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Abstract

The Falicov-Kimball model (FKM) is one of the simplest models to describe correlation
effects in solid systems. It can be solved semi-analytically in dynamical mean field theory
(DMFT), where all purely local correlations between electrons are taken into account and
therefore within DMFT a good description of phenomena such as the metal-to-insulator
transition is obtained. However, the charge density wave fluctuations that dominate the
physics of the FKM and lead to a phase transition into an ordered state emerge from nonlocal
correlations. To include such nonlocal correlations, diagrammatic extensions of DMFT have
been developed recently. One of these methods, the dual fermion (DF) approach, is employed
in this thesis to analyze the effect of nonlocal correlations. Especially, the effect of such
nonlocal vertex corrections onto the optical conductivity – describing the interaction of light
with the system – is investigated. It is shown that besides well-known phenomena, such as
weak localization, a new form of bosonic optical excitations, coined π-tons, is prevalent in
the FKM.

Zusammenfassung

Das Falicov-Kimball Modell (FKM) ist eines der einfachsten Modelle zur Beschreibung von
Korrelationen in Festkörpersystemen. Es kann im Rahmen der dynamischen Molekular-
feldtheorie (DMFT) semi-analytisch gelöst werden. Die DMFT berücksichtigt alle rein
lokalen Korrelationen zwischen den Elektronen und liefert daher eine gute Beschreibung
von Phänomenen wie dem Metall-Isolator-Übergang. Allerdings stammen die Ladungs-
dichtewellenfluktuationen, die im FKM vorherrschen und zu einem Phasenübergang in einen
geordneten Zustand führen, von nichtlokalen Korrelationen. Um solche nicht-lokalen Ko-
rrelationen ebenfalls zu berücksichtigen, sind in den letzten Jahren diagrammatische Er-
weiterungen von DMFT entwickelt worden. Eine solche Methode, der Ansatz der dualen
Fermionen (DF), wird in dieser Arbeit verwendet, um die Effekte von nichtlokalen Korrela-
tionen zu analysieren. Insbesondere wird der Einfluss von solchen nichtlokalen Vertexkor-
rekturen auf die optische Leitfähigkeit untersucht, die die Wechselwirkung des Systems mit
Licht beschreibt. Es wird gezeigt, dass neben bekannten Phänomenen wie der schwachen
Lokalisierung eine neue Form von bosonischen optischen Anregungen, sogenannte π-tonen,
im FKM vorherrscht.
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1 Introduction

The goal of solid state physics is to find a proper description of the different properties of a
wide variety of materials. The particular difficulty is that a solid consists of a huge number of
particles interacting with each other, making it impossible to find an exact analytical solution
for this problem. Consequently, many different approaches in many-body physics have been
considered throughout the last decades to tackle this problem. One such approach is density
functional theory (DFT) [1], which successfully describes materials with weak correlations.
This is the case for systems with s- or p-bands, where the Coulomb repulsion between
electrons is screened rather well. However, in materials with partially filled d- and f -orbitals,
electrons are more localized, leading to strong correlations which in turn are the origin for
many interesting phenomena such as the Mott-Hubbard metal-to-insulator transition [2]
or high-temperature superconductivity in cuprates [3]. The basic physics of these strongly
correlated systems is characterized in most cases by two competing terms: a local interaction
between electrons on the one hand and their movement between lattice sites on the other
hand. In this regard, the Hubbard [4] and the Falicov-Kimball model [5] are two simplified
models describing correlated systems. Despite their simplicity, finding an exact solution
remains an enormous challenge. Taking only local correlations into account, dynamical mean
field theory (DMFT) [6] has proven to be a successful method for describing systems where
this local part of correlations is most relevant. DMFT however fails to describe systems
where nonlocal correlations are important, which applies to low-dimensional systems or near
phase-transitions. In order to go beyond DMFT by considering also nonlocal correlations
in addition, diagrammatic extensions of DMFT have been developed in recent years, the
dynamical vertex approximation (DΓA) [7] and the dual fermion approach (DF) [8] being
mentioned here.

In this thesis, the DF approach using the complete parquet equations is employed for the
Falicov-Kimball model (FKM) on a square lattice. This approach captures the physics
originating from nonlocal correlations and extends the purely local DMFT results for the
FKM. The necessary methods for this purpose and the FKM itself are introduced in chapter
2, including the basic formalism of Green’s functions, the parquet equations and a description
of DMFT and the DF approach.

In chapter 3 the actual implementation of the DF approach for the FKM associated with the
parquet equations is discussed. This is followed by corresponding results for the self-energy,
Green’s function and physical susceptibilities, both for a half-filled system and a system
with low electron occupation. This full parquet calculation is then compared to a ladder DF
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approximation in chapter 4, where again first the implementation and then corresponding
results are presented.

Based on the parquet and ladder results, the optical conductivity is calculated, showing
insight to the interaction of light with the system. In the full parquet calculation, the
different contributions to the full vertex corrections of the conductivity are analyzed. It is
found that it is the contribution of the ph-channel that is prevalent in the FKM, and the
by far largest contribution stems from a relative momentum ~k′ − ~k = (π, π), which can be
associated with a specific new type of optical excitation, coined π-ton [9]. This is discussed
in full detail in chapter 5. In addition, results stemming from a pp-ladder approximation
are investigated, confirming that these diagrams are responsible for weak localization in the
system.

Finally, the main aspects of the thesis are revisited in the conclusion in chapter 6.
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2 Methods and Model

2.1 Green’s functions

Green’s functions are the most essential tool for describing many-body systems. Instead
of looking at the behavior of every single electron and calculating the corresponding wave
function, we are rather interested in single excitations as a response to external perturbations,
as they determine physical quantities such as the optical conductivity or susceptibilities. We
start from an occupied state, and introduce a formalism where individual electrons are added
to or removed from this state. This can be achieved in second quantization by the field
operators c†i (t) and ci(t), creating or annihilating a particle at time t, the index i indicating
the degrees of freedom of the system, such as lattice site or momentum and spin.

To describe this situation, the one-particle causal Green’s function is introduced. It is defined
as [10]

Gij(t′′, t′) := −i〈T ci(t′′)c†j(t′)〉. (2.1)

Here, T denotes the Wick time-ordering operator which orders the operators following after
it according to their time, i.e. the operators of a later time are always to the left of the ones
of an earlier time. The averaging is done by using the density operator ρ of the system for
the grand canonical ensemble, so the average of an operator A is defined by 〈A〉 = tr(ρA)

tr(ρ) ,
where tr(...) indicates the trace over a full basis of the Fock space. Basically, the Green’s
function describes a process, where in one case (t′′ > t′) a particle is added to our system
and propagates from (j, t′) to (i, t′′) and in the other case (t′ > t′′) a particle is removed and
the resulting hole propagates from (i, t′′) to (j, t′).

To account for the analogy between the time evolution operator U(t) = e−iHt for a system
with a given Hamilton operator H and the statistical density operator ρ = e−βH (β = 1/T
being the inverse temperature) the so-called temperature Green’s function is introduced by
performing a Wick rotation to imaginary time τ , t→ −iτ . It depends only on the difference
between two times τ = τ ′′ − τ ′, so it is written as

Gij(τ) ≡ Gij(τ, 0) = −〈T e−H(β−τ)cie
−Hτc†j〉. (2.2)
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The temperature Green’s function shows a cyclic property for −β ≤ τ ≤ β:

Gij(τ − β) = ∓Gij(τ), (2.3)

where the minus sign corresponds to fermions and the plus sign for bosons, so temperature
Green’s functions are periodic for bosons and antiperiodic for fermions. Due to this property
there are only discrete Fourier components, at the so-called Matsubara frequencies:

νn = (2n+ 1)π
β

for fermions, (2.4)

ωn = 2nπ
β

for bosons. (2.5)

The Fourier transformation of the Green’s function is then given by

Gij(νn) =
∫ β

0
dτeiνnτGij(τ), (2.6)

Gij(τ) = 1
β

∑
νn

e−iνnτGij(νn). (2.7)

Now we want to take into consideration the interaction U between two particles. To this end,
we consider the perturbation theory series and perform an expansion around the noninter-
acting case U = 0. This corresponds to the technique of Feynman diagrams, as described for
example in [10]. In this formalism, the Fourier transformed unperturbed Green’s function
G0(~k, ν) is denoted by a dashed line and the interaction U by a wiggled line, as shown in
Fig. 2.1. Any arbitrary Feynman diagram can be built out of these two elements.

Figure 2.1 – In the formalism of Feynman diagrams, the unperturbed one-particle Green’s
function G0(~k, ν) is drawn as a dashed line (left), the interaction U between two particles as a
wiggled line (right).

6



The self-energy Σ(~k, ν) is defined as the sum of all topologically distinct one-particle irre-
ducible diagrams with an amputated incoming and outgoing leg, some of which are shown
in Fig. 2.2. A diagram is called one-particle irreducible, if it cannot be separated into two
parts by cutting one internal Green’s function G0 line. Σ is connected to the full interacting
Green’s function G(~k, ν) via the Dyson equation, diagrammatically shown in Fig. 2.3:

G(~k, ν) = G0(~k, ν) +G0(~k, ν)Σ(~k, ν)G(~k, ν). (2.8)

Figure 2.2 – The sum of all one-particle irreducible diagrams gives the self-energy Σ(~k, ν).
Here only the first three diagrams are shown. Note that the self-energy is defined without the
outer legs drawn here.

Figure 2.3 – The Dyson equation connects the interacting Green’s function G(~k, ν), denoted
by a full line, with the unperturbed Green’s function G0(~k, ν), denoted by a dashed line, and
the self-energy Σ(~k, ν).

So far the one-particle Green’s function was regarded. The next step is to consider two-
particle Green’s functions, describing two elementary excitations in the many-body back-
ground, which are defined analogously to (2.1) in imaginary time,

G
(2)
ijkl(τ1, τ2, τ3) = −〈T ci(τ1)c†j(τ2)ck(τ3)c†l (0)〉. (2.9)
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This thermal average can be separated into an independent disconnected part, consisting of
the simple product of one-particle Green’s functions, and a connected part, associated with
the scattering amplitude between two particles and represented by the full vertex function
F . This is illustrated in Fig. 2.4 and is written in Matsubara frequency and momentum
space as

G
(2)νν′ω
kk′q = βG(~k, ν)G(~k′, ν ′)δω0 − βG(~k, ν)G(~k′ + ~q, ν ′ + ω)δνν′

−G(~k, ν)G(~k + ~q, ν + ω)F νν′ω
kk′q G(~k′, ν ′)G(~k′ + ~q, ν ′ + ω). (2.10)

Figure 2.4 – The two-particle Green’s function G(2) consists of two disconnected Green’s
function lines and the connected vertex function F . In this figure, only the frequency arguments
have been given for the sake of readability.

Here the so-called particle-hole (ph) notation has been adopted as frequency convention. In
ph-notation, G(2) describes the scattering process of an electron and a hole, ω and ~q being
the transferred energy and momentum. Another possibility would be to write two-particle
quantities in particle-particle (pp) notation, by replacing ν + ω with ω − ν ′ and ν ′ + ω with
ω − ν. Then, the two-particle Green’s function relates to the scattering of two electrons,
where ω and ~q are their total energy and momentum.

The calculation of the two-particle Green’s function is important for obtaining physical
properties of the system, as it is related to susceptibilities. The generalized susceptibility
exhibits full frequency and momentum dependence and reads as

χνν
′ω

kk′q = −βG(~k, ν)G(~k + ~q, ν + ω)δνν′δ~k~k′

−G(~k, ν)G(~k + ~q, ν + ω)F νν′ω
kk′q G(~k′, ν ′)G(~k′ + ~q, ν ′ + ω), (2.11)

therefore differing from G(2) only by substracting the first term.

