direction (vertical imaging system) gives the atomic density inte-
grated in this direction. We therefore get the integrated density ρ̃(z, x) show-
ing interference fringes in the x direction (see fig. 3.1). The position of the
interference fringes depends on the longitudinal coordinate z and is connected
to the in-situ phase difference ϕ−(z) (2.59) between the two condensates (see
discussion in section 2.6).
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Figure 4.3.: Influence of the common and relative phase fluctuations onto
the density ripples. (a) Illustrates how common (upper plot) and relative (lower
plot) in-situ phase fluctuations lead to density ripples in TOF. The red solid and
dashed lines show the in-situ phase profiles of the left and right condensates. The
blue lines the resulting density profiles after 11.2 ms TOF. The black line the sum of
both. No in-situ density fluctuations have been assumed. One sees that the relative
in-situ phase fluctuations (lower plot) lead to much smaller density fluctuations than
common phase fluctuations (upper plot). (b) Shows the scaling of the g2 contrast
Cg2 with the common and relative temperature. The red bullets show the case where
both temperatures are varied with the horizontal axis. For the blue diamonds the
relative temperature is fixed to 30 nK and only the common temperature is varied.
For the orange squares it is the other way around. (c) Shows the same with the
relative temperature fixed to 120 nK (blue diamonds) and the common temperature
fixed to 10 nK (orange squares). Again, only in-situ phase fluctuations and no in-
situ density fluctuations have been assumed and a box-like profile (n1D = 60 µm-1)
of a length of 62 µm with smoothed edges was used. One sees that the relative phase
fluctuations only substantially influence the g2 contrast for big imbalances between
the relative and common temperature.
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4. Extracting information from the absorption images

The goal is now to extract a guess for ϕ−(z) at a certain position z from
the phase of the interference patter at that point z. The extraction happens
by fitting the function [35]

f(x) = A e−
(x−x0)

2

σ2

[
1 + C cos

(
2π
x− x0

λF

+ ϕ−

)]
+B (4.13)

to the 2D atomic density ρ̃(z, x) at every point z. The form of eq. (4.13) comes
from integrating eq. (2.80) over y and accounting for a possible noise-floor with
the parameter B. The parameters to fit are the center x0 and width σ of the
Gaussian envelope, the fringe contrast C, the fringe spacing λF, the relative
phase ϕ−, the overal amplitude A and the overall offset B. See fig. 4.4 for an
illustration of the fitting procedure.

Clearly, by fitting with eq. (4.13) one can only determine the phase ϕ−
up to a multiple of 2π. However, as illustrated in fig. 4.4, one can get a
continuous phase profile with unambiguous phase differences ϕ−(z)−ϕ−(z′) by
imposing continuity. To be more precise, we assume that the phases fitted from
neighboring pixel-slices do not differ by more than π and add the appropriate
multiples of 2π to the fitted phases to ensure this. Clearly, a global ambiguity
of 2πn (with n being an integer) remains.

If the relative phase field fluctuate too strongly, this phase unwrapping pro-
cedure doesn’t work reliably anymore. Even more, the phase fitting with
eq. (4.13) becomes unreliable. This will be discussed in more detail in sec-
tion 5.6.2.

4.3. Investigating time evolution

In chapters 6 and 7 we will investigate the time evolution of the system after
a change in the trapping geometry. Note that the absorption imaging in TOF
used in the experiment is destructive. Therefore, one can only measure the
system once. However, we can still get the time evolution of observables by
running the experimental cycle with the same parameters multiple times and
simply measuring at different times. Usually one also needs several realization
for every measurement time in order to calculate expectation values. This
is a standard procedure used by most cold atom experiments investigating
time evolution. The idea is that for the same experimental parameters, the
physical system is prepared in the same, or at least a similar state. This should
be understood in the context of quantities like temperature or atom number.
The thermal fluctuations, for example, will be different from shot to shot.
Therefore only the measurement of equal-time expectation values is possible.
This prevents, for example, the measurement on non-equal time correlation
functions.
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Figure 4.4.: Extraction of the relative phase. (a) The two condensates inter-
fere in 15.6 ms TOF. The picture shows the resulting interference pattern recorded
through the vertical imaging system. The color encodes the atomic density, red
corresponding to high density and blue to low density. (b) For each z-value, the
atomic density depending on x is fitted by the function given in eq. (4.13), as an
example the fit for z = 0 is shown. The fitted phase shift of the cosine function rep-
resents (at least approximately) the in-situ phase difference ϕ−(z) mod 2π between
the two condensates (plotted in (c)). (d) Imposing continuity onto the phase profile
(by shifting the local value of the phase by multiples of 2π) gives phase differences
not restricted to the interval [−π, π). A global ambiguity of 2πn (with n being an
integer) remains.
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5. Phase correlations in the
double well

In this chapter we will discuss the physical system of two 1D quasicondensates
in a double well potential with varying tunnel coupling. The condensates
are prepared by evaporative cooling in the double well potential. Only the
state at the end of the preparation process is investigated, not the process of
evaporative cooling.

The discussions will focus on the relative phase ϕ−(z) between the con-
densates, which is extracted from interference fringes (section 4.2). We will
calculate correlations of the relative phase between different points in position
and momentum space. The discussion will not be restricted to second-order
correlations only, but also treat higher-order correlations and investigate their
factorization.

We will start with section 5.1, where we define the particular types of phase
correlation functions which we will be investigating. Moreover, we will discuss
the motivation behind using this type of correlation functions as well as their
physical significance. In section 5.2, the details about the preparation pro-
cess are given. Section 5.3 is about the observation of ‘phase locking’ between
the condensates and how to quantify it. The sine-Gordon model eq. (2.65) is
discussed as a theoretical description for the physical situation in section 5.4.
This includes a discussion of how to obtain the model parameters from exper-
imental measurements. Moreover, we discuss how the influence of the imaging
system onto the measurement of the phase profiles can be efficiently consid-
ered. In section 5.5 we present the experimental results in comparison to
theory predictions. In section 5.6 we interpret the results and discuss their
robustness. Finally, we give some concluding remarks in section 5.7

Note that, in this chapter, we will drop the minus sign for denoting the
relative degrees of freedom. The relative phase and density fluctuations will
simply be denoted by ϕ(z) and δρ(z), respectively. For the common phase and
density fluctuations will continue to write ϕ+(z) and δρ+(z), respectively.
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5. Phase correlations in the double well

5.1. Calculating phase correlation functions

5.1.1. Correlations in position space

Let us define the N th-order correlation function of the relative phase ϕ(z) as

G(N)(z, z′) = 〈[ϕ(z1)− ϕ(z′1)] . . . [ϕ(zN)− ϕ(z′N)]〉 . (5.1)

Here we denote the coordinates along the length of the system by z = (z1, . . . , zN)
and z′ = (z′1, . . . , z

′
N). Note that we wrote eq. (5.1) for the classical phase fields

ϕ. However, it also stays valid when using the phase operator ϕ̂(z). For the
experimental results, the brackets 〈. . .〉 in eq. (5.1) denote averaging over many
experimental realizations. Similarly, we can average over many numerical re-
alizations to get theory predictions.

Note that we always calculate correlations between phase differences ϕ(zi)−
ϕ(z′i), as the overall phase profile has a global ambiguity of 2πn (see discussion
in sections 2.4.3 and 4.2). By taking phase differences, this global ambiguity
drops out. In the following we will often choose z′ = 0, i.e., we are usually
looking at phase differences with respect to the middle of the cloud (z = 0).

In the absence of interactions, all information about the state of the system
is contained in the correlation functions up to second-order [13]. Higher-order
correlations G(N) with N > 2 fully factorize, i.e., they can be calculated by the
Wick decomposition, a sum containing only products of G(N) with N ≤ 2. In
this case the quantum many-body states are Gaussian, i.e., fully characterized
by their first and second moments (mean and variance).

Note that a quantum many-body state is generally fully characterized when
all correlation functions are known. This includes the correlations of the field
variables as well as correlations of their conjugate and mixed correlations. In
the case of our system, we not only need to know the phase correlations, but
also the correlation functions of the density fluctuations and cross-correlations
between phase and density fluctuations. Unfortunately, the fluctuations of the
relative density are at least not directly accessible in our experiment. For an
indirect measurement of the second-order density correlations see ref. [55].

More generally, in the presence of interactions, G(N) can be decomposed
into [13]

G(N)(z, z′) = G
(N)
dis (z, z′) +G(N)

con (z, z′). (5.2)

The first term G
(N)
dis is the disconnected part of the correlation function. It

is fully determined by all the lower-order correlation functions G(N ′) with
N ′ < N and therefore does not contain new information at order N .

The second term, G
(N)
con , is the connected part of the correlation function, and

contains genuine new information about the system at order N . Factorization
for all higher-order correlation functions is therefore equivalent to G

(N)
con = 0
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5.1. Calculating phase correlation functions

for all N > 2. In a diagrammatic expansion, G
(N)
con is given by a sum of fully

connected diagrams with N external lines [13, 80].

We calculate the connected part using [81]

G(N)
con (z, z′) =

∑
π

[
(|π| − 1)! (−1)|π|−1

∏
B∈π

〈∏
i∈B

[ϕ(zi)− ϕ(z′i)]

〉]
. (5.3)

Here the sum runs over all possible partitions π of {1, . . . , N}, the first (left)
product runs over all blocks B of the partition and the second (right) prod-
uct runs over all elements i of the block. |π| is the number of blocks in the
partition. The number of partitions is given by the Bell number BN , which
quickly grows with N . For N = 10 we get B10 = 115975, for the next even
order it would already be B12 = 4213597. Using the central moments in (5.3),
all partitions containing blocks of size one do not contribute, this substantially
reduces the number of terms in the sum. However, the computational effort
still rises quickly with the order N . Note that using (5.3) with the sample
moments does not represent an unbiased estimator of the connected correla-
tion function. However, for the large sample sizes used in the experiment or
numerical calculations, the bias should be rather small.

Note that the correlation functions in eq. (5.1) reflect the correlations in
the collective degrees of freedoms constructed from the conjugate fields δρ and
ϕ. The connected correlation function G

(N)
con for N > 2 is therefore a direct

measure of their interactions. This makes them very useful for investigating the
validity of the various low energy effective field theories discussed in chapter 2.

In contrast, the more commonly used correlation functions 〈ei[ϕ(z)−ϕ(z′)]〉
and their higher-order generalizations [11] contain G

(N)
con up to arbitrary order

even for the second-order function. One can still use them for investigating
the (non-)Gaussianity of the phase fluctuations by applying a different kind
of factorization formula [11]. However, the results seem to be dominated by
experimental imperfections like the finite imaging resolution or fluctuations
of experimental parameters. The same is true for quantities like the circular
kurtosis. However, such quantities might still be useful for theoretical calcu-
lations [67].

5.1.2. Correlations in momentum space

To get the correlations in momentum space, we simply have to Fourier trans-
form the correlations in position space, or equivalently simply apply the for-
mulas to the Fourier transformed phase profiles. As already discussed, the
measured or simulated phase profiles have a global ambiguity of 2πn. After
Fourier transformation this translates to an undefined value for k = 0, the
non-zero k-values are of course not affected.
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5. Phase correlations in the double well

As we have only a finite system, there is the question what Fourier-like
transform to use. As we want to transform unbound phase profiles, the use
of a fast Fourier transform (FFT) is not ideal as it assumes periodicity at
the boundaries of the spatial interval under consideration. Clearly, this is not
even approximately fulfilled for unbound phase profiles. It therefore seems
more sensible to use the discrete cosine transform (DCT). The cosine trans-
form assumes vanishing derivative at the boundaries, an assumption that we
think is much less restrictive for our application. In many other respects it
behaves equivalently to the Fourier transform. In particular, the global 2πn
ambiguity of the phase profiles still only affects the result for k = 0. The
cosine transformed phases will be denoted by ϕk.

5.2. Preparation of the system

We start our discussion from a thermal cloud in a single elongated magnetic
trap on the atomchip. How to get to this point is discussed in chapter 1 and
the various previous theses [32, 34–36]. We then ramp up the dressing fields
to deform the single well into a double well potential. Note that the cooling
fields are switched off before the switch on of the dressing fields. After the
ramping up of the dressing fields, the cooling fields are switched on again.

The cooling in the double well trap consists of a frequency ramp with a
duration of 470 ms, followed by a period of 400 ms where the frequency is held
constant at the final value of the ramp. After this, the cooling amplitude is
ramped down in 500 µs and the trap switched off immediately after to allow
for TOF expansion and subsequent absorption imaging. A similar procedure
was used in ref. [82, 83].

The segment of 400 ms of constant cooling frequency is intended to give the
system time to thermalize. However during this time one cannot avoid that
atoms are removed from the trap. Note that (at least for the tunnel-coupled
double well) it is not possible to simply switch of the cooling and give the
system time to thermalize with switched off cooling fields. The reason for
this is that the cooling fields also lead to a dressing of the atoms, i.e., they
deform the trap. Switching off the cooling therefore introduces some dynamics.
This is especially critical in the coupled double well as, for example, a tilt in
the double well can be introduced, leading to strong tunneling dynamics and
subsequently strong heating. For this reason, we measure immediately after
switching off the cooling fields, instead of waiting for some time without any
cooling. For the uncoupled double well this effect is not so important and one
could also have a waiting time between cooling and measuring. However, for
consistency, also the uncoupled systems in this chapter have been prepared
and measured in the same way, unless explicitly stated otherwise.

The atom loss during the preparation process has been measured for a few
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Figure 5.1.: Atom number evolution during system preparation. The evo-
lution of the atom number N is shown as a function of the duration of evaporative
cooling in a double well potential with intermediate tunnel coupling. (a) Slow
cooling. Only the last 400 ms are shown, during which the frequency of the evap-
orative cooling is kept constant. Note that during the last 25 ms (interval between
the last two data points), 763 atoms are lost on average, which corresponds to 30.5
atoms per ms. (b) Fast cooling. The last 110 ms of the cooling procedure are
shown. The cooling frequency is ramped during this time. In the last 5 ms (interval
between the last two data points), 1383 atoms are lost on average, corresponding
to 277 atoms per ms. For the last 30 ms, the numbers are 5946 atoms and 198
atoms/ms respectively.

prototypical cases. One of it is shown in fig. 5.1a. We can see that, despite
keeping the frequency of the cooling fields constant, there are still atoms re-
moved from the trap at the end of the cooling sequence.

For some of the results presented in this chapter, we also produced a non-
equilibrium state on purpose by simply skipping the 400 ms segment with
constant cooling frequency1. This results in an atom loss at the end of the
cooling procedure which is about an order of magnitude faster (fig. 5.1b).
This difference in preparation leads to qualitative differences in the obtained
correlation functions as discussed in section 5.5.

5.3. Phase locking between the condensates

In the double well with tunneling, phase coherence, i.e., a vanishing relative
phase ϕ(z) is energetically preferred. This can also be seen from the theoreti-
cal models eqs. (2.57) and (2.64) when assuming a positive J . In this thesis J
will always be positive, negative values for the effective J might be achieved

1Note that in this case the end-frequency of the cooling ramp has to be lower than for the
longer cooling sequence, in order to get to similar atom numbers.
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Figure 5.2.: Phase locking between two clouds in a double well with fi-
nite barrier. (a) Shows the relation between fringe spacing and phase locking.
The fringe spacing λF is plotted as function of the coherence factor 〈cos(ϕ)〉. The
coherence factor is calculated by averaging over the different experimental realiza-
tions as well as the central 50 µm of the cloud. The red bullets show the results for
the slowly cooled data (cooled in 870 ms), while the blue diamonds represent the
fast cooled data (cooled in 470 ms). See section 5.2 for details of the preparation
process. (b) Shows the spatial dependence of the coherence factor for two experi-
mental scans. Again red corresponds to slow cooling and blue to fast cooling. The
corresponding points in (a) are marked by the green squares.

by techniques like shaking the double well [84] or with Raman assisted tun-
neling [85].

The strength of this ‘phase locking’ due to tunneling can be characterized
by the coherence factor 〈cos(ϕ)〉, a quantity that is zero for completely random
phases (no phase locking) and approaches unity in the limit of strong phase
locking (relative phase vanishes). In thermal equilibrium 〈cos(ϕ)〉 increases
with increasing tunneling strength and decreases with increasing temperature.
See sections 2.4.3 and 5.4.3 and fig. 5.4 for the dependence of 〈cos(ϕ)〉 on the
parameters of the thermal sine-Gordon model.

In fig. 5.2a, one sees that for similarly prepared states, the fringe spacing λF

of the interference fringes increases with increasing phase coherence. With sim-
ilarly prepared, we mean that everything is approximately the same except for
the double well separation determining the tunneling strength2. Remembering
eq. (2.77), we know that increasing fringe spacing corresponds to decreasing
double well separation, which in turn leads to increased tunneling. This means
that fig. 5.2a just shows that, as expected, the phase locking increases with
the tunneling strength.

Note that there is a different dependence between fringe spacing and coher-
ence factor for the slow and the fast cooling procedure discussed in section 5.2.

