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Abstract

Non-prismatic beams are widely employed in strategic structures like bridges and sport arenas, requiring
accurate analyses for a reliable and effective design. Unfortunately, features of non-prismatic beams lead
their modeling to be a non-trivial task: (i) variations of both cross-section area and second moment of area
impede an easy computation of analytical solutions compelling to use approximated methods; (ii) stress
distributions in prismatic and non-prismatic beams are substantially different, as proved by analytical results
available since the beginning of the past century; and (iii) the peculiar stress distribution in non-prismatic
beams entails complicated constitutive relations, as highlighted in recent publications. Usually, commercial
software does not properly account for all the features of non-prismatic beams, leading to inconsistent
structural analyses, erroneous estimations of the stress distribution, and -consequently- coarse predictions
of the structural element strength. The present paper proposes a strategy to effectively overcome the above-
mentioned problems. We derive an accurate analytical model for 2D non-prismatic beams, able to handle
the non-trivial stress distribution and the complicated constitutive relations. Thereafter, we compute both
homogeneous and particular solutions using the symbolic calculus software MAPLE and we analytically
define the Finite Element (FE) stiffness matrix for a planar, symmetric, linearly-tapered beam. Finally,
we compare the proposed FE and SAP2000 solutions, considering several beams with different geometries,
loads, and constraints. Numerical results highlight the reliability of the proposed modeling strategy, since
the resulting FE consistently handles all the critical issues of non-prismatic beams with an extremely low
computational cost. Conversely, SAP2000 solution remarks the need of ad hoc analysis tools and modeling
strategies to be used for the design of non-prismatic structural elements.
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1. Introduction

Non-prismatic structural elements are widely used in civil engineering since they allow to optimize the
structural behavior with respect to architectural and functional requirements, reducing structure weight,
material consumption, environmental impact, and costs. Limiting the attention to Reinforced Concrete (RC)
structures, non-prismatic beams are successfully employed in viaducts and bridges [16], industry roofing
[22], and multi-stories buildings [63]. Structural elements with variable cross-section are also experiencing a
renewed interest in the framework of geometrically optimized RC structures [3, 74]. Furthermore, additive-
manufacturing, a fast-developing technology, allows to bypass standard manufacturing constraints, opening
the path to a new generation of structures [71] and compelling for enhanced modeling.

Oddly, Paglietti and Carta [47] and Beltempo et al. [16] reported non-predicted and undesired phenomena
in non-prismatic RC structural elements, suggesting that their mechanical behavior is not as trivial as
expected. Furthermore, Paglietti and Carta [48], Yang et al. [73], and Orr et al. [46] noticed critical issues
in the procedures usually employed for the design of RC non-prismatic beams, indicating that analysis tools
for non-prismatic beams still need substantial improvements.

The present paper aims at (i) overcoming the critical issues discussed above, and (ii) improving the
design of non-prismatic structural elements by means of simple, consistent, and reliable models.

The remaining part of this section presents a detailed discussion of the problems occurring in the struc-
tural analysis of non-prismatic beams, for both continuous 1D models (Subsection 1.1) and numerical dis-
cretization (Subsection 1.2). Section 2 derives (i) an effective procedure for the recovery of stress dis-
tribution, (ii) a former non-prismatic planar beam model (denoted in the following as full Non-Prismatic
Beam Model (NPBM)) according to the derivation path proposed by Beltempo et al. [15] and accounting
for the novel stress recovery, and (iii) a latter beam model (denoted in the following as simplified NPBM),
obtained linearizing the full NPBM with respect to several parameters and allowing for the handling of both
homogeneous and particular analytical solutions. Section 3 discusses few numerical examples taken from
the literature for the validation of the proposed models. Section 4 derives analytical expressions for the
Finite Element (FE) stiffness matrix coefficients on the basis of the simplified NPBM analytical solution
and exploiting the analogy between direct stiffness and FE methods. Section 5 compares the obtained stiff-
ness matrix with the well-known software SAP2000 [25] (taken as example in the wide range of commercial
software for structural analysis) and highly-refined 2D FE analysis performed using Abaqus [61] (used as
reference solution). Finally, Section 6 discusses conclusions and delineates future developments.

The rigorous derivation path of NPBM allows to develop accurate and consistent analysis tools. Further-
more, NPBM based FE presents an extremely low computational cost since it discretizes one non-prismatic
structural element with just one FE, without the need of any mesh refinements. Conversely, commercial
software results highlight gaps in post-processing and design tools that are not able to describe the pecu-
liar stress distribution of non-prismatic beams and a coarse estimation of structural element stiffness, in
particular for high taper ratio and low slenderness.

1.1. Continuous 1D models

The simplest modeling approach for non-prismatic beams consists of modifying the Euler-Bernoulli or the
Timoshenko beam Ordinary Differential Equations (ODEs). Both the above mentioned models are derived
for prismatic bodies i.e., for beams with constant axial, shear, and bending stiffnesses (proportional to
cross-section area and second moment of area) [24]. Non-prismatic beam model is obtained just substituting
the constant stiffness coefficients of prismatic beam ODEs with functions accounting for the variations of
cross-section area and second moment of area [65, 52, 78, 69, 72]. This apparently trivial modification of
the beam model however leads to ODEs for which an explicit analytical solution is difficult to compute.
Indeed, in standard beam models, constitutive relations define curvature, axial, and shear deformations
as the quotients of bending moment, axial, and transversal internal forces divided by the corresponding
stiffnesses. Therefore, if the stiffness varies, generalized deformations turn out being rational functions
and their primitive integrals (necessary for the displacement evaluation) cannot be easily computed. In
particular, (i) polynomial solutions exist and can be easily computed only if bending, axial, and shear stiffness
are inversely proportional to the axial coordinate, [78, Example 10.11]; (ii) the analytical solution contains
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rational polynomials and logarithmic functions even for a simple tapered beam with a linear variation of the
cross-section thickness [57]; and (iii) the analytical solution cannot be computed for arbitrarily complicated
geometries.

In the past, when computers were not available, such a situation forced practitioners to use approximated
approaches e.g., tabular coefficients and charts for the estimation of non-prismatic beam stiffness [52] and
beam maximal displacements [51, 59]. Despite still widely used in everyday practice, such simplified strate-
gies are inadequate for nowadays engineering standard. Indeed, El-Mezaini et al. [28], Balkaya et al. [14],
and Al-Ghatani and Khan [1] indicate that tabular coefficients reported in [52] lead to a rough estimation
of the structural element stiffness, while Balduzzi et al. [11] demonstrate that estimations of beam maximal
displacements provided by Schneider et al. [59] can be affected by non-negligible errors.

The motivations for such errors in the simplest modeling approach can be partially addressed considering
the analytical solution of 2D equilibrium Partial Differential Equations (PDEs) for an infinite-long wedge
[64, Article 35]. Trahair and Ansourian [66], Balduzzi et al. [10], and Bennati et al. [17] highlight that,
according to the just mentioned analytical solution, a linear variation of the beam thickness drastically
modifies the stress distribution within the cross-section. As an example, a pure bending load applied to a
linearly-tapered beam leads to a non-vanishing (and non-negligible) distribution of shear stress [10, Section
1.1]. The non-trivial dependence of shear stress on bending moment (and axial internal force) can also be
inferred from the equilibrium Boundary Condition (BC) on the beam lateral surface. Since the normal unit
vector on the lateral surface is generally not perpendicular to the beam axis, equilibrium BC does not lead
the shear stress to vanish at the cross-section lower and upper boundaries (as usual in prismatic beams), but
to be proportional to the axial stress and the slope of the lateral surface [35, 9]. Similar considerations can
be generalized to beams with different peculiarities. As an example, Balduzzi et al. [8] demonstrated that a
non vanishing distribution of shear stress occurs also in a Functionally Graded Material (FGM) beam with
non-linear variation of the mechanical properties subjected to pure bending. However, also in this research
field, the dependence of shear stress on bending moment and horizontal internal force is not addressed in a
proper way [39, 43].