8



Susceptibilities describe the linear reaction of the system to an external perturbation within
linear response theory [11] and are in general defined for any physical observable A as

χA(τ) = 〈T A(τ)A(0)〉, (2.12)

also known as Kubo formula [12]. When using the charge density operator n = c†c as
observable, one immediately sees when comparing with (2.9), that the corresponding charge
susceptibility χd associated with density-density correlations is related to the two-particle
Green’s function.

The physical susceptibility χd, which is experimentally accessible, is obtained from the gen-
eralized susceptibility by summing over all values of ν,ν ′,~k and ~k′:

χd(~q, ω) = 1
β2N2

k

∑
νν′

∑
~k~k′

χνν
′ω

kk′q , (2.13)

where Nk is denoting the number of sites in momentum space.

Another interesting quantity is the current-current susceptibility χj, using the electrical
current operator j, as it is related to the optical conductivity of a system. It is also calculated
from the generalized susceptibility evaluated at ~q = 0 and given by

χj(ω) = 1
β2N2

k

∑
νν′

∑
~k~k′

χνν
′ω

kk′q=0
∂εk

∂ka

∂εk′

∂k′a
, (2.14)

with εk being the dispersion relation of the system and ka the component of ~k in a certain
direction, for example ka = kx being the x-component and therefore χj refering to the
susceptibility of the current in x-direction.

2.2 Parquet equations

We now want to analyze the properties of the two-particle vertex function F appearing in
equation (2.10). All diagrammatic contributions to F are one-particle irreducible, which fol-
lows directly from particle conservation. To classify diagrams of F , we introduce the concept
of two-particle irreducibility: A diagram is two-particle irreducible, if it cannot be split into
two parts by cutting two Green’s function lines G. According to this classification, there are
either diagrams that are fully two-particle irreducible, forming the fully irreducible vertex Λ,
or diagrams that are two-particle reducible in exactly one of three channels, corresponding
to the way the diagram is split into two parts, as illustrated in Fig. 2.5.
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These three channels and their corresponding reducible vertices are:

• Particle-hole channel Φph: The outer legs 1 and 2 of the diagram can be separated
from the outer legs 3 and 4.

• Transversal particle-hole channel Φph: The legs 2 and 3 can be separated from 1 and
4.

• Particle-particle channel Φpp: The legs 2 and 4 can be separated from 1 and 3.

Figure 2.5 – A two-particle reducible diagram can be assigned to exactly one of three channels,
according to which two of the four outer legs of the diagram can be separated from the other
two. In the particle-hole channel Φph legs (1,2) are separated from (3,4), in the transversal
particle-hole channel Φph (2,3) are separated from (1,4) and in the particle-particle channel
Φpp (2,4) are separated from (1,3). The index of the leg corresponds to the momentum and
frequency as 1≡ (~k, ν), 2 ≡ (~k + ~q, ν + ω), 3 ≡ (~k′ + ~q, ν ′ + ω) and 4 ≡ (~k′, ν ′).

This classification of F regarding the two-particle irreducibility is summarized in the parquet
equation

F νν′ω
kk′q = Λνν′ω

kk′q + Φνν′ω
ph,kk′q + Φνν′ω

ph,kk′q
+ Φνν′ω

pp,kk′q. (2.15)

To classify the two-particle diagrams further, the vertices Γr, being irreducible in one specific
channel r, are introduced,

Γνν′ω
r,kk′q = F νν′ω

kk′q − Φνν′ω
r,kk′q. (2.16)

10



The reducible vertices Φr then in turn can be constructed from Γr by connecting Γr to F

by two Green’s function lines. These two connecting Green’s functions make the diagram
reducible in r, as it is done for example for the channel ph in Fig. 2.6. This construction then
leads to the so-called Bethe-Salpeter equations in all three channels, written in ph-notation
as

F νν′ω = Γνν′ω
ph + 1

β

∑
ν1

F νν1ωG(ν1 + ω)G(ν1)Γν1ν′ω
ph (2.17)

= Γνν′ω
ph
− 1
β

∑
ω1

F ν+ω1,ν′+ω1,ω−ω1G(ν + ω1)G(ν ′ + ω1)Γνν′ω1
ph

(2.18)

= Γνν′ω
pp − 1

2β
∑
ν1

F ν,ν1+ω,ν′−ν1G(ν1 + ω)G(ν + ν ′ − ν1)Γν+ν′−ν1,v′,ω−ν′+ν1
pp . (2.19)

Here the corresponding momenta arguments have been omitted again for the sake of read-
ability.

Figure 2.6 – Bethe-Salpeter equation for the ph channel. All diagrams in F can be either
irreducible in ph and therefore belong to Γph, or reducible in ph, in which case they can in turn
be constructed from connecting F with Γph by two Green’s function lines.

The parquet equation (2.15) together with the three Bethe-Salpeter equations (2.17) – (2.19)
make up four equations for the five quantities F , Λ and Φr. Often the fully irreducible Λ
is assumed to be known and is approximated in different ways, as is done in DΓA and in
the DF approach. The simplest possibility is to set it to the bare interaction, i. e. Λ = U ,
this is called parquet approximation. As in the Bethe-Salpeter equations also the interacting
Green’s function G enters, which is connected to the self-energy Σ via the Dyson equation
(2.8), we need the Dyson equation and one additional equation in order to find a solution.
This equation is the so-called Schwinger-Dyson equation or equation of motion, that reads
for a purely local interaction U [13]:

Σ(~k, ν) = Un

2 −
U

β2

∑
ν′ω

∑
~k′~q

F νν′ω
kk′q G(~k′, ν ′)G(~k′ + ~q, ν ′ + ω)G(~k + ~q, ν + ω). (2.20)
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The diagram corresponding to this equation is shown in Fig. 2.7.

Figure 2.7 – Schwinger-Dyson equation. The first diagram is the Hartree and Fock term and
is the contribution of lowest order to the self-energy, while all other one-particle irreducible
diagrams with higher order are of the structure as given in the third diagram with the vertex
function F .

Solving the parquet equations for a given Λ, hence means to solve the six equations (2.8),
(2.20), (2.15) and (2.17) – (2.19) self-consistently, yielding the six quantitites F , Φph, Φph,
Φpp, G and Σ. Note that Γr = F − Φr can be substituted in the Bethe-Salpeter equations
(2.17) – (2.19).

2.3 Dynamical mean-field theory

To calculate the Green’s functions of a system, an exact diagrammatic calculation up to in-
finite order is not possible except for trivial models. For many systems, perturbation theory
is applied, in the limit of either weak interactions between electrons or weak hopping of elec-
trons to neighboring sites. However, often most interesting are systems in the intermediate
regime, where both kinetic energy and interaction energy are of the same order of magnitude,
rendering a perturbative treatment impossible. In this case, a mean-field approach can be
applied, as is done in dynamical mean field theory (DMFT) [6, 14]. In DMFT only a single
site of a lattice with local interaction is investigated, the rest of the system is treated as a
noninteracting bath which hybridizes with the site and therefore generates a time-dependent
mean-field coupling to this single site. Electrons can hop to or from the interacting site, but
not directly between bath states. This situation corresponds to the solution of an Anderson
impurity model (AIM), characterized by a local noninteracting Green’s function G(ν).
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A practical application of DMFT is employed in a self-consistent scheme, described in the
following:

1. First from the local noninteracting G(ν) of the AIM the local interacting Green’s function
Gloc(ν) is calculated. It depends on the investigated lattice model how this step is per-
formed. In the Falicov-Kimball model an analytical expression for Gloc(ν) exists, which
is given in section 2.5.

2. The local interacting Green’s function Gloc(ν) is used to obtain a local self-energy Σloc(ν)
employing the Dyson equation (2.8) in the form for the AIM:

Σloc(ν) = G−1(ν)−G−1
loc(ν). (2.21)

3. To get back to the full lattice system, the interacting lattice Green’s function G(~k, ν) is
given by the lattice Dyson equation

G(~k, ν) = 1
iν − εk + µ− Σloc(ν) , (2.22)

where µ is the chemical potential. It can be seen that the local correlations in the lattice
enter via the local self energy of the corresponding AIM.

4. The last step is to calculate the local part of the lattice Green’s function and compare it
to the original Gloc from the impurity problem:

Gloc(ν) =
∑
~k

G(~k, ν). (2.23)

If they are not the same, the calculation is started anew with an updated impurity prob-
lem:

G−1(ν) =
∑

~k

G(~k, ν)
−1

+ Σloc(ν), (2.24)

using again the Dyson equation of the AIM.

The whole DMFT calculation forms a self-consistent cycle, where the four steps listed above
are repeated until the condition (2.23) is fulfilled and therefore a convergent result is ob-
tained.
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DMFT is a nonperturbative theory, and instead of approximating the number of diagrams
taken into account, it approximates the self-energy Σloc(ν) to be local and therefore only
local correlations are considered. This works quite well for describing physical phenomena
dominated by these local correlations, such as the Mott-Hubbard transition, however DMFT
fails particularly when describing low dimensional systems or second-order phase transitions,
where nonlocal correlations are important. One approach to take such nonlocal correlations
into account will be introduced in the next section.

2.4 Dual fermion approach

The dual fermion approach [8] (DF) is a diagrammatic extension of DMFT which aims to take
nonlocal correlations into account in addition to the local part of correlations fully treated
in DMFT. It is based on the functional integral representation of the Green’s function [15]
and therefore on the action S, which reads for a model with local interaction U

S[c†, c] =
∑
iν

(
−iνc†ici + U [c†, c]

)
+
∑
~kν

εkc
†
~k
c~k, (2.25)

where c†i and ci in real space and c†~k and c~k in momentum space are the Grassmann fields
corresponding to the creation and annihilation operators. Adding and substracting now a
local hybridization function ∆, the action can be split into a local and a nonlocal part:

S[c†, c] =
∑
iν

(
−iνc†ici + U [c†, c] + ∆c†ici

)
+
∑
~kν

(εk −∆)c†~kc~k (2.26)

=
∑
i

Sloc[c†, c] +
∑
~kν

(εk −∆)c†~kc~k. (2.27)

The generating functional Z for the Green’s function is given as

Z[η†, η] =
∫
D[c†, c]e−S[c†,c]+

∑
~kν
c†
~k
η~k+η†

~k
c~k . (2.28)

Here the fermionic source fields η† and η have been introduced in Z to obtain the Green’s
function by the derivation of the generating functional with respect to these source fields
and evaluating at η† = η = 0. To decouple now the local and nonlocal degrees of freedom, a
Hubbard-Stratonovich transformation is performed.
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The exponential of the nonlocal part of the action then can be written as a Grassmann
integral of the new so-called dual fields c̃† and c̃,

e
−
∑

~kν
(εk−∆)c†

~k
c~k =

∏
~kν

b−2(~k, ν)
∫
D[c̃†, c̃]e

∑
~kν
b2(~k,ν)c̃†

~k
c̃~k+b(~k,ν)(εk−∆)1/2(c̃†

~k
c~k+c†

~k
c̃~k)
. (2.29)

The generally arbitrary function b(~k, ν) in this transformation is now chosen for convenience
to be

b(~k, ν) = (εk −∆)−1/2G−1
loc. (2.30)

By applying this transformation to the generating functional (2.28), it is possible to integrate
out the physical fields by expanding the local part of the generating functional in terms of
the coupling between dual and physical fermions, where at order 2n the connected n-particle
Green’s function is obtained. The action for the dual fermions S̃ is subsequently expressed
as

