
DIPLOMARBEIT

Anwendung von Deep Learning auf die
Rekonstruktion von Elektronen-Spuren

im CMS-Experiment

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Physik

eingereicht von

Martin Loesener

Matrikelnummer 01229469

ausgeführt am Institut für Hochenergiephysik
(in Zusammenarbeit mit CERN)

Betreuung
Betreuer: Univ.-Doz. DI Dr. Rudolf FRÜHWIRTH

Wien, 28.03.2019

. (Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

ii

Declaration of Authorship
I, Martin E. M. LOESENER DA SILVA VIANA, BSc., declare that this thesis titled, “Ap-
plication of Deep Learning to the reconstruction of electron tracks in the CMS Ex-
periment” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

“The measure of intelligence is the ability to change. ”

Albert Einstein

iv

VIENNA UNIVERSITY OF TECHNOLOGY

Abstract
Institute for High Energy Physics (HEPHY) /

Conseil Européen pour la Recherche Nucléaire (CERN)

Master of Science

Application of Deep Learning to the reconstruction of electron tracks in the CMS
Experiment

by Martin E. M. LOESENER DA SILVA VIANA, BSc.

This work proposes an implementation of a Deep Regression model for the purpose
of predicting electron track parameters from collision events at the CMS Experiment
at CERN. It is entirely written in Python, one of the most popular programming lan-
guages in the field of machine learning, and makes use of PyTorch, a cutting-edge
Deep Learning framework, widely known for its dynamic graph structure. Several
architectures were used, including the base architecture proposed by Bernkopf (Mas-
ter’s Thesis under revision) and convolutional neural networks. They were trained
and tested using a variety of algorithms and hyper-parameters to assess their per-
formance. A training error reduction of a factor 2 to 3.5 was achieved with respect
to the configuration proposed by Bernkopf, depending on the parameter. With un-
der 5k network parameters the model offers a light-weight and precise tool to pre-
dict electron tracks. With automated predictions of streaming particle track data in
mind, a possible bottleneck regarding data imports using different data formats was
tested.

HTTPS://WWW.TUWIEN.AC.AT/
http://www.hephy.at/
http://www.hephy.at/

v

TECHNISCHE UNIVERSITÄT WIEN

Abstract
Institut für Hochenergiephysik (HEPHY)/

Conseil Européen pour la Recherche Nucléaire (CERN)

Diplomingenieur

Anwendung von Deep Learning auf die Rekonstruktion von Elektronen-Spuren
im CMS-Experiment

von Martin E.M. LOESENER DA SILVA VIANA, BSc.

Diese Arbeit schlägt eine Implementierung eines Deep Regression-Modells vor, um
Elektronenspurparameter aus Kollisionsereignissen im CMS-Experiment am CERN
vorherzusagen. Es ist vollständig in Python geschrieben, einer der beliebtesten Pro-
grammiersprachen im Bereich des maschinellen Lernens, und verwendet PyTorch,
ein hochmodernes Deep-Learning-Framework, das für seine dynamische Graphen-
struktur bekannt ist. Es wurden mehrere Architekturen verwendet, darunter die von
Bernkopf vorgeschlagene Basisarchitektur (Masterarbeit in Bearbeitung) und Con-
volutional Neural Networks. Sie wurden mit einer Vielzahl von Algorithmen und
Hyperparametern trainiert und getestet, um ihre Leistung zu beurteilen. Abhängig
vom Parameter wurde eine Reduzierung des Trainingsfehlers um einen Faktor 2
bis 3,5 in Bezug auf die von Bernkopf vorgeschlagene Konfiguration erreicht. Mit
weniger als 5.000 Netzwerkparametern bietet das Modell ein leichtes und präzises
Werkzeug zur Vorhersage von Elektronenspuren. Mit dem Ziel der automatisierten
Vorhersage von Echtzeit-Teilchenspurdaten wurde ein mögliches Bottleneck beim
Datenimport mit unterschiedlichen Datenformaten getestet.

vi

Acknowledgements
First and foremost I want to thank my supervisor Rudolf Frühwirth for his kind
and expert support throughout every stage of my Thesis project. He was always
committed to helping me make the most out of this work, be it through hours of de-
tailed explanations and discussions or his flexibility in allowing me to participate in
additional activities such as an Artificial Intelligence School in Rome where I could
further strengthen and practice my Machine Learning skills.

I also want to thank Julian Gamboa for all the interesting discussions that often lead
to new ideas. He is an amazing friend who I admire for his intelligence, scientific
reasoning and deep sense of justice and morality. He is always able to stimulate my
curiosity about a great variety of topics ranging from science and technology to pol-
itics and diplomacy.

Also, very special thanks to my parents and brothers who are always there when I
need them. I have the best family I could wish for.

vii

Contents

Declaration of Authorship ii

Abstract iv

Abstract v

Acknowledgements vi

1 Introduction to Artificial Intelligence 1

2 The CMS Experiment 3
2.1 CMS Tracker . 5
2.2 Electron track reconstruction . 5
2.3 Contribution of this Thesis . 5

3 Theoretical framework of Deep Neural Networks 6
3.1 Neurons and neural networks . 7

3.1.1 Activation functions . 8
3.2 Optimization . 10

3.2.1 Stochastic Gradient Descent (SGD) 12
3.2.2 Adam . 13
3.2.3 Resilient Backpropagation (Rprop) 13
3.2.4 Levenberg-Marquardt . 13

3.3 Regularization . 14
3.3.1 Diagnosing overfitting . 14

3.4 Convolutional Neural Networks - Locality vs Globality 15
3.4.1 Summary of CNN hyper-parameters 19

3.5 Frontiers of theoretical Research on Neural Networks 19
3.5.1 Probabilistic and statistical models 20
3.5.2 Statistical inference . 23
3.5.3 Information Theory . 24
3.5.4 Topology and data analysis . 27
3.5.5 The curse of dimensionality and dimensionality reduction . . . 28

t-distributed Stochastic Neighbor Embedding (t-SNE) 28

4 Track parameter estimation by Kalman and Gaussian-sum filter 31
4.1 Kalman filters . 31
4.2 Gaussian-sum filters . 33

4.2.1 Optimal Gaussian mixtures . 33
4.2.2 Number of components . 33

viii

5 CMS Data 34
5.1 Structure of the data . 34
5.2 Baseline . 36
5.3 Tests . 36

5.3.1 t-SNE dimensionality reduction 36
5.3.2 Test on Gaussian weights . 38
5.3.3 Tests on correlation between targets and weighted averages . . 38

6 Software Tools 41
6.1 Docker . 41
6.2 Jupyter Lab . 44
6.3 Plotly/Dash . 45

6.3.1 Plotly plot . 46

7 Step-by-step installation and execution Guide 47
7.1 Installation . 47
7.2 Executing a model . 47
7.3 Dataset Generator . 49
7.4 Tests . 49
7.5 Parameter list . 49
7.6 Tests on data formats performance . 49

8 Model architectures 50
8.1 Base architecture . 50
8.2 Convolutional Neural Network architectures 50

9 Results 55
9.1 Data formats performance . 55
9.2 Models performance . 55
9.3 Phase I - Optimization of base architecture 57

9.3.1 Adadelta . 57
9.3.2 Adagrad . 59
9.3.3 Adam . 61
9.3.4 Adamax . 63
9.3.5 ASGD . 65
9.3.6 RMSprop . 67
9.3.7 Rprop . 69
9.3.8 SGD . 71
9.3.9 Levenberg-Marquardt . 73

9.4 Phase II - Addition of Convolutional Layers 75

10 Conclusion 77

Bibliography 78

ix

List of Figures

2.1 Design of CMS Detector . 4
2.2 Silicon pixels . 4
2.3 Silicon strips . 4

3.1 Representation of a layer of neurons . 7
3.2 Example neural network . 8
3.3 Landscapes of convex and non-convex objective functions 11
3.4 Effect of varying learning rates on convergence 12
3.5 Effect of application of convolutional filters to images 16
3.6 Successive application of convolutions in a CNN 16
3.7 Depiction of a 2-dilated kernel . 18
3.8 "Graph example" by Römert, located at https://commons.wikimedia.org/

wiki/File:Graph_example_(Graph_theory).png, Creative Commons Attribution-
Share Alike 3.0 Unported License . 21

3.9 Directed graph from x to y . 21
3.10 Directed graph from y to x . 21
3.11 Undirected graph between x and y . 22
3.12 Comparison of Student’s t-distribution with degrees of freedom ν =

1,5 and 10 with a Gaussian distribution 29

5.1 Feynman diagrams of bremsstrahlung process in first order Born ap-
proximation . 34

5.2 Fractional energy loss distribution for several t-values 35
5.3 Track inputs . 36
5.4 Track target . 36
5.5 t-SNE dimensionality reduction of particle track data (perplexity=5) . 37
5.7 t-SNE dimensionality reduction of particle track data (perplexity=50) . 37
5.6 t-SNE dimensionality reduction of particle track data (perplexity=30) . 38
5.8 Weighted average of parameter 1 (q/p) vs. its target 39
5.9 Weighted average of parameter 2 vs. its target 39
5.10 Weighted average of parameter 3 vs. its target 40

6.1 Typical jupyter lab front end . 44

8.1 Shapes of parameters in base architecture 51
8.2 Shapes of parameters in undilated CNN architecture 52
8.3 Shapes of parameters in dilated CNN architecture with kernel size 2 . 53
8.4 Shapes of parameters in dilated CNN architecture with kernel size 3 . 54

9.1 Adadelta training loss history for lr = 0.1 and batch size = 32 58
9.2 Adadelta validation loss history for lr = 0.1 and batch size = 32 58
9.3 Adagrad training loss history for lr = 0.01 and batch size = 128 60
9.4 Adagrad validation loss history for lr = 0.01 and batch size = 128 . . . 60
9.5 Adam training loss history for lr = 0.0001 and batch size = 64 62

x

9.6 Adam validation loss history for lr = 0.0001 and batch size = 64 62
9.7 Adamax training loss history for lr = 0.001 and batch size = 64 64
9.8 Adamax validation loss history for lr = 0.001 and batch size = 64 64
9.9 ASGD training loss history for lr = 0.01 and batch size = 32 66
9.10 ASGD validation loss history for lr = 0.01 and batch size = 32 66
9.11 RMSprop training loss history for lr = 0.001 and batch size = 32 68
9.12 RMSprop validation loss history for lr = 0.001 and batch size = 32 . . . 68
9.13 Rprop training loss history for lr = 0.001 and batch size = 512 70
9.14 Rprop validation loss history for lr = 0.001 and batch size = 512 70
9.15 SGD training loss history for lr = 0.01 and batch size = 128 72
9.16 SGD validation loss history for lr = 0.01 and batch size = 128 72
9.17 Levenberg-Marquardt training loss history for λ = 1 and batch size =

64 (slight bias towards Gauss-Newton Method) 74
9.18 Levenberg-Marquardt validation loss history for λ = 1 and batch size

= 64 (slight bias towards Gauss-Newton Method) 74
9.19 Adam training loss history for undilated CNN with lr = 0.0001 and

batch size = 32 . 76
9.20 Adam validation loss history for undilated CNN with lr = 0.0001 and

batch size = 32 . 76

xi

List of Tables

3.1 Activation functions . 9
3.2 Summary of CNN hyper-parameters . 19

5.1 Mean, maximum and minimum of the sum of Gaussian weights across
all tracks . 38

9.1 Time to import data and save it in a numpy array 55
9.2 Peak memory to import data and save it in a numpy array 55
9.3 Performance of Adadelta optimizer for parameters 1, 2 and 3, relative

to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 57

9.4 Performance of Adagrad optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 59

9.5 Performance of Adam optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 61

9.6 Performance of Adamax optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 63

9.7 Performance of ASGD optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 65

9.8 Performance of RMSprop optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 67

9.9 Performance of Rprop optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 69

xii

9.10 Performance of SGD optimizer for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several learning rates and batch
sizes, and rounded to three decimal places: (i) training average MSE,
(ii) training standard deviation of MSE, (iii) testing average MSE and
(iv) testing standard deviation of MSE 71

9.11 Performance of Levenberg-Marquardt optimizer with slight bias to-
wards a Gauss-Newton algorithm for parameters 1, 2 and 3, relative
to Bernkopf’s trainlm results, under several λs and batch sizes, and
rounded to three decimal places: (i) training average MSE, (ii) training
standard deviation of MSE, (iii) testing average MSE and (iv) testing
standard deviation of MSE . 73

9.12 Performance for parameters 1, 2 and 3, relative to Bernkopf’s trainlm
results, using the CNN architectures proposed in Chapter 8 and the
optimal optimization algorithms and rounded to three decimal places:
(i) training average MSE, (ii) training standard deviation of MSE, (iii)
testing average MSE and (iv) testing standard deviation of MSE 75

xiii

List of Abbreviations

CMS Compact Muon Solenoid
ML Machine Learning
DL Deep Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
MLP Multi-Layer Perceptron
ReLU Rectified Linear Unit
MSE Mean Squared Error
t-SNE t-distributed Stochastic Neighbor Embedding
LM Levenberg-Marquardt
Rprop Resilitent Backpropagation
ONNX Open Neural Network Exchange

1

Chapter 1

Introduction to Artificial
Intelligence

Artificial Intelligence (AI), or rather Machine Learning for the time being, is the man-
ifestation of decades of thorough research into the fundamental nature of learning.
It encompasses a wide range of applications from relatively simple tasks like ob-
ject recognition to complex ones like fully automated control systems in self-driving
cars. Its role in the scientific endeavour and technological progress is ever increas-
ing, given that most interesting problems in science and technology are non-linear,
complex and compositional in nature, meaning that a model capturing several lay-
ers of abstraction, as is the case of neural networks, have a great potential to solve
them.

Although there is currently much hype around the field, it is not a new idea. Under-
standing how Artificial Intelligence was born and how it evolved over time can be
helpful to understand current developments in the field and the reason behind the
use of today’s state-of-the-art techniques. To serve this purpose, some of the most
important and relevant historical developments will be now highlighted. Goodfel-
low et al. (2016) describe three crucial developmental phases of AI that are para-
phrased and discussed as follows. For readers interested in a more comprehensive
historical account, rich literature is available on the topic (for instance Nilsson, 2009).

Artificial Intelligence Research greatly fluctuated in popularity over time and changed
its focus and paradigm repeatedly. As aforementioned, one can group its history into
three sections of rising popularity: cybernetics in the 1940s to the 1960s, connectionism
in the 1980s to 1990s and the Deep Learning era starting in 2006 with the discovery
of a fast learning algorithm for Deep Belief Networks (Hinton, Osindero, and Teh,
2006) and lasting to the time of this writing.

Initially, Artificial Intelligence was fundamentally inspired by the biology and psy-
chology of the learning mechanisms in the brain. McCulloch and Pitts (1943) de-
scribed a biological neuron from the perspective of propositional logic, which marked
the beginning of the cybernetics phase. In 1950 (Turing) the idea of a thinking ma-
chine was introduced and the Turing test was developed to assess the intelligence of
a computer. Soon various machine learning programs followed, making use of the
perceptron (Rosenblatt, 1958) that "sensed" a signal and produced a binary output
based on a threshold value. A neuron is a similar, but more generalized concept
for continuous values. Of course, such linear operators on their own have great
limitations because most interesting problems are non-linear and a single percep-
tron/neuron can only learn one representation in a linear fashion. This concluded

2 Chapter 1. Introduction to Artificial Intelligence

the cybernetics period.

In the 1980s researchers realized that by combining various neurons in several lay-
ers, many representations of the input data could be learned in a distributed way,
forming layers of abstraction that could generalize concepts. Any Borel measurable
function from one finite dimensional space to another can be approximated to an
arbitrary accuracy given a multilayer feedforward neural network with sufficient
layers (Hornik, Stinchcombe, and White, 1989). With that idea, and the discov-
ery of backpropagation (Rumelhart, Hinton, and Williams, 1986) that allowed for
automatic gradient computation and parameter updates, connectionism was born.
AI was the big promise of its time, but the lack of computational power and data
impeded its progress. Soon the great dreams and ambitions of creating intelligent
devices and especially creating an artificial brain, capable of solving problems like
humans do, were partly abandoned because investor expectations could not be met.

However, with a rapidly developing computational infrastructure and exponentially
increasing amounts of data, soon the rules of the game would change again. In
2006 (Hinton, Osindero, and Teh), with the discovery of a fast learning algorithm
for Deep Belief Networks, there was a third big resurgence that lasts until the time
of this writing. This time it came under the name of Deep Learning. Several exciting
new discoveries have been made and interesting applications found. Also, with the
aim of boosting the development of the field, large datasets like ImageNet (contain-
ing tens of millions of images) were made publicly available and competitions with
prizes were held out and are still being held out. In 2015 Elon Musk made a stag-
gering investment of 1 billion dollars into Open AI, a non-profit research institution
that seeks the development of safe and human-friendly artificial general intelligence.

Today AI is transforming the way technological problems are solved in a funda-
mental way. It has proven its efficacy in a variety of applications, such as in object
recognition for self-driving cars, speech recognition for virtual assistants like Cor-
tana or Siri, and fundamental research like in cancer diagnostics.
Physics has also benefited from it and will do much more so in the future. To meet
the challenges of an increasing amount of particle collisions and the data generated
as a consequence, CERN has committed to expanding its use of machine learning al-
gorithms to hopefully increase the speed of particle track reconstructions (Castelvec-
chi, 2018).

3

Chapter 2

The CMS Experiment

The following information about the Compact Muon Solenoid (CMS) Experiment
largely stems from CERN’s website (About CMS). The LHC at CERN is a 27 km par-
ticle accelerator; the largest and most powerful of its kind. It creates two opposing
beams of accelerated protons and ions (LHC collides ions at new record energy). Pro-
tons reach about 6.5TeV of energy, or equivalently 99.9999991% of the speed of light.
When the beams collide at one of the four collision points (ALICE, ATLAS, CMS
and LHCb), they do so with twice the energy of each beam (approximately 13TeV).
In the course of those high-energy events, the energy is transformed into mass, and
new particles that could potentially hint at new Physics beyond the Standard Model
are created.
As aforementioned, CMS is positioned at one of the four collision points and pos-
sesses general-purpose high-tech particle detectors that were specifically developed
for the extreme conditions inside the apparatus. After a collision takes place, all
the tracks of all stable particles are detected, and their momenta and energies deter-
mined, with the hope of discovering something new. With its fast-response detectors
and electronics the experiment is able to capture 40 million data points every second.
Out of this massive amount of information, potentially interesting events are filtered
out.
To obtain meaningful information about the particles, it necessary to measure their
momentum and energy. Momentum is measured through forcing charged particles
into a spiral movement following a helix by applying a potent magnetic field and
subsequently measuring its curvature in the so-called CMS Tracker, while energy
is measured in Calorimeters (ECAL and HCAL) surrounding the Tracker through
scintillation and photon energy measurement. Muons pass the calorimeters and are
measured at a posterior stage in special chambers (muon chambers). All of those
measurements are only possible thanks to the strong magnetic field the particles are
submerged in. The Tracker and Calorimeters are enclosed inside a 3.8T supercon-
ducting Solenoid, carrying roughly 18,000A, the most powerful magnet ever con-
structed, and the one that gives CMS its name. Each of the components of the exper-
iment can be seen in figure 2.1. Given that this Thesis is a CMS Tracker project, some
more details about the Tracker will be now explained.