Several methods aiming at overcoming the so-far introduced critical issue have been proposed since the
beginning of the past century. As an example, the theory of shear strength proposed by Bleich [19], the
formula derived by Vu-Quoc and Léger [70], and the approach proposed by Zhou et al. [77] discuss stress
recovery procedures specific for non-prismatic beams. However, Paglietti and Carta [48] highlight that
the theory of shear strength leads to contradictory results, while Balduzzi et al. [10] demonstrate that the
recovery approach proposed in [70] may lead to rough estimations of the shear stress distribution. Such a
fundamental problem has been properly addressed only in recent years: Balduzzi et al. [7] have proposed
an effective recovery procedure based on Jourawski approach [36] and equilibrium BC for planar multi-layer
non prismatic beams, while Bertolini et al. [18] used the 3D equilibrium PDEs for an accurate recovery of
stress components in thin-walled rectangular and circular cross-sections.

Finally, non vanishing shear stress induced by pure bending loads introduces a further feature that needs
to be addressed: the non-prismatic beam constitutive relations. Indeed, if the shear stress distribution
explicitly depends on the bending moments, it is reasonable to expect that also shear deformation depends
on bending moment, leading to conclude that prismatic beam constitutive relations with variable coefficients
are simplistic. The problem has been identified since the end of the past century [70, 58]. Nevertheless,
effective strategies for the evaluation of non-prismatic beam constitutive relations have been proposed only
in recent years. Balduzzi et al. [9] have achieved the goal, embedding the information coming from non-
prismatic beam stress recovery in the stress potential and computing simple derivative, while Rajagopal [53]
has obtained similar constitutive relations using the variational asymptotic method.

Summarizing, the following three features have to be considered for the development of effective models
and accurate analysis tools for non-prismatic beams.

I. Variable stiffness. Variations of the cross-section thickness lead the ODEs analytical solution to
be non-polynomial, even for linearly tapered beams, and not available for arbitrarily complicated
geometries [65, 57, 56].

II. Non-trivial shear stress. The equilibrium BC leads the shear-stress to be proportional to the axial
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stress on lateral surfaces [20, 70, 21, 34, 35]. As a consequence, the shear stress does not uniquely
depend on the transversal internal force, rather also on axial internal force and bending moment
[64, 24, 66, 10].

III. Complicated constitutive relations. Similarly to shear stress, also the shear deformation depends
on all internal forces, requiring the use of more complicated constitutive relations [15, 9, 7].

Considering the problem from practitioners’ perspective, the above mentioned features prove that ana-
lytical and numerical tools developed for prismatic beams (e.g., FEs, stress recovery procedures, simplified
estimations of the maximal stress) are not adequate for the structural analysis and the design of non-
prismatic beams. Conversely, commercial software, design standards, and handbooks often ignore these
problems, coarsely estimating quantities of interest for practitioners [73] and, in extreme situations, leading
to wrong estimation of the real structural element resistance [10, 16, 47].

To the best of authors’ knowledge, few contributions simultaneously tackle all the three features above
mentioned. An attempt in this direction was proposed by Auricchio et al. [6] that use high order kine-
matics and highly refined stress distribution. The obtained model is extremely accurate, nevertheless its
complexity leads to a set of ODEs which require numerical tools to be solved, even in the simplest cases.
According to these encouraging results, Beltempo et al. [15] used a similar derivation procedure, but adopted
a Timoshenko-like kinematics (i.e., assuming that the cross-section behaves as a rigid body) and simplified
hypotheses on stress distributions. The obtained model is simpler than the one proposed by Auricchio et al.
[6], showing a similar accuracy. Later on, Balduzzi et al. [9] derive a non-prismatic beam model that uses
Timoshenko kinematic parameters and internal forces as independent Degree Of Freedoms (DOFs). The
simplicity of the resulting ODEs allows the explicit calculation both for homogeneous and particular solu-
tions. Anyway, analytical results can be computed and handled only for extremely simple geometries and
load distributions, restricting the practical utility of such an analytical result. Finally, a beam model similar
to [9] was obtained also by Rajagopal [53] using the variational asymptotic method.

1.2. Numerical discretization

Moving from the continuous 1D modeling to the numerical discretization of non-prismatic beams, the
discussion can focus on FE-like methods whose fundamental components are the element stiffness matrices
that are defined according to the nodal unknowns (usually displacements) and the corresponding shape
functions. Features of continuous 1D models, discussed in Section 1.1, do not allow for an immediate
numerical discretization of the non-prismatic beams, leading to an extensive literature in this specific field,
as discussed in the following.

The simplest numerical approach for solving non-prismatic beam models is the so-called stepped beam
approximation. It consists of approximating the non-prismatic beam as a sequence of prismatic elements
[38, 55, 49]. Obviously, such an approach converges to some solution, but it needs a lot of elements to
achieve a reasonable accuracy due to Feature I. - variable stiffness. Furthermore, it overlooks Features II.
- non-trivial shear stress and III. - complicated constitutive relations, turning out to be inconsistent and
uselessly expensive. Nevertheless, the above mentioned modeling approach is suggested in standard FE
literature [79, Chapter 1], lecture notes, and several commercial FE software tutorials.

A slightly more refined strategy consists of numerical solution of suitable weak formulations of the non-
prismatic beam model. As an example, Just [37] used the Euler Bernoulli beam theory and the virtual
work principle to compute the stiffness matrix terms, considering modified shape functions to account for
variations in cross-section area and second moment of area. Aiming at reducing the computational cost,
Browns [23] proposed a method where approximated interpolation functions were used to obtain bending
stiffness matrix. Another option was proposed in [78, Chapter 10] in which mixed formulations of both Euler
Bernoulli and Timoshenko beams are exploited in order to increase the accuracy of the obtained numerical
solution.

Eisenberger [27] derived stiffness matrix for structural elements with variable cross-section considering
the flexibility method. Another approach, based on flexibility method and Timoshenko theory, was presented
by Tena-Colunga [62], who included shear deformation and the variability of the cross-section for both 2D
and 3D non-prismatic beams.
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Murin and Kutǐs [45] used the direct stiffness method and transfer functions in order to evaluate the FE
stiffness matrix of a 3D beam with continuous variation of the cross-section area. More recently, Zhi-Luo
et al. [76] exploited the transfer matrix method for evaluating the stiffness matrix of both continuous and
discontinuous non-prismatic structural elements. Using the same method, Gimena et al. [31, 32] studied
spatial arch models providing both analytical results and numerical approximate procedures for curved
beams with different support conditions. Finally, Shooshtari and Khajavi [60] analyzed shape functions and
stiffness matrices of non-prismatic beams using a similar procedure.

Failla and Impollonia [29] developed a method based on the theory of generalized functions to solve
non-uniform and discontinuous beams in static analysis, resulting particularly useful in sensitivity, damage
identification, and optimization. Trinh and Gan [67] derived shape functions for a linearly tapered Tim-
oshenko solid beam element starting from the Hamilton principle. Finally, Tudjono et al. [68] explicitly
derived “exact” shape functions for both non-prismatic section and non-homogeneous Timoshenko beam
elements.

Unfortunately, all the above-mentioned researches treat Feature I. - variable stiffness, but neglect either
Feature II. - non-trivial shear stress or Feature III. - complicated constitutive relations, undermining the
accuracy of all the proposed numerical tools.

El-Mezaini et al. [28] studied the behavior of stepped and haunch planar beams by means of 2D FE
analysis. More recently, Balkaya [13] studied the behavior of beams whose cross section thickens toward
its supports and having T-section, estimating the stiffness of an equivalent two-node beam element with
fictitious average second moment of area and area by means of a 3D FE analysis. Such a strategy properly
addresses all non-prismatic beam features, but (i) it is extremely expensive from the computational point of
view, (ii) it does not allow an easy recovery of displacements and stresses, and (iii) it impedes the explicitly
identification of non-prismatic beam features and a deep understanding of the behavior of non-prismatic
structural elements.

Due to the difficulties connected with the correct modeling of non-prismatic beams, most of commercial
software started to include tapered elements in their libraries only from the early 2000s. Since then, the
use of commercial software in the analysis of non-prismatic structural elements diffused worldwide among
practitioners. Also in the research field, some authors use commercial software to validate their models. As
an example, Zeinali et al. [75] use results obtained using SAP2000 [25] as reference solution for the discussion
of the accuracy of the method they proposed.