S̃[c̃†, c̃] = −
∑
~k,ν

[
G(~k, ν)−Gloc(ν)

]−1
c̃†~kc̃~k −

∑
i

Veff [c̃†i , c̃i]. (2.31)

The first term in the dual action is quadratic in c̃† and c̃ and states the free propagator for
the dual fermions, G̃0, defined as

G̃0 = G(~k, ν)−Gloc(ν). (2.32)

The corresponding dual self-energy Σ̃ is defined via a Dyson equation,

Σ̃(~k, ν) =
[
G̃0(~k, ν)

]−1
−
[
G̃(~k, ν)

]−1
. (2.33)

The second term of (2.31) depicts the effective interaction Veff between dual fermions, which
contains all higher orders in c̃† and c̃ (fourth, sixth and so on), including the corresponding
connected n-particle Green’s functions. Regarding the choice of the function b(~k, ν) to be
proportional to the inverse local Green’s function, the terms in the effective interaction are
appearing without outer legs, and therefore as local n-particle vertex functions. For the
FKM, a general analytical expression for these local n-particle vertex functions is given
in [16].
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As Veff is an infinite sum containing all these n-particle vertex functions, it is however
impossible to regard all orders in a numerical approach, and therefore only the first term
of Veff is taken into account in practical calculations. In doing so, the effective interaction
between dual fermions then is given by the local two-particle vertex Floc:

Veff [c̃†i , c̃i] = 1
4
∑
νν′ω

F νν′ω
loc c̃†i (ν)c̃i(ν + ω)c̃†i (ν ′ + ω)c̃i(ν ′). (2.34)

Noteworthy, in [17] also selected diagrams using the local three-particle vertex have been
calculated.

When choosing as ∆ the hybridization function of the corresponding impurity from DMFT,
the DF approach takes the local Green’s function and vertex function resulting from DMFT
as diagrammatic building blocks, resulting in the dual fermions being dressed with all lo-
cal correlations by construction. Then the free dual Green’s function (2.32) is completely
nonlocal if the self-consistency condition of DMFT is fulfilled.

To obtain the self-energy ΣDF for the real electrons including nonlocal correlations as cal-
culated with the DF approach, the exact relation for mapping the self-energy of the dual
fermions to the physical ones is given by

ΣDF(~k, ν) = Σloc(ν) + Σ̃(~k, ν)
1 +Gloc(ν)Σ̃(~k, ν)

. (2.35)

Such a mapping makes sure to cancel any one-particle reducible contributions arising in the
dual self-energy on the three- or more-particle level. However, when truncating the sum in
Veff at the two-particle level, we rather calculate the self-energy for the real fermions by

ΣDF(~k, ν) = Σloc(ν) + Σ̃(~k, ν), (2.36)

since no one-particle reducible contributions are included in the first place. A more detailed
discussion regarding this matter can be found in [13,18].
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2.5 Falicov-Kimball model

The Falicov-Kimball model (FKM) [5] was introduced in 1969 as a simple model to describe
semiconductor-metal transitions. In the FKM, there exist two types of electrons: fully
localized ones and mobile ones, which interact with each other via a Coulomb repulsion.
The full Hamiltonian for the spinless FKM reads

H = −t
∑
〈ij〉

c†icj + U
∑
i

c†icif
†
i fi − µ

∑
i

(c†ici + f †i fi) + εf
∑
i

f †i fi, (2.37)

where c†i and ci create or annihilate a mobile electron and f †i and fi a localized electron at
lattice site i. Contrary to the Hubbard model [4], the hopping t is allowed only for mobile
electrons in the FKM, and the local Coulomb interaction U only acts between an itinerant
and a localized electron at the same site; µ and εf denote the local potentials for c and f

electrons respectively. The FKM is the simplest model describing electronic correlations and
can also be seen as a simpfliciation to the Hubbard model, when assuming that electrons of
one spin species are localized on the lattice sites, while the ones of the other spin species are
able to hop between different sites.

In DMFT, a solution of the FKM can be found self-consistently by mapping the problem of
the FKM to the corresponding impurity model, the resonant level model (RLM), as described
for the general case in section 2.3. The local Green’s function for the c electrons is then given
by the local noninteracting Green’s function G of the RLM as [19]

Gloc(ν) = p1
1

G−1(ν)− U + p2G(ν). (2.38)

The occupation of the local electrons is indicated by p1 = 〈f †i fi〉, and p2 = 1 − p1. This
expression for the local Green’s function can be interpreted as a weighted average of two
different constellations: In the first term the itinerant electron feels the potential U generated
by an immobile electron on the same lattice site, whereas in the second term no f electron
is present. From the Green’s function, the self-energy Σloc in DMFT is given by

Σloc(ν) = G−1(ν)−G−1
loc(ν) = p1U

1− p2UG(ν) . (2.39)

The full lattice Green’s function G(~k, ν) is then calculated from the self-energy via equation
(2.22). In two dimensions, the dispersion relation for the FKM is given by εk = −2t(cos kx+
cos ky). Equation (2.23) is then employed to update the local Green’s function Gloc and close
the self-consistent DMFT cycle.
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Within DMFT, also the local two-particle vertex function Floc(ν, ν ′, ω) can be calculated
for the itinerant electrons of the FKM. The mobile electrons can only scatter indirectly via
the localized electrons, as the interaction U is just between c and f electrons, which are
otherwise noninteracting. This leads to a reduced frequency structure for the local vertex
function, only having finite values for ω = 0 and for ν = ν ′. The analytical expression for
Floc can be shown [20] to have the following form,

F νν′ω
loc = β(δω,0 − δν,ν′)a(ν)a(ν ′ + ω), (2.40)

and a(ν) is given by

a(ν) = (Σloc(ν)− U)Σloc(ν)
√
p1p2U

. (2.41)

In the two dimensional FKM, a phase transition towards a checkerboard charge density wave
(CDW) was proven to occur for a half-filled system [19]. DMFT results including a phase
diagram for the 2D FKM can also be seen in [20].

The aim of this thesis is to take nonlocal correlations beyond these DMFT results into
account by means of diagrammatic extensions of DMFT. One such approach would be the
dynamical vertex approximation (DΓA) [7] which employs the parquet equation based on
the local fully irreducible vertex Λ resulting from DMFT to calculate a nonlocal full vertex
F . However, DΓA cannot be applied so easily for the FKM, as typically only vertices of
c electrons are investigated in DMFT, but to solve the Schwinger-Dyson equation (2.20)
mixed f - and c-vertices are necessary. On that account we use the dual fermion approach,
introduced in the last section. Previous DF calculations have been restricted to ladder
diagrams in a given channel [20, 21]. In this thesis, we employ the more complete parquet
equations which are unbiased with respect to a given channel.
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3 Parquet dual fermion approach

We now want to employ the DF approach introduced in section 2.4 for the Falicov-Kimball
model within a self-consistent parquet formalism using the Bethe-Salpeter equations (BSE)
(2.17), (2.18), (2.19) and the parquet equation (PE) (2.15) with the dual Green’s functions
and vertices. To solve the parquet equation, we apply the parquet approximation, where
usually the fully irreducible vertex Λ is approximated by the local interaction U for the real
electrons. As the interaction for dual fermions is given by the local vertex function Floc, the
fully irreducible dual vertex is approximated here by the corresponding Floc resulting from
DMFT, i.e. Λ = Floc. In addition to the BSE and the PE, the dual equivalent to the the
Schwinger-Dyson equation (2.20) is needed to compute the dual self-energy out of the dual
vertex function:

Σ̃(~k, ν) = − 1
β

∑
ν′

∑
~k′

F νν′ω=0
loc G̃(~k′, ν ′)

− 1
2

1
β2

∑
ν′ω

∑
~k′~q

F νν′ω
loc G̃(~k′, ν ′)G̃(~k′ + ~q, ν ′ + ω)G̃(~k + ~q, ν + ω)F̃ νν′ω

kk′q . (3.1)

This dual Schwinger-Dyson equation together with the dual Dyson equation (2.33), the BSE
and the PE is referred to in the following as parquet equations, as they form the set of
equations necessary for a self-consistent implementation of the parquet DF approach.

3.1 Implementation

The parquet equations for the DF approach are implemented as shown in Fig. 3.1. The
starting point are the results of a DMFT calculation for the FKM, Gloc, ΣDMFT and Floc.
Using these quantities, the free dual propagator G̃0 is calculated according to equation (2.32)
and the full dual vertex F̃ as well as the irreducible vertices Γ̃r are initialized to Floc, i.e.
F̃ = Γ̃r = Floc. Using these quantities, first the BSE (2.17) – (2.19) are employed to calculate
the reducible vertices Φ̃r in each channel:

Φ̃νν′ω
ph = 1

β

∑
ν1

F̃ νν1ωG̃(ν1 + ω)G̃(ν1)Γ̃ν1ν′ω
ph (3.2)

Φ̃νν′ω
ph

= − 1
β

∑
ω1

F̃ ν+ω1,ν′+ω1,ω−ω1G̃(ν + ω1)G̃(ν ′ + ω1)Γ̃νν′ω1
ph

(3.3)

Φ̃νν′ω
pp = − 1

2β
∑
ν1

F̃ ν,ν1+ω,ν′−ν1G̃(ν1 + ω)G̃(ν + ν ′ − ν1)Γ̃ν+ν′−ν1,v′,ω−ν′+ν1
pp . (3.4)
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Here, again for the sake of readability, only the Matsubara frequency arguments are given,
wheras the corresponding momenta arguments have been omitted. The reducible vertices
Φ̃r are further used in the PE (2.15) and in equation (2.16) to obtain the full dual vertex F̃
and the Γ̃r irreducible in each channel:

F̃ νν′ω
kk′q = F νν′ω

loc + Φ̃νν′ω
ph,kk′q + Φ̃νν′ω

ph,kk′q
+ Φ̃νν′ω

pp,kk′q (3.5)

Γ̃νν′ω
r,kk′q = F̃ νν′ω

kk′q − Φ̃νν′ω
r,kk′q. (3.6)

Subsequently, new Φ̃r can be calculated out of the updated F̃ and Γ̃r using the BSE (3.2)
– (3.4), and out of these again new full and irreducible vertex functions are obtained in the
PE (3.5) and (3.6). This first loop of the implementation, including the BSE and PE, is
indicated by the yellow box in Fig. 3.1 and each run-through adds new diagrams of higher
order in Floc to the dual vertex functions. Hence, the number of iterations in this loop is
coined ”order” in the following, but keep in mind that the actual order in Floc of the diagrams
increases exponentially with each repetition.

Upon concluding the BSE and PE loop, the dual self-energy Σ̃ is calculated from F̃ and
the dual Green’s function G̃ in the dual Schwinger-Dyson equation (3.1). Finally, the dual
interacting Green’s function is updated via the dual Dyson equation (2.33). This resulting G̃
then is used as new input quantity in the parquet equations, where now the vertex functions
are reset anew at the beginning, i.e. the BSE and PE cycle is started anew beginning from
the first order, but with the resulting Green’s function from the previous set of repetitions
of the BSE and PE loop (up to some order). This second cycle of the parquet approach
corresponds to the outer loop denoted in Fig. 3.1. It is depicted by ”iteration” in the
following, and is repeated until convergence is obtained for the final DF results.