2In the experiment, it is difficult to change one thing without also affecting something else.
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5.4. Theoretic modeling

This is not surprising. However, we don’t have an intuition why it changes in
the way it does. From the results of section 5.5, it seems like the relative phase
fluctuations for the fast cooled case have a higher effective temperature. This
can explain a difference in the dependence between λF and 〈cos(ϕ)〉. However,
one expects lower phase coherence for the hotter (fast cooled) data, which is
the exact opposite of what fig. 5.2a shows. Another possible explanation might
be the different dressing of the atoms due to the different cooling fields. To
get similar atom numbers, the frequency of the cooling fields will in general
be closer to the trap bottom for fast cooling than for slow cooling. This might
lead to different double well shapes for the two cases, i.e., to different barrier
heights for the same double well separation.

Figure 5.2b shows the spatial dependence of the coherence factor. Note
that for the presented experimental data, we have a harmonic longitudinal
confinement leading to a spatially varying 1D background density ρ0(z). From
the 1D theoretical models discussed in section 2.4, we therefore also expect
the coherence factor to be non-constant, even for a spatially homogeneous
single particle tunneling rate J . However the observed spatial variation is
stronger than what one expects just from the variation of the density. This
was tested by comparison with 1D stochastic Gross-Pitaevskii calculations
in the harmonic trap with constant J (not shown). It is unclear whether
3D Gross-Pitaevskii calculations could, at least partly, explain the position
dependence of the tunneling.

5.4. Theoretic modeling

We will compare the experimentally obtained phase correlation functions to
the predictions for the thermal fluctuations of the sine-Gordon model eq. (2.65)
in classical fields approximation. The results are obtained by producing nu-
merical realizations using the sine-Gordon stochastic process discussed in sec-
tion 2.4.3 (see also ref. [14, 67]). The quantities under consideration are then
calculated by averaging over these numerical realizations. Note that some
theoretical results for the classical thermal sine-Gordon model were already
discussed in sections 2.4.3 and 2.5.

In order to make theoretical predictions, we first have to infer the model
parameters from the experimental measurements. This will be discussed in
section 5.4.3. First, however, we will investigate the influence of the imaging
procedure by simulating pictures. This is important in order to know how to
consider the finite resolution in the calculations of the theoretical predictions.
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5. Phase correlations in the double well

5.4.1. Simulating pictures for the sine-Gordon theory

For many of the analysis in this chapter, it is crucial to understand the in-
fluence of the imaging system. We therefore produced a number of simulated
interference images following the procedure in section 3.4. In the experiment,
we record the images with the vertical imaging system. Therefore, we use
the optical parameters of this imaging system for simulating the pictures (see
chapter 3, particularly section 3.6). From these simulated pictures, we then
extract the phase profiles according to section 4.2, i.e., the exact same way as
for the experimentally recorded interference images. We produced simulated
pictures from fluctuations following the sine-Gordon Hamiltonian as well as
the Luttinger liquid Hamiltonian with a quadratic tunneling term eq. (2.67).
In the following we will discuss the details of how the pictures were simu-
lated for the sine-Gordon theory. The details about the simulated pictures for
the Gaussian fluctuations following from the tunnel-coupled Luttinger liquid
model are discussed in section 5.6.1.

We simulate the pictures from numerically obtained phase profiles following
the thermal statistics of the classical sine-Gordon model. The in-situ density
fluctuations are assumed to be zero. The sine-Gordon stochastic process (see
section 2.4.3) is used to generate the numerical realizations of the phase pro-
files. They therefore represent a part of an infinite homogeneous system with
the relevant physical parameters being given by λT and q. Simulated images
are produces for a range of different values of this parameters. Note that the
background density was only assumed to be homogeneous for producing the
phase fluctuations. For getting the atomic density in TOF, a background den-
sity according to ref. [63] for a harmonic trap was assumed. For the parameters
defining the background density we chose the transverse trapping frequency
ω⊥ = 2π×1.35 kHz, the longitudinal trapping frequency ω‖ = 2π×6.7 Hz and
an atom number of 5000 in each well. These are typical values for the double
well trap, leading to a longitudinal cloud extension of approximately 120 µm.

When simulating the pictures, no imaging push was assumed. The recoil
blurring was considered. The atomic density in 16 ms TOF was obtained
according to eq. (2.79). The fringe spacing was chosen as λF = 22 µm for the
case of q = 0 and λF = 35 µm for when q 6= 0. For the coherent transfer
function eq. (3.15) the transverse width according to eq. (2.75), i.e., the width
of the expanding harmonic oscillator ground state, was used.

5.4.2. Efficient consideration of the finite imaging resolution

Simulating and subsequently analyzing pictures to consider the influence of
the imaging process on the measured phase profiles is computationally costly.
We will therefore only do it for some prototypical cases. Most of the time,
we will approximately consider the finite imaging resolution by convolving the
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5.4. Theoretic modeling

theoretical phases in position space with a Gaussian with a certain standard
deviation σPSF. The convolution might, for example, be applied to numerically
obtained phase profiles or the phase correlation functions (5.1).

In k-space the convolution translates into a multiplication with the Gaussian

exp(−k2σ2
PSF/2). (5.4)

To get the best guess for σPSF and check the validity of this simplified consid-
eration, we compare the results following from the smeared phase profiles with
the ones calculated from the phase profiles extracted from the simulated pic-
tures. The pictures simulated from the fluctuations of the sine-Gordon model
according to the discussion in section 5.4.1 have been used.

We will have a look at the variance 〈ϕ2
k〉 of the cosine transformed phase pro-

files. Experimental results for this quantity will be discussed in section 5.5.2.
We will take the central 25 pixels (50 µm) as the input of the cosine transform,
as will be done for the experimental results. Comparing the results calculated
from the phase profiles extracted from the simulated images with the results
calculated from the original phase profiles (without any smearing) used as
input of the simulation, one can calculate a imaging reduction factor

a =
〈ϕ2

k〉simulated images

〈ϕ2
k〉original data

(5.5)

for each mode independently. In our simple effective model, this reduction fac-
tors should have a Gaussian k-dependence (the dependence should be eq. (5.4)
squared) and be independent of temperature. However, as can be seen from
fig. 5.3a, the independence from the temperature is only true below a certain
temperature and only for the lowest modes.

Fitting a Gaussian to the reduction factor (see fig. 5.3b) for the first four
modes gives a σPSF ≈ 3.5 µm for the uncoupled scans (q = 0) and σPSF ≈ 3 µm
for the coupled ones (q 6= 0). The reason for the difference in σPSF lies solely in
the fact that when simulating the pictures, we used a fringe spacing of 22 µm
for the uncoupled scans and a spacing of 35 µm for the coupled scans. These
are typical values, which one observes in the experiment for the two cases (see
section 5.3). For the same fringe spacing, no substantial variation with q could
be detected (not shown).

5.4.3. Finding the model parameters

As discussed in section 2.4.3 we need the two parameters q and λT to make the-
oretical predictions from the thermal sine-Gordon model for the homogeneous
system (in classical fields approximation). Remember that the coherence fac-
tor 〈cos(ϕ)〉 depends only on q and not explicitly on λT . One would therefore
think that q can directly be fitted from the coherence factor independently
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Figure 5.3.: Simulated influence of the imaging system onto the cosine
transformed phase fluctuations. Plotted is the simulated reduction factor for
the variance of the cosine transformed phase fluctuations (see eq. (5.5)). The cosine
transform was performed for the central 50 µm of the cloud. The upper plots repre-
sent the results for q = 0, the lower plots for q = 2.9. (a) Shows the reduction factor
depending on the thermal coherence length λT . The different colors represent the
reduction factors for the different modes. The first six modes are plotted, with the
mode number increasing from top to bottom. The crosses represent the data, the
lines are a guide to the eye. (b) The orange bullets represent the reduction factor
as a function of the wavenumber k. The mean value over λ = 25, 40 and 60 µm is
shown. To this mean value the Gaussian function exp(−k2σ2

PSF) is fitted, giving
σPSF = 3.54 µm for q = 0 and σPSF = 2.96 µm for q = 2.9. Note that this difference
for σPSF stems from a different fringe spacing used in the simulated pictures (see
discussion in the main text).
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Figure 5.4.: Coherence factor for the sine-Gordon model. The coherence
factor 〈cos(ϕ)〉 is plotted as a function of the parameter q = λT /lJ for the thermal
phase fluctuations of the classical sine-Gordon model (see section 2.4.3). The dashed
gray line represents the results without considering the finite imaging resolution.
The solid lines are obtained when approximately considering the imaging resolution
by convolving the numerically obtained phase profiles with a Gaussian of standard
deviation σPSF = 3 µm (see section 5.4.2). The different colors represent the results
for the different thermal coherence lengths λT = 3 µm (red), λT = 7 µm (orange) and
λT = 25 µm (green). The bullets represent the corresponding results calculated from
the simulated pictures (see section 5.4.1). One sees that the effective consideration
of the imaging resolutions via Gaussian smearing works fairly well except for the
case of λT = 3 µm (high Temperature, T = 260 nK for a typical n1D = 70 µm-1).

from the value for λT . However we still have to consider the finite imag-
ing resolution. As discussed in section 2.4.3, the classical sine-Gordon theory
depends on the rescaled coordinate z/λT . This rescaling is the only way in
which λT enters the calculation. Therefore, the extension of the PSF in the
rescaled coordinate depends on λT , which in turn leads to a slight dependence
of the predicted coherence factor on λT when considering the finite imaging
resolution. This is presented in fig. 5.4.

Using density ripple thermometry

Assuming that common and relative degrees of freedom (eq. (2.59)) are in ther-
mal equilibrium, we can determine the temperature T through density ripple
thermometry (section 4.1). Subsequently we can get the thermal coherence
length via

λT =
2~2n1D

mkBT
.

Note that the background density is not homogeneous in the experiment. We,
therefore, use the average over the central 50 µm of the cloud as the value
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for n1D
3. Having obtained a value for λT , we can then fit q = λT/lJ from the

experimentally obtained value of 〈cos(ϕ)〉. Again, be aware that the coherence
factor is not spatially uniform. As for the atomic density, we will use the
average over the central 50 µm of the cloud for the fit.

Fitting the temperature from the relative phase

It seems like the temperature in the relative and common degrees of freedom
doesn’t always coincide (see sections 5.5.1 and 5.5.2). We can therefore try
to fit both parameters λT and q from the measured relative phases. One
possibility is to self consistently fit λT and q from the coherence factor 〈cos(ϕ)〉
as well as the summed absolute value of the 2p function

S(2) =
∑
z

∣∣G(2)
con(z, 0)

∣∣, (5.6)

which is a measure for how strongly the relative phase fluctuates. The fit
is then done by a comparison with a table calculated for a large number of
possible values of q and λT . The weighted sum∣∣∣∣∣S(2)

exp − S(2)
theo

S
(2)
exp

∣∣∣∣∣+ 5

∣∣∣∣〈cos(ϕ)〉exp − 〈cos(ϕ)〉theo

〈cos(ϕ)〉exp

∣∣∣∣ (5.7)

of the relative errors for the two quantities is minimized to find the ideal
parameters.

Note that when testing the procedure with pictures simulated from fluctu-
ations following the sine-Gordon model, the fitting doesn’t always work well.
As can be seen from fig. 5.5, it often fails for strong phase locking and high
temperatures. We therefore also looked at the full distribution functions for
the contrasts of the interference fringes in order to fit the parameters. As
discussed in appendix B, this shows promise but still needs work.

5.5. Experimental results

5.5.1. Magnitude of the second-order correlation function

As discussed in the last section 5.4.3, we can independently measure λT with
density ripple thermometry and then get the the value for q from a fit of
〈cos(ϕ)〉. From the sine-Gordon theory for the parameters obtained in this
way, we can then calculate a prediction for the quantity S(2) defined in eq. (5.6),
which indicates the overall magnitude of the phase fluctuations.

3We take the average over the central 50 µm as we are basically always using the central
50 µm to calculate the different quantities.
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Figure 5.5.: Testing the temperature fit with simulated pictures. The ex-
traction of the thermal coherence length λT from the relative phases according to
the procedure described in section 5.4.3 is tested by applying it to pictures simu-
lated from the thermal sine-Gordon model (see section 5.4.1). The different subplots
show the results for the different λT used as input for simulating the pictures. This
input value is indicated in the upper left corner and by the dashed gray lines. The
red bullets present the results extracted from the simulated pictures, which should
ideally coincide with the input values for λT .
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Figure 5.6.: Magnitude of the relative phase fluctuations. The measure S(2)

(5.6) for the magnitude of the relative phase fluctuations is plotted as a function of
the coherence factor. In the upper subplot, the experimental results for the coupled
slow cooled data is represented by the red bullets. The lower one shows the results
for the fast cooled data marked by the blue diamonds. In both subplots the theory
prediction for the temperature from density ripple thermometry is given by the green
squares. Note that in the sum of eq. (5.6) for S(2), the central 25 pixels (50 µm)
were used. For the theory values, the influence of the imaging was modeled via a
convolution with a Gaussian with σPSF = 3 µm.
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In fig. 5.6, one sees a comparison between the theory prediction and the
experimental results for S(2). Note that the experimental results have been
obtained for the harmonic trap, while the theory predictions have been calcu-
lated for the homogeneous sine-Gordon theory. One can see that the experi-
mental results for S(2) are generally much bigger than the theory predictions,
especially for the fast cooled scans. While we wouldn’t really expect agreement
for the fast cooled scans, we hoped to see it for the slow cooled ones.

The reason for the discrepancy in the slow cooled case is still an open ques-
tion. One suspicion was that it’s due to the non-homogeneity of the back-
ground density and tunneling strength (see section 5.3 and fig. 5.2b). How-
ever, we were not able to confirm this suspicion by comparing to theoretical
results obtained from stochastic Gross-Pitaevskii calculation for spatially vary-
ing tunnel coupling J(z). In these calculations, we chose J(z) such that the
experimentally seen spatial variation of 〈cos(ϕ)〉 is reproduced.

Another explanation would be that the relative and common degrees of
freedom have different effective temperatures. Fitting the thermal coherence
length from the relative phase profiles according to the procedure described in
section 5.4.3 gives decreased values (higher temperature) when compared to λT
measured via density ripple thermometry. However, due to the shortcomings
of the fitting procedure as discussed in section 5.4.3, we decided not to present
the results in form of a figure.

5.5.2. Second order correlations in momentum space

We will start by discussing the case of having two independent condensates,
i.e., the double well barrier separating the two wells is high enough so that
there is no tunneling possible. For this case, we took data in the harmonic as
well as in the box-like longitudinal trap [28, 36]. With box-like trap we mean
the superposition of the magnetic harmonic trap and a box shaped optical
dipole potential. We took absorption images with the vertical imaging system
to record the interference patterns as well as with transverse imaging system
in order to perform density ripple thermometry.

As discussed in section 2.2.5, the Bogoliubov theory predicts

〈ϕ2
k〉 =

4

λT

1

k2
(5.8)

for the cosine transformed phases ϕk, in the case of a homogeneous system
with Neumann boundary conditions. Note that this is the result for the relative
phase, whereas eq. (2.30) shows the results for the phase of a single condensate.
Comparing the two equations, one notices the difference in prefactor which is
due to the particular definition (2.59) of the relative and common degrees of
freedom.

77



5. Phase correlations in the double well

0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-10

-5

0

5

10

(a)

0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-6

-4

-2

0

2

4

6

(b)

Figure 5.7.: Cosine transformed second-order correlation function. Results
for an uncoupled double well (a) and for a coupled double well (b) leading to inter-
mediate phase locking (〈cos(ϕ)〉 = 0.80). Both measurements have been performed
in a harmonic trap. The color represents the values for the covariance matrices of
the cosine transformed phase profiles ϕk. The central 50 µm have been used for
the cosine transformation. Note that the value (44.33 for (a) and 13.09 for (b)) for
k = k′ = k1, i.e., the lower leftmost data point, lies outside the color-range. The
color-range was chosen like this to get better visibility.

It was checked that eq. (5.8) approximately holds true for the Luttinger
liquid theory of a harmonically trapped system when cosine transforming only
the central part. We can therefore directly compare the experimental results to
eq. (5.8). The validity of this approach is also supported by the more or less
diagonal form for the cosine transformed second-order correlation functions
shown in fig. 5.7.

In fig. 5.8, the experimental results for the variances of the cosine trans-
formed phases are shown. All presented results were obtained for double well
traps without tunneling. This is confirmed by checking that the coherence
factor 〈cos(ϕ)〉 is indeed zero.

Remember that the influence of the finite imaging resolution can approx-
imately be considers by multiplying the theory prediction with the factor
e−k

2σ2
PSF (see discussion in section 5.4.2). Here we follow the reverse approach,

we correct the experimental results by the inverse of this factor. The reason for
this is, that the theoretically expected 1/k2 dependence leads to straight lines
in the log-log plots. For the results presented in fig. 5.8, we used σPSF = 3.5 µm.

Note that we checked by analyzing simulated pictures whether correcting
the measured results in the way discussed above works well. Consistent with
the discussion in section 5.4.2, we got good agreement for the first few modes
(no shown), but saw deviations for higher modes. Therefore, we are showing
only the first four to five modes in figs. 5.7 to 5.9.

