
DIPLOMARBEIT

Hook-length formulas for trees:
a general approach

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Christoph Beer, BSc
Matrikelnummer 01025264

ausgeführt am Institut für Diskrete Mathematik und Geometrie
der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dr. Alois Panholzer

Wien, 12.05.2019

(Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

I dedicate this work to my family, who always supported me, all my friends, who
stood by me and all the people, who guided me through the last years!

Abstract:
Starting with an expansion technique for binary trees obtained by Han [Han08a], sev-
eral other authors, e.g. Chen, Yang, Kuba and Panholzer [KP13, CGG09, Yan08] have
unified and extended this approach to various other tree families, such as k-ary trees,
labelled trees and forests, weighted trees and increasing trees.
In this thesis, we take a look at the original hook-length expansion technique, explain
how Han obtained it, give an explanation of how exactly hook-length formulas are
derived and list examples of the most significant ones. Furthermore, we examine, how
this formula was extended to fit other tree families and, on the basis of this results,
show unifications and connections between certain tree families.

Keywords: Hook-length formulas, Binary trees, K-ary trees, Ordered trees, Labelled
trees, Weigthed trees, Increasing trees.

Zusammenfassung:
Beginnend mit einer Expansionsmethode für binäre Bäume, abgeleitet von Han [Han08a],
haben mehrere andere Autoren, z.B. Chen, Yang Kuba und Panholzer [KP13, CGG09,
Yan08] diesen Ansatz vereinheitlicht und auf verschiedene andere Baumfamilien wie k-
äre Bäume, markierte Bäume undWälder, gewichtete Bäume und aufsteigend markierte
Bäume ausgeweitet.
In dieser Arbeit werfen wir einen Blick auf die ursprüngliche Hakenlängenexpansions-
methode, erläutern, wie Han sie erhalten hat, erklären, wie genau Hakenlängenformeln
abgeleitet werden, und listen Beispiele mit den wichtigsten Ergebnissen auf. Außer-
dem untersuchen wir, wie diese Formel auf andere Baumfamilien erweitert wurde, und
zeigen basierend auf dieser Grundlage Vereinheitlichungen und Verbindungen zwischen
bestimmten Baumfamilien auf.

Schlüsselwörter: Hakenlängenformeln, Binäre Bäume,K-äre Bäume, Geordnete Bäume,
Markierte Bäume, Gewichtete Bäume, Aufsteigend markierte Bäume.

Statutory declaration

I hereby declare that I have written this diploma thesis independently and that I have
not used any sources and aids other than the specified ones and that I have identified
the ideas taken directly or indirectly from foreign sources as such. So far, I have not
submitted the work to any other examination office in the same or similar form. It
has not been published yet. I agree that the work will be checked for plagiarism with
the help of a plagiarism detection service.

. .
Place, Date

. .
Signature

Contents
1 Introduction 1

2 Basic definitions and terminology 3
2.1 Trees and weight-functions . 3
2.2 Generating functions . 4

2.2.1 Important power series . 5
2.3 Main theorems . 7

3 Han’s expansion formula for binary trees 8
3.1 Hook-length formulas for binary trees 11

3.1.1 Hook-length formulas for Fibonacci trees 22
3.1.2 Hook-length formulas for complete binary trees 25

4 Hook-length formulas for further tree families 29
4.1 Hook-length formulas for k-ary trees 29
4.2 Hook-length formulas for ordered trees and ordered forests 35
4.3 Hook-length formulas for labelled trees and labelled forests 41

5 Hook-length formulas for weighted tree and forest families 46
5.1 Confirmation of previous results . 49
5.2 Hook-length formulas for further tree families 51

5.2.1 Even trees . 51
5.2.2 Motzkin-trees . 52
5.2.3 Labelled ordered trees . 57
5.2.4 Weighted ordered forests . 60

6 Hook-length formulas for increasing trees 65
6.1 Bilabelled increasing trees . 70
6.2 k-labelled increasing trees . 74

7 Summary 78

1 Introduction
Given a rooted tree T , the hook-length of a vertex v ∈ T , denoted by hv := h(v), is the
number of decendants of node v. Several identities involving the hook-length, so called
hook-length formulas, have been discovered, essentially starting with the following
formula, which Postinikov derived for binary trees B(n) of size n, see [Pos05]:

n!
2n

∑
T∈B(n)

∏
v∈T

(
1 + 1

hv

)
= (n+ 1)n−1.

Following this, Han developed a versatile expansion technique, see [Han08a]. This
technique can be used for deriving further hook-length formulas for binary trees by
showing that for any given power series F (z) with F (0) = 0, it’s possible to determine
the weight function ρ(n), if

∑
n≥1

 ∑
T∈B(n)

∏
v∈T

ρ(hv)
 zn = F (z),

holds.
Han used his expansion technique to obtain further hook-length formulas, see [Han08b,
Han08c]. For some of these formulas combinatorial proofs do exist, for others they are
yet to be found.
Based on this technique Chen, Gao and Guo found several extensions for k-ary trees,
ordered trees and forests and labelled trees and forests, see [CGG09]. By finding ap-
propriate generating functions, they derived new hook formulas or replicated results
from various authors.
By considering weighted tree families and due to the fact, that different simply gener-
ated tree models are obtained by using weighted ordered trees, where each node v in an
ordered tree T ∈ O gets a certain degree-weight factor depending on the out-degree of
v, Kuba and Panholzer [KP13] proposed an expansion technique which further unifies
recent results.

This thesis is organized as follows. In Chapter 2 we list the most basic terminol-
ogy, define generating functions and list often used identities and the most important
theorems. The third chapter is dedicated to the derivation and the proof of Han’s ex-
pansion technique. We then use this technique and derive some hook-length formulas
for binary trees before considering two special types of binary trees: Fibonacci trees

1

and complete binary trees.
Our goal in the fourth chapter is to extend the results from the third chapter to other
trees. We look at k-ary trees, orderded trees and forests and labelled trees and forests.
We also give serveral hook-length formulas for each of the considered tree families. The
aim of Chapter 5 is to achieve a generalization of all previous results by expanding the
expansion technique using weighted trees.
In Chapter 6 we take a closer look at increasingly labelled trees and extend our results
to k-labelled increasing trees.

2

2 Basic definitions and terminology
In this section we list mathematical definitions and necessary identities, which we will
use several times throughout the whole thesis.

2.1 Trees and weight-functions

Since we are dealing with various types of trees, forests and weight-functions in this
thesis, we start with a review of the necessary terminology.

Definition 2.1. A tree is an undirected graph in which any two vertices are connected
by exactly one path. In other words, any acyclic connected graph is a tree.
A rooted tree is a tree in which one vertex has been designated the root, see [Knu97, p.
285-399].

Definition 2.2. A forest is a disjoint union of trees.

We will define the special types of trees we examine at the beginning from their re-
spective chapter.
Furthermore, we need a few basics about weight-functions, which we will further ex-
pand in Chapter 5.

Definition 2.3. Given a rooted tree T , the hook-length of a vertex v ∈ T , denoted
by hv := h(v), is the number of decendants of vertex v, where we use the convention
that each vertex v is always considered to be a decendant of itself. A vertex w is a
decendant of v, iff v lies in the unique path from the root of T to w.

Since our calculations can get quite complicated from time to time, it’s convenient to
introduce the following:

Definition 2.4. Given a weight function ρ : N+ → C we can associate with any given
tree T of some rooted tree family the hook-weight whook(T) via

whook(T) :=
∏
v∈T

ρ(hv). (2.1)

We call ρ the hook-function or hook-weight-function.

3

2.2 Generating functions

Due to the importance of generating functions in this thesis, we dedicate this section
for a proper introduction of the key aspects.

Definition 2.5. The ordinary generating function of a sequence (an)n≥0 is

A(z) =
∑
n≥0

anz
n.

Therefore, the sought-after information is saved in the coefficients of the formal power-
series A(z).
Since we deal with combinatorial enumeration problems that involve labelled objects,
it’s sometimes more convenient to use the exponential generating function than ordi-
nary generating functions.

Definition 2.6. The exponential generating function A(z) of a sequence (an)n≥0 is
defined as

A(z) =
∞∑
n=0

an
zn

n! .

To extract the coefficients we use the coefficient extraction operator.

Definition 2.7. Let A(z) = ∑
n≥0 anz

n be a generating function. Then [zn] denotes
the coefficient extraction operator and [zn]A(z) := an delivers the coefficient of zn in
the formal power series expansion of A(z). Two formal power series A(z), B(z) are
equal, if and only if [zn]A(z) = [zn]B(z), ∀n ∈ N,

Example 1. Let A(z) = ∑
n≥0

2n

n! z
n. Then [zn]A(z) delivers 2n

n! .

We can also define arithmetic operations on the set of formal power-series R[[z]] :=
{∑n≥0 anz

n : an ∈ R} in the following way:

+ : A(z) +B(z) =
∑
n≥0

(an + bn)zn,

· : A(z) ·B(z) =
∑
n≥0

(
n∑
k=0

akbn−k

)
zn.

Now we need the definition of an inverse power-series.

4

Definition 2.8. Let A(z) = ∑
n≥0 anz

n be the ordinary generating function of a se-
quence an. We call the generating function B(z) = ∑

n≥0 bnz
n (multiplicatively) inverse

to A(z) if A(z) ·B(z) = 1.

Theorem 2.9. The generating function A(z) = ∑
n≥0 anz

n has an (multiplicative)
inverse generating function if and only if a0 6= 0.

Proof. A proof can be found in [Wil94, p. 31].

If one represents a sequence as a generating function, certain manipulations of the
sequence correspond to special manipulations of the generating function. We list the
most important ones:

Lemma 2.10. Let A(z) = ∑
n≥0 anz

n be the ordinary generating function of a sequence
an and k ∈ N. Then it holds
Generating function sequence
A′(z) ((n+ 1)an+1)n≥0
1
2 (A(z) + A(−z)) a0, 0, a2, 0, a4, . . .
1
2 (A(z)− A(−z)) 0, a1, 0, a3, 0 . . .
zkA(z) (an−k)n≥0

Proof. Through simple calculation.

We’ll also often need the Cauchy product of power series:

Definition 2.11. The Cauchy product of two power series is defined as follows:

∑
n≥0

anz
n

 ·
∑
n≥0

bnz
n

 =
∑
n≥0

 ∑
n1+n2=n
n1,n2≥0

an1bn2

 zn (2.2)

2.2.1 Important power series

Following results and identities concerning power series are quite useful and we’ll
benefit from them throughout the whole thesis:

• Taylor series, see Taylor’s theorem (Theorem 2.12), of essential functions:

– Expansion of ez:

ez =
∑
n≥0

1
n!z

n. (2.3)

5

– Mercator series:

ln(1 + z) =
∑
n≥1

(−1)n+1

n
zn. (2.4)

– Another useful logarithm expansion:

ln
(1

1− z

)
=
∑
n≥1

1
n
zn. (2.5)

– Sum of the geometric series:
For |z| < 1 the n-th partial sum of A(z) = ∑

n≥0 z
n fulfills

m−1∑
n=0

zn = 1− zm
1− z .

As m → ∞, the absolute value of z must fulfill |z| < 1 for the series to
converge. The sum then becomes

∑
n≥0

zn = 1
1− z . (2.6)

There exists a useful generalisation of this identity for m ≥ 1 ∈ N:

1
(1− z)m =

∑
n≥0

(
m+ n− 1
m− 1

)
zn. (2.7)

• The binomial theorem, see [Coo49].
The binomial theorem is used to expand binomial expressions (a+ b)n raised to
any given power by

(a+ b)n =
∑
k≥0

(
n

k

)
akbn−k. (2.8)

We in particular need one special case (m ∈ N):

(1 + z)m =
∑
n≥0

(
m

n

)
zn. (2.9)

6

2.3 Main theorems

Following two theorems are of great importance for numerous proofs and derivations
presented in this thesis.

Theorem 2.12 (Taylor’s theorem). Let k ≥ 1 be an integer and let the function
f : R→ R be k-times differentiable at the point a ∈ R. Then there exists a function
hk : R→ R, such that

f(x) =
k∑

n=0

f (n)(a)
n! (x− a)n + hk(x)(x− a)k,

with lim
x→a

hk(x) = 0.

Proof. A proof can be found in [For08].

Following this theorem, we can define the Taylor series:

Definition 2.13. The Taylor series of a real or complex-valued function f(x), that
is infinitely differentiable at a real or complex number a, is the power series, which
fulfills

f(x) =
∑
n≥0

f (n)(a)
n! (x− a)n.

Theorem 2.14 (Lagrange Inversion formula). Let φ(u) = ∑
n≥0 φnu

n be a power series
in C[[u]] with φ0 6= 0. Then, the equation y = zφ(y) admits a unique solution in C[[z]],
whose coefficients are given by

[zn]y(z) = 1
n

[un−1]φ(u)n, n ≥ 1.

Furthermore, let H be an arbitrary function. Then it holds

[zn]H(y(z)) = 1
n

[un−1] (H ′(u)φ(u)n) , n ≥ 1, (2.10)

which is known as the Lagrange-Bürmann formula.

Proof. A proof can be found in [FS09].

7

3 Han’s expansion formula for binary trees
Han obtained a general way to calculate the weight function corresponding to the ex-
pansion of a series considering binary trees. Before we generalize his result for various
other families, we give an explanation of his method.

Before we start to examine how Han derived his method, it is recommended to define
binary trees recursively, due to easy handling and nice properties of the regarding
power series.

Definition 3.1. A binary tree T with size |T | = n ≥ 1 is recursicely defined as:

• There is one specially designated vertex v ∈ T , which is called the root of T .

• The remaining vertices (excluding the root) are then displayed in an ordered pair
(T1, T2), where T1, T2 are either binary trees or empty subtrees.

A vertex is called leaf, if its two subtrees are both empty.

Let B(n) denote the set of all binary trees of size n, so that

B :=
⋃
n≥1

B(n),

is the set of all binary trees.
We will use this way often to define trees and furthermore splitting it into the root
and his subtrees. Most theorems, lemmas and corollaries are proved by this recursive
definition and considering all possibilities of building a tree.

In his paper, see [Han08a], Han uses the concept of the hook-length expansion to
derive hook-length formulas for binary trees, defined as follows:

Definition 3.2. The left-side of the following equation is called hook-length expansion:

∑
T∈B

z|T |
∏
v∈T

ρ(hv) = F (z), (3.1)

where F (z) ∈ K[[z]] is a formal power series with coefficients in K.

We will use the following equivalent form of (3.1) throughout the whole thesis:

F (z) =
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

ρ(hv)
 zn. (3.2)

8

Its called expansion technique, because it starts with an expansion of the generating
function linked to the generating function of the sum of the products of the weights
of all trees with the same given amount of vertices.
Furthermore, Han defines F (z) = f1z + f2z

2 + · · · , the generating function for binary
trees under the weight-function ρ.
Now we can prove Han’s Theorem:

Theorem 3.3. Let B be the family of binary trees associated with a weight function
ρ and let F (z) be the generating function of the total weights of trees of size n ≥ 1:

∑
n≥1

 ∑
T∈B(n)

∏
v∈T

ρ(hv)
 zn = F (z). (3.3)

Then the weight-function ρ satisfies

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 , n ≥ 1. (3.4)

Proof. To simplify proofs it is advantageous to define B(0) = {ε}, i.e., the empty tree,
although B(0) is formally not contained in B. We define

[zn]F (z) = fn =
∑

T∈B(n)

∏
v∈T

ρ(hv).

Due to our recursive definition of binary trees, we can identify each binary tree with
its root v and two subtrees T1 and T2. So every binary tree corresponds with a triplet
(T1, T2, v), where hv = n and

T1 ∈ B(n1), T2 ∈ B(n2), n1 + n2 = n− 1, n1, n2 ≥ 0.

Since n1 and n2 can be empty, according to our definition, but according to (3.2) F (z)
doesn’t consider empty binary trees, we have to take a look at 1 + F (z) instead by
adding f0 = 1.

