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Abstract

Conjunctive Queries (CQs) are one of the most fundamental classes of database queries.
As such, the enumeration problem for CQs - that is, given a query and a database, to
output all answers of the query over the database in an efficient way- is well understood.
However, it is not clear how or even if results on the enumeration complexity do extend
to query languages that are natural generalizations of CQs.
In this thesis, we aim to evaluate the enumeration complexity of CQs that are extended
in three different directions: CQs in the presence of Functional Dependencies (FDs),
Unions of Conjunctive Queries (UCQs), and Well-designed pattern trees (wdPTs), which
extend CQs by allowing partial matching. For CQs in the presence of FDs as well as for
UCQs, our focus is on the ability to list output tuples with a constant delay in between,
following a linear-time preprocessing. For wdPTs, we show that even some of the simplest
queries can not be enumerated within such bounds. Therefore, we consider the task of
enumerating the answers to wdPTs with a polynomial delay between answers.
In a seminal paper by Bagan et al., a dichotomy is shown which classifies the acyclic
self-join-free CQs into those that admit enumeration with a constant delay. The class
of such queries coincides with the class of free-connex CQs. However, this classification
no longer holds in the common case where the database exhibits dependencies among
attributes: There exist queries that are classified as hard, but their answers can in fact
be enumerated with a constant delay, if dependencies are accounted for. We establish
a generalization of the dichotomy to accommodate FDs. In addition, we generalize a
hardness result for cyclic CQs to accommodate unary FDs, leading to a dichotomy for
enumeration with linear delay.
Next, we extend the notion of free-connexity from CQs to UCQs, thus showing that
some unions containing intractable CQs are, in fact, tractable. Interestingly, some unions
consisting of only intractable CQs are tractable too. The question of finding a full
characterization of the tractability of UCQs remains open. Nevertheless, we prove that
for several classes of queries, free-connexity fully captures the tractable UCQs.
For wdPTs, several computational problems have been studied in recent years, such as
the evaluation problem under structural restrictions. We show that the parameterized
complexity of the evaluation problems is in fact strongly connected to enumeration.
Thus extending the existing structural restrictions, we identify several tractable and
intractable cases of this problem both from a classical complexity point of view and from
a parameterized complexity point of view.
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Kurzfassung

Konjunktive Abfragen (CQs) zählen zu den fundamentalsten Klassen von Datenbank-
abfragen. Das Enumerationsproblem für CQs, welches als Eingabe eine Datenbank und
eine Abfrage erhählt und alle Antworten der Abfrage zur Datenbank ausgibt, wurde
bereits weitgehend untersucht. Für natürliche Generalisierungen von CQs hingegen ist
jedoch nicht bekannt, ob bzw. wie sich Ergebnisse über die Komplexität des Enumera-
tionsproblems erweitern lassen.

Das Ziel dieser Arbeit ist es, das Enumerationsproblem für drei solcher natürlichen Er-
weiterungen zu untersuchen. Diese Erweiterungen sind: Die Vereinigung von konjunktiven
Abfragen (UCQs), konjunktive Abfragen mit funktionalen Abhängigkeiten (FDs), und
Well-designed pattern trees (wdPTs). Für CQs mit FDs als auch für UCQs liegt unser
Fokus auf dem Enumerieren von Antworten mit einer linearen Vorbereitungszeit, gefolgt
von einer Enumerierungsphase mit konstanter Verzögerung zwischen der Ausgabe von
Antworten. Wir zeigen, dass diese Schranke selbst für simple wdPTs nicht erreichbar ist,
weswegen für diese Abfragesprache eine polynomielle Verzögerung zwischen der Ausgabe
von Antworten unser Ziel ist. Eine Dichotomie, die klassifiziert, welche azyklischen
CQs ohne self-joins effizient enumeriert werden können, wurde in einer grundlegenden
Arbeit von Bagan et al. gezeigt. Diese Klasse von CQs fällt mit der Klasse sogenannter
fre–connex CQs zusammen. Für Datenbanken, die FDs aufweisen, ist diese Dichotomie
aber bereits nicht mehr gültig: Es gibt Abfragen, die als ineffizient klassifiziert werden,
deren Antworten aber mit einer konstanten Verzögerung ausgegeben werden können,
sofern man die gegebenen FDs berücksichtigt. Wir generalisieren die Dichotomie von
Bagan et al. für CQs mit FDs. Des Weiteren generalisieren wir eine untere Schranke für
die Komplexität des Enumerierungsproblems von zyklischen CQs mit unären FDs.

Wir erweitern das Konzept von free-connex CQs auf UCQs und zeigen dadurch, dass UCQs,
die ineffiziente Anfragen enthalten, effizient sein können. Die vollständige Klassifizierung
von UCQs bleibt offen. Dennoch beweisen wir für einige Klassen von Anfragen, dass
free-connex UCQs exakt die Menge von effizienten UCQs ausmacht.

Für wdPTs wurden in den letzten Jahren verschiedenste Probleme behandelt, wie beispiel-
sweise das Evaluierungsproblem unter strukturellen Einschränkungen. Wir zeigen einen di-
rekten Zusammenhang zwischen der parametrisierten Komplexität des Evaluierungsprob-
lems und der Komplexität des Enumerierungsproblems. Durch die Einführung weiterer
struktureller Einschränkungen identifizieren wir schliesslich wdPTs, die immer effizient
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bzw. nicht effiziernt enumeriert werden können, sowohl im Kontext von parametrisierter
Komplexität als auch im Kontext von klassischer Komeplexität.
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CHAPTER 1
Introduction

1.1 Motivation

Conjunctive Queries (CQs) are one of the most fundamental and basic query languages
in database managements systems. Not only is the expressive power of CQs equivalent to
that of Select–Project–Join queries, but they are also the building block of many other
query languages. Due to the importance of this query language, many computational
problems regarding CQs have been studied intensively, such as the Boolean evaluation,
the containment problem or the counting problem [CM77, CR00, GLS01, PS13, DM15].

An integral computational problem for database theory is the enumeration problem,
which amounts to producing all answers to a query without duplicates. Starting with
a seminal work by Durand and Grandjean [DG07], there has been a renewed interest
in examining the complexity of the enumeration problem, focusing on a fine-grained
analysis [BDG07, KS13a, SSV18, NS18, FRU+18]. When enumerating the solutions to a
query over a database, the number of results may be larger than the size of the database
itself. Enumeration complexity offers specific measures for the hardness of such problems.
In terms of data complexity, the best we can hope for is to output all answers with a
constant delay between consecutive answers. In the case of query enumeration, this can
be done after a linear preprocessing phase required to read the database and decide the
existence of a first answer. The enumeration class achieving these time bounds is denoted
by DelayClin.

A result by Bagan et al. [BDG07] includes not only a constant delay enumeration
algorithm, but a full dichotomy on the enumeration complexity of acyclic CQs. Specifically,
the enumeration complexity of a CQ Q is determined by its structure. An acyclic query
is called free-connex if the query remains acyclic when treating the head of the query as
an additional atom. Enumerating the answers to Q is tractable if and only if H(Q) is
acyclic free-connex.
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1. Introduction

Example 1.1. Consider a relational database storing data about movies using the
relational schemas Cast(Actor,Movie) and Release(Movie, ProductionCompany). The
following CQ asks for a list of actors and the production companies they work with:

Q(x, y)← Cast(x, z),Release(z, y). (1.1)

Since this query is not acyclic free-connex, we know that the enumeration complexity is
not within DelayClin.

The above mentioned dichotomy only holds when applied to databases with no additional
assumptions, but oftentimes this is not the case. In practice, there is usually a connection
between different attributes, and Functional Dependencies (FDs) and Cardinality Depen-
dencies (CDs) are widely used to model situations where some attributes in a relation
imply others. As the following example shows, these constraints also have an immediate
effect on the complexity of enumerating answers for queries over such a schema.

Example 1.2. Again consider the CQ given in equation (1.1). If we take into ac-
count that a movie has only one production company, we exhibit the FD Release :
Movie→ ProductionCompany, and the enumeration problem becomes easy: We only
need to iterate over all tuples of Cast and replace the Movie value with the single
ProductionCompany value that the relation Release assigns to it. This can be done in
linear time by first sorting (in linear time [Gra96]) both relations according toMovie.

Example 1.2 shows that the dichotomy by Bagan et al. [BDG07] no longer holds in the
presence of FDs. In fact, we believe that dependencies between attributes are so common
in real life that ignoring them in such dichotomies can mean that we miss a significant
portion of the tractable cases. Therefore, to get a realistic picture of the enumeration
complexity of CQs, we have to take dependencies into account.

A natural extension of CQs is given by Unions of CQs (UCQs), as they describe the
union of the answers to several CQs. UCQs form an important class of queries as well,
as this class captures the positive fragment of relational algebra. Previous work, which
implied results on the enumeration complexity of UCQs, imposes strong restrictions on
the underlying database [SV17]. However, a dichotomy similar to that of Bagan et al.
classifying a UCQ based on its structure alone, is still missing. Lifting Example 1.1 to
the setting of a UCQ strongly suggests that extending the original dichotomy on CQs is
far from straightforward:

Example 1.3. We enhance the relational database from the previous examples by the
binary relational schema Television(Actor, TV Show). Let Q = Q1 ∪Q2 be a UCQ with

Q1(x, y, w)← Cast(x, z),Release(z, y),Television(x,w) and (1.2)
Q2(x, y, w)← Cast(x, y),Release(y, w).

This query lists triples that consist of an actor, an associated production company and
either a movie or a TV show that the actor appeared in. According to the dichotomy
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1.1. Motivation

of Bagan et al. [BDG07], the enumeration problem for Q2 is in DelayClin, while the
enumeration problem for Q1 is not. Intuitively, one might be tempted to expect a union
of enumeration problems to be harder than a single problem within the union, making
such a UCQ intractable as well. Yet, it turns out that Q is in fact in DelayClin: Since Q1
and Q2 are evaluated over the same database, we can use Q2(I) to find Q1(I). We can
compute Q2(I) efficiently, and try to extend every such solution to solutions of Q1 with
a constant delay. For every new combination a, c of an output (a, b, c) ∈ Q2(I), we find
all d values with (b, d) ∈ TelevisionI and then output the solution (a, c, d) ∈ Q1(I).

As this example illustrates, to compute the answers to a UCQ in an efficient way, it is
not enough to view it as a union of isolated instances of CQ enumeration. In fact, this
task requires an understanding of the possible interactions between several queries.

Going back to CQs, consider the query (1.2) and assume that we evaluate it over a
database with incomplete information, that is, for some actors in the database the list of
the television shows they appeared in might be missing. If we are mostly interested in a
list of actors and associated production companies, and see the TV shows as optional
information, then query (1.2) is too restrictive, as it only lists triples with TV shows.
What we need in this case is partial matching as an extension of CQs.

Well-designed pattern trees (wdPTs) have been introduced [LPPS13] as an extension
of CQs to allow for such a partial matching – analogously to the OPTIONAL (OPT)
operator of the semantic web query language SPARQL. Intuitively, the OPT operator
(which corresponds to the left outer join in the relational algebra) allows the user to
extend CQs by optional parts, which are retrieved from the data if available, but which do
not cause the partial answers to get lost in case the optional information is not available.

Example 1.4. Consider the following wdPT:

{Cast(x, z),Release(z, y)}

{Television(x,w)}

This query consists of two CQs, one for each node of the tree. As an output, the wdPT
produces triples of the form t = (actor,movie, productioncompany) that correspond
to answers of the root node. Then, for each such triple t, it extends the solution to
t′ = (actor,movie, productioncompany, tvshow), if a pair (actor, tvshow) exists in the
Television relation. If such an extension exists, t′ is output, otherwise t is output.

To make wdPTs a proper extension of CQs, wdPTs are enhanced with projection. This
means that by projecting to the variables x, y and w in Example 1.4, we obtain exactly
the output that we were aiming for.

The complexity of enumerating the answers to wdPTs has hardly been considered so far.
A notable exception is [LPPS13], where it was shown that enumeration of wdPTs without
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1. Introduction

projection is tractable provided that the CQs contained in the wdPTs are from some
tractable fragment. In contrast, for wdPTs with projection, the enumeration problem
of wdPTs was shown intractable in [LPPS13] even when allowing only acyclic CQs to
appear at each node of a wdPT. To list all answer tuples with a constant or at least a
polynomial delay, we need to define classes of wdPTs with restrictions both to the CQs
in each node as well as the underlying tree structure.

1.2 Problem Statement

As illustrated by Examples 1.2, 1.3 and 1.4, there are three different natural ways of
extending the setting of CQs, for which the complexity of the enumeration problem is still
widely unknown: CQs in the presence of dependencies, UCQs and wdPTs. The main goal
of this thesis is to initiate a systematic study on this problem, and to ultimately either
achieve a dichotomy close to the original dichotomy by Bagan et al., which we often refer
to as the original dichotomy, or to identify islands of tractability and intractability for
the respective query languages.
In this work, the terms tractability and intractability usually depend on the context: When
enumerating the answers to CQs in the presence of FDs or the answers to UCQs, we aim
for DelayClin, and any enumeration problem is tractable if and only if it is within this
class. In contrast to that, when we want to enumerate the answers to wdPTs, we mostly
aim for enumeration within OutputP or OutputFPT, which then become the boundaries
for tractability.

Effects of FDs on Enumeration Complexity

For CQs in the presence of FDs, the goal is to generalize the dichotomy by Bagan et al.
to fully accommodate FDs. To achieve this goal, we introduce an extension of a query Q
according to the FDs. The extension is called the FD-extended query, and is denoted by
Q+. This way, instead of classifying every combination of CQ and FDs directly, we want
to encode the dependencies within the extended query, and use the classification of Q+

to gain insight about Q. We aim to show that free-connexity of Q+ fully classifies the
enumeration complexity of Q in the presence of FDs.

Thus, for this encoding to make sense when considering the enumeration problem, we
have to show both the positive and the negative side of a dichotomy. For the positive
side, this amounts to showing that enumerating the solutions of Q under FDs can be
reduced to enumerating the solutions of Q+ in an efficient way. For the negative side, we
need to answer the following question: Is it possible that Q can be enumerated efficiently
even if Q+ is not free-connex?

To show that an enumeration problem is not within a given class, enumeration complexity
has few tools to offer. In order to deal with this problem, Bagan et al. reduced the
matrix multiplication problem to enumerating the answers to any query that is acyclic
but not free-connex. However, this reduction fails when dependencies are imposed on the
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1.2. Problem Statement

data, as the constructed database instance does not necessarily satisfy the underlying
dependencies. We therefore need to find a new reduction for this case.

The dichotomy by Bagan et al. is not the only one we are interested in extending.
Considering cyclic CQ, we also try to extend a similar dichotomy by Brault-Baron [BB13]
when dealing with FDs. Moreover, we also consider Cardinality Dependencies (CDs),
which are a natural generalization of FDs.

Understanding Unions of CQs

In Example 1.3, we show that a union containing intractable CQs can be enumerated
in DelayClin. We aim to understand when a union containing intractable CQs allows
for tractable enumeration. To do so, we want to identify structural properties of UCQs
that guarantee tractability. This structural property needs to be a generalization of
free-connexity, as CQs are a special case of UCQs.

To make sure that this structural property classifies tractable unions, we want to identify
hard queries as well, thus recognizing which unions are always hard, based on some
computational hypothesis for a lower bound. As with the case of CQs with FDs,
the reduction for the lower bound in the original dichotomy does not hold for UCQs.
Similarly to the case of CQs with self-joins, which is usually excluded when aiming for
lower bounds, relational symbols that appear multiple times within a query can interfere
with the reduction. Indeed, when encoding a hard problem to an intractable CQ within
a union, a different CQ in the union evaluates over the same relations, and may also
produce answers. A large number of such supplementary answers, with constant delay
per answer, accumulates to a long delay until we obtain the answers that correspond
to the computationally hard problem. If this delay is larger than the lower bound we
assume for the hard problem, we cannot conclude that the UCQ is intractable. We thus
need to either identify classes of UCQs for which we can use similar reductions to the
ones used for CQs, or introduce alternative reductions.

Enumeration Complexity of wdPTs

As we will see in Section 6.1, enumerating the answers to wdPTs with a constant delay
after a linear preprocessing time fails for some of the most basic structures. Therefore,
when aiming for a constant delay between outputs, we need to evaluate whether a slightly
longer preprocessing phase can be used to achieve tractability.

Since the enumeration complexity of wdPTs has been widely ignored so far, we are
also interested in two other notions of efficient enumeration: that of polynomial delay
(DelayP) and that of output-polynomial time (OutputP) results in the setting of combined
complexity respectively. The former means that the time before outputting the first
solution, the time between outputting any two solutions and the time between the last
output and termination are all bounded by a polynomial in the size of the input. The
latter means that the total time for outputting all solutions is bounded by a polynomial
in the combined size of the input plus the output. Above all, we aim at identifying the
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1. Introduction

boundary between tractable and intractable enumeration for the set of both, all solutions
and maximal solutions.

Our complexity analysis of the enumeration problem will bring to light an interesting re-
lationship between fixed-parameter tractable enumeration and evaluation. More formally,
we will show that FPT-delay of the enumeration problem for some type of wdPTs implies
that the evaluation problem for this type of wdPTs is in FPT as well. We thus resume the
quest for tractable evaluation from [BPS15] and inspect the intractable cases (classical
complexity) from a parameterized complexity point of view. Thus, we aim at delineating
the border between fixed-parameter tractability and fixed-parameter intractability to get
a better understanding of the nature of the intractability.

1.3 Main Results

The main results of this thesis are grouped into the three different directions by which
we extended the setting of CQs. Note that for all of the lower bounds in this thesis, we
will use some well-established computational hypotheses, all of which can be found in
the preliminaries in Section 2.2.1.

Conjunctive Queries in the Presence of Functional Dependencies

• Extended Class of Tractable CQs. We extend the class of queries that are known to
be in DelayClin by incorporating FDs, and show that enumerating the solutions of Q
under FDs can be reduced to enumerating the solutions of Q+. Therefore, tractability
of Q+ ensures that Q can be efficiently solved as well. By using the positive result in
the known dichotomy, Q+ is tractable w.r.t enumeration if it is free-connex. Moreover,
the structural restrictions of acyclicity and free-connex are closed under FD-extensions.
Hence, the class of all queries Q such that Q+ is free-connex is a proper extension of the
class of free-connex queries.

• Dichotomy for Enumeration. We establish a dichotomy for the enumeration complexity
of self-join-free FD-acyclic CQs. That is, we show that the tractability of enumerating
the answers of a self-join-free query Q in the presence of FDs is exactly characterized by
the structure of Q+: Given an FD-acyclic query Q, we can enumerate the answers to
Q within the class DelayClin if and only if Q is FD-free-connex. For the lower bound of
this dichotomy, we rewrite the proof of the lower bound for the original dichotomy in
order to incorporate FDs. We establish a dichotomy by carefully expanding the reduced
instance such that on the one hand, the dependencies hold and on the other hand, the
reduction can still be performed within linear time.

• Cyclic CQs. The resulting extended dichotomy, as well as the original one, provides
insight into the case of acyclic queries. For cyclic CQs, it was shown that even outputting
a first solution is not feasible after a linear preprocessing by Brault-Baron [BB13]. Based
on the same assumptions used by Brault-Baron, we show that the Boolean evaluation
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1.3. Main Results

problem for a self-join-free CQ in the presence of unary FDs where Q+ is cyclic cannot
be solved in linear time. As linear time preprocessing is not enough to achieve the first
result, enumeration within DelayClin is impossible in that case. This covers all types of
self-join-free CQs and shows a full dichotomy for the case of unary FDs. Moreover, we
show how our results can be easily used to yield additional results, such as a dichotomy
for the enumeration of CQs with linear delay.

• Cardinality Dependencies. We show the extension of all our results to schemas with
CDs and CQs.

Unions of Conjunctive Queries

• Union extended Queries. We introduce the concept of union extended queries, which
captures the interplay of several CQs within a union w.r.t. enumeration. We then use
union extensions as a central tool for evaluating the enumeration complexity of UCQs,
as the structure of such queries has implications on the tractability of the UCQ. We then
show that union extended queries can be used to efficiently enumerate the answers of
UCQs that only contain queries that are hard according to the original dichotomy. By
lifting the concept of free-connex queries from CQs to UCQs via union extended queries,
we show that free-connex UCQs are always tractable. This gives us a sufficient global
condition for membership in DelayClin that goes beyond any classification of individual
CQs.

• Lower Bounds. We prove that for several classes of queries, free-connexity fully captures
the tractable UCQs. A non-free-connex union of two CQs is intractable in the following
two cases: both CQs are intractable, or they both represent the same CQ up to a different
projection. We then focus on unions of body-isomorphic CQs. For a UCQ of two such
queries, we achieve a full dichotomy. For the case of more than two body-isomorphic
CQs, we identify a class of queries that is not covered by any lower-bound hypothesis in
this work. Excluding such queries, we also achieve an upper as well as a lower bound for
a union of more than two body-isomorphic CQs.

• Hard Cases. Based on examples, we raise questions to initiate a discussion describing
the challenges that will need to be resolved in order to achieve a full characterization of
the tractable UCQs. This discussion also focuses on the case of a UCQ containing cyclic
CQs.

Well-Designed Pattern Trees

• Constant Delay Enumeration. We rule out the possibility of linear time preprocessing
and constant delay for a very restricted class of wdPTs. However, if we relax the time
restriction of the preprocessing phase and allow polynomial time, then constant delay is
achievable for an appropriately restricted class of wdPTs.

7



1. Introduction

• Combined complexity. Our complexity analysis of the enumeration problem reveals an
interesting effect: It turns out that enumerating the maximal solutions is harder than
enumerating all solutions, in contrast to the evaluation problem of wdPTs. A yet more
detailed picture of the complexity of the enumeration problem (for all solutions resp. for
the maximal solutions) is provided by also studying the parameterized complexity of this
problem under various restrictions. In addition, we show that the enumeration problem
is strongly connected a parameterized version of the evaluation problem. Thus, results
for evaluation directly imply results for enumeration.

• Evaluation problem. We revisit the evaluation problem of wdPTs. More precisely, we
subject the intractable cases from [BPS15] for the evaluation problem to a parameterized
complexity analysis. By establishing fixed-parameter tractability as well as intractability
results, we provide a more fine-grained picture of the complexity of this problem, thus
also achieving enumeration results.

1.4 Structure of this Thesis

Chapter 2 introduces the notation and established results that form the basis for this
thesis.

In Chapter 3, we discuss the currently known results for enumeration complexity of CQs
as well as as other query languages related to the topic of this thesis.

The main part of this work starts with Chapter 4, which deals with CQs in the presence of
FDs. We first introduce the notion of FD-extended queries and establish the equivalence
between a query and its FD-extension. After that, the dichotomy for acyclic CQs is
shown, followed by a lower bound for cyclic queries under unary FDs. At the end of this
section, we show that all results from the previous sections extend to CDs.

In Chapter 5, we study the enumeration complexity of UCQs. We first generalize the
notion of free-connexity to UCQs and show that such queries are in DelayClin. We then
move on to prove lower bounds for evaluating UCQs within the time bounds of DelayClin ,
beginning with some general observations regarding cases where a single CQ is not harder
than a union containing it, and then continue to explore other cases. After that, we
address the cases of UCQs containing only intractable CQs, two body-isomorphic CQs,
and finally, UCQs containing an arbitrary number of body-isomorphic CQs. We close
the chapter with a discussion of classes of UCQs that are not classified by our approach
and thus need to be resolved in order to achieve a future dichotomy.

In Chapter 6, we study the enumeration complexity of wdPTs. We first show that a
linear preprocessing phase is not enough to achieve constant delay enumeration with
linear preprocessing for very restricted wdPTs. However, we give positive results for a
slightly longer preprocessing. After that, we revisit the evaluation problem of wdPTs.
More precisely, we subject the intractable cases from [BPS15] for the evaluation problem
to a parameterized complexity analysis. Finally, we study the combined complexity of
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enumerating all solutions and of enumerating the maximal solutions, and evaluate the
tractability of this problem for several classes of wdPTs.

The last chapter of this thesis provides a summary of our results, a discussion of open
problems as well as possible future directions.
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of conjunctive queries. To appear in the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems

• Submission: Nofar Carmeli and Markus Kröll. Enumeration Complexity of Conjunc-
tive Queries with Functional Dependencies. Extended Version of [CK18], accepted
with minor revision for publication in ACM Transactions on Computer Systems
(TOCS).

• Markus Kröll, Reinhard Pichler, and Sebastian Skritek. On the complexity of
enumerating the answers to well-designed pattern trees. In Wim Martens and
Thomas Zeume, editors, 19th International Conference on Database Theory, ICDT
2016, Bordeaux, France, March 15-18, 2016, volume 48 of LIPIcs, pages 22:1–22:18.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016

During my doctoral studies, I also worked on the following publications and submissions,
which are beyond the scope of this thesis:

• Liat Peterfreund, Dominik D. Freydenberger, Benny Kimelfeld, Markus Kröll.
Complexity Bounds for Relational Algebra over Document Spanners. To appear in
the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems.

• Pablo Barceló, Markus Kröll, Reinhard Pichler, and Sebastian Skritek. Efficient
evaluation and static analysis for well-designed pattern trees with projection. ACM
Trans. Database Syst., 43(2):8:1–8:44, 2018

• Markus Kröll, Reinhard Pichler, and Stefan Woltran. On the complexity of enu-
merating the extensions of abstract argumentation frameworks. In Carles Sierra,
editor, Proceedings of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
1145–1152. ijcai.org, 2017

• Nofar Carmeli and Markus Kröll. Enumeration complexity of conjunctive queries
with functional dependencies. In Benny Kimelfeld and Yael Amsterdamer, editors,
21st International Conference on Database Theory (ICDT 2018), volume 98 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 11:1–11:17, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

9



1. Introduction

• Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, and Heribert
Vollmer. On the complexity of hard enumeration problems. In Language and
Automata Theory and Applications - 11th International Conference, LATA 2017,
Umeå, Sweden, pages 183–195, 2017

• Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, and Heribert
Vollmer. A complexity Theory for Hard Enumeration Problems. Extended Version
of [KPW17], to appear in Discrete Applied Mathematics

10



CHAPTER 2
Preliminaries

This chapter provides definitions as well as notations about most of the objects and basic
concepts which will be used in this thesis.

2.1 Queries and Databases

Relational Data Model and Functional Dependencies

A schema S is a pair (R,∆) where R is a finite set {R1, . . . , Rn} of relational symbols
and ∆ is a set of Functional Dependencies (FDs). When the set ∆ is empty, we often
omit ∆ from the schema. Every relational symbol Ri ∈ R has an arity, which we denote
by arity(Ri). An FD δ ∈ ∆ is a constraint of the form Ri : A→ B, where Ri ∈ R and
A,B are non-empty sets of integers with A,B ⊆ {1, . . . , arity(Ri)}.

Let dom be a finite set of constants, also called the domain. A database instance (which
we often simply call database or instance) D over schema S consists of a finite relation
RDi ⊆ domarity(Ri) for every relational symbol Ri ∈ R, such that all FDs in ∆ are satisfied.
An FD δ = Ri : A→ B is said to be satisfied if, for all tuples u, v ∈ RDi that are equal
on the indices of A, u and v are equal on the indices of B. For a database instance D
defined over dom, we say that dom is the domain of D as well as the domain of every
relation RDi .

In this work, we will often assume w.l.o.g. that all FDs are of the form Ri : A→ b, where
b ∈ {1, . . . , arity(Ri)}, as we can replace an FD of the form Ri : A → B where |B| > 1
by the set of FDs {Ri : A→ b | b ∈ B}. If |A| = 1, we say that the FD δ : A→ B is a
unary FD.
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2. Preliminaries

Conjunctive Queries and Unions of Conjunctive Queries

Let var be a set of variables disjoint from dom, which is the set of all variables. A
Conjunctive Query (CQ) over schema S = (R,∆) is an expression of the form

Q(~p)← R1(~v1), . . . , Rm(~vm), (2.1)

where R1, . . . , Rm are relational symbols of R, the tuples ~p,~v1, . . . , ~vm consist of variables
and domain elements such that |~vj | = arity(Rj) for every Rj ∈ R, and every variable
in ~p appears in at least one of ~v1, . . . , ~vm. We often denote this query as Q(~p) or even
Q. Define the variables of Q as var(Q) =

⋃m
i=1 ~vi, and define the free variables of Q as

free(Q) = ~p. We call Q(~p) the head of Q, and the atomic formulas Ri(~vi) are called
atoms. For a set A of atoms we use dom(A) to denote the set of constants and variables
appearing in A, while var(A) refers to the variables only. We further use atoms(Q) to
denote the set of atoms of Q. A CQ is said to contain self-joins if some relation symbol
appears in more than one atom.

We next turn to the evaluation Q(D) of a CQ Q with free variables ~p over a database
D. Let Q be a CQ of the form (2.1). A homomorphism from Q into D is a mapping
µ : var → dom such that for every atom R(~v) ∈ atoms(Q) there exists some tuple
t ∈ RD with µ(~v) = t. We define Q(D) to be the set of all mappings µ|~p such that µ is a
homomorphism from Q into D, where µ|~p denotes the restriction (or projection) of µ to
the variables ~p. A mapping µ|~p ∈ Q(D) is called an answer to Q over D or solution to Q
over D. If Q and D are clear from the context, we simply call µ|~p an answer or solution.

Example 2.1. Consider the query Q(x, y)← Cast(x, z),Release(z, y) from Example 1.1
over the schema S = {{Cast,Release}, {δ = Release : 1 7→ 2}}. A database D over S
which satisfies the functional dependency δ is given by

CastD = {(“HarrisonFord”, “StarWars”), (“HarrisonFord”, “RaidersoftheLostArk”)},
ReleaseD = {(“StarWars”, “LucasfilmLtd.”), (“AmericanGraffiti”, “LucasfilmLtd.”)}.

Let dom be the domain of D. A homomorphism from Q into D is given by a mapping µ :
var → dom, such that x 7→ “HarrisonFord”, z 7→ “StarWars” and y 7→ “LucasfilmLtd.”.
Hence the set of solutions contains µ|{x,y}, and since this is also the only solution, we
have Q(D) = {{x 7→ “HarrisonFord”, y 7→ “LucasfilmLtd.”}}.

A Union of Conjunctive Queries (UCQ) Q is a set of CQs, denoted Q =
⋃`
i=1Qi,

where free(Qi1) = free(Qi2) for all 1 ≤ i1, i2 ≤ `. Semantically, we have that Q(D) =⋃`
i=1Qi(D). As with CQs, the elements in Q(D) are called answers or solutions. A CQ

is a special case of a UCQ, so we generalize the notations from CQs to UCQs by setting
atoms(Q) =

⋃`
i=1 atoms(Qi), var(Q) =

⋃`
i=1 var(Qi) and free(Q) = free(Q1).

Given a CQ or UCQ, we often omit the corresponding schema S = (R,∆). In this case,
we can always assume that R consists of the relational symbols appearing in atoms(Q)
and ∆ = ∅.
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We also need to introduce some technical terms. For a tuple u consisting of variables
and/or constants, we denote by u[i] the i-th element of the tuple u. Let R(~v) be an atom
of a CQ and t ∈ RD. We say that a tuple t ∈ RD assigns a variable x with the value c if
for every index i such that ~v[i] = x we have that t[i] = c. We say that a tuple ta ∈ RDa
agrees with a tuple tb ∈ RDb on the value of a variable x if the following holds: For every
pair of indices ia, ib and every sequence of variables va, vb with Ra(va), Rb(vb) ∈ atoms(Q)
such that ~va[ia] = ~vb[ib] = x, we have that ta[ia] = tb[ib].

Given a query Q over a schema S = (R,∆), we often identify an FD δ ∈ ∆ as a mapping
between variables. That is, if δ has the form Ri : A → b for A = {a1, . . . , a|A|} and
Ri(~vi) ∈ atoms(Q), we sometimes denote it by δ = Ri : {~vi[a1], . . . , ~vi[a|A|]} → ~vi[b]. To
distinguish between these two representations, we usually denote subsets of integers by
A,B,C, . . ., integers by a, b, c, . . ., and variables by letters from the end of the alphabet.

Example 2.2. Given the CQ Q from Example 2.1 over schema S, we can also denote
the FD δ = Release : 1 7→ 2 as δ = Release : z 7→ y.

Graphs and Hypergraphs

We consider undirected, simple graphs G = (V,E). For a graph G, we may write V (G)
and E(G) to denote the set of nodes and edges, respectively. As usual, a tree is an acyclic
graph, and a subtree is a connected subgraph of a tree. A tree decomposition of a graph
G = (V,E) is a pair (T, ν), where T is a tree and ν : V (T ) → 2V , that satisfies the
following:

1. For each u ∈ V the set {t ∈ V (T ) | u ∈ ν(t)} is a connected subset of V (T ), and

2. each edge of E is contained in one of the sets ν(t), for t ∈ V (T ).

The width of a tree decomposition (T, ν) is given by (max {|ν(t)| | t ∈ V (T )})− 1. The
treewidth of G is the minimum width of its tree decompositions. Intuitively, the treewidth
of G measures its tree-likeness. Notice that if G is an undirected graph, then G is acyclic
if and only if it is of treewidth one.

Example 2.3. Consider the graph G below. This graph has a treewidth of at most 2,
which can be seen by a corresponding tree decomposition (T, ν), where the label of every
node N in the tree corresponds to the set ν(N). Moreover, this tree decomposition gives
us a minimal treewidth, as G is cyclic and thus has a treewidth of at least 2.

f b c

ea d

{d, e}

{a, c, d}

{a, b, c}

{b, f}G : (T, ν) :
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u0 u3 u1

u4 u2

H0 :

u0 u1

u4 u2

H1 :

u0 u3 u1

u4 u2

H2 :

u0 u3 u1

u2

H3 :

Figure 2.1: The hypergraphs H1,H2,H3 are pseudo-minors of H0 as given in Example 2.4.

A hypergraph H = (V,E) is a generalization of a graph, consisting of a set V of vertices,
and a set E of non-empty subsets of V called hyperedges (sometimes edges). A join
tree of a hypergraph H = (V,E) is a tree T where the nodes are the hyperedges of H,
and the running intersection property holds, which is the same as property (1) for tree
decompositions: for all u ∈ V the set {e ∈ E | u ∈ e} forms a connected subtree in T . A
hypergraph H is said to be acyclic if there exists a join tree for H. Two distinct vertices
in a hypergraph are said to be neighbors if they appear in the same edge. For n ≥ 2, a
tuple P = (x1, . . . , xn) of vertices in H is a path if xi, xi+1 are neighbors for all 1 ≤ i ≤ n,
and it is chordless if these are the only neighbors in P . The length of the path P is n− 1.

A clique of a hypergraph is a set of vertices, which are pairwise neighbors in H. A
hypergraph H is said to be conformal if every clique of H is contained in some edge of
H. A chordless cycle of H is a tuple (x1, . . . , xn), n ≥ 3 such that the set of neighboring
pairs of variables of {x1, . . . , xn} is exactly {{xi, xi+1} | 1 ≤ i ≤ n− 1} ∪ {{xn, x1}}. It
is well known (see [BFMY83]) that a hypergraph is acyclic if and only if it is conformal
and contains no chordless cycles.

A pseudo-minor of a hypergraph H = (V,E) is a hypergraph obtained from H by a finite
series of the following operations:

1. vertex removal: removing a vertex from V and from all edges in E that contain it.

2. edge removal: removing an edge e from E provided that some other e′ ∈ E contains
it.

3. edge contraction: replacing all occurrences of a vertex v (within every edge) with a
vertex u, provided that u and v are neighbors.

Example 2.4. Consider the hypergraph H0 = (V,E) with V = {u0, u1, u2, u3, u4} and
E = {{u0, u2, u4}, {u1, u2}, {u0, u1, u3}, {u2, u3}} as given in Figure 2.1. We obtain the
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pseudo-minor H1 by edge contraction, replacing all occurrences of u3 by u0. Note that
the edge {u0, u1} ∈ E(H1) is obtained, as a set can not contain duplicates of u0. The
pseudo-minor H2 is obtained by removing {u0, u2}. Finally, the pseudo-minor H3 is
obtained by removing the vertex u4.

If every edge in H has k many vertices, we call H k-uniform. An l-hyperclique in a
k-uniform hypergraph H is a set V ′ of l > k vertices, such that every subset of V ′ of size
k forms a hyperedge.

Let H = (V,E) and S ⊆ V . A hypergraph H′ is an inclusive extension of H if every edge
of H appears in H′, and every edge of H′ is a subset of some edge in H. We further say
that a tree T is an ext-S-connex tree for H if:

1. T is a join-tree of an inclusive extension of H, and

2. there is a subtree T ′ of T that contains exactly S [BDG07].

If such a tree T for H and S exists, then H is called ext-S-connex acyclic. When it is
clear from the context that H is acyclic, we sometimes call H ext-S-connex instead.
We say that P = (x, z1, . . . , zm, y) is an S-path of H if

1. P is a chordless path in H,

2. x, y ∈ S and

3. z1, . . . , zm 6∈ S.

Example 2.5. Consider the hypergraph H given below. T is an ext-{x, y, z}-connex tree
for hypergraph H. Moreover, the path P = (x, y, w) in H is an S-path for S = {x,w}.

z w

x y

v w, y, z

y, z

x, y

v, w

H : T :

Classes of CQs

To a CQ Q we associate a hypergraph H(Q) = (V,E) where the vertices V are the
variables of Q and every hyperedge E is a set of variables occurring in a single atom
of Q, that is E = {{v1, . . . , vn}} | Ri(v1, . . . , vn) ∈ atoms(Q)}. With a slight abuse of
notation, we also identify atoms of Q with edges of H(Q). A CQ Q is said to be acyclic if
H(Q) is acyclic, and it is said to be free-connex acyclic if both Q and (V,E ∪ {free(Q)})
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are acyclic. When it is clear that Q is acyclic, we sometimes use the term free-connex
instead of free-connex acyclic.

The Gaifman-graph of a CQ Q is a graph G = (V,E) where V = var(Q) and E contains
exactly all pairs of variables that jointly occur in some relational atom in Q. The
treewidth of a CQ is the treewidth of its Gaifman-graph. We denote by TW(k) the class
of CQs of treewidth at most k, for k ≥ 1.

A free-path for a CQ Q is a sequence of variables (x, z1, . . . , zk, y) with k ≥ 1, such that:

1. {x, y} ⊆ free(Q)

2. {z1, . . . , zk} ⊆ V \ free(Q)

3. It is a chordless path in H(Q), that is, two succeeding variables appear together in
some atom, and no two non-succeeding variables appear together in an atom.

Bagan et al. [BDG07] showed that an acyclic CQ has a free-path if and only if it is not
free-connex. It was shown that an acyclic query Q is free-connex if and only if there
exists an ext-free(Q)-connex tree for H(Q) [BB13].

Example 2.6. Consider the CQ Q(x, y, v) ← R1(x, z), R2(z, y), R3(y, z, u), R4(u, v).
This query is acyclic, since T is a join-tree of H(Q), see below. Moreover, the query is
not free-connex, as there exists a free-path (y, u, v).

x y z

u v

y, z, u

y, z

x, y

u, vH(Q) : T :

Well-designed pattern trees

Well-designed pattern trees (wdPTs) are queries that were originally introduced in
[LPPS13] as a graphical representation of well-designed SPARQL defined in [PAG09]
and later extended to arbitrary relational vocabulary [BPS15]. Their formal definition is
given below.

Definition 2.7 (wdPTs). A well-designed pattern tree (wdPT) p is a tuple (T, λ, ~x), such
that the following holds:

1. T is a rooted tree and λ maps each node N ∈ V (T ) to a set of relational atoms.

2. For every variable y mentioned in T , the set of nodes of T where y occurs is
connected.
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3. The tuple ~x of distinct variables from T denotes the free variables of the wdPT.