For more details on the specific code used for this algorithm, see appendix A.
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DMFT:
Gloc, ΣDMFT, Floc

Bethe-Salpeter:
Φ̃r = Φ̃r(Γ̃r, F̃ , G̃) (3.2) – (3.4)

Parquet:
F̃ = Floc + ∑

r Φ̃r (3.5)
Γ̃r = F̃ − Φ̃r (3.6)

Schwinger-Dyson:
Σ̃ = Σ̃(F̃ , G̃) (3.1)

Dyson:

G̃ =
[
G̃−1

0 − Σ̃
]−1

(2.33)

Figure 3.1 – Flow diagram for the parquet dual fermion approach. With the DMFT results
Gloc, ΣDMFT and Floc as input quantities, the Bethe-Salpeter and in turn the parquet equations
are used to build up the dual vertex functions, which is indicated in the yellow box. The number
of times these two steps are executed is called ”order” in the following and it determines how
many diagrams are taken into account for the full dual vertex F̃ . After this Bethe-Salpeter
and parquet loop, the dual self-energy is calculated from the dual Schwinger-Dyson equation,
followed by the calculation of the dual Green’s function via the dual Dyson equation. This
resulting G̃ then is used again as starting point for a new parquet calculation with reset vertex
functions beginning from the first order onwards. This second loop is coined ”iteration” in
the following and the whole calculation is repeated until convergence is obtained for the dual
quantities.
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3.2 Numerical results

In this section numerical results are presented, calculated by employing the parquet iteration
scheme shown in Fig. 3.1. Two differently occupied systems are investigated, indicated by the
occupations nc and nf of the mobile c and the localized f electrons in the FKM, respectively.
These two systems are:

1. A completely half-filled system, nc = nf = 0.5.

2. A strongly c-doped system where nc = 0.15 while the f band is still held at half-filling,
nf = 0.5.

As the calculations within the parquet approach are numerically very cumbersome, only
small square lattices with a number of Nk = 6 sites in each direction and Nν = 20 first
Matsubara frequencies are considered.

3.2.1 Half-filled system

In the half-filled system, each lattice site has an average occupation of nc = nf = 0.5 for both
types of electrons in the FKM and the chemical potential amounts to half the interaction,
µ = U/2. Furthermore, particle-hole symmetry holds at half-filling. Electronic correlations
are expected to have maximum effect for this configuration and therefore it is in many
cases most interesting to look at the system at half-filling especially when investigating the
extension to nonlocal correlations.

In DMFT for the two dimensional FKM at half-filling, a Mott-Hubbard-like metal-to-
insulator transition occurs at U = 1 [19]. Here and in the following all energies are given
in units of t ≡ 0.25. The metal-to-insulator-transition can be seen in the DMFT spectral
function A(ω) = − 1

π
Im Gloc(ω) shown in the left of Fig. 3.2 on the real frequency axis for

U = 0.5, U = 0.9 and U = 1.5, where a gap is forming for increasing U and at U = 1.5 the
spectrum is already split into two subbands.

The parquet DF calculations for the half-filled system have been carried out both at inter-
action strength U = 0.5 and U = 1.5. As can be seen in Fig. 3.2, at U = 0.5 the system is
still metallic, while at U = 1.5 it is already insulating. In both cases, convergence for the
presented results was ensured by performing five iterations of the parquet scheme, where
each iteration was done up to seventh order in the parquet equations. This was verified by
looking both at the dual self-energy and the resulting physical susceptibilities. Obtaining
such convergent results was directly possible for temperatures from T = 0.1 to T = 0.05 at
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U = 0.5 and from T = 0.1 to T = 0.06 at U = 1.5. For lower temperatures, i.e. close to
the DMFT phase transition to charge ordering, the calculations become more unstable and
obtaining converged results becomes difficult. In principle, the DF transition temperature
is lower then the DMFT transition temperature [21], but achieving results in the vicinity of
this transition requires a different algorithm where either the order in Fig. 3.1 is increased
after each iteration or F̃ is not reset after each iteration.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
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−π 0 π

kx

−π
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π
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Figure 3.2 – Left: DMFT spectral function A(ω) for the half-filled system, at U = 0.5,
U = 0.9 and U = 1.5. At U = 0.5 and U = 0.9, the system is still metallic. For increasing U , a
gap forms and at U = 1 the metal-to-insulator transition takes place, as the spectrum is split
into two subbands. This can be seen at U = 1.5, where the system then is already insulating.
Right: Brillouin zone with the Fermi surface at half-filling (black line). The 6 × 6 grid of
~k-points for which parquet DF results are presented in this thesis is indicated by dark blue
crosses. Note that results for kx = −π or ky = −π are not calculated, as they follow directly
from the ~k-points on the opposite side of the Brillouin zone due to the symmetry of the FKM.
This is why these points are indicated by gray crosses. The red crosses denote the ~k-points for
which results of the dual self-energy are shown in Fig. 3.3, Fig. 3.4 and Fig. 3.5.

The Fermi surface at half-filling is illustrated in the right of Fig. 3.2, where the ~k-points,
for which parquet DF results are calculated, are indicated by blue crosses. Results for the
dual self-energy in the metallic system at U = 0.5 are shown in Fig. 3.3 for ~k = (π, π),
~k = (π, 0), ~k = (2π

3 ,
π
3 ) and ~k = (0, 0). As can be seen in Fig. 3.2, where these four ~k-points

are indicated by red crosses, the (π, 0)- and the (2π
3 ,

π
3 )-point both lie on the Fermi surface

with a, due to particle-hole symmetry, vanishing real part. The (π, π)-point lies outside of
the Fermi surface and therefore Σ̃ shows a positive real part there, whereas the (0, 0)-point
lies inside the Fermi surface with a negative real part of Σ̃. In general, the dual self energy
displays a negative imaginary part on the Fermi surface, while the imaginary part is positive
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on ~k-points away from the Fermi surface, as can be seen in Fig. 3.3. The imaginary part of
Σ̃ at ~k = (π, π) and ~k = (0, 0) is equal. The dual self-energy is shown here for two different
temperatures, T = 0.1 lying well above the temperature of the DMFT phase transition to
charge ordering, and T = 0.06 being close to this ordered phase. Correspondingly it can be
seen that the amplitude of the dual self-energy is much stronger at lower temperature, which
is expected as nonlocal correlations should be enhanced near the transition into a charge
ordered phase, where the correlation length increases with decreasing temperature.
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Figure 3.3 – Imaginary part(above) and real part (below) of the dual self-energy at half-filling
for the metallic system at U = 0.5 at T = 0.1 (left) and T = 0.06 (right). The self-energy is
shown for four points in the Brillouin zone: ~k = (π, π), ~k = (π, 0), ~k = (2π

3 ,
π
3 ) and ~k = (0, 0).

While the (π, 0)- and the (2π
3 ,

π
3 )-point lie on the Fermi surface, where the corresponding real

part of Σ̃ vanishes, there is a positive real part for the (π, π)-point and negative real part for
the (0, 0)-point. For the temperature of T = 0.1 the dual self-energy is much smaller than the
one at T = 0.06, affirming that nonlocal correlations play a stronger role at lower temperatures
where charge density wave fluctuations become pronounced.
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The same results for the dual self-energy, but for the insulating system at U = 1.5 are
illustrated in Fig. 3.4. Here, the amplitude of the imaginary part of the self-energy is about
an order of magnitude larger, and the real part of Σ̃ is even two magnitudes of order larger
than at U = 0.5. This displays naturally the increasing effect of correlations with greater U .
Qualitatively, the DF corrections to the self energy look similar in both cases.
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Figure 3.4 – Imaginary part (above) and real part (below) of the dual self-energy at half-filling
for the insulating system at U = 1.5 at T = 0.1 (left) and T = 0.06 (right). The self-energy is
shown for four points in the Brillouin zone: ~k = (π, π), ~k = (π, 0), ~k = (2π

3 ,
π
3 ) and ~k = (0, 0).

The dual self-energy shows qualitatively the same behavior as for the metallic system in Fig.
3.3, but the imaginary part is one magnitude of order larger and the real part is two magnitudes
of order larger then Σ̃ at U = 0.5.
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From the dual self-energy Σ̃, the lattice self-energy ΣDF of the real electrons is calculated
using equation (2.36) and from it the corresponding lattice Green’s function GDF results
from the Dyson equation (2.22) using the fully ~k-dependent self-energy ΣDF instead of the
local self-energy from DMFT, ΣDMFT. The imaginary part of these two quantities is shown
in Fig. 3.5 compared to the original DMFT results at T = 0.06. ΣDF is drawn for the
(π, 0)-point on the Fermi surface, where the dual self-energy is strongest on the lattice, and
for the (π, π)-point. The DF self-energy has qualitatively the same behavior as the DMFT
self energy but amplifies the effect at ~k = (π, 0), wheras it decreases the effect at ~k = (π, π).
Note that for U = 1.5 the self-energy is an order of magnitude larger.
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Figure 3.5 – Resulting lattice self-energy ΣDF at ~k = (π, 0) and ~k = (π, π) and local Green’s
function Gloc,DF compared to the local DMFT results ΣDMFT and Gloc,DMFT at T = 0.06 and
half-filling for U = 0.5 (upper panel) and U = 1.5 (lower panel). The increase in the amplitude
of the self-energy due to nonlocal correlations leads to a decrease of the local Green’s function
at small frequencies.
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In the right panel of Fig. 3.5, the resulting local Green’s function is shown, being the sum
of GDF over all 6 × 6 ~k-values. It can be seen that the nonlocal correlations introduced
by the DF approach at U = 0.5 give only small corrections to the local Green’s function
for the first few Matsubara frequencies, while at U = 1.5 these corrections are considerably
larger. As the self-energy is enhanced by the DF extension of DMFT, the Green’s function
is decreased. Note that a vanishing Im Gloc for νn → 0 corresponds to an insulating solution
and a finitie value to a metallic one. The DF corrections give rise to a less metallic or more
insulating behavior of the system due to nonlocal correlations.

In addition to the self-energy and Green’s function, both being one-particle quantities, also
the two physical susceptibilites χd(~q, ω) and χj(ω) (in x-direction) are calculated by applying
the equations (2.11),(2.13) and (2.14) using the Green’s function of the real fermions and the
dual vertex function F̃ obtained in the parquet DF approach as an approximation for the
vertex function F of the real electrons. The frequency dependence of χd(~q, ω) is illustrated
in Fig. 3.6 for ~q = (π, π), where the amplitude of χd is strongest. The susceptibility consists
of a disconnected, or ”bubble” part, denoted by χbd, and a connected part χcd, based on the
full dual vertex F̃ . Both contributions are shown in Fig. 3.6 for two temperatures, both in
the metallic case (U = 0.5) and the insulating case (U = 1.5). The connected part of the
static susceptibility at ωn = 0 strongly increases with decreasing temperature, suggesting
the onset of strong charge fluctuations.