9

Considering, how a binary tree splits into its root, its subtrees and dealing with all
possibilities, we can rearrange (3.3) and get:

[zn]F (z) =
∑

T∈B(n)

∏
v∈T

ρ(hv)

= ρ(n)
∑

n1+n2=n−1
n1,n2≥0

 ∑
T1∈B(n1),T2∈B(n2)

∏
u∈T1,v∈T2

ρ(hu) · ρ(hv)


= ρ(n)
∑

n1+n2=n−1
n1,n2≥0

 ∑
T1∈B(n1)

∏
v∈T1

ρ(hv)
 ·

 ∑
T2∈B(n2)

∏
u∈T2

ρ(hu)


= ρ(n)
∑

n1+n2=n−1
n1,n2≥0

fn1 · fn2 .

Using (2.2) and simplifying with the [zn] operator leads to

[zn]F (z) = ρ(n)[zn−1](1 + F (z))2

⇒ ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 , n ≥ 1.

Han’s expansion technique enables us to calculate F (z) for a given weight function ρ,
or vica versa, to calculate ρ for a given F (z) under the premise, that [zn]F (z)

[zn−1](1+F (z))2 has
a nice form.
If both ρ and F (z) have compact forms, we call the resulting formula hook-length
formula. The hook-length formula is then given by the identity of the coefficients:

∑
T∈B(n)

∏
v∈T

ρ(hv) = [zn]F (z).

10

3.1 Hook-length formulas for binary trees

In this section, we’ll use (3.4) and several known power series to duplicate some results
given in [Han08a, Pos05, Han08c, Han08b] and conclude hook-length formulas.

Corollary 3.4. It holds

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
hv2hv−1

 zn = ez.

Proof. Han presented two proofs for this theorem.
We present one proof using (3.4), the other proof uses induction and the recursice
definition of binary trees, see [Han08b].

With (2.3) we can obtain

(ez)2 = e2z =
∑
n≥0

(2z)n
n! =

∑
n≥0

2n
n! z

n.

Therefore, by setting F (z) = ez − 1, and with (3.4)

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 = [zn]ez − 1

[zn−1]e2z =
1
n!

2n−1

(n−1)!
= (n− 1)!

2n−1n!

ρ(n) = 1
n · 2n−1 , n ≥ 1,

yielding the hook-length formula

∑
T∈B(n)

∏
v∈T

1
hv2hv−1 = 1

n! ,

and therefore

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
hv2hv−1

 zn = ez.

11

Corollary 3.5. It holds

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
hv

 zn = 1
1− z .

Proof. We use (3.4) and F (z) = 1
1−z − 1. From (2.6) we know

1
1− z =

∑
n≥0

zn ⇒ 1
1− z − 1 = z

1− z =
∑
n≥1

zn.

Since F ′(z) fulfills

F ′(z) = 1
(1− z)2 = (1 + F (z))2 =

∑
n≥1

nzn−1, (3.5)

we, according to (3.4), get

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 =

[zn] z
1−z

[zn−1] 1
(1−z)2

= 1
n
, n ≥ 1.

Thus, we obtain the hook-length formula

∑
T∈B(n)

∏
v∈T

1
hv

= 1.

and

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
hv

 zn = 1
1− z .

Additionally we present the following combinatorial proof:
It has been shown [GS05], that the number of ways |LI(T)| to label the vertices of T
with {1, 2, . . . , n}, so that every vertex has a higher value than all its descendants, is

|LI(T)| = n!∏
v∈T hv

. (3.6)

These trees are called increasingly labelled binary trees, which we will further examine

12

in Chapter 6, where we will prove a generalization of (3.6) as well. Furthermore it has
been shown, that each increasingly labelled binary tree with n vertices is in bijection
with a permutation of order n, see [Sta86, p.24].

∑
T∈B(n)

|LI(T)| = n!,

or

∑
T∈B(n)

n!
∏
v∈T

1
hv

= n!.

Now we divide by n! and transform the resulting equation into a generating function:

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
hv

 zn =
∑
n≥0

zn.

With (2.9) this equation is equal to

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
hv

 zn = 1
1− z .

Corollary 3.6. It holds

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

1
 zn = 1−

√
1− 4z

2z . (3.7)

Proof. Since the right side of (3.7) is the formal power series of the Catalan numbers
1

n+1

(
2n
n

)
, the corollary implies, that the number of binary trees with n vertices is equal

to the n-th Catalan number Cn = 1
n+1

(
2n
n

)
, see [Sta99, p.220].

This fact alone would be sufficient to prove the corollary. Instead we’ll use (3.4), define

13

F (z) = 1−
√

1−4z
2z − 1 and obtain

(1 + F (z))2 =
(

1−
√

1− 4z
2z

)2

= 1− 2 ·
√

1− 4z + 1− 4z
4z2

= 2 · (1−
√

1− 4z − 2z)
4z2 = 1−

√
1− 4z − 2z
2z2

= 1−
√

1− 4z
2z2 − 2z

2z2 = 1−
√

1− 4z
2z · 1

z
− 1
z

=
(

1−
√

1− 4z
2z − 1

)
· 1
z

= F (z) · 1
z
.

We use this result and conclude for n ≥ 1:

[zn−1](1 + F (z))2 = [zn−1]F (z)/z = [zn]F (z). (3.8)

So with (3.4) and (3.8), we get

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 = [zn]F (z)

[zn]F (z) = 1, n ≥ 1.

We obtain the hook-length formula

∑
T∈B(n)

∏
v∈T

1 = 1
n+ 1

(
2n
n

)
,

which proves the corollary.

In our introduction, we mentioned the basic formula from Postnikov and with use of
the Lagrange Inversion formula (2.10) and Han’s theorem (3.3), we can now prove it
in a different way, than Postnikov did.

Corollary 3.7 (Postnikov). It holds

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

(
1 + 1

hv

) zn =
∑
n≥0

(n+ 1)n−12n
n! zn. (3.9)

Proof. Let P(z) be a power series which fulfills

P (z) = ez·P (z).

14

Now we substituteW (z) = ln(P (z)), which implies P (z) = eW (z). So we can rearrange

P (z) = ez·P (z) ⇒ ln(P (z)) = z · P (z), (3.10)

W (z) = z · eW (z). (3.11)

W (z) is the exponential generating function of the numbers nn−1 enumerating rooted
labelled trees of size n. Therefore eW (z) denotes the exponential generating function
enumerating rooted labelled forests of size n. With the Lagrange Inversion formula
(2.10) for H(z) = H ′(z) = ez and φ(z) = ez, we get the following equation

[zn]eW (z) = 1
n

[zn−1]ez · enz = 1
n

[zn−1]e(n+1)z

= 1
n

[zn−1]
∑
k≥0

(n+ 1)k
k! zk

= 1
n
· (n+ 1)n−1

(n− 1)!

= (n+ 1)n−1

n! .

With these coefficients, we have the explicit expansion of P (z):

P (z) = 1 +
∑
n≥1

(n+ 1)n−1

n! zn,

which implies

P (2z) = 1 +
∑
n≥1

(n+ 1)n−12n
n! zn. (3.12)

The right-hand side of (3.9) is exactly P (2z). To use (3.4) we further need P (2z)2,
which is just a slight modification of our previous calculations.

15

In this case we get H(z) = (ez)2, H ′(z) = 2 · (ez)2 and φ(z) = ez. Thus it follows

[zn](eW (z))2 = 1
n

[zn−1]2ezez · en·z

= 2
n

[zn−1]
∑
k≥0

(n+ 2)k
k! zk

= 2
n
· (n+ 2)n−1

(n− 1)!

= 2(n+ 2)n−1

n! .

So by (3.4), (3.12) and defining F (z) = P (2z)− 1, it follows

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 = [zn]P (2z)− 1

[zn−1]P (2z)2

= (n− 1)!(n+ 1)n−1 · 2n
2 · n!(n+ 1)n−22n−1

= (n+ 1)
n

= 1 + 1
n
, n ≥ 1.

Thus, we obtain

n!
2n

∑
T∈B(n)

∏
v∈T

(
1 + 1

hv

)
= (n+ 1)n−1,

and

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

(
1 + 1

hv

) zn =
∑
n≥0

(n+ 1)n−12n
n! zn.

We can further generalize (3.9) to:

Corollary 3.8. It holds

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

(m+ hv)hv−1

hv(2m+ hv − 1)hv−2

 zn =
∑
n≥0

m(n+m)n−1 (2z)n
n! . (3.13)

16

Proof. Let P(z) again be a power series which fulfills

P (z) = ez·P (z).

Now we substitute W (z) = ln(P (z)), which implies P (z) = eW (z). Thus, we can
rearrange

P (z) = ez·P (z) ⇒ ln(P (z)) = z · P (z),

W (z) = z · eW (z).

With the Lagrange Inversion formula (2.10) for H(z) = (ez)m, H ′(z) = m(ez)m and
φ(z) = ez we get the following equation:

[zn](eW (z))m = 1
n

[zn−1]mem·zen·z = m

n
[zn−1]e(n+m)z

= m

n
[zn−1]

∑
k≥0

(n+m)k
k! zk

= m

n
· (n+m)n−1

(n− 1)!

= m
(n+m)n−1

n! .

Therefore, the explicit power series is

P (z)m = 1 +
∑
n≥1

m(n+m)n−1

n! zn. (3.14)

The right-hand side of (3.13) is P (2z)m and with (3.4) and F (z) = P (2z)m− 1 we get

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 = [zn]P (2z)m − 1

[zn−1]P (2z)2m = (n− 1)!m(n+m)n−1 · 2n
2m · n!(n+ 2m− 1)n−22n−1

= (n+m)n−1

n(2m+ n− 1)n−2 , n ≥ 1,

17

yielding

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

(m+ hv)hv−1

hv(2m+ hv − 1)hv−2

 zn =
∑
n≥0

m(n+m)n−1 (2z)n
n! .

Remark. In [CY08] Chen and Yang present a combinatorial proof of Postnikov’s
hook-length formula.

Corollary 3.9.

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

∏m
i=1 (m− 1 + i)

hv
∏m−1
i=1 (hv +m− 1 + i)

 zn = 1
(1− z)m .

Proof. From (2.7)

1
(1− z)m =

∑
n≥0

(
m+ n− 1
m− 1

)
zn ⇒ 1

(1− z)m − 1 = F (z) =
∑
n≥1

(
m+ n− 1
m− 1

)
zn,

and (3.4) we conclude, for n ≥ 1,

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 =

[zn] 1
(1−z)m − 1

[zn−1] 1
(1−z)2m

=

(
m+n−1
m−1

)
(
n+2m−2

2m−1

) =
(m+n−1)!
n!(m−1)!

(2m+n−2)!
(n−1)!(2m−1)!

= 1
n
· m · (m+ 1) · (m+ 2) · · · (2m− 1)

(m+ n) · (m+ n+ 1) · (m+ n+ 2) · · · (2m+ n− 2) ,

which yields the hook-length formula

∑
T∈B(n)

∏
v∈T

∏m
i=1 (m− 1 + i)

hv
∏m−1
i=1 (m+ hv − 1 + i)

=
(
m+ n− 1
m− 1

)
,

therefore proving our corollary. Han used the symmetric properties of the binomial
coefficient

(
n
k

)
=
(

n
n−k

)
to get the equivalent result:

1 +
∑
n≥1

∑
T∈B(n)

∏
v∈T

∏hv−1
i=1 (m+ i)

2hv
∏hv−2
i=1 (2m+ i)

zn = 1
(1− z)m .

18

The following corollary can be used to prove several other hook-length formulas, in-
cluding some of our previous results by choosing parameters a and m accordingly.

Corollary 3.10.

∑
n≥1

 ∑
T∈B(n)

∏
v∈T

∏hv−1
i=1 (m(a+ 1) + 2ahv − i(a− 1))

2hv
∏hv−2
i=1 (2m(a+ 1) + 2a(hv − 1)− i(a− 1))

 zn

=
∑
n≥1

(
m(a+ 1)

n!

n−1∏
i=1

(m(a+ 1) + 2an− i(a− 1))
)
zn.

(3.15)

Proof. Let P (z) be the following power series

P (z) = 1 + (a− 1)zP (z)
2a

(a−1) ,

and furthermore we substitute B(z) = P (z)−1, to use the Lagrange Inversion formula
(2.14). We also need

(1 + z)m =
∑
n≥0

(
m

n

)
zn,

obtained from (2.9). Now we have

B(z) = (a− 1)z(B(z) + 1)
2a

(a−1) .

With (2.14), H(z) = (z + 1)m, H ′(z) = m(z + 1)m−1 and φ(z) = (a− 1)(z + 1)
2a

a−1 we
get the following

[zn](B(z) + 1)m = 1
n

[zn−1]m(z + 1)m−1(a− 1)n(z + 1)
2an
a−1

= m(a− 1)n
n

[zn−1](z + 1)m−1(z + 1)
2an
a−1

= m(a− 1)n
n

[zn−1](z + 1)m−1+ 2an
a−1 .

19

With (2.9) we get

[zn](B(z) + 1)m = m(a− 1)n
n

[zn−1]
∑
i≥0

(
m− 1 + 2an

a−1
i

)
zi

= m(a− 1)n
n

[zn−1]
∑
i≥0

(m− 1 + 2an
a−1)!

i!(m− 1 + 2an
a−1 − i)!

zi

= m(a− 1)n
n(n− 1)!

n−2∏
i=0

(
m− 1 + 2an

a− 1 − i
)
.

After an index shift and excluding 1
a−1 from the product, we get

[zn](B(z) + 1)m = m(a− 1)
n!

n−1∏
i=1

(m(a− 1) + 2an− i(a− 1)).

Since we got the coefficient for every arbitrary exponent m, we use m(a+1)
a−1 as exponent

instead to match the right-hand side of (3.15). In conclusion, we have

[zn]P (z)m
a+1
a−1 =

ma+1
a−1(a− 1)

n!

n−1∏
i=1

(ma+ 1
a− 1(a− 1) + 2an− i(a− 1))

= m(a+ 1)
n!

n−1∏
i=1

(m(a+ 1) + 2an− i(a− 1)).

By (3.4) and setting F (z) = P (z)m
a+1
a−1 − 1 we get

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))2 = [zn]P (z)m

a+1
a−1 − 1

[zn−1]P (z)2m a+1
a−1

=
m(a+1)
n!

∏n−1
i=1 (m(a+ 1) + 2an− i(a− 1))

2m(a+1)
(n−1)!

∏n−2
i=1 (2m(a+ 1) + 2a(n− 1)− i(a− 1))

=
∏n−1
i=1 (m(a+ 1) + 2an− i(a− 1))

2n∏n−2
i=1 (2m(a+ 1) + 2a(n− 1)− i(a− 1))

, n ≥ 1,

20

yielding the hook-length formula

∑
T∈B(n)

∏
v∈T

∏hv−1
i=1 (m(a+ 1) + 2ahv − i(a− 1))

2hv
∏hv−2
i=1 (2m(a+ 1) + 2a(hv − 1)− i(a− 1))

= m(a+ 1)
n!

n−1∏
i=1

(m(a+ 1) + 2an− i(a− 1)).

Corollary 3.11. It holds

1 +
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

ρ(hv)
 zn = 1 + z

1 + z3 ,

with, for k ∈ N,

ρ(n) =


1
k
, if n = 3k − 2,

0, if n = 3k − 1,
−1
k
, if n = 3k.

Proof. We start with

F (z) = 1 + z

1 + z3 − 1

⇒ (1 + F (z))2 = 1 + 2z + z2

(1 + z3)2

= 1
(1 + z3)2 + 2z

(1 + z3)2 + z2

(1 + z3)2 ,

and now write the explicit form of every power series appearing by (2.7). We start
with (1 + F (z))2:

1
(1 + z3)2 =

∑
n≥0

(n+ 1)(−1)nz3n,

21

2z
(1 + z3)2 =

∑
n≥0

2(n+ 1)(−1)nz3n+1,

z2

(1 + z3)2 =
∑
n≥0

(n+ 1)(−1)nz3n+2.