Tena-Colunga and Becerril [63] investigated the accuracy of structural analysis commercial software
evaluating how accurate are ETABS and STAAD-Pro solutions when RC haunch beam are modeled. The
scrupulous and extensive parametric study shows that both ETABS and STAAD-Pro generally provide
reasonable estimations, but it leads to an underestimation of both the lateral displacements and bending
moments. Anyway, the stiffness coefficients taken from [62] are considered as reference values and the study
is limited to the analysis of the global stiffness of structures using non-prismatic structural-elements, while
it does not properly address Feature II. - non-trivial shear stress, lacking information on the strength.

2. 2D non-prismatic beam model derivations

This section derives analytical NPBMs. Subsection 2.1 defines the beam geometry and formulates the
2D problem. Subsection 2.2 introduces the displacement approximation and derives analytical expressions
for stress recovery. Finally, Subsections 2.3 and 2.4 derive the full and the simplified NPBMs, respectively.

If compared to the non-prismatic beam model proposed by Beltempo et al. [15], the NPBMs discussed in
the following (i) increases the model physical soundness, thanks to the use of internal forces as independent
variables, (ii) improves the description of stress distribution, and (iii) simplifies the resulting ODEs, allowing
for an effective handling of the beam analytical solution.

2.1. Problem formulation

As illustrated in Figure 1, the region Ω ⊂ R2 occupied by the planar beam is defined introducing a closed
and bounded set [0, L] of the x axis, the beam centerline i.e., a continuously differentiable function c (x), and
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the cross-section thickness i.e., a strictly positive definite and continuously differentiable function t (x) > 0.
For convenience, we assume that

1� |c′ (x)| � t (x) |c′′ (x)| and 1� |t′ (x)| � t (x) |t′′ (x)| (1)

where the notation ( · )
′

denotes the derivative with respect to x. The beam lower and upper bounds hl (x)
and hu (x) are defined as

hl (x) = c (x)− t (x)

2
; hu (x) = c (x) +

t (x)

2
(2)

A peculiar property of the above mentioned geometry description is that the cross-section is perpendicular
to the x axis. Such a modeling choice is substantially different from standard modeling approach used for
curved beams where the cross-section is assumed to be perpendicular to the centerline [2, Chapter IV], [33].
However, as discussed in [54], such an exotic choice may have advantages in several situations. Certainly,
it allows to bypass the need of parametric definition of the beam centerline and the use of additional local
coordinate systems, with the associated coordinate transformations and derivative chains.

O x

y

hl (x)

hu (x)

c (x)t (x)

L
Ω

Figure 1: Geometric parameters of the generic non-prismatic beam.

The beam has a constant depth b along the z direction and it behaves under the assumption of plane stress
and small displacements. The material constituting the beam is linear-elastic and isotropic, its constitutive
law is defined by the Young’s modulus E and the Poisson’s coefficient ν, and the shear modulus G reads

G =
E

2 (1 + ν)
(3)

The planar linear elastic problem is represented by the following set of 2D PDEs

εεε (x, y) =∇ssss (x, y) in Ω (4a)

∇ ·σσσ (x, y) =− fff (x, y) in Ω (4b)

εεε (x, y) =DDD : σσσ (x, y) in Ω (4c)

sss (x, y) =000 in ∂Ωs (4d)

σσσ (x, y) ·nnn (x, y) =− ggg (x, y) in ∂Ωg (4e)

where

� sss (x, y) is the 2D displacement field,
� εεε (x, y) and σσσ (x, y) are the planar strain and stress tensors, respectively,
� ∇s ( · ) and ∇ · ( · ) are the symmetric gradient and the divergence operators, respectively,
� fff (x, y) and ggg (x, y) are the distributed and the boundary loads, respectively,
� ∂Ωs and ∂Ωg are the displacement constrained and loaded boundaries, respectively,
� DDD the fourth order tensor representing the linear elastic isotropic material constitutive law, and
� nnn (x, y) is the normal unit vector.

The derivation of the NPBM starts from a variational formulation of the 2D linear elastic problem.
Specifically, we consider the mixed Hellinger-Reissner functional where only the displacement sss (x, y) and
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the stress σσσ (x, y) are the unknown fields, leading to the following expression.

Find sss and σσσ such that ∀δsss and ∀δσσσ∫
Ω

(δsss ·∇ ·σσσ +∇ · δσσσ ·sss+ δσσσ : DDD : σσσ + δsss ·fff) dΩ = 0
(5)

where the boundary equilibrium (4e) is an essential condition, directly enforced on stress field, while dis-
placement constrain (4d) is a natural one. Readers are recommended to refer to [15, Section 2.2] and [4] for
a more detailed discussion of the problem formulation.

We assume that the upper and lower bounds are unloaded (i.e., hu (x) and hl (x) ∈ ∂Ωg and ggg (x, y)|hu,l
=

000), while the beam has some displacement constraint on the initial or final cross-sections in order to guarantee
the well-posedness of the problem i.e., avoiding rigid-body motions.

2.2. Approximation of displacement and stress distributions

Suitable approximations of both displacement and stress cross-section distributions have to be introduced,
in order to reduce the 2D problem (5) defined on Ω into a 1D problem defined on [0, L].

The displacement components sx (x, y) and sy (x, y) are assumed in the following form

{
sx (x, y)
sy (x, y)

}
≈
[

1 0 c (x)− y
0 1 0

] u (x)
v (x)
θ (x)

 (6)

where u (x), v (x), and θ (x) represent the horizontal displacement, the vertical displacement, and the rotation
of the cross-section, respectively.

The stress components σx (x, y), σy (x, y), and τ (x, y) are assumed in the following form σx (x, y)
σy (x, y)
τ (x, y)

 ≈
 dHσx

(x, y) 0 dMσx
(x, y)

dHσy
(x, y) dVσy

(x, y) dMσy
(x, y)

dHτ (x, y) dVτ (x, y) dMτ (x, y)

 H (x)
V (x)
M (x)

 (7)

where H (x), V (x), and M (x) represent the horizontal force, the vertical force, and the bending moment
resulting from the stress acting on the cross-section, respectively. For convenience of representation, the
following functions have been used

dHσx
(x, y) =

1

tb
(8a)

dMσx
(x, y) =

12 (c− y)

t3b
(8b)

dHσy
(x, y) =2

6c′t′ − tc′′
t4b

y3 +
12c′2t− 36ct′c′ + tt′2 + 6c′′tc− t2t′′

2

t4b
y2+(

−12c2t+ t3
)
c′′ + 2 (t′′) ct2 − 48c′2ct+

(
72c2 − 2t2

)
t′c′ − 4t′2ct

2t4b
y+(

4c3t− ct3
)
c′′ +

(
t4

4 − c2t2
)
t′′ − 4

((
6c2 − t2

)
c′ − ctt′

2

)
(t′c− c′t)

2t4b

(8c)

dMσy
(x, y) =6

t′′t− 4t′2

t5b
y3 + 6

12t′2c− 3t′′ct+ c′′t2 − 6c′t′t

t5b
y2+

3
6c2tt′′ − 24c2t′2 − 4ct2c′′ + 24ctc′t′ − 1

2 t
3t′′ − 4t2c′2 + t2t′2

t5b
y+(

12c2t2 − 3t4
)
c′′ + 3ct

(
t2 − 4c2

)
t′′ + 24

((
2c2 − t2

4

)
t′ − tc′c

)
(t′c− tc′)

2t5b

(8d)
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dVσy
(x, y) =−12t′

t4b
y3 + 12

3t′c− tc′
t4b

y2 + 3
t2t′ − 12c2t′ + 8tc′c

t4b
y + 3

(
4c2 − t2

)
(t′c− tc′)

t4b
(8e)

dHτ (x, y) =
6c′

t3b
y2 +

t′t− 12cc′

t3b
y +

6c2c′

t3b
− t′c

t2b
− c′

2tb
(8f)

dMτ (x, y) =− 18t′

t4b
y2 +

36t′c− 12c′t

t4b
y +

12c′c

t3b
− 18t′c2

t4b
+

3t′

2t2b
(8g)

dVτ (x, y) =− 6

t3b
y2 − 12c

t3b
y − 6c2

t3b
+

3

2tb
(8h)

where the explicit dependence of the functions c and t on the axial coordinate x has been omitted for
notation compactness.