It is also interesting to look at the charge susceptibility not only in momentum space, but
also in real space, where further aspects of the electronic correlations are visible. This can
be seen for the metallic system in Fig. 3.7, where the static susceptibility χd(~q, ωn = 0) on
the full lattice at the temperature of T = 0.06 is plotted. In momentum space, the value
at ~q = (π, π) is dominating, as it is the ~q - vector that connects the points on opposite
sides of the Fermi surface. In real space the charge susceptibility expresses the deviation of
the constant occupation of nc = 0.5 at half-filling given that a c electron is found at the
origin. Here at T = 0.06 the susceptibility shows strong signs of the checkerboard structure
expected in the charge ordered phase.
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Figure 3.6 – Bubble (χbd) and connected contribution (χcd) to the charge susceptibility χd for a
half-filled system evaluated at ~q = (π, π) for the temperatures T = 0.1 (red) and T = 0.06 (blue)
at U = 0.5 (left) and U = 1.5 (right). The connected part of the susceptibility χcd, is much larger
than the bubble part χbd and the strong increase at ωn = 0 for lower temperature indicates the
vicinity to a phase transition, where the susceptibility would diverge. This behavior is more
pronounced at stronger interaction strength U , as here the DMFT phase transition is close to
T = 0.06.
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Figure 3.7 – Charge susceptibility χd shown in momentum space (left) and real space (right)
at U = 0.5, ωn = 0 and temperature T = 0.06 for a half-filled system. The indices nqi and ni
for i ∈ {x, y} specify the corresponding momentum and real space coordinates as qi = nqi

2π
aNk

and Ri = nia, where the lattice constant is set to a ≡ 1. In momentum space, it can be
seen that the dominating value lies at ~q = (π, π), which corresponds to the formation of the
checkerboard structure which is also visible in real space.
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The susceptibility χj denoting the current-current correlation function is shown in Fig. 3.8 for
U = 0.5 and U = 1.5. Again, the two contributions to the full susceptibility, the bubble term
χbj and the connected term χcj, are shown separately. In contrast to the charge susceptibility
χd at half-filling, for χj the bubble term is the dominating one. With decreasing temperature
the χcj contribution (and therefore the overall susceptibility) increases, as correlations become
more significant.
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Figure 3.8 – Bubble (χbj) and connected contribution (χcj) to the current-current susceptibility
χj for the temperatures T = 0.1 (red) and T = 0.06 (blue) at U = 0.5 (left) and U = 1.5 (right)
for a half-filled system. Overall, the current correlations are much larger in the metallic system
at U = 0.5 than in the insulating system at U = 1.5, which is of course expected. While
the bubble term χbj does not change much, the vertex contribution χcj shows an increase with
decreasing temperature.

The results of the parquet DF calculation for both physical susceptibilities are compared to
the results of DMFT in Fig. 3.9 for the temperature of T = 0.06, where the DF corrections
are largest. For the one-particle quantities, such as self-energy and one-particle Green’s func-
tion, the effect of nonlocal correlations is only small (see Fig. 3.5), while for the two-particle
quantities, such as the connected contribution to the susceptibility, these nonlocal correla-
tions lead to strong vertex corrections to the DMFT results. This becomes apparent for the
static charge susceptibility in the upper panel of Fig. 3.9, where χDF

d , the susceptiblility cal-
culated in the DF approach, is smaller than the corresponding DMFT susceptibility χDMFT

d

at ωn = 0. This is expected, as DMFT as a mean field theory generally overestimates the
temperature of a phase transition and therefore the divergence in the susceptibility. Regard-
ing the current-current susceptibility, corrections from nonlocal correlations are not so large,
as the bubble and not the connected contribution is the leading term of χj (Fig. 3.8). The
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increase of χDF
j compared to χDMFT

j is traced to the connected part, which vanishes in DMFT
due to its purely local vertex function Floc, but has positive values in the DF approach.
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Figure 3.9 – Comparison of the physical susceptibilities for a half-filled system as resulting
from parquet DF calculations, χDF

d (left) and χDF
j (right), to DMFT results, χDMFT

d and χDMFT
j ,

at T = 0.06 for the metallic system at U = 0.5 (upper panel), and the insulating system at
U = 1.5 (lower panel). The nonlocal correlations, taken into account by the DF approach in
addition to the local ones in DMFT, show a strong effect for the static charge susceptibility
χd(~q = (π, π), ωn = 0) at this temperature. The increase in χj is mainly due to the connected
term χcj that is zero in DMFT (because of the purely local vertex Floc in DMFT), but increases
for lower temperatures in DF.
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3.2.2 c-doped system

In this section, we take a look at the FKM away from half-filling, at least for the c electrons,
for which we set the occupation to nc = 0.15, while the occupation of f electrons is still held
at nf = 0.5. The deviation from half-filling for the mobile electrons can be given by the sum
over all frequencies of the real part of the local Green’s function,

nc = 1
2 + 1

β

∑
νn

Re Gloc(νn). (3.7)

To fix the number of c electrons, the chemical potential µ, which also depends on tem-
perature, has to be adjusted accordingly. This has been realized in this thesis by finding
the corresponding µ to nc = 0.15 for a converged DMFT calculation via a simple bisection
method. The resulting chemical potential then was also used for the parquet DF calculation
that uses these DMFT results as input. Generally, special care has to be taken here as the
corrections on Gloc due to DF calculations would change the occupation number compared
to DMFT. However, for the following results this fact has been neglected, because the DF
corrections are very small and therefore the changes to nc are only of the order of 1 %.

As the occupation of c electrons is now very low compared to half-filling, no Mott-Hubbard-
like metal-to-insulator transition occurs in this configuration and the system retains its
metallic character. This can be seen in the DMFT spectral function A(ω) in Fig. 3.10,
shown at U = 0.5, U = 0.9 and U = 1.5. Therefore, only parquet DF results for U = 0.5 are
presented in this chapter.
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Figure 3.10 – Left: DMFT spectral function A(ω) at filling nc = 0.15 and nf = 0.5. For
all three U shown, U = 0.5, U = 0.9 and U = 1.5, the system remains metallic, even when
the whole spectrum is split into two subbands at U = 1. Right: Brillouin zone with the
Fermi surface in DMFT for the c-doped system (black line). The DMFT Fermi surface has
been determined by the maximum of A(~k, ω = 0), actually plotted is simply a region where
A(~k, ω = 0) is larger than a treshold. The red crosses denote the ~k-points for which results of
the dual self-energy are shown in Fig. 3.11.

The parquet DF results for the dual self-energy are shown in Fig. 3.11 for T = 0.1 and
T = 0.06, and for three different momenta ~k. The (0, 0)-point lies of course well within the
Fermi surface at the filling of nc = 0.15, ~k = (π3 ,

π
3 ) lies very close to it and ~k = (2π

3 ,
2π
3 ) lies

outside of the Fermi surface. The negative offset in the real part of Σ̃ can possibly be traced
to the change in the occupation nc and chemical potential µ in DMFT due to DF corrections,
which are enhanced with decreasing temperature. The dual self-energy is altogether much
smaller than it is for the half-filled system (Fig. 3.3), which can be expected as nonlocal
correlations show the largest effect at half-filling. In the c-doped case, the nonlocal DF
corrections are at most about one order of magnitude smaller than the local DMFT self-
energy Σloc, and therefore have negligible effect on the propagator of the real electrons, which
is why a comparison of DF and DMFT results for Σ and Gloc is not shown here.
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Figure 3.11 – Imaginary part (above) and real part (below) of the dual self-energy at nc =
0.15, nf = 0.5, U = 0.5 and for the two temperatures T = 0.1 (left) and T = 0.06 (right).
The self-energy is shown for three points in the Brillouin zone: ~k = (0, 0), ~k = (π3 ,

π
3 ) and

~k = (2π
3 ,

2π
3 ). The dual self-energy is much smaller than for the half-filled system.

The charge susceptibility for the c-doped system is shown in Fig. 3.12 for ~q = (π3 , 0), being
the point with the strongest value of χd here. As the correlations are weaker than in the
half-filled system, the static connected contribution χcd(~q = (π, π), ωn = 0) is first about half
as strong as the bubble contribution at T = 0.1, but gets more pronounced at T = 0.06. The
static susceptibility χd(~q, ωn = 0) and χd(~R, ωn = 0) for the whole lattice in momentum and
real space is shown in Fig. 3.13 at T = 0.06. The amplitude of χd is strongest at ~q = (π3 , 0),
but not as dominating as it is the case for the (π, π)-point in the half-filled case (Fig. 3.7).
This is expected as the Fermi surface for an occupation of only nc = 0.15 lies in the inner
region of the Brillouin zone, as can be seen in Fig. 3.10, and hence the corresponding ~q-
vector connecting opposite sides of the Fermi surface therefore becomes smaller. There is,
furthermore, no perfect nesting anymore so that a weaker ~k-dependence can be expected
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too. In real space, the susceptibility can be interpreted mainly as an on-site correlation of a
c electron, as there are on average few electrons (nc = 0.15) on the lattice. Because of this,
the value of χd is positive for neighboring sites around the origin in contrast to the half-filled
case (Fig. 3.7). The system tends to be more localized here, as can be seen from the fast
decrease of χd in amplitude around the origin compared to half-filling. This is probably due
to the fact that the c-doped system at T = 0.06 is not in the vicinity of a phase transition
as it was the case for the half-filled system at this temperature.
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Figure 3.12 – Charge susceptibility χd and its bubble (χbd) and connected (χcd) contributions
at ~q = (π3 , 0) and T = 0.1 (left) and T = 0.06 (right) for a c-doped system (nc = 0.15, nf = 0.5)
at U = 0.5. The connected contribution at ωn = 0 is at T = 0.1 smaller than the bubble term,
but increases with decreasing temperature.
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Figure 3.13 – Charge susceptibility χd at ωn = 0, U = 0.5 and T = 0.06 in momentum space
(left) and real space (right) for nc = 0.15, nf = 0.5. The visible features with ~q = (π3 , 0)
as strongest point are not as distinctive as in the half-filled system (compare Fig. 3.8). In
real space, χd consists mostly of the on-site correlation of a c-electron and exhibits a tendency
towards localization for the electrons, as the amplitude decreases rapidly around the origin.

The current-current susceptibility χj is illustrated in Fig. 3.14 for the c-coped system. Again
the connected contribution χcj is much smaller than the bubble χbj, but increases with lower
temperature. Contrary to the half-filled system, χcj is now negative, resulting in a decrease
of the current-current susceptibility and therefore a reduction of the mobility of electrons
due to correlations.

When comparing the parquet DF results to the physical susceptibilites of DMFT, as is shown
in Fig. 3.15, one sees that the corrections due to nonlocal correlations introduced in the DF
approach are much smaller than in the half-filled system (Fig. 3.9), so their effect on χd and
χj is also small. In the case of the charge susceptibility χd, the DF results are on top of the
DMFT results, and for the current-current susceptibility χj it can be seen that the negative
vertex corrections lead to a small decrease.
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Figure 3.14 – Current-current susceptibility χj and its constituting bubble (χbj) and connected
(χcj) parts for T = 0.1 (left) and T = 0.06 (right) in a c-doped system at U = 0.5. Note that
the connected current-current correlation function χcj has a negative sign, therefore leading to
an overall decrease of χj .
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Figure 3.15 – Comparison of physical susceptibilities χd and χj for a c-doped system with a
filling nc = 0.15 and nf = 0.5 of the itinerant and localized electrons, respectively, as calculated
in the parquet DF approach and in DMFT, at T = 0.06, U = 0.5, at the (π3 , 0)-point in the
case of χd. There are only minor effects of nonlocal correlations on the susceptibilites for such
a doped system.
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4 Ladder dual fermion approximation

The full parquet DF calculation introduced in the preceding chapter is numerically very
cumbersome, as the full vertex function F depends on three momenta and, in the case of
the FKM, two Matsubara frequencies and therefore demands a lot of working memory. This
is why only small lattices and frequency ranges are feasible for a parquet implementation,
as it is also the case for the numerical results presented up to now, with 6 × 6 points in
the Brillouin zone and 20 frequencies. In an attempt to overcome this huge requirement of
computing power, so-called ladder approximations are employed in the DF approach [20–22].