4 Chapter 2. The CMS Experiment

FIGURE 2.1: Design of CMS Detector

FIGURE 2.2: Silicon pixels

FIGURE 2.3: Silicon strips

2.1. CMS Tracker 5

2.1 CMS Tracker

The silicon Tracker is at the core of the CMS Experiment, where the track density is
highest. It consists of various layers of silicon pixels (figure 2.2) and silicon strips
(figure 2.3). Silicon detectors are used due to their fast response and high spatial res-
olution (about 10µm for each measurement). After a particle has created an electron-
hole pair, one of the tens of thousands of APV25 microchips (Raymond et al., 2000),
equipped with low-noise amplifiers, amplifies the signal. Position and momentum
are determined and advanced software is used for track/vertex reconstruction.

2.2 Electron track reconstruction

In order to accurately reconstruct tracks of electrons, one must account for their en-
ergy loss through both ionization and radiation (bremsstrahlung). For the latter, a
commonly used model is the Bethe-Heitler energy distribution. In an attempt to
account for this effect, and because Kalman filters used in CMS rely on Gaussian
distributions, Frühwirth (2003) developed a Gaussian mixture approximation that
was later implemented. A thorough analysis on the implementation of Gaussian-
Sum-Filters for electron reconstruction in the CMS Tracker can be found in the work
of Adam et al. (2005).

2.3 Contribution of this Thesis

The contribution of this Thesis to CMS is an implementation of an electron track re-
construction algorithm using Deep Neural Networks (LeCun, Bengio, and Hinton,
2015). It is completely written in Python, one of the most popular programming lan-
guages in the field of machine learning, and makes use of PyTorch, a cutting-edge
Deep Learning framework. Several architectures were used, including the base ar-
chitecture proposed by Bernkopf in his Master’s Thesis (under revision) and Con-
volutional Neural Networks. They were trained and tested using a variety of algo-
rithms and hyper-parameters to assess their performance. The baseline for perfor-
mance is set to be Bernkopf’s most successful model (trainlm) which is a Levenberg-
Marquardt algorithm. With automated predictions of streaming particle track data
in mind, a possible bottleneck regarding data imports using different data formats
was tested.

Why Convolutional Neural Networks?
Convolutional Neural Networks (CNNs) were originally developed based on find-
ings about the visual cortex of monkeys (Hubel and Wiesel, 1968). One of its most
prominent use case examples can be found in the field of object recognition. Images
have spatial patterns, for which CNNs are perfectly suited. However, the network
can be used in much more general scenarios. One of its significant advantages over
Feedforward Neural Networks is its ability to capture locality in features, and local-
ity can be encoded into non-visual data as well. The provided electron track data is
composed of twelve Gaussian components that are interrelated, and it is this rela-
tionship that conveyed the inspiration for exploring CNNs for track reconstruction.
Details on the relationships between features are presented in Chapter 5.

6

Chapter 3

Theoretical framework of Deep
Neural Networks

Before diving deep into the structure and functioning of neural networks, let us first
introduce the kind of problems they are designed to solve. In practice there is input
data describing the state of some object of study. Each variable that describes this
state is called a feature and features can be organized into a vector x, the feature vector,
that is an element of the feature space F. There are several instances xi of such vectors
and the set of all such instances is the input data. Each xi is an example from which
the neural network can extract information and learn a concept. There are two ways
of learning, namely Supervised Learning and Unsupervised Learning. The ideas and
purposes behind them are

• in Unsupervised Learning to extract some meaningful information from the
mentioned input data to get some insight, or as pre-training. This the case,
for instance, in clustering algorihtms and dimensionality reduction tools like
t-SNE which will be thoroughly discussed later in this chapter.

• in Supervised Learning to use input data, along with an associated output
value to learn their relationship and be able to predict a desired output value
for unseen, new inputs. In other words, we seek a functional relationship
(although in general highly non-linear) given by a network with optimally
tuned architecture and weights that maps a given new input xnew to an out-
put y = f (xnew).

In the course of the present work, both techniques have been used for different pur-
poses. The first to visualize in two dimensions the data that was parsed from an
original file and verify that the parsing was successful, and the second one to ac-
tually predict the values of a particle’s track parameters, i.e. the charge over mo-
mentum, the azimuthal angle, the polar angle and the transverse and longitudinal
impact parameter, as will be explained in more detail in Chapter 5.
Just for the sake of completeness, a prediction within the framework of Supervised
Learning in general can happen in two ways:

• Classification: The output value is discrete and called label. For example one
might want to segment data about the human brain into several categories.

• Regression: The output value is continuous and called target. This is the case of
this work. Particle’s track parameters are evidently continuous.

We will be dealing with neural networks in this work. In particular with Feedfor-
ward Neural Networks and Convolutional Neural Networks (CNNs). Those net-
works form part of Deep Learning. They have greatly gained momentum lately for

3.1. Neurons and neural networks 7

their surprisive predictive power. For clarification, Machine Learning is a subfield of
Artificial Intelligence and Deep Learning a subfield of Machine Learning, but tracing
clear boundaries can be tricky. There are other forms of machine learning as well,
like Support Vector Machines (SVMs) and Genetic algorithms.
With that said, we will now examine the structure and workings of a neural net-
work, starting from its fundamental building block: the neuron.

3.1 Neurons and neural networks

Perceptrons (Rosenblatt, 1958) take in the features xi and produce a binary output
based on a threshold. Neurons generalize this concept to real values. Each neuron
produces a scalar value and a layer of them produces a linear transformation of the
form

f (xi) = Σiwijxi + bj. (3.1)

Each neuron also contains an activation function that allows a value to pass if it is
large enough and does not if it is too small. The idea behind such a function is that
the information gets only passed on, if the signal is strong enough, just like it would
happen in a human neuron. How exactly activation functions control the values
passing through will be discussed at a later stage. In equation 3.1, wij is the weight
matrix and bi a bias.
A layer of neurons is depicted below:

FIGURE 3.1: Representation of a layer of neurons

The output of a neuron layer is an alternative representation of a feature vector and is
itself a feature vector that can be fed into another neuron layer. Connecting several
neuron layers forms a neural network.
Now, it is probably easiest to explain the functioning of a neural network in terms
of an example, that is nevertheless extremely simplified for a better understanding.
The general idea however translates perfectly into real networks. Let us consider the
following problem: We want to discriminate images of real persons from random ob-
jects. There are different layers of abstraction and therefore feature representations to
be learned in order to tell them apart. A person has eyes, ears, a nose, a mouth, and
many more facial parts. Each of those have a certain color and geometrical shapes
that can themselves be broken down into more simple characteristics like lines, cir-
cles and edges. To build a human face and tell it apart from other objects, several

8 Chapter 3. Theoretical framework of Deep Neural Networks

layers of feature representations need to be combined in just the right way. For the
sake of argument, let us assume that the weights in the transformation matrix wij
and the bias bi to produce one desired feature representation are already known. Let
us also assume that we know how many feature representations are needed. Then
we can build a network of neurons that detects (after passing the activation func-
tion) the presence of each of those features, combines them in just the right way and
finally outputs a binary answer of whether the image shows a human or not. For
this example we will use the network in figure 3.2.

FIGURE 3.2: Example neural network

Each neuron detects the existence of a feature. If we input a picture of a female model
where her ears are not visible, the following would happen. All neurons in the first
layer would fire with more or less intensity. The features are combined in different
ways to form structures like mouths, eyes, ears and noses that are detected in the
second layer. In the second layers all neurons would fire, except the ear-feature neu-
ron. Finally, although an ear was not detected, the other features were, and that is
enough for the network to determine the existence of a human face. For regression,
something similar happens, this time the representation being a numerical value and
being averaged with different weights.

3.1.1 Activation functions

There are several kinds of activation functions. Some examples are shown in table
3.1.

3.1. Neurons and neural networks 9

Activation Mathematical Graphical representation
function representation

Linear activation(x) = x

-4 -2 2 4
x

-4

-2

2

4

Linear

Tanh activation(x) = tanh(x)

-4 -2 2 4
x

-1.0

-0.5

0.5

1.0

tanhx

Sigmoid activation(x) = 1
1+e−x -4 -2 2 4

x

0.2

0.4

0.6

0.8

1.0

Sigmoid

ReLU activation(x) = {0 x≤ 0
x x > 0

-4 -2 2 4
x

1

2

3

4

5

ReLU

TABLE 3.1: Activation functions

10 Chapter 3. Theoretical framework of Deep Neural Networks

Many problems in science and technology are non-linear, and the reason activation
functions are powerful is that they introduce non-linearities into the network. Ac-
cording to the universal approximation theorem, any Borel measurable function from
one finite dimensional space to another can be approximated to arbitrary accuracy
by a multilayer feedforward neural network with sufficient layers (Hornik, Stinch-
combe, and White, 1989). A linear activation function can be hardly considered an
activation because its whole point is to introduce non-linearities. Originally, the
sigmoid function was widely used because it is biologically plausible. However,
because sigmoids are not zero-centered, they tend to introduce a bias into the gradi-
ents used for weight updates. Of course a sigmoid can be shifted to be zero-centered,
but this would add to the computational complexity. The tanh activation solves this
problem. Although not biologically plausible, it is zero-centered and very similar to
a sigmoid. Two problems that both of them have however, is for one part the van-
ishing gradient problem, and for another sparsity. The vanishing gradient problem
refers to the fact that departing from the origin, the gradient starts vanishing very
quickly, which can cause the algorithm to stop learning. A lack of sparsity refers
to small changes in the inputs causing many neurons to change accordingly, even if
the change should affect just a few. For a network’s ability to generalize concepts,
sparsity is a favourable property. Glorot et al. (Glorot, Bordes, and Bengio, 2011)
show that Rectified Linear Units improve sparsity and thereby the performance of a
network, despite its non-differentiability at the origin. They also solve the vanishing
gradient problem for positive values and are computationally less expensive. For
non-vanishing gradients in the negative domain, leaky ReLU activations can be con-
sidered. The only difference with respect to normal ReLUs is a slightly tilted linear
region (with small but positive slope) in the negative domain.
Here are some of the reasons why, according to the mentioned paper, sparsity is a
desirable property:

• Information disentangling: In a sparse network, small changes in inputs only
translate to changes in some neurons, affecting only some of the entries of
feature representation vectors. This way information can be disentangled more
easily.

• Efficient variable-size representations: Inputs vary in information content and
would be better represented by representations that fit their size, while in
dense networks representations would be excessively large.

• Linear separability: Representations are more easily separable, requiring less
non-linearities.

• Distribution: According to Bengio (Bengio, 2009) dense, distributed represen-
tations are exponentially more efficient than local ones, but Glorot et al. argue
that sparse and distributed representations are again exponentially more effi-
cient.

3.2 Optimization

Mathematical optimization has the goal to either maximize or minimize a so-called
objective function. The objective function in machine learning is usually called a loss
or cost function that is to be minimized and is a measure of deviation between pre-
dictions and target values. To conserve the mathematical generality and avoid using

3.2. Optimization 11

different names to refer to the same, from now on we will use the term objective
function or just objective. One of them, which is in fact the one used in this work, is
the mean squared error, which is defined as follows:

MSE =
∑n

i=1(yi − yi , target)
2

n
(3.2)

yi correspond to the prediction values. We can talk about two types of optimization
problems: convex and non-convex ones. They are visualized in figure 3.3.

(A) Example of a convex objective (B) Example of a non-convex objective

FIGURE 3.3: Landscapes of convex and non-convex objective func-
tions

Convex problems provide a guarantee for a global minimum of the objective as in
figure 3.3a. They arise for instance in linear regression problems and can be solved
by Gradient Descent and related methods. The minimum is located where the gradi-
ent vanishes. In non-convex problems like the one depicted in figure 3.3b however,
there is no unique minimum. A vanishing gradient therefore only indicates local op-
timality. Most problems are non-linear, non-convex and NP-hard to solve (meaning
they cannot be solved exactly in polynomial time by a given algorithm). Any algo-
rithm attempting to find the global minimum of an objective, can get stuck in a local
minimum. Some are less likely to do so, but since there is no optimality-guarantee,
we can generally not speak of absolute optimality, but only of "good enough" solu-
tions.
In figure 3.3, for simplicity, a hypothetical bivariate objective was visualized. How-
ever, in a neural network, an objective landscape is very high-dimensional. In fact
its dimension corresponds to the number of weights. The weights are the function’s
parameters and we talk about the function as being embedded in parameter space. We
will henceforth denote the parameters of a neuron by wi,j.
In the neural network example provided in the previous section, we have assumed
that all feature representations in all neurons are fixed and known. To get to this final
configuration, the network has to be trained. In order to do that, an optimization al-
gorithm needs to iteratively update the parameters. There are different update rules
with their respective up- and downsides, but most of them make use of the notion
of gradient descent (Cauchy, 1847). An update rule is herein denoted by ∆wi,j.
Gradient descent is based on the idea that the gradient of an objective points in the
direction of largest ascent. Therefore, taking a step in its opposite direction is likely
to diminish its value. This, however, depends on the step size. The parameter up-
date for gradient descent is given by the following equation

12 Chapter 3. Theoretical framework of Deep Neural Networks

∆wi,j =−η∇i,j J (3.3)

where J is the objective and η a hyper-parameter called learning rate. η controls the
step size. If it is too large the algorithm might diverge; if it is too small it restrains
convergence speed. This is illustrated by figure 3.4. Hence, finding an appropri-
ate learning rate is crucial. The mechanism of backpropagation (Rumelhart, Hinton,
and Williams, 1986) allows to assess how much the weights and the objective func-
tion have changed in an iteration. With those two pieces of information, the partial
derivatives in equation 3.3 can be numerically computed. Backpropagation is an
essential element of neural networks.

(A) Example of convergence with small
learning rate η

(B) Example of divergence with large
learning rate η

FIGURE 3.4: Effect of varying learning rates on convergence

Given that so many machine learning optimizers rely on gradient descent, it is also
interesting to look at the signal-to-noise ratio (SNR) of the gradient. It can be defined
as follows:

SNR =
mean(∇i,j J)
std(∇i,j J)

=
1
n ∑i ∑j∇i,j J√

1
n

(
∇i,j J −∇i,j J

)2
. (3.4)

A large SNR indicates a high certainty of moving in the correct direction and vice
versa. In a converging problem, after many iterations, the SNR should decrease.

All of the methods we are going to present are first-order methods, meaning that
they only make use of the gradient and not the Hessian or higher order deriva-
tives. Higher order methods are not only computationally much more expensive,
but they often do not work in practice. We will now introduce three common opti-
mizers that were used in this work, namely the Stochastic Gradient Descent (SGD),
the Adam optimizer and Resilient Backpropagation (Rprop). We will also introduce
the Levenberg-Marquardt algorithm which yielded the optimal results in Bernkopf’s
Master’s Thesis (under revision).

3.2.1 Stochastic Gradient Descent (SGD)

SGD (Robbins and Monro, 1951) only differentiates itself from common Gradient
Descent in that it only uses samples of the training set for parameter updates, instead
of the complete dataset. This significantly accelerates convergence speed and is also
useful for generalization.

3.2. Optimization 13

3.2.2 Adam

The Adam optimizer (Kingma and Ba, 2014) is a quite recent state-of-the-art opti-
mizer that makes use of stochastic gradient descent and lower-order moments esti-
mations to effectuate the parameter updates. It is suitable for gradients with high
SNR, and is efficient in terms of computational and storage complexity.
Regarding the implementation, after estimating the first moment mi,j and the second
moment vi,j which make use of the gradient ∇i,j J and introduce some momentum
so that local minima can be surpassed, the parameter updates are given by

∆wi,j =−η
mi,j√vi,j + ε

(3.5)

where ε is a small number (default initialization: 10−8) and η the learning rate. For
further details about the precise moment estimation, please refer to the mentioned
paper.

3.2.3 Resilient Backpropagation (Rprop)

The Rprop algorithm (Riedmiller and Braun, 1992) proposes the following update
rule:

∆wi,j(t) = {
∆wi,j(t− 1)η+ , if∇i,j J(t− 1)∇i,j J(t)>0
∆wi,j(t− 1)η− , if∇i,j J(t− 1)∇i,j J(t)<0
∆wi,j(t− 1) , otherwise

(3.6)

with 0 < η− < 1 < η+. As opposed to the Manhattan rule, this method adapts to local
changes in the objective function and one of its strengths is that it usually converges
very quickly.

3.2.4 Levenberg-Marquardt

The Levenberg-Marquardt algorithm is an efficient optimization algorithm that makes
use of first order quantities like the Jacobian of the objective (transpose of its gradi-
ent in case of a one-dimensional objective) to compute second order approximations.
It is therefore a second order method with the complexity of a first order method.
In Bernkopf’s Master’s Thesis (under revision) this algorithm yielded the best re-
sults, which are taken as the baseline of the present work. In the present work a
Levenberg-Marquardt optimizer was implemented and will be discussed in Chap-
ter 9.
Let us now examine the exact functioning of the algorithm. For a second order ap-
proximation, the Hessian of the objective is needed. It can be approximated as

H = JT J + λI, (3.7)

where J denotes the Jacobian of the objective, I the identity matrix and λ a scalar that
controls the contribution of the identity matrix (more on that later). From there the
update rule follows to be

∆wi,j =−H−1 JT =−(JT J + λI)−1 JT. (3.8)

Now let us consider the cases of a vanishing and a large λ value. If λ is very large the
JT J contribution to the Hessian becomes negligible, essentially yielding a gradient
descent approximation, as follows:

14 Chapter 3. Theoretical framework of Deep Neural Networks

∆wi,j ≈−(λI)−1 JT =−
(

1
λ

)
JT =−

(
1
λ

)
∇L =−η∇L. (3.9)

If λ vanishes, the JT J contribution to the Hessian dominates and the weight update
becomes

∆wi,j =−(JT J)−1 JT, (3.10)

which corresponds to a Gauss-Newton update. That means the Levenberg-Marquardt
algorithm is essentially a combination of Gradient Descent and a Gauss-Newton al-
gorithm, and λ intrinsically controls how much trust is given to each algorithm.
The remaining question is the one of λ’s choice. A Gauss-Newton approximation
works best near a minimum, while Gradient Descent works best far away from it.
It is a common implementation to decrease λ by a given factor when the objective
decreases after an iteration, and increment it by the same factor if the objective in-
creases.
In order to compare Bernkopf’s results with other optimizers, the author decided to
write an additional Levenberg-Marquardt optimizer with and without adaptive mo-
mentum. The version without adaptive momentum contains a slight bias towards
the Gauss-Newton Method, favouring λ’s change in this direction (reduction). The
version with momentum (Ampazis and Perantonis, 2000) could not be executed be-
cause the update matrices turn out to be the inverse of a singular matrix.

3.3 Regularization

A common issue in the realm of machine learning is the lack of generalization, com-
monly known as overfitting. Once a model becomes too complex, it becomes less
likely to predict new, unseen data because it starts memorizing data instead of rec-
ognizing patterns in it. Although theoretically not entirely understood, some possi-
ble explanations for this can be found in section 3.5 where some research identifying
different training phases and generalization mechanisms (Shwartz-Ziv and Tishby,
2017b) are explained.
There are ways to diagnose overfitting and counteract it by either modifying the
model architecture or introducing some penalty or regularization technique.