Stress distributions (8) have been obtained using a procedure similar to the one discussed in [26, 50] and
considering equilibrium boundary conditions detailed in [15, 7]. As a consequence, stress distribution (7)
satisfies (i) equilibrium PDEs (4b) and (ii) the boundary equilibrium (4e) at beam lower and upper bounds.
Conversely, Beltempo et al. [15] just interpolate the transversal stresses evaluated at upper and lower bounds
by means of boundary equilibrium. As a consequence, the cubic distribution of transversal stress (7) turns
out being more accurate than the stress description provided in [15], [9, 7] (where transversal stress has been
neglected), and [42, 41] (where transversal stress has a parabolic distribution).

A further advantage of the proposed stress representation with respect to the modeling approach proposed
in [15] is that in Equation (7) the stress distribution explicitly depends on the resulting internal forces,
allowing for a more easy interpretation of the model. Furthermore, Equation (7) clearly shows that τ (x, y)
depends on both axial internal force H (x) and bending moment M (x), effectively solving Feature II. -
non-trivial shear stress.

Finally, considering a prismatic beam (i.e., assuming c (x) = 0 and t (x) = t0), the non-vanishing stress
distributions (8) reduces to

dHσx
(x, y) =

1

t0b
; dMσx

(x, y) = −12y

t30b
; dVτ (x, y) = −3

(
t20 − 4y2

)
2t30b

(9)

i.e., to the standard distribution of stresses in prismatic beams.
Since the proposed beam model formulation allows the use of cross-sections non-orthogonal to the cen-

terline, a discussion of the effects of this feature on the model effectiveness has to be provided. As discussed
in [64, Section 35], a parabolic distribution of shear stress is a good approximation of the analytical solution
of equilibrium PDEs in infinite long wedge. Consistently, Auricchio et al. [6] have shown that a parabolic
distribution of shear and a cubic distribution of transversal stresses leads to extremely accurate descrip-
tion of stresses in non-prismatic beams. Conversely, no information is available for a prismatic beam with
inclined centerline.

O

x

y

x∗

y∗

β

c1

M∗
V ∗

H∗

1

Figure 2: Prismatic beam with inclined centerline, Cartesian coordinate systems, and applied loads.

Considering the prismatic beam (t (x) = t0) with inclined centerline (c (x) = c1x) depicted in Figure 2,
the stress tensor σσσ∗ represented in the Cartesian coordinate system Ox∗y∗ reads

σσσ∗ (x∗, y∗) =

[
σ∗x (x∗, y∗) τ∗ (x∗, y∗)
τ∗ (x∗, y∗) σ∗y (x∗, y∗)

]
= RRRT

[
σx (x, y) τ (x, y)
τ (x, y) σy (x, y)

]
RRR (10)

8



where [x∗, y∗]
T

= RRR [x, y]
T

, the stress tensor components σx, τ , and σy are defined according to Equation (7),
the matrix RRR reads

RRR =

[
cos (β) − sin (β)
sin (β) cos (β)

]
(11)

and the notation ( · )
T

denotes the transposition operation. Exploiting hypothesis (1), we can assume that
β ≈ sin (β) ≈ tan (β) = c1. Accordingly, the stress distribution evaluated within the cross-section orthogonal
to the beam centerline (the dashed line in Figure 2) reads

σσσ∗ (0, y∗) =

[
1 c1
−c1 1

] [
σx (−c1y, y) τ (−c1y, y)
τ (−c1y, y) σy (−c1y, y)

] [
1 −c1
c1 1

]
(12)

Considering M∗ (0) = 1 as the only acting internal force, the stress distributions evaluated according to
Equation (7) read

σx (x, y) = dMσx
(x, y) = −12y

t30b

τ (x, y) = dMτ (x, y) = −12c1y

t30b

σy (x, y) = dMσy
(x, y) = −12c21y

t30b

(13)

Applying transformation (12), the stress components σ∗x, σ∗y , and τ∗ read

σ∗x (0, y∗) = −12y∗

t30b

(
1 + o

(
c21
))

; τ∗ (0, y∗) = 0; σ∗y (0, y∗) = 0 (14)

In a similar way, considering an axial force H∗ (0) = 1 parallel to the beam centerline (i.e., H (0) = 1
and V (0) = c1) leads to the following distribution of stresses

σx (x, y) = dHσx
(x, y) =

1

t0b

τ (x, y) = dHτ (x, y) + c1d
V
τ (x, y) =

c1
t0b

σy (x, y) = dHσy
(x, y) + c1d

V
σy

(x, y) =
c21
t0b

(15)

Applying transformation (12), the stress components σ∗x, σ∗y , and τ∗ read

σ∗x (0, y∗) =
1

t0b

(
1 + o

(
c21
))

; τ∗ (0, y∗) = 0; σ∗y (0, y∗) = 0 (16)

Finally, considering a transversal force V ∗ (0) = 1 perpendicular to the beam centerline (i.e., H (0) = −c1,
V (0) = 1, and M (x) = −c1y) leads to the following distribution of stresses

σx (x, y) = −c1dHσx
(x, y)− c1ydMσx

(x, y) = c1

(
12y2

t30b
− 1

t0b

)
τ (x, y) = −c1dHτ (x, y)− c1ydMτ (x, y) + dVτ (x, y) =

3
(
t20 − 4y2

)
2t30b

+ o
(
c21
)

σy (x, y) = −c1dHσy
(x, y)− c1ydMσy

(x, y) + dVσy
(x, y) = c1

(
12y2

t30b
− 1

t0b

)
+ o

(
c31
)

(17)

Applying transformation (12), the stress components σ∗x, σ∗y , and τ∗ reads

σ∗x (0, y∗) = o (c1) ; τ∗ (0, y∗) =
3
(
t20 − 4y∗2

)
2t30b

+ o
(
c21
)

; σ∗y (0, y∗) = 0 (18)
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Neglecting high order terms, Equations (14), (16), and (18) are identical to Equation (9), demonstrating
that stress recovery (7) leads to a stress distribution that coincides with the one for prismatic beam, for
small values of the centerline slope. This proves that the considered modeling approach leads to stress
distribution consistent with standard beam results, confirming the effectiveness of the modeling strategy, at
least under the considered hypothesis. Further comments on the accuracy of the proposed stress recovery
can be found in Section 3, where numerical examples will be considered.

2.3. Derivation of full NPBM ODEs

We substitute Equations (6) and (7) in the 2D functional (5), we analytically evaluate integrals within
the cross-section, and, finally, we integrate by parts terms in which x derivative is applied to virtual fields.
Requiring to satisfy the resulting weak problem for all admissible virtual fields leads to the following ODEs

H ′

V ′

M ′

u′

v′

θ′


=


0 0 0
0 0 0 000

HMN HMV 0
HuH HuV HuM 0 0 Huθ

HvH HvV HvM 0 0 Hvθ

HθH HθM HθV 0 0 0





H
V
M
u
v
θ


−



q
p
m
0
0
0


(19)

Also in Equation (19), dependencies on the beam axis variable x were omitted for notation simplicity and
the matrix terms read

HMN = −Huθ =c′ (20a)

HMV = −Hvθ =− 1 (20b)

HuH =
1

420tbE

(
2t2c′′2 + 4tc′t′c′′ + 7

t2t′′2

2
− 7

(
14c′2t− t

2

(
t′2 − 20ν

))
t′′

+756c′4 + 30
(
t′2 + 28ν

)
c′2 + 7

(
3

4
t′4 − 10νt′2 + 60

))
+

10t′2 + 24c′2

120tbG

(20c)