For the harmonic trap, we see that the relative phase often fluctuates much
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Figure 5.8.: Variances of the cosine transformed relative phases for the
uncoupled double well. The results for the cosine transformation of the central
50 µm are shown. The experimental results are corrected by the expected influence
of the imaging system as discussed in the main text. (a) The upper/lower plots
show the result for two different measurements in the harmonic trap. The red bul-
lets represent the corrected experimental results with the errorbars representing 80%
confidence intervals calculated using bootstrapping. The green solid line shows the
variances expected for a thermal state with the coherence length λT DR = 44.3 µm
/ 19.0 µm (upper/lower plot) measured via density ripple thermometry. The blue
solid line shows the same for the coherence length λT 1 = 24.8 µm / 6.6 µm (up-
per/lower plot) extracted from the first mode. (b) Shows the same when a box-trap
is superimposed onto the harmonic trap. The length of the box trap is 65 µm (upper
plot), 98 µm (middle plot) and 130 µm (lower plot). The thermal coherence lengths
are given by λT DR = 12.9 µm / 20.0 µm / 27.8 µm and λT 1 = 16.8 µm / 18.9 µm /
20.3 µm for the upper/middle/lower plot.
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5. Phase correlations in the double well

stronger than is expected from the temperature measured with density ripple
thermometry (fig. 5.8a). Note that this is similar to what we discussed for
double well traps with tunneling in section 5.5.1. Also here, the reason for
this discrepancy is still unclear. The magnitude of the discrepancy is different
for different measurements; it generally seems to be smaller for lower tem-
peratures. However, for some of the lower temperature measurements, there
seems to be a general gradient in the phase profiles. Also note that the k-
dependence never follows the 1/k2 dependence expected from Luttinger liquid
theory. Having a waiting time between switching off the cooling fields and
measuring the interference pattern doesn’t resolve the difference between the
magnitude of the relative phase-fluctuations and the expectations from the
density ripple temperature (not shown). It is still unclear if a waiting time
leads to a more thermal k-dependence. The experimental results are ambigu-
ous in this respect and more data needs to be taken. Note that for the hotter
of the two measurements shown in fig. 5.8a, the phase fluctuations might be
to fast to be resolved correctly (see discussion in section 5.4.2).

Figure 5.8b shows the results when a box-trap is superimposed onto the
harmonic trap. In this box-like trap, the magnitude of the relative phase
fluctuations fits quite well with the expectations from the temperature mea-
sured with density ripple thermometry. Again one sees that the k-dependence
doesn’t follow the expected 1/k2 exactly. Note that for the upper subplot
(representing the results for a rather box-like trap) the higher modes are over-
populated in comparison to the thermal state. For the lowest plot, the trap is
basically harmonic and the lowest mode is overpopulated as also observed for
the fully harmonic trap.

A question that naturally comes to mind is whether the k-dependence is only
non-thermal for the relative phases or also for the common phase fluctuations.
As discussed in section 4.1.3 and fig. 4.3, the density ripple patterns are domi-
nated by common phase fluctuations. However looking at the spectrum of the
density ripple pattern, we couldn’t really tell whether we see deviations from
the thermal prediction or just noise. More investigations concerning the influ-
ence of possible noise sources have to be done before drawing any conclusions
in this respect.

Let us now discuss the coupled case in more detail. As can be seen from
fig. 5.9a, the k-dependence of the variance for the cosine transformed rela-
tive phase becomes more flat with increased phase locking. This is expected
from the sine-Gordon theory. Qualitative agreement between the experimental
results and the prediction from sine-Gordon equilibrium theory can be seen.

For the case of the fast cooled scans on the other hand, the k-dependence
doesn’t flatten out that much with increasing phase locking (see fig. 5.9b).
There is not even qualitative agreement between the experimental results and
the sine-Gordon equilibrium theory. One sees a stronger decay with k than
expected from theory.
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Figure 5.9.: Variances of the cosine transformed relative phases for dif-
ferent phase locking. (a) The red bullets represent the experimental results
when cosine-transforming the central 50 µm and correcting for the imaging reso-
lution (σPSF = 3 µm was used). The errorbars represent 80% confidence inter-
vals obtained using bootstrapping. The red lines act as a guide to the eye, con-
necting data points that belong to the same measurement. The coherence factor
quantifying the phase locking strength (see section 5.3) is (from top to bottom)
〈cos(ϕ)〉 = 0.35, 0.73, 0.80, 0.89, 0.92. Note that for all measurements the system
has been prepared in a similar way, with the slow cooling procedure described in
section 5.2. The theory prediction from the sine-Gordon model in thermal equilib-
rium is given by the green bars. Both parameters (λT and q) for the sine-Gordon
theory are fitted from the relative phases according to the procedure discussed in
section 5.4.3. The height of the bars indicates the 80% confidence interval for the
theory predictions considering the finite experimental sample size. Note that all
uncertainty comes from the finite sample size, no uncertainty in λT and q was as-
sumed. The width of the bars was chosen arbitrarily. (b) Same as (a), but for the
system prepared by the fast cooling procedure. The coherence factor is (from top
to bottom) 〈cos(ϕ)〉 = 0.41, 0.91, 0.96.
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5. Phase correlations in the double well

5.5.3. Fourth-order connected correlation functions

As already argued in section 5.1, higher-order correlation functions are a use-
ful tool to characterize the interaction properties of a system. Here we will
discuss the fourth-order phase correlations of systems prepared by slow and
fast evaporative cooling as described in section 5.2. The results presented in
this section have been published in ref. [14].

Figure 5.10 shows the experimental data for the full fourth-order correla-
tion function G(4)(z, z′), its disconnected, and connected parts, for different
strengths of the phase locking between the condensates. The system has been
prepared with the slow cooling procedure for all results presented in the fig-
ure. In both limits, 〈cos(ϕ)〉 ≈ 0 (uncoupled condensates) and 〈cos(ϕ)〉 ≈ 1
(strongly coupled condensates), the connected part vanishes (fig. 5.10a and
c). The full fourth-order correlation function is given by its disconnected
part, calculated from the second-order correlation function. In other words,
the fourth-order correlation function factorizes. For intermediate phase lock-
ing (fig. 5.10b) the fourth-order function cannot be described by second-order
functions alone, and a substantial connected part remains.

Note that the sine-Gordon Hamiltonian (2.65)

ĤSG =

∫
dz

[
g1D δρ̂

2(z) +
~2ρ0(z)

4m

(
∂ϕ̂(z)

∂z

)2

− 2~Jρ0(z) cos (ϕ̂(z))

]
, (5.9)

nicely reflects the observations in fig. 5.10. For 〈cos(ϕ)〉 ≈ 0, corresponding to
J ≈ 0, only the first part of ĤSG, the quadratic Luttinger liquid Hamiltonian,
remains, leading to Gaussian thermal states characterized by a vanishing con-
nected correlation function G

(N)
con for N > 2. For 〈cos(ϕ)〉 ≈ 1 we can replace

the cosine in the Hamiltonian by its harmonic approximation (see eq. (2.67))
leading to a quadratic Hamiltonian and Gaussian fluctuations as well.

For intermediate phase locking (intermediate 〈cos(ϕ)〉) we have to consider
the full cosine potential leading to a non-vanishing fourth-order connected
correlation function.

For a quantitative comparison between experiment and equilibrium sine-
Gordon theory we calculate the measure

M (N) =

∑
z

∣∣∣G(N)
con (z, 0)

∣∣∣∑
z |G(N)(z, 0)|

. (5.10)

Figure 5.11 shows M (4) as a function of the phase locking strength quantified
by the coherence factor 〈cos(ϕ)〉.

Note that the thermal coherence length λT as measured by density rip-
ple thermometry is slightly different for each experimental data point. We
therefore calculated two theory curves, one for the minimum and one for the
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Figure 5.10.: Decomposition of the fourth-order phase correlation func-
tions G(4)(z, z′). Uncoupled (〈cos(ϕ)〉 ≈ 0; a), intermediate (b) and strongly
phase-locked (〈cos(ϕ)〉 ≈ 1; (c)) regimes. To visualize the high-dimensional data,
we choose z3 = −z4 = 14 µm and z′ = 0, which results in the observed symmetric
crosses where the correlation function vanishes. The color marks the value of the
full, disconnected and connected correlation functions, with each row normalized to
its maximum value such that the color encodes the interval from −1 to 1.
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Figure 5.11.: Relative size of the fourth-order connected correlation func-
tion. The results following from slow evaporative cooling (red bullets) and from
the fast cooling procedure (blue diamond) are shown. We plot the measure M (4)

(eq. (5.10)) as a function of the phase locking strength quantified by 〈cos(ϕ)〉. The
error bars represent 80% confidence intervals calculated using bootstrapping. One
sees good agreement between the experimental results for slow cooling and the
thermal sine-Gordon theory (green shaded region). The fast-cooling data clearly
deviates from the equilibrium theory prediction. The theory prediction was calcu-
lated for the spread of λT for the slow-cooled result as measured with density ripple
thermometry. The borders of the green shaded area represent the predictions for
λT = 20 µm (lower border) and λT = 15 µm (upper border).
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maximum value of the measured λT for the slow cooled data. These curves
represent the borders of the green shaded area shown in fig. 5.11. The plotted
dependence onto the coherence factor is obtained by varying the parameter
q while keeping λT constant at one of the two values. The theory predic-
tions have been calculated from 105 numerical realizations obtained from the
sine-Gordon stochastic process (see section 2.4.3). The imaging resolution
was considered by convolving the numerically obtained phase profiles with a
Gaussian with σPSF = 3 µm.

The experimental results for the slowly cooled case agree well with the sine-
Gordon equilibrium theory. States prepared by the fast cooling procedure show
a different behavior. The results are only consistent with thermal sine-Gordon
theory when assuming much higher temperatures than have been measured
with density ripple thermometry. In the lower subplot of fig. 5.12, the theo-
retical predictions for λT = 3 and 5 µm are shown. The imaging resolution
was again considered by convolving the numerically obtained phase profiles
with a Gaussian with σPSF = 3 µm. However, we don’t expect this effective
description for the influence of the imaging to stay valid for such high tem-
peratures (see section 5.4.2). As discussed later in section 5.6.3, the results
obtained from simulating pictures for hot sine-Gordon phase profiles don’t co-
incide with the shown theory curves, but are similar to the theory curves for
much lower temperatures.

In fig. 5.12, we also check the significance of the observed non-Gaussian
fluctuations. Due to the finite experimental sample size, we would get (small)
non-zero values for the measures M (N) even for Gaussian phase fluctuations.
We therefore want to compare the experimental results to the predictions
from Gaussian fluctuations. For this, we first calculate the sample mean and
covariance of the phase differences ϕ(z)−ϕ(0) from the experimental data. The
mean and covariance define a multivariate Gaussian distribution from which
we draw n samples (where n is the experimental sample size, different for
each point in the diagrams4) and calculate the measures. To get an estimated
distribution for the measures, we repeat the procedure 999 times. From this,
we can calculate the confidence intervals for the Gaussian predictions which
are shown in fig. 5.12.

To gain insight into the mechanisms leading to the difference between slow
and fast cooling, we analyze the full distribution function of the phase differ-
ences ∆ϕ = ϕ(z)−ϕ(z′) to which, in principle, all N th-order phase correlation
functions contribute. Figure 5.13a shows the full distributions for one partic-
ular pair of coordinates (z, z′) chosen symmetrically around the center of the
trap.

For slow cooling and intermediate values of 〈cos(ϕ)〉 the full distribution

4The experimental sample size for the results presented in fig. 5.12 varies from n = 290 to
n = 2800, typically it is around n = 1000.
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Figure 5.12.: Relative size of the fourth-order connected correlation func-
tion. The same experimental results as in fig. 5.11 are shown. In the upper subplot,
the experimental results for slow cooling are marked by the red bullets. In the lower
subplot, the blue diamonds mark the results for fast cooling. The predictions from
the thermal sine-Gordon theory are again given by the green shaded area. In the
upper subplot, the borders represent the results for λT = 15 and 20 µm respectively
(same values as in fig. 5.11). In the lower subplot, we have λT = 5 µm for the left
border and λT = 3 µm for the right border. However, the shown curves (in the
lower subplot) are not what we expect for the experimental results for hot thermal
systems (see discussion in main text). The orange rectangles represent the theory
predictions for M (4) following from Gaussian fluctuation and considering the finite
experimental sample size (see the main text for details). The height of the rectangles
represents the 80% confidence intervals, the width was chosen arbitrarily.
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Figure 5.13.: Full distribution functions and interference patterns of the
phase. (a) Full distribution (probability density) functions for the phase differences
∆ϕ = ϕ(z) − ϕ(z′) for z = −z′ = 20 µm for different phase locking strengths and
two different ways to prepare the quantum gas: Slow cooling (left) and fast cooling
(right). The experimental data (blue bars) for the system prepared by slow cooling
are in good agreement with the thermal sine-Gordon theory (red lines). The rapidly
cooled systems show substantial deviations, with especially pronounced peaks at
±2π. The temperature measured by density ripple thermometry (see section 5.4.3)
has been used for the theory calculations. (b) Interference patterns of the two con-
densates (top panels) and the extracted phase profiles (bottom panels) contributing
to the central and side peaks of the full distribution function (indicated in a) for the
strongly coupled fast cooled system. Phase fluctuations are small in the central-peak
sample, whereas a sine-Gordon soliton is clearly visible in the side-peak sample.
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functions of the phase differences ∆ϕ are distinctly non-Gaussian. For strong
phase locking (〈cos(ϕ)〉 ≈ 1) we find Gaussian full distribution functions, as
anticipated from the observed validity of the Wick decomposition in this case.
In contrast, for fast cooling all coupled cases show non-Gaussian distribution
functions. With increasing phase locking, one can see the appearance of dis-
tinct side peaks at ±2π, becoming more localized, but at the same time more
suppressed.

For fast cooling and 〈cos(ϕ)〉 = 0.94 we observe a Gaussian central peak
(see inset) as well as a few outliers at ±2π. Studying interference patterns for
individual realizations corresponding to the side peaks reveals that the phase
rotates through a full circle of 2π within a short distance (see fig. 5.13b).
These localized kinks represent transitions between different minima of the
cosine potential and can be identified as solitons of the sine-Gordon model;
they are topological excitations of HSG (5.9).

In the case of fast cooling these sine-Gordon solitons are frozen in, and
the phase of the quantum field fluctuates around them. Such states may
therefore be interpreted as topologically distinct, ‘false’ vacua [86] above which
fluctuations are being excited. The energy of these false vacua increases with
the number of sine-Gordon solitons.

Note that we also calculated correlation function for orders higher than four
and presented the results in ref. [14]. However, this becomes more challenging
with increasing order and statistical as well as systematic uncertainties grow.

Moreover, we can also calculate higher-order correlation functions in momen-
tum space. Preliminary results for the slow cooled data show good agreement
with the sine-Gordon theory for the first few modes. However, more work
needs to be done.

5.6. Interpretation and robustness of the results

In this section, we will be analyzing simulated pictures in order to investigate
the robustness of the experimental results. The effect of the imaging procedure
on the cosine-transformed second-order correlation functions has already been
discussed in section 5.4.2. We will therefore focus on the fourth-order correla-
tion functions as well as on explicitly discussing possible phase measurement
errors here.

The details about the simulated pictures for the thermal sine-Gordon theory
have been already discussed in section 5.4.1. Here, we will also analyze pictures
simulated from Gaussian phase fluctuations. The details will be discussed in
section 5.6.1.
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5.6.1. Simulating pictures from Gaussian fluctuations

In this section, we will discuss the details of how we simulate pictures for
the Gaussian fluctuations following from two quadratically coupled Luttinger
liquid Hamiltonians. The simulation procedure for the sine-Gordon theory has
already been discussed in section 5.4.1. The actual procedure generating the
simulated pictures is the same in the two cases, only the numerical realizations
for the in-situ fields differ. The discussion here will therefore only focus on
this part.

For simulating pictures from Gaussian fluctuation, both density and phase
fluctuations are calculated for the Luttinger liquid Hamiltonian (2.62) plus
quadratic coupling term (2.67). We use the classical fields approximation and
assume thermal equilibrium. The numerical realizations for the phase and
density fluctuations are then obtained following the discussion in section 2.2.3.
Note that we use the density dependent 1D interaction strength as given in
eq. (2.54). The resulting numerical realizations for the density fluctuations
are subsequently convolved by a Gaussian with a standard deviation of one
micrometer in order to introduce an artificial cutoff. Moreover, note that we
use the background density for a harmonic longitudinal trapping potential
according to the discussion in ref. [63]. For the harmonic trapping frequencies
we choose ω⊥ = 2π×1.35 kHz for the transverse directions and ω‖ = 2π×6.7 Hz
for the longitudinal direction. The atom number is 5000 in one well.

5.6.2. Phase measurement errors

To investigate the reliability of the extraction of continuous phase profiles from
the interference pictures, we compare the extracted phase profiles to the input
phase profiles of simulated pictures. We will do this by looking at the spatial
mean of the squared error

Eϕ =
1

N

N∑
n=1

(ϕin(zn)− ϕfit(zn))2 . (5.11)

Here ϕfit(zn) represents the phase at pixel n fitted from one simulated pic-
ture, and ϕin(zn) is the corresponding phase used as the input for simulating
that particular image. To be more precise, ϕin(zn) is the input phase profile
convolved with a Gaussian with σPSF = 3 µm (see discussion in section 5.4.2).
For the presented results, the mean in eq. (5.11) runs over N = 25 pixels,
representing the central 50 µm of the cloud.