4.1 Implementation

In a ladder approximation for the DF approach, only one channel is considered in the parquet
equation (2.15), ph or pp, instead of all three channels. This is shown diagrammatically in
Fig. 4.1 for the full dual vertex F̃ as built in a ph-ladder, where the ph-irreducible vertex
Γ̃ph is approximated by Floc (analogous to the full parquet implementation, where the fully
irreducible vertex Λ has been approximated by Floc). Note that the vertex of the transversal
particle-hole ladder, ph, can be obtained from the ph-vertex using the crossing symmetry:

F̃ νν′ω
ph, kk′q

= −F̃ ν,ν+ω,ν′−ν
ph, k,k+q,k′−k. (4.1)

= + + +   ...

Figure 4.1 – Schematic drawing of the full dual vertex F̃ built in a ph-ladder approximation.
The basic building block is in general the ph-irreducible Γ̃ph in such an approach, which has
been approximated by Floc in our calculation.

As can be seen easily in Fig. 4.1, the sum for F̃ corresponds essentially to a geometric series,
and therefore F̃ can be calculated in the ladder DF approximation in principle by an exact
analytical expression, schematically written as

F̃ = Floc

1− χ̃0Floc
. (4.2)
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Here, χ̃0 denotes the bubble of two dual Green’s functions connecting the ladder, calculated
in ph-notation as

χ̃0(~q, ω) = 1
β

∑
~k,ν

G̃(~k, ν)G̃(~k + ~q, ν + ω). (4.3)

This shows that a ladder approximation is easily implementable in terms of computational
performance and also takes the infinite sum of diagrams into account contrary to the parquet
approach, where the calculation has been conducted up to some order. However, within the
ladder DF calculation, only a specific class of diagrams is regarded, whereas a convergent
parquet calculation can be assumed to approximate the exact solution much better. Fur-
thermore, in the ladder DF approximation different momenta do not couple so that F̃ only
depends on the momentum transfer ~q in the ph-channel, or on the total momentum ~qin the
pp-channel. However, one should keep in mind that these ladder diagrams diverge much
sooner than the full parquet diagrams when approaching a corresponding phase transition
and therefore ladder calculations tend to be less stable than the parquet implementation.

For the ladder DF calculation employed in this thesis, the exact equation (4.2) is not used.
Instead, the existing code for the parquet approach has been modified to iteratively build
up the ladder diagrams, such as the ones from the ph-ladder shown in Fig. 4.1. This was
done in order to be able to compare the ladder and corresponding parquet results on an
equal footing. The corresponding iteration scheme is illustrated in Fig. 4.2. Analogous to
the full parquet DF calculation shown in Fig. 3.1, for the ladder DF calculation the DMFT
quantities Gloc, ΣDMFT and Floc are used as input and the vertex functions are initialized,
F̃ = Γ̃r = Floc. Only one of the BSE is then employed, (3.2) or (3.4), for the ph- or the
pp-ladder to calculate the reducible vertex function Φ̃ph or Φ̃pp, respectively. This Φ̃r then is
also the only contribution to F̃ (apart from Floc) in a version of the PE, i.e. F̃ = Floc + Φ̃r.
The BSE and the PE using only one channel form a loop that is indicated in the yellow box
in Fig. 4.2. The number of times these two equations are performed, coined ”order”, then
determines how many ladder diagrams are taken into account, i.e. after the first use of the
BSE and PE the second diagram of the ph-ladder in Fig. 4.1, being of second order in Floc,
is obtained, and a second run of the loop then adds the third diagram in Fig. 4.1 to F̃ .
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DMFT:
Gloc, ΣDMFT, Floc

Bethe-Salpeter:
Φ̃r = Φ̃r(Γ̃r, F̃ , G̃)

(3.2)/(3.4)

Parquet:
F̃ = Floc + Φ̃r

in case of ph-ladder:
F̃ = Floc + Φ̃ph + Φ̃ph

Schwinger-Dyson:
Σ̃ = Σ̃(F̃ , G̃) (3.1)

Dyson:

G̃ =
[
G̃−1

0 − Σ̃
]−1

(2.33)

Figure 4.2 – Flow diagram for the ladder dual fermion approximation, with r either r = ph
or r = pp. Compared to the full parquet calculation shown in Fig. 3.1, here only the reducible
vertex Φ̃ph or Φ̃pp is calculated in one of the Bethe-Salpeter equations for the ph- or pp-
ladder, respectively. This Φ̃r is then used as the only contribution to the full dual vertex F̃
in the parquet equation. The number of times these two steps are executed is again called
”order” in the following and it determines how many ladder diagrams are taken into account.
After this Bethe-Salpeter and parquet loop, in the case of calculating the ph-ladder, also Φ̃ph

corresponding to a ph-ladder is added to F̃ ; Φ̃ph can be simply obtained by Φph via crossing
symmetry, i.e. via equation (4.1). Therefore both the ph- and the ph-ladder contribution
enter in the dual Schwinger-Dyson equation when calculating Σ̃. Afterwards, the dual Green’s
function is updated and then enters the Bethe-Salpeter and parquet loop again. This second
loop is coined ”iteration” and the whole calculation is repeated until convergence is obtained
for the dual quantities.
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After the BSE and PE loop, an additional step follows in the case of the ph-ladder. As the
reducible vertex Φ̃ph in the ph-ladder can be obtained directly from Φph by crossing symmetry
using equation (4.1), also these ph-ladder contributions are added to the full dual vertex,
F̃ = Floc + Φ̃ph + Φ̃ph. This vertex function now containing both ph- and ph-ladder diagrams
then enters the dual Schwinger-Dyson equation (3.1). In the case of the pp-ladder however,
only Φ̃pp is used for calculating the dual self-energy Σ̃ in (3.1). From Σ̃ the corresponding
G̃ is calculated in the Dyson equation (2.33), which is used as starting point for a new BSE
and PE loop to perform a self-consistent calculation of the ladder DF approximation. This
corresponds to the second loop in Fig. 4.2 and the number of times this loop is executed is
again called ”iteration”.

4.2 Numerical results

In the following, numerical results for the ladder DF approximation are presented, both
for the particle-particle ladder and the particle-hole ladder, where the ladder calculation
illustrated in Fig. 4.2 was employed. For the particle-hole ladder, both contributions, ph
and ph, have been taken into account, as described in the last section. The parameters for
the results are the same as for the full parquet DF calculation in section 3.2, but for the
metallic system at U = 0.5 only. To ensure convergent results, five iterations up to seventh
order were performed.

4.2.1 Half-filled system

The dual self-energy for a half-filled system calculated in a ph- and a pp-ladder approximation
as outlined in Fig. 4.2 is compared to the resulting Σ̃ from the full parquet calculation in Fig.
4.3 for the (π, 0)-point. Note that we denote the particle-hole ladder by ph here and in the
following, but it actually contains both the ph- and the ph-ladder. For high temperatures, as
can be seen in the left panel of Fig. 4.3 for T = 0.1, the ph-ladder approach provides almost
the same self-energy as the parquet calculation, while Σ̃ as obtained from the pp-ladder is
significantly smaller. This indicates a dominance of particle-hole processes for the FKM at
half-filling. At low temperatures, as shown for T = 0.05, nonlocal correlations become more
important and the ph-ladder calculation yields a slightly larger dual self-energy than the
parquet calculation.
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Figure 4.3 – Imaginary part of the dual self-energy at U = 0.5, ~k = (π, 0) and the two
temperatures T = 0.1 (left) and T = 0.05 (right) for a half-filled system. The results are from
three different DF calculations: a full parquet calculation (blue), a ph- (black dashed) and a pp-
ladder (red) approximation. The ph-ladder results containing also the ph-contributions provide
a good approximation to the dual self-energy as obtained from the full parquet calculation, at
least for high temperatures, while there is a small deviation at lower temperatures.

A similar situation is seen for the charge susceptibility χd, for which the three different
results (parquet, ph- and pp-ladder) are shown in Fig. 4.4 for ~q = (π, π). Only the connected
contribution χcd is plotted here, as the bubble term is approximately the same in all three
calculations, owing to the actually small DF self-energy corrections of Σ̃. Again, the results
from the ph-ladder approximation conform well to the ones from the parquet calculation,
but with a small deviation at low temperatures (note that the static value at ωn = 0 is
of most interest here as it indicates e.g. phase transitions). The pp-ladder approximation
however provides a smaller χcd. This shows that it is mainly the ph-ladder that contributes
to the diverging susceptibility when approaching a phase transition.
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Figure 4.4 – Connected contribution to the charge susceptibility χcd at half-filling and U = 0.5
as calculated in the parquet, ph- and pp-ladder approach. The results are shown at the (π, π)-
point and for temperatures T = 0.1 (left) and T = 0.05 (right). It can be seen that ph-
reducible diagrams yield the largest contribution to the susceptibility and that they agree
with the parquet results at higher temperature, but deviate from the latter with decreasing
temperature.

When calculating the connected current-current correlation function χcj, it is important to
oberserve that ph-ladder contributions with a local Floc as starting point, as shown in Fig.
4.1, vanish. Then the only momentum dependence emerges from the connecting Green’s
functions, which in turn only depend on the momentum transfer ~q. This ~q is zero when
calculating the current-current susceptibility, since light only transfers ~q = 0 to the electron
system. The sum over ~k in equation (2.14) then vanishes, as G(~k) is an even function,
while ∂εk

∂kx
is an odd function in ~k. The same holds for the sum over ~k′. Therefore, only the

transversal ph-ladder diagrams contribute to χcj in our particle-hole-ladder calculation. The
results of this ph-ladder and the pp-ladder approximation for the connected contribution to
the current-current susceptibility are illustrated in Fig. 4.5. Again, it can be seen that χcj as
resulting from the transversal particle-hole ladder approximates the full parquet values well
at least at large frequencies, while again results from the pp-ladder are very small compared
to it. In the next chapter, we will talk in detail about the physical effects bringing about
this large contribution in the ph-channel.
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Figure 4.5 – Connected contribution to the current-current susceptibility χcj as calculated in
the parquet, ph- and pp-ladder approach for temperatures T = 0.1 (left) and T = 0.05 (right)
at U = 0.5 and half-filling. Note that pure ph-reducible contributions vanish. To emphasize
this, the corresponding ladder has been denoted by ph in the plot, contrary to Fig. 4.3 and
4.4, but the full vertex F used in the calculation is equivalent.

4.2.2 c-doped system

We now want to compare ladder and full parquet results also for the c-doped system, where
nc = 0.15, while the occupation of the f electrons is held at half-filling. The results for the
dual self-energy can be seen in Fig. 4.6 at ~k = (π3 ,

π
3 ). Results from the pp-ladder at T = 0.1

now are slightly larger than the corresponding results from the ph-ladder or the parquet
calculation, at least for this ~k-point. At T = 0.05 the parquet and ph-ladder results (but
not the pp ladder) show a qualitatively different frequency behavior than at T = 0.01.