Equivalently, we repeat this with F (z) = 1+z
1+z3 − 1 = 1

1+z3 − 1 + z
1+z3 :

1
1 + z3 − 1 =

∑
n≥1

(−1)nz3n,

z

1 + z3 =
∑
n≥0

(n+ 1)(−1)nz3n+1.

Now we use (3.4) and distinction of cases and also see, that each power series contained
in (1 + F (z))2 and F (z) contributes to just one case. Thus we get

ρ(3n) = [z3n]F (z)
[z3n−1](1 + F (z))2 = (−1)n

n(−1)n−1 = −1
n
,

ρ(3n− 1) = [z3n−1]F (z)
[z3n−2](1 + F (z))2 = 0

n(−1)n = 0,

ρ(3n− 2) = [z3n−2]F (z)
[z3n−3](1 + F (z))2 = (−1)n−1

n(−1)n−1 = 1
n
,

which completes the proof.

3.1.1 Hook-length formulas for Fibonacci trees

Definition 3.12. A Fibonacci tree T is a binary tree such that the right subtree of
each vertex v is either an empty tree or a binary tree with only one vertex.

Let BF (n) denote the set of all Fibonacci trees of size n and

BF =
⋃
n≥1

BF (n),

the set of all Fibonacci trees.

22

Theorem 3.13. Let BF be the family of Fibonacci trees associated with a weight
function ρ and let F (z) be the generating function of the total weights of Fibonacci
trees of size n:

F (z) =
∑
n≥1

 ∑
T∈BF (n)

∏
v∈T

ρ(hv)
 zn.

Then the hook-function ρ satisfies

ρ(n) =


[zn]F (z)

[zn−1]F (z)+ρ(1)[zn−2](1+F (z)) , if n ≥ 2,
[z1]F (z), if n = 1.

(3.16)

Proof. Considering, how a Fibonacci tree of size n ≥ 3 splits into a left subtree with
either n − 1 vertices, if the right subtree is empty or a left and a right subtree with
n− 2 and 1 vertices, respectively, we get

[zn]F (z) =
∑

T∈BT (n)

∏
v∈T

ρ(hv)

= ρ(n)
∑

T∈BT (n−1)

∏
v∈T

ρ(hv) + ρ(n)ρ(1)
∑

T∈BT (n−2)

∏
v∈T

ρ(hv)

= ρ(n)[zn−1]F (z) + ρ(n)ρ(1)[zn−2]F (z)

⇒ ρ(n) = [zn]F (z)
[zn−1]F (z) + ρ(1)[zn−2]F (z) .

For n = 2 these computations are also valid, but we need to add f0 = 1, since
BF (0) = {ε}, and obtain the following formula:

ρ(n) = [zn]F (z)
[zn−1]F (z) + ρ(1)[zn−2](1 + F (z)) , n ≥ 2.

Finally, there exists only one Fibonacci tree with size 1, therefore

[z1]F (z) =
∑

T∈BF (1)

∏
v∈T

ρ(hv) = ρ(1).

23

Now we give an explanation, why these kind of trees are called Fibonacci trees.

Definition 3.14. The Fibonacci numbers are the sequence of numbers (fn)n≥0 defined
by the linear recurrence equation:

fn = fn−1 + fn−2, n ≥ 2,

with f0 = f1 = 1.

Example 2. It’s well known, see [Rio62], that

F̃ (z) :=
∑
n≥0

fnz
n = 1

1− z − z2 ,

is the generating function of the Fibonacci numbers. We define F (z) = F̃ (z)−1. Since
ρ(1) = [z1]F (z) = 1 we use (3.16) and the definition of Fibonacci numbers to get

ρ(n) = [zn]F (z)
[zn−1]F (z) + ρ(1)[zn−2](1 + F (z)) = fn

fn−1 + fn−2
= 1, n ≥ 2.

Therefore

1 +
∑
n≥1

 ∑
T∈BF (n)

∏
v∈T

1
 zn = 1

1− z − z2 ,

which includes, that the number of Fibonacci trees with n vertices is given by the n-th
Fibonacci number.

Corollary 3.15. It holds

1 +
∑
n≥1

 ∑
T∈BF (n)

∏
v∈T

((m+ hv − 1)(m+ hv − 2))
(hv(mhv + hv − 2))

 zn = 1
(1− z)m , m ≥ 1.

Proof. We know from (2.7), that

1
(1− z)m =

∑
n≥0

(
m+ n− 1
m− 1

)
zn.

Let us define F (z) = 1
(1−z)m − 1. Thus, with (3.16) we get

ρ(1) = [z1]F (z) =
(
m

1

)
= m,

24

and,

ρ(n) = [zn]F (z)
[zn−1]F (z) + ρ(1)[zn−2](1 + F (z))

=

(
m+n−1
m−1

)
(
m+n−2
m−1

)
+m

(
m+n−3
m−1

)

=
(m+n−1)!
n!(m−1)!

(m+n−2)!
(n−1)!(m−1)! +m (m+n−3)!

(n−2)!(m−1)!

=
(m+n−1)!

n!
(m+n−2)!

(n−1)! +m (n−1)(m+n−3)!
(n−1)!

=
(m+n−1)(m+n−2)

n
(m+n−2)

1 +m (n−1)
1

= (m+ n− 1)(m+ n− 2)
n(m+ n− 2 +mn−m)

= (m+ n− 1)(m+ n− 2)
n(mn+ n− 2) , n ≥ 2.

This leads to the stated result.

3.1.2 Hook-length formulas for complete binary trees

Definition 3.16. A complete binary tree T is a binary tree such that the two subtrees
of each vertex v are either both empty or both non empty, with the possible exception
when v is the latest vertex in the so-called inorder traversal. The inorder traversal is
a certain way to visit every vertex in a binary tree exactly once, see [Knu97, p. 319].
In the latter case, the right subtree of v is empty when T possesses an even number of
vertices.

Let BC(n) denote the set of all complete binary trees with n vertices, such that

BC =
⋃
n≥1

BC(n),

is the set of all complete binary trees.

Theorem 3.17. Let BC be the family of complete binary trees associated with a weight
function ρ and let F (z) be the generating function of the total weights of complete
binary trees of size n:

F (z) =
∑
n≥1

 ∑
T∈BC(n)

∏
v∈T

ρ(hv)
 zn.

25

Then the hook-function ρ satisfies

ρ(n) =


[zn]F (z)

[zn−1] 1
2 (F (z)−F (−z))(1+F (z)) , if n ≥ 2,

[z1]F (z), if n = 1.
(3.17)

Proof. Considering, how a complete binary tree of size n ≥ 2 splits into a root v, a
left subtree with an odd number of vertices, and the remaining vertices in the right
subtree, also

T1 ∈ BC(n1), T2 ∈ BC(n2), ni ≥ 0,
2∑
i=1

ni = n− 1, n1 odd,

we get

[zn]F (z) =
∑

T∈BC(n)

∏
v∈T

ρ(hv)

= ρ(n)
∑

n1+n2=n−1
n1 odd
n1,n2≥0

 ∑
T1∈BC(n1),T2∈BC(n2)

 ∏
u∈T1,v∈T2

ρ(hu) · ρ(hv)


= ρ(n)
∑

n1+n2=n−1
n1 odd
n1,n2≥0

 ∑
T1∈BC(n1)

∏
v∈T1

ρ(hv)
 ·

 ∑
T2∈BC(n2)

∏
u∈T2

ρ(hu)


= ρ(n)
∑

n1+n2=n−1
n1 odd
n1,n2≥0

fn1 · fn2 = ρ(n)
∑

0≤k≤n−1
k odd

fk · fn−1−k,

where for the last identity we again defined f0 := 1. From (2.10) we know, that the
generating function of a sequence, which contains just the odd coefficients is 1

2(F (z)−
F (−z)). Together with (2.2) and taking into account that we had to add f0 = 1 we
obtain

ρ(n) = [zn]F (z)
[zn−1]1

2(F (z)− F (−z))(1 + F (z)) , n ≥ 2.

Also, there exists only one complete binary tree of size 1, therefore
[z1]F (z) = ∑

T∈BC(1)
∏
v∈T ρ(hv) = ρ(1).

26

Example 3. Define F (z) = ez − 1 = ∑
n≥1

1
n!z

n. Since [zn]F (z) = 1
n! , for n ≥ 1, and

[zn−1]12(F (z)− F (−z))(1 + F (z)) = [zn−1]12(ez − e−z)ez

= [zn−1]12(e2z − 1) = 2n−2

(n− 1)! ,

together with (3.17) it follows

ρ(n) = [zn]F (z)
[zn−1]1

2(F (z)− F (−z))(1 + F (z)) =
1
n!

2n−2

(n−1)!

= 1
n2n−2 , n ≥ 1.

Therefore, we get following hook-length formula

∑
T∈BC(n)

∏
v∈T

1
hv2hv−2 = 1

n! ,

yielding

1 +
∑
n≥1

 ∑
T∈BC(n)

∏
v∈T

1
hv2hv−2

 zn = ez.

Corollary 3.18. It holds

1 +
∑
n≥1

 ∑
T∈BC(n)

∏
v∈T

ρ(hv)
 zn = 1

1− z ,

with

ρ(n) =


1, if n = 1,
1
k
, if n = 2k + 1,

1
k
, if n = 2k.

27

Proof. To use (3.17) with F (z) = 1
1−z − 1 we first consider

1
2(F (z)− F (−z))(1 + F (z)) = 1

2 ·
(

1
(1− z)2 −

1
1− z2

)

= 1
2 ·

2z
(1− z)2(1 + z) = z + z2

(1− z2)2

= (z + z2) 1
(1− z2)2 .

With (2.9) we get

[zn−1](z + z2) 1
(1− z2)2 = [zn−1] z

(1− z2)2 + z2

(1− z2)2

= [zn−1]
∑
n≥0

(n+ 1)z2n+1 +
∑
n≥0

(n+ 1)z2(n+1),

which yields

[z2n](z + z2) 1
(1− z2)2 = n = [z2n−1](z + z2) 1

(1− z2)2 .

With (3.17), for n ≥ 1, we get

ρ(2n) = [z2n]F (z)
[z2n−1]1

2(F (z)− F (−z))(1 + F (z)) = 1
n
,

ρ(2n+ 1) = [z2n+1]F (z)
[z2n]1

2(F (z)− F (−z))(1 + F (z)) = 1
n
,

ρ(1) = [z1]F (z) = 1.

28

4 Hook-length formulas for further tree families
In this chapter, we follow [CGG09] and derive hook-length formulas for various families
of trees and forests, namely k-ary trees and ordered trees/forests. We’ll also examine
certain generating functions to find weight functions ρ.

4.1 Hook-length formulas for k-ary trees

Definition 4.1. A k-ary tree is an ordered rooted unlabelled tree, where each vertex
has exactly k subtrees. We also allow a subtree to be empty.

For our purpose we’ll split a k-ary tree into its root and k subtrees, as we have already
done with binary trees.

Definition 4.2. Let Tk(n) denote the set of k-ary trees with n vertices and let Tk be
defined as

Tk :=
⋃
n≥1

Tk(n).

Tk is the family of all k-ary trees.

Note, that for k = 2 we get binary trees, so our previous results will be special cases
for k-ary trees.

Definition 4.3. The hook-length expansion for k-ary trees is defined as

∑
n≥1

 ∑
T∈Tk

∏
v∈T

ρ(hv)
 zn = F (z). (4.1)

Equivalent to binary trees the weight function ρ is calculated as follows.
We define F (z) = f1z+ f2z

2 + f3z
3 + · · · to be the generating function for k-ary trees

associated with the weight function ρ. Therefore, with each T ∈ Tk(n), n ≥ 1 we can
associate a set (T1, T2, ..., Tk, v), consisting of the k subtrees and the root vertex v.
By using the same technique as for binary trees, we can use this expansion to calculate
F (z) for a given ρ, or to calculate ρ for a given F (z).

29

Theorem 4.4. Let Tk be the family of k-ary trees associated with a weight function ρ
and let F (z) be the generating function of the total weights of k-ary trees of size n:

∑
n≥1

 ∑
T∈Tk

∏
v∈T

ρ(hv)
 zn = F (z). (4.2)

Then the hook-function ρ satisfies

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))k , n ≥ 1. (4.3)

Proof. Recall (2.1): whook(T) := ∏
v∈T ρ(hv). Considering, how a tree splits into its

root, its subtrees and dealing with all possibilities, we get

Ti ∈ Tk(ni), ni ≥ 0,
k∑
i=1

ni = n− 1.

Since ni can be empty according to our definition, but F (z) isn’t defined for empty
k-ary trees, we again take a look at 1 + F (z), to close this gap and add f0 = 1.
We can rearrange (4.2) yielding

[zn]F (z) =
∑

T∈Tk(n)

∏
v∈T

ρ(hv)

= ρ(n)
∑

n1+n2+···+nk=n−1
n1,n2,...,nk≥0

 ∑
T1∈Tk(n1),T2∈Tk(n2),...,Tk∈Tk(nk)

(
k∏
l=1

whook(Tl)
)

= ρ(n)
∑

n1+n2+···+nk=n−1
n1,n2,...,nk≥0

 ∑
T1∈Tk(n1)

whook(T1)
 · · ·

 ∑
Tk∈Tk(nk)

whook(Tk)


= ρ(n)
∑

n1+n2+···+nk=n−1
n1,n2,...,nk≥0

(
k∏
l=1

fnl

)
.

By using the [zn] operator and (2.2) k-times to compute

(1 + F (z))k =
∑
n≥0

 ∑
n1+n2+···+nk=n
n1,n2,...,nk≥0

(
k∏
l=1

fnl

) zn, (4.4)

30

we obtain

[zn]F (z) = ρ(n)[zn−1](1 + F (z))k

⇒ ρ(n) = [zn]F (z)
[zn−1](1 + F (z))k . n ≥ 1.

Example 4. Define F (z) = ez − 1. Since [zn]F (z) = 1
n! , n ≥ 1, and

[zn−1](1 + F (z))k = [zn−1]ekz = kn−1

(n− 1)! ,

we use (4.3), thus

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))k =

1
n!

kn−1

(n−1)!
= 1
nkn−1 .

Therefore, we obtain the hook-length formula

∑
T∈Tk(n)

∏
v∈T

1
hvkhv−1 = 1

n! ,

and therefore

1 +
∑
n≥1

 ∑
T∈Tk(n)

∏
v∈T

1
hvkhv−1

 zn = ez.

Since the results for binary trees and k-ary trees are calculated the same way, we are
going to just present one universal hook-length formula, which includes most previous
results as special cases.

Corollary 4.5. It holds

∑
n≥1

 ∑
T∈Tk(n)

∏
v∈T

∏hv−1
i=1 (ma+ k(a− 1)hv − i(a− k))

khv
∏hv−2
i=1 (kma+ k(a− 1)(hv − 1)− i(a− k))

 zn

=
∑
n≥1

(
ma

n!

n−1∏
i=1

(ma+ k(a− 1)n− i(a− k))
)
zn.

(4.5)

31

Proof. We define

P (z) = (a− k)z(1 +B(z))
k(a−1)

a−k ,

and

B(z) = (1− P (z))
a

a−k .

With (2.10) we get

[zn]((1− P (z))
a

a−k)m = 1
n

[zn−1]m a

a− k
(1 + z)m

a
a−k
−1(a− k)n(1 + z)

k(a−1)n
a−k

= ma(a− k)n−1

n
[zn−1](1 + z)

ma
a−k
−1+ k(a−1)n

a−k

= ma(a− k)n−1

n
[zn−1]

∑
l≥0

(
ma
a−k − 1 + k(a−1)n

a−k
l

)
zl

= ma(a− k)n−1

n
[zn−1]

∑
l≥0

 (ma
a−k − 1 + k(a−1)n

a−k)!
l!(ma

a−k − 1 + k(a−1)i
a−k − l)!

 zl

= ma(a− k)n−1

n!

n−2∏
i=0

(
ma

a− k
− 1 + k(a− 1)n

a− k
− i

)
.