3.3.1 Diagnosing overfitting

Overfitting can be diagnosed by validation and testing. To this end, after random-
izing the dataset —to avoid learning a particular sequential order— a section of it
is reserved for validation and another section for testing. Validation and testing are
essentially the same procedure, where predictions from the respective dataset are
generated and the deviation from target values computed using the same loss func-
tion as for training. The only difference between the two is that validation happens
repeatedly after a given number of training iterations, while the test happens once
the training is completed. During both assessments, no optimization happens.
In the end, besides the training loss history, also a validation loss history and a test
loss are available and can be examined. An excess of the validation loss over the
training loss is an indicator for overfitting. Also, if the test loss is excessively large,
the model was clearly not able to generalize to new data.
If that is the case, some measures can be taken. One approach is to penalize overly

3.4. Convolutional Neural Networks - Locality vs Globality 15

large parameters by adding some measure of the parameter size to the loss function.
This can be done using several norms, but the most common implementations are
the L1 and L2 regularizations used in Lasso and Ridge Regression respectively.

L1 penalization in Lasso Regression:

L = L0 + λ||θ||21 (3.11)

L2 penalization in Ridge Regression:

L = L0 + λ||θ||22 (3.12)

θ in the above equations denotes the parameters.
Another very effective and commonly used state-of-the-art regularization technique
is called Dropout (Hinton et al., 2012). It basically consists of random data sampling
between layers and thereby forces the network to ignore irrelevant information. This
method will later be used in case it is needed.

3.4 Convolutional Neural Networks - Locality vs Globality

Besides common neurons, there are other operations that can be performed upon
input features. One of them is the convolution operation. This idea was originally
inspired by findings about the visual cortex in monkeys (Hubel and Wiesel, 1968),
and we will see how it applies to neural networks and what its use cases are.
Let us first contemplate the concept of a cross-correlation between two functions
f (x), g(x) ∈Rd that is defined as follows:

(f ? g)(x) :=
∫

Rd
f (ξ)g(x + ξ)dξ. (3.13)

In the discrete case it is given by

(f ? g)(x) := ∑
ξ

f (ξ)g(x + ξ). (3.14)

This is a measure of how related two functions are. When both are simultaneously
large and share the same sign, the summand is large and positive. On the other side,
if the functions have opposite signs, the summand is negative and makes the overall
integration or sum smaller, resulting in a smaller correlation. In other words, cross-
correlation is a measure of similarity between functions. The convolution is a very
similar concept, but with the reversal of one of the functions, i.e.:

(f ∗ g)(x) :=
∫

Rd
f (ξ)g(x− ξ)dξ, (3.15)

or in the discrete case

(f ∗ g)(x) := ∑
ξ

f (ξ)g(x− ξ). (3.16)

The difference between both concepts is only formal, not practical. Both are a mea-
sure of similarity. In signal processing for example, while a cross-correlation signifies

16 Chapter 3. Theoretical framework of Deep Neural Networks

how related two signals are, the convolution amounts to how much one signal af-
fects another; two sides of the same coin.
Now, in image processing, convolutions are a widely used tool. Convolutional fil-
ters can transform images with various purposes ranging from technical to artistic.
In figure 3.5 the effect of two convolutional filters is shown. For this, Adobe Photo-
shop Elements 15 was used. In figure 3.5b contours are filtered out, while figure 3.5c
corresponds to a Gaussian spreading.

(A) Unfiltered image of star
cluster Westerlund 2 in the
Milky Way (public image

from NASA/ESA)

(B) Image (a) filtered with
contour filter

(C) Image (a) filtered with
Gaussian spread filter

FIGURE 3.5: Effect of application of convolutional filters to images

Now, let us examine how this happens on a mathematical level. Based on equation
3.16, let us consider a two-dimensional convolution between a discrete function F :
Z2→R and a kernel/filter function k : [−r,r]2 ∩Z2→R (Yu and Koltun, 2015):

(F ∗ k)(x) := ∑
ξ

F(ξ)k(x− ξ) = ∑
ξ+x̃=x

F(ξ)k(x̃). (3.17)

For consistency with equation 3.16 the notation slightly differs from the one in the
paper. The convolution operation F ∗ k above assigns a correlation-like score to a
square of pixels. The kernel k is essentially a probe image that will be superposed
on various locations of the actual image to compute the convolution.

(A) Base image (B) First convolution opera-
tion

(C) Second convolution op-
eration

FIGURE 3.6: Successive application of convolutions in a CNN

Figure 3.6 depicts a simplified black-and-white image (binary entries). As we can
see, the convolution operation is applied step-wise in segments of the base image.
This is done by sliding the kernel to the right, until reaching the end of the image,
then taking one step down and starting to slide from left to right again, repeating the

3.4. Convolutional Neural Networks - Locality vs Globality 17

process until the whole image is covered. The result of each convolution is entered
into a new two-dimensional array (matrix), called a feature map. It shows which seg-
ments of the base image coincided the most with the feature encoded in the kernel.
Figures 3.5b and 3.5c are feature maps of 3.5a. In the former the kernel encodes the
feature of a contour and in the latter the kernel consists of a Gaussian feature.
This operation can be used inside a neural network. The idea goes back to the work
of LeCun et al. (1990) on the recognition of handwritten digits. His work was very
influential in computer vision and machine learning. In fact, one of the first data
sets machine learning practitioners are exposed to is MNIST, which contains 60,000
training and 10,000 testing images of handwritten digits. Instead of using neurons
in the first layers of figure 3.2 for instance, convolutions can be used. The learned
feature representations in the hidden layers are now given by feature maps instead
of the result of a linear transformation. The feature representations in each layer can
even be visualized (Zeiler and Fergus, 2014).
This type of network usually performs much better in image recognition tasks, as
compared to a Feedforward Neural Network architecture. But the inputs need not
be images. In fact, we can see that —as opposed to neuron layers— convolutional
filters scan through all segments of an image, and therefore are extremely well suited
to find local patterns. In other words, any kind of data that displays some locality
information is well suited for CNNs. Of course, in the limit case, as the kernel size
approaches the size of the base image, the CNN degenerates into a regular Feedfor-
ward Neural Network with fully connected layers, where all information is global.
Since the kernel is a square, the kernel size is characterized by the amount of pixels/-
data points on each side. A kernel size of 1 would mean the features are so localized,
that not even their next neighbors have an influence on the prediction. The kernel
size in figure 3.6 is 3.
So the kernel size must be fixed at a reasonable value that depends on the task.
Often experimenting with different sizes is the only way forward. There are other
CNN-specific hyper-parameters to be fine-tuned. One of them is the stride, which
corresponds to the number of steps the kernel needs to slide after each convolution.
In figure 3.6 the stride equals 1.
Another hyper-parameter is the amount of padding. Padding refers to the addition
of cells around the input data, so that feature-learning in the corners is improved.
In figure 3.6 the padding size is zero because no additional cell layer is added. Each
cell layer would increase padding by 1.
There is a third property distinctive to CNNs: pooling. Feature maps produced by
convolutions tend to become very large, which is why some downsampling mecha-
nism is needed. Pooling is precisely that. Similarly to a convolution it consists of a
sliding window producing a new and smaller representation, but the underlying op-
eration can have several types, most famously max pooling and average pooling. In
max pooling, each square gets mapped to the maximal entry, while in average pool-
ing an average of all entries is taken. The pooling kernel size can also be fixed. The
larger the kernel size, the larger the downsampling effect, which inevitably results
in lower resolution. As maintained by Springenberg et al. (2014), as an alternative to
pooling, the stride of the convolutional layer can often be increased without loss of
accuracy, which makes the network simpler.
Nevertheless, independently of which one of those downsampling mechanisms are
used, the fundamental problem of resolution loss remains. This might be no concern
for classification tasks, but especially for deep regression it becomes problematic be-
cause less resolution translates into less accuracy. A solution to this is offered by
(Yu and Koltun, 2015) by means of a dilation of the receptive field. This does not

18 Chapter 3. Theoretical framework of Deep Neural Networks

impair resolution at all, but it does have a downsampling effect. The idea consist of
generalizing equation 3.17 to

(F ∗ k)l(x) := ∑
ξ+lx̃=x

F(ξ)k(x̃). (3.18)

(F ∗ k)l is said to be l-dilated. In figure 3.7 a 2-dilated kernel is depicted.

FIGURE 3.7: Depiction of a 2-dilated kernel

In the present discussion, only two-dimensional convolutional networks were con-
sidered. The same notion, however, can be extended to N-dimensional data with
localized information (Mrazova, Pihera, and Veleminska, 2013).

Considering all of the above, the feature map produced by a convolution has the
following size (Dumoulin and Visin, 2016):

Od = b
Id + 2p− k− (k− 1)(l − 1)

s
c+ 1, (3.19)

where Id is the input size in dimension d, p denotes padding, k is the kernel size, l the
dilation (l = 1 is undilated), s the stride, and Od the output size of the convolution
(size of the feature map) in dimension d.

The output size of a pooling layer would correspond to

Od =
Id

k
. (3.20)

As previously discussed, a Fully Connected Layer can be regarded as a degeneracy
of a Convolutional Layer where k = Id, s = 1 and p = 0. Using equation 3.19 the
output size is, as expected, equal to 1.

A convolutional neural network is usually composed of

• an alternation of Convolution Layers with pooling layers (the output sizes be-
ing consistent with the above equations),

• and few Fully Connected Layers.

3.5. Frontiers of theoretical Research on Neural Networks 19

This architecture balances local features (Convolutions) with global features (Fully
Connected Layers). So, p, k, l and s, as well as the pooling size, are some of the hyper-
parameters to be fine-tuned. More general hyper-parameters include the learning
rate, the batch size and the general architecture in terms of the amount of layers and
neurons. The learning rate was already discussed; the batch size indicates how many
training examples are sampled per iteration; the architecture on the other hand must
be carefully chosen and tested on a case-by-case basis. A larger network usually
learns more, but is more computationally expensive. The concepts to be learned
from the data include a given number of levels of abstraction. If the number of
layers exceeds the levels of abstraction, subsequent layers are redundant and just
add to the computational complexity. Also, too many neurons in a layer means
redundant representations.

3.4.1 Summary of CNN hyper-parameters

In table 3.2, the tunable hyper-parameters, as well the effect of an increment in their
size is summarized.

hyper-parameter effect of incrementing size
convolutional kernel size focus on higher-level features

padding improved learning of edge features
dilation downsampling effect (no resolution loss)
stride downsampling effect (→ resolution loss)

pooling kernel size downsampling effect (→ resolution loss)
batch size more stable but slower convergence
neurons more feature representations

learning rate increment in convergence speed until optimal value,
from then on less stable convergence or divergence

TABLE 3.2: Summary of CNN hyper-parameters

The hyper-parameter choice for the task of this Thesis will be explained in Chapter
8. Assessing the optimality of a network can be difficult and a matter of trial and
error, since there is still no solid theory behind neural networks. This, however,
is changing. There are serious attempts at theoretically clarifying the underlying
mechanisms of statistical learning in neural networks, which could in turn provide
practical tools to build optimal architectures. Some recent and exciting theoretical
research will be thoroughly examined in section 3.5.

3.5 Frontiers of theoretical Research on Neural Networks

Neural networks, and in particular Deep Neural Networks, are said to be black
boxes. Even though at a neuron level their behaviour is very clear, much like with
many-body simulations in physics, it is especially hard to predict their behaviour
once the system becomes increasingly complex. There have been attempts at expos-
ing the internal workings of such a network and also to examine an already trained
network.
We will first discuss some methods to gain insight into and visualize learned pat-
terns in a Convolutional Neural Network that has already been trained. One ap-
proach is to use a Deconvolutional Neural Network that reconstructs and visual-
izes the representations in previous layers (Zeiler and Fergus, 2014, as presented

20 Chapter 3. Theoretical framework of Deep Neural Networks

by Arxiv-Insights, 2017). While this approach is definitely useful in understanding
the learned features and provides a tool to assess the performance contribution of a
given layer, it also needs specific input images to produce a visualization, making it
difficult to recognize more general patterns that go beyond that particular image.
As proposed by Arxiv-Insights (2018), a solution to this could be to feed the net-
work with randomly initialized images and update its pixels using gradient descent
to maximally excite a given neuron. This approach generates images that describe
the learned patterns in a more general manner. In fact, so-called Generative Adver-
sarial Networks make use of this method to modify images (adversarial images) to
trick a CNN into misclassification (Goodfellow et al., 2014), which poses an impor-
tant security concern.
The discussed methods already provide some insight, but designing a neural archi-
tecture is still a matter of trial and error, since there is no solid theoretical foundation
on the superiority of one model over another. Schwartz-Ziv and Tishby (2017) have
tried to shed some light onto the issue by making use of information theory. The
authors describe the learning process as being limited by an information bottleneck,
providing a theoretical limit onto the performance of a network, a ground-breaking
achievement in the context of a field where uncertainty in the network optimality
has been prevalent. This description offers a novel and much more complete picture
of the learning mechanisms on a larger scale and will help to understand the model
design, which is why the author of the present work decided to dive deeper into the
topic, starting from probabilistic and statistical models, clarifying the mathematics
behind information theory and step by step building the groundwork for this theory.

3.5.1 Probabilistic and statistical models

The modern and most mathematically rigorous way to treat probabilistic and statis-
tical models would be in the context of measure theory, which is especially useful
when dealing with continuous data, but independently of the mathematical paradigm
under which it is seen, it is essentially an extension of formal logic that describes the
amount of uncertainty in a system. The Algebra describing a probability space is
given by a triple (Ω, E, P), Ω being the sample space corresponding to the set of pos-
sible outcomes, E being a set of subsets of Ω and thus forming the set of events, and
P (probability measure function) being a map from an event e ∈ E to p(e) ∈ [0,1]. Of
course p(e) = 0 signifies the impossibility of e, whereas p(e) = 1 signifies absolute
certainty.
If the goal is to describe a complex system, several variables and parameters have to
be taken into account. If we are talking about Deep Neural Networks with several
layers of depth, it is helpful to examine the probabilistic treatment of a general graph
that is meant to describe the system.
Let G = G(V, E) be a graph. It is composed of V nodes or vertices specifying a cur-
rent state and E edges specifying the transition between nodes. This can be seen in
figure 3.8.
The graph can be:

• directed: a direction of flow between two nodes is specified. This is the case in
neural networks. Here, information can only flow forward. Backward propa-
gation is only to update the network and could be seen as a separate graph.

• undirected: direction of flow is irrelevant.

3.5. Frontiers of theoretical Research on Neural Networks 21

FIGURE 3.8: "Graph example" by Römert, lo-
cated at https://commons.wikimedia.org/ wiki/-
File:Graph_example_(Graph_theory).png, Creative Commons

Attribution-Share Alike 3.0 Unported License

Nodes could technically also point to themselves, although in the case of neural net-
works this will not be important. Now, to describe our system probabilistically we
could assign each node a probability. Here, the concept of conditional probabilities
comes in, which is in fact at the core of statistical inference. We will discuss this in
much more detail.
In figure 3.9 we can observe that y depends on x. The corresponding probabili-
ties would be p(x) for the first node and p(y|x) for the second node. Note that
p(y|x) 6= p(y) since the outcome of y depends on the outcome of x.

FIGURE 3.9: Directed graph from x to y

In figure 3.10 the probabilities are inverted. The first node has probability p(x|y) and
the second one p(y). Again, p(x|y) 6= p(x) because x depends on y.

FIGURE 3.10: Directed graph from y to x

In figure 3.11 there is no dependence relationship between x and y. The correspond-
ing probabilities are p(x) and p(y), where p(x) = p(x|y) and p(y) = p(y|x).

22 Chapter 3. Theoretical framework of Deep Neural Networks

FIGURE 3.11: Undirected graph between x and y

JOINT PROBABILITY:
A joint probability is a probability of two or more events happening simultaneously.
It can be computed by multiplying the individual node probabilities of a graph. The
above figures result in the following joint probabilities:

Figure 3.9: p(x,y) = p(x)p(y|x) (3.21)

Figure 3.10: p(x,y) = p(x|y)p(y) (3.22)

Figure 3.11: p(x,y) = p(x)p(y) (3.23)

In general a joint probability of variables x1, x2, ..., xn is given by

p(x1, x2, ..., xn) = p(
⋂

i

xi) = p(x1)
n

∏
i=2

p(xi|x1, ..., xn) (3.24)

This is equivalent to a logical AND operation. An OR operation between probabili-
ties is given by

p(
⋃

i

xi) =
n

∑
i=1

p(xi)−
n

∑
i=1

n

∑
j≥i

p(xi, xj) (3.25)

For the sake of completeness, we will also define the marginal probability. It is com-
puted based on the joint probability. In essence it sums over the probabilities of all
possible outcomes of the nodes it depends on, resulting in an unconditional proba-
bility. Mathematically this means:

p(xi) = ∑
x1,...,xi−1,xi+1,...,xn

p(x1, x2, ..., xn) (3.26)

BAYES’ THEOREM

The concept of conditional probabilities is tightly linked with the concept of statisti-
cal inference which is based on Bayes’ Theorem. The derivation follows now:

p(x|y) = p(x,y)
p(y)

⇐⇒ p(x,y) = p(x|y)p(y) (3.27)

p(y|x) = p(y, x)
p(x)

⇐⇒ p(y, x) = p(y|x)p(x) (3.28)

p(x,y) = p(y, x) ⇐⇒ p(x|y)p(y) = p(y|x)p(x) (3.29)

p(x|y) = p(y|x)p(x)
p(y)

(3.30)

Equation 3.30 is Bayes’ Theorem and basically states how a conditional probability
can be obtained using the conditional probability in inverse order, which is often
easier to determine. For example, it is easier to determine how likely it is that it is

3.5. Frontiers of theoretical Research on Neural Networks 23

cloudy, given that it is raining (p(cloudy) = 1) than to determine how likely it is that
it is raining, given that it is cloudy (p(rain)≤ 1).

3.5.2 Statistical inference

Now, while probability theory provides a strong theoretical background to reason
about uncertainty, statistics is the direct connection between measurement and prob-
ability theory, and Bayes’ Theorem gives us a tool to statistically infer new informa-
tion. Machine Learning can be regarded as a sophisticated statistical inference tool
that is able to learn highly non-linear information. In practical applications statisti-
cal estimators, which can be more or less robust, are of crucial importance, which is
why we are going to examine them now. Robustness is the insensitivity with respect
to gross errors in the data. Outliers should not affect the predictions too much. This
is not only a concern in the choice of estimators, but also in the design of a neural
network itself, as will be discussed later. If a network is too sensitive to changes in
the input data, it is not able to generalize; it essentially just memorizes data, which
is of no use for pattern recognition.
As for predictors, let A be an estimator of the parameter α. There are a few properties
that make for a good estimator, the most important ones being:

• Unbiasedness: To the extent possible the expectation should coincide with the
true value, i.e. E[A] = α.

• Consistency: extension of sample size n should decrease dispersion,
i.e. limn→∞ dispersion[A] = 0. Measures of dispersion are discussed below.