We say that (T, λ, ~x) is projection-free, if ~x contains all variables mentioned in T .

Note that unlike SPARQL queries which are defined over so-called RDF triples [PS08],
wdPTs are defined over arbitrary relational schemas, abstracting away from the specifics
of the semantic web data model RDF. As we will see below, this also means that CQs
correspond to the special case of wdPTs consisting of only the root node.

Condition (2) in Definition 2.7 is referred to as the well-designedness condition introduced
in [PAG09]. In the context of wdPTs, we use upper-case letters to denote nodes of a
wdPT, and lower-case letters for vertices of tree decompositions and general graphs. For
a wdPT p = (T, λ, ~x) and a node N ∈ V (T ), we may abbreviate var(λ(N)) to var(N).
Also, for a subtree T ′ of T we may use var(T ′) to denote the set

⋃
N∈V (T ′) var(N). Finally,

we may write var(p) instead of var(T ).

Let p = (T, λ, ~x) be a wdPT. We write R to denote the root of T . Given a subtree T ′
of T rooted in R, we define QT ′ to be the CQ QT ′(~y) ← R1(~v1), . . . , Rm(~vm), where
{R1(~v1), . . . , Rm(~vm)} =

⋃
N∈T ′ λ(N), and ~y = var(T ′). Finally, we write |p| to denote

the size of p in standard relational notation – which corresponds to the size of QT .

Example 2.8. Consider the following {AND,OPT}-SPARQL query that is posed over
an RDF database that stores information about movies. We use here the algebraic-style
notation from [PAG09] rather than the official SPARQL syntax of [PS08].((

(x, directed_by, y) AND (x, released, “before_1980”)
)

OPT (x, oscars_won, z)
)

OPT (y, first_movie, z′).

This query retrieves all pairs (m, d) such that movie m is directed by d and released
before 1980. This is specified by the pattern

(x, directed_by, y) AND (x, released, “before_1980”).

Furthermore, whenever possible, this query also retrieves (one or both of) the following
pieces of data: the number of Academy Awards n won by movie m and the first movie m′
directed by d. In other words, in addition to (m, d) we also retrieve n and/or m′ if the
information is available in the database. This is specified by the atoms (x, won_oscars, z)
and (y, first_movie, z′) following the respective OPT-operators.

The wdPT p = (T, λ, ~x) corresponding to the SPARQL-query above is given in Figure 2.2.
Note that wdPTs express the optional operator OPT as an edge, and that we use relational
atoms instead of RDF triples.

Formally, the query p is defined as:

• T consists of a root R with child nodes N1 and N2,
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{Dir(x, y),Rel(x, “before_1980”)}

{Osc(x, z)} {Fir(y, , z′)}

Figure 2.2: The wdPT of Example 2.8.

• λ(R) = {Dir(x, y),Rel(x, “before_1980”)}, λ(N1) = {Osc(x, z)},
λ(N2) = {Fir(y, , z′)},

• ~x = {x, y, z, z′}.

Given the subtree T ′ of T containing nodes R and N1 as well as the edge between the two
nodes, the CQ QT ′ is defined as QT ′(x, y, z)← Dir(x, y),Rel(x, “before_1980”),Osc(x, z).

We define the semantics of wdPTs by naturally extending their interpretation under
semantic web vocabularies [LPPS13, PS14]. Intuitively, a mapping µ satisfies (T, λ) over
a database D if it is a solution to a CQ QT ′ and if no proper extension of µ is a solution
to some CQ QT ′′ , where T ′ and T ′′ are both subtrees of T . To formally define this, we
need to fix some concepts for partial mappings.

Given a partial mapping µ, we denote by dom(µ) the set of variables on which µ is
defined. Given two partial mappings µ1, µ2, we say that µ1 is subsumed by µ2, written
as µ1 ⊆ µ2, if dom(µ1) ⊆ dom(µ2) and µ1(x) = µ2(x) for every x ∈ dom(µ1). If µ1 ⊆ µ2
but µ2 ⊆ µ1 does not hold, we write µ1 ⊂ µ2.

The result of evaluating a wdPT (T, λ, ~x) over D contains the projection of all mappings
satisfying (T, λ) to ~x. We formalize this next.

Definition 2.9 (Semantics of wdPTs). Let p = (T, λ, ~x) be a wdPT and D a database,
and let R be the root of T .

• A homomorphism from p to D is a partial mapping µ : var → dom for which there
exists a subtree T ′ of T rooted in R such that µ|var(T ′) ∈ QT ′(D).

• A homomorphism µ from p to D is maximal if there is no homomorphism µ′ from
p to D such that µ ⊂ µ′.

The evaluation of wdPT p = (T, λ, ~x) over D, denoted p(D), corresponds to the set of all
mappings of the form µ|~x, such that µ is a maximal homomorphism from p to D.

For a wdPT p and a database D, a mapping µ is called a partial solution if there exists
some solution µ′ ∈ p(D) s.t. µ ⊆ µ′. Observe that p(D) may contain mappings µ, µ′
such that µ ⊆ µ′. We thus define the set of maximal solutions as pm(D) = {µ ∈ p(D) |
for all µ′ ∈ p(D) : µ 6⊂ µ′}. We revisit Example 2.8 to illustrate these ideas.
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Example 2.10. Consider the database D over schema S = ({Dir,Rel,Osc,Fir}, ∅):

DirD = {(“American_Graffiti”, “George_Lucas”), (“Star_Wars”, “George_Lucas”)}
RelD = {(“American_Graffiti”, “before_1980”), (“Star_Wars”, “before_1980”)}
OscD = {(“Star_Wars”, “6”)}
FirD = ∅

The evaluation over D of the query from Example 2.8 consists of partial mappings µ1
and µ2 defined on variables x, y, z, z′ such that:

• µ1 = {x 7→ “American_Graffiti”, y 7→ “George_Lucas”}, and

• µ2 = {x 7→ “Star_Wars”, y 7→ “George_Lucas”, z 7→ “2”}.

Indeed, let T1 be the subtree of T consisting of the root node R, and T2 the subtree
consisting of R and N1. The corresponding CQs are given by

QT1(x, y)← Dir(x, y),Rel(x, “before_1980”) and
QT2(x, y, z)← Dir(x, y),Rel(x, “before_1980”),Osc(x, z).

As µ1|{x,y} ∈ QT1(D) and µ2|{x,y,z} ∈ QT2(D), the mappings µ1 and µ2 are homomor-
phisms from p to D. Moreover, they are maximal homomorphisms. These are the only
two solutions in p(D), and both are maximal solutions.

For a query with solutions that are not maximal, consider the wdPT p′ = (T ′, λ′, ~x′)
given below.

{S(x, y, z0)}

{P (x, z1)} {Q(y, z2)}

Formally, p′ is defined as follows:

• T ′ consists of a root R with child nodes N1, N2,

• λ′(R) = {S(x, y, z0)}, λ′(N1) = {P (x, z1)}, λ′(N2) = {Q(y, z2)} and

• ~x′ = {z0, z1, z2}.

First note that since ~x′ ( var(p′), we have that p′ is not projection-free. We define the
following database instance D′ over a schema S = ({S, P,Q}, ∅) and domain dom =
{0, 1, 2, 3, 4}:

SD
′ = {(1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0)}, PD′ = {(0, 3), (2, 3)}, QD′ = {(4, 4), (2, 4)}.
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We first claim that there is some partial mapping µ : var(p′) → dom such that µ|~x′ =
{z0 7→ 0} ∈ p′(D′). Indeed, let µ = {x 7→ 1, y 7→ 1, z0 7→ 0}. For the subtree T ′′ of T ′ only
consisting of R we have the CQ QT ′′(x, y, z0)← S(x, y, z0) and thus µ|var(QT ′′ ) ∈ QT ′′(D′),
meaning that µ is a homomorphism from p to D. Moreover, this mapping µ can not be
extended to a mapping µ′ with µ ⊂ µ′ and µ′|var(QT ′′′ ) ∈ QT ′′′(D′) for any subtree T ′′′
of T ′. Thus µ is a maximal homomorphism and therefore µ|~x′ ∈ p′(D′). This solution
is not a maximal solution of p′(D′): Consider the partial mapping µ1 : var(p′)→ dom
with µ1 = {x 7→ 2, y 7→ 1, z0 7→ 0, z1, 7→ 3}. For the subtree T 4 of T ′ consisting
of R and N1, we have the CQ QT 4(x, y, z0, z1) ← S(x, y, z0), P (x, z1), and therefore
µ1|var(QT4 ) ∈ QT 4(D′). Again, there is no homomorphism µ′1 such that µ1 ⊂ µ′1, thus µ1
is a maximal homomorphism and µ1|{z0,z1,z2} a solution in p′(D′). The complete set of
solutions is given by

p(D) = {{z0 7→ 0}, {z0 7→ 0, z1 7→ 3}, {z0 7→ 0, z2 7→ 4}{z0 7→ 0, z1 7→ 3, z2 7→ 4}}.

2.2 Computational Complexity
This section gives a brief introduction to the basic notions and concepts in computational
complexity theory. In particular, we will make use of a rich theory in classifying the
hardness of decision problems, either in classical complexity or parameterized complexity,
and introduce the notions of enumeration complexity. For an in-depth look on both
classical complexity and parameterized complexity, see [Pap03] respectively [FG10].

Input, Size and Cardinality

In this work, we only consider finite structures. We thus always assume that an input
w is a string over a (fixed) finite alphabet, and we denote by ||w|| the size of w, which
is the length of the string. When the input of a computational problem consists of a
query Q and a database D, we use two different approaches for measuring the size of
the input: data complexity and combined complexity [Var82]. We use data complexity for
the majority of our problems, meaning that the input is measured only by the size of
the database instance D. When using combined complexity, the input to a problem is
measured by the combined input sizes of the query Q and the database D. For any finite
set S, we denote by |S| the cardinality of S.

Let D be a database over a schema S = (R,∆). The cardinality of D is the number of
tuples stored in D, i.e. |D| =

∑
R∈R |RD|. Flum et al. describe a reasonable encoding of

the database as a string over a finite alphabet [FFG02], such that the input size of D is
given as ||D|| = 1 + |dom|+ |R|+

∑
R∈R arity(R)|RD|.

When we evaluate the combined complexity of a problem, we also consider a query as
part of an input. For a finite set of variables var , any query in this work can be encoded
as a word over var ∪ R ∪ {∃,∧, (, ),∪,OPT}, where OPT is needed to encode wdPTs.
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Since this encoding is always straight-forward and not important for this thesis, we will
always omit it.

When we say linear time for a problem with input I, we mean that the number of
operations is within O(||I||).

Computational Model

We adopt the Random Access Machine (RAM) model with uniform cost measure. For an
input of size n, every register is of length O(log(n)). Operations such as addition of the
values of two registers or concatenation can be performed in constant time. In contrast
to the Turing model of computation, the RAM model with uniform cost measure can
retrieve the content of any register via its unique address in constant time. This enables
the construction of large lookup tables that can be queried within constant time.

Throughout this work, we use a variant of the RAM model named DRAM [Gra96], where
the values stored in registers are polynomially bounded by n. As a consequence, the
amount of available memory is polynomial in n. Some previous work mentioned in this
thesis use a more restrictive variant of the model, called a DLINRAM [Gra96], where the
values are at most cn/log(n), and therefore the available memory is linear in the size of
the input.

Grandjean proved that in the DLINRAM model sorting strings can be done in time
O(n/ logn) where n is the size of the input containing strings encoded in some fixed
alphabet and separated by some special symbol [Gra96]. We can use this method to
sort relations. To construct the input to the sorting algorithm, let dom be the domain
of a relation RD. We first translate the values from dom to a possibly smaller domain
domR, containing only the values that appear in RD. Note that |domR| ≤ arity(R)|RD|.
Then, we translate these values to binary (since we are required to use a fixed alphabet),
where each value takes log(domR) bits. The size of the input to the sorting problem is
n = arity(R) · |RD| · log(|domR|) + (|RD| − 1). Therefore, we can sort the tuples of a
relation in time O(n/ logn) = O(||RD||). That is, it is possible to sort relations within
linear time [SV17].

2.2.1 Decision Complexity

Let Σ be a finite alphabet. A decision problem Decide is a language over Σ, which we
often denote by the following problem setting.

Decide
INSTANCE: x ∈ Σ∗.
QUESTION: Is x ∈ Decide?

A decision complexity class is a class of decision problems. The class PTIME is the
class of all decision problems that can be solved in polynomial time, i.e. there exists a
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deterministic algorithm A such that for every L ∈ PTIME and every x ∈ Σ∗, A decides
whether x ∈ L in polynomial time. The class NP is defined analogously, but with a
non-deterministic algorithm A.

Given a CQ or a UCQ Q and a database instance D over a schema without FDs, we denote
by Decide〈Q〉 respectively Decide∅〈Q〉 the problem of deciding whether Q(D) 6= ∅.
When we consider the problem in the presence of a (possibly empty) set ∆ of FDs, the
database D is defined over a schema (R,∆), and we denote the decision problem by
Decide∆〈Q〉. For any query Q and database D, deciding whether there exists a solution
of Q over D is called the Boolean evaluation problem. In the case of wdPTs, we are
usually more interested in the evaluation problem, which is the problem of given a query
(respectively wdPT) p, database D and candidate solution µ, to decide whether µ is in
p(D).

Parameterized Complexity

A parameterization of Σ∗ is a polynomial time computable mapping κ : Σ∗ → N. A
parameterized problem over Σ is a pair (L, κ) where L ⊆ Σ∗ and κ is a parameterization
of Σ∗. We refer to x ∈ Σ∗ as the instances of a problem, and to the numbers κ(x)
as the parameters. The following well-known problems will play an important role in
our parameterized-complexity analyses in Chapter 6, and show how we usually denote
parameterized problems.

p-Clique
INSTANCE: A graph G and k ∈ N.
PARAMETER: k
QUESTION: Does G contain a clique of size k?

p-Dominating Set
INSTANCE: A graph G and k ∈ N.
PARAMETER: k
QUESTION: Does G contain a dominating set

of size k?

A parameterized problem E = (L, κ) belongs to the class FPT of fixed parameter tractable
problems if there exists an algorithm A deciding L, a polynomial p, and a computable
function f : N→ N such that the running time of A is at most f(κ(x)) · p(|x|).

Parameterized complexity theory also provides notions of intractability. Towards this
notion, we first recall the definition of fpt-reductions. Let E = (L, κ) and E′ = (L′, κ′)
be parameterized problems over the alphabets Σ and Σ′, respectively. An fpt-reduction
from E to E′ is a mapping R : Σ∗ → (Σ′)∗ such that

1. for all x ∈ Σ∗ we have x ∈ L if and only if R(x) ∈ L′,
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2. there is a computable function f and a polynomial p such that R(x) can be computed
in time f(κ(x)) · p(|x|), and

3. there is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all
x ∈ Σ∗.

One notion of intractability for parameterized problems are the classes W[i] (for i ≥ 1)
of the W-hierarchy. Since we are here only interested in the classes W[1] and W[2], we
omit a discussion of the W-hierarchy and only recall the following facts: A parameterized
problem E is in W[1] or W[2], if there exists an fpt-reduction to the problems p-Clique
(for W[1]) and p-Dominating Set (for W[2]), respectively. Similarly, E is W[1]-hard or
W[2] if there exists an fpt-reduction from p-Clique and p-Dominating Set, respectively.
It is strongly believed that problems that are hard for W[1] or W[2] are not in FPT. For
details, see [FG10].

Computational Hypotheses

In decision complexity, it is common that lower bounds are proven relative to some
common complexity theoretic assumption such as PTIME 6= NP or FPT 6= W[1]. Many
of the assumptions in this work are of a different nature, namely they assume a lower
bounds for the specific run-time of computational problems, usually within the class
PTIME. In fact, using such lower bounds for certain problems has gained a lot of interest
in recent years [VW15, ABW18, LWW18, AW14, Pat10]. We will use the following
well-established hypotheses for lower bounds:

• mat-mul: two Boolean n × n matrices A and B cannot be multiplied in time
O(n2).
This problem is equivalent to the enumeration of all answers to the query Π(x, y)←
A(x, z), B(z, y) over the schema ({A,B}, ∅) and domain {1, . . . , n}. It is strongly
conjectured that this problem cannot be solved in O(n2) time, and the best
algorithms today require O(nω) time for some 2.37 < ω < 2.38 [LG14, AW14].

• hyperclique: finding a k-hyperclique in a (k − 1)-uniform graph is not possible
in time O(nk−1) for all k ≥ 3.
This is a special case of the (`, k)− Hyperclique Hypothesis [LWW18], which states
that, in a k-uniform hypergraph of n vertices, nk−o(1) time is required to find a
set of ` vertices such that each of it subsets of size k forms a hyperedge. We also
denote the hyperclique hypothesis by Tetra〈k〉, which is an equivalent problem
introduced in [BB13].

• 4-clique: it is not possible to determine whether a 4-clique exists in a graph with
n nodes in time O(n3).
This is a special case of the k-Clique Hypothesis [LWW18], which states that
detecting a clique in a graph with n nodes requires n

ωk
3 −o(1) time, where ω < 2.373

is the matrix multiplication exponent.
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• triangle: it is not possible to determine whether a graph with n nodes contains
a triangle in time O(n2). This is a special case of hyperclique as well as the
k-Clique Hypothesis and more common in the literature than the general versions
of this problem, see [Lat08].

2.2.2 Enumeration Complexity

Given a finite alphabet Σ and binary relation R ⊆ Σ∗ × Σ∗, we denote by Enum〈R〉
the enumeration problem of given an instance x ∈ Σ∗, to output all y ∈ Σ∗ such that
(x, y) ∈ R. We will also denote this enumeration problem as follows:

Enum〈R〉
INSTANCE: x ∈ Σ∗.
OUTPUT: All y ∈ Σ∗ with (x, y) ∈ R.

For a query Q over a schema S = (R,∆), we denote by Enum∆〈Q〉 (or Enum〈Q〉 in
case ∆ = ∅) the enumeration problem Enum〈R〉, where R is the binary relation between
instances D over S and sets of answers Q(D).

The set of all y ∈ Σ∗ forming the output of Enum〈R〉 is defined as SolR(x) (or Sol(x)
if R is clear from the context), which we also call set of all solutions to Enum〈R〉
for x. A parameterized enumeration problem is a pair (Enum〈R〉, κ) such that κ is a
parameterization of Σ∗.

An enumeration algorithm A for a (parameterized) enumeration problem E = Enum〈R〉
(resp., E = (Enum〈R〉, κ)) is an algorithm which, on input x, outputs exactly the elements
from Sol(x) without duplicates. We denote the output of A on x by A(x).

Let A be an enumeration algorithm for some problem E. For an input x, let n = |A(x)|.
For 0 ≤ i ≤ n, we define the delay of A, denoted by delay(i), as follows: delay(0)
(“preprocessing”) is the time between the start of the algorithm and the (beginning of
the) first output (or termination of A, if n = 0). For 0 < i < n, delay(i) is the time
between outputting solution i and (i+ 1). Finally, delay(n) is the time between the last
output and the termination of A.

Enumeration Classes

The concept of the delay between outputs allows us to define several classes of enu-
meration problems that capture different notions of tractability for these problems
[JPY88, CMM+17, Str10]. In the sequel, let E = Enum〈R〉 (resp., E = (Enum〈R〉, κ))
be a (parameterized) enumeration problem. For a class C, we say that E ∈ C (E′ ∈ C,
respectively), if there exists an enumeration algorithm A for E, some m ∈ N, and a
computable function f such that on every input x the following holds:
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• E ∈ OutputP: A terminates in time O((|x|+ |Sol(x)|)m).
Answers to E are enumerated within output polynomial time, or polynomial total
time [JPY88].

• E′ ∈ OutputFPT: A terminates in time O(f(κ(x)) · (|x|+ |Sol(x)|)m).
Answers to E are enumerated within output fixed-parameter tractable time [CMM+17].

• E ∈ DelayP: delay(i) is in O(|x|m) for every 0 ≤ i ≤ |Sol(x)|.
Answers to E are enumerated with a polynomial delay [JPY88].

• E ∈ DelayLin: delay(i) is in O(|x|) for every 0 ≤ i ≤ |Sol(x)|.
Answers to E are enumerated with a linear delay [Bag06].

• E′ ∈ DelayFPT: delay(i) is in O(f(κ(x)) · |x|m) for every 0 ≤ i ≤ |Sol(x)|.
Answers to E are enumerated with a fixed-parameter tractable delay [CMM+17].

• E ∈ DelayClin: delay(0) is in O(|x|) and for 0 < i ≤ |Sol(x)|, delay(i) is in O(1).
Answers to E are enumerated with a constant delay after a linear preprocess-
ing [DG07].

A stricter notion of allowing for polynomial delay between two solutions is captured
by the class SDelayP (strict polynomial delay, [Str10]): An enumeration problem E is
in SDelayP if there exists a total order < on Sol(x), some m ∈ N, and an algorithm B
terminating in time O(|x|m) with the following output: On input x, it returns the first
element of Sol(x) (according to <). On input (x, y) for any y ∈ Sol(x), it either returns
the next element according to < if there is some, or halts otherwise. Also note that no
restriction on the memory is used. In particular, for DelayClin, any enumeration algorithm
may use additional constant memory for writing between two consecutive answers. Only
using the definition for the enumeration complexity classes, we immediately see that

DelayClin ⊆ DelayLin ⊆ DelayP ⊆ OutputP

respectively DelayFPT ⊆ OutputFPT in the case of parameterized enumeration classes.

When aiming for enumeration complexity within DelayClin (that is, in Chapter 4 and 5
and parts of Chapter 6), all of our results hold under data complexity, i.e. for an input to
a computational problem we assume the query to be fixed. When aiming for DelayP or
any class containing DelayP, or when we consider any decision problems in Chapter 6, we
will usually consider the combined complexity of a problem, thus considering the query
as a variable part of the input.

Reduction between enumeration problems

Let Σ be a finite alphabet and R1, R2 be relations with R1, R2 ⊆ Σ∗ × Σ∗. There is
an exact reduction from Enum〈R1〉 to Enum〈R2〉, denoted Enum〈R1〉 ≤e Enum〈R2〉, if
there are mappings σ : Σ∗ → Σ∗ and τ : Σ∗ → Σ∗ such that the following conditions
hold.
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• for every x ∈ Σ∗, the mapping σ(x) is computable in O(|x|);

• for every y ∈ Σ∗ with (σ(x), y) ∈ R2, τ(y) is computable in constant time;

• For every x ∈ Σ∗, the mapping π : SolR2(σ(x)) → SolR1(x) with y 7→ τ(σ(x)) is
injective. Equivalently, the multiset {τ(y) | y ∈ Σ∗ with (σ(x), y) ∈ R2} is equal to
the multiset {y′ ∈ Σ∗ | (x, y′) ∈ R1}.

Intuitively, σ is used to map instances of Enum〈R1〉 to instances of Enum〈R2〉, and
τ is used to map solutions to Enum〈R2〉 to solutions of Enum〈R1〉. The notation
Enum〈R1〉 ≡e Enum〈R2〉 means that Enum〈R1〉 ≤e Enum〈R2〉 and Enum〈R2〉 ≤e
Enum〈R1〉. An enumeration class C is said to be closed under exact reduction if for
every Enum〈R1〉 and Enum〈R2〉 with Enum〈R2〉 ∈ C and Enum〈R1〉 ≤e Enum〈R2〉,
we have that Enum〈R1〉 ∈ C. The third condition of the definition of exact reductions
ensures that we can compute the solutions to an instance x ∈ Σ∗ of Enum〈R1〉 without
duplicates by computing solutions y ∈ Σ∗ to the instance σ(x) of Enum〈R2〉, and then
computing τ(y) for every such y ∈ Σ∗. Using this approach, Bagan et al. [BDG07] proved
the following:

Proposition 2.11 (Bagan et al. [BDG07]). DelayClin is closed under exact reduction.

The proof for this proposition also holds for any meaningful enumeration complexity
class that guarantees generating all unique answers with at least linear preprocessing
time and at least constant delay between answers.
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CHAPTER 3
State of the Art

In this chapter, we will give an overview of relevant parts of enumeration complexity and
discuss further work related to this thesis. As large parts of this thesis are motivated
by the dichotomy by Bagan et al. [BDG07], we will sketch the basic idea of the proof,
both the negative as well as the positive part of it, and present other results on CQ
enumeration. After that, we will discuss previous as well as recent work on constant
delay enumeration related to this thesis. Moreover, we will give an overview on current
work on wdPTs.
For an excellent survey on the topic of constant delay enumeration for a variety of queries,
see [Seg15].

3.1 Enumeration Complexity

While decision problems often ask for the existence of a solution to some problem instance,
enumeration problems aim at outputting all solutions. To capture the intuition of easy to
enumerate problems – despite a possibly exponential number of output values – various
notions of tractable enumeration classes have been proposed over the years. The first
such notion has been introduced by Johnson et al. [JPY88], defining the classes of DelayP
and OutputP among others. When evaluating the enumeration complexity of a query,
it is common to assume data complexity, i.e. to assume that the size of the query is
fixed. We make the same assumption in Chapters 4, 5 and parts of Chapter 6. When
making this assumption, Durand and Grandjean [DG07] introduced the class of DelayClin,
to have a more fine-grained measurement for the enumeration complexity. This can be
seen as the optimal class for nontrivial enumeration problems.
Another way of evaluating the complexity of an enumeration problem is to make use
of parameterized complexity [CMM+17, Fer02, Dam06, CV15]. Among other classes,
parameterized enumeration lifts the classes of DelayP and OutputP in a natural way to
the classes DelayFPT and OutputFPT. These classes are defined analogously to DelayP
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and OutputP, but with a fixed-parameter polynomial time delay between answers instead
of just a polynomial delay, respectively with a fixed-parameter polynomial total time to
output all answers instead of just polynomial total time.
A new trend in enumeration complexity is to allow for updates of the underlying data
during the enumeration process [LM14, BKS17, IUV17, NS18]. Although only loosely
related to the topic of this thesis, we will briefly discuss enumeration with updates in
Section 3.3.

When evaluating the efficiency of an enumeration algorithm A, one is usually not content
with showing membership in an enumeration complexity class E. The goal is to show
that the enumeration in any class E′ ( E is not possible, making algorithm A in some
sense optimal. However, for showing such lower bounds, enumeration complexity has
very few tools to offer.
The most common way in the literature is to make use of decision complexity, and show
that outputting a first solution is already hard, under reasonable complexity assumptions
such as PTIME 6= NP. A more general version of this approach is to show that the
following problem is hard: Given a set of solutions, is there another one? This result is
discussed in [Str10, Lemma 2.11], and can also be found in [KSS00].
To prove lower bounds for constant delay enumeration, a more fine grained approach for
decision complexity is needed as well. Since common complexity assumptions such as
PTIME 6= NP are not helpful when trying to distinguish the hardness of solving problems
within PTIME, certain well-established and well-studied problems such as the Boolean
matrix multiplication problem or the 3-Sum problem are used to introduce conditional
lower bounds within the class PTIME [VW15, WW10, LWW18, AW14]. Several results
on constant delay enumeration rely on such hypotheses, see [BDG07, BB13, BKS17].
Other approaches in enumeration complexity for showing lower bounds, which are not
within the scope of this thesis, are to use the ETH [LMS+13] to separate classes [CS18],
to reduce problems to the transversal-hypergraph problem [EG02, KLMN14] or to use
reductions for enumeration problems to show hardness for enumeration complexity classes
analogously to that of the polynomial hierarchy for decision complexity classes [CKP+17].

3.2 Enumerating the Answers to a CQs

We next turn our attention to the enumeration problem for CQs. For combined complexity,
we can use a standard technique for enumeration (see Section 6.3.1 for a short discussion)
to enumerate the answers to a CQ with a linear delay, see [BDG07, Theorem 13].
When aiming for the class DelayClin under data complexity, we first note that tractable
enumeration is not possible for the unrestricted class of CQs. This is due to results in
parameterized complexity. Indeed, the problem of answering Boolean CQs, taking the
query size as the parameter, is W[1]-complete [PY99]. Thus, if we could enumerate all
answers with linear preprocessing and constant delay, we can produce a potential first
output or decide that no such output exists in FPT time. Assuming that FPT 6= W[1],
this is not possible. For the class of acyclic CQs, the Boolean query evaluation problem
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is in FPT [Yan81]. However, due to the dichotomy by Bagan et al., even making the
restriction to acyclic CQs is not enough:

Theorem 3.1 ([BDG07, Theorem 27]). Let Q be an acyclic CQ without self-joins.

1. If Q is free-connex, then Enum〈Q〉 ∈ DelayClin.

2. If Q is not free-connex, then Enum〈Q〉 6∈ DelayClin, assuming that two Boolean
n× n matrices cannot be multiplied in time O(n2).

This result holds assuming a mode of computation that is slightly more restrictive than the
one presented in this thesis: Memory is only allocated during the preprocessing step of an
enumeration algorithm, leading to at most linear space overall. In this work, we keep the
time bounds of constant delay and linear preprocessing, while an enumeration algorithm
may use additional constant memory for writing between two consecutive answers. For a
discussion on the different models of constant delay enumeration, see [Kaz13].

The positive part of the dichotomy for CQs was presented as a result on acyclic conjunc-
tive functional queries with disequalities. A more intuitive way of understanding the
enumeration algorithm is given by an extended version of the well-known Yannakakis al-
gorithm [Yan81]. This extended algorithm, presented in [IUV17], exploits the free-connex
structure of a CQ Q as follows: Since Q is free-connex, there exists a join-tree T of a
hypergraph only containing sub-edges of H(Q) (which is an inclusive extension of H(Q),
see Section 2.1), such that a subtree T ′ of T contains all free-variables. Choosing a node
in this subtree as a root node paired with an index structure built in the preprocessing
phase thus allows for constant delay enumeration by basically applying the Yannakakis
algorithm.

The lower bound of Theorem 3.1 is proven by using a characterization of free-connexity,
which we also frequently use in chapters 4 and 5:

Theorem 3.2 ([BDG07, Lemma 24]). Let H = (V,E) be an acyclic hypergraph and
S ⊆ V . Then H is ext-S-connex if and only if it does not contain an S-path.

By using this result, Bagan et al. show that if an acyclic CQ Q is not free-connex,
then we can take some of the relations that correspond to the first and last part of
the free(Q)-path in H(Q), and encode the matrix multiplication problem to these two
relations. This idea is crucial for some of the lower bounds we show in this work as well.

Cyclic CQs

The dichotomy above only gives insight to the enumeration complexity of acyclic CQs.
Concerning unrestricted CQs, providing even a first solution of a query in linear time is
impossible in general, as we have pointed out before. This does not imply, however, that
there are no cyclic queries with the corresponding enumeration problems in DelayClin.
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The fact that no such queries exist requires an additional proof, which was presented by
Brault-Baron [BB13]. For a definition of the hypothesis hypercliquesee Section 2.2.1.

Theorem 3.3 ([BB13, Theorem 12, p.78]). Let Q be a cyclic CQ without self-joins.
Then Enum〈Q〉 6∈ DelayClin, assuming hyperclique.

A way to still achieve a constant delay enumeration algorithm is to aim for a less restrictive
preprocessing phase, as the theorem above only works for a linear preprocessing phase.
This approach was already taken by Bagan et al. [BDG07], where they make the natural
generalization from free-connex acyclicity to that of bounded free-connex treewidth,
see 6.1.1, Definition 6.6.

3.3 Constant Delay Enumeration of Related Query
Languages

Following the results by Bagan et al. [BDG07], there has been much work on query
enumeration in DelayClin over the last few years. Most importantly, there are results for
query languages more general than UCQs. The restrictions made to achieve those results
however are made on the database. In this thesis, we do not impose any restrictions on
the database at all, thus none of these results directly imply results on UCQ enumeration.
For the sake of completeness, we briefly mention some of the results.

Restrictions to the Database

Restrictions on a database I are imposed similar to the restrictions on a query Q: by
building a graph G that corresponds to the database I. That is, the Gaifman graph of I
is defined as G = (V,E), where V is the set of domain elements over which I is defined,
and (a, b) is an edge in E if and only if both a and b occur in a tuple of a relation RI in
the database.
The class of databases for which constant delay results are achieved are usually either
sparse graphs, or graphs with bounded treewidth. Among other results, for first-order
(FO) queries, enumeration within DelayClin is possible over classes of databases of bounded
degree [DG07] or over classes of databases of (local) bounded expansion [KS13a, SV17].
Moreover, constant delay enumeration with a preprocessing in O(n1+ε) is possible for FO
queries over nowhere dense graphs[SSV18]. For monadic second-order (MSO) queries, we
have tractability over classes of databases of bounded tree-width[KS13b].

Answering Queries under Updates

A slightly different approach for enumeration complexity has gained a lot of recent
interest, as it takes advantage of the dynamic nature of enumeration itself. Enumerating
the answers of a query under updates considers dynamic databases, where during the
enumeration process, tuples can be inserted as well as deleted [BKS17, BKS18, IUV17,
NS18]. As in the original dichotomy on CQ enumeration, there have been results on
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answering CQs [BKS17] as well as UCQs [BKS18] under updates, where the restriction
is made on the structure of the query itself, and not the database. For CQs, as the
enumeration problem itself is more general, the class of tractable queries is a proper
subclass of free-connex queries.

For UCQ enumeration under updates, a recent work [BKS18] by Berkholz et al. considers
enumeration under integrity constraints. The three different integrity constraints that
are considered are small domain constraints, inclusion dependencies as well as FDs. For
FDs, Berkholz et al. note that an intractable query can become tractable using the
dependency. The search for an equivalent form of a CQ or UCQ under FDs is mentioned
as an open problem.

The same work also claims a dichotomy for UCQ enumeration under updates, with a
general proof for the lower bound that can also be applied for the setting of non-dynamical
UCQ enumeration. Unfortunately, this proof is not correct, and we briefly point out
why. In fact, Example 1.3 is already a counter example to the claim made in [BKS18,
Theorem 4.2b]. Intuitively, the claim is that if a UCQ contains an intractable CQ and
does not contain redundant CQs (a CQ contained in another CQ in the union), then
the union itself is already intractable. In contrast, none of the CQs in Example 1.3 is
redundant, Q1 is intractable, and yet the UCQ is tractable.

The intuition behind the proof of the past claim is reducing the hard CQ Q1 to Q. This
can be done by assigning each variable of Q1 with a different and disjoint domain (e.g.,
by concatenating the variable names to the values in the relations corresponding to the
atoms), and leaving the relations that do not appear in the atoms of Q1 empty. It is
well known that Q1 ⊆ Q2 if and only if there exists a homomorphism from Q2 to Q1.
The claim is that since there is no homomorphism from another CQ in the union to
Q1, then there are no answers to the other CQs with this reduction. However, it is
possible that there is a body-homomorphism from another CQ to Q1 even if it is not a
full homomorphism (the free variables do not map to each other). Therefore, in cases of
a body-homomorphism, the reduction from the Q1 to Q does not work. In such cases,
the union may be tractable, as we will show in Chapter 5.

3.4 Complexity of wdPTs

With the steadily increasing amount of inaccurate and incomplete data on the web, the
need for partial matching as an extension of CQs is gaining more and more importance.
Therefore, in the semantic web query language SPARQL, the OPT operator is a crucial
feature. This operator has also been studied for arbitrary relational vocabulary [BPS15].
Pérez et al. [PAG09] pointed out that unconstrained SPARQL queries containing both the
AND and OPT operator may cause some undesired behavior. This led to the definition
well-designed AND,OPT-SPARQL. Among other benefits such as better complexity
results, this language allows for a natural tree-representation of the queries, known as
well-designed pattern trees [LPPS13].
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Several aspects of the complexity of wdPTs have been studied in previous works. The
query evaluation problem was shown coNP-complete for wdPTs without projection
[PAG09] and ΣP

2 -complete for wdPTs with projection [LPPS13]. Wrapping wdPTs into the
CONSTRUCT operator of SPARQL makes the evaluation problem NP-complete [KRU15].
In [AFP+15, AU16], the max-evaluation problem was introduced as an important variant
of the evaluation problem: it asks if a given mapping is a maximal solution (i.e., it cannot
be properly extended to another solution). This problem is DP-complete [AFP+15].
Important query analysis tasks such as the containment and equivalence problems in
various settings were studied in [PS14]. It was shown that the complexity of these tasks
ranges from NP-completeness (if we disallow projection) to undecidability (if projection
is allowed in both queries). The enumeration problem however, as mentioned in the
introduction, has been hardly considered so far with the exception of [LPPS13].
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CHAPTER 4
Conjuntive Queries in the

Presence of Functional
Dependencies

In this chapter, we aim to lift known results on enumeration complexity of CQs to the
setting of schemas with functional dependencies.

4.1 FD-Extended CQs
We start this section with formally defining the extended query Q+. We then discuss the
relationship between Q and Q+: their equivalence w.r.t. enumeration and the possible
structural differences between them. As a result, we obtain that if Q+ is in a class of
queries that allows for tractable enumeration, then Q is tractable as well.

We first define Q+. The extension of an atom R(~v) according to an FD S : A→ b and an
atom S(~u) is possible if ~u[A] ⊆ ~v but ~u[b] /∈ ~v. In this case, ~u[b] is added to the variables
of R. The FD-extension of a query is defined by iteratively extending all atoms as well
as the head according to every possible dependency in the schema, until a fix-point
is reached. The schema extends accordingly: the arities of the relations increase as
their corresponding atoms extend, and the FDs apply in every relation that contains all
relevant variables. Dummy variables are added to adjust to the change in arity in case of
self-joins.

Definition 4.1 (FD-Extended Query). Let Q(~p)← R1(~v1), . . . , Rm( ~vm) be a CQ over a
schema S = (R,∆). We define two types of extension steps:

• The extension of an atom Ri(~vi) according to an FD Rj : A→ b.
Prerequisites: ~vj [A] ⊆ ~vi and ~vj [b] /∈ ~vi.
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Effect: The arity of Ri increases by one, Ri(~vi) is replaced by Ri(~vi, ~vj [b]). In
addition, every Rk( ~vk) such that Rk=Ri and k 6= i is replaced with Rk( ~vk, tk),
where tk is a fresh variable in every such step.

• The extension of the head Q(~p) according to an FD Rj : A→ b.
Prerequisites: ~vj [A] ⊆ ~p and ~vj [b] /∈ ~p.
Effect: The head is replaced by Q(~p, ~vj [b]).

The FD-extension of Q is the query Q+(~q) ← R+
1 ( ~um), . . . , R+

m( ~um), obtained by per-
forming all possible extension steps on Q according to FDs of ∆ until a fix-point is
reached. The extension is defined over the schema S+ = (R+,∆Q+), where R+ is R
with the extended arities, and ∆Q+ is

{R+
i : C → d | ∃(Rj : A→ b) ∈ ∆,∃R+

i (~ui) ∈ atoms(Q+), ∃Rj(~vj) ∈ atoms(Q),
s.t. ~ui[C] = ~vj [A] and ~ui[d] = ~vj [b]}.

Given a query, its FD-extension is unique up to a permutation of the added variables,
and renaming of the new variables. As the order of the variables and the naming make
no difference w.r.t. enumeration, we can treat the FD-extension as unique.

Example 4.2. Consider a schema with ∆ = {R1 : 1→ 2, R3 : 2, 3→ 1}, and the query
Q(x)← R1(x, y), R2(x, z), R2(u, z), R3(w, y, z). As the FDs are x→ y and yz → w, the
FD-extension is

Q+(x, y)← R+
1 (x, y), R+

2 (x, z, y, w), R+
2 (u, z, t1, t2), R+

3 (w, y, z).

We first apply x→ y on the head, and then x→ y and consequently yz → w on R2(x, z).
These two FDs are now in the schema also for R2, and the FDs of the extension are
∆Q+ = {R+

1 : 1→ 2, R+
2 : 1→ 3, R+

2 : 3, 2→ 4, R+
3 : 2, 3→ 1}.