Results for the charge susceptibility χcd in the c-doped system are shown in Fig. 4.7 at
~q = (π3 , 0). They are very similar to the ones in the half-filled case in Fig. 4.4, with the
ph-ladder results being close to the parquet results, while χcd as calculated in the pp-ladder
is small. Note that in the c-doped system the ph-ladder approach yields a lower value than
the parquet calculation for the static charge susceptibility χcd(~q = (π3 , 0), ωn = 0), whereas in
the half-filled case it yields a larger value.
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Figure 4.6 – Imaginary part of the dual self-energy at U = 0.5, ~k = (π3 ,
π
3 ) and the two

temperatures T = 0.1 (left) and T = 0.05 (right) for a c-doped system. The results are from
three different calculations: a full parquet approach (blue), a ph + ph - (black dashed) and a
pp-ladder (red) approximation. As in the half-filled case, the ph-ladder approximates the full
parquet results very well, indicating the dominance of the ph-channel in the FKM.
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Figure 4.7 – Connected contribution to the charge susceptibility χcd in the c-doped system and
at U = 0.5 as calculated in the parquet, ph- and pp-ladder approach. The results are shown at
the (π3 , 0)-point and for temperatures T = 0.1 (left) and T = 0.05 (right). It can be seen that
ph-reducible diagrams agree well with the parquet results at higher temperature, but deviate
from them with decreasing temperature.
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The connected contribution to the current-current susceptibility χcj as calculated by the three
different methods is illustrated in Fig. 4.8. We have seen in Fig. 3.14, that χcj resulting from
the parquet approach is negative, i.e. has opposite sign as the bubble term χbj. Results from
the ph-ladder (keep in mind that ph-ladder contributions vanish) approximate this result
very well, whereas the pp-ladder yields a connected current susceptibility with opposite sign,
the same as the bubble term.
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Figure 4.8 – Connected contribution to the current-current susceptibility χcj as calculated in
the parquet, ph- and pp-ladder approach for temperatures T = 0.1 (left) and T = 0.05 (right)
at U = 0.5 and nc = 0.15, nf = 0.5. Here the pp-ladder results show a positive sign, while the
ph-ladder results (with only ph nonvanishing) yield a negative sign for the connected term.
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5 Optical conductivity

The results presented up till now were calculated on the Matsubara frequency axis ωn.
However, in order to obtain comparable physical quantities, an analytic continuation to
the real frequency axis ω is necessary, corresponding to the reversion of the Wick rotation
introduced in chapter 2.1. This is formally done for the current-current susceptibility via the
continuation χj(iωn)→ limδ→0 χj(ω+iδ). For the numerical data resulting from the parquet
DF approach, the analytic continuation is obtained by the maximum entropy method [23,24].
Furthermore, from the current-current susceptibility χj(ω) on the real frequency axis the
optical conductivity σ(ω) is calculated by the relation

σ(ω) = Imχj(ω)
ω

. (5.1)

This equation actually gives only the real part of σ(ω), which is the one we are interested in
as the real part corresponds to the absorption of light in the system, which can be measured
for actual materials in experiments.

5.1 Optical conductivity in the parquet DF approach

In chapter 3.2.1 the results for χj denoting the current-current correlations are presented in
Fig. 3.8 for the half-filled system and both before (U = 0.5) and after (U = 1.5) the metal-
to-insulator transition occuring in DMFT for the FKM at U = 1. The optical conductivity
corresponding to χj for these parameters is illustrated in Fig. 5.1. In case of the metal, U =
0.5, the bubble conductivity σb shows a typical Drude-like peak with maximum conductivity
at ω = 0. Including vertex corrections, this value at ω = 0 is strongly reduced, while a peak
at around ω = 0.4 is emerging. With lower temperature, the bubble conductivity itself is
slightly reduced by the stronger nonlocal corrections in the Green’s function, and the effect
of the vertex corrections is enhanced. In case of the insulator, i.e. for U = 1.5, the bubble
conductivity σb is centered around ω ≈ U , which corresponds to the distance of the peaks
of the two subbands in the spectral function shown in Fig. 3.2. Here, the vertex corrections
shift the reduced peak to smaller ω. Also there appears to be a nonzero weight of σ at ω = 0
even at T = 0.06 due to the effect of the vertex corrections.

46



0.0 0.5 1.0 1.5 2.0

ω

0

1

2

3

4

5

6 1e−1
σ, U=0. 5, T=0. 1

σb

σ

0 1 2 3 4 5 6

ω

0

1

2

3

4

5

6

7 1e−2
σ, U=1. 5, T=0. 1

0.0 0.5 1.0 1.5 2.0

ω

0

1

2

3

4

5

6 1e−1
σ, U=0. 5, T=0. 06

0 1 2 3 4 5 6

ω

0

1

2

3

4

5

6

7 1e−2
σ, U=1. 5, T=0. 06

Figure 5.1 – Bubble part σb and total optical conductivity σ for the half-filled system at
U = 0.5 (upper panel) and U = 1.5 (lower panel) and at temperatures T = 0.1 (left) and
T = 0.06 (right). At U = 0.5, the Drude-like peak of σb is transformed to a peak at around
ω = 0.4 when including vertex corrections. At U = 1.5, the vertex corrections render a smaller
peak that is slightly shifted to smaller frequencies. At the lower temperature of T = 0.06, the
tendencies are similar but the effect of vertex corrections is naturally larger.

It can be seen in Fig. 5.1, that the vertex corrections stemming from the full nonlocal DF
vertex function F have a huge effect on the shape of the optical conductivity, and this effect
is increasing with lower temperature. To understand where this effect originates from, we
take a look at the different contributions to F , classified in the parquet equation (2.15):
F = Λ + Φph + Φph + Φpp. As the fully irreducible vertex function Λ = Floc in our DF
approach, this purely local Λ part does not contribute to the connected part χcj of the
current-current susceptibility at all. The nonlocal reducible vertex functions Φ from the ph,
ph and pp channel however give different contributions to χcj. Note that these contributions
are different to a simple ladder calculation in the ph-, ph- or pp-channel presented in the
last chapter, as they additionally contain diagrams that mix such pure ladder diagrams.
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These different contributions from the reducible vertex functions are shown in Fig. 5.2 for
the same parameters as before. Both in the metallic (U = 0.5) and the insulating phase
(U = 1.5), the clearly dominating contribution to the vertex correction of χj is the ph-
channel. Contributions from the ph- and pp-channel are rather small by contrast. The
vertex corrections stemming from the pp-channel are a little larger than the ones from the
ph-channel and show a different behavior for small frequencies. The same situation we have
already seen in Fig. 4.5 for the pure ph-ladder diagrams giving the strongest contribution
to χcj.
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Figure 5.2 – Different contributions to the connected current-current susceptiblity χcj for the
same parameters as in Fig. 5.1. The contributions stemming from Φph, Φph and Φpp are
denoted by χph, χph and χpp respectively, while the full vertex correction χcj also shown here
for comparison is denoted by χF . Apparently the ph-contribution constitutes the main part of
the vertex corrections, whereas χph and χpp are rather small, the pp- being a little larger than
the ph-contribution.
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What is the physical process behind the ph-contribution to the vertex correction of the
optical conductivity? The optical conductivity describes the interaction of the solid system
with light. A famous example for a bosonic quasiparticle that arises from such an interaction
is the exciton [25,26] appearing in semiconductors. The exciton describes a bound electron-
hole pair excited by a photon, as visualized in Fig. 5.3 (a). The corresponding Feynman
diagram to the exciton is shown in Fig. 5.3 (b): An incoming photon creates an electron-hole
pair that is interacting repeatedly with each other before recombining to a photon again. It
can be easily seen that the middle part of this diagram corresponds to a ph-ladder. As the
dispersion relation of photons is very steep compared to the electronic bandstructure, there
is almost no momentum transfer of the photon to the system, ~q = 0.

q=0

k k´

k´ q=0k

0 k

a)

b)

c)

d)

q=0

k k´

k´ q=0k

k-k´»p

0 p k

Figure 5.3 – from [9]. Physical processes (top) and corresponding Feynman diagrams (bot-
tom) behind an exciton (left) and the quasiparticles appearing in the half-filled FKM (right).
Incoming and outgoing photons are denoted by yellow wiggled lines, an electron-hole pair is
symbolized by open and filled circles respectively. Red wiggled lines denote the Coulomb in-
teraction appearing between electron and hole (left) or the two different electron-hole pairs
(right).

In the half-filled FKM, a model for strongly correlated systems, charge density wave (CDW)
fluctuations are dominating its physics, being especially large near the phase transition to
the ordered CDW phase. Such fluctuations are associated with a wave vector ~q = (π, π),
a feature we have already seen in Fig. 3.7 in the density susceptibility χn(~q) being clearly
strongest at this point. The Feynman diagrams describing CDW fluctuations correspond
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to ph-ladder diagrams as well. We have shown in the last chapter, that it is indeed this
ph-channel contribution, and therefore the corresponding fluctuations, that dominate the
system. However, the CDW fluctuations with their wave vector at ~q = (π, π) cannot couple
directly to a photon with momentum transfer ~q = 0, as in Fig. 5.3 (b). We saw in chapter
4.2.1 that such ladder diagrams even vanish when calculating χcj from a purely local vertex.
Instead, the CDW fluctuations couple to light by rotating the ph-ladder 90 degrees, illus-
trated in Fig. 5.3 (d), resulting diagrammatically in a ph-ladder with ~k′ − ~k = (π, π). Such
a diagram describes a process that is visualized in Fig. 5.3 (c) and is very different to the
exciton: An incoming photon creates an electron-hole pair first, and because of the strong
Coulomb interaction a second electron-hole pair is created at the wave vector (π, π). The
two electron-hole pairs then interact repeatedly with each other before finally recombining
to a photon again.

It was shown in [9] that the quasiparticles corresponding to this physical process in
Fig. 5.3 (c) originating from ph-channel contributions appear not only in the FKM (the
contribution of this thesis to [9]), but also in other models for strongly correlated systems,
such as the Hubbard, the extended Hubbard and the Pariser-Parr-Pople model. As the fluc-
tuations responsible for this phenomena are associated with ~k = (π, π), in [9] it is proposed
to call these quasiparticles π-tons.

To confirm that indeed the (π, π)-contribution is most relevant, the reducible vertex functions
Φνν′ω
ph,kk′q

and Φνν′ω
ph,kk′q are illustrated in Fig. 5.4 as a function of ~k′ − ~k both for U = 0.5 and

U = 1.5, where ~q = 0 for the calculation of the optical conductivity. The ph-contribution
Φph shows only a weak dependence on ~k′−~k and is small compared to the contribution Φph

from the ph-channel, which is actually peaked at ~k′ − ~k = (π, π) due to CDW fluctuations.
It is also due to these fluctuations that the vertex contribution grows when approaching the
phase transition at lower temperatures.
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Figure 5.4 – Reducible vertex functions Φph and Φph at νn = ν ′n = π
β , ωn = 0 and ~q = 0 as a

function of ~k′ − ~k with fixed ~k = 0. The vertex functions are shown for U = 0.5 (upper panel)
and U = 1.5 (lower panel) for different temperatures. The contribution from the ph-channel
is much larger then the one from the ph-channel and increases with decreasing temperature
when approaching the phase transition to the charge ordered phase. The CDW fluctuations
responsible for this transition are strongest at ~k′ − ~k = (π, π); Φph shows a pronounced peak
at this point.
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In Fig. 5.5 the results for the optical conductivity also in the c-doped case, nc = 0.15,
nf = 0.5, at U = 0.5 are shown, corresponding to the results of χj in Fig. 3.14. At this
c electron occupation, a small second peak is showing in the bubble term σb at around
ω = 1. This peak corresponds to transitions from the Fermi level to the upper subband in
the spectral function shown in Fig. 3.10 and equals the distance from ω = 0 to the location
of the peak of the upper subband, which is of course not pronounced much at U = 0.5. The
small side peak vanishes when including vertex corrections, while optical weight is shifted to
ω = 0, resulting in the system to be more metallic. This is contrary to the half-filled case,
where the vertex contribution χcj is positive and therefore the optical conductivity is shifted
towards larger frequencies by the vertex corrections. In the c-doped system however, these
vertex contribution of χj are negative.
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Figure 5.5 – Bubble part σb and total optical conductivity σ for the c-doped system, nc = 0.15,
nf = 0.5, at U = 0.5 and at temperatures T = 0.1 (left) and T = 0.06 (right). The small peak
at around ω = 1 appearing in the bubble vanishes when including vertex corrections, while
optical weight is shifted to ω = 0, an effect that increases at lower temperature.