• Efficiency: unbiased estimator A with minimum possible dispersion compared
to alternatives, i.e. dispersion[A] < dispersion[Aalternative]

Those are just base criteria for ensuring truthfulness and minimum dispersion. Out-
liers in the data affect predictions; however, as previously mentioned, robust estima-
tors minimize this inconvenience. Robust statistics is a whole field in mathematics
that studies their quality, and without going into too much depth in this topic, some
of the classical examples of measures of central tendency and dispersion and more
robust versions are presented below.
For Euclidean spaces, some examples for measures of central tendency are:

• mean: 1
n ∑n

i=1 xi

• median: middle value of sequence of xi values

• mode: the most frequent number in the sequence of xi values

• Hodges-Lehmann estimator: median of means of subsets of sample space (Hodges
Jr and Lehmann, 1963)

As for measures of dispersion or deviation, the most common examples are:

• variance: σ2 = 1
n (xi − x̄i)

2

• standard deviation:
√

σ2 =
√

1
n (xi − x̄i)

2

24 Chapter 3. Theoretical framework of Deep Neural Networks

• MAD (median absolute deviation): median |xi − x̄i|

• Sn = 1.1926med,medj|xi − xj| and .25 quantile of the distances Qn = |xi − xj|; i
< j (Rousseeuw and Croux, 1993)

The question of what measures of central tendency and deviation are going to be
most useful totally depends on the data and the skewedness of the underlying prob-
ability distribution. In general the mean and variance/standard deviation are not
considered to be robust, while the most robust measures previously presented are
the Hodges-Lehman estimator and Sn/Qn. The latter even significantly improves
on the Gaussian efficiency of MAD and has a computational time complexity of
O(n logn) and storage complexity of O(n).
Although in some contexts it is absolutely necessary and even advisable to take into
account robustness, for the sake of this work it is not. The reason is due to the na-
ture of neural networks. It is a highly distributed graph solving linear problems at
each node with non-linearities in between. At each node a Gaussian distribution is
assumed. One of the biggest strengths of machine learning lies precisely in the fact
of being able to solve complex, high-dimensional and non-convex problems by com-
posing many very simple linear problems with subsequent non-linear activations in
a highly distributed manner. For this reason, the mean and variance will suffice as
statistical measures of central tendency and dispersion for the purposes of this work.
The variance of the predicted value is called MSE loss (mean-squared error loss) in
the context of neural networks.
The fact that each node in a neural network assumes Gaussian distributions is due to
the continuity of data. A Gaussian distribution contains minimal information about
the system, or in other words, its entropy in an information-theoretical sense is max-
imal. To prove this and to proceed to examining the neural networks in more detail,
let us introduce some information theory.

3.5.3 Information Theory

The first quantity we will introduce is the entropy. Entropy has originally been de-
fined in a discrete statistical physics context by Boltzmann (Boltzmann, 1877). This
concept was later generalized to the continuous domain by Shannon (Shannon, 1948)
in the frame of reference of telecommunications. It was important at the time to ex-
amine the information content in electrical signals. The entropy, as in Physics, is a
measure of "disorder" or uncertainty. It can also be regarded as the expectation value
of information.
Let p(x) be a probability distribution of x. Information can be defined as

I(x) = ln
1

p(x)
(3.31)

and as a result the entropy can be written as

h(p) = E[I(x)] =
∫

p(x) ln
1

p(x)
dx (3.32)

As a side note, in telecommunications ln is replaced by a base-2 logarithm.

3.5. Frontiers of theoretical Research on Neural Networks 25

Gaussian as a maximum entropy distribution
The reason Gaussians are often chosen is because in nature and also many artificial
systems entropy is maximized and Gaussians are maximum entropy distributions
for continuous real-valued data for a given mean µ and variance σ2. Maximizing
entropy means maximizing the function

h(p) =
∫

p(x) ln
1

p(x)
dx. (3.33)

This can be done using Lagrange multipliers with the constraints

µ = E[x] ⇐⇒ µ =
∫ ∞

−∞
xp(x)dx (3.34)

σ2 = E[(x− E[x])2] = E[x2]− E[x]2 ⇐⇒ σ2 =
∫ ∞

−∞
x2 p(x)dx− µ2 (3.35)

In equation 3.35 Steiner’s Theorem was used. This yields exactly the Gaussian dis-
tribution, meaning it contains the least amount of prior knowledge.
The entropy is a measure that allows to assess and compare the amount of uncer-
tainty between distributions. A higher entropy signifies a higher uncertainty. There
are metrics specifically designed for such comparison. One of the most commonly
used ones is the Kullback-Leibler divergence, or also relative entropy (Kullback and
Leibler, 1951), as shown in equation 3.36.

D(p(x),q(x)) =
∫

p(x) ln
p(x)
q(x)

dx (3.36)

This is important because often times it is necessary to know how different dis-
tributions are. For instance, it was used by Frühwirth (2003) to find an optimal
Gaussian mixture that is as close as possible to a probability distribution that de-
scribes the electron energy loss more precisely (Bethe-Heitler model). There are other
measures of distribution divergence, like the ones proposed by Lin (1991), but the
Kullback-Leibler divergence is one of the most commonly used ones. This concept
can also be used to compare joint distributions with their marginals, as is the case
with mutual information:

D(p(x,y), p(x)p(y)) =
∫

p(x,y) ln
p(x,y)

p(x)p(y)
dx (3.37)

As previously discussed, in the case of the nodes or variables being independent of
one another, p(x,y) should coincide with p(x)p(y). However, this is not always the
case. As we could imagine, the higher the value of the relative entropy in 3.37, the
more the entropy increased by passing from one node to another. In other words, a
high relative entropy causes a more rapid decrease in information.
If we go back to the idea of neural networks as probabilistic graph models, we can
easily see how information can get lost by passing from one node to another. In
fact, just like Schwartz-Ziv and Tishby (Tishby and Zaslavsky, 2015) realized in their
work, regarding a neural network as a Markov chain X→ Y→ Z, information can
only decrease:

I(X;Y)≥ I(X; Z) (3.38)

26 Chapter 3. Theoretical framework of Deep Neural Networks

The goal however is to minimize this information loss. In fact, by training a neural
network, we are able to increase the information in subsequent layers. There is a the-
oretical maximum to that process, indicated by the information bottleneck (Tishby,
Pereira, and Bialek, 1999), but information still "travels" from one layer to the next.
That gives us a much more complete picture of how neural networks learn informa-
tion. But the most interesting part is the mechanism by which this happens.
This can be examined by looking at the gradient flow when training a network using
stochastic gradient descent. Shwartz-Ziv and Tishby (2017) observed two distinct
gradient signal-to-noise ratios. They compared the mean and standard deviation of
the gradients as the number of epochs increase. As can be expected, at first the SNR
is high. Of course, it decreases over time as the weights converge to some config-
uration. However, even when the noise surpasses the signal, information transfer
continues. This is a novel paradigm and exciting discovery by the mentioned au-
thors, since it gives a theoretical explanation of the dynamics of deep learning. The
way this was interpreted by them is that learning can be separated into two phases:

• drift phase: Here empirical risk minimization (ERM), or just usual fitting, hap-
pens. Lots of information about features of previous layers is somehow "mem-
orized".

• diffusion phase: This is a stochastic relaxation (in particular Wiener) process
where the network "forgets" irrelevant information. Here irrelevant dimen-
sions of high-dimensional data are compressed away. Much lower-dimensional
representations remain.

Although it is already known that compression can contribute to learning as illus-
trated by Floyd and Warmuth (Floyd and Warmuth, 1995), the existence of these two
phases is new.
What is especially exciting about this work is that it provides tangible tools to as-
sess the optimality of the network, something that is often not even considered be-
cause of the general point of view of neural networks as black boxes. Schwartz-Ziv
and Tishby argue that the accuracy and sample complexity of a neural network is
predictable using just two mutual informations. In such a network inputs become
become encoded into some representation and finally decoded. The mutual infor-
mations of encoder and decoder are apparently good indicators of accuracy and
sample complexity, as long as enough data is available and the network is large
enough. This is the first time, to the author’s knowledge that such a prediction is
possible. Also, Schwartz-Ziv and Tishby provided the code they used on github,
so that their findings can be reproduced and adapted to future applications. Their
source code is available at https://github.com/ravidziv/IDNNs (Shwartz-Ziv and
Tishby, 2017a). In the present Thesis, an attempt was made to adapt the code to the
task at hand, and while it was certainly possible, the computation time was too high,
making it impossible to compute information planes in the available time. However,
part of the reason might be the use of docker containers running a Linux OS on top
of a host Windows OS. Docker does not count with a GPU throughput for Windows
at the time of writing of the present document. Training Deep Learning models with
CPUs significantly decreases computational speed. The enabling of GPU resources
would considerably accelerate the learning process. In the future the provided code
could be tested directly on a Linux system, or in a Docker container once the com-
pany introduces a GPU throughput for Windows systems. Another reason could be
the size of the network. This could be solved by using more sophisticated visual

3.5. Frontiers of theoretical Research on Neural Networks 27

representations using for example Gaussian mixture models on the layers. What
matters is that information transfer can be properly visualized. In that way an op-
timal network with minimal resources could be designed. For time constraints, and
also given the remarkable performance of the model presented in the present Thesis,
such undertaking was not necessary. It could however be considered for future im-
provements or use in other machine learning tasks at CERN and HEPHY. As a side
note, there is a follow-up paper based on the information bottleneck theory (Saxe et
al., 2018) where ReLU activations (Rectified Linear Units) were used instead of tanh,
basically fusing the two phases into one. The use of ReLUs is usually encouraged to
improve sparsity.

3.5.4 Topology and data analysis

At first sight one might pose the question of how such an abstract discipline like
topology can give insight into real-world data. The answer is that data, unless it is
randomly distributed, in which case it would be useless anyway, has an inherent
structure. It is composed of various features that characterize it and that display
relationships between one another. The usefulness of topology lies precisely in cap-
turing the spatial relationship between its elements.
For further analysis let us formally define a topology and topological space. It is in
terms of these notions that the data analysis tools presented thereafter will be ex-
plained.
Let X be a set and τ ⊆ P(X), where P(X) is the power set of X. τ is called a topology
on X if the following conditions hold true:

• ∅, X ∈ τ

• ∀ti ∈ τ :
⋃

i ti ∈ τ

• ∀ti ∈ τ :
⋂n

i=1 ti ∈ τ

The motivation for this definition is the fact that the elements of a topology are (by
definition) open sets and thanks to this notion of open sets concepts like continuity
and closeness between points can be rigorously defined in the most abstract way
without introducing unnecessary structure to the mathematical object. It is in that
way that point similarity is well-defined in a topological space despite the lack of a
distance metric.
Topological data analysis is a discipline aimed at capturing topological features and
visualizing them in a geometric fashion in two or three dimensions. The cardi-
nality of the feature space corresponds to the dimensionality of the problem. The
feature-richness of data is completely dependent on its type. Experimental data from
Physics or Chemistry, for example, is usually much more comprehensive than, for
instance, data from psychological studies. That is because in the former disciplines
it is much easier to design experiments in a controlled environment and to reduce
the amount of variables, i.e. the dimensionality, significantly. The author clarifies
that those are just examples and not meant to judge the relevance of the disciplines,
but to clarify the variation in complexity in the process of feature selection. In fact
one of the most important problems to be solved when applying machine learning
algorithms is not only designing a suitable network architecture, but selecting the
minimal set of independent and information-rich features that describe the problem

28 Chapter 3. Theoretical framework of Deep Neural Networks

in a way that is as complete as possible. Having some sort of structural understand-
ing of the data before applying a neural network can be of great help. We will discuss
tools that aim at doing exactly that.

3.5.5 The curse of dimensionality and dimensionality reduction

It is self-evident that data with higher dimensionality will result in a need for more
training examples. As the dimensionality increases, the volume of the space it spans
grows exponentially, decreasing the density of data points. Less density means less
meaningful data to learn from. If the method of analysis depends on some geomet-
ric information, for instance if it makes use of Euclidean distances, the volume of
the feature space becomes relevant, and the amount of examples needed becomes
exponential to dimensionality. In the case of neural networks we have already de-
termined the sample complexity (equation ??). It is not exponential, but linear or
even less, but dimensionality is still a problem. Reducing it would help, in case the
problem becomes large enough. But moreover, it also helps in getting insight into
the data. For that, not even target data for training is needed. Dimensionality reduc-
tion techniques and topological data analysis tools allow to embed high-dimensional
input data into two or three dimensions to gain insight into its structure. They rep-
resent similar groups of data points with point nodes and connect the nodes with
edges, according to the relationship they have to one another. This could also be
very helpful in the feature selection process, although for the present task features
were already provided. In order to apply dimensionality reduction, different tech-
niques like stochastic neighbor embeddings are used. In fact, the author applied
a two-dimensional t-distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008) to the particle track data provided by CMS, which is one of the
most powerful and recently developed state-of-the-art techniques for dimensional-
ity reduction. The result will be shown in Chapter 5. There are other topological
data analysis tools like Principal Component Analysis (PCA), autoencoders or mul-
tidimensional scaling (MDS), among others, but t-SNE was very effective for visual-
izing the particle track data.

t-distributed Stochastic Neighbor Embedding (t-SNE)

Let us briefly introduce Student’s t-distribution as t-SNE makes use of it. As previ-
ously discussed, the Gaussian normal distribution is the maximum entropy distri-
bution for random variables x ∈R with finite mean µ and variance σ. However, σ is
the population standard deviation, while the sample standard deviation is often de-
noted by s. Since σ 6= s in general, the resulting distribution —called t-distribution—
is going to be slightly different from a Gaussian, having heavier tails, although it
converges to it for increasing degrees of freedom/sample size. Degrees of freedom
ν and sample size n have the following relationship

ν = n− 1 (3.39)

and the t-distribution is of the following form:

3.5. Frontiers of theoretical Research on Neural Networks 29

p(x) =
Γ(ν+1

2)√
νπΓ(ν

2)

(
1 +

t2

ν

)− ν+1
2

. (3.40)

Such distributions with varying degrees of freedom are depicted in 3.12.

-4 -2 2 4
x

0.1

0.2

0.3

0.4

p

ν = 1

ν = 5

ν = 10

Gaussian distribution

FIGURE 3.12: Comparison of Student’s t-distribution with degrees of
freedom ν = 1,5 and 10 with a Gaussian distribution

The reason t-distributions are important in practice is that they very well describe
the behaviour of random variables that are normally distributed but whose popu-
lation variance is unknown, which is often the case. We will later see how this will
affect the way t-SNE works.
t-SNE (Maaten and Hinton, 2008) is an improved version of stochastic neighbor em-
beddings or SNE for short (Hinton and Roweis, 2003). Let xi be the points in the
high-dimensional space (dimension d) and yi be the points in the low-dimensional
embedding (dimension 2 or 3). For the embedding, two probability distributions are
needed, one for each space.

d− dimensional space distribution : pj|i =
exp(−‖xi−xj‖2

2σ2
i

)

∑k 6=l exp(− ‖xk−xl‖2

2σ2
i

)
(3.41)

distribution in embedding : qj|i =
exp(−‖yi − yj‖2)

∑k 6=l exp(−‖yk − yl‖2)
(3.42)

They represent the probability of a point of index j to be a neighbour of i. Small
distances are favoured and as distance increases the probabilities rapidly decrease.
For the embedding to be a truthful representation pj|i must be equal to qj|i. In the
section about information theory we already introduced a quantity that captures the
difference between distributions, i.e. the relative entropy or Kullback-Leibler diver-
gence (equation 3.36). In the discrete case it is given by

D(pj|i||qj|i) = ∑
j

pj|i ln
pj|i
qj|i

. (3.43)

30 Chapter 3. Theoretical framework of Deep Neural Networks

Bringing the distributions closer to each other is equivalent to minimizing the Kullback-
Leibler divergence. The SNE algorithm uses gradient descent to minimize the fol-
lowing cost or loss function that is composed of the sum of all KL-divergences:

C = ∑
i

∑
j

pj|i ln
pj|i
qj|i

(3.44)

One problem with SNE is its difficulty in minimizing C. Another one is called
crowding problem and consists in the fact that, as the Kullback-Leibler divergence
is asymmetric, a mapping into nearby points is less penalized than a mapping into
distant points, effectively squeezing points together. The solution that t-SNE of-
fers is to symmetrize the probability distributions and use t-distributions instead of
Gaussians for the low-dimensional embedding. t-distributions are not only compu-
tationally less expensive, but they have heavier tails, which helps in counteracting
excessive attractive forces leading to crowding.
The symmetrized and modified probability distributions used for t-SNE are speci-
fied below:

pij =
exp(−‖xi−xj‖2

2σ2)

∑k 6=l exp(− ‖xk−xl‖2

2σ2)
(3.45)

qij =
(1 + ‖yi − yj‖2)−1

∑k 6=l(1 + ‖yk − yl‖2)−1
(3.46)

A hyperparameter of t-SNE is the perplexity. According to the mentioned paper it is
defined as

perplexity(Pi) = 2H(Pi) (3.47)

where H(Pi) is the entropy of Pi. It essentially controls how many neighbors are
chosen and therefore how much local properties are being preserved. Low perplex-
ity preserves local effects more strongly, while high perplexity focuses on global
shape. Although t-SNE is quite robust to changes in perplexity, Wattenberg, Viégas,
and Johnson (2016) highlight examples where checking various perplexities makes
a difference. They also stress some issues with preservation of distances and cases
of random data being embedded into incorrect clusters, while still emphasizing its
power and flexibility. The method will be applied in Chapter 5 to get insight into
the particle track data and check whether its behaviour actually corresponds to the
expectations. Some other qualitative and quantitative tests will also be performed in
this chapter.

31

Chapter 4

Track parameter estimation by
Kalman and Gaussian-sum filter

Parameter estimation lies at the heart of statistical inference and many fields in sci-
ence and engineering that rely on it. Two very powerful estimation tools that are
widely used and combine a priori information with measurement data will be now
presented.

4.1 Kalman filters

Kalman filters are used for parameter estimations in dynamical systems. They have
been extensively researched and applied to many fields in science and engineering,
since their discovery (Kalman, 1960). Prominent applications can be found in control
theory and navigation, where position estimation is crucial. They were successfully
used for this purpose in NASA’s Apollo Mission (McGee and Schmidt, 1985).
The application that is relevant to the present work is track parameter estimation, so
control terms are not considered. Most of the mathematics subsequently presented
originate from Frühwirth’s paper about the application of Kalman filtering to track
and vertex fitting (1987). There are two quantities that are meant to describe the state
of a dynamical system and are updated as it evolves in time. Those are

• the state vector xk at time k,

• and the measurement vector mk at time k.

The Kalman filter demands the following assumptions about xk and mk. They must
be

• independent, i.e. p(xk|mk) = p(xk) and p(mk|xk) = p(mk), and

• normally distributed, i.e. xk ∼N (µx, σx) and mk ∼N (µm, σm).