We later show that the enumeration complexity of a CQ Q over a schema with FDs only
depends on the structure of Q+, which is implicitly given by Q and its schema. Therefore,
we introduce the notions of acyclic and free-connex queries for FD-extensions:

Definition 4.3. Let Q be a CQ over a schema S = (R,∆), and let Q+ be its FD-
extension.

• We say that Q is FD-acyclic, if Q+ is acyclic.

• We say that Q is FD-free-connex, if Q+ is free-connex.

• We say that Q is FD-cyclic, if Q+ is cyclic.

The following proposition shows that the classes of acyclic queries and free-connex queries
are both closed under constructing FD-extensions.
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4.1. FD-Extended CQs

Proposition 4.4. Let Q be a CQ over a schema S = (R,∆).

• If the query Q is acyclic, then it is FD-acyclic.

• If the query Q is free-connex, then it is FD-free-connex.

Proof. We prove that if Q is acyclic, then Q+ is also acyclic, by constructing a join-tree
of H(Q+) given one of H(Q). The same proof can be applied to a join tree containing the
head to show that if Q is free-connex, then so is Q+. Denote by Q = Q0, Q1, . . . , Qn = Q+

a sequence of queries such that Qi+1 is the result of extending all possible relations of Qi
according to a single FD δ ∈ ∆. By induction, it suffices to show that if H(Qi) has a join
tree, thenH(Qi+1) has one too. So consider an acyclic query Qi(~p)← R1(~v1), . . . , Rm(~vm)
extended to the query Qi+1(~q)← R1(~u1), . . . , Rm(~um) according to the FD δ = Rj : ~x→
y, and let Ti = (Vi, Ei) be a join tree of H(Qi). We claim that the same tree (but with
the extended atoms), is a join tree for Qi+1. Formally, define Ti+1 = (Vi+1, Ei+1) such
that Vi+1 = {Rk(~uk) | 1 ≤ k ≤ m} and Ei+1 = {(Rk(~uk), Rl(~ul)) | (Rk(~vk), Rl(~vl)) ∈ Ei}.
Next we show that the running intersection property holds in Ti+1, and therefore it is a
join tree of H(Qi+1).

Every new variable introduced in the extension appears only in one atom, so the subtree
of Ti+1 containing such a variable contains one node and is trivially connected. For any
other variable w 6= y, the attribute w appears in the same atoms in Q and Q+. Therefore,
the subgraph of Ti+1 containing w is isomorphic to the subgraph of Ti containing w, and
since Ti is a join tree, it is connected. It is left to show that the subtree of Ti+1 containing
y is connected. Since Rj is an atom in Q containing δ, it corresponds to vertices in Ti
and Ti+1 containing ~x ∪ {y}. Let Rk be some vertex in Ti+1 containing y. We will show
that all vertices S1, . . . , Sr on the path between Rk and Rj contain y. If y appears in
the vertex Rk in Ti, then it also appears in S1, . . . , Sr since Ti is a join tree. Since the
extension does not remove occurrences of variables, y appears in these vertices in Ti+1 as
well. Otherwise, y was added to Rk via δ, so Rk contains ~x. Since Ti is a join tree, the
vertices S1, . . . , Sr all contain the variables ~x. Thus by the definition of Qi+1, y is added
to each of S1, . . . , Sr (if it was not already there) in Ti+1. Thus also the subtree of Ti+1
containing y is connected. Therefore Ti+1 is indeed a join tree.

By recalling Example 1.2, with new notation for readability, we see that the converse of
the proposition above does not hold.

Example 4.5. Consider the query Q(x, y)← R1(x, z), R2(z, y) over a schema with the
FD R2 : z → y. The CQ Q is acyclic and not free-connex. The FD-extension of this
query is given by Q+(x, y) ← R+

1 (x, z, y), R+
2 (z, y), thus Q+ is free-connex and Q is

FD-free-connex.

This means that, by Theorem 3.1, there are queries Q such that enumerating the answers
to Q+ is in DelayClin, but the same task cannot be done for Q with the same complexity
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if we do not assume the existence of FDs. The following theorem shows that, when
relying on the FDs, enumerating the answers to Q+ is equally hard as enumerating the
answers to Q.

Theorem 4.6. Let Q be a CQ over a schema S = (R,∆), and let Q+ be its FD-extended
query. Then, Enum∆〈Q〉 ≡e Enum∆Q+ 〈Q+〉.

Proof. Consider a query Q(~p) ← R1(~v1), . . . , Rm(~vm) and its FD-extension Q+(~q) ←
R+

1 (~u1), . . . , R+
m(~um). We show the two parts of the equivalence.

Claim. Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉.

Construction. Given an instance I for Enum∆〈Q〉, we construct an instance σ(I) for
Enum∆Q+ 〈Q+〉 with two phases: cleaning and extension. In the cleaning phase, we
remove tuples that interfere with the extended dependencies. For every dependency
δ = Rj : X → y and every atom Rk(~vk) that contains the corresponding variables (i.e.,
X ∪ {y} ⊆ ~vk), we correct Rk according to δ: we only keep tuples of RIk that agree with
some tuple of RIj over the values of X ∪ {y}. We denote the cleaned instance by I0. The
cleaning phase can be done in linear time by first sorting both RIj and RIk according
to X ∪ {y}, and then performing one scan over both of them. Next, we perform the
extension phase. We follow the extension of the schema as described in Definition 4.1
and extend the instance accordingly. This phase results in a sequence of instances
I0, I1, . . . , In = σ(I) that correspond to a sequence of queries Q = Q0, Q1, . . . , Qn = Q+

such that each query is the result of extending an atom or the head of the previous query
according to an FD. If in step i the head was extended, we set Ii+1 = Ii. Now assume
some relation Rk is extended according to some FD Rj : X → y. For each tuple t ∈ RIik ,
if there is no tuple s ∈ RIij that agrees with t over the values of X, then we remove
t altogether. Otherwise, we copy t to RIi+1

k and assign y with the same value that s
assigns it. The extension phase takes linear time for each step. Since the number of
FDs is constant in data complexity, the overall construction takes linear time. Note that
this construction ensures that the extended dependencies hold in σ(I). Given an answer
µ|free(Q+) ∈ Q+(σ(I)), we set τ(µ) = µ|free(Q). This projection only requires constant
time.

Correctness. We now show that Q(I) = {µ|free(Q) : µ|free(Q+) ∈ Q+(I+)}. First, if
µ|free(Q+) is an answer of Q+(I+), then µ is a homomorphism from Q+ to I+. Since all
tuples of I+ appear (perhaps projected) in I, then µ is also a homomorphism from Q
to I, and µ|free(Q) ∈ Q(I). It is left to show the opposite direction: if µ|free(Q) ∈ Q(I)
then µ|free(Q+) ∈ Q+(I+). We show by induction on Q = Q0, Q1, . . . , Qn = Q+ that
µ|free(Qi) ∈ Qi(Ii). The induction base holds since in the cleaning phase we did not remove
“useful” tuples. Since µ|free(Q) ∈ Q(I), there exist tuples, one of each relation of the query,
that agree on the values of X ∪{y} (they all assign them with the values µ assigns them).
These tuples were not removed in the cleaning phase, and therefore µ|free(Q) ∈ Q(I0).
Next assume that µ|free(Qi) ∈ Qi(Ii), and we want to show that µ|free(Qi+1) ∈ Qi+1(Ii+1).
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This claim is trivial in case the head was extended. Note also that there cannot be two
distinct answers µ|free(Qi+1) and µ′|free(Qi+1) in Qi+1(Ii+1) such that µ|free(Qi) = µ′|free(Qi),
as the added variable is bound by the FD to have only one possible value. Now consider
the case where an atom Rk(~vk) was extended according to an FD Rj : X → y since
X ⊆ ~vk. The tuple µ(~vk) ∈ RIik was extended with the value µ(y) due to the tuple
µ(~vj) ∈ RIij that agrees with it on the values of X, and so µ(~vk, y) ∈ RIi+1

k . In case
of self-joins, other atoms with the relation Rk are extended with a new and distinct
variable. Such variables will be mapped to this value µ(y) as well. Overall, we have that
µ (extended by mappings of the fresh variables) is also a homomorphism in Qi+1(Ii+1).

Claim. Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉.

Construction. Given an instance I+ for Enum∆Q+ 〈Q+〉, we construct an instance σ(I+)
for Enum∆〈Q〉 with three phases: cleaning, building a lookup table and projection. In
the cleaning phase, we remove tuples that do not contribute to the answer set of Q+ in
order to prevent additional answers from appearing in Q after the projection. This can
be seen as unifying the restrictions of different FDs in ∆Q+ that originate in the same FD
in ∆. For every FD Rj : X → y in ∆ and every atom R+

k (~uk) such that X ∪ {y} ⊆ ~uk,
we remove all tuples t ∈ R+I+

k that agree with some tuple s ∈ R+I+

j over X but disagree
with s over y. The cleaning phase can be done in linear time by first sorting both R+I+

k

and R+I+

j according to X. Next, we construct a lookup table T to later reconstruct
the assignments to free(Q+) \ free(Q). For every y ∈ free(Q+) \ free(Q) added to the
head due to an FD Rj : X → y, denote by ~x a vector containing the variables of X in
lexicographic order. For every tuple in R+I+

j that assigns y and ~x with the values y0
and ~x0 respectively, we set T (~x, ~x0, y) = y0. Note that due to the FD, a key cannot map
to two different values. We conclude the construction by projecting the relations of I+

according to the schema of Q. These steps result in the construction of an instance σ(I+)
and a lookup table T in linear time. Note that ∆ hold in σ(I+) since ∆Q+ contains them.

Given µ|free(Q) ∈ Q(I), we define τ(µ|free(Q)) = µ|free(Q) ∪ νµ, where the mapping νµ :
free(Q+) \ free(Q)→ dom uses the lookup table: For every y ∈ free(Q+) \ free(Q) added
due to some FD Rj : X → y, we set νµ(y) = T [(~x, µ(~x), y)]. Note that τ is computable in
constant time since we use the lookup table | free(Q+) \ free(Q)| times, and each access
takes constant time.

Correctness. We first claim that the lookup table succeeds in reconstructing the values
for the missing head variables: if µ|free(Q) ∈ Q(σ(I+)), then τ(µ|free(Q)) = µ|free(Q+).
By definition, for every y ∈ free(Q), τ(µ(y)) = µ(y). We need to show the same for
y ∈ free(Q+)\ free(Q). In this case, y was added to the head due to some FD Rj : X → y,
and τ(µ(y)) is defined to be νµ(y) = T [(~x, µ(~x), y)]. Since µ is a homomorphism into
σ(I+), there exists some tuple in Rσ(I+)

j that assigns ~x and y with µ(~x) and respectively
µ(y). This tuple is a projection of a tuple in RI+

j that assigns ~x and y with the same values.
Due to this tuple, when constructing the lookup table, we set T [(~x, µ(~x), y)] = µ(y).
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We now show that Q+(I+) = {µ|free(Q+) : µ|free(Q) ∈ Q(σ(I+))}. The first direction is
that if µ|free(Q+) ∈ Q+(I+), then µ|free(Q) ∈ Q(σ(I+)). Indeed, if µ maps the relations
R+
i (~ui) to the tuples si respectively, these tuples agree on the value of y for every FD

X → y in ∆Q+ , and so none of them were removed in the cleaning phase. After the
projection, µ maps Ri(~vi) to the same (perhaps projected) tuples in Rσ(I+)

i , and so it is
still a homomorphism in Q. The second direction is that if µ|free(Q) ∈ Q(σ(I+)), then
µ|free(Q+) ∈ Q+(I+). We know that µ is a homomorphism from Q to σ(I+). For every
1 ≤ i ≤ m, denote by ti the tuple ti = µ(~vi). These tuples are projections of tuples in
I+. Denote by si the tuple in RI+

i whose projection is ti. If an atom Rk was extended
due to an FD Rj : X → y, then tj and sk must agree on y, otherwise this sk would have
been deleted in the cleaning phase. Therefore, sk assigns y with µ(y). We conclude that
µ|free(Q+) ∈ Q+(I+).

As an immediate result of Theorem 4.6, FD-extensions can be used to expand tractable
enumeration classes.

Corollary 4.7. Let C be an enumeration class that is closed under exact reduction. Let
Q be a CQ and let Q+ be its FD-extension. If Enum∆Q+ 〈Q+〉 ∈ C, then Enum∆〈Q〉 ∈ C.

Proof. According to Theorem 4.6, Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉. Since C is closed
under exact reduction, if Enum∆Q+ 〈Q+〉 ∈ C, then Enum∆〈Q〉 ∈ C.

Since free-connex queries are in DelayClin and DelayClin is closed under exact reduction,
we get the following corollary.

Corollary 4.8. Let Q be a CQ over a schema S = (R,∆). If Q is FD-free-connex, then
Enum∆〈Q〉 ∈ DelayClin.

Proof. By definition of FD-free-connexity, Q+ is free-connex, and thus according to
Theorem 3.1 we have that Enum∅〈Q+〉 ∈ DelayClin. Given an instance over the schema
(R,∆Q+), the same instance is also valid over (R, ∅), so using the identity mapping shows
that Enum∆Q+ 〈Q+〉 ≤e Enum∅〈Q+〉. Therefore, Enum∆Q+ 〈Q〉 ∈ DelayClin, and from
Corollary 4.7 we get that Enum∆〈Q〉 ∈ DelayClin.

We can now revisit Example 1.2. The query Q(x, y) ← R1(z, x), R2(z, y) is not free-
connex. Therefore, ignoring the FDs, according to Theorem 3.1 it is not in DelayClin.
However, given R2 : z → y, the FD-extended query is Q+(x, y)← R+

1 (z, y, x), R+
2 (z, y).

As it is free-connex, enumerating the answers to Q+ is in DelayClin by Corollary 4.8.
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4.2 A Dichotomy for Acyclic CQs

In this section, we characterize which self-join-free FD-acyclic queries are in DelayClin.
We use the notion of FD-extended queries defined in the previous section to establish a
dichotomy stating that enumerating the answers to an acyclic query is in DelayClin if and
only if the query is FD-free-connex. The positive case for the dichotomy is described
in Corollary 4.8, and this section concludes the negative case. We prove the following
theorem:

Theorem 4.9. Let Q be a self-join-free FD-acyclic CQ over the schema S = (R,∆).

• If Q is FD-free-connex, then Enum∆〈Q〉 ∈ DelayClin.

• If Q is not FD-free-connex, then Enum∆〈Q〉 6∈ DelayClin, assuming mat-mul.

Note that the restriction of considering only self-joins-free queries is required only for
the negative side. This assumption is standard [BDG07, BB13, Kim12], as it allows
to assign different atoms with different relations independently. The hardness result
described here builds on that of Bagan et al. [BDG07] for databases that are assumed
not to have FDs, and it relies on the computational hypothesis mat-mul, which amounts
to solving the enumeration problem Enum∅〈Π〉 for the query Π(x, y)← A(x, z), B(z, y),
see Section 2.2.1.

The original proof describes an exact reduction Enum∅〈Π〉 ≤e Enum∅〈Q〉. Since Q is
acyclic but not free-connex, it contains a free-path (x, z1, . . . , zk, y). For a given an
instance of the matrix multiplication problem, an instance of Enum∅〈Q〉 is constructed,
where the variables x,y and z1, . . . , zk of the free-path encode the variables x, y and
z of Π, respectively. All other variables of Q are assigned constants. This way, A is
encoded by an atom containing x and z1, and B is encoded by an atom containing zk
and y. Atoms containing some zi and zi+1 propagate the value of z. Since x and y are in
free(Q), but zi are not, the answers to Q correspond to those of Π. As no atom of Q
contains both x and y, the instance can be constructed in linear time. Constant delay
enumeration for Q following a linear time preprocessing would result in the computation
of the answers of Π in O(n2) time.

FDs restrict the relations that can be assigned to atoms. This means that the reduction
cannot be freely performed on databases with FDs, and the proof no longer holds. The
following example illustrates where the reduction fails in the presence of FDs.

Example 4.10. The CQ from Example 1.2 has the form Q(x, y) ← R1(z, x), R2(z, y)
with the single FD ∆ = {R2 : z → y}. In the previous section, we show that it is in
DelayClin, so the reduction should fail. Indeed, it would assign R2 with the same relation
as B of the matrix multiplication problem, but this may have two tuples with the same
z value and different y values. Therefore, the construction does not yield a valid instance
of Enum∆〈Q〉.
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We now provide a modification of this construction to show an exact reduction from
Enum∅〈Π〉 to Enum∆Q+ 〈Q+〉. Any violations of the FDs are fixed by carefully picking
more variables other than those of the free-path to take the roles of x,y and z of the
matrix multiplication problem. This is done by introducing the sets Vx,Vy and Vz which
are subsets of var(Q). We say that a variable β plays the role of α, if β ∈ Vα. To clarify
the reduction, we start by describing a restricted case, where all FDs are unary. The
basic idea in the case of general FDs remains the same, but it requires a more involved
construction of the sets Vα.

4.2.1 Unary Functional Dependencies

For the unary case, we define the sets Vx, Vy and Vzi to hold the variables that iteratively
imply x, y and some zi, respectively. That is, for α ∈ {x, y, z1, . . . , zk} we set Vα := {α}
and apply Vα := Vα ∪ {γ ∈ var(Q) | γ → β ∈ ∆Q+ ∧ β ∈ Vα} until a fix-point is reached.
We then define Vz := Vz1 ∪ · · · ∪ Vzk .

The Reduction. Let D = (AD, BD) be an instance of Enum∅〈Π〉. We define σ(D)
by describing the relation Rσ(D) for every atom R(~v) ∈ atoms(Q+). If var(R) ∩ Vy = ∅,
then every tuple (a, c) ∈ AD is copied to a tuple in Rσ(D). Variables in Vx get the value
a, variables in Vz get the value c, and variables that play no role are assigned a constant
⊥. That is, we define Rσ(D) to be {(f(v1, a, c), . . . , f(vk, a, c)) | (a, c) ∈ AD}, where:

f(vi, a, c) =


a if vi ∈ Vx \ Vz,
c if vi ∈ Vz \ Vx,
(a, c) if vi ∈ Vx ∩ Vz,
⊥ otherwise.

If var(R) ∩ Vy 6= ∅, we show that var(R) ∩ Vx = ∅, see the sketch for the proof of the
well-definedness below. In this case we define the relation similarly with BD. Given a
tuple (c, b) ∈ BD, the variables of Vy get the value b, and those of Vz are assigned with c.

Example 4.11. Consider the query Q+(x, y, v)← R(u, x, z), S(v, y, z) with FDs ∆Q+ =
{R : u → x,R : u → z, S : y → v}. Using the free-path (x, z, y), the reduction sets
Vx = {x, u}, Vy = {y} and Vz = {z, u}. Given an instance D of the matrix multiplication
problem with relations AD and BD, every tuple (a, c) ∈ AD results in a tuple ((a, c), a, c) ∈
Rσ(D), and every tuple (c, b) ∈ BD results in a tuple (⊥, b, c) ∈ SD.

We now outline the correctness of this reduction.

Well-defined reduction: For an atom R, either we have var(R) ∩ Vy = ∅ or var(R) ∩
Vx = ∅. That is, no atom contains variables from both Vx and Vy. Due to the
definition of Q+, this atom would otherwise also contain both x and y. However,
they cannot appear in the same relation according to the definition of a free-path.
The reduction is therefore well defined, and it can be constructed in linear time via
copy and projection.
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Preserving FDs: The construction ensures that if an FD γ → α exists, then γ has all
the roles of α. Therefore, either α has no role and corresponds to the constant
⊥, or every value that appears in α also appears in γ. In any case, all FDs are
preserved.

1-1 mapping of answers: If a variable of Vz had appeared in the head of Q+, then by
the definition of Q+, some zi would have been in the head as well. This cannot
happen according to the definition of a free-path. Therefore, Vz ∩ free(Q+) = ∅,
and the head only encodes the x and y values of the matrix multiplication problem,
so two different solutions to Enum∆Q+ 〈Q+〉 must differ in either x or y, and
correspond to different solutions of Enum∅〈Π〉. For the other direction, the head
necessarily contains the variables x and y. Therefore, two different solutions to
Enum∅〈Π〉 correspond to different solutions of Enum∆Q+ 〈Q+〉.

4.2.2 General Functional Dependencies

Next we show how to lift the idea of this reduction to the case of general FDs. In the
case of unary FDs, we ensure that the construction does not violate a given FD γ → α,
by simply encoding the values of α to γ. In the general case, when allowing more than
one variable on the left-hand side of an FD γ1, . . . , γk → α, we must be careful when
choosing the variables γj to which we copy the values of α. Otherwise, as the following
example shows, we will not be able to construct the instance in linear time.

Example 4.12. Consider the query Q(x, y)← R1(x, z, t1), R2(z, y, t1, t2) over a schema
with the FD R2 : t1t2 → y. Note that Q = Q+ is acyclic but not free-connex, and that
(x, z, y) is a free-path in H(Q+). To repeat the idea shown in the unary case and ensure
that the FDs still hold, the variable on the right-hand side of every FD is encoded to
the variables on the left-hand side. If we encode y to t1, then R1 would contain the
encodings of x, y and z. This means that its size will not be linear in that of the matrix
multiplication instance, and we cannot hope for linear time construction. On the other
hand, if we choose to encode y only to t2, the reduction works.

In the following central lemma, we describe how to carefully pick the variables to which
we assign roles in a way that meets the requirements we need for the reduction. We prove
requirements 1 and 2 to guarantee a one-to-one mapping between the results of the two
problems. Requirement 3 enables linear time construction, while requirement 4 is used
to show that all FDs are preserved. The idea is that we consider the join-tree of Q+ and
define a partition of its atoms. We then define Vx and Vy to hold variables that appear
only in different parts of the tree, ensuring that no atom contains variables of each. The
running intersection property of a join-tree is then used to guarantee that the sets are
inclusive enough to correct all FD violations.

Lemma 4.13. Let Q be a self-join-free CQ over a schema S = (R,∆), such that Q+

is acyclic but not free-connex. Further let (x, z1, . . . , zk, y) be a free-path of Q+. Then,
there exist sets of variables Vx, Vy and Vz such that:
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Tx TyTmid

e(x, z1) . . . sepx . . . e(z1, z2) . . . e(zk−1, zk) . . . sepy . . . e(zk, y)

Figure 4.1: Join tree T of H(Q+) for free-paths of length greater than 2. The subtrees
Tx, Ty and Tmid are disjoint, and are separated by the nodes sepx and sepy.

1. x ∈ Vx, y ∈ Vy, {z1, . . . zk} ⊆ Vz.

2. Vz ∩ free(Q+) = ∅.

3. For every R ∈ atoms(Q+): var(R) ∩ Vy = ∅ or var(R) ∩ Vx = ∅.

4. For every U → v ∈ ∆Q+ s.t. v ∈ Vα with α ∈ {x, y, z}: U ∩ Vα 6= ∅.

Proof. We first define a partition of the atoms of Q into two or three sets: Tx, Ty and
possibly Tmid. Let T be a join tree of H(Q+), and denote the hyperedges on the free-path
by e(x, z1), . . . , e(zk, y). Note that, by definition, each hyperedge of the free-path is a
vertex of T and an atom of Q+. By the running intersection property of T and since the
path is cordless, we can conclude that there is a simple path P from e(x, z1) to e(zk, y)
in T , such that e(z1, z2), . . . , e(zk−1, zk) lie on that path in the order induced by the
free-path. Let sepx be the first atom on the path P that does not contain x. This exists
because e(zk, y) does not contain x, as the free-path is chordless. Similarly, let sepy be
the last atom on P that does not contain y. Let Tx be the set of atoms v such that the
unique path from v to e(x, z1) in T does not go through sepx. Similarly, let Ty be the
set of atoms w such that the unique path from w to e(zk, y) in T does not go through
sepy. Next set Tmid = V (T ) \ (Tx ∪ Ty). Note that e(x, z1) ∈ Tx and e(zk, y) ∈ Ty, but
Tmid may be empty if the free-path is of length two. By definition, the atoms of Q+ are
exactly Tx ∪ Tmid ∪ Ty, and next we show that this union is disjoint. Figure 4.1 depicts
the established partition.

Claim. The sets Tx and Ty are disjoint.

Proof of the Claim. Assume by contradiction that there is some v ∈ Tx ∩ Ty. Let Px be
the unique simple path from v to e(x, z1), and recall that since v ∈ Tx it does not go
through sepx. Similarly let Py be the unique simple path from v to e(zk, y) that does
not go through sepy.

We first claim that there exists some atoms w that appears in all three paths P , Px and
Py. Take w to be the first atom on Px that is also in P and set Pwx to be the simple path
from v to w. Such an atom w exists because the last atom of Px is e(x, z1) which is in P .
Further set Pw to be the simple path from w to e(zk, y). Concatenating the paths Pwx
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and Pw, we obtain a simple path from v to e(zk, y). Since the simple paths in a tree are
unique, this is exactly Py, and so w is also in Py.

Our second claim is that if an atom u is in both P and Px, then it contains the variable x.
Assume by contradiction that such an atom u does not contain x. Then u is an atom on
P not containing x, and by definition of sepx, the simple path from u to e(x, z1) contains
sepx. As this path is a subpath of Px, Px contains sepx, in contradiction to the fact that
v ∈ Tx. Similarly, if an atom is in both P and Py, then it contains y.

Combining the two claims, we have an atom w containing both x and y, in contradiction
to the fact that a free-path is chordless by definition. Therefore we conclude that Tx and
Ty are indeed disjoint.

Now we are ready to define the sets of variables Vx, Vy and Vz. We define Vx recursively
to contain x and variables that imply those of Vx, but without variables that appear
outside of Tx. Vy is defined symmetrically. Vz contains z1, . . . , zk and variables that imply
those of Vz but without free variables. Formally, Implies(V ) = {u ∈ var(Q) | ∃U → w ∈
∆Q+ with w ∈ V and u ∈ U} for V ⊆ var(Q), and we define via fix-point iteration the
following:

• Vx: base Vx := {x}; rule Vx := (Vx ∪ Implies(Vx)) \ var(Ty ∪ Tmid)

• Vy: base Vy := {y}; rule Vy := (Vy ∪ Implies(Vy)) \ var(Tx ∪ Tmid)

• Vz: base Vz := {z1, . . . zk}; rule Vz := (Vz ∪ Implies(Vz)) \ free(Q+)

We now prove that Vx, Vy and Vz meet the requirements of the lemma. Requirements 1
and 2 follow immediately from the definition of the sets. To prove requirement 3, let
R ∈ atoms(Q+). If R ∈ Tx, then by definition of Vy we have that var(R) ∩ Vy = ∅.
Otherwise, R ∈ Ty ∪Tmid, and similarly var(R)∩Vx = ∅. It is left to show requirement 4.

Let δ = U → v ∈ ∆Q+ where v ∈ Vα. We first show the case of α = z. If U ∩ Vz = ∅,
then U ⊆ free(Q+), and by the definition of Q+, v ∈ free(Q+), which is a contradiction
to the definition of Vz. Now we prove the case where α = x. The case α = y is symmetric.
Denote by e(U, v) an atom containing all variables of δ. As v ∈ Vx, we know that
e(U, v) /∈ Ty ∪ Tmid, therefore e(U, v) ∈ Tx. Assume by contradiction that U ∩ Vx = ∅.
Let u ∈ U . By definition of Vx, this means that u ∈ var(eu) for some eu ∈ Ty ∪ Tmid. As
Tx, Ty and Tmid are disjoint, we have that eu /∈ Tx, which means that the path between
eu and e(x, z1) goes through sepx. This means that the path from eu to e(U, v) goes
through sepx too, otherwise the concatenation of this path with the path from e(U, v)
to e(x, z1) would result in a path from eu to e(x, z1) not going through sepx. By the
running intersection property, u ∈ var(sepx). Since this is true for all for all u ∈ U , it
follows that v ∈ var(sepx) by definition of Q+, contradicting the fact that v ∈ Vx.

With the sets Vx, Vy, Vz at hand, we can now perform the reduction in the presence of
general FDs.
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Lemma 4.14. Let Q be a self-join-free CQ over a schema S = (R,∆), and Π be the CQ
Π(x, y) ← A(x, z), B(z, y) over S ′ = ({A,B}, ∅). If Q+ is acyclic and not free-connex,
then Enum∅〈Π〉 ≤e Enum∆Q+ 〈Q+〉.

Proof. Let DA,B = (AD, BD) be an instance of Enum∅〈Π〉 over the domain dom =
{1, . . . , n}. We define an instance σ(DA,B) of Enum∆Q+ 〈Q+〉 based on the sets Vx, Vy
and Vz from Lemma 4.13 and the relations AD and BD. Since Q+ is acyclic but not
free-connex, it contains some free-path (x, z1, . . . , zk, y).

To define the instance σ(DA,B), we first fix the functions fA and fB:

fA(v, a, c) =


a : v ∈ Vx \ Vz
c : v ∈ Vz \ Vx
(a, c) : v ∈ Vx ∩ Vz
⊥ : otherwise

, fB(v, b, c) =


b : v ∈ Vy \ Vz
c : v ∈ Vz \ Vy
(b, c) : v ∈ Vy ∩ Vz
⊥ : otherwise

We partition all relational atoms of Q+ into two sets: R+
A and R+

B. The set R
+
A is defined

as {R+ ∈ atoms(Q+) | var(R+) ∩ Vy = ∅} and R+
B is atoms(Q+) \ R+

A. To obtain an
instance σ(DA,B) of Enum∆+〈Q+〉, we apply fA to the atoms in R+

A using the values
of AD, while the atoms in R+

B use fB and BD. That is, if R+(u1, . . . , um) ∈ R+
A, then

(R+)σ(DA,B) is defined to be {(fA(u1, a, c), . . . , fA(um, a, c)) | (a, c) ∈ AD}. Otherwise,
R+(u1, . . . , um) is in R+

B , and (R+)σ(DA,B) = {(fB(v1, b, c), . . . , fB(vp, b, c)) | (c, b) ∈ BD}.
The mapping τ is defined as the projection onto the variables x and y. Note that the
instance can be constructed in linear time, and the projection can be computed in
constant time.

We now claim that σ(DA,B) is a database over the schema (R+,∆Q+), as all the FDs of
∆Q+ are satisfied. Let δ = R+

j : U → v ∈ ∆Q+ . If v /∈ Vx ∪ Vy ∪ Vz, then δ holds as v is
assigned the value ⊥ in every tuple in (R+

j )σ(DA,B). Next assume that v ∈ Vx \ Vz. By
point 4 of Lemma 4.13, there is some u ∈ U such that u ∈ Vx. Thus in every tuple in
(R+

j )σ(DA,B), if v is assigned the value a, then u is either assigned the value a or (a, c)
for some c ∈ {1, . . . , n} and in either case δ is satisfied. The proof for the cases where
v ∈ Vz \ (Vx ∪ Vy) and v ∈ Vy \ Vz is similar. Next assume that v ∈ Vx ∩ Vz. By point 4
of Lemma 4.13, there are some u1, u2 ∈ U such that u1 ∈ Vx and u2 ∈ Vz and for every
tuple in (R+

j )σ(DA,B), if v is assigned the value (a, c), then u1 is either assigned the value
a or (a, c), u2 is either assigned the value c or (a, c), and so δ is satisfied. The case
v ∈ Vy ∩ Vz is similar. Note that the case where v ∈ Vx ∩ Vy cannot occur due to point 3
of Lemma 4.13.

The structure of the free-path (x, z1 . . . , zk, y) guarantees that all answers to the enumer-
ation problem Enum∆Q+ 〈Q+〉 correspond to those of Enum∅〈Π〉 and vice versa. Indeed,
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let µ|{x,y} ∈ Π(DA,B). We define νµ : var(Q+)→ dom as follows.

νµ(v) =



µ(x) : v ∈ Vx \ Vz,
µ(y) : v ∈ Vy \ Vz,
µ(z) : v ∈ Vz \ (Vx ∪ Vy),
(µ(x), µ(z)) : v ∈ Vz ∩ Vx,
(µ(y), µ(z)) : v ∈ Vz ∩ Vy,
⊥ : otherwise.

By definition, fA(v, µ(x), µ(z)) = νµ(v) and fB(v, µ(y), µ(z)) = νµ(v). As µ|{x,y} ∈
Π(DA,B), we have that (µ(x), µ(z)) ∈ AD and (µ(z), µ(y)) ∈ BD. Consider any atom
R+(u1, . . . , um) of Q+. If R+(u1, . . . , um) ∈ R+

A, then

νµ(u1, . . . , um) = (fA(u1, µ(x), µ(z)), . . . , fA(um, µ(x), µ(z))) ∈ (R+)σ(DA,B).

If R+(u1, . . . , um) ∈ R+
B, we have that var(R+) ∩ Vx = ∅ by point 3 of Lemma 4.13.

Then, νµ(u1, . . . , um) = (fB(u1, µ(z), µ(y)), . . . , fB(um, µ(z), µ(y))) is in (R+)σ(DA,B).
Therefore, νµ|free(Q+) ∈ Q+(σ(DA,B)). Since x ∈ Vx \ Vz and y ∈ Vy \ Vz, we have
that νµ(x) = µ(x) and νµ(y) = µ(y), and so τ(νµ) = µ|{x,y}. Moreover, any answer
µ′|free(Q+) ∈ Q+(σ(DA,B)) that has τ(µ′|free(Q+)) = µ|{x,y} assigns µ(x) to variables in
Vx \ Vz, assigns µ(y) to variables in Vy \ Vz and assigns ⊥ to variables not in Vx ∪ Vy ∪ Vz.
By points 2 and 3 of Lemma 4.13, Vz ∩ free(Q+) = ∅ and Vx ∩ Vy = ∅, so these are the
only variables in free(Q+). Therefore µ′|free(Q+) = νµ|free(Q+).

Next assume that µ′|free(Q+) ∈ Q+(σ(DA,B)). Let R+
x be an atom containing x and z1

(such an atom exists by the definition of the free-path). By point 3 of Lemma 4.13 we
have var(R+) ∩ Vy = ∅, and R+ ∈ R+

A. By points 1 and 2 of Lemma 4.13 and since x is
a free variable, we have x ∈ Vx \ Vz and z1 ∈ Vz. Thus there exists some (a, c) ∈ AD such
that µ′(x) = fA(x, a, c) = a and µ′(z1) = fA(z1, a, c) ∈ {a, (a, c)}. Similarly, there exists
some (c′, b) ∈ BD such that µ′(y) = fB(y, b, c′) = b and µ′(zk) = fB(zk, b, c′) ∈ {c′, (b, c′)}.
It remains to show that c = c′. We show by induction on i that µ′(zi) is either c or of the
form (t, c) with some value t. We know this fact for i = 1 since this is how we define c.
If k > 1, then consider an atom R+

i (~vi) containing {zi−1, zi}. Then µ′ maps ~vi to some
tuple t ∈ R+

i that assigns zi−1 with a value of the form c or (t, c). Since zi ∈ Vz, t also
assigns zi with a value of such a form, so µ′(zi) is of the form c or (t, c) too. This show
that c = c′. Therefore, τ(µ′) ∈ Π(DA,B). Moreover, since τ is simply a projection, τ(µ′)
is uniquely defined.

By combining Theorem 4.6 and Lemma 4.14, we have the exact reduction Enum∅〈Π〉 ≤e
Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉. Therefore having Enum∆〈Q〉 in DelayClin would mean
that Enum∅〈Π〉 ∈ DelayClin, which contradicts the hypothesis mat-mul. This concludes
the proof of Theorem 4.9. Note that Theorem 4.9 does not contradict the dichotomy of
Theorem 3.1: if for a given query Q we have that Q+ is acyclic but not free-connex, then
Q is not free-connex by Proposition 4.4.
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4.3 Cyclic CQs

In the previous section, we established a classification of FD-acyclic CQs, but we did
not consider FD-cyclic queries. A known result states that, under certain assumptions,
self-join-free cyclic queries are not in DelayClin [BB13]. In this section, we therefore
explore how FD-extensions can be used to obtain some insight on the implications of this
result in the presence of FDs. We show that (under the same assumptions) self-join-free
FD-cyclic queries that contain only unary FDs cannot be evaluated in linear time. For
schemas containing only unary FDs, this extends the dichotomy presented in the previous
section to all CQs, and also proves a dichotomy for the queries that can be enumerated
in linear delay. We will prove the following theorem:

Theorem 4.15. Let Q be a self-join-free CQ over a schema S = (R,∆), where ∆ only
contains unary FDs. If Q is FD-cyclic, then Decide∆〈Q〉 cannot be solved in linear
time, assuming that the Tetra(k) problem cannot be solved in linear time for any k.

As before, the initial hardness proof for cyclic queries no longer holds in the presence of
FDs, and we present a modified reduction that satisfies the FDs. We start by describing
the hypothesis used to obtain the conditional lower bounds. We define Tetra(k) to be the
hypergraph with the vertices {1, . . . , k} and the edges {{1, . . . , k} \ {i} | i ∈ {1, . . . , k}}.
Let H be a hypergraph. With a slight abuse of notation, we also denote by Tetra(k)
the decision problem of whether H contains a subhypergraph isomorphic to Tetra(k).

Tetra(3) is the problem of deciding whether a graph contains a triangle, and it is
strongly believed not to be solvable within time linear in the size of the graph [WW10].
The generalization of this assumption is that Tetra(k) cannot be solved in time linear
in the size of the graph for any k ≥ 3. This assumption is stronger than the one used in
Section 4.2, as Tetra(3) can be reduced to the matrix multiplication problem [WW10].
However, we do have reasons to also believe the Tetra(k) assumption for any k ≥ 4.
The (`, k)-Hyperclique Hypothesis [LWW18] states that, in a k-uniform hypergraph of n
vertices, nk−o(1) time is required to find a set of ` vertices such that each of it subsets
of size k forms a hyperedge. Solving Tetra(k) in linear time would contradict the
(`, k)-Hyperclique Hypothesis. Indeed, an algorithm that decides whether a hypergraph
contains a Tetra(k) in linear time runs in at most nk−1 many steps, and thus can
also detect a (k − 1)-hyperclique in a k-uniform graph in time nk−1, which is less than
nk−o(1). Thus Tetra(k) is equivalent to the computational hypothesis hyperclique,
see Section 2.2.1. As Brault-Baron used the notion of Tetra(k) in order to show [BB13,
Theorem 11], we will use the same notation for this hypothesis on order to generalize the
result in the presence of FDs.

We will show that if Q+ is cyclic and only unary FDs are present, the problem Tetra(k)
for some k can be reduced to Decide∆Q+ 〈Q+〉. In the following definition, Hb is a
pseudo-minor isomorphic to some Tetra(k). To perform the said reduction, we will use
this pseudo-minor on a graph describing our query.
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Definition 4.16. Let H be a cyclic hypergraph. We denote by Tetpm(H) the pairs of
pseudo-minors (Ha,Hb) of H such that:

1. Ha is obtained by a (possibly empty) set of vertex removal and edge removal
operations on H.

2. Hb is obtained by a (possibly empty) set of edge contraction and edge removal
operations on Ha.

3. Hb is isomorphic to Tetra(k) for some k ≥ 3.

4. Either Ha = Hb or Ha is a chordless cycle.

Given a query Q, we define Tetpm(Q) = Tetpm(H(Q)).

Brault-Baron [BB13, Theorem 11] showed that a cyclic hypergraph H admits some
Tetra(k) as a pseudo-minor. We describe the proof here in our terminology.

Lemma 4.17 ([BB13], Theorem 11). Let H be a hypergraph. If H is cyclic, then
Tetpm(H) is non-empty.

Proof. If H has a chordless cycle C as an induced subgraph, then removing vertices not
in C followed by performing all possible edge removals results in a chordless cycle Ha.
Then, Hb isomorphic to Tetra(3) is obtained by a repeated use of edge-contraction
followed by performing all possible edge removals. In this case, (Ha,Hb) ∈ Tetpm(H). If
H does not contain a chordless cycle, since it is not acyclic, it is non-conformal. Consider
its smallest non-conformal clique. The clique is not contained in any edge (since it is
non-conformal), and it is a Tetra(k) because of its minimality. Therefore, removing all
vertices other than the clique, and then performing all possible edge removals, results in
a graph Ha = Hb isomorphic to some Tetra(k). Again, (Ha,Hb) ∈ Tetpm(H).