HuM = HθH =
42t
(
c′2 − t′2

28 − 2t′′t
21 + ν

)
c′′ + 3tc′t′t′′ − 112t′c′3 − 4

(
3t′3 − 7t′ν

)
c′

35t2bE
− 8t′c′

5t2bG
(20d)

HuV = HvH =
2t′t2c′′ + 14c′t2t′′ − 196tc′3 +

(
9tt′2 − 140tν

)
c′

70t2bE
− c′

5tbG
(20e)

HθM =
3

5t3bE

(
2t2c′′2 − 4tc′t′c′′ +

t2t′′2

14
+ 2t

(
− t
′2

28
+ c′2 − ν

)
t′′ +

11

28
t′4

+2
(
7c′2 − ν

)
t′2 + 20c′4 − 40νc′2 + 20

)
+

63t′2 + 420c′2

35t3bG

(20f)

HθV = HvM =3
tt′3 − 56t2c′′c′ − 2t2t′′t′ + 28t

(
c′2 + ν

)
t′

70t3bE
+

3t′

5t2bG
(20g)

HvV =6
t′2t+ 28c′2t

35t2bE
+

6

5tbG
(20h)

q =

∫ hu(x)

hl(x)

fx (x, y) dy (20i)

p =

∫ hu(x)

hl(x)

fy (x, y) dy (20j)

m =

∫ hu(x)

hl(x)

fx (x, y) (c (x)− y) dy (20k)
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In ODEs (19), all matrix coefficients HiJ with i = u, θ, v and J = H,M, V do not vanish. Furthermore,
all of them depend on both material mechanical properties and cross-section geometry, indicating that
NPBM overcomes Feature III. - complicated constitutive relations.

2.4. Derivation of simplified NPBM

ODEs (19) have been derived on the basis of enhanced stress recovery (7). However, the coefficients (20c)-
(20h) can be simplified exploiting the hypothesis (1) that allows to neglect second derivatives and squared
(or higher order) first derivatives. This leads to the formulation of the following simplified model

H̃ ′

Ṽ ′

M̃ ′

ũ′

ṽ′

θ̃′


=



0 0 0
0 0 0 000

H̃MN H̃MV 0

H̃uH H̃uV 0 0 0 H̃uθ

H̃vH H̃vV H̃vM 0 0 H̃vθ

0 H̃θM H̃θV 0 0 0





H̃

Ṽ

M̃
ũ
ṽ

θ̃


−



q
p
m
0
0
0


(21)

in which the notation ˜( · ) has been used in order to distinguish coefficients and solution of the simplified
model. The coefficients H̃ij read

H̃MN = −Huθ =c′ (22a)

H̃MV = −Hvθ =− 1 (22b)

H̃uH =
1

tbE
(22c)

H̃uV = H̃vH =− c′

5tbG
− 2c′ν

tbE
(22d)

H̃θM =
1

12t3bE
(22e)

H̃θV = H̃vM =
6νt′

5t2bE
+

3t′

5t2bG
(22f)

H̃vV =
6

5tbG
(22g)

Equations (22c), (22e), and (22g), excluding the dependence of t, c and their derivatives on x, coincide with
stiffness coefficients of prismatic beams. Conversely, Equations (22d) and (22f) point out that constitutive
relations for non-prismatic beams are more complex than the ones of prismatic beams not just for the
variability of cross-section area and second moment of area. Specifically, shear force is associated to non-
vanishing bending moment and beam horizontal deformation.

Finally, the stiffness coefficients H̃uV and H̃θV (Equations (22d) and (22f)) explicitly depend on the
Poisson’s coefficient ν. These terms appear because we considered also the transversal stress σy, indicating
that it influences the whole structural behavior and, as a consequence, it cannot be neglected (as usual in
standard prismatic beam).

3. Numerical validation of the proposed NPBMs

This section discusses two numerical examples, aiming at verifying the accuracy of NPBMs derived in
Section 2. More in details, we consider numerical examples proposed in [15] and compare also different
models available in literature. We consider a depth b = 1 m, while the material has the following mechanical
properties

E = 105 MPa; ν = 0.3 (23)
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Figure 3: Tapered symmetric cantilever loaded by a vertical concentrated force. L = 10 m, H0 = 1 m, HL = 0.5 m, P = 100 kN.

3.1. Tapered symmetric cantilever

This subsection considers the tapered cantilever depicted in Figure 3, loaded on the right hand side
cross-section with a concentrated vertical force P = 100 kN.

The reference solution for the problem introduced above has been constructed using the FE software
Abaqus [61] and it has been obtained discretizing the 2D beam domain Ω with a structured mesh of
2000 × 150 CPS4 (4-node bi-linear plane-stress) FEs. The characteristic element size (0.005 m) has been
chosen in order to guarantee negligible numerical errors in the Abaqus solution. Aiming at mitigating the
influence of local effects induced by the constraint in left hand side cross-section and the load distribution in
right hand side cross-section, a distributing coupling constraint has been created, using the points (0, 0) and
(0, L) as reference nodes and a uniform weighting method. Cross-section displacements have been evaluated
by means of appropriate average / interpolation of nodal displacements, following a procedure similar to the
one detailed in [12, Section 5].

Considering a generic variable ψ, the relative error is defined as

eψ = 100
|ψ − ψref |
|ψref |

(24)

where ψref is the reference value of the variable evaluated according to 2D FE analysis introduced above.
Table 1 reports the maximum vertical displacement v (L) and rotation θ (L) evaluated according to

different beam models. Full NPBM and the model proposed by Beltempo et al. [15] show the best accuracy

model v (L) [mm] ev [%] θ (L) [mrad] eθ [%]
Euler-Bernoulli -6.5421 5.28 · 10−1 -1.2000 6.67 · 10−2

Timoshenko -6.5854 1.31 · 10−1 -1.2000 6.67 · 10−2

Beltempo et al [15] -6.577 3.04 · 10−3 - -
simp. NPBM Eq. (21) -6.5705 9.58 · 10−2 -1.1981 9.17 · 10−2

full NPBM Eq. (19) -6.5764 6.08 · 10−3 -1.1992 1.67 · 10−2

ψref (2D FE) -6.5768 - -1.1994 -

Table 1: Evaluation of tapered cantilever maximal displacements, comparison of different beam models.

in estimating the vertical displacement. As expected, simplified NPBM is less accurate, estimating vertical
displacement with an error close to 0.1 %. Finally, standard Euler-Bernoulli and Timoshenko beams with
variable cross-section stiffness are the coarse models, with relative errors up to 0.5 %.

Figure 4 depicts the distribution of shear and transversal stresses evaluated at x = 5 m according to
different beam models. As already noticed by Beltempo et al. [15], Timoshenko beam stress recovery is
not effective for tapered beams. Both NPBM and the model proposed by Beltempo et al. [15] provide a
more accurate description of the shear stress distribution. More in details, Figure 4(a) allows to recognize
the contribution of bending moment to the shear stress distribution, justifying the apparently paradoxical
constant distribution of shear within the cross-section.

The post-processing procedure in commercial software SAP2000 [25] estimates shear stress only in points
(cross-section centroid and boundaries) that may be critical for the cross-section design. It is evident that
provided estimations of the shear stress are consistent with prismatic Timoshenko beam theory and therefore,
not reliable for the structural analysis of tapered beams.
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Figure 4: Tapered cantilever, distribution of shear and transversal stresses evaluated at x = 5 m. Comparison of different
models.

Concerning the recovery of transversal stress, Figure 4(d) highlights that NPBMs provide an accurate
estimation of this quantity, while Beltempo et al. [15] provides coarser estimations, with relative errors larger
than 30%. Finally, Timoshenko beam model assumes that this stress component has a vanishing magnitude
and no information on this stress component is provided in SAP2000 post processing routines.

Transversal stress is two order of magnitude smaller than shear stress, hence it can be neglected for
isotropic materials, like steel. However, transversal stress tends to concentrate near the cross-section bound-
aries, where also axial stress and shear are large in magnitude. As a consequence, transversal stress can play
a crucial role for materials with reduced (or vanishing) resistance to traction, like concrete for which a beam
model capable to accurately estimate such a quantity may be extremely useful during structural design.