The equations describing the evolution of the state with each time step are given by

xk = Fk−1xk−1 + wk−1 (4.1)

mk = Hkxk + ek (4.2)

where Fk is the process transition matrix, wk the process noise, Hk the measurement
transition matrix and ek the measurement noise and

wk ∼N (0,Qk) (4.3)

ek ∼N (0,Vk) =N (0,G−1
k) (4.4)

32 Chapter 4. Track parameter estimation by Kalman and Gaussian-sum filter

The process noise wk in the track reconstruction process is predominantly due to
multiple Coulomb scattering at the nuclei. As explained in the mentioned paper,
there are three possible operations in the Kalman filtering process:

• Filter: uses past states to estimate the present state

• Prediction: estimation of a future state vector

• Smoothing: estimation of a past state vector using measurements until the
present time

The same notation from the paper is adopted as follows:

• xk ... state vector at time k

• x̃i
k ... estimated state vector at time k using measurements up to time i

• rk ... residual at time k

• r̃i
k = mk −Hk x̃i

k ... estimated residual at time k

• Ci
k = Cov(x̃i

k − xk) ... state covariance

• R̃i
k = Cov(r̃i

k) ... residual covariance

Since the covariance matrices were not used for the present work, only the transfor-
mations of the state vector and the residuals are shown. For this we need the Kalman
gain matrix which is given by

Kk = CkHT
k Gk (4.5)

and the smoother gain matrix which is given by

Ak = CkFT
k (C

k
k+1)

−1 (4.6)

Updates

Prediction:
x̃k−1

k = Fk−1xk−1

r̃k−1
k = mk −Hk x̃k−1

k

Filtering:
xk = x̃k−1

k + Kk(mk −Hk x̃k−1
k)

rk = mk −Hkxk = (I−HkKk)r̃k−1
k

Smoothing:
x̃n

k = xk + Ak(xn
k+1 − xk

k+1)
r̃n

k = rk −Hk(xn
k − xk) = mk −Hk x̃n

k

4.2. Gaussian-sum filters 33

4.2 Gaussian-sum filters

Not always can a distribution be approximated by a single Gaussian. The Bethe-
Heitler distribution for instance, which describes electron energy loss through brems-
strahlung, is much better approximated by a mixture of Gaussians. That is the pur-
pose of a Gaussian-sum filter. It is a non-linear generalization of a Kalman filter, run-
ning several of them in parallel (Adam et al., 2005b). This is useful for electron track
reconstructions because electron energy loss is highly non-Gaussian (Frühwirth and
Frühwirth-Schnatter, 1998).

4.2.1 Optimal Gaussian mixtures

In Chapter 3 we already introduced a measure of distance between probability dis-
tributions: the Kullback-Leibler divergence. There is another such measure based
on the distance between the cumulative distribution functions (CDF) of both dis-
tributions. Those distance measures are shown below and were used by Adam et
al. (2005) to minimize the difference between the Bethe-Heitler distribution and a
Gaussian mixture.

DCDF =
∫ ∞

−∞
|F(z)− G(z)|dz (4.7)

DKL =
∫ ∞

−∞
ln[f (z)/g(z)] f (z)dz (4.8)

4.2.2 Number of components

As described by Adam et al. (2005) the energy loss approximation using Gaussian
mixtures corresponds to a convolution between the mixture and a current state
which is also composed of some Gaussians. This happens in every layer of mate-
rial, leading to an excessive growth in the number of components. Therefore this
number has to be limited to a maximum N.
In the mentioned paper, this was done in two ways:

• by choosing the N components with the largest weights

• by merging components using a distance metric and attracting clusters of Gaus-
sians until the number of components equals N

Although the second method was computationally more expensive, the results ex-
ceeded the ones of the first method in Adam et al.’s work. The authors found that
Gaussian-sum filters improved precision in the electron reconstruction as compared
to individual Kalman filters.

34

Chapter 5

CMS Data

5.1 Structure of the data

To understand the structure of the data that is consequently analysed, some back-
ground will be given on the work of Frühwirth (2003) which is taken as a basis
for this one. A commonly used model for describing electron energy loss through
bremsstrahlung is the Bethe-Heitler model (Bethe and Heitler, 1934). It is based on a
first order Born approximation of the interaction between an electron and a nucleus.
This can be understood as either an electron’s absorption of a virtual photon origi-
nating from the nucleus and a subsequent emission of a photon, or the same process
in time-reversed order. Both cases are depicted in figure 5.1.

FIGURE 5.1: Feynman diagrams of bremsstrahlung process in first
order Born approximation

Using Quantum Field Theory the cross-section and other relevant quantities can be
determined. What is relevant for this work is the energy distribution. Let z be the
quotient of the post-bremsstrahlung electron energy over original energy. The prob-
ability density function of z is given by (Frühwirth, 2003)

f (z) =
[− lnz]c−1

Γ(c)
with c =

t
ln2

, z ∈ (0,1). (5.1)

This relationship is depicted in figure 5.2. Equation 5.1 shows a strongly non-Gaussian
behaviour. Since Kalman filters are based on the assumption of normally distributed
inputs, they cannot account for bremsstrahlung on their own. Nevertheless, Gaussian-
sum filters that allow for Gaussian mixture approximations, can in fact approxi-
mate the effect. The Gaussian mixture is obtained by minimizing the Kullback-
Leibler-divergence between f (z) and the mixture g(z). Such a mixture is called a
KL-mixture. Frühwirth’s model was then implemented in a Gaussian-sum filter for

5.1. Structure of the data 35

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

t=0.01

t=0.05

t=0.1

t=0.5

FIGURE 5.2: Fractional energy loss distribution for several t-values

electron reconstruction in the CMS tracker (Adam et al., 2005a).

The CMS Tracker is essentially a cylinder around a beam line axis. Particles move
in it in a helix trajectory and they have distinct track parameters forming the five-
dimensional state vector x. As specified in Bernkopf’s Master’s Thesis (under revi-
sion), the parameters are:

• Charge over momentum q
p [GeV]: momentum is proportional to the helix pro-

jection curvature radius,

• Azimuthal angle φ [rad]: angle enclosing x-axis and tangent of projected helix,

• Polar angle θ [rad]: angle enclosing the beam line and the tangent to the track,

• Transverse impact parameter d0,

• Longitudinal impact parameter dz.

The original data set used for this work is contained in a CSV file that is split into var-
ious parts, namely ex1_split_data_*.csv and ex2_split_data_*.csv. They contain 2,270,694
simulated tracks, plus some truncated ones that could not be used. Out of them,
some had to be cut out because they caused difficulties to reduce the objective func-
tion. In the end 2,062,223 tracks with their respective Gaussian mixture data (weights,
means and covariances) and target values remained. Covariances however were not
used. Because the tracks are simulated, the target data are the true values that are to
be predicted.
The unparsed information is listed in a single column. Since the original file con-
tained truncated tracks that are of no use for this work, those were cut off. In a
second step, all tracks were read into a multidimensional array in MATLAB using
read_data.m and internally merged. Finally, the input and target data for the deep
learning model was generated using make_input.m and the multidimensional array
saved as mydata.mat with float64 precision. The parsing scripts are the same as the
ones used by Bernkopf.
The resulting data has the following structure:
Covariance data was not used for this work. The above figures depict the complete
input and target data used to train the network. The 72 input data entries in figure
5.3 correspond to the 6 target data entries in figure 5.4.

36 Chapter 5. CMS Data

FIGURE 5.3: Track inputs (inputs.csv)

FIGURE 5.4: Track targets (targets.csv)

CSV files have significant drawbacks when using them for data science and partic-
ularly machine learning applications, most notably their exponential reading and
writing time order. Other commonly used data formats such as HDF5, ASDF and
ROOT instead have a linear time order, which significantly improves efficiency. For
this reason, those alternative data formats were examined in terms of time and mem-
ory complexity.

5.2 Baseline

Bernkopf implemented a feedforward neural network for electron track parameter
reconstruction in his Master’s Thesis (under revision). After trying out some opti-
mization algorithms, he obtained the best results with MATLAB’s trainlm optimizer
which is a Levenberg-Marquardt algorithm and already improves on a simple resid-
ual mean calculation.

5.3 Tests

5.3.1 t-SNE dimensionality reduction

Let us now observe a visualization of the particle track data. Given that t-SNE uses
Euclidean distances, it is affected by the "curse of dimensionality" and there is a lim-
itation to the amount of data that can be used as input. Even though the available
data includes 2,062,223 tracks, only 10,000 of them were randomly chosen. The di-
mensionality reduction was conducted with the perplexities 5, 30 and 50 and the
results are shown below. Since the dimensions of the embedding have no precise
meaning, the axes are not labeled.

5.3. Tests 37

100 50 0 50 100

100

50

0

50

100

FIGURE 5.5: t-SNE dimensionality reduction of particle track data
(perplexity=5)

100 75 50 25 0 25 50 75 100
40

20

0

20

40

FIGURE 5.7: t-SNE dimensionality reduction of particle track data
(perplexity=50)

38 Chapter 5. CMS Data

100 50 0 50 100
80

60

40

20

0

20

40

60

FIGURE 5.6: t-SNE dimensionality reduction of particle track data
(perplexity=30)

As we can see, a low perplexity focuses too much on local structure, which is why
a pattern is less visible. Its default value lies at 30, as shown in figure 5.6. Even
though just 10,000 tracks were used, it can be clearly seen in the mentioned figure,
that the data is strongly related. The configuration into a fully connected snake-like
structure suggests a strong relationship between data points. All of the above ob-
servations are a strong indicator that the used data has been parsed correctly and
actually represents the behaviour of a particle trajectory.

5.3.2 Test on Gaussian weights

Since every track is a Gaussian mixture, the Gaussian weights must add up to 1 for
it to be normalized. If this were not the case, it would indicate some parsing error.
The sum of Gaussian weights was examined and its mean, maximum and minimum
across all tracks taken. The results are shown in table 5.1. Since all three statistics are
sufficiently close to 1, there is no indication of any parsing errors in this respect.

Mean of sum of Gaussian weights 0.9999999940425501
Maximum of sum of Gaussian weights 1.0000002
Minimum of sum of Gaussian weights 0.9999998

TABLE 5.1: Mean, maximum and minimum of the sum of Gaussian
weights across all tracks

5.3.3 Tests on correlation between targets and weighted averages

The simplest approximation of the target values is a weighted average of the twelve
Gaussian components. Its correlation with the actual target data should of course
be close to 1, which would mean that it already provides a reasonable estimate that

5.3. Tests 39

is then sought to be improved by a deep learning model which should be better at
learning fine details and non-linearities of the problem. A deviation from this be-
haviour would indicate the insertion of some fault in the parsing process.
The MATLAB file testdata.m compares the weighted averages to the targets and vi-
sualizes them. The results for the first three parameters are shown in figures 5.8, 5.9
and 5.10.

FIGURE 5.8: Weighted average of parameter 1 (q/p) vs. its target

FIGURE 5.9: Weighted average of parameter 2 vs. its target

40 Chapter 5. CMS Data

FIGURE 5.10: Weighted average of parameter 3 vs. its target

In all three parameters, a linear correlation can be seen. In figures 5.8 and 5.10 the
correlation is, as expected, approximately one. Additionally, in figure 5.8 it can also
be observed that as the target approaches zero, the weighted average predictions
become increasingly worse due to the singularity of the first parameter (q/p) at p =
0. In the case of figure 5.9 the weighted averages seem not to predict the targets very
well. They predict values very close to zero. However, in the absence of any other
abnormalities, this was assumed to just be a weakness of the prediction.

41

Chapter 6

Software Tools

There are several stages in the software development process, including task assess-
ment, solution design, development, testing, documentation, and maintenance. This
is commonly known as Systems Development Life Cycle. Having a solid develop-
ment infrastructure is important for building useful, understandable, easy-to-use
and easy-to-maintain software. Having maximal efficiency in all development and
deployment stages in mind, the frameworks and packages described below were
chosen.

6.1 Docker

Virtualization refers to the abstraction of applications, or also data storage, servers,
etc., from the available resources. This can happen at different levels, namely on a
hardware, operating system (OS), library or application basis. It can be used for a
variety of tasks that require one thing in common: an isolation of a process by using
resource abstraction. An example would be hard disk partitioning, to make distinct
guest operating systems work on top of a host OS.
For creating applications, several libraries and packages are needed. However, there
are usually numerous versions of them, and not all of them are compatible with each
other. A virtual environment encapsulates a process, so that the packages installed
therein, do not have any interaction with the outside. The deletion of such an envi-
ronment would automatically eliminate all installed packages. Apart from allowing
a more structured development, it also avoids contaminating the host OS with un-
necessary packages.
Using virtualization is a matter of efficiency and good practice. With that said, con-
tainerization includes all of its benefits and goes beyond. It not only creates a totally
isolated entity, the so-called container, but it does so by abstracting on the operating-
system-level using a resource management system that efficiently shares common
resources. In Docker, which is currently one of the most popular containerization
softwares, this system is called Docker Engine. It requires significantly less space on
disk and containers can be easily and quickly built and deployed and do not require
the installation of an entire guest OS. Another advantage is the ability to build im-
ages which are a snapshot of a container. Entire trees of images can be built, with
children nodes inheriting parent nodes’ properties and building additional appli-
cations on top of them. With such a structure, debugging is reduced to evaluating
the impact of a bug on children nodes, which makes the development process more
structured. Moreover, inside the container, a different operating system to the host
OS can be used without additional installations. In this work, the latest Ubuntu
version was used. Finally, because containers are so easy to build, it is great for col-
laborative work and cross-platform application deployment. Virtual environments

42 Chapter 6. Software Tools

still have their own strengths and applications, but for the purposes of this work,
Docker is very well suited.

How to install docker
The installation guides can be found on the following web sites:

• Windows: https://docs.docker.com/docker-for-windows/install/

• Ubuntu: https://docs.docker.com/install/linux/docker-ce/ubuntu/

• Mac OS: https://docs.docker.com/docker-for-mac/install/

How to navigate through docker
Docker is organized into images and containers. Images are essentially snapshots
of containers, or put another way, containers are instances of images. Information
about all available images can be accessed by the command docker images , and
the information about all containers by docker ps -a . A container ID is specified
by a string of twelve alphanumeric characters.
To open and work with a previously created container, the following commands
must be used:

• docker start ***container ID***

• docker attach ***container ID***

To exit the container and return to the terminal, the command exit must be exe-
cuted.

How to run a docker container?
A docker container can be easily created by just entering the following command in
a command line:

docker run -ti -h container_name -v %cd%:/root/temp/ ...

... -p 9999:9999 ubuntu:latest /bin/bash

This opens a new Ubuntu container with the name container_name, maps the current
working directory, referenced to with %cd%, to the internal directory /root/temp/ in-
side the container, maps the internal port 9999 with the external port 9999 and opens
a bash shell. Mapping the communication ports is important for the proper use of
the browser-based Python IDE called Jupyter that will later be discussed. Just with
this command, there are still no packages available, apart from the default ones de-
livered with Ubuntu. The desired packages can either be installed manually or the
installation commands incorporated into an installation script that should be located
in the working directory where the container was created. The latter was chosen for
this work, and the script named installer.sh. It must be executed using the following
command:

source installer.sh

The script is depicted in the code below. Some parts of it were adopted from the in-
stall.sh script in https://gist.github.com/yhilpisch/bda2479093216b299e59cf8c41bfa3e7
(Hilpisch, 2018) and adjusted. Each command is carefully commented, and after

6.1. Docker 43

each installed library, there is a short description of its function.

Note: It is important to execute it using source instead of bash, given that otherwise
environment variables are not globally modified.

#!/bin/bash

The advanced packaging tool or "apt" is a package management tool
already built in into Ubuntu and many other Linux systems

the flag -y automatically confirms the execution of a command

apt-get update # updates the package version lists
apt-get upgrade -y # upgrades packages according to those lists

some Linux library installations
apt-get install -y vim # light -weight text editor
apt-get install -y wget # retrieves content from web servers
apt-get install -y htop # shows running processes and available

resources
apt-get install -y git # version -control software development tool

packages for CERN ROOT
apt-get install -y libtool automake gettext \
gfortran libssl-dev libpcre3-dev \
xlibmesa-glu-dev libglew1.5-dev libftgl-dev \
libmysqlclient-dev libfftw3-dev libcfitsio-dev \
graphviz-dev libavahi-compat-libdnssd-dev \
libldap2-dev python-dev libxml2-dev libkrb5-dev \
libgsl0-dev libqt4-dev
source /root/temp/root/bin/thisroot.sh # sets environment variables

to activate root

apt-get upgrade -y bash # upgrades bash shell
apt-get clean # cleans apts local repository

miniconda installation
wget https:// repo.continuum.io/miniconda/Miniconda3-4.5.1-Linux-

x86_64.sh -O Miniconda.sh #
retrieves installation script
for miniconda (version
compatible with Python 3.6.7)

bash Miniconda.sh -b # runs miniconda installation script
rm -rf Miniconda.sh # removes script
export PATH="/root/miniconda3/bin:\ $PATH" # sets path variable for

miniconda in current session
export DISPLAY=localhost:0.0 # sets display variable for ROOT in

current session
alias root="root -l" # suppresses welcome information when calling

root

set environment variables and aliases in bash configuration file
cat >> ~/.bashrc <<EOF
for miniconda
export PATH="/root/miniconda3/bin:\ $PATH"

44 Chapter 6. Software Tools

for CERN ROOT
export DISPLAY=localhost:0.0
alias root="root -l"
EOF

conda installations
conda install -y jupyterlab # browser -based interactive IDE for

data science
conda install -y matplotlib # library for plots
conda install -y pytorch -c pytorch # deep learning framework used

in this work

pip installations
pip install --upgrade pip # upgrades pip package management tool
pip install plotly # library for interactive plots
pip install torchvision # package containing common datasets ,

architectures and computer
vision tools

pip install asdf # allows to read and write asdf files
pip install --user root_numpy # allows to read and write root files

from numpy arrays
pip install uproot # allows to read and write root files from numpy

arrays
pip install memory-profiler # allows to keep track of memory usage
pip install scikit-learn # machine learning library

move jupyter configuration file to its folder
mkdir /root/.jupyter/
cp /root/temp/jupyter_config/jupyter_notebook_config.py /root/.

jupyter/
jupyter lab --allow-root

6.2 Jupyter Lab

Jupyter Lab is one of the most commonly used interactive integrated development
environments for machine learning in Python. Its name derives from the program-
ming languages JUlia, PYthon and R, which are some of the many supported lan-
guages. It is a browser-based front end and offers abundant and rich functionalities.

FIGURE 6.1: Typical jupyter lab front end

6.3. Plotly/Dash 45

In figure 6.1, a typical jupyter lab front end is shown. As we can see, the environ-
ment is divided into a section on the left where the working directory with all of its
files and folders is shown, and a section on the right where files can be opened and
interacted with. The environment allows the generation of Python files, text files
and a completely functional terminal. If ROOT is installed in the container, there is
also an option for creating ROOT files.
One of the big advantages of Jupyter is that inside a notebook the code is divided
into snippets. This makes debugging very straightforward. The individual parts of
the code are executed one by one and problematic snippets can be quickly isolated.
The order of execution is irrelevant. A snippet can be run by pressing Shift + Enter .
In fact it is useful to know the most common key shortcuts. They can be found in
the Command Palette.

Accessing jupyter lab
In the configuration file, the port with which jupyter exchanges information should
be specified. Additionally, to allow communication from inside a docker container
to the outside, the flag –allow-root has to be placed when calling jupyter lab ,
i.e. jupyter lab –allow-root .