In general, one would expect eq. (5.11) for be larger for phase profiles fluc-
tuating more strongly. We therefore will plot Eϕ in a scatter plot as a function
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of the spatial variance

Vϕ =
1

N − 1

N∑
n=1

(
ϕin(zn)− 1

N

N∑
n′=1

ϕin(zn′)

)2

(5.12)

of the input phase profiles.
The case of having no tunnel coupling is presented in fig. 5.14. One sees

an increasing number of poorly fitted phase profiles with decreasing thermal
coherence length. Typical profiles for when the fit works and when it doesn’t
are shown in fig. 5.15.

The results for the pictures simulated from sine-Gordon fluctuations with
tunnel coupling are shown in figs. 5.16 and 5.17. For details about the simu-
lated pictures see the discussion in section 5.4.1. Again, the number of poor
fitting results increases with decreasing λT . One sees the appearance of more
and more profiles where a physical phase slip is missed or a non-existing phase
slip is introduced by the extraction procedure.

In general, one would expect that erroneous phase slips are more likely
when the phase fluctuates strongly, or at least, they should show up as a
strong fluctuations in the fitted phase profiles. We can therefore try to filter
the phase profiles, discarding the ones in which phase differences between
neighboring pixels are exceeding a certain value. In other words, we will apply
the condition

|ϕfit(zn)− ϕfit(zn+1)| < ϕlim for all pixels n. (5.13)

Using ϕlim = π/2, most of the cases where phase slips were introduced by
mistake are filtered. The filtered points are marked in brown in fig. 5.16. Note
that the condition eq. (5.13) will be used in section 5.6.4 to investigate the
robustness of the experimental results.

The results for pictures simulated from Gaussian fluctuations (according to
section 5.6.1) are presented in figs. 5.18 and 5.19. The particular value for
the tunneling strength was chosen because it gives a rather large ‘fake’ non-
Gaussianity (see discussion in section 5.6.3). With increasing temperature,
one again sees the appearance of more and more profiles where the extrac-
tion procedure introduces a non-existing phase slip. And again, most of the
erroneous phase slips are filtered out by using the criterion eq. (5.13) with
ϕlim = π/2.

5.6.3. Effect of the imaging on the fourth-order connected
correlation functions

In fig. 5.20, the results for the relative size of the connected fourth-order cor-
relation functions extracted from simulated pictures are shown. The pictures
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Figure 5.14.: Phase fitting error for zero tunnel coupling. The vertical axis
gives the spatial mean squared error eq. (5.11), the horizontal axis the spatial vari-
ance eq. (5.12). Each blue dot represents the result for one simulated image. For
details about the simulation procedure see section 5.4.1. The different subplots
represent the results for the different λT indicated in the upper left corner of the
subplots. With decreasing thermal coherence lengths, one sees the growth of a sec-
ond cloud above the main cloud. Looking at the profiles of this upper cloud, one sees
errors in the phase unwrapping procedure. As examples, the phase profiles marked
with the red and green squares are plotted in fig. 5.15.
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Figure 5.15.: Phase profiles fitted from simulated pictures. The blue crosses
represent the phases ϕfit(zn) fitted from the simulated images, the red crosses the
corresponding input for the simulation. The quantity ϕin(zn) as discussed in the
main text is plotted. Both plots represent phase profiles for the uncoupled case and
λT = 18 µm. In the upper plot the phase unwrapping failed, it corresponds to the
point marked by the red square in fig. 5.14. In the lower plot the phase extraction
worked (green square in fig. 5.14).

have been simulated from thermal phase fluctuations following the homoge-
neous sine-Gordon model. For details see the discussion in section 5.4.1. As
for the experimental results in fig. 5.11, M (4) has been calculated from the
central 25 pixels (50 µm).

Note that the influence of the imaging system onto the measure M (4) and
the coherence factor 〈cos(ϕ)〉 is well described by the effective consideration
through convolution of the phases with a Gaussian, as long as λT is not too
small. For λT < 10 µm, the influence of the imaging system becomes more
complicated, the results seem to partly coincide with the curves for bigger
values of λT .

Let us now move on to investigating the influence of the imaging system
for Gaussian fluctuations. Simulating pictures for a quadratic tunnel coupling
term as discussed in section 5.6.1, we get the results presented in fig. 5.21.
Note that the values for λT given in the figure represent mean values over the
central 25 pixels (50 µm), of the approximately 120 µm long cloud. This is
the same range also used to calculate M (4). One can see that, for hot enough
temperatures, also Gaussian fluctuations can partly mimic the non-Gaussian
results predicted by the sine-Gordon theory. This ‘fake’ non-Gaussianity is
due to the introduction of non-existent phase slips by mistakes in fitting and
unwrapping the relative phase profiles (see discussion in section 5.6.2).

However, it is quite puzzling why these erroneous phase slips lead to similar
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Figure 5.16.: Phase fitting error for intermediate phase locking. Like
fig. 5.14, but for pictures simulated from the sine-Gordon theory with q = 2.9.
With decreasing thermal coherence length λT , one sees the appearance of three
clouds separated from the main cloud. In the main cloud and the lower right cloud,
the phase extraction more or less works. The difference between the two clouds
is that in the right cloud a well captured physical phase slip occurs and in the
main cloud not. In the upper left cloud the unwrapping introduces an unphysical
phase slip and in the upper right cloud a physical phase slip is missed. Note that
most falsely introduced phase slips are filtered out by the condition (5.13) with
ϕlim = π/2. The cases not fulfilling the condition are plotted in brown instead of
blue. In the subplot for λT = 10 µm, the red/green squares/circles mark cases in
each of the distinct clouds for which the phase profiles are plotted in fig. 5.17.
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Figure 5.17.: Phase profiles fitted from simulated pictures. Like fig. 5.15,
but for sine-Gordon theory with q = 2.9 and λT = 10 µm. The uppermost plot
corresponds to the point marked by the green square in fig. 5.16, the input phase
profile doesn’t contain a phase slip and none is introduced. In the next plot a
phase slip is present and correctly fitted, the plot corresponds to the green circle
in fig. 5.16. Going further down, we see that a phase slip is falsely introduced (red
square in fig. 5.16), and in the lowermost plot a present phase slip is overlooked (red
circle in fig. 5.16).
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Figure 5.18.: Phase fitting error for pictures simulated from Gaussian fluc-
tuations. Same as in fig. 5.16 but for a Gaussian theory with tunnel coupling. The
thermal coherence length λT rel for the relative degrees of freedom is indicated in
the lower right corner of the subplots. All subplots have the same q = 1.40 and the
same thermal coherence length λT com = 16.7 µm for the common degrees of freedom.
Again one sees distinctive sub-clouds appearing. Compared to fig. 5.16, there is no
lower right cloud as there are no phase slips in the Gaussian theory. The upper left
cloud again represents pictures for which the phase unwrapping introduces a jump
by mistake. In the upper right cloud, big Gaussian fluctuations are missed by the
phase fitting. The phase profiles corresponding to the marked points in the lower
left plot are shown in fig. 5.19.
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Figure 5.19.: Phase profiles fitted from Gaussian simulated pictures. Like
fig. 5.15, but for pictures simulated from Gaussian fluctuations. Red again represents
the input of the simulated pictures and blue the extracted phase profile. The upper,
middle and lower plot corresponds to the green square, red square and red circle in
fig. 5.19 respectively. In the upper plot, the fitting more or less works, in the middle
plot, a phase slip is introduced by a mistake in the phase extraction procedure, and
in the lower plot, a big Gaussian fluctuation is missed by the fitting procedure.
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Figure 5.20.: Influence of the imaging system onto the measure M (4). The
red bullets represent the results calculated from 1000 phase profiles fitted from
simulated images. The green diamonds represent the quantities calculated from the
same underlying data used to simulate the pictures. The different subplots represent
the results for the different λT indicated in the upper left corner of the subplots.
The solid green lines represent the theory for the respective values of λT calculated
from 105 numerical realizations. Note that the only difference between the green
diamonds and the solid green lines is the number of numerical realizations used to
calculate the quantities. The gray line acts as common reference curve, it is the
same in each subplot and represents the theory for λT = 15 µm. For the green
diamonds as well as the solid green and gray lines, the numerical phase profiles were
convolved with a Gaussian with σPSF = 3 µm before calculating the quantities.
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Figure 5.21.: Measure M (4) following from pictures simulated for Gaussian
fluctuations. Same as fig. 5.20, but for pictures simulated from Gaussian phase
fluctuations (see section 5.6.1 for details). For very hot temperatures, the results
partly coincide with the thermal sine-Gordon theory for λT = 15 µm (gray solid
line). This is due to phase measurement errors (see discussion in main text). For
the upper four subplots the thermal coherence length is the same for the relative
and common phase and density fluctuations (λT given in the upper left corner of
the subplots). For the lower four subplots, the thermal coherence length is given by
λT rel for the relative and λT com for the common degrees of freedom.
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Figure 5.22.: Relative size of the fourth-order connected correlation func-
tion for sine-Gordon-like theories. The measure M (4) as defined in eq. (5.10)
is plotted as a function of the coherence factor 〈cos(ϕ)〉. The thermal results for
sine-Gordon-like theories as defined in eq. (5.14) are shown. For the solid lines, the
‘potential’ for the relative phase is given by eq. (5.15) with n = 0.5, 2 and 4 (blue,
green and red). The dashed black line represents the result for the sine-Gordon
theory. For all cases λT = 18 µm was used.

results as the thermal sine Gordon theory. In order to understand this better,
note that a class of theories similar to the sine-Gordon model leads to similar
results when plotting the measure M (4) as a function of the coherence factor.
In the following, we will discuss the results calculated for classical thermal
fluctuations governed by Hamiltonians of the form

H =

∫
dz

[
g δρ2 +

~2n1D

4m

(
∂ϕ

∂z

)2

+ V (ϕ)

]
. (5.14)

This is basically the sine-Gordon Hamiltonian with a general ‘potential’ V for
the relative phase ϕ. In the case of the sine-Gordon theory we would simply
have V (ϕ) = −2~Jn1D cos(ϕ).

In addition to the sine-Gordon model, we will also investigate the theory
prediction for the 2π periodic continuation of

V = 2~J |ϕn| (5.15)

defined on the interval ϕ = [−π, π). The results are shown in fig. 5.22. As
can be seen, the results for the potential (5.15) with different exponents n
look quite similar to each other and the sine-Gordon theory. The only real
difference is the value of 〈cos(ϕ)〉 after which M (4) decreases again. Note that
the results differ with λT and the periodicity of V (ϕ). For example, the 4π
periodic continuation of eq. (5.15) would give distinctively different results
(not shown).

99



5. Phase correlations in the double well

Phase-locked Gaussian fluctuations with phase slips introduced by error
mimic a sine-Gordon-like theory (5.14) with a 2π periodic potential for the
relative phase. In addition, as also seen for the sine-Gordon case fig. 5.20, the
imaging process makes very hot systems look colder. Therefore, the results for
the hot Gaussian fluctuations partly look like the results for the sine-Gordon
theory with a much colder λT . This gives an intuitive understanding of the
results presented in fig. 5.21.

Note that the temperatures necessary to get this ‘fake’ non-Gaussian fluctu-
ations are way higher than what was measured by density ripple thermometry
for the experimental data. However, density ripple thermometry mostly gives
the temperature of the common degrees of freedom (see fig. 4.3) and doesn’t
exclude a much higher temperature for the relative degrees of freedom. This
is especially true for rather large tunnel couplings where the magnitude of the
relative phase fluctuations is suppressed. We show some results for simulated
pictures with a large imbalance between the temperature of the common and
the relative degrees of freedom in the four lowest plots of fig. 5.21. One sees
that the ‘fake’ non-Gaussianity in this cases is not as high as when both the
relative and common degrees of freedoms have a high temperature. This sug-
gests that the density ripple pattern emerging in TOF increases the error when
fitting the phase profiles from the interference pictures.

5.6.4. Robustness of the results

As already discussed in section 5.6.3, we expect the ‘fake’ non-Gaussianity
seen in fig. 5.21, to be due to the introduction of erroneous phase slips during
the fitting procedure. We have seen in section 5.6.2 that we can filter out most
of this cases by applying the condition (5.13) to the fitted phase profiles. In
fig. 5.23, the influence of this filtering on the measure M (4) is shown.

Using ϕlim = π/2 for the filtering condition decreases the measure M (4)

substantially for the pictures simulated from hot Gaussian fluctuations, but
not for the slow cooled experimental data. Also for the pictures simulated from
the sine-Gordon theory and the fast cooled experimental data, no substantial
reduction is visible for that value of ϕlim (not shown). This supports that we
see genuine non-Gaussian fluctuation in the experiment.

In the lower subplot of fig. 5.23, the fraction of phase profiles that don’t
fulfill the condition eq. (5.13) is plotted. Note that for the experimental data,
the filtered fraction is much higher than what one expects form the sine-
Gordon theory for the temperatures measured with density ripples (λT =
15 . . . 20 µm). It coincides with the results for the sine-Gordon theory with
the much shorter λT = 7 µm. This again supports our suspicion of having a
temperature imbalance between the relative and common degrees of freedom.
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Figure 5.23.: Distinguishing genuine from fake non-Gaussianity. In the
upper subplot, the crosses show the measure M (4) calculated only from phase profiles
fulfilling the condition (5.13) with ϕlim = π/2. For the results marked by the bullets
all phase profiles are used. The experimental results for slow cooling are marked in
red, the results for the pictures simulated from Gaussian fluctuations are marked in
blue. The thermal coherence length used to simulate the pictures is λT = 3.3 µm
for the relative degrees of freedom and λT = 16.7 µm for the common degrees of
freedom. Remember that the values measured with density ripple thermometry for
the shown experimental data are in the range λT = 15 . . . 20 µm. The lower plot
shows the fraction of phase profiles that were filtered out. The color-coding is the
same as in the upper plot. In addition, we also show the results for the pictures
simulated from the thermal sine-Gordon theory with λT = 7 µm (gray bullets). Note
that the coherence factor 〈cos(ϕ)〉 is always calculated from all phase profiles.
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5. Phase correlations in the double well

5.7. Conclusion

In this chapter we thoroughly analyzed the correlation functions of the relative
phases between two quasicondensates in a double well trap with and without
tunneling. Many of the experimental results for the condensates prepared by
slow evaporative cooling can be explained by the thermal sine-Gordon theory.
However, there are still many open questions, like the observed temperature
imbalance between the relative and common degrees of freedom. We realized,
that we are working right on the edge of what is resolvable with our cur-
rent imaging system. The observed non-Gaussianity of the phase fluctuations
appears to be genuine. However, it is still not clear how much insight the
higher-order connected correlation function can give into the occurring phys-
ical processes. A large class of Hamiltonians seems to give similar results for
the relative size of the fourth-order connected correlation functions in thermal
equilibrium. That said, we see very distinct differences between the results for
slow and fast cooling as well as the non-equilibrium data presented in fig. 6.3a.
We have some intuitive understanding of how the differences between slow and
fast cooling might arise. However, a quantitative description of the results for
fast cooling is still lacking and will be a future objective.
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6. Gaussification after switching
off the tunnel coupling

In this chapter, we will present experimental results showing how an ini-
tially non-Gaussian state becomes Gaussian after a quench to a free sys-
tem. Thereby, we give an experimental demonstration of a phenomenon often
termed ‘Gaussification’ in the literature [18–23]. In this chapter, we will first
discuss the experimental procedure in section 6.2. We will then introduce a
simple theoretical model in section 6.2 and subsequently present the exper-
imental results in section 6.3. Note that, throughout this chapter, we will
denote the relative phase by ϕ(z) (without the minus sign in subscript).

6.1. Experimental procedure

As discussed in chapter 5, cooling into a double well potential with tunneling
can produce states with non-Gaussian phase fluctuations. Here, the slow cool-
ing procedure discussed in section 5.2 is used to prepare the initial state before
the quench.1 Immediately after the evaporative cooling, the amplitude of the
dressing fields is ramped up, increasing the separation of the two wells and
consequently switching off the tunneling. The ramp lasts for approximately
2 ms.2 Afterwards, the cloud is held in the uncoupled double well for various
times. The evolution of the system is investigated by recording interference
pictures for these different times. See the discussion in section 4.3 on how
we generally investigate the time evolution of the physical system with our
experimental apparatus.

In addition to measuring the interference pattern with the vertical imaging
system, we also record density ripple patterns for the initial state using the
transverse imaging system. Before starting each measurement, we made sure
to have approximately equal atom number in the two clouds in the double
well. This was done by adjusting the ratio between the amplitudes of the cur-
rents creating the dressing fields (see section 1.2). Some of the measurements

1We also performed measurements where the initial state has been prepared by the fast
cooling procedure outlined in section 5.2. The results are qualitatively similar to the
ones with the slowly cooled initial state.

2The ramp time varies slightly for the different measurements, it ranges from 1.6 to 2 ms.
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6. Gaussification after switching off the tunnel coupling

have been performed in an harmonic trap, for others a box trap was used
superimposed onto the harmonic trap.