3.2. Non-symmetric parabolic-shaped cantilever

This subsection considers the non-symmetric parabolic-shaped cantilever depicted in Figure 5, loaded
on the right hand side cross-section with a concentrated vertical force P = 100 kN and a horizontal force
Q = 100 kN. Beltempo et al. [15] have analyzed the same beam considering the vertical and the horizontal
loads separately. Considering only the horizontal load, numerical results point out that the maximal vertical
displacement is three times larger than the horizontal one. The huge influence of the beam centerline on
the beam stiffness was previously noticed by Auricchio et al. [6] analyzing an arch shaped beam subjected
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Figure 5: Non-symmetric parabolic-shaped cantilever loaded by a generic concentrated force. L = 5 m, H0 = 1 m, HL = 0.5 m,
P = Q = 100 kN.

to an axial load and, more recently, by Murin et al. [44] in the context of enhanced FGM beam modeling.
The reference solution for the problem introduced above has been obtained using a procedure similar to the
one described in Section 3.1 and a structured mesh of 1000× 100 elements.

Table 2 reports the maximum displacements u (L), v (L), and rotation θ (L) evaluated according to
different beam models. Timoshenko beam model leads to the coarsest estimation, with relative error larger

model u (L) [mm] eu [%] v (L) [mm] ev [%] θ (L) [mrad] eθ [%]
Timoshenko 7.8540 · 10−6 8.32 · 101 -1.2026 · 10−3 3.89 · 100 -4.5001 · 10−4 3.40 · 100

Beltempo et al [15] - - -1.2138 · 10−2 3.00 · 100 - -
simp. NPBM Eq. (21) 4.6892 · 10−5 6.19 · 10−2 -1.2293 · 10−3 1.76 · 100 -4.5987 · 10−4 1.28 · 100

full NPBM Eq. (19) 4.6939 · 10−5 1.62 · 10−1 -1.2471 · 10−3 3.36 · 10−1 -4.6473 · 10−4 2.38 · 10−1

ψref (2D FE) 4.6863 · 10−5 - -1.2513 · 10−3 - -4.6584 · 10−4 -

Table 2: Evaluation of parabolic-shaped cantilever maximal displacements, comparison of different beam models.

than 3 % for all the three considered quantities. The model proposed by Beltempo et al. [15] provides a
better estimation, but the error is anyway near to 3 %. Conversely, the simplified NPBM leads to errors
below 2 %, while the full NPBM provides the best estimation of maximal displacements, with errors below
0.5 %.

Figure 6 depicts the distribution of shear and transversal stresses evaluated at x = 2.5 m according to
different beam models. Figure 6(b) clearly shows that, also in this case, shear recovery formula associated
to Timoshenko beam leads to unreliable results. The maximal magnitude of shear stress is underestimated
more than 35 %. Furthermore, Timoshenko beam model assumes a-priori that maximal shear stress occurs
at the cross-section centroid, while -in reality- maximal shear stress occurs at the cross-section lower bound.
Conversely, the shear stress recovery procedure proposed by Beltempo et al. [15] and the one derived in this
paper lead to a more reliable estimation of the distribution of shear stress, with relative errors smaller than
3 %. Figure 6(a) explains why the shear stress occurs at the cross-section lower bound where the shear
is proportional to the magnitude of axial stress. In the specific case, bending moment produces the main
effects, while axial load is negligible.

Figure 6(d) confirms that the transversal stress recovery proposed in this document is effective even for
non-trivial geometries and with arbitrary load conditions. NPBM estimates the distribution of transversal
stresses with negligible errors, while Beltempo et al. [15] leads to errors larger than 30 %. Similarly to shear
stress distribution, Figure 6(c) illustrates the non-negligible effects that axial internal force and bending
moment have on the distribution of transversal stress.

3.3. Conclusion on analytical beam models

Numerical results illustrated in Section 3 demonstrate that standard analytical beam models and com-
merical FE software developed for prismatic beams do not reliably describe the behavior of non-prismatic
beams. Indeed they lead to coarse estimation of displacements (with errors larger than 3 % for statically
determinate structures) and stresses (with errors larger than 30 % in the estimation of shear and equal to
100 % for transversal stress). The model proposed by Beltempo et al. [15] is more accurate, however it
just linearly interpolates the distribution of transversal stresses, leading to errors larger than 30 %. Finally
NPBMs provide the best accuracy in the recovery of stress distribution, with errors usually below 3 %.
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Figure 6: Parabolic-shaped cantilever, distribution of shear and transversal stresses evaluated at x = 2.5 m. Comparison of
different models.

The full NPBM leads also to extremely accurate estimations of displacements, with errors usually below
0.5 %, but the complexity of the equations does not allow an easy handling of the analytical solution. Con-
versely, the simplified NPBM has a lower accuracy in the estimations of displacements, with errors below
2 % (sufficient for most of practical applications), but its handling is simpler.

4. Analytical definition of tapered beam FE stiffness matrix

This section evaluates FE stiffness matrix using the beam model developed in Section 2. Considering
the linearly-tapered symmetric beam depicted in Figure 7(a) (i.e., assuming c (x) = 0 and t (x) = t0 + t1x)
leads ODEs (21) to further simplify, as follows

H̃ ′

Ṽ ′

M̃ ′

ũ′

ṽ′

θ̃′


=



0 0 0
0 0 0 000

0 H̃MV 0

H̃uH 0 0 0 0 0

0 H̃vV H̃vM 0 0 H̃vθ

0 H̃θM H̃θV 0 0 0





H̃

Ṽ

M̃
ũ
ṽ

θ̃


−



q
p
m
0
0
0


(25)
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More in details, the axial problem, depending on variables H̃ and ũ, decouples from the shear bending
problem depending on Ṽ , M̃ , ṽ, and θ̃ due to the symmetry of the geometry.

The homogeneous solution associated to ODEs (25) reads

H̃ =C6 (26a)

Ṽ =C5 (26b)

M̃ =− C5x+ C3 (26c)

ũ =C4 +
ln (t1x+ t0)C6

Et1b
(26d)

ṽ =
6

Eb

(
2C5 ln (t1x+ t0)

t1
3 +

C3t1 + t0C5

(t1x+ t0) t1
3

)
− ν

Eb

(
12C5 ln (t1x+ t0)

5t1
+

6C3t1 + 6t0C5

5t1 (t1x+ t0)

)
− 3C3t1 + 3t0C5

5t1 (t1x+ t0)Gb
+ C2x+ C1

(26e)

θ̃ =
(12C5x− 6C3) t1 + 6t0C5

Ebt1
2 (t1x+ t0)

2 +− 6νC5

5 (t1x+ t0)Eb
− 3C5

5Gb (t1x+ t0)
+ C2 (26f)

The particular solution for ODEs (25) obtained considering a uniformly distributed transversal load p
and a uniformly distributed axial load q reads

H̃ =qx (27a)

Ṽ =px (27b)

M̃ =− 1/2px2 (27c)

ũ =
− ln (t1x+ t0) qt0 + qxt1

t1
2Eb

(27d)

ṽ =− 6p

t1
4Eb

(
(t1x+ 3t0) ln (t1x+ t0)− 2t1

2x2 + 4t0t1x+ t0
2

2 (t1x+ t0)

)
+

6νp

5Ebt1
2

(
(t1x+ 3t0) ln (t1x+ t0)− 3t1

2x2 + 6t0t1x+ 2t0
2

2 (t1x+ t0)

)
+

3p

5t1
2Gb

(
(t1x+ t0) ln (t1x+ t0) +

t1
2x2 + 2t0t1x+ 2t0

2

2 (t1x+ t0)

) (27e)

θ̃ =− 6p

Ebt1
3

(
ln (t1x+ t0) +

4t0t1x+ 3t0
2

2 (t1x+ t0)
2

)
+

(
6νp

5Ebt1
+

3p

5Gbt1

)(
ln (t1x+ t0) +

t0
(t1x+ t0)

)
(27f)

Both homogeneous and particular solutions of ODEs (25) were computed using the symbolic-calculus
software MAPLE [40], overcoming any possible issue coming from Feature I. - variable stiffness.