Extracting 1
a−k (n− 1)-times from the product simplifies it to

[zn]((1− P (z))
a

a−k)m = ma(a− k)n−1

n!(a− k)n−1

n−2∏
i=0

(ma+ k(a− 1)n− (a− k)(i+ 1))

= ma

n!

n−1∏
i=1

(ma+ k(a− 1)n− i(a− k)).

Since B(0) = (1 − P (0))
a

a−k = 1 we consider F (z) = (1 − P (z))
ma
a−k − 1 to match

the requirements of Theorem 4.4. We also need [zn−1](1 + F (z))k, which is equal to
((1 − P (z))

a
a−k)mk, and because our calculation holds for every exponent m ∈ N, we

just need to substitute m for km and get

[zn−1](1 + F (z))k = kma

(n− 1)!

n−2∏
i=1

(kma+ k(a− 1)(n− 1)− i(a− k)).

32

So, by (4.3),

ρ(n) = [zn]F (z)
[zn−1](1 + F (z))k

=
ma
n!
∏n−1
i=1 (ma+ k(a− 1)n− i(a− k))

kma
(n−1)!

∏n−2
i=1 (kma+ k(a− 1)(n− 1)− i(a− k))

=
∏n−1
i=1 (ma+ k(a− 1)n− i(a− k))

kn
∏n−2
i=1 (kma+ k(a− 1)(n− 1)− i(a− k))

, n ≥ 2.

Therefore

∑
n≥1

 ∑
T∈Tk(n)

∏
v∈T

∏hv−1
i=1 (ma+ k(a− 1)hv − i(a− k))

khv
∏hv−2
i=1 (kma+ k(a− 1)(hv − 1)− i(a− k))

 zn

=
∑
n≥1

(
ma

n!

n−1∏
i=1

(ma+ k(a− 1)n− i(a− k))
)
zn.

This formula is an unification and an extension to several known formulas. For exam-
ple, by setting k = 2 and substituting a for a+ 1, we obtain (3.15).
If we set a = k and m = 1, we obtain

∑
T∈Tk(n)

∏
v∈T

∏hv−1
i=1 k(1 + (k − 1)hv)

khv
∏hv−2
i=1 k(k + (k − 1)(hv − 1))

= k

n!

n−1∏
i=1

k(1 + (k − 1)n).

Since the enumeration index i does not occur, this simplifies to

∑
T∈Tk(n)

∏
v∈T

(k(1 + (k − 1)hv))n−1

khv−1hv(k + (k − 1)(hv − 1))hv−2 = kn

n! (1 + (k − 1)n)n−1

⇐⇒
∑

T∈Tk(n)

∏
v∈T

(1 + (k − 1)hv)n−1

hv(1 + (k − 1)(hv))hv−2 = kn

n! (1 + (k − 1)n)n−1

⇐⇒
∑

T∈Tk(n)

∏
v∈T

(1 + (k − 1)hv)
hv

= kn

n! (1 + (k − 1)n)n−1

⇐⇒
∑

T∈Tk(n)

∏
v∈T

(
k − 1 + 1

hv

)
= kn

n! (1 + (k − 1)n)n−1,

33

which is the extension of Postnikov’s hook-length formula (3.9) to k-ary trees.
We can also extend (3.13) to k-ary trees by setting a = k to get

∑
T∈Tk(n)

∏
v∈T

∏hv−1
i=1 (km+ k(k − 1)hv)

khv
∏hv−2
i=1 (mk2 + k(k − 1)(hv − 1))

= km

n!

n−1∏
i=1

(km+ k(k − 1)n)

⇐⇒
∑

T∈Tk(n)

∏
v∈T

(k(m+ (k − 1)hv))hv−1

khv(k(mk + (k − 1)(hv − 1)))hv−2 = knm

n! (m+ (k − 1)n)n−1

⇐⇒ n!
kn

∑
T∈Tk(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

hv(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1

⇐⇒ n!
∑

T∈Tk(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

khv(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1.

34

4.2 Hook-length formulas for ordered trees and ordered forests

Trees are often used to implement databases, but to do so, we have to declare a certain
ordering for the descendants of each vertex. This leads us to ordered trees.

Definition 4.6. An ordered tree (or planted plane tree) is a rooted tree in which an
ordering is specified for the children of each vertex.

Remark. An ordered binary tree is sometimes called a binary search tree.

Let O(n) denote the set of ordered trees with n vertices, so that

O :=
⋃
n≥1

O(n),

is the set of all ordered trees.

Theorem 4.7. Let O be the family of ordered trees associated with a weight function
ρ and let F (z) be the generating function of the total weights of ordered trees of size
n:

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

ρ(hv)
 zn = F (z).

Then the hook-function ρ satisfies

ρ(n) =


[zn]F (z)

[zn−1] 1
1−F (z)

, if n ≥ 2,

[z1]F (z), if n = 1.
(4.6)

Proof. Yet again, for every ordered tree T of size n ≥ 2, we can split the tree in its
root v and a sequence of subtrees.
This yields a (j + 1)-tuple (T1, T2, ..., Tj, v), (j ≥ 1), where hv = n, and

Ti ∈ O(ni), ni ≥ 1,
j∑
i=1

ni = n− 1.

Let fn = [zn]F (z). By definition and considering every possibility to build an ordered

35

tree, it holds

[zn]F (z) =
∑

T∈O(n)

∏
v∈T

ρ(hv)

= ρ(n)
∑
j≥1

 ∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 ∑
T1∈O(n1),...Tj∈O(nj)

 j∏
l=1

whook(Tl)




151577 = ρ(n)
∑
j≥1

 ∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 ∑
T1∈O(n1)

whook(T1)
 · · ·

 ∑
Tj∈O(nj)

whook(Tj)



= ρ(n)
∑
j≥1

 ∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

fn1fn2 · · · fnj

.

Simplified with the [zn] operator and using (4.4) we get

[zn]F (z) = ρ(n)[zn−1] 1
1− F (z)

⇒ ρ(n) = [zn]F (z)
[zn−1] 1

1−F (z)
, n ≥ 2.

Finally, there exists only one ordered tree with size 1, therefore

[z1]F (z) =
∑

T∈BF (1)

∏
v∈T

ρ(hv) = ρ(1).

Corollary 4.8. It holds

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

(
1− 1

hv

)hv−1
 zn =

∑
n≥1

(n− 1)n−1

n! zn. (4.7)

Proof. In order to use (4.6) we need to calculate 1
1−F (z) first. The right-hand side of

(4.7) is exactly (3.14) with m = −1,

P (z)m = 1 +
∑
n≥1

m(n+m)n−1

n! zn ⇒ P (z)−1 = 1−
∑
n≥1

(n− 1)n−1

n! zn.

36

Therefore,
1 +

∑
n≥1

(n+ 1)n−1

n! zn

−1

= 1−
∑
n≥1

(n− 1)n−1

n! zn.

Finally we switch the exponent −1 to the other side and get the wanted result

1 +
∑
n≥1

(n+ 1)n−1

n! zn =
1−

∑
n≥1

(n− 1)n−1

n! zn

−1

.

We just showed, that

1
1− F (z) = 1 +

∑
n≥1

(n+ 1)n−1

n! · zn,

and by (4.6) we get

ρ(n) = [zn]F (z)
[zn−1] 1

1−F (z)
=

(n−1)n−1

n!
nn−2

(n−1)!

= (n− 1)n−1

n · nn−2 = (n− 1)n−1

nn−1 =
(
n− 1
n

)n−1

=
(

1− 1
n

)n−1
, n ≥ 1.

Thus, we obtain the hook-length formula

∑
T∈O(n)

∏
v∈T

(
1− 1

hv

)hv−1
= (n− 1)n−1

n! ,

and therefore

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

(
1− 1

hv

)hv−1
 zn =

∑
n≥1

(n− 1)n−1

n! zn.

Now we expand our previous results to ordered forests.

37

Definition 4.9. An ordered forest is a disjoint union of ordered trees, in which an
ordering is also specified.
We denote the set of ordered forests with n vertices with OF (n).

Theorem 4.10. Let OF be the family of ordered forests associated with a weight
function ρ and let F (z) be the generating function of the total weights of forests of size
n:

∑
n≥0

 ∑
F∈OF (n)

∏
v∈F

ρ(hv)
 zn = F (z). (4.8)

Then the hook-function ρ satisfies

ρ(n) = − [zn]F (z)−1

[zn−1]F (z) , n ≥ 1. (4.9)

Proof. We’ll prove this theorem in Chapter 5. Another proof can be found in [CGG09].

Example 5. Let F (z) = ez. It holds [zn−1]F (z) = 1
(n−1)! , for n ≥ 1, and

[zn]F (z)−1 = [zn]e−z = [zn]
∑
n≥0

(−1)n
n! zn

= (−1)n
n! , n ≥ 1.

Via (4.9), we get

ρ(n) = − [zn]F (z)−1

[zn−1]F (z) = −
(−1)n

n!
1

(n−1)!
= (−1)n+1

n
,

which yields

∑
T∈OF (n)

∏
v∈T

(−1)hv+1

hv
= 1
n! , n ≥ 1,

and

∑
n≥0

 ∑
T∈OF (n)

∏
v∈T

(−1)hv+1

hv

 zn = ez.

38

Theorem 4.11. For ordered forests it holds

∑
n≥1

 ∑
F∈OF (n)

∏
v∈F

∏hv−1
i=1 ((2hv −m)a− (a+ 1)i)∏hv−2

i=1 ((2hv − 2 +m)a− (a+ 1)i)

 zn

=
∑
n≥1

(
ma

n!

n−1∏
i=1

((2n+m)a− (a+ 1)i)
)
zn.

(4.10)

Proof. We define

G(z) = (a− 1)z(1 +G(z))
2a

a+1

and

F (z) = (1 +G(z))
ma
a+1 .

With Lagrange Inversion formula (2.10), H(z) = (1 + z)
ma
a+1 , H ′ = ma

a−1(1 + z)
ma
a+1−1 and

φ(z) = (a+ 1) · (1− z)
2a

a+1 we get

[zn](1 +G(z))
ma
a+1 = 1

n
[zn−1] ma

a+ 1(1 + z)
ma
a+1−1(a+ 1)n(1 + z)

2an
a+1

= 1
n
· ma
a+ 1(a+ 1)n[zn−1](1 + z)

ma
a+1−1(1 + z)

2an
a+1

= ma

n
· (a+ 1)n−1[zn−1](1 + z)

a(m−1+2n)−1
a+1 .

With (2.9),

[zn](1 +G(z))
ma
a+1 = ma

n
· (a+ 1)n−1[zn−1]

∑
l≥0

(a(m−1+2n)−1
a+1
l

)
zl

= ma

n
· (a+ 1)n−1[zn−1]

∑
l≥0

(
a(m−1+2n)−1

a+1

)
!

l!
(
a(m−1+2n)−1

a+1 − l
)zl

= ma

n! · (a+ 1)n−1
n−2∏
i=0

(
(2n+m− 1)a− 1

a+ 1 − i
)

39

After simplifying and an index shift we get

[zn](1 +G(z))
ma
a+1 = ma

n! ·
(a+ 1)n−1

(a+ 1)n−1

n−2∏
i=0

((2n+m− 1)a− 1− i(a+ 1))

= ma

n!

n−1∏
i=1

((2n+m)a− a− 1− (i− 1)(a+ 1))

= ma

n!

n−1∏
i=1

((2n+m)a− i(a+ 1)).

Substituting m with −m yields

[zn](1 +G(z))
−ma
a+1 = [zn]

(
(1 +G(z))

ma
a+1
)−1

= −ma
n!

n−1∏
i=1

((2n−m)a− i(a+ 1)), n ≥ 1.

Therefore, with F (z) = (1 +G(z))
ma
a+1 and using (4.9), we obtain

ρ(n) = − [zn]F (z)−1

[zn−1]F (z)

= −
−ma

n!
∏n−1
i=1 ((2n−m)a− i(a+ 1))

ma
n!
∏n−2
i=1 ((2n− 2 +m)a− i(a+ 1))

, n ≥ 1,

concluding to

∑
n≥1

 ∑
F∈OF (n)

∏
v∈F

∏hv−1
i=1 (2hv −m)a− (a+ 1)i∏hv−2

i=1 (2hv − 2 +m)a− (a+ 1)i

 zn

=
∑
n≥1

(
ma

n!

n−1∏
i=1

((2n+m)a− (a+ 1)i)
)
zn.

With (4.10) one can derive other hook-length formulas by adjusting a ndm accordingly.

40

4.3 Hook-length formulas for labelled trees and labelled forests

Now we give the expansion formula for labelled trees and forests and then derive hook
formulas.

Definition 4.12. A labelled tree of size n is a tree, where its vertices are labelled with
distinct integers of the set {1, 2, ..., n}. We denote the family of labelled unordered trees
with UL and the family of labelled unordered forests with ULF .

Since we look at unordered trees now, we have to use the multinomial coeffcients:

Definition 4.13. The multinomial coefficient is defined as follows, where ki, n ∈ N
and k1 + k2 + · · ·+ km = n:(

n

k1, k2, . . . , km

)
= n!
k1!k2! · · · km! . (4.11)

The multinomial coefficient has a direct combinatorial interpretation, as the number
of ways of depositing n distinct objects into m distinct bins, with k1 objects in the
first bin, k2 objects in the second bin, and so on.

Theorem 4.14. Let UL be the family of labelled unordered trees associated with a
weight function ρ and let F (z) be the generating function of the total weights of labelled
unordered trees of size n:

∑
n≥1

 ∑
T∈UL(n)

∏
v∈T

ρ(hv)
 zn

n! = F (z).

Then the hook-function ρ satisfies

ρ(n) = [zn]F (z)
[zn−1]eF (z) , n ≥ 1. (4.12)

Proof. We split the tree in its root v and a possibly empty sequence of subtrees. This
yields a (j + 1)-tuple (T1, T2, ..., Tj, v), (j ≥ 0), where hv = n and

Ti ∈ UL(ni), ni ≥ 1,
j∑
i=1

ni = n− 1.

Let fn = [zn]F (z) = 1
n!
∑
T∈UL(n)

∏
v∈T ρ(hv). There are n ways to label the root vertex

and the remaining n−1 labels are distributed to its subtrees. We use the multinomial

41

coefficient
(

n−1
n1,n2,...,nj

)
to count all possibilities of doing so. It holds

[zn]F (z) = 1
n!

∑
T∈UL(n)

∏
v∈T

ρ(hv)

= ρ(n)
(n− 1)!

∑
j≥0

1
j!

∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 ∑
T1∈UL(n1),...,UL(nj)

 j∏
i=1

whook(Ti)
(

n− 1
n1, n2, . . . , nj

)

= ρ(n)n
n!

∑
j≥0

1
j!

∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 ∑
T1∈UL(n1),...,UL(nj)

 j∏
i=1

whook(Ti)
(

n− 1
n1, n2, . . . , nj

)

= ρ(n)(n− 1)!
(n− 1)!

∑
j≥0

1
j!

∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 ∑
T1∈UL(n1)

whook(T1) 1
n1!

 · · ·
 ∑
Tj∈UL(nj)

whook(Tj)
1
nj!



= ρ(n)
∑
j≥0

1
j!

∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

fn1fn2 · · · fnj
.

Simplified with the [zn] operator we get

[zn]F (z) = ρ(n)[zn−1]eF (z)

⇒ ρ(n) = [zn]F (z)
[zn−1]eF (z) n ≥ 1.

Example 6. Let F (z) = ln
(

1
(1−z)m

)
. With (2.5) we obtain

F (z) = ln
(

1
(1− z)m

)
= m · ln

(1
1− z

)
=
∑
n≥1

m

n
zn.

Since F (z) = ln
(

1
(1−z)m

)
, this leads to

eF (z) = 1
(1− z)m .