For the reduction we present next, we first need to show that for an FD-cyclic query Q,
no pseudo-minor in Tetpm(Q+) contains all variables of any FD X → y.

In the following we assume that ∆ only contains non-trivial FDs, meaning y /∈ X.

Lemma 4.18. Let Q be a self-join-free FD-cyclic CQ over a schema S = (R,∆). Let
(Ha,Hb) ∈ Tetpm(Q+) and Ha = (V,E). For every non-trivial X → y ∈ ∆Q+, we have
X ∪ {y} 6⊆ V .

Proof. We start with an observation regarding the FDs. Note that in H(Q+) some edge
contains the vertices X ∪ {y}, and by the construction of Q+, every edge that contains
X must also contain y. These properties still hold after any sequence of vertex removals
and edge removals as long as none of the vertices X ∪{y} are removed. Therefore if none
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of the vertices X ∪ {y} were removed, there must be an edge in Ha containing X ∪ {y},
and every edge in Ha containing X also contains y.

We distinguish two cases. In the first case, Hb = Ha is a Tetra(k) obtained from H(Q+)
by a sequence of vertex and edge removals. If X ∪ {y} ⊆ V , then by the definition of
Tetra(k) it should contain the edge V \ {y}. Such an edge cannot exist since it contains
all of X but not y. Therefore, such a Tetra(k) cannot contain all of X ∪ {y}, and in
this case we conclude that X ∪ {y} 6⊆ V . In the second case, Ha is a cycle, and Hb is a
Tetra(3) obtained by performing edge contraction steps on it. If none of X ∪ {y} were
removed, some edge of Ha must contain all of them. Since all edges are of size 2 it must
be that |X| = 1. Denote X = {x}. Since we consider a cycle containing both x and y,
there should be at least one edge containing x but not containing y. Since we showed it
is not possible, such a cycle cannot contain all of X ∪ {y}.

We are now ready to establish the reduction. Given a pseudo-minor of Tetpm(Q+) isomor-
phic to some Tetra(k), we can reduce the problem of checking whether a hypergraph
contains a subhypergraph isomorphic to Tetra(k) to finding a boolean answer to Q+.

Lemma 4.19. Let Q be a self-join-free FD-cyclic CQ over a schema S = (R,∆),
where ∆ only contains unary FDs. Let (Ha,Hb) ∈ Tetpm(Q+) such that Hb is isomor-
phic to Tetra(k) for some k. Then, there is a linear time reduction Tetra(k) ≤m
Decide∆Q+ 〈Q+〉.

Proof. Given an input hypergraph G for the Tetra(k) problem, we define an instance I of
Decide∆Q+ 〈Q+〉. We consider a sequence of pseudo-minors H(Q+) = H1,H2, . . . ,Hm =
Hb, each pseudo-minor is obtained by performing one operation over the previous one,
where Hj = Ha for some 1 ≤ j ≤ m. We treat hypergraphs as describing CQs. That is,
to the hypergraph Hi we associate a query Qi such that H(Qi) = Hi. Every edge e of H
corresponds to an atom in Qi with a relational symbol Rie, and the vertices of e are its
variables. We assume that the variables in every atom are sorted by some total order. In
the following, we construct instances Ii to these queries. It is possible to define a instance
Im such that deciding Qm(Im) solves Tetra(k) [BB13, Lemma 20]. We describe how to
inductively build an instance I1 = I such that deciding Q+(I) solves the same problem.

Constructing I. We first define Im. For every edge e of Ht, we define a relation Rme
that contains all edges of G that have the same size as e. A tuple of Rme consists of the
vertices of such an edge sorted by some total order on the vertices of G. We now define Ii
given Ii+1. We distinguish three cases according to the type of pseudo-minor operation
that leads from Hi to Hi+1.

• edge removal: For every e′′ ∈ Hi+1, set Rie′′ = Ri+1
e′′ . Then, let e be the edge

removed, and let e′ be an edge containing it. Set Rie to be a copy of Ri+1
e′ projected

accordingly.
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• edge contraction: Let v be the vertex replaced by its neighbor u. For any edge
e ∈ Hi contracting to an edge e′ ∈ Hi+1, set Rie to be a copy of Ri+1

e′ , and assign
the attribute v a copy of the value of u in every tuple. Then, if u 6∈ e, project u
out of Rie. For every other edge e′′ ∈ Hi, set Rie′′ = Ri+1

e′′ .

• vertex removal: Let v be the vertex removed, and let e ∈ Hi be an edge containing
v resulting in an edge e′ ∈ Hi+1. Expand Ri+1

e′ to Rie by copying Ri+1
e′ , and assign

v with a constant ⊥ in every tuple. Next apply the following FD-correction steps
on v:

1. In every tuple, concatenate to the value of v the values of variables it
implies. These variables are defined recursively by ImpliedBy(v) = {v}
and ImpliedBy(v) = {w | t → w ∈ ∆Q+ , t ∈ ImpliedBy(v)}. For each
w ∈ ImpliedBy(v) \ {v}, if Ri(~u) is an atom such that ~u[k] = v and ~u[j] = w,
then in every tuple t ∈ Ri, replace t[k] with (t[k], t[j]).

2. After the value of v is determined, concatenate the value of v to the variables
implying it. These variable are defined by Implies(v) = {v} and Implies(v) =
{u | u→ t ∈ ∆Q+ , t ∈ Implies(v)}. For each variable u ∈ Implies(v) \ {v}, if
Ri(~u) is an atom such that ~u[k] = v and ~u[j] = u, then in every tuple t ∈ Ri,
replace t[j] with (t[j], t[k]).

For every edge e′′ ∈ Hi not containing v, set Rie′′ = Ri+1
e′′ .

The overall construction of the instance I can be done in linear time, since there
is a constant number of pseudo-minor operations, each requiring a linear number of
computational steps.

I is an instance of S. We show that I satisfies the FDs in ∆Q+ by induction: we
claim that for each Hi all FDs x→ y such that x, y ∈ V (Hi) are satisfied. According to
Lemma 4.18, Ha and therefore all of Hj , . . . ,Hm do not contain all variables of any FD.
Therefore our claim trivially holds for Hj , . . . ,Hm. We now prove our claim for Hi where
i ≤ j − 1. Consider an FD δ = x→ y such that x, y ∈ V (Hi). There are three cases:

• If x, y ∈ V (Hi+1), then by the induction assumption δ is satisfied in Hi+1. If Hi+1
is obtained by edge removal, then the only new relation in Hi is a projection of
a relation of Hi+1, and therefore δ is satisfied in all relations. Otherwise, Hi+1
is obtained by vertex removal. If the value of y is the same in Rie as in Ri+1

e , we
are done by the induction assumption. Otherwise, y is changed due to the second
FD-correction step, and the vertex removed is some z such that y → z. In this
case, since x transitively implies z, both x and y are concatenated with the same
values, and δ is still satisfied.

• If x 6∈ V (Hi+1), then Hi+1 is obtained by the removal of the vertex x, and the first
FD-correction step ensures that x contains a copy of the values of y in every tuple
where they both appear. Therefore δ is satisfied.
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• If y 6∈ V (Hi+1), then Hi+1 is obtained by the removal of the vertex y. The second
FD-correction step ensures that x contains a copy of the values of y, and δ is
satisfied.

Correctness. We know [BB13, Lemma 20] that there is a solution to Qm(Im) iff
there exists a subhypergraph of G isomorphic to Ht, and in fact every mapping µ that
can be used for the evaluation corresponds to such a subhypergraph. We claim that every
mapping used for evaluating Qi+1(Ii+1) corresponds to a mapping that can be used for
Qi(Ii), and vice versa. This was already shown in case Hi+1 is obtained by Hi via edge
contraction [BB13, Lemma 15] or edge removal [BB13, Lemma 14], and it was shown for
vertex removal [BB13, Lemma 13] if we simply assign the new vertex with a constant
and skip the FD-correction steps. Let Hi+1 be a pseudo-minor obtained from Hi via
vertex removal, and denote by I0

i the instance constructed from Ii+1 as described but
without the FD-correction steps. It is left to show that a mapping µ0 that satisfies Qi(I0

i )
corresponds to a mapping µ that satisfies Qi(Ii), and vice versa. This will conclude that
G has a subhypergraph isomorphic to Ht iff Q+(I) 6= ∅.

First we claim that whenever we perform an FD-correction step, if x implies y and x
is in some atom, then y is in this atom too. This will help us show that we perform
the same changes over x in all relations. Since Q+ is an FD-extension and only unary
FDs are present, we are guaranteed that if x implies y, then y is present in every edge
of H(Q+) where x appears. This property is preserved under vertex removal and edge
removal operations (as long as x and y are not removed), which are the only operations
that can be performed between H(Q+) and any pseudo-minor on which we perform
vertex-removal.

We now show that given µ0 that satisfies Qi(I0
i ) there is a mapping µ that satisfies Qi(Ii),

and vice versa. We show this by induction, considering one FD-correction step involving
one variable at a time. Consider the first FD-correction step on a vertex v implying w.
In any atom R(~u) such that ~u[k] = v, we showed that there exists an index j such that
~u[j] = w. For every tuple t0 ∈ R0, there is a similar tuple t ∈ R with the only difference
being t[k] = (t0[k], t0[j]). Therefore, by defining µ(v) = (µ0(v), µ0(w)) and µ(u) = µ0(u)
for all other variables u 6= v, every tuple that is used in the evaluation of µ0 in I0

i results
in a tuple that can be used in the evaluation of µ in Ii. Indeed, µ is a valid evaluation of
Qi(Ii). A similar argument holds similarly for the opposite direction and for the second
FD-correction step. For the opposite direction for example, if µ(v) = (av, aw), we define
µ0(v) = av.

Theorem 4.15 is an immediate consequence of Lemma 4.19:

Proof of Theorem 4.15. For the sake of a contradiction assume that Q is FD-cyclic, and
Decide∆〈Q〉 is solvable in linear time. Theorem 4.6 implies a linear time reduction
Decide∆Q+ 〈Q+〉 ≤m Decide∆〈Q〉. Therefore, it is possible to solve Decide∆Q+ 〈Q+〉
in linear time as well. As Q+ is cyclic, there exists a pseudo-minor Hpm ∈ Tetpm(Q+)
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isomorphic to Tetra(k) for some k ≥ 3. According to Lemma 4.19, this Tetra(k)
problem is also solvable in linear time.

In terms of enumeration complexity, Theorem 4.15 means that any enumeration algorithm
for such a query cannot output a first solution (or decide that there is none) within linear
time, and we get the following corollary.

Corollary 4.20. Let Q be a self-join-free CQ over a schema S = (R,∆), where ∆ only
contains unary FDs. If Q is FD-cyclic, then Enum∆〈Q〉 6∈ DelayClin, assuming that the
Tetra(k) problem is not solvable in linear time for any k.

Less restrictive than constant delay enumeration, the class DelayLin consists of enumera-
tion problems that can be solved with a linear delay between solutions. Acyclic CQs are
known to be in DelayLin [BDG07], and Corollary 4.7 shows that FD-acyclic CQs are in
this class as well. Theorem 4.15 implies a lower bound for DelayLin as well. Thus, we
obtain a dichotomy stating that CQs are in DelayLin if and only if they are FD-acyclic.

Theorem 4.21. Let Q be a CQ with no self-joins over a schema S = (R,∆), where ∆
only contains unary FDs.

• If Q is FD-acyclic, then Enum∆〈Q〉 ∈ DelayLin.

• Otherwise (if Q is FD-cyclic), Enum∆〈Q〉 6∈ DelayLin, assuming that the Tetra(k)
problem cannot be solved in linear time for any k.

Proof. If Q+ is acyclic, then Enum∅〈Q+〉 ∈ DelayLin [BDG07]. According to Theorem 4.6,
Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉. Since every instance that satisfies ∆Q+ also satisfies ∅,
we conclude that Enum∆Q+ 〈Q+〉 ≤e Enum∅〈Q+〉 using the identity mapping. Therefore,
Enum∆〈Q〉 ∈ DelayLin, since DelayLin is closed under exact reductions.

If Q+ is cyclic, assume by contradiction that Enum∆〈Q〉 ∈ DelayLin. According to
Corollary 4.20, Enum∆Q+ 〈Q+〉 ∈ DelayLin as well. This means that finding a first answer
to Q+ or deciding that there is none can be done in linear time, in contradiction to
Theorem 4.15.

We conclude this section with a short discussion about its extension to general FDs. The
following example shows that the proof for Theorem 4.15 that was provided here cannot
be lifted to general FDs. Exploring this extension is left for future work.

Example 4.22. Consider Q() ← R1(x, y, u), R2(x,w, z), R3(y, v, z), R4(u, v, w) over a
schema with all possible two-to-one FDs in R1, R2 and R3. That is,

∆ = {xy → u, yu→ x, ux→ y, zy → v,

yv → z, vz → y, xz → w, zw → x,wx→ z}.
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y v z

w

x

u

Figure 4.2: The hypergraph H(Q+) for Example 4.22

Note that Q+ = Q. The hypergraph H(Q+) is cyclic, see Figure 4.2, yet it is unclear
whether Q can be solved in linear time, and whether Tetra(3) can be reduced to
answering Q+. Using Lemma 4.18, H(Q+) has triangle pseudo-minors that do not
contain all variables of any FD. Consider for example the one obtained by removing all
vertices other than x, y, z. A construction similar to that of Lemma 4.19 would assign u
with the values of x and y, assign v with the values of y and z, and assign w with the
values of x and z. This results in the edge {u, v, w} containing all three values of any
possible triangle, meaning that this edge cannot be constructed in linear time. Other
choices of triangle pseudo-minors lead to similar encoding problems.

4.4 Cardinality Dependencies

In the last section of this chapter, we show that our results also apply to CQs over schemas
with cardinality dependencies. Cardinality Dependencies (CDs) [AFG16, CFWY14] are a
generalization of FDs, where the left-hand side does not uniquely determine the right-hand
side, but rather provides a bound on the number of distinct values it can have. Formally,
∆ is the set of CDs of a schema S = (R,∆). Every δ ∈ ∆ has the form (Ri : A→ B, c),
where Ri : A→ B is an FD and c is a positive integer. A CD δ is satisfied by an instance
D over S, if every set of tuples S ⊆ (Ri)D that agrees on the indices of A, but no pair of
them agrees on all indices of B, contains at most c tuples. It follows from the definition
that δ is an FD if c = 1.

Denote by ∆FD the FDs obtained from a set of CDs ∆ by setting all c values to one.
Given a query Q over S = (R,∆), we define the CD-extended query Q+ of Q to be
the FD-extended query of Q over S = (R,∆FD). The schema S+ is defined with the
original c values, and the extended CDs are ∆Q+ = {(R+

i : A→ b, c) | ∃(Rj : A→ B, c) ∈
∆, b ∈ B,A ∪ {b} ⊆ var(R+

i )}. Note that FD-extensions are indeed a special case of
CD-extensions.

The hardness results extend to CDs because FDs are their special case. Since every
instance that preserves the FDs ∆FD also preserves the CDs ∆, we can conclude that
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Enum∆FD〈Q〉 ≤e Enum∆〈Q〉. When only FDs are present we can apply Theorem 4.6,
and get Enum∆FD

Q+
〈Q+〉 ≤e Enum∆FD〈Q〉. Combining the two we get the following

lemma.

Lemma 4.23. Let Q be a CQ over a schema S = (R,∆), where ∆ is a set of CDs, and
let Q+ be its CD-extension. Then Enum∆FD

Q+
〈Q+〉 ≤e Enum∆〈Q〉.

Defining the classes of CD-acyclic and CD-free-connex queries similarly to the case with
FDs, Lemma 4.23 implies that all lower bounds presented in this chapter hold for CDs.
If Q is self-join-free and CD-acyclic but not CD-free-connex and Enum∆〈Q〉 ∈ DelayClin,
then by Lemma 4.23 we have that Enum∆FD

Q+
〈Q+〉 ∈ DelayClin as well. According to

Lemma 4.14 this means that Enum∅〈Π〉 ∈ DelayClin, and the matrix multiplication
problem can be solved in quadratic time. So Enum∆〈Q〉 6∈ DelayClin, assuming the
Boolean matrix multiplication assumption. Similarly, we conclude the hardness of self-
join-free CD-cyclic CQs over schemas that contain only unary CDs, of the form (A→ B, c)
with |A| = 1. Combining Lemma 4.23 with Theorem 4.15, we have that such queries
cannot be evaluated in linear time, assuming that the Tetra(k) problem cannot be
solved in linear time for any k.

In order to extend the positive results, we need to show that the CD-extension is at least
as hard as the original query w.r.t. enumeration. We use a slight relaxation of exact
reductions: For Enum〈R1〉 ≤e′ Enum〈R2〉, instead of a bijection between the sets of
outputs, one output of Enum〈R1〉 corresponds to at most a constant number of outputs
of Enum〈R2〉.

Lemma 4.24. Let Q be a CQ over a schema S = (R,∆), where ∆ is a set of CDs, and
let Q+ be its CD-extension. Then Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉.

Proof. When dealing with FDs, we assume that the right-hand side has only one vari-
able, as we can use such FDs to describe all possible ones. With CDs this no longer
holds. Nonetheless, every instance of the schema S = (R,∆) satisfies ∆1 = {(Ri : A→
b, c) | (Ri : A → B, c) ∈ ∆, b ∈ B}, so is also an instance of S1 = (R,∆1). There-
fore, Enum∆〈Q〉 ≤e Enum∆1〈Q〉 using the identity mapping. It is left to show that
Enum∆1〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉. The proof idea is the same as in Theorem 4.6, except
now, for each tuple extended from RDi to RD+

i we can have at most c new tuples. Since
this process is only done a constant number of times, the construction still only requires
linear time, and the rest of the proof holds. Note that now one solution of Enum∆+〈Q+〉
may correspond to several solutions of Enum∆1〈Q〉, as some variables were possibly
added to the head. However, as the possible values of the added head variables are
bounded by CDs, the number of solutions of Q+ that correspond to one solution of Q is
bounded by a constant.

We now formally prove that Enum∆1〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉. Denote Q by Q(~p) ←
R1(~v1), . . . , Rm(~vm). Given an instance D of Enum∆〈Q〉, we define σ(D). We start by
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removing tuples that interfere with the extended dependencies. For every dependency
δ = (Rj : X → y, c) ∈ ∆1 and every atom Rk(~vk) that contains X ∪ {y}, we correct Rk
according to δ: we only keep tuples of RDk that agree with some tuple of RDj over the values
of X ∪{y}. Next, we follow the extension of the schema, and in each step we extend some
Ri to R′i according to some CD (Rj : X → y, c). For each tuple t ∈ RDi , if there is no tuple
s ∈ RDj that agrees with t over the values ofX, then we remove t altogether. Otherwise, we
consider all values such tuples assign y. Denote those values by a1, . . . , ak, and note that
due to the CD, k ≤ c. We copy t to Rσ(D)

i m times, each time assigning y with a different
value of a1, . . . , ak. Given an answer µ ∈ Q+(σ(D)), we define τ(µ) to be the projection
of µ to free(Q). We need to show that Q(D) = {µ|free(Q) : µ|free(Q+) ∈ Q+(σ(D))},
and that an element of the left-hand side may only appear a constant amount of times
on the right-hand side. First, if µ|free(Q+) ∈ Q+(D+), since all tuples of D+ appear
(perhaps projected) in D, then µ|free(Q) ∈ Q(D). We now show the opposite direction. Let
µ|free(Q) ∈ Q(D), and consider a sequence of queries Q = Q0, Q1, . . . , Qn = Q+ such that
each one is the result of extending an atom or the head of the previous query according
to a CD (Rj : X → y, c). We claim that if µ|~pi ∈ Qi(~pi), then µ|~pi+1 ∈ Qi+1(~pi+1). This
claim is trivial in case the head was extended. Note that there can be at most c − 1
different answers µ′|~pi+1 to Qi+1 such that µ|~pi+1 6= µ′|~pi+1 but µ|~pi = µ′|~pi , as the added
variable y is bound by the CD to have at most c possible values. In the case an atom
Rk(~vk) was extended, denote tk = µ(~vk) and tj = µ(~vj). The construction guarantees
that tj and some copy of tk in σ(D) agree on the value of y, so µ(uk) ∈ Rk. By induction
we get that µ|free(Q+) ∈ Q+(σ(D)).

We can now extend our positive results to accommodate CDs. Let Q be a CD-free-
connex CQ over a schema S = (R,∆), where ∆ contains CDs. According to Lemma 4.24,
Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉 ≤e Enum∅〈Q+〉, and due to Theorem 3.1, Enum∅〈Q+〉 ∈
DelayClin. The class DelayClin is closed under this type of reduction. To avoid printing
duplicates, we need to store previous results in a lookup table, and verify that a generated
result is new before printing it. This alone is not enough, as we can have a long sequence
of generating known results, and then the delay between generating new results can
be larger than constant. For this reason, we use the known technique of delaying the
results, also used by Capelli et al. [CS18, Proposition 12]. If every answer to Enum∆〈Q〉
corresponds to at most c answers to Enum∅〈Q+〉, we save the newly generated results in
a queue, and after generating c results we pop and print a result from the queue. This
guarantees that the queue is never empty when accessed, and the results are printed with
constant delay. Therefore, Enum∆〈Q〉 ∈ DelayClin, and we deduce the following:

Theorem 4.25. Let Q be a CD-acyclic CQ with no self-joins over the schema S = (R,∆),
where ∆ is a set of CDs.

• If Q is CD-free-connex, then Enum∆〈Q〉 ∈ DelayClin.

• If Q is not CD-free-connex, then Enum∆〈Q〉 6∈ DelayClin, assuming mat-mul.
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CHAPTER 5
Unions of Conjunctive Queries

In this chapter, we investigate the enumeration complexity of UCQs, and aim to under-
stand which queries allow for an enumeration within DelayClin.
We first establish a notion of free-connexity for UCQs, and show that such UCQs are
always tractable. Towards a lower bound, we distinguish between UCQs only containing
acyclic queries and UCQs containing at least one cyclic CQ. For the first case, queries
containing so-called body-isomorphic queries are of special interest. We prove a dichotomy
for UCQs consisting of two body-isomorphic queries in Section 5.2.3, as well as a result
close to a dichotomy for several body-isomorphic queries. We then finish the chapter
with an investigation of UCQs containing cyclic queries.

5.1 Upper Bounds via Union Extensions

Our first goal is to derive an upper bound for enumerating all answers. To do so, we
generalize the notion of free-connexity from CQs to UCQs and show that queries with
this property are in DelayClin. Free-connexity of UCQs is defined via union extensions
of a UCQ. This novel concept formalizes the idea that enumerating the answers to one
CQ in a union can be used to enumerate the answers for another CQ in the same union.
Before introducing any of these new notions, we first give a brief insight on a known
result on UCQ enumeration.

5.1.1 Enumerating the Union of Tractable CQs

Although the enumeration complexity of UCQs is widely unknown, the complexity of
enumerating a union of only tractable CQs is well understood [BKS18]. Using known
techniques [Str10, Proposition 2.38], the answers to a union of tractable CQs can be
enumerated with a constant delay after linear preprocessing.
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Theorem 5.1 ([Str10]). Let Q = Q1 ∪ . . . ∪Qn be a UCQ for some fixed n ≥ 1. If for
all 1 ≤ i ≤ n the CQ Qi is free-connex, then Enum〈Q〉 ∈ DelayClin.

Proof. Consider Algorithm 1 to enumerate the answers of a union of two CQs. In case of
a union Q =

⋃`
i=1Qi of more CQs, we can use this algorithm recursively by treating the

second query as Q2 ∪ · · · ∪Q`.

Algorithm 1 Enumerating the answers to a tractable union of two CQs
1: while a← Q1(D).next() do
2: if a 6∈ Q2(D) then
3: print a
4: else
5: print Q2(D).next()
6: end if
7: end while
8: while a← Q2(D).next() do
9: print a

10: end while

By the end of the run, the algorithm prints Q1(D) \Q2(D) over all iterations of line 3,
and it prints Q2(D) in lines 5 and 9. Line 5 is called Q1(D) ∩ Q2(D) times, so the
command Q2(D).next() always succeeds there. Since free-connex CQs can be enumerated
in constant delay and tested in constant time after a linear time preprocessing phase,
this algorithm runs within the required time bounds.

The technique presented in the proof of 5.1 has the advantage that it does not require
more than constant memory available for writing in the enumeration phase. Theorem 5.1
is also a consequence of the following lemma, which gives us a general approach to compile
several enumeration algorithms into one. The result of Lemma 5.2 can be used to derive
upper bounds for UCQs even in cases not covered by Theorem 5.1, as we will see later in
this section.

Lemma 5.2. Let R ⊆ Σ∗×Σ∗ and let n,m be positive integers. Further let d, p : N→ N
be mappings and A be an algorithm that outputs the solutions to every instance x of
Enum〈R〉 such that:

• the delay of A is bounded by p(|x|) at most n times and bound by d(|x|) otherwise;

• every result is produced at most m times.

Then, there exists an enumeration algorithm A′ for Enum〈R〉, that enumerates all
solutions for an instance x with np(|x|) +md(|x|) preprocessing time and md(|x|) delay.
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Proof. Algorithm A′ simulates A and maintains a lookup table and a queue that are
initialized as empty. When A returns a result, A′ checks the lookup table to determine
whether it was found before. If it was not, the result is added to both the lookup table
and the queue. Algorithm A′ first performs np(|x|) computation steps, and then after
every md(x) computation steps, it outputs a result from the queue. Moreover, A′ returns
its i-th result after np(|x|) + imd(|x|) computation steps. At this time, A produced at
least mi results, which form at least i unique results, so the queue is never empty when
accessed. When it is done simulating A, algorithm A′ outputs all remaining results in
the queue. This way, all results of A are output with no duplicates since every result
enters the queue exactly once.

A direct consequence of Lemma 5.2 is that to show that a problem is in DelayClin, it
suffices to find an algorithm for this problem where the delay is usually constant, but
it may be linear a constant number of times, and the number of times every result is
produced is bound by a constant. Note that for this result, we use the fact that our model
for constant delay enumeration can allocate constant memory between two outputs, as
we have pointed out in Section 3.2.

5.1.2 Provided Variables and Union Extensions

As Example 1.3 in the introduction of this thesis shows, Theorem 5.1 does not cover all
tractable UCQs. We now address the other cases. i.e. UCQs potentially containing at
least one intractable CQ. We start with some definitions. We define body-homomorphisms
between CQs to have the standard meaning of homomorphism, but without the restriction
on the heads of the queries.

Definition 5.3. Let Q1, Q2 be CQs.

• A body-homomorphism from Q2 to Q1 is a mapping h : var(Q2)→ var(Q1) such
that for every atom R(~v) of Q2, we have R(h(~v)) ∈ Q1.

• If Q1, Q2 are self-join free and there is a body-homomorphism h from Q2 to Q1
and vice versa, we say that Q2 and Q1 are body-isomorphic, and h is called a
body-isomorphism.

In Example 1.3, we saw that the answers to one of the queries in the union can be used to
compute answers to another query in the same union. We now formalize this observation,
that one CQ within a union Q can make a contribution to the enumeration of the answers
of another CQ in Q, by providing some variables.

Definition 5.4. Let Q1, Q2 be CQs. We say that Q2 provides a set of variables V1 ⊆
var(Q1) to Q1 if:

1. There is a body-homomorphism h from Q2 to Q1.
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2. There is V2 ⊆ free(Q2) such that h(V2) = V1.

3. There is V2 ⊆ S ⊆ free(Q2) such that Q2 is S-connex.

Providing variables among queries within a union is our central tool for obtaining upper
bounds on UCQ enumeration complexity. The following lemma offers some insight to
the importance of this tool: If Q2 provides a set of variables to Q1, then we can produce
an auxiliary relation for Q1 containing all possible value combinations of these variables.
This can be done efficiently while already producing some answers to Q2.

Lemma 5.5. Let Q1, Q2 be CQs such that Q2 provides V1 to Q1. Given a database
instance D, one can compute with linear time preprocessing and constant delay a set of
mappings M ⊆ Q2(D), which can be translated to Q1(D)|V1 in time O(|M |).

Proof. For the proof of this lemma and the proof of Theorem 5.8, we use the constant
delay version of the Yannakakis algorithm [IUV17], denoted by CDY algorithm, which
we briefly discussed in Section 3.2.

Let h be a body-homomorphism, and let V2 and S be sets of variables meeting the
conditions of Definition 5.4. Take an ext-S-connex tree T for H(Q2), and perform the
CDY algorithm on Q2 while treating S as the free-variables. This results in a set N of
mappings from the variables of S to the domain such that N = Q2(D)|S .

For every mapping µ ∈ N , extend it once to obtain a mapping from all variables of
Q2 as follows. Go over all vertices of T starting from the connected part containing
S and treating a neighbor of an already treated vertex at every step. Consider a step
where in its beginning µ is a homomorphism from a set S1, and we are treating an atom
Ri(~vi, ~ui) where ~vi ⊆ S1 and ~ui ∩S1 = ∅. We take some tuple in Ri of the form (µ(~vi), ti)
and extend µ to also map µ(~ui) = ti. Such a tuple exists since the CDY algorithm has
a preprocessing step that removes any tuple with no extension. This extension takes
constant time, and in the end we have that µ|free(Q) ∈ Q2(D). These extensions form
M ⊆ Q2(D). When computing M , the delay for the first element may be linear due to
the preprocessing phase of the CDY algorithm, but the delay after that is constant.

We now describe how M can be translated to Q1(D)|V1 . As M |V2 = Q2(D)|V2 , we simply
need to use the body-homomorphism in the opposite direction. For every variable v1 ∈ V1,
define h−1(v1) to be {v2 ∈ V2 | h(v2) = v1}. Given a mapping µ ∈ Q2(D), if µ(v2) is the
same for all v2 ∈ h−1(v1), denote it by µ(h−1(v1)). Otherwise, µ(h−1(v1)) is undefined,
and in the following µ is skipped. Since h is a body-homomorphism, we have that
M |V2 ◦ h−1 = Q(D)|V1 . Given µ ∈M , we can compute µ|V2 ◦ h−1 (or determine that it is
undefined) in constant time. Doing this for every µ ∈M , we can compute Q1(D)|V1 in
time O(|M |).

During the process of enumeration, a set of variables provided to a CQ can be used as
an auxiliary relation, accessible by an auxiliary atom. The CQ along with its auxiliary
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5.1. Upper Bounds via Union Extensions

atoms is called a union extension. Intuitively, a union extension of a CQ within a UCQ
captures the possible interaction among queries in the union w.r.t. the enumeration
problem.

Definition 5.6. Let Q = Q1 ∪ . . . ∪Qn be a UCQ.

• A union extension Q+
1 of Q1(~v)← R1(~v1), . . . , Rs(~vs) is given by

Q+
1 (~v)← R1(~v1), . . . , Rs(~vs), P1(~u1), . . . , Pk(~uk)

where k ≥ 0, each ~ui with 1 ≤ i ≤ k is provided by some Qj ∈ Q, and P1, . . . , Pk
are fresh relational symbols. By way of recursion, the variables ~ui may alternatively
be provided by a union extension of some Qj ∈ Q.

• Atoms appearing in Q+
1 but not in Q1 are called virtual atoms.

Using the concept of union extensions, we are now ready to define the notion of free-
connexity for UCQs.

Definition 5.7. Let Q = Q1 ∪ . . . ∪Qn be a UCQ.

• Q1 is said to be union-free-connex with respect to Q if it has a free-connex union
extension.

• Q is free-connex if all CQs in Q are union-free-connex.

Note that the term free-connex for UCQs is a generalization of that for CQs: If a UCQ Q
contains only one CQ, then Q is free-connex if and only if the CQ it contains is free-connex.
In the original dichotomy given by Theorem 3.1, it was proven that free-connex CQs are
tractable. We next show that this tractability of free-connex queries also carries over to
UCQs.

Theorem 5.8. Let Q be a UCQ. If Q is free-connex, then Q ∈ DelayClin.

Proof. For each query Q1 in the union (in an order imposed by the recursive definition
of union extensions), we first instantiate its free-connex union extension Q+

1 , and then
evaluate the resulting free-connex CQ using the CDY algorithm: For every virtual
atom containing some variables V1, use Lemma 5.5 to generate a subset of Q2(D) while
obtaining a relation Q1(D)|V1 assigned to this atom. After instantiating all virtual
relations, we have an instance D+ for Q+

1 , and we can evaluate it as usual using the CDY
algorithm. We have that Q1(D) = Q+

1 (D+) since all virtual atoms in Q+
1 are assigned

relations that contain merely a projection of the results.

Overall, there is a constant number of times where the delay is linear: once per query
and once per virtual atom. Similarly, every result is produced at most a constant number
of times: once per query and once per virtual atom. According to Lemma 5.2 this means
that Enum〈Q〉 ∈ DelayClin.
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w, y

x, y

x, z, y x, y w, y

x, z y, z

Q2 : Q+
1 :

Figure 5.1: {x, y, w}-connex tree for Q2 and {x, y, w}-connex tree for Q+
1 .

We can now revisit Example 1.3 from the introduction and explain its tractability using
the terminology and results from this section. Note that we have chosen new names for
the relational symbols to ensure readability.

Example 5.9. Let Q = Q1 ∪Q2 be the UCQ

Q1(x, y, w)← R1(x, z), R2(z, y), R3(x,w) and
Q2(x, y, w)← R1(x, y), R2(y, w).

There is a body-homomorphism h from Q2 to Q1 with h((x, y, w)) = (x, z, y). The query
Q2 provides {x, z, y} to Q1, as {x, y, w} ⊆ free(Q2), and Q2 is {x, y, w}-connex. Thus,
we can add R′(x, z, y) to Q1, and the union extension

Q+
1 (x, y, w)← R1(x, z), R2(z, y), R3(y, w), R′(x, z, y)

is free-connex (see Figure 5.1). Since every query in Q is union-free-connex, we have that
Enum〈Q〉 ∈ DelayClin by Theorem 5.8.

The tractability result in Theorem 5.8 is based on the structure of the union extended
queries. This means that the intractability of any query within a UCQ can be resolved as
long as another query can provide the right variables. The following example shows that
this can even be the case for a UCQ only consisting of non-free-connex CQs. Moreover,
the example illustrates why we need the definition of union extensions to be recursive.

Example 5.10. Let Q = Q1, Q2, Q3 with

Q1(x, y, v, u)←R1(x, z1), R2(z1, z2), R3(z2, z3), R4(z3, y), R5(y, v, u),
Q2(x, y, v, u)←R1(x, y), R2(y, v), R3(v, z1), R4(z1, u), R5(u, t1, t2),
Q3(x, y, v, u)←R1(x, z1), R2(z1, y), R3(y, v), R4(v, u), R5(u, t1, t2).

Each of the three CQs is intractable on its own: Q1 has the free-path (x, z1, z2, z3, y),
while Q2 has the free-path (v, z1, u), and Q3 has the free-path (x, z1, y). The CQ Q2
provides the variables {x, z1, y} to Q3, as it is {x, y, v}-connex, {x, y, v} ⊆ free(Q), and
there is a body-homomorphism h from Q2 to Q3 with h((x, y, v)) = (x, z1, y). Extending
the body of Q3 by the virtual atom R′(x, z1, y) yields the free-connex union extension Q+

3 .
Similarly, we have that Q3 provides {v, z1, u} to Q2, and extending Q2 by R′′(v, z1, u)
yields the free-connex union extension Q+

2 . Since Q+
2 and Q+

3 provide {x, z1, z2, y}
and respectively {x, z2, z3, y} to Q1, we obtain a free-connex union extension Q+

1 by
adding virtual atoms with the variables (x, z1, z2, y) and (x, z2, z3, y) to Q1. Thus, Q is
free-connex and can be enumerated efficiently by Theorem 5.8.
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5.2 Lower Bounds
In this section, we prove lower bounds for enumerating the answers to UCQs within
the time bounds of DelayClin. We begin with some general observations regarding cases
where a single CQ is not harder than a union containing it, and then continue to handle
other cases. In Section 5.2.2 we discuss unions containing only intractable CQs, and in
Section 5.2.3 we discuss unions containing two body-isomorphic CQs. In both cases such
UCQs may be tractable, and in case of such a union of size two, we show that our results
from Section 5.1 capture all tractable unions.

5.2.1 General Observations

In order to provide some intuition for the choices we make throughout this section, we
first explain where the approach used for proving the hardness of single CQs fails.

Example 5.11. Consider the UCQ Q = Q1 ∪Q2 from Example 5.9:

Q1(x, y, w)← R1(x, z), R2(z, y), R3(x,w) and
Q2(x, y, w)← R1(x, y), R2(y, w).

The original proof that shows that Q1 is an intractable CQ describes a reduction
from Boolean matrix multiplication [BDG07, Lemma 26]. Let A and B be binary
representations of Boolean n × n matrices, i.e. (a, b) ∈ A corresponds to a 1 in the
first matrix at index (a, b). Define a database instance D as RD1 = A, RD2 = B, and
RD3 = {1, . . . , n} × {⊥}. One can show that Q1(D) corresponds to the answers of AB. If
Enum〈Q1〉 ∈ DelayClin, we can solve matrix multiplication in time O(n2), in contradiction
to mat-mul. Since Q2 evaluates over the same relations as Q1 does, Q2 also produces
answers over this construction. Since the number of results for Q2 might reach up to
n3, enumerating Q in constant delay does not necessarily compute the answers to Q1 in
O(n2) time, and does not contradict the complexity assumption.

The example above shows that in general, whenever we show a lower bound to a UCQ by
computing a hard problem through answering one CQ in the union, we need to ensure
that the other CQs cannot have too many answers over this construction. To resolve this
issue, we describe cases where there is a way to encode any arbitrary instance of Q1 to
an instance of Q, such that no other CQ in the union returns results.

Lemma 5.12. Let Q be a UCQ of self-join free CQs, and let Q1 ∈ Q such that for
all Qi ∈ Q \ {Q1} there is no body homomorphism from Qi to Q1. Then we have
Enum〈Q1〉 ≤e Enum〈Q〉.

Proof. Let Q1(~p) ← R1(~v1), . . . , Rm(~vm). Given an instance D of Enum〈Q1〉, the con-
struction of σ(D) assigns each variable of Q1 with a different and disjoint domain by
concatenating the variable names to the values in their corresponding relations. We
leave the relations that do not appear in the atoms of Q1 empty. Since there is no
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5. Unions of Conjunctive Queries

body-homomorphism from Qi to Q1, then there are now no answers to Qi over this
construction, and the answers to Q are exactly those of Q1.

Formally, for every i ∈ {1, . . . ,m} and every tuple (c1, . . . , ct) ∈ RDi we have the tuple
((c1, ~vi[1]), . . . , (ct, ~vi[t])) in Rσ(D)

i . The relations that do not appear in Q1 are left empty.
We claim that the results of Q1 over the original instance are exactly those of Q over our
construction if we omit the variable names. That is, we define τ : dom × var(Q1)→ dom
as τ((c, v)) = c, and show that Q1(D) = τ(Q(σ(D))).

We first prove that Q1(D) = τ(Q1(σ(D))). That is, we show that the results ob-
tained due to the evaluation of Q1 in both cases are the same. If µ|~p ∈ Q1(D),
then for every atom Ri(~vi) in Q1, (µ(~vi[1]), . . . , µ(~vi[t])) ∈ RDi . By construction,
((µ(~vi[1]), ~vi[1]), . . . , (µ(~vi[t]), ~vi[t])) ∈ Rσ(D)

i . By defining fµ : var(Q1)→ dom × var(Q1)
as fµ(u) = (µ(u), u), we have fµ ∈ Q1(σ(D)). Since τ ◦ fµ = µ, we have that
µ|~p ∈ τ(Q1(σ(D))), and this concludes that Q1(D) ⊆ τ(Q1(σ(D))). The opposite
direction is trivial: if ν|~p ∈ Q1(σ(D)), then for every atom Ri(~vi) in Q1, ν(~vi) ∈ Rσ(D)

i .
By construction, τ(ν(~vi)) ∈ RDi , and therefore τ ◦ ν|~p ∈ Q1(D).