Exploiting the analogy between direct stiffness and FE methods [30], the stiffness matrix and the load
vector for a generic tapered beam were analytically computed assuming appropriate BCs and loads. Specif-
ically, the ith column of the beam stiffness matrix was calculated assigning vanishing loads and a unitary
value to the ith nodal displacement. Stiffness matrix coefficients are the resulting internal forces at beam
extremities. Similarly, load vector is computed evaluating the resulting internal forces at beam extremities,
considering vanishing nodal displacements and suitable load distributions.

Stiffness matrix coefficients are associated to the set of nodal DOFs and sign convention reported in
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Figure 7(b), reducing ODEs (19) to the following algebraic problem
K11 0 0 K14 0 0

0 K22 K23 0 K25 K26

0 K32 K33 0 K35 K36

K41 0 0 K44 0 0
0 K52 K53 0 K55 K56

0 K62 K63 0 K65 K66





û1

v̂1

θ̂1

û2

v̂2

θ̂2


=



Ĥ1

V̂1

M̂1

Ĥ2

V̂2

M̂2


(28)

where

K11 =
Ebt1

ln (Lt1 + t0)− ln (t0)
(29a)

K22 =− 50EG2bt1
3 (Lt1 + 2t0) /

(
120G2

(
νt1

2 − 5
)

(Lt1 + 2t0) ln (Lt1 + t0)

−120G2
(
νt1

2 − 5
)

(Lt1 + 2t0) ln (t0) + 3
(
(2Gν + E) t1

2 − 20G
)2
t1L
) (29b)

K23 =5t0Gb
(
L (2Gν + E) t1

2 + t0 (2Gν + E) t1 − 10GL
)
Et1

3/(
120G2

(
νt1

2 − 5
)

(Lt1 + 2t0) ln (Lt1 + t0)− 120G2
(
νt1

2 − 5
)

(Lt1 + 2t0) ln (t0)

+3
(
(2Gν + E) t1

2 − 20G
)2
t1L
) (29c)

K33 =− 10t0
2GEb

(
−2G (Lt1 + t0)

2 (
νt1

2 − 5
)

ln (Lt1 + t0) + 2G (Lt1 + t0)
2 (
νt1

2 − 5
)

ln (t0)

+
((

2Lνt1
3 + 2νt0t1

2 − 15Lt1 − 10t0
)
G+ Et1

2 (Lt1 + t0)
)
t1L
)
/

3L/
(
40G2

(
νt1

2 − 5
)

(Lt1 + 2t0) ln (Lt1 + t0)− 40G2
(
νt1

2 − 5
)

(Lt1 + 2t0) ln (t0) +((
2νt1

2 − 20
)
G+ Et1

2
)2
t1L
) (29d)

K14 =K41 = −K44 = −K11 (29e)

K25 =K52 = −K55 = −K22 (29f)

K32 =−K35 = −K53 = K23 (29g)

K26 =K62 = −K56 = −K65 = K22L−K23 (29h)

K36 =K63 = K23L−K33 (29i)

K66 = (K22L−K23)L−K23L+K33 (29j)

Ĥ1 =
q (Lt1 − ln (Lt1 + t0) t0 + t0 ln (t0))

t1 (− ln (Lt1 + t0) + ln (t0))
(30a)

V̂1 =p
(
−
(
L (2Gν + E)

2
t1

5 + t0 (2Gν + E)
2
t1

4 − 10 (10Gν + 3E)GLt1
3 − 10Gt0 (14Gν + 3E) t1

2

+400G2Lt1 + 600G2t0
)
t0 ln (Lt1 + t0) +

(
L (2Gν + E)

2
t1

5 + t0 (2Gν + E)
2
t1

4

−30 (10/3Gν + E)GLt1
3 − 10Gt0 (14Gν + 3E) t1

2 + 400G2Lt1 + 600G2t0
)
t0 ln (t0)

+t1

(
t0 (2Gν + E)

2
t1

4 + 5GL (−6Gν + E) t1
3 − 30Gt0 (14/3Gν + E) t1

2 + 100G2Lt1

+600G2t0
)
L
)
/
(
t1
(
40G2

(
νt1

2 − 5
)

(Lt1 + 2t0) ln (Lt1 + t0)

−40G2
(
νt1

2 − 5
)

(Lt1 + 2t0) ln (t0) + t1
(
(2Gν + E) t1

2 − 20G
)2
L
))

(30b)
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M̂1 =t0p
(

8
(
νt1

2 − 5
)
G
(
(2Gν + E) t1

2 − 10G
)

(Lt1 + t0)
2
t0 (ln (Lt1 + t0))

2

−2t0

(
8
(
νt1

2 − 5
)
G
(
(2Gν + E) t1

2 − 10G
)

(Lt1 + t0)
2

ln (t0) + t1

(
L (2Gν + E)

2
t1

5

+t0 (2Gν + E)
2
t1

4 − 10 (8Gν + 3E)GLt1
3 − 10 (10Gν + 3E)Gt0t1

2 + 300G2Lt1

+400G2t0
)
L
)

ln (Lt1 + t0) + 8
(
νt1

2 − 5
)
G
(
(2Gν + E) t1

2 − 10G
)

(Lt1 + t0)
2
t0 (ln (t0))

2

+2t1

(
L (2Gν + E)

2
t1

5 + t0 (2Gν + E)
2
t1

4 − 30 (8/3Gν + E)GLt1
3 − 10 (10/Gν + 3E)Gt0t1

2

+300G2Lt1 + 400G2t0
)
t0L ln (t0) + t1

2
(
L (2Gν + E) (−6Gν + E) t1

5 +
(
−8G2ν2t0 + 2E2t0

)
t1

4

+10GL (10Gν + E) t1
3 − 20Gt0 (2Gν + E) t1

2 − 200G2Lt1 + 400G2t0
)
L2
)
/(

−2t1
3
(
40G2

(
νt1

2 − 5
)

(Lt1 + 2t0) ln (Lt1 + t0)− 40G2
(
νt1

2 − 5
)

(Lt1 + 2t0) ln (t0)

+t1
(
(2Gν + E) t1

2 − 20G
)2
L
)
L
)

(30c)

Ĥ2 =qL− Ĥ1 (30d)

V̂2 =pL− V̂1 (30e)

M̂2 =M̂1 − V̂2L+
qL2

2
(30f)

Evaluating coefficients (29) and (30) for t1 = 0 (i.e., considering a prismatic beam) leads to indeterminate
forms 0/0. However, evaluating their limits for t1 → 0 the following values are obtained

lim
t1→0

K11 =
Et0b

L
(31a)

lim
t1→0

K22 =5
GEbt0

3

6ELt0
2 + 5GL3

(31b)

lim
t1→0

K23 =5
GEbt0

3

12Et0
2 + 10GL2

(31c)

lim
t1→0

K33 =
3t0

5E2b+ 10EGbL2t0
3

36ELt0
2 + 30GL3

(31d)

lim
t1→0

Ĥ1 =
1

2
Lq; lim

t1→0
V̂1 =

1

2
Lp; lim

t1→0
M̂1 =

1

12
L2p (32)

The stiffness coefficients and the nodal load vector obtained for prismatic beam according to the model
proposed in this paper are identical to the ones reported in standard literature [78], confirming the capability
of NPBM to recover trivial solutions.

5. Numerical validation of the proposed tapered beam FE stiffness matrix

This section discusses the accuracy of the modeling approach presented in Section 4 in the evaluation
of the stiffness matrix of an elementary linearly-tapered beam. Accordingly, the FE stiffness matrices
of several linearly tapered beams have been evaluated using analytical formulas (29) and the commercial
software SAP2000, while the reference solution has been computed using 2D FE and the commercial software
Abaqus.