6.2. Theoretical model

We have seen in chapter 5 that at least some aspects of the relative phase
fluctuations of the slowly cooled clouds in the double well potential can be
described by the thermal fluctuations of the sine-Gordon model in classical
fields approximation. We will therefore use this as the initial state in our the-
oretical model. Both the relative number and phase fluctuations will be given
by the thermal statistics of the sine-Gordon model (2.65) in classical fields ap-
proximation. For the evolution we assume the validity of the Luttinger liquid
model (2.62). For comparing the theory predictions with the experimental re-
sults, we only need to calculate the relative phase fluctuations at the different
times. The evolution with the Luttinger liquid model doesn’t mix common
and relative degrees of freedom (eq. (2.59)). Therefore, we don’t need to be
concerned with the common phase and density fluctuations at all. Of course,
we still need to consider the relative density fluctuations as they rotate into
the relative phase fluctuations during the evolution.

For simplicity, we will do the calculations for a large homogeneous system.
Note that the evolution times presented in this chapter are rather short com-
pared to the system size. To be more precise the evolution time multiplied
with the speed of sound is smaller than the system size. Therefore, the exact
trapping geometry should not matter too much as long as we focus on the cen-
tral part of the system. In the experiment we will analyze the central 50 µm
of the cloud.

As discussed in section 2.4.3, the sine-Gordon stochastic process produces
numerical realizations of the phase fluctuations for a homogeneous infinitely
large system. To be more precise, one can produce numerical realizations of
a certain length, which represents a part of an infinite system. The thermal
density fluctuations for the sine-Gordon model in classical fields approximation
don’t depend on the length of the system. Numerical realizations can easily
be obtained following the discussion in sections 2.2.3 and 2.2.4.

For numerically evolving these realizations with the Luttinger liquid Hamil-
tonian, we have to assume a finite system with certain boundary conditions.
We will therefore just calculate the evolution for a large homogeneous system
with Neumann boundary conditions. In the central region, this will mimic the
results for an infinite system, provided the evolution times are not too long.
Note that we used the density broadened 1D interaction strength eq. (2.54)
for calculating the initial density fluctuations and the evolution.

The results following from the theoretical model are discussed in compari-
son to the experimental results in the next section. For all presented theory
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predictions, the effect of the imaging resolution was approximately considered
by convolving the numerically obtained phase profiles with a Gaussian with a
standard deviation of σPSF = 3 µm (see discussion in section 5.4.2).

6.3. Experimental results and theoretical
explanation

In fig. 6.1, the evolution of the relative size of the fourth-order connected
correlation function is shown. The plot shows the measure (see discussion in
chapter 5)

M (4) =

∑
z

∣∣∣G(4)
con(z, 0)

∣∣∣∑
z |G(4)(z, 0)|

=
S

(4)
con

S(4)
(6.1)

as a function of time. One sees a fast decrease for the experimentally obtained
values of M (4). For later times, the experimental results are not distinguish-
able from the predictions for Gaussian fluctuations when considering the fi-
nite statistics of the experimental sample (see discussion in section 5.5.3). In

fig. 6.1, the nominator S
(4)
con and denominator S(4) of eq. (6.1) are also plotted

separately. It seems like a big part of the reduction in M (4) is caused by an
overall growth of the fluctuations.

Theoretically this can be explained by a rotating in of the Gaussian initial
density fluctuations. During the evolution with the Luttinger liquid model,
the different non-interacting modes rotate and dephase with respect to each
other. The density quadrature rotates into the phase quadrature which is
initially suppressed due to the finite tunnel coupling. This is the same process
as observed in [11,24–26,28]. Theses initial Gaussian density fluctuations are
large and overshadow the initial phase fluctuations which are suppressed due
to the tunnel coupling. This makes the state appear Gaussian. Theoretically
a little bit of non-Gaussianity should remain. However, due to the limited
experimental statistics and precision, it’s not possible to distinguish such an
almost Gaussian state from a fully Gaussian state. Note that no evolution
towards an apparently Gaussian state is predicted when assuming only initial
phase but no density fluctuations in the theory calculation (not shown).

As can be seen from fig. 6.1, our theoretical model predicts the timescale
for the decline of the measure M (4) quite well (upper plot). However, the
magnitude of the fluctuations grows much more than predicted by the theory.
A probable reason for this is that, for the initial state in the theoretical cal-
culations, we use the temperatures measured by density ripple thermometry.
As already discussed in chapter 5, this might not be the correct temperature
for the relative degrees of freedom. Also the thermal coherence length fitted
from the relative phases according to the procedure discussed in section 5.4.3
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Figure 6.1.: Relative size of the fourth-order connected correlation func-
tions. In the upper plot, the red bullets represent the experimental results for
the measure M (4) as a function of the evolution time t. The errorbars represent
80% confidence intervals calculated by using bootstrapping. The first point at
t = −2 ms represents the initial state prepared by slow evaporative cooling into
the double well trap with tunneling, leading to phase locking with a coherence fac-
tor 〈cos(ϕ)〉 = 0.74. Between t = −2 and 0 ms, the amplitude of the dressing fields
is ramped up, leading to a decoupling of the two wells at some point during this
time interval. The green shaded area represents the theory prediction, considering
the finite statistics and uncertainty in the decoupling time point, but not the un-
certainty in the intial λT and q. The vertical extension of the shaded area gives the
80% confidence intervals. The orange rectangles represent the predictions follow-
ing from Gaussian fluctuations (see discussion in section 5.5.3). Again, the vertical
extension gives the 80% confidence intervals, the horizontal extension was chosen
arbitrarily. In the lower subplot, the red squares represent the experimental results

for S(4) and the blue triangles the experimental results for S
(4)
con (see eq. (6.1)). The

red and blue shaded areas show the corresponding theory predictions. Note that
the experimental results have been obtained for a harmonic longitudinal trapping
potential.
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seems to be still to cold (not shown). Fitting with the differential entropy
of the contrast distribution functions (see appendix B) looks more promising.
However, more work needs to be done before this method can be used.

The evolution of the measure M (4) for several more experimental measure-
ments is shown in fig. 6.2. A particularly interesting case is the quench from
the strongly coupled system (lower right subplot). The system basically stays
Gaussian during the whole evolution. In fig. 6.3a, the measure M (4) is plot-
ted as a function of the coherence factor for these experimental data. One
can see a clear distinction between the Gaussian states during the evolution
and the non-Gaussian states predicted by the sine-Gordon equilibrium theory.
Remember that the states produced by slow cooling follow this theory as was
shown in fig. 5.11.

Note that for the time evolution, we cannot calculate the coherence factor
directly from the measured phases using 〈cos(ϕ)〉. It would be dominated by
the accumulation of a global relative phase caused by random or systematic
global atom number differences between the two clouds. However, what we
actually want to measure is the degree of phase locking. We do this by looking
at the periodic phase correlation function

C (z, z′) = 〈cos [ϕ(z)− ϕ (z′)]〉 . (6.2)

This can be rewritten as

〈cos [ϕ(z)] cos [ϕ (z′)]〉+ 〈sin [ϕ(z)] sin [ϕ (z′)]〉 . (6.3)

In equilibrium, for large spatial separations, cos [ϕ(z)] and cos [ϕ (z′)] will be-
come independent of each other. The same is true for the sine functions.
Moreover, as the distribution of ϕ(z) is symmetric, the expectation value
〈sin [ϕ(z)]〉 of the asymmetric sine-function will vanish. Using this, we get
C (z, z′) = 〈cos [ϕ(z)]〉 〈cos [ϕ (z′)]〉 in the limit of large separation between z
and z′. For a homogeneous system this leads to the relation

lim
|z−z′|→∞

C (z, z′) = 〈cos(ϕ)〉2. (6.4)

Of course, due to the global phase accumulation, the relation (6.4) doesn’t hold
for the non-equilibrium states during the evolution after the quench. However
the square root of the C (z, z′) for large separations of the coordinates is still
the relevant measure for the phase locking strength.

In the experiment, we calculate (6.2) by averaging over many experimental
realizations and choosing z and z′ symmetrically around the center of the trap.
With this particular choice of z and z′, we can define the function

C̃ (|z − z′|) = C (z, z′) (6.5)
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Figure 6.2.: Relative size of the fourth-order connected correlation func-
tion. Same as the upper subplot in fig. 6.1, but for multiple different experimental
measurements. The coherence factor of the initial states is given in the upper right
corner of the subplots. The two upper subplots have been obtained with a harmonic
longitudinal trapping potential. For the four lower ones, a 60 µm long box trap has
been superimposed.
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Figure 6.3.: Quench from strong phase locking. (a) The red bullets show the
experimental results for the measure M (4) for the fourth-order connected part as a
function of the coherence factor (see discussion in the main text). The errorbars
represent the 80% confidence intervals calculated using bootstrapping. The different
points correspond to different evolution times during the quench. From right to left,
the points correspond to t = −1.9, −1.0, 0.0, 1.0, 2.0, 4.0 and 6.0 ms. The vertical
extensions of the orange rectangles again represent the 80% confidence intervals for
the predictions from the Gaussian fluctuations. The green shaded area represents
the sine-Gordon equilibrium theory for λT = 15 . . . 20 µm. This is the same theory
as plotted in fig. 5.11. (b) The crosses represent the experimental results for the
periodic phase correlation function eq. (6.5). The different colors represent the
different evolution times. The times are the same as for subfigure a with time
increasing from top to bottom. The solid lines represent the corresponding fits used
to extract the coherence factor (see main text). Note that one can see the light-cone
like spreading of thermal correlations discussed in ref. [26].
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6. Gaussification after switching off the tunnel coupling

only depending on the distance ∆z = |z− z′| between the coordinates. As can
be seen in fig. 6.3b, C̃(∆z) first falls off with ∆z and then more or less reaches
a plateau. We can extract the height of this plateau by fitting the piecewise
function

f(∆z) =

{
exp

[
∆z
z0

log(p)
]

∆z < z0

p z0 ≤ ∆z
. (6.6)

The height p of the plateau as well as the extension z0 of the exponential decay
will be fitted. The dynamic coherence factor plotted in fig. 6.3a is then simply
given by

√
p. In fig. 6.3b the evolution of the experimental C̃(∆z) and the

corresponding fits are plotted. Note that the value of z0 grows with time, which
corresponds to the light-cone like spreading of thermal correlations observed
in ref. [26].

In conclusion, we have experimentally observed Gaussification in a cold atom
experiment and presented a possible theoretical explanation. It is still unclear
how the suspected mechanism fits in the more general theoretical frameworks
for Gaussification discussed in the literature [18–23]. Future investigations
might focus on possible revivals of non-Gaussianity, similar to the revivals of
coherence observed in ref. [28].
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7. Non-equilibrium physics in the
coupled double well

In this chapter, we will discuss the results following from two different experi-
mental protocols. The physical situations are distinct, but related. Note that,
throughout this chapter, we will denote the relative phase by ϕ(z) (without
the minus sign in subscript).

We will first discuss the case of Josephson oscillations in section 7.1. The
experimental procedure will be described in section 7.1.1 and some simple
theoretical models will be discussed in section 7.1.2. Note that we used a very
similar experimental procedure as was used in ref. [29], where a fast damping
of the oscillations has been observed. We observe a similar damping in the
experiment. The experimental results are presented in section 7.1.3.

Compared to ref. [29], the spatial resolution for our interference pictures
is better, leading to a better longitudinal resolution of the measured relative
phase profiles ϕ(z). On the other hand, we lack the atom number resolu-
tion of [29]. Therefore, it is challenging for us to measure the evolution of
the global atom number imbalance between the two clouds, a quantity which
was observed in ref. [29]. Also note that we work in a different parameter
regime. We are having longer condensates and smaller oscillation frequencies.
Our measurements should therefore be understood as being complementary
to [29], as we are looking at different parameter regimes and observables. Un-
fortunately, no complete theoretical description of the measurements presented
in [29], or our measurements, exists yet. Therefore, it is hard to say whether
the same physical processes occur in the two cases.

In section 7.2, we will discuss what happens, when we start with two inde-
pendent condensates in thermal equilibrium and lower the separating barrier
in order to introduce tunneling. We think that in some respects this is similar
to starting Josephson oscillations with a random initial phase. Note that theo-
retical predictions for the investigated physical situation were made in ref. [30].
Under certain conditions, universality was predicted for the evolution. How-
ever, in the experiment, this proofed to be very difficult to observe.

Note that both the results presented in sections 7.1 and 7.2 are still some-
what preliminary and more work needs to be done to fully understand the
experimental results. In particular, we are lacking robust theoretical calcula-
tions necessary for a quantitative comparison between experiment and theory.

We will end the chapter by making concluding remarks and giving an outlook
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7. Non-equilibrium physics in the coupled double well

about possible next steps in section 7.3. This includes a discussion about how
we might be able to circumvent some of the problems encountered with the
experimental procedures used so far by investigating other physical scenarios
not discussed yet.

7.1. Josephson oscillations

7.1.1. Experimental procedure

In order to start Josephson oscillations, we want to prepare two condensates
with a global phase difference in a double well potential with tunneling. The
spatial phase fluctuations along the longitudinal z direction should ideally be
small. In the following, we will discuss how we prepare such an initial state.

The atomic cloud is cooled into a single well trap by forced evaporative
cooling. We use a single well trap with a slight radio frequency dressing.
The amplitude of the dressing fields is not big enough to create a double
well potential, it only deforms the single well trap, giving it a more flat trap
bottom in the transverse x direction. Starting from this slightly deformed
trap when splitting one condensate into two seems to be beneficial in some
respects [26, 35].

To get a cold cloud of atoms in this slightly dressed single well trap, we apply
a procedure very similar to the one discussed in section 5.2. We first pre-cool
in the static trap on the atomchip. We then switch off the cooling fields before
the dressing amplitude is ramped up leading to the deformed single well trap.
Shortly after the ramp, the cooling fields are switched on again for a 470 ms
long frequency ramp. Subsequently, the cooling fields still stay on for 60 ms
with the final frequency of the ramp. After the cooling amplitude is switched
off, we still wait for approximately 45 ms before ramping up the amplitude of
the dressing fields, splitting the single cloud into a pair.

The first amplitude ramp takes 16 ms and leads to a double well potential
with tunnel coupling. The amplitude ratio between the two wires creating the
dressing fields is chosen in such a way that the two wells have approximately
the same total atom number right after this first ramp. This criterion leads to
slightly different voltage (and also current) amplitudes for the two wires. The
second ramp takes 2 ms and increases the overall amplitude of the dressing
fields further. Simultaneously, the amplitude ratio for the two wires is ramped
towards equal voltage amplitudes. This leads to a tilt in the double well poten-
tial, i.e., the two wells are not only separated in the horizontal direction, but
also in the vertical direction. We, therefore, have a global energy difference
between the two wells, mostly coming from a difference in the gravitational
potential [87]. The condensates are held in the tilted double well potential for
a varying amount of time, during which a global phase difference is accumu-
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7.1. Josephson oscillations

lated due to the global energy difference. Subsequently, the second ramp is
performed in reverses, recoupling and untilting the double well in 2 ms.

The accumulated phase difference leads to the start of the Josephson oscil-
lations after the recoupling. Note that usually we don’t hold the clouds in the
tilted double well at all, the phase accumulation during the ramps are enough
to start the oscillations. Only for the data presented in fig. 7.5 we used differ-
ent non-zero holding times in order to compare the effects of different starting
phases. The data are also used in fig. 7.4. For all other presented data we did
not use any hold time in the tilted double well.

After the recoupling, the clouds are held for varying amount of time in
order to get the time evolution of the investigated observables. For a general
discussion about how we can measure time evolution in our experiment, see
section 4.3.

7.1.2. Theoretical model

As already mentioned above, we do not have a satisfactory theoretical un-
derstanding of the physical processes yet. However we will still discuss a few
simple theoretical models in this section.

Let us first discuss the theoretical predictions following from the sine-Gordon
Hamiltonian (2.65). In this case, the equation of motion for the phase field is
given by

∂2

∂t2
ϕ(z, t) = c2(z)

∂2

∂z2
ϕ(z, t)− ω2

0(z) sin [ϕ(z, t)] . (7.1)

with

ω0(z) =

√
4J

g1Dρ0(z)

~
. (7.2)

Here c(z) =
√
g1Dρ0(z)/m is the local speed of sound. Please consult sec-

tion 2.4.2 for an explanation of the other parameters. Note that eq. (7.1)
is valid for the quantum sine-Gordon model as well as its classical version.
However, in the following we will only be concerned with the classical fields
approximation. Therefore we didn’t write any hats in eq. (7.1).

Neglecting the spatial derivative in eq. (7.1), the phases for the different
positions z evolve independent of each other. For each position z along the
longitudinal direction of the clouds, we get the equation of motion

∂2

∂t2
ϕ(z, t) + ω2

0(z) sin [ϕ(z, t)] = 0 (7.3)

for a simple pendulum. For small amplitudes, eq. (7.3) leads to harmonic
oscillations with the angular frequency ω0(z).