42

So, with (4.12) and (2.7) we obtain for n ≥ 1

ρ(n) = [zn]F (z)
[zn−1]eF (z) =

m
n(

m+n−2
m−1

) ,
concluding to

∑
T∈UL(n)

∏
v∈T

m
hv(

m+hv−2
m−1

) = m

n
,

and therefore

∑
n≥1

 ∑
T∈UL(n)

∏
v∈T

m
hv(

m+hv−2
m−1

)
 zn

n! = ln
(

1
(1− z)m

)
.

Now we expand (4.12) to labelled forests.

Theorem 4.15. Let ULF be the family of labelled unordered forests associated with a
weight function ρ and let F (z) be the generating function of the total weights of labelled
unordered forests of size n:

∑
n≥0

 ∑
T∈ULF (n)

∏
v∈T

ρ(hv)
 zn

n! = F (z).

Then the hook-function ρ satisfies

ρ(n) = [zn] ln(F (z))
[zn−1]F (z) , n ≥ 1. (4.13)

Proof. We take a look at the generating function F (z) for labelled forests. Since a tree
of size n can be seen as a root together with the forest of subtrees with n− 1 vertices,
the generating function for trees is zF (z), see [GS05]. A forest is a set of trees, therefore
the generating function for forests is ezF (z). F (z) satisfies the functional equation

F (z) = ezF (z).

By this exponential formula, we obtain

∑
n≥0

 ∑
T∈ULF (n)

∏
v∈T

ρ(hv)
 zn

n! = exp

∑
n≥1

 ∑
T∈UL(n)

∏
v∈T

ρ(hv

 zn

n!

 .

43

Taking logarithm yields

ln(F (z)) =
∑
n≥1

 ∑
T∈UL(n)

∏
v∈T

ρ(hv)
 zn

n! .

With (4.12) we get

ρ(n) = [zn]F (z)
[zn−1]eF (z) = [zn] ln(F (z))

[zn−1]eln(F (z))=

= [zn] ln(F (z))
[zn−1]F (z) , n ≥ 1.

Corollary 4.16. It holds

∑
n≥1

 ∑
F∈ULF (n)

∏
v∈F

∏hv−1
k=1 (ahv − (a− 1)k)

hv
∏hv−2
k=1 (a(hv − 1 +m)− (a− 1)k)

 zn

n!

=
∑
n≥1

(
ma

n−1∏
k=1

(a(n+m)− (a− 1)k)
)
zn.

Proof. The proof is nearly equivalent to the proof of (4.10). We define

G(z) = (a− 1)z(1 +G(z))
2a

a+1 ,

and

F (z) = (1 +G(z))
ma
a+1 .

With the Lagrange Inversion formula (2.10), we get

[zn]F (z) = ma

n!

n−1∏
k=1

(a(n+m)− (a− 1)k),

44

and

[zn] ln(F (z)) = 1
n

[zn−1] ma
a− 1(1 + z)−1(a− 1)n(1 + z)

an
a−1

= ma

n!

n−1∏
k=1

(an− (a− 1)k).

So, with (4.13)

ρ(n) = [zn] ln(F (z))
[zn−1]F (z) =

ma
n!
∏n−1
k=1 (an− (a− 1)k)

ma
(n−1)!

∏n−2
k=1 (a(n− 1 +m)− (a− 1)k)

=
∏n−2
k=1 (an− (a− 1)k)

n
∏n−2
k=1 (a(n− 1 +m)− (a− 1)k)

.

The last theorem was proven in [CGG09] and is a unification of several known hook-
length formulas for forests.

If we set a = 1 and m = 1, we obtain

∑
n≥1

 ∑
F∈ULF (n)

∏
v∈F

1
 zn

n! =
∑
n≥1

(n+ 1)n−1zn,

which implies, that the number auf labelled forests with n vertices is (n+ 1)n−1. This
is due to Cayley’s formula, see [Cay89]. It states, that for every positive integer n, the
number of unordered trees with n labelled vertices is nn−2.
Each labelled rooted forest can be turned into a labelled tree with one extra vertex,
by adding a vertex with label n + 1 and connecting it to all roots of the trees in the
forest.

45

5 Hook-length formulas for weighted tree and forest
families

In this chapter we’ll follow the definitions and calculations given by [KP13] to derive
further hook-length formulas for certain important and well-studied combinatorial
objects called simply generated tree families. For this purpose, the objects considered
are again ordered trees, recall:

Definition 5.1. An ordered tree (or planted plane tree) is a rooted tree in which an
ordering is specified for the children of each vertex.

Definition 5.2. Let O(n) denote the set of ordered trees with n vertices and let O be
defined as

O =
⋃
n≥1

O(n).

O is the family of all ordered trees.

To extend Han’s expansion technique to weighted tree families, we need the definition
of a degree-weight.

Definition 5.3. A sequence of complex numbers (φj)j≥0 with φ0 6= 0 defines the mul-
tiplicative degree-weight φj of a vertex v with out-degree j (out-degree: number of
children, denoted as deg(v)). Then, the degree-weight wdeg(T) of any ordered tree T is
given by the product of all degree-weight factors of the vertices v of T :

wdeg(T) :=
∏
v∈T

φdeg(v).

Definition 5.4. The family F of weighted ordered trees contains all ordered trees
T ∈ O paired with their degree-weights to form pairs (T,wdeg(T)).

Before we can use the expansion technique for weighted ordered tree families, we have
to define a weight to any given ordered tree.

Definition 5.5. Let T be an ordered tree. Given a hook weight function ρ : N → C
and a degree-weight sequence (φj)j≥0 we define

w(T) := wdeg(T) · whook(T),

46

and associate this weight to any given ordered tree T . Recall (2.1),

whook(T) :=
∏
v∈T

ρ(hv).

Now we are ready to prove the corresponding expansion technique for weighted ordered
trees to find a general approach for all kinds of tree families, including those we already
examined in this thesis.

Remark. In [Yan08], Yang extended Han’s results to binomial families of trees, a
special form of weighted ordered trees. Binomial trees include ordered trees, but they
do not include, for example, complete binary trees, which we examined in Chapter 3.

Theorem 5.6. Given a family F of weighted ordered trees associated to a degree-weight
generating function φ(t) = ∑

j≥0 φjt
j, let F (z) be the generating function of the total

weights of trees of size n:

F (z) =
∑
n≥1

 ∑
T∈O(n)

w(T)
 zn =

∑
n≥1

 ∑
T∈O(n)

wdeg(T)
∏
v∈T

ρ(hv)
 zn.

Then the hook-function ρ satisfies

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) , n ≥ 1. (5.1)

Proof. Once again we use the decomposition of a tree, following our previous results.
Now we have to consider all possibilities to build a tree of size |T | ≥ 2. So we split
our tree into its root v and the subtrees Ti attached to the root:

Ti ∈ O(ni), ni ≥ 1,
j∑
i=1

ni = n− 1.

Note, that the root gives a degree-weight factor φdeg(v) = φj assuming the root v has
out-degree j ≥ 1 and ρ(hv) = ρ(n). By definition we have

[zn]F (z) =
∑

T∈O(n)
w(T) =

∑
T∈O(n)

wdeg(T) · whook(T) (5.2)

47

and

w(T) = wdeg(T) · whook(T) =
∏
v∈T

ρ(hv) · φdeg(v) (5.3)

= φj · ρ(n)
j∏
l=1

wdeg(Tl) · whook(Tl) = φj · ρ(n)
j∏
l=1

w(Tl). (5.4)

Now we combine (5.4) and (5.2) to generate all possible trees:

[zn]F (z) =
∑

T∈O(n)
w(T) =

∑
T∈O(n)

wdeg(T) · whook(T) =

= ρ(n)
∑
j≥1

φj

 ∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 ∑
T1∈O(n1),...,Tj∈O(nj)

j∏
l=1

w(Tl)



= ρ(n)
∑
j≥1

φj
∑

n1+n2+···+nj=n−1
n1,n2,...,nj≥1

 ∑
T1∈O(n1)

w(T1)
 ·

 ∑
T2∈O(n2)

w(T2)
 · · ·

 ∑
Tl∈O(nl)

w(Tl)


= ρ(n)
∑
j≥1

φj

 ∑
n1+n2+···+nj=n−1

n1,n2,...,nj≥1

 j∏
l=1

fnl


.

Simplified with the [zn] operator and using (4.4) and the definition of φ(t) we obtain

[zn]F (z) = ρ(n)[zn−1]φ(F (z))

⇒ ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) , n ≥ 2.

The case n = 1 is easily proven by the definition f1 = φ0ρ(1) and therefore

ρ(1) = [z1]F (z)
[z0]φ(F (z)) = f1

φ0
,

showing, that (5.1) holds for all n ≥ 1.

Now, we can use this theorem to show some applications to important tree models,
duplicate some of our results and derive hook-length formulas for yet to be examined
tree families. But first we need to define an isomorphism between trees.

48

Definition 5.7. Let T ′ be a rooted tree and T be a ordered tree. We write
shape(T ′) = T , if there exists an isomorphism from T ′ to T that preserves the linear
order of the children of the vertices.

Various tree families are equivalent to families of weighted ordered trees with specific
degree-weights. This situation occurs if, for a rooted tree familiy R, there exists a
weighted ordered tree family F with a degree-weight generating function φ(t), such
that for each ordered tree T ∈ O the following relation holds:

wdeg(T) =
∏
v∈T

φdeg(v) =
∑

T ′∈R,shape(T ′)=T
1.

Since the hook-weight is also preserved by an isomorphism, with ρ defined as an
arbitrary hook-function and T ∈ O we further get

w(T) = whook(T) · wdeg(T) = whook(T) ·
∑

T ′∈R,shape(T ′)=T
1

=
∑

T ′∈R,shape(T ′)=T
whook(T) =

∑
T ′∈R,shape(T ′)=T

whook(T ′).

By summerarizing over all ordered trees T with |T | = n, we get

∑
T∈O(n)

w(T) =
∑

T∈O(n)

∑
T ′∈R,shape(T ′)=T

whook(T ′) =
∑

T ′∈R(n)
whook(T ′),

which leads to following result:

F (z) =
∑
n≥1

 ∑
T∈O(n)

w(T)
 zn =

∑
n≥1

 ∑
T ′∈R(n)

whook(T ′)
 zn. (5.5)

Equation (5.5) means, that our result (5.1) for weighted tree families associated to a
degree-weight generating function φ(t) is also true for the corresponding rooted tree
family.

5.1 Confirmation of previous results

Now we take a look back und prove some of our previous results with weighted trees
and certain degree-weight functions.
First we consider binary trees, so we have to find the equivalent weighted ordered tree
model. To see, how to choose the coefficients of the degree-weight generating function,

49

we examine an arbitrary ordered tree T ∈ O and count the number

wdeg(T) =
∑

T ′∈R,shape(T ′)=T
1,

of binary tress T ′ ∈ B with shape(T ′) = T . Since a binary tree can only have at
most 2 children we got φj = 0 for j ≥ 3. If deg(v) = 1, the child of v, assuming that
deg(v) ≤ 2 for all v ∈ T , could be attached as a left child or a right child, therefore we
got wdeg(T) = 2|{v∈T :deg(v)=1}|. If deg(v) = 0 or deg(v) = 2, there is only one possibility,
so overall we got:
φ0 = 1, φ1 = 2, φ2 = 1 and as stated before φj = 0, for j ≥ 3.

In either case, we get wdeg(T) = 2|{v∈T :deg(v)=1}| = ∏
v∈T φdeg(v) for ordered trees T

with deg(v) ≤ 2, for all v ∈ T , and wdeg(T) = 0 otherwise. Finally, let

F (z) =
∑
n≥1

 ∑
T∈B(n)

∏
v∈T

ρ(hv)
 zn,

be the generating function of the total weights of binary trees. Then, according to
(5.1) and matching with Han’s result (3.4), we get

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) = [zn]F (z)

[zn−1](1 + 2F (z) + F (z)2)

= [zn]F (z)
[zn−1](1 + F (z))2 .

Using the same pattern, we can generalize this result for the family Tk of k-ary trees.
Every vertex has k positions, where up to k children can be attached, so overall
φj =

(
k
j

)
, for j ≥ 0, with

(
k
j

)
= 0, for j > k. As shown in (2.9) it holds,

(1 + z)k =
∑
j≥0

(
k

j

)
zj.

So the generating function of
(
k
j

)
is (1 + t)k, yielding φ(t) = (1 + t)k. Thus by setting

F (z) =
∑
n≥1

 ∑
T∈Tk(n)

∏
v∈T

ρ(hv)
 zn,

50

and applying (5.1), we get (4.3):

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) = [zn]F (z)

[zn−1](1 + F (z))k .

Since our approach is based on ordered trees, they are easily obtained by using the
degree weights φj = 1, for j ≥ 0. From (2.6) we know:

∑
n≥0

1 · zn = 1
1− z ,

yielding, that the generating function for this sequence is φ(t) = 1
1−t .

Therefore, with

F (z) =
∑
n≥1

 ∑
T∈O(n)

∏
v∈T

ρ(hv)
 zn,

and (5.1), we get (4.6):

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) = [zn]F (z)

[zn−1] 1
1−F (z)

, n ≥ 1.

5.2 Hook-length formulas for further tree families

In this chapter, we take a look at tree families, which are yet to be examined, and
derive further hook-length formulas. We start with even trees.

5.2.1 Even trees

Definition 5.8. An even tree is a rooted ordered tree, where each vertex has an even
number of descendants.

Due to this definition the degree weights for even trees are easily obtained by:

φj =

 1, if j ≥ 2, j even,
0, if j odd.

The way to cancel out every odd coeffient in a generating function is to consider
F (z) = 1

2(A(z) + A(−z)), see (2.10). This, together with the generating function of

51

the sequence (1, 1, 1, · · ·), which is 1
1−t , see (2.6), leads to:

φ(t) = 1
2

(1
1− t + 1

1 + t

)
= 1

2

(1 + t+ 1− t
1− t2

)

= 1
2

(2
1− t2

)
= 1

1− t2 .

With (5.1) follows the weight-function for even trees:

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) = [zn]F (z)

[zn−1] 1
1−F (z)2

, n ≥ 1. (5.6)

5.2.2 Motzkin-trees

Definition 5.9. A Motzkin-tree, also called unary-binary tree, is a rooted ordered tree,
where each vertex has 0, 1 or 2 children.

Let M(n) denote the set of Motzkin-trees with n vertices.
As the name suggests, they are related to Motzkin-numbers and Motzkin-paths, which,
just like Catalan-numbers, have diverse applications in geometry, combinatorics and
number theory, see [DS77].
Since we already know the degree-weights of binary trees (φ0 = 1, φ1 = 2, φ2 = 1 and
φj = 0 for j ≥ 3) and we know there are no attachment positions in Motzkin-trees,
we get φ0 = 1, φ1 = 1, φ2 = 1 and φj = 0, for j ≥ 3, and thus the degree-weight
generating function φ(t) = 1 + t+ t2 and therefore:

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) = [zn]F (z)

[zn−1](1 + F (z) + F (z)2) , n ≥ 1. (5.7)

Example 7. For this example it’s convenient to define EN(T) as the set of leaves of
the rooted tree T . EN(T) consists of all vertices v satisfying deg(v) = 0 and thus
hv = 1.
First we want to apply (5.7) on the function

F (z) = 1
2(ez − 1) = 1

2

∑
n≥0

1
n!z

n − 1
 = 1

2

∑
n≥1

1
n!z

n

 .
We obtain

[zn]F (z) = 1
2 · n! , n ≥ 1.

52

By simplifying the denominator of (5.7), we get

[zn−1]φ(F (z)) = [zn−1](1 + F (z) + F (z)2)

= [zn−1]
(

1 + 1
2(ez − 1) + 1

4 · e
2z − 1

2 · e
z + 1

4

)

= [zn−1]34 −
1
4 · e

2z = [zn−1]34 −
1
4
∑
n≥0

2n
n! z

n

= [zn−1]34 −
∑
n≥0

2n−2

n! zn

=


2n−3

(n−1)! , if n ≥ 2,
1
2 , if n = 1.

Finally, with (5.1) and our results, we get

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) =

1
2·n!