Configuration file
Many Jupyter settings can be specified using a configuration file. For example the
port through which the program communicates, whether or not a browser window
should be automatically opened and SSL encryption certificates. In the following
code snippet the Jupyter configuration file is shown.

c.NotebookApp.ip = ’0.0.0.0’ # binds to 0.0.0.0 IP address
c.NotebookApp.port = 9999 # binds to port 9999 which is the

communication port between the
container and the host system

c.NotebookApp.open_browser = False # avoids automatic browser
opening

The command c.NotebookApp.ip=’*’ tells jupyter to connect to all possible ip ad-
dresses, while c.NotebookApp.port=9999 tells it to connect to port 9999, which
is the same port that communicates with the host system. That way data can be
transmitted from within the container to a brower front end in the host OS through
jupyter.
Whenever information is exchanged between local resources and a browser, espe-
cially on a server, the question of security arises. Using jupyter locally, with or with-
out docker, is not more or less vulnerable than any other local operation, since the
browser only accesses a local host. When accessing a server, it would be advisable
to use an ssl encryption certificate. A password can also be configured, but would
only secure direct access from the front end, ignoring commonly used cyber attacks.

6.3 Plotly/Dash

Plotly is an open source framework for creating interactive plots using only Python.
Dash additionally allows to create entire Dashboards where it is possible to em-
bed plotly plots and many additional features that would otherwise only be imple-
mentable with additional knowledge of some html, css and javascript. The online

46 Chapter 6. Software Tools

version, running on plotly’s server, also allows to create a live stream of data for
up to 25 charts. If additional charts are needed, one must switch to a paid version.
Plotly’s offline chart generator does not support live streaming, but it is possible to
update the data on a continuous basis. For this work, only plotly plots (as html files)
were created without a Dashboard. Their structure and an example code are pro-
vided as follows.

6.3.1 Plotly plot

To build a plotly plot, the packages plotly.offline and plotly.graph_objs must
be imported. Plotly supports ploting various variables in the same graph. The val-
ues for those variables must be stored in traces which are graph_objs objects. Also, to
define the chart’s layout, a Layout object, which also belongs to graph_objs, is neces-
sary. All of those objects are then passed to a Figure object, which is also an instance
of plotly.graph_objs and summarizes all the needed information for generating

the plot. Then the plot generator plot() , which is a method of plotly.offline
uses this object, together with a specified destination directory and filename, to gen-
erator an html file containing the plot. This plot is interactive, meaning that the data
points can be hovered over, traces can be hidden or displayed, segments of the plot
can be zoomed in or out, amongst other features that can be implemented addition-
ally. Having knowledge of html, css or javascript can be useful for generating very
customized features that are not part of the standard routines, but it is by no means
necessary. is passed to a plot generator that is a method of plotly.offline . An
example code would be:

import numpy as np
import plotly as py
import plotly.graph_objs as go

np.random.seed(42)

x = np.arange(100)
y = np.random.random(100)
z = np.random.random(100)+1

trace_1=go.Scatter(x=x, y=y, mode=’lines’, name=’name 1 in legend ’)
trace_2=go.Scatter(x=x, y=z, mode=’lines’, name=’name 2 in legend ’)
data = [trace_1 , trace_2]
layout = go.Layout(title=’Title’)

figure = go.Figure(data=data , layout=layout)

py.offline.plot(figure , filename=’test_plot.html’)

47

Chapter 7

Step-by-step installation and
execution Guide

7.1 Installation

All the software was designed to be fully automated, easy to install and user-friendly.
With just a few commands it should be ready to execute on any Host Operating Sys-
tem, with the only requirement of having Docker installed. If it is not installed,
follow the instructions in the Docker section of Chapter 6.
To create a docker container with all needed installations, open a terminal and follow
the instructions below:

• cd to the desired directory containing the installation script installer.sh

• run docker run -ti -h container_name -v %cd%:/root/temp/ ...

... -p 9999:9999 ubuntu:latest /bin/bash

• run cd root/temp

• run source installer.sh

When the installation finishes, a Jupyter Lab session is automatically initiated. To
access Jupyter’s front end, copy the link that appears in the terminal to a browser
(some expressions in parentheses might have to be removed).

7.2 Executing a model

The file model_configurations.py can be found on the sidebar on the left. It con-
tains all the possible configurations of the model, including

• architecture,

• epochs,

• learning rates,

• batch sizes,

• optimizers,

• and a saving directory for output files.

48 Chapter 7. Step-by-step installation and execution Guide

Each of those can be easily modified by commenting out undesirable options or
by changing numerical values, simply following the instructions in the comments.
After saving the file with the desired configuration, the next step is to execute the
code in a terminal. To open a terminal, click "+" on the sidebar, after which a window
with several options will appear. Then click "terminal". Once the terminal appears,
run

• bash

• python Model.py

Some parts of the structure of the model were originally inspired by the Deep Learn-
ing Wizard PyTorch tutorials (Ng, 2018). From here on the training starts and several
output files are generated. All directories where those files ought to be saved are cre-
ated if they do not exist previously. Also, if a directory is not empty, the given con-
figuration will be skipped to avoid unnecessary computation. Each step is reported
in the terminal and the trained model will be saved. Already pretrained models can
be used for prediction using Model_pretrained.ipynb or Model_pretrained.py .

Alternative:
The jupyter notebook file Model.ipynb contains the same model and one can ex-
ecute the code snippet by snippet if desired. Each snippet is executed by pressing
Shift + Enter . This is particularly useful for debugging because snippets can be

skipped and run in any order. It is also possible to run all cells by choosing "Run"
and "Run All Cells" in the menu bar. For running more complex configurations how-
ever, it is generally easier to just pick a configuration in model_configurations.py
and run python Model.py in a terminal as discussed before.

Output files:
Several html files, two csv files and a state_dict are created per configuration.
The html files show the complete loss history, an average loss history and a stan-
dard deviation history of training, validation and testing for the three parameters.
The csv files contain some relevant information. One of them is a more complete
description of the results, while the other is a summary that contains exactly the
same values as the ones presented in Chapter 9. The state_dict file is saved in the
pretrained_models directory and contains the network parameters of the trained

model.
Once everything has been executed, the jupyter browser window can be closed,
the jupyter session interrupted with Ctrl + C and the container exited by running
exit .

Future sessions
For future sessions, accessing the container is straightforward. The command
docker ps -a lists all available containers. Copying the container name and run-

ning docker start container_name and docker attach container_name starts
the container. Then, by changing directory with cd root/temp/ one can access all

files. If ROOT is needed, one must first activate it by moving to root/bin and
executing source thisroot.sh . To run a jupyter lab session, one must execute
jupyter lab –allow-root .

7.3. Dataset Generator 49

7.3 Dataset Generator

The file DataLoader.py takes as input the data from the csv files "inputs.csv" and
"targets.csv" and generates a dataset of a specified format. To generate it one must
just execute python DataLoader.py and follow the instructions on the terminal. A
dataset will be saved in the directory "datasets".

7.4 Tests

The jupyter notebook file tests.ipynb contains the following tests:

• Gaussian weight test: This is to make sure that the Gaussian weights in the
tracks sum up to 1. The minimum, maximum and mean of those sums over all
tracks are computed.

• t-SNE dimensionality reduction of a subset of the inputs tracks (10,000 inputs)

The test comparing targets with the weighted averages of the Gaussian components
is not included here. For this, the matlab file testdata.m in the directory "mat-
lab_data_generation_and_tests" was used. The results of all tests were already pre-
sented in Chapter 5.

7.5 Parameter list

The jupyter notebook file parameter_list.ipynb generates a list of the parameter
shapes in each layer of a given network. The architecture is defined in
model_configurations.py as always. The results are presented in Chapter 8.

7.6 Tests on data formats performance

The jupyter notebook file test_data_formats.ipynb tests the time and memory
complexity of the reading process of three data formats: ROOT, HDF5 and ASDF.
The results are presented in Chapter 9.

50

Chapter 8

Model architectures

8.1 Base architecture

In his Master’s Thesis (under revision) Bernkopf analyzed several Feedforward Neu-
ral Network architectures and determined that the optimal configuration was one
with 2 Fully Connected Layers of 48 and 24 neurons, and a readout layer of 3 neu-
rons. This was used as the base architecture. Details on the exact shapes of all pa-
rameters in every layer of the network are shown in figure 8.1. As we can also see in
the figure, the amount of parameters totals 4755.

8.2 Convolutional Neural Network architectures

The Convolutional Neural Network (CNN) architectures used in this work build on
top of the base architecture, just stacking three Convolutional Layers with 12, 6 and
3 output channels in front of it.
As to the hyper-parameters, given the small size of the input features (12,6), the
kernel size could not be chosen to be too large and there was little flexibility with
the hyper-parameter choice. The minimal possible kernel size where next-neighbor
information is still captured is k=2, so k=2 and k=3 were tested. To ensure fine gran-
ularity, a stride of 1 was chosen, meaning that the kernel slides over the input data
in steps of only 1 data point.
Moreover an augmentation of the receptive field was tested using dilation. Padding
describes the addition of data points around the inputs, so that edges can be better
processed. While a padding of 1 was generally used (meaning the data is augmented
by one data point on the edges), for dilated CNNs with kernel size 3 a padding size
of 2 was needed, given that otherwise the feature maps become increasingly smaller
until no convolutions are possible anymore.
With all those considerations in mind, three configurations which are shown below
were implemented. The list in the curly brackets corresponds to the values for the
three Convolutional Layers.

• undilated: kernel size = {2,2,2}, stride = {1,1,1}, padding = {1,1,1},
dilation = {1,1,1}

• dilated (k=2): kernel size = {2,2,2}, stride = {1,1,1}, padding = {1,1,1},
dilation = {1,2,3}

• dilated (k=3): kernel size = {3,3,3}, stride = {1,1,1}, padding = {2,2,2},
dilation = {1,2,3}

8.2. Convolutional Neural Network architectures 51

The shapes of the layers, displaying all parameters are shown in figure 8.2 for the
undilated CNN, figure 8.3 for the dilated CNN with k = 2, and figure 8.4 for the di-
lated CNN with k = 3. The total amount of parameters are 21168, 12096 and 12606
respectively which makes the model significantly larger than the base architecture.

FIGURE 8.1: Shapes of parameters in base architecture

52 Chapter 8. Model architectures

FIGURE 8.2: Shapes of parameters in undilated CNN architecture

8.2. Convolutional Neural Network architectures 53

FIGURE 8.3: Shapes of parameters in dilated CNN architecture with
kernel size 2

54 Chapter 8. Model architectures

FIGURE 8.4: Shapes of parameters in dilated CNN architecture with
kernel size 3

55

Chapter 9

Results

9.1 Data formats performance

In terms of processing speed, the chosen data format to import data into a model
could at some point present a bottleneck, which is why three data formats were
tested on their time and memory complexity. The results are presented below:

root 18s± 106ms per loop, 7 runs, 1 loop each
hdf5 8.01s± 145ms per loop, 7 runs, 1 loop each
asdf 424ms± 34.9ms per loop, 7 runs, 1 loop each

TABLE 9.1: Time to import data and save it in a numpy array

root 10,852.14 MiB per loop, 7 runs, 1 loop each
hdf5 12,154.21 MiB per loop, 7 runs, 1 loop each
asdf 12,777.88 MiB per loop, 7 runs, 1 loop each

TABLE 9.2: Peak memory to import data and save it in a numpy array

root_numpy , h5py and asdf were used to import root, hdf5 and asdf files respec-
tively. The results in principle suggest asdf as the preferred data format. However,
root is CERN’s standard format, making an implementation somewhat impractical.

9.2 Models performance

The optimization process for the architectures mentioned in Chapter 8 is arranged
into two phases:

• Phase I - Optimization of base architecture:
All PyTorch optimizers (can be found at https://pytorch.org/docs/stable/optim.html),
except SparseAdam, are tested for various learning rates and batch sizes. SparseAdam
is not included because it only works with sparse gradients. Sparse gradients
make use of only part of the gradient and require some modifications.

Batch sizes: 32, 64, 128, 256, 512.

Learning rates: default and one order of magnitude above and below.

• Phase II - Addition of Convolutional Layers:
After establishing the most effective hyper-parameters and optimizers for the
base architecture, those configurations will be tested on the CNN architectures

56 Chapter 9. Results

presented in the previous Chapter, to see whether any of them can improve
performance.

9.3. Phase I - Optimization of base architecture 57

9.3 Phase I - Optimization of base architecture

9.3.1 Adadelta

lr = 0.1 lr = 1 lr = 10

batch size
=
32

(i) 0.592, 0.487, 0.388
(ii) 0.456, 0.586, 0.532
(iii) 0.595, 0.458, 0.335
(iv) 0.488, 0.555, 0.424

(i) 0.630, 0.529, 1.317
(ii) 0.373, 0.458, 1.110
(iii) 0.546, 0.487, 1.416
(iv) 0.411, 0.636, 2.146

(i) 4.419, 8.173, 13.194
(ii) 1.236, 5.037, 9.361
(iii) 4.119, 2.687, 3.346
(iv) 0.614, 1.832, 5.426

batch size
=
64

(i) 0.621, 0.628, 0.493
(ii) 0.366, 0.563, 0.459
(iii) 0.648, 0.701, 0.530
(iv) 0.381, 0.661, 0.632

(i) 0.715, 0.733, 2.098
(ii) 0.328, 0.671, 1.338
(iii) 0.701, 0.764, 1.454
(iv) 0.281, 0.341, 0.655

(i) 4.834, 12.342, 19.624
(ii) 1.321, 4.421, 10.438

(iii) 4.630, 16.144, 25.679
(iv) 0.460, 1.164, 3.139

batch size
=

128

(i) 0.839, 0.816, 0.605
(ii) 0.364, 0.503, 0.476
(iii) 0.863, 0.813, 0.618
(iv) 0.463, 0.544, 0.960

(i) 0.815, 0.926, 2.983
(ii) 0.259, 0.418, 1.495
(iii) 0.692, 1.232, 2.610
(iv) 0.251, 0.283, 0.357

(i) 6.385, 17.449, 27.673
(ii) 1.308, 3.904, 9.813

(iii) 4.800, 16.585, 26.845
(iv) 0.304, 0.750, 1.373

batch size
=

256

(i) 1.118, 0.935, 1.003
(ii) 0.314, 0.432, 0.449
(iii) 0.229, 1.302, 0.933
(iv) 3.106, 2.352, 2.355

(i) 0.933, 1.038, 3.562
(ii) 0.310, 0.423, 1.688
(iii) 0.678, 0.692, 3.744
(iv) 2.424, 1.778, 5.865

(i) 7.979, 20.662, 36.153
(ii) 1.374, 4.020, 9.170
(iii) 2.432, 5.962, 7.357

(iv) 7.963, 19.712, 29.488

batch size
=

512

(i) 1.706, 1.202, 1.128
(ii) 0.183, 0.534, 0.492
(iii) 0.279, 1.860, 1.534
(iv) 0.229, 1.302, 0.933

(i) 1.150, 1.514, 6.540
(ii) 0.216, 0.427, 1.370
(iii) 0.612, 0.939, 3.183
(iv) 0.678, 0.692, 3.744

(i) 9.168, 23.514, 47.272
(ii) 1.250, 3.548, 7.943
(iii) 1.823, 7.087, 7.285
(iv) 2.432, 5.962, 7.357

TABLE 9.3: Performance of Adadelta optimizer for parameters 1, 2
and 3, relative to Bernkopf’s trainlm results, under several learning
rates and batch sizes, and rounded to three decimal places: (i) train-
ing average MSE, (ii) training standard deviation of MSE, (iii) testing

average MSE and (iv) testing standard deviation of MSE

58 Chapter 9. Results

FIGURE 9.1: Adadelta training loss history for lr = 0.1 and batch size
= 32

FIGURE 9.2: Adadelta validation loss history for lr = 0.1 and batch
size = 32

9.3. Phase I - Optimization of base architecture 59

9.3.2 Adagrad

lr = 0.001 lr = 0.01 lr = 0.1

batch size
=
32

(i) 0.894, 0.812, 0.743
(ii) 0.629, 1.008, 1.028
(iii) 0.840, 0.797, 0.674
(iv) 0.594, 0.965, 0.817

(i) 0.534, 0.449, 0.325
(ii) 0.412, 0.654, 0.510
(iii) 0.535, 0.418, 0.347
(iv) 0.689, 0.553, 1.119

(i) 0.599, 0.62, 0.531
(ii) 0.439, 0.843, 0.675
(iii) 0.607, 0.602, 0.577
(iv) 0.462, 1.005, 1.321

batch size
=
64

(i) 1.208, 1.122, 1.175
(ii) 0.578, 0.875, 1.182
(iii) 1.172, 1.095, 1.212
(iv) 0.546, 0.914, 1.276

(i) 0.631, 0.554, 0.488
(ii) 0.401, 0.734, 1.049
(iii) 0.618, 0.566, 0.460
(iv) 0.413, 0.680, 0.757

(i) 0.760, 1.557, 0.963
(ii) 0.399, 1.528, 1.371
(iii) 0.744, 1.228, 1.037
(iv) 0.408, 1.367, 2.197

batch size
=

128

(i) 0.979, 1.212, 1.178
(ii) 0.430, 0.749, 0.811
(iii) 0.997, 1.253, 1.229
(iv) 0.438, 0.770, 1.460

(i) 0.728, 0.717, 0.642
(ii) 0.395, 0.525, 0.615
(iii) 0.713, 0.687, 0.687
(iv) 0.309, 0.462, 0.498

(i) 0.874, 1.743, 0.797
(ii) 0.332, 1.123, 0.675
(iii) 0.867, 1.717, 0.819
(iv) 0.351, 1.175, 0.787

batch size
=

256

(i) 1.312, 1.218, 1.439
(ii) 0.311, 0.632, 0.800

(iii) 2.740, 1.615, 18.796
(iv) 5.736, 2.134, 18.009

(i) 0.776, 0.695, 0.638
(ii) 0.250, 0.419, 0.534
(iii) 0.297, 0.934, 0.882
(iv) 1.020, 1.543, 1.514

(i) 0.941, 1.422, 2.008
(ii) 0.251, 1.025, 3.130
(iii) 0.510, 1.539, 2.681
(iv) 1.539, 3.003, 3.465

batch size
=

512

(i) 1.161, 1.363, 1.758
(ii) 0.222, 0.584, 0.631

(iii) 0.291, 2.149, 18.278
(iv) 2.740, 1.615, 18.796

(i) 0.772, 0.997, 0.834
(ii) 0.181, 0.513, 0.880
(iii) 0.262, 0.293, 0.429
(iv) 0.297, 0.934, 0.882

(i) 1.330, 1.938, 1.883
(ii) 0.526, 0.807, 1.496
(iii) 0.417, 0.476, 2.130
(iv) 0.510, 1.539, 2.681

TABLE 9.4: Performance of Adagrad optimizer for parameters 1, 2
and 3, relative to Bernkopf’s trainlm results, under several learning
rates and batch sizes, and rounded to three decimal places: (i) train-
ing average MSE, (ii) training standard deviation of MSE, (iii) testing

average MSE and (iv) testing standard deviation of MSE

60 Chapter 9. Results

FIGURE 9.3: Adagrad training loss history for lr = 0.01 and batch size
= 128

FIGURE 9.4: Adagrad validation loss history for lr = 0.01 and batch
size = 128

9.3. Phase I - Optimization of base architecture 61

9.3.3 Adam

lr = 0.0001 lr = 0.001 lr = 0.01

batch size
=
32

(i) 0.506, 0.433, 0.292
(ii) 0.366, 0.539, 0.438
(iii) 0.480, 0.377, 0.223
(iv) 0.377, 0.461, 0.409