Let us now discuss the implications of a non-homogeneous density profile
ρ0(z) onto the solutions of eq. (7.1). We will assume a parabolic density
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Figure 7.1.: Oscillations for the sine-Gordon equation without initial fluc-
tuations. Equation (7.1) is solved for ϕ(z, t = 0) = π/2 and ∂

∂tϕ(z, t)
∣∣
t=0

= 0.
(a) Shows the time evolution of ϕ(z, t) for z = 0 (solid red line) and z = 24 µm
(solid blue line). The dash-dotted lines show the corresponding results of eq. (7.3).
One sees that the solid and dashed lines coincide at the beginning, but then start
to deviate as a phase gradient builds up. (b) The green curve shows the angular
frequency ω0 given in eq. (7.2), the orange line represents the results from fitting
the solution of the damped pendulum (7.4). The first 40 ms as shown in (a) are
fitted. For a more detailed discussion, see the main text.
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7.1. Josephson oscillations

profile following from the Thomas-Fermi approximation (see section 2.2.1)
for a harmonic trapping potential. We choose typical trap frequencies and
a typical total atom number with zero initial imbalance between the wells.
Moreover, we assume to initially have no spatial phase or density fluctuations.
The initial conditions are simply given by a global phase, i.e.,

ϕ(z, t = 0) = ϕ0,

and zero relative density, i.e.,

∂

∂t
ϕ(z, t)

∣∣∣∣
t=0

= 0.

Using this assumption, we solve eq. (7.1) numerically and show the results
in fig. 7.1a. As a comparison, we plot the corresponding solutions of eq. (7.3),
i.e., of the undamped pendulum with local ω0(z). One can see clear devia-
tions. Apparently, the gradient term in eq. (7.1), in combination with the
non-homogeneous background density ρ0(z) leads to a slight damping of the
amplitude of the oscillations and a modified oscillation frequency.

However, the time evolution of the phase ϕ(z, t) at a specific point z seems
to be quite well described by the solution of the damped pendulum

∂2

∂t2
ϕ(z, t) + η(z)

∂

∂t
ϕ(z, t) + ω2

0(z) sin [ϕ(z, t)] = 0, (7.4)

with properly chosen parameters. We will therefore do a fit with η(z) and
ω0(z) being the free fitting parameters in addition to the initial conditions
ϕ(z, t = 0) and ∂

∂t
ϕ(z, t)

∣∣
t=0

. The parameters for different points z are fitted
independently of each other.

In fig. 7.1b the fitted1 ω0(z) is compared to eq. (7.2). One sees that the
gradient term in eq. (7.1) leads to a slight slowing down of the oscillation in
the middle of the cloud and a speed up for the parts closer to the edges. This
is compatible with the simple picture in which the middle of the cloud ‘drags’
its edges behind. We will apply the same analysis to the experimental data
in section 7.1.3 and will see a much stronger spatial dependence of the fitted
ω0(z). This points to a spatial variation of the tunneling strength J as has
been already observed in fig. 5.2b.

So far, we assumed that no spatial density or phase fluctuations are present
in the initial state. However, after splitting, we expect some spatial fluctua-
tions of the relative density. Unfortunately, the splitting process is very hard

1Note that in this case we fixed ∂
∂tϕ(z, t)

∣∣
t=0

= 0 and only fitted the remaining three
parameters. If we wouldn’t do that, we would basically get the same curve, only with a
bit more noise. For the experimental results presented in section 7.1.3, we will also fit
∂
∂tϕ(z, t)

∣∣
t=0

= 0.
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7. Non-equilibrium physics in the coupled double well

to model theoretically [11,35]. A simple description assumes that every atom,
independently from all the other atoms in the trap, has 50% chance to go
either to the right or left well, leading to shot-noise fluctuations in the relative
density [65, 88]. The relative phase after splitting will be very small, we can
therefore neglect it in many cases.

This is a somewhat sensible assumption for the fluctuations right after split-
ting and was used for the theoretical description of the experimental results
in ref. [24, 26]. For the results presented in section 7.1.3, the initial split-
ting is followed by a further splitting and tilting as discussed in section 7.1.1.
Ideally this should only imprint a global relative phase. However, we expect
that during this time already some dephasing occurs, i.e., some of the den-
sity fluctuation already rotate into the phase quadrature. But at least in first
approximation it would be sensible to assume shot noise for the initial den-
sity fluctuations as well as a uniform initial phase. With this assumptions,
one can draw stochastic initial conditions and subsequently calculate the time
evolution according to eq. (7.1). Expectation values are then calculated by
averaging over the different stochastic realizations. Preliminary results show
a rather fast damping of the Josephson oscillations. However it is still unclear
whether quantitative agreement with the results presented in section 7.1.3 can
be achieved.

Another similar approach would be to calculate the evolution with the 1D
Gross-Pitaevskii equation with stochastic initial fluctuations. One could as-
sume shot noise in the relative degrees of freedom and thermal fluctuations
in the common degrees of freedom. In this approach, one could also, at least
heuristically, consider the breathing motion introduced by the splitting process
and observed in the experimental data.

A more complete theoretical description would use the 3D Gross-Pitaevskii
equation. Even though this approach doesn’t give a correct description of the
splitting process, it should at least describe the breathing introduced by the
splitting correctly.

7.1.3. Experimental results

Let us start by discussing the spatially resolved time evolution of the circular
mean of the relative phase ϕ. It is defined as

ϕ̄ = arg
(〈

eiϕ
〉)
, (7.5)

where the expectation value is obtained by averaging over the different exper-
imental realizations.

In fig. 7.2a, we show the results for one particular experimental measure-
ment. The time evolution for two different points along the longitudinal direc-
tion is shown. One sees a clear spatial dependence of the oscillation frequency.
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Figure 7.2.: Circular mean phase and local oscillation frequency. (a) The
circular mean ϕ̄ of the phase is shown as a function of the time t. The red and blue
bullets show the experimental results for z = 0 and z = 20 µm respectively, with the
errorbars giving the 80% confidence intervals calculated using bootstrapping. Note
that the oscillation for the point further towards the edge of the cloud (z = 20 µm)
is clearly slower than the oscillation in the center (z = 0). The solid lines show
corresponding fits with the solution of the damped pendulum. The green shaded
area indicates which times we used as input for the fit. (b) The orange bullets show
the spatial variance of the fitted ω0(z). The solid green line shows eq. (7.2) with
constant tunnel coupling J and the experimentally obtained background density
ρ0(z). Note that the asymmetry of the green line is due to an asymmetry in the
background density.
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7. Non-equilibrium physics in the coupled double well

Moreover, we observe a fast damping of the oscillations amplitude similar to
what was observed in [29].

The evolution of ϕ̄ seems to be rather well described by the solution of
eq. (7.4) with appropriate (spatially dependent) parameters. To infer the
parameters, a weighted least squares fit was performed. As weights, we used
the inverse variances obtained by bootstrapping. The fitted functions are
compared to the experimental results in the figure.

Figure 7.2b shows the spatial dependence of the fitted ω0(z). One sees that
the experimentally obtained ω0(z) cannot be explained by the inhomogeneous
background density ρ0(z) alone. We suspect a spatially depending tunnel
coupling as already discussed in section 5.3 and fig. 5.2b.

The spatial dependence of the oscillation frequency also manifests itself in a
bending of the interference fringes. To be more precise, we look at the atomic
density integrated along the y direction as recorded by the vertical imaging
system. Averaging the atomic density over the different experimental shots
for the particular evolution times t gives the results presented in fig. 7.3.

Note that figs. 7.2 and 7.3 only show the results for one particular experi-
mental measurement. However, similar results are obtained for a number of
different experimental parameters (not shown). In fig. 7.4, we see the fitted ω0

for all the different experimental parameter sets plotted as a function of the
fringe spacing. As expected, the oscillation frequency grows with increasing
fringe spacing (decreasing double well separation).

As already discussed in section 7.1.2, the spatial variation of the oscillation
frequency can lead to a damping of the oscillations amplitude. The mecha-
nism is simply a dephasing between different points z of the cloud. Another
source of dephasing would be the initial density and phase fluctuations, which
change from shot to shot. Global fluctuations, therefore, will lead to a dephas-
ing between the different experimental realizations. In addition, the spatially
varying fluctuations again lead to different oscillations for the different val-
ues of z and therefore to a dephasing between the different points along the
longitudinal direction as well as the different experimental realization.

If the global fluctuations, leading to a dephasing between the different ex-
perimental realizations, would be the main reason for the damping, it should
be evident from growing uncertainty for the circular mean phase. However,
no such growth of the errorbars is apparent in fig. 7.2a. On the other hand,
the spatial dephasing would not necessarily lead to growing errorbars for ϕ̄.
Instead, one should see a transfer of energy from the zero-mode (spatially
constant) to higher modes (fluctuating with z). This in turn might lead to a
decrease in the integrated contrast of the interference fringes. The decrease of
contrast should depend on the amount of energy we put into the system, i.e.,
on the imprinted start phase.

To test this hypothesis, we took several measurements in the same double
well trap, varying the start phase. The results for the evolution of the inte-
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7.1. Josephson oscillations

Figure 7.3.: Mean interference pictures, for the same experimental measurement
as presented in fig. 7.2. The pictures show the 2D atomic density averaged over all
experimental repetitions for the evolution time stated above the plots. One sees the
bending of the interference fringes caused by the spatially dependent oscillation fre-
quency. The spatially dependent circular mean ϕ̄ is shown below the corresponding
mean interference pictures. Note the apparent longitudinal breathing which will be
discussed later on in the main text.
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Figure 7.4.: Oscillation frequency as a function of the fringe spacing. As
for fig. 7.2b, we obtain ω0 from fitting the circular mean phase with the solution
of the damped pendulum. However, here we do not fit the local ϕ̄ but the circular
mean phase also averaged over the central 42 µm of the cloud. We therefore get one
value of ω0 per experimental parameters set, which is plotted here as a function of
the fringe spacing.
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Figure 7.5.: Evolution of the integrated contrast for different start phases.
The squared integrated fringe contrast c2(L) calculated according to eq. (7.6) is
shown as a function of time. The integration length is L = 42 µm. The bullets
represent the experimental results for different start phases. The measured circular
mean phase (averaged over experimental shots and length L) at t = 0 is 0.09π
(orange), 0.33π (red), 0.48π (blue) and 0.83π (green). The errorbars represent
80% confidence intervals obtained by using bootstrapping. The solid lines act as a
guide to the eye.
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7.1. Josephson oscillations

grated fringe contrast c(L) (integration length L) are shown in fig. 7.5. Note
that we calculate c(L) via [65]〈

c2(L)
〉

=
∑
z,z′

C (z, z′) (7.6)

where C (z, z′) is the periodic phase correlation function defined in eq. (6.2).
The summation runs over all values z and z′ in the interval [−L/2, L/2]. This
way of obtaining the integrated contrast seems to be experimentally more
reliable than a direct measurement.

The results presented in fig. 7.5 show more or less what we expected. Start-
ing from a high initial contrast, we see a decay for approximately the first
15 ms. The decay is stronger for bigger initial phases. The timespan of the
contrast decay roughly corresponds to the timespan for the damping of the os-
cillations (not shown). This is consistent with the picture of having an energy
transfer from the zero-mode to the low lying non-zero modes. After the zero
mode is completely damped, there is no energy left to be transfered and the
contrast decay stops.

Following the initial decay, the contrast grows again. A possible explana-
tion for this might be the transfer of the energy to even higher modes. The
higher modes store more energy for a given amplitude than the lower modes.
For the same amount of energy, they therefore don’t decrease the contrast
that strongly. In addition, the more rapidly fluctuating higher modes are at-
tenuated more strongly by the finite imaging resolution (see section 5.4.2),
which increases the measured contrast further. Another possible explanation
for the growth in contrast might be the transfer of energy from the relative
to the common degrees of freedom. However, as already mentioned above,
we don’t have a robust theoretical prediction yet. A quantitative comparison
between experiment and theory will be necessary to check for the occurrence
and importance of the proposed mechanisms.

The increase of the contrast after the damping of the oscillations can also
be observed as an increase of the coherence factor 〈cos(ϕ)〉. Looking at its
evolution for measurements with the same starting phase, but different tunnel
coupling, we found the curious universal behavior shown in fig. 7.6. All the
curves seem to collapse onto one when rescaling the time axis with the fitted
ω0. Let us state that it’s not clear yet whether this collapse is exact and
robust. Further measurements with a wider range of ω0 as well as a theoretical
prediction would be desirable.

Note that we also find the collapse to a single curve for the time evolution
of the integrated contrast c(L) when rescaling the time axis (not shown). We
just chose to show the coherence factor because we first observed the effect for
it. To check whether the universal scaling appears for further observables will
be a task for the future.
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Figure 7.6.: Universal evolution of the coherence factor. The bullets represent
the experimental data for measurements with the same starting phase but different
double well separations leading to different tunnel coupling strengths. The solid lines
are a guide to the eye. On the vertical axis the coherence factor 〈cos(ϕ)〉 is shown.
Note that the expectation value is calculated by averaging over the experimental
realizations as well as the central 42 µm of the cloud. The errorbars represent
80% confidence intervals obtained by using bootstrapping. On the horizontal axis
we show the time in ms for the left subplot or rescaled with ω0/2π (the inverse
oscillation period for small amplitudes) for the right subplot. The values for ω0 have
been obtained the same way as in fig. 7.4. The fitted ω0/2π are 149 Hz (orange),
140 Hz (red), 132 Hz (blue), 111 Hz (green) and 107 Hz (purple). One sees that the
rescaling more or less leads to a collapse of the curves after the damping of the
initial oscillations.
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The results presented in fig. 7.6 have been obtained within a single ex-
perimental measurement. There is another set of data which were obtained in
different experimental measurement but have roughly the same starting phase.
For this data set we also observe the universal scaling behavior (not shown).
However, the rescaling does not work as well as for the results shown in fig. 7.6.

Let us now make some remarks about the longitudinal breathing motion. We
see such breathing for all experimental measurements. Note that the common
breathing of the two clouds is due to the splitting process and independent
of the tunneling dynamics. We checked this by investigating the breathing
dynamics for the data presented in fig. 7.6. No dependence on the tunnel
strength was found. However, we are still unsure whether the tunneling can
introduce a relative breathing between the clouds, the cone-like shape for some
of the mean interference pictures shown in fig. 7.3 might be an indication for
that.

In conclusion, we triggered Josephson oscillations in a double well potential
and saw fast damping similar to ref. [29]. We have shown that this damping
coincides with a decrease in the interference contrast, which is stronger for
bigger amplitudes of the oscillations. Moreover, we have observed a negative
correlation between oscillation frequency and double well separation as well
as confirmed the non-homogeneity of the tunneling strength already observed
in section 5.3. Future experiments might be performed in a box trap, starting
from a double well trap with strong tunnel coupling. This should eliminate
the breathing motion observed for all measurement done so far.

7.2. Tunnel coupling two independent
condensates

7.2.1. Preparation of the system

The initial preparation of the system is very similar to what is discussed in
section 5.2, the only difference lies in the used timings and double well sepa-
rations. Here, we will always cool into a double well trap with large barrier,
which completely separates the clouds in the two wells. The frequency of the
cooling fields is ramped in 470 ms, the final frequency of the ramp is then held
for 60 ms more before switching off the cooling fields. Subsequently, we wait
for various time (ranging from 0 to 60 ms) before ramping down the ampli-
tude of the dressing fields in order to introduce tunneling between the wells.
During this ramp, the amplitudes ratio between the two wires creating the
dressing fields is ramped as well. The used ratios are chosen so that one gets
the same atom number in the two wells when evaporatively cooling into the
initial/final double well potential. After switching on the tunnel coupling, we
wait for different hold times in order to investigate the time evolution.
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Figure 7.7.: Evolution of the coherence factor after recoupling. Tunneling
between two independent condensates is switched on by ramping down the double
well barrier in 2 ms. The time t = 0 corresponds to the end of the ramp. The bullets
represent the experimental results, with the different colors marking different double
well separations. The errorbars represent 80% confidence intervals obtained by using
bootstrapping. The solid lines are a guide to the eye. The fitted fringe spacings λF

are 35 µm (orange), 36 µm (red), 39 µm (blue) and 46 µm (green).

7.2.2. Experimental results

We will start by discussing the evolution of the coherence factor 〈cos(ϕ)〉. The
experimental results for the evolution in double well traps with different barrier
heights are presented in fig. 7.7. We see that starting from zero coherence
factor (completely random phase), a phase locking between the condensates
appears during the evolution. The phase locking grows faster for higher values
of the fitted fringe spacing (corresponding to smaller double well separations).
This is what one would naively expect and is in accordance with the results
presented in figs. 5.2a and 7.4.

Note that the evolution in fig. 7.7 looks quite similar to the results presented
in fig. 7.6. Moreover, note that in all cases, a fast initial increase of the coher-
ence factor is followed by a slower growth. These observations are somewhat
consistent with the simple picture of the different experimental shots being
interpreted as Josephson oscillations with random start phase. The fast initial
increase in 〈cos(ϕ)〉 corresponds to the damping of the oscillations. The much
slower subsequent growth is equivalent to the increase in contrast seen for later
times in fig. 7.5.

