
Static Analysis for
Ontology-Mediated Querying

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Gerald Berger
Registration Number 0958520

to the Faculty of Informatics
at the TU Wien

Advisor: O.Univ.Prof. Dr. Georg Gottlob
Second advisor: Ao.Univ.Prof. Dr. Uwe Egly

The dissertation has been reviewed by:

Prof. Dr. Pablo Barceló Prof. Dr. Marie-Laure Mugnier

Vienna, 7th May, 2019
Gerald Berger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Gerald Berger
Abelegasse 26/2/11, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Mai 2019
Gerald Berger

iii

Acknowledgements

First and foremost, I would like to thank my advisor Georg Gottlob for his guidance and
support. I thank him for providing a prime example of academic excellence to me, and I
deeply appreciate his human qualities as a mentor. Georg is probably the busiest person
I have ever met, yet he was able to provide valuable support and insights into topics that
go far beyond the scope of this thesis. During the last four years, Georg has definitely
become one of my personal role models.

Although Andreas Pieris is not my official advisor, a quick inspection of my publication
list reveals that he has been a steady companion of mine during my studies. It is thus
fair to say that Andreas is actually an advisor of mine. Without his support, successful
completion of this thesis would not be imaginable. I thank him for the great work together
and for his constant support. Andreas also helped me a lot in writing the proposal for
the DOC fellowship of the Austrian Academy of Sciences, which secured funding for my
PhD studies.

During my studies, I have received support from many people. In the initial phase
of my studies, I worked as a senior lecturer in the group of Gerti Kappel, and I thank
her for this opportunity. Being then a part-time university assistant, Stefan Woltran
provided additional financial support during this early phase of my studies, and I thank
Reinhard Pichler for helping me to obtain the position as a university assistant at our
group in the first place. I am also grateful to Thomas Eiter, who, as the head of our
institute, offered help and advice in all circumstances. Moreover, I am thankful that
he provided office space to me when I finally transitioned from a university position to
my DOC fellowship. I also thank Uwe Egly for co-supervising this thesis, and for the
support I received from him as a tutor and teaching assistant during my undergraduate
and master studies.

Occupying three different positions in four years incurs plenty of bureaucratic effort,
and equally does traveling to conferences, etc. I thank Juliane Auerböck, Beatrix Buhl,
and Eva Nedoma – the secretaries of our institute – for helping me with all these efforts.

Many thanks also to the doctoral college LogiCS (FWF-project no. W1255-N23) for
funding most of my research trips during my studies. Moreover, I thank the numerous
young colleagues that I met in this college, and I appreciate the time we spent together.

Special thanks to Pablo Barceló, who invited me for a research stay to Chile, and
with whom Andreas Pieris and I have established a fruitful research collaboration during
the last years. I also thank him and Marie-Laure Mugnier for agreeing to review this
doctoral thesis.

v

My studies would have been impossible without the help and support of my family,
and especially my parents. I also thank my girlfriend Miriam for her love and her constant
support, and I apologize to her for spending sometimes too much time on a weird thing
like a PhD thesis .

I have received numerous years high-quality university education and had to virtually
pay no fees for that. In this context, I would like to acknowledge the taxpayer’s
contribution to that with the emphasis that such a contribution is not self-evident in
most parts of the world.

Finally, I would like to compose a list of people (in no particular order) whom I
additionally want to thank: Elisabeth, Thomas, Philipp, Franz, Lukas, Matthias, Stefan,
Rainer, Benjamin, Marijana, Ilina, Jens, Zeynep, Shqiponja, Harald, Thomas, Martin,
Adrian, Etienne, Alena, Anna.

Gerald Berger
7th May, 2019

Kurzfassung

Ontology-Based Data Access (OBDA) ist die Heirat von Datenbanktechnologie und onto-
logischen Theorien, welche eine einheitliche Sicht auf mehrere, möglicherweise heterogene,
Datenquellen bieten. Ontologische Theorien sind eine Menge logischer Behauptungen,
welche es ermöglichen, neues Wissen aus den gegebenen extensionalen Daten abzuleiten.
Benutzeranfragen auf den Daten werden dadurch relativ zu einer logischen Theorie beant-
wortet. In OBDA ist es üblich, Benutzeranfragen in Verbindung mit einer ontologischen
Theorie als ein zusammengesetztes Objekt zu betrachten, welches man Ontology-Mediated
Query (OMQ) nennt.

Ontologische Theorien können prinzipiell in jeder verfügbaren logischen Sprache
formuliert werden. Einen etablierten Formalismus, um diese Theorien auszudrücken,
stellen Tuple-Generating Dependencies (TGDs) dar, da sich diese zur Formulierung vieler
praktisch relevanter Szenarien eignen. Das Hauptaugenmerk der vorliegenden Dissertation
liegt auf Ontology-Mediated Querys basierend auf TGDs. Während dem Evaluierungs-
problem dieser viel Aufmerksamkeit in der Literatur gewidmet wurde, beschäftigt sich
die vorliegende Arbeit mit anderen computationalen Problemen für diese, nämlich den
sogenannten Problemen der statischen Analyse. Diese Probleme bezeichnen von den
Daten unabhängige Entscheidungsprobleme, welche insbesondere Anwendungen in der
Optimierung von OMQs finden.

Als ersten Beitrag studieren wir das Implikationsproblem für viele der bekannten
Klassen von OMQs. Insbesondere betrachten wir das Implikationsproblem für OMQs,
welche mit Hilfe von (frontier-)guarded, non-recursive, und sticky Mengen von TGDs
formuliert werden. Dazu entwickeln wir spezielle Techniken, um für diese Klassen das
jeweilige Implikationsproblem zu lösen, und wir beweisen exakte Komplexitätsresultate.

In Folge widmen wir uns dem sogenannten First-Order Rewritability Problem für
OMQs, welches jenes Entscheidungsproblem bezeichnet, das nach der Existenz einer
zur gegebenen OMQ äquivalenten Anfrage in der Prädikatenlogik erster Stufe fragt.
Wir studieren dieses Problem für jene OMQs, welche auf (frontier-)guarded TGDs
basieren, und wir beweisen exakte Komplexitätsresultate mit Hilfe von Cost-Automaten
auf Bäumen.

Ein wiederkehrendes Phänomen bei der Untersuchung von Problemen der statischen
Analyse ist die Feststellung, dass die entsprechenden Entscheidungsprobleme bereits
für Datalog-Anfragen unentscheidbar sind. Dies trifft sowohl auf das Implikationspro-
blem, als auch auf das First-Order Rewritability Problem zu. In dem dritten Beitrag
dieser Dissertation untersuchen wir den Zusammenhang zwischen Datalog-Anfragen und

vii

OMQs basierend auf TGDs. Wir entwickeln ein starkes hinreichendes Kriterium für die
Ausdrückbarkeit von OMQs als Datalog-Anfragen. Dabei zeigen wir auch, dass OMQs
formuliert in der Sprache von Vadalog – ein kommerziell eingesetztes Reasoning System
für Knowledge Graphen – immer als Datalog-Anfragen ausgedrückt werden können. Wei-
ters identifizieren wir ein Fragment von Vadalog, welches hinsichtlich Speicherverbrauch
effizienter ist, jedoch trotzdem viele in der Praxis relevante Abfragen ausdrücken kann.

Abstract

Ontology-based data access (OBDA) is the marriage of database technology with ontolog-
ical theories that provide a unified conceptual view on multiple, possibly heterogeneous
data sources. Ontological theories are presented as logical assertions that are capa-
ble of deriving new knowledge from extensional data. User queries are thus answered
against a logical theory put on top of the data. In OBDA, it is common to view a
user query together with an ontological theory as a composite object, which is coined
ontology-mediated query (OMQ).

Ontological theories can, in principle, be formulated using any available logical
formalism. However, it is widely acknowledged that tuple-generating dependencies
(TGDs) are a convenient formalism for formulating many ontologies that occur in real-life
scenarios. Ontology-mediated queries based on TGDs are the main objects of study in
this thesis. While the evaluation problem for such queries has received much attention
in the literature, this thesis is dedicated to the study of another important family of
computational tasks for OMQs, namely so-called static analysis tasks. These tasks are
data-independent computational problems that can be employed for query optimization.

As a first contribution, we study the query containment problem for many of the
well-known ontology-mediated query languages based on TGDs. More specifically, we
study containment for classes of OMQs formulated via (frontier-)guarded, non-recursive,
and sticky sets of TGDs. We develop specifically tailored techniques for deciding the
containment problems for each of them, allowing us to obtain sharp complexity bounds.

We then focus our attention on the first-order rewritability problem for OMQs, that
is, the problem asking whether or not a given OMQ can be equivalently expressed as a
plain first-order query. For this second contribution, we study first-order rewritability for
OMQs based on (frontier-)guarded TGDs, and we pinpoint its exact complexity by using
the sophisticated model of cost automata on trees.

A recurring theme for static analysis tasks is that many of them are already undecidable
when one focuses on Datalog queries, and this holds true for containment and first-order
rewritability. As a third contribution, we investigate the relationship between OMQs
based on TGDs and the existence of rewritings into Datalog queries. We develop a strong
sufficient criterion for OMQs to be expressible as Datalog queries, and we show that
OMQs in the language of Vadalog – a commercially employed reasoning engine for
knowledge graphs – are always Datalog rewritable. We furthermore identify a space-
efficient fragment of the language of Vadalog that restricts the use of recursion, but
still allows to express many queries occurring in real-life scenarios.

ix

Contents

KurzfassungKurzfassung vii

AbstractAbstract ix

ContentsContents xi

1 Introduction1 Introduction 1
1.1 Research Challenges1.1 Research Challenges . 6
1.2 Road Map1.2 Road Map . 10

2 Background2 Background 11
2.1 Basic Notation2.1 Basic Notation . 11
2.2 Background from Logic and Databases2.2 Background from Logic and Databases 12
2.3 Database Query Languages2.3 Database Query Languages . 16
2.4 Automata Techniques2.4 Automata Techniques . 23

3 Ontology-Mediated Querying3 Ontology-Mediated Querying 35
3.1 Tuple-Generating Dependencies3.1 Tuple-Generating Dependencies . 36
3.2 (Rule-Based) Ontology-Mediated Queries3.2 (Rule-Based) Ontology-Mediated Queries 37
3.3 The Chase Procedure3.3 The Chase Procedure . 38
3.4 Decidable Classes of TGDs3.4 Decidable Classes of TGDs . 42

4 Containment and Equivalence for OMQs4 Containment and Equivalence for OMQs 57
4.1 Containment: The Basics4.1 Containment: The Basics . 61
4.2 Containment for UCQ-Rewritable Classes4.2 Containment for UCQ-Rewritable Classes 63
4.3 Containment for Guarded-Based Classes4.3 Containment for Guarded-Based Classes 69
4.4 Combining Languages4.4 Combining Languages . 97
4.5 Summary4.5 Summary . 101

5 First-Order Rewritability for Guarded-Based OMQs5 First-Order Rewritability for Guarded-Based OMQs 103
5.1 Problem Statement5.1 Problem Statement . 105
5.2 Semantic Characterization5.2 Semantic Characterization . 110
5.3 Alternating Automata Approach5.3 Alternating Automata Approach . 114
5.4 Cost Automata Approach5.4 Cost Automata Approach . 124

xi

5.5 Frontier-Guarded OMQs5.5 Frontier-Guarded OMQs . 132
5.6 Summary5.6 Summary . 136

6 Pushing the Warded Envelope Further6 Pushing the Warded Envelope Further 137
6.1 Proof Trees6.1 Proof Trees . 141
6.2 Piecewise Linearity6.2 Piecewise Linearity . 146
6.3 Expressive Power6.3 Expressive Power . 164
6.4 Summary6.4 Summary . 166

7 Conclusion7 Conclusion 169

A The Procedure XRewriteA The Procedure XRewrite 173

B Missing ProofsB Missing Proofs 177
B.1 Proofs for Chapter 22B.1 Proofs for Chapter 22 . 177
B.2 Proofs for Chapter 44B.2 Proofs for Chapter 44 . 182
B.3 Proofs for Chapter 55B.3 Proofs for Chapter 55 . 196
B.4 Proofs for Chapter 66B.4 Proofs for Chapter 66 . 197

List of TheoremsList of Theorems 203

IndexIndex 207

BibliographyBibliography 211

CHAPTER 1
Introduction

The novel application of knowledge representation techniques for handling incomplete
and inherently heterogeneous data sources is giving rise to a new field of study, recently
coined as knowledge-enriched data management [66]. A central point of interest within
this emerging field is that of ontology-based data access (OBDA) [118118], which amounts
to the utilization of ontologies for providing a global and unified conceptual view on
data sources. The ontologies serve as mediators between user queries and individual data
sources. Users thus formulate their queries in the schema provided by the ontology, and
they are answered against data sources by harnessing the knowledge that is encoded
in the ontology. This is in stark contrast to the classical database setting, where the
dominating assumption is that databases represent closed-world objects that explicitly
represent the information of a user’s interest.

In OBDA, one interprets the ontology O and the user query q as two different objects,
where the former is usually specified via a logical formalism, while the latter belongs
to a standard database query language, in our case (unions of) conjunctive queries
(abbreviated (U)CQs). The marriage of O and q gives rise, together with a data schema
S specifying the schema of legal input data, to a composite object Q = (S,O, q) which
is coined ontology-mediated query (OMQ) [3737]. Ontology-mediated queries and their
associated computational problems are central subjects of study in the field of OBDA.

While in this setting description logics (DLs) [1212] are often used for modeling ontologies,
it is widely accepted that, for handling relations of arbitrary arity in relational databases, it
is convenient to resort to tuple-generating dependencies (TGDs), also known as existential
rules or Datalog± rules [1414, 2525, 4646]. TGDs are logical sentences of the form

τ = ∀x̄, ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),

where ϕ(x̄, ȳ) and ψ(x̄, z̄) are conjunctions of relational atoms. When depicting TGDs,
we usually omit the preceding universal quantifiers and separate the atoms of ϕ(x̄, ȳ) by
comma. We call ϕ(x̄, ȳ) the body atoms, and ψ(x̄, z̄) the head atoms of τ . Thus, sets of
TGDs generalize Datalog programs in the sense that, apart from recursion, TGDs also

1

1. Introduction

allow the use of value invention which is realized by permitting existential quantifiers in
heads of rules.

Example 1.1. Let Q = (S,O, q(x)), where S consists of a single unary predicate P ,
q(x) = ∃y, z (P (x) ∧ F (y, x) ∧ F (z, y) ∧ P (z)), and O consists of the rule

P (x)→ ∃y (F (y, x) ∧ P (y)).

When taking P (x) to stand for the assertion “x is a person,” and F (x, y) to stand for
“x is the father of y,” then the meaning of the above rule is that every person has a
father who is also a person. The query q(x) asks for all persons x who have a person as
a grandfather (this statement is, of course, true for any person). a

From a semantic point of view, OMQs can be viewed as queries in the classical sense
of databases: given an OMQ Q = (S,O, q(x̄)) and a database D over S, the certain
answers of Q to D, denoted Q(D), is the set of all tuples of constants ā such that q(ā) is
logically entailed by the facts of D in conjunction with O. For example, the OMQ from
Example 1.11.1 has as certain answers to an input database D those constants a for which
P (a) holds in D. It is of no surprise that a central problem in the context of OBDA is
the (query) evaluation problem (or query answering problem) for OMQs: given an OMQ
Q = (S,O, q(x̄)), an S-database D, and a tuple of constants ā, does ā ∈ Q(D) hold?
Beside its theoretical appeal, the practical relevance of this problem is witnessed by the fact
that even traditional database providers have built ontological reasoning software on top
of their existing products. For example, Oracle Inc. offers semantic technologies via their
Oracle Spatial and Graph feature on top of their popular database management system.11
Moreover, query answering under (special classes of) tuple-generating dependencies is the
reasoning task implemented in Vadalog, a commercially employed reasoning system,
which is also the main product of DeepReason.ai, a company spun off from Oxford
University.22

Unfortunately, when O is taken to be an arbitrary set of TGDs, this problem is
undecidable [1414, 2424, 4444]. In fact, OMQs using TGDs are even capable of expressing any
recursively enumerable database query that is closed under homomorphisms [124124]. It
is thus generally accepted that, for OBDA purposes, the unrestricted use of TGDs to
formulate ontologies is inadequate. This led to a flurry of research activity to identify
classes of sets of TGDs for which the evaluation problem becomes decidable [1414, 4444, 4545, 4747].
Roughly speaking, we can classify the known classes of TGDs that lead to decidable
query evaluation into three categories [1414]:

I Finite expansion sets These are sets of TGDs O for which the so-called chase expansion
w.r.t. any database is finite. Roughly speaking, the chase expansion of O w.r.t. D
is an instance constructed by exhaustively applying the rules of O to the facts of D
such that all rules in O are satisfied eventually. To satisfy the rules with existential
quantifiers in their heads, one introduces fresh elements that serve as witnesses for the
1https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
2http://www.deepreason.ai

2

existential demands posed by rule heads. Thus, chase expansions may be infinite as
well. For OMQs based on sets of TGDs that have a finite chase expansion w.r.t. any
database, the evaluation problem becomes decidable as it amounts to the evaluation
of a (U)CQ over a finite database instance.

I First-order rewritable sets These are sets of TGDs O for which any OMQ Q = (S,O, q)
can actually be equivalently rewritten into a finite first-order query ϕQ. In fact, as
we shall see, if an OMQ Q is first-order rewritable, it is also UCQ-rewritable, i.e.,
expressible as a union of conjunctive queries. Since ϕQ is a first-order query – thus
essentially a plain SQL-query – the evaluation problem for Q can be solved by
evaluating ϕQ over the given input database using standard database technology.
Notice thus that the data complexity of the evaluation problem for OMQs based on
first-order rewritable sets is in AC0, since evaluating first-order queries has that data
complexity.

I Finite tree-width sets These are sets of TGDs for which the chase expansion w.r.t. any
database has finite tree-width. Decidability of the evaluation problem for OMQs based
on finite tree-width sets can be shown using a celebrated result of Courcelle [6565].

The three categories above represent abstract criteria for decidability of the evaluation
problem. Many of the popular concrete syntactic classes of sets of TGDs fall into at least
one of these classes, and therefore these abstract criteria provide explanations for the
decidability of many of the known syntactic classes of sets of TGDs. Let us briefly state
the main concrete syntactic classes of sets of TGDs that we are going to encounter in
this thesis (formal definitions are provided later):

I Linear sets of TGDs These are sets of TGDs in which every rule has at most one
body atom. For example, the rule R(x, y)→ ∃z S(y, z) is linear. Linear TGDs extend
inclusion dependencies [7474] which are, roughly speaking, rules that state that values
of a certain column should be contained in the values of another column. Linear sets
of TGDs are first-order rewritable sets and finite tree-width sets [4545].