2n−3

(n−1)!
=

1
n

2n−2

1

= 1
n2n−2 , n ≥ 2.

In conclusion we derive the hook-function

ρ(n) =


1

n2n−2 , if n ≥ 2,
1, if n = 1,

and the hook-length formula

∑
T∈M(n)

∏
v∈T\EN(T)

1
hv2hv−2 = 1

2n! .

Therefore, it follows

∑
n≥1

 ∑
T∈M(n)

∏
v∈T\EN(T)

1
hv2hv−2

 zn =
∑
n≥1

1
2n!z

n.

Rearranging yields the equivalent hook-length formula

2n!
∑

T∈M(n)

∏
v∈T\EN(T)

1
hv2hv−2 = 1,

53

and thus

∑
n≥1

2n!
∑

T∈M(n)

∏
v∈T\EN(T)

1
hv2hv−2 = z

1− z .

In Chapter 3 we mentioned the so-called tree-function W (z), which satisfies the func-
tional equation W (z) = z · eW (z). In (3.14), we have proven

P (z)m = 1 +
∑
n≥1

m(n+m)n−1

n! zn,

with P (z) = eW (z). To get the explicit form of W (z)m we multiply P (z)m by zm and
get

W (z)m = zm · P (z)m = zm + zm ·
∑
n≥1

m(n+m)n−1

n! zn

= zm +
∑
n≥1

m(n+m)n−1

n! zn+m = zm +
∑
n>m

mnn−m−1

(n−m)! z
n

=
∑
n≥m

mnn−m−1

(n−m)! z
n.

For the next corollary we need

W (z) =
∑
n≥1

nn−2

(n− 1)!z
n

=
∑
n≥1

nn−1

n! zn,

(5.8)

and

W (z)2 =
∑
n≥2

2nn−3

(n− 2)!z
n. (5.9)

Corollary 5.10. It holds

∑
n≥1

n!
∑

T∈M(n)

1
2|EN(T)|−1

∏
v∈T\EN(T)

(
1 + 1

hv

)
zn =

∑
n≥1

(n+ 1)n−1zn,

Proof. Recall EN(T) denotes the set of leaves of the tree T .

54

We now use the same φ(t) = 1+t+t2, but the different function F (z) = 1
2

(
W (2z)

2z − 1
)
.

To apply (5.1), we need [zn]F (z) and [zn−1]φ(F (z)), which now we are able to obtain
easily by using (5.8):

[zn]F (z) = [zn]12

(
W (2z)

2z − 1
)

= [zn]12

∑n≥1 2n nn−1

n! · z
n

2z − 1


= [zn]12

∑
n≥1

2n−1n
n−1

n! · z
n−1 − 1

 = [zn]12

∑
n≥2

2n−1n
n−1

n! · z
n−1



= [zn]12

∑
n≥1

2n (n+ 1)n
(n+ 1)! · z

n

 = [zn]
∑
n≥1

2n−1 (n+ 1)n
(n+ 1)! · z

n

= 2n−1(n+ 1)n
(n+ 1)! , n ≥ 1,

and

[zn−1]φ(F (z)) = [zn−1]1 + F (z) + F (z)2

= [zn−1]1 + 1
2

(
W (2z)

2z − 1
)

+ 1
4

(
W (2z)2

(2z)2 − 2 · W (2z)
2z + 1

)

= [zn−1]1− 1
2 + 1

4 + 1
2 ·

W (2z)
2z − 1

2 ·
W (2z)

2z + 1
4 ·

W (2z)2

(2z)2

= [zn−1]34 + 1
4 ·

W (2z)2

(2z)2 , n ≥ 1.

For n ≥ 2 and with (5.9), we calculate

[zn−1]14 ·
W (2z)2

(2z)2 = [zn+1] 1
16 ·W (2z)2 = [zn+1] 1

16
∑
n≥2

2n+1nn−3

(n− 2)! z
n

= 1
16 ·

2n+2(n+ 1)n−2

(n− 1)!

= 2n−2(n+ 1)n−2

(n− 1)! .

55

Finally, with (5.1) and our results we get

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) =

2n−1(n+1)n

(n+1)!
2n−2(n+1)n−2

(n−1)!

= 2(n+ 1)
n

= 2
(

1 + 1
n

)
.

In conclusion we derive the hook-function

ρ(n) =

 2
(
1 + 1

n

)
, if n ≥ 2,

1, if n = 1,

and therefore

∑
n≥1

 ∑
T∈M(n)

1
∏

v∈T\EN(T)
2
(

1 + 1
hv

) zn =
∑
n≥1

2n−1(n+ 1)n
(n+ 1)! zn.

This implies the hook-length formula

∑
T∈M(n)

1
∏

v∈T\EN(T)
2
(

1 + 1
hv

)
= 2n−1(n+ 1)n

(n+ 1)!

⇐⇒
∑

T∈M(n)
2n−|EN(T)| ∏

v∈T\EN(T)

(
1 + 1

hv

)
= 2n−1(n+ 1)n−1

n!

⇐⇒ n!
2n−1

∑
T∈M(n)

2n−|EN(T)| ∏
v∈T\EN(T)

(
1 + 1

hv

)
= (n+ 1)n−1

⇐⇒ n!
∑

T∈M(n)
2n−|EN(T)|−(n−1) ∏

v∈T\EN(T)

(
1 + 1

hv

)
= (n+ 1)n−1

⇐⇒ n!
∑

T∈M(n)

1
2|EN(T)|−1

∏
v∈T\EN(T)

(
1 + 1

hv

)
= (n+ 1)n−1.

Altogether, we obtain

∑
n≥1

n!
∑

T∈M(n)

1
2|EN(T)|−1

∏
v∈T\EN(T)

(
1 + 1

hv

) zn =
∑
n≥1

(n+ 1)n−1zn,

which is the corresponding formula to Postnikov’s result (3.9) for Motzkin-trees.

56

5.2.3 Labelled ordered trees

In this section, we describe various labelled tree models, using a variation of our
approach for weighted ordered trees. For this purpose, we extend the definition given
in Chapter 4.

Definition 5.11. A labelled tree of size n is a tree, where its nodes are labelled with
distinct integers of the set {1, 2, ..., n}.
We denote the family of labelled ordered trees with OL and L(T) the set of labellings
of a given ordered tree T ∈ O.

Apparently |L(T)| = n!, for T ∈ O(n). Following this, we consider a labelled ordered
tree TL ∈ OL as a pair TL = (T, L) with T ∈ O and L ∈ LT a labelling with distinct
integers of {1, 2, ..., |T |}.
Now we have to associate each labelled rooted tree T ′ with a non-empty set of ordered
labelled trees. To achieve this we use shapeset notation:

Definition 5.12. For a labelled rooted tree family RL, we associate to each tree T ′ ∈
RL a non empty set of ordered labelled trees by

shapeset(T ′) = {T (1)
L , T

(2)
L , ..., T

(m)
L }, m ≥ 1, with T (i)

L ∈ OL, 1 ≤ i ≤ m,

where the trees T ′, T (1)
L , ..., T

(m)
L , are ”label-isomorphic” meaning that for all 1 ≤ i ≤ m

and labels x, y it holds:

vertex labelled x is a child of vertex labelled y in T ′ ⇐⇒ vertex labelled x is
a child of vertex labelled y in T (i)

L .

Equivalent to our approach with unlabelled tree models we assume there exists a
weighted ordered tree family F with a degree-weight generating function φ(t), such
that for each labelled ordered tree TL ∈ OL the following relation holds:

wdeg(TL) =
∑

T ′∈RL:TL∈ shapeset(T ′)

1
|shapeset(T ′)| .

57

With ρ defined as an arbitrary hook function and TL ∈ OL we further get

w(TL) = whook(TL) · wdeg(TL) = whook(TL) ·
∑

T ′∈RL:TL∈shapeset(T ′)

1
|shapeset(T ′)|

=
∑

T ′∈RL:TL∈shapeset(T ′)

whook(TL)
|shapeset(T ′)| .

Following our isomorphic shapeset definition, we further conclude

whook(T ′) = whook(T (i)
L), 1 ≤ i ≤ m,

which leads to

w(TL) =
∑

T ′∈RL:TL∈shapeset(T ′)

whook(T ′)
|shapeset(T ′)| .

Furthermore, we obtain (recall that |L(T)| = n!):

∑
T∈O(n)

w(T) =
∑

T∈O(n)

w(T)
n!

∑
L∈L(n)

1 = 1
n! ·

∑
TL∈OL(n)

w(TL)

= 1
n! ·

∑
TL∈OL(n)

∑
T ′∈RL:TL∈shapeset(T ′)

whook(T ′)
|shapeset(T ′)|

= 1
n! ·

∑
T ′∈RL(n)

|shapeset(T ′)| · whook(T ′)
|shapeset(T ′)|

=
∑

T ′∈RL(n)

whook(T ′)
n! ,

which leads to

F (z) =
∑
n≥1

 ∑
T∈O(n)

w(T)
 zn =

∑
n≥1

 ∑
T ′∈RL(n)

whook(T ′)
 zn

n! .

This means, that our result (5.1) for weighted tree families associated to a degree-
weight generating function φ(t) is also true for the corresponding labelled tree family
RL.

Example 8. We now examine the family C of labelled cyclic trees.

Definition 5.13. A labelled cyclic tree is a labelled tree where each vertex is either an

58

end-vertex or its children are arranged via circular shifts such that the child with the
smallest label is always the leftmost child.

To use (5.1) we have to assign the right degree-weights to our weighted ordered tree
family O. In case of an end-vertex we set φ0 = 1. Since T, T ′ ∈ C are considered equal,
if the order of children of each vertex v′ ∈ T ′ can be obtained by cyclic movements of
the children of the corresponding vertex v ∈ T , and for j children, there are j different
equal cyclic positions. Therefore we conclude φj = 1

j
, for j ≥ 1.

Further we need (2.6):

ln
(1

1− z

)
=
∑
n≥1

1
n
zn.

Overall we get φ(t) = 1 + ln
(

1
1−t

)
, which allows us to use (5.1) by defining

F (z) = 1− e−W (z), with W (z) defined in (5.8). In (3.14), we already derived

P (z)m = (eW (z))m = 1 +
∑
n≥1

m(n+m)n−1

n! zn

⇒ e−W (z) = (eW (z))−1 = 1 +
∑
n≥1

−(n− 1)n−1

n! zn

⇒ 1− e−W (z) =
∑
n≥1

(n− 1)n−1

n! zn

⇒ [zn]F (z) = (n− 1)n−1

n! .

Now we just need

[zn−1]φ(F (z)) = [zn−1]1 + ln
(

1
1− F (z)

)

= [zn−1]1 + ln
(1

1− 1 + e−W (z)

)
= [zn−1]1 + ln

(1
e−W (z)

)

= [zn−1]1 + ln(eW (z)) = [zn−1]1 +W (z), n ≥ 1.

With (5.8) we obtain

[zn−1]φ(F (z)) = (n− 1)n−2

(n− 1)! , n ≥ 2.

59

So, with (5.1) it follows

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) =

(n−1)n−1

n!
(n−1)n−2

(n−1)!

= n− 1
n

= 1− 1
n
, n ≥ 2,

yielding

ρ(n) =

 1− 1
n
, if n ≥ 2,

1, if n = 1.

Thus, it follows

∑
T∈C(n)

∏
v∈T\EN(T)

(
1− 1

hv

)
= (n− 1)n−1,

and

∑
n≥1

 ∑
T∈C(n)

∏
v∈T\EN(T)

(
1− 1

hv

) zn =
∑
n≥1

(n− 1)n−1zn.

5.2.4 Weighted ordered forests

To further generalise some of our previous results about ordered forests, we now in-
troduce forests of weighted ordered trees. Then our already known formulas appear
as particular instances.

Definition 5.14. A given finite sequence F = (T1, ..., Tk) of ordered trees, where we
allow the empty sequence F = ε, is called ordered forest. We call the family of ordered
forests OF and define their size |F | = |T1|+ |T2|+ · · · |Tk|, with |ε| = 0.

Now we define a weight for each ordered forest.

Definition 5.15. Let F ∈ OF be a given ordered forest. Then F has a weight w(F)
defined as:

w(F) := φk
k∏
l=1

w(Tl), if F = (T1, ..., Tk), and w(ε) = φ0.

Recall that (φj)j≥0 is the degree-weight sequence associated to a family O of weighted
ordered trees.

60

Following to this definition, the family OF of weighted ordered forests consists of all
ordered forests F together with their weights w(F). The generating functions

F (z) :=
∑
n≥1

∑
T∈O(n)

w(T)zn,

of the total weights of ordered trees of size n, and the generating function

G(z) :=
∑
n≥0

∑
F∈OF (n)

w(F)zn,

of the total weights of forests of size n are, due to our definition of the weight of a
forest, simply connected by

G(z) = φ(F (z)).

Theorem 5.16. Given a family OF of weighted ordered forests associated to a degree-
weight generating function φ(t) = ∑

j≥0 φjt
j, with φ0 6= 0 and φ1 6= 0, let G(z) be the

generating function of the total weights of forests of size n,

G(z) =
∑
n≥0

 ∑
F∈OF (n)

w(F)
 zn. (5.10)

Then the hook-weight function ρ satisfies

ρ(n) = [zn]φ̃[−1](G(z)− φ0)
[zn−1]G(z) , n ≥ 1, (5.11)

where φ̃(t) := φ(t)−φ0, and φ̃[−1](t) denotes the inverse function of φ̃(t), with respects
to composition, i.e. φ̃(φ̃[−1](t)) = φ̃[−1](φ̃(t)) = t

Proof. Due to φ0 6= 0 and Theorem 2.9, there exists a formal power series φ̃[−1](t) =∑
j≥1 ψjt

j, which is inverse to φ̃(t).
From G(z) = φ(F (z)) and our definition of φ̃(t) we get the relation G(z) = φ0 +
φ̃(F (z)), so

F (z) =
∑
n≥1

∑
T∈O(n)

w(T)zn = φ̃[−1](G(z)− φ0).

61

Therefore we can use (5.1) to obtain

ρ(n) = [zn]F (z)
[zn−1]φ(F (z)) = [zn]φ̃[−1](G(z)− φ0)

[zn−1](φ(φ̃[−1](G(z)− φ0)))

= [zn]φ̃[−1](G(z)− φ0)
[zn−1](φ0 + φ̃(φ̃[−1](G(z)− φ0)))

= [zn]φ̃[−1](G(z)− φ0)
[zn−1]G(z) .

In Chapter 4, we obtained expansion formulas for different kinds of forests. We’ll use
(5.11) to confirm our results.
With the degree-weight generating function φ(t) = 1

1−t for plane forests we are yet to
prove the result (4.9):

ρ(n) = − [zn](G(z))−1

[zn−1]G(z) .

To use (5.11) we need φ̃[−1](t). We know, that

φ̃(t) = φ(t)− φ0 = 1
1− t − 1 = t

1− t

⇒ φ̃(t)(1− t) = t

⇒ φ̃(t) = t(1 + φ̃(t))

⇒ t = φ̃(t)
1 + φ̃(t)

.

Therefore φ̃[−1](t) = t
1+t . We conclude

ρ(n) = [zn]φ̃[−1](G(z)− 1)
[zn−1]G(z) =

[zn](1− 1
G(z))

[zn−1]G(z)

= − [zn]G(z)−1

[zn−1]G(z) , n ≥ 1,

which proves (4.9).

62

For forests of labelled trees, we obtained result (4.13):

ρ(n) = [zn] ln(F (z))
[zn−1]F (z) .

With the degree-weight function for forests of labelled trees φ(t) = et, we obtain
φ̃(t) = et − 1, yielding

φ̃(t) = et − 1⇒ φ̃(t) + 1 = et,

ln(φ̃(t) + 1) = t.

Consequently φ̃[−1](t) = ln(1 + t). Hence, with (5.11), it follows

ρ(n) = [zn](φ̃[−1](G(z)− 1))
[zn−1]G(z) = [zn] ln(G(z))

[zn−1]G(z) , n ≥ 1.