Using the relation between fringe spacing and oscillation frequency shown
in fig. 7.4, we can obtain a guess for ω0 for the data presented in fig. 7.7.
Analogous to fig. 7.6, we can subsequently rescale the time axis and see if
the curves collapse onto one. The results of this are ambiguous, the curves
definitely get closer to each other when rescaling, but don’t collapse as nicely as
in fig. 7.6. As we didn’t control for the different parameters (e.g. temperature)
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7.3. Outlook

Figure 7.8.: Mean interference pictures. Similar to the mean interference pic-
tures in fig. 7.3, but for the results corresponding to the blue curve in fig. 7.7. One
sees that at time t = −2 ms, before the double well barrier is ramped down, the
relative phase is completely random, leading to the blob seen in the mean interfer-
ence picture. At t = 0, the ramp is finished. Already at t = 1 ms, one can see the
appearance of a central fringe, a clear sign for phase locking.

and don’t have a theoretical understanding of the processes, we decided not
to show the rescaling here, but leave it for future works.

Note that we are not sure why for the red curve presented in fig. 7.7, the
coherence factor decreases again for long times and whether that would also
have happened for the other curves, for longer times than investigated. The
reason for the decrease might just simply be technical noise.

Note that some mean interference pictures are presented in fig. 7.8. They
illustrate the rephasing process for one of the curves shown in fig. 7.7.

7.3. Outlook

So far, for all the results presented in this chapter, we only looked at observ-
ables periodic in the relative phase. It would be interesting to investigate the
type of phase correlations discussed in chapter 5. Especially, it would be in-
teresting to look at a possible build-up of non-Gaussianity. However, we think
that the phase profiles for the data presented in this chapter fluctuate too
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7. Non-equilibrium physics in the coupled double well

strongly for continues phase profiles to be extracted correctly with the proce-
dure discussed in section 4.2. The reason for the strong fluctuations is that we
add a lot of energy to the system by switching on the tunnel coupling for an
initial state with global (section 7.1) or random (section 7.2) phase difference.

Other experimental protocols might lead to less strong fluctuations and,
therefore, might be better suited for the investigation of higher-order corre-
lation functions as defined in section 5.1. One could for example start from
the double well with strong phase locking (small Gaussian fluctuation) and
subsequently decrease, but not completely switch off, the tunneling strength.
Thermalization (if it happens) should then lead to a build up of non-Gaussian
fluctuations. As no energy is added to the system by the change in tunnel
coupling, but rather taken out of the system, we expect the phase profiles to
fluctuate much less strongly.
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A. Optical Bloch equations

The optical Bloch equations [40] describe the interaction of a quantum-me-
chanical atom with a classical electromagnetic field. The ground and an excited
state of the atom can each have several magnetic sub-states. The transition
frequency between any combination of ground and excited magnetic sub-state
is assumed to be near resonant with the electromagnetic field.1 Spontaneous
emission is considered through a decay term for the excited states.

The goal of the calculations using the optical Bloch equations is to obtain
an effective cross-section for the absorption of light. This is relevant for prob-
ing the atom cloud via absorption imaging (see chapter 3). The numerically
obtained results are presented in section A.2 and also fig. A.5. Readers only
interested in this results might skip the next section A.1, which is only about
stating and explaining the equations.

A.1. The equations

In this section, we will state the full expressions of the optical bloch equations
used to obtain the results presented in section A.2. Without loss of generality
we will assume the quantization field to always be along the z direction. Other
field configurations can easily be investigated by performing a rotation of the
coordinate system. We will discuss this in detail at the end of this section.

We image the cloud of 87Rb by using the D2 (52S1/2 → 52P3/2) transition.
The 52S1/2 ground state has the quantum numbers Lg = 0, S = 1/2, Jg = 1/2
and I = 3/2.2 The total angular momentum quantum number can therefore
be either 1 or 2, in the case of our experiment we have Fg = 2. The 52P3/2

first excited state has Le = 1, S = 1/2, Je = 3/2 and I = 3/2. The total
angular momentum quantum number can therefore be either 0, 1, 2 or 3, in
the case of our experiment we have Fe = 3. The energy difference between
ground and excited state will be denoted by ~ω0. Numerical values for the
on-resonance transition frequency ω0/2π can be found in ref. [40]. Note that
the first excited state could also have J = 1/2 which would lead to the D1 line.

1This assumption is necessary to justify the rotating wave approximation used to obtain
the optical Bloch equation.

2The standard nomenclature is used, denoting the orbital angular momentum quantum
number by L, the spin quantum number by S, the total electronic angular momentum
quantum number by J , the nuclear angular momentum quantum number by I and the
total atomic angular momentum quantum number by F .

127



A. Optical Bloch equations

The equations will be stated for the density matrix in the basis of the ground
and excited mF -states:

ρgmg, gm′g = 〈gmg| ρ̂ |gm′g〉
ρeme, gmg = 〈eme| ρ̂ |gmg〉
ρeme, em′e = 〈eme| ρ̂ |em′e〉.

(A.1)

Here |gmg〉 represent the ground mF -states with mg = −2, . . . , 2 and |eme〉
the excited ones with me = −3, . . . , 3. In order to get simpler equations one
defines

ρ̃eme, gmg = ρeme, gmg e
iωLt

ρ̃gmg, eme = ρgmg, eme e
−iωLt,

(A.2)

where ωL = 2πνL, with νL being the frequency of the laser light.
Furthermore, we will need the Larmor frequencies for the ground and excited

states. They are given by

ωl =
µBgFB

~
, (A.3)

where µB is the Bohr magneton, gF is the Landé factor for the total angular
momentum F of the ground or excited state andB is the magnetic quantization
field. The Landé factor gF can approximately be calculated using [40]

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (A.4)

The values for gJg and gJe can be found in ref. [40]. With this we get
gFg = 0.5006 and gF e = 0.6681. In the following, we will denote the Lar-
mor frequencies of the ground and excited state by ωlg and ωle respectively.

Moreover, we need to calculate the Rabi frequencies. In order to do so, we
will first discuss the form of the electric field. At fixed position, the electric
field of a monochromatic light wave can be written as

~E(t) =

Ex cos(ωLt+ φx)
Ey cos(ωLt+ φy)
Ez cos(ωLt+ φz)

 =
1

2

e−iωLt

Ex e−iφxEy e
−iφy

Ez e
−iφz

+ c.c.


=

1

2

(
~E(+)e−iωLt + c.c.

)
,

(A.5)

where ~E(+) is independent of time. We can write it as

~E(+) = ε~ε0 with |~ε0|2 = ~ε0 · ~ε0∗ = 1. (A.6)

Here ~ε0 represents the unit vector fixing the polarization and ε is the amplitude
of the electric field. Note that a total phase of ~E(+) corresponds to a shift in
time which is unimportant for our calculations.
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Let us give some useful examples for ~ε0. For right-circularly polarized light
propagating in the y direction we have

~ε0 =
1√
2

 1
0
−i

 , (A.7)

and for right-circularly polarized light propagating in the z direction we get

~ε0 =
1√
2

1
i
0

 . (A.8)

In the experiment we can measure the intensity I3 of the laser light rather
than the field amplitude ε. The two quantities can be connected via the
relation

I =
1

µ0c
| ~E(t)|

2
. (A.9)

Here µ0 is the vacuum permeability and c the speed of light. The overline in

| ~E(t)|
2

stands for averaging over one period. We can write

| ~E(t)|
2

=
1

2
|ε|2 . (A.10)

Remembering that a global phase is unimportant for us, we get from eqs. (A.9)
and (A.10)

ε =
√

2µ0cI. (A.11)

Using the introduced quantities, we can write the Rabi-frequencies as

Ω(mg,me) = 〈Fg mg| e~̂r |Feme〉 · ~ε0∗
ε∗

~
, (A.12)

where e is the elementary charge and ~̂r is the position operator. The dipole
matrix elements

~d = −〈Fg mg| e~̂r |Feme〉 (A.13)

are most conveniently evaluated in the spherical basis~e− =
1√
2

 1
−i
0

 , ~e0 =

0
0
1

 , ~e+ =
1√
2

−1
−i
0

 . (A.14)

3Note that we are using the same symbol I for the nuclear angular momentum quantum
number as well as the intensity. However, it should be known from context which
quantity is meant.
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A. Optical Bloch equations

Let us denote the coordinates for this basis by the subscript q = −1, 0 , 1.
Following [40] we can then evaluate

− dq = 〈Fg mg| er̂q |Feme〉 = 〈Fg || e~r ||Fe〉 〈Fg mg |Fe 1me q〉, (A.15)

where 〈Fg || e~r ||Fe〉 is the reduced matrix element and 〈Fg mg |Fe 1me q〉 are
the Clebsch-Gordan coefficients. We can further simplify

〈Fg || e~r ||Fe〉 = 〈Jg|| e~r ||Je〉(−1)Fe+Jg+1+I
√

(2Fe + 1)(2Jg + 1)

{
Jg Je 1
Fe Fg I

}
(A.16)

where {
Jg Je 1
Fe Fg I

}
(A.17)

is the Wigner 6j-symbol. The reduced dipole matrix elements 〈Jg||e~r||Je〉 can
be found in ref. [40].

Note that different definitions (sign conventions etc.) for the Clebsch-
Gordan coefficients and the 6j-symbols exist. To get the right dipole matrix
elements with the above formulas, we have to use the definitions given in
ref. [89]. The relevant equations in the cited edition are (2.34) on page 34,
(3.15) on page 43 and (3.22) on page 44.

Transforming ~ε0 also into the spherical basis (coordinates denoted by ε0q)
we can finally calculate the Rabi-frequencies as

Ω(mg,me) =
∑
q

−dq ε∗0q
ε∗

~
. (A.18)

With this we have everything to state the optical Bloch equations:

d

dt
ρgmg, gm′g =− i ωlg

(
mg −m′g

)
ρgmg, gm′g

− i

2

∑
me

[
Ω(mg,me) ρ̃eme, gm′g − ρ̃gmg, eme Ω∗(m′g,me)

]
+ Γ

∑
q=−1,0,1

ρe (mg+q), e (m′g+q)

〈Fe (mg + q) |Fg 1mg q〉 〈Fe (m′g + q) |Fg 1m′g q〉
(A.19)

d

dt
ρ̃eme, gmg = i ρ̃eme, gmg [(ωL − ω0)− (ωleme − ωlgmg)]

− i

2

∑
m′g

Ω∗(m′g,me) ρgm′g, gmg −
∑
m′e

Ω∗(mg,m
′
e) ρeme, em′e


− 1

2
Γ ρ̃eme, gmg

(A.20)
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d

dt
ρeme, em′e =− i ωle (me −m′e) ρeme, em′e

− i

2

∑
mg

[
Ω∗(mg,me) ρ̃gmg, em′e − ρ̃eme, gmg Ω(mg,m

′
e)
]

− Γ ρeme, em′e

(A.21)

Let’s now go back to discussing the case when we have a magnetic field

~B =

Bx

By

Bz

 , (A.22)

which is not aligned with the z direction. Through a rotation we want to
connect it with

~B′ = | ~B|

0
0
1

 . (A.23)

To be more precise, we want to find a rotation matrix R so that

~B = R~B′. (A.24)

We can then simply use the equations as usual when replacing ~ε0 with ~ε0
′ =

RT~ε0. Note that RT is R−1 for any rotation matrix (orthogonal).
One can easily check that the matrix

R =


By

| ~B⊥|
Bx
| ~B⊥|

Bz
| ~B|

Bx
| ~B|

− Bx
| ~B⊥|

By

| ~B⊥|
Bz
| ~B|

By

| ~B|

0 − | ~B⊥|
| ~B|

Bz
| ~B|

 (A.25)

possesses the desired property. Here we have used | ~B⊥| =
√
B2
x +B2

y . Note
that this is not the only choice of R fulfilling eq. (A.24). Moreover, note that

eq. (A.25) is not defined for | ~B⊥| = 0, in this case we simply choose R as the
unit matrix.

A.2. Calculating the effective cross-section

The goal of this section is to find the effective absorption cross section for
the different imaging situations. We will start by explaining the investigated
quantities and how to calculate them and then present the result for the dif-
ferent imaging systems in section A.2.1 to A.2.3. Note that some results for
the transverse imaging system are also presented in fig. A.5.
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A. Optical Bloch equations

The effective absorption cross section σeff is related to the number of scat-
tered photons per atom nsc

4 via

nsc = σeff
nph

A
, (A.26)

where nph/A is the number of incident photons per unit area. The number
of scattered photons can be inferred from the evolution of the atomic density
matrix which we get as a result of solving the optical Bloch equations. Both
nsc and nph should be understood as the total numbers for the entire imaging
process as this is what we have access to in the experiment.

In general, the cross-section will depend on the imaging duration and a
number of parameters: It depends on the magnetic bias field, whose direction
defines the quantization axis and whose magnitude determines the Zeeman
splitting. It also depends on the polarization and the intensity of the incom-
ing light. For an (effective) two-level system the dependence on the imaging
intensity is simply

σeff = σ

(
1 +

I

Isat

)−1

(A.27)

which is also used in eq. (3.1). Note that for the effective two level systems (see
discussion in section 3.1), eq. (A.27) is only valid after the initial equilibration.
Using the definition eq. (3.4) and eq. (3.5) following from it, we get

σeff =
σ0

α

(
1 +

I

α I0
sat

)−1

. (A.28)

Note that for a real two level transition one has α = 1.
In the following we will calculate the factor α from the results of the optical

Bloch equations. Naively applying5 eq. (A.28) to situations where one doesn’t
have an effective two level system, or where the initial equilibration is not
negligible leads to an intensity dependent α. We will therefore investigate the
dependence of α on all the parameters, the light polarization and intensity as
well as the magnetic bias field and imaging duration. In particular, we will also
investigate whether an intensity independent α is justified for the case of having
perturbations to one of the effective two-level configurations. One example for
such perturbations would be stray fields perturbing the quantization axis (see
section A.2.4).

From the above equations one gets after some basic reformulations

α =
I

I0
sat

(
1

2nsc

texp

τ
− 1

)
. (A.29)

4See the explanation below eq. (A.29) for an exact definition.
5As proposed in ref. [90].
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Here texp represents the imaging duration and nsc is the total number of scat-
tered photons per atom during this time. It consists of all photons absorbed
and not re-emitted plus the ones absorbed and spontaneously emitted. These
photons do not hit the CCD of the camera, in contrast to the photons absorbed
and re-emitted by stimulated emission, which therefore do not contribute to
nsc.

The number of absorbed and not re-emitted photons per atom can simply
by calculated as

nabs(t) = pexc(t)− pexc(0), (A.30)

where pexc is the probability that the atom is in the excited state. We simply
calculate it as

pexc =
∑
me

〈e me| ρ̂ |e me〉 , (A.31)

i.e., by tracing the density matrix over all excited mF -states. The number nsp

of absorbed and spontaneously re-emitted photons can be evaluated via the
integral

nsp(texp) =

∫ texp

0

dt

τ
pexc(t). (A.32)

If we are only interested in the stationary state, i.e., if we neglect the initial
equilibration, we can simplify eq. (A.29). Assuming to be already stationary
at t = 0, we get nabs(t) = 0 and can evaluate the integral in eq. (A.32) to
nsp(texp) = pexc × texp/τ . Equation (A.29) therefore simplifies to

αstat =
I

I0
sat

(
1

2 pexc

− 1

)
. (A.33)

A.2.1. Longitudinal Imaging

In the longitudinal imaging system we use circularly polarized light. The
atomic quantization axis is aligned with the imaging direction. This is one
of the two situations discussed in section 3.1, which leads to an effective two
level transition. The bias field fixing the quantization axis has a magnitude of
1.5 Gauss. The imaging intensity is non-uniform, it’s median value is about
0.15 I0

sat. The 5 and 95% quantiles are typically 0.10 I0
sat and 0.20 I0

sat, respec-
tively. To get these values, the edges of the picture have not been taken into
account. The values should be understood as an order of magnitude and not as
exact values. They depend on the chosen region of interest and will fluctuate
and drift in time. The imaging light is on for 75 µs.

In fig. A.1 we see how the effective α depends on the initial (at the time
the laser light is switched on) mF -state distribution and the imaging intensity.
For the longitudinal imaging system, the quantization field direction coincides
with the Ioffe field direction during the magnetic trapping phase (both aligned
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Figure A.1.: Effective cross section for the longitudinal imaging: Factor α
calculated according to eq. (A.29) as a function of the imaging intensity I. Initially
all atoms are in the mF = 2 state (red), in an even mixture between all mF -states
(green) or in the mF = −2 state (blue). One sees clear differences depending on the
initial mF -state distribution. For the median imaging intensity of typically 0.15 I0

sat

the values are α = 1.000, 1.045 and 1.156, respectively. Starting from the mF = 2
state, 186 photons per atom are scattered for that intensity. The detuning was
chosen to be resonant with the transition between the mF = 2 ground and the
mF ′ = 3 excited state. Note that due the initial equilibration phase this detuning
will not exactly coincide with the maximum of the effective cross section (minimum
of α). However, it was checked that the difference is small (not shown). Both the
left and right subplot show the same data with different limits for the horizontal
axis. The limits in the right subplot coincide with the typical range of imaging
intensities occurring in the experiment (see discussion in the main text).

with the longitudinal z direction). After switching off the trap, the field is
simply ramped up from the Ioffe field value to the value desired for imaging.
As the field is never off, we can expect the mF -state distribution to be given
by the distribution right after the switch-off of the magnetic trap.