We now know that Q1(D) = τ(Q1(σ(D))) ⊆ τ(Q(σ(D))). It is left to show that
τ(Q(σ(D))) ⊆ Q1(D). Assume by contradiction that there exists µ|~p ∈ Q(σ(D)) such
that τ ◦ µ|~p 6∈ Q1(D). Since µ|~p ∈ Q(σ(D)), there exists some Qi ∈ Q such that
µ|~p ∈ Qi(σ(D)). Since τ ◦ µ|~p 6∈ Q1(D) and Q1(D) = τ(Q1(σ(D))), we know that
µ|~p 6∈ Q1(σ(D)), and therefore i 6= 1. Define η : dom × var(Q1)→ var(Q1) as η(c, v) = v.
Since µ|~p ∈ Qi(σ(D)), we know that for every atom Rj(~vj) in Qi, µ(~vj) ∈ R

σ(D)
j .

By construction, if ((c1, v1), . . . , (ct, vt)) ∈ Rσ(D)
j then Rj(v1, . . . , vt) is an atom in Q1.

Consider µ ◦ η : var(Qi) → var(Q1). For every atom Rj(~vj) in Qi, Rj(µ ◦ η(~vj)) is an
atom in Q1. This means that there is a body-homomorphism from Qi to Q1, and achieves
a contradiction.

Lemma 5.12 implies that if there is an intractable CQ in a union where no other CQ
maps to it via a body-homomorphism, then the entire union is intractable. This also
captures cases such as a union of CQs where one of them is hard, and the others contain
a relation that does not appear in the first.

Using the same reduction, a similar statement with relaxed requirements can be made in
case it is sufficient to consider the Boolean evaluation problem instead of the enumeration
problem.

Lemma 5.13. Let Q be a UCQ of self-join free CQs, and let Q1 ∈ Q such that for all
Qi ∈ Q either there is no body-homomorphism from Qi to Q1 or Q1 and Qi are body-
isomorphic. Then, Decide〈Q1〉 ≤ Decide〈Q〉 via a linear-time many-one reduction.

Proof. Given a database instance D of Decide〈Q1〉, we use the same function σ as in
the proof of Lemma 5.12 to reduce this to a database instance σ(D) of Decide〈Q〉. As
before, a CQ in the union with no body-homomorphism to Q1 has no answers over
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σ(D). So it remains to show that for body-isomorphic CQs Q1 and Q2 and database
D, Q1(D) 6= ∅ if and only if Q2(σ(D)) 6= ∅. First assume that Q1(D) 6= ∅ , and let
h : var(Q2) → var(Q1) be a body-homomorphism from Q2 to Q1. By construction
of σ, we have that Q1(D) 6= ∅ if and only if Q1(σ(D)) 6= ∅. For the homomorphism
µ : var(Q1)→ dom with µ|free(Q) ∈ Q1(σ(D)), we have that µ ◦h|free(Q) ∈ Q2(σ(D)): For
every atom R(~x) ∈ Q2, we have R(h(~x)) ∈ Q1 and thus R(µ ◦ h(~x)) ∈ Rσ(D). The other
direction can be proven analogously.

Going back to the result by Brault-Baron [BB13] on cyclic queries, Theorem 3.3 states
that deciding whether a cyclic CQ has any answers cannot be done in linear time
(assuming hyperclique). Thus according to Lemma 5.13, if a UCQ Q contains a cyclic
Q1 such that the conditions of Lemma 5.13 are satisfied, the entire union cannot be
decided in linear time, and thus Enum〈Q〉 6∈ DelayClin. We will further discuss this case
in Section 5.3.2.

5.2.2 Unions of Intractable CQs

We now discuss unions containing only CQs classified as intractable according to Theo-
rem 3.1 and Theorem 3.3, that is, CQs that are either cyclic or acyclic and not free-connex.
In addition to that, we assume intractable CQs to be self-join-free. Unions of intractable
CQs are of special interest, because we have the means to derive some lower bounds
according to Theorem 5.15 below. For a discussion on UCQs containing both tractable
and intractable queries, see Section 5.3. The following lemma can be used to identify a
CQ on which we can apply Lemma 5.12 or Lemma 5.13.

Lemma 5.14. Let Q be a UCQ. There exists a query Q1 ∈ Q such that for all Qi ∈ Q
either there is no body-homomorphism from Qi to Q1 or Q1 and Qi are body-isomorphic.

Proof. Consider a longest sequence (Q1, . . . , Qm) such that for every 2 ≤ j ≤ m there is
a body-homomorphism from Qj to Qj−1 denoted µj , but no body-homomorphism in the
opposite direction. Note that it is not possible that the same query appears twice in the
sequence: if Qk = Qj where j > k, then there is a mapping µk+2 ◦ . . . ◦ µj from Qj = Qk

to Qk+1, in contradiction to the definition of the sequence. Therefore, m ≤ |Q|, and such
a longest sequence exists.
We claim that Q1 = Qm satisfies the conditions of the lemma. To see this, first consider
some Qj ∈ {Q1, . . . , Qm−1}. There is a body-homomorphism from Qm to Qj which is the
concatenation of µj+1 ◦ . . . ◦ µm. Therefore, either there is no body-homomorphism from
Qj to Qm or Qm and Qj have isomorphic bodies. Now consider some Qi 6∈ {Q1, . . . , Qm}.
If there is no body-homomorphism from Qi to Qm, then we are done. Otherwise, assume
that there is also no body-homomorphism from Qi to Qm. Then (Q1, . . . , Qm, Qi) is a
longer sequence, contradicting the maximality. Therefore, we have that Qm and Qi have
isomorphic bodies.
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Using the results obtained so far, we deduce a characterization of all cases of a union of
intractable CQs, except those that contain a pair of body-isomorphic acyclic CQs.

Theorem 5.15. Let Q be a UCQ of intractable CQs that does not contain two body-
isomorphic acyclic CQs. Then, Q 6∈ DelayClin, assuming mat-mul and hyperclique.

Proof. Let Q1 be a CQ in Q given by Lemma 5.14. We distinguish between two possible
cases of the structure of Q1. In case Q1 is acyclic, since we know that Q does not contain
body-isomorphic acyclic CQs, then for all Qi ∈ Q\{Q1} there is no body-homomorphism
from Qi to Q1. According to Lemma 5.12, Enum〈Q1〉 ≤e Enum〈Q〉. Since Q1 is
self-join free acyclic non-free-connex, we have that Enum〈Q1〉 6∈ DelayClin assuming
mat-mul. Therefore Enum〈Q〉 is not in DelayClin either. In case Q1 is cyclic, we use
Lemma 5.13 to conclude that Decide〈Q1〉 ≤ Decide〈Q〉. According to Theorem 3.1,
since Q1 is self-join free cyclic, Decide〈Q1〉 cannot be solved in linear time assuming
hyperclique. Therefore Decide〈Q〉 cannot be solved in linear time, and in particular
Enum〈Q〉 6∈ DelayClin.

In the next example, we demonstrate how the reductions from Lemma 5.13 and Theo-
rem 3.1 combine in Theorem 5.15.

Example 5.16. Consider the UCQ Q = Q1 ∪Q2 ∪Q3 with

Q1(x, y)← R1(x, y), R2(y, u), R3(x, u),
Q2(x, y)← R1(y, v), R2(v, x), R3(y, x),
Q3(x, y)← R1(x, z), R2(y, z).

The queries Q1 and Q2 are cyclic, and Q3 is acyclic but not free-connex. This union
is intractable according to Theorem 5.15. Note that Q1 and Q2 are body-isomorphic,
but there is no body-homomorphism from Q3 to Q1. The proof of Theorem 3.1 states
the following: If Enum〈Q1〉 ∈ DelayClin, then given an input graph G, we can use Q1 to
decide the existence of triangles in G in time O(n2), in contradiction to hyperclique.
The same holds true for the Enum〈Q〉. For every edge (u, v) in G with u < v we add
((u, x), (v, y)) to RD1 , ((u, y), (v, z)) to RD2 and ((u, x), (v, z)) to RD3 . The query detects
triangles: for every triangle a, b, c in G with a < b < c, the query Q1 returns ((a, x), (b, y)).
The union only returns answers corresponding to triangles:

• For every answer ((d, x), (e, y)) to Q1, there exists some f such that d, e, f is a
triangle in G with d < e < f .

• For every answer ((g, z), (h, x)) to Q2, there exists some i such that g, h, i is a
triangle in G with h < i < g.

• The query Q3 returns no answers over this construction.
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Theorem 5.15 does not cover the case of a UCQ containing acyclic non-free-connex queries
with isomorphic bodies. Since this requires a more intricate analysis, we first restrict
ourselves to such unions of size two.

5.2.3 Unions of Two Body-Isomorphic CQs

In this section, we discuss unions of two body-isomorphic CQs in general, and show
in Theorem 5.27 that such a UCQ is tractable if and only if the UCQ is free-connex.
By combining this with Theorem 5.15, we have the following dichotomy for the case of
unions containing exactly two intractable CQs.

Theorem 5.17. Let Q = Q1 ∪Q2 be a union of intractable CQs.

• If Q is free-connex, then Enum〈Q〉 ∈ DelayClin.

• If Q is not free-connex, then Enum〈Q〉 6∈ DelayClin, assuming mat-mul, hyper-
clique and 4 -clique.

In order to show Theorem 5.27, we will start with some general observations and examples.
First consider an arbitrary pair of body-isomorphic CQs. As both of them have the same
structure, either the two CQ are cyclic, or both are acyclic. In the case of a union of two
cyclic CQs, the UCQ is intractable according to Theorem 5.15. So in this section, we
discuss the union of body-isomorphic acyclic CQs. Note that, unlike the previous section,
we allow a CQ in the union to be free-connex. Dealing with only body-isomorphic CQs
in a union allows us to introduce a new notation that we use hereafter.

Consider a UCQ of the form Q1 ∪Q2, where there exists a body-isomorphism h from Q2
to Q1. That is, the CQs have the structure:

Q1(~v1)← R1(h(~w1)), . . . , Rn(h(~wn)),
Q2(~v2)← R1(~w1), . . . , Rn(~wn).

Applying h−1 to the variables of Q1 does not affect evaluation. Thus, we can rewrite Q1
as Q1(h−1(~v1))← R1(~w1), . . . , Rn(~wn). Since now the two CQs have exactly the same
body, we can treat the UCQ as a query with one body and two heads:

Q1(h−1(~v1)), Q2(~v2)← R1(~w1), . . . , Rn(~wn)

This same notation can also be used when considering UCQs consisting of more than two
body-isomorphic CQs. Note that when treating a UCQ as one CQ with several heads,
the set atoms(Q) can be used instead of atoms(Qi) for any Qi in Q, as the atoms are
the same for all CQs in the union. Similarly, the set free(Qi) has a new meaning, as the
free variables may differ between different queries Qi in the union. With this notation at
hand, we now inspect some examples of two body-isomorphic acyclic CQs.

65



5. Unions of Conjunctive Queries

Example 5.18. Consider Q = Q1 ∪Q2 with

Q1(x, y, v)← R1(x, z), R2(z, y), R3(y, v), R4(v, w) and
Q2(x, y, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x).

Since the CQs in Q are body-isomorphic, the query Q can be rewritten as

Q1(w, y, z), Q2(x, y, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x).

Using the new notation, we have that free(Q1) = {w, y, z} and free(Q2) = {x, y, v}.
Concerning the enumeration complexity of Q, we can use the same approach used for
single CQs in Theorem 3.1, and show that this UCQ is not in DelayClin assuming mat-
mul. Let A and B be binary representations of Boolean n × n matrices as explained
in the beginning of this section. Define a database instance D as RD1 = A, RD2 = B,
RD3 = {1, . . . , n} × {⊥} and RD4 = {(⊥,⊥)}. Since Q1(D) corresponds to the answers
of AB, and Q2(D) is of size O(n2), we cannot enumerate Q within the time bounds of
DelayClin unless we can solve matrix multiplication in time O(n2).

A union of two intractable body-isomorphic acyclic CQs may also be tractable. In fact,
by only adding a single variable to the heads of the CQs in Example 5.18, we obtain a
tractable UCQ.

Example 5.19. Let Q be the UCQ

Q1(x, y, w, v)← R1(x, z), R2(z, y), R3(y, v), R4(v, w) and
Q2(x, y, w, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x),

which can be rewritten as

Q1(w, y, x, z), Q2(x, y, w, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x).

Both CQs are acyclic non-free-connex. As Q2 provides {v, w, y} and Q1 provides {x, y, z},
both CQs have free-connex union extension:

Q+
1 (w, y, x, z)← R1(w, v), R2(v, y), R3(y, z), R4(z, x), P1(v, w, y) and

Q+
2 (x, y, w, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x), P2(x, y, z).

By Theorem 5.8 it follows that Enum〈Q〉 ∈ DelayClin.

Intuitively, the reason why the reduction of Example 5.18 fails in Example 5.19 is the
fact that all the variables of the free-paths in one CQ, which are used to encode matrix
multiplication, are free in the other CQ. Indeed, if we encode matrices A and B to the
relations of the free-path w, v, y in Q1, there can be up to n3 many answers to Q3 in
the worst case. The answer set in this case is too large to contradict the assumed lower
bound of O(n2) for matrix multiplication. As it turns out, there are cases where we
cannot reduce matrix multiplication to a union in this manner, and yet we can show that
it is intractable using an alternative computational problem.
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Figure 5.2: If µ|free(Qi) ∈ Q(D), the induced subgraph of µ(w, x, y, z) forms a clique
where one edge might be missing.

Example 5.20. Let Q be the UCQ

Q1(x, y, t), Q2(x, y, w)← R1(x,w, t), R2(y, w, t).

We can show that this union is intractable under the 4-clique assumption. For a given
graph G = (V,E) with |V | = n, we compute the set T of all triangles in G in time n3.
Define a database instance D as RD1 = RD2 = T . For every output µ|free(Qi) ∈ Q(D)
with i ∈ {1, 2}, we know that (µ(x), µ(z), µ(w)) and (µ(y), µ(w), µ(z)) are triangles. If
µ(x) 6= µ(y), this means that µ((x, y)) ∈ E if and only if (µ(x), µ(y), µ(w), µ(z)) forms a
4-clique (see Figure 5.2). Since there are O(n3) answers to Q, if Enum〈Q〉 ∈ DelayClin,
we can check whether µ((x, y)) ∈ E for every answer in Q(D), and determine whether a
4-clique appears in G in time O(n3).

Note that we can use the 4-clique assumption in Example 5.20, since, in addition to
the free-path variables, there is another variable in both free-path relations. We now
generalize the structural observations we made in Examples 5.20 and 5.18, that allowed
us to reduce the enumeration problem to some hard computational decision problem.

Definition 5.21. Let Q = Q1 ∪Q2 be a UCQ where Q1 and Q2 are body-isomorphic.

• Q1 is said to be free-path guarded if for every free-path P in Q1, we have that
var(P ) ⊆ free(Q2).

• Let P = (u1, . . . uk) be a path in Q1. Two atoms R1(~v1) and R2(~v2) of Q1 are
subsequent P -atoms if {ui−1, ui} ⊆ ~v1 and {ui, ui+1} ⊆ ~v2 for some 1 < i < k.

• Q1 is said to be bypass guarded if for every free-path P in Q1 and variable u that
appears in two subsequent P -atom, we have that u ∈ free(Q2).

Note that every free-connex CQ is trivially free-path guarded and bypass guarded.

Example 5.22. Consider the UCQ Q = Q1 ∪ Q2 from Example 5.19. Using the
notation for body-isomorphic queries, the only free-path of Q1 is P = (w, v, y). As
{w, v, y} ⊆ free(Q2), the CQ Q1 is free-path guarded. Moreover, we have that R1(w, v)
and R2(v, y) in atoms(Q) are subsequent P -atoms. Since v ∈ free(Q2), the query Q1 is
bypass guarded as well.
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The query Q1 from Example 5.18 and Example 5.20 is not free-path respectively not
bypass guarded. Indeed, denote by Q = Q1 ∪ Q2 the UCQ from Example 5.18. The
variables of the free-path P ′ = (w, v, y) of Q1 are not contained in free(Q2), thus Q1 is
not free-path guarded. Finally, denoting by Q = Q1 ∪Q2 the query from Example 5.20,
consider the free-path P ′′ = (x,w, y) of Q1. The atoms R1(x,w, t) and R2(y, w, t) in
atoms(Q) are subsequent P ′′ atoms. Since t is contained in both atoms but not in
free(Q2), we have that Q2 is not bypass guarded.

In the following two lemmas, we prove that if some CQ in a union is either not free-path
guarded or bypass guarded, then the UCQ is intractable. The first lemma shows that the
reduction in Example 5.18, where we can use the fact that Q1 is not free-path guarded
to compute matrix multiplication, can be constructed in the general case as well.

Lemma 5.23. Let Q = Q1 ∪Q2 be a UCQ of self-join free body-isomorphic acyclic CQs.
If Q1 is not free-path guarded, then Enum〈Q〉 is not in DelayClin, assuming mat-mul.

Proof. Let A and B be Boolean n × n matrices represented as binary relations, i.e.
A ⊆ {1, . . . , n}2, where (a, b) ∈ A means that the entry in the a-th row and b-th column
is 1. Further let P = (z0, . . . , zk+1) be a free-path in Q1 that is not guarded, and let
0 ≤ i ≤ k + 1 be minimal with zi 6∈ free(Q2). For any (a, b, c) ∈ ({1, . . . , n} ∪ {⊥})3 we
define a function τ(a,b,c) : var(Q)→ {a, b, c,⊥} as follows:

If 0 < i < k + 1, for every v ∈ var(Q) we define

τ(a,b,c)(v) =


a if v ∈ {z0, . . . , zi−1},
b if v = zi,
c if v ∈ {zi+1, . . . , zk+1},
⊥ otherwise,

and if i = 0 or i = k + 1 we set

τ(a,b,c)(v) =


a if v = z0,
b if v ∈ {z1, . . . , zk},
c if v = zk+1,
⊥ otherwise.

Since P is chordless and k ≥ 1, there is no atom in Q that contains both z0 and zk+1 as
variables. Thus we can partition the set atoms(Q) into non-empty sets A1 = {R(~x) ∈
atoms(Q) | z1 ∈ ~x} and A2 = atoms(Q) \ A1. We define a database instance D over Q
as follows: For every R(~x) ∈ atoms(Q) with ~x = (v1, . . . , vm), if R(~x) ∈ A1 we set

RD = {(τ(a,b,⊥)(v1), . . . , τ(a,b,⊥)(vm)) | (a, b) ∈ A},

and if R(~x) ∈ A2 we set

RD = {(τ(⊥,b,c)(v1), . . . , τ(⊥,b,c)(vm)) | (b, c) ∈ B}.
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Next consider a homomorphism µ ∈ Q(D). In the case that 0 < i < k + 1, we have
that µ(z0) = · · · = µ(zi−1) = a, µ(zi) = b and µ(zi+1) = · · · = µ(zk+1) = c for some
(a, b) ∈ A and (b, c) ∈ B, and in case that i ∈ {0, k + 1}, we have that µ(z0) = a,
µ(z1) = · · · = µ(zk) = b and µ(zk+1) = c for some (a, b) ∈ A and (b, c) ∈ B. This is
the case since the variables zi are connected via the path in both CQs. In either case,
µ(free(Q1)) is a tuple only containing the values a, c and ⊥. If 0 < i < k+ 1, µ(free(Q2))
is a tuple only containing the values a, c and ⊥ and if i ∈ {0, k + 1} then µ(free(Q2))
is a tuple only containing the values a, b and ⊥ or b, c and ⊥. Thus the overall output
is at most of size 2n2. Since the (a, c) pairs in the output Q1(D) correspond to tuples
of the matrix multiplication, we cannot enumerate the solutions of Q(D) with linear
preprocessing and constant delay, assuming mat-mul.

In Example 5.20, we encounter a UCQ where both CQs are free-path guarded, but Q1 is
not bypass guarded. For every UCQ with this property, we can show that solving the
enumeration problem in DelayClin also solves 4-clique.

Lemma 5.24. Let Q = Q1 ∪Q2 be a UCQ of self-join free body-isomorphic acyclic CQs.
If Q1 and Q2 are free-path guarded and Q1 is not bypass guarded,

then Enum〈Q〉 6∈ DelayClin, assuming 4 -clique.

Proof. Let G = (V,E) be a graph with |V | = n. We show how to solve the 4-clique prob-
lem on G in time O(n3) if Enum〈Q〉 is in DelayClin. Let P be a free-path in Q1 and let
u 6∈ free(Q2) such that u appears in two subsequent P-atoms. We first show that P is of
the form (z0, z1, z2). To do so, let P = (z0, . . . , zm) for n ≥ 2 and 1 ≤ i ≤ m−1 such that
{u, zi−1, zi} and {u, zi, zi+1} are contained in edges of H(Q). As P is chordless, there is
no edge containing {zi−1, zi+1} , thus the path (zi−1, u, zi+1) is a chordless path. As Q1 is
free-path guarded, zi−1, zi+1 ∈ free(Q2) and since u 6∈ free(Q2), this is a free-path of Q2.
Since Q2 is free-path guarded we have zi−1, zi+1 ∈ free(Q1) and since P is a free-path in
Q1 we have that i = 1 the path is of length two.

Let R1 and R2 be atoms with {z0, z1, u} ⊆ var(R1) and {z1, z2, u} ⊆ var(R1). Further
let (a, b, c) be a triangle in G. We define a mapping τ(a,b,c) on variables of Q in order
to encode this triangle to tuples r ∈ RD of a database over Q, such that var(R) either
contains {z0, z1, u} or {z1, z2, u}. That is, given some v ∈ var(Q), we define

τa,b,c(v) =


a if v = z0 or v = z2,
b if v = z1,
c if v = u,
⊥ otherwise.

For every atom R(v1, . . . , vs) ∈ atoms(Q), we define

RD = {(τa,b,c(v1), . . . , τa,b,c(vs)) | (a, b, c) is a triangle in G}.
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Note that |RD| ∈ O(n3), as there are at most n3 triangles in G, and that we can construct
D within O(n3) steps. Now consider a homomorphism µ : var(Q)→ V mapping Q into
the database. Since (µ(z0), µ(z1), µ(u)) and (µ(z1), µ(z2), µ(u)) form triangles in G, we
have that G contains a 4-clique if and only if (µ(z0), µ(z2)) ∈ E(Q). As z0, z1 ∈ free(Q1)
it suffices to check every µ|free(Q1) ∈ Q(D) for this property. We have that {z0, z1, z2, u}
is neither contained in free(Q1) nor in free(Q2). Thus, |Q(D)| ∈ O(n3). If Enum〈Q〉 is
in DelayClin, we can construct D, output Q(D) and check every output for an edge of the
form (µ(z0), µ(z2)) in time O(n3), which is a contradiction to 4-clique.

For the rest of the section, we aim to show that any UCQ that is not covered by
Lemma 5.23 and Lemma 5.24 is in fact union-free-connex. To prove this, we first need a
structural property given as follows.

Lemma 5.25. Let Q = Q1 ∪Q2 be a UCQ of body-isomorphic acyclic CQs, where Q1
and Q2 are free-path guarded, and Q1 is bypass guarded, and let P be a free-path in Q1.
Then there exists a join-tree T for Q with a subtree TP such that var(P ) ⊆ var(TP ), and
every variable that appears in two different atoms of TP is in free(Q2).

Proof. Consider a path A1, . . . , As between two atoms on a join tree. We define a
contraction step for a path of length 2 or more: if there is Aj such that Aj∩Aj+1 ⊆ A1∩As,
then remove the edge (Aj , Aj+1) and add the edge (A1, As). The new graph is still a
join-tree since all of the atoms on the path between A1 and As contain A1 ∩As, and in
particular they contain Aj ∩Aj+1. The unique path on the join-tree between the atoms
A1 and As is now of length one. A path on a join-tree is said to be fully-contracted if
none of its subpaths can be contracted.

Now let T be a join-tree of Q, and let P = (z0, . . . , zk+1). We consider some path in T
between an atom containing {z0, z1} and an atom containing {zk, zk+1}. Take the unique
subpath TP of it containing only one atom with {z0, z1} and one atom with {zk, zk+1},
and fully contract it. Note that TP contains var(P ) due to the running intersection
property.

First, we claim that every variable u that appears in two or more atoms of TP is part of
a chordless path from z0 to zk+1. We first show a chordless path from u to zk+1. Denote
the last atom on TP containing u by Ai. If Ai contains zk+1, we are done. Otherwise,
consider the subpath Ai−1, Ai, Ai+1. Since it is fully contracted, Ai∩Ai+1 6⊆ Ai−1∩Ai+1.
This means that there is a variable v in Ai and in Ai+1 that does not appear in Ai−1.
Now consider the last atom containing v, and continue with the same process iteratively
until reaching zk+1. Do the same symmetrically to find a chordless path from u to z0.
Note that the concatenation of the two paths is chordless by construction and since z0
and zk+1 are not neighbors.

Assume by contradiction that there is a variable u 6∈ free(Q2) that appears in two distinct
atoms of TP . There is a chordless path from z0 to zk+1 that contains u. Take a subpath
of it starting with the first variable before u which is in free(Q2), and ending with the
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first variable after u which is in free(Q2). This is a free-path in Q2, and since Q2 is
free-path guarded, u ∈ free(Q1). Next consider two neighboring atoms on TP that contain
u. There exists some zi that appears in both atoms. Note that i > 0 and i < k + 1 since
the path only contains one atom with z0 and one atom with zk+1. Since Q1 is bypass
guarded, u is not a neighbor of both zi−1 and zi+1. Without loss of generality, assume
it is not a neighbor of zi+1. Then there is a chordless path (u, zi, zi+1, . . . , zk+1). Since
u ∈ free(Q1), it is a free-path. This contradicts the fact that Q1 is free-path guarded
since u 6∈ free(Q2).

We are now ready to show that the properties free-path guardedness and bypass guard-
edness imply free-connexity.

Lemma 5.26. Let Q = Q1 ∪Q2 be a UCQ of body-isomorphic acyclic CQs. If Q1 and
Q2 are both free-path guarded and bypass guarded, then Q is free-connex.

Proof. We describe how to iteratively build a union extension for each CQ. In every step
we take one free-path among the queries in Q and add a virtual atom in order to eliminate
this free-path. We show that this eventually leads to free-connex union extensions.

Let P = (z0, . . . , zk+1) be a free-path in Q1. Take TP according to Lemma 5.25, and
denote by VP the variables var(P ) and all variables that appear in more than one atom
of TP . First we claim that Q2 provides VP . It is guaranteed that VP ⊆ free(Q2), so we
only need to show that Q2 is acyclic VP -connex. Take the join-tree T from Lemma 5.25.
For every vertex Ai in TP , add another vertex with A′i = var(Ai) ∩ VP and an edge
(Ai, A′i). Then, for every edge (Ai, Aj) in TP , add the edge (A′i, A′j) and remove (Ai, Aj).
The running intersection property is maintained since for every edge (Ai, Aj) removed,
var(Ai) ∩ var(Aj) ⊆ VP , meaning that all vertices on the path Ai, A

′
i, A
′
j , Aj contain

var(Ai)∩ var(Aj). The subtree containing the new vertices contains exactly the variables
VP .

We add the atom R(VP ) to both Q1 and Q2 and obtain Q+
1 and Q+

2 respectively. After
this extension there are no free-paths that start in z0 and end in zk+1 since they are now
neighbors. If both of the CQs are now free-connex, then we are done. Otherwise, we use
the extension iteratively, as we will show below that for the UCQ Q+

1 ∪Q
+
2 , both Q

+
1

and Q+
2 are free-path guarded and bypass guarded. Note that after a free-path from z0

to zk+1 is treated, and even after future extension, there will never be a free-path from
z0 to zk+1 since they are now neighbors. Since there is a finite number of variable pairs,
at some point all pairs that have a free-path between them are resolved, this process
stops, and there are no free-paths.
It is left to prove that the conditions for this lemma hold also for the extension as long
as at least one of the CQs is not free-connex.

Claim 1: Q+
1 and Q+

2 are body-isomorphic acyclic.
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Proof of Claim 1. We show a join-tree for the extension. Take the join-tree T according
to Lemma 5.25, and add a vertex v that contains exactly VP . Remove all edges in TP
and add an edge between every atom in TP and v. The running intersection property is
preserved since VP contains every variable that appears in more than one atom connected
to v.

Claim 2: Q+
1 and Q+

2 are free-path guarded.

Proof of Claim 2. First note that the lemma holds for every free-path in the extension
that is also a free-path in the original query. The only edge that was added in the
extension contains VP . Thus, a new free-path (v0, . . . , vm+1) contains vj , vj+1 ∈ VP ⊆
free(Q2) = free(Q+

2 ). In particular, Q+
2 does not contain new free-paths.

Let P ′ = (v0, . . . , vm+1) be a free-path in Q+
1 but not in Q1, and let vj , vj+1 ∈ VP .

Note that no other variable in P ′ is in VP , otherwise this path cannot be chordless
in Q+

1 . So, Ps = (v0, . . . , vj) and Pt = (vj+1, . . . , vm+1) are chordless paths in Q1.
Every two variables in VP are connected in Q via a path containing only variables in
VP . Thus, there is a chordless path Pmid = (vj , t1, . . . , tr, vj+1) in Q1 with r ≥ 1 and
{t1, . . . , tr} ∩ {v0, . . . , vm+1} = ∅. That is, var(Ps), var(Pmid) and var(Pt) are pairwise
disjoint. It is possible to show that since the query is acyclic, the concatenation of these
three paths after perhaps skipping the connection points (vj , vj+1 or both) is a chordless
path in Q1. Denote this chordless subpath by P0.

If t1, . . . , tr 6∈ free(Q1), then P0 is a free-path in Q1. If there is some tl ∈ free(Q+
1 ), let ts

and tt be the first and last elements in t1, . . . , tr in free(Q+
1 ). Then the subpath of P0

between v0 and ts and the path of P0 between tt and vm+1 are both free-paths in Q1. In
both cases we get that {v0, . . . , vj−1, vj+1, . . . , vm+1} appear in free-paths in Q1. Since Q1
is free-path guarded, these variables are in free(Q2). Since also vj , vj+1 ∈ VP ⊆ free(Q2)
and free(Q2) = free(Q+

2 ), we get that var(P ′) ⊆ free(Q+
2 ).

Claim 3: Q+
1 and Q+

2 are bypass guarded.

Proof of Claim 3. First let P ′ = (t0, . . . , tm+1) in Q+
2 , and assume by contradiction that

there exists some u 6∈ free(Q+
1 ), that appears with two subsequent P ′-atoms. This means

that Q+
2 has an atom containing {ti−1, ti, u} and an atom containing {ti, ti+1, u} with

0 < i < m+ 1. As explained in the previous claim, Q+
2 has no new free-paths, so P ′ is a

free-path in Q2 as well. Due to the conditions of the lemma, u does not appear in two
subsequent P ′-atoms in Q2, so one of these atoms is new in Q+

2 . Assume without loss of
generality that it is {ti, ti+1, u}. Then {ti, ti+1, u} ⊆ VP ⊆ free(Q2). But this contradicts
the fact that ti 6∈ free(Q2) since P ′ is a free-path.

Now let P ′ = (t0, . . . , tm+1) inQ+
1 . According to Claim 2, var(P ′) ⊆ free(Q+

2 ). Assume by
contradiction that there exists some u 6∈ free(Q+

2 ), that appears with two subsequent P ′-
atoms. This means that Q+ has an atom containing {ti−1, ti, u} and an atom containing
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{ti, ti+1, u}. Since P ′ is chordless, ti−1 and ti+1 are not neighbors, then (ti−1, u, ti+1) is
chordless, and is in fact a free-path in Q+

2 . According to Claim 2 again, {ti−1, u, ti+1} ⊆
free(Q+

1 ). This means that i = 1 and P ′ = (t0, t1, t2). Since u 6∈ free(Q2) and VP ⊆
free(Q2), we have that the atoms containing {t0, t1, u} and {t1, t2, u} appear also in Q1.
So u 6∈ free(Q2) appears in two subsequent atoms of P ′ in Q1, in contradiction to the
lemma’s conditions.

Since all conditions of the lemma hold after a step of extension, we can iteratively perform
more steps until we reach a free-connex extension.

Since Lemma 5.23, Lemma 5.24 and Lemma 5.26 cover all cases of a union of two
self-join-free body-isomorphic acyclic CQs, we have a dichotomy that characterizes the
UCQs discussed in this section.

Theorem 5.27. Let Q = Q1 ∪Q2 be a UCQ of self-join free body-isomorphic CQs.

• If Q1 and Q2 are both free-path guarded and bypass guarded,then Q is free-connex
and Enum〈Q〉 ∈ DelayClin.

• Otherwise, Q is not free-connex and Enum〈Q〉 6∈ DelayClin, assuming hyperclique,
mat-mul and 4 -clique.

Proof. By Theorem 5.15, if the CQs are cyclic, Enum〈Q〉 is not in DelayClin assuming
hyperclique. Now assume that the CQs are acyclic. By Lemma 5.26, if Q1 and Q2
are both free-path guarded and bypass guarded, then Q is free-connex, and Enum〈Q〉 ∈
DelayClin by Theorem 5.8. By Lemma 5.23 and Lemma 5.24, if one of Q1 and Q2 are not
free-path guarded or not bypass guarded, then Enum〈Q〉 is not in DelayClin (assuming
mat-mul and 4-clique), and then Q is not free-connex by Theorem 5.8.

5.3 Towards a Dichotomy
So far, regarding lower bounds, we have characterized the case of two body-isomorphic
CQs. In this section we examine the next steps that are required to fully characterize
which UCQs are in DelayClin. We pinpoint some of the difficulties that must be tackled
when formulating such a dichotomy, accompanied by examples. In Section 5.3.1 we
discuss unions containing only acyclic CQs, and in Section 5.3.2 we discuss those that
contain at least one cyclic CQ.

5.3.1 Unions of Acyclic CQs

We inspect two ways of extending the results of Section 5.2.3. The first is to a union of
two CQs that are not body-isomorphic. If there is an intractable CQ Q1 in the union
where for every other CQ Qi in the union there is no body-homomorphism from Qi to Q1,
we can reduce Q1 to the union as described in Lemma 5.12. Since Q1 is intractable, the
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union is intractable too. In case there is a body-homomorphism to the hard queries, one
might think that it is sufficient for intractability to have unguarded intractable structures
similarly to the previous section. The following example shows that this is not the case.

Example 5.28. Let Q be a UCQ Q = Q1 ∪Q2 with

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w) and
Q2(x, y, w)← R1(x, t1), R2(t2, y), R3(w, t3).

We first note that the query Q1 is acyclic but not free-connex, while Q2 is free-connex.
Moreover, we have that Q1 is not contained in Q2 but there is a body-homomorphism
from Q2 to Q1. The variable z is part of the free-path (x, z, y) in Q1, but the variables t1
and t2 that map to it via the body-homomorphism are not free in Q2. If we extend the
notion of guarding to non-body-isomorphic CQs in the natural way, the free-path (x, z, y)
is not guarded. Nevertheless, we cannot compute matrix multiplication in O(n2) time by
encoding it to the free-path (x, z, y) and enumerating the answers to Q in constant delay
like before. Indeed, for such a construction, there can be n3 many results to Q2 as w and
y are not connected in Q2, and they can have distinct values. This is not an issue when
discussing body-isomorphic CQs. We do not know whether the enumeration problem for
this query is in DelayClin.

A future characterization of the union of CQs that are not body-isomorphic would need
an even more careful approach than the one used in Section 5.2.3 in order to handle
the case that variables mapping to the free-path are not connected via other variables
mapping to the free-path.

A second way of extending Section 5.2.3 is to consider more than two body-isomorphic
acyclic CQs. This case may be tractable or intractable, and for some queries of this form,
we do not have a classification yet. Example 5.10 shows a tractable union of such form,
while the following example shows that free-paths that share edges can be especially
problematic within a union.

Example 5.29. Let k ≥ 4 and consider the UCQ Q containing k body-isomorphic CQs,
and a set of atoms Ri(xi, z) for every 1 ≤ i ≤ k − 1. The free variables for each CQ are
all possible combinations of k − 1 out of the k variables of the query, {z, x1, . . . , xk−1}.
In the case of k = 4, this amounts to the following query:

Q1(x1, x2, x3),Q2(x1, x2, z), Q3(x1, x3, z), Q4(x2, x3, z)
← R1(x1, z), R2(x2, z), R3(x3, z).

The CQ Q1 has free-paths (xi, z, xj) between all possible pairs of i and j. In this case,
enumerating the solutions to the UCQ is not in DelayClin, assuming 4-clique: Given a
graph G = (V,E), encode to each relation the edges in the input graph, and concatenate
the variable names. That is, for every edge (u, v) ∈ E and 1 ≤ i ≤ 3, add ((u, xi), (v, z))
to RDi . By concatenating variable names, we can identify which solutions come from
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which CQ, and ignore the answers to all CQs other than Q1. Any answers to Q1 gives us
3 vertices that have a common neighbor. We can check in constant time if every pair
of the 3 vertices are neighbors, and if so, we found a 4-clique. As there can be O(n3)
solutions the the UCQ, we solve 4-clique in O(n3) time. This proves that the UCQ is
intractable assuming 4-clique.

With the same strategy, we can solve k-clique in time O(nk−1), but this does not result
in a lower bound for any k ≥ 5: It is assumed that one can not find a k-clique in time
n
ωk
3 −o(1), which does not contradict an O(nk−1) algorithm. However, this reduction does

not seem to fully capture the hardness of this query, as it encodes all relations with the
same set of edges. We do not know if queries of the structure given here are hard in
general, or if they become easy for larger k values, as any current approach that we know
of for constant delay enumeration fails for them.

We next describe some classification we can achieve when we exclude classes of UCQs
that have a structure similar to that of Example 5.29. In some sense, we generalize the
concepts of both free-path guarded and bypass guarded queries. First note that when
generalizing the notion of guarding free-paths to unions of several CQs, a free-path does
not have to be guarded by a single CQ.

Definition 5.30. Let Q = Q1 ∪ . . . ∪Qn be a union of body-isomorphic CQs, and let
P = (z0, . . . , zk+1) be a free-path in Q1. We say that a set U ⊆ 2var(P ) is a union guard
for P if:

• {z0, zk+1} ∈ U .

• For every {za, zc} ⊆ u ∈ U with a+ 1 < c, we have that {za, zb, zc} ∈ U for some
a < b < c.

• For every u ∈ U , we have u ⊆ free(Qi) for some 1 ≤ i ≤ n.

We say that P is union guarded if there exists some U ⊆ 2var(P ) that is a union guard for
P .

We sometimes refer to the set {za, zb, zc} with a < b < c from Definition 5.30 as (za, zb, zc).
The idea of the definition is as follows: Consider a UCQ Q = Q1 ∪ . . . ∪ Qn, and let
P = (z0, . . . , zk+1) be a free-path in Q1. If we have that {z0, zj , zk+1} is not in some set
free(Qi) for 0 < j < k + 1 and some Qi in the union, then we can encode the matrix
multiplication problem to the UCQ similar to the construction of Example 5.18 or the
proof of Lemma 5.23.
In case such a Qi exists, we have to be aware of potential subpaths of P that are free-
paths in Qi : As P is a chordless path, there is a chordless paths between any zs, zr for
0 ≤ s < r ≤ k + 1. Thus, if Qi does not contain the rest of P as free variables as well, it
contains some free-path P ′ which is a subpath of P . We can simply repeat the argument
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of before with P ′ a free-path and again encode matrix multiplication to the variables of
P ′. Since any of the sub-paths of a partially covered free-path can become a free-path as
well, we need to make sure that union guarded is defined as above in order to fully guard
free-paths that would allow for such an encoding.