(i) 0.574, 0.837, 0.674
(ii) 0.365, 1.162, 1.487
(iii) 0.543, 0.770, 0.465
(iv) 0.375, 0.672, 1.254

(i) 3.349, 2.485, 2.222
(ii) 0.782, 2.13, 6.051
(iii) 3.12, 1.906, 0.747
(iv) 0.677, 1.906, 2.825

batch size
=
64

(i) 0.533, 0.495, 0.335
(ii) 0.306, 0.762, 0.587
(iii) 0.522, 0.683, 0.371
(iv) 0.338, 0.522, 0.739

(i) 0.588, 0.701, 0.540
(ii) 0.290, 0.532, 0.997
(iii) 0.581, 0.739, 0.715
(iv) 0.280, 0.766, 0.791

(i) 3.380, 2.676, 6.394
(ii) 0.590, 2.178, 15.150
(iii) 3.631, 2.386, 3.987
(iv) 0.493, 1.527, 5.266

batch size
=

128

(i) 0.656, 0.590, 0.574
(ii) 0.345, 0.526, 0.940
(iii) 0.669, 0.590, 0.500
(iv) 0.467, 0.882, 0.501

(i) 0.690, 1.045, 1.265
(ii) 0.343, 1.105, 1.860
(iii) 0.608, 0.828, 0.726
(iv) 0.268, 0.616, 0.595

(i) 3.270, 2.541, 6.675
(ii) 0.380, 1.845, 11.694
(iii) 3.156, 2.379, 5.310
(iv) 0.342, 1.336, 7.610

batch size
=

256

(i) 0.791, 0.951, 0.996
(ii) 0.942, 1.929, 3.173

(iii) 1.204, 2.089, 29.731
(iv) 2.618, 2.886, 17.335

(i) 0.658, 0.773, 1.008
(ii) 0.265, 0.555, 2.350
(iii) 0.430, 0.476, 1.057
(iv) 1.205, 1.559, 1.730

(i) 1.138, 2.947, 2.711
(ii) 0.569, 1.290, 3.953

(iii) 3.261, 1.983, 11.476
(iv) 2.740, 3.293, 8.884

batch size
=

512

(i) 0.817, 0.870, 0.722
(ii) 0.202, 0.520, 0.456

(iii) 0.814, 2.080, 26.538
(iv) 1.204, 2.089, 29.731

(i) 0.710, 0.805, 0.880
(ii) 0.168, 0.321, 0.670
(iii) 0.182, 0.346, 1.164
(iv) 0.430, 0.476, 1.057

(i) 1.417, 3.454, 5.456
(ii) 0.442, 2.036, 5.366
(iii) 0.444, 2.261, 7.076
(iv) 3.261, 1.983, 11.476

TABLE 9.5: Performance of Adam optimizer for parameters 1, 2 and
3, relative to Bernkopf’s trainlm results, under several learning rates
and batch sizes, and rounded to three decimal places: (i) training av-
erage MSE, (ii) training standard deviation of MSE, (iii) testing aver-

age MSE and (iv) testing standard deviation of MSE

62 Chapter 9. Results

FIGURE 9.5: Adam training loss history for lr = 0.0001 and batch size
= 64

FIGURE 9.6: Adam validation loss history for lr = 0.0001 and batch
size = 64

9.3. Phase I - Optimization of base architecture 63

9.3.4 Adamax

lr = 0.0001 lr = 0.001 lr = 0.01

batch size
=
32

(i) 0.631, 0.563, 0.397
(ii) 0.530, 1.446, 1.150
(iii) 0.582, 0.485, 0.343
(iv) 0.443, 0.845, 0.521

(i) 0.453, 0.356, 0.248
(ii) 0.329, 0.446, 0.375
(iii) 0.456, 0.352, 0.234
(iv) 0.336, 0.522, 0.868

(i) 0.575, 0.566, 0.432
(ii) 0.322, 0.431, 0.824
(iii) 0.589, 0.644, 0.220
(iv) 0.303, 0.360, 0.347

batch size
=
64

(i) 0.716, 0.666, 0.586
(ii) 0.432, 0.737, 0.824
(iii) 0.689, 0.633, 0.614
(iv) 0.368, 0.618, 2.531

(i) 0.527, 0.405, 0.284
(ii) 0.308, 0.365, 0.355
(iii) 0.483, 0.391, 0.252
(iv) 0.289, 0.411, 0.407

(i) 0.615, 0.583, 0.599
(ii) 0.301, 0.505, 1.372
(iii) 0.529, 0.742, 0.496
(iv) 0.284, 0.254, 0.796

batch size
=

128

(i) 0.796, 0.862, 0.820
(ii) 0.332, 0.687, 0.817
(iii) 0.793, 0.913, 0.816
(iv) 0.357, 0.940, 0.825

(i) 0.585, 0.525, 0.473
(ii) 0.250, 0.404, 0.691
(iii) 0.572, 0.515, 0.560
(iv) 0.249, 0.392, 0.585

(i) 0.563, 0.582, 0.633
(ii) 0.227, 0.358, 0.801
(iii) 0.575, 0.576, 0.514
(iv) 0.225, 0.331, 1.169

batch size
=

256

(i) 0.854, 0.936, 1.022
(ii) 0.289, 0.604, 0.855

(iii) 1.098, 7.555, 40.523
(iv) 4.139, 13.669, 34.051

(i) 0.687, 0.659, 0.565
(ii) 0.375, 0.680, 0.790
(iii) 0.511, 1.203, 1.821
(iv) 1.536, 2.531, 3.060

(i) 0.667, 0.813, 0.973
(ii) 0.299, 0.744, 2.005
(iii) 0.291, 1.045, 1.881
(iv) 0.951, 1.658, 1.813

batch size
=

512

(i) 1.190, 1.350, 1.841
(ii) 0.315, 1.101, 3.976

(iii) 2.061, 8.551, 33.488
(iv) 1.098, 7.555, 40.523

(i) 0.641, 0.716, 0.666
(ii) 0.144, 0.498, 0.471
(iii) 0.396, 0.367, 1.691
(iv) 0.511, 1.203, 1.821

(i) 0.642, 0.723, 0.800
(ii) 0.196, 0.524, 1.130
(iii) 0.273, 0.755, 2.129
(iv) 0.291, 1.045, 1.881

TABLE 9.6: Performance of Adamax optimizer for parameters 1, 2
and 3, relative to Bernkopf’s trainlm results, under several learning
rates and batch sizes, and rounded to three decimal places: (i) train-
ing average MSE, (ii) training standard deviation of MSE, (iii) testing

average MSE and (iv) testing standard deviation of MSE

64 Chapter 9. Results

FIGURE 9.7: Adamax training loss history for lr = 0.001 and batch size
= 64

FIGURE 9.8: Adamax validation loss history for lr = 0.001 and batch
size = 64

9.3. Phase I - Optimization of base architecture 65

9.3.5 ASGD

lr = 0.001 lr = 0.01 lr = 0.1

batch size
=
32

(i) 3.069, 1.275, 1.656
(ii) 0.686, 1.171, 1.411
(iii) 3.040, 1.251, 1.686
(iv) 0.668, 1.219, 1.512

(i) 1.106, 0.895, 1.305
(ii) 0.487, 0.816, 2.700
(iii) 1.107, 0.894, 1.088
(iv) 0.517, 0.865, 1.242

(i) nan, nan, nan
(ii) nan, nan, nan
(iii) nan, nan, nan
(iv) nan, nan, nan

batch size
=
64

(i) 3.085, 1.787, 2.240
(ii) 0.559, 1.107, 1.994
(iii) 3.062, 1.809, 2.345
(iv) 0.570, 1.213, 4.314

(i) 2.206, 1.159, 0.976
(ii) 0.389, 0.752, 0.872
(iii) 2.179, 1.157, 0.959
(iv) 0.364, 0.771, 0.889

(i) nan, nan, nan
(ii) nan, nan, nan
(iii) nan, nan, nan
(iv) nan, nan, nan

batch size
=

128

(i) 2.989, 2.574, 2.718
(ii) 0.399, 1.659, 1.803
(iii) 2.990, 2.654, 2.801
(iv) 0.358, 1.793, 1.920

(i) 3.016, 1.243, 1.329
(ii) 0.323, 1.105, 0.996
(iii) 3.008, 1.195, 1.357
(iv) 0.328, 0.790, 0.988

(i) 3.142, 1.952, 26.386
(ii) 0.352, 1.596, 18.596
(iii) 3.208, 1.926, 24.240
(iv) 0.332, 1.513, 17.718

batch size
=

256

(i) 3.364, 3.622, 3.980
(ii) 0.381, 1.604, 1.346

(iii) 1.388, 5.550, 40.273
(iv) 16.047, 21.541, 95.066

(i) 3.008, 1.355, 1.905
(ii) 0.246, 0.665, 0.891

(iii) 0.498, 2.411, 11.339
(iv) 3.366, 4.253, 10.294

(i) 3.251, 2.499, 29.009
(ii) 0.349, 1.265, 12.857
(iii) 0.254, 0.617, 0.897
(iv) 3.096, 1.768, 2.864

batch size
=

512

(i) 3.315, 4.484, 4.707
(ii) 0.250, 1.723, 1.246

(iii) 1.044, 2.848, 29.827
(iv) 1.388, 5.550, 40.273

(i) 3.275, 2.313, 2.290
(ii) 0.197, 0.773, 0.885
(iii) 1.634, 1.077, 9.038
(iv) 0.498, 2.411, 11.339

(i) 2.663, 1.376, 1.375
(ii) 0.148, 0.428, 0.851
(iii) 0.237, 1.896, 4.871
(iv) 0.254, 0.617, 0.897

TABLE 9.7: Performance of ASGD optimizer for parameters 1, 2 and
3, relative to Bernkopf’s trainlm results, under several learning rates
and batch sizes, and rounded to three decimal places: (i) training av-
erage MSE, (ii) training standard deviation of MSE, (iii) testing aver-

age MSE and (iv) testing standard deviation of MSE

66 Chapter 9. Results

FIGURE 9.9: ASGD training loss history for lr = 0.01 and batch size =
32

FIGURE 9.10: ASGD validation loss history for lr = 0.01 and batch
size = 32

9.3. Phase I - Optimization of base architecture 67

9.3.6 RMSprop

lr = 0.001 lr = 0.01 lr = 0.1

batch size
=
32

(i) 0.518, 0.551, 0.771
(ii) 0.344, 0.524, 0.918
(iii) 0.425, 0.340, 0.332
(iv) 0.342, 0.460, 0.819

(i) 3.410, 3.596, 5.366
(ii) 0.806, 3.091, 6.995
(iii) 3.255, 1.778, 1.681
(iv) 0.683, 1.838, 1.727

(i) 4.825, 9.985, 161.172
(ii) 1.896, 4.546, 20.070

(iii) 3.905, 10.257, 161.615
(iv) 0.651, 0.608, 19.456

batch size
=
64

(i) 0.608, 0.765, 1.042
(ii) 0.290, 0.598, 1.203
(iii) 0.515, 1.220, 1.328
(iv) 0.281, 0.403, 0627

(i) 2.285, 3.696, 5.638
(ii) 0.912, 2.754, 7.079
(iii) 1.778, 4.844, 6.511
(iv) 0.424, 1.210, 2.316

(i) 4.818, 9.987, 162.280
(ii) 1.856, 4.722, 14.126

(iii) 4.986, 12.442, 162.138
(iv) 0.461, 0.469, 14.376

batch size
=

128

(i) 0.616, 0.782, 1.224
(ii) 0.241, 0.438, 1.002
(iii) 0.954, 1.220, 2.031
(iv) 0.160, 0.369, 0.523

(i) 2.321, 4.114, 8.068
(ii) 1.192, 2.911, 21.622
(iii) 2.988, 5.202, 7.966
(iv) 0.443, 0.967, 3.317

(i) 4.935, 10.638, 161.742
(ii) 1.390, 2.785, 10.214

(iii) 3.353, 12.337, 171.993
(iv) 0.348, 0.251, 10.697

batch size
=

256

(i) 0.665, 0.985, 1.850
(ii) 0.216, 0.540, 1.376
(iii) 0.409, 0.794, 2.009
(iv) 1.084, 2.084, 2.747

(i) 2.325, 4.399, 7.043
(ii) 0.778, 2.479, 5.856
(iii) 1.639, 4.921, 7.832
(iv) 3.116, 6.942, 13.086

(i) 4.820, 10.917, 162.461
(ii) 1.707, 1.965, 7.203

(iii) 18.712, 47.492, 55.043
(iv) 13.498, 29.450, 96.348

batch size
=

512

(i) 0.780, 1.136, 2.301
(ii) 0.218, 0.741, 2.117
(iii) 0.536, 1.198, 1.102
(iv) 0.409, 0.794, 2.009

(i) 2.061, 4.488, 7.460
(ii) 0.835, 2.785, 5.556
(iii) 2.070, 3.910, 6.042
(iv) 1.639, 4.921, 7.832

(i) 4.855, 10.977, 162.417
(ii) 1.616, 1.443, 5.172

(iii) 7.412, 12.196, 34.938
(iv) 18.712, 47.492, 55.043

TABLE 9.8: Performance of RMSprop optimizer for parameters 1, 2
and 3, relative to Bernkopf’s trainlm results, under several learning
rates and batch sizes, and rounded to three decimal places: (i) train-
ing average MSE, (ii) training standard deviation of MSE, (iii) testing

average MSE and (iv) testing standard deviation of MSE

68 Chapter 9. Results

FIGURE 9.11: RMSprop training loss history for lr = 0.001 and batch
size = 32

FIGURE 9.12: RMSprop validation loss history for lr = 0.001 and batch
size = 32

9.3. Phase I - Optimization of base architecture 69

9.3.7 Rprop

lr = 0.001 lr = 0.01 lr = 0.1

batch size
=
32

(i) 1.189, 1.046, 1.146
(ii) 2.536, 2.537, 2.865
(iii) 1.083, 0.968, 1.009
(iv) 1.708, 2.254, 1.942

(i) 1.053, 1.462, 1.265
(ii) 1.305, 4.611, 2.486
(iii) 1.124, 1.563, 1.369
(iv) 1.398, 4.588, 2.626

(i) 2.881, 6.729, 5.855
(ii) 6.772, 15.235, 15.201
(iii) 3.588, 7.291, 5.821

(iv) 11.949, 17.748, 14.149

batch size
=
64

(i) 1.051, 1.406, 1.182
(ii) 0.965, 2.657, 2.388
(iii) 1.112, 1.553, 1.514
(iv) 1.051, 2.630, 3.488

(i) 1.069, 1.324, 2.004
(ii) 0.938, 2.062, 4.055
(iii) 1.143, 1.241, 1.874
(iv) 1.945, 1.853, 3.459

(i) 4.011, 8.065, 10.334
(ii) 8.150, 12.323, 18.490
(iii) 3.973, 9.072, 11.920
(iv) 7.523, 17.887, 27.267

batch size
=

128

(i) 1.064, 1.375, 1.222
(ii) 0.689, 1.264, 2.807
(iii) 1.049, 1.322, 1.160
(iv) 0.880, 1.146, 1.162

(i) 1.153, 1.061, 1.520
(ii) 1.617, 0.855, 1.861
(iii) 1.257, 1.164, 1.749
(iv) 1.447, 1.193, 2.566

(i) 6.040, 12.576, 11.053
(ii) 8.112, 15.276, 16.828
(iii) 6.078, 12.719, 10.927
(iv) 11.342, 16.180, 23.020

batch size
=

256

(i) 1.047, 1.371, 1.229
(ii) 0.396, 1.136, 0.909
(iii) 0.464, 0.658, 0.827
(iv) 1.431, 2.197, 2.324

(i) 1.068, 1.501, 1.498
(ii) 0.456, 1.431, 1.247
(iii) 0.353, 1.042, 0.687
(iv) 1.807, 3.034, 2.220

(i) 3.324, 6.130, 7.537
(ii) 7.134, 7.612, 4.979
(iii) 2.250, 5.169, 3.389
(iv) 3.734, 8.616, 8.116

batch size
=

512

(i) 1.108, 1.368, 1.177
(ii) 0.370, 0.690, 0.719
(iii) 0.267, 0.618, 0.817
(iv) 0.464, 0.658, 0.827

(i) 0.982, 2.100, 1.517
(ii) 0.379, 3.692, 1.658
(iii) 0.324, 0.606, 0.840
(iv) 0.353, 1.042, 0.687

(i) 1.977, 4.040, 11.190
(ii) 0.814, 2.227, 8.059
(iii) 0.998, 1.677, 7.482
(iv) 2.250, 5.169, 3.389

TABLE 9.9: Performance of Rprop optimizer for parameters 1, 2 and
3, relative to Bernkopf’s trainlm results, under several learning rates
and batch sizes, and rounded to three decimal places: (i) training av-
erage MSE, (ii) training standard deviation of MSE, (iii) testing aver-

age MSE and (iv) testing standard deviation of MSE

70 Chapter 9. Results

FIGURE 9.13: Rprop training loss history for lr = 0.001 and batch size
= 512

FIGURE 9.14: Rprop validation loss history for lr = 0.001 and batch
size = 512

9.3. Phase I - Optimization of base architecture 71

9.3.8 SGD

lr = 0.001 lr = 0.01 lr = 0.1

batch size
=
32

(i) 3.015, 1.147, 1.962
(ii) 0.655, 1.059, 1.570
(iii) 3.014, 1.155, 1.927
(iv) 0.674, 1.191, 1.526

(i) 2.211, 1.274, 1.832
(ii) 0.466, 1.412, 3.488
(iii) 2.194, 1.279, 1.958
(iv) 0.482, 1.322, 3.953

(i) nan, nan, nan
(ii) nan, nan, nan
(iii) nan, nan, nan
(iv) nan, nan, nan

batch size
=
64

(i) 3.111, 1.758, 2.484
(ii) 0.478, 1.155, 1.540
(iii) 3.104, 1.698, 2.414
(iv) 0.505, 1.103, 1.422

(i) 2.588, 1.430, 1.812
(ii) 0.427, 2.033, 2.675
(iii) 2.591, 1.453, 3.319
(iv) 0.504, 1.366, 8.803

(i) 3.110, 1.681, 161.030
(ii) 0.493, 1.809, 14.209

(iii) 3.139, 1.725, 161.471
(iv) 0.475, 2.013, 14.249

batch size
=

128

(i) 3.038, 2.478, 2.534
(ii) 0.360, 0.844, 1.753
(iii) 3.031, 2.465, 2.529
(iv) 0.362, 0.924, 1.427

(i) 2.699, 1.192, 1.540
(ii) 0.297, 0.672, 0.928
(iii) 2.676, 1.190, 1.670
(iv) 0.298, 0.737, 2.592

(i) 3.164, 2.096, 25.201
(ii) 0.353, 1.619, 7.607

(iii) 3.286, 2.008, 21.618
(iv) 0.332, 1.521, 3.085

batch size
=

256

(i) 3.493, 3.009, 4.328
(ii) 0.693, 1.382, 1.532

(iii) 11.136, 2.191, 40.877
(iv) 9.037, 14.214, 100.996

(i) 2.948, 1.773, 1.926
(ii) 0.237, 1.013, 1.110

(iii) 2.276, 2.303, 22.436
(iv) 4.277, 5.966, 18.091

(i) 1.308, 1.787, 1.820
(ii) 0.205, 0.883, 1.870
(iii) 0.264, 0.813, 6.977
(iv) 2.865, 2.159, 4.582

batch size
=

512

(i) 3.735, 2.965, 9.591
(ii) 0.583, 1.357, 1.096

(iii) 0.861, 3.398, 35.620
(iv) 11.136, 2.191, 40.877

(i) 3.039, 2.232, 2.446
(ii) 0.193, 0.894, 1.315
(iii) 0.722, 4.408, 5.898
(iv) 2.276, 2.303, 22.436