If we release the atoms from the rf-dressed trap, we can tune the phase
of the rf-fields so that the majority (typically about 90%) of the atoms will
end up in the mF = 2 state [35]. If the bias-field is positive and we use left
circularly polarized light,6 there will be no rearranging between the different
mF ground states. Only the populations between the mF = 2 ground state
and the mF ′ = 3 excited state have to equilibrate, which happens very quickly.
The expected value α = 1 is reached even for very small exposure times or
small imaging intensities.

To release the atoms out of the static trap (no rf-dressing) we usually switch-
off all fields except the Ioffe-field abruptly (the same is also done in the rf-
dressed trap). By doing so, we get a mixture of different mF -states. The exact
distribution between the mF -states was to my knowledge never investigated

6We think that this is used in the experiment. However, we never explicitly checked it.
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A.2. Calculating the effective cross-section

in detail. By ramping the fields in a particular way, one can also manage to
get most atoms in a certain mf-state after the static-field trap is switched off.

If we start from a state where all mF levels are occupied evenly, one sees
substantial deviations from unity for the value of α (see fig. A.1). This is due
to the redistribution between the different mF groundstates. The deviations
are even larger when initially all atoms are in the mF = −2 state, as the
redistribution takes even longer in this case.

Note that for fig. A.1 the detuning from the zero-field resonance frequency
was chosen to be resonant with the transition between the mF = 2 ground
and the mF ′ = 3 excited state. The detuning can be calculated as

∆ω = 3ωle − 2ωlg, (A.34)

where ωl g,e are the Larmor frequencies of the ground and excited state respec-
tively. They are calculated by eq. (A.3). Putting in numbers, we get

∆ω = 2π 1.404
MHz

G
×B. (A.35)

Note that apart from the detuning, also the effective α depends on B due to
the equilibration phase.

As already discussed in section 3.1, the scattering cross-section after the
initial equilibration will follow a Lorentzian function with the natural line-
width. As can be easily seen from eq. (3.4), the quantity 1/α will do the same
when neglecting the initial equilibration. Not neglecting it, the line-shape will
be broadened and slightly shifted depending on the magnetic field strength.

A.2.2. Vertical Imaging

In the vertical imaging system we use circularly polarized light. The atomic
quantization axis is aligned with the imaging direction. This is one of the
two situations discussed in section 3.1, which leads to an effective two level
transition. The bias field fixing the quantization axis has a magnitude of 1.76
Gauss. As for the two other imaging systems, the intensity is non-uniform.
Considering a typical region of interest, the median is 0.22 I0

sat, the 5 and
95% quantiles are 0.07 I0

sat and 0.47 I0
sat, respectively. The imaging intensity

fluctuates quite a bit more than for the longitudinal and also the transverse
imaging system. Again we state these values just to give an order of magnitude,
the intensities fluctuate and drift with time. Due to the design of the imaging
system [33], the usable region of interest is strongly limited and usually closely
resembles the choice for which we specified the median and quantiles. The
imaging light is on for 50 µs.

The vertical imaging system is basically only used to image matter-wave
interference after releasing the atoms from a double well trap created by rf-
dressing. All atoms should therefore be in the mF = 2 state after the magnetic
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Figure A.2.: Effective cross section for the vertical imaging: Like fig. A.1,
but for the parameters of the vertical imaging system. For the median imaging
intensity of typically 0.22 I0

sat the values are α = 1.001 when starting with all atoms
initially in mF = 2, α = 1.052 when starting with an equal mixture of all mF -states
and α = 1.182 when all atoms are initially in the mF = −2 state. Starting from
the mF = 2 state, 171 photons per atom are scattered for that intensity. Again, the
limits for the horizontal axis in the right subplot coincide with the typical range of
imaging intensities occurring in the experiment (see discussion in the main text).

trap is switched off. However, currently all fields are switched off when releas-
ing the atoms. Subsequently, the imaging field is turned on abruptly. It is
therefore likely that we get a mixture of atoms in the different mF -states after
time of flight. In the future we are planning to slowly ramp down the Ioffe-field
and at the same time slowly ramp up the imaging field so that most of the
atoms stay in the mF = 2 state.

As for the longitudinal imaging system we discuss the dependence of α on
the initial mF -state distribution in fig. A.2. As it is basically the same imaging
situation, the magnetic field dependence eq. (A.35) of the detuning remains
valid.

A.2.3. Transversal Imaging

In the transverse imaging system we use linearly polarized light aligned with
the atomic quantization axis. The imaging direction is then of course perpen-
dicular to it. This is one of the two situations discussed in section 3.1, which
leads to an effective two level transition. The bias field fixing the quantization
axis is exactly the same (in direction and magnitude) as for the longitudinal
imaging. It has a magnitude of 1.5 Gauss. As for the two other imaging sys-
tems, the intensity is non-uniform. Considering the whole picture, the median
is 0.31 I0

sat, the 5 and 95% quantiles are 0.19 and 0.49, respectively. Again
we state these values just to give an order of magnitude, the intensities will
fluctuate and drift in time. As for the longitudinal imaging, the light is on for
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Figure A.3.: Effective cross section for the transverse imaging: Like fig. A.1
but for the parameters of the transverse imaging system. Note that it does not
matter whether one starts with initially all atoms in the mF = 2 or the mF = −2
state. For the median imaging intensity of typically 0.31 I0

sat the values are α = 1.860
when starting with all atoms initially in mF = 2 or mF = −2, and α = 1.853 when
starting with an equal mixture of all mF -states. Starting from the mF = 2 state,
203 photons per atom are scattered for that intensity. The detuning is 0, which gives
the largest scattering cross-section in this imaging situation once the stationary mF -
state distribution has been reached. Due to the initial equilibration, the minimal
α value might be reached for a slightly different detuning. Again, the limits for
the horizontal axis in the right subplot coincide with the typical range of imaging
intensities occurring in the experiment (see discussion in the main text).

75 µs.

Also the switching-off of the trap and the ramping up of the quantization
field happens exactly like for the longitudinal imaging, the whole discussion
about the mF -state distribution therefore also applies to the transverse imag-
ing. Again we investigate the effective α value as a function of intensity for
the different initial mF -state distributions. The results are shown in fig. A.3.

One sees that the dependence on the imaging intensity and initial mF -state
distribution is way less pronounced compared to the results for the longitudinal
and vertical imaging system, despite the number of photons scattered per
atom being roughly the same. The reason for this is that the stationary mF

distribution is much broader and therefore achieved quicker. In the stationary
distribution we have 43% of the atoms in the mF = 0 state, 24% in each of the
mF = ±1 state and 4% in each of the mF = ±2 state. These are the values
for the typical median intensity of 0.31 I0

sat. The populations change slightly
with imaging intensity. They also change with magnetic field strength.

After the initial equilibration phase, the largest possible scattering cross-
section is achieved for 0 detuning, independent of the strength of the quanti-
zation field. The value for α however depends on the magnetic field strength
even if neglecting the initial equilibration. The reason is that several mF states
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Figure A.4.: Effective cross section for the transverse imaging: The de-
pendence of α on the magnetic field strength B in Gauss is shown. Note that in
the experiment B = 1.5 G is used. The imaging intensity is 0.31 I0

sat for this plot.
Initially all atoms are in an equal superposition between the different mF -states.
The detuning is 0.

are populated also in the stationary distribution. An increasing quantization
field increases the Zeeman splitting, detuning the transitions between the dif-
ferent mF levels. As shown in fig. A.4, this leads to an increase in the value
of α, i.e., to a reduction in the scattering cross section, with magnetic field
B. Note that also the linewidth increases with field strength (fig. A.5b), the
lineshape stays Lorentzian (fig. A.5b). The Lorentzian lineshape follows from
the observation that we have an effective two-level transition.

A.2.4. Influence of stray fields

In the experiment, the ideal detuning, i.e., the detuning with the largest effec-
tive scattering cross section can be found by maximizing the measured atom
number. As stated in eq. (A.35), the optimal detuning should depend on the
magnetic field strength for the vertical and the longitudinal imaging. It should
be independent of it for the transverse imaging.

To estimate the stray fields during imaging, we measured the ideal detuning
for the longitudinal imaging system for three different quantization fields. The
used values are B = 0 G, 0.6 G and 1.5 G. As already mentioned above the
ideal detuning for the transverse imaging system should be independent of the
strength of the quantization field and coincide with the zero field resonance
frequency for the atomic transition. To calibrate this zero line for the detuning,
we also determined the ideal detuning for the transverse imaging system for
the above stated values of the quantization field.

Assuming eq. (A.35) to be valid, the data for the longitudinal imaging should
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(b) Linewidth increasing with the strength of the magnetic bias field

Figure A.5.: Effective cross section for the transverse imaging: As we
have an effective two level-transition, the lineshape of the absorption cross-section
stays Lorentzian for all bias fields. In (a), the red bullets show the results of the
optical Bloch equations for a bias field of B = 20 G. Note that the stationary
reduction factor αstat calculated according to eq. (A.33) is used. The quantity
1/αstat proportional to the cross-section is shown as a function of the detuning ∆ν.
The blue solid line represents a fitted Lorentzian. The agreement with the numerical
results is apparent. In (b), the linewidth Γ (full width at half maximum (FWHM))
of the fitted Lorentzian is plotted as a function of the strength B of the magnetic
bias field (blue bullets). For small bias fields it coincides with the natural linewidth
represented by the solid blue line. Note that in the experiment B = 1.5 G is used.

139



A. Optical Bloch equations

follow the equation

∆ω = 2π 1.404
MHz

G
×
√(

B +Bs‖
)2

+B2
s⊥, (A.36)

where B is the known applied quantization field. The stray fields parallel and
perpendicular to it are denoted by Bs‖ ans Bs⊥, respectively. The best estimate
for the stray fields was determined by a least squares fit giving Bs‖ = 0.24 G
and Bs⊥ = 0.58 G when using all three values for the quantization field. When
using only the data for non-zero quantization field, we get Bs‖ = 0.21 G and
Bs⊥ = 0.63 G. Note that for such high values of the stray field it is not a
priori clear that eq. (A.35) remains valid for the longitudinal imaging system,
especially in the case of vanishing quantization field. Therefore we checked
for self consistency by solving the optical bloch equations with the obtained
values of the stray fields.

In the calculations for the longitudinal imaging parameters, we scanned the
detuning in steps of 0.05 MHz. We found for the case of vanishing quantization
field that the ideal detuning is approximately −0.13 MHz instead of 0. In the
other two cases of B = 0.6 G and 1.5 G, the deviation from the prediction of
eq. (A.35) was smaller than the detuning scanning step of 0.05 MHz.

For the transverse imaging system, we saw from the experimental data that
the ideal detuning does not change with the bias field within the experimental
uncertainty, meaning that the stray fields don’t influence the ideal detuning
very much. The optical Bloch equations predict a resonance shift of 0.11 MHz
when having no quantization field, only the stray fields. In the other two
cases of B = 0.6 G and 1.5 G quantization fields, the shift was smaller than
0.03 MHz.

Bearing this in mind, we decided to trust the values Bs‖ = 0.21 G and
Bs⊥ = 0.63 G, inferred from only the two data points with non-vanishing
quantization field, more and will use them for the further discussion. In fig. A.6
the effective cross section in presence of the stray fields is plotted for the
parameters of the longitudinal imaging. Comparing the plots to fig. A.1, one
sees that the stray-fields have a substantial influence. The same is true for
the transverse imaging system as can be seen from fig. A.7 in comparison
to fig. A.3. As in the case without stray field, the dependence on imaging
intensity and initial mF -state distribution is smaller than for the longitudinal
imaging. Note that we cannot do a similar analysis for the vertical imaging
system as it uses a different quantization field and we don’t know how much of
the stray field is perpendicular and how much is parallel to this quantization
field.
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Figure A.6.: Effective cross section with stray fields for the longitudinal
imaging: Same as fig. A.1 but with the stray fields Bs‖ = 0.21 G and Bs⊥ = 0.63 G
(see discussion in main text).
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Figure A.7.: Effective cross section with stray fields for the transverse
imaging: Same as fig. A.3 but with the stray fields Bs‖ = 0.21 G and Bs⊥ = 0.63 G
(see discussion main text).
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B. Contrast distribution
thermometry

Due to the shortcomings of the fitting procedures discussed in section 5.4.3,
we also tried to fit a value for the parameters λT and q of the sine-Gordon
model from the distribution functions of the integrated interference contrasts
C(L).

The experimental values for C(L) are obtained from the interference pat-
terns recorded with the vertical imaging system. First, the experimentally
obtained two dimensional atomic density is summed over a certain number of
pixels (determining the integration length L) in the center of the cloud. This
summation only runs over the longitudinal z direction, not over the trans-
verse x direction. The resulting 1D density depending on x is then fitted with
eq. (4.13) in order to get the contrast. The obtained value for the fit parameter
C gives the value of the integrated contrast.

To fit the parameters of the sine-Gordon model, we use the full distribution
functions of the squared contrast normalized by its mean

C2(L)/
〈
C2(L)

〉
. (B.1)

One could then just fit the distribution functions for the different integration
lengths with some theory predictions [36]. For long integration lengths, the
effect of the imaging can be approximately considered in the theory predictions
by Gaussian smearing of numerical realizations for ei ϕ(z). However, this seems
to fail for short integration lengths. For fitting measurements with weak or
no tunnel coupling, the fit works well when using only the longer integrating
lengths. However, for coupled scans, we also need the information from the
shorter integration lengths. One therefore has to produce simulated images to
consider the influence of the imaging process.

For the direct fitting of the contrast distribution functions, one would have
to simulate lots of images for a lot of different parameters. This is not feasi-
ble as simulating images and subsequently analyzing them is computationally
costly. We will therefore focus on quantifying the peakedness of the contrast
distributions. This can be done by the differential entropy of the distribution.
For a general probability density function f , the differential entropy is defined
as [91]

h(f) = −
∫

dx f(x) log (f(x)) . (B.2)

143



B. Contrast distribution thermometry

Note that h(f) is lower for higher peakedness. The differential entropy for
the distributions of the squared normalized contrast following from simulated
pictures is shown in fig. B.1.

Comparing the experimentally obtained h and 〈cos(ϕ)〉 to the results for the
simulated pictures, we can infer the best fitting λT and q. One can imagine
several different fitting procedures. For the presented results, we start from
an array of guesses for the thermal coherence length λT . For each guess of λT
and the experimentally obtained coherence factor we calculate the ‘expected’
differential entropy for every integration length. We do this by interpolating
between the data points obtained from the simulated pictures (using exactly
the dependence shown in fig. B.1). The squared deviation between experimen-
tal and ‘expected’ h for the different integration lengths is then summed up
and the best guess for λT found through minimization. Note that by fitting
with this procedure, we need to simulate far less pictures than when fitting
the distribution functions directly.

We obtained a simulated data set for a grid spanned by nine different values
of λT and eleven values of q. The fitting procedure was then tested by applying
it to a different set of simulated pictures (with different values of q and λT ).
The results presented in fig. B.2 look quite promising. However, one should
note the influence of the fringe spacing (see also discussion in section 5.4.2).
The fitting procedure only works well when choosing the same fringe spacing
for the simulated pictures to fit as was used to obtain the data set. Unfor-
tunately, the fringe spacing λF varies quite a bit for experimental data. We
therefore need λF as an additional variable in the simulated data set and a
modified fitting procedure. This was not implemented yet and will be left to
the future.

One should also speak a further word of caution. The whole method relies
on simulating the pictures correctly. Mistakes in the simulation procedure
automatically translate into errors for the fitted parameters. Investigations
concerning robustness, as well as consistency checks with experimental data
should therefore be performed before applying the fitting procedure.

After having obtained a value for λT , we can also fit a value for q. In order
to do so, we will use the connection between λT , 〈cos(ϕ)〉 and q following from
the simulated data. Of course, we could also fit both, the values for λT and q
in one step. However, we are usually more interested in an exact value for λT
than q, that’s why we chose the two step procedure for the discussion in this
chapter.
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Figure B.1.: Differential entropy of the distribution functions for the nor-
malized squared contrast. The results following from simulated pictures for the
sine-Gordon model (see section section 5.4.1) are shown. Each red bullet represents
the result for a particular combination of the input parameters λT and q for the
sine-Gordon theory used to simulate the pictures. The left horizontal axis shows
one of this input parameters, the thermal coherence length λT . On the right hor-
izontal axis, we show the coherence factor 〈cos(ϕ)〉 extracted from the simulated
pictures. On the vertical axis, the differential entropy h for the distributions of the
normalized squared integrated contrast (B.1) is shown. The two subplots show the
results for the two different integration lengths L stated below the respective plots.

145



B. Contrast distribution thermometry

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

Figure B.2.: Testing the temperature fit with simulated pictures. The ex-
traction of the thermal coherence length from the differential entropy of the contrast
distributions (see discussion in main text) is tested by applying it to simulated pic-
tures. The red bullets present the ratio between the fitted thermal coherence lengths
λTfit and the input values λT used for simulating the pictures. The dashed gray line
simply marks the value one. The different subplots show the results for the different
λT given in the lower left corner.
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