The different contributions to the vertex corrections χcj stemming from the reducible vertices
Φ in the respective channels ph, ph and pp are illustrated in Fig. 5.6 for the c-doped system.
Again the ph-channel constitutes the largest part of the vertex corrections. The contribution
from the pp-channel here shows a different sign than the other two contributions, this was
also the case for the pure ladder approximation shown in Fig. 4.8.
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Figure 5.6 – Different contributions to the connected current-current susceptiblity χcj for the
same parameters as in Fig. 5.5. Similar to the half-filled case in Fig. 5.2, the ph-contribution
clearly is largest, while the contributions from the ph- and the pp-channel are rather small. The
vertex correction stemming from the pp-channel here has a positive sign (except at the first
Matsubara frequency), contrary to the other contributions, this was also seen for the pp-ladder
in Fig. 4.8.

5.2 Optical conductivity in the pp-ladder approach

In the preceding chapter, we took a look at optical excitations originating from the ph-channel
in the parquet equation, the largest vertex corrections to the optical conductivity. Now we
want to analyze why we did not observe a different physical phenomenon we expected:
weak localization [27]. Weak localization is an effect appearing in disordered electronic
systems, such as the FKM, where the conductivity is decreased due to interference terms
appearing when averaging over disorder realizations. The Feynman diagrams describing
weak localization correspond to pp-ladder diagrams, which in a ph-presentation correspond
to diagrams with maximally crossed interaction lines. Hence, we now study results for the
optical conductivity obtained in the pp-ladder approach for the FKM.

For the pp-ladder results presented before in section 4.2, an adjusted version of the full
parquet implementation has been used, as is illustrated in Fig. 4.2. As opposed to this,
for the pp-ladder results in this chapter, the exact analytical calculation of the dual vertex
function F̃ within the pp-ladder approximation is directly employed, i.e. the geometrical
series in equation (4.2) is calculated explicitly for the pp-ladder:

F̃ νν′ω
~q = F νν′ω

loc
1− F νν′ω

loc χ̃0(~q, ω) . (5.2)
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Here, χ̃0 is calculated in pp-notation,

χ̃0(~q, ω) = 1
β

∑
~k,ν

G̃(~q − ~k, ω − ν)G̃(~k, ν). (5.3)

The resulting vertex F̃ then shows a reduced momentum dependence that stems from the
connecting Green’s function bubble χ̃0, as it only depends on the total momentum ~q (in
pp-notation). This makes it possible to do calculations on a quite larger 32× 32 ~k-grid with
Nν = 40 Matsubara frequencies. Whereas in this thesis convergent results for the full parquet
calculation are not obtained for temperatures below T = 0.05, this is easily feasible now
within the pp-ladder approximation, as the divergences appearing in the parquet approach
hail mainly from the ph-channel. The results presented in the following have been calculated
without self-consistency, i.e. without calculating the vertex function in a self-consistent way
by updating the obtained Green’s function, to emphasize the effect of the diagrammatic pp-
ladder without self-energy corrections and therefore the corresponding relevant excitations.

In Fig. 5.7 results for the optical conductivity σ(ω) at half filling are shown for U = 0.5, with
the system still being metallic, and at U = 0.9, close to the metal-to-insulator transition
appearing at U = 1. Both only the bare bubble σb and the total conductivity σ including
vertex corrections are presented. It can be seen that the vertex corrections σc yield a negative
contribution to the conductivity at small frequencies, an effect that increases with decreasing
temperature. This is probably due to weak localization, and it can be seen both for U = 0.5,
with no gap appearing in the bubble σb, and for U = 0.9, where the gap in σ arises from
the decreased spectral weight at the Fermi energy as precursor to the metal-to-insulator
transition.

The same effect is visible in the c-doped system, nc = 0.15 and nf = 0.5, in Fig. 5.8. For this
filling, there is no metal-to-insulator transition, as the chemical potential lies within the lower
band when the spectral function starts to split into two subbands at the metal-to-insulator
transition. Therefore, both at U = 0.5 and at U = 0.9 the bubble conductivity σb still shows
a Drude-like peak at small frequencies, accompanied by a small side peak corresponding to
transitions between the two subbands. At U = 0.9, compared to U = 0.5, more spectral
weight is shifted from ω = 0 to this side peak. Again, vertex corrections clearly lead to a
decrease of the bubble term at ω = 0, resulting in the system to be more insulating. We
associate such a suppression of the metallic conductivity originating from the pp-ladder with
weak localization corrections.
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Figure 5.7 – Total optical conductivity σ and bubble term σb in the pp-ladder approximation
without self-consistency at half-filling at the three temperatures T = 0.1 (left), T = 0.06
(middle) and T = 0.02 (right). The results shown in the upper row are at U = 0.5, the ones in
the lower row at U = 0.9. For both U and all temperatures, the pp vertex corrections yield a
decrease in the optical conductivity at small frequencies. This effect is due to weak localization,
and becomes enchanced at lower temperatures.

Hence our conclusion is: There are weak localization corrections if we consider the pp-ladder
only with a fixed Green’s function (fixed interacting self-energy), but these pp-contributions
are suppressed if we take the ph- and ph-channels into account. Instead of weak localization,
π-ton contributions are dominating if we include all channels on an equal footing in the
parquet equations.
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Figure 5.8 – Optical conductivity σ in the pp-ladder approximation without self-consistency
at doping nc = 0.15, nf = 0.5 and for the three temperatures T = 0.1 (left), T = 0.05 (middle)
and T = 0.01 (right). The results shown in the upper row are at U = 0.5, the ones in the lower
row at U = 0.9. Also here in the c-doped system the effect of weak localization can be seen, as
the weight of the optical conductivity at ω = 0 is reduced due to pp-ladder vertex corrections.
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6 Conclusion

In this thesis, effects of nonlocal correlations in addition to the local ones as described
in DMFT have been analyzed. To this end, a full parquet dual fermion approach was
employed to obtain such nonlocal vertex corrections for the Falicov-Kimball model. It is
the first time such a full parquet approach is used for this model, giving more information
about diagrammatic content than ladder approaches investigated so far [20–22]. This is
important to better understand the nature of DF diagrammatics, allowing together with [28]
to apprehend phenomena quantitatively and qualitatively.

The resulting nonlocal corrections were found to be largest at half-filling and at low temper-
atures, as expected. The resulting static charge correlation function χd in the DF approach
is smaller than in DMFT, showing that the temperature of the phase transition to charge
ordering accompanied by the divergence of χd is generally overestimated in DMFT.

The parquet results were compared to results obtained by a ladder approximation, using
either

(i) both the ladder in the ph- and ph-channel for calculating the self-energy,

(ii) or the ladder in the pp-channel.

It was confirmed that ph-diagrams corresponding to charge density wave fluctuations are
dominating in the FKM, and that such a ladder approach already is a good approxima-
tion for the numerically very cumbersome parquet approach. Regarding the current-current
correlation function χj, it was found that it is the ph-ladder giving a large contribution con-
trary to the small contributions from the pp-ladder and the vanishing ones from the ph-ladder
results.

The effect of the obtained nonlocal vertex corrections to the optical conductivity was inves-
tigated in more detail. When regarding the different reducible contributions Φph, Φph and
Φpp in the full vertex F for χj, the ph-channel is clearly the dominating one. This is hinting
at bosonic optical excitations being prevalent in the FKM that have not been considered
hitherto, to the best of our knowledge. The same phenoma was found in other models and
is discussed together with the results of this thesis in [9], the corresponding quasiparticles
are proposed to be called π-tons.

Finally, it was shown that pp-ladder diagrams lead to weak localization, i.e. a decrease of the
optical conductivity with decreasing temperature, though this effect is completely masked
by the dominant ph-processes, if these are properly taken into account.

57



A Description of the parquet dual fermion code

The parquet DF code described in section 3.1 is available on Github [29]. It consists of two
different modules that are implemented in C++ and are called in a Python script:

• SCDMFT: In this module, a self-consistent DMFT calculation for the FKM is ex-
ecuted, including the calculation of the local vertex function Floc and the free dual
propagator G̃0 needed as input for the parquet DF calculation.

• DFParquet: Here, the full parquet DF approach is implemented, using the quantities
calculated in SCDMFT as input. In addition to the dual self-energy Σ̃ and Green’s
function G̃, also the physical susceptibilites χd and χj are calculated and given as
output.

The flowchart of the Python code using these two modules is shown in Fig. A.1. First,
the necessary input parameters are set, these are listed below with their respective variable
names as used in the progam:

beta inverse temperature β
U local Coulomb interaction U
mu chemical potential µ
p1 occupation of f electrons p1

nkDMFT number of ~k-points for the DMFT lattice
nk number of ~k-points for the DF lattice
nvDMFT number of Matsubara frequencies for the DMFT calculation
nv number of Matsubara frequencies for the DF calculation
DMFTiter number of iterations for the self-consistent DMFT cycle in SCDMFT
DFiter number of iterations for the Bethe-Salpeter and parquet equations in

DFParquet
iteration number of times DFParquet is called

Usually, the DMFT calculation in SCDMFT is done on a much larger ~k-grid and with
much more Matsubara frequencies than the parquet DF calculation, which is numerically
very cumbersome. This is why ”nkDMFT” and ”nk”, as well as ”nvDMFT” and ”nv” are
two different parameters. ”DFiter” sets the number of times the Bethe-Salpeter and parquet
equations are called in DFParquet. This loop was coined ”order” before and is indicated
in the yellow box of Fig. 3.1, where the general flow diagram of the parquet DF algorithm
is shown. By ”iteration”, the number of times the module DFParquet is called is fixed,
corresponding to the number of times the dual self-energy and Green’s function are updated
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after a run-through of the Bethe-Salepter and parquet equations. This was also coined
”iteration” before and corresponds to the outer loop in Fig. 3.1.

After setting the parameters, the corrections for the DMFT self-energy Σcorr are initialized to
zero. This quantity can be used in an implementation with outer self-consistency, where the
self-energy corrections of a previous DF calculation are taken into account as new starting
point for the DMFT calculation. This was not the case in this thesis.

Then, the module SCDMFT is called. It reads a possible Σcorr and the parameters as input
and gives the local self-energy ΣDMFT, local Green’s function Gloc, local vertex function Floc

and the purely nonlocal free dual Green’s function G̃0 as output.

Before calling DFParquet the first time, the dual self-energy Σ̃ is set to zero. The module
DFParquet reads in this Σ̃, the parameters and the quantities Floc, Gloc and G̃0 calculated
in SCDMFT and executes essentially the parquet DF algorithm that is shown in Fig.
3.1 except for the outermost loop there. The quantities that are calculated and given as
output are Σ̃, G̃ and separately the bubble and connected contributions to the physical
susceptibilites χj and χd. The output data is copied and saved to some specific directory
by the Python program, before DFParquet is started anew, now with the resulting Σ̃ from
the previous run-through.

59



set parameters

Σcorr = 0

call SCDMFT

Σ̃ = 0

call DFParquet

copy and save output files

number of iterations

Figure A.1 – Flow diagram of the Python code used for the parquet DF implementation. After
setting the parameters and Σcorr=0, the module SCDMFT is called to execute a DMFT
self-consistent cycle for the FKM. The dual self-energy Σ̃ is set to zero, before the module
DFParquet is called using the DMFT results as input. DFParquet is called according to
the number of iterations specified, in each step the output files of it are copied and saved.
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