(i) 2.574, 1.238, 1.197
(ii) 0.157, 0.425, 0.554
(iii) 0.216, 0.877, 3.567
(iv) 0.264, 0.813, 6.977

TABLE 9.10: Performance of SGD optimizer for parameters 1, 2 and
3, relative to Bernkopf’s trainlm results, under several learning rates
and batch sizes, and rounded to three decimal places: (i) training av-
erage MSE, (ii) training standard deviation of MSE, (iii) testing aver-

age MSE and (iv) testing standard deviation of MSE

72 Chapter 9. Results

FIGURE 9.15: SGD training loss history for lr = 0.01 and batch size =
128

FIGURE 9.16: SGD validation loss history for lr = 0.01 and batch size
= 128

9.3. Phase I - Optimization of base architecture 73

9.3.9 Levenberg-Marquardt

λ = 0.1 λ = 1 λ = 10

batch size
=
32

(i) 3.177, 1.589, 4.496
(ii) 0.687, 1.405, 6.114
(iii) 3.184, 1.675, 7.007
(iv) 0.813, 1.906, 31.66

(i) 1.690, 0.568, 0.974
(ii) 0.584, 1.072, 0.789
(iii) 1.694, 0.561, 1.010
(iv) 0.736, 0.924, 1.497

(i) 1.294, 1.262, 1.071
(ii) 0.522, 0.757, 1.018
(iii) 1.250, 1.214, 0.985
(iv) 0.489, 0.656, 0.783

batch size
=
64

(i) 5.287, 4.494, 8.150
(ii) 3.286, 4.840, 8.174
(iii) 5.360, 4.492, 8.287
(iv) 3.363, 4.757, 8.673

(i) 1.248, 0.874, 0.710
(ii) 0.377, 0.600, 0.493
(iii) 1.240, 0.883, 0.712
(iv) 0.379, 0.656, 0.562

(i) 1.287, 0.881, 0.814
(ii) 0.428, 0.663, 0.700
(iii) 1.311, 0.901, 0.805
(iv) 0.455, 0.748, 0.604

batch size
=

128

(i) 6.546, 9.298, 19.549
(ii) 1.904, 3.230, 11.917
(iii) 6.614, 9.380, 20.408
(iv) 3.204, 5.012, 18.289

(i) 3.182, 1.925, 3.611
(ii) 0.353, 1.340, 3.918
(iii) 3.171, 1.926, 3.640
(iv) 0.391, 1.573, 3.638

(i) 3.263, 1.864, 2.991
(ii) 0.398, 1.271, 1.474
(iii) 3.258, 1.836, 3.060
(iv) 0.386, 1.458, 2.315

batch size
=

256

(i) 3.198, 2.445, 146.922
(ii) 0.336, 1.700, 20.182
(iii) 0.551, 8.590, 34.347

(iv) 6.292, 53.393, 140.474

(i) 3.074, 2.577, 2.826
(ii) 0.275, 1.703, 0.908
(iii) 0.288, 1.392, 0.746
(iv) 3.031, 2.859, 3.654

(i) 1.152, 1.146, 1.102
(ii) 0.272, 0.539, 0.674
(iii) 0.294, 0.343, 0.807
(iv) 4.204, 1.840, 10.570

batch size
=

512

(i) 3.147, 2.362, 3.260
(ii) 0.176, 0.984, 1.492

(iii) 0.256, 1.429, 11.044
(iv) 0.551, 8.590, 34.347

(i) 3.129, 2.052, 4.274
(ii) 0.183, 2.096, 2.777
(iii) 0.148, 1.631, 6.184
(iv) 0.288, 1.392, 0.746

(i) 1.144, 1.279, 1.233
(ii) 0.227, 1.910, 1.431
(iii) 0.116, 0.728, 1.299
(iv) 0.294, 0.343, 0.807

TABLE 9.11: Performance of Levenberg-Marquardt optimizer with
slight bias towards a Gauss-Newton algorithm for parameters 1, 2
and 3, relative to Bernkopf’s trainlm results, under several λs and
batch sizes, and rounded to three decimal places: (i) training aver-
age MSE, (ii) training standard deviation of MSE, (iii) testing average

MSE and (iv) testing standard deviation of MSE

74 Chapter 9. Results

FIGURE 9.17: Levenberg-Marquardt training loss history for λ = 1
and batch size = 64 (slight bias towards Gauss-Newton Method)

FIGURE 9.18: Levenberg-Marquardt validation loss history for λ = 1
and batch size = 64 (slight bias towards Gauss-Newton Method)

9.4. Phase II - Addition of Convolutional Layers 75

9.4 Phase II - Addition of Convolutional Layers

Phase I clearly suggests that the following configurations show the best performance
with no signs of overfitting:

• Adam optimizer with learning rate 0.0001 and batch size 32

• Adamax optimizer with learning rate 0.001 and batch size 64

Now these same configurations will be used with the three CNN architectures pre-
sented in Chapter 8.

undilated dilated (k=2) dilated 2 (k=3)

Adam

(i) 0.575, 0.477, 0.641
(ii) 0.384, 0.545, 0.720
(iii) 0.592, 0.431, 0.553
(iv) 0.428, 0.551, 0.410

(i) 0.542, 0.514, 0.644
(ii) 0.391, 1.035, 0.823
(iii) 0.498, 0.499, 0.745
(iv) 0.377, 0.563, 0.890

(i) 0.516, 0.398, 0.561
(ii) 0.388, 0.441, 0.861
(iii) 0.514, 0.438, 0.666
(iv) 0.391, 0.606, 0.864

Adamax

(i) 0.622, 0.841, 1.250
(ii) 0.473, 2.171, 2.774
(iii) 0.604, 0.556, 1.293
(iv) 0.359, 0.420, 1.293

(i) 0.643, 0.590, 0.869
(ii) 0.355, 0.629, 1.032
(iii) 0.643, 0.535, 0.737
(iv) 0.418, 0.563, 1.124

(i) 0.697, 0.858, 0.986
(ii) 0.328, 1.224, 1.538
(iii) 0.692, 0.566, 0.585
(iv) 0.339, 0.593, 0.467

TABLE 9.12: Performance for parameters 1, 2 and 3, relative to
Bernkopf’s trainlm results, using the CNN architectures proposed in
Chapter 8 and the optimal optimization algorithms and rounded to
three decimal places: (i) training average MSE, (ii) training standard
deviation of MSE, (iii) testing average MSE and (iv) testing standard

deviation of MSE

From those results it is clear that the undilated network is the best performing of the
three CNN architectures. However, it can also be seen that adding Convolutional
Layers to the base architecture does not improve in any way its performance, neither
with nor without dilation. In fact, even the undilated network yields a slightly worse
mean squared error for the prediction of the first two parameters and a significantly
worse error for the third, although still better than baseline.

76 Chapter 9. Results

FIGURE 9.19: Adam training loss history for undilated CNN with lr
= 0.0001 and batch size = 32

FIGURE 9.20: Adam validation loss history for undilated CNN with
lr = 0.0001 and batch size = 32

77

Chapter 10

Conclusion

To ensure the reliability of the training data, several tests were performed on it and
no significant abnormalities that could not be attributed to prediction issues were
found. After examining it through the lens of a t-SNE dimensionality reduction, the
dominance of global over local patterns could be determined, providing a first in-
dication that Convolutional Neural Networks might not work as well as expected.
This could be because local patterns are already "summarized" into the input fea-
tures which basically consist of several mean values.
Consequently several architectures, including the base architecture proposed by Bernkopf
(Master’s Thesis under revision) and three convolutional architectures were trained
using diverse optimization algorithms. The most successful configurations were

• Adam, learning rate = 0.0001, batch size = 32, and

• Adamax, learning rate = 0.001, batch size = 64.

Both yield an improvement in performance of a factor of about 2 to 3.5 depending
on the parameter, although Adamax produces slightly less noise.
The addition of convolutional layers not only did not improve performance, but had
a rather detrimental effect on the learning process. Although the best performing
configurations mentioned above still yielded results better than baseline for those
architectures, these results were actually worse than without the additional layers.
Also, since the base architecture has under 5k parameters and the optimal convo-
lutional architecture (undilated) surpasses the 20k parameters, the former is clearly
recommendable.
Also, with an automated prediction of streaming particle track data in mind, the data
formats root , hdf5 and asdf were tested in terms of time and memory complex-
ity of the importation process to assess an eventual bottleneck and asdf resulted to
be the most efficient alternative, although an implementation might be impractical,
given that root is the standard data format at CERN.

78

Bibliography

About CMS. https://cms.cern/detector. Accessed: 2019-01-15.
Adam, Wolfgang et al. (2005a). “Reconstruction of electrons with the Gaussian-sum-

filter in the CMS Tracker at the LHC”. In: Journal of Physics G: Nuclear and Particle
Physics 31.31, pp. 9–20.

– (2005b). “Reconstruction of electrons with the Gaussian-sum filter in the CMS
tracker at the LHC”. In: Journal of Physics G: Nuclear and Particle Physics 31.9, N9.

Ampazis, Nikolaos and Stavros J Perantonis (2000). “Levenberg-Marquardt algo-
rithm with adaptive momentum for the efficient training of feedforward networks”.
In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net-
works 1, pp. 126–131.

Arxiv-Insights (2017). ’How Neural Networks Learn’ - Part I: Feature Visualization. Youtube.
URL: https://www.youtube.com/watch?v=McgxRxi2Jqo.

– (2018). ’How neural networks learn’ - Part II: Adversarial Examples. Youtube. URL:
https://www.youtube.com/watch?v=4rFOkpI0Lcg&t=610s.

Bengio, Yoshua et al. (2009). “Learning deep architectures for AI”. In: Foundations
and trends® in Machine Learning 2.1, pp. 1–127.

Bethe, Hans and Walter Heitler (1934). “On the stopping of fast particles and on the
creation of positive electrons”. In: Proc. R. Soc. Lond. A 146.856, pp. 83–112.

Boltzmann, Ludwig (1877). “Über die Beziehung zwischen dem zweiten Hauptsatze
des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respec-
tive den Sätzen über das Wärmegleichgewicht”. In: Kk Hof-und Staatsdruckerei.

Castelvecchi, Davide (2018). “Particle physicists turn to AI to cope with CERN’s
collision deluge”. In: Nature 557, pp. 147–148.

Cauchy, Augustin (1847). “Méthode générale pour la résolution des systemes d’équations
simultanées”. In: Comptes Rendus Hebd. Scéances Acad. Sci. Paris 1847, pp. 536–538.

Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolution arithmetic
for deep learning”. In:

Floyd, Sally and Manfred Warmuth (1995). “Sample compression, learnability, and
the Vapnik-Chervonenkis dimension”. In: Machine Learning 21.3, 269––304.

Frühwirth, R (2003). “A Gaussian-mixture approximation of the Bethe–Heitler model
of electron energy loss by bremsstrahlung”. In: Computer Physics Communications
154.2, pp. 131–142.

Frühwirth, R and S Frühwirth-Schnatter (1998). “On the treatment of energy loss in
track fitting”. In: Computer physics communications 110.1-3, pp. 80–86.

Frühwirth, Rudolf (1987). “Application of Kalman filtering to track and vertex fit-
ting”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 262.2-3, pp. 444–450.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep Sparse Rectifier
Neural Networks”. In: Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pp. 315–323.

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Neural Information
Processing Systems, pp. 2672–2680.

Goodfellow, Ian et al. (2016). Deep learning. Vol. 1. MIT press Cambridge.

https://cms.cern/detector
https://www.youtube.com/watch?v=McgxRxi2Jqo
https://www.youtube.com/watch?v=4rFOkpI0Lcg&t=610s

BIBLIOGRAPHY 79

Hilpisch, Yves J. (2018). Python Tools & Skills. GitHub. URL: https://gist.github.
com/yhilpisch/bda2479093216b299e59cf8c41bfa3e7.

Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning
algorithm for deep belief nets”. In: Neural computation 18.7, pp. 1527–1554.

Hinton, Geoffrey E and Sam T Roweis (2003). “Stochastic Neighbor Embedding”. In:
Neural Information Processing Systems, pp. 857–864.

Hinton, Geoffrey E et al. (2012). “Improving neural networks by preventing co-
adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580, pp. 1–18.

Hodges Jr, Joseph L and Erich L Lehmann (1963). “Estimates of Location Based on
Rank Tests”. In: The Annals of Mathematical Statistics 34.2, pp. 598–611.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer feedfor-
ward networks are universal approximators”. In: Neural networks 2.5, pp. 359–366.

Hubel, David H and Torsten N Wiesel (1968). “Receptive fields and functional ar-
chitecture of monkey striate cortex”. In: The Journal of physiology 195.1, pp. 215–
243.

Kalman, Rudolph Emil (1960). “A New Approach to Linear Filtering and Prediction
Problems”. In: Transactions of the ASME–Journal of Basic Engineering 82.Series D,
pp. 35–45.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980.

Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”.
In: The annals of mathematical statistics 22.1, pp. 79–86.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep Learning Review”.
In: Nature 521.

LeCun, Yann et al. (1990). “Handwritten digit recognition with a back-propagation
network”. In: Advances in Neural Information Processing Systems, pp. 396–404.

LHC collides ions at new record energy. https://home.cern/news/news/accelerators/
lhc-collides-ions-new-record-energy. Accessed: 2019-01-15.

Lin, J. (1991). In: IEEE Transactions on Information Theory 37.1, pp. 145 –151.
Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-

SNE”. In: Journal of machine learning research 9, pp. 2579–2605.
McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas im-

manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–
133.

McGee, Leonard A and Stanley F Schmidt (1985). “Discovery of the Kalman filter as
a practical tool for aerospace and industry”. In: p. 24.

Mrazova, Iveta, Josef Pihera, and Jana Veleminska (2013). “Can N-dimensional con-
volutional neural networks distinguish men and women better than humans do?”
In: Neural Networks (IJCNN), The 2013 International Joint Conference on, pp. 1–8.

Ng, Ritchie (2018). Deep Learning Theory and Programming Tutorials. Deep Learning
Wizard. URL: https://www.deeplearningwizard.com/.

Nilsson, Nils J (2009). The quest for artificial intelligence. Cambridge University Press.
Raymond, M et al. (2000). “The CMS tracker APV25 0.25\mu m CMOSreadoutchip”.

In:
Riedmiller, Martin and Heinrich Braun (1992). RPROP - A Fast Adaptive Learning

Algorithm. Tech. rep. Proc. of ISCIS VII), Universitat.
Robbins, Herbert and Sutton Monro (1951). “A stochastic approximation method”.

In: The annals of mathematical statistics, pp. 400–407.
Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information

storage and organization in the brain.” In: Psychological review 65.6, pp. 386–408.

https://gist.github.com/yhilpisch/bda2479093216b299e59cf8c41bfa3e7
https://gist.github.com/yhilpisch/bda2479093216b299e59cf8c41bfa3e7
https://home.cern/news/news/accelerators/lhc-collides-ions-new-record-energy
https://home.cern/news/news/accelerators/lhc-collides-ions-new-record-energy
https://www.deeplearningwizard.com/

80 BIBLIOGRAPHY

Rousseeuw, Peter J and Christophe Croux (1993). “Alternatives to the Median Abso-
lute Deviation”. In: Journal of the American Statistical Association 88.424, pp. 1273–
1283.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors”. In: nature 323.6088, pp. 533–536.

Saxe, Andrew Michael et al. (2018). “On the Information Bottleneck Theory of Deep
Learning”. In: International Conference on Learning Representations.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In:
Bell system technical journal 27.3, pp. 379–423.

Shwartz-Ziv, Ravid and Naftali Tishby (2017a). IDNNS. GitHub. URL: https : / /
github.com/ravidziv/IDNNs.

– (2017b). “Opening the black box of deep neural networks via information”. In:
Springenberg, Jost Tobias et al. (2014). “Striving for Simplicity: The All Convolu-

tional Net”. In:
Tishby, Naftali, Fernando C Pereira, and William Bialek (1999). “The information

bottleneck method”. In: Proceedings of the 37-th Annual Allerton Conference on Com-
munication, Control and Computing.

Tishby, Naftali and Noga Zaslavsky (2015). “Deep learning and the information bot-
tleneck principle”. In: IEEE, pp. 1–5.

Turing, Alan M. (1950). “Computing Machinery and Intelligence”. In: Mind 59.236,
pp. 433–460.

Wattenberg, Martin, Fernanda Viégas, and Ian Johnson (2016). “How to Use t-SNE
Effectively”. In: Distill. DOI: 10.23915/distill.00002. URL: http://distill.
pub/2016/misread-tsne.

Yu, Fisher and Vladlen Koltun (2015). “Multi-scale context aggregation by dilated
convolutions”. In:

Zeiler, Matthew D and Rob Fergus (2014). “Visualizing and Understanding Convo-
lutional Networks”. In: European Conference on Computer Vision 8689, pp. 818–833.

https://github.com/ravidziv/IDNNs
https://github.com/ravidziv/IDNNs
https://doi.org/10.23915/distill.00002
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne

	Declaration of Authorship
	Abstract
	Abstract
	Acknowledgements
	Introduction to Artificial Intelligence
	The CMS Experiment
	CMS Tracker
	Electron track reconstruction
	Contribution of this Thesis

	Theoretical framework of Deep Neural Networks
	Neurons and neural networks
	Activation functions

	Optimization
	Stochastic Gradient Descent (SGD)
	Adam
	Resilient Backpropagation (Rprop)
	Levenberg-Marquardt

	Regularization
	Diagnosing overfitting

	Convolutional Neural Networks - Locality vs Globality
	Summary of CNN hyper-parameters

	Frontiers of theoretical Research on Neural Networks
	Probabilistic and statistical models
	Statistical inference
	Information Theory
	Topology and data analysis
	The curse of dimensionality and dimensionality reduction
	t-distributed Stochastic Neighbor Embedding (t-SNE)

	Track parameter estimation by Kalman and Gaussian-sum filter
	Kalman filters
	Gaussian-sum filters
	Optimal Gaussian mixtures
	Number of components

	CMS Data
	Structure of the data
	Baseline
	Tests
	t-SNE dimensionality reduction
	Test on Gaussian weights
	Tests on correlation between targets and weighted averages

	Software Tools
	Docker
	Jupyter Lab
	Plotly/Dash
	Plotly plot

	Step-by-step installation and execution Guide
	Installation
	Executing a model
	Dataset Generator
	Tests
	Parameter list
	Tests on data formats performance

	Model architectures
	Base architecture
	Convolutional Neural Network architectures

	Results
	Data formats performance
	Models performance
	Phase I - Optimization of base architecture
	Adadelta
	Adagrad
	Adam
	Adamax
	ASGD
	RMSprop
	Rprop
	SGD
	Levenberg-Marquardt

	Phase II - Addition of Convolutional Layers

	Conclusion
	Bibliography