Finally we use (5.11) for a new family of forests called labelled cyclic forests CF .

Definition 5.17. A given finite sequence F = (T1, ..., Tk) of cyclic trees, where cyclic
rearrangments of a particular sequence of trees are considered to be equal, is called
labelled cyclic forest. We allow the empty sequence F = ε.

We call the family of labelled cyclic forests CF and define their size |F | = |T1|+ |T2|+
· · ·+ |Tk|, with |ε| = 0.
Recall, that for cyclic trees we found the degree-weight function φ(t) = 1 + ln(1

1−t)
and with

φ(t) = 1 + ln(1
1− t)⇒ eφ(t) = e1+ln(1

1−t
)

⇒ eφ(t) = e · eln(1
1−t

) ⇒ eφ(t) = e · 1
1− t ⇒ 1− t = e

eφ(t)

⇒ t = 1− e1−φ(t),

we get φ̃[−1](t) = 1 − e1−t. With (5.11), the tree-function W (z) = ∑
n≥1

nn−1

(n)! z
n, and

63

G(z) = W (z) + 1, we obtain

ρ(n) = [zn]φ̃[−1](G(z)− 1)
[zn−1]G(z) = − [zn]e1−G(z)

[zn−1]G(z)

= − [zn]e−W (z)

[zn−1]W (z) + 1 .

In Chapter 3, we got result (3.14) for a power-series P (z), which satisfies P (z) = eW (z),
recall:

P (z)m =
∑
n≥0

m(n+m)n−1

n! zn.

For m = −1 we obtain P (z)−1 = e−W (z) = ∑
n≥0− (n−1)n−1

n! zn. We get

ρ(n) = − [zn]e−W (z)

[zn−1]W (z) + 1 =
(n−1)n−1

n!
(n−1)n−2

(n−1)!

= n− 1
n

= 1− 1
n
, n ≥ 2,

which yields the hook-length formula

∑
F∈CF (n)

∏
v∈F\EN(F)

(
1 + 1

hv

)
= nn−1,

and thus

∑
n≥1

 ∑
F∈CF (n)

∏
v∈F\EN(F)

(
1 + 1

hv

) zn =
∑
n≥1

nn−1zn.

64

6 Hook-length formulas for increasing trees
In this chapter, we follow the calculations and results for increasing trees given by
Kuba and Panholzer in [KP13, KP16].

Definition 6.1. An increasing tree T̃ is a specific labelled tree with size n, where the
nodes are uniquely labelled by integers from 1 to n, so that every sequence of labels in
any path starting from the root is increasing.

Definition 6.2. Let Õ(n) denote the set of ordered trees with n vertices and let Õ be
defined as

Õ =
⋃
n≥1

Õ(n).

Analogous to the previous chapter we will define the family I of weighted increasing
trees as follows:

Definition 6.3. The family I consists of all ordered increasing trees T̃ ∈ Õ together
with their degree-weights wdeg(T̃), where wdeg(T̃) is defined as:

wdeg(T̃) :=
∏
v∈T̃

φdeg(v),

with a degree-weight sequence (φj)j≥0, φ0 6= 0. The hook-weight w̃hook(T̃), given for a
hook-function ρ̃, and the weight w(T̃) of an increasing ordered tree is defined as:

w̃hook(T̃) :=
∏
v∈T̃

ρ̃(hv), w(T̃) := wdeg(T̃) · w̃hook(T̃).

Definition 6.4. Let φ(t) := ∑
j≥0 φjt

j denote the degree-weight generating function.
Then the exponential generating function of the total degree weights is given by:

T (z) :=
∑
n≥1

Tn
zn

n! , Tn :=
∑

T̃∈Õ(n)

wdeg(T̃).

Now we are able to prove the corresponding expansion technique for weighted increas-
ing trees.

65

Theorem 6.5. Given a family I of weighted increasing trees associated to a degree-
weight generating function φ(t), let F̃ (z) be the exponential generating function of the
total weights of increasing trees of size n:

∑
n≥1

 ∑
T̃∈Õ(n)

w(T̃)
 zn

n! = F̃ (z). (6.1)

Then the hook-function ρ̃ satisfies

ρ̃(n) = [zn−1]F̃ ′(z)
[zn−1]φ(F̃ (z))

= n[zn]F̃ (z)
[zn−1]φ(F̃ (z))

, n ≥ 1. (6.2)

Proof. We use [zn]F̃ (z) = [zn]∑n≥1 fn
zn

n! = fn
1
n! , with fn = ∑

T̃∈Õ(n) w(T̃) and the
top-bottom decomposition of a tree into a root vertex v and the subtrees attached to
it. We consider a tree T̃ with size n ≥ 2 and assume that the root v has out-degree
j ≥ 1. Recall the root vertex gives a degree weight factor φdeg(v) = φj and a hook-
weight ρ̃(hv) = ρ̃(n). We split our tree into its root v and the subtrees T̃i attached to
the root:

T̃i ∈ Õ(ni), ni ≥ 1,
j∑
i=1

ni = n− 1.

We also need

w(T̃) = wdeg(T̃) · w̃hook(T̃) = φj · ρ̃(n)
j∏
l=1

wdeg(T̃l) · w̃hook(T̃l)

= φj · ρ̃(n)
j∏
l=1

w(T̃l),

and the multinomial coefficient (4.11), since after removing the root v the remaining
n − 1 vertices are distributed to the j subtrees and we need to consider all the ways
to do so.
We start of with [zn−1]F̃ ′ and get

[zn−1]F̃ ′ = [zn−1]
∑
n≥1

∑
T̃∈Õ(n)

w(T̃) · zn−1

(n− 1)!

=
∑

T̃∈Õ(n)

w(T̃)
(n− 1)! .

66

By now considering all possible ways to build an increasing tree of size n ≥ 2 we
conclude

[zn−1]F̃ ′ = [zn−1]
∑
n≥1

∑
T̃∈Õ(n)

w(T̃) · zn−1

(n− 1)! =
∑

T̃∈Õ(n)

w(T̃)
(n− 1)!

= ρ̃(n)
(n− 1)!

∑
j≥1

φj

 ∑
n1+···+nj=n−1
n1,n2,...,nj≥1

 ∑
T̃1∈Õ(n1),...,T̃j∈Õ(nj)

j∏
l=1

w(T̃l)

(n− 1
n1, n2, . . . , nj

)

= ρ̃(n)
∑
j≥1

φj
∑

n1+n2+···+nj=n−1
n1,n2,...,nj≥1

 ∑
T̃1∈Õ(n1)

w(T̃1)
 1
n1! · · ·

 ∑
T̃j∈Õ(nj)

w(T̃l)

 1
nj!

= ρ̃(n)
∑
j≥1

φj
∑

n1+···+nj=n−1
n1,n2,...,nj≥1

j∏
l=1

fn1

n1!
fn2

n2! · · ·
fnj

nj!
.

Simplified with the [zn] operator and using (4.4) and the definition of φ(t) = ∑
n≥0 φnt

n

we obtain

[zn−1]F̃ ′ = ρ̃(n)[zn−1]φ(F̃ (z))

⇒ ρ̃(n) = [zn−1]F̃ ′

[zn−1]φ(F̃ (z))
, n ≥ 1,

which, due to (2.10), leads to

ρ̃(n) = [zn−1]F̃ ′(n)
[zn−1]φ(F̃ (z))

= n[zn]F̃ (z)
[zn−1]φ(F̃ (z))

, n ≥ 2.

Now we check the inital case n = 1. Since [z1]F̃ ′ = ∑
T̃∈Õ(1)

w(T̃)
1! = φ0 · ρ̃(1) we get

ρ̃(1) = 1[z1]F̃ (z)
[z0]φ(F̃ (z))

= φ0 · ρ̃(1)
φ0

,

which proves the theorem for all n ≥ 1.

67

Alternatively, by starting with a family O of weighted ordered trees associated to a
degree-weight generating function φ(t) and a set LI(T) of all increasing labellings with
distinct integers from {1, 2, ..., |T |} for each ordered tree T ∈ O, we can also define
the family of weighted increasing trees as follows:

Definition 6.6. The family I of weighted increasing trees consists of pairs (T,L),
where T ∈ O is an ordered tree and L ∈ LI an increasing labelling, together with their
degree-weights wdeg(T).

We use this definition and the next lemma to prove (6.2) by using (5.1).

Lemma 6.7. For any ordered tree T ∈ O(n) the number of increasing labellings
|LI(T)| of T is equal to

|LI(T)| = n!∏
v∈T hv

. (6.3)

Proof. Since we take a look at some k-labelled increasing tree families later on, we
prove (6.7) for k-labellings, see (6.10). The lemma is then a special case for k = 1.

With this lemma we can now show the strong connection between our previous results
for weighted ordered trees and hook-length formulas for weighted increasing trees.

Lemma 6.8. If the hook-weight functions ρ̃ and ρ of the families I and O, respectively,
satisfy the relation

ρ̃(n) = nρ(n), (6.4)

then the following relation between the total weights of weighted increasing trees T̃ ∈ Õ

and weighted ordered trees T ∈ O holds:

∑
n≥1

∑
T̃∈Õ

wdeg(T̃) ·
∏
v∈T̃

ρ̃(hv)
zn

n! =
∑
n≥1

∑
T∈O

wdeg(T) ·
∏
v∈T

ρ(hv)zn. (6.5)

68

Proof. We prove this by equating coefficients, so it follows

1
n!
∑
T̃∈Õ

wdeg(T̃) ·
∏
v∈T̃

ρ̃(hv) = 1
n!
∑
T∈O

∑
L∈LI(T)

wdeg(T) ·
∏
v∈T

ρ̃(hv)

= 1
n!
∑
T∈O

wdeg(T) ·
∏
v∈T

ρ̃(hv) · |LI(T)| = 1
n!
∑
T∈O

wdeg(T) ·
∏
v∈T

ρ̃(hv) ·
n!∏
v∈T hv

=
∑
T∈O

wdeg(T) ·
∏
v∈T

ρ̃(hv) ·
1∏

v∈T hv
.

Since

ρ̃(n) = nρ(n) ⇐⇒ ρ̃(n)
n

= ρ(n),

we finally get

∑
T∈O

wdeg(T) ·
∏
v∈T

ρ̃(hv) ·
1∏

v∈T hv
=
∑
T∈O

wdeg(T) ·
∏
v∈T

ρ(hv).

So, assuming ρ̃(n) = nρ(n) holds, and defining

F (z) =
∑
n≥1

 ∑
T∈O(n)

wdeg(T)
∏
v∈T

ρ(hv)
 zn,

F̃ (z) =
∑
n≥1

 ∑
T̃∈Õ(n)

wdeg(T̃)
∏
v∈T̃

ρ̃(hv)
 zn

n! ,

with (5.1) we get F (z) = F̃ (z).

Example 9. Let Ik denote the family of increasingly labelled k-ary trees. In Chapter
4 we derived the following hook-length formula:

n!
∑

T∈Tk(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

khv(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1,

for k-ary trees. Now we use (6.4) and (6.5) to obtain a hook-length formula for

69

increasingly labelled k-ary trees:

∑
T∈Ik(n)

∏
v∈T

hv(m+ (k − 1)hv)hv−1

hvk(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1

⇐⇒
∑

T∈Ik(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

k(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1,

yielding

∑
n≥1

 ∑
T∈Ik(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

k(mk + (k − 1)(hv − 1))hv−2

 zn

n! =
∑
n≥1

m(k(m+ (k − 1)n))n−1 z
n

n! .

6.1 Bilabelled increasing trees

We take a look at bilabelled increasing trees first, before we expand the results to
general k-labelled increasing trees.

Definition 6.9. A bilabelled increasing tree T is a specific labelled tree of size n, where
the nodes are uniquely labelled by sets of size 2 of integers from 1 to 2n, so that each
label of a child vertex is larger than all the labels of its parent vertex.

Then the family I2 of bilabelled increasing trees consists of all trees T ∈ O together
with their weights w(T) and the set of increasing bilabellings L2

I(T), so we can identify
it with triplets (T,w(T), L(T)), where L(T) ∈ L2

I(T).
Let Tn := ∑

T∈O(n) w(T) · |L2
I(T)| be the number of bilabelled increasing trees with n

vertices and T (z) denote the exponential generating function T (z) := ∑
n≥1 Tn

z2n

(2n)! of
the number of bilabelled increasing trees T ∈ Ik(n) with n vertices.
In [KP16] it is shown, that this function T (z) fulfills the following autonomous second
order differential equation:

T ′′(z) = φ(T (z)), T (0) = 0, T ′(0) = 0. (6.6)

Our next goal is to give an implicit representation of T (z). Therefore we translate the
second order differential equation into a first-order differential equation.

70

Lemma 6.10. The exponential generating function T (z) of bilabelled increasing trees
with degree-weight generating function φ(t) satisfies the first oder differential equation:

T ′(z) =
√

2Φ(T (z)), T (0) = 0,

with Φ(z) =
∫ z

0 φ(t)dt. T (z) is given implicitly via

∫ T (z)

0

1√
2Φ(T (x))

dx = z.

Proof. We start by transforming (6.6) into an first-order differential equation by mul-
tiplying it with T ′(z).

T ′(z)T ′′(z) = T ′(z)φ(T (z)).

Integrating both sides yields

(T ′(z))2

2 = Φ(T (z))⇒ T ′(z) =
√

2Φ(T (z)), T (0) = 0.

To obtain the implicit representation we need separation of variables, see [EBCD12,
p. 42-51]. It states that the solution of the differential equation

y′(x) = f(y(x))g(x), y(x0) = y0,

is given by the solution y of following equation:

∫ y(x)

y0

ds

f(s) =
∫ x

x0
g(s)ds.

In our case this leads to
∫ T (z)

0

1√
2Φ(T (x))

dx = z + C.

Since T (0) = 0, the constant fulfills C = 0, completing the proof.

71

Further we need the number of different increasing bilabellings of a tree.

Corollary 6.11. The number |L2
I(T)| of different increasing bilabellings of a tree T

of size n is given by

|L2
I(T)| = (2n)!∏

v∈T ((2hv)(2hv − 1)) . (6.7)

Proof. By Lemma 6.14 for k = 2.

Now we can prove the next hook-length formula:

Corollary 6.12. It holds

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

φdeg(v)

2hv(2hv − 1)

 z2n =
∑
n≥1

Tn
(2n)!z

2n. (6.8)

Proof. With (6.7) and Tn := ∑
T∈O(n) w(T) · |L2

I(T)| , we get that the total weight Tn
of increasingly bilabelled trees of size n is given as follows:

Tn =
∑

T∈O(n)

wdeg(T)(2n)!∏
v∈T (2hv(2hv − 1)) .

Dividing by (2n)! leads to

∑
T∈O(n)

wdeg(T)∏
v∈T (2hv(2hv − 1)) = Tn

(2n)!

⇐⇒
∑

T∈O(n)

∏
v∈T

φdeg(v)

2hv(2hv − 1) = Tn
(2n)! ,

concluding to

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

φdeg(v)

2hv(2hv − 1)

 z2n =
∑
n≥1

Tn
(2n)!z

2n.

72

Example 10. We consider the family of unordered bilabelled increasing trees with
the degree-weight generating function φ(t) = et. Now we use Lemma 6.10:

Φ(x) =
∫ x

0
φ(t)dt =

∫ x

0
etdt = ex − 1

⇒
∫ T (z)

0

1√
2(ex − 1)

= z.

Substituting u =
√
ex − 1⇒ u2 = ex − 1⇒ u2 + 1 = ex yields

du

dx
= 1

2
√
ex − 1

ex = u2 + 1
2u ⇒ dx = 2u

u2 + 1 .

Thus

1√
2

∫ T (z)

0

1√
2(ex − 1)

= 1√
2

∫ √eT (z)−1

0

1
u
· 2u
u2 + 1du = 2√

2

∫ √eT (z)−1

0

1
1 + u2du

=
√

2 arctan(u)|
√
eT (z)−1

0 =
√

2 arctan
(√

eT (z) − 1
)
.