Example 5.31. Let Q be a UCQ Q = Q1 ∪Q2 with

Q1(z0, z4, z4)Q2(z0, z1, z3)← R1(z0, z1), R2(z1, z2), R3(z2, z3), R4(z3, z4).

The query Q1 contains the free-path P = (z0, z1, z2, z3). This free-path is not union
guarded, and we have seen in the previous section that Q1 is not free-path guarded either,
as var(P ) is not included in Q2. Indeed, although the free variable guard the variables
z0, z1, z3 of this free-path, the subpath (z1, z2, z3) of P is a free-path in Q2, which is not
guarded. So consider Q when we add another CQ Q3:

Q1(z0, z4, z4)Q2(z0, z1, z3), Q3(z0, z2, z3)← R1(z0, z1), R2(z1, z2), R3(z2, z3), R4(z3, z4).

Now the path P is fully contained in the union of free(Q2) and free(Q3), and we say
that Q1 is union guarded. Using the construction in Lemma 5.23 to encode matrix
multiplication to any of the subpaths of P will not give us a contradiction to the
hypothesis mat-mul.

To formalize this idea, we show that if a UCQ contains a free-path with no union guard,
then the entire union is intractable.

Lemma 5.32. Let Q = Q1∪ . . .∪Qn be a UCQ of body-isomorphic acyclic CQs. If there
exists a free-path in Q1 that is not union guarded, then Enum〈Q〉 6∈ DelayClin, assuming
mat-mul.

Proof. Let A and B be two Boolean n × n matrices and let P = (z0, . . . , zk+1) be a
free-path of Q1 that is not union guarded. We know that {z0, zk+1} ⊆ free(Q1). Since
P is not union guarded, there exist some a and c such that 0 ≤ a+ 1 < c ≤ k + 1, and
{za, zc} ⊆ free(Qr) for some Qr ∈ Q, but for all Qs ∈ Q and for all a < b < c we have
{za, zb, zc} 6∈ free(Qs). Note that P ′ = (za, za+1, . . . , zc) is a free-path of Qr.

For every α, β, γ ∈ {1, . . . , n} we define a function τ(α,β,γ) : var(Q)→ {α, β, γ,⊥}. For
every v ∈ var(Q) we define

τ(α,β,γ)(v) =


α if v = za,
β if v ∈ {za+1, . . . , zc−1},
γ if v = zc,
⊥ otherwise.

Since P ′ is a free-path, there is no atom in Q that contains both za and zc as variables.
Thus we can partition the set atoms(Q) into non-empty sets A1 = {R(~x) ∈ atoms(Q) |
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za ∈ ~x} and A2 = atoms(Q) \ A1. We define a database instance D over Q as follows:
For every R(~x) ∈ atoms(Q) with ~v = (v1, . . . , vs), if R(~x) ∈ A1 we set

RD = {(τ(α,β,⊥)(v1), . . . , τ(α,β,⊥)(vs)) | (α, β) ∈ A},

and if R(~x) ∈ A2 we set

RD = {(τ(⊥,β,γ)(v1), . . . , τ(⊥,β,γ)(vs)) | (β, γ) ∈ B}.

With argument similar to the ones in the proof of Lemma 5.23, we have that the
product AB is encoded in Qr(D), and every Qs(D) is of size at most O(n2). Thus
Enum〈Q〉 6∈ DelayClin assuming mat-mul.

We also want to lift the concept of bypass guardedness to the setting of more than two
queries in a union. However, as we do not know of a classification for Example 5.29, we
restrict the class of UCQs we consider to those where the free-paths within each CQ do
not share variables. Doing so, we manage to obtain a similar characterization to that of
Section 5.2.3.

Definition 5.33. Let Q = Q1 ∪ . . . ∪Qn be a union of body-isomorphic CQs, and let P
be a free-path of Q1. We say that P is isolated if the following two conditions hold:

• Q is var(P )-connex and

• for all free-paths P ′ 6= P in Q1 we have var(P ′) ∩ var(P ) = ∅.

Note that the structural property isolated is a stronger property than bypass guarded.
Given a free-path P , a bypass guarded query can have a variable in two subsequent
P -atoms as long as this variable is free in another CQ. An isolated free-path cannot have
such a variable at all.

In the previous section, we saw that the union of two body-isomorphic queries that
are free-path guarded and bypass guarded are tractable. In the following, we show
Theorem 5.36, giving us a similar upper bound for the class of body-isomorphic acyclic
CQs that fulfill the generalized notions of guardedness. To achieve this result, we first
need to prove Lemma 5.34, which provides a structural property that is then used in
order to show Lemma 5.35.

Lemma 5.34. Let Q = Q1, . . . , Qn be a UCQ and P = (z0, . . . , zk+1) be a free-path of
Q1. Further let U be a union guard of P . There exists some U ′ ⊆ U such that:

• {z0, zk+1} ⊆ v ∈ U ′.

• for all 1 ≤ i ≤ m, {zi−1, zi} ⊆ v ∈ U ′.

• there exists a join-tree TP for H = (var(P ),U ′).
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Proof. We use the inductive definition of a union guard to define U ′ and TP . Moreover,
for the ease of explanations, we define TP with a parent-child relation. By the first
two points of Definition 5.30, {z0, zk+1} ∈ U and thus we have (z0, zj , zk+1) ∈ U for
some 1 ≤ j ≤ k. We set (z0, zj , zk+1) as a root vertex of TP . The second condition of
Definition 5.30 defines the parent-child condition of TP with at most two children per
vertex: If v = (za, zb, zc) ∈ V (TP ), then

• if b > a+ 1, there exists some {za, zj , zb} ∈ U with a < j < b. Add one such vertex
to the set of children of v.

• if c > b+ 1, there exists some {zb, zj , zc} ∈ U with b < j < c. Add one such vertex
to the set of children of v.

Note that given U , the choice of TP might not be unique, and the vertices in TP correspond
to a subset U ′ of U .

Claim. TP is a join tree of H.

Proof of the Claim. For every v ∈ V (TP ), denote by TP (v) the maximal subtree of
TP rooted in v. Note that for v = (za, zb, zc), we have var(TP (v)) ⊆ {za, . . . , zc} by
construction.

We first prove that for every vp, vc ∈ V (TP ), if vc is a descendent of vp and zi ∈ vc ∩ vp,
then zi is contained in every vertex on the path between vp and vc. Let vc ∈ TP (vp), and
by way of contradiction let vq be the first vertex the path not containing zi. Then by
construction of TP , the parent of vq must either be of the form (zi, za, zb), or (za, zb, zi). In
both cases, vq is of the form (za, zj , zb), and var(TP (vq)) ⊆ {za, . . . , zb}. In the first case
a > i, and in the second case b < i. In either case zi 6∈ TP (vq), which is a contradiction
to the fact that zi ∈ vc.

Let v1, v2 be two distinct vertices in TP and zi ∈ v1 ∩ v2 for some 0 ≤ i ≤ k + 1.
Let v3 be a vertex on the unique path from v2 to v1. We make a case distinction by
how v1 and v2 are connected. In case either v1 ∈ TP (v2) or v2 ∈ TP (v1), we already
showed that v3 contains zi. So assume that v1 6∈ TP (v2) and v2 6∈ TP (v1). This means
that there is some vp ∈ V (TP ) \ {v1, v2} with v1, v2 ∈ TP (v), and distinct children
u1, u2 of vp such that v1 ∈ TP (u1) and v2 ∈ TP (u2). For vp = (za, zb, zc) we have that
var(TP (u1)) ∩ var(TP (u2)) = {zb} by construction, and since zi ∈ v1 ∩ v2 it follows that
zb = zi. Thus, either v3 is on the unique path from vp to v1 or from vp to v2. Since v1
and v2 are descendents of vp, we already showed that zb ∈ v3.

Claim. For every 1 ≤ i ≤ k + 1, the set {zi−1, zi} is contained in a vertex of TP .

Proof of the Claim. We describe a path from the root to a vertex containing {zi−1, zi}.
We start with the root, and at each step we consider a vertex v = (za, zb, zc) such that
a ≤ i− 1, i ≤ c. We have that either i ≤ b or i− 1 ≥ b. Assume that i ≤ b. If b = a+ 1,
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we have that a = i − 1 and b = i, so we found the vertex we need. Otherwise, v has
a child (za, zt, zb) with a ≤ i − 1, i ≤ b. We consider this child next. The case that
i− 1 ≥ b is symmetrical. Since the tree is finite, the process will end and we will find
such vertex.

This concludes the proof of the Lemma.

We are now ready to show the positive result for a UCQ of body-isomorphic CQs, similar
to that of Lemma 5.26 for the case of a union of two such queries.

Lemma 5.35. Let Q = Q1 ∪ . . . ∪ Qn be a UCQ of body-isomorphic acyclic CQs. If
every free-path in Q1 is union guarded and isolated, then Q1 is union-free-connex with
respect to Q.

Proof. We show how to eliminate a free-path in Q1 by adding provided virtual atoms.
This process can be applied repeatedly to treat all free-paths in Q1. Let P = (z0, . . . , zk+1)
be a free-path in Q1, and consider a join-tree TP given by Lemma 5.34. We extend every
CQ Qj in Q to a union extension Q+

j as follows: For every v ∈ TP , add the atom Rv(~v) to
atoms(Q), where Rv is a fresh relational symbol. In Claim 2 we show that these variables
sets are provided, so this is indeed a valid union extension. In Claim 3 we show that
extension eliminates P without introducing new free-paths. As the proof of Claim 2 uses
a bottom-up induction on TP , we will need to use Claim 1 regarding the subtrees of TP .
We use the same notation as in the proof of Lemma 5.34: For every vertex v ∈ V (TP ),
we denote by TP (v) the subtree of TP rooted in v.

Claim 1: Let v ∈ V (TP ). There exists an ext-var(TP (v))-connex tree T ′ for the
hypergraph H′ = (var(Q), E(H(Q)) ∪ V (TP (v))).

Proof of Claim 1. Let v = (za, zb, zc). By construction of TP , we have that var(TP (v)) =
{za, za+1, . . . , zc}. Denote by R the subpath (za, za+1, . . . , zc) of P . It is possible to show
that since P is a chordless path, for every subpath of P , we have that Q is var(R)-connex.
Let T be an ext-var(R)-connex tree for H(Q), and let TR ⊆ T be a connected subtree
of T with var(TR) = var(R). We construct a new tree T ′ by first removing the edges
among vertices of TR, adding the tree TP (v) and then reconnecting the vertices of TR to
TP (v) as fellows: Let u ∈ V (TR). Since R is a chordless path, we have that u = {zs} for
some a ≤ s ≤ c or u = {zs, zs+1} for some a ≤ s ≤ c− 1. Thus there exists some vertex
w ∈ TP (v) with u ⊆ w. Chose some arbitrary w ∈ TP (v) with this property and add an
edge (u,w).

Since T is a tree, removing the edges of TR results in a forest. For every u ∈ V (TR), the
connected component of this forest that contains u does not contain any other vertices in
V (TR). Thus in every step of adding an edge, we attach a new tree to TP (v), and no
such tree is attached to TP (v) more then once. Thus T ′ is again a tree and acyclic.
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Claim 2: Q+
1 is a union extension.

Proof of Claim 2. We prove via a bottom-up induction on TP that every vertex v ∈ V (TP )
is provided by some union extension of a CQ in Q.

For the base case, note that the leaves of TP are triples of the form (zi, zi+1, zi+2) for
0 ≤ i ≤ k − 1. Since P is a chordless path, for every subpath of P we have that Q
is var(R)-connex. Therefore, Q is {zi, zi+1, zi+2}-connex. Since also (zi, zi+1, zi+2) is
contained in some free(Qj), all leaves are provided.

Consider some vertex v = (za, zb, zc) of TP that is not a leaf, and assume that for
every child v′ of v, we have that every vertex in T (v′) is provided. We need to show
that v is provided. Consider the ext-var(TP (v))-connex tree T ′ of the hypergraph
(var(Q), E(H(Q)) ∪ V (TP (v))), that was constructed in the proof for Claim 1. In this
tree, we replace the node v by the two nodes v1 = {za, zb} and v2 = {zb, zc}, and then
add the edge (v1, v2). For every edge e = (u, v) that was lost when deleting v, we do
the following: If u contains the variable zc, add an edge (u, v2), otherwise add the edge
(u, v1). Since no vertex in T ′ besides v contains both za and zc, this is again a valid
join tree. Moreover, both {za, zb} and {zb, zc} are contained in vertices of T ′ \ {v1, v2}:
If v has two children, then the children contain {za, zb} and {zb, zc}. Otherwise, if v
has only one child node, we have that either b = a + 1 or c = a + 1. In both such
cases, {za, zb} or {zb, zc} is an edge of the path P and thus contained in a vertex in
T ′. Thus we have that T ′ is ext-{za, zb, zc}-connex acyclic. Let Qj ∈ Q such that
{za, zb, zc} ⊆ free(Qj). Since every vertex in T ′ is provided, there exists a union extension
Q+
j with Q+

j (free(Q)) ← Rv1(~v1), . . . , RvN ( ~vN ) and {v1, . . . , vN} = V (T ′). Therefore,
Q+
j provides v.

Claim 3: The set of free-paths in Q+
1 equals the set of free-paths in Q1 minus P .

Proof of Claim 3. Since {z0, zk+1} is contained in a vertex of T by Lemma 5.34, it is
also contained in the variables of some added atom Rv(~v), thus P is not a free-path
of Q+

1 . For the sake of a contradiction, assume that there is some new free-path
P ′ = (z′0, . . . , z′m+1) in Q+

1 . The only new edges in H(Q+
i ) are between variables in

var(P ), thus |var(P ) ∩ var(P ′)| ≥ 2. Let zs and zt be the first and last elements in
P ′ that are also in P . Note that the zs and zt are not neighbors in P . Replacing
the path between zs and zt in P ′ with the path between zs and zt in P , we get the
path P ′′ = (z′0, . . . , zs, zs+1, . . . , zt−1, zt, . . . , z

′
m+1), which is a path in H(Q). This path

contains a chordless sub-path P ′′′ between z′0 and z′m+1 containing at least one element
in {zs, zs+1, . . . , zt−1, zt}. Thus P ′′′ is a free-path in Q1 with a non-empty intersection
with P , which is a contradiction to the assumption that every free-path is isolated.

If Q+
1 is free connex, then we are done. Otherwise, by Claim 3, every free-path P ′ in Q+

1
is a free-path in Q1 and thus union guarded and isolated in Q1. Since the added atoms
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only contain variables of var(P ) and var(P )∩ var(P ′) = ∅, we have that P ′ is also union
guarded and isolated in Q+

1 . The tree structure from Claim 1 over the root is a join-tree
for the union extension. Since the extension consists of body-isomorphic acyclic queries,
we can iteratively apply this process until Q1 becomes free-connex.

The lemmas of this section can be summarized to the following theorem:

Theorem 5.36. Let Q = Q1 ∪ . . . ∪Qn be a union of body-isomorphic acyclic CQs.

• If every free-path in Q is union guarded and isolated, then Enum〈Q〉 ∈ DelayClin.

• If there exists a free-path in Q that is not union guarded, then Enum〈Q〉 6∈ DelayClin,
assuming mat-mul.

Proof. For the positive case, we have that every CQ Qi ∈ Q is union-free-connex by
Lemma 5.35, and thus Enum〈Q〉 ∈ DelayClin by Theorem 5.8. The negative case is given
by Lemma 5.32.

Following this theorem, it is left to handle cases like Example 5.29, of unions containing
body-isomorphic acyclic CQs where some free-path is union guarded but not isolated.

5.3.2 Unions Containing Cyclic CQs

We close this chapter with a brief discussion on UCQs containing at least one cyclic query.
We first mention that many of the observations we have regarding acyclic CQs also apply
here. In the following examples, Q1 is cyclic while Q2 is free-connex. Example 5.37
shows that unions containing cyclic CQs may be tractable and covered by Theorem 5.8.
Example 5.38 demonstrates that it is not enough to resolve the cyclic structures in
cyclic CQs, but that we should also handle the free-paths. Finally, Example 5.39 shows
that, much like Example 5.28 in the acyclic case, even if all intractable structures are
unguarded, the original reductions showing the intractability of single CQs may not work.

Example 5.37. Let Q be a UCQ Q = Q1 ∪Q2 with

Q1(x, y, z, w)← R1(y, z, w, x), R2(t, y, w), R3(t, z, w), R4(t, y, z) and
Q2(x, y, z, w)← R1(x, z, w, v), R2(y, x, w).

The query Q2 provides {t, y, z, w} to Q1. Adding the virtual atom R′(t, y, z, w) to Q1
results in a free-connex union extension, so the union Q1 ∪Q2 is tractable according to
Theorem 5.8.

Example 5.38. Let Q be a UCQ Q = Q1 ∪Q2 with

Q1(x, y, v)← R1(v, z, x), R2(y, v), R3(z, y) and
Q2(x, y, v)← R1(y, v, z), R2(x, y).
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The union Q1 ∪Q2 is intractable despite the fact that Q2 provides the variables {v, y, z}
of the cycle in Q1. This is due to the unguarded free-path (x, z, y) in Q1. Indeed,
similarly to Example 5.18, we can encode matrix multiplication to the variables x, z, y,
thus Enum〈Q〉 6∈ DelayClin assuming mat-mul.

Example 5.39. Let Q be a UCQ Q = Q1 ∪Q2 with

Q1(x, z, y, v)← R1(x, z, v), R2(z, y, v), R3(y, x, v) and
Q2(x, z, y, v)← R1(x, z, v), R2(y, t1, v), R3(t2, x, v).

We do not know the complexity of this example. As Q2 does not have a free variable
that maps to y via a homomorphism, the CQ Q1 is not union-free-connex, so we cannot
use Theorem 5.8 to conclude that Q1 ∪Q2 is tractable. The only intractable structure
in Q1 is the cycle x, y, z, but encoding the problem triangle to this cycle in Q1, like
we did in Example 5.16, could result in n3 answers to Q2 in the worst case. This means
that even if the input graph has triangles, we are not guaranteed to find one in O(n2)
time by evaluating the union efficiently.

In addition to these issues, in the cyclic case, even if the original intractable structures
are resolved, the extension may introduce new ones. Resolving the following example in
general is left for future work.

Example 5.40. We start with a special case of a more general example. For this,
consider the union Q = Q1 ∪Q2 with

Q1(x2, x3, x4)← R1(x2, x3, x4), R2(x1, x3, x4), R3(x1, x2, x4) and
Q2(x2, x3, x4)← R1(x2, x3, x1), R2(x4, x3, v).

There exists a body-homomorphism from Q2 to Q1, but Q1 is not contained in Q2.
The query Q1 is cyclic, as it contains the cycle (x1, x2, x3). This is the only intractable
structure in Q1, i.e. the hypergraph H(Q1) does not contain any other hyperclique or
a free-path. The query Q2 is both free-connex and {x2, x3, x4}-connex, and it provides
{x1, x2, x3} to Q1. Nevertheless, extending Q1 with a virtual atom R(x1, x2, x3) does
not result in a free-connex CQ. Even though the extension “removes” all intractable
structures from Q1, it is intractable as it introduces a new intractable structure, namely
the hyperclique {x1, x2, x3, x4}.

In this case, we have that Enum〈Q1 ∪ Q2〉 6∈ DelayClin assuming 4-clique, with a re-
duction similar to that of Example 5.20. To see this, given an input graph, we can first
compute all triangles and encode them to the three relations via a database D. For every
triangle {a, b, c}, add ((a, x2), (b, x3), (c, x4)) to RD1 , ((a, x1), (b, x3), (c, x4)) to RD2 and
((a, x1), (b, x2), (c, x4)) to RD3 . By concatenating variable names, we can identify which
solutions correspond to which CQ, and thus are able to ignore the answers to Q2. The an-
swers to Q1 over D represent 3 vertices that appear in a 4-clique: Indeed, for every answer
((b, x2), (c, x3), (d, x4)) to Q1, we know that ((b, x2), (c, x3), (d, x4)) ∈ RD1 , and there exists
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some value a such that ((a, x1), (c, x3), (d, x4)) ∈ RD2 and ((a, x1), (b, x2), (d, x4)) ∈ RD3 .
This means that {a, b, c, d} is a 4-clique. In the opposite direction, for every 4-clique
{a, b, c, d} we have that {b, c, d}, {a, c, d} and {a, b, d} are triangles. By construction,
((b, x2), (c, x3), (d, x4)) is an answer to Q1 over D. As there are O(n3) triangles and there
can be at most O(n3) solutions to Q2, we solve 4-clique in O(n3) time. This proves that
the UCQ is intractable assuming 4-clique.

This example can be generalized to higher orders. There, we do not have a similar lower
bound. Consider the union Q = Q1 ∪Q2 as follows:

Q1(x2, . . . , xk)← {Ri({1, . . . , k} \ {i}) | 1 ≤ i ≤ k − 1}
Q2(x2, . . . , xk)← R1(x2, . . . , xk−1, x1), R2(xk, x3, . . . , xk−1, v).

Again, the query Q1 is cyclic and Q2 is free-connex. Even though Q2 provides the set of
variables {x1, . . . , xk−1}, adding a virtual atom with these variables does not result in a
free-connex extension, as this extension is again cyclic. Just like in Example 5.29, we can
encode k-clique to this example in general, but this does not imply a lower bound for
any values of k larger than 4.
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CHAPTER 6
Well-Designed Pattern Trees

In this chapter, we turn our attention towards enumerating the answers to wdPTs. We
will first establish that unlike before, constant delay enumeration w.r.t. data complexity
is not possible even for some of the most basic pattern trees. Therefore, from Section 6.2
onwards, we will shift our focus to that of combined complexity and enumeration of the
results with a longer delay. This also means that tractability has a different meaning in
the context of wdPTs: In this chapter, we will call a decision problem tractable if and
only it is solvable in polynomial time or in fixed-polynomial time, and an enumeration
problem is tractable if and only if it is within OutputP or OutputFPT.

6.1 Constant Delay of wdPTs

We start with introducing some notation. Recall that a wdPT p is a tuple p = (T, λ, ~x),
where T is a rooted tree, λ maps the nodes of the tree to sets of relational atoms, and
~x are the free variables of the wdPT. Intuitively, such a pattern tree defines a query in
the form of several CQs, one in each node. Given a relational database that should be
retrieved, each CQ is evaluated over this database, and an answer is obtained by the
combined answers of the CQs in a subtree of the wdPT which do not fail to give an answer.
Formally, given a database D, a solution µ of p over D is the projection of a mapping µ′,
that maps all relational atoms of a subtree T ′ of T into D, such that there is no mapping
µ′′ with µ′ ⊂ µ′′ that maps T ′ into D as well. The set of all such solutions is denoted
by p(D). For a class C of wdPTs, we denote by Enum(C) the following enumeration
problem:

Enum(C)
INSTANCE: Query: wdPT p ∈ C, Data: database D.
Output: The set p(D).
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In this section, we will evaluate the complexity of this problem w.r.t. data complexity,
that is, we assume p ∈ C to be fixed. We start by discussing the case of wdPTs without
projections, i.e. let Cpf be the class of wdPTs p = (T, λ, ~x) such that ~x = var(p). For this
class, some of the most basic structures of wdPTs can already be an obstacle for constant
delay enumeration:

Proposition 6.1. Assuming triangle, Enum(C) is not in DelayClin for wdPTs in
C ⊆ Cpf , which consist of only a root node with a single child where the root node contains
a single binary atom, the child node contains two binary atoms, and the two nodes share
two variables.

Proof. Constructing a pattern tree p with only two nodes R and N and three binary
atoms and an appropriate database D, we can decide whether a graph has a triangle by
checking whether there is a µ ∈ p(D) such that µ is a mapping on the whole pattern tree.
Using the fact that |p| is constant, constant delay enumeration with linear preprocessing
thus leads to an algorithm detecting a triangle in O(n2). So let G be a graph for which
we want to solve the triangle problem. We set D = E(G), and define the following wdPT
p = (T, λ, ~x):

• V (T ) consists of a single root node R with child N

• λ(R) = {e(x, y)}, λ(N) = {e(x, z), e(z, y)}

• ~x = {x, y, z}

First note that this wdPT fulfills the requirements of the proposition. Every mapping
µ ∈ p(D) is an element of either Ω1 or Ω2, where

Ω1 = {{(x, v1), (y, v2)} | v1, v2 ∈ V (G)},
Ω2 = {{(x, v1), (y, v2), (z, v3)} ∈ Ω | v1, v2, v3 ∈ V (G)}.

Moreover, we have that p(D) ∩ Ω2 6= ∅ if and only if G contains a triangle. Assume
now that there is an algorithm A that enumerates all µ ∈ p(D) with constant delay and
a linear preprocessing. As the pattern tree has a constant size, the asymptotic data
complexity of the runtime of the enumeration algorithm equals the combined complexity.
The algorithm outputs either only µ ∈ Ω1 and thus halts in O(|n|2 + |Ω1|) = O(|n|2),
or the algorithm outputs some µ ∈ Ω2 in at most O(|n|2 + |Ω1|) = O(|n|2) many steps.
Therefore A allows us to decide in O(|n|2) whether G contains a triangle.

For wdPTs with projection, we need to restrict the class of CQs in the pattern tree for a
chance to achieve constant delay with linear preprocessing: Recall that a wdPT with a
single node amounts to a CQ, thus a restriction to free-connex acyclic CQs is needed by
Theorem 3.1. However, we show below that Enum(C) is not in DelayClin even for wdPTs
where the restriction to free-connex CQs imposed locally on each set of atoms. As in
Proposition 6.1, constant delay and linear preprocessing would lead to a contradiction to
one of our computational hypothesis.
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e(x, z), e(z, y)

e(x, y)

B(y, z)

A(x, y)
T1 : T2:

Figure 6.1: T1 and T2 form the tree structures of the wdPTs from the proofs of Proposi-
tion 6.1 respectively Proposition 6.2.

Proposition 6.2. Assuming mat-mul, Enum(C) is not in DelayClin already for wdPTs
consisting of only two nodes, each containing a single binary atom and sharing a single
variable.

Proof. Let A,B be Boolean matrices. We define relations aD = {(i, j) | A(i, j) = 1} and
bD = {(i, j) | B(i, j) = 1}, and also define the following wdPT p = (T, λ, ~x):

• V (T ) consists of a single root node R with child N

• λ(R) = {a(x, y)}, λ(N) = {b(y, z)}

• ~x = {x, z}

Assume that we can enumerate p(D) with linear preprocessing and constant delay. By
the definition of boolean matrix multiplication, we can construct the product C = AB in
the following way:

C(i, j) =
{

1 : {(x, i), (z, j)} ∈ p(D),
0 : otherwise.

Since |p(D)| = O(n2), we can compute C in O(n2) which is a contradiction.

6.1.1 Classes of wdPTs

As we have seen above, even the most basic wdPTs are not suitable for constant delay
enumeration after a linear preprocessing. Allowing a slightly longer preprocessing phase
however, the solutions can be output with this delay. To achieve this result, we need
to introduce classes of wdPTs which have been used to achieve tractability results for
evaluation. Not only will we be able to show a positive results for constant delay
enumeration in Theorem 6.5 by introducing these classes, but we will use complexity
results for the evaluation problem as a tool to achieve bounds for the enumeration problem
in Section 6.3.

When looking for classes of wdPT that allow for fast enumeration, a natural starting point
are tractable classes of CQs. In the past, several classes of CQs have been successfully used
for defining classes of wdPTs achieving tractability for several computational problems,
see [BPS15]. There are two different such approaches: Either by locally restricting
the CQs defined by each node of the wdPT to be from some tractable class (“local

87



6. Well-Designed Pattern Trees

tractability”), or by globally requiring that for every subtree (containing the root) the
corresponding CQ is tractable (“global tractability”).

Definition 6.3. Let C be a class of CQs. A wdPT p = (T, λ, ~x) is locally in C if for
every node N ∈ V (T ) the CQ Q()← λ(N) is in C. Also, p is globally in C if for every
subtree T ′ of T rooted in R the CQ QT ′ is in C. We denote with `-C and g-C the sets of
all wdPTs that are locally and globally in C, respectively.

In the following, when restricting a wdPT locally or globally to a class of CQs, we will use
one of the most fundamental classes of tractable CQs: those of bounded treewidth [CR00,
DKV02]. Recall that we denote by TW(k) the class of all CQs of treewidth at most k,
for k ≥ 1.

For the evaluation problem over projection-free wdPTs, it was shown that local tractability
is sufficient to achieve tractability [LPPS13]. However, in the presence of projection,
which amounts to the class of wdPTs that we study here, this problem becomes NP-
complete [LPPS13]. The same completeness result holds when resorting to global
tractability. Thus, just restricting the structure of the CQs defined by a wdPT is not
sufficient, and in order to achieve positive results for evaluation or enumeration, we have
to restrict the class of wdPTs even further.

A natural source of complexity when dealing with wdPTs, which was identified in [BPS15],
comes from the information shared between different nodes. Thus another approach
to achieve tractability results is to restrict the number of variables nodes may have in
common.

Definition 6.4. let p = (T, λ, ~x) be a wdPT. For two nodes N,M ∈ V (T ), we define
the interface I(N,M) = var(N) ∩ var(M). Similarly, for a node N ∈ V (T ) define
I(N) =

⋃
M∈(V (T )\{N}) I(N,M). For c ≥ 0, we say that p has c-bounded interface if

|I(N)| ≤ c for all N ∈ V (T ). Similarly, we say that p has c-semi-bounded interface if
for any two distinct nodes N,M ∈ V (T ) we have |I(N,M)| ≤ c. We denote with BI(c)
and SBI(c) the classes of wdPTs of c-bounded interface and c-semi-bounded interface,
respectively.

Condition (2) in the definition of wdPTs says that for a wdPT p = (T, λ, ~x), for every vari-
able y mentioned in T , the set of nodes of T where y occurs is connected. This means that
the interface of a node N can be completely determined by just looking at its neighbors,
i.e. for every N ∈ V (T ) we have

⋃
M∈(V (T )\{N}) I(N,M) =

⋃
{M |{N,M}∈E(T )} I(N,M).

6.1.2 Longer Preprocessing Phase

The newly defined classes of wdPTs let us go back and re-evaluate Proposition 6.1 as
well as Proposition 6.2. Intuitively, the negative results in the two propositions is mainly
caused by the restriction of the preprocessing to linear time. Below, we show that for
the class Cpf of wdPTs without projection, relaxing this restriction leads to a constant
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delay algorithm. That is, after a preprocessing phase of time O(|D|mf(|p|)) in terms
of combined complexity for a constant m > 0 and some computable function f , we can
enumerate all answers with a constant delay for wdPTs in class `-TW(k) ∩ BI(c). Note
that it is important to require that m be a constant in order to exclude preprocessing of
time O(|D||p|), which in most cases would suffice to simply compute all of the solutions.

Theorem 6.5. Let c, k ≥ 1 be positive integers. Then there exists an enumeration
algorithm A for Enum(`-TW(k) ∩ BI(c) ∩ Cpf) with delay(0) in O(f(|p|) · |D|c+k+1) and
delay(i) in O(1) for i > 0.

Proof. The idea of the enumeration algorithm A is as follows: In the preprocessing, we
construct a global tree decomposition of all atoms, which is consistent with the structure
of the pattern tree (cf. the discussion preceding Theorem 6.8). Then by partitioning the
corresponding relations of the nodes of the decomposition and eliminating tuples which
are not part of some solution, a repeated top-down traversal through the tree yields all
solutions with a delay only in the size of the pattern tree.

So let p = (T, λ, ~x) be a pattern tree with ~x = var(T ), p ∈ l-TW(k) ∩ BI(c) and D be a
database. We will first describe the precomputation phase and then the enumeration
phase of A for p(D) in several steps.

• For every pattern tree node N , let (SN , πN ) be the tree decomposition with
treewidth of at most k of the Gaifman graph HN corresponding to λ(N). We define
a new tree decomposition (SN , νN ) with νN (s) = πN (s) ∪ I(N) for every s ∈ SN .
The treewidth of this decomposition is at most c+ k as the interface is bounded by
c, so all relations Rs of the nodes s ∈ SN can be computed in total time |D|c+k+1.
Thus we can identify the tree decomposition of each N with ΓN := (SN , ρN ), where
ρN (s) = Rs for all s ∈ SN .

• For every ΓN , pick one node rN of SN as a root and modify the relations Rs by
applying a bottom-up semi-join through the tree, followed by a top-down semi-join
through the tree of the relations.

• Define a pair (Γ, ρ) as follows: Γ is a tree with

V (Γ) =
⋃
{V (SN ) | (SN , ρN ) = ΓN for N ∈ T},

E(Γ) =
⋃
{E(SN ) | (SN , ρN ) = ΓN for N ∈ T}
∪ {e(rN1 , rN2) | (N1, N2) ∈ E(T ) and rN is the root of SN}.

and ρ is a map on V (Γ) such that for all t ∈ V (Γ) we have ρ(t) = ρN (t) if t ∈ SN .
This is well-defined, since for all N,M ∈ T the sets SN and SM are disjoint. The
pair (Γ, ρ) corresponds to a tree decomposition of the pattern tree p, as for all
v ∈ var(T ), the set {t ∈ V (Γ) | v ∈ varρ(t)} is a connected subset of Γ and for
every N ∈ T , every edge of HN is contained in some ρ(t), t ∈ V (Γ). Figure 6.2
illustrates the idea of this tree structure.
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• Define an order ≺pt on the pattern tree nodes by a depth-first traversal in pre-order.
Further define the following functions on the pattern tree nodes:

PTNEXT(N) =
{
M : M is the successor of N according to ≺pt,
∅ : N is the last pattern tree node according to ≺pt .

PTPARENT(M) =
{
J : J is the parent node of M,
∅ : M is the root node.

Analogously we define an order ≺N on the nodes V (SN ) of every tree decomposition
ΓN , and with a slight abuse of notation we also define the functions tdnext(t) and
tdparent(t) on the nodes of each tree decomposition.

• Consider two nodes s, t ∈ Γ such that s is the parent node of t and let Rs and
Rt be the corresponding relations. We partition the relation Rt in the following
way: For all α ∈ Rs, let α′ be the projection of α to . We call tuples δ1 ∈ Rs and
δ2 ∈ Rt compatible, if they are the same on the shared variables var(s) ∩ var(t).
Then define Rα′

t = {γ ∈ Rt | α′ is compatible with γ}.

The algorithm above describes the precomputation phase of the enumeration algorithm A,
which takes O(f(|ϕ|)|D|c+k+1) steps. The enumeration phase of A is given by Algorithm 2.
For the algorithm, assume that the pattern tree nodes are given as N1 ≺pt N2 ≺pt · · · ≺pt
NJ with local roots rN1 , . . . , rNJ . We need to show that Algorithm 2 enumerates p(D)
with a constant delay. For this, denote Algorithm 2 by Ae and by P the output of Ae.

• Ae makes a first output after constant time: The algorithm starts by choosing an
element α ∈ Rr1 . As this tuple is in the root N1 of the pattern tree and can be
extended to a solution on the local tree decomposition of N1 (by the application of
the semi-joins), it can be extended to a full solution in p(D) by the definition of
wdPTs. For each pattern tree node N , the precomputation phase added I(N) to
each bag of the local tree decomposition in N . Thus for every tuple t in the root
rN of N , it is fully determined to which of the pattern tree nodes that are children
of N t can be extended. In algorithm Ae, the procedure PT-Extension sets the
αj to either the tuples compatible with {α1, . . . , αj−1} if such a tuple exists, or
to αj otherwise. Then, again by the local tree decomposition in every N and the
application of the top-down and bottom-up semi-joins, every tuple tN can be locally
extended to a solution t′N on the tree decomposition of N . The procedure Local-
Extension constructs all such local extensions. Then, by the well-designed property,
all such chosen tuples tN can be combined to a solution. By the construction of
the relations Rαt , we only need one top-down traversal of the pattern tree nodes
and one top down traversal on every local tree decomposition, which allows the
output of the first solution in constant time in terms of data complexity.

• The delay is constant: Let µ1 and µ2 be two consecutive outputs of Ae. Then
the number of computational steps in Ae between the output of µ1 and µ2 is the
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λ(N1)

λ(N2) λ(N3)

SN1

SN2 SN3

T : Γ :

Figure 6.2: T is the tree structure of a wdPT p with nodes N1, N2 and N3. For 1 ≤ i ≤ 3,
SNi represents the tree structure of a tree decomposition of Q()← λ(Ni), and Γ is the
tree structure of the constructed tree decomposition of p.

same as to output the first solution. Indeed, let t1, . . . , tl be tuples in the roots of
some Ni1 , . . . , Nil that have been used to extend to the local tree decompositions
and thus to µ1. Then either there is at least one new local extension of some ti
for some 1 ≤ i ≤ l, or a new tuples tj are chosen by at most |p| many calls of the
PT-Extension procedure.

• There are no duplicates in P: Assume that µ1 is in the output of Ae. Then, for
any other output µ2, at least one tuple in some local tree decomposition is chosen
differently for µ1 and µ2. Since there is no projection, it follows that µ1 6= µ2.

• p(D) = P. First let µ ∈ p(D). Let N be a pattern tree node such that µ is a
solution on N . This means that in the local tree decomposition of N , there is
a tuple in the relation of every bag such that the composition of those tuples
corresponds to µ on N . If µ is not a solution on some pattern tree node N ′, then
Rβr = ∅, where β is the projection of αM to I(M,N), M is the parent of N and
αM is either the empty tuple or the tuple in the root of M which corresponds
to µ on M . It follows that µ ∈ P, as such compatible tuples are chosen by Ae.
So assume that we have some µ ∈ P. Then in a top down traversal, compatible
tuples in the roots of the local tree decompositions of the pattern tree are chosen.
Moreover, such roots are extended to solutions on the local tree decompositions. By
construction, a solution on such a local tree decomposition for a pattern tree node
N corresponds so some µN : ~x ∩ var(λ(N))→ dom(D), and since the solutions on
the local tree decompositions are compatible for any output of Ae, the union of
all such µN , which is also the join of all αN and thus µ, equals a mapping on the
pattern tree p and thus µ ∈ p(D).

We note that the proof in fact allows to show that in the above theorem, f(|p|) is actually
polynomial w.r.t. |p|. Thus, given an exponential number of solutions, it is impossible to
compute all of them during the preprocessing step.

Theorem 6.5 gives a constant delay algorithm for wdPTs without projection. Aiming
for a constant delay algorithm after a polynomial preprocessing phase in the presence of
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Algorithm 2 Enumerate all solutions of p(D).
1: Set αN1 , . . . , αNJ to be global variables
2: procedure Enumerate
3: for all α ∈ Rr1 do
4: α1 = α
5: PT-Extension(N1)
6: end for
7: end procedure
8:
9: procedure PT-Extension(Pattern tree node N)

10: M = PTNEXT(N)
11: if M = ∅ then
12: Local-Extension(N1, r1)
13: end if
14: J = PTPARENT(M)
15: β = Project αJ down to I(J,M)
16: if RβrM = ∅ then
17: RβrM = {∅}
18: end if
19: for all α ∈ RβrM do
20: αM = α
21: PT-Extension(M)
22: end for
23: end procedure
24: procedure Local-Extension(Pattern tree node N , Tree decomposition node t)
25: s = tdnext(t)
26: if s = ∅ or αN = ∅ then
27: M = PTNEXT(N)
28: if M = ∅ then
29: Output α1 ./ . . . ./ αJ and stop the current Local-Extension procedure
30: end if
31: Local-Extension(M , rM )
32: end if
33: r = tdparent(s)
34: β = Project αN down to var(r) ∩ var(s)
35: for all α ∈ Rβs do
36: αN = αN ./ α
37: Local-Extension(N ,s)
38: end for
39: end procedure
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projection, it stands to reason to consider the same question in the setting of CQs, as they
are a special case of wdPTs. In [BDG07], Bagan et al. also introduce a weaker version of
free-connex acyclicity, namely bounded free-connex treewidth. This class of CQs allows
for an enumeration algorithm with polynomial preprocessing phase and constant delay
for the enumeration phase, see [BDG07, Theorem 29].