I Non-recursive sets of TGDs They are also known as acyclic sets of TGDs. As their
name suggests, these sets of TGDs use no recursion, where recursion is defined as in
the case of Datalog. For example, the set of TGDs consisting of the rules

R(x, y), T (y, v)→ ∃z S(y, z), S(y, z), A(y)→ G(y),

is non-recursive. Non-recursive sets of TGDs are first-order rewritable sets, finite
expansion sets, and thus also finite tree-width sets.

I (Frontier-)guarded sets of TGDs We say that a TGD is guarded if it has a body atom
that contains all variables of all body atoms as arguments [4444], and we say that it
is frontier-guarded if it has an atom in its body that has a body atom which has all
the frontier variables as arguments [1515], where a frontier variable is a variable that is
propagated from the body atoms to the head atoms. Accordingly, (Frontier-)guarded
sets of TGDs are sets of TGDs in which each rule is (frontier-)guarded. For example,

3

1. Introduction

the rule R(x, y), A(y) → A(x) is guarded, while R(x, y), R(y, z) → A(y) is frontier-
guarded but not guarded. Notice in particular that every guarded TGD is trivially
frontier-guarded. (Frontier-)guarded sets of TGDs are finite tree-width sets [1515, 4444].

I Sticky sets of TGDs These are sets of TGDs that restrict the shape of joins in rule
bodies in order to obtain sets of TGDs which are able to express cross products and
unguarded joins, but which also remain first-order rewritable [4747, 117117].

I Warded sets of TGDs These sets are a subclass of the so-called weakly frontier-
guarded sets of TGDs [1515]. Roughly speaking, weakly frontier-guarded sets of TGDs
are sets of TGDs that extend frontier-guarded sets of TGDs by admitting rules
that are not frontier-guarded in order to provide full Datalog recursion on the input
database. Unfortunately, reasoning under weakly-frontier guarded sets of TGDs
becomes intractable in data complexity, in fact ExpTime-complete [1515, 4444]. Warded
sets of TGDs restrict weakly frontier-guarded sets of TGDs so that query answering
under warded sets of TGDs becomes tractable in data complexity [8484]. Furthermore,
warded sets of TGDs are still able to express a plethora of practically relevant ontologies
and therefore aim to provide a balance between expressiveness and computational
complexity [2626, 2727, 8484]. Since weakly-frontier guarded sets of TGDs are finite tree-
width sets [1515], so are warded sets.

Static analysis If we restrict OMQs to be formulated using TGDs from a concrete class
C, then this gives rise to an ontology-mediated query language, and due to its prominence
and importance in the setting of OBDA, it is not surprising that the evaluation problem
for OMQ languages based on different classes of TGDs has received great attention
in the literature [1414, 4444, 4545, 4747]. Since the evaluation problem receives an OMQ Q
and a database D as input, it decides, from a conceptual point of view, a property of
Q relative to D. In this thesis, we focus on computational tasks of a different kind,
namely so-called static analysis tasks for OMQs. Unlike query evaluation, these tasks
are data-independent and aim at deciding semantic properties of OMQs that can be
harnessed for query optimization. More specifically, we study the following static analysis
problems for OMQ languages based on TGDs:

I Containment and equivalence Given two OMQs Q1 and Q2 that have the same
input data schema S, we say that Q1 is contained in Q2, if Q1(D) ⊆ Q2(D) for
every database D over S. We call Q1 and Q2 equivalent, if Q1 is contained in Q2
and vice versa. The containment problem (respectively, equivalence problem) for two
OMQs Q1 and Q2 is the problem of deciding whether Q1 is contained in (respectively,
equivalent to) Q2. Notice that equivalence of two OMQs can easily be solved by two
containment checks. Therefore, we will focus on studying the containment problem.
Deciding containment and equivalence for two given OMQs has applications in query
optimization. Indeed, if Q1 is known to be equivalent to Q2, then instead of evaluating
Q1 over a given database D, we may instead compute Q1(D) by evaluating Q2 over D.
This is useful when Q2 belongs to an OMQ language for which more efficient query
answering algorithms are known.

4

I First-order rewritability Given an OMQ Q, we say that Q is first-order rewritable,
if Q can be equivalently expressed as a first-order query ϕQ. The problem of first-
order rewritability is the task of deciding whether a given OMQ is indeed first-order
rewritable. This problem has again applications in query optimization, as a first-order
rewritable OMQ Q can be evaluated using standard database technology, provided
ϕQ can be effectively obtained. For an OMQ Q = (S,O, q) where O is a first-order
rewritable set, the task of deciding first-order rewritability of Q is clearly trivial.
However, as we shall see, (frontier-)guarded TGDs are a prominent class of TGDs for
which the according first-order rewritability problem is decidable but not trivial.

Despite their prominence in the context of traditional database query languages, an
in-depth study of these tasks has not been carried out so far for OMQs based on TGDs.
It is a main contribution of this thesis to perform such an in-depth study.

As said above, unlike query evaluation, containment and first-order rewritability
are properties of OMQs, and these properties are data-independent. Moreover, query
evaluation is an instance of the classical inference problem of first-order logic, while
containment and first-order rewritability are of a higher-order nature. Indeed, for the case
of containment, one universally quantifies over all possible input databases in its problem
definition, while first-order rewritability demands to explore the space of all first-order
queries in the pursuit of finding an equivalent one to the given input OMQ. It is thus
of no surprise that containment and first-order rewritability are undecidable when one
considers these problems in their full generality, i.e., when one imposes no restrictions on
the sets of TGDs allowed in the input OMQs. Hence, we focus on classes of TGDs that
have a decidable query evaluation problem, and we establish a number of decidability and
complexity results for containment and first-order rewritability for OMQs based on these
classes. We study containment in Chapter 44, and first-order rewritability in Chapter 55.

Datalog and OMQs As mentioned above, TGDs extend, from a syntactic point of
view, plain Datalog rules by allowing the use of existential quantifiers in rule heads.
Answering Datalog queries is well-known to be ExpTime-complete, and tractable in
data complexity, more precisely, PTime-complete [6666, 130130]. In contrast, containment
and equivalence for Datalog queries are undecidable [126126]. This is a recurring theme
in the investigation of static analysis tasks for OMQs – namely, that the according
tasks already become undecidable when one focuses on plain Datalog queries. As said
above, undecidability of containment for Datalog queries is shown in [126126], while deciding
first-order rewritability of Datalog queries amounts to deciding the so-called boundedness
problem [33], – that is, the problem whether the least fixed point of a given Datalog query
can be, for all input databases, uniformly reached by a number independent of the input
data. This problem is well-known to be undecidable for Datalog queries [7878]. Thus,
containment and first-order rewritability are undecidable for OMQ languages that capture
all Datalog queries. On the other hand, many of the known OMQ languages are actually
rewritable to Datalog programs. In Chapter 66, we are interested in the relationship
between OMQ languages based on TGDs and the existence of Datalog queries equivalent
to them.

5

1. Introduction

More specifically, we provide strong sufficient conditions for OMQs to be equivalent
to Datalog queries. Although deciding whether a given OMQ is equivalent to a Datalog
program is in general undecidable, the investigation of rewritability into Datalog queries
yields interesting insights into the relationship between OMQs based on TGDs and
Datalog queries. We exploit these insights in Chapter 66 to study the class of warded sets
of TGDs. As said above, OMQs based on warded sets of TGDs aim to provide a balance
between expressiveness and computational complexity, by (i) capturing all Datalog queries,
and (ii) restricting the use of existential quantifiers in rule heads in order to obtain a
query evaluation problem that is ExpTime-complete in combined, and, more importantly,
PTime-complete in data complexity. Warded sets of TGDs constitute the underlying
language of the commercial knowledge graph management system Vadalog [2626, 2727]. In
the context of knowledge graphs, it is important to have low data complexity due to the
tremendous amounts of data present in practical knowledge graphs. We contribute to
the theory of Vadalog by (i) showing that OMQs based on warded sets of TGDs are
always expressible as Datalog queries, and (ii) identifying a space-efficient fragment of
warded sets of TGDs that admits an NLogSpace-complete query evaluation problem in
data complexity. As NLogSpace consists of parallelizable problems, we hope that this
fragment will lead to efficiency gains in future implementations.

1.1 Research Challenges

Let us now provide more details on the individual contributions:

Containment and equivalence As mentioned above, containment and equivalence
of OMQs is undecidable when one does not restrict the sets of TGDs used in the OMQs.
It turns out that the two main reasons that render containment for OMQs undecidable
are (i) undecidability of query evaluation, and (ii) undecidability of containment for
Datalog queries. Hence, we are going to focus on OMQ languages that have a decidable
query evaluation problem and that are not able to express all Datalog queries. We divide
our study of the containment problem as follows:

Linear, non-recursive, and sticky sets of TGDs All these classes share the property of
UCQ-rewritability. Transitioning from OMQs to their UCQ-rewritings allows us to solve
the containment problem by checking containment of the respective UCQ-rewritings. In
fact, if Q1 and Q2 belong to a UCQ-rewritable OMQ language L, then the fact that Q1
is not contained in Q2 is witnessed via a database whose size is bounded by an integer
k ≥ 0, where k is the maximum size of a disjunct in a UCQ-rewriting of Q1. This
small witness property allows us to devise a simple non-deterministic algorithm, which
makes use of query evaluation as a subroutine, for checking non-containment of Q1 in
Q2: guess an input database D of size at most k, and then check if there is a certain
answer in Q1(D) that is not present in Q2(D). This algorithm allows us to establish
optimal complexity bounds for OMQs based on linear and sticky sets of TGDs. The
exact complexity for OMQs based on non-recursive sets of TGDs remains open, but we
provide “nearly” matching upper and lower bounds.

6

1.1. Research Challenges

(Frontier-)guarded sets of TGDs The OMQ language based on guarded TGDs is not
UCQ-rewritable, which forces us to develop different tools to study its containment
problem. Let us remark that guarded OMQs can be rewritten as guarded Datalog queries
but the known rewritings are very large [8585], and hence the reduction of containment for
guarded OMQs to containment for guarded Datalog does not yield optimal upper bounds.
To solve the containment problem for guarded OMQs, we devise procedures based on
two-way alternating tree automata from first principles. Containment for OMQs based
on frontier-guarded sets of TGDs is then solved by reducing the problem to the guarded
case. To this end, we translate frontier-guarded sets of TGDs to guarded sets of TGDs
using the technique of treeification [1818, 2020]. This translation is inspired by a similar
translation of sentences of guarded negation least fixed point logic (GNFP) to sentences
of guarded least fixed point logic (GFP) [2020]. Although this reduction is exponential, it
still provides optimal upper bounds for containment.

First-order rewritability As mentioned above, the problem of first-order rewritability
is trivial for OMQs based on classes of TGDs that are first-order rewritable. The situation
looks quite different for OMQs based on (frontier-)guarded sets of TGDs. In fact, there
are OMQs based on (frontier-)guarded TGDs that are inherently recursive, and thus
not expressible as a first-order query. We address the question whether we can decide
first-order rewritability for OMQs based on (frontier-)guarded OMQs and, if yes, pinpoint
the exact complexity of this problem. Let us mention that first-order rewritability has
been studied in [3434] for OMQ languages based on Horn description logics, including those
from the EL-family, which are essentially special cases of OMQs based on guarded TGDs
that only use unary and binary predicates. In [3434], the authors characterize first-order
rewritability by a locality property on tree-like databases, which allows them to optimally
solve first-order rewritability using automata-based procedures. As we shall see, the
approach of [3434] does not work in our setting since we allow the use of predicates of
arity greater than two. Thus, we have to develop specifically tailored methods to solve
first-order rewritability for our OMQ languages of interest.

To solve first-order rewritability for OMQs based on (frontier-)guarded sets of TGDs,
we first show how to solve first-order rewritability for OMQs whose set of TGDs is
guarded and whose query consists of a single atom (a so-called atomic query). For this
OMQ language, we provide a semantic characterization of its first-order rewritable OMQs,
and then use this characterization to reduce the problem of first-order rewritability to
the question whether the language of a certain tree automaton is finite. The resulting
procedure runs in 3ExpTime and, unfortunately, turns out to be not optimal. We
therefore employ the more sophisticated model of cost automata on trees [3131, 5858, 6060] to
arrive at an optimal solution, and we adapt the semantic characterization of first-order
rewritability to make it amenable to cost automata techniques. Intuitively, cost automata
extend traditional automata by allowing to modify counter values when transitioning
from one state to another. Input trees t are assigned values from N ∪ {∞}, called the
cost of t, and this value indicates that the minimum cost of an accepting run for t equals
this value. A central decision problem for cost automata is boundedness, that is, the
question whether the cost of all accepted trees is uniformly bounded by a natural number.

7

1. Introduction

We reduce the question of first-order rewritability to the boundedness problem for cost
automata on trees. This allows us to show that first-order rewritability for OMQs having
a guarded set of TGDs and an atomic query is in 2ExpTime.

Having a solution for this more restricted OMQ language in place, we then solve
first-order rewritability for the frontier-guarded case by resorting to the technique of
treeification. That is, as in the case of containment, we translate frontier-guarded sets of
TGDs to guarded sets of TGDs. Again, this translation is exponential, but we still are
able to obtain optimal complexity upper bounds (i.e., 2ExpTime).

Datalog rewritings and wardedness Consider a Datalog query Q = (Π, G(x̄)),
where Π is a set of Datalog rules – essentially TGDs without existential quantifiers in
rule heads –, and G(x̄) the goal predicate of Q. It is well-known that Q is equivalent to a
possibly infinite union q =

∨
i≥1 qk of conjunctive queries [5555]. Roughly speaking, each

qk can be obtained from the rules of Q by, starting with the goal predicate, “unfolding”
them backwards. Each of these “unfoldings” can be represented as a tree whose nodes
are labeled with atomic formulas such that (i) leaf nodes are labeled by extensional
atoms, i.e., atoms over the input schema of Q, and (ii) if an internal node is labeled by
an atom α, and has children respectively labeled by β1, . . . , βk, then the Datalog rule
β1, . . . , βk → α arises from a rule of Π just by renaming variables. Let us call such a tree
a proof tree. Each of the CQs qk is obtained by taking the conjunction of all leaf nodes
of some proof tree. Intuitively, each proof tree describes a witnessing computation of the
Datalog query Q for some input database(s). It turns out that proof trees are convenient
structures for solving several decision problems for Datalog queries. For example, in [5555]
proof trees are employed to study the problem asking if a Datalog query is contained in
a UCQ. We are interested in extending the notion of proof tree to capture also OMQs
based on sets of TGDs, and we aim to solve important questions concerning OMQs using
proof trees. We divide our contributions as follows:

Proof trees for OMQs While proof trees for Datalog queries are trees whose nodes are
labeled by atomic formulas, proof trees for OMQs will be trees whose nodes are labeled
by conjunctive queries. As in the case of Datalog queries, proof trees for OMQs represent
witnessing computations of an OMQ over a given input database. Thus, they also serve
as an elegant generic tool for evaluating OMQs over a given input database. Proof trees
are closely related to resolution procedures for query answering as presented in [8282]. The
guiding principle of proof trees is to provide a generic tree structure, where each node
label contains all and only the information necessary to prove that node label (which is a
CQ) using resolution. Another way to view proof trees is to consider them as computation
trees of a generic alternating query answering algorithm – the CQs labeling the nodes of
a proof tree can be viewed as memory snapshots of this algorithm when its computation
progresses to the according node.

Notice that proof trees bear an important measure: since their nodes are labeled with
CQs, the mentioned alternating query answering algorithm is space-bounded only if we
can bound the maximum size of a CQ occurring in a proof tree. We show that this is true
for OMQs based on warded sets of rules, and thereby re-establish a result by Gottlob

8

1.1. Research Challenges

and Pieris [8484] stating that query evaluation for such OMQs is ExpTime-complete in
combined, and PTime-complete in data complexity.

Interestingly, size bounds on CQs in proof trees has another interpretation. It turns
out that bounds on the size of the CQs occurring in proof trees can be used as an elegant
sufficient criterion to ensure Datalog rewritability. We use this result to show that OMQs
based on warded sets of TGDs can be expressed as Datalog queries.

A space-efficient fragment of warded rules As said above, Vadalog [2626, 2727] is a system
for performing complex reasoning tasks such as those required for advanced knowledge
graphs. Its main language is essentially an implementation of warded sets of rules, and
thereby achieves tractability in data complexity. Since knowledge graphs tend to be rather
huge in practice, the question arises whether one can identify a fragment of Vadalog
that has an even more attractive data complexity than the full language. We contribute
to the theory of Vadalog by identifying such a fragment.

The definition of this fragment is based on the observation that, for many practical
cases, full recursion is not necessary, but can rather be replaced by linear forms of
recursion [111111, 113113] which is well-known in the context of plain Datalog. Formally, a
Datalog query is linear if each of its rules has at most one occurrence of an intensional
predicate in its body, where an intensional predicate is a predicate that appears in the
head of some rule (other predicates are called extensional). For example, the rules

E(x, y)→ T (x, y), T (x, y), T (y, z)→ T (x, z),

which compute the transitive closure of the extensional binary predicate E using non-linear
recursion, can be rewritten as the set

E(x, y)→ T (x, y), E(x, y), T (y, z)→ T (x, z),

which uses only linear recursion. More specifically, benchmark results for Vadalog
showed that a large number of recursion employed in practice can be expressed by warded
sets of rules that have only one body atom that is mutually recursive with a head atom.
This type of recursion is also known in the Datalog literature, namely as piecewise linear
recursion [22].

Based on this key observation, the following key question has immediately emerged:
does piecewise linear recursion provide an adequate restriction of warded sets of rules in
order to achieve space-efficiency? We answer this question positively, by showing that
the query evaluation problem for OMQs based on piecewise linear warded sets of TGDs
is PSpace-complete in combined, and, more importantly, NLogSpace-complete in data
complexity. Moreover, we show that the wardedness condition cannot be omitted in this
context, that is, we show that query evaluation for OMQs based on piecewise linear sets
of TGDs is undecidable. As for the case of OMQs based on warded sets, we study the
expressive power of the newly defined language, and we establish that OMQs based on
piecewise linear warded sets of TGDs can, in fact, be always expressed as (piecewise)
linear Datalog queries. For all these results, we strongly rely on the machinery of proof
trees described above.

9

1. Introduction

1.2 Road Map

This thesis is organized as follows:

I After this introductory chapter, we provide technical background information in
Chapter 22. Besides introducing elementary notation, we provide technical definitions
and notation for concepts from logic, databases, and automata that we are going to use
throughout this thesis.
I We introduce the terminology concerning ontology-mediated querying in Chapter 33.

In particular, we introduce the well-known chase procedure, and we formally introduce
the most popular classes of TGDs for which query answering becomes decidable.
I Chapter 44 is dedicated to study the containment problem for OMQs. This chapter

is divided into three main parts: in the first one, we study containment for OMQs
that are UCQ-rewritable; in the second one, we study containment for OMQs based on
(frontier-)guarded rules; and in the third one, we consider the containment problem when
the left-hand side OMQ and the right-hand side OMQ fall into different languages.
I First-order rewritability for OMQs based on (frontier-)guarded rules is studied in

Chapter 55. As mentioned above, we divide the study of this problem into two approaches,
one based on classical automata techniques, and one based on cost automata. The former
approach is non-optimal, but yields useful insights into the problem at hand, while the
latter yields optimal decision procedures.
I In Chapter 66, we study proof trees for OMQs and use them to (i) re-establish the

complexity of OMQs based on warded sets of rules, (ii) identify a space-efficient fragment
of warded sets of rules, namely those warded sets that are piecewise linear, (iii) provide a
strong sufficient criterion for OMQs to be expressible as Datalog queries, and (iv) show
that OMQs based on (piecewise linear) warded sets of TGDs are expressible as (linear)
Datalog queries.
I We conclude the thesis in Chapter 77. Some of the technical proofs are deferred to

Appendix BB.

Publications We want to mention that this thesis is mainly based on three publications
which were published or accepted in the proceedings of conference venues:

[2222] Pablo Barceló, Gerald Berger, and Andreas Pieris. Containment for Rule-Based
Ontology-Mediated Queries. In Proc. of the PODS, pages 267–279, 2018.

[2121] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-Order
Rewritability of Frontier-Guarded Ontology-Mediated Queries. In Proc. of the
IJCAI, pages 1707–1713, 2018.

[3232] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. The Space-
Efficient Core of Vadalog. To appear in PODS ’19.

Chapter 44 is based on [2222], Chapter 55 is based on [2121], and Chapter 66 is based on [3232].
The exposition of the contents of these publications is significantly more detailed than
in the works cited, and the author of this thesis has a significant contribution to the
contents of these papers.

10

CHAPTER 2
Background

In this chapter, we set up basic notions that will be used throughout this thesis. We
assume that the reader is familiar with the basic notions of logic, database theory, and
complexity theory. In Section 2.12.1 we agree upon basic mathematical notation, and in
Section 2.22.2 we discuss the essential notions from logic that are used throughout this thesis.
We continue in Section 2.32.3 to introduce the most common database query languages that
we are going to encounter in this thesis. In Section 2.42.4 we introduce automata models
that we are going to harness in later chapters.

2.1 Basic Notation

Before proceeding to give background on notions from logic and databases, let us fix
some basic mathematical notation here which we are going to employ throughout the
thesis:

I We usually denote sequences of objects a1, . . . , an simply as a list as depicted.
However, it will often be convenient to identify the sequence a1, . . . , an with the tuple
(a1, . . . , an), and we make no formal distinction between these two kinds of objects. To
indicate that an object is a sequence or a tuple, we employ the convention that we
(usually) place a bar above an identifier, e.g., ā, b̄, etc. For a sequence ā, we write [ā] to
denote the set containing precisely the elements present in ā, and we write |ā| to denote
the length of the sequence ā.
I If f : A→ B is a function then, for A0 ⊆ A, we denote by f � A0 the restriction of

f to A0. For a partial function f , we denote by dom(f) its domain.
I A substitution is just a mapping from one set to another set. A substitution over a

(mostly implicit) domain U is often specified via an expression of the form {xi 7→ ti}1≤i≤n,
which stands for the substitution ρ such that ρ(xi) = ti and that is the identity on all
elements of U \ {x1, . . . , xn}. Given an expression e (e.g., a formula, a fact, etc.) and a
substitution ρ, we denote by ρ(e) the result of simultaneously replacing each occurrence

11

2. Background

of an object t in e uniformly by ρ(t), provided t occurs in the domain of ρ. If t1, . . . , tn
are arbitrary objects are indicated, then we denote by x1/t1, . . . , xn/tn the substitution
{xi 7→ ti}1≤i≤n. If x̄ = x1, . . . , xn and t̄ = t1, . . . , tn are given in sequence-notation,
we may express x1/t1, . . . , xn/tn simply by x̄/t̄. If e := e(x1, . . . , xn) is an expression
where occurrences of subexpressions x1, . . . , xn are explicitly indicated, then we denote
by e(x1/t1, . . . , xn/tn) the result of applying the substitution {xi 7→ ti}1≤i≤n to e. If the
x1, . . . , xn are clear from context, then we may omit them and denote e(x1/t1, . . . , xn/tn)
simply by e(t1, . . . , tn).
I A (directed) tree is a graph T = (T,E), where T is a set of nodes and E a set

E ⊆ T × T of edges such that T is connected and has no cycles. We usually denote trees
by calligraphic letters, and denote by a Latin version of that letter its set of nodes (e.g.,
T denotes the set of nodes of T). We call T rooted if there is a distinguished element
εT ∈ T , called the root of T . We usually assume that T is rooted, and we always denote
by εT its root and omit the subscript “T ” whenever clear from context. Given nodes
v, w ∈ T , we write v ≺T w if v is a proper ancestor of w, and we write v �T w if v ≺T w
or v = w. Again, we omit the subscript “T ” whenever clear from context. The child
nodes (or children) of a node v ∈ T is the set of all w such that vEw. A node is a leaf
node if it has no children. An (undirected) path in T is a sequence π = v1, . . . , vn of nodes
such that every node in the sequence is succeeded by a neighboring node, i.e., a parent or
a child node. The length of π is n− 1. A branch of T is a path v1, . . . , vn, where v1 = εT ,
viEvi+1 (i = 1, . . . , n− 1), and vn is a leaf node.
I We assume familiarity with the basic concepts of complexity theory, and refer the

reader to [88, 115115] for comprehensive introductions. Given complexity classes C and O, we
denote by CO the class of all problems that can be solved in C when having unrestricted
access to an oracle in O.
I All the finitary objects that can be passed as inputs to Turing machines are, unless

stated otherwise, assumed to be reasonably encoded by {0, 1}-strings in an “efficient” way
(see, e.g., [7171, 9494]). For example, numbers are encoded in binary representation. Given
any such object o, we denote by ‖o‖ the size of its encoding, i.e., the number of symbols
used to encode o. If o is a finite set, this is to be distinguished from the cardinality of o,
i.e., its number of elements, which we denote by |o|.
I Given a natural number n ≥ 0, we write [n] for the set {1, . . . , n}.

2.2 Background from Logic and Databases

We assume basic knowledge of the syntax and semantics of first-order logic, a compre-
hensive introduction can be found in, e.g., [119119]. For a more database-oriented treatment
of logical concepts, we refer the reader to the book [102102].

2.2.1 Relational Schemas

All the formulas and logical objects we are going to consider in this thesis are formulated
over signatures that do not have function symbols. Moreover, signatures will not explicitly
contain constants, but instead we assume a globally fixed countably infinite set of

12

2.2. Background from Logic and Databases

constants const at our disposal. Throughout the thesis, we treat the elements of const as
distinguished ones, i.e., unless stated otherwise, no other named mathematical object
is equal to an element of const. The first-order signatures we henceforth consider carry
neither function nor constant symbols and they are thus purely relational. Moreover, we
always consider them to be finite. In database parlance, we shall call such signatures
(relational) schemas and we will denote them by boldface letters. Formally, a relational
schema is thus a finite set S = {R1, . . . , Rk} of relation names (or simply predicates) Ri
(i = 1, . . . , k), each having an associated non-negative arity. We shall often write R/n to
indicate that the relation name R has arity n ≥ 0. The width of S, denoted wd(S), is the
maximum arity of all relation symbols contained in it.

2.2.2 First-Order Formulas

All the logical objects that we are going to study in this thesis are, from a syntactic point
of view, built up using first-order formulas. It is therefore useful to fix some notation
concerning first-order logic in the following.

For all the syntactic objects that are formulated using first-order logic, we assume
that we are given a countably infinite set of variables vars at our disposal, which we
assume to be disjoint from const. A term is a constant from const or a variable. Since all
our signatures are purely relational, the only atomic formulas (or simply atoms) available
are either relational atoms of the form R(t1, . . . , tn), where each ti is a term, or equality
atoms of the form t1 = t2, where t1 and t2 are terms. We respectively call t1, . . . , tn and
t1, t2 the arguments of R(t1, . . . , tn) and t1 = t2. Unless stated otherwise, we henceforth
explicitly allow the use of equality atoms in formulas. First-order formulas over a schema
S are built up in the usual manner: we make use of the standard connectives such as
negation (¬), logical and (∧), logical or (∨), implication (→), equivalence (↔), universal
quantification (∀), and existential quantification (∃). We are often going to abbreviate a
sequence of quantifiers Qx1 · · ·Qxn (Q ∈ {∀, ∃}) by Qx1, . . . , xn. The notions of bound
and free occurrences of variables are defined in the usual manner. A sentence is a formula
that has no free occurrence of a variable. We shall use > as an abbreviation for the
formula ∃xx = x, and ⊥ as an abbreviation for ¬>. We denote the class of all first-order
formulas by FO.

Given a formula ϕ, we shall denote ϕ by ϕ(x1, . . . , xn) to indicate that the free
variables of ϕ are among x1, . . . , xn. We say that ϕ has the variables x1, . . . , xn as
indicated if the free variables of ϕ are exactly given by x1, . . . , xn. Moreover, we write
free(ϕ) to denote the set of all free variables of ϕ.

Remark 2.1. We want to recall that ϕ(x1/t1, . . . , xn/tn) denotes the object that re-
sults from ϕ by uniformly substituting each xi by ti. Hence, if the ti are terms, then
ϕ(x1/t1, . . . , xn/tn) will be a formula again. We do not impose any restrictions on the
substitutions used for formulas, since we will only use them in a very basic fashion, and
thus problems that may arise in using arbitrary substitutions do not concern us (for
example, substituting y for x in the formula ϕ(x) = ∃y y 6= x would yield the unsatisfiable
formula ∃y y 6= y).

13

2. Background

2.2.3 Structures and Databases

Let S be a relational schema and U be a set of objects. For arbitrary objects t1, . . . , tn ∈ U
and R ∈ S, we call an expression α of the form R(t1, . . . , tn) an S-fact or a fact over S,
and we call t1, . . . , tn the arguments of α. For a set of S-facts F , the active domain of F ,
denoted adom(F), is the set of all objects that occur as arguments in facts.

Definition 2.2. An S-structure is a tuple A = (A, ·A), where A is a non-empty set (the
domain of A) and ·A a function that assigns an n-ary relation RA ⊆ An to every relation
name R/n of S.

Facts R(a1, . . . , an) over S such that (a1, . . . , an) ∈ RA are called facts of A. The
active domain of A, denoted adom(A), is the active domain of its set of facts. We call a
structure finite if its domain is finite. For a finite A, we write |A| for the number of its
facts.

Notation. If the schema S is not explicitly given, we write sig(A) for S. Moreover, if the
domain is not explicitly named, we will denote it by dom(A).

Assignments and modelhood Notice that S-structures do not interpret constants
via the function ·A. Instead, their meaning is implicitly given by the constant names
themselves. Let us formalize this more carefully.

A (variable) assignment over A is a function π that assigns values from A to variables.
We will often consider variable assignments to be partial functions, which are defined
only on the relevant variables for the specific purpose. For an S-structure A, a term t
(i.e., a variable or a constant from const), we define a function J·Kπ as follows:

J·Kπ : t 7−→
{
π(t), if t ∈ vars is a variable,
t, if t ∈ const is a constant.

Thus, we employ the unique name assumption on elements from const, i.e., different
constants denote different elements – more precisely, they are always interpreted as
themselves.

Given an atom R(t1, . . . , tn), we specify that

A, π |= R(t1, . . . , tn) ⇐⇒df (Jt1Kπ, . . . , JtnKπ) ∈ RA.

Likewise, for an equality atom t1 = t2, we write A, π |= t1 = t2 iff Jt1Kπ = Jt2Kπ holds. The
evaluation of a first-order formula ϕ on A and π is then defined recursively in the usual
manner. We write A, π |= ϕ to indicate that ϕ is satisfied in A under π. We call pairs of the
form (A, π) S-interpretations, and if A, π |= ϕ, we call the interpretation (A, π) a model
of ϕ. If ϕ is a sentence, then we omit the assignment π and simply call A a model of ϕ. If
ϕ = ϕ(x1, . . . , xn) has the free variables x1, . . . , xn as indicated, it will often be convenient
to treat assignments as anonymous objects. Henceforth, for a1, . . . , an ∈ dom(A), we
may thus write A |= ϕ(a1, . . . , an) in case A, π |= ϕ(x1, . . . , xn) holds, where π : xi 7→ ai.
We shall also call the tuple (A, a1, . . . , an) a model of ϕ(x1, . . . , xn). We remark that
the notation A |= ϕ(a1, . . . , an) may cause some ambiguity: if a1, . . . , an ∈ const, then

14

2.2. Background from Logic and Databases

ϕ(a1, . . . , an) may stand for the sentence ϕ(x1/a1, . . . , xn/an). However, in this case,
A, π |= ϕ(x1, . . . , xn), where π : xi 7→ ai, holds iff A |= ϕ(x1/a1, . . . , xn/an). Hence, we
can safely apply the notion of anonymous assignments in this case.

Databases vs. structures In the database context, it is usually the case that one
defines databases simply as sets of facts. We adopt a more logical notion:

Definition 2.3. An S-database is an S-structure whose domain is finite and consists
solely of elements from const.

The database-oriented reader may ask why we did not simply define databases as set
of facts. The reason is a formal one. Sets of facts do not explicitly name a non-empty
domain of discourse, but their domains are rather implicitly given through the active
domain of the facts they name. However, some notions defined in this thesis require
an explicitly given non-empty domain of discourse, since the omission of such would
render these notions ill-defined. Hence, we shall always formally consider databases to be
proper structures. However, to simplify presentation, we follow the convention that we
are allowed to declare structures (and thus databases) as sets of facts:

Notation. If we specify an S-structure A as a set of facts F over a schema S, then we
mean by A the following structure:

• The domain of A equals adom(F) in case adom(F) 6= ∅. Otherwise, we specify that
dom(A) = {d}, where d is a globally fixed “dummy” element.

• For all R/n ∈ S and all a1, . . . , an ∈ adom(F) we have that

(a1, . . . , an) ∈ RA ⇐⇒ Ri(a1, . . . , an) ∈ F.

This convention ensures that whenever we specify A as a set of facts, its domain will
never be empty. The structure specified is called the structure corresponding to F . If D
is an S-database, then we also say that a structure B is a model of D in case every fact
of D is also a fact of B.

Operations on structures If no ambiguity arises, we will often abuse notation and
treat structures and databases as sets of facts. Given two structure A and B, we will
often use set-based notations to state properties of the sets of facts of A and B. We
write A ⊆ B to indicate that every fact of A is also a fact of B. Likewise, we denote by
A ∩B the structure corresponding to the intersection of the set of facts of A and the set
of facts of B. According notation is employed for other operations on sets.

Definition 2.4. Let B be an S-structure. We say that the S-structure A is the substruc-
ture of B induced by X ⊆ dom(B) if (i) X = dom(A) ⊆ dom(B), and (ii) RA = Xn ∩RB

for every R/n ∈ S. We write B � X for the substructure of B induced by X.
If X is empty, then we let B � X be the structure whose domain consists of the

globally fixed element d, and that has all relations empty.

15

2. Background

Definition 2.5. Let A be a T-structure and S ⊆ T. The S-retract of A is the S-structure
A � S such that dom(A � S) := dom(A) and RA�S = RA for all R ∈ S. We also say that
A � S is the result of restricting A to S.

A T-structure B is an expansion of an S-structure A, if S ⊆ T and B � S = A.

Definition 2.6. Let A and B be two structures. A weak homomorphism from A to B
is a function h : dom(A)→ dom(B) such that

(a1, . . . , ak) ∈ RA =⇒ (h(a1), . . . , h(ak)) ∈ RB,

for all a1, . . . , ak ∈ dom(A) and all R ∈ sig(A). We call h a homomorphism if it is the
identity on const.

The image h(A) of A under a (weak) homomorphism h is the structure whose domain
consists of h(dom(A)) and that has Rh(A) := RB ∩ dom(h(A))n for all R/n ∈ sig(A).

Definition 2.7. We say that two structures A and B are homomorphically equivalent,
if there exists a homomorphism from A to B and a homomorphism from B to A.

Definition 2.8. We say that two structures are (weakly) isomorphic, if there exists a
bijective function f : dom(A) → dom(B) such that h is a (weak) homomorphism from
A to B and f−1 a (weak) homomorphism from B to A. Such a function f is called a
(weak) isomorphism between A and B.

Logical entailment Given two formulas ϕ(x1, . . . , xn) and ψ(y1, . . . , ym), we write
ϕ |= ψ in case the first-order sentence

∀x1, . . . , xn, y1, . . . , ym(ϕ→ ψ)

is true in every model. We write ϕ ≡ ψ if ϕ |= ψ and ψ |= ϕ both hold. For a set of
sentences Γ, we write Γ |= ϕ if every model of Γ is also a model of ϕ. For a structure A
and an assignment π over A, we write (A,Γ), π |= ϕ(x1, . . . , xn), if for every interpretation
(B, π) such that B ⊇ A it holds that, if B is a model of Γ, then (B, π) is also a model of
ϕ(x1, . . . , xn). In this context we also apply the conventions for anonymous assignments
as in the case of standard modelhood, i.e., if π : xi 7→ ai (i = 1, . . . , n), then we write
(A,Γ) |= ϕ(a1, . . . , an) for (A,Γ), π |= ϕ(x1, . . . , xn).

2.3 Database Query Languages

In this section, we are going to review the most common logic-based database query
languages that we are going to encounter in this thesis. For more extensive presentations,
we refer the interested reader to [11, 102102].

Definition 2.9. Let S be a relational schema and let k ≥ 0. A k-ary S-query Q is a
function that maps S-databases to k-tuples over const. We say that Q is Boolean in case
k = 0. The set of tuples Q(D) is called the evaluation of Q over D and tuples contained
in Q(D) are called answer tuples of Q to D.

16

2.3. Database Query Languages

Notation. We also write D |= Q(a1, . . . , ak) to indicate that (a1, . . . , ak) ∈ Q(D). In case
Q is Boolean, we simply write D |= Q to indicate that the empty tuple is an answer tuple
of Q to D.

Notice that the notion of S-query is a genuinely semantic one and is a priori not
linked to any syntactic formalism at all. In the following we are going to briefly introduce
the most relevant query languages that we will encounter in this thesis. Formally, a
query language L is simply a formal language such that for every ϕ ∈ L, there exists a
unique S-query Qϕ, where S depends on ϕ. We say that ϕ defines Qϕ or that Qϕ is the
semantics of ϕ. The mapping Qϕ can be viewed as the semantics of ϕ in the database
context, as it specifies how answers to a database D are obtained from the specification ϕ.

Remark 2.10. We want to mention at this point that we will henceforth not make a
pedantic distinction between the semantic notion of S-query and the syntactic object
that defines it. In particular, when a syntactic object ϕ defines Qϕ, we shall overload
notation and use ϕ both for the syntactic object, and for the query Qϕ. Thus, whenever
unambiguous, ϕ(D) will in this case also denote the set of answer tuples of Qϕ to D.

One of the most relevant computational problems concerning a query language L
is arguably the problem which asks whether a tuple is contained in the evaluation of a
query over some given database. We define the problem Eval(L) as follows:

Problem: Eval(L)
Input: A query ϕ ∈ L such that Qϕ is a k-ary S-query, an S-database D,

and a tuple (a1, . . . , ak) ∈ adom(D).
Question: Is it the case that (a1, . . . , ak) ∈ Qϕ(D)?

Eval(L) is called the query answering problem for L or the (query) evaluation problem for
L. We remark that Eval(L) does not ask for the enumeration of all the answer tuples of
Qϕ(D), and hence Eval(L) is sometimes called the query-of-tuple problem. When Eval(L)
permits all inputs as stated above, then we speak about the combined complexity of the
query answering problem for L. The complexity of the problem which considers the query
ϕ ∈ L as fixed is the data complexity of the query answering problem for L (see [130130]).

In the following we are going to revisit the most important standard database query
languages that we will encounter in this thesis. Before presenting them, let us introduce
one additional natural notion:

Definition 2.11. We say that two S-queries Q1 and Q2 are equivalent, written Q1 ≡ Q2,
if Q1(D) = Q2(D) for all S-databases D.

2.3.1 First-Order Queries

Given a first-order formula ϕ(x1, . . . , xn) over a schema S, the query Qϕ defined by ϕ is
given by

Qϕ : D 7−→ {(a1, . . . , an) | D |= ϕ(a1, . . . , an), where a1, . . . , an ∈ adom(D)}.

17

2. Background

In the context of queries, we call the sequence of variables x1, . . . , xn the answer variables
of ϕ. The class of all such queries is the class of first-order queries.

Remark 2.12. Notice that the definition of Qϕ as given above is strictly speaking not
unique, since it depends on the order of the answer variables x1, . . . , xn. However, in
the context of queries we will implicitly always assume a canonical lexicographic order
on all possible variables to avoid ambiguity. When writing down first-order queries or
queries that fall into the class of first-order queries such as CQs and UCQs (see below),
we always assume that all the free variables are indicated, provided we mention a list of
free variables at all.

It is well-known that, roughly speaking, first-order queries correspond to relational
algebra queries (see, e.g., [11]). Moreover, first-order queries find a practical realization in
standard relational database management systems though the arguably most popular
query language SQL.

The following theorem summarizes the rather well-known complexity results of
answering first-order queries [9393, 130130]:11

Theorem 2.13. Answering first-order queries is PSpace-complete in combined complex-
ity, and in AC0 (and thus in LogSpace) in data complexity.

2.3.2 (Unions of) Conjunctive Queries

A conjunctive query (CQ) over a schema S is a first-order formula q(x̄) that takes the
form ∃ȳ (α1 ∧ · · · ∧ αn), where each αi is an atomic formula, i.e., either a relational atom
or an equality atom. Given a set of atoms A, we write var(A) for the set of all variables
mentioned in A. We write var(q) for var({α1, . . . , αn}). We call the atoms α1, . . . , αn the
body atoms of q, and we write body(q) for the set of its body atoms. It will, however,
often be convenient to abuse notation and consider CQs as the sets of its constituent
body atoms, and we often write |q| for the number of body atoms of q. The query defined
by q(x̄) is defined exactly as in the case of first-order queries. Again, we call the sequence
of variables x̄ the answer variables of q(x̄), and we say that q(x̄) is Boolean (for short, a
BCQ) if it is a sentence, i.e., if its sequence of answer variables is empty. Recall that the
formula > (which equals ∃xx = x) is a CQ according to this definition – we shall call >
the empty CQ.22 We call q atomic if ȳ is empty and q consists of a single body atom only.
Moreover, we call q constant-free if it does not have any occurrence of a constant.

Notation. We denote by CQ the class of all conjunctive queries, and by BCQ the class
of all Boolean conjunctive queries. We write AQ for the class of all atomic queries, and
BAQ for the class of all Boolean atomic queries – notice that elements from BAQ consist
of a single 0-ary relation symbol only.

1AC0 consists of all functions computable by families of circuits of constant depth and polynomial
size that have unlimited fan-in AND- and OR-gates, possibly with NOT-gates that are placed at the
input gates (see, e.g., [99, 9494]).

2We use the term “empty” because > can be viewed as a conjunction over the empty set of atoms.

18

2.3. Database Query Languages

Remark 2.14. Let us make a few more remarks on the use of equality atoms in CQs. It
is not hard to see that, from a purely logical perspective, equality atoms can always be
eliminated from CQs by identifying variables accordingly. That is, for any CQ q that is
not logically equivalent to > and which uses equality atoms, there is a CQ q′ that results
from q by identifying variables such that q and q′ are equivalent in the sense of first-order
logic (the assumption that q is not logically equivalent to > is needed because > uses
equality by its definition).

However, equality atoms are useful to duplicate answer variables and are required to
maintain equivalence on the level of queries (cf. Definition 2.112.11). For example, the CQ
q(x, y) := ∃z (R(x, z) ∧ x = y) has as sequence of answer variables the sequence (x, y),
and all answer tuples of q to any database must be of the form (a, a). The use of equality
allows now us to genuinely express queries via first-order formulas – indeed, eliminating
the equality atom x = y from q yields the CQ q′ := ∃z R(x, z), which has a single answer
variable x. However, by our definition of CQs as plain first-order formulas, there is no
way for us to demand that the query defined by q′ has two answer variables such that
the first matches the second. Thus, although q and q′ are equivalent in the sense of
first-order logic – the sentence ∀x, y (q(x, y)↔ q′(x)) is clearly true in all models – the
queries these two CQs define are not equivalent in the sense of Definition 2.112.11.

Homomorphisms and modelhood Let A be an S-structure. Given a set of atoms
B, a homomorphism from B to A is a function h : var(B)→ dom(A) such that, when h
is considered as an assignment, A, h |= α for all α ∈ B. For a CQ q(x̄), a homomorphism
from q(x̄) to A is a homomorphism from body(q(x̄)) to A. That is, a homomorphism
from q(x̄) to A is simply a variable assignment that covers all variables occurring in
q(x̄). It is immediate by the semantics of first-order logic that A |= q(ā) iff there is a
homomorphism h from q to A such that h(x̄) = ā. Homomorphisms provide a convenient
alternative for defining the evaluation q(D) of q(x̄) over D: for all tuples ā ∈ adom(D)|x̄|,

ā ∈ q(D) ⇐⇒ there is a homomorphism h from q(x̄) to D such that h(x̄) = ā.

Notice that if αi is a body atom of q(x̄) that contains only constants as arguments, then
there exists a homomorphism from q(x̄) to D only if αi ∈ D. Given a homomorphism h
from q(x̄) to A, we write h(αi) for the fact that emerges from αi by replacing each of its
arguments by their images under h (i.e., we may treat h as a substitution), and a similar
convention is applied for sets of atoms. Accordingly, when writing h(q), we mean the
set of facts {h(α1), . . . , h(αn)}, where α1, . . . , αn is an enumeration of the body atoms
of q(x̄) (a similar convention is employed for sets of atoms). In this context, we may
often abuse notation and write expressions like h(q) ⊆ A to indicate that, for i = 1, . . . , n,
A, h |= αi holds.

CQs as structures It will often be convenient to view CQs as finite structures and
vice versa. While a finite structure A has an obvious correspondence to a CQ simply
by taking the sets of facts of A as body atoms – and considering domain elements of A
that are not in const as variables –, more care must be taken when passing from a CQ

19

2. Background

q to a structure due to the use of equality atoms in q. We will formally describe this
correspondence in the following.

Let q(x1, . . . , xn) be a conjunctive query over S. For terms s and t occurring in q,
i.e., variables or constants, we define s ∼ t if there is an equality atom s = t in the body
of q. Moreover, assume that ∼ is reflexively, symmetrically, and transitively closed, i.e.,
(i) s ∼ s for all terms s occurring in q, (ii) s ∼ t implies t ∼ s, and (iii) s ∼ t and t ∼ u
implies s ∼ u. Obviously, ∼ is an equivalence relation on the terms occurring in q, and
we denote by [s]q the equivalence class of s according to ∼. Due to the unique name
assumption on constants, notice that q(x1, . . . , xn) does not have a model iff there is a
term s occurring in q such that [s]q contains two distinct constants. Notice also that a
constant-free CQ obviously always possesses models.

Suppose now that q(x1, . . . , xn) has a model. We write Aq for the S-structure whose
domain consists of the set of equivalence classes [x]q, where x ∈ var(q), plus the set of
all constants occurring in q. For R/m ∈ S, we define Aq |= R(α1, . . . , αm) iff there are
terms s1, . . . , sm such that R(s1, . . . , sm) is a body atom of q, and, for i = 1, . . . ,m, one
of the following is true:

(i) αi = [x]q, for some x ∈ var(q), and si ∈ [x]q.

(ii) αi is a constant and si = αi.

It is not hard to check that Aq is well-defined. Moreover, notice that the domain of Aq is
not empty, even in case q equals the empty CQ >, which equals ∃xx = x by definition.
We call Aq the structure corresponding to q, and it can be easily shown that, for any
structure B,

B |= q(a1, . . . , an) ⇐⇒ there is a homomorphism h from Aq to B
such that h([xi]q) = ai, for all i ∈ [n].

Moreover, for two CQs q(x1, . . . , xn) and p(x1, . . . , xn), it holds that q(x1, . . . , xn) |=
p(x1, . . . , xn) iff there exists a homomorphism h from Ap to Aq such that h([xi]p) = [xi]q
for all i ∈ [n].

Unions of conjunctive queries (UCQs) A union of conjunctive queries (UCQ) over
a schema S is a finite disjunction q(x̄) =

∨n
i=1 qi(x̄) of CQs q1, . . . , qn over S that all

have the same sequence of answer variables. We say that q(x̄) is a union of Boolean
conjunctive queries (UBCQ) if each qi is Boolean. The class of all UCQs is denoted by
UCQ. The query defined by q(x̄) is again defined exactly as in the case of first-order
queries. It is easy to check that

q(D) =
n⋃
i=1

qi(D).

Hence, ā ∈ q(D) iff there is an i ∈ [n] and a homomorphism h from qi to D such that
hi(x̄) = ā. We call x̄ the answer variables of q and we say that q is constant-free iff every
qi is constant-free.

20

2.3. Database Query Languages

Notation. We write UCQ for the class of all UCQs, and UBCQ for the class of all unions
of BCQs.

Complexity of answering (U)CQs Since answering CQs amounts to the check for
the existence of a homomorphism, and since verifying whether a given function is indeed
a homomorphism is feasible in polynomial time, the fact that answering CQs is feasible in
NP follows – this is a celebrated result by Chandra and Merlin [5454]. Likewise, answering
UCQs amounts to guessing one CQ that is a disjunct of the UCQ at hand, and then
verifying the existence of a homomorphism from that disjunct to the given database.
Establishing a matching NP lower bound is folklore, whence:

Theorem 2.15. The query answering problem for (unions of) conjunctive queries is
NP-complete in combined complexity.

Naturally, as (U)CQs are also first-order queries, the data complexity of answering
(U)CQs is in AC0 as well.

2.3.3 Datalog Queries

A Datalog rule τ is an expression of the form

α1, . . . , αn → β,

where α1, . . . , αn are atoms and β is a relational atom33 such that every variable from β
also appears in one of the αi. We call β the head (atom) of τ and α1, . . . , αn the body
(atoms) of τ . Let ϕ := α1 ∧ · · · ∧ αn, and suppose β = β(ȳ) and ϕ = ϕ(x̄, ȳ) with all
formulas having the free variables as indicated. The CQ corresponding to the body of τ
is the CQ ∃ȳ ϕ(x̄, ȳ). Whenever unambiguous, we identify the body of τ with the CQ
corresponding to it.

A Datalog program is a set of Datalog rules. A Datalog query is a tuple Q = (Π, G),
where Π is a Datalog program and G a relation name, called the goal predicate of Q. We
say that a relation name R occurring in Π is an intensional predicate of Q if R appears as
a relation name of at least one head of a rule of Π. Otherwise, we call R an extensional
predicate of Q.

Example 2.16. Let Q = (Π, G), where Π consists of the two Datalog rules

E(x, y)→ G(x, y),
E(x, y), G(y, z)→ G(x, z).

Then Q is a Datalog query with goal predicate G. The CQ corresponding to the
first rule above is simply E(x, y), while the CQ corresponding to the second rule is
∃y (E(x, y)∧G(y, z)). Notice that Q has only one extensional predicate (namely E), and
only one intensional predicate (namely G). a

3Notice thus that β is not permitted to be an equality atom, while the αi may also be equality atoms.

21

2. Background

Fixed point semantics We are now going to define the semantics of Datalog queries.
Let Q = (Π, G/k) be a Datalog query, and consider an S-database D, where S consists of
the set of all extensional predicates of Q. Let T ⊇ S be the set of all predicates occurring
in Π.

Let TQ be the one-step operator for Q defined by

TQ : F 7−→ F ∪ {R(ā) | there is a rule τ ∈ Π with head R(x̄) and a body corresponding
to ∃ȳ ϕ(x̄, ȳ) such that F |= ∃ȳ ϕ(ā, ȳ), where ā ∈ adom(F)|ā|}.

Notice that TQ is defined for all T-databases and that TQ is monotone in the sense that
F1 ⊆ F2 implies that TQ(F1) ⊆ TQ(F2). Given D, we set

T 0
Q(D) := D,

Tn+1
Q (D) := TQ(TnQ(D)), for n ≥ 0.

Since TQ is monotone and D is finite, there is an ` ≥ 0 such that T `Q(D) = TmQ (D) for all
m ≥ `. Thus, T `Q(D) is a fixed point of TQ and, moreover, it is actually the least fixed
point of TQ that contains D (see, e.g., [11, 102102]). We define that

Q : D 7−→ {ā | T `Q(D) |= G(ā)}.

Example 2.17. Reconsider the Datalog query Q = (Π, T) from Example 2.162.16. Let

D := {E(a, b), E(b, c), E(c, d)}.

Then,

T 1
Q(D) = D ∪ {G(a, b), G(b, c), G(c, d)},
T 2
Q(D) = T 2

Q(D) ∪ {G(a, c), G(b, d)},
T 3
Q(D) = T 2

Q(D) ∪ {G(a, d)}.

Moreover, TmQ (D) = T 3
Q(D) for all m ≥ 3. Hence,

Q(D) = {(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)},

and so Q computes the transitive closure of the input relation E. a

Logical semantics The semantics for Datalog queries we presented is operational in
nature. Alternatively, we can define the semantics of a Datalog query Q = (Π, G/k) in a
purely logical fashion. To this end, we view the rules of Π as universally closed sentences:
the rule

τ : α1, . . . , αn → β,

becomes the sentence

∀x1, . . . , xn (α1 ∧ · · · ∧ αn → β),

22

2.4. Automata Techniques

where x1, . . . , xn is an enumeration of all the variables that appear in the body of τ . Let
ϕ be the conjunction of all such sentences that emerge from a rule of Π. Consider an
S-database D, where S is the schema that comprises exactly the extensional predicates
of Q. Now we set

Q : D 7−→ {(a1, . . . , ak) | (D, {ϕ}) |= G(a1, . . . , ak), where a1, . . . , ak ∈ const}.

It turns out that this logical semantics of Datalog queries is equivalent to the operational
one we presented above (see [11, 5050, 5151]).

We close this section by recalling the complexity of query answering for Datalog
queries (see [6666, 130130]):

Theorem 2.18. The query answering problem for Datalog queries is ExpTime-complete
in combined complexity, and PTime-complete in data complexity.

2.4 Automata Techniques

The goal of this section is to introduce the classical automata models that we are
going to use throughout this thesis. By “classical” we mean automata models whose
principal objects of interests are words and trees which they discriminate via the notions
of acceptance or rejection. In Chapter 55 we are going to encounter another type of
automata, so-called cost automata [3131, 5858, 6060], that do not fall into this category. The
principle objects of interest for cost automata are cost functions which extend words
and trees by a quantitative measure. We choose to delay the discussion of this type of
automata until Chapter 55 when we employ them in the context of first-order rewritability
(however, the material presented here will recur in different themes in Chapter 55).

Concerning classical automata, the family of automata of central interest to us is that
of tree automata [6161, 7070] which comprises automata operating on trees in which each node
has a label over a given finite, unranked alphabet. The family of tree automata consists
of a plethora of concrete automata models which differ according to several dimensions.
Among others, tree automata models on unranked trees differ in questions as to whether
(i) they move in any particular direction in the tree or are constrained to move in one
direction, (ii) they work on finite or infinite trees, (iii) they work on trees of arbitrary
branching degree or not, (iv) they employ concepts of non-determinism or alternation [5252].
Our focus in this thesis will arguably be on alternating automata [6262, 128128, 131131, 133133, 134134]
that work on finite trees (with an arbitrary or bounded branching degree) and that allow
for two-way movements while processing the input tree (i.e., the automaton is allowed
to move up and down in the tree). This type of automata model will be used quite
extensively throughout this thesis, and therefore the main focus of this section is to get
the reader acquainted with this model and its properties. Apart from two-way alternating
automata, we will also introduce the most basic model of non-deterministic automata
on finite trees [6161, 6262, 7070, 131131]. One can show that two-way alternating automata on
finite trees can be translated to this simpler model by an exponential translation. This
translation is achieved by mildly modifying a similar one given by Vardi in [133133] for

23

2. Background

tree automata on infinite trees. We will use this translation later to facilitate results on
non-deterministic automata on finite trees.

We stress that we focus exclusively on tree automata work on finite trees. However,
although none of our automata requires us to facilitate infinite trees at all, we favor
the use of two-way alternating tree automata that employ the parity condition as their
acceptance condition. The expert reader may recognize that automata using parity
acceptance conditions are mostly used when working with infinite words or trees, which
seems inconsistent given the fact that we work with finite trees only. Notice though, if
an automaton uses two-way movements, it is possible that the automaton has infinite
runs (see below) rather than only finite ones, and the parity condition is a simple and
elegant way to discriminate accepting infinite runs from rejecting ones. Although two-way
alternating automata have been used in the literature without employing the parity
condition (see, e.g., [4949, 6262, 131131]), the use of the parity condition in our automata seems
more natural for our use cases.

2.4.1 Words and Trees

Given a set S, we write S∗ for the set of all finite sequences that can be formed using
elements from S, the (finite) words over S, and in this context we write ε to denote the
empty word. We write v · w for the concatenation of two words.

An alphabet is a finite set of symbols Γ. A Γ-labeled tree is a partial function
t : (N \ {0})∗ → Γ such that the following conditions are satisfied:

(i) The domain of t, denoted dom(t), is non-empty and is prefix-closed, i.e., if
x · k ∈ dom(t), where x ∈ (N \ {0})∗ and k ∈ N \ {0}, then x ∈ dom(t).

(ii) If x · k ∈ dom(t), where x ∈ (N \ {0})∗ and k > 1, then x · (k − 1) ∈ dom(t).

We write T (Γ) for the set of all Γ-labeled trees.
An element x ∈ dom(t) is called a node of t and t(x) is the label of x. Since the

domain of t is prefix-closed and non-empty, the empty sequence ε is a node of t, and
we call it the root node of t. We say that t is finite iff dom(t) is finite, otherwise t is
infinite. A node of the form x · k, where k ∈ N \ {0}, is a child of x, and x is the parent of
x · k. Obviously, every node distinct from the root has a unique parent. The number of
children of a node is its branching degree, and the branching degree of t is the maximum
branching degree of all nodes – notice that the branching degree may not exist if t is
infinite. We say that t is m-ary if its branching degree is at most m.44 For convenience,
we extend the concatenation operator to also capture the number 0 by setting x · 0 := x
for all x ∈ (N \ {0})∗. Moreover, we let x · k · −1 := x for all x ∈ (N \ {0})∗ and k ≥ 1.
Thus, x · −1 denotes the parent node of x if it exists at all – notice that ε · −1 is thus
not defined. The notions of leaf node of t, path in t, and branch in t are defined as in the
case of ordinary directed trees.

4Notice that in some references, m-ary trees denote trees whose every node has branching degree m.
Since we are going to work on finite trees only, we rather adapt a different terminology here.

24

2.4. Automata Techniques

Projections Suppose t is a Γ-labeled tree and s a Λ-labeled tree for some alphabets Γ
and Λ. We write (t, s) for the (Γ× Λ)-labeled tree defined by (t, s) : v 7→ (t(v), s(v)). We
call t the Γ-projection of (t, s) and s its Λ-projection. Given a (Γ× Λ)-labeled tree t, we
write πΓ(t) (respectively, πΛ(t)) for its Γ-projection (respectively, Λ-projection). Given
a set of (Γ × Λ)-labeled trees L, we write πΓ(L) (respectively, πΛ(L))for the set of all
Γ-projections (respectively, Λ-projections) of elements contained in L.

2.4.2 Non-deterministic Finite (Top-Down) Automata on Finite Trees

Before diving into the realm of tree automata, let us give a brief recap on the operation of
standard non-deterministic automata on (finite) words. We can view such an automaton
A as a finite device whose mode of operation is dictated by a finite set of states. Suppose
A is presented a finite input word w = a1a2 · · · an. A snapshot of the computation of A
can be captured by a pair (i, s), where i ∈ [n] and s is a state of A. We call such a pair
a position. Intuitively, (i, s) describes the situation that A is reading the i-th symbol of
w while being in state s. Now the transition function δ of A specifies the possible next
moves A has. Given s and ai, δ(s, ai) specifies the set of possible states A can transition
to. A selects one of these states s′ ∈ δ(s, ai) and launches a copy of itself in position
(ai+1, s

′) provided i < n (if δ(s, ai) = ∅, it rejects). We say that (a copy of) A accepts at
(i, s) if either i = n and s is a final state, or if the copy that A launches accepts at its
position. In its operation, A thus launches a sequence of copies of itself that operate at
according positions. The word w is accepted by A iff (i) either w = ε and the initial state
s0 of A is final, or (ii) A accepts at (1, s0).

Let us now consider trees instead of words. Each tree may consist of multiple branches,
and we can view each branch as a plain word. Thus, an automaton working on trees has
to launch, being at a node x in state s, not only one successor copy of itself, but it has
to launch a successor copy for each of its children. The machinery necessary to achieve
this is specified by the following definition:

Definition 2.19 ([6262, 131131]). A (one-way) non-deterministic (top-down) automaton on
finite trees (1NTA) is a tuple A = (S,Γ, s0, δ, F), where

• S is a finite set of states,

• Γ is the input alphabet,

• s0 ∈ S is the initial state,

• δ : S × Γ→ 2S∗ is the transition function, where δ(s, a) is finite for all s ∈ S and
all a ∈ Γ, and

• F ⊆ S is a set of final states.

We say that A runs on Γ-labeled trees. We call A a deterministic (top-down) automaton
on finite trees (1DTA) if |δ(s, a)| = 1 for all s ∈ S and all a ∈ Γ.

Given a finite Γ-labeled input tree t and a 1NTA A, a run of A over t is a labeling func-
tion ρ : dom(t)→ S such that (i) the root of t is labeled with s0, (i.e., ρ(ε) = s0), and (ii) if

25

2. Background

v is not a leaf node and has k ≥ 0 children, then ρ(v ·1)·ρ(v ·2) · · · ρ(v ·k) ∈ δ(ρ(v), t(v)). If
for every leaf node v of t, there is a word s1s2 · · · sk ∈ δ(ρ(v), t(x)) with {s1, s2, . . . , sk} ⊆
F , then we call ρ accepting. We say that A accepts t if there is an accepting run of A
over t. The language of A, denoted L(A), is the set of all Γ-labeled trees t it accepts.

Let us now describe the operation of a 1NTA A on a given input tree t as we did
before for standard non-deterministic automata on words. We call a pair (v, s) with
v ∈ dom(t) and s ∈ S again a position. Suppose A is at position (v, s) and suppose the
children of v are v1, . . . , vk. The 1NTA A reads the symbol t(v) and chooses a word
s1s2 · · · sk ∈ δ(s0, t(ε)) of length k over S – if it finds no such s1s2 · · · sk, it rejects. For
i = 1, . . . , k, it launches a copy of itself at position (vi, si), i.e., the i-th copy of A proceeds
to read the label of vi in state si. We say that (a copy of) A accepts at (v, s) if either v
is a leaf node and s ∈ F , or all the k copies launched by A accept at their positions. A
accepts t iff it accepts at (ε, s0).

We added the term “one-way” in the definition of 1NTA in order to emphasize that
1NTAs can only move in one direction within the tree, namely downward.

Properties of 1NTAs Let us now provide some results which we are going to use at
later points in this thesis. The first one is the folklore result stating that 1NTAs are
closed under intersections [6464]:

Proposition 2.20. Given 1NTAs A and B running over Γ-labeled trees, there is a 1NTA
C whose size is the product of the sizes of A and B such that L(C) = L(A) ∩ L(B).
Moreover, C can be constructed in polynomial time.

1NTAs are also closed under complements, but this incurs an exponential blowup in
the size of its state set:

Proposition 2.21. Given a 1NTA A running on Γ-labeled trees, there is a 1NTA
A, whose state set is of exponential size in the size of the state set of A, such that
L(A) = T (Γ) \ L(A).

Proposition 2.212.21 can be shown by using the fact that there is an exponential translation
from alternating tree automata to 1NTAs [6262, 128128] and the fact that complementing
alternating tree automata is feasible in polynomial time (see below).

Besides the standard Boolean operations, 1NTAs are also closed under projections:

Proposition 2.22. Let A be a 1NTA running on (Γ×Λ)-labeled trees. Then there exists
a 1NTA AΓ running on Γ-labeled trees such that L(AΓ) = πΓ(L(A)). The state set of
AΓ is just the state set of A, and AΓ can be constructed from A in polynomial time.

Proof. Let A = (S,Γ× Λ, s0, δ, F). We let AΓ := (S,Γ, s0, δΓ, F), where

δΓ : (s, a) 7−→
⋃
b∈Λ

δ(s, (a, b)), for s ∈ S and a ∈ Γ.

It is not hard to show that L(AΓ) = πΓ(L(A)). �

26

2.4. Automata Techniques

The (language) emptiness problem for 1NTA is, given a 1NTA A, the task to decide
whether L(A) = ∅. It turns out that this problem can be solved in polynomial time [130130]:

Theorem 2.23. The emptiness problem for 1NTAs is in PTime.

2.4.3 (Two-Way) Alternating Parity Tree Automata

The way a 1NTA operates is constrained in the sense that it only permits limited
movements along the tree from its top to its bottom. Moreover, a 1NTA provides no ways
to implement alternation [5252, 128128] in its computational process. We are going to introduce
a popular automata model on trees that overcomes these limitations by providing two-way
movements, i.e., the automaton can also move up in the tree, and alternation mechanisms,
i.e., apart from existential branching, the automaton is also able to perform universal
branching. The automata model we are going to introduce will be the model which
we mostly use throughout this thesis. Therefore, we aim here at a fully self-contained
description of it. Material in this section is mainly taken from [3131, 8989, 133133, 134134]. Before
introducing the model, we need some additional auxiliary notions.

A positive Boolean formula is a propositional formula that is built up solely using
conjunctions, disjunctions, propositional variables, and the truth constants true and false.
Given a set X, we write B+(X) to denote the set of all positive Boolean formulas that
can be constructed using propositional variables from X.

A direction is a function that maps nodes of a labeled tree to sets of nodes of that
tree. Intuitively, we use directions to specify the possible movements the automaton is
able to perform within a tree. We shall denote directions in the usual way by introducing
abbreviations for them. More precisely, we define the following functions:

k : v 7−→
{
{v · k}, if v · k is defined,
∅, otherwise,

for k ∈ {−1, 0, 1, 2, . . .}.

Notice that v · k is not defined only if v = ε and k = −1, and hence −1(ε) = ∅. In all
other cases, k(v) consists of exactly one node, namely the k-th successor of v in case
k ≥ 1, the node v itself in case k = 0, and the parent of v in case k = −1. We use l to
denote the direction that yields all possible neighboring nodes of a given node, including
the parent. Formally, we thus define:

l : v 7−→
⋃

k∈{−1,0,1,...}
k(v).

Given a Γ-labeled tree t, a node v ∈ dom(t), and a direction d, by the neighbors of v in
direction d, denoted dt(v), we mean the set of nodes d(v) ∩ dom(t).

We are now ready to introduce the automata model of interest:

Definition 2.24. An alternating parity tree automaton is a tuple

A = (S,Γ,Dir, δ,Ω, s0),

where

27

2. Background

• S is a finite set of states;

• Γ is an alphabet, called the input alphabet;

• Dir is a set of directions;

• δ : S × Γ→ B+(tran(A)) is the transition function, where

tran(A) := {〈d〉s, [d]s | s ∈ S, d ∈ Dir};

• s0 ∈ S is the initial state;

• Ω: S → N is the priority function which assigns to each state a priority.

We say that A runs on Γ-labeled trees. If Dir = {0, l} or Dir = {−1, 0, 1, . . . ,m} for some
m ≥ 1, then we say that A is two-way (for short, a 2APTA). In the former case (i.e.,
Dir = {0, l}), we say that A runs on amorphous Γ-labeled trees (for short, a l-2APTA),
and in the latter case (i.e., Dir = {−1, 0, 1, . . . ,m}), we say that A runs on m-ary
Γ-labeled trees (for short, an m-2APTA).

If neither l ∈ Dir nor −1 ∈ Dir then we say that A is one-way (for short, an APTA).
If l ∈ Dir, then by the input trees of A we mean the set of all Γ-labeled trees.

Otherwise, we mean by the input trees of A the set of all m-ary Γ-labeled trees where
m := max{n | n ∈ N ∩ Dir}.

Remark 2.25. We remind the reader here of a remark we have already made in the
introductory part of this section. Unlike in the case of 1NTA, we do not require that the
input trees to 2APTA are finite. Indeed, the semantics defined below for 2APTA based
on parity games makes equally sense for the case of infinite trees. Employing the parity
condition in automata is, however, mostly done when one considers infinite trees. As
stressed above, we only deal with finite input trees and the reader might thus consider
the use of the parity condition as an “overkill” in our case. However, we remind the
reader that our automata model may make use of two-way movements which may give
rise to infinite runs. Although two-way alternating automata were also defined for a sole
use on finite trees (see, e.g., [4949, 6262, 131131]), we choose to work with parity automata as
they seem to be more convenient for our purposes.

Before providing the formal semantics of 2APTA, let us give a more intuitive ex-
planation of its operation on a Γ-labeled input tree t. We can view a 2APTA A as a
finitely specified device that traverses t according to the rules prescribed by the transition
function δ(·, ·). Hence, at each instant in time, we can imagine that A is in a given state
s ∈ S and at a node v ∈ dom(t) of the input tree – let us call the pair (v, s) a position.
Once A reads the symbol a := t(v), A proceeds by inspecting ϕ := δ(s, a). We can view
ϕ as being part of the state of A since the acceptance behavior of A in state s at position
v also depends on the formula ϕ – thus, let us augment the positional information of A
by ϕ and say in the following that A is at position (v, s, ϕ).

If ϕ = true then A accepts, and if ϕ = false then it rejects. Otherwise, A creates copies
of itself according to the shape of ϕ. If ϕ = ϕ1 ∨ ϕ2, then A, for some i ∈ {1, 2}, creates
a copy of itself at position (v, s, ϕi), and A accepts iff this copy accepts. If ϕ = ϕ1 ∧ ϕ2,

28

2.4. Automata Techniques

then A creates two copies of itself at the respective positions (v, s, ϕ1) and (v, s, ϕ2), and
A accepts iff these two copies accept. Now if ϕ = 〈d〉s′, then A selects some w ∈ dt(v) (if
such a w does not exist, it immediately rejects) and creates a copy of itself that proceeds
at position (w, s′, δ(s′, t(w))). In this case A accepts at position (v, s, ϕ) iff that copy
accepts at position (w, s′, δ(s′, t(w))). Likewise, if ϕ = [d]s′, then for every w ∈ dt(v), A
creates a copy of itself at position (w, s′, δ(s′, t(w))). A accepts at position (v, s, ϕ) iff all
these copies accept at position (w, s′, δ(s′, t(w))) – notice that if there is no w ∈ dt(v),
then A vacuously accepts from (v, s, ϕ).

The input tree t is accepted by A iff A accepts at position (ε, s0, δ(s0, t(ε)). Now it is
possible that the process of creating copies of A and sending the copies to different nodes
of t is never ending in the sense that these operations are carried out indefinitely, giving
rise to an infinite sequence of automata copies. Such a sequence can be visualized as a
branch in an exhaustive computation tree that emerges from the choices that A has. To
specify acceptance for this case, we employ the parity condition – roughly speaking, we
inspect the priorities of the states of the infinite sequence of invoked automata instances,
and we judge such a sequence as accepting iff the least priority that occurs infinitely
often in this sequence is even.

In the following, we are going to make this intuitive semantics more precise. The
description of the operation of 2APTA above suggests that the way an alternating
automaton (one-way or two-way) operates on an input tree can be viewed as an infinite
game between two players [110110, 134134]. In fact, we are going to define the notion of
acceptance via parity games.

Semantics of 2APTAs

Let us now provide a semantics to the 2APTA defined in Definition 2.242.24 by employing
parity games. Given a 2APTA A = (S,Γ,Dir, δ,Ω, s0) as above and a Γ-labeled input
tree t, the notion of acceptance of t by A is defined via a game played by two players, Eve
and Adam. The goal of Eve is to satisfy the parity condition and prove that t is accepted
by A, while to goal of Adam is to disprove this. We shall make this more precise in the
following.

Let χ ∈ B+(tran(A)) be a positive formula. We assign χ to an owner according to its
form:

• If χ = true (resp., χ = false) then χ is owned by Adam (resp., Eve).

• If χ = χ1 ∧ χ2 (resp., χ = χ1 ∨ χ2) then χ is owned by Adam (resp., Eve).

• If χ = [d]s (resp., 〈d〉s) then χ is owned by Adam (resp., Eve).

Moreover, we set

Ω(χ) :=
{

Ω(s), if χ = 〈d〉s or χ = [d]s,
max Ω(S), otherwise.

29

2. Background

The acceptance (parity) game G(A, t) for A and t is played in the arena

B+(tran(A))× dom(t).

For each position (χ, v) of the arena, we define the set of possible choices:

• If χ = true or χ = false, then the possibly choices are ∅.

• If χ = χ1 ∧ χ2 or χ = χ1 ∨ χ2, then the possible choices are {(χ1, v), (χ2, v)}.
• If χ = [d]s or χ = 〈d〉s, then the possible choices are {(δ(s, t(w)), w) | w ∈ dt(v)}.
Let χ0 := δ(s0, t(ε)). The initial position of the game G(A, t) is (χ0, ε) and, from any

position (χ, v), the game proceeds as follows:

(i) The player who owns χ selects a (χ′, w) among the possible choices for (χ, v),
provided there is one, and if so then

(ii) the game continues from position (χ′, w).

The transition from (χ, v) to (χ′, w) is called a move. By a play in G(A, t) we mean
a (finite or infinite) sequence of positions (χ0, ε), (χ1, v1), (χ2, v2), . . . that arise from
successive moves. We say that a play π is winning for Eve, if either (i) π is finite and the
last position (χ, v) is such that χ is owned by Adam, or (ii) π is infinite and satisfies the
parity (acceptance) condition, that is, the least priority among Ω(χ0),Ω(χ1),Ω(χ2), . . .
that occurs infinitely often is even. We say that π is winning for Adam if it is not winning
for Eve.

A strategy for one of the players is a function that returns the next choice for that
player given the history of the play. A strategy is memoryless if the strategy only depends
on the current position but not on the entire history of the play. Fixing a strategy for
both players thus uniquely determines a play in G(A, t). A play π is consistent with a
strategy ξ if there is a strategy ξ′ for the other player such that ξ and ξ′ yield π.

We say that a strategy for a player is winning in G(A, t) if every play consistent with
it is winning for that player. We remark that parity games as G(A, t) are determined,
i.e., either Eve or Adam has a winning strategy in G(A, t), and they are memoryless,
i.e., if a player has a winning strategy, then that player also has a memoryless winning
strategy [7373, 106106, 109109].

Definition 2.26. The language of A, denoted L(A), is the set of all Γ-labeled trees t
such that Eve has a winning strategy in G(A, t).

Example 2.27. Let A = ({s0}, {a}, {1, 2}, δ,Ω, s0) be an automaton with

δ(s0, a) := [1]s0 ∧ [2]s0,

Ω(s0) := 1.

Suppose t is an {a}-labeled input tree. Let us inspect the game G(A, t). It starts at
position (ε, [1]s0 ∧ [2]s0) which is owned by Adam. Thus, Adam chooses either (ε, [1]s0)
or (ε, [2]s0). Both positions are again owned by Adam, and if he chose (ε, [i]s0), then

30

2.4. Automata Techniques

he has, in the next move, point to some node v1 ∈ it(ε). If he succeeds, then the game
continues from position (v1, [1]s0 ∧ [2]s0) (if he cannot point to a successor v1, Adam
loses). Now the game continues in this fashion – Adam has to select successor v2, v3, . . .
in order to win the game. Since Ω(s0) = 1, Adam indeed has to select infinitely many
nodes vi in order to win G(A, t). Thus, we easily see that Adam has a winning strategy
in G(A, t) iff t is infinite. Hence, Eve has a winning strategy in G(A, t) iff t is finite and
so A accepts t iff t is finite. a

From m-2APTAs to 1NTAs It is well-known that standard two-way alternating
automata (without the parity acceptance condition) that work on finite trees have an
exponential translation to 1NTAs [6262, 128128]. Moreover, in [133133], Vardi shows how to
translate two-way alternating parity automata that work on infinite trees (in which every
node has a fixed branching degree) to equivalent non-deterministic parity tree automata.
Our goal here is to show, assuming that a given m-2APTA accepts finite trees only, that
we can provide an according translation to 1NTA:

Theorem 2.28. Let A be an m-2APTA that accepts finite trees only. Then there exists
a 1NTA A′ such that L(A) = L(A′). The number of states of A′ is exponential in the
number of states of A, and A′ can be constructed in exponential time.

We provide a proof sketch of Theorem 2.282.28 in Appendix B.1B.1. Its proof is essentially a
slight modification of the result provided in [133133] for two-way alternating parity automata
working on infinite trees.

Language emptiness As in the case of 1NTA, the (language) emptiness problem for
a class of 2APTAs is the problem, given a 2APTA A from that class, to decide whether
L(A) = ∅. In [134134], the following is shown:

Theorem 2.29. The emptiness problem for l-2APTAs is decidable in ExpTime.

Furthermore, using Theorems 2.232.23 and 2.282.28, we can conclude:

Theorem 2.30. The emptiness problem for m-2APTAs is decidable in ExpTime.

Closure Properties of 2APTAs It is not hard to check that 2APTAs are closed
under Boolean operations:

Proposition 2.31. The class of l-2APTAs is closed under intersections, complements,
and unions. That is, given l-2APTAs A and B running on Γ-labeled trees, the following
hold:

(i) There is a l-2APTA A ∩ B such that L(A ∩ B) = L(A) ∩ L(B).

(ii) There is a l-2APTA A ∪ B such that L(A ∪ B) = L(A) ∪ L(B).

(iii) There is a l-2APTA A such that L(A) = T (Γ) \ L(A).

According statements hold for m-2APTA as well. Moreover, all the mentioned automata
can be constructed in linear time.

31

2. Background

Proof. Let A = (SA,Γ,Dir, δA,ΩA, sA) and B = (SB,Γ,Dir, δB,ΩB, sB) and assume
w.l.o.g. that SA ∩ SB = ∅.

We let A∩B := (SA ∪SB ∪{sA∩B},Γ,Dir, δA∩B,ΩA∩B, sA∩B), where sA∩B 6∈ SA ∪SB
and

δA∩B(sA∩B, a) := 〈0〉sA ∧ 〈0〉sB, for all a ∈ Γ,
δA∩B(s, a) := δA(s, a), for all s ∈ SA and a ∈ Γ,
δA∩B(s, a) := δB(s, a), for all s ∈ SB and a ∈ Γ,

and

ΩA∩B(sA∩B) := max(ΩA(SA) ∪ ΩB(SB)),
ΩA∩B(s) := ΩA(s), for all s ∈ SA,
ΩA∩B(s) := ΩB(s), for all s ∈ SB,

It is easy to check that L(A ∩ B) = L(A) ∩ L(B).
For the case of complementation, we setA := (SA,Γ,Dir, δA,ΩA, sA), where SA := SA,

ΩA : s 7→ ΩA(s) + 1, sA := sA, and, for all s ∈ SA and all a ∈ Γ, we let δA(s, a) be
the positive Boolean formula that arises from δA(s, a) by flipping (i) true and false,
(ii) conjunctions and disjunctions, and (iii) 〈d〉s and [d]s. Given an input tree t, it
is not hard to show Eve has a winning strategy in G(A, t) iff Adam has a winning
strategy in G(A, t). Since parity games are determined, we immediately obtain that
L(A) = T (Γ) \ L(A).

The construction of A ∪ B by using intersection and union, i.e.,

A ∪ B := (A ∩ B).

Notice that all constructions presented are feasible in linear time. �

Notation. When constructing intersections, complements, and unions of automata, we
often use the notations A∩ B, A, and A∪ B to denote the according operations, though,
strictly speaking, the ways these automata are constructed are not unique – we implicitly
assume that these automata are constructed as presented in the proof of Proposition 2.312.31.
A similar convention is employed for other types of automata that we encounter in this
thesis.

We can use Theorem 2.282.28 and Proposition 2.222.22 in order to immediately conclude
that we can form the projection of an m-2APTA at an exponential cost:

Proposition 2.32. Suppose A is an m-2APTA that runs on m-ary (Γ×Λ)-labeled trees.
Then there exists an m-2APTA AΓ, whose state set is of exponential size in the size
of the state set of A, such that L(AΓ) = πΓ(L(A)). Moreover, we can construct AΓ in
exponential time from A.
Proof. According to Theorem 2.282.28 and Proposition 2.222.22, we can construct a 1NTA
A′ = (S,Γ, s0, δ, F) that runs on Γ-labeled trees such that L(A′) = πΓ(L(A)). A′ has

32

2.4. Automata Techniques

exponentially many states in the number of states of A, and the time needed to construct
it is exponential. Let AΓ := (SΓ,Γ, {−1, 0, 1, . . . ,m}, δΓ,ΩΓ, s0,Γ) be the m-2APTA
constructed as follows. We set SΓ := S, s0,Γ := s0, and ΩΓ(s) := 1 for all s ∈ SΓ.
Moreover, for s ∈ SΓ and a ∈ Γ we set

δΓ(s, a) :=
∨
{〈1〉s1 ∧ · · · ∧ 〈k〉sk | s1 · · · sk ∈ δ(s, a), s1, . . . , sk ∈ S, 0 ≤ k ≤ m},

where the empty conjunction equals true and the empty disjunction equals false. It is not
hard to check that L(AΓ) = L(A′), whence the claim follows. �

33

CHAPTER 3
Ontology-Mediated Querying

The main purpose of this chapter is to introduce the basic concepts of (rule-based)
ontology-mediated querying. The central notion of interest to us is that of an ontology-
mediated query (OMQ) [3737]. Roughly speaking, an ontology-mediated query is a composite
query consisting of a standard database query plus an ontology, where the latter serves
as a “mediator” between the data and the database query. Thus, an ontology provides a
unified conceptual view of the data, and user queries are formulated in the schema of
the ontology. From a logical point of view, an ontology is just a logical theory that is
employed to derive knowledge which is not explicitly given by the data, but implicitly
encoded using the logical rules of the ontology.

Hence, one choice to be taken when specifying an OMQ is the ontology which is used to
formulate the OMQ. Popular choices in the literature include description logics (DLs) [1212]
and other fragments of first-order logic. In this work we focus on ontology-mediated
queries whose ontology is formulated via tuple-generating dependencies (TGDs) [2525].
Tuple-generating dependencies (also known as existential rules [1414] or existential Datalog±
rules [4646]) are, roughly speaking, Datalog rules that do not only allow the inference
of new relations among existing objects, but that also allow the “invention” of new
objects. Syntactically speaking, TGDs are Datalog rules that allow the use of existential
quantifiers in their rule heads. Thus, just as Datalog can be conceived to be “conjunctive
queries plus the use of recursion,” TGDs can be conceived as “Datalog rules plus value
invention” [4343]. The use of TGDs in formulating ontologies is a rather recent application
of them – TGDs had become prominent for other applications, e.g., data exchange [7676]
and operations on schema mappings [7575]. This chapter is dedicated to introduce the
basic terminology concerning TGDs – in particular, we are going to introduce the chase
procedure which serves as a central algorithmic tool throughout this thesis.

It is well-known that answering conjunctive queries under arbitrary sets of TGDs
is undecidable [2424]. This negative result has led to a flurry of research activity on the
identification of classes of sets of TGDs for which query answering is decidable. In this
chapter, we are going to revisit the main principles that lie behind fragments which

35

3. Ontology-Mediated Querying

permit decidable query answering, as well as concrete classes of TGDs that implement
these principles and thus have a decidable query answering problem.

Outline This chapter is organized as follows. In Section 3.13.1 we are going to introduce
tuple-generating dependencies and their terminology. We proceed to introduce the
notion of ontology-mediated query in Section 3.23.2, and we define the chase procedure in
Section 3.33.3. Finally, we are going to treat decidability paradigms for classes of TGDs as
well as concrete decidable classes of TGDs in Section 3.43.4.

3.1 Tuple-Generating Dependencies

A tuple-generating dependency [2525] (TGD, also known as existential rule [1414] or Datalog±
rule [4646]) is a first-order sentence τ of the form

∀x̄ (q(x̄)→ p(x̄)),

where q(x̄) and p(x̄) are conjunctive queries such that p(x̄) uses no equality atoms. When
writing down TGDs, we usually omit the preceding universal quantifiers, and, in order
to avoid confusion, we shall assume w.l.o.g. that the existentially quantified variables of
q(x̄) are distinct from the existentially quantified variables in p(x̄). Thus, τ is mostly
presented in the form

ϕ(x̄, z̄)→ ∃ȳ ψ(x̄, ȳ),

where ϕ(x̄, z̄) and ψ(x̄, ȳ) are conjunctions of atoms with free variables as indicated,
[ȳ] ∩ [z̄] = ∅, q(x̄) = ∃z̄ ϕ(x̄, z̄), and p(x̄) = ∃ȳ ψ(x̄, ȳ). Moreover, when presenting
ϕ(x̄, z̄), we often separate its atoms by comma instead of conjunction (in reminiscence
of Datalog rules). The set of atoms contained in ϕ(x̄, z̄) are called the body (atoms)
of τ , while the set of atoms contained in ψ(x̄, ȳ) are the head (atoms) of τ , and we let
body(τ) := body(q(x̄)) and head(τ) := body(p(x̄)). When speaking about the “body” of
τ (respectively, the “head” of τ), we shall often mean the CQ q(x̄) (respectively, p(x̄)).

We write var∃(τ) for the variables ȳ, i.e., those variables that are existentially quantified
in the head of τ . The variables x̄ are called the frontier variables of τ . Notice that due
to our convention that existentially quantified variables in the head are different from
the variables in the body, a variable is a frontier variable of τ iff it has an occurrence in
the body and in the head – variables with this property as said to be propagated to the
head. We say that τ is constant-free, if it does not have any occurrence of a constant.
Accordingly, we say that a set of TGDs O is constant-free if each TGD contained in it is
constant-free. We write sig(τ) for the set of relation names occurring in τ , and sig(O)
for

⋃
τ∈O sig(τ).

Let A be a structure. By the standard semantics of first-order logic, A is a model of
τ if the following condition holds: for every homomorphism h from ϕ(x̄, z̄) to A, there
exists a homomorphism h′ such that (i) h′ is a homomorphism from ψ(x̄, ȳ) to A, and
(ii) h′ and h agree on the frontier variables x̄. As TGDs are just logical sentences, we
employ the standard logical notations to denote modelhood for (sets of) TGDs. That is,

36

3.2. (Rule-Based) Ontology-Mediated Queries

given a structure A, we write A |= τ in case A is a model of the TGD τ , and for a set of
TGDs O we write A |= O if A is a model of every τ ∈ O.

Notation. We write TGD for the class of all finite sets of TGDs.

3.2 (Rule-Based) Ontology-Mediated Queries

As said in the introductory part of this section, ontology-mediated queries (OMQs) are
compound queries that consist of a standard database query “on top” of an ontology.
The following notion (which follows the definition of OMQ given in [3737]) captures this
intuition and is central to this thesis:

Definition 3.1. An ontology-mediated query (OMQ) is a triple Q = (S,O, q(x̄)), where

(i) S is a relational schema, called the data schema of Q,

(ii) O is an ontology, i.e., a finite set of existential rules, and

(iii) q(x̄) is a UCQ over S ∪ sig(O) and is called the query of Q.

When S comprises the entire schema of O, we shall denote Q simply by (O, q(x̄)).
Whenever we consider a class C of finite sets of TGDs, then an OMQ based on C is

an OMQ whose ontology belongs to C.

Let us emphasize here that we explicitly name the schema S in OMQs to indicate that
the query the OMQ gives rise to is an S-query (cf. Definition 2.92.9) and is thus evaluated
over S-databases. Notice though that q(x̄) can be formulated over the schema S∪ sig(O),
i.e., q(x̄) is used to query the data in conjunction with the ontology.

We remark again that, from a general point of view, there is no need to restrict
ontologies to be classes of finite sets of TGDs. Rather, ontologies could, in principle, be
any logical theory that permits a well-defined semantics based on relational structures
(for example, an ontology could be an arbitrary set of first-order sentences). However,
in this thesis we exclusively focus on ontology languages that are based on existential
rules, and we call such OMQ-languages rule-based. Let us emphasize in particular that
we restrict ourselves to the case where the heads of rules consist of a CQ and contain no
disjunction (see [4141, 4242, 108108] for work on disjunctive rules). The problems studied in this
thesis for classes of OMQs with disjunctions in rule heads are still rather unexplored and
subject to future research.

Definition 3.2. Given an S-database D, we define the semantics of Q as follows:

Q : D 7−→ {ā | (D,O) |= q(ā), where ā ∈ adom(D)|x̄|}.

Tuples contained in Q(ā) are also called the certain answers of Q to D, and sometimes
we call them the certain answers of q(x̄) to (D,O) and denote them by certq,O(D).

Remark 3.3. Although the semantics of Q is defined to be a mapping from S-databases to
tuples of constants, we shall often abuse notation and extend Q to capture also structures,

37

3. Ontology-Mediated Querying

i.e., given an S-structure A, we write Q(A) for the set of all tuples ā over adom(A) such
that (A,O) |= q(ā). Accordingly, we write A |= Q(ā) in case ā ∈ Q(A).

Example 3.4. Let Q = (S,O, q(x)), where S = {P/1, F/2},
q(x) = ∃y, z (P (x) ∧ F (y, x) ∧ F (z, y) ∧ P (z)),

and O consists of the following rule:

τ : P (x)→ ∃y, z (F (y, x) ∧ P (y)).

Intuitively, τ states that every person has a father who is himself a person. The query
q(x) asks for all persons x that have a grandfather who is a person. Given the database
D = {P (a), F (a, b)}, we can conclude that Q(D) = {a} and so (D,O) |= q(a). On the
other hand, notice that we cannot infer that b is himself a person, i.e., (D,O) 6|= P (b),
and so (D,O) 6|= q(b). Notice also that the fact F (a, b) is not necessary to derive the
certain answer a, i.e., Q({P (a)}) = {a}. a

We call a class L of finite sets of TGDs an ontology language. Elements from L are
called L-ontologies.

Definition 3.5. An ontology-mediated query language is a pair (L,Q), where L is an
ontology language and Q a query language.

Remark 3.6. We remark that we only consider ontology-mediated query languages of the
form (L,Q), where Q is a class of (U)CQs.

The query answering problem for OMQs Recall that, for a query language L, we
denote by Eval(L) the query answering problem for L. Given an ontology-mediated query
language (L,Q), we shall denote by Eval(L,Q) the query answering problem for (L,Q).
Via the notion of certain answers, the query answering problem is thus equally defined
for OMQs as it is for standard database query languages.

Sometimes we shall speak about the query answering problem for a class C of sets of
TGDs rather than a class of OMQs. In this case, we mean – given a database D, a set of
TGDs O ∈ C, a (U)CQ q(x̄), and a tuple of constants ā ∈ adom(D)|x̄| – the problem of
deciding whether (D,O) |= q(ā) holds.

3.3 The Chase Procedure

Let O be a set of TGDs, A an S-structure, q(x̄) a conjunctive query, and ā a tuple over
dom(D). Recall that (A,O) |= q(ā) iff for every interpretation (B, ā) it holds that, if B
is a model of O and B ⊇ A, then B |= q(ā). Our goal here is to give a construction of a
model U such that

U |= q(ā) ⇐⇒ (A,O) |= q(ā),

for all ā ∈ adom(A)|x̄|. Hence, the problem of checking whether a CQ is entailed by a
structure plus a (finite) set of TGDs is reduced to the problem of checking whether that
CQ is satisfied in U.

38

3.3. The Chase Procedure

Remark 3.7. We are mostly interested in the case where A is actually an S-database
instead of an arbitrary structure. However, for technical reasons, we also use the notions
developed here for structures. Therefore, we keep the definitions more general.

Definition 3.8. A structure U is a universal model of A and O if (i) U ⊇ A and U is a
model of O, and (ii) if B ⊇ A and B is a model of O, then there exists a homomorphism
from U to B.

The following lemma states that universal models are the right structures we are
looking for in order to reduce the question whether a (U)CQ is entailed by (A,O) to the
question whether the universal model satisfies the CQ at hand:

Lemma 3.9. If U is a universal model of A and O, then for every UCQ q(x̄) over
S ∪ sig(O) and all tuples ā over adom(A) it holds that

U |= q(ā) ⇐⇒ (A,O) |= q(ā).

Proof. Let q(x̄) =
∨n
i=1 qi(x̄) and suppose first that U |= q(ā). Hence, there is a

homomorphism h from some qi(x̄) to U such that h(x̄) = ā. Now let (B, π) be an
interpretation such that B ⊇ A, π(x̄) = ā, and B |= O. Thus, the facts of B extend
those of A, and B is a model of O, whence by the universality of U it follows that there
is a homomorphism h′ from U to B. Thus, h′ ◦ h is a homomorphism from qi(x̄) to B
such that (h′ ◦ h)(x̄) = ā, and so B, π |= q(x̄) as required.

Suppose now that every interpretation (B, π) with π(x̄) = ā, B |= O, and B ⊇ A
satisfies B, π |= q(x̄). In particular, this holds for U as well, and so U |= q(ā). �

We are now going to show how to canonically construct a suitable universal model
according to the facts given in A and the rules provided by O. The procedure is known
as the chase procedure and is a popular algorithmic tool in the context of database
dependencies. It has its roots in deciding implications of dependencies [104104] and in
deciding containment of CQs under functional and inclusion dependencies [9797]. When
we talk about the “chase” we either mean the procedure itself or its resulting universal
model. Intuitively, the chase procedure aims to successively satisfy all tuple-generating
dependencies that are present in the ontology at hand. It does so by introducing new
facts that have to be added to satisfy the rule heads. Thus it resembles the operational
semantics given for Datalog queries, but it may need to introduce fresh domain elements
in order to satisfy existential quantifiers of rule heads.

Let A be an S-structure and O be a finite set of existential rules. It will be convenient
to assume a globally fixed, countably infinite set nulls = {λ1, λ2, . . .} of (labeled) nulls at
our disposal that is disjoint from const and vars. These labeled nulls serve as placeholders
to fulfill the demands posed by existential quantifiers in rule heads.

Definition 3.10. Suppose J is a structure and suppose qτ (x̄) is the body of a rule of
some τ ∈ O. If there is a homomorphism h from qτ (x̄) to J, then we say that τ is
h-applicable to J.

39

3. Ontology-Mediated Querying

Definition 3.11. Let J be a structure and suppose τ ∈ O is h-applicable to J. Suppose
the head of τ has the form ∃ȳ ϕ(x̄, ȳ), where ϕ(x̄, ȳ) is a conjunction of atoms and x̄ are
the frontier variables of τ . Let J′ be a structure that has the following properties:

(i) dom(J′) = dom(J) ∪ {λ̄}, where λ̄ is a sequence of labeled nulls of length |ȳ| that
do not appear in dom(J).

(ii) J′ has precisely the following facts: all the facts of J plus, in addition, the facts
occurring in ϕ(x̄/h(x̄), ȳ/λ̄).

Then we say that J′ results from J by an application of (h, τ) and we call the atoms
occurring in ϕ(x̄/h(x̄), ȳ/λ̄) the atoms derived from J using (h, τ).

Definition 3.12. A chase sequence for A and O is a sequence π of structures J0, J1, . . .
such that

(i) J0 = A,

(ii) for each Ji+1, there is a homomorphism hi and a rule τi ∈ O such that Ji+1 results
from Ji by an application of (hi, τi). The atoms derived from Ji using (hi, τi) are
called the atoms derived in the (i+ 1)-st chase step.

(iii) for each k ≥ 0, if there is a homomorphism h such that some τ ∈ O is h-applicable
to Jk, then there exists anm > k such that Jm results from Jm−1 by an application
of (h, τ).

We denote by chaseπ(A,O) the structure
⋃
i≥0 Ji, and we write chasekπ(A,O) for the

structure
⋃

0≤i≤k Ji.

Intuitively, item (iii)(iii) of the definition above states that the construction of the chase
sequence π is “fair” in the sense that admissible rule applications occur within a finite
number of steps. Notice also that our definition of chase sequences always forces that
every chase sequence is infinite. We call such an infinite chase sequence J0, J1, . . . finite
if there is an m ≥ 0 such that Jk = Jm for all k ≥ m.

Remark 3.13. Here we defined the so-called oblivious chase procedure which successively
adds facts to the constructed structure regardless of whether they are required at all (for
example, a rule head may already be satisfied by the structure constructed so far, but
the chase procedure nevertheless introduces new witnessing facts). Alternative ways to
define the chase procedure are the restricted chase [2424, 4444], the semi-oblivious chase [105105]
(a.k.a. Skolem chase), and the core chase [6969]. These chase variants differ in terms of the
conditions they demand for inferring new facts. For example, the restricted chase only
introduces new facts when the rule in consideration is not yet satisfied by the current
instance. In this thesis, we will only consider the oblivious chase, since it is more convenient
for our setting. We want to remark that the (results of the) oblivious chase and the other
chase variants turn out to be equally appropriate from a query answering perspective –
indeed, the resulting instances are all homomorphically equivalent [4444, 6969, 105105]. However,
the different chase variants may have different termination properties in the sense that,

40

3.3. The Chase Procedure

given the same database and set of rules, one may terminate while the other does
not [101101, 114114].

The following lemma states that chase sequences give rise to universal models [4444]:

Lemma 3.14. Let π be a chase sequence for A and O. Then the structure chaseπ(A,O)
is a universal model of A and O.

Moreover, two different chase sequences for A and O give rise to homomorphically
equivalent structures:

Lemma 3.15. Let π and π′ be chase sequences for A and O. Then the structures
chaseπ(A,O) and chaseπ′(A,O) are homomorphically equivalent.

Proof. Immediate since, by Lemma 3.143.14, both chaseπ(A,O) and chaseπ′(A,O) are
universal models of A and O. �

Notation. By Lemma 3.153.15, for the purpose of evaluating CQs against chase sequences,
we canonically fix a chase sequence πA,O for each pair (A,O). We write chase(A,O)
for chaseπA,O(A,O) in the following and, accordingly, we write chasek(A,O) instead of
chasekπA,O(A,O). The sequence πA,O is called the chase sequence for A and O, and we
call chase(A,O) the result of chasing A by O.

When explicitly writing down chase(A,O) as a set of facts F , we shall employ a rather
liberal notational convention: an expression of the form chase(A,O) = F expresses the
fact that chase(A,O) is isomorphic to the structure corresponding to F . This allows for
a more liberal naming of labeled nulls, and we thus do not need to impose any order that
specifies which particular labeled null is used in a particular chase step.

From Lemmas 3.93.9, 3.143.14 and 3.153.15 we immediately obtain:

Corollary 3.16. Let A be a database, O an ontology, and q(x̄) a UCQ. For all ā ∈
adom(A)|x̄|, it holds that (A,O) |= q(ā) iff chase(A,O) |= q(ā).

Example 3.17. Let Q = (S,O, q(x)) be the OMQ given in Example 3.43.4. Suppose
furthermore that D = {P (a)}. Then chase(D,O) consists of the following facts:

P (a), F (λ1, a), P (λ1), F (λ2, λ1), P (λ2), F (λ3, λ2), P (λ3), . . .

Here, by the white-space between atoms we indicate which group of atoms is derived in
a particular chase step. Notice again that we implicitly fixed a particular chase sequence
πD,O – indeed, the concretely chosen labeled nulls in each step above are immaterial.

Now recall from Example 3.43.4 that q(x) = ∃y, z (P (x) ∧ F (y, x) ∧ F (z, y) ∧ P (z)). Let
h be a function such that h(x) := a, h(y) := λ1, h(z) := λ2. Then h is a homomorphism
from q(x) to chase(D,O) and thus chase(D,O) |= q(a). By Corollary 3.163.16 we thus obtain
(D,O) |= q(a).

Let us also remark at this point that chase(D,O) |= q(λ1) holds. However, the
statement (D,O) |= q(λ1) is not well-defined, since the assignment {x 7→ λ1} is not an

41

3. Ontology-Mediated Querying

assignment over D at all. Therefore, none of the labeled nulls can be a certain answer,
and this justifies the restriction to answer tuples over adom(D) in Corollary 3.163.16. a

We close this section by observing that all the rule-based OMQs we consider are
closed under homomorphisms:

Proposition 3.18. Let A be an S-structure and Q = (S,O, q(x̄)) be an OMQ from
(TGD,UCQ). It holds that Q is closed under homomorphisms, i.e., if h is a homomorphism
from A to another S-structure B, then for all tuples ā over adom(A),

(A,O) |= q(ā) =⇒ (B,O) |= q(h(ā)).

An according statement holds for weak homomorphisms assuming that O and q(x̄) are
constant-free.

Proof hint. By an easy induction on the length of a chase derivation that witnesses
(A,O) |= q(ā). Notice in particular that (U)CQs are closed under homomorphisms and
the fact that rule bodies are essentially CQs. �

3.4 Decidable Classes of TGDs

As mentioned in the introductory part of this chapter, query answering under arbitrary
sets of TGDs is undecidable [2424], and this holds even when the set of TGDs is considered
to be fixed [4444]. In fact, OMQs based on arbitrary sets of TGDs are even capable of
expressing any recursively enumerable query that is closed under homomorphisms [124124].
Moreover, in [1414] it is shown that any set of TGDs can be encoded into a single rule, which
entails that, in general, query answering under singleton sets of TGDs is undecidable
as well.

The negative results on query answering under existential rules have led to a flurry of
research activity on the identification of classes of sets of TGDs for which query answering
is decidable. The purpose of this chapter is to introduce these classes and their guiding
principles. By a decidable class L of finite sets of TGDs, we mean a class of finite sets
TGDs such that the query answering problem Eval(L,UCQ) is decidable. As in the title
of this section, we sometimes sloppily call L a “decidable class of TGDs,” though L in
reality, of course, consists of a class of sets of TGDs. We first present abstract decidable
classes of sets of TGDs and then present concrete syntactic decidable classes.11 For the
former, the term “abstract” refers to the fact that the distinguishing class property of
the sets of TGDs at hand is not necessarily effectively decidable, while, for the latter,
the term “syntactic” indicates that the class at hand is specified by effectively decidable
(“syntactic”) criteria.

The terminology and structure of our synopsis of decidable classes of TGDs is largely
based on [117117], yet we remark that especially the treatment on syntactic classes is far
from being exhaustive. The aim of this section is rather to provide a guideline of the
general principles and ideas that lie behind the classes of rules that we are going to
encounter in this thesis.

1To the best of our knowledge, the categorization into abstract and syntactic classes is due to [1414].

42

3.4. Decidable Classes of TGDs

3.4.1 Abstract Classes

As mentioned above, by an abstract class of TGDs we mean a class of finite sets of TGDs
that is distinguished by a property that is not necessarily effectively decidable. According
to [1414, 117117], the three main abstract decidability paradigms present in the literature are:
(i) finite expansion sets which exhibit the property that the (restricted) chase terminates,
(ii) finite tree-width sets which have the property that the instance constructed by the
chase, though possibly infinite, has finite tree-width, and (iii) first-order rewritable sets
which ensure that the set of TGDs at hand together with a given (U)CQ can be compiled
into a finite first-order query that can be equivalently employed for query answering
purposes.

Finite Expansion Sets

Intuitively, a finite expansion set is a set of TGDs such that, when a database is chased
with that set of TGDs, after finitely many rule applications, subsequent rule applications
become superfluous for query answering purposes (see [117117]). In this sense, the chase
can be considered to terminate after finitely many steps, and query answering can
be performed on the resulting finite instance. The following definition formalizes this
intuition:

Definition 3.19. A set of TGDs O is a finite expansion set, if for every database D,
there exists a computable k ≥ 0 such that there is a homomorphism from chase(D,O) to
chasek(D,O).

It is not hard to see that query answering for OMQs based on finite expansion sets is
decidable:

Theorem 3.20. Suppose O is a finite expansion set, D a database, q(x̄) a UCQ, and a
tuple ā ∈ adom(D)|x̄|. Then the problem of deciding whether (A,O) |= q(ā) is decidable.

Proof. Suppose k ≥ 0 is chosen such that there is a homomorphism from chase(D,O)
to chasek(D,O). Thus, chasek(D,O) is a universal model for D and O, since it is
homomorphically equivalent to chase(D,O). Moreover, chasek(D,O) is obviously finite,
and so we can decide (D,O) |= q(ā) by first computing chasek(D,O) and then check
whether chasek(D,O) |= q(ā). Notice that the latter task amounts to the evaluation of a
UCQ over a structure, which is clearly decidable (see Theorem 2.152.15). �

Finite Tree-Width Sets

Unlike finite expansion sets, for finite tree-width sets it may not be possible to restrict
oneself to a finite number of rule applications when chasing a database. Rather, the
structure constructed by the chase exhibits a “tree-like” shape which can be exploited
for the purpose of query answering. Let us formalize this properly:

43

3. Ontology-Mediated Querying

Definition 3.21. Let A be a structure. A tree decomposition of A is a tuple δ =
(T , (Xv)v∈T), where T = (T,E) is a rooted tree, and (Xv)v∈T a collection of subsets of
dom(A), called the bags of δ, such that the following conditions are satisfied:

(i) dom(A) ⊆ ⋃v∈T Xv,

(ii) for every fact R(a1, . . . , an) of A, there is a v ∈ T such that {a1, . . . , an} ⊆ Xv,
and

(iii) for every a ∈ dom(A), the set {v | a ∈ Xv} induces a connected subtree of T .
The width of δ, denoted wd(δ), is max{|Xv| : v ∈ T} − 1. The tree-width of A, denoted
tw(A), is min{wd(δ) | δ is a tree decomposition of A}.

Remark 3.22. We want to point of the following:

I The tree-width of a given infinite structure A may not exist in the sense that there
is no tree decomposition whose bags have finite cardinality at all. In this case, we set
tw(A) :=∞. In case tw(A) ≤ ∞, it always holds that tw(A) ≥ 0, since we require that
dom(A) is non-empty. Moreover, the fact that the tree T of δ is rooted is strictly speaking
not required, but it is convenient for our purposes to refer to a fixed root node.
I Given a tree decomposition δ = (T , (Xv)v∈T), we call T the tree δ is based on.

Moreover, we often abuse terminology and treat δ itself as a tree – for example, when we
refer to a “node” of δ, etc., we actually mean a node of T , etc.
I Item (iii)(iii) of Definition 3.213.21 is called the connectivity property.

Example 3.23. Let D = {R(a, b), R(b, c), R(c, a)} and consider the singleton set of TGDs
O = {R(x, y)→ ∃z R(y, z)}. Then:

chase(D,O) = D ∪ {R(b, λ1), R(c, λ2), R(a, λ3), R(λ1, λ1,1), R(λ2, λ2,1), R(λ3, λ3,1), . . .}.

Figure 3.13.1 shows a tree decomposition of chase(D,O) that has width two. It is easy to
check that there is no tree decomposition of chase(D,O) of smaller width, whence we
conclude that tw(chase(D,O)) = 2. a

Definition 3.24. Let O be a finite set of TGDs. We say that O is a finite tree-width
set, if for every database D, there is a k ≥ 0 such that tw(chase(D,O)) ≤ k.

Notice that every finite expansion set is trivially a finite tree-width set.
A class L of first-order sentences has the finite tree-width property, if every sentence

ϕ ∈ L has a model of finite tree-width. It is a celebrated result of Courcelle [6565] that
the satisfiability problem for classes of sentences that have the finite tree-width property
is decidable – in fact, this holds even for monadic second-order logic. Using Courcelle’s
theorem we can conclude:

Theorem 3.25. If O is a finite tree-width set, D a database, q(x̄) a UCQ, and ā ∈
adom(D)|x̄|, then the problem of deciding whether (D,O) |= q(ā) is decidable.

44

3.4. Decidable Classes of TGDs

{a, b, c}

{b, λ1}

{λ1, λ1,1}

{λ1,1, λ1,2}

...

{c, λ2}

{λ2, λ2,1}

{λ2,1, λ2,2}

...

{a, λ3}

{λ3, λ3,1}

{λ3,1, λ3,2}

...

Figure 3.1: A tree decomposition of chase(D,O) from Example 3.233.23 that has the minimal
width two.

Proof. Let ϕD,O,q(ā) be the sentence∧
D ∧

∧
O ∧ ¬q(ā),

where
∧
D denotes the conjunction of all facts occurring in D seen as atomic formulas.

Let L denote the class of all such sentences ϕD,O,q(ā), where O is a finite tree-width set.
We claim that L has the finite tree-width property. Indeed, if ϕD,O,q(ā) ∈ L has a model
A, then it is a model of D and O. Also recall that chase(D,O) is a model of D and O.
By the universality of chase(D,O) (see Lemmas 3.143.14 and 3.153.15), it follows that there is
a homomorphism h from chase(D,O) to A. We claim that chase(D,O) is also a model
of ¬q(ā). Indeed, if not, then chase(D,O) |= q(ā), whence A |= q(ā) follows since the
satisfaction of (U)CQs is easily seen to be closed under homomorphisms. This contradicts
the fact that A is a model of ϕD,O,q(ā). Hence, ϕD,O,q(ā) has a model of finite tree-width,
whence it follows by Courcelle’s result that the satisfiability problem for L is decidable.
It remains to be noticed that ϕD,O,q(ā) is unsatisfiable iff (D,O) |= q(ā). �

First-Order Rewritable Sets

First-order rewritable sets of TGDs (introduced in the context of description logics [4848])
achieve decidability by reducing the query answering problem to the problem of answering
a plain first-order query over a given database. More formally:

Definition 3.26. A set of TGDs O is a first-order rewritable set, if for every UCQ q, one
can effectively construct a (finite) first-order query ϕq,O such that ϕq,O(D) = certq,O(D)
for every database D. We say that ϕq,O is a first-order rewriting of q with respect to O.

First-order rewritable sets have several merits. Firstly, having the plain first-order
query ϕq,O at hand, one can evaluate ϕq,O over D using the available relational database
management technology, since first-order queries essentially amount to SQL-queries.
Secondly, the fact that such a first-order rewriting exists at all has implications in terms

45

3. Ontology-Mediated Querying

of data complexity: since the first-order rewriting is by definition independent from
the data, the data complexity of answering queries under first-order rewritable sets of
TGDs matches the data complexity of evaluating first-order queries, which is in AC0
(cf. Theorem 2.132.13). The fact that query answering under first-order rewritable sets of
TGDs is decidable in combined complexity follows immediately from the fact that the
first-order rewriting is required to be effectively constructible by definition. The following
theorem summarizes these facts:

Theorem 3.27. Query answering under first-order rewritable sets is decidable and,
moreover, feasible in AC0 in terms of data complexity.

We are going to revisit the concept of first-order rewritability in the context of OMQs
in Chapter 55, where we are going to study first-order rewritability as a decision problem.
Therefore, we shall omit more details at this point and refer the reader to Chapter 55 for
more information on first-order rewritability.

3.4.2 Syntactic Classes

We have seen in the previous subsection that there are semantic classes of sets of TGDs
which guarantee that query answering under the corresponding class is decidable. However,
it turns out that the properties we presented are inherently semantic – i.e., for each of
the presented classes, the problem of deciding whether a given set of TGDs belongs to
that class is undecidable [1414].

Therefore, one aims to define syntactic classes of sets of TGDs that ensure decid-
ability of query answering. We are now going to give an overview on these concrete
syntactic classes that have been studied in the literature. The presentation here is not
exhaustive, but focuses rather on general principles and recurring themes that appear in
the exploration of new decidable classes. Moreover, we focus on those classes which we
are going to encounter at a later point in this thesis.

Linear Sets of TGDs

A linear TGD [4545] is a TGD that contains only one atom in its body and one atom
in its head – accordingly, we call a set of TGDs with that property linear . Linear
TGDs extend inclusion dependencies [7474] which are, roughly speaking, rules that state
that values of a certain column should be contained in the values of another column.
In general, sets of linear TGDs are not finite expansion sets. Indeed, consider the
singleton set O := {R(x, y) → ∃z R(y, z)} and the database D := {R(a, a)}. Then
chase(D,O) = {R(a, λ1), R(λ1, λ2), . . .}, and we can easily see that there is no k ≥ 0 such
that chase(D,O) maps to chasek(D,O). Thus, O is not a finite expansion set, yet linear.

On the other hand, it can be shown that sets of linear TGDs are always first-order
rewritable. This is established in [4545] by establishing the so-called bounded derivation
depth property (BDDP) for linear TGDs. Roughly speaking, the BDDP states that, for
the purpose of query answering, it suffices to rely on a finite initial part of the chase,
where the size of that part depends only on the query and the set of TGDs, but not on

46

3.4. Decidable Classes of TGDs

the given database. Using this initial part, one is able to construct a first-order rewriting
of the query with respect to the given ontology; see [4545] for more details.22 The fact
that sets of linear TGDs are first-order rewritable sets immediately implies that query
answering under such sets is decidable and, moreover, even in AC0 with respect to data
complexity. For combined complexity, it turns out that query answering under linear
sets of TGDs is PSpace-complete. This result is obtained by adjusting a corresponding
proof of PSpace-completeness from [9797] for the case of inclusion dependencies.

Apart from the fact that linear sets of TGDs are first-order rewritable sets, they also
turn out to be finite tree-width sets. This follows immediately from the fact that linear
TGDs are also guarded and the fact that guarded sets of TGDs are finite tree-width set.
We shall introduce the concept of guardedness below.

Notation. We write L for the class of all finite sets of linear TGDs.

Acyclic (Non-Recursive) Sets of TGDs

For defining this class, we need one additional notion first. Let O be a set of TGDs. The
predicate graph of O is the directed graph whose node set equals the set of relation names
occurring in O, and a relation name R has an edge to a relation name S in that graph iff
there is a rule in O whose body mentions R and whose head mentions S. We say that
O is acyclic [6363] (or non-recursive) if its dependency graph has no directed cycles. For
example, the set of TGDs

R(x, y), T (y, v)→ ∃z S(y, z), S(y, z), A(y)→ G(y),

is non-recursive, while the set consisting solely of

R(x, y), T (y, z)→ T (x, z)

is not. Notice that the notion of acyclicity refers to an entire set of TGDs and is not
defined locally on a rule level. We call such syntactic properties global (for example,
linearity of TGDs is, in contrast, a local property). The problem of deciding whether
a given set of TGDs is acyclic is clearly feasible in polynomial, since it amounts to
successively computing reachable nodes in a graph.

Intuitively, acyclicity/non-recursiveness guarantees that the structure of the rules
exhibits no recursive nature. In this respect, acyclic TGDs can be seen as an extension
of non-recursive Datalog queries that are defined mutatis mutandis to acyclic sets of
TGDs (see, e.g., [5555, 112112, 121121]). It is thus easy to see that the chase under such sets
always terminates, and so acyclic sets are clearly finite expansion sets (and thus also
finite tree-width sets). In fact, it is also not hard to check that acyclic sets of TGDs are
also first-order rewritable sets, as one can employ a simple backward chaining algorithm:
with such an algorithm, one can, starting off with a UCQ q and a set of acyclic TGDs
O, successively apply rewriting steps in order to rewrite q according to O until no more
rewriting steps can be applied. This process terminates, since acyclic sets of TGDs do

2In fact, the BDDP turns out to be equivalent to first-order rewritability [8080]

47

3. Ontology-Mediated Querying

not exhibit recursion at all and a similar algorithm for non-recursive Datalog queries is
folklore [121121]. The resulting query qO that is obtained successively from these steps is
then a first-order rewriting of q with respect to O.

The fact that acyclic sets of TGDs are first-order rewritable sets implies that their
associated query answering problem is in AC0 in terms of data complexity. The combined
complexity of them is investigated in [103103], where it is shown that answering queries
under acyclic sets of TGDs is NExpTime-complete.

Notation. We write NR for the class of all finite non-recursive sets of TGDs.

We remark that the type of acyclicity discussed here is the most basic form of
constraining sets of rules to be finite expansion sets. Acyclicity has been extended to the
notions of weak acyclicity [7676] (see also below), stratification [6969], safety [107107], acyclicity
of a graph of rule dependencies [1313, 1616], joint acyclicity [100100], super-weak acyclicity [105105],
and model-faithful acyclicity and model-summarizing acyclicity [9090]. We refer the reader
to [9090, 122122] for a comprehensive overview of these concepts.

Guarded Sets of TGDs

Sets of TGDs that fall into the guarded family of classes are arguably among the most
intensively studied classes in this thesis. We say that a TGD τ is guarded, if it contains an
atom in its body that contains all the variables in the body as arguments – such an atom is
called a guard of τ , and when we speak of the guard of τ , we shall simply mean the left-most
among all guards to avoid ambiguity. For example, the rule T (x, y, z), P (z)→ ∃v R(x, v)
is guarded – its guard is T (x, y, z) – while T (x, y), T (y, z) → T (x, z) is not. A set of
TGDs is guarded iff every TGD contained in it is guarded. Notice that guardedness is a
local property.

Notation. We write G for the class of all finite sets of guarded TGDs.

The notion of guardedness for TGDs matches a corresponding notion for Datalog
rules [7979]: a guarded Datalog rule is one that has an atom in its body containing all the
body variables as arguments, and a guarded Datalog query consists of guarded Datalog
rules only.

Guarded TGDs have been intensively studied in [4444] and owe their name to their close
relationship to the guarded fragment of first-order logic that has been introduced in [55].
Roughly speaking, the guarded fragment of first-order logic is a fragment of first-order
logic devised to inherit the convenient computational and model-theoretic properties of
modal logic. Syntactically, the guarded fragment is obtained by relativizing quantifier
occurrences to take either form

∀ȳ (α(x̄, ȳ)→ ϕ(ȳ)) or ∃ȳ (α(x̄, ȳ) ∧ ϕ(ȳ)),

where α(x̄, ȳ) is an atomic formula (possibly an equality atom) that mentions all the free
variables of ϕ(ȳ). Intuitively, the relativization of the quantifiers ensures that guarded

48

3.4. Decidable Classes of TGDs

quantification occurs locally in the sense that one quantifies over elements which are
explicitly related via the relation denoted by α(x̄, ȳ).

The satisfiability problem for guarded sentences is decidable – in fact, 2ExpTime-
complete as shown in [8686]. The decidability of the guarded fragment is based on the fact
that satisfiable guarded sentences always have a “tree-like” model, that is, one whose
tree-width is finite and depends only on the signature over which the formula at hand is
formulated. Moreover, it turns out that there is a natural notion of guarded bisimulation
– which is a generalization of standard bisimulation from the modal-logic world – and
it turns out that guarded first-order logic is in fact the fragment of first-order logic
which is invariant under guarded bisimulation [55, 8888]. This result again shows the tight
relationship of the guarded fragment to modal logic, since modal logic is known to be,
according to a classical result by van Benthem [129129], the bisimulation invariant fragment
of first-order logic.

Turning our attention to guarded sets of TGDs again, just as the guarded fragment
generalizes modal logics, guarded TGDs generalize rules formulated in the description
logics that belong to the EL-family [1010, 1111]. Essentially, guarded TGDs allow for the use
of relation names whose arity is greater than two.

It is easy to see that every linear TGD is also guarded, since the single body atom can
be taken as a guard. Thus, sets of guarded TGDs are clearly not finite expansion sets.
Moreover, just as ontologies formulated in EL, guarded sets of TGDs are not first-order
rewritable sets – for more details we refer to Chapter 55. The fact that sets of guarded
TGDs fall into the class of finite tree-width sets is established in [4444], where it is shown
that the members of the more general class of weakly guarded sets of TGDs (see below)
are finite tree-width sets.

It can be shown that OMQs based on guarded TGDs can be effectively rewritten into
equivalent Datalog queries [1717, 8585]. This entails that the data complexity of answering
queries under guarded sets of TGDs is in PTime, since the data complexity of answering
Datalog queries is in PTime (Theorem 2.182.18). In [4545], PTime-membership with respect
to data complexity is shown by relying on first-principled methods rather than rewritings.
Roughly speaking, the authors show that, to evaluate a query under a set of guarded
TGDs, one can evaluate the query on a finite portion of the chase whose size depends on
the relational schema and the query only, and which can be constructed in polynomial
time in the size of the data. PTime-hardness of data complexity can be obtained by
reducing from the problem of deciding whether a propositional logic program entails a
propositional variable [4545, 6666].

A detailed analysis of the combined complexity of query answering under guarded
TGDs can be found in [4444]. It is shown that the combined complexity of query answering
under guarded TGDs is 2ExpTime-complete in general. The upper bound can be obtained
by relying on the decision procedure for the satisfiability problem of the guarded fragment
of first-order logic, while the lower bound is obtained by simulating the behavior of an
alternating Turing machine running in exponential space. Since alternating exponential
space equals 2ExpTime, the lower bound follows. In case one considers query answering
under guarded TGDs when the arity of the relational schema is fixed, it turns out that

49

3. Ontology-Mediated Querying

one cannot simply rely on the decision procedure for the guarded fragment. For this case,
in [4444], the authors devise a sophisticated decision procedure which runs in ExpTime.
The upper bounds in [4444] are, in fact, shown for the case of weakly guarded sets of TGDs
that generalize guarded TGDs (see below), and are thus immediately inherited for the
more specific case of guarded TGDs.

Frontier-Guarded Sets of TGDs

In [1414], the authors provide a more generic class of guarded TGDs, called frontier-guarded
TGDs.33 Recall that the frontier variables of a TGD are all the variables from the body
which are propagated to the head. We say that a TGD τ is frontier-guarded, if it contains
an atom in its body which has all the frontier variables as arguments – such an atom is
called frontier-guard of τ , and when we speak about the frontier-guard, we shall mean the
left-most one to avoid ambiguity. Accordingly, a set of TGDs is frontier-guarded if every
TGD contained in it is frontier-guarded. Notice that every guarded TGD is trivially
frontier-guarded. Moreover, notice that rules which propagate only a single variable to
the head are also trivially frontier-guarded, but not necessarily guarded. For example,
the rule R(x, y), T (y, z)→ A(y) is frontier-guarded, but not guarded.

Notation. We write FG for the class of all finite frontier-guarded sets of TGDs.

It is clear that frontier-guarded sets of TGDs are neither first-order rewritable nor
finite expansion sets, since they extend the class of guarded sets of TGDs. However,
in [1414] it is shown that frontier-guarded sets are, as in the case of guarded sets of TGDs,
always finite tree-width sets.

Concerning complexity, it turns out that query answering under frontier-guarded sets
of TGDs matches, regarding the case of schemas of bounded width, the complexity of
answering queries under guarded TGDs, i.e., 2ExpTime-complete. The lower bound is
inherited from the guarded case, while the upper bound is shown in [1515] and exploits
a result from [1818] concerning the complexity of answering arbitrary conjunctive queries
against arbitrary guarded first-order theories. Moreover, query answering under frontier-
guarded sets of TGDs is PTime-complete in terms of data complexity [1515]. Answering
queries against sets of frontier-guarded TGDs remains 2ExpTime-hard even when the
arity of the used schema is bounded [1515, 1818].

Sticky Sets of TGDs

Sticky sets of TGDs were introduced in [4747, 117117] with the aim of providing a class of sets
of TGDs with tractable data complexity, yet that allows one to express more complex
joins in rule bodies than other decidable classes of sets of TGDs. For the definition of
stickiness, we need some additional concepts.

Recall that we allow the use of equality atoms in rule bodies for technical reasons
and to express >. We call an ontology equality-free, if none of its TGDs has equality

3We remark that this fragment is also implicitly treated in [127127]

50

3.4. Decidable Classes of TGDs

atoms in its body, except for equality atoms of the form x = x, where x is a variable. We
can safely eliminate those equality atoms that are different from x = x by exhaustively
identifying variables and constants as dictated by the equality atoms. Given a set of
TGDs O, we call the result of O by identifying variables the ontology O′ that contains,
for each τ ∈ O, a TGD τ ′ that results by identifying equalities accordingly, provided τ ′
has no equality atom a = b in its body, where a 6= b are constants from const (the body
of such a TGD can never have a model).

Given a schema S, by a position we mean an expression of the form R[i], where
R/n ∈ S and 1 ≤ i ≤ n. Given a relational atom α occurring in τ , we denote by pos(α, v)
the set of positions at which v occurs in α – formally, for a relational atom R(t1, . . . , tn),
we say that tj occurs at position R[i] iff i = j and R = S.

Let O be a finite set of TGDs whose only equality atoms in rule bodies are of the
form x = x. We apply an inductive marking procedure on the variables occurring in the
rules of O as follows:

(i) for each τ ∈ O and each variable v in its body, if there is an atom α in the head
of τ that has no occurrence of v, then each occurrence of v in a relational atom in
the body of τ is marked.

(ii) for each pair (τ, τ ′) ∈ O × O, each atom α in the head of τ , and each frontier
variable v occurring in α, if there exists an atom β in the body of τ ′ in which a
marked variable occurs at each position of pos(α, v), then each occurrence of v in
a relational atom in the body of τ is marked.

We say O is sticky if there is no τ ∈ O such that a marked variable occurs in its body
more than once. If O is a set of TGDs that does have arbitrary equality atoms in rule
bodies, then we call O sticky, if the result of O by identifying variables is sticky. Notice
that stickiness is a global property.

Notation. We write S for the class of all (finite) sticky sets of TGDs.

Example 3.28. Consider the following set of rules:

R(x, y), R(y, z)→ ∃v S(y, z, v),
T (x, y)→ ∃z, w V (x, z, w),

V (x, y, z)→ ∃v (T (x, v) ∧R(z, v)).

In a first step, we mark the following variables (marked variable occurrences are indicated
by a “hat” on top of them):

R(x̂, y), R(y, z)→ ∃v S(y, z, v),
T (x, ŷ)→ ∃z, w V (x, z, w),

V (x̂, ŷ, ẑ)→ ∃v (T (x, v) ∧R(z, v)).

51

3. Ontology-Mediated Querying

In a second step, we also mark the variable x in the body of the second rule:

R(x̂, y), R(y, z)→ ∃v S(y, z, v),
T (x̂, ŷ)→ ∃z, w V (x, z, w),

V (x̂, ŷ, ẑ)→ ∃v (T (x, v) ∧R(z, v)).

Now notice that, in every rule body, each marked variable appears only once. Hence, we
can conclude that O is a sticky set of TGDs. a

It can easily be seen that the property of stickiness can be checked in polynomial time,
since the above procedure terminates in at most polynomially many steps due to the fact
that, at each step, either a new body variable is marked, or the marking is finished.

Sticky sets are not finite tree-width sets and are neither finite expansion sets [4747].
In [4747, 117117] it is shown that sticky sets of TGDs are actually first-order rewritable sets,
and hence the query answering under sticky sets of TGDs is in AC0 with respect to data
complexity. Moreover, it is shown that the combined complexity of query answering under
such sets of TGDs is complete for ExpTime. The ExpTime upper bound is obtained by
providing a query answering algorithm that runs in NP with access to an oracle running
in alternating polynomial space. Since alternating polynomial space equals ExpTime,
and since NPExpTime = ExpTime, the claimed upper bound follows. The ExpTime
lower bound is obtained by reducing from the so-called fact inference problem for Datalog
programs. This problem receives as input a set of Datalog rules Π, a database D, and a
fact α, and the question is whether (D,Π) |= α holds (here, we view the Datalog rules as
first-order sentences; see Subsection 2.3.32.3.3).

Weakly (Frontier-)Guarded Sets of TGDs

Notice that the definitions of the classes of (frontier-)guarded TGDs rule out the possibility
to include arbitrary plain Datalog rules into ontologies. The purpose of weakly guarded [4444]
and weakly frontier-guarded [1515] sets of TGDs is to allow for the limited use of non-
guarded rules that do not interfere with the creation of labeled nulls during the chase
procedure in a “dangerous” manner. Roughly speaking, a TGD τ is weakly guarded
(weakly frontier-guarded, respectively) if it has an atom in its body that contains all the
body variables (frontier variables, respectively) as arguments that appear at positions
in the body of τ where there may occur labeled nulls during the construction of the
chase [4444]. Let us formalize this intuition. Let O be an equality-free finite set of TGDs.
We inductively define the set of affected positions as follows:

• If π is a position such that in some head of a TGD an existentially quantified
variable occurs at π, then π is affected.

• If π is a position such that in some head of a TGD τ a frontier variable x occurs at
π and if x occurs in the body of τ at affected positions only, then π is affected.

We say that a set of TGDs O is weakly guarded (weakly frontier-guarded, respectively), if
every rule τ ∈ O has an atom in its body that contains all the body variables (frontier

52

3.4. Decidable Classes of TGDs

variables, respectively) of τ as arguments that occur at affected positions only – such an
atom is called a weak guard (weak frontier-guard, respectively). If O is not equality-free,
then O is weakly (frontier-)guarded if the result of O by identifying variables is weakly
(frontier-)guarded.

Notice that the property of weak (frontier-)guardedness is a global one. It is easy to
see that deciding whether a given set of TGDs is weakly (frontier-)guarded is feasible in
polynomial time, since computing the set of affected positions is.

Example 3.29. Consider the set O consisting of the two rules

R(x, y), S(y, z)→ ∃v S(x, v), R(x, y), S(y, z)→ T (x, z).

The position S[2] is affected due to the existentially quantified variable v in the first
rule. Thus, T [2] is affected as well, since z only occurs in the second rule at the affected
S[2]. It is easy to see that O is weakly-guarded: the first and the second rule have the
weak-guard S(y, z). However, O is clearly not guarded. a

It is easy to see that weakly (frontier-)guarded sets of TGDs extend (frontier-)guarded
sets of TGDs. Hence, it is immediate that the members of neither of them are finite
expansion sets or first-order rewritable sets. However, weakly guarded sