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Deutsche Zusammenfassung

Aktuelle Experimente an den 5d-Osmium Oxid Perowskiten NaOsO3 und LiOsO3 haben auffällige

Unterschiede in den Eigenschaften dieser beiden Materialien ergeben. Mittels Infrarot-Spektroskopie

wird für NaOsO3 ein metallisches Verhalten bei Temperaturen oberhalb von 420 K, ein Metall-

Isolator-Übergang bei niedrigeren Temperaturen, sowie eine langreichweite antiferromagnetis-

che Ordnung gemessen, die durch einen Slater-Lifshitz Übergang verursacht werden. LiOsO3

zeigt kein magnetisches Verhalten auf der vollständigen Temperaturskala und wird hauptsächlich

durch die rasche Abnahme des Drude-Peaks in der optischen Leitfähigkeit charakterisiert. Die

beobachteten Unterschiede der beiden Materialien können nicht durch eine dichtefunktionaltheo-

retische (DFT) Behandlung erklärt werden, welche zwei ähnliche, kohärente, metallische Phasen

ergeben würde. Die Erweiterung der Rechnung um lokale Wechselwirkungen (DFT+DMFT) mit-

tels dynamischer Molekularfeldtheorie (DMFT) bringt eine deutliche Verbesserung der Beschrei-

bung, allerdings keine Übereinstimmung mit dem Experiment. Es lässt sich zeigen, dass LiOsO3

bei steigender Temperatur wesentlich schneller seine kohärente, metallische Phase verliert als

NaOsO3, was bedeutet, dass sich dieses Material näher an einer Mott-Hund isolierenden Phase

befindet. Bei Verwendung von ab-initio durch DFT berechneten Parametern ist dieser Effekt ver-

glichen zum Experiment schwächer und findet bei höheren Termperaturen statt. Die Ursache liegt

in der Schwächung der Hundschen Wechselwirkung aufgrund der Aufhebung der t2g Entartung um

etwa 250 meV durch das vorherrschende Kristallfeld. Die Berücksichtigung von lokaler (atom-

arer) Spin-Orbit Kopplung, deren atomarer Anteil auf etwa 250 meV abgeschätzt werden kann, in

DFT+DMFT Rechnungen, könnte im Prinzip die Entartung der t2g Orbitale wieder herstellen und

daher auch der beobachteten Delokalisierung entgegenwirken. Unsere Rechnungen zeigen allerd-

ings, dass das nicht der Fall ist und dass die lokale Spin-Orbit Kopplung die Aufspaltung der

t2g Orbital weiter verstärkt. Dadurch kommt es zu einer zusätzlichen Metallisierung von LiOsO3,

besonders bei sehr hohen Temperaturen (1160 K). Die Unterschiede zwischen unserer theoretischen

Beschreibung und den experimentellen Resultaten können daher nicht erklärt werden. Allerdings

zeigen unsere Rechnungen, dass lokale Spin-Orbit Kopplung eine ausschlaggebende Rolle für das

magnetische Verhalten von LiOsO3 spielt, welches unter Vernachlässigung derselbigen eine starke

Tendenz zur Ausbildung einer langreichweitigen antiferromagnetischen Ordnung zeigt. Nur durch

Berücksichtigung von lokaler Spin-Orbit Kopplung kann die experimentell beobachtete, paramag-

netische Phase nummerisch stabilisiert werden.
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Abstract

Recent experiments on the 5d-Osmium oxide perovskites NaOsO3 and LiOsO3 find striking dif-

ferences in the physical properties of these two compounds. Infrared-spectroscopy experiments

on NaOsO3 show a metallic behavior above 420 K and a metal-insulator transition at lower

temperatures accompanied by the onset of an antiferromagnetic long-range order induced by a

Slater-Lifshitz transition. LiOsO3 does not display any magnetic phase on the whole tempera-

ture range and is characterized by a strong increase of the DC resistivity and a rapid decrease

of the Drude peak in the optical conductivity with increasing temperature. The differences in the

high temperature behavior of the two materials cannot be captured by density-functional theory

(DFT) calculations, which would yield two very similar, coherent, metallic phases for both cases.

The inclusion of local correlations by means of DFT+DMFT (dynamical mean-field theory) im-

proves the description, but does not yield perfect agreement with the experiments. In fact, our

DFT+DMFT calculation could explain a more rapid loss of the metallic coherence by increasing

the temperature in LiOsO3 (w.r.t. NaOsO3) in terms of a slightly closer proximity of this com-

pound to a Mott-Hund’s insulating phase. However, by considering interaction values extracted

by ab-initio estimates, the overall effect appears weaker and confined to higher temperatures than

in the experiment, because the localizing effect of the Hund’s exchange is weakened by a small

lifting of the t2g-degeneracy by about 250 meV, due to the crystal field. In principle, the inclusion

of the local (atomic) spin-orbit coupling (whose atomic part is estimated to be about 250 meV)

into DFT+DFMT calculations could have counterbalanced the t2g splitting and, hence, the related

weakening of localization. Our calculations show that local spin-orbit coupling, in fact, further

increases the lifting of the t2g degeneracy leading to a further metallization of LiOsO3, especially

at high temperatures (1160 K). Thus, it cannot explain the observed differences between our the-

oretical description and the experimental observations. Nevertheless, our new calculations have

demonstrated that spin-orbit coupling does play a pivotal role for the magnetic behavior of LiOsO3,

which displays without local spin-orbit coupling a strong tendency towards an antiferromagnetic

long-range ordering. Eventually, the inclusion of local spin-orbit coupling in our calculations

appears as a crucial ingredient to stabilize the experimentally observed paramagnetic phase.
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hours learning for exams and who introduced me to Alessandro Toschi in the first place.

I also acknowledge financial support from the Austrian Science Fund (FWF) and in particular

the SFB ViCoM proj. nr. F41-15, which also made the numerical calculations performed on the

VSC3-cluster possible.

Selbstverständlich ist der Erfolg dieser Diplomarbeit und meines Studiums nicht nur jenen

Menschen geschuldet, welche direkt daran beteiligt waren, sondern auch meinen Freunden, meiner

Familie (besonders meiner ”erweiterten” Familie, Anne-Marie, Willi und Viola) welche mich durch
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Chapter 1

Introduction

In this chapter we briefly review recent experimental findings for NaOsO3 and LiOsO3. The re-

markable differences observed in the high temperature regime of these two compounds represent

the motivation for the comparative theoretical study presented here. We discuss the electronic

properties derived by a density-functional theoretical (DFT) calculation and how they are mag-

nified by electronic intra-atomic interactions using a dynamical mean-field theoretical (DMFT)

calculation on top of the DFT calculation. The DMFT results shows a slightly different behavior

for both materials, nevertheless, the differences remain too weak to get perfect agreement with

the experiment if the calculations are performed with ab-initio estimated values of the interaction

parameters. In order to understand which interactions play a significant role we have performed

DMFT calculations with different approximations for the interaction Hamiltonian. Furthermore,

we have investigated the dependence of the calculation on the chosen one-particle basis, finding

that approximations strongly depend on this choice. Due to the slightly lifted t2g degeneracy of

about 250 meV in LiOsO3, a basis incorporating this aspect is best suited for making approxima-

tions, i.e. approximations made in the basis where the one-particle coefficient matrix of the local

Hamiltonian is diagonal yield best agreement with non approximated (full Coulomb) calculations.

However, since we do not observe perfect agreement with the experiment even in the full Coulomb

calculation, we try to introduce spin-orbit coupling (SOC) on the atomic level. The strength of the

atomic (local) SOC can be estimated to approximately 250 meV which is of the same size as the

lifting of the t2g degeneracy and, in principle, it could compensate for the decrease of localization

generated by the non-degeneracy of the t2g orbitals.

In chapter two we will briefly present the methods used throughout this thesis. Chapter three dis-

cusses the differences in the results obtained in different one-particle bases. Chapter four presents

the results of our calculations, including local spin-orbit coupling. We will investigate both, the

temperature trend at fixed spin-orbit coupling strength and the behaviour for varying the spin-orbit

coupling strength at fixed temperature. Finally in chapter five we present the conclusion of this

thesis and an outlook on possible next studies.
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1.1 Comparison of Two Similar but Different Osmates

In solid state physics, 5d compounds are particularly interesting due to the strong dependence

of their physics on the interplay of many interactions, such as the Coulomb repulsion between

electrons (e-e interaction), the magnetic and the spin-orbit coupling. In many nominally half

filled 3d compounds such as V2O3 (which would be nominally half filled with respect to the two

lower lying egπ orbitals of the t2g manifold) the e-e interaction dominates, due to the spatially

small elongation of the 3d orbitals and the small overlap to the neighbouring orbitals. This

suffices to explain the experimentally observed behavior. However, as 5d orbitals are spatially

more extended than the 3d orbitals 1 and also have a larger overlap to neighbouring orbitals, the

effect of the e-e interaction is expected to be reducing w.r.t. the 3d orbitals, becoming of the

same order as those of other interactions in 5d compounds. Therefore, it is particularly intriguing

to measure and theoretically describe those materials.

In this respect, recent experiments on the 5d-Osmium oxide perovskites NaOsO3 [1, 2] and

LiOsO3 [3] have shown that small changes in the electronic configuration do indeed have a big

influence on the behavior of a material.

The crystal structures of NaOsO3 and LiOsO3 are displayed in Figure 1.1. Both materials

show a similar perovskite structure, with a Os5+O6 octahedral structure as the central block. Both

compounds show a tilting of the octahedra, which is enhanced in LiOsO3 compared to NaOsO3

because of the reduced size of the lithium atoms compared to the sodium atoms. Therefore,

NaOsO3 has an orthorhombic Pnma (62) crystal structure and LiOsO3 has, as V2O3, a trigonal

R3c (162) crystal structure. The hybridization of the 2p orbitals of the oxygens surrounding the

osmium atoms acts as a crystal-field on the 5d osmium orbitals which splits the five orbitals into

two eg and three t2g orbitals. The two eg orbitals lie about 4 eV above the three t2g orbitals.

Since the lithium and sodium atoms give one electron to the oxygen atoms, osmium will give

three of its six 5d electrons to the oxygen atoms. This leaves the osmium with nominally three

valence electrons, which exactly half-fill the t2g manifold. The small distortion (tilting) of the

octahedra leads to a further small splitting of the t2g manifold into two energetic lower and one

energetic higher lying orbital. This is the same splitting as in V2O3, which has also a R3c crystal

structure. Since V2O3 has nominally only two valence electrons, only the lower orbitals are

occupied. LiOsO3 and NaOsO3 have nominally three valence electrons. Therefore, we take into

account the whole t2g manifold. The eg manifold is unoccupied and is therefore not considered

throughout this thesis. If not stated otherwise by orbitals we will always refer to the three t2g

orbitals in the following.

A selection of the experimental results of NaOsO3 and LiOsO3 is shown in Figure 1.2. For both

materials the reflectance is measured and the optical conductivity derived via the Kramers-Kronig

relations (see [2, 3] for a detailed description of the experimental setup). NaOsO3 (left panels (a)

and (b) of Figure 1.2) shows a significant increase in the optical conductivity at low frequencies for

increasing temperatures, which is perfectly mirrored by a corresponding enhancement of the DC

1The spatially larger extension of the 5d orbitals is easily argued with the fact that the radial wave function
of the 5d orbitals has more knots than the radial wave function of the 3d orbitals, and therefore has to radially
extend further.
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NaOsO3

LiOsO3

Figure 1.1: Crystal structure of NaOsO3 (left side) and LiOsO3 (right side). The red spheres
denote the oxygen atoms, the blue spheres the osmium atoms, the yellow spheres the sodium
atoms and the green spheres the lithium atoms. Both compounds show a tilted octahedral Os5+O6

structure which is the building block to its cubic perovskite structure. The tilting is enhanced
in LiOsO3 compared to NaOsO3, which is due to the reduced atomic size of the lithium atoms
compared to the sodium atoms. NaOsO3 shows a orthorhombic Pnma (62) crystal structure,
LiOsO3 shows a trigonal R3c (162) crystal structure (The structure displayed it actually the R3c̄
structure, which LiOsO3 takes below 140 K. In R3c the lithium atoms are equally distanced from
the upper and lower osmium atoms.). We thank Peitao Liu for providing the pictures of the
crystal structures.

conductivity. The significant decrease of the coherent Drude weight in the optical conductivity

when reducing the temperature from T=450 K to T=380 K coincides with the onset of a known

antiferromagnetic phase with a Néel temperature of 410 K. Therefore, it was first believed that

NaOsO3 has a Slater metal-insulator transition (MIT). More recent studies [4] have shown that

a more thorough definition can be obtained through a spin-fluctuation driven Lifshitz MIT. For

LiOsO3, the experimental data (right panel (c) of Figure 1.2) shows the opposite trend than for

NaOsO3. For increasing temperature the Drude peak at low frequencies is rapidly suppressed,

yielding even a plateau for T≥300 K, as the material would be on the verge of a MIT at high

temperatures. In comparison to NaOsO3, LiOsO3, quite surprisingly, does not show any kind of

magnetic ordering over the whole temperature scale.

Not mentioned so far is the ferroelectric state of LiOsO3 which it exhibits below 140 K [5].

Our study stay well above this temperature.

A theoretical description by means of DFT fails to describe most of these differences. The

density of states (DOS) of the three 5d Os t2g orbitals for both materials derived with the local-

density approximation (LDA) are displayed in Figure 1.3. The left panel (a) shows the DOS

3



NaOsO3

LiOsO3

(a)

Results
The reflectance R(v) of NaOsO3 is shown in Fig. 1 in the 0–1000 cm21

frequency range. At 450 K it shows a metallic response, approaching
unity at zero frequency. After crossing TMIT this metallic behavior
depletes progressively and, in the antiferromagnetic insulating phase,
two complex phononic structures start to appear as a consequence of
the reduced screening. At 5 K there is a well visible double phonon
peak with characteristic frequencies around 300 cm21 and 330 cm21

and another phonon resonance at 650 cm21. Moreover, R(v) shows a
rising tail for v R 0 related to a low-frequency mode centered around
20 cm21 (see discussion below). In the inset of Fig. 1 we show instead
the reflectance over the entire measured range in the metallic (450 K)
and in the insulating state (5 K). It is well evident that the MIT deter-
mines a strong modification of the electronic properties of NaOsO3
over a frequency scale up to nearly 10000 cm21.

The main panel of Fig. 2 shows the optical conductivity s1(v) on a
linear scale in the 0–10000 cm21 frequency range as obtained from
reflectance data by Kramers-Kronig relations. The same quantity is
represented in the inset on a logarithmic scale for selected tempera-
tures above and below TMIT. The symbols on the vertical axis indicate
the dc conductivity values calculated from resistivity data measured
on samples coming from the same batch18. At all temperatures there
is a good agreement between the zero frequency limit of s1(v) and
the measured sdc.

The optical conductivity at 450 K shows a metallic behavior with a
broad pseudo plasma-edge around 12000 cm21 which separates the
low energy excitations from a huge interband transition around
20000 cm21. This absorption band is mainly associated to charge-
transfer excitations among Os 5d and O 2p states18,19. Below TMIT the
metallic conductivity sharply decreases in the far-infrared through a
transfer of spectral weight (SW) to a mid-infrared (MIR) band cen-
tered around 3000 cm21. The low-frequency SW depletion is nearly
exhausted at 200 K where the MIR is located at about 4000 cm21.

A broad feature centered around 22 cm21 can be seen in the insu-
lating phase between 5 and 200 K and it is probably hidden at higher-T
by the free carrier background. We associate this peak to an anti-
ferromagnetic resonance. Indeed, the insulating phase of NaOsO3
corresponds to a G-type AF configuration17 where the spins are

oriented along the c-axis. The antiferromagnetic mode corresponds
to a precession of spins along c induced by some degree of magnetic
anisotropy23,24.

The loss of SW in the far-infrared mirrors the opening of an optical
gap Eg already distinguishable at 380 K, whose size increases for
decreasing T. One can then extract Eg from data in Fig. 2 and com-
pare its temperature dependence with that expected for a second
order (Slater) phase transition. The optical conductivity in the insu-
lating AF phase can be described through the following equations13:

s1 vð Þ~mvzq for vƒEg ð1Þ

and

s1 vð Þ~A v{Eg Tð Þ
! "a for v§Eg ð2Þ

Here, the linear term describes the low-frequency background which
is mainly due to thermal excited charge-carriers across the insulating
gap (see below). For higher frequencies instead, we assume a beha-
vior of s1(v) similar to that of a semiconductor in the presence of
direct band to band transitions25. The curves thus obtained, reported
as dashed lines in the inset of Fig. 3, nicely fit the rising edge of s1(v)
at all temperatures with a~ 1

2. An estimate of the gap Eg(T) is then
obtained through the intersection between Eq. 1 and Eq. 2 and its
temperature behavior, which is plotted as empty circles in Fig. 3,
resembles that of a Bardeen-Cooper-Schrieffer (BCS) function in
good agreement with the second order character of the MIT. Let us
mention that similar gap values can be also achieved by substituting
the linear conductivity (Eq. 1) with a Drude term. Therefore the error
bars in Fig. 3 take into account the small variation of Eg(T) in terms of
different extracting methods and the smearing effect in the conduc-
tivity edge due to the temperature.

A BCS-like analytic expression for Eg(T) can be written as25:

Eg Tð Þ
Eg 0ð Þ

~tanh
Eg Tð ÞTMIT

Eg 0ð ÞT
ð3Þ

This function well describes data in Fig. 3 furnishing a value of Eg(0)
5 825 6 25 cm21 and a TMIT 5 400 6 10 K in fair agreement with
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Results
The reflectance R(v) of NaOsO3 is shown in Fig. 1 in the 0–1000 cm21

frequency range. At 450 K it shows a metallic response, approaching
unity at zero frequency. After crossing TMIT this metallic behavior
depletes progressively and, in the antiferromagnetic insulating phase,
two complex phononic structures start to appear as a consequence of
the reduced screening. At 5 K there is a well visible double phonon
peak with characteristic frequencies around 300 cm21 and 330 cm21

and another phonon resonance at 650 cm21. Moreover, R(v) shows a
rising tail for v R 0 related to a low-frequency mode centered around
20 cm21 (see discussion below). In the inset of Fig. 1 we show instead
the reflectance over the entire measured range in the metallic (450 K)
and in the insulating state (5 K). It is well evident that the MIT deter-
mines a strong modification of the electronic properties of NaOsO3
over a frequency scale up to nearly 10000 cm21.

The main panel of Fig. 2 shows the optical conductivity s1(v) on a
linear scale in the 0–10000 cm21 frequency range as obtained from
reflectance data by Kramers-Kronig relations. The same quantity is
represented in the inset on a logarithmic scale for selected tempera-
tures above and below TMIT. The symbols on the vertical axis indicate
the dc conductivity values calculated from resistivity data measured
on samples coming from the same batch18. At all temperatures there
is a good agreement between the zero frequency limit of s1(v) and
the measured sdc.

The optical conductivity at 450 K shows a metallic behavior with a
broad pseudo plasma-edge around 12000 cm21 which separates the
low energy excitations from a huge interband transition around
20000 cm21. This absorption band is mainly associated to charge-
transfer excitations among Os 5d and O 2p states18,19. Below TMIT the
metallic conductivity sharply decreases in the far-infrared through a
transfer of spectral weight (SW) to a mid-infrared (MIR) band cen-
tered around 3000 cm21. The low-frequency SW depletion is nearly
exhausted at 200 K where the MIR is located at about 4000 cm21.

A broad feature centered around 22 cm21 can be seen in the insu-
lating phase between 5 and 200 K and it is probably hidden at higher-T
by the free carrier background. We associate this peak to an anti-
ferromagnetic resonance. Indeed, the insulating phase of NaOsO3
corresponds to a G-type AF configuration17 where the spins are

oriented along the c-axis. The antiferromagnetic mode corresponds
to a precession of spins along c induced by some degree of magnetic
anisotropy23,24.

The loss of SW in the far-infrared mirrors the opening of an optical
gap Eg already distinguishable at 380 K, whose size increases for
decreasing T. One can then extract Eg from data in Fig. 2 and com-
pare its temperature dependence with that expected for a second
order (Slater) phase transition. The optical conductivity in the insu-
lating AF phase can be described through the following equations13:

s1 vð Þ~mvzq for vƒEg ð1Þ

and

s1 vð Þ~A v{Eg Tð Þ
! "a for v§Eg ð2Þ

Here, the linear term describes the low-frequency background which
is mainly due to thermal excited charge-carriers across the insulating
gap (see below). For higher frequencies instead, we assume a beha-
vior of s1(v) similar to that of a semiconductor in the presence of
direct band to band transitions25. The curves thus obtained, reported
as dashed lines in the inset of Fig. 3, nicely fit the rising edge of s1(v)
at all temperatures with a~ 1

2. An estimate of the gap Eg(T) is then
obtained through the intersection between Eq. 1 and Eq. 2 and its
temperature behavior, which is plotted as empty circles in Fig. 3,
resembles that of a Bardeen-Cooper-Schrieffer (BCS) function in
good agreement with the second order character of the MIT. Let us
mention that similar gap values can be also achieved by substituting
the linear conductivity (Eq. 1) with a Drude term. Therefore the error
bars in Fig. 3 take into account the small variation of Eg(T) in terms of
different extracting methods and the smearing effect in the conduc-
tivity edge due to the temperature.

A BCS-like analytic expression for Eg(T) can be written as25:

Eg Tð Þ
Eg 0ð Þ

~tanh
Eg Tð ÞTMIT

Eg 0ð ÞT
ð3Þ

This function well describes data in Fig. 3 furnishing a value of Eg(0)
5 825 6 25 cm21 and a TMIT 5 400 6 10 K in fair agreement with
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1000 cm21 frequency range. In the inset data are shown in the insulating
(5 K) and in the metallic (450 K) states on a log scale in the whole
frequency range. The MIT temperature is 410 K.
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FIG. 1. (a) Optical reflectance of a LiOsO3 high-density poly-
crystalline pellet on a log frequency scale at different temperatures.
In the inset we compare at 300 K the midinfrared reflectance of
a high-density polycrystalline pellet with that of a single crystal
oriented along the ac plane. Within our experimental sensitivity,
single crystal reflectance is not anisotropic and it is in complete
agreement with the one measured on the pellet. (b) The corresponding
optical conductivity of LiOsO3 in the same temperature and frequency
scale. The structural ferroelectric transition temperature is 140 K.
Symbols on the left axis represent dc values measured on a sample
from the same batch.

pressure [2]. A small Li deficiency (Li0.98OsO3) was suggested
in a former study by a chemical method, however, it was not
confirmed by further experiments [2]. This indicates that the
impact of possible Li off-stoichiometry on the bulk properties
is insignificant. Therefore, we have used the stoichiometric
composition (LiOsO3) throughout the experimental analysis
and calculations.

Optical measurements. In Fig. 1(a) we show the near-
normal incidence reflectance of a LiOsO3 high-density poly-
crystalline pellet measured at the SISSI beamline of Elettra
synchrotron from 10 K to room temperature [13]. The
surface of the pellet was accurately polished and a gold (or
silver) surface was evaporated in situ over the sample and
used as a reference. A Michelson interferometer was used
in the frequency range from 50 to 18 000 cm−1 [14]. The
low-temperature reflectance R(ω) shows a metallic response,
approaching unity at zero frequency. Raising the temperature

causes an increase of the resistivity and thus a depletion of the
metallic behavior. All the curves merge together in the visible
frequency range.

In order to test possible extrinsic effects due to the
polycrystalline nature of the measured samples, we have
also grown well oriented LiOsO3 single crystals. They were
prepared by a solid state reaction under high pressure in
the form of flat, thin platelets having an average size of
200 × 150 × 20 µm. In the exposed surface the c axis is
parallel to the long macroscopic axis, while the perpendicular
direction is related to the a axis. Due to the reduced crystal size,
the reflectance was collected at room temperature between
500 and 6000 cm−1 by a Bruker Hyperion 1000 infrared
microscope. In the inset of Fig. 1(a), we show the reflectance of
a LiOsO3 single crystal along the c and a axis in comparison to
the polycrystal reflectance at 300 K. Within our experimental
sensitivity, single crystal reflectance is not anisotropic (the a
and c axis have the same optical response) and it is in complete
agreement with the one measured on the pellet. Therefore, one
can safely assume that the optical properties as obtained from
high-density polycrystalline pellets well represent the intrinsic
optical properties of the LiOsO3 material.

Kramers-Kronig transformations were performed to obtain
the optical conductivity. Low-frequency reflectance data were
extrapolated with the Hagen-Rubens method taking into
account resistivity dc values measured in a sample coming
from the same batch. A ω−4 high-frequency tail was instead
merged to the data above 18 000 cm−1. The result is shown
in Fig. 1(b) on a logarithmic scale. The symbols on the
vertical axis indicate the dc conductivity values calculated
from resistivity data [2]. At all temperatures there is a good
agreement between the zero-frequency limit of σ1(ω) and
the measured σdc. The optical conductivity at 10 K shows
a very narrow Drude peak located below 300 cm−1 and
separated by a broad minimum from a mid-IR (MIR) band
centered around 2000 cm−1. By heating the sample the metallic
contribution decreases in intensity, transferring spectral weight
(SW) to the MIR band. The total SW is recovered above
10 000 cm−1. Let us finally note that the structural phase
transition at 140 K is accompanied by a rather smooth
crossover from a coherent Fermi liquid at low temperature
to a bad metal at high temperature with an almost depleted
Drude contribution. Although ten infrared-active phonons
are expected from symmetry reasons in LiOsO3 [3], only
two phonons are well discernible in the far-infrared optical
conductivity at about 450 and 600 cm−1. The other eight could
be very weak and then comparable to the noise level, or hidden
below the Drude term.

In Fig. 2 we report a Drude-Lorentz analysis of the optical
conductivity at T = 10 K. The complex optical conductivity
is written in terms of a Drude contribution and Lorentzian
oscillators as [15]

σ̃ (ω) = ω2
P τ

4π (1 − iωτ )
+ ω

4π i

∑

j

S2
j

ω2
j − ω2 − iωγj

. (1)

In the Drude term, ωP is the plasma frequency, τ is the
scattering time, while the Lorentz oscillators are peaked at
finite frequencies ωj with strength Sj and width γj . We
introduced a Lorentzian oscillator for the midinfrared band

161113-2

Text

Text

dc datai

Figure 1.2: Experimental data of the reflectance (R) and the optical conductivity (σ) for (a), (b)
NaOsO3[2] and (c) LiOsO3[3] . The optical conductivity is derived from the reflectance with the
Kramers-Kronig relations. The inset of (a) shows T=450 K and 5 K on a logarithmic scale. In the
main panel of (b) D-L fit is short for a Drude-Lorentz fit to the data. The inset in (c) compares
the midinfrared reflectance of a high-density polycrystalline pellet with that of a single crystal
oriented along the ac plane.

of NaOsO3, the right panel the DOS of LiOsO3. Both materials have significant weight around

the Fermi level, which for both materials is around µ ∼ 5.1 eV and have approximately the

same bandwidth of around ∼ 3.5 eV. As already discussed, both materials have nominally half

filled t2g orbitals and so the DFT calculation would ”place” both materials in a metallic phase.
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Figure 1.3: LDA density of states of the 3 t2g orbitals of NaOsO3 (a) and LiOsO3 (b). Both
density of states show a clear metallic behavior and a similar bandwidth of about 3 eV.

Furthermore, temperature dependencies cannot be directly captured by a DFT calculation. In

order to improve the theoretical description of these materials, it appears necessary to take

electronic correlation effects introduced by the e-e interaction in the solid into account. These

typically tend to localize the electrons, i.e. induce a reduction of the metallicity.

A fast and rudimentary estimate of the importance of electronic correlations can be given by

comparing the experimentally measured kinetic energy of the conduction band electrons (through

the plasma frequency measured in infrared optical spectroscopy) to the kinetic energy calculated

using DFT, i.e. Kexpt/KDFT [4]. For an uncorrelated material this ratio would tend to unity.

A DFT calculation for NaOsO3 [4] yields 0.33 without consideration of SOC and 0.76 with con-

sideration of SOC, which corresponds to a weakly correlated regime. Furthermore, it shows the

importance of SOC in the spatially more extended 5d orbitals. For LiOsO3 [3], an alternative esti-

mate for the importance of electronic correlation has been made by comparing the spectral weight

of the Drude peak to the spectral weight of the Drude peak plus the mid-infrared contribution

visible in Figure 1.2 (a), which yields a ratio of 0.03! This strongly suggests that electronic cor-

relations play a pivotal role in LiOsO3. In order to include the local electronic correlation effects

induced by the local electrostatic repulsion of the Os-t2g orbitals, an additional dynamical mean-

field theoretical (DMFT) calculation is performed [6, 7]. The low-energy Hamiltonian describing

the local interactions is the multi-orbital Hubbard Hamiltonian, which in second-quantization

formalism reads

Ĥ =
∑

iγσ,jγ̄σ̄

(εiγσ,jγ̄σ̄ − µδiγσ,jγ̄σ̄)ĉ†iγσ ĉjγ̄σ̄︸ ︷︷ ︸
one-partice terms

+
∑

i,γ1σ1,γ2σ2,γ3σ3,γ4σ4

Uγ1σ1,γ2σ2,γ3σ3,γ4σ4 ĉ
†
iγ1σ1

ĉ†iγ2σ2
ĉiγ3σ3 ĉiγ4σ4︸ ︷︷ ︸

intra atomic mulitband (local) interaction

, (1.1)
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where ĉ†iγσ, ĉiγσ denote the creation and annihilation operators at a given lattice site i and orbital

γ with a given spin σ. The pre-factor εiγσ,jγ̄σ̄ accounts for the one-particle part of the Hamil-

tonian, which is non-local and corresponds to the kinetic energy, µ for the chemical potential

and Uγ1σ1,γ2σ2,γ3σ3,γ4σ4 for the local Coulomb repulsion between the electrons at the same lattice

site occupying the t2g orbitals. In principle, the local interactions of the multi-orbital Hubbard

Hamiltonian can induce local and non-local correlation effects. However, dynamical mean-field

theory only describes the purely local correlation effects induced by (1.1), i.e. DMFT further ap-

proximates the Hubbard Hamiltonian by a purely local Hamiltonian called the Anderson impurity

Hamiltonian (introduced in Chapter 2.2.1). The one-particle term εiγσ,jγ̄σ̄ is derived from the

Fourier Transform of the overlap integrals of the ”wannierized” [8] DFT solution. The unscreened

Coulomb interaction coefficients Uγ1σ1,γ2σ2,γ3σ3,γ4σ4 are derived via calculating the Coulomb in-

tegrals with the ”wannierized” DFT orbitals. Nevertheless, the unscreened Coulomb interaction

coefficients are unphysical, because surrounding orbitals partially screen the Coulomb interaction

of the three t2g orbitals. To take the screening effects into account, the Coulomb interaction co-

efficients of the three t2g orbitals are corrected with a constrained random-phase approximation

(cRPA) calculation [9, 10]. The DFT, Wannierization and cRPA calculation have been performed

at University of Vienna in the group of professor Cesare Franchini using VASP [11–14] for the

DFT calculation and wannier90 [8] for the ”wannierization” of the orbitals in advance to this

project.

Note that throughout this thesis energy is given in units of eV and, therefore, the Bolzmann’s

constant reads 8.617× 10−5 eV· K−1 [15].

1.1.1 NaOsO3

The results of a previous paramagnetic DFT+DMFT calculation taking into account the full

Hamiltonian (1.1) for NaOsO3 are shown in Figure 1.4. All DMFT calculations in this thesis

are performed with w2Dynamics [16, 17]. In order to obtain the local spectral function an

additional analytical continuation step has been performed with the maximum entropy solver of

the ALPS package [18], which is used for all analytical continuations in this thesis. The local

spectral function displayed in the main panel shows a metallic behavior, i.e. it has significant

weight at ω = 0 for all calculated temperatures. Since our DMFT calculation has enforced the

paramagnetic phase no agreement with the experiment can be expected below the temperature

of 410 K where NaOsO3 displays a long range antiferromagnetic order [2]. For temperatures far

above the Néel temperature of NaOsO3 the local spectral function displays a gradual loss of

metallicity with increasing temperature. A complete disappearance of the quasi-particle peak

at ω = 0 can be observed only at the highest temperature of 1160 K (most likely well above

the melting temperature of this compound). In the high temperature regime we do not have

experimental results to compare our results to, but a decreasing local spectral function close

to ω = 0 for increasing temperature is also in other correlated materials too, e.g. the typical

strongly correlated material V2O3 [19, 20]. However, correlation effects in V2O3 are much more

pronounced as it is a 3d compound. Nevertheless, this trend is an indicator that correlation does
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Figure 1.4: Averaged local spectral functions (w.r.t. orbitals and atoms) of NaOsO3 derived
from the DMFT data via analytical continuation with the maximum entropy solver of the ALPS
package for various temperatures, where ω = 0 corresponds to the Fermi-level. The inset shows
the corresponding averaged DMFT Green’s functions on the Matsubara axis. The temperature
trend of the local spectral function shows an evident loss of metallic coherence for increasing
temperature. Nonetheless, NaOsO3 remains metallic for all displayed temperatures.

play a role in NaOsO3.

Another quantity yielding information about the degree of electronic correlations are relative

occupancies of the atomic orbitals given by the fraction 〈n̂in̂j〉/〈n̂i〉〈n̂j〉. For an uncorrelated

materials this fraction is one. In Figure 1.5 the average occupancy per orbital (c), the relative

average double occupancy (a) and the relative average Hund’s like occupancy (b) for NaOsO3 are

displayed (with Hund’s like we refer to double occupancy of different orbital index but same spin

index, i.e. measuring the spin alignment between different orbitals). With increasing temperature

(decreasing β), the relative double occupancy decreases accompanied by an increase of the relative

Hund’s like occupancies. Therefore, the material becomes less metallic as spin alignment becomes

more important and partially freezes out electronic mobility. The differences in the occupancies

of the orbitals display the fact that the t2g orbitals are not degenerate in this basis due to a

local distortion. To sum it all up, both, the double occupancies and the Hund’s like occupancies

display a typical behavior of a correlated metal.
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Figure 1.5: Occupancies of NaOsO3 for various temperatures, with β = 1
kbT

. The term ”relative”

refers to expressions of the form
〈n̂in̂j〉
〈n̂i〉〈n̂j〉 . The average occupation per orbital is shown in panel

(c) and displays a slight difference between the orbitals, i.e. the t2g orbitals are not perfectly
degenerate. Panel (a) shows the relative average double occupation per orbital and panel (b)
the relative Hund’s like occupation i.e. the spin alignment between different orbitals. As this is
a paramagnetic calculation panels (b) and (c) display only the results for the spin up channel.
For high temperatures, i.e. small β values, the spin alignment (b) increases whereas the double
occupancy (a) decreases consistent with the loss of spectral weight at ω = 0
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1.1.2 LiOsO3

As in Section 1.1.1, we performed a paramagnetic DFT+DMFT calculation for LiOsO3 taking

into account the full Hamiltonian (1.1) and analytically continued the result to obtain the results

displayed in Figure 1.6. The inset shows the corresponding Green’s function on the imaginary

axis. As for NaOsO3 the local spectral function displays a metallic behavior for all calculated

temperatures. However, the decrease of the quasi-particle peak at ω = 0 appears to be more

pronounced as it develops the onset of an actual ”pseudogap” dip at ω = 0 at 1160 K. The

corresponding decrease of the Green’s function also appears to be more prominent compared to

NaOsO3. At intermediate temperatures of about 580 K the local spectral function of LiOsO3

displays small side peaks around ω = ±0.5 eV. Finally, in comparison to NaOsO3 LiOsO3 shows

a stronger broadening of the local spectral function with increasing temperature.

To understand the slight differences in the behavior of the local spectral function we investigate

the occupancies of LiOsO3 presented in Figure 1.7. All three orbitals are almost perfectly half-

filled (panel (c)), indicating the high degree of energy degeneracy in this local basis. This is

also clearly reflected in the double and Hund’s like occupancy (panel (a) and (b)) where all

lines are almost identical. Similar to NaOsO3 the double and the Hund’s like occupancies follow

opposite temperature trends. However, for high temperatures (low β) LiOsO3 displays a smaller

double occupancy and a larger Hund’s like occupation compared to NaOsO3 consistent with the

trends of the local spectral functions. Overall, LiOsO3 appears to be slightly closer to a possible
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Figure 1.6: Averaged local spectral functions (w.r.t orbitals and atoms) of LiOsO3 derived from
the DMFT data via analytical continuation with the maximum entropy solver of the ALPS
package for various temperatures, where ω = 0 corresponds to the Fermi-level. The inset shows
the corresponding averaged DMFT Green’s functions on the Matsubara axis. The temperature
trend of the local spectral function shows a clear loss of metallicity for increasing temperatures.
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Figure 1.7: Occupancies of LiOsO3 for various temperatures, with β = 1
kbT

. The term ”relative”

refers to expressions of the form
〈n̂in̂j〉
〈n̂i〉〈n̂j〉 . The average occupation per orbital is shown in panel (c)

and displays almost no difference between the orbitals, i.e. the t2g orbitals are almost perfectly
degenerate in this basis. Panel (a) shows the relative average double occupation per orbital and
panel (b) the relative Hund’s like occupation, i.e. the spin alignment between different orbitals.
As this is a paramagnetic calculation panels (b) and (c) display only the results for the spin up
channel. For high temperatures, i.e. small β values, the spin alignment (b) increases whereas the
double occupancy (a) decreases consistent with the loss of spectral weight at ω = 0

MIT than NaOsO3, as suggested by the temperature trend the local spectral function and the

occupancies. To obtain a deeper insight in the underlying microscopic mechanisms at work we

perform additional calculations, taking only certain parts of the interaction term of (1.1) into

account.

1.1.3 Analysing Different Interactions

The multi-band Hubbard Hamiltonian (1.1) is of very general type as it retains all on-site terms

of the (screened) Coulomb interaction, projected on the Wannier basis of choice. Starting from

this full representation of the screened Coulomb interaction, there are two very common approx-

imations of this Hamiltonian: The Density-Density Approximation and the Kanamori Approxi-
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mation, where the Kanamori Approximation includes the Density-Density Approximation. In a

one particle basis where, i denotes the lattice site, γ the t2g orbitals and σ the spin the Kanamori

Hamiltonian reads

ĤKana =
∑
iγσ

(εiγσ,iγσ − µ)ĉ†iγσ ĉiγσ︸ ︷︷ ︸
one-particle terms

+ U
∑
iγ

n̂iγ↑n̂iγ↓︸ ︷︷ ︸
Intraband Coulomb

+ V
∑

i,γ<γ̄,σ 6=σ̄
n̂iγσn̂iγ̄σ̄︸ ︷︷ ︸

Interband Coulomb

+ (V − J)
∑

i,γ<γ̄,σ

n̂iγσn̂iγ̄σ︸ ︷︷ ︸
Hund

− J
∑
i,γ 6=γ̄

ĉ†iγ↑ĉ
†
iγ↓ĉiγ̄↑ĉiγ̄↓︸ ︷︷ ︸

Pair Hopping

− J
∑
i,γ 6=γ̄

ĉ†iγ↑ĉiγ↓ĉ
†
iγ̄↓ĉiγ̄↑︸ ︷︷ ︸

Spin Flip

. (1.2)

The first line of (1.2) denotes the diagonal entries of the one-particle term included in (1.1)

and the second line of (1.2) constitutes the terms proportional to density-density interactions,

which is why these terms are named the Density-Density Approximation. There are three terms

contributing to the Density-Density Approximation: the intraband Coulomb repulsion (U), the

interband Coulomb repulsion (V ) and the Hund term (J), which incorporates the Hund’s rule

in a solid. In addition to the density-density terms the full Kanamori Hamiltonian also includes

pair-hopping and spin-flip terms, denoted in the third line of (1.2). The pair-hopping term is to

be understood literally as a pair of one spin up and one spin down electron hopping from one

orbital to another orbital at the same site. In contrast, the spin-flip term incorporates a pair

of electrons with different spin at different orbitals at the same site to switch places. I other

words both electrons flip their spin as an effect of the interaction. These microscopical processes

correspond to the so called ”quantum fluctuations” of the magnetic moment.

Our previous results calculated with the full Hubbard Hamiltonian (1.1) have shown sub-

tle differences between the two materials NaOsO3 and LiOsO3. To understand their origin we

performed additional calculations (also previously to this thesis) using approximation schemes

which, per construction, emphasize (i.e. overestimate) specific physical processes, such as the

tendency towards a high spin configuration driven by J : the Density-Density and the Kanamori

Approximation. The results of the analytically continued local spectral functions are displayed

in Figure 1.8. None of the two materials exhibit a significant temperature dependence in the

Density-Density Approximation. The grey dashed lines display a representative local spectral

function for (a) LiOsO3 and (b) NaOsO3 calculated with the Density-Density Approximation.

LiOsO3 shows a clear insulating behavior developing a spectral gap around ω = 0. Introduc-

ing the Density-Density Approximation in the material neglects important effects driven by the

full Coulomb interaction (such as the quantum fluctuations) as well as significant one-particle

contributions such as the intra-atomic inter-orbital hoppings. As a result one tends to largely

overestimate the size of the Hund’s magnetic moments, and, hence, the corresponding localization

effects. This is enough to fully localize the valence electrons of the t2g manifold in LiOsO3 but

not in NaOsO3 which for this cRPA values stays metallic at all temperatures.
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Figure 1.8: Spectral function of LiOsO3 (Kanamori parameters: U=2.41, V=1.79, J=0.26) (a) and
NaOsO3 (Kanamori parameters: U=2.27, V=1.69, J=0.23) (b) for the Kanamori and Density-
Density interaction. As the Density-Density calculation does not display a distinct temperature
dependence only one spectrum is included.

Eventually for LiOsO3 the results do not match with the experiment as they are too insulat-

ing. Therefore, we take a look at the results of the less approximated Kanamori calculations also

displayed in Figure 1.8. For LiOsO3 the results exhibit a strong temperature dependence of the

spectrum. It shows the same trend as the experimentally measured results starting with a clear

quasi particle-peak at lower temperatures, which rapidly decreases with increasing temperature.

At 580 K the peak is already replaced by a very pronounced dip and it appears to be already at

the verge of a MIT. On the other hand, NaOsO3 is metallic over the whole temperature range

in both approximations, however, it shows a weak temperature dependence in the Kanamori Ap-

proximation. The dependence is weaker as in the full Coulomb calculation displayed in Figure

1.4 and therefore the Kanamori approximation results better agree with the experimental results.

It becomes clear that the differences observed in LiOsO3 and NaOsO3 originate in the different

interaction and one-particle terms considered in the Density-Density and Kanamori approxima-

tion, respectively. For LiOsO3 the additional hopping terms considered in the full calculation

significantly change the results, whereas for NaOsO3 they appear to play only a minor role.

So far there is no way to distinguish how important the different one-particle and interaction

terms are in order to explain the observed differences. It is therefore of interest to perform a

”Gedankenexperiment” where the DMFT calculation is repeated for both materials, but with

interchanged interaction parameters. In Figure 1.9 the results of this ”Gedankenexperiment” for

a calculation performed for the Kanamori Approximation at 390 K are displayed. The left panel

(a) shows a calculation for LiOsO3 with its original parameters (i), with only U exchanged (ii),

with only J exchanged (iii) and with all interaction parameters exchanged (iv). The right panel

(b) displays the same for NaOsO3. Exchanging any parameter immediately yields a result more

similar to the respective other material. In the case of LiOsO3 any exchange almost perfectly

coincides with the calculation done for NaOsO3, which in comparison appears to be slightly

less sensitive to an exchange of the J parameter. However, exchanging U or all parameters
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Figure 1.9: A ”Gedankenexperiment”, where we exchange the U and J values of LiOsO3 and
NaOsO3. The results for LiOsO3 with its own and NaOsO3 parameters are shown in (a), the
results for NaOsO3 with its own and LiOsO3 parameters are shown in (b). All calculations are
performed at a temperature of 390 K

again displays a similar shape as a calculation of LiOsO3. These results are a strong evidence

that the main reason for the different properties of these two materials stems from the rather

small differences in the values of the interaction parameters and not from the different one-

particle terms, i.e. the electronic configuration. However, it seems that a Kanamori approximated

calculation is capable of explaining the experimental findings. In this respect it is puzzling

that our description becomes worse as we include a more realistic shape of the one-particle

terms, i.e. kinetic energy and of the local interaction. Ideally, one would expect that, once the

theoretical calculations describe the experimental effects, additional effects will only give a minor

contribution. This is not the case for LiOsO3 where a drastic change is observed when more local

interaction terms and, especially, more intra-atomic one-particle terms are included, raising the

question whether another basis is better suited to perform approximations or not.

1.1.4 The Kanamori Approximation of LiOsO3 in a Different Basis

A DMFT calculation can be performed in different basis sets, which might be more or less

suitable for performing an approximation of the interaction or the one-particle hopping terms.

Therefore, it is worth investigating the behavior of a Kanamori approximated calculation in a

basis incorporating the off-diagonal terms of εγσ,γ̄σ̄, which are induced from the tilting of the

Os5+O6 octahedron of the perovskite structure. In order to achieve this εγσ,γ̄σ̄ is diagonalized

and the corresponding transformation matrices are used to transform the k dependent one-particle

Hamiltonian and the local interaction matrices Uγiσi,γjσj ,γkσk,γlσl . Consequently, an extraction

of the Kanamori parameters from Uγiσi,γjσj ,γkσk,γlσl yields new parameters for LiOsO3: U=2.35,

V=1.82, J=0.29 (compared to: U=2.41, V=1.79, J=0.26, in the standard LS basis). The Hund’s

parameter J is slightly increased compared to the standard LS basis, whereas the Coulomb repul-

sion parameter U is slightly decreased. In most calculations electronic systems tend to be very
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sensitive to the J value, which acts as a localizing factor at half-filling, i.e. pushing the material

towards an insulating phase. However, in this basis we now observe a slight lifting of the t2g

degeneracy of 235 meV which decreases the localizing effect of the Hund’s exchange. Figure 1.10

displays the result of this calculation compared to the result of the full calculation performed in

the standard LS basis (A detailed discussion of the basis dependence of various results can be

found in chapter 3). The left panel (a) shows the basis invariant trace of the Green’s function

calculated in the diagonalized Kanamori Approximation. The right panel (b) shows the trace of

the Green’s function of full Coulomb calculation in the standard LS basis. Both calculations yield

almost the same result for all calculated temperatures proving that in a suitably chosen basis the

Kanamori Approximation still incorporates all important effects. However, it further provides

evidence that the previous Kanamori calculation performed in the standard LS basis, neglecting

the intra-atomic inter-orbital hopping, matches the experiment accidentally due to significant,

uncontrolled error cancellation. At the same time the most general calculation (Figure 1.6) can,

in principle, be regarded as the best ab-initio theoretical description so far obtained.

At this point our calculations do not explain the experimentally observed trend, especially

not the differences between the two materials NaOsO3 and LiOsO3. The calculated local spectral

function of LiOsO3 decreases slightly faster (but not fast enough) than the local spectral function

of NaOsO3 with increasing temperature. This difference is expected to be more distinct. In

fact, for LiOsO3 the experimentally visible trend is seen in the theoretical calculations, but the

corresponding temperatures are too high. In order to counter this slight bias towards metallicity,

we will include the atomic spin-orbit coupling (SOC) into our calculations and study if it can act

as a localizing factor. The strength of the atomic SOC can be estimated to be about 250-300 meV

beign of the same size as the delocalizing lifting of the t2g orbitals in LiOsO3.
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Figure 1.10: Imaginary part of the trace of the Green’s function for LiOsO3 of the Kanamori
approximation in a basis where the local one-particle Hamiltonian is diagonal (a) and of the full
calculation in the standard LS basis (b) with β = 1

kbT
. Both calculations yield the same results.

A detailed presentation of the basis dependence of various results can be found in chapter 3
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1.1.5 Introducing the Local (Atomic) Spin-Orbit Coupling for LiOsO3

In 5d compounds such as LiOsO3 local correlations are known to be less important than in 3d

compounds such as V2O3. At the same time the spin-orbit coupling becomes larger. Therefore,

spin-orbit coupling could have an influence in this compound. Similar to other terms taken into

account on a DMFT level we will only include the local (atomic) 2 part of the SOC. In general,

it is possible to perform a DFT calculation including SOC, but it is not possible to obtain ab-

initio the necessary interaction matrices Uγiσi,γjσj ,γkσk,γlσl from a corresponding cRPA calculation.

Therefore, it is necessary to introduce local (atomic) SOC by hand, i.e. add it to the one-particle

term of the Hamiltonian (1.1). For the 3 t2g orbitals in the order xz, yz, xy the SOC Hamiltonian

reads [21, 22]

ĤSOC = ξl̂ · ŝ =
ξ

2

 0 −iσ3 iσ1

iσ3 0 −iσ2

−iσ1 iσ2 0

 (1.3)

where σi are the Pauli spin matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (1.4)

As one can see, the SOC Hamiltonian introduces additional complex off-diagonal terms. In

principle, those could either act localizing or delocalizing because they represent additional hop-

ping terms, as this Hamiltonian is to be added to the one-particle terms of (1.1). It is the main

purpose of this thesis to investigate how the spin-orbital coupling influences a DMFT calcula-

tion of LiOsO3, in particular, if it can explain the differences between the observed experimental

measurements and the theoretical description.

2Throughout this thesis we will call it local instead of atomic spin-orbit coupling, since the term ”local” better
suits the DMFT context. We are aware that this is not consistent with the title of this thesis, however, the title is
chosen in a way that it is familiar to a broad audience.
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Chapter 2

Methods

In this chapter we start by methodologically introducing the definition of Green’s function at finite

temperatures. Then we give a short introduction into the Wick’s rotation, the related Matsubara

formalism and how to use it to compute one-particle Green’s functions at finite temperatures

and also introduce the concept of the self-energy. The dynamical mean-field theory (DMFT) is

illustrated as a theory describing local correlations in a lattice. At the center of DMFT is the

connection of the Anderson impurity model (AIM) to the Hubbard model via a self-consistent

mapping, where at convergence the interacting local lattice Green’s function equals the interacting

AIM Green’s function. As next step the concept and the algorithm of continuous-time quantum-

Monte-Carlo (CT-QMC) as a solver of the auxiliary AIM of DMFT is explained. Eventually,

the obtained Green’s function needs to be analytically continued to obtain local spectral functions.

This is done by means of the Maximum entropy method which is briefly illustrated to round up

the whole calculation procedure.

2.1 Perturbative Expansion of the Green’s Function

The central object for a quantum-field theoretical calculation of a solid is the time ordered Green’s

function. A detailed introduction of the Green’s functions can be found in many books [23–30]. In

a second quantization formalism, with a time independent Hamiltonian, the one-particle Green’s

function reads

Gij(x, x
′, t− t′) ≡ −i〈T Ψ̂i(x, t)Ψ̂

†
j(x
′, t′)〉 , (2.1)

where Ψ̂i, Ψ̂†i are fermionic annihilation and creation operators, T represents the time ordering

symbol, i.e. later times have to be sorted to the left, and 〈. . . 〉 represents the expectation value.

For a temperature dependent Green’s function expressing the expectation value yields

Gij(x, x
′, t− t′) = −i

Tr
[
e−βĤT Ψ̂i(x, t)Ψ̂

†
j(x
′, t′)

]
Tr
[
e−βĤ

] , (2.2)

where β is the inverse temperature, Ĥ the Hamiltonian describing the system and e−βĤ is the

density matrix of the system. In most cases it is impossible to exactly evaluate expression (2.2).
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Figure 2.1: Different types of Feynmann diagrams for the Green’s function. Fermionic propaga-
tors are represented by solid straight lines, bosonic interactions are represented by wiggly lines.
Diagrams a), b), c), d) are one-particle irreducible and have no corrections on internal lines.
Diagrams e), f), g) are one-particle reducable indicated by the red dashed lines. Diagrams i), j),
k) are also one-particle irreducible but have corrections for internal lines.

However, for equilibrium calculations, i.e. where the system is in an equilibrium state, there

is a widely used formalism which significantly simplifies calculations, namely the Matsubara

formalism. To understand its main idea, let us revisit (2.2) and write down the time evolution of

the creation and annihilation operators explicitly

Ψ̂i(x, t) = eitĤΨ̂i(x)e−itĤ → Tr
[
e−βĤT eitĤΨ̂i(x)e−itĤeit

′ĤΨ̂†j(x
′)e−it

′Ĥ
]

. (2.3)

The similarity between the density matrix e−βĤ and the time evolution operator e−itĤ can be

used to introduce a so called Wick rotation, which rotates the time coordinate into the complex

plane. In practice this essentially corresponds to replacing it→ τ , where τ ∈ [−β, β]. Using the

cycling property of the trace and replacing τ − τ ′ → τ yields

Tr
[
e−βĤT eτĤΨ̂i(x)e−τĤΨ̂†j(x

′)
]

. (2.4)

Similar to (2.2) it is possible to define a Matsubara Green’s function as

Gij(x, x
′, τ) = −〈Tτ Ψ̂i(x, τ)Ψ̂†j(x

′, 0)〉 = −
Tr[e−βĤTτ Ψ̂i(x, τ)Ψ̂†j(x

′, 0)]

Tr[e−βĤ ]
, (2.5)

where Tτ is the complex time ordering operator, i.e. greater τ get sorted to the left. Functions

in Matsubara space are denoted with τ as argument.

For simplicity the indices of G and the x, x′ dependence will be dropped until stated otherwise.

The Matsubara Green’s function has the important property that G(τ+β) = −G(τ) for fermions
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Figure 2.2: Graphical derivation of the Dyson equation where G (double lines) represents the
full Green’s function, G0 (single lines) represents the non-interacting (bare) Green’s function and
Σ represents the self energy which consists of all one-particle irreducible lines without internal
corrections [e.g. Figure 2.1 a), b), c), d)].

yielding a semi-discrete Fourier transform

G(τ) =
1

β

∞∑
n=−∞

G(ωn)e−iωnτ (2.6)

G(ωn) =

∫ β

0
dτ G(τ)eiωnτ , (2.7)

where ωn are the odd, discrete Matsubara frequencies

ωn =
(2n+ 1)π

β
. (2.8)

The advantage of the Matsubara Green’s function is that it can be perturbatively evaluated

order by order in the interaction picture using the Wick theorem, yielding the famous Feynman

diagrammatic [24, 25, 30]. Some possible diagrams for a fermionic interacting theory are displayed

in Figure 2.1. The diagrams can be classified into 3 groups. Type A are diagrams like a), b),

c) and d) of Figure 2.1. These diagrams are one-particle irreducible diagrams, i.e. they do not

reduce to two independent diagrams if one fermionic line is cut, which have no internal corrections

to fermionic lines. Type B are one-particle reducable diagrams like e), f) and g) of Figure 2.1 and

type C are one-particle irreducible diagrams which have corrections to internal fermionic lines as

in i), j) and g) of Figure 2.1.

The sum of all diagrams of type A is called the self-energy and can be used to derive an

important equation of quantum-field theory. Excluding all diagrams of type C, the sum over all

diagrams of type A and B can schematically be drawn as in Figure 2.2, where Σ represents the

self-energy, i.e. the sum of all diagrams of type A, G represents the interacting Green’s function

and G0 the non-interacting Green’s function. Straightforwardly reordering the diagrams yields

the second line of Figure 2.2 which can be written down in k-space as

G(k, ωn) = G0(k, ωn) +G0(k, ωn)Σ(k, ωn)G(k, ωn) , (2.9)

where G0 = [iωn+µ−εk]−1. This equation is known as Dyson equation and is extensively used in

modern quantum-field theory. Diagrams of type C can then be included via iteratively reinserting

G as G0. Therefore, the self-energy can be used to iteratively calculate the interacting Green’s
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function. For a fermionic system the Dyson equation has a more general form

G(k, ωn) =
[
iωn + µ− εk − Σ(k, ωn)

]−1
(2.10)

where µ is the chemical potential and εk is the dispersion relation of the given system. In

calculations one approach would be to calculate the self-energy of a given system using the non-

interacting Green’s function, inserting the self-energy into (2.10) and using the obtained G as new

G0 to calculate the new self-energy. This procedure is iterated until the self-energy converges.

2.2 Dynamical Mean-Field Theory

The quantum many-body problem, posed e.g. by systems of correlated electrons, has been puz-

zling physicist for decades. Hence, many theoretical approaches have been invented to address

this problem. One of the most basic schemes is the mean-field theory. The main concept of

mean-fields is to average over a part of the degrees of freedom to obtain a significantly simpler

”local” problem. As a typical example we recall the Curie-Weiss self-consistency approximation

for the Ising model. This concept can be extended to a many-body quantum field theory as well

and corresponds to the so-called dynamical mean-field theory (DMFT) [31–34]. The difference

to common mean-field theories is that in DMFT time is kept as a degree of freedom. Hence,

the mean-field may change with time and it is possible to take into account correlation effects in

time, which corresponds to including local quantum fluctuations. However, all spatial (non-local)

correlation effects are not included, reducing its applicability to problems where spatial correla-

tions play only a minor role. Fortunately, in several correlated materials the non-local correlation

effects (which only belong to a single lattice site or a small unit cell) do not play a major role

compared to the local correlation effects.

2.2.1 From the Hubbard Model to the Anderson-Impurity Model

For many quantum field theoretical calculations in a solid the Hubbard Hamiltonian of (1.1)

suffices to perform accurate calculations. However, it is not possible to calculate an exact solution

for a quantum system using eq. (1.1) as Hamiltonian. To obtain non perturbative results it is

possible to apply DMFT. Applying DMFT in this context means to simplify eq. (1.1) to a fully

local model (without explicit site dependence), solving this model to obtain the self-energy and

assuming this self-energy to be correct for the lattice (Hubbard) model as well. If the local

lattice Green’s function is equal to the Green’s function of the fully local model, self-consistency

is reached. If not, the local lattice Green’s function is used to build a new input model. A full

description of this cycle is presented later in this thesis. This fully local model is the so-called

the Anderson Impurity Model (AIM). This model consists of a non-interacting bath of electrons
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and an impurity site, which can have multiple orbitals. The AIM Hamiltonian yields

ĤAIM =
∑
k,σ

ε̃kâ
†
kσâkσ︸ ︷︷ ︸

Hbath

+
∑
k,γ,σ

Vk,γ(ĉ†γσâkσ + â†kσ ĉγσ)︸ ︷︷ ︸
Hhyb

+
∑
γσ,γ̄σ̄

εγσ,γ̄σ̄ ĉ
†
γσ ĉγ̄σ̄︸ ︷︷ ︸

Hkin
loc

+
∑

γ1σ1,γ2σ2,γ3σ3,γ4σ4

Uγ1σ1,γ2σ2,γ3σ3,γ4σ4 ĉ
†
γ1σ1ĉ

†
γ2σ2

ĉγ3σ3 ĉγ4σ4︸ ︷︷ ︸
Hint

loc

−
∑
γ

µ(n̂γ↑ + n̂γ↓)︸ ︷︷ ︸
Hµ

loc

, (2.11)

where ĉ, ĉ†, n̂ are the annihilation, creation and number operator at the impurity site, γ denotes

the orbitals of the impurity sites, σ denotes the spin, â, â† are the annihilation and creation

operator of the non-interacting bath states which are counted with the subscript k and Vk,γ the

amplitude to hop from the bath to an impurity orbital.

To keep the notation compact we will combine γσ → γ from here on. Further, a bold notation

is introduced to denote matrices with γ dependence, so that A ≡ Aγγ̄ and 1 denotes the unit

matrix. The amplitude Vk,γ is connected the so-called hybridisation function via

∆γγ̄(ωn) =
∑
k

Vγ,kVγ̄,k
iωn − ε̃k

. (2.12)

Using the hybridisation function, the non-interacting impurity Green’s function of the AIM,

denoted by G, can be written as

G0
γγ̄(ωn) = [iωn1 + µ1− ε−∆(ωn)]−1

γγ̄ . (2.13)

In order to connect the AIM to the Hubbard model (1.1), the standard way is to calculate a k

dependent one-particle Hamiltonian, i.e. εiσi,jσj → εγγ̄(k), and the chemical potential by means

of DFT, where the one-particle Hamiltonian connects to it’s local part via

εγγ̄ = ◦∑
k

εγγ̄(k) , (2.14)

where
∑◦ k denotes the constant weight average over all k-points of the first Brillouin zone (which

corresponds to evaluating the discrete Fourier transform from k to x at x = 0). Furthermore, the

hybridisation function ∆ is calculated via

∆γγ̄(ωn) = iωnδγγ̄ + µδγγ̄ − εγγ̄ −
[◦∑

k

G0(ωn, k)
]−1

γγ̄

= iωnδγγ̄ + µδγγ̄ − εγγ̄ −
[◦∑

k

[iωn1 + µ1− ε(k)]−1
]−1

γγ̄
. (2.15)

One important quantity left is the local interaction matrix Uγ1γ2γ3γ4 , which is derived from a

cRPA calculation. Using εγγ̄(k), µ, Uγ1γ2γ3γ4 and ∆γγ̄(ωn) it is possible to perform a DMFT

calculation.
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2.2.2 The Self-Consistency Cycle of Dynamical Mean-Field Theory

The DMFT self-consistency cycle [17, 32] on the level of the Green’s function is displayed for the

single orbital case in Figure 2.3. The yellow box to the left represents the starting point, i.e. the

non-interacting lattice Green’s function, which can be calculated analytically. Averaging over all

k points yields the non-interacting Green’s function of the impurity. The next step is to solve

the impurity-model, which is also the computational bottleneck and can be done with different

algorithms, e.g. density-matrix renormalization group (DMRG) [35, 36], exact diagonalization

(ED) [32] and continuous-time quantum Monte Carlo (CT-QMC) [17, 37]. The input used to

perform this calculation with w2dynamics are the local one-particle coefficients εγγ̂ , the chemical

potential µ, the hybridisation function ∆γγ̂(ωn) and the interaction coefficients Uγ1γ2γ3γ4 . The

generated output is the interacting impurity Green’s function Gγγ̄(ωn) which is inserted into a

reformulated version of (2.10) to obtain the impurity self-energy Σγγ̄(ωn). Evidently, after the

first iteration this is not the self-energy with respect to the initial model but with respect to the

auxiliary input model only. Now the crucial step is to use a reformulated version of (2.10) again

to calculate the interacting lattice Green’s function Gγγ̄(ωn, k) using the non-interacting lattice

Green’s function G0,γγ̄(ωn, k) and the self-energy Σγγ̄(ωn, k), which is approximated by the local

self-energy Σγγ̄(ωn). This step incorporates the approximation, that only local interactions play

a crucial role as the impurity self-energy Σγγ̄(ωn) is inserted into the Dyson Equation. Now

G0(ωn, k) =
[iωn + µ − εk]−1 G0(ωn)

G(ωn)

Σ(ωn) G(ωn, k)

G(ωn)
?
= G(ωn)

Finish

Impurity
Solver
Input:
εγγ̄ , µ

∆γγ̄(ωn)

Uγ1γ2γ3γ4

∑◦ kG0(ωn, k)

Impurity Solver

G−1
0 (ωn)− G−1(ωn)

[G−1
0 (ωn, k)− Σ(ωn)]−1

∑◦
k G(ω

n , k)

yesno

G −10 (ω
n ) =

G −
1
(ω
n ) +

Σ(ω
n )

DMFT
Flowchart

Impurity Lattice

Figure 2.3: Schematic DMFT flowchart for a single orbital calculation. The light yellow box to
the left denotes the starting point, whereas all boxes with a light blue background are part of the
DMFT self-consistency cycle, and the light green box to the right denotes the end of the DMFT
calculation. The computational bottleneck of the whole calculation is the impurity solver, which
is written in red in the flowchart. The terms written above and besides the arrows denote the
mathematical operation performed to obtain the quantity of the next box (with respect to the
arrow direction).
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one checks whether the local interacting lattice Green’s function Gγγ̄(ωn) =
∑◦ kGγγ̄(ωn, k) is

equal to the interacting impurity Green’s function Gγγ̄(ωn). If so, convergence of the DMFT

cycle is reached. If not, the local interacting lattice Green’s function is used to build a new,

non-interacting impurity Green’s function (Weiss field) of the auxiliary impurity model. This

cycle is repeated until convergence is reached.

In practice the convergence check is not necessarily implemented into the code as the in-

teracting lattice and impurity Green’s functions tend to fluctuate around the real solution. A

convergence check is in these cases done by visual inspection, mostly of the impurity self-energy.

The lattice site of Figure 2.3 can then be cut short via directly calculating the new hybridisation

function from the initial input and the impurity self-energy via

∆γγ̄(ωn) = iωnδγγ̄ + µδγγ̄ − εγγ̄ − Σγγ̄(ωn)−
[◦∑

k

G(ωn, k)
]−1

γγ̄

= iωnδγγ̄ + µδγγ̄ − εγγ̄ − Σγγ̄(ωn)−
[◦∑

k

[iωn1 + µ1− ε(k)−Σ(ωn)]−1
]−1

γγ̄
. (2.16)

Furthermore, the DFT calculation already takes into account some local interaction contri-

butions which have to be subtracted in the DMFT cycle in order to avoid double-counting these.

This is done with the so called double-counting contribution ΣDC which is added to (2.16) yielding

∆γγ̄(ωn) =iωnδγγ̄ + µδγγ̄ − εγγ̄ − Σγγ̄(ωn)

−
[◦∑

k

[iωn1 + µ1− ε(k)− (Σ(ωn)−ΣDC)]−1
]−1

γγ̄
. (2.17)

Deriving the double-counting contribution is a hard task, since there is no analytically ”cor-

rect” way of doing this. All double-counting contributions should be considered as ”ad hoc”

plausible estimates. This thesis does not focus on the effect of different double-counting contri-

butions and assumes the double-counting of the fully localized limit [38] for all calculations.

The description above is correct if the Hubbard Hamiltonian can be simplified to an AIM of

only a single site. However, in practice it is often necessary to consider more than one atom in the

unit cell to obtain the correct description, e.g. if there are significant distortions and in the case

of antiferromagnetism. To include a larger unit cell it is necessary to expand the formal schemes

presented above. First, note that there is an additional index a, ā, denoting the atom in the unit

cell and therefore: ΣDC
γγ̄ → ΣDC

a,γγ̄ , εγγ̄ → εaγ,āγ̄ and Σγγ̄(ωn) → Σaγ,āγ̄ . Then the non-interacting

lattice Green’s function yields

G0
aγ,āγ̄(ωn, k) =

[
iωn1 + µ1− ε(k) + ΣDC

]−1

aγ,āγ̄
(2.18)

and the interacting lattice Green’s function yields

Gaγ,āγ̄(ωn, k) =
[
iωn1 + µ1− ε(k)− (Σ(ωn)−ΣDC)

]−1

aγ,āγ̄
. (2.19)
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The complete DMFT cycle is displayed in Figure 2.4. The light yellow box denotes the start

of the calculation. G0
aγ,āγ̄(ωn, k) is calculated using (2.18). The k dependency is then eliminated

by averaging over all k-points in the Green’s function and the one-particle term εaγ,āγ̄(k). This

generates the local lattice Green’s function and local one-particle Hamiltonian on the whole unit

cell. The next step is to generate, i.e. downfold this problem to, N single-impurity problems,

where N is the number of atoms in the unit cell. This can be done by projecting down all

quantities to the subspaces of the respective atoms and calculating the non-interacting impurity

Green’s function (Weiss field), i.e.

(G0,i)−1
γγ̄ (ωn) = (PiaG

old
a,ā(ωn)Pāi)

−1
γγ̄ + Σi

γγ̄(ωn) , (2.20)

εiγγ̄ = Piaεaγ,āγ̄Pāi , (2.21)

µDC
i = Piaµ

DC
a , (2.22)

where Pia is a projector to the subspace of the i-th atom of the first Brioullin zone. For every

atom the corresponding impurity hybridisation function is calculated using

∆i
γγ̄(ωn) = iωnδγγ̄ + µδγγ̄ − εiγγ̄ −

[
G0,i(ωn)

]−1

γγ̄
. (2.23)

Then every impurity is solved with the chosen impurity solver yielding a new interacting impurity

G0
aγ,āγ̄(ωn, k)Gold

aγ,āγ̄(ωn)G0,i
γγ̄ (ωn)

∆i
γγ̄(ωn)

Giγγ̄(ωn)
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γγ̄(ωn) Σaγ,āγ̄(ωn) Finish
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Impurity
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εiγγ̄ , µ

∆i
γγ̄(ωn)

U iγ1γ2γ3γ4

∑◦ kG0
aγ,āγ̄(ωn, k)downfold

(2.20)-(2.22)

(2.23)

Impurity Solver

(2.24)

i
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]
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Figure 2.4: Complete DMFT flowchart. The light yellow box to the right denotes the starting
point, whereas all boxes with a light blue background are part of the DMFT self-consistency
cycle, and the light green box to the right denotes the end of the DMFT calculation. N denotes
the number of atoms in the unit cell. The computational bottleneck of the whole calculation is
the impurity solver, which is written in red in the flowchart.
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Green’s function Giγγ̄(ωn) and furthermore by means of the Dyson Equation (2.10)

Σi
γγ̄(ωn) = [G0,i(ωn)]−1

γγ̄ − [Gi(ωn)]−1
γγ̄ . (2.24)

The full self-energy is consequently obtained via upfolding the N single impurity self-energies to

the unit cell, i.e.

Σaγ,āγ̄(ωn) =


Σ1
γγ̄(ωn) 0 0

0
. . . 0

0 0 ΣN
γγ̄(ωn)


aā

. (2.25)

If the full self-energy is converged, the calculation is finished. Otherwise the new self-energy is

inserted into (2.19). Now the self-consistency cycle is iterated again using the local interacting

lattice Green’s function Gaγ,āγ̄(ωn) to build new impurity problems via (2.20)-(2.22).

2.3 Continous-Time Quantum-Monte-Carlo Solver

All calculations in this thesis exploit the continuous-time Quantum-Monte-Carlo (CT-QMC)

method implemented in the hybridisation expansion [37] in the w2dynamics [17] package to solve

the auxiliary impurity problem. As it is well known, this represents the bottleneck of the DMFT

cycle (see Figure 2.4).

The CT-QMC method aims to calculate the partition function of a system with a Hamiltonian

H = Ha +Hb via Monte-Carlo sampling the occurring integrals and sums [37], e.g.

Z = Tr
[
Tτe−βHae−

∫ β
0 dτHb(τ)

]
=
∑
k

(−1)k
∫ β

0
dτ1...

∫ β

τk−1

dτkTr
[
e−βHaHb(τk)Hb(τk−1)...Hb(τ1)

]
, (2.26)

where Ha is treated exactly and Hb is treated perturbatively. For the AIM, H = Hbath +Hhyb +

Hloc as in (2.11), there are different choices of Ha and Hb which correspond to different CT-QMC

variants. For instance, the choice Ha = Hbath +Hhyb +Hkin
loc +Hµ

loc and Hb = H int
loc is called the

”interaction expansion algorithm” (CT-INT) and Ha = Hbath+Hhyb+Hkin
loc +H int

int +Hµ
loc and Hb =

Hhyb the ”hybridisation expansion algorithm” (CT-HYB) [37]. For multi-orbital calculations close

to a Mott transition a CT-HYB algorithm performs better and can reach lower temperatures than

the CT-INT algorithm. Therefore, w2dynamics uses the CT-HYB algorithm in its DMFT self-

consistency cycle. In the CT-HYB expansion (2.26) can be obtained as [37]

Z =Zbath

∑
k

∫ β

0
dτ1...

∫ β

τk−1

dτk

∫ β

0
dτ ′1...

∫ β

τ ′k−1

dτ ′k
∑
γ1...γk

∑
γ′1...γ

′
k

Tr
[
Tτe−βHloc ĉγk(τk)ĉ

†
γ′k

(τ ′k)...ĉγ1(τ1)ĉ†
γ′1

(τ ′1)
]

det ∆ , (2.27)
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where

Zbath = Tr
[
e−βHbath

]
, (2.28)

det ∆ =
1

Zbath
Tr

[
Tτe−βHbath

∑
k1...kk

∑
k′1...k

′
k

Vγ1,k1V
∗
γ′1,k

′
1
. . . Vγk,kkV

∗
γ′k,k

′
k

× ĉ†kk(τk)ĉk′k(τ ′k) . . . ĉ
†
k1

(τ1)ĉk′1(τ ′1)

]
. (2.29)

The numerically time consuming part of this calculation is the evaluation of the trace in (2.27).

However, recent improvements approach this by including the trace into the sampling routine

(superstate sampling, where the trace is partially sampled via dividing it into blocks of different

importance, and state sampling, where the trace is completely sampled) [16], which increases the

speed of the code. One of the problems of CT-QMC is the ”negative sign problem” typical for

Monte-Carlo simulations of fermions [37, 39].

Every sampling routine needs a weighting factor for each sample. In the case of fermionic

calculations this weighting factor is in general not positive definite. The solution is to take

the absolute value to restore positive definiteness. However, this comes with the price of a less

efficient sampling routine, since samples with different sign, which actually cancel, can both have

a high weighting factor making it more probable to include this samples into the calculation,

although in the end they do not contribute. This is unproblematic for real valued CT-HYB

calculations. However, when considering SOC, which introduces imaginary contributions to the

local Hamiltonian, calculations lack from a servere sign problem. So far the sign problem of

calculations including SOC has not been solved. It can only be mitigated with more efficient

sampling routines like the ”supterstate sampling” [16] which allows to increase the sampling rate

to reach a higher accuracy of the results at a given ”sign level”.

2.4 Maximum Entropy Method

So far all calculations are performed in Matsubara space, where time and frequencies are imag-

inary. In order to obtain a spectra on the real frequency axis, which allows direct comparison

with experiments, it is necessary to analytically continue the result of the DMFT calculation. In

practice, the Green’s function on the imaginary time (τ) axis is only known for N components of

the dense τ axis with finite precision, i.e.

G(τn) = Gn =
1

M

M∑
j=1

G(j)
n , (2.30)

where M is the number of samples for the specified τn. The finite precision is then incorporated

by the covariance matrix Cnm

Cnm =
1

M(M − 1)

M∑
j=1

(Gn − G(j)
n )(Gm − G(j)

m ) . (2.31)
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The Green’s function on the imaginary axis is related to the local spectral function (A(ω) =

− 1
π Im[G(ω)]) on the real axis via [18, 40]

G(τn) =

∫ ∞
−∞

dω A(ω)
−e−τnω

1 + e−βω
. (2.32)

The Maximum Entropy method does a smooth fit of A(ω) such that the functional

Q =
1

2
χ2 − αS[A] (2.33)

becomes minimized, where α is a Lagrange multiplier,

χ2 =
M∑
n,m

(Ḡn − Gn)C−1
nm(Ḡm − Gm) (2.34)

and

S[A] = −
∫
dω A(ω) ln

[
A(ω)

d(ω)

]
. (2.35)

Here Ḡ is the Green’s function associated to A(ω) and d(ω) is a default model for A(ω). Ideally,

the result will not depend on d(ω). In practice it does, making it worth investigating a few

default models when performing an analytical continuation with the Maximum Entropy method.

All Maximum Entropy calculations in this thesis have been performed with the Maxent solver of

the ALPS package [18].
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Chapter 3

Results without Spin-Orbit Coupling

The basis used to perform DMFT calculations is not unique as any linear combination (obtained

by rotation) of Wannier orbitals can be used as a new basis. In the following chapter we discuss

how this rotation of the basis looks like in the second quantization formalism yielding new εγγ̄ and

Uγ1γ2γ3γ4. Then we introduce a basis where εγγ̄ is diagonal (we call this the locally diagonal or Hloc

basis), which is better suited for a consistent Kanamori approximation, because (i) it automatically

incorporates the non-negligible off-diagonal one-particle hopping terms of the standard (LS) basis

and (ii) it allows for a more direct physical interpretation. The differences between a calculation

performed in the standard basis and a calculation performed in the locally diagonal basis might

become significant. For example, if in the chosen approximation scheme (e.g. Kanamori) the

orbital off-diagonal terms of εγγ̄ are consistently neglected in the standard basis, one would get that

LiOsO3 behaves like a material on the verge of a MIT. At the same time, it will shows a metallic

behavior in the locally diagonal basis. The latter coincides with the results of a full Coulomb

calculation, which, does not depend on the chosen basis as we explicitly verified. The fact that

a Kanamori approximation in the locally diagonal basis agrees with the full Coulomb calculation

shows that the off-diagonal one-particle terms of the standard basis play indeed a significant role

in the physics of this material. In fact, an analytical continuation of the Matsubara results shows

that the quasi-particle peak around ω = 0 indeed decreases with increasing temperature in the

locally diagonal basis. The predicted temperature dependence is, however, too weak to explain the

experimental results, calling for an extension of the theoretical calculations made.

3.1 Introducing a New Basis

As already mentioned in chapter 1.1.4 even when one as properly chosen a fixed representation

for the Wannier projection the basis in which we perform the DMFT calculation is not fixed a

priori. This can be motivated by the definition of εγγ̄ from a DFT calculation

εγγ̄ ∝
∫
d3xW∗γ(~x)ĤDFTWγ̄(~x) , (3.1)

where Wγ are Wannier functions [15]. Choosing a linear combination of Wannier functions as a

29



new basis gives new ε̃γγ̄ , but still spans the full Hilbert space of the selected manifold. The same

holds for the interaction matrix Uγ1γ2γ3γ4 which is calculated by

Uγ1γ2γ3γ4 ∝
∫
d3xd3x′W∗γ1

(~x)W∗γ2
(~x ′)f(~x− ~x ′)Wγ3(~x)Wγ4(~x ′) , (3.2)

where f(~x − ~x ′) is defined by cRPA. In a second quantization formalism this corresponds to

transforming the local one particle annihilation ĉγ and creation ĉ†γ operators with a unitary

transformation yielding [39]

d̂γ =
∑
γ̄

V ∗γ̄γ ĉγ̄ (3.3)

d̂†γ =
∑
γ̄

Vγ̄γ ĉ
†
γ̄ , (3.4)

where we will refer to Vγ̄γ as ”rotation” matrix. There is, a priori, no possibility to decide

which basis is best suited for DMFT calculations, since the CT-QMC algorithm used as impurity

solver is able to take into account all elements of εγγ̄ and Uγ1γ2γ3γ4 the results of the calculations

will be basis independent. However, for performance reasons it is very common to approximate

the full local one-particle and interaction Hamiltonian by neglecting some off-diagonal terms.

In order to do so, it is important that the neglected terms are small compared to the other

terms. In case of a Kanamori approximation, where the off-diagonal (correlated hopping) terms

are neglected, a consistent calculation also neglects all off-diagonal elements of the local one-

particle Hamiltonian (off-diagonal with respect to εγγ̄). For LiOsO3, however, this is equivalent

to neglecting the non-degeneracy of the 3 t2g orbitals. We therefore argue that the most realistic

Kanamori Approximation should be performed in a basis where the local one-particle Hamiltonian

of every atom is diagonal. Choosing the rotation such that ε̃iγγ̄ is diagonal the new one-particle

term of the local Hamiltonian reads

∑
γγ̄

εiγγ̄(ĉiγ)†ĉiγ̄ =
∑
δδ̄

∑
γγ̄

εiγγ̄(V i
γδ)
∗V i

γ̄δ̄ (d̂iδ)
†d̂iδ̄ =

∑
δδ̄

ε̃iδδ̄(d̂
i
δ)
†d̂iδ̄ , (3.5)

where the index i refers to the atoms of the unit cell and

ε̃iδδ̄ = Eiδδδδ̄ . (3.6)

In terms of a DFT+DMFT calculation, where the input is a k-dependent εγγ̄(k) ”Wannier Hamil-

tonian”, the input Hamiltonian is rotated with the V i
γγ̄ at every k-point. This also yields a new

interaction coefficient matrix which can be calculated with [39]

Ũ iδ1δ2δ3δ4 =
∑

γ1γ2γ3γ4

U iγ1γ2γ3γ4
(V i
γ1δ1)∗(V i

γ2δ2)∗V i
γ3δ3V

i
γ4δ4 . (3.7)

If the local one-particle Hamiltonian has no spin dependency, e.g. DFT without SOC, the local

interaction coefficient matrix transforms like (note that we expand γ → γσ now)
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Ũ iδ1σ1,δ2σ2,δ3σ3,δ4σ4
=

∑
γ1γ2γ3γ4

U iγ1σ1,γ2σ2,γ3σ3,γ4σ4
(V i
γ1δ1)∗(V i

γ2δ2)∗V i
γ3δ3V

i
γ4δ4 , (3.8)

where only the orbital indices γi are transformed.

A full Coulomb calculation including all interaction terms for LiOsO3 should yield numerically

almost equivalent results for two different bases. There may be small differences due to the

fact that the unit cell contains six atoms which have inter atom one-particle terms. Though

transformed, these are not taken into account on the level of the CT-QMC impurity solver. The

CT-QMC solver calculates the result for each atom separately and upfolds the results to the unit

cell (2.25). Inter-atomic terms are taken into account on the DMFT level. Therefore, a rotated

calculation in one basis might not be fully consistent with a calculation in another basis. This is

yet not fully probed and understood.

3.1.1 Comparing the Numeric Setup in both Bases

Before turning to the results obtained in the locally diagonal basis and comparing them to the

results of a calculation in the standard basis, it is worth to investigate the differences in the

initial setup, i.e. the local one-particle Hamiltonian and the local interaction Hamiltonian. This

calculation does not include SOC and is therefore not spin dependent. All orbitals displayed are

without spin dependency.

A comparison of the local one-particle coefficients of the Hamiltonian of atom 1 is displayed in

Figure 3.1. For the other 5 atoms the result is almost the same. In the standard LS basis the 3 t2g

orbitals are energetic degenerate where the exact value is not important because it is corrected by

the chemical potential and only differences between the orbitals influence the physical dynamics

in the material. The off-diagonal terms of the size 80 meV can be compared to the interaction

coefficients displayed for the Kanamori approximation in Table 3.1. Compared to the smallest

interaction parameter (J=260 meV) this is 30 %, compared to the largest (U=2.410 eV) this is

1 2 3

1

2

3

εγγ̄ LS Basis

1 2 3

1

2

3

εγγ̄ Hloc Basis

1 2 3

1

2

3

εLSγγ̄ − εhlocγγ̄

0 1 2 3 4 5 0 1 2 3 4 5 −0.15 −0.10 −0.05 0.00 0.05

Figure 3.1: Graphical comparison of the matrix entries of εγγ̄ of the first atom for the standard
(LS) and the locally diagonal (Hloc) basis. Eigenvalues in the LS basis are: 5.045 eV, 5.042 eV,
5.047 eV. Eigenvalues in the Hloc basis are: 4.967 eV, 4.967 eV, 5.200 eV.
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Figure 3.2: Comparison of the LDA density of states of the first atom in the standard LS and
locally diagonal (Hloc) basis. The differences are significant. The third orbital exhibits a huge
shift of weight towards ω = 6, whereas orbital 1 and 2 shift to the interval [4.5; 5.5] in the locally
diagonal basis.

3.3 %. In the locally diagonal basis only two of the three t2g orbitals are degenerate with an energy

splitting of 230 meV to the third orbital. This is already about 80 % of the smallest (J=290 meV)

and about 10 % of the largest (U=2.350 eV) interaction parameter in this basis and seems to be

less negligible then the off-diagonal terms in the standard basis. This non-degeneracy is also well

displayed in the LDA DOS corresponding to the one-particle Hamiltonian of atom 1 in the locally

diagonal basis. The LDA DOS for both bases are shown in Figure 3.2. The degeneracy of the

three orbitals in the standard basis is well pronounced. However, in the locally diagonal basis the

spectral weight of orbital 3 gets drastically shifted from the proximity of the chemical potential

towards higher frequencies whereas for orbital 1 and 2 it gets shifted from high frequencies to the

proximity of the chemical potential. Therefore, in the locally diagonal basis, orbitals 1 and 2 will

be more populated than orbital 3 resulting in a non half-filled system per orbital and therefore

in a weakening of the Hund’s localization.
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kanamori entries (black)
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Figure 3.3: Graphical comparison of the matrix entries of Uγ1γ2γ3γ4 of the first atom without spin
dependency for the standard (LS) and the locally diagonal (Hloc) basis. The panel to the right
shows the entries corresponding to the Kanamori Approximation. The indices γ1γ2 and γ3γ4 are
combined on the x and y-axis.
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Parameter LS Hloc

U 2.412 eV 2.346 eV
V 1.791 eV 1.824 eV
J 0.261 eV 0.294 eV

Table 3.1: This table shows the Kanamori parameters for LiOsO3 in two different bases in eV.
The standard (LS) and locally diagonal (Hloc) basis. The Hubbard U in the Hloc basis is slightly
lower indicating less localization, however, the Hund’s Parameter J is slightly higher indicating
more localization if the orbitals population is still approximately 0.5. Hence, it is a priori not
possible to predict which basis will show more localizing effects.

The rotation of the one-particle Hamiltonian into a locally diagonal basis in Kanamori approx-

imation, thus, is expected to lead to an overall delocalizing effect. In order to fully understand

the effects of the rotation we now turn to the differences in the local interaction term. The coeffi-

cients and their differences are visualized in Figure 3.3 in the first three panels from the left. The

panel to the right shows the coefficients contributing to the Kanamori approximation in black.

Switching from the LS to the Hloc basis the local Hubbard U slighlty decreases, whereas all other

Kanamori terms slightly increase. Averaging over the Kanamori entries to obtain U, V, J as in eq.

(1.2) yields the values displayed in Table 3.1. The decrease of the Hubbard U by about 60 meV

is opposed by an increase of V by about 30 meV and the increase of the Hund’s parameter J by

about 30 meV. In general a decrease in the Hubbard U yields a delocalization, however, for half

filled orbitals a slight increase in the Hund’s exchange parameter J favors a strong localization

of charge carriers. It is a priori not clear whether a Kanamori approximated DMFT calculation

of LiOsO3 in the locally diagonal basis will yield a more or less metallic result then a calculation

in the standard basis. However, the increases of J is also opposed by a loss of the t2g degeneracy,

yielding non half-filled orbital. The combination of all these factors suggests that the results

of a Kanamori approximated DMFT calculation in the locally diagonal basis could indeed yield

results more compatible with the full Coulomb calculation, which are more metallic.
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3.2 Results for a Paramagnetic, Kanamori Approximated Cal-

culation in the Locally Diagonal Basis

In this chapter we present the results of a paramagnetic, Kanamori approximated calculation at

half filling in the locally diagonal basis and compare it to a calculation in the standard basis.

All calculations have been performed with the w2dynamics [17] package. The input k-dependent

one-particle coefficient matrix and the local interaction coefficient matrices in the standard basis

was obtained with the VASP package [11–14] by the group of Professor Cesare Franchini at the

University of Vienna and then rotated to the locally diagonal basis with the scripts of Appendix

E and F. The Kanamori parameters used for this calculation are displayed in Table 3.1. All

calculations are not spin dependent. For convenience we display only one spin channel in all

figures. All analytic continuations are performed with the Maxent solver from the ALPS package

[18]. All graphics display only the results of atom 1, because atom 2 shows very similar behavior.

As first result Figure 3.4 shows the diagonal entries of the imaginary part of the local self-
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Figure 3.4: Diagonal entries of Im[Σγγ̄(ωn)] of LiOsO3 in the locally diagonal basis, where β = 1
kbT

.
Orbitals 1 and 2 are degenerate and show a localizing behaviour for β = 10, 15 i.e. a positive slope
close to ωn = 0. However, for orbital 3 only β = 10 shows a slightly positive slope around ωn = 0.
It is not clear whether the high temperature trend is enough to display strong localization effects,
especially for the third ”a1g” orbital.
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energy Σγγ̄(ωn) on the Matsubara frequency axis for various temperatures i.e. β values. Orbital

1 and 2 (upper pannels) are degenerate and therefore the self-energies are equal. For those two

orbitals LiOsO3 displays a metallic behaviour for β = 20, 30, 50 and a bad metal behaviour for

β = 10, 15, since the slope of the local self-energy is positive close to ωn = 0. In comparison, for

orbital 3 the local self-energy has only for β = 10 a slightly positive slope close to ωn = 0 i.e. is

shows a more metallic behaviour then the other two orbital. However, the visible trends are not

pronounced enough to conclude the behaviour of LiOsO3 at high temperatures directly from the

local self-energy. To get a better understanding, Figure 3.5 shows the diagonal elements of the

imaginary part of the Matsubara Green’s function Gγγ̄ on the Matsubara axis. The upper panels

of Figure 3.5 show orbital 1 and 2. The trend visible in the local self-energy is also visible in the

Matsubara Green’s function which displays a loss of weight around ωn = 0 for decreasing β, i.e.

increasing temperature, indicating a bad metal behaviour. The positive slope in the self- energy

close to ωn = 0 is not enough to change the slope in the Matsubara Green’s function, which would

represent a stronger indication for a pseudogap i.e. insulating behaviour. The temperature
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Figure 3.5: Diagonal entries of Im[Gγγ̄(ωn)] and the trace Im[Gγγ̄(ωn)] of LiOsO3 in the locally
diagonal basis, where β = 1

kbT
. All orbitals display a metallic character i.e. the Green’s function

has significant weight around ωn = 0. The high-temperature trend, however, is towards a bad
metal.
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dependence of orbital 3 (lower left of Figure 3.5) is overall much less pronounced then for orbitals

1 and 2. The trace over all diagonal entries of the Matsubara Green’s function is displayed in the

lower right panel and shows a metallic slope for low temperatures inherited from the two energetic

lower lying orbitals (1 and 2). Overall a gradual tendency towards a bad metal as temperature

increases can be seen.

To understand where this tendency comes from we take a look at the occupancies displayed

in Figure 3.6. As indicated by the split of the t2g degeneracy by 230 meV the energetic lower

lying orbitals 1 and 2 are more populated then the higher lying orbital 3 (upper right panel).

This difference decreases with decreasing β, i.e. increasing temperature as higher temperature

provides more thermal energy to lift electrons from the lower orbitals to the higher orbital. The

orbital splitting is also reflected in the absolute value of the double occupancy (upper left panel),

which increases for orbitals 1 and 2 with respect to orbital 3, denoting the fact that more electrons
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Figure 3.6: Occupancies of LiOsO3, where β = 1
kbT

and ”relative” refers to expression of the form
〈nγnγ̄〉
〈nγ〉〈nγ̄〉 . The average occupation per orbital shows the degeneracy of orbital 1 and 2, which are

higher populated for the whole temperature range displayed. This difference decreases towards
lower β. The relative double occupation and the relative Hund’s like occupation (note that
i, j ≡ γ, γ̄) follow the same temperature trend for all orbitals but the opposite trend with respect
to each other. Decreasing β lowers the double occupation as electrons become more mobile and
start to populate the energetic higher orbital 3 with aligned spins.
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populate orbital 1 and 2. The temperature trend for all orbitals is, however, qualitatively similar

for all orbitals, especially for the most relevant parameter: the relative double occupancy (lower

left panel). More specifically, as temperature increases the double occupancy decreases. This

is opposed by the behavior of the relative Hund’s like occupancy which shows an increase for

increasing temperature. A decreasing double occupation paired with an increase in the Hund’s

like occupation is a strong indicator for localization of charge carriers in a per orbital half-filled

system, driven by the Hund’s exchange. In this basis, however, none of the orbitals is half-filled

and we therefore have to inspect other quantities, such as the local Matsubara Green’s function

or the local spectral function.

Eventually the Matsubara results are continued to the real frequency axis yielding the local

spectral functions shown in Figure 3.7. The energetic lower orbitals 1 and 2 (upper panels) display

a quasi-particle peak for β ≥ 15. For β = 10 the peak has vanished and left a dip formation

indicating a bad metal behavior of this two orbital. The higher lying orbital 3 (lower left panel)
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Figure 3.7: Diagonal entries of Aγγ̄(ω) and the average of Aγγ̄(ωn) with respect to all orbitals
and spins of LiOsO3 in the locally diagonal basis, where β = 1

kbT
. All orbitals display a metallic

character i.e. the Green’s function has significant weight around ωn = 0. The quasi particle peak
in orbitals 1 and 2 quickly decreases as β decreases i.e. temperature increases. Orbital 3 does not
display such a clear quasi-particle peak, but a significant asymmetry between ω < 0 and ω > 0.
The average displays a quasi-particle peak for β ≥ 15. However, for β = 10 the local spectral
function around ω = 0 is flat indicating a bad metal behaviour.
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does display a quasi-particle peak for β = 10, 15, 20 and a dip for β = 30, 50. This dip, however,

is only reflecting the decrease of spectral weight around µ in the non-interacting DOS of LiOsO3

(compare Figure 3.2 right pannel). There is a well pronounced broadening of the spectrum with

increasing temperature and also a formation of a flat level at ω > 0. On average (lower right

panel) the spectrum is perfectly flat around ω = 0. The quasi particle peak has completely

vanished.

The Kanamori results presented above show a temperature trend qualitatively consistent with

the experimental results. However, the trend is much less pronounced than in the standard basis

(Which was yielding a very good agreement with the experiments). A comparison of both bases

is shown in Figure 3.8. The left panels show the results in the locally diagonal (Hloc) basis,

the right panels show the results in the standard (LS) basis. In the standard basis all orbitals

and spins are degenerate. Therefore, for the self energy and the Green’s function only results of

orbital 1 are displayed. The self energy (first row) shows huge differences for β = 15, 20. In the

standard basis the self energy displays a clearly metallic behavior for β = 30, 50 and an almost

insulating behavior for β = 15, 20. This rapid change is not exhibited in the locally diagonal

basis, where the changes are a lot smaller and appear to be smooth. The high-temperature

pseudogap behavior visible in the locally diagonal basis is not as well defined as in the standard

basis. The difference between the two bases is also displayed in the Green’s function (second row)

and average local spectral function (third row). The Green’s function shows an almost insulating

behavior for β = 20 in the standard basis, however for β = 15 this trend is not continued. The

locally diagonal basis does not show this change of trend, but a smooth transition towards a bad

metal. This is best seen in the local spectral function, where in the locally diagonal basis the

quasi-particle peak around ω = 0 continuously vanishes at low β, i.e. high temperatures. In the

standard basis this is not the case. Instead there is a sharp transition from a metal with a well

pronounced quasi-particle peak to a bad metal with almost insulating character. For β = 15, 20

the local spectral function almost exhibits a gap at ω = 0, i.e. it appears on the verge to a MIT.

A priori it is not clear which of the two bases provide the theoretical more accurate description.

In the standard basis for the Kanamori approximation one neglects the off-diagonal one-particle

matrix coefficients, which are responsible for the splitting of the t2g manifold. However, in the

locally diagonal basis the Kanamori parameters are different with respect to the standard basis.

In order to decide which of the two bases is better suited to perform a Kanamori approximation

it is necessary to take a look at the full Coulomb calculations which take into account the full

one-particle coefficient matrix and the full interaction coefficient matrix and compare the results

to the Kanampri approximated calculations presented in this chapter. This is the subject of the

next section.
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Figure 3.8: Comparison of the results of a Kanamori approximation in the locally diagonal basis
(Hloc, left side) and the standard basis (LS, right side), where β = 1

kbT
. Since in the LS basis

all orbitals a degenerate only one orbital is displayed. The other orbitals of the locally diagonal
basis are displayed in Figure 3.4 and Figure 3.5. The first row shows a comparison of the self
energies, the second row a comparison of the Matsubara Green’s functions and the third row of the
averaged local spectral functions. In the standard basis the temperature trend is well pronounced
in the self energy and Matsubara Green’s function. It shows a sharp change of behavior between
β = 30 and β = 20.
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3.3 Results for a Paramagnetic, Full Coulomb Hamiltonian

In this chapter we present the results of a paramagnetic, full Coulomb DMFT calculation, meaning

a calculation that takes into account the full one-particle coefficient matrix and the full interaction

coefficient matrix, at half filling. This is the most general calculation possible on the level of

DMFT. As example Table B.1 and Table B.2 show the local one-particle coefficients and the local

interaction coefficients for atom 1. All other atoms have very similar coefficients, which is why

this tables can be taken as example for all atoms. This calculations take significantly more time

to converge then the Kanamori approximated calculation to reach the same accuracy, since now

a lot more terms have to be included into the sampling routine.

In the following, the results of a full Coulomb calculation in the locally diagonal basis are

presented. Again we display only the results of atom 1, because atom 2 is very similar. The

full Coulomb result should not be basis dependent i.e. the results in an other basis should be

obtained by rotation. We will verify this as an additional stringent benchmark of our calculations

by comparing some of the results to a full Coulomb calculation in the standard basis.

In Figure 3.9 the diagonal elements of the local self-energy Σγγ̄(ωn) (left side) and the diagonal

elements of the Matsubara Green’s function Gγγ̄(ωn) (right side) are displayed. Both look very

similar to the results of the Kanamori approximated calculation in the locally diagonal basis

Figure 3.4, Figure 3.5. The local self-energy shows a trend towards a bad metal for low β values,

i.e. high temperatures, as does the Matsubara Green’s function. Orbitals 1 and 2 are degenerate

and less metallic then orbital 3 which decreases its metallic characteristic slower. This trend

continues in the local spectral function which is shown in Figure 3.10 row 3 and 4. With decreasing

β the quasi-particle peak around ω = 0 decreases and for β = 10 a dip evolves for orbitals 1 and 2

indicating the bad metal behaviour. However, orbital 3 does not display this behavior. The quasi-

particle peak of orbital 3 (not visible for high β values (30, 50), which reflects the non-interacting

DOS around µ shown in Figure 3.2.) is slightly pronounced for lower β values (10, 15, 20). At

high temperatures orbital 3 appears to be more metallic than orbitals 1 and 2, though it is still

less occupied (Figure 3.10). On average (lower right panel) a quasi-particle peak is observed,

loosing coherence at higher β values until it essentially vanishes at β = 10. Further does the local

spectral function shows progressive broadening of the central coherent peak with decreasing β.

The double and Hund’s like occupancy follow opposite temperature trends. With decreasing β,

i.e. increasing temperature, the double occupancy decreases and Hund’s like occupancy increases.

A reason for this is the increased thermal energy which allows more charge carriers to populate

the energetic higher lying orbital 3, where they tend to align spins with respect to orbitals 1 and

2. If all three orbitals are populated also spins in orbital 1 and 2 prefer to be spin aligned, as a

result of the Hund’s exchange. In fact, the more similar population of all three orbitals observed

at higher temperatures enhances the Hund’s driven tendency towards a more insulating behavior.

In summary, the full Coulomb calculation in the locally diagonal basis shows a definite trend

towards a bad metal behavior for increasing temperature, which is in general consistent with the

experimental results. However, the observed trend is only visible at temperatures much higher

then in the experiments (1160 K in our calculations versus 300 K in the experiment).
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Finally, the results of a full Coulomb calculation are in general not basis dependent. Of course

it is necessary to rotate all quantities generated by the calculation from one basis to the other

in order to compare. However, the trace over orbital and spin of an object e.g. Tr[Gγγ̄(ωn)] and

Tr[Aγγ̄(ωn)] is basis independent and can be compared directly.
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Figure 3.9: Diagonal entries of the local self-energy and Green’s function of LiOsO3 for a full
Coulomb calculation in the locally diagonal basis. The similarity to the Kanamori approximated
calculation in the locally diagonal basis displayed in Figure 3.4 and Figure 3.5 is self-evident.
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Figure 3.10: Occupancies and diagonal elements of the local spectral function of LiOsO3 for a
full Coulomb calculation in the locally diagonal basis, where relative refers to expressions of the

form
〈n̂γ n̂γ̄〉
〈n̂γ〉〈n̂γ̄〉 .
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A comparison of the result in the locally diagonal basis and the standard basis for atom 1 is

shown in Figure 3.11. The left panels show the trace of the Matsubara Green’s function (upper

left) and the average local spectral function (lower left) in the locally diagonal (Hloc) basis. The

right panels show the trace of the Matsubara Green’s function (upper right) and the average

local spectral function (lower right) in the standard basis. The Matsubara Green’s functions

show no visible difference for all β values displayed. The trend towards a bad metal is equally

pronounced in both bases. Minor differences could be observed only in the analytically continued

local spectral function, especially close to ω = 0. For both analytic continuations the parameters

where set equally. Therefore, these differences, not visible with the naked eye in the Matsubara

Hloc basis LS basis
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Figure 3.11: A comparison of the trace of the Green’s function and the averaged local spectral
function between the locally diagonal basis (Hloc, left side) and the standard basis (LS, right
side) for a full Coulomb calculation. The trace of the Green’s function shows almost no difference
between the two calculations. The averaged local spectral function shows slight differences close to
ω = 0. Those come from the numerical analytic continuation, which is extremely input dependent
i.e. very small differences in the Green’s function can lead to visible differences in the spectrum.
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Green’s function, show how sensible the analytical continuation is w.r.t minimal differences of

the input Green’s function. The general trend and shape of the continued spectra is the same

and consistent with the expected basis independence of the calculations.

Finally the results obtained from the full Coulomb calculation are to be compared to the

Kanamori approximated calculations to see which basis is better suited for approximations. A

side by side comparison of the Kanamori approximated calculation to the full Coulomb calculation

in the standard basis is not displayed as the huge differences can be easily seen by comparing the

right panel in the third row of Figure 3.8 (the average spectrum of the Kanamori approximated

calculation in the standard basis) to the right panel of the second row of Figure 3.11 (the average

spectrum of the full Coulomb calculation in the standard basis).
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Figure 3.12: A comparison of the trace of the Green’s function and the averages local spectral
function between a full Coulomb (left side) and a Kanamori (right side) calculation in the locally
diagonal basis. The Green’s function display minimal differences close to ω = 0. Those differences
lead to small differences in the spectra, especially for β = 10 where the full Coulomb calculation
shows a small dip and the Kanamori calculation is flat.
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Instead, a side by side comparison of the Kanamori approximated calculation to the full

Coulomb calculation in the locally diagonal basis is shown in Figure 3.12. In this case, the

differences in the Matsubara Green’s function (first row) are very small and only visible very

close to ωn = 0. In general, the overall degree of agreement is remarkable. This is also reflected

in the local spectral function (second row) where only for β = 10 a visible difference occurs.

There the local spectral function of ω close to zero shows the onset of a dip in the full Coulomb

calculation and a purely flat behavior in the Kanamori approximated calculation. The question

which basis is better suited for making approximation, finds a clear favourite now. The locally

diagonal basis seems the be the optimal choice as the degree of agreement to the full Coulomb

calculation is remarkable. It appears that off-diagonal terms of about 80 meV of the diagonal

terms are non-negligible in this case. The locally diagonal basis naturally incorporates these

terms by a splitting of the t2g degeneracy and so all approximated calculations, which neglect

off-diagonal elements, are most accurate in this basis.
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Chapter 4

Results with Spin-Orbit Coupling

In this chapter we present the DMFT results of a full Coulomb calculation including local spin-

orbit coupling. In particular, we compare the effect of the addition of local (atom-like) spin-orbit

terms to the one-particle Hamitlonian in the different bases introduced in the previous chapter.

In general, a local spin-orbit coupling originates spin off-diagonal terms in the local one-particle

coefficient matrix (1.3). As a practical consequence, our DMFT calculations can no longer be

enforced to be paramagnetic, because in w2dynamics this is enforced by averaging over both spins.

We find that LiOsO3 shows a strong tendency towards antiferromagnetism and that local spin-

orbit coupling is able to overcome this tendency, keeping the material in a paramagnetic phase as

observed in experiments. However, both, the tendency towards a magnetically ordered state and

its suppression, depend significantly on the basis in which the calculation is performed. In order

to shed light on the underlying physics, we start by discussing the dependence of the eigenvalues

of the local one-particle coefficient matrix on the strength of the local spin-orbit coupling (ξ). This

shows that the energies of the t2g orbitals in the locally diagonal basis further split up due to the

local spin-orbit coupling. The estimated effect of this splitting is a further metallization, as it

is the case in the Kanamori approximation in the locally diagonal basis. This is consistent with

our results in the regime of the estimated strength of the local spin-orbit coupling. The results

of the DMFT calculation, are structured into sections according to different bases in which the

spin-orbit coupling is added and in which the calculations are performed. Each section contains

subsections comparing results for either (i) varying temperatures and fixed ξ or (ii) varying ξ and

fixed temperature (β).

In the following we present the results of the full Coulomb calculation including local (atomic-

like) spin-orbit coupling in 4 different bases. 1.) The Wannier Hamiltonian in the standard basis

supplemented with local spin-orbit coupling which will be referred to as standard (LS) basis.

2.) A basis where the Wannier Hamiltonian in the standard basis gets supplemented with local

spin-orbit coupling and then diagonalized, which will be referred to as fully diagonalized standard

(LS diagonal) basis. 3.) Since it is not clear in which basis the local spin-orbit coupling is to

be added to obtain the best possible approximation, the third basis is the locally diagonal basis.

Here we supplement the Wannier Hamiltonian, represented in the locally diagonal basis, with
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local spin-orbit coupling. This basis will be referred as locally diagonal (Hloc) basis in agreement

to the last chapter. 4.) A basis where the Wannier Hamiltonian represented in the locally diag-

onal basis gets supplemented with spin-orbit coupling and then diagonalized. This basis will be

referred as fully diagonalised locally diagonal (Hloc diagonal) basis. The term supplemented with

local spin-orbit coupling refers to adding (1.3) for every atom at every k point to the k-depended

one-particle coefficient matrix (Wannier Hamiltonian).

In general eq. (1.3) can be naturally derived for a perfect t2g Hamiltonian [41], which has

no off-diagonal coefficients and is perfectly degenerate. Therefore, most probably the local spin-

orbit coupling should be added in the locally diagonal basis, where, though not degenerate, the

t2g orbitals have no one-particle terms connecting them, i.e. the one-particle coefficient matrix is

diagonal. The next section shows that the eigenvalues do not depend on the basis we choose to

add the local spin-orbit coupling (the eigenvectors do).

4.1 Eigenvalues of the Local One-Particle Hamiltonian Extended

with Spin-Orbit Coupling

The splitting of the t2g degeneracy of LiOsO3 is about 250 meV. An estimate of the local (atomic-

like) spin-orbital coupling (SOC) strength on the Os atoms has been made to about 300 meV using

DFT. This has been performed in the group of Cesare Franchini at the University of Vienna using

VASP. The fact that those two energy scales have almost the same size rise hope that atomic-

like spin-orbit coupling may counterbalance the loss of t2g degeneracy, yielding a more localized

system.

As first attempt to understand the influence of the local spin-orbit coupling we investigate

the dependency of the eigenvalues of the local one-particle coefficient matrix on the spin-orbit

coupling parameter ξ. Figure 4.1 shows the calculated eigenvalues on the ξ axis. In particular,

the upper left panel shows the eigenvalues where the local spin-orbit coupling was added in the

standard basis, the upper right panel shows the eigenvalues where the local spin-orbit coupling

was added in the locally diagonal basis and the lower panel shows a direct comparison of both.

Quite remarkably, we notice that all three panels show equal curves, i.e. the eigenvalues of the

local one-particle Hamiltonian do not depend on the basis in which the local spin-orbit coupling

is added. In the lower panel one can see that the eigenvalues in both bases are exactly the

same. This does not mean that our DMFT calculations will yield the same result in these two

cases, because the corresponding eigenvectors are unequal. It means, however, that the local

”non-interacting” (one-particle) eigenenergies, corresponding to the same orbital numbering, are

equal. Hence, the next observations will hold for all three panels. First, all eigenenergies come in

pairs, i.e. two orbitals are energetically degenerate which we will denote by labeling them 12,12;

21,22; 31,32. Second, increasing ξ further splits the orbitals. The orbitals, which are energetic

higher lying without spin-orbit coupling, get shifted to even higher energies and the orbitals,

which are lower lying without spin-orbit coupling, to even lower energies. For large values of

ξ > 0.35 meV this change is linear in ξ. A zoom of the non-linear regime (0 eV< ξ < 0.35 eV) is

48



displayed in the insets. Third, the insets show how the 4 initially degenerate lower lying orbitals

get split up in pairs of two which are for very high ξ are eventually separated by about 150 meV.

For the realistic estimate of the spin-orbit coupling strength ξ of 300 meV the lower orbitals are

split by 125 meV, which has to be compared to the 430 meV splitting between the upper two

orbitals and the intermediate two orbital. This means that the two lowest lying orbitals will be

most populated, whereas the occupation of the two intermediate orbitals will be lower and the
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Figure 4.1: ξ dependence of the eigenvalues of the local one-particle coefficient matrix of atom 1.
Spin-orbit coupling added in the standard (LS) basis (upper left panel), spin-orbit coupling add
in the locally diagonal (Hloc) basis (upper right basis), comparison of both (lower panel). The
eigenvalues are independent of the basis in which the spin-orbit coupling is added. Always two
eigenvalues of the six in total are degenerate. The splitting of the t2 degeneracy is increases with
increasing ξ.
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Figure 4.2: Orbital resolved density of state (DOS) derived by LDA for ξ = 300 meV in the LS
diagonal (left panel) and the Hloc diagonal (right panel) basis. Colors are chosen equivalent to
Figure 4.1. The difference for ω close to µ is significant. In the LS diagonal basis the weight close
to µ of the energetic lower lying orbitals is different, where in the Hloc diagonal basis it is not.
Therefore orbitals 11 and 12 contribute more to charge transport than orbitals 21 and 22.

occupation of the highest orbital. will be lowest. The difference between the orbitals can also

be seen in the corresponding (orbital resolved) LDA density of states, which is shown in Figure

4.2 for ξ = 300 meV. In the LS diagonal basis (left panel) the energetic lowest lying two orbitals

have the most spectral weight around ω = µ, compared to the other orbitals. A lower spectral

weight around the Fermi-level is found for the intermediate two orbitals and the lowest spectral

weight for the energetic highest orbitals. The later, however, shows a large peak for large ω > 5.5.

Without considering the effect of electronic correlations, one would than expect that the highest

lying orbitals 31 and 32 should contribute least to charge transport and orbitals 11 and 12 should

contribute most. This situation is slightly different in the Hloc diagonal basis (right panel) where

close to ω = µ all four energetic lower lying orbitals have to same weight. This means that here

one would expect orbitals 11, 12, 21, 22 to contribute equally to charge transport. The lowest

orbitals have a significantly larger weight for ω < µ.

To sum it all up, the overall effect of introducing a local spin-orbit coupling term in LiOsO3

further splits the t2g manifold into three non-degenerate orbitals, i.e. it does not compensate

for the initial splitting by the non-vanishing offdiagonal one-particle coefficients. Therefore, all

orbitals will be even more away from satisfying the half-filling condition as it was already the

case without local spin-orbit coupling in the locally diagonal basis. This effect increases with

increasing ξ, which would suggest that, after all, local spin-orbit coupling makes LiOsO3 more

metallic. This expectation will be examined throughout this chapter.
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4.2 Standard Basis Extended with Spin-Orbit Coupling

In this section we present all results computed in the standard (LS) basis. This means that spin

orbit coupling is added in the standard basis, using the script from Appendix H. There is no

diagonalization or rotation involved even when the DMFT calculation is eventually performed.

An example parameters.in file for a spin-orbit calculation is in Appendix C, where the [Atom]

section needs to be replaced with the [Atoms] section from the parameters.in file without spin-

orbit coupling. All calculation have been performed with w2dynamics [17] on 480-800 cores on the

Vienna Scientific Cluster (VSC3). Analytical continuations have been performed with Maxent

[18] also on VSC3.

Calculations of β ≥ 10 show an antiferromagnetic phase for a wide range of ξ parameters.

This is also seen for β = 15. Therefor most of this section will focus on the influence of local spin-

orbit coupling on the magnetic phase of LiOsO3. At β = 5 it does not show an antiferromagnetic

phase. This corresponds to 2320 K which is far above measured temperatures and LiOsO3 is most

probably melted at this point. The results of this calculation are presented in Appendix (A).

Most of the figures show only the results of atom 1, because the other atoms are similar. If

this is not the case, more atoms are displayed. The same holds for the displayed orbitals.

4.2.1 β = 10

This subsection contains results for ξ values in the range of 0-8 eV 1 for β = 10, i.e. T=1160 K.

Already at such a high temperature LiOsO3 displays a strong tendency towards an antiferro-

magnetic phase, as it is displayed in Figure 4.3. The left side shows the occupancies for spin up

(upper panel) and spin down (lower panel) of atom 1, the right side shows the occupancies for

spin up (upper panel) and spin down (lower panel) for atom 2. The ξ dependence of the atoms (1

and 2) is inverse to each other, as it is for the spins within one atom. For ξ < 500 meV LiOsO3

shows an antiferromagnetic phase, which rapidly vanishes for ξ between 400 meV and 500 meV.

In fact, it appears that local spin-orbit coupling is capable of driving the CT-QMC calculation

towards a paramagnetic solution. It is yet not fully understood where and why such a strong

antiferromagnetic phase originates and whether it is to be trusted as possible thermodynamically

stable solution. To try and shed some light into this, Figure 4.4 displays the diagonal elements of

the imaginary part of the local self-energy (upper panels) and diagonal elements of the imaginary

part of the local Matsubara Green’s function (lower panels) of orbital 1 for spin up (left panels)

and spin down (right panels). All other orbitals show equivalent behavior. The local self-energy

shows a metallic behaviour for all displayed values of ξ for both spins, i.e. the antiferromagnetic

behavior is not reflected in Im[Σγσ,γ̄σ̄]. However, there is a trend towards larger values for the first

few Matsubara frequencies for 0 meV< ξ < 500 meV which reverses for ξ > 500 meV. The local

Matsubara Green’s function does display the same behavior for both spin channels. However, the

antiferromagnetic phase for ξ < 500 meV clearly induces an insulating character which is reflected

in the slope of the Matsubara Green’s function close to ωn = 0. The local Matsubara Green’s

1Most of the figures show results from 0-2 eV. Of course a coupling strength larger than 1 eV does not refelct a
realistic situation, however, in order to make a trend study we also include this results.
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function shows a smooth transition from an insulating shape ξ = 0 meV to a metallic shape

ξ = 600 meV. For larger values of ξ this trend reverses and the Green’s function slowly decreases

again. However, this happens in a regime which is not realistic. Since the insulating behavior

is not reflected in the imaginary part of the diagonal elements of the local self-energy, but only

in the local Matsubara Green’s function, it has to be induced by non-vanishing elements of the

off-diagonal local self-energy or by the respective real part of the diagonal elements. Eventually,

the behavior of the local Matsubara Green’s function describes the physical behavior.
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Figure 4.3: ξ (eV) dependence of the occupancies of the orbitals and spins at β = 10 for atom
1 (left panels) and atom 2 (right panels) in the LS basis. For ξ < 500 meV LiOsO3 shows
antiferromagnetic behavior, which is gradually decreased from 0 meV< ξ < 400 meV and rapidly
vanishes between 400 meV< ξ < 500 meV. For ξ ≥ 500 meV LiOsO3 shows a paramagnetic phase.
It appears that spin-orbit coupling strongly decreases the antiferromagnetic tendency of LiOsO3.
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Finally, Figure 4.5 displays the average sign of the CT-QMC sampling of atom 1. It rapidly

decreases with increasing ξ, reaching its minimum of 0.25 at ξ = 2 eV, after which it slowly

increases again. The decrease in the beginning is significant and this also decreases the calculations

accuracy. This can only be overcome at the price of increasing the statistical parameters i.e. the

number of measurements in the CT-QMC sampling, raising legitimate concerns about calculations

at lower temperatures. However, at least for small spin-orbit coupling strength the sign stays at

reasonable levels e.g. at ξ = 300 meV the average sign is 0.7.
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Figure 4.4: Diagonal entries of Im[Σγσ,γ̄σ̄] (upper panels) and diagonal entries of Im[Gγσ,γ̄σ̄] (lower
panels) of orbital 1 (all other orbitals a similar) of atom 1 for various vales of ξ (eV). Neither in
the self energy nor in the local Matsubara Green’s function the differences of occupation from
spin up and down (Figure 4.3) are visible. Although the local self-energy does not display an
insulting character the local Matsubara Greens function does for ξ < 500 meV.
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Figure 4.5: ξ (eV) dependence of the average sign of the CT-QMC sampling of atom 1 for β = 10.
The rapid breakdown with increasing ξ is significant. At ξ = 2 it reaches a minimum of about
0.25 and it slowly increases for larger ξ.

4.2.2 β = 15

This subsection contains results for ξ values in the range of [0,8] eV 2 for β = 15, i.e. T=580 K.

The average occupancies of all 3 orbitals and both spin channels are displayed in Figure 4.6 for

both atoms. As for β = 10 it shows antiferromagnetic behavior for low values of ξ. However,

the tendency is slightly stronger at β = 15, since for ξ = 500 meV the material is still antifer-

romagnetic and only at ξ = 600 meV it becomes paramagnetic again. Also the transition to a

paramagnetic phase is not as s sharp as for β = 10. In Figure 4.7 both spins of the diagonal term

of orbital 1 of the imaginary part of the local self-energy (upper panels) and the local Matsubara

Green’s function (lower panels) are displayed. The spin dependence of the occupancies is not

inherited to neither the diagonal terms of the imaginary part of the local self-energy nor the

diagonal terms of the imaginary part of the local Matsubara Green’s function, as it was already

the case at β = 10. The local self-energy displays a metallic behavior for all ξ and reverses its

trend at ξ = 0.6 eV, where also the antiferromagnetic phase vanishes. The non smooth behavior

of the local self-energy at ξ = 2 eV is induced by the very low average sign (0.09) (see Figure 4.8).

In contrast to the metallic slope of the local self-energy the local Matsubara Green’s function

show a clearly insulting slope for ξ ≤ 500 meV with a very sharp transition to a metallic shape

at 500 <meVξ = 600 meV. This also coincides with the onset of the paramagnetic phase. For

even larger coupling strengths the local Matsubara Green’s function shows a slightly insulating

trend.3

The average sign of the CT-QMC sampling is displayed in Figure 4.8 and shows a rapid

2As in the previous subsection most figures display only results for ξ from 0 to 2.
3Since the estimated local (atomic) coupling strength is about 300 meV, those cases, where we observe an

insulating trend, are probably unrealistic and shall only be understood as a trend study.
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decrease with ξ. It reaches its minimum of 0.09 at ξ = 2 eV and stays almost constant at this

level for higher ξ. For ξ ≥ 2 eV calculation for even lower temperature are probably going to fail,

unless an already converged solution from higher temperatures is used as a starting point.
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Figure 4.6: ξ (eV) dependence of the occupancies of the orbitals and spins at β = 15 for atom
1 (left panels) and atom 2 (right panels) in the LS basis. For ξ < 600 meV LiOsO3 shows
antiferromagnetic behavior, which rapidly vanishes between 500 meV< ξ < 600 meV. As the
β = 10 calculation (Figure 4.3), the local spin orbit coupling decreases the antiferromagnetic
tendency. Due to the lower temperature the spin-orbit coupling needs to be increased about
100 meV in order to obatin a paramagnetic solution.
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Figure 4.7: Diagonal entries of Im[Σγσ,γ̄σ̄] (upper panels) and diagonal entries of Im[Gγσ,γ̄σ̄] (lower
panels) of orbital 1 (all other orbitals a similar) of atom 1 for various vales of ξ (eV). Neither in
the self energy nor in the local Matsubara Green’s function the differences of occupation from
spin up and down (Figure 4.6) are visible. Although the local self-energy does not display an
insulting character the local Matsubara Greens function clearly does for ξ ≤ 500 meV.
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Figure 4.8: ξ (eV) dependence of the average sign of the CT-QMC sampling of atom 1 for β = 15.
The rapid breakdown with ξ significant and even more pronounced than for β = 10 (Figure 4.5).
At ξ = 2 it reaches a minimum of about 0.09 and stays almost constant for larger ξ.

4.2.3 ξ = 0.3 eV

In the following we present the results comparing different temperatures for the estimated spin-

orbit coupling strength of ξ = 300 meV. The results for β = 5 and 20 has not been part of a

previous section and additionally we show the local spectral functions obtained with Maxent.

Figure 4.9 displays the average occupancy for spin up (upper left panel) and down (upper

right panel) the diagonal element of the imaginary part of the local self-energy of orbital 1 spin up

(lower left panel) and the diagonal element of the imaginary part of the local Matsubara Green’s

function of orbital 1 spin up (lower right panel). For the local self-energy and the Green’s function

all other orbital and spin combinations show an equivalent behavior. The occupancies show how

LiOsO3 in the LS basis goes from a paramagnetic phase at β = 5 to an antiferromagnetic phase

for β > 5. However, the strength of the antiferromagnetic phase decreases with increasing β. To

better visualize this, let us imagine the point at β = 10 to be mirrored around a horizontal line

at 0.5 4. For really high temperatures (β = 5) ordering is no longer a preferred configuration.

At this temperature the local diagonal self-energy shows the features of a bad metal as does

the local Matsubara Green’s function. For β = 10, 15, 20 the local self-energy shows all features

of a metal, whereas, the local Matsubara Green’s function shows features of an insulator. For

this temperatures the diagonal elements of the imaginary part of the self-energy do not directly

describe the physical behavior. Figure 4.10 shows the local spectral function derived via Maxent.

The upper left panel shows the local spectral function of orbital 1 and spin up, the upper right

panel shows the local spectral function of orbital 1 and spin down. In the local spectral function

4It should not matter whether atom 1 or 2 is dominated by spin up or down. A solution where atom 1 is
dominated by spin up and atom 2 is dominated by spin 2 should be equivalent to a solution with the spins
exchanged as there is no reason for breaking this symmetry. The solution should take one of the two configurations
by chance.
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the differences between spin up and down in the antiferromagnetic phase are now well visible

as shift of weight from ω < 0 to ω > 0 (or the other way around). The average local spectral

function (lower panel) shows the transition from a bad metal at β = 5 to an insulator with a

hap in the local spectral function at β = 15 (β = 10 is on the verge to an insulator.). The

insulating phase coincides with the antiferromagnetic phase. This is reflected in the real part of

the diagonal elements of the local self-energy, where spin up and spin down have have shifted

(w.r.t each other) almost constant slopes. However, experimentally LiOsO3 does not have an

antiferromagnetic phase and this results have to be taken with care. It is not yet clear why

exactly this system tends towards magnetic ordering so strongly and how to enforce paramagnetic

ordering in spin-orbit dependent CT-QMC. This study is deferred to later projects.
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Figure 4.9: β dependence of the occupancy (upper panels), the diagonal entries of Im[Σγσ,γ̄σ̄]
(lower left panel, all orbitals and spins are equal) and diagonal entries of Im[Gγσ,γ̄σ̄] (lower right
panel, all orbitals and spins are equal) of atom 1 for ξ = 300 meV. The hidden last point in the
upper left panel is at β = 20 and 0.45. The occupancies show a antiferromagnetic behavior for
β > 5. However, the tendency decreases with increasing β. The local self-energy shows a bad
metal behaviour for β = 5 and a metallic behavior for β > 5. The Greens functions show a clear
insulating behavior for β > 5, which is most pronounced for β = 15, 20.
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Eventually, Figure 4.11 shows the β dependence of the average sign of the CT-QMC sampling.

As with ξ the sign also decreases with decreasing temperature. A calculation for β = 30 from

scratch (this means that we did not use converged solution of another calculation as starting

point) failed i.e. the sign drops to zero and the result are only noise. In order to go to lower

temperatures in this basis it is necessary to use converged solutions from higher temperatures

as starting point. This approach is regularly used and is known to give good results, though, it

takes significantly longer to perform.
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Figure 4.10: Local spectral function for orbital 1 and both spins (upper panels, all orbitals
are similar) and averaged (band and spin) local spectral function (lower panel) of atom 1 for
ξ = 300 meV. β = 5 shows a bad metal behavior, with an almost vanished quasi-particle peak at
ω = 5. The differences in the occupancies (Figure 4.9) for β = 10, 15, 20 where, β = 10 is on the
verge to an insulator and β = 15, 20 are insulating.
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Figure 4.11: β dependence of the average sign of the CT-QMC sampling of atom 1 for ξ =
300 meV. With increasing β the average sign quickly decreases to 0.12 at β = 20. This could
become a serious problem for larger β as a decreasing sign quickly leads to failed calculations.

4.2.4 ξ = 0.6 eV

In this section we compare the results of calculations for β = 5, 10, 15, 20 with a spin-orbit

coupling strength of 600 meV 5. The only calculation which is not part of any previous section

is β = 20. For this spin-orbit coupling strength all calculations display a paramagnetic phase

as displayed in the upper panels of Figure 4.12, which is consistent with experiments. For β =

20 there is a residual tendency towards an antiferromagnetic phase, even though, it does not

appear in the spectra (compare Figure 4.13). Both the imaginary part of the diagonal elements

of the local self-energy (Figure 4.12 lower left panel) and the imaginary part of the diagonal

elements of the local Matsubara Green’s function (Figure 4.12 lower left panel) of atom 1 show

a metallic behavior. There is only orbital 1 spin up displayed because all other combinations

are equivalent. The metallic coherence decreases with decreasing β, which is in agreement with

the calculations without spin-orbit coupling as presented in section 3.3. This trend is also visible

in the corresponding local spectral functions which are displayed in Figure 4.13. Both spin

channels (upper panels) and also the averaged local spectral function (lower panel) display the

same characteristics and with a well prounounced quasi-particle peak around ω = 0 (it is actually

slightly shifted towards ω < 0). As in the case without spin-orbit coupling the quasi-particle

peak decreases with increasing temperature, i.e. decreasing β. In difference to the calculations

without spin-orbit coupling the breakdown of the quasi-particle peak is not visible and only at

β = 5 (2320K) the coherent peak is significantly suppressed. Furthermore, there is second very

flat peak for ω > 0, which only very slightly temperature dependent.

5This coupling strength is only displayed for this basis, because it gives a paramagnetic solution. In general a
study at this coupling strength would be interesting also in the locally diagonal basis. This is postponed to later
projects.
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Eventually, Figure 4.14 shows the β dependence of the average sign of the CT-QMC sampling.

As for ξ = 300 meV the average sign quickly drops with increasing β. Higher values of β than 20

can only be calculated using converged solutions from lower β, i.e. cooling down the system step

by step instead of directly performing the calculation from scratch.
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Figure 4.12: β dependence of the occupancy (upper panels), the diagonal entries of Im[Σγσ,γ̄σ̄]
(lower left panel, all orbitals and spins are equal) and diagonal entries of Im[Gγσ,γ̄σ̄] (lower right
panel, all orbitals and spins are equal) of atom 1 for ξ = 600 meV. The occupancies show a
very small antiferromagnetic tendency only for β = 20. The local self-energy shows a bad metal
behaviour for β = 5 and a metallic behavior for β > 5. This is also reflected in the local Matsubara
Greens functions, which show a clear metallic behavior for β > 5.
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Figure 4.13: Local spectral function for orbital 1 and both spins (upper panels, all orbitals are
similar) and averaged (band and spin) local spectral function (lower panel) of atom 1 for ξ =
600 meV. All temperatures show a metallic behavior, although the quasi-particle peak decreases
with decreasing β. The spin-orbit coupling leads to a pronounced side peak around ω ≈ 1.
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Figure 4.14: β dependence of the average sign of the CT-QMC sampling of atom 1 for ξ =
600 meV. With increasing β the average sign quickly decreases to 0.1 at β = 20. This could
become a serious problem for larger β as a decreasing sign quickly leads to failed calculations.

4.3 Locally Diagonal Basis Extended with Spin-Orbit Coupling

In this section we present the results calculated in the locally diagonal basis with local (atomic)

spin-orbit coupling. This means that the Wannier Hamiltonian and the interaction coefficient

matrix are rotated into the locally diagonal basis (using the script from Appendix E and F).

Then the local spin-orbit coupling term (1.3) is added to the Wannier Hamiltonian at every k

point using the script from Appendix H. In this basis the off-diagonal terms from the local one-

particle Hamiltonian in the standard basis are incorporated in the diagonal elements, i.e. the

t2g are no longer degenerate and have a splitting of about 250 meV between the lower 2 and the

higher orbital. An example Parameters.in file is presented in the second part of Appendix C (The

”complex umatrix = 1” line has to be omitted). All calculations have been performed on 480-800

cores on VSC3. Analytical continuations have been performed with Maxent [18] also on VSC3.

As in the standard basis calculations with β > 5 show an antiferromagnetic phase for low

spin-orbit coupling strengths (ξ < 400 meV).

Most of the figures show only the results of atom 1, because the other atoms are similar. If

this is not the case, more atoms are displayed. The same holds for the displayed orbitals.

4.3.1 β = 10

In this subsection we present the results for β = 10, i.e. 1160 K, for various values of the spin-orbit

coupling strength. At this temperature LiOsO3 shows a paramagnetic phase for ξ < 400 meV.

This is shown in Figure 4.15. The left side displays the occupancies of atom 1, the right side the

occupancies of atom 2. For ξ = 200 meV the calculations shows only a very small magnetization,

however, we will see that the local Matsubara Green’s function fits into the general trend. The
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Figure 4.15: ξ (eV) dependence of the occupancies of the orbitals and spins at β = 10 for atom
1 (left panels) and atom 2 (right panels) in the Hloc basis. For ξ < 400 meV LiOsO3 shows
antiferromagnetic behavior, which vanishes at 400 meV. For larger values of ξ there is an slightly
increasing gap between orbitals 1 and 2 and orbital 3. It appears that spin-orbit coupling strongly
decreases the antiferromagnetic tendency of LiOsO3 in the Hloc basis.

other two calculations for ξ < 400 meV show a strong antiferromagnetic ordering. Calculations

with ξ ≥ 400 meV show a paramagnetic ordering i.e. there is no significant difference between

spin up and down and atom 1 and 2. There is, however, a difference between orbitals 1 and 2

and orbital 3, which is less occupied. This is, as for β = 5, in agreement to the lifting of the t2g

degeneracy in this basis, as well as the slight increase of the gap between orbital 1 and 2 and

orbital 3 with increasing ξ.

The antiferromagnetic phase is, as for all previous calculations, not seen in the imaginary

part of the diagonal elements of the local self-energy displayed in the upper panels of Figure 4.16.

Both spins are, as in the standard basis, equivalent. In difference to the calculations at β = 5 the

self energy does show a more metallic slope, especially for ξ = 2 eV. There is also a well visible

difference in the slopes of orbital 3 for ξ = 0.8 and 2 eV. This difference is also inherited to the

imaginary part of the diagonal terms of the local Matsubara Green’s function of atom 1, which

is displayed in the lower panels of Figure 4.16. However, the trend towards metal or insulator is

equal for all orbital. Calculations with ξ ≤ 400 meV show insulating characteristics, whereas they
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show metallic characteristic for ξ ≥ 500 meV. This is similar as in the standard basis, where this

situation is just shifted up by 100 meV. The average sign of the CT-QMC sampling is displayed

in Figure 4.17. It shows a significant decrease with increasing ξ, quickly dropping to 0.54 in the

range 0 to 2 eV. Compared to the standard basis the locally diagonal basis performs better, w.r.t.

the average sign, than the standard basis (compare Figure 4.5).
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Figure 4.16: Diagonal entries of Im[Σγσ,γ̄σ̄] (upper panels) and diagonal entries of Im[Gγσ,γ̄σ̄]
(lower panels) of orbital 1 and 3 (band 2 is equivalent to orbital 1) of atom 1 for various vales of ξ
(eV). Neither in the local self-energy nor in the local Matsubara Green’s function the differences
of occupation from spin up and down (Figure 4.15) appear to have a great effect (spin down
shows equivalent behavior and is not displayed). However, although the local self-energy does
not display an insulting character the local Matsubara Greens function does for ξ ≤ 400 meV.
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Figure 4.17: ξ (eV) dependence of the average sign of the CT-QMC sampling of atom 1 for
β = 10. It rapidly decreases for 0 eV< ξ < 2 eV falling to 0.54 at 2 eV.

4.3.2 ξ = 0.3 eV

In this subsection we compare the results for a spin-orbit coupling strength of 300 meV for β = 5

to 20. The results of β = 5, 10 and 20 have not been presented in the previous sections. The

upper panels of Figure 4.18 display the average occupancies of atom 1 for spin up (left panel) and

spin down (right panel). The calculation of β = 10 shows a very pronounced antiferromagnetic

phase. Calculations for β = 15 and 20 do not display such strong antiferromagnetic ordering. It

is, however strong enough to yield an ”insulating-like” imaginary part of the diagonal elements

of the local Matsubara Green’s function (lower left panel). Note that although orbital 3 has

a slightly different slope it is not explicitly displayed here, because there is no qualitatively

new information contained in it. As it is the case in the standard basis the imaginary part of

the diagonal terms of the local self-energy does not reflect the insulating character of the local

Matsubara Green’s function. For the paramagnetic phase at β = 5 both the local self-energy and

the local Matsubara Green’s function show bad metal characteristics. This is directly inherited to

the local spectral function displayed in Figure 4.19 which shows an almost vanished quasi-particle

peak at β = 5. For lower temperatures, i.e. higher β, the local spectral function shows a metal-

insulator transition which is probably induced by the antiferromagnetic ordering (”Slater-like”

MIT). As in the standard basis β = 10 is on the verge to such a MIT. The local spectral function

shows the differences from the spin up and down channel. The spin up channel has weight shifted

towards ω < 0, the spin down channel towards ω > 0.

The average sign of the CT-QMC sampling is displayed in Figure 4.20. It almost linearly

decreases from 0.97 at β = 5 to 0.66 at β = 20. This is almost a factor of 6 better compared to

the standard basis where the sign reduced to 0.12 at β = 20. The locally diagonal basis therefore

offers the opportunity to reach much lower temperatures. This is, however, postponed to later

projects.
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Figure 4.18: β dependence of the occupancy (upper panels), the diagonal entries of Im[Σγσ,γ̄σ̄]
(lower left panel, all orbitals and spins are equal) and diagonal entries of Im[Gγσ,γ̄σ̄] (lower right
panel, all orbitals and spins are equal) of atom 1 for ξ = 300 meV. The occupancies show a obvious
antiferromagnetic behavior only for β = 10. For β = 15, 20 the tendency is graphically hardly
visible. The local self-energy shows a bad metal behaviour for β = 5 and a metallic behavior for
β > 5. However, the Greens functions show a clear insulating behavior for β > 5, which is most
pronounced for β = 15, 20. It appears that a very weak antiferromagnetic phase suffices for a
metall-insultor transition.
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Figure 4.19: Local spectral function for orbital 1 and both spins (upper panels, all orbitals
are similar) and averaged (band and spin) local spectral function (lower panel) of atom 1 for
ξ = 300 meV. β = 5 shows a bad metal behavior, with an almost vanished quasi-particle peak at
ω = 5. The differences in the occupancies (Figure 4.18) for β = 10, 15, 20 where, β = 10 is on
the verge to an insulator and β = 15, 20 are insulating. This trend is very similar to the LS basis
Figure 4.10.
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Figure 4.20: β dependence of the average sign of the CT-QMC sampling of atom 1 for ξ =
300 meV. With increasing β the average sign almost linearly decreases to 0.66 at β = 20.

4.4 Standard Basis Extended with Spin-Orbit Coupling Diago-

nalized

In this section we present the results calculated in the fully diagonalized standard basis. This

means that the local spin-orbit coupling is added to every k point of the Wannier Hamiltonian

using the script from Appendix H. Then the local one-particle Hamiltonian is diagonalized and the

Wannier Hamiltonian and the local interaction coefficient matrix are rotated into this diagonal

basis (scripts from Appendix E and F). Therefore the local one-particle coefficient matrix is

diagonal again. This increases the energetic splitting of t2g orbitals (see Figure 4.1). What will

be referred to as ”spin” index is not a physical spin anymore since the diagonalization of the local

one-particle coefficient matrix mixes both spin channels.

Most of the figures show only the results of atom 1, because the other atoms are similar. If

this is not the case, more atoms are displayed. The same holds for the displayed orbitals.

4.4.1 β = 10

In this subsection we present the results for β = 10 and various values if ξ. The previously

observed tendency towards magnetic ordering is only observed for very low values of ξ e.g. 20 meV.

This can be seen from Figure 4.21, where the upper panels show the average occupancies of atom

1 for spin index up (left panel) and spin index down (right panel) (For atom 2 the situation is

spin reversed). Quite remarkably, in this basis, only for ξ = 0 and 20 meV magnetic ordering

is observed. For all other values the results show a paramagnetic phase. The gap between the

energetic lower lying orbitals 1 and 2 and the higher lying orbital 3 rapidly increases. For ξ = 2 eV

third orbital is almost unoccupied and all charge carriers are either in orbital 1 or 2. This is due

to the large increase in the energetic gap which is about 3 eV at ξ = 2 eV (compare Figure 4.1).
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Figure 4.21: ξ (eV) dependence of the occupancies of atom 1 for β = 10. The non-visible point
in the average double occupancy of orbital 2 is at 0.37. For ξ = 20 meV also this basis shows an
antiferromagnetic phase, however, for ξ > 200 meV both spin channels display the same behavior.
The double occupancy increases with increasing ξ for orbitals 1 and 2 and decreases for orbital
3. In contrast the Hund’s like occupancy decreases for orbital combination 1/3 and 2/3 and
increases for orbitals combination 1/2.

However the small gap of about 150 meV between orbital 1 and 2 also induces an enhancement

of the occupation of orbital 1 of about 25% compared to orbital 2. This is also reflected in the

average double occupancies where the increase for orbital 1 compared to orbital 2 is of about

85%. This follows from the average occupancy of 0.83 for each ”spin” channel, which needs a

high double occupancy. However, the occupancy of orbital 2 is only 0.66, which, apparantly can

be obtained with a much smaller double occupation of this orbital. In difference to all previous

calculation the Hund’s like occupation of orbital 1,3 and 2,3 decreases, which is of course induced

by the fact that orbital 3 is almost unoccupied. For orbitals 1,2 the Hund’s like occupation quickly

increases with increasing ξ.

In Figure 4.22 shows the imaginary part of the diagonal terms of the local self-energy (left

side) and the imaginary part of the diagonal elements of the local Matsubara Green’s function

of atom 1. The local self-energy displays only small differences between the orbital. For ξ = 200

and 300 meV the slope close to ωn = 0 is is steepest, followed by orbital 2 and 3. The small
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Figure 4.22: Diagonal entries of Im[Σγσ,γ̄σ̄] (left panels) and diagonal entries of Im[Gγσ,γ̄σ̄] (right
panels) (spin up and down are equivalent) of atom 1 for various vales of ξ (eV). The local self-
energy shows a bad metal to metal character for increasing ξ from 0.2 eV to 2 eV. The local
Matsubara Green’s function displays opposite trends for orbital 1 and 2 and orbital 3. Orbital
1 and 2 move towards a metal characteristic for larger ξ, whereas the opposite is the case for
orbital 3. In the antiferromagnetic phase all orbitals display an insulating characteristic.
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Figure 4.23: ξ (eV) dependence of the trace over all orbitals and spins of the local Matsubara
Greens function (upper left panel), the average local spectral function (lower panel) and the
average sign of the CT-QMC sampling (upper right) of atom 1 for β = 10. The trace of the local
Matsubara Green’s function both reflect the insulating behavior induced by the antiferromagnetic
phase at very small ξ, a slight tendency towards metallicity in the intermediate regime 0.2 eV<
ξ < 0.5 eV and a slight tendency towards a more insulating behavior for large ξ = 2 eV. The
average sign shows a minimum about 0.67 for 0.2 eV≤ ξ ≥ 0.3 eV and increases again for larger
ξ. This basis appears to have a significant sign problem only for a specific range of ξ.

differences are also visible in the local Matsubara Green’s function. For ξ = 20 meV it displays

insulating characteristics, consistent with previous antiferromagnetic results. For all other ξ

orbital 1 and 2 display a metallic characteristic with a trend towards a better metal. This trend

is reversed for orbital 3 which loses its metallic features with increasing ξ. This is inherited from

its occupancy.

Eventually Figure 4.23 displays the trace of the imaginary part of the local Matsubara Green’s

function (upper left panel) the average sign of the CT-QMC sampling (upper right panel) and

the average local spectral function (lower panel) of atom 1. The trace of the local Matsubara

Green’s function shows a slight trend towards a more metallic solution for 0 meV< ξ < 500 meV.

However, for ξ = 2 eV it shows a less metallic slope. This behavior is also reflected in the average
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local spectral function. The decrease of the Matsubara Green’s function at the first Matsubara

frequency for ξ = 2 eV induces a slight shift of the quasi-particle shift towards smaller ω in the

local spectral function. Furthermore, the average local spectral functions shows a second peak

around ω = 3, which is separated from the quasi-particle peak by the onset of a gap.

The average CT-QMC sign decreases rapidly from ξ = 0 to 200 meV. It also displays a local

minimum of 0.68 between 200 and 300 meV. In difference to the non-diagonalized calculation

from the previous chapters, in this basis the average sign increases for ξ > 0.5 eV. The position

of the minimum is unfortunate as it is exactly at our estimation of the local spin-orbit coupling

strength. However, this basis appears to be a good choice if spin-orbit coupling is assumed to be

one of the dominant interactions.

4.4.2 ξ = 0.3 eV

In this subsection we compare the results for ξ = 300 meV, which is the estimated strength of

the local-spin orbit coupling in LiOsO3, for β = 10− 30. As in the last sections, we first present

the occupancies of atom 1 in Figure 4.24. The average occupancy per orbital is displayed in

the lower panel. A minor temperature trend is observed for orbital 1, which occupancy slightly

increases with increasing β, and orbital 3, which becomes emptier with increasing β. The double

occupancy shows a more pronounced trend for orbital 1, where the double occupancy increases

with increasing β. This indicates a metallizing trend for this orbital. The trends in the Hund’s

like occupancy are again only weakly pronounced and show a slight increase for orbitals 1/2 and a

slight decrease for orbitals 1/3 and 2/3. In order to obtain a deeper insight Figure 4.25 shows the

imaginary part of the diagonal terms of the local Matsubara Green’s function of atom 1. Orbitals

1 and 2 display a trend towards a good metal behavior for increasing β, whereas, as expected

from the average double occupancy, this trend is more pronounced for orbital 1. In difference

orbital 3 displays almost no β dependence is has bad metal characteristic on the whole β range

presented. Since the occupancy of orbital 1 is highest and the metallic coherence is also most

visible in this orbital, this is a strong indication that LiOsO3, also with the inclusion of local

spin-orbit coupling, gradually loses its metallic properties with increasing temperature. This is

also reflected in the trace of local Matsubara Green’s function (lower right panel) which shows a

clear decrease of its metallic character with increasing temperature.

The corresponding local spectral functions, are displayed in Figure 4.26. Orbital 1 (upper

left panel) shows the strongest temperature dependence, with a quickly decreasing quasi-particle

peak for increasing β, which is in agreement to the Matsubara Green’s function. Orbital 2 also

shows this temperature dependence it is however less pronounced. Orbital 3 displays a broad

peak between ω = 0 and 3, which also decreases with decreasing β. The onset of this broad peak

is also visible in orbitals 1 and 2, especially for β = 30. The average local spectral function (lower

right panel) shows a quasi-particle peak, which loses its metallic coherence with decreasing β.

The broad peak of orbital 3 is only visible as a broadening of the average spectrum for ω > 0.

The average sign of the CT-QMC sampling of atom 1 is displayed in Figure 4.27. As for all

previous calculations the average sign almost linearly decreases with β. At β = 20 the sign drops
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down to 0.3. This is better by factor of 3 then the standard basis, however, it is worse by more

than a factor of 2 then the locally diagonal basis.
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Figure 4.24: β dependence of the occupancies for ξ = 300 meV of atom 1. The non-visible
point of the average double occupancy of orbital 2 is at 0.27. Both spin channels display the
same behavior. The average occupancy and the average double occupancy shows the energetic
difference between the orbitals with the biggest occupancy for the energetic lowest lying orbital 1
and a slightly lower occupancy for orbital 2 and much lower occupancy for the energetic highest
lying orbital 3. The average double occupancy increases with increasing ξ only for orbital 1,
whereas for orbital 2 and 3 it stays almost constant. The Hund’s like occupancy shows a large
gap between the spin alignment of orbital 1/2 and orbital 1/3 and 2/3. However, there is only a
small temperature dependence.
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Figure 4.25: Diagonal entries of Im[Gγσ,γ̄σ̄] for ξ = 300 meV for atom 1. Both spin channels have
equivalent results. There are significant differences between the orbital. Orbital 1 appears overall
to be most metallic and also displays the strongest β dependence. Orbital 3 on the other side
displays bad metal characteristics for all β values. However, the occupancy of orbital 1 is higher
and therefore it contributes most to charge carrier transport.
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Figure 4.26: Local spectral function for all orbitals (spins are equivalent) and averaged (band
and spin) local spectral function (lower right panel) for ξ = 300 meV. Orbital 1 shows a metallic
character for all temperatures, such as orbital 2, which shows less temperature dependence.
Orbital 3 has a quasi-particle peak shifted from ω = 0 towards higher ω. The averaged local
spectral function shows a well pronounced quasi-particle peak which decreases with decreasing β.
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Figure 4.27: β dependence of the average sign of the CT-QMC sampling of atom 1 for ξ =
300 meV. With increasing β the average sign quickly and almost linearly decreases to 0.14 at
β = 30.

4.5 Locally Diagonal Basis Extended with Spin-Orbit Coupling

Diagonalized

In this section we present the results calculated in a fully diagonalized basis, where the spin is

added in the locally diagonal basis 6. This means, in practice, that the Wannier Hamiltonian

and the local interaction matrix are rotated into the locally diagonal basis using the scripts from

Appendix E and F and, that afterwards, the local spin-orbit coupling is added to every k point

of the Wannier Hamiltonian using the script from Appendix H. Eventually the local one-particle

coefficient matrix is diagonalized again and the Wannier Hamiltonian and the local interaction

coefficient matrix are rotated into this again diagonal basis (scripts from Appendix E and F).

Therefore the local one-particle coefficient matrix is diagonal again and the energy splitting of

t2g orbitals gets increased with ξ (see Figure 4.1). Once again, what will be referred to as ”spin”

index is not a physical spin anymore since the diagonalization of the local one-particle coefficient

matrix mixes both spin channels.

Most of the figures show only the results of atom 1, because the other atoms are similar. If

this is not the case, more atoms are displayed. The same holds for the displayed orbitals.

4.5.1 ξ = 0.3 eV

In this subsection we present the last results of this thesis. We compare the results of a calculation

for ξ = 300 meV and β = 10− 20 calculated in a fully diagonalized basis with spin-orbit coupling

added in the locally diagonal basis. In Figure 4.28 the occupancies of atom 1 are displayed. The

general trends are very similar to the results in the fully diagonalized standard basis. Only the

6For this basis we where not able to perform a study with increasing ξ for β = 10 in the given time.
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Figure 4.28: β dependence of the occupancies of atom 1 for ξ = 300 meV. Both spin channels
display the same behavior. The average occupancy and the average double occupancy shows the
energetic difference between the orbitals with the biggest occupancy for the energetic lowest lying
orbital 1 and a slightly lower occupancy for orbital 2 and much lower occupancy for the energetic
highest lying orbital 3. The average double occupancy increases with increasing ξ only for orbital
1, whereas for orbital 2 and 3 it stays almost constant. The Hund’s like occupancy shows a large
gap between the spin alignment of orbital 1/2 and orbital 1/3 and 2/3 and a small one for the
later two. However, there is only a small temperature dependence.

separation of the average Hund’s like occupation of orbitals 1,3 and 2,3 is increased, indicating

an increase of localization in orbital 1 compared to the fully diagonalized standard basis. This

is directly inherited to the imaginary part of the diagonal terms of the local Matsubara Green’s

function of atom 1 displayed in Figure 4.29. In this basis orbital 2 displays more metallic char-

acteristics than orbital 1. Also the temperature trend is more pronounced for orbital 2. Note

that this is the reversed situation from the fully diagonalized standard basis, where orbital 1 is

more metallic (compare Figure 4.25). Orbital 3 behaves like in the fully diagonalized standard

basis and shows bad metal characteristics and almost no temperature trend. Also the trace of the

Green’s function behaves similar than in the fully diagonalized standard basis, losing its metallic

properties with increasing β.

The local spectral function displayed in the upper four panels of Figure 4.30 shows different

behaviour for all 3 orbital. Orbital 1 shows a quasi-particle peak which is broadened for ω < 0

and decreases with decreasing β. Orbital 2 shows a very narrow quasi-particle peak, which loses
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Figure 4.29: Diagonal entries of Im[Gγσ,γ̄σ̄] of atom 1 for ξ = 300 meV. Both spin channels have
equivalent results. There are significant differences between the orbital. Orbital 2 appears overall
to be most metallic and also displays the strongest β dependence. Orbital 3 on the other side
displays bad metal characteristics for all β values.

weight with decreasing β and the onset of a small side peak at ω = −2, which slowly rises

for decreasing β. Similar to the fully diagonalized standard basis orbital 3 shows a broad peak

between ω = 0 and 3. There is only very weak temperature trend, which slightly decreases the

peaks high and broadens it with decreasing β. The average local spectral function is again very

similar to the fully diagonalized standard basis and shows a quasi-particle peak which gradually

loses weight and coherence with increasing temperature. This is very similar to the average local

spectral function calculated in fully diagonalized standard basis, indicating that on average it is

not so important whether the spin-orbit coupling is added in the standard or the locally diagonal

basis.

The average sign of the CT-QMC sampling is displayed in the lowest panel of Figure 4.30. As

for all previous calculations it almost linearly decreases with increasing β. At β = 20 it is 0.27,

which is slightly lower than in the fully diagonalized standard basis. Although the calculations

in the fully diagonalized bases do yield the experimentally observed paramagnetic phase the sign

is significantly worse than in the locally diagonal (Hloc) basis.
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Figure 4.30: Local spectral function for all orbitals (spins are equivalent), averaged (band and
spin) local spectral function (middle right panel) and average CT-QMC sign of atom 1 for ξ =
300 meV. The local spectral function of orbital 2 shows a metallic character for all temperatures,
such as orbital 1, which shows less temperature dependence. Orbital 3 has a quasi-particle
peak shifted from ω = 0 towards higher ω. The averaged local spectral function shows a well
pronounced quasi-particle peak which decreases with decreasing β. The average CT-QMC sing
quickly decreases almost linearly with increasing β. At β = 20 it is already down to 0.1.
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Chapter 5

Conclusion

The numerical results presented in this work have revealed multifaceted aspects of local spin-orbit

coupling effects in LiOsO3.

First of all, we have found that the splitting of the t2g degeneracy induced by the trigonal

distortion of the oxygen octahedron in LiOsO3 becomes further enhanced when local spin-orbit

coupling is included to the one-particle Hamiltonian of the 5d t2g orbitals of Os. This is directly

reflected in the local orbital occupancies, as the four energetic lower lying orbitals get on aver-

age significantly more populated than the two higher lying orbitals (further magnifying a trend

already observed in the absence of local spin-orbit coupling). Therefore, introducing the local

spin-orbit coupling drives the t2g manifold of LiOsO3 further away from the half-filling condi-

tion for each orbital, gradually weakening the Hund’s localization effects. At the same time,

the double occupancy for the lower orbitals increases with increasing coupling strength. Both

effects are expected to drive the system towards a more metallic solution. In fact, this trend is

indeed observed in our DMFT results. A comparison of the local spectral function at various

temperatures for calculations with and without local spin-orbit coupling is presented in Figure

5.1. Our calculations with the estimated coupling strength of ξ = 300 meV appear to be overall

more metallic than the ones with ξ = 0 meV, with larger differences observed at very high temper-

atures (T=1160 K). This trend can already be inferred from the first few Matsuabra frequencies

of the local Matsubara Green’s function, avoiding the analytical continuation, displayed in the

inset of Figure 5.1. Local spin-orbit coupling also smears out the slightly pronounced side peaks,

which are present in the local spectral functions without local spin-orbit coupling.

Evidently, the possible compensation between the lifting of the t2g degeneracy due to the

trigonal crystal field splitting in LiOsO3 and the local spin-orbit coupling strength, which are

roughly of the same magnitude, does not actually occur. Hence, the theoretical explanation of

the high temperature bad metal behavior of LiOsO3 needs further investigation. There are two

possibilities which seem to be quite plausible: (i) The screening of the local Coulomb interaction

is overestimated by cRPA, which yields too small U, J and V interaction parameters and a too

weak localization. This will be rather simple to investigate by gradually increasing the whole

Uγ1γ2γ3γ4 local interaction matrix. (ii) The non-local spin-orbit coupling effect play a pivotal

role in this material. To investigate this, a first insight can be obtained by comparing a DFT
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Figure 5.1: Local spectral function of LiOsO3 averaged over all orbitals and spins of atom 1
at various temperatures with (full lines) and without (dashed lines) local spin-orbit coupling
calculated in the fully diagonalized locally diagonal (Hloc diagonal) basis. The inset shows the
corresponding local Matsubara Green’s functions. The temperature trend is similar with and
without local spin-orbit coupling, though in the former case the spectral functions are overall
more metallic.

calculation including the full spin-orbit coupling to one with local (atomic) spin-orbit coupling

only. If the non-local spin-orbit coupling turns out to be important at the level of DFT, it will

most likely also influence the physics in this material in presence of correlations. However, in

order to perform a fully ab-initio DFT+DMFT calculation in a Wannier basis including non-

local spin-orbit coupling, to our knowledge, further implementations in the cRPA algorithm are

necessary.

Another important extension of this work would be to compute the corresponding optical

conductivities in the DFT+DMFT approximation. This has not been done in this project, be-

cause to do so it is necessary to analytically continue all elements of the local self-energy with a

sufficient degree of precision. Especially for systems with large spin-orbit coupling strength and

for low temperatures this will require much higher statistics, i.e. more runtime, to obtain smooth

functions for the off-diagonal local self-energy in our CT-QMC framework. On the other hand,

to make a more direct comparison to the experiment this step will be crucial for future studies

on this subject.

This diploma thesis, in any case, has gone beyond showing that local spin-orbit coupling is not

counterbalancing the observed metallicity from previous calculations (but reinforces it). In fact,

our DMFT calculations without spin-orbit coupling have also shown that LiOsO3 has a strong

tendency to develop an antiferromagnetic long-range order. It is remarkable, that including local
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Basis 0 meV 50 meV 300 meV 400 meV 500 meV 600 meV ≥2 eV

LS
AF

(β ≥ 10)
-

AF
(β ≥ 10)

AF
(β ≥ 10)

AF
(β ≥ 15)

AF
(β > 20)

PM

Hloc
AF

(β ≥ 10)
-

AF
(β ≥ 10)

AF
(β ≥ 15)

PM
(β ≤ 20)

PM
(β ≤ 20)

PM

LS diagonal
AF

(β ≥ 10)
PM

(β ≤ 20)
PM PM PM - PM

Hloc diagonal
AF

(β ≥ 10)
PM

(β ≤ 20)
PM - - - -

Table 5.1: This table summarizes the magnetic order found in our DMFT calculations. The β
values indicate the regime where the respective phase is stable. If there is no β value displayed
the phase was stable in all our calculations and we assume it to remain stable also at lower
temperatures.

spin-orbit coupling drives the material back towards a paramagnetic phase, where the transition

appears rather abrupt than smooth. The strength of the local (atomic) spin-orbit coupling

necessary to obtain a paramagnetic phase, is significantly basis dependent. This is displayed

in Table 5.1. Both bases where the local one-particle coefficient matrix εγσ,γ̄σ̄ is diagonal (LS

diagonal and Hloc diagonal) show a much weaker tendency towards an antiferromagnetic phase.

Already a spin-orbit coupling strength ξ of 50 meV 1 is enough to overcome the border to a

paramagnetic phase. In comparison to the non diagonal bases (LS and Hloc), where one needs a

spin-orbit coupling strength ξ of about 400 meV 2to 600 meV to suppress the antiferromagnetic

order.

This phenomenon, which emerged from our most recent calculations, is not yet fully under-

stood and needs further investigation to clarify whether it is in fact a numerical or truly physical

effect. As a first step it is necessary to understand whether the inter-atomic terms of the first

Brillouin zone included in the full Wannier Hamiltonian are most responsible for the development

of the antiferromagnetic phase. If not, the intra-atomic interaction is inducing the antiferromag-

netic phase and, furthermore, it is worth investigating whether this effect is driven by the local

interaction terms Uγ1γ2γ3γ4 or by the local one-particle terms εγγ̄ .

Finally, the development of an algorithm enforcing a paramagnetic phase is needed for further

realistic calculations including spin-orbit coupling of materials such as LiOsO3, which are known

to be paramagnetic in the whole experimentally accessible temperature range.

1Our most recent calculations in the LS diagonal and the Hloc diagonal basis for ξ = 50 meV show a paramagnetic
phase for β = 10 and 20. We have no knowledge about lower temperatures yet.

2Our most recent calculations in the Hloc basis for ξ = 400 meV show the onset of an antiferromagnetic phase
for β = 15 and 20.
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Appendix A

Additional Results

A.1 β = 5 Standard Basis

This subsection contains results for ξ values in the range of 0-8 eV 1 for β = 5, i.e. T=2320 K. This

temperature is far above all measured temperatures and LiOsO3 is most likely already melted at

this temperature. However, it is interesting from a theoretical standpoint as the calculations do

not show an antiferromagnetic phase at this temperature. Therefore, this temperature is suitable

to describe the influence of spin-orbit coupling to a paramagnetic solution of LiOsO3.

To get a first insight, the left panels of Figure A.1 display the imaginary part of the diagonal

elements of the local self-energy Σγσ,γ̄σ̄(ωn) for ξ values ranging from 0 to 2 eV. Somewhat at

first sight surprisingly, there are no differences between the diagonal self-energies of the orbitals.

Apparently the orbital and spin off-diagonal elements introduced with the spin-orbit coupling (1.3)

do not alter the orbital equivalence of the diagonal elements of the imaginary part of the self-

energy. The changes driven by ξ are, in any case, well pronounced and show a visible decrease of

the local self-energy close to ωn = 0, which would indicate a further metallization of this material

at such a high temperature. However, in this basis there are also non-vanishing off-diagonal

elements (not shown). For those, however, a direct physical interpretation is considerably more

complicated as compared to the diagonal elements. The overall effect of the self-energy can be

better understood by looking at the Matsubara Green’s function.

However, before we do so, in order to obtain a deeper insight, we take a look at the right

panels of Figure A.1, which shows the occupancies of the calculations. Consistent with the

equivalence of the orbital diagonal terms of the self-energy, the average occupation of each orbital

(lower right panel) is about 0.5 for all ξ, i.e. all orbitals are nominally half-filled. The average

double occupation per orbital shows a strong ξ dependence, ranging from 0.09 at ξ = 0 eV to

0.2 at ξ = 2 eV. This trend decreases for even larger values if ξ > 2 (not displayed), probably

converging towards a relative double occupation of 1, which is the non-correlated case. This trend

is matched by the trend of the relative Hund’s like occupation (upper right panel) which shows a

decrease with increasing ξ, indicating a loss of localization of charge carriers. The differences of

1Most figures display only results for ξ = 0 − 2 eV. The results for ξ > 1 are, of course, not realistic. However,
in order to show clear trends we include this calculations.
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Figure A.1: Diagonal entries of Im[Σγσ,γ̄σ̄] of atom 1 for β = 5 at various valus of ξ in eV and
ξ (eV) dependence of the occupancies of atom 1 for β = 5, where the term ”relative” refers to

terms of the form
〈nγσnγ̄σ̄〉
〈nγσ〉〈nγ̄σ̄〉 . Both spin channels display the same behavior. At this temperature

for the self-energy also the orbitals are equivalent. For the self-energy all orbitals display a slow
trend towards small local self-energy for larger ξ. The double occupancy increases with increasing
ξ, whereas the Hund’s like occupancy decreases. The spin alignment between the orbitals 1 and
2 decreases very fast.
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the spin alignment between orbitals 1,3 2,3 and 1,2 are significant and indicate that after all not

all orbitals behave equivalent.

Finally Figure A.2 displays the imaginary part of the trace of the local Matsubara Green’s

function (upper left panel) (The diagonal elements of Gγσ,γ̄σ̄ are equivalent for all orbitals and

spins), the corresponding average local spectral function (lower panel) and the average sign of

the CT-QMC sampling (upper right panel) of atom 1. The strong ξ dependency seen in the

local self-energy (compare Figure A.1) is only partially reflected in the local Matsubara Green’s

function. Surprisingly, it shows a well pronounced tendency towards larger values for the first few

Matsubara frequencies, i.e. an insulating trend. This is opposed to what we would expect from

the diagonal elements of the self energy. Hence, this trend has to be induced by the off-diagonal
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Figure A.2: Trace over all orbitals and spins of the local Matsubara Green’s function for various
values of ξ (eV) (upper left panel) and ξ (eV) dependence of the average sign of the CT-QMC
sampling (upper right panel) and average local spectral function of atom 1. The changes with ξ in
the self energy and the occupancies (Figure A.1) are also reflected in the local Matsubara Green’s
function and the average local spectral function. The local Matsubara Green’s function shows
an insulation trend with increasing ξ, as does the spectral function which gradually shifts weight
towards the second peak at ω > 0. However, the sign of the calculation is heavily influenced by
ξ, quickly dropping to 0.64 at ξ = 2 eV. For larger ξ > 2 eV the sign increases again.
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terms. This insulating trend is reflected in the corresponding average local spectral function. The

quasi-particle peak gets slightly shifted towards ω < 0 reducing the spectral weight at ω = µ.

At the same time, the peak significantly narrows and a second peak at ω > 0 rises. For very

high values of ξ = 4 eV where the spin-orbit coupling probably the dominate role this peak is

separated from the quasi-particle peak by a gap (only almost for ξ = 4).

The average sign of the CT-QMC sampling shows a very significant trend, rapidly decreasing

with increasing ξ (except at ξ = 0, where the sign is smaller). It reaches its minimum of 0.64 at

ξ = 2 eV. For larger ξ > 2 eV the sign slightly increases again.

Overall at this temperature there is trend towards a more insulting solution, which is displayed

in the trace of the local Matsubara Green’s function and the average local spectral function

Figure A.2 but not in the double and Hund’s like occupations (Figure A.1), which shows strong

indications for a delocalization of electrons. However, eventually the physics is described by the

local spectral function. The trend found at this temperature is yet not fully understood, as it is

opposed to what we have seen at lower temperatures (compare the results from section 4.4.1) 2.

This is to be studied in upcoming projects.

A.2 β = 5 Locally Diagonal Basis

In this subsection we present the results β = 5, i.e. T=2320K, and various values of ξ. This

temperature is of course, as already mentioned, far above experimental measurements, however,

calculations do not show an antiferromagnetic phase at this temperature and are therefore suited

to describe the influence of spin-orbit coupling on a DMFT (CT-QMC) calculation in the para-

magnetic phase, which is also experimentally observed.

A first insight is given by Figure A.3 which shows the imaginary part of the diagonal elements

of the local self-energy for all three orbitals (both spin channels are equivalent). Orbital 1 and

2 (upper panels) display equivalent bad metallic behavior, with decreasing values for increasing

spin-orbit coupling strength. Also orbital 1 displays a bad metal behavior, however, for large

spin-orbit coupling strength the slop close to ωn = 0 is more metallic than for orbitals 1 and 2.

Overall the self-energy has a metallizing trend.

The occupancies shown in Figure A.4 have a very pronounced trend with increasing ξ. The loss

of degeneracy in the orbitals is reflected in the average occupancy per orbital (upper right panel)

which shows that the energetic lower lying orbitals 1 and 2 are more occupied than orbital 3. This

difference increases with increasing ξ yielding a difference of 0.1 between the upper and the lower

orbital. Furthermore, it is also reflected in the average double occupancy, where the gap between

orbital 1 and 2 and orbital 3 also increases with increasing spin-orbit coupling strength and the

relative average Hund’s occupancy where the spin alignment between orbital 1 and 2 and orbital

1 and 3 is significantly larger then between orbital 1 and 2. In general increasing ξ decreases the

(localizing) effect of the Hund’s exchange. This is not surprising as spin-orbit coupling introduces

spin flip terms to the local one-particle Hamiltonian allowing previously aligned spins to dis align.

2In the estimated realistic regime of ξ = 300 meV the calculation at β = 5 shows almost no change in the local
spectral function w.r.t to the ξ = 0 meV calculation. Therefore, this is really to be understood as a trend study.
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As in the standard basis the effect on the slope of the imaginary part of the trace of the local

Matsubara Green’s function, displayed in the upper left panel of Figure A.5, is counter intuitive.

For increasing ξ the Green’s functions slope for the first few Matsubara frequency shows an

insulating trend. This is opposed to the self-energy and the behavior of the double occupancy. It

is, however, also reflected in the average local spectral function, which is displayed in the lower

panel of Figure A.5. As in the standard basis the more insulating slope in the Matsubara Green’s

function is reflected by a shift of the quasi-particle peak towards ω < 0 and the onset of second

peak. The second peak is located at ω > 0 and separates form the quasi-particle peak with

increasing ξ. Again, this behavior is in contrast to the trends observed at lower temperatures.
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Figure A.3: Diagonal entries of Im[Σγσ,γ̄σ̄] of atom 1 for β = 5 and various valus of ξ in eV.
Both spin channels have equivalent results. All orbitals display a trend towards smaller local
self-energy at the first few Matsubara frequencies for larger ξ. However, this trend converges
around ξ = 4 eV. Orbital 3 appears slightly more metallic for ξ = 0.3 eV and slightly less metallic
for ξ ≥ 2 eV.
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The behavior of the average sign of the CT-QMC sampling, however, is in agreement with all

previous calculation and is presented in the upper right panel of Figure A.5. It rapidly decreases

with ξ (0.8 at ξ = 2 eV). However, in difference to the standard basis it does not show a minimum

at ξ = 2 eV but goes on decaying for all calculated values of ξ. From the collected data it is not

possible to tell whether there is a minimum at higher ξ or whether the sign converges towards

a fixed value. After all at this temperature the locally diagonal basis performs better than the

standard basis for all calculated ξ w.r.t the average sign.
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Figure A.4: ξ (eV) dependence of the occupancies of atom 1 for β = 5, where the term ”relative”

refers to terms of the form
〈nγσnγ̄σ̄〉
〈nγσ〉〈nγ̄σ̄〉 . Both spin channels display the same behavior. The average

occupation for orbitals 1 and 2 slightly increases whereas the for orbital 3 it decreases. Overall
this further increases the gap between orbitals 1 and 2 and orbital 3. The double occupancy
increases with increasing ξ, whereas the Hund’s like occupancy decreases. The spin alignment
between the orbitals 1 and 2 decreases very fast, indicating a metallic behavior of this two bands.
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Figure A.5: Imaginary part of the trace over all orbitals and spins of the local Matsubara Green’s
function of atom 1 for various values of ξ (eV) (upper left panel) and ξ dependence of the average
sign of the CT-QMC sampling (upper right panel) and average local spectral function of atom 1.
The changes with ξ in the imaginary part of the diagonal elements of the local self-energy (Figure
A.3) and the occupancies (Figure A.4) are reflected in the local Matsubara Green’s function and
the average local spectral function, which show an insulating trend for increasing ξ (This is similar
to the standard basis). The sign of the calculation is strongly influenced by ξ. However, it is
not as heavily influenced as in the LS basis (Figure A.2 dropping only to 0.8 for ξ = 2 eV. In
difference the sign keeps dropping also for larger ξ.
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Appendix B

Local One-Particle Coefficients and

Local Interaction Coefficients of

Atom 1 of LiOsO3

Here we dislpay the local one-particle coefficient matrix and the local interaction coefficient matrix

for atom 1 of LiOsO3. All other five atoms have very similar coefficients. The coefficients are

derived from a DFT + cRPA calculation and are used as input for calculations of this thesis. In

Table B.1 the local one-particle coefficients are displayed. The offidagonal elements are of the

size of 30% of the Hund’s J parameter (0.26). In Table B.2 the local interaction coefficients are

displayed.

band1 band2 Value [eV]

1 1 5.0447
1 2 0.0765
1 3 0.0789
2 1 0.0765
2 2 5.0423
2 3 0.0777
3 1 0.0789
3 2 0.0777
3 3 5.0471

Table B.1: Local one-particle coefficients εγγ̄ of atom 1 from a cRPA calculation. The other
atoms are similar. The k-dependend one-particle coefficient matrix (Wannier Hamiltonian) is too
large to display.
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band1 band2 band3 band4 Value [eV] band1 band2 band3 band4 Value [eV]

1 1 1 1 2.41278 3 2 2 2 0.02168
2 1 1 1 0.02057 1 2 3 2 -0.00455
3 1 1 1 -0.00123 2 2 3 2 0.02168
1 1 2 1 0.02057 3 2 3 2 1.79130
2 1 2 1 1.79087 1 3 1 2 -0.00467
3 1 2 1 -0.00467 2 3 1 2 -0.00503
1 1 3 1 -0.00123 3 3 1 2 -0.00547
2 1 3 1 -0.00467 1 3 2 2 -0.00503
3 1 3 1 1.79069 2 3 2 2 0.02168
1 2 1 1 0.02057 3 3 2 2 0.26119
2 2 1 1 0.26078 1 3 3 2 -0.00547
3 2 1 1 -0.00514 2 3 3 2 0.26119
1 2 2 1 0.26078 3 3 3 2 -0.00252
2 2 2 1 -0.00123 1 1 1 3 -0.00123
3 2 2 1 -0.00503 2 1 1 3 -0.00514
1 2 3 1 -0.00514 3 1 1 3 0.26058
2 2 3 1 -0.00503 1 1 2 3 -0.00514
3 2 3 1 -0.00499 2 1 2 3 -0.00455
1 3 1 1 -0.00123 3 1 2 3 -0.00547
2 3 1 1 -0.00514 1 1 3 3 0.26058
3 3 1 1 0.26058 2 1 3 3 -0.00547
1 3 2 1 -0.00514 3 1 3 3 0.02044
2 3 2 1 -0.00455 1 2 1 3 -0.00467
3 3 2 1 -0.00547 2 2 1 3 -0.00503
1 3 3 1 0.26058 3 2 1 3 -0.00547
2 3 3 1 -0.00547 1 2 2 3 -0.00503
3 3 3 1 0.02044 2 2 2 3 0.02168
1 1 1 2 0.02057 3 2 2 3 0.26119
2 1 1 2 0.26078 1 2 3 3 -0.00547
3 1 1 2 -0.00514 2 2 3 3 0.26119
1 1 2 2 0.26078 3 2 3 3 -0.00252
2 1 2 2 -0.00123 1 3 1 3 1.79069
3 1 2 2 -0.00503 2 3 1 3 -0.00499
1 1 3 2 -0.00514 3 3 1 3 0.02044
2 1 3 2 -0.00503 1 3 2 3 -0.00499
3 1 3 2 -0.00499 2 3 2 3 1.79130
1 2 1 2 1.79087 3 3 2 3 -0.00252
2 2 1 2 -0.00123 1 3 3 3 0.02044
3 2 1 2 -0.00455 2 3 3 3 -0.00252
1 2 2 2 -0.00123 3 3 3 3 2.41265
2 2 2 2 2.41183

Table B.2: Interaction coefficients of Uγ1γ2γ3γ4 of atom 1 from a cRPA calculation. The other
atoms are similar.
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Appendix C

Example Parameters.in
These parameters.in files give reasonable results if the code is run on 480-800 (30-50 nodes on the

Vienna Scientific Cluster 3) cores in parallel.

Example Parameters.in for a calculation without spin-orbit coupling in the

standard basis:

[ General ]
DOS = ReadIn
NAt = 6 # Number o f atoms
HkFile = HK LiOsO3 . dat # Hamiltonian H( k ) F i l e
beta = 15 # 15 20 30 50
totdens = 3 .0 # Elec t rons per atom
EPSN = 1e−3 # Search mu−t o l e r a n c e
reado ld = 0
f i l e o l d = asd f
DMFTsteps = 100
FileNamePref ix = LiOsO3 t2g Full Coulomb beta15
EPSEQ = 1e−3 # Limit f o r atomic equ iva l ence
magnetism = para # Enforces paramagnetism
mixing = 0 .5 # Mixing o f the s e l f −energy
siw moments = est imate # For cont inuat i on o f the s e l f −energy
#equiv = 0 ,1 ,0 , 1 , 0 , 1 # To e n f o r c e equ iva l ence o f atoms

[ Atoms ]
[ [ 1 ] ]
Hamiltonian = ReadNormalUmatrix # Or Kanamori
QuantumNumbers= Nt Al l Szt #Qzt # Conserved quantum numbers
Nd = 3 # Number o f d−bands
umatrix = U i jk l L iOsO3 at1 . dat
#Udd = 2.412 # For Kanamori
#Vdd = 1.791 # For Kanamori
#Jdd = 0.261 # For Kanamori

.

. # Here go atoms 2−6

.

[QMC]
Eigenbas i s = 1
Nwarmups = 1e5
Nmeas = 6e4 # 6e4−6e6 Measurments

96



NCorr = 2e2 # 1e2−1e3 ( beta dependent )
# Cor r e l a t i on l ength

Niw = 1000 # Number o f Matsubara f r e q u e n c i e s
Ntau = 1000 # Number o f tau po in t s
s ta te sampl ing = 1
o f f d i a g = 1 # Only f o r ReadNormalUmatrix

Example Parameters.in for a calculation with spin-orbit coupling in a rotated

basis:

[ General ]
DOS = ReadInSO
NAt = 6 # Number o f atoms
HkFile = HK LiOsO3 SOC rot . dat # Hamiltonian H( k ) F i l e
beta = 15 # 15 20 30 50
totdens = 3 .0 # Elec t rons per atom
EPSN = 1e−3 # Search mu−t o l e r a n c e
reado ld = 0
f i l e o l d = asd f
DMFTsteps = 100
FileNamePref ix = LiOsO3 t2g Full Coulomb beta15 lambda0 .15
EPSEQ = 1e−3 # Limit f o r atomic equ iva l ence
magnetism = f e r r o # Most gene ra l
mixing = 0 .5 # Mixing o f the s e l f −energy
siw moments = est imate # For cont inuat i on o f the s e l f −energy
#equiv = 0 ,1 ,0 , 1 , 0 , 1 # To e n f o r c e equ iva l ence o f atoms

[ Atoms ]
[ [ 1 ] ]
Hamiltonian = ReadUmatrix # Spin dependent
QuantumNumbers= Nt Al l # Conserved quantum numbers
Nd = 3 # Number o f d−bands
complex umatrix = 1
umatr ix re = U i j k l L i O s O 3 a t 1 r o t r e . dat
umatrix im = U i jk l L iOsO3 at1 ro t im . dat

.

. # Here go atoms 2−6

.

[QMC]
Eigenbas i s = 1
Nwarmups = 1e5
Nmeas = 6e4 # 6e4−6e6 Measurments
NCorr = 2e2 # 1e2−1e3 ( beta dependent )

# Cor r e l a t i on l ength
Niw = 1000 # Number o f Matsubara f r e q u e n c i e s
Ntau = 1000 # Number o f tau po in t s
s ta te sampl ing = 0
o f f d i a g = 1 # Only f o r ReadNormalUmatrix
Percentage4OperatorMove = 0.005 # Necessary f o r c o r r e c t sampling
complex = 1
TaudiffMax = 2 # Max. tau d i f f . o f 2 Operator i n s e r t i o n
use phase = 1
MeasDensityMatrix = 1
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Appendix D

Read and Write Module

This module contains six functions. ”readaline” reads the next non commented line of an opened

file, ”checkline” returns the input line with possible comments stripped off, ”read hk wannier”

reads a Wannier Hamiltonian formatted as needed by w2dynamics and returns it in a numpy array

of the form (kpoint, band, spin, band, spin), ”write hk wannier” takes a numpy array of the form

(kpoint, band, spin, band, spin) and writes it to a file formatted as input for w2dynammics,

”read umatrix” reads an umatrix file formatted as needed by w2dynamics and returns an numpy

array of the form (band, spin, band, spin, band, spin, band, spin) where the spin dependency

is optional and ”write umatrix” takes a numpy array of the form (band, spin, band, spin, band,

spin, band, spin) where again the spin is optional and writes it to a file formatted as input to

w2dynamics.

import numpy as np
import sys
import cus tom erro r s as e r r

de f r e a d a l i n e ( r e a d f i l e , comments=’#’ ) :
’ ’ ’ This i s a func t i on to read ing the next l i n e which i s not a comment \

from a f i l e i gno r i ng eve r th ing a f t e r the comment symbol ’ ’ ’
whi l e True :

l i n e = r e a d f i l e . r e a d l i n e ( )
i f l i n e [ 0 ] == comments :

pass
e l s e :

break
commentpos = 0
f o r l e t t e r in l i n e :

i f l e t t e r == comments :
r e turn l i n e [ 0 : commentpos ] + ’ \n ’

commentpos += 1
return l i n e

de f c h e c k l i n e ( l i n e , comments=’#’ ) :
’ ’ ’ This func t i on checks whether the re i s a comment in l i n e . I t r e tu rn s \

eve r th ing up to the comment i n c l u d i n g a \n . ’ ’ ’
commentpos=0
f o r l e t t e r in l i n e :
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i f l e t t e r == comments :
r e turn l i n e [ 0 : commentpos ] + ’ \n ’

commentpos += 1
return l i n e

de f read hk wannier ( f i l ename , sp in=False ) :
’ ’ ’ Function to read hk from a f i l e with name ’ f i l ename ’ . sp in \

dependency i s Fa l se by d e f a u l t . I f sp in i s s e t to True i t assumes \
wannier convent ion ( o r b i t a l index running f a s t e s t , sp in index \
s l owes t ) . I t r e tu rn s the hk o f form o f an numpy array o f form \
( number o f kpoints , number o f o r b i t a l s , number o f sp ins , number o f \
o r b i t a l s , number o f sp in s ) , the kpo int s in form o f a numpy array o f \
form ( number o f kpoints , x , y , z )\ nreturn kpoints , hk ’ ’ ’

f = open ( f i l ename , ’ r ’ )
f i r s t l i n e = r e a d a l i n e ( f )
nk = i n t ( f i r s t l i n e . s p l i t ( ) [ 0 ] ) #Number o f k po in t s o f hk
nd = i n t ( f i r s t l i n e . s p l i t ( ) [ 1 ] ) #Number o f o r b i t a l s ( i n k l . sp in ) o f hk
hk = np . z e ro s ( ( nk , nd , nd ) , dtype=complex )
kpo int s = np . z e ro s ( ( nk , 3 ) )
f o r i in range (0 , nk ) :

s p l i t l i n e = r e a d a l i n e ( f ) . s p l i t ( )
kpo int s [ i , 0 ] = f l o a t ( s p l i t l i n e [ 0 ] )
kpo int s [ i , 1 ] = f l o a t ( s p l i t l i n e [ 1 ] )
kpo int s [ i , 2 ] = f l o a t ( s p l i t l i n e [ 2 ] )
f o r j in range (0 , nd ) :

s p l i t l i n e = r e a d a l i n e ( f ) . s p l i t ( )
f o r k in range (0 , nd ) :

hk [ i , j , k ] = complex ( f l o a t ( s p l i t l i n e [ 2∗ k ] ) , \
f l o a t ( s p l i t l i n e [ 2∗ k +1]))

i f sp in :
hk = hk . reshape (nk , 2 , nd/2 , 2 , nd/2)
hk = hk . t ranspose ( 0 , 2 , 1 , 4 , 3 )

e l s e :
hk = hk . reshape (nk , 1 , nd , 1 , nd )
hk = hk . t ranspose ( 0 , 2 , 1 , 4 , 3 )

f . c l o s e ( )
re turn hk , kpo int s

de f wr i t e hk wannie r ( f i l ename , hk , kpo int s ) :
’ ’ ’ Function to wr i t e hk to a f i l e named ’ f i l ename ’ in wannier format \

( sp in i n d i c e s running s lower than o r b i t a l i n d i c e s ) . Assumes hk to \
be o f the form (nk , nbands , sp ins , nbands , sp in s ) and kpoint (nk , 3 ) . nd i s \
the number o f o r b i t a l s ( exc lud ing sp in ) , nk the number o f kpo int s . ’ ’ ’

f = open ( f i l ename , ’w ’ )
nk = hk . shape [ 0 ]
nbands = hk . shape [ 1 ]
nspin = hk . shape [ 2 ]
hk = hk . t ranspose ( 0 , 2 , 1 , 4 , 3 )
hk = hk . reshape (nk , nspin ∗nbands , nspin ∗nbands )

#f i r s t l i n e : number o f k−points , number wannier o r b i t a l s , number o f bands
f . wr i t e ( s t r ( nk)+” ”+s t r ( nspin ∗nbands)+” ”+s t r ( nspin ∗nbands)+”\n” )

f o r k in range (0 , nk ) :
f . wr i t e ( s t r ( kpo int s [ k , 0 ] )+ ” ”+s t r ( kpo int s [ k , 1 ] )+ ” ”+ \
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s t r ( kpo int s [ k , 2 ] )+ ” \n” )
f o r i in range (0 , nspin ∗nbands ) :

f o r j in range (0 , nspin ∗nbands ) :
f . wr i t e ( ’ %+010.8 f ’ % np . r e a l ( hk [ k , i , j ] ) )
f . wr i t e ( ” ” )
f . wr i t e ( ’%+10.8 f ’ % np . imag ( hk [ k , i , j ] ) )
f . wr i t e ( ” ” )

f . wr i t e ( ”\n” )

de f read umatr ix ( f i l ename , sp in ) :
’ ’ ’ Function to read a umatrix from a . dat f i l e . 2 p o s s i b l e Formats

1 . : 1 1 1 1 value ( sp in==False )
2 . : 1u 1d 1u 1d value ( sp in==True )

’ ’ ’
t ry :

i f type ( f i l ename ) i s not s t r : r a i s e TypeError ( ” 1 . argument \
( f i l ename ) must be o f type s t r ” )

i f type ( sp in ) i s not bool : r a i s e TypeError ( ” 2 . argument \
( sp in ) must be o f type bool : ” )

except TypeError :
r a i s e
sys . e x i t ( )

f=open ( f i l ename , ’ r ’ )
f i r s t l i n e = r e a d a l i n e ( f ) . s p l i t ( )
t ry :

Nbands = i n t ( f i r s t l i n e [ 0 ] )
i f f i r s t l i n e [ 1 ] . lower ( ) != ”bands” : r a i s e e r r . InputError ( \

” Expecting f i r s t non comment l i n e to be o f the form : \
# BANDS” )

except e r r . InputError :
r a i s e
sys . e x i t ( )

Nspin = i n t ( sp in )+1
i f sp in :

umatrix=np . z e r o s ( ( Nbands , 2 , Nbands , 2 , Nbands , 2 , Nbands , 2 ) )
e l s e :

umatrix=np . z e r o s ( ( Nbands , Nbands , Nbands , Nbands ) )

s p i n d i c t = { ’ u ’ : 0 , ’ d ’ : 1}
s p i n i n f i l e = Fal se
t ry :

f o r l i n e in f :
s p l i t l i n e = l i n e . s p l i t ( )
n e w s p l i t l i n e = [ ]
f o r element in s p l i t l i n e [ 0 : −1 ] :

n e w s p l i t l i n e . append ( l i s t ( element ) )
s p l i t l i n e = [ y f o r x in n e w s p l i t l i n e f o r y in x ] + \

[ s p l i t l i n e [ −1 ] ]
index = np . z e r o s ( ( Nspin ∗4 , ) , dtype=i n t )
f o r i in range ( 0 , ( l en ( s p l i t l i n e )−1)) :

element = s p l i t l i n e [ i ]
i f e lement in s p i n d i c t :

index [ i ] = i n t ( s p i n d i c t [ e lement ] )
s p i n i n f i l e = True

e l s e :
index [ i ] = i n t ( element)−1
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umatrix [ tup l e ( index ) ] = f l o a t ( s p l i t l i n e [−1])
except IndexError :

r a i s e e r r . InputError ( ” S p e c i f i e f i e d sp in dependency does not \
match u f i l e sp in dependency” )

sys . e x i t ( )

t ry :
i f s p i n i n f i l e != sp in : r a i s e e r r . InputError ( ” S p e c i f i e f i e d sp in \

dependency does not match u f i l e sp in dependency” )
except e r r . InputError :

r a i s e
sys . e x i t ( )

re turn umatrix

de f wr i te umatr ix ( f i l ename , umatrix , sp in ) :
’ ’ ’ Funtion to wr i t e the umatrix e i t h e r with sp in dependency or without ’ ’ ’
t ry :

i f type ( f i l ename ) i s not s t r : r a i s e TypeError ( \
” 1 . argument ( f i l enname ) must be o f type s t r . ” )

i f type ( umatrix ) i s not np . ndarray : r a i s e TypeError ( \
” 2 . argument ( umatrix ) must be o f type numpy . ndarray . ” )

i f type ( sp in ) i s not bool : r a i s e TypeError ( \
” 3 . argument ( sp in ) must be o f type bool . ” )

i f l en ( umatrix . shape )!=4 and l en ( umatrix . shape ) !=8 : r a i s e \
e r r . ShapeError ( ”Shape o f umatrix i s i n v a l i d ” )

i f l en ( umatrix . shape)==4 and sp in : r a i s e e r r . ShapeError ( ” Spin \
independent umatrix detec ted although sp in was s e t to True . ” )

i f l en ( umatrix . shape)==8 and not sp in : r a i s e e r r . ShapeError ( ” Spin \
dependent umatrix detec ted although sp in was s e t to Fa l se . ” )

i f sp in and ( umatrix . shape [ 1 ] ! = 2 or umatrix . shape [ 3 ] ! = 2 or \
umatrix . shape [ 5 ] ! = 2 or umatrix . shape [ 7 ] ! = 2 ) :

r a i s e e r r . ShapeError ( ”Unexpected shape o f sp in dependent \
umatrix . Expected shape : ( Nbands , 2 , Nbands , 2 , Nbands , 2 , Nbands , 2 ) ” )

except TypeError :
r a i s e
sys . e x i t ( )

except e r r . ShapeError :
r a i s e
sys . e x i t ( )

f = open ( f i l ename , ’w ’ )
f . wr i t e ( ”# non zero e lements o f i n t e r a c t i o n matrix U i j k l \n” )
f . wr i t e ( ”%i BANDS\n”%umatrix . shape [ 0 ] )
s p i n d i c t ={0: ’u ’ , 1 : ’d ’ }
i f not sp in :

f o r index , va lue in np . ndenumerate ( umatrix ) :
i f va lue != 0 . :

f . wr i t e ( ”%i %i %i %i %010.10 f \n”%(index [0 ]+1 , index [1 ]+1 , \
index [2 ]+1 , index [3 ]+1 , va lue ) )

e l s e :
f o r index , va lue in np . ndenumerate ( umatrix ) :

i f va lue != 0 :
f . wr i t e ( ”%s %s %s %s %010.10 f \n”%( s t r ( index [0]+1)+ \

s p i n d i c t [ index [ 1 ] ] , s t r ( index [2]+1)+ s p i n d i c t [ index [ 3 ] ] , \
s t r ( index [4]+1)+ s p i n d i c t [ index [ 5 ] ] , s t r ( index [6]+1)+ \
s p i n d i c t [ index [ 7 ] ] , va lue ) )
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Appendix E

Rotating the One-Particle Coefficient

Matrix

This script reads a provided Wannier Hamiltonian formatted as needed for w2dynamics and builds

the local one-particle Hamiltonian. Then for every atom it cuts out the respective part of the

local one-particle Hamiltonian and diagonalizes it in order to obtain the transformation matrix

Vi, where i denotes the atom. For a N atom Hamiltonian the full rotation matrix is then build

via

Vfull =


V1 0 0

0
. . . 0

0 0 VN

 . (E.1)

The k dependent Hamiltonian is than rotated k-point by k-point and written to a new file.

#########################################################################
#This s c r i p t Rotates Hk+SOC into the e i g e n b a s i s o f Hk+SOC. I t a l s o p r i n t s
#########################################################################
#########################################################################
#out some checks i f the r o t a t i o n i s v a l i d . Make sure that thoose checks
#########################################################################
#########
#are ok!#
#########

import h5py as hdf5
import numpy as np
import sys
import argparse
# here we need to add the path to the pe r sona l myfunc d i r e c t o r y
#( l o c a t i o n o f some read f u n c t i o n s )
auxdir=”/home/ lv70961 / sever2 /programs/myfunc/”
sys . path . i n s e r t (0 , auxdir )
# in order to import the f u n c t i o n s a v a i l a b l e in input . py and
#i n t e r a t c t i o n . py and readwr i t e and custom e r r o r s
import readwr i t e as rw
import cus tom erro r s as e r r
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par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=” This s c r i p t t rans forms a k \
dependent Hamiltonian to i t s l o c a l e i g e n b a s i s ” )

par s e r . add argument ( ’ h k f i l e ’ , he lp=’PATH to the k dependent Hamiltonian ’ , \
type=s t r )

par s e r . add argument ( ’ Natoms ’ , he lp=’Number o f atoms ’ , type=i n t )
par s e r . add argument ( ’ Nbands ’ , he lp=’Number o f bands per atom ’ , type=i n t )
par s e r . add argument ( ’−s ’ , ’−−sp in ’ , a c t i on=’ s t o r e t r u e ’ , d e f a u l t=False , \

help=” I f t h i s opt ion i s s e t s c r i p t expect s a Hamiltonian \
with sp in dependency , sp in i n d i c e s vary ing s l owes t \
( Wannier90 Convention ) . ” , des t=’ sp in ’ )

args = par s e r . p a r s e a r g s ( )
f i l ename = args . h k f i l e
sp in = args . sp in
Nspins = i n t ( sp in )+1
Natoms = args . Natoms
Nbands = args . Nbands

### load Hamiltonian
p r in t ”Loading Hamiltonian on hk and kpo int s on kpo int s . ”
h k f i l e = f i l e ( f i l ename )
hk , kpo int s = rw . read hk wannier ( f i l ename , sp in=sp in )

p r i n t ”hk . shape ” , hk . shape
p r in t ” kpo int s . shape ” , kpo int s . shape

### get number o f k−po in t s
Nk=kpo int s . shape [ 0 ]
p r i n t ”Number o f k po in t s : ” , Nk

try :
i f hk . shape [ 1 ] < Natoms∗Nbands : r a i s e e r r . InputError ( ” Input h k f i l e \

does not have sp in e n t r i e s ! P lease don ’ t use −s . ” )
i f hk . shape [ 1 ] > Natoms∗Nbands : r a i s e e r r . InputError ( ” Input h k f i l e \

does have sp in e n t r i e s ! P lease use −s . ” )
except e r r . InputError :

r a i s e
sys . e x i t ( )

#Bui ld ing hkmean
pr in t ” Bui ld ing hkmean i . e . averag ing over a l l k po in t s ”
hkmean = 1 ./Nk ∗ np . sum(hk , a x i s =0)
p r in t ”hkmean . shape ” , hkmean . shape

#reshape hkmean
hkmean = hkmean . reshape ( Nspins∗Nbands∗Natoms , Nspins∗Nbands∗Natoms )
p r i n t ”hkmean . shape ” , hkmean . shape

#Creat ing array with mean Hamiltonians per atom
pr in t ” Bui ld ing hkmean pa (hkmean per atom ) ”
hkmean pa = np . z e r o s ( ( Natoms , Nspins∗Nbands , Nspins∗Nbands ) , dtype=complex )
f o r i in range (0 , Natoms ) :

hkmean pa [ i ] = hkmean [ i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands , \
i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands ]

p r i n t ”hkmean pa . shape ” , hkmean pa . shape
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f o r a in range (0 , Natoms ) :
p r i n t ”hkmean pa [ ” + s t r ( a ) + ” ] ”
i f sp in :

f o r i in range (0 , Nspins∗Nbands ) :
p r i n t ’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ a , i , 0 ] ) , \

np . imag ( hkmean pa [ a , i , 0 ] ) ) , ’%+05.5 f %+05.5 f i ’ \
%(np . r e a l ( hkmean pa [ a , i , 1 ] ) , np . imag ( hkmean pa [ a , i , 1 ] ) ) , \
’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ a , i , 2 ] ) , \
np . imag ( hkmean pa [ a , i , 2 ] ) ) , ’%+05.5 f %+05.5 f i ’ \
%(np . r e a l ( hkmean pa [ a , i , 3 ] ) , np . imag ( hkmean pa [ a , i , 3 ] ) ) , \
’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ a , i , 4 ] ) , \
np . imag ( hkmean pa [ a , i , 4 ] ) ) , ’%+05.5 f %+05.5 f i ’ \
%(np . r e a l ( hkmean pa [ a , i , 5 ] ) , np . imag ( hkmean pa [ a , i , 5 ] ) )

e l s e :
f o r i in range (0 , Nspins∗Nbands ) :

p r i n t ’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ a , i , 0 ] ) , \
np . imag ( hkmean pa [ a , i , 0 ] ) ) , ’%+05.5 f %+05.5 f i ’ \
%(np . r e a l ( hkmean pa [ a , i , 1 ] ) , np . imag ( hkmean pa [ a , i , 1 ] ) ) , \
’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ a , i , 2 ] ) , \
np . imag ( hkmean pa [ a , i , 2 ] ) )

#So lv ing the Eigenvalue problem
pr in t ” So lv ing the Eigenvalue problem f o r hkmean pa”
EigVal = np . z e ro s ( ( Natoms , Nspins∗Nbands ) , dtype=complex )
EigVec = np . z e r o s l i k e ( hkmean pa )
f o r i in range (0 , Natoms ) :

EigVal [ i ] , EigVec [ i ] = np . l i n a l g . e igh ( hkmean pa [ i ] )
p r i n t ” Eigva lues o f atom ” + s t r ( i ) , EigVal [ i ]

p r i n t ”Checking i f t r ans f o rmat i ons o f each atom are un i tary . ”
eye = np . eye ( Nspins∗Nbands )
f o r i in range (0 , l en ( EigVal ) ) :

p r i n t ”Checking t rans fo rmat ion o f atom %i ” %( i +1)
t ry :

i f not np . a l l c l o s e (np . dot ( EigVec [ i ] . conj ( ) . T, EigVec [ i ] ) , eye ) : \
r a i s e RuntimeError ( ” Transformation o f atom %i i s not un i tary ! \

You may try to change np . l i n a l g . e igh to np . l i n a l g . e i g at \
d i a g o n a l i s a t i o n procedure ”%( i +1))

except RuntimeError :
r a i s e
sys . e x i t ( )

e l s e :
p r i n t ” Transformation o f atom %i a l l c l e a r . ”%( i +1)

#Creat ing the Bas i s Transformation
p r in t ” Bui ld ing f u l l b a s i s t rans fo rmat ion matrix ”
Trafo = np . z e r o s l i k e (hkmean)
f o r i in range (0 , Natoms ) :

Trafo [ i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands , \
i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands ] = EigVec [ i ]

InvTrafo = Trafo . conj ( ) .T

pr in t ”Checking i f f u l l t rans fo rmat ion i s un i ta ry . ”
t ry :

i f not np . a l l c l o s e (np . dot ( InvTrafo , Trafo ) , np . eye ( Nspins∗Nbands∗Natoms ) ) : \
r a i s e RuntimeError ( ” Fu l l t rans fo rmat ion i s not un i tary ! You may try \
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to change np . l i n a l g . e igh to np . l i n a l g . e i g at \
d i a g o n a l i s a t i o n procedure ” )

except RuntimeError :
r a i s e
sys . e x i t ( )

e l s e :
p r i n t ” Fu l l t rans fo rmat ion a l l c l e a r . ”

#Rotating Hamiltonian
p r in t ” Transforming the Hamiltonian ”
hk = hk . reshape (Nk, Nspins∗Nbands∗Natoms , Nspins∗Nbands∗Natoms )
p r i n t ”hk . shape ” , hk . shape
f o r i in range (0 ,Nk ) :

hk [ i ] = np . dot ( InvTrafo , np . dot ( hk [ i ] , Trafo ) )

p r i n t ”Checking i f transformed hk mean per atom i s d iagona l with e n t r i e s \
equal to the c a l c u l a t e d e i g e n v a l u e s ”

oldhkmean = hkmean
hkmean = 1 ./Nk ∗ np . sum(hk , a x i s =0)
f o r i in range (0 , Natoms ) :

t ry :
temphkmean = hkmean [ i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands , \

i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands ]
i f not np . a l l c l o s e ( temphkmean , np . diag ( EigVal [ i ] ) ) : r a i s e \

RuntimeError ( ”Transformed Hamiltonian i s l o c a l l y not d iagona l \
f o r atom %i . Numeric e r r o r s to big ! ”%( i +1))

except RuntimeError :
r a i s e
sys . e x i t ( )

e l s e :
p r i n t ”Transformed l o c a l Hamiltonian o f atom %i a l l c l e a r . ” \

%( i +1)

hk = hk . reshape (Nk, Nbands∗Natoms , Nspins , Nbands∗Natoms , Nspins )
p r i n t ”hk . shape ” , hk . shape

#Writt ing output
newfi lename = f i l ename [:−4]+ ” r o t . dat ”
p r in t ” Writt ing Hamiltonian to f i l e ”+newfi lename
rw . wr i t e hk wannie r ( newfilename , hk , kpo int s )
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Appendix F

Rotating the Local Interaction

Coefficient Matrix

This script reads a provided Wannier Hamiltonian formatted as needed for w2dynamics and builds

the local one-particle Hamiltonian. Then for every atom it cuts out the respective part of the

local one-particle Hamiltonian and diagonalizes it in order to obtain the transformation matrix Vi,

where i denotes the atom. It reads the provided file with the interaction coefficients formatted

as needed by w2dynamics, uses the specified transformation matrix to rotate the interaction

coefficients according to (3.8) and writes them to a new file, formatted as needed by w2dynamics.

##########################################################################
#This s c r i p t Rotates U i j k l i n to the e i g e n b a s i s o f Hk+SOC. I t a l s o p r i n t s
##########################################################################
########################################################################
#out some checks i f the r o t a t i o n i s v a l i d . Make sure that thoose checks
########################################################################
########
#are ok!#
########

import h5py as hdf5
import numpy as np
import sys
import argparse
# here we need to add the path to the pe r sona l myfunc d i r e c t o r y
# ( l o c a t i o n o f some read f u n c t i o n s )
auxdir=”/home/ lv70961 / sever2 /programs/myfunc/”
sys . path . i n s e r t (0 , auxdir )
import r eadwr i t e as rw
import cus tom erro r s as e r r

par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=” This s c r i p t t rans fomrs \
U i j k l o f one atom to the l o c a l e i g e n b a s i s o f the provided \
Hamiltonian . The output u f i l e i s sp in dependent by d e f a u l t . A pure \
band trans fo rmat ion can be ac t i va t ed with the −−bandsonly opt ion and \
does only work with non sp in dependent Hamiltonians . ” )

par s e r . add argument ( ’ h k f i l e ’ , he lp=’PATH to the k dependent Hamiltonian ’ , \
type=s t r )
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par s e r . add argument ( ’ Natoms ’ , he lp=’Number o f atoms ’ , type=i n t )
par s e r . add argument ( ’ Nbands ’ , he lp=’Number o f bands per atom ’ , type=i n t )
par s e r . add argument ( ’ u f i l e ’ , he lp=’PATH to the U i j k l f i l e ’ , type=s t r )
par s e r . add argument ( ’ atom ’ , he lp=’The t rans fo rmat ion matrix o f t h i s atom \

w i l l be used to trans form U i j k l ’ , type=i n t )
par s e r . add argument ( ’−s ’ , ’−−sp in ’ , a c t i on=’ s t o r e t r u e ’ , d e f a u l t=False , \

help=” I f t h i s opt ion i s s e t s c r i p t expect s a \
Hamiltonian with sp in dependency , sp in i n d i c e s vary ing \
s l owes t ( Wannier90 Convention ) . ” , des t=’ sp in ’ )

par s e r . add argument ( ’−bo ’ , ’−−bandsonly ’ , a c t i on=’ s t o r e t r u e ’ , d e f a u l t=False , \
help=” I f t h i s opt ion i s s e t s c r i p t expect s a u f i l e \
without sp in dependency . I t w i l l then only trans form \
the bands . Only works i f opt ion −s i s NOT s e t ! . ” , \
dest=’ bandsonly ’ )

par s e r . add argument ( ’−−c o r r e c t o r ’ , a c t i on=’ s t o r e t r u e ’ , d e f a u l t=False , \
help=” I f t h i s opt ion i s s e t the umatrix w i l l be \
c o r r e c t e d be f o r e i t i s transformed . Ent r i e s \
cor re spond ing to the same band and sp in in the f i r s t \
4 or l a s t 4 i n d i c e s are s e t to zero . Has no i n f l u e n c e \
i f −bo (−−bandsonly ) i s s e t . ” , des t=’ c o r r e c t o r ’ )

args = par s e r . p a r s e a r g s ( )
f i l ename = args . h k f i l e
u f i l ename = args . u f i l e
sp in = args . sp in
Nspins = i n t ( sp in )+1
Natoms = args . Natoms
Nbands = args . Nbands
atom = args . atom
bandsonly = args . bandsonly #This bool i s used throughout the s c r i p t

#d e s c r i b i n g wether U i j k l has sp in s or not !
#Usage may be c o u n t e r i n t u i t i v e . Name i s
#choosen such that u s e r s only use i t i f they
#r e a l l y want to !

Ntspins = 2− i n t ( bandsonly )
c o r r e c t o r = args . c o r r e c t o r

t ry :
i f atom > Natoms : r a i s e RuntimeError ( ”Number supp l i ed f o r atom must be \

sma l l e r than number supp l i ed f o r \
Natoms” )

i f sp in and bandsonly : r a i s e RuntimeError ( ”−−bandsonly (−bo ) only works \
without −−sp in (−s ) ! ” )

except RuntimeError :
r a i s e
sys . e x i t ( )

### load Hamiltonian
p r in t ”Loading Hamiltonian on hk and kpo int s on kpo int s . ”
hk , kpo int s = rw . read hk wannier ( f i l ename , sp in=sp in )

p r i n t ”hk . shape ” , hk . shape
p r in t ” kpo int s . shape ” , kpo int s . shape

### get number o f k−po in t s
Nk=kpo int s . shape [ 0 ]
p r i n t ”Number o f k po in t s : ” , Nk
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t ry :
i f hk . shape [ 1 ] < Natoms∗Nbands : r a i s e e r r . InputError ( ” Input h k f i l e \

does not have sp in e n t r i e s ! P lease use −s Fa l se . ” )
i f hk . shape [ 1 ] > Natoms∗Nbands : r a i s e e r r . InputError ( ” Input h k f i l e \

does have sp in e n t r i e s ! P lease use −s True . ” )
except e r r . InputError :

r a i s e
sys . e x i t ( )

#load umatrix and check ing i f u f i l e i s sp in dependent
u f i l e=open ( uf i lename , ’ r ’ )
rw . r e a d a l i n e ( u f i l e )
l i n e = rw . r e a d a l i n e ( u f i l e )

t ry :
i f ( ( ’u ’ in l i n e ) or ( ’d ’ in l i n e ) ) and bandsonly :

r a i s e e r r . InputError ( ” Detected sp in dependency in input u f i l e .\
Cannot perform bandsonly t rans fo rmat ion ! ” )

e l i f ( ’u ’ in l i n e ) or ( ’d ’ in l i n e ) :
uspin = True

e l s e :
uspin = False

except e r r . InputError :
r a i s e
sys . e x i t ( )

u f i l e . c l o s e ( )

umatrix = rw . read umatr ix ( uf i lename , sp in=uspin )
p r i n t ” umatrix . shape ” , umatrix . shape

#blow up umatrix i f i t i s not a l r eady sp in dependent
i f ( not uspin ) and ( not bandsonly ) :

p r i n t ”Blowing up U matrix ”
newumatrix = np . z e ro s ( ( umatrix . shape [ 0 ] , ) + ( 2 , ) + ( umatrix . shape [ 1 ] , ) \

+ ( 2 , ) + ( umatrix . shape [ 2 ] , ) + ( 2 , ) \
+ ( umatrix . shape [ 3 ] , ) + ( 2 , ) , dtype=complex )

newumatrix [ : , 0 , : , 0 , : , 0 , : , 0 ] = umatrix [ : , : , : , : ]
newumatrix [ : , 1 , : , 0 , : , 1 , : , 0 ] = umatrix [ : , : , : , : ]
newumatrix [ : , 0 , : , 1 , : , 0 , : , 1 ] = umatrix [ : , : , : , : ]
newumatrix [ : , 1 , : , 1 , : , 1 , : , 1 ] = umatrix [ : , : , : , : ]
umatrix = newumatrix
i f c o r r e c t o r :

f o r index , x in np . ndenumerate ( umatrix ) :
i f ( index [ 0 : 2 ] == index [ 2 : 4 ] ) or ( index [ 4 : 6 ] == index [ 6 : 8 ] ) :

umatrix [ index ] = 0 .
p r i n t ” umatrix . shape ” , umatrix . shape

#Bui ld ing hkmean
pr in t ” Bui ld ing hkmean i . e . averag ing over a l l k po in t s ”
hkmean = 1 ./Nk ∗ np . sum(hk , a x i s =0)
p r in t ”hkmean . shape ” , hkmean . shape

#reshape hkmean
hkmean = hkmean . reshape ( Nspins∗Nbands∗Natoms , Nspins∗Nbands∗Natoms )
p r i n t ”hkmean . shape ” , hkmean . shape
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#Creat ing array with mean Hamiltonians per atom
pr in t ” Bui ld ing hkmean pa (hkmean per atom ) ”
hkmean pa = np . z e r o s ( ( Natoms , Nspins∗Nbands , Nspins∗Nbands ) , dtype=complex )
f o r i in range (0 , Natoms ) :

hkmean pa [ i ] = hkmean [ i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands , \
i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands ]

p r i n t ”hkmean pa . shape ” , hkmean pa . shape

#So lv ing the Eigenvalue problem
pr in t ” So lv ing the Eigenvalue problem o f hkmean pa f o r atom %i ”%atom
EigVal , EigVec = np . l i n a l g . e igh ( hkmean pa [ atom−1])
p r i n t ” Eigva lues o f atom ” + s t r ( atom ) , EigVal

#Creat ing the Bas i s Transformation
p r in t ” Bui ld ing b a s i s t rans fo rmat ion matrix o f atom %i ”%atom
Trafo = EigVec
i f ( not sp in ) and ( not bandsonly ) :

p r i n t ”Expanding t rans fo rmat ion to both sp in channe l s . ”
temptrafo = np . z e r o s ( ( Nbands , 2 , Nbands , 2 ) , dtype=complex )
temptrafo [ : , 0 , : , 0 ] = Trafo
temptrafo [ : , 1 , : , 1 ] = Trafo
Trafo = temptrafo . reshape (2∗Nbands ,2∗Nbands )

InvTrafo = Trafo . conjugate ( ) . t ranspose ( )
p r i n t ” Trafo . shape ” , Trafo . shape

p r in t ”Checking i f t rans fo rmat ion i s un i tary . ”
t ry :

i f not np . a l l c l o s e (np . dot ( InvTrafo , Trafo ) , np . eye ( Ntspins ∗Nbands ) ) :
r a i s e RuntimeError ( ” Transformation i s not un i tary ! You may try \

to change np . l i n a l g . e igh to np . l i n a l g . e i g at \
d i a g o n a l i s a t i o n procedure ” )

except RuntimeError :
r a i s e
sys . e x i t ( )

e l s e :
p r i n t ” Transformation a l l c l e a r . ”

#trans forming umatrix
p r i n t ” Transforming umatrix with t rans fo rmat ion matrix o f atom %i ”%atom
umatrix = umatrix . reshape ( Ntspins ∗Nbands , Ntspins ∗Nbands , \

Ntspins ∗Nbands , Ntspins ∗Nbands )
umatrix = np . einsum ( ’ ai , bj , i j k l , kc , ld ’ , InvTrafo , InvTrafo , umatrix , Trafo , \

Trafo , dtype=complex )
p r i n t ” umatrix . shape ” , umatrix . shape

i f not bandsonly :
umatrix = umatrix . reshape ( Nbands , 2 , Nbands , 2 , Nbands , 2 , Nbands , 2 )

#Writt ing output
newfi lename1 = uf i l ename [ : −4 ] + ” r o t r e . dat ”
newfi lename2 = uf i l ename [ : −4 ] + ” ro t im . dat ”
p r in t ” Writt ing Re( U i j k l ) to f i l e ” + newfi lename1
rw . wr i te umatr ix ( newfilename1 , umatrix . r ea l , sp in=(not bandsonly ) )
p r i n t ” Writt ing Im( U i j k l ) to f i l e ” + newfi lename2
rw . wr i te umatr ix ( newfilename2 , umatrix . imag , sp in=(not bandsonly ) )
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Appendix G

Rotating One-Particle Objects

This script reads a provided Wannier Hamiltonian formatted as needed for w2dynamics and builds

the local one-particle Hamiltonian. Then for every atom it cuts out the respective part of the

local one-particle Hamiltonian and diagonalizes it in order to obtain the transformation matrix

Vi, where i denotes the atom. It reads the provided hdf5 file with the one particle objects (ftau,

gtau, giw, siw) generated by w2dynamics, uses the specified transformation matrix to rotate

the specified objects to the choosen basis (by default only gtau is rotated and the new basis is

the LS basis) and writes them to files named ”object (band,spin,band,spin).dat” in a subfolder

(named LS basis or Hloc basis, according to the choosen basis). If the subfolder is not present it

is created.

####################################################################
# This s c r i p t r o t a t e s an ob j e c t in to or from the b a s i s in which Hloc
####################################################################
###############
# i s d iagona l #
###############

import numpy as np
import matp lo t l i b . pyplot as p l t
import sys
import os
import argparse
import h5py as hdf5
# here we need to add the path to the pe r sona l myfunc d i r e c t o r y
# ( l o c a t i o n o f some read f u n c t i o n s )
auxdir=”/home/ lv70961 / sever2 /programs/myfunc/”
sys . path . i n s e r t (0 , auxdir )
import r eadwr i t e as rw
import cus tom erro r s as e r r

c l a s s s h i f t ( argparse . Action ) :
de f c a l l ( s e l f , parser , namespace , va lues , o p t i o n s t i n g=None ) :

newvalues = [ ]
f o r va lue in va lue s :

newvalues . append ( value−1)
s e t a t t r ( namespace , s e l f . dest , newvalues )
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par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=” This s c r i p t r o t a t e s o b j e c t s \
depending on tau e i t h e r in the b a s i s where Hloc i s d iagona l or from the \
b a s i s where Hloc i s d iagona l i n to the LS Bas i s . On d e f a u l t i t r o t a t e s \
gtau . ” )

par s e r . add argument ( ’ h k f i l e ’ , he lp=’PATH to the k dependent Hamiltonian . \
Needs to be sp in dependend ’ , type=s t r )

par s e r . add argument ( ’ Natoms ’ , he lp=’Number o f atoms ’ , type=i n t )
par s e r . add argument ( ’ Nbands ’ , he lp=’Number o f bands per atom ’ , type=i n t )
par s e r . add argument ( ’ h d f 5 f i l e ’ , he lp=’PATH to the HDF5 f i l e with the \

w2dynamics r e s u l t s ’ , type=s t r )
par s e r . add argument ( ’−−toDIAG ’ , d e f a u l t=False , a c t i on=’ s t o r e t r u e ’ , \

help=” Rotate from the LS to the d iagona l b a s i s . On d e f a u l t i t the \
s c r i p t s r o t a t e s from the d iagona l to the LS b a s i s . ” )

par s e r . add argument ( ’−A ’ , ’−−Atoms ’ , d e f a u l t =[0 ] , type=int , des t=’Atoms ’ , \
nargs=’ ∗ ’ , a c t i on=s h i f t , he lp=” Objects o f t h i s atoms w i l l be ro ta ted . ” )

par s e r . add argument ( ’−−notgtau ’ , d e f a u l t=True , ac t i on=’ s t o r e f a l s e ’ , \
help=” Spec i f y in order not to ro ta ted gtau . In d e f a u l t the s c r i p t \
r o t a t e s gtau . ” )

par s e r . add argument ( ’−−f t au ’ , d e f a u l t=False , a c t i on=’ s t o r e t r u e ’ , \
help=” Spec i f y in order to ro ta ted f tau . ” )

par s e r . add argument ( ’−−giw ’ , d e f a u l t=False , a c t i on=’ s t o r e t r u e ’ , \
help=” Spec i f y in order to ro ta ted giw . ” )

par s e r . add argument ( ’−−s iw ’ , d e f a u l t=False , a c t i on=’ s t o r e t r u e ’ , \
help=” Spec i f y in order to ro ta ted siw . ” )

par s e r . add argument ( ’−s ’ , ’−−sp in ’ , d e f a u l t=False , a c t i on=’ s t o r e t r u e ’ , \
help=” Spec i f y that Hamiltonian has sp in dependency . ” )

par s e r . add argument ( ’− i ’ , ’−− i t e r a t i o n ’ , d e f a u l t=None , type=int , \
help=” Spec i f y which i t e r a t i o n o f hdf5 f i l e to use . ” )

args = par s e r . p a r s e a r g s ( )
h k f i l e = args . h k f i l e
Natoms = args . Natoms
Nbands = args . Nbands
h d f 5 f i l e = args . h d f 5 f i l e
atoms = args . Atoms
toDIAG = args . toDIAG
r o t a t e g t a u = args . notgtau
r o t a t e f t a u = args . f t au
r o t a t e g iw = args . giw
r o t a t e s i w = args . s iw
i t e r a t i o n = args . i t e r a t i o n
Nspins = i n t ( args . sp in ) + 1

f o r atom in atoms :
i f atom < 0 or atom > Natoms−1:

r a i s e e r r . InputError ( ”Atom l i s t out o f range ! ” )
sys . e x i t ( )

i f r o t a t e g t a u == False :
r o t o b j s = [ ]

e l s e :
r o t o b j s = [ ” gtau ” ]

i f r o t a t e f t a u == True :
r o t o b j s . append ( ” f tau ” )

i f r o t a t e g iw == True :
r o t o b j s . append ( ”giw” )

i f r o t a t e s i w == True :
r o t o b j s . append ( ” siw ” )
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i f Nspins == 2 :
p r i n t ”Loading sp in dependent Hamiltonian on hk and kpo int s on kpo int s . ”
hk , kpo int s = rw . read hk wannier ( h k f i l e , sp in=True )

e l s e :
p r i n t ”Loading sp in independent Hamiltonian on hk and kpo int s on kpo int s . ”
hk , kpo int s = rw . read hk wannier ( h k f i l e , sp in=False )

Nk=kpo int s . shape [ 0 ]
p r i n t ”hk . shape ” , hk . shape
p r in t ” kpo int s . shape ” , kpo int s . shape

p r in t ” Bui ld ing hkmean i . e . averag ing over a l l k po in t s ”
hkmean = 1 ./Nk ∗ np . sum(hk , a x i s =0)
p r in t ”hkmean . shape ” , hkmean . shape
hkmean = hkmean . reshape ( Nspins∗Nbands∗Natoms , Nspins∗Nbands∗Natoms )
p r i n t ”hkmean . shape ” , hkmean . shape
p r in t ” Bui ld ing hkmean pa (hkmean per atom ) ”
hkmean pa = np . z e r o s ( ( Natoms , Nspins∗Nbands , Nspins∗Nbands ) , dtype=complex )
f o r i in range (0 , Natoms ) :

hkmean pa [ i ] = hkmean [ i ∗Nspins∗Nbands : ( i +1)∗Nspins∗Nbands , i ∗Nspins \
∗Nbands : ( i +1)∗Nspins∗Nbands ]

p r i n t ”hkmean pa . shape ” , hkmean pa . shape

i f Nspins == 2 :
f o r atom in atoms :

p r i n t ”hkmean pa [ ” + s t r ( atom ) + ” ] ”
f o r i in range (0 , Nspins∗Nbands ) :

p r i n t ’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 0 ] ) , \
np . imag ( hkmean pa [ atom , i , 0 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 1 ] ) , \
np . imag ( hkmean pa [ atom , i , 1 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 2 ] ) , \
np . imag ( hkmean pa [ atom , i , 2 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 3 ] ) , \
np . imag ( hkmean pa [ atom , i , 3 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 4 ] ) , \
np . imag ( hkmean pa [ atom , i , 4 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 5 ] ) , \
np . imag ( hkmean pa [ atom , i , 5 ] ) )

e l s e :
f o r atom in atoms :

p r i n t ”hkmean pa [ ” + s t r ( atom ) + ” ] ”
f o r i in range (0 , Nspins∗Nbands ) :

p r i n t ’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 0 ] ) , \
np . imag ( hkmean pa [ atom , i , 0 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 1 ] ) , \
np . imag ( hkmean pa [ atom , i , 1 ] ) ) , \

’%+05.5 f %+05.5 f i ’ %(np . r e a l ( hkmean pa [ atom , i , 2 ] ) , \
np . imag ( hkmean pa [ atom , i , 2 ] ) ) , \

pr in t ” So lv ing the Eigenvalue problem f o r hkmean pa”
EigVal = np . z e ro s ( ( Natoms , Nspins∗Nbands ) , dtype=complex )
EigVec = np . z e r o s l i k e ( hkmean pa )
f o r i in range (0 , Natoms ) :

EigVal [ i ] , EigVec [ i ] = np . l i n a l g . e igh ( hkmean pa [ i ] )
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pr in t ” Eigenva lues atom ” , i+1
pr in t EigVal [ i ]

#t e s t f o r non sp in r o t a t i o n
i f Nspins == 1 :

p r i n t ”Blowing up Transformation matrix to two sp in s ”
temp = EigVec . copy ( )
EigVec = np . z e ro s ( ( Natoms , Nbands , 2 , Nbands , 2 ) , dtype=complex )
EigVec [ : , : , 0 , : , 0 ] = temp [ : ]
EigVec [ : , : , 1 , : , 1 ] = temp [ : ]
p r i n t ”EigVec . shape ” , EigVec . shape
EigVec = EigVec . reshape (Natoms ,2∗Nbands ,2∗Nbands )
p r i n t ”EigVec . shape ” , EigVec . shape

p r in t ”Loading hdf5 f i l e : ” + h d f 5 f i l e
f=hdf5 . F i l e ( h d f 5 f i l e , ” r ” )
i f i t e r a t i o n == None :

p r i n t ’ Using l a s t i t e r a t i o n ’
i t e r a t i o n = ”%03 i ” %i n t ( f [ ” / . c o n f i g ” ] . a t t r s . get ( ” gene ra l . dmftsteps ” ) ) \

#using the l a s t I t e r a t i o n
e l s e :

p r i n t ’ Using %03 i i t e r a t i o n ’ %i t e r a t i o n
i t e r a t i o n = ”%03 i ” %i t e r a t i o n

#Checking f o r d i r e c t o r y to put r e s u l t s
i f toDIAG :

b a s i s = ’ h loc ’
e l s e :

b a s i s = ’LS ’
ba s ed i r = ” . / ” + b a s i s + ” b a s i s ”
i f not os . path . e x i s t s ( ba s ed i r ) :

os . makedirs ( ba s ed i r )

f o r obj in r o t o b j s :
f o r atom in atoms :

atomstr = ”%03 i ” %(atom+1)
p r in t ””
p r in t ”Loading ob j e c t ” + obj + ” o f atom ” + atomstr
va lue s = f [ ”dmft−” + i t e r a t i o n + ”/ ineq−” + atomstr + ”/” + obj \

+ ”− f u l l / va lue ” ] [ : ]
va lue s = np . array ( values , dtype=complex )
i f obj in [ ’ gtau ’ ] :

a x i s = f [ ” . axes / taubin ” ] [ : ]
ax = ” tau ”

e l i f obj in [ ’ f t au ’ ] :
a x i s = f [ ” . axes / tau f ” ] [ : ]
ax = ” tau ”

e l s e :
a x i s = f [ ” . axes / iw” ] [ : ]
ax = ”iw”

n = va lue s . shape [−1]
p r i n t va lue s . shape , n
p r in t a x i s . shape
p r in t ” Bui ld ing b a s i s t rans fo rmat ion matr i ce s ”
i f toDIAG :

Trafo = np . array ( EigVec [ atom ] )
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InvTrafo = np . conjugate (np . t ranspose ( Trafo ) )
e l s e :

InvTrafo = np . array ( EigVec [ atom ] )
Trafo = np . conjugate (np . t ranspose ( InvTrafo ) )

p r i n t ”Checking i f t rans fo rmat ion i s un i tary . ”
t ry :

i f not np . a l l c l o s e (np . dot ( InvTrafo , Trafo ) , np . eye (2∗Nbands ) ) : \
r a i s e RuntimeError ( ” Fu l l t rans fo rmat ion i s not un i tary ! \

You may try to change np . l i n a l g . e igh \
to np . l i n a l g . e i g at d i a g o n a l i s a t i o n \
procedure ” )

except RuntimeError :
r a i s e
sys . e x i t ( )

e l s e :
p r i n t ” Transformation a l l c l e a r . ”

p r i n t ” Rotating ”
va lue s = va lues . reshape (2∗Nbands ,2∗Nbands , n)
p r i n t obj + ” . shape ” , va lue s . shape
f o r i in range (0 , n ) :

va lue s [ : , : , i ] = np . dot ( InvTrafo , np . dot ( va lue s [ : , : , i ] , Trafo ) )
va lue s = va lues . reshape ( Nbands , 2 , Nbands , 2 , n )
p r i n t obj + ” . shape ” , va lue s . shape

p r in t ” Saving ” + obj
t a r g e t d i r = based i r + ”/atom−” + atomstr
i f not os . path . e x i s t s ( t a r g e t d i r ) :

os . makedirs ( t a r g e t d i r )
f o r b1 in range (0 , Nbands ) :

f o r s1 in range ( 0 , 2 ) :
f o r b2 in range (0 , Nbands ) :

f o r s2 in range ( 0 , 2 ) :
f i l ename= t a r g e t d i r + ”/” + obj + ” ” + b a s i s + \

” ” + s t r ( b1+1) + s t r ( s1+1) + s t r ( b2+1) \
+ s t r ( s2+1) +” . dat ”

t a r g e t f = open ( f i l ename , ’w ’ )
t a r g e t f . wr i t e ( ’#%14s ’ % ax )
t a r g e t f . wr i t e ( ’%15s ’ % ( ”Re( ”+obj+” ) ” ) )
t a r g e t f . wr i t e ( ’%15s ’ % ( ”Im( ”+obj+” ) ” ) )
t a r g e t f . wr i t e ( ’ \n ’ )
data=np . column stack ( ( ax is , np . r e a l ( \

va lue s [ b1 , s1 , b2 , s2 , : ] ) \
, np . imag ( \

va lue s [ b1 , s1 , b2 , s2 , : ] ) ) )
np . save txt ( t a r g e t f , data , fmt=’ %15.10 f ’ )
t a r g e t f . c l o s e ( )

f . c l o s e ( )
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Appendix H

Adding Spin-Orbit Coupling to the

One-Particle Coefficient Matrix

This script reads a provided Wannier Hamiltonian formatted as needed for w2dynamics. Then it

quadruples its size by introducing a spin dependency, i.e. every entry gets reshaped according to

a→
(
a 0

0 a

)
, (H.1)

and adds the spin-orbit coupling to the k-dependent Hamiltonian at every k-point according to

(1.3) where the specified parameter λ = ξ
2 . For multiple atoms in the first brillouin zone the full

local (atomic) spin-orbit Hamiltonian reads

Ĥ full
SOC =


ĤSOC 0 0

0
. . . 0

0 0 ĤSOC

 , (H.2)

where ĤSOC is given by (1.3) and the diagonal contains as many copies of it as there are atoms

in the first brillouin zone. Eventually the new k-dependent Hamiltonian is written to a new file

formatted as needed by w2dynamics.

######################################################
#This s c r i p t adds the l o c a l SOC to a provided HK f i l e#
######################################################

import h5py as hdf5
import numpy as np
import sys
# here we need to add the path to the pe r sona l myfunc d i r e c t o r y
# ( l o c a t i o n o f some read f u n c t i o n s )
auxdir=”/home/ lv70961 / sever2 /programs/myfunc/”
sys . path . i n s e r t (0 , auxdir )
import r eadwr i t e as rw
import argparse
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par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=” This s c r i p t adds SOC to an \
e x i s t i n g t2g Hamiltonian . This w i l l quadruple i t s s i z e . ” )

par s e r . add argument ( ’ h k f i l e ’ , he lp=’PATH to an e x i s t i n g f i l e conta in ing \
the Hamiltonian ’ , type=s t r )

par s e r . add argument ( ’ Natoms ’ , he lp=’Number o f atoms o f the \
Hamiltonian / b r i l l o u i n zone ’ , type=i n t )

par s e r . add argument ( ’ e p s i l o n ’ , he lp=’ Eps i lon Parameter o f SOC ’ , type=f l o a t )

args = par s e r . p a r s e a r g s ( )
h k f i l e = args . h k f i l e
e p s i l o n = args . e p s i l o n
Na = args . Natoms

#s e t t i n g the e p s i l o n parameter f o r the SOC
pr in t ”epsilonSOC = ” , e p s i l o n

### load Hamiltonian
p r in t ”Loading Hamiltonian from f i l e : ” , h k f i l e
hk , kpo int s = rw . read hk wannier ( h k f i l e , sp in=False )

p r i n t ”hk . shape ” , hk . shape
p r in t ” kpo int s . shape ” , kpo int s . shape

### get number o f k−po in t s
Nk=kpo int s . shape [ 0 ]
p r i n t ”Nk” , Nk

### number o f d−o r b i t a l s
Nd=hk . shape [ 1 ]
p r i n t ”Nd” , Nd

#Set t ing atoms and o r b i t a l s per atom
Ndpa = Nd/Na #Number o f d−o r b i t a l s per atom
Ns = 2 #Number o f sp in s
p r i n t ”Na” , Na
pr in t ”Ndpa” , Ndpa
pr in t ”Ns” , Ns

#Blowing the Hamiltonian to up f o r sp in i n c l u s i o n
hk = hk . t ranspose ( 0 , 1 , 3 , 2 , 4 )
p r i n t ”hk . shape ” , hk . shape
p r in t ”Blowing up Hamiltonian ”
hk = np . append (np . append (hk , np . z e r o s l i k e ( hk ) , a x i s =4) , \

np . append (hk , np . z e r o s l i k e ( hk ) , a x i s = 4 ) [ : , : , : , : , : : − 1 ] , a x i s =3)
p r i n t ”hk . shape ” , hk . shape

#bu i ld hSOC from p a u l i m a t r i c i e s
p r i n t ” Bui ld ing hSOC”
hSOC = np . z e r o s l i k e ( hk [ 1 ] )
sigma1 = np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
sigma2 = np . array ( [ [0 , −1 j ] , [ 1 j , 0 ] ] )
sigma3 = np . array ( [ [ 1 , 0 ] , [ 0 , − 1 ] ] )
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f o r i in range (0 ,Na ) :
hSOC[0+3∗ i ,1+3∗ i ] = −1 j ∗ sigma3
hSOC[0+3∗ i ,2+3∗ i ] = 1 j ∗ sigma1
hSOC[1+3∗ i ,0+3∗ i ] = 1 j ∗ sigma3
hSOC[1+3∗ i ,2+3∗ i ] = −1 j ∗ sigma2
hSOC[2+3∗ i ,0+3∗ i ] = −1 j ∗ sigma1
hSOC[2+3∗ i ,1+3∗ i ] = 1 j ∗ sigma2

hSOC = e p s i l o n ∗ hSOC
pr in t ”hSOC. shape ” , hSOC. shape

#bu i ld hkSOC
pr in t ” Bui ld ing hkSOC”
hkSOC = np . z e r o s l i k e ( hk )
f o r i in range (0 ,hkSOC. shape [ 0 ] ) :

hkSOC[ i ] = hSOC
pr in t ”hkSOC. shape ” , hkSOC. shape

#Adding toge the r hk and hkSOC
pr in t ”Adding hkSOC to hk”
hk += hkSOC

#Bui ld ing hkmean as check
hkmean = 1 ./Nk∗np . sum(hk , a x i s =0)
hkmean = hkmean . t ranspose (0 , 2 , 1 , 3 )
hkmean = hkmean . reshape (Ns∗Nd, Ns∗Nd)

#w r i t t i n g hkmean o f the f i r s t atom
pr in t ”hkmean i n c l u d i n g SOC f o r the f i r s t atom”
f o r i in range ( 0 , 6 ) :

p r i n t ’%+3.3 f %+3.3 f i ’ % (np . r e a l (hkmean [ i , 0 ] ) , np . imag (hkmean [ i , 0 ] ) ) , \
’%+3.3 f %+3.3 f i ’ % (np . r e a l (hkmean [ i , 1 ] ) , np . imag (hkmean [ i , 1 ] ) ) , \
’%+3.3 f %+3.3 f i ’ % (np . r e a l (hkmean [ i , 2 ] ) , np . imag (hkmean [ i , 2 ] ) ) , \
’%+3.3 f %+3.3 f i ’ % (np . r e a l (hkmean [ i , 3 ] ) , np . imag (hkmean [ i , 3 ] ) ) , \
’%+3.3 f %+3.3 f i ’ % (np . r e a l (hkmean [ i , 4 ] ) , np . imag (hkmean [ i , 4 ] ) ) , \
’%+3.3 f %+3.3 f i ’ % (np . r e a l (hkmean [ i , 5 ] ) , np . imag (hkmean [ i , 5 ] ) )

#Shaping i t such that i t can be wr i t t en in wanner90 format
p r in t ”Shaping Hamiltonian f o r pas s ing to wr i t e func t i on ”
p r in t ”hk . shape ” , hk . shape
hk = hk . t ranspose ( 0 , 1 , 3 , 2 , 4 )
p r i n t ”hk . shape ” , hk . shape

#Writt ing output
hk f i l enew = h k f i l e [ : −4 ] + ” SOC . dat”
p r in t ” Writt ing Hamiltonian to f i l e : ” + hk f i l enew
rw . wr i t e hk wannie r ( hkf i l enew , hk , kpo int s )
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