Definition 6.6. Let G = (V,E) be a graph. For S ⊆ V , an S-connex tree decomposition
of G is a tuple (T, ν,A), where (T, ν) is a tree decomposition of G and A is a connected
subset of vertices of T such that ∪v∈V (T )ν(v) = S. The S-connex treewidth of a graph
G is the smallest treewidth of any S-connex tree decomposition of G. For a CQ Q, the
free-connex treewidth of Q is the free(Q)-connex treewidth of the Gaifman graph of Q.

Let C∗ be the class of conjunctive queries with bounded free-connex treewidth. Then,
even if we allow polynomial time preprocessing instead of a linear one as in Theorem 6.5,
there is no constant delay enumeration algorithm for pattern trees in {g-C∗, l-C∗∩SBI(c)}
assuming that W[1] 6= FPT. This is due to the fact that enumeration in these classes is
not in OutputFPT under this complexity assumption.

Proposition 6.7. Let c ≥ 1 and C∗ be the class of conjunctive queries with bounded
free-connex treewidth. Further let p ∈ {g-C∗, l-C∗ ∩ SBI(c)} and D be a database. Then
there is no positive integer m and computable function f such that p(D) can be enumerated
with delay(0) in O(|D|m · f(|p|)) and delay(i) in O(1) for i ≥ 1 unless FPT = W[1].

This proposition depends on results for the evaluation complexity and the induced
connection to the enumeration theory, specifically on Theorem 6.16. Thus we will give
the proof after the proof of that theorem.

6.2 Parameterized Complexity of Evaluation
As we have established in the previous section, constant delay enumeration with linear
(or even polynomial) preprocessing is only possible for some special cases of wdPTs, even
when assuming that the size of the query is fixed. Thus the best we can hope for is to
achieve enumeration results within the class DelayP when assuming combined complexity.
Furthermore, evaluating the enumeration problem in a parameterized setting and taking
the size of the query as a parameter, gives us in some sense an intermediate state between
data complexity and combined complexity. For parameterized complexity, we aim for
enumeration within DelayFPT or even OutputP.

We start by considering the parameterized complexity of the evaluation problem for
wdPTs. As we will see in Theorem 6.16, evaluation and enumeration have in fact a strong
connection in this setting.

While there has been some research on the classical complexity of fragments of wdPTs
[BPS15], the parameterized complexity is still open. We thus recall two variants of the
evaluation problem, namely Eval(C) and Max-Eval(C) and introduce the parameterized
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versions p-Eval(C) and p-Max-Eval(C). Here, the size of the query |p| is taken as
parameter. Recall that |p| denotes the size of a query p = (T, λ, ~x), which is defined as
the input size of the query QT , and pm(D) is the set of all maximal solutions, which is
set of answers in p(D) not subsumed by any other answer.

Eval(C) / Max-Eval(C)
INSTANCE: Query: wdPT p ∈ C, mapping µ,

Data: database D.
QUESTION: Is µ ∈ p(D) / µ ∈ pm(D)?

p-Eval(C) / p-Max-Eval(C)
INSTANCE: wdPT p ∈ C, mapping µ, database D.
PARAMETER: |p|
QUESTION: Is µ ∈ p(D) / µ ∈ pm(D)?

Observe that in order to talk about the common notions of data- and query complexity,
for Eval(C) and Max-Eval(C) we distinguish which parts of the input are considered
to be part of the query, and which are part of the data. For the parameterized case,
because of the explicit parameter, such a distinction does not make sense.

Considering the classes of wdPTs introduced in Section 6.1.1, the NP-hardness proof for
Eval(g-TW(k)) provided in [BPS15] reveals that hardness even holds for Eval(g-TW(k)
∩ SBI(c)), but this class is newly introduced in this work and was not considered in
[BPS15]. The introduction of the notion of a semi-bounded interface allows us to define
the classes `-TW(k)∩SBI(c) and g-TW(k)∩SBI(c). Below, we show that a parameterized
complexity analysis of these classes helps to explore the gap between tractability of
Eval(`-C ∩ BI(c)) and the NP-completeness of Eval(g-TW(k)). In fact, we show that
the parameterized evaluation problem for the different classes of wdPTs is in PTIME (for
`-C ∩ BI(c)), in FPT (for g-TW(k) ∩ SBI(c)), W[1]-complete (for `-TW(k) ∩ SBI(c)), and
W[2]-hard (for g-TW(k)), respectively.

Evaluation in case of bounded vs. semi-bounded interface

Before we present our FPT-result for wdPTs in g-TW(k) ∩ SBI(c), we first discuss the
main difference compared with the restriction to `-TW(k)∩BI(c). In the latter case, it is
easy to construct a global tree decomposition of width k + c, s.t. for any two neighboring
nodes N,M in the wdPT, the interface I(N,M) is covered by some bag in the tree
decomposition. Indeed, we can take a local tree decomposition for every node N (of width
at most k) and add all interface variables to every bag. A global tree decomposition of
p is then obtained by gluing together the local tree decompositions. With this global
tree decomposition, the FPT-membership (actually, even the PTIME-membership) is
easily established [BPS15]. In contrast, for semi-bounded interface, the variables in
I(N,M) for neighboring nodes N,M in p can be arbitrarily scattered over the global
tree decomposition. Since the total number of interface variables of a single node in p
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with all its neighbors is unbounded, we cannot apply the above trick to construct a tree
decomposition where all interfaces are covered by some bag. Hence, a different approach
is needed in the following theorem to obtain FPT-membership also in this case.

We first introduce the decision problem ExtendSolution(C) (a similar problem was
introduced in [CH97, CV15] to study enumeration problems), defined as follows: given
a database D, a wdPT p ∈ C, a partial mapping µ and a set ~x′ ⊆ ~x (where ~x are the
free variables of p), does there exist some mapping µ′ ∈ p(D) such that µ ⊆ µ′ and
dom(µ′) ∩ ~x′ = ∅? Observe that the last property dom(µ′) ∩ ~x′ = ∅ is essential, since it
allows us to explicitly specify variables ~x′ which we do not want to be bound by the
desired solutions. Clearly, the problem Eval(C) corresponds to the special case of the
ExtendSolution(C) problem where we set ~x′ ∪ dom(µ) = ~x, i.e., we ask if µ itself is
the desired mapping µ′.

Theorem 6.8. The problem p-Eval(g-TW(k) ∩ SBI(c)) is in FPT for every k, c ≥ 1.

Since the full proof of this theorem is very long and technical, we only present the main
ideas of the proof here. The full proof can be found in the appendix.

Proof idea. We prove FPT-membership for the ExtendSolution(g-TW(k) ∩ SBI(c))
problem, from which the desired FPT-result follows. Let p be a wdPT and D a database.
Further let T denote a global tree decomposition of p of width k, let ~x denote the set
of free variables in p, and let µ be a mapping with dom(µ) ⊆ ~x. Let N denote a set of
nodes in p with dom(µ) ⊆ var(N ) and letM = {M1, . . . ,Mβ} denote the set of nodes
outside N whose parent is in N . We have to test if there exists an extension ν of µ on
the existentially quantified variables in N , s.t. ν cannot be further extended to any of
the nodes Mi inM.

The key idea is, for all Mi ∈M, to define critical subsets C(Ni,Mi) of I(Ni,Mi), where
Ni ∈ N is the parent of Mi. Intuitively, C(Ni,Mi) is defined in such a way that the
existence of an extension ν of µ to the variables in Mi only depends on the values for µ
on each of the critical subsets. Our FPT-algorithm relies on several crucial properties of
C(Ni,Mi):

First of all, for each critical subset ~v ⊆ I(Ni,Mi), we can efficiently determine the “good”
(resp. “bad”) value combinations, i.e., value combinations such that an extension (resp. no
extension) of a mapping ν toMi is possible, namely: good(~v) = {η | dom(η) = ~v and there
exists an extension ν of η to var(Mi) with ν(Mi) ⊆ D} and bad(~v) = {η | dom(η) = ~v
and there exists no extension ν of η to var(Mi) with ν(Mi) ⊆ D}. It can be shown that,
for an arbitrary mapping µ with I(Mi, Ni) ⊆ dom(µ), there exists an extension ν of µ
with var(Mi) ⊆ dom(ν) and ν(Mi) ⊆ D if and only if for every ~v ∈ C(Mi, Ni), we have
µ|~v ∈ good(~v).

Consider µ from our arbitrary instance of ExtendSolution(g-TW(k) ∩ SBI(c)). We
have to test if there exists an extension ν of µ to the existentially quantified variables in
N , s.t. ν cannot be further extended to any of the nodes Mi inM. In other words, such
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ν has to satisfy the following two conditions: (1) ν(N) ⊆ D for every N ∈ N and (2) for
every i ∈ {1, . . . , β}, there exists a critical subset ~vi ∈ C(Mi, Ni), s.t. ν|~vi ∈ bad(~vi).

Hence, our decision procedure for ExtendSolution(g-TW(k)∩SBI(c)) just checks if such
a combination (~v1, . . . , ~vβ) of critical subsets exists. We can search for such a combination
by nested loops over all ~vi ∈ C(Mi, Ni) with i ∈ {1, . . . , β}. Since ~vi ⊆ I(Mi, Ni) and
|I(Mi, Ni)| ≤ c, there are at most 2c elements in each C(Mi, Ni). Moreover, β is bounded
by the size of p. Hence, we have to check at most f(p) = (2c)|p| combinations (~v1, . . . , ~vβ).
To prove the algorithm to be in FPT, it suffices to show that, for a given combination
(~v1, . . . , ~vβ) of critical subsets, one can test in polynomial time if there exists an extension
ν of µ with (1) ν(N) ⊆ D for every N ∈ N and (2) ν|~vi ∈ bad(~vi) for every i ∈ {1, . . . , β}.

The second crucial property of the critical subsets C(Ni,Mi) with i ∈ {1, . . . , β} is
that for any combination (~v1, . . . , ~vβ) with ~vi ∈ C(Ni,Mi), we can transform the given
global tree decomposition T of p of width k into a tree decomposition T ∗ of width
≤ (k+ 1) · (c+ 1), s.t. every ~vi is covered by the bag of some vertex t in T ∗. Analogously
to the PTIME-membership proof in [BPS15], the tree decomposition T ∗ guarantees that
the check for the existence of an extension ν of µ with the desired properties (1) and (2)
is feasible in polynomial time.

What happens if, instead of the restriction to g-TW(k) ∩ SBI(c), we consider `-TW(k) ∩
SBI(c)? Below we show that, with this relaxation, fixed-parameter tractability is lost.

Theorem 6.9. The problem p-Eval(`-TW(k) ∩ SBI(c)) is W[1]-complete for k ≥ 1 and
c ≥ 2.

Proof. Membership is shown by reduction to the W[1]-complete problem Pos-Eval,
which is the evaluation problem for FO-queries built from relational atoms using ∃,∧,∨
[PY99] (see also [PY99] for the problem definition). The idea is to create one positive
query which is a big disjunction over all possible CQs QT ′ corresponding to subtrees
of p that potentially have µ as an answer. The maximality of answers is enforced by
introducing “interface relations” which, for every child node, only contain those tuples
which cannot be extended to the child.

Let an instance of p-Eval(`-TW(k)∩ SBI(c)) be given by a wdPT p = (T, λ, ~x) with root
node R, a database instance D and a mapping µ. It is convenient to introduce some
notation first: Let T ′ be the set of all subtrees T ′ of T containing R s.t. var(T ′) ∩ ~x =
dom(µ), i.e. whose free variables are exactly the variables on which µ is defined. Also, for
a subtree T ′ of T containing R, let the set NT ′ contain exactly all nodes in V (T ) \ V (T ′)
that are adjacent to some node in V (T ′) (i.e., the “child nodes” of T ′).

Next, for every T ′ ∈ T ′, define the set of atoms

φT ′ =
⋃

N∈V (T ′)
λ(N) ∪

⋃
N∈NT ′

an(xi1 , . . . , xiα)
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where {xi1 , . . . , xiα} = I(N,M), N is the parent of M , and aT ′,N is a new relation
symbol not occurring in p. For N ∈ NT ′ with parent M and I(N,M) = {xi1 , . . . , xiα},
let QN be the CQ QN (xi1 , . . . , xiα)← λ(N) and τN the set of tuples

τN = {(µ(xi1), . . . , µ(xiα)) | µ ∈ QN (D)}.

Finally, for a T ′ ∈ T ′ and N ∈ NT ′ , let aIT ′,N be the set of atoms

aIT ′,N = {aT ′,N (τ) | τ ∈ (|dom(D)|α) \ τN )}.

We can now define a positive query Q, a database instance D′ and a tuple t as follows:

D′ = D ∪
⋃

T ′∈T ′

⋃
N∈NT ′

aIT ′,N ,

Q =
∨

T ′∈T ′

∃~yT ′
∧

β∈φT ′

β

where ~yT ′ = (
⋃
N∈(V (T ′)∪NT ′ ) var(λ(N)) \ dom(µ), and

t = (µ(xγ1), . . . , µ(xγk))

where {xγ1 , . . . , xγk} = dom(µ).

The above reduction indeed is an fpt-reduction (in fact, the size of Q is indeed in O(2|p|)).
Moreover, it follows by the construction that µ ∈ p(D) if and only if t ∈ Q(D′), which
proves membership.

Hardness is shown by an fpt-reduction from p-Clique. Given a graph G = (V,E) and
d ∈ N, we construct a wdPT p and a database D with the following intuition: The
root R of p contains d variables x1, . . . , xd. Mapping the root into D assigns one node
from V to each xi. In addition, R contains one child for each pair of distinct variables
xα, xβ ∈ {x1, . . . , xd}. Each of these children can be mapped into D if and only if there
is an edge between the nodes assigned to xα, xβ. Thus G contains a clique of size d if
and only if there exists a mapping µ ∈ p(D) that maps all children of R into D.

Thus, let G = (V,E) be a graph and d ∈ N. We define a wdPT p = (T, λ, ~x), a mapping
µ, and a database D as follows:

• T consists of a root R with child nodes Ni,j for 1 ≤ i < j ≤ d,

• λ(R) = {v(x1), . . . , v(xk), b(zo)},

• for 1 ≤ i < j ≤ d, λ(Ni,j) = {e(xi, xj), b(zi,j)},

• ~x = {zi,j | 1 ≤ i < j ≤ d},

• eD = {(vi, vj) | {vi, vj} ∈ E}, vD = {vi | vi ∈ V }, bD = {1}, and
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• µ = {(z0, 1)} ∪ {(zi,j , 1) | 1 ≤ i < j ≤ d}.

It is easy to check that indeed p ∈ `-TW(1) ∩ SBI(2), the reduction is an fpt-reduction,
and that G has a clique of size d if and only if µ ∈ p(D). Indeed, bindings to the variables
x1, . . . , xd by some ν ∈ p(D) encode a selection of d nodes. Moreover, each child node
checks the existence of an edge between two distinct nodes from x1, . . . , xd. Thus the
selection on x1, . . . , xd is a clique if and only if all child nodes of R can be mapped into
D.

We now consider another relaxation of the g-TW(k)∩SBI(c) restriction from Theorem 6.8
by considering wdPTs in g-TW(k) but without any bound on the interfaces.

Theorem 6.10. The problem p-Eval(g-TW(k)) is W[2]-hard for k ≥ 1.

Proof. The proof is by reduction from p-Dominating Set. Thus, let G = (V,E) be
a graph and d ∈ N. The idea of the constructed wdPT p and database D is to have
variables x1, . . . , xd in the root R of p such that a mapping of R into D assigns one node
from V to each xi. Observe that S ⊆ V is a dominating set if and only if there does
not exist some u ∈ V \ S that is not adjacent to any node in S. This is tested in the
single child node of R: It contains an additional variable x0 which also encodes nodes in
V . Now the child node is mapped into D if and only if there exists a value for x0 that
differs from those of all xi’s, and there does not exist an edge between the nodes mapped
to x0 and any of the xi’s. I.e., there exists a solution that only maps the root into D if
and only if G contains a dominating set of size d.

So we construct an instance of Eval(g-TW(k)) consisting of a wdPT p = (T, λ, ~x), a
mapping µ, and a database D as follows:

• T consists of a root node R with a single child node N ,

• λ(R) = {v(x1), . . . , v(xd), b(z0)},

• λ(N) = {diff (x0, xi), ec(x0, xi) | 1 ≤ i ≤ d} ∪ {b(z1)},

• ~x = {z0, z1},

• vD = {vi | vi ∈ V }, diffD = {(vi, vj) | vi, vj ∈ V with vi 6= vj},
(ec)D = {(vi, vj) | {vi, vj} ∈ ((V × V ) \ E)}, bD = {1}, and

• µ = {(z0, 1)}.

It is easy to check that the reduction is indeed an fpt-reduction and that p ∈ g-TW(1).
It remains to show that µ ∈ p(D) if and only if G has a dominating set of size d. We
show the two directions separately.
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Assume that µ ∈ p(D). I.e., there exists some maximal homomorphism ϕ from p to D
with µ ⊆ ϕ and s.t. ϕ ∈ QR(D) (where QR = QT ′ for the subtree containing R only).
Thus, for all values α ∈ dom(D) we have that (α,ϕ(xi)) 6∈ diffD or (α,ϕ(xi)) 6∈ (ec)D for
some 1 ≤ i ≤ k since ϕ can clearly be extended to z1 otherwise. Consider the set S of
nodes defined as S := {ϕ(xi) | 1 ≤ i ≤ k} (identifying nodes in V with the respective
elements in dom(D)). It can now be checked that S is a dominating set: Indeed, for an
arbitrary node v ∈ V , either v ∈ S (in case that (v, ϕ(xi)) /∈ diffD for some i) or for
some v′ ∈ S there is an edge {v, v′} ∈ E (if (v, ϕ(xi) /∈ (ec)D for some i). In case that
|S| < k, adding arbitrary nodes from V to S s.t. |S| = k gives a dominating set of size k.

Next assume that G has a dominating set S = {s1, . . . , sk} of size k. Then the mapping
ϕ defined as {(xi, si) | 1 ≤ i ≤ k} ∪ µ is a maximal homomorphism from p to D. Assume
to the contrary that this is not the case, and let ϕ′ be an extension of ϕ. Then the node
ϕ(x0) is neither in S (because of the atoms diff (x0, xi)) nor adjacent to any node in S
(because of the atoms ec(x0, xi)), which gives the desired contradiction.

It was shown in [BPS15] that the problem Max-Eval(g-TW(k)) is in PTIME. In other
words, for wdPTs with globally bounded treewidth, there is no need to also restrict the
interface. Moreover, as recalled above, restricting wdPTs to `-TW(k) ∩ BI(c) also yields
a restriction of the global treewidth. The only case remaining is therefore the restriction
to `-TW(k) ∩ SBI(c).

Proposition 6.11. The problem p-Max-Eval(`-TW(k)∩SBI(c)) is W[1]-hard for k ≥ 1
and c ≥ 2.

Proof. The reduction used to prove the hardness in the proof of Theorem 6.9 also proves
this case, since clearly µ ∈ p(D) if and only if µ ∈ pm(D).

6.3 Classical and Parameterized Complexity of
Enumeration

We now turn our attention back to the enumeration problem. Analogously to the
evaluation problem in Section 6.2, we will study four variants of the enumeration
problem, namely enumerating all vs. the maximal solutions and parameterized vs. non-
parameterized problems.

Enum(C) / Max-Enum(C)
INSTANCE: Query: wdPT p ∈ C, Data: database D.
Output: Is p(D) / pm(D)?

p-Enum(C) / p-Max-Enum(C)
INSTANCE: wdPT p ∈ C, database D.
PARAMETER: |p|
OUTPUT: Is p(D) / pm(D)?
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`-TW(k)
∩BI(c)

g-TW(k)
∩SBI(c)

`-TW(k)
∩SBI(c) g-TW(k)

p-Eval(C) PTIME∗ FPT
Theorem 6.8

W[1]-complete
Theorem 6.9

W[2]-hard
Theorem 6.10

p-Max-Eval(C) PTIME∗ PTIME∗ W[1]-hard
Theorem 6.11

PTIME∗

Enum(C) SDelayP
Corollary 6.14

open not OutputP
Corollary 6.17

not OutputP
Corollary 6.19

Max-Enum(C) not OutputP
Corollary 6.22

not OutputP
Corollary 6.22

not OutputP
Corollary 6.22

not OutputP
Corollary 6.22

p-Enum(C) SDelayP
Corollary 6.14

DelayFPT
Corollary 6.14

not OutputFPT
Corollary 6.17

not OutputFPT
Corollary 6.17

p-Max-Enum(C) DelayFPT
Theorem 6.24

DelayFPT
Theorem 6.24

not OutputFPT
Proposition 6.25

DelayFPT
Theorem 6.24

Table 6.1: Summary of the main results on evaluation and enumeration of wdPTs. Entries
marked with a * were shown in [BPS15]

As we have discussed in Section 6.1, for wdPTs, analogously to the evaluation problem,
additional restrictions are necessary in order to achieve tractability. However, for enumer-
ation we get a more diverse picture than for evaluation: When we are interested in all
solutions, the additional restrictions used for evaluation are sufficient also for enumeration,
while this is not the case if we are only interested in the maximal solutions. It will
turn out that the techniques required to analyze the enumeration of all vs. the maximal
solutions differ significantly. We thus treat the enumeration and the max-enumeration
problems in separate subsections below. Table 6.1 gives a summary of the results for
both the enumeration as well as the evaluation complexities derived in this chapter.

6.3.1 Enumeration

For our study of the enumeration problem, the decision problem ExtendSolution(C),
which we introduced in Section 6.2, again plays an important role. In fact, this method,
which is sometimes also called backtrack method for enumeration problems, has been used
frequently [MS16, RT75, CH97, AF96]. We will give an in-depth explanation adapted to
the case of wdPTs.

Lemma 6.12. Let C be a class of pattern trees, p = (T, λ, ~x) ∈ C, and D a database.
Assume that there is a computable function f such that for every partial mapping µ and
every subset ~x′ of ~x, the problem ExtendSolution(C) can be decided in O(f(|p|, |D|)).
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Then there exists an algorithm enumerating p(D) with delay(i) in O(f(|p|, |D|) · |D| · |p|)
for i ≥ 0.

Proof. The general idea is to create solutions by iteratively testing if certain variable
bindings can be extended to solutions. Observe that for CQs, it would suffice to test
(in nested loops) for each variable if it can be bound to a certain domain element. In
contrast, for wdPTs, we now have to consider an additional option, namely not binding a
variable at all. Thus, we look for extensions (= solutions) that bind some variables to
specific domain values (expressed by µ) and leave some variables unbound (expressed by
~x′).

So let p ∈ C be a wdPT with free variables ~x = {x1, . . . , xn}, D a database, and denote
Algorithm 3 by A.

Algorithm 3 Enumerate all solutions of p(D) for p = (T, λ, {x1, . . . , xn}).
1: Initialize a global vector ~v ∈ (dom(D) ∪ {⊥})n
2: V = dom(D) ∪ {⊥}
3: procedure Enumerate
4: Ext-Sol(1)
5: end procedure
6:
7: procedure Ext-Sol(i)
8: for all ν ∈ V do
9: ~v(i) = ν

10: µ = {(xj , a) | ~v(j) = a, a 6= ⊥, 1 ≤ j ≤ i}
11: ~x′ = {xj | ~v(j) = ⊥, 1 ≤ j ≤ i}
12: if SP-Check(p,D, µ, ~x′) then
13: if i = n then
14: Output µ
15: else
16: Ext-Sol(i+ 1)
17: end if
18: end if
19: end for
20: end procedure

Assume that for a partial mapping µ and a subset ~x′ of the free variables of p, the
procedure SP-Check(p,D, µ, ~x′) decides whether (p,D, µ, ~x′) ∈ ExtendSolution(C) in
time O(f(|p|, |D|)) for some computable function f . We need to show that A enumerates
p(D) with a delay polynomial in f(|p|, |D|), |p| and |D|. First consider a possible first
solution that is in the output. On the very first call of Ext-Sol(1), assume that there is no
ν ∈ V such that SP-Check(p,D, {(x1, ν)}, ∅) or SP-Check(p,D, ∅, {x1}) evaluates to true.
By the definition of ExtendSolution(C), p(D) = ∅ and A stops in O(|V | · f(|p|, |D|)) =
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O(|D| · f(|p|, |D|) with no output. So assume that there is some ν ∈ V with SP-
Check(p,D, {(x1, ν)}, ∅)= true (the case SP-Check(p,D, ∅, {x1})= true can be shown
analogously). Hence the partial solution {(x1, ν)} can be extended to some solution in
p(D), and A constructs such a solution, where for each variable xi, 1 ≤ i ≤ n, we need
at most |V | = O(|D|) many steps to to find an element ν ′ such that either the current
partial solution can be extended by {(xi, ν ′)}, or to determine that the current partial
solution can be extended to some solution µ ∈ p(D) with xi 6∈ dom(µ). Thus we can
output a first solution in n · |V | ·O(f(|p|, |D|)) = O(f(|p|, |D|) · |D| · |p|) many steps. Next
assume that the functions µ1 and µ2 are output consecutively by A, and let l be minimal
such that µ1(xl) 6= µ2(xl). This means that for all k with l ≤ k ≤ n, algorithm A makes
at most |V | = O(|D|) many failed SP-Check calls at Ext-Sol(k) before A finds some µ
and some ~x′ such that SP-Check(p,D, µ, ~x′) returns true. As with the first output, we
need at most n · |V | · O(f(|p|, |D|)) many steps in the algorithm to extend µ to some µ′
(in this case µ2 that is output, thus the delay between the outputs µ1 and µ2 is indeed
O(f(|p|, |D|) · |D| · |p|).

Next we need to show that A produces no duplicates. Assume that µ1 is in the output.
For any another output µ2, the algorithm chooses at least one new value ν ∈ V at some
for-loop for some procedure call Ext-Sol(j), 1 ≤ j ≤ n, therefore µ1(xj) 6= µ2(xj).

Now let P be the output of A. To show that P = p(D), let µ ∈ P. Then at a procedure
call Ext-Sol(n), SP-Check(p,D, µ, ~x′) = true for some ~x′. Since dom(µ)∪ ~x′ = ~x, there is
no µ′ ∈ p(D) such that µ ⊂ µ′ and dom(µ′) ∩ ~x′ = ∅. Thus µ ∈ p(D). Now assume that
µ ∈ p(D) with ~x′ = ~x \ dom(µ). Then µ ∈ P, as for any µ′ ⊆ µ and any ~x′′ ⊆ ~x we have
SP-Check(p,D, µ′, ~x′′) = true, and hence µ will be output at some point in the execution
of the algorithm.

To make use of this lemma, we identify classes of wdPTs that meet the requirements:

Proposition 6.13. The following complexity results hold for ExtendSolution(C):

1. Let c ≥ 1 and C be a class of CQs for which CQ-Eval(C) is in PTIME. Then
ExtendSolution(`-C ∩ BI(c)) is in PTIME.

2. ExtendSolution(g-TW(k)) is NP-complete for every k ≥ 1.

3. Let k, c ≥ 1. Then ExtendSolution(g-TW(k) ∩ SBI(c)) parameterized by |p| is
in FPT.

Proof. We only need to show (1): Indeed (2) follows immediately from [BPS15]. For (3)
we note that in the previous section, Theorem 6.8 was stated for p-Eval(g-TW(k)∩SBI(c)).
One can actually show the stronger result of FPT membership for the parameterized
version of ExtendSolution(g-TW(k) ∩ SBI(c)).

So to show part 1 of the proposition, we describe the polynomial time algorithm for
deciding the problem ExtendSolution(`-C ∩ BI(c)), given that C is a class of CQs for
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which CQ-Eval(C) is in PTIME and c ≥ 1 a positive integer. The algorithm is a slight
adaptation of the algorithm in the proof of [BPS15, Theorem 6].

Thus assume that we are given a wdPT p = (T, λ, ~x), a database D, a partial mapping
µ : X→ U and a set ~x′ ⊆ ~x.

1. As a preprocessing step, first of all check if there exists some subtree T ′ of T s.t.
dom(µ) ⊆ fvars(T ′) and fvars(T ′) ∩ ~x′ = ∅. If this is not the case, then clearly
µ /∈ p(D).

2. Let T ′ be the minimal subtree of T s.t. dom(µ) ⊆ fvars(T ′), and T ′′ be the maximal
subtree of T s.t. dom(µ) ⊆ fvars(T ′′) and fvars(T ′′) ∩ ~x′ = ∅.

Observe that because of p being well-designed, T ′ and T ′′ are uniquely identified.

3. The goal of the algorithm is to construct an acyclic Boolean CQ Q and a database
D′, s.t. Q contains one atom for every node in T ′, and that Q(D′) 6= ∅ if and only
if there exists some µ′ ∈ p(D) s.t. µ ⊆ µ′ and dom(µ′) ∩ ~x′ = ∅.

Towards this goal, first substitute in p every x ∈ dom(µ) by µ(x). With a slight
abuse of notation, call this pattern tree again p.

4. For every node N ∈ V (T ′′), introduce a new relation symbol RN of arity rN , where
rN = |I(N)|.

5. Let Q be the acyclic Boolean CQ

Q()←
∧

N∈V (T ′)
RN (~vN )

Thus, Q contains exactly one atom for each node in T ′ (and not in T ′′).

6. Next, we have to define the database D′.

Again, this requires to settle some notation first: Consider a node N ∈ V (T ′′) and
a tuple α ∈ dom(D)rN (where again rN = |I(N)|). Then we may interpret α as
a mapping ~vn → dom(D) defined as {(~vn(i), α(i)) | 1 ≤ i ≤ rN}, where ~vn(i) and
α(i) refer to the ith element of ~vn and α, respectively. Thus, to simplify notation,
in the following we may identify tuples α with the corresponding mappings.

7. Towards defining database D′, we define an intermediate database D′′ as follows:

• For every N ∈ V (T ′′), and every tuple α ∈ dom(D)rN , let RD′′
N contain the

tuple α if there exists some mapping ν s.t. µ| fvars(λ(N)) ∪ α ∪ ν(~vi)) ∈ RDi
for every atom Ri(~vi) ∈ λ(N). I.e., if the mapping µ| fvars(λ(N)) ∪ α can be
extended to a solution to the CQ built from the atoms in λ(N).

103



6. Well-Designed Pattern Trees

• If we would now evaluate Q already on D′′, we had Q(D′′) 6= ∅ whenever µ
is contained in some solution in p(D), i.e. if either µ is indeed some solution
to p over D, or if it can be extended to some solution. Thus, in order to test
whether µ is contained in some µ′ such that µ′ ∈ p(D) and dom(µ′)∩ (~x′) = ∅,
we have to restrict the number of atoms in D′′.
• To do so, for all atoms of the form RN (α) for all nodes N ∈ N = (V (T ′′) \
V (T ′)) ∪ L where L are all leaf nodes of T ′, we compute a label l(RN (α)) ∈
{safe, unsafe} in a bottom-up traversal of T ′′ as follows:

• In a leaf node N of T ′′, we have l(RN (α)) = unsafe if there exists some child
node Ni of N and an extension ϕ of µ ∪ α s.t. for all Ri(~vi) ∈ λ(Ni) we have
(ϕ|var(λ(Ni))(~vi)) ∈ RDi . Otherwise, i.e. if µ ∪ α cannot be extended to any
child node Ni of N , then l(RN (α)) = safe

• For a non-leaf node N ∈ N such that for all child nodes N1, . . . , Nk of N
all labels l(RNi(αj)) have already been computed, the labels are defined as
follows:
l(RN (α)) = safe if for every child node Ni of N , either (a) for all tuples
β ∈ RD′′

Ni
we have that α and β are not compatible (i.e., they do not agree on

the shared variables), or (b) if there exist compatible tuples, then there exists
at least one compatible tuple β ∈ RD′′

Ni
with l(RNi(β)) = safe.

l(RN (α)) = unsafe otherwise, i.e. if there exists some child node Ni of N s.t.
there exists at least one compatible tuple β ∈ RD′′

Ni
and for all such compatible

tuples βj ∈ RD
′′

Ni
we have RNi(βj) = unsafe.

8. We define D′ from D′′ as follows:

• For every non-leaf node N of T ′, RD′
N contains all tuples α from RD

′′
N .

• For every leaf node N of T ′, RD′
N contains only those tuples α from RD

′′
N s.t.

l(RN (α)) = safe.

We now have that q(D′) 6= ∅ if and only if there exists a µ′ ∈ p(D) s.t. µ ⊆ µ′ and
dom(µ′) ∩ ~x′ = ∅.

Clearly, the above construction is feasible in polynomial time, and also q(D′) 6= ∅ can be
decided in polynomial time, since q is an acyclic CQ.

Now the following corollary follows immediately from the previous results.

Corollary 6.14. Let k, c ≥ 1.

• Let C be a class of CQs for which CQ-Eval(C) is in PTIME. Then Enum(`-C∩BI(c))
is in SDelayP.

• The problem p-Enum(g-TW(k) ∩ SBI(c)) is in DelayFPT.
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We now move to negative results for the enumeration problem. As an important tool and
an interesting result in its own right, we establish a close relationship between enumeration
and the parameterized complexity of evaluation. We introduce some terminology first:

Definition 6.15. A class C of wdPTs is robust if for every wdPT p = (T, λ, ~x) ∈ C the
following two conditions hold:

1. For every N = {N1, . . . , Nm} ⊆ V (T ) the wdPT (T, λN , ~z) is in C, where ~z =
{z1 . . . , zm} is a set of new variables, λN (N) = λ(N) for all N ∈ V (T ) \ N and
λN (Ni) = λ(Ni) ∪ {b(zi)} for 1 ≤ i ≤ m and some new relation symbol b.

2. For every variable x ∈ var(p), let p′ be the wdPT retrieved from p by replacing
every occurrence of x by the same constant c. Then p′ ∈ C.

The notion of “robust” classes of wdPTs is important in the following theorem, to make
sure that wdPTs do not fall out of their class when certain transformations are performed.

Theorem 6.16. Let C be a robust class of wdPTs. If p-Enum(C) is in OutputFPT, then
p-Eval(C) is in FPT.

Proof. Assume that we have given a pattern tree p = (T, λ, ~x) ∈ C with ~x = {x1, . . . , xn},
a database D and a mapping µ = {(x1, a1), . . . , (xr, ar)}. We will use the fact that
p-Enum(C)∈ OutputFPT to check whether µ ∈ p(D) in time O(f(|p|) · |D|m) for some
positive integer m.
Let T ′ (T ′′) be the minimal (maximal) subtree of T that contains {x1, . . . , xr} and does
not contain {xr+1, . . . , xn}. If no such trees exist, then µ 6∈ p(D). Further let B(T ′) ⊆ T ′
be the set of all pattern tree nodes with a child in T \T ′ and let B(T ′′) ⊆ (T \T ′′) be the
set of all pattern tree nodes with a parent in T ′′. Define a pattern tree q = (Tq, λq, ~xq) as
follows:

• Tq = T

• Let A ∈ λ(N) be an atom for some N ∈ T . Then denote by Aµ the atom where
every occurrence of some Xi ∈ {x1, . . . , xr} is replaced by ai. Define λq as follows:

λq(N) =


{Aµ | A ∈ λ(N)} : N ∈ T \ {B(T ′) ∪B(T ′′)},
{Aµ | A ∈ λ(N)} ∪ {b(zN )} : N ∈ B(T ′)
{Aµ | A ∈ λ(N)} ∪ {b(z̄N )} : N ∈ B(T ′′),

where for all N ∈ T the variables zN and z̄N are new variables and b is a new unary
relation symbol. Denote by Φ the set of all such zN and by Ψ the set of all such z̄N .

• ~xq = Φ ∪Ψ.
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Further extend the database D to a database Dq by adding the relation bDq = {1}.
There are at most 2|q| mappings in q(Dq) and the size of every mapping is bounded
by |q|. Therefore, since C is robust and thus q ∈ D, we can enumerate q(Dq) in time
O((|Dq|+ |q|+ |q|2|q|)mf(|q|)) for some function f and some positive integer m.

Claim. Let ν := {(z, 1)|z ∈ Φ}. Then µ ∈ p(D) if and only if ν ∈ q(Dq).

Proof of the Claim. We have µ ∈ p(D) if and only if there is a variable assignment of
var(T ′′), such that λq(N) is true for all N ∈ B(T ′) and this variable assignment can not
be extended to var(T ) such that λq(N ′) is true for any N ′ in B(T ′′). This is equivalent
to ν ∈ q(Dq).

So to decide whether µ ∈ p(D), it suffices to decide whether ν ∈ q(Dq). This can
be done in time O((|Dq| + |q| + |q|2|q|)mf(|q|)) = O((|Dp| + |p| + |p|2|p|)mf(|p|)) =
O(|Dp|m · (|p|22|p|)mf(|p|)).

As already mentioned in Section 6.1, we are now ready to give the proof of Proposition 6.7:

Proof of Proposition 6.7. Let C∗ be a class of conjunctive queries with free-connex
bounded treewidth. It is easy to see that in the proofs for Theorem 6.9 and Theo-
rem 6.10 , the wdPTs used for the reductions in the hardness results are in the classes
l-C∗∩SBI(c) respectively g-C∗ for some c > 0. So by assuming that FPT 6= W[1], it follows
that neither p-Enum(l-C∗ ∩ SBI(c)) nor p-Enum(g-C∗) is in OutputFPT by Theorem 6.16.
For the sake of a contradiction, assume that for every pattern tree p ∈ l-C∗ ∩ SBI(c)
and database D, there is positive integer m and function f such that p(D) can be
enumerated with delay(0) in O(|D|m · f(|p|)) and delay(i) in O(g(|p|)) for some function
g and i ≥ 1 (the case p ∈ g-C∗ can be shown analogously). Then we can output p(D)
in time O(|D|mf(|p|) + |p(D)|g(|p|)) = O((|p|+ |D|+ |p(D)|)m(f + g)(|p|)), which is a
contradiction to the fact that p-Enum(l-C∗ ∩ SBI(c)) is not in OutputFPT.

Exploiting this relationship between the evaluation and the enumeration problem, the
next results are immediate consequences of the W[1]- and W[2]-hardness, respectively,
shown in the previous section and the fact that all the classes mentioned in this chapter
are robust.

Corollary 6.17. If FPT 6= W[1], then the following holds:

• The problem p-Enum(`-TW(k) ∩ SBI(c)) is not in OutputFPT for k ≥ 1 and c ≥ 2.
Thus also the problem Enum(`-TW(k) ∩ SBI(c)) is not in OutputP for k ≥ 1 and
c ≥ 2.

• The problem p-Enum(g-TW(k)) is not in OutputFPT for k ≥ 1.
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It follows immediately from Theorem 6.16 (in combination with Theorem 6.10) that
Enum(g-TW(k)) is not in OutputP if FPT 6= W[1]. However, we can show the same result
under an even stronger assumption, namely assuming that PTIME 6= NP, by making use
of the following NP-hardness result.

Proposition 6.18. The following problem is NP-hard for every k ≥ 1: Given a wdPT
p ∈ g-TW(k) and a database D, decide whether |p(D)| = 2.

Proof. The proof is by reduction from the well-known NP-complete problem Dominating
Set, using the same construction already described in the proof of Theorem 6.10. W.l.o.g.
we consider only graphs G = (V,E) that contain at least one node N that is not already
a dominating set. Then we clearly always have µ′ = {(z0, 1), (z1, 1)} ∈ p(D) (just map
all variables x1, . . . , xd to N). However, it still remains that µ = {(z0, 1)} ∈ p(D) if and
only if G contains a dominating set of size d. We thus get |p(D)| = 2 if and only if G
contains such a dominating set.

The next result follows immediately. Indeed, an algorithm solving Enum(g-TW(k)) in
polynomial time w.r.t. the size of the input plus the output would provide a polynomial
time decision procedure for Dominating Set, a problem well-known to be NP-hard.

Corollary 6.19. If PTIME 6= NP, then Enum(g-TW(k)) is not in OutputP for every
k ≥ 1.

6.3.2 Max-Enumeration

We next consider the problem of enumerating only the maximal solutions of a wdPT. In
fact, we show that for none of the classes of wdPTs considered in this work, the problem
Max-Enum(`-TW(k) ∩ BI(c)) is in OutputP. After establishing this result, we therefore
turn towards the parameterized problem, where for all but one of the classes we can show
a positive result, namely DelayFPT membership.

For the negative result on the non-parameterized problem, we show intractability for
Max-Enum(`-TW(k)∩ g-TW(k′)∩BI(c)), which immediately implies all other results for
non-parameterized maximal enumeration. Again, we do this via an intractability result
for a suitable decision problem.

Proposition 6.20. The following problem is NP-hard for every k, k′, c ≥ 1: Given a
wdPT p ∈ `-TW(k) ∩ g-TW(k′) ∩ BI(c), a database D, and an integer s ≥ 1 encoded in
unary, decide if |pm(D)| > s.

Proof. The proof is by reduction from the well-known NP-complete problem 3-SAT: Let
φ be a Boolean formula in 3-CNF, i.e. φ =

∧m
i=1(li,1, li,2, li,3) where all li,j (1 ≤ i ≤ m,

j ∈ {1, 2, 3}) are literals over the variables x1, . . . , xn.

We define p = (T, λ, ~z), D, and s as follows. For an example of this construction, see
Figure 6.3.
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d1(x1), g(z1,1) d1(x2), g(z1,2) d1(x3), g(z1,3) d′2(x2), g(z2,1) d′2(x3), g(z2,2) d2(x4), g(z2,3)

v′(y), g(z) b(y, x1) b(y, x2) b(y, x3) b(y, x4)

v(y)

Figure 6.3: Example of a tree structure of the wdPT p constructed from the 3-CNF
formula φ = (x1 ∧ x2 ∧ x3) ∨ (¬x2 ∧ ¬x3 ∧ x4) by the reduction given the proof of
Proposition 6.20

• V (T ) = {R} ∪ {Ni | 0 ≤ i ≤ n} ∪ {N ′α,β | 1 ≤ α ≤ m, 1 ≤ β ≤ 3},

• E(T ) = {{R,Ni} | 0 ≤ i ≤ n} ∪ {{Ni, N
′
α,β} | lα,β = xi or lα,β = ¬xi}.

• I.e., T contains a root R with n + 1 children (intuitively, one child Ni for every
variable xi, and one additional child). Furthermore, each of the n children of R
representing a variable xi contains one distinct child for every occurrence lα,β of xi
in φ.

• λ(R) = {v(y)},

• λ(N0) = {v′(y), g(z)},

• λ(Ni) = {b(y, xi)} for 1 ≤ i ≤ n,

• λ(N ′α,β) = {l∗α,β, g(zα,β)} for 1 ≤ α ≤ m, 1 ≤ β ≤ 3 where
l∗α,β = dα(xi) if lα,β = xi and l∗α,β = d′α(xi) if lα,β = ¬xi, respectively,

• gD = {1}, vD = {ai | 0 ≤ i ≤ m}, (v′)D = {ai | 1 ≤ i ≤ m},
bD = {(a0, 0), (a0, 1)} ∪ {(ai, ai) | 1 ≤ i ≤ m},

• For all 1 ≤ i ≤ m : dDi = {1} ∪ {aj ≤ 1 ≤ i 6= j ≤ m},
(d′i)D = {0} ∪ {aj ≤ 1 ≤ i 6= j ≤ m},

• ~z = {z} ∪ {zα,β | 1 ≤ α ≤ m, 1 ≤ β ≤ 3}, and

• s = m.

The local treewidth of 1, the global treewidth of 1 and the interface of 1 can be easily
checked, thus p ∈ `-TW(1)∩g-TW(1)∩BI(1). Also, the reduction is feasible in polynomial
time.

It remains to show that |pm(D)| > s = m if and only if φ is satisfiable. In order to do so,
we start with the following two Claims:

108



6.3. Classical and Parameterized Complexity of Enumeration

Claim 1: There cannot exist a mapping µ ∈ p(D) (and thus in pm(D)) such that
z ∈ dom(µ) and for each 1 ≤ i ≤ m, at least one of zi,1, zi,2, zi,3 is in dom(µ).

Claim 2: For 1 ≤ i ≤ m let µi be the mapping µi = {(z, 1)}∪{(zα,1, 1), (zα,2, 1), (zα,3, 1) |
1 ≤ α 6= i ≤ m}. Then µi ∈ pm(D).

To see that the first Claim holds, consider an arbitrary mapping µ ∈ p(D). By definition,
there exists a mapping ν and a subtree T ′ of T (containing R), such that µ∪ ν ∈ QT ′(D).
Consider ν(y). Clearly, y ∈ dom(ν) and ν(y) ∈ {a0, . . . , am}. We distinguish two cases:
if ν(y) = a0, then x /∈ dom(µ) since a0 /∈ (v′)D. If ν(y) = aj for some 1 ≤ j ≤ m, then
obviously ν(xi) = aj for all 1 ≤ i ≤ n. However, since aj /∈ dDj and aj /∈ (d′j)D, we get
that zj,1, zj,2, zj,3 /∈ dom(µ), what proves the claim.

For the second Claim, we first have to show that for each 1 ≤ j ≤ m, there exists some
νj and a subtree Tj of T containing the root s.t. µj ∪ νj ∈ QTj (D). Towards this goal,
consider νj = {(e, aj)} ∪ {(xi, aj) | 1 ≤ i ≤ n}. For Tj , we consider the complete tree T
except the nodes Nj,1, Nj,2, Nj,3. It can now be easily checked that µj ∪ νj ∈ QTj (D).
Indeed, νj(y) ∈ vD (node R), ν(y) ∈ (v′)D as well as µj(z) ∈ gD (node N0). Also
(νj(e), νj(xi)) = (aj , aj) ∈ bD (nodes Ni, 1 ≤ i ≤ n), and finally, ν(xi) = aj ∈ dDα , ν(xi) =
aj ∈ (d′α)D for all 1 ≤ α 6= j ≤ m as well as µ(zα,1) = µ(zα,2) = µ(zα,3) = 1 ∈ gD (nodes
N ′α,β). The maximality of both, µj ∪ νj as well as µj follows from the first claim.

We thus have shown that there are at least m maximal solutions to p over D. Next, we
show that there at least m+ 1 maximal solutions if and only if φ is satisfiable. We show
both directions separately.

Assume that φ is satisfiable, i.e. that there exists some truth assignment I on the
propositional variables x1, . . . , xn s.t. φ evaluates to 1 (true). We show that there exists
at least one additional maximal solution for p on D: Consider the mappings µ defined as
µ = {(zα,β, 1) | I(lα,β) = 1} and ν = {(y, a0)} ∪ {(xi, I(xi)) | 1 ≤ i ≤ n} (by slight abuse
of notation, we use the same symbols to denote both, the propositional variables in φ as
well as the variables in p; from the context, it is however always clear which element is
actually referred to by xi). We note that for every 1 ≤ j ≤ m, the domain of µ contains
at least one of the variables zj,1, zj,2, zj,3. This is the case, because for every clause Cj ,
at least one of the literals lj,1, lj,2, lj,3 must evaluate to 1 under I.

Thus, by the first claim we have that µ cannot be extended to a solution in p(D) that is
defined on z. At the same time, µ is not contained in any of the mappings µj . Thus, in
order to show that there exists at least one additional maximal solution, it suffices to
show that µ ∪ ν ∈ QT ′(D) for some subtree T ′ of T containing R. In this case, either µ
already is the desired solution, or it can be extended to one.

We claim that µ ∪ ν ∈ QT ′(D) for the subtree T ′ of T consisting of the nodes R,
N1, . . . , Nn, as well as at least one node N ′α,β for each 1 ≤ α ≤ m. In fact, this can be
easily checked. We have that ν(y) ∈ vD (node R) as well as (ν(y), ν(xi)) ∈ bD (node Ni)
for every 1 ≤ i ≤ n. Finally, consider an arbitrary value α from {1, . . . ,m}. Since I is a
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model for φ, the clause Cα evaluates to 1 under I. Thus, for at least one β ∈ {1, 2, 3}
we have that I(lα,β) = 1. Thus, by definition of µ we have µ(zα,β) = 1 as well. Hence
µ(zα,β) ∈ gD, and it only remains to show that ν also maps l∗α,β into D. Towards this
goal, we distinguish two cases. If lα,β = xi, then I(xi) = 1, and thus also ν(xi) = 1 by
the definition of ν as well as l∗α,β = dα(xi) by definition. Thus ν(xi) ∈ dDα . If lα,β = ¬xi,
then I(xi) = 0, and thus also ν(xi) = 0 by the definition of ν as well as l∗α,β = d′α(xi) by
definition. Thus ν(xi) ∈ (d′α)D, which proves the case.

Now assume that there exists at least one additional maximal solution µ in pm(D).
Then for every 1 ≤ j ≤ m it must be the case that {zj,1, zj,2, zj,3} ∩ dom(µ) 6= ∅, since
otherwise µ would be contained in at least one µj . Thus, by the first claim this means
that z /∈ dom(µ). Let ν be the mapping witnessing µ ∈ p(D), i.e. the mapping s.t.
µ ∪ ν ∈ QT ′(D) for some subtree T ′ of T . Because of z /∈ dom(µ), we have ν(y) = a0.
Thus we have ν(xi) ∈ {0, 1}. We define a truth assignment I on the propositional variables
x1, . . . , xn as I(xi) = ν(xi). To see that φ evaluates to 1 under I, consider an arbitrary
clause Cα. Choose β s.t. zα,β ∈ {zα,1, zα,2, zα,3} ∩ dom(µ). To see that I(lα,β) = 1,
distinguish two cases: If lα,β = xi, then by definition dα(xi) ∈ λ(N ′α,β). We thus get
ν(xi) = 1, which proves the case. If lα,β = ¬xi, then by definition d′α(xi) ∈ λ(N ′α,β). We
thus get ν(xi) = 0, hence I(lα,β) = I(¬xi) = 1− I(xi) = 1. This concludes the proof.

To show that Max-Enum(`-TW(k) ∩ g-TW(k′) ∩ BI(c)) is not in OutputP using this
result, we recall a relationship from [Str10] (also [KSS00]). The lemma below is actually
a slight reformulation of [Str10, Lemma 2.11]. However, it holds by the same arguments
as the original statement.

Lemma 6.21 ([Str10]). Let E be an enumeration problem. If E is in OutputP, then the
following problem is in PTIME: Given an instance x of E and an integer s encoded in
unary, decide if |E(x)| > s.

The intractability of Max-Enum(`-TW(k) ∩ g-TW(k′) ∩ BI(c)) now is an immediate
consequence of the previous two results. As `-TW(k) ∩ g-TW(k′) ∩ BI(c) is contained in
all classes of wdPTs considered in this work, we obtain the following corollary:

Corollary 6.22. If PTIME 6= NP, then Max-Enum(C) is not in OutputP for every
C ∈ {`-TW(k) ∩ BI(c), g-TW(k) ∩ SBI(c), `-TW(k) ∩ SBI(c), g-TW(k)} and k, c ≥ 1.

After having seen only intractability results in the non-parameterized case, we now show
that the parameterized problem p-Max-Enum(C) is tractable in all but one cases. We
first establish the tractability for C = g-TW(k) and C = `-TW(k) ∩ BI(c), respectively.
Of course, this immediately implies tractability for C = g-TW(k) ∩ SBI(c).

The overall idea behind the DelayFPT-algorithm can be summarized as follows: Assume
that for a pattern tree p = (T, λ, ~x) and a database D, we can compute for every subtree
T ′ of T (containing the root) the set QT ′(D) efficiently. Since at most 2|p| non-maximal
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solutions can be extended to the same maximal solution, this allows us to enumerate all
maximal solutions in DelayFPT.

We start by formulating a crucial lemma, that formalizes the main part of the idea
outlined above. It will be convenient to recall the problem Partial-Eval(C) from the
literature (cf. [BPS15]): Given a wdPT p, a database D and a mapping µ, does there
exist some µ′ ∈ p(D) s.t. µ ⊆ µ′?

Lemma 6.23. Let C be a class of wdPTs such that Partial-Eval(C) is in PTIME.
Assume that there exists an enumeration algorithm A, such that for every p ∈ C and
every database D, A enumerates some set P of partial solutions with pm(D) ⊆ P with
delay(i) in O(f(|p|) · |D|m) for some computable function f , some positive integer m and
0 ≤ i ≤ |P |. Then p-Max-Enum(C) is in DelayFPT.

Proof. Given the enumeration algorithm A for P , the idea is to construct an extension
A′ of A that, after initializing a set M = ∅, performs the following steps: (1) Retrieve
the next output µ of A and extend it to a maximal solution µm. If µm has not been
created before, add µm to M ; (2) If the previous step was repeated 2|p| times since the
last output, output and delete a mapping from M . If A halts, A′ outputs M and halts
as well.

So let p = (T, λ, ~x) ∈ C with database D and P be a set of partial solutions containing all
mappings from pm(D). Further let A be an enumeration algorithm such that delay(i) is in
O(f(|p|) · |D|m) for some computable function f , some positive integer m and 0 ≤ i ≤ |P |.
We will extend A to some algorithm A′ which enumerates the maximal solutions pm(D).
To do so, we will need the following:

Claim. Let µ : X → U be a partial solution. Then µ can be extended to a mapping
µ′ ∈ pm(D) in polynomial time.

Proof of the Claim. If ~x = dom(µ) we can test by Partial-Eval(C) whether µ is
maximal, so let x ∈ ~x\dom(µ). Let D be the domain of D. By partial evaluation, we can
test for all a ∈ D if µ′ = µ∪{(x, a)} ⊆ ν for some ν ∈ p(D). If there is no x ∈ ~x \dom(µ)
and no a ∈ D such that µ′ ⊆ ν for some ν ∈ p(D), then µ has to be maximal, since it is
a partial mapping and thus contained in some maximal one.

If there is an a with µ ∪ {(x, a)} ⊆ ν, we can extend µ to µ′ and test the maximality of
µ′. This procedure terminates after polynomial time.

The algorithm A′ extends A as follows: Initialize a set M = ∅ and a counter j = 0.

• If there is an output µ in A, then extend µ to a maximal solution µm. If µm has
not been output before, set M ←M ∪ {µm}. Further set i← i+ 1.

• If i = 2|p|, then set i = 0 and output some νm ∈M . Further set M ←M \ {νm}.
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• If A halts, output M .

Since pm(D) ⊆ P , A′ outputs pm(D). Thus it remains to show that we can do this with
a delay of O(g(|p|) · |D|k) for some function g and some positive integer k. With the
RAM machine model, we can build an exponentially large search tree for the output (or
the set of maximal mapping already created earlier) and check for any µm if it is in the
output at any given time in polynomially many steps, which we denote by the polynomial
function ρ(|D|, |p|). If M is never empty, the delay between any two outputs is bounded
by O(2|p| · ρ(|D|, |p|) · f(|p|) · |D|m). Thus it suffices to show that M is not empty at
any output-step of algorithm A′. For the sake of a contradiction assume that we are at
the K-th output step and that M = ∅. This means that K − 1 maximal solutions have
been output so far, and K(2|p| + 1) partial solutions have been extended to maximal
solutions. As every maximal solution corresponds to at most 2|p| subsumed solutions,
at least K different maximal mappings have been found by extending partial solutions,
which contradicts M = ∅.

For a class C of wdPTs to show that Max-Enum(C) is in DelayFPT it thus remains to
identify a suitable set of partial solutions. We do this for the classes mentioned before.

Theorem 6.24. Let C′ be a class of CQs s.t. CQ-Eval(C′) is in PTIME, k, c ≥ 1, and
C ∈ {g-C′, l-C′ ∩ BI(c)}. Then the problem p-Max-Enum(C) is in DelayFPT.

Proof. First let p = (T, λ, ~x) be a pattern tree in g-C′ with database D. For all ~x′ ⊆ ~x,
let T~x′ be the minimal subtree of T rooted in R such that the variables of T~x′ are exactly
~x′ (if no such subtree exists set T~x′ = ∅). Further set QT~x′ = {λ(N) | N ∈ V (T~x′)} and
Q = {QT~x′ | T~x′ ⊆ T rooted in R}. Since CQs in C′ can be enumerated in polynomial
delay (cf. [BDGM12]) and for any two queries Q1, Q2 ∈ Q we have var(Q1) 6= var(Q2),
there exists an algorithm A that outputs L =

⋃
q∈Q q(D) with polynomial delay (just

enumerate the partial solutions corresponding to each subtree T ′). Every partial solution
with domain {x1, . . . , xn} is a solution on the minimal subtree of {x1, . . . , xn}, thus A
enumerates all partial solution, and hence all maximal solutions with polynomial delay.
Thus p-Max-Enum(g-C′) is in DelayFPT by Lemma 6.23.
Next let p = (T, λ, ~x) be a pattern tree in l − C′ ∩ BI(c) with database D. Then by
Corollary 6.14 we can enumerate p(D) with polynomial delay, and since pm(D) ⊆ p(D)
we are done by Lemma 6.23.

Algorithm A′ sketched in the proof of Lemma 6.23 crucially depends on the choice of
RAMs as the model of computation: A′ may need to store an exponential number of
maximal solutions. A Turing Machine (TM) cannot access these solutions efficiently, while
a RAM can. However, these algorithms could be easily adapted to run in incremental
delay on a TM, i.e. for some m ∈ N and computable function f , delay(i) is in O(f(|p|) ·
(|p|+ |D|+

∑i
j=1 |yi|)m) for i ≥ 0 (where y1, . . . , yi are the first i solutions returned by

the algorithm).
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We have thus shown fixed-parameter tractability for three out of the four classes we
consider. We conclude this section by showing that for the remaining class the problem
is not in OutputFPT.

Proposition 6.25. If FPT 6= W[1], then p-Max-Enum(`-TW(k) ∩ SBI(c)) is not in
OutputFPT for every k, c ≥ 1.

Proof. Recall again the proof of Theorem 6.9, which shows the W[1]-hardness of p-
Enum(`-TW(k) ∩ SBI(c)), as well as of p-Max-Enum(`-TW(k) ∩ SBI(c)) in Proposi-
tion 6.11. The proof is by reduction from the p-Clique-problem. Let p and D be the
wdPT and database defined by the reduction. We observe that |p(D)| ≤ 2|p|, and thus
also |pm(D)| ≤ 2|p|. We prove the proposition by contradiction.

Assume to the contrary that there exists some algorithm A in OutputFPT that returns
all mappings p′m(D′) for any wdPT p′ ∈ `-TW(k) ∩ SBI(c) and database D′. For p and
D the algorithm thus had a runtime in O((2|p| · |p| + (|D| + |p|))m · f(|p|) (for some
m ∈ ` and some computable function f). This would give rise to a decision procedure for
p-Max-Enum(`-TW(k) ∩ SBI(c)) in FPT, which gives the desired contradiction.
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CHAPTER 7
Conclusion

7.1 Summary

Starting from a dichotomy on the enumeration complexity for acyclic self-join free-
CQs [BDG07], we have embarked on a complexity analysis of the enumeration problem
for three query languages based on CQs: CQs themselves in the presence of dependencies,
unions of CQs and well-designed pattern trees.

Previous hardness results as well as the classification for CQs given in [BDG07] regarding
the enumeration complexity of CQs no longer hold in the presence of dependencies. We
have shown that some of the queries that where previously classified as hard become
tractable in the presence of FDs, and that the others remain intractable. We have classified
the enumeration complexity of self-join-free CQs according to their FD-extension. Under
reasonable assumptions for lower bounds in decision complexity, we have the following: A
query is in DelayClin if its extension is free-connex, it is not in DelayClin if its extension is
acyclic but not free-connex, and it is not even decidable whether there exists an answer
to the query over a database in linear time if the schema has only unary FDs and its
extension is cyclic. We also have shown that these results apply for CQs in the presence
of CDs. In addition to our results on constant delay enumeration, we have shown that
this work has consequences in other enumeration classes such as DelayLin.

Regarding UCQs, we have observed how one set of CQs within a union can influence the
enumeration complexity of another set of CQs by providing variables, and formalized
this observation by introducing union extensions. Then, we generalized the notion of
free-connexity to the setting of UCQs, and showed that these queries are indeed tractable.
In particular, we demonstrated that UCQs containing only intractable CQs may be
tractable. Towards lower bounds for UCQs, we showed that in case of a union of two
intractable CQs or two acyclic body-isomorphic CQs, free-connexity fully captures the
tractable cases.
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7. Conclusion

The two approaches for extending a CQ in order to encode additional information, either
by provided variables in case of union extensions or by certain variables on the right-hand
side of a dependency in case of FD-extensions, are by no means mutually exclusive. In
fact, we can find even more tractable classes of UCQs by simply starting with a UCQ,
first extending all of the CQs within the union according to the FDs, and then computing
the union extension.

When introducing partial matchings to CQs, we have seen that enumeration within
DelayClin is only possible for very restricted structures of well-designed pattern trees.
We have thus evaluated the complexity of enumerating all solutions and of enumerating
the maximal solutions of wdPTs in terms of combined complexity. Due to the close
relationship with the parameterized complexity of the corresponding evaluation problem,
we have also revisited the evaluation and max-evaluation problems. A summary of the
main results is given in Table 6.1 on page 100. For the problems Eval(C) and Max-
Eval(C) we have identified fixed-parameter tractable and intractable cases. Likewise, for
the two variants of the enumeration problem, we have identified tractable and intractable
cases – both in terms of classical and parameterized complexity. More precisely, for
the classical complexity, we have established tractability by showing a strong form of
tractability (i.e., polynomial delay) and we have established intractability by ruling
out even a weaker form of tractability (i.e. output polynomial time). We have proved
analogous results from a parameterized complexity point of view.

7.2 Future Work
The results presented in this work open up quite a few directions for future work.
Throughout the thesis, we have used several well-established hypotheses for lower bounds
in decision complexity, such as mat-mul or hyperclique. Since proving unconditional
lower bounds for such problems is highly unlikely in the current state of complexity
theory, it would we very interesting to base our lower bounds on alternative assumptions
in complexity theory, such as PTIME 6= NP, the ETH [LMS+13] or even separation
assumptions in parameterized or counting complexity.

Regarding CQs in the presence of dependencies, our proof for the hardness of FD-cyclic
CQs assumes that all FDs are unary. The question remains open whether this result
holds for general FDs, along with the classification of Example 4.22. In addition, to show
that enumerating CD-free-connex CQs can be done in DelayClin, we store all printed
results. The required space has the size of the output, which may be polynomial in that
of the input. It is unclear whether a solution that requires less space exists. Moreover, it
would be interesting if our method of FD-extensions can also be used for other integrity
constraints of CQs.

For UCQs, a full classification for the general case remains an open problem. In Section 5.3,
we described the next steps we plan to tackle in this vein, and provided examples with
unknown complexity. Resolving these examples is a necessary step on the way to a future
dichotomy. As with cardinality dependencies, the memory we used in our techniques for

116



7.2. Future Work

the tractable UCQs that do not contain only tractable CQs may increase in size by a
constant with every new answer. An interesting question is whether we can achieve the
same time bounds when restricting the memory to only be allocated in the preprocessing
step.

For wdPTs, even though we have provided quite a comprehensive picture of the complex-
ities in various settings, Table 6.1 still calls for further work. Above all, the Enum(C)
problem with C = g-TW(k)∩SBI(c) is open. Also, for two of our W[1]- and W[2]-hardness
results, a matching upper bound is missing. Finally, the search for tractable classes both
for evaluation and enumeration of wdPTs should be continued. Note that none of the
restrictions studied in this thesis sufficed to ensure tractability of Max-Enum(C). Hence,
further restrictions should be an issue addressed in future research as well.
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APPENDIX A
Full Proof of Theorem 6.8

In this appendix, we will give the full proof of Theorem 6.8. It is convenient to introduce
some additional notation and to provide a formal definition for some of the notions used.

For a wdPT p = (T, λ, ~x), we introduce the additional notation of fvars(T ) as fvars(T ) =
var(T ) ∩ ~x, and similar for fvars(p) and fvars(N) for N ∈ V (T ). For graphs, we recall
the notion of an induced (sub)graph. Let G = (V,E) and S ⊆ V . Then the subgraph
G[S] = (S,E′) where E′ = {e ∈ E | e ∩ S = e} is called the induced (sub)graph. We also
say that G[S] is the subgraph of G induced by S. Furthermore, we say that two nodes
v, w ∈ V are adjacent if {v, w} ∈ E.

Instead of proving Theorem 6.8 directly, it is convenient to prove a slightly stronger
result, namely: The problem ExtendSolution(g-TW(k) ∩ SBI(c)) parameterized by the
query size is in FPT for every k, c ≥ 1.

Recall from Section 6.3 that the ExtendSolution(C) problem is defined as follows: we
are given a database D, a wdPT p ∈ C, a partial mapping µ and a set ~x′ ⊆ ~x (where
~x are the free variables of p). The question is if there exists some mapping µ′ ∈ p(D)
such that µ ⊆ µ′ and dom(µ′) ∩ ~x′ = ∅. Clearly, the problem Eval(C) corresponds to
the special case of the ExtendSolution(C) problem where we set ~x′ ∪ dom(µ) = ~x, i.e.,
we ask if µ itself is the desired mapping µ′.

Throughout this section, let D = dom(D). Also, in order to avoid confusion, we use
upper case letters to denotes nodes in a wdPT, and lower case letters for vertices in the
Gaifman graph or in tree decompositions.

The proof proceeds in several steps.

Critical subsets of the interface variables.

Consider two nodes N and M in the wdPT p = (T, λ, ~x), s.t. N is the parent of
M . Let µ be a mapping that binds the interface variables between N and M , i.e.,
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A. Full Proof of Theorem 6.8

I(M,N) ⊆ dom(µ). Our first goal is to establish a criterion to decide whether µ can be
extended to a mapping ν on var(M), s.t. ν(λ(M)) ⊆ D, i.e. whether ν maps M into D.

Definition A.1. Let G(M) denote the Gaifman graph of the CQ Q()← λ(M) and let
GL(M) denote the subgraph of G(M) induced by the variables in var(M) \ I(M,N)
(i.e., the “local” variables of M). Let CONN denote the set of connected components
of GL(M). Then the set LOCAL of locally connected subsets of I(M,N) is defined as
follows:
LOCAL = {~v | ∃E ∈ CONN , ~v = {v ∈ I(M,N) | ∃y ∈ E, s.t. v, y are adjacent in G}}.

Definition A.2. The set C(M,N) of critical subsets of I(M,N) contains precisely the
subsets ~v ⊆ I(M,N), s.t.

• either there exists an atom A in M with ~v = var(A),

• or ~v ∈ LOCAL, where LOCAL denotes the locally connected subsets of I(M,N).

Definition A.3. Let ~v ∈ C(M,N) be a critical subset of I(M,N). We define the “good”
and “bad” values for mappings µ with dom(µ) = ~v as follows:

• good(~v) = {µ | dom(µ) = ~v and there exists an extension ν of µ to var(M) with
ν(M) ⊆ D}.

• bad(~v) = {µ | dom(µ) = ~v and there exists no extension ν of µ to var(M) with
ν(M) ⊆ D}.

We observe that, for every ~v ∈ C(M,N), the sets good(~v) and bad(~v) can be computed
in polynomial time w.r.t. the input D and p. Indeed, there are at most |D||~v| choices of
µ that we have to test, with |~v| ≤ |I| ≤ c. Moreover, since p ∈ g-TW(k) (actually, even
p ∈ `-TW(k) would suffice) we can test in polynomial time for each µ if µ is in good(~v)
or in bad(~v).

The following lemma gives a necessary and sufficient criterion for mappings µ defined on
I(M,N) to decide if µ can be extended to M or not.

Lemma A.4. Let µ be a mapping with I(M,N) ⊆ dom(µ). Then µ can be extended to
a mapping ν on var(M), s.t. ν(M) ⊆ D if and only if for every ~v ∈ C(M,N), we have
µ|~v ∈ good(~v).

Proof. The “only if”-direction follows immediately from the definition of good(~v). For
the “if”-direction, assume that µ|~v ∈ good(~v) holds for every ~v ∈ C(M,N). In particular,
µ|~v ∈ good(~v) holds for every locally connected subset ~v of C(M,N). Hence, for every
such ~v, there exists an extension ν[~v] to var(M) with ν[~v](M) ⊆ D.

Now consider an arbitrary connected component E of the graph GL(M) from Defini-
tion A.1. By definition of LOCAL, there exists a unique critical subset ~v ∈ C(M,N), s.t.
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~v consists precisely of the interface variables adjacent in the Gaifman graph G(M) to
some variable in E. For all variables y ∈ var(E), we set ν(y) = ν[~v](y).

We claim that this mapping ν is the desired extension of µ to var(M) with ν(M) ⊆ D.
This claim is proved by inspecting each atom τ in the pattern of M :

1. If var(τ) ⊆ I(M,N), then var(τ) itself is a critical subset ~v of I(M,N) by the
definition of C(M,N). Since we are assuming µ|~v ∈ good(~v), we clearly have
ν(τ) = µ|~v(τ) ∈ D.

2. Now suppose that var(τ) 6⊆ I(M,N), i.e., var(τ) \ I(M,N) 6= ∅. By the definition
of the Gaifman graph, all variables in var(τ) \ I(M,N) are contained in the same
connected component of GL(M). Let ~v denote the corresponding locally connected
subset of I(M,N). Clearly, all variables in var(τ) ∩ I(M,N) are contained in ~v.
Then, since ν(τ) = ν[~v](τ) and ν[~v](τ) ∈ D, we have ν(τ) ⊆ D as desired.

Blocking the extension of a mapping to several nodes.

The critical subsets C(M,N) above allowed us to provide a criterion for deciding if some
mapping µ with dom(µ) ⊆ I(M,N) can be extended to a mapping ν on var(M) with
ν(M) ⊆ D. The theorem requires to verify that a mapping ν cannot be extended to
any node from a possibly big subset of p, namely the set of nodes containing at least
one variable from ~x′. Before we exhibit an FPT-algorithm for this verification task, we
introduce a plausibility check for the set ~x′ of free variables to which we must not extend
the given mapping µ:

Consider two arbitrary variables xi, xj ∈ ~x and let Ni (resp. Nj) denote the node in wdPT
p where xi (resp. xj) first occurs in top-down direction. Now suppose that xi ∈ dom(µ).
If Ni = Nj or Ni is a descendant of Nj , then also xj ∈ dom(µ) must hold. Intuitively, if
some variable is in the domain of µ, then all other variables introduced in the same node
or in some ancestor node must also be in the domain of µ. If this condition (which is
easy to check) is violated by µ, then we can immediately reject µ. In the sequel, we may
therefore assume w.l.o.g. that this condition is fulfilled.

Given a database D, a wdPT p, a partial mapping µ and a set ~x′ ⊆ ~x (where ~x are the
free variables of p), we now define two sets of nodes Nµ and Mµ, s.t. we search for a
solution µ′ ∈ p(D), which sends all nodes in Nµ into D and which does not bind any of
the variables introduced in any of the nodes in Mµ. For node N with parent N ′, we
write nvar(N) do denote the “new” variables in N , i.e., nvar(N) = var(N) \ I(M,N).
N ′µ = {N | N is a node in p and nvar(N) ∩ dom(µ) 6= ∅}.
Nµ = N ′µ ∪ {N | N is the ancestor of some node in N ′µ}
M′µ = {M |M is a node in p and nvar(M) ∩ ~x′}
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Mµ = {M |M ∈M′µ and no ancestor of M is inM′µ}.

Intuitively, Nµ contains the nodes which a desired solution µ′ ∈ p(D) is requested to send
into D. The two-stage definition via N ′µ was needed to add those nodes in p which do
not introduce new variables but which are on the path from the root of p to some node
N with nvar(N) ∩ dom(µ) 6= ∅. The two-stage definition ofMµ viaM′µ is based on the
intuition that if we block µ′ from an extension to some node M , then we implicitly of
course also block the extension to any descendant of M . Hence, Mµ only retains the
top-most node in caseM′µ contains ancestor-descendant pairs.

By our plausibility check above, we can be sure that a node inNµ can never be a descendant
of a node inMµ. Since Nµ is closed under the ancestor relation, we can in fact be sure
that, for every node M ∈ Mµ, some ancestor (but not necessarily the parent) of M is
contained Nµ. In our decision procedure for the ExtendSolution(g-TW(k) ∩ SBI(c))
problem, it will be important that there is no “gap” between the nodes in Nµ and in
Mµ. Therefore, we have to add nodes to Nµ and/orMµ to ensure that for every node
M ∈Mµ, the parent of M is in Nµ. In principle, exponentially many (w.r.t. the size of
p) possible combinations of Nµ andMµ are thus possible. Since we are only interested
in an FPT upper bound, we can afford to try all these possibilities. Hence, from now on,
we may assume that for every node M ∈Mµ, the parent of M is in Nµ.

The following lemma shows how to test for the existence of a solution µ′ of p(D) that
sends all nodes in Nµ into D but which cannot be extended to any of the nodes inMµ.

Lemma A.5. Given a database D, a wdPT p, a partial mapping µ and a set ~x′ ⊆ ~x
(where ~x are the free variables of p). Let Nµ and Mµ be as defined above. Moreover,
let ~vN denote all variables occurring in Nµ, i.e., ~vN =

⋃
N∈Nµ var(N). The following

equivalence holds:
There exists an extension µ′ of µ with µ′ ∈ p(D) if and only if
there exists an extension ν of µ to ~vN , s.t.

1. ν(N) ⊆ D for every N ∈ Nµ and

2. for every M ∈Mµ with parent N ∈ Nµ, there exists ~v ∈ C(M,N), s.t. ν|~v ∈ bad(~v).

Proof. The “only if” direction is immediate. Just set ν = ν ′|~vN
. For the “if” direction,

suppose that there exists an extension ν of µ to ~vN , s.t. conditions (1) and (2) of the
lemma hold. It suffices to show that, for every M ∈ Mµ, ν cannot be extended to ν ′
on nvar(M), s.t. ν ′(M) ⊆ D. Note that it may be the case that ν is not yet the desired
solution µ′ ∈ p(D) because ν can be extended to further variables in var(p). However, if
it is guaranteed that no extension of ν can send any of the nodes M ∈Mµ into D, then
we can be sure that a solution µ′ ∈ p(D) with the desired properties indeed exists. By
Lemma A.4, we conclude that condition (2) of the lemma expresses the condition that
for every M ∈Mµ, ν cannot be extended to ν ′ on nvar(M), s.t. ν ′(M) ⊆ D.
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In principle, a decision procedure for the problem ExtendSolution(g-TW(k) ∩ SBI(c))
can be obtained by a direct application of Lemma A.5: let Mµ = {M1, . . . ,Mβ} and,
for every i ∈ {1, . . . , β}, let Ni denote the parent of Mi. By Lemma A.5, we know that
there exists an extension µ′ of µ with µ′ ∈ p(D) and dom(µ) 6= ~x′ = ∅ if and only if there
exists a combination (C1, . . . , Cβ) of critical subsets Ci ∈ C(Mi, Ni), s.t. there exists an
extension ν of µ to ~vN with

1. ν(N) ⊆ D for every N ∈ Nµ and

2. ν|~vi ⊆ bad(~vi) for every i ∈ {1, . . . , β}.

Hence, our decision procedure for the problem ExtendSolution(g-TW(k) ∩ SBI(c))
just needs to check if such a combination (~v1, . . . , ~vβ) of critical subsets exists. We can
search for such a combination (~v1, . . . , ~vβ) by nested loops over all ~vi ∈ C(Mi, Ni) with
i ∈ {1, . . . , β}. Since ~vi ⊆ I(Mi, Ni) and |I(Mi, Ni)| ≤ c, there are at most 2c elements
in each C(Mi, Ni). Moreover, β is bounded by the size of p. Hence, we have to check at
most f(p) = (2c)|p| s combinations (~v1, . . . , ~vβ). To prove the algorithm to be in FPT, it
suffices to show that, for a given combination (~v1, . . . , ~vβ) of critical subsets, one can test
in polynomial time (w.r.t. the size of the input D and p) if there exists an extension ν of
µ to ~vN with

1. ν(N) ⊆ D for every N ∈ Nµ and

2. ν~vi ⊆ bad(~vi) for every i ∈ {1, . . . , β}.

Recall that bad(~vi) for every critical subset ~vi can be computed in polynomial time. Our
final goal is, therefore, to transform the given tree decomposition T of p into a tree
decomposition T ∗, s.t. every ~vi is covered by some bag in T ∗, i.e., for every i ∈ {1, . . . , β},
there exists a node ti in T ∗, such that ~vi is a subset of the bag at ti and such that the
width of T ∗ is still bounded by a constant. Clearly, if we have such a tree decomposition
T ∗, then our test for the existence of an extension ν of µ to ~vN with

1. ν(N) ⊆ D for every N ∈ Nµ and

2. ν~vi ⊆ bad(~vi) can be done in polynomial time (w.r.t. the size of D and p).

Transformation of the global tree decomposition

We transform the global tree decomposition T of p into the tree decomposition T ∗ by
the following algorithm:

T ∗ := T ;
for every i ∈ {1, . . . , β} {
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if ~vi is covered by some bag in T ∗ then do nothing;
else {

// i.e., ~vi is a locally connected subset of I(M,N)
let ~ei be a connected component in GL(Mi), s.t.

the variables in ~vi are connected via variables in ~ei;
choose an arbitrary variable vi ∈ ~ei;
choose an arbitrary node ti in T ∗, s.t. vi is in the bag Bi of ti;
add all of ~vi to the bag Bi;
// restore the connectedness condition of T ∗, i.e.:
for every node tj in T ∗ with y in bag Bi of ti for some y ∈ ~vi do

add y to the bag of every t along the path from ti to tj ;
}

}

The following lemma states that T ∗ resulting from the above algorithm indeed has the
desired properties.

Lemma A.6. Let T ∗ be the tree decomposition resulting from the above transformation
of the tree decomposition T of wdPT p. Then T ∗ fulfills the following properties:

1. for every i ∈ {1, . . . , β}, there exists a node ti in T ∗, s.t. ~vi ⊆ Bi, where Bi denotes
the bag of ti and

2. the width of T ∗ is at most (k + 1) · (c+ 1).

Proof. Property (1) follows immediately from the construction of T ∗. It remains to show
that the width of T ∗ has the desired upper bound. To this end, consider an arbitrary
node s in the tree decomposition T ∗ and suppose that the bag B of node s is augmented
during the construction of T ∗. Note that, in each iteration of the loop, we add at most
|~vi| variables to B with |~vi| ≤ c. Moreover, we add ~vi or some variable y ∈ ~vi to the bag B
of s only if B contains some “local variable” ui ∈ ~ei (this is ensured by the connectedness
condition of tree decompositions). We assume that T has treewidth k, i.e., the size of each
bag in T is bounded by k. Hence, each vertex s in T can be augmented in at most k + 1
iterations of the loop (it is ensured by the well-designedness condition of wdPTs that no
“local variable” ui can also occur in a different node Mj ∈Mµ with j 6= i). In total, we
thus start with bag size at most k+ 1 and we add at most (k+ 1) times up to c variables
to each bag. Hence, the bag size of T ∗ is bounded by k+ (k+ 1) · c ≤ (k+ 1) · (c+ 1).

This concludes our proof of Theorem 6.8.
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