According to SAP2000 Analysis Reference Manual [25], cross-sections are defined independently and
then assigned to the element. Variations of cross-section geometry along the element length is accounted
referring to previously defined cross-section geometries and interpolating the values assigned at the two
ends. Furthermore, users can choose the interpolation to be used for bending stiffness which can be linear,
quadratic, or cubic, suggesting to use linear interpolation for beams having linearly-varying depth, quadratic
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interpolation for thin walled beams with variable thickness, and cubic interpolation for rectangular cross-
sections with variable thickness. Regarding the remaining properties (axial and shear stiffness, mass and
weight), they are assumed to vary linearly between the ends of each FE. The user may also specify length
l of segments to be used for the analysis of non-prismatic beams. Using this option allows to reduce the
magnitude of numerical errors, nevertheless this straightforward technique of dividing a tapered beam into a
number of uniform elements is scarcely efficient [75]. Cubic interpolation for the bending stiffness in vertical
plane and other default settings (relative length l = 0.5, linear interpolation for the bending stiffness in
horizontal plane) are used and each tapered beam has been modeled with a single beam FE.

Abaqus solution is obtained using the approach introduced in Section 3.1. The clamp of initial and
final cross-sections has been modeled constraining all DOFs of reference nodes (0, 0) and (0, L). The ith

column of the beam stiffness matrix has been calculated assigning a unitary value to the ith reference node
displacement and evaluating the reaction forces.

5.1. Parametric study

The parametric study presented in this section considers a symmetric tapered beam, as in Figure 7. To
study NPBM and SAP2000 accuracy, the obtained results have been compared with those calculated with
the FE software Abaqus.

O x

y

H0 HL

L

H

1

α/2

(a) Symmetric tapered beam

u1

v1
θ1

u2

v2
θ2

1 2

(b) DOFs definition

Figure 7: Symmetric tapered beam geometry considered for the parametric study and definition of nodal DOFs and sign
convention adopted for the coefficients of the stiffness matrix.

More in details, we define the taper α = |HL −H0| /L, where H0 and HL are the heights evaluated for
x = 0 and x = L, respectively. We consider 0 ≤ α ≤ 0.2, L/H = 10, 5, 2.5, where H = (H0 +HL) /2 = 1m,
and we set the beam depth b = 1 m. The mechanical properties of the material are defined in Equation (23).

The average error of the stiffness matrix is defined as

errK =

∑
i,j=1..6

∣∣∣Kmod
ij −KABQ

ij

∣∣∣∑
i,j=1..6

∣∣∣KABQ
ij

∣∣∣ (33)

with mod = NPM , SAP and KABQ
ij is the reference value, evaluated using Abaqus.

Figure 8 plots the NPBM and SAP2000 errors errK as a function of the taper α for different beam
slenderness. Considering α = 0, the stiffness matrix error increases, decreasing the beam slenderness. Such
a behavior is expected since the accuracy of the beam model increases with the beam slenderness, as well
documented in literature (see [5] and therein referenced papers). In a similar way, given a fixed beam slen-
derness L/H, the stiffness matrix error increases increasing the beam taper α. Also this behavior is expected
and well documented in literature. Timoshenko and Goodier [64] discussing the stress distribution within
an infinite long wedge specified that a parabolic distribution of shear stress is a reasonable approximation
of the analytical solution for small taper. Obviously, also the accuracy of the model decreases for increasing
taper and the numerical results are consistent with the above discussed theoretical argumentation.

Comparing the performances of different modeling approaches, it is evident that NPBM leads to an
estimation of the stiffness matrix that is similar or better than the estimation provided by SAP2000 in most
of cases. Specifically, NPBM and SAP2000 perform very similarly for ratios L/H = 10, 5, while SAP2000
leads to an error on the stiffness matrix evaluation that is more than 1.5 times larger than the error of
NPBM for L/H = 2.5 and α = 0.2. Finally, NPBM errors are always smaller than 0.9 %, while SAP2000
errors overcome the threshold of 1.2 %.
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Figure 8: NPBM and SAP2000 stiffness matrix error evaluated for varying taper α nd beam slenderness L/H.

5.2. Explicit stiffness matrix

This section reports the stiffness matrix coefficients for a tapered beam obtained respectively with Abaqus
(KKKABQ), the NPBM (KKKNPBM ), and SAP2000 (KKKSAP ). This explicit comparison aims at discussing more
in detail differences between the NPBM and SAP2000 stiffness matrices.

Considering α = 0.2 and L/H = 2.5 we obtain

KKKABQ =107
·


3.880

0 0.417 sym
0 0.661 1.338

−3.880 0 0 3.880
0 −0.417 −0.661 0 0.417
0 0.381 0.315 0 −0.381 0.637

 (34)

KKKNPBM =107
·



3.915
(0.91)

0 0.417 sym
(0.12)

0 0.664 1.351
(0.51) (0.99)

−3.915 0 0 3.915
(0.91) (0.91)

0 −0.417 −0.664 0 0.417
(0.12) (0.51) (0.12)

0 0.379 0.310 0 −0.379 0.637
(0.55) (1.52) (0.55) (0.07)



(35)
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KKKSAP =107
·



3.915
(0.91)

0 0.413 sym
(0.86)

0 0.646 1.302
(2.35) (2.71)

−3.915 0 0 3.915
(0.91) (0.91)

0 −0.413 −0.646 0 0.413
(0.86) (2.35) (0.86)

0 0.387 0.312 0 −0.387 0.656
(1.73) (0.83) (1.73) (2.99)



(36)

In Equations (35) and (36), the numbers in parenthesis are the differences with the reference values expressed

in percentage 100
∣∣∣Kmod

ij −KABQ
ij

∣∣∣ / ∣∣∣KABQ
ij

∣∣∣.
The axial stiffness terms (Kij for i, j = 1, 4) evaluated with both NPBM and SAP2000 are identical and

in good agreement with the reference stiffness matrix KKKABQ, just leading to a small overestimation (< 1 %)
of the beam stiffness. This result is expected since in simplified NPBM axial and shear-bending problems are
decoupled (see Equation (25))and the axial stiffness (22c) is equivalent to the prismatic beam stiffness, just
accounting for the linear variation of cross-section area and consistently with the SAP2000 interpolation.

The situation is different for the shear bending problem, for which SAP2000 overestimates the stiffness
matrix coefficients with errors often larger than 2 %, while analytical expressions (29) lead to estimations
associated to errors always below 1 %. Such a simple remark confirms critical issues in SAP2000 already
noticed by Tena-Colunga and Becerril [63] for other FE commercial software.

6. Final remarks

This paper proposes effective strategies for the analytical and numerical modeling of non-prismatic beams.
The literature review highlights that the analysis of structures with non-prismatic elements are characterized
by three features: (I) variable stiffness, leading to non-polynomial solution of the beam model ODEs, (II)
non-trivial shear stress, depending on both bending and axial loads, and (III) complicated constitutive
relations.

Aiming at overcoming these critical issues, the present paper proposes two -full and simplified- non-
prismatic planar beam models and exploits the simplified NPBM analytical solution for the computation
of tapered element stiffness matrix. Aiming at evaluating the performances of existing modeling strategies,
we carried out a parametric study on single element stiffness matrix. We considered (i) the FE proposed in
this paper, (ii) the numerical results of the commercial software SAP2000, and (iii) a 2D FE analysis done
using Abaqus (used as reference solution).

Results highlight that SAP2000 estimates structural element stiffness with errors larger than 2 % and
maximal magnitude of shear stress with errors up 30 %. Furthermore, SAP2000 does not correctly predict
the location of the maximal shear stress and it does not provides information about transversal stress.
Conversely, NPBM based FE estimates stiffness with errors usually smaller than 1 % and maximal magnitude
of stress components with errors usually below 3 %. NPBM-based FE achieves also the best numerical
performance since (i) it does not need any pre-processing and post-processing computation, (ii) it uses
standard nodal DOFs and (iii) it allows to model one structural component with just one FE.

Commercial software results confirm that non-prismatic beams need ad-hoc analysis tools, not yet avail-
able for practitioners. Conversely, NPBM-based FE allows for a a consistent and effective modeling of
non-prismatic beams, representing a promising base for the development of enhanced and reliable analysis
tools for non-prismatic beams.

Further developments of the present work will include the exploitation of full NPBM model, aiming at
further increasing the accuracy of the proposed method, the generalization of the NPBM to 3D frames, and
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the implementation of numerical approaches considering reinforcing bars effects and non-linear constitutive
relations.
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