Therefore

√
2 arctan

(√
eT (z) − 1

)
= z ⇒ arctan

(√
eT (z) − 1

)
= z√

2

⇒
√
eT (z) − 1 = tan

(
z√
2

)
⇒ eT (z) = tan2

(
z√
2

)
+ 1

⇒ T (z) = ln
(
tan2

(
z√
2

)
+ 1

)
.

Extracting coefficients leads to the so-called reduced tangent numbers

Tn = (2n)![z2n]T (z) = Ẽn.

Together with φ(t) = et ⇒ φj = 1
j! and (6.8) we obtain

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

1
deg(v)!2hv(2hv − 1)

 z2n =
∑
n≥1

Ẽn
(2n)!z

2n.

73

6.2 k-labelled increasing trees

Analogous to bilabelled increasing trees we define:

Definition 6.13. An k-labelled increasing tree T is a specific labelled tree of size n,
where the nodes are uniquely labelled by sets of size k of integers from 1 to kn, so that
each label of a child vertex is larger than all the labels of its parent vertex.

Then the family Ik of k-labelled increasing trees consists of all trees T ∈ O together
with their weights w(T) and the set of increasing bilabellings LkI (T), so we can identify
it with triplets (T,w(T), L(T)), where L(T) ∈ LkI (T).
The exponential generating function T (z) = ∑

n≥1 Tn
zkn

(kn)! fulfills

T (k)(z) = φ(T (z)), T (l)(z) = 0, 0 ≤ l ≤ k − 1. (6.9)

Lemma 6.14. For any tree T ∈ O(n) the number of increasing k-labellings |LkI (T)|
of T is equal to

|LkI (T)| = (kn)!∏
v∈T (khv)k

, (6.10)

where nk = n(n− 1)(n− 2) · (n− k + 1).

Proof. We use induction on the size n of a tree.
For n = 1 there is obviouly exactly one increasing labelling and hv = 1. Thus,
|LkI (T)| = k!∏

v∈T
kk = k!

k! = 1.
Let the lemma hold for n− 1 and consider a tree T of size |T | = n. We split the tree
into its root v, which has an arbitrary out-degree j and its j subtrees. Due to T being
an increasing tree, the root vertex v must have the labellings {1, 2, . . . , k}.
The subtrees T1(n1), T2(n2), . . . , Tj(nj) fulfill 1 ≤ n1, n2, . . . , nj ≤ n − 1. Its easy to
see, that each subtree, after an order preserving relabelling, is itself an increasing k-
labelled tree. Since the remaining kn− k labels are distributed to the j subtrees, we
use the multinomial coeffcients (4.11):

(
kn− k

kn1, kn2, . . . , knj

)
= (kn− k)!

(kn1)!(kn2)! . . . (knj)!
.

74

Together with the induction hypothesis we obtain:

|LkI (T)| =
(

kn− k
kn1, kn2, . . . , knj

)
· |LkI (T1)| · |LkI (T2)| · · · |LkI (Tj)|

= (kn− k)!∏j
l=1 (knl)!

j∏
l=1

(knl)!∏
v∈Tl

(khv)k

= (kn− k)!∏j
l=1 (knl)!

∏j
l=1 (knl)!∏j

l=1
∏
v∈Tl

(khv)k

= (kn− k)!∏j
l=1

∏
v∈Tl

(khv)k
.

After reattaching our root vertex, we have to consider its labels. Since we have an
increasing tree, the root node must be labelled with the k smallest labels, which adds
the weight (kn)k. This concludes to:

|LkI (T)| = (kn− k)!∏j
l=1

∏
v∈Tl

(khv)k
= (kn− k)! · (kn)k∏

v∈T (khv)k

= (kn)!∏
v∈T (khv)k

.

With (6.10) we can obtain a generalization of (6.8).

Theorem 6.15. Let Ik be the family of k-labelled increasing trees. Then it holds

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

φdeg(v)

(khv)k

 zkn =
∑
n≥1

Tn
(kn)!z

kn. (6.11)

Proof. With (6.10) and Tn := ∑
T∈O(n) w(T) · |LkI (T)| , we get that the total weight Tn

of increasingly k-labelled trees of size n is given as follows:

Tn =
∑

T∈O(n)

wdeg(T)(kn)!∏
v∈T (khv)k

.

75

Dividing by (kn)! leads to

∑
T∈O(n)

wdeg(T)∏
v∈T (khv)k

= Tn
(kn)!

⇐⇒
∑

T∈O(n)

∏
v∈T

φdeg(v)

(khv)k
= Tn

(kn)! ,

concluding to

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

φdeg(v)

(khv)k

 zkn =
∑
n≥1

Tn
(kn)!z

kn.

To show an application of (6.11), we consider the family of unordered trilabelled in-
creasing trees. Let φ(t) = et again be the degree-weight generating function. For the
next hook-length formula we need the Blasius differential equation.

Definition 6.16. The Blasius differential equation is the following third-order ordi-
nary differential equation:

y′′′(z) + y′′(z)y(z) = 0, y(0) = 0, y′(0) = 0, lim
z→∞

y′(z) = 1, (6.12)

and arises in the theory of fluid boundary layers, see [Bla08].

The solution of this differential equation satisfies

y(z) =
∑
n≥0

(−1)n pnζ
n+1

(3n+ 2)!z
3n+2, ζ = y′′(0) = 0.4695 . . . , (6.13)

with p0 = 1 and (pn)n≥1 a certain positive integer sequence. Now we can prove:

Corollary 6.17. It holds

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

1
deg(v)!3hv(3hv − 1)(3hv − 2)

 z3n =
∑
n≥1

pn−1

(3n)!z
3n,

where (pn)n≥0 denote the coefficients of the Blasius function y(z).

76

Proof. Since φ(t) = et ⇒ φj = 1
j! and due to (6.11) by setting k = 3 we obtain

∑
n≥1

 ∑
T∈O(n)

∏
v∈T

1
deg(v)!3hv(3hv − 1)(3hv − 2)

 z3n =
∑
n≥1

Tn
(3n)!z

3n.

Therefore, we just have to show Tn = pn−1.
By (6.9), the exponential generating function T (z) satisfies the third-order non-linear
autonomous differential equation

T ′′′(z) = eT (z), T (n)(0) = 0, n = 0, 1, 2.

Now we differentiate this equation und set F (z) = T ′(z):

T ′′′′(z) = T ′(z)eT (z)

⇒ F ′′′(z) = F ′′(z)F (z)

⇒ F ′′′(z)− F ′′(z)F (z) = 0, F (0) = F ′(0) = 0, F ′′ = 1.

Since F (z) = ∑
n≥1 Tn

z3n−1

(3n−1)! , we obtain F (−z) = ∑
n≥1 (−1)n−1Tn

z3n−1

(3n−1)! . Comparing
this to (6.13) and considering F ′′(0) = 1 one gets

F (z) = 1
ζ

1
3
y

(
− z

ζ
1
3

)
= 1
ζ

1
3

∑
n≥0

pnζ
n+1

(3n+ 2)!
z3n+2

ζnζ
2
3

=
∑
n≥0

pn
z3n+2

(3n+ 2)! =
∑
n≥1

Tn
z3n−1

(3n− 1)!

which yields our wanted result: Tn = pn−1.

77

7 Summary
In this thesis we derived the following hook-length formulas:

• Binary trees:

–

∑
T∈B(n)

∏
v∈T

1
hv2hv−1 = 1

n! .

–

∑
T∈B(n)

∏
v∈T

1
hv

= 1.

–

∑
T∈B(n)

∏
v∈T

1 = 1
n+ 1

(
2n
n

)
.

–

n!
2n

∑
T∈B(n)

∏
v∈T

(
1 + 1

hv

)
= (n+ 1)n−1.

–

∑
T∈B(n)

∏
v∈T

(m+ hv)hv−1

hv(2m+ hv − 1)hv−2 = m(n+m)n−1 2n
n! .

–

∑
T∈B(n)

∏
v∈T

∏hv−1
i=1 (m+ i)

2hv
∏hv−2
i=1 (2m+ i)

=
(
m+ n− 1
m− 1

)
.

–

∑
T∈B(n)

∏
v∈T

∏hv−1
i=1 (m(a+ 1) + 2ahv − i(a− 1))

2hv
∏hv−2
i=1 (2m(a+ 1) + 2(hv − 1)− i(a− 1))

= m(a+ 1)
n!

n−1∏
i=1

(m(a+ 1) + 2an− i(a− 1)).

78

• Fibonacci trees (fn denotes the n-th Fibonacci number):

–

∑
T∈BF (n)

∏
v∈T

1 = fn.

–

∑
T∈BF (n)

∏
v∈T

(m+ hv − 1)(m+ hv − 2)
hv(mhv + hv − 2) =

(
m+ n− 1
m− 1

)
.

• Complete binary trees:

–

∑
T∈B(n)

∏
v∈T

1
hv2hv−2 = 1

n! .

–

∑
T∈B(n)

∏
v∈T

ρ(hv) = 1,

with

ρ(n) =


1, if n = 1,
1
k
, if n = 2k + 1,

1
k
, if n = 2k.

• k-ary trees

–

∑
T∈Tk(n)

∏
v∈T

1
hvkhv−1 = 1

n! .

–

∑
T∈Tk(n)

∏
v∈T

∏hv−1
i=1 (ma+ k(a− 1)hv − i(a− k))

khv
∏hv−2
i=1 (kma+ k(a− 1)(hv − 1)− i(a− k))

= ma

n!

n−1∏
i=1

(ma+ k(a− 1)n− i(a− k)).

79

–

∑
T∈Tk(n)

∏
v∈T

(
k − 1 + 1

hv

)
= kn

n! (1 + (k − 1)n)n−1.

–

n!
∑

T∈Tk(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

khv(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1.

• Ordered trees and forests:

–

∑
T∈O(n)

∏
v∈T

(
1− 1

hv

)hv−1
= (n− 1)n−1

n! .

–

∑
T∈OF (n)

∏
v∈T

(−1)hv+1

hv
= 1
n! .

–

∑
F∈OF (n)

∏
v∈F

∏hv−1
i=1 ((2hv −m)a− (a+ 1)i)∏hv−2

i=1 ((2hv − 2 +m)a− (a+ 1)i)

= ma

n!

n−1∏
i=1

((2n+m)a− (a+ 1)i).

80

• Labelled trees and forests:

–

∑
T∈UL(n)

∏
v∈T

m
hv(

m+hv−2
m−1

) = m

n
.

–

∑
F∈ULF (n)

∏
v∈F

∏hv−1
k=1 (ahv − (a− 1)k)

hv
∏hv−2
k=1 (a(hv − 1 +m)− (a− 1)k)

= ma
n−1∏
k=1

(a(n+m)− (a− 1)k).

–

∑
F∈ULF (n)

∏
v∈F

1 = (n+ 1)n−1.

• Motzkin-trees:

–

2n!
∑

T∈M(n)

∏
v∈T\EN(T)

1
hv2hv−2 = 1.

–

n!
∑

T∈M(n)

1
2|EN(T)|−1

∏
v∈T\EN(T)

(
1 + 1

hv

)
= (n+ 1)n−1.

• Cyclic trees:

–

∑
T∈C(n)

∏
v∈T\EN(T)

(
1− 1

hv

)
= (n− 1)n−1.

81

• Labelled cyclic forests:

–

∑
F∈CF (n)

∏
v∈F\EN(F)

(
1 + 1

hv

)
= nn−1.

• Increasing trees

– Increasingly labelled k-ary trees:

∑
T∈Ik(n)

∏
v∈T

(m+ (k − 1)hv)hv−1

k(mk + (k − 1)(hv − 1))hv−2 = m(k(m+ (k − 1)n))n−1.

– Bilabelled increasing trees:

∑
T∈O(n)

∏
v∈T

φdeg(v)

2hv(2hv − 1) = Tn
(2n)! ,

where Tn denotes the number of bilabelled weighted increasing trees of size
n.

– Unordered trilabelled increasing trees:

∑
T∈O(n)

∏
v∈T

1
deg(v)!3hv(3hv − 1)(3hv − 2) = pn−1

(3n)! ,

where (pn)n≥0 denote the coefficients of the Blasius function (6.12).

82

References
[Bla08] Heinrich Blasius. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeit.

Math. Phys. 56, pages 1–37, 1908.

[Cay89] Arthur Cayley. A theorem on trees. Quart. J. Math, 23: 376–378, 1889.

[CGG09] Chen, Y. C. William, Gao, X. Q. Oliver, and Guo, Long. Hook
length formulas for trees by Han’s expansion. The Electronic Journal of
Combinatorics - Electr. J. Comb., 16: #R62, 2009.

[Coo49] J. L. Coolidge. The story of the Binomial Theorem. The American
Mathematical Monthly, 56(3): 147–157, 1949.

[CY08] Y. C. William Chen and Laura Yang. On Postnikov’s hook length formula
for binary trees. Eur. J. Comb., 29: 1563–1565, 2008.

[DS77] Robert Donaghey and Louis Shapiro. Motzkin numbers. Journal of
Combinatorial Theory, Series A, 23: 291–301, 1977.

[EBCD12] William E. Boyce and Richard C. DiPrima.
Elementary Differential Equations and Boundary Value Problems. Wiley,
10th edition, 2012.

[For08] Otto Forster. Analysis 1, Differential- und Integralrechnung einer Veränderlichen,
volume 9. überarbeitete Auflage. Vieweg & Sohn Verlag, 2008.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge university Press, 2. edition, 2009.

[GS05] Ira Gessel and Seunghyun Seo. A refinement of Cayley’s formula for trees.
Electronic Journal of Combinatorics, 11: #R27, 2005.

[Han08a] Guo-Niu Han. Discovering hook length formulas by an expansion technique.
Electronic Journal of Combinatorics, 12: #R133, 2008.

[Han08b] Guo-Niu Han. New hook length formulas for binary trees. Combinatorica,
30: 253–256, 2008.

[Han08c] Guo-Niu Han. Yet another generalization of Postnikov’s hook length for-
mula for binary trees. SIAM Journal on Discrete Mathematics, 23: 661–664,
2008.

83

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd
Ed.): Fundamental Algorithms. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1997.

[KP13] Markus Kuba and Alois Panholzer. A unifying approach for proving hook-
length formulas for weighted tree families. Graphs and Combinatorics, 29:
1839–1865, 2013.

[KP16] Markus Kuba and Alois Panholzer. Combinatorial families of multilabelled
increasing trees and hook-length formulas. Discrete Math., 339(1): 227–254,
2016.

[Pos05] Alexander Postnikov. Permutohedra, associahedra, and beyond.
International Mathematics Research Notices, 2009: 1026–1106, 2005.

[Rio62] John Riordan. Generating functions for powers of Fibonacci numbers. Duke
Math. J., 29(1): 5–12, 1962.

[Sta86] Richard P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth &
Brooks/Cole, 1986.

[Sta99] Richard P. Stanley. Enumerative Combinatorics, volume 2. Cambridge
university Press, 1999.

[Wil94] H.S. Wilf. generatingfunctionology. Academic Press, 2. edition, 1994.

[Yan08] Laura Yang. Generalizations of Han’s Hook Length Identities. arXiv:
0805.0109, 2008.

84

arXiv:0805.0109
arXiv:0805.0109

	Introduction
	Basic definitions and terminology
	Trees and weight-functions
	Generating functions
	Important power series

	Main theorems

	Han's expansion formula for binary trees
	Hook-length formulas for binary trees
	Hook-length formulas for Fibonacci trees
	Hook-length formulas for complete binary trees

	Hook-length formulas for further tree families
	Hook-length formulas for k-ary trees
	Hook-length formulas for ordered trees and ordered forests
	Hook-length formulas for labelled trees and labelled forests

	Hook-length formulas for weighted tree and forest families
	Confirmation of previous results
	Hook-length formulas for further tree families
	Even trees
	Motzkin-trees
	Labelled ordered trees
	Weighted ordered forests

	Hook-length formulas for increasing trees
	Bilabelled increasing trees
	k-labelled increasing trees

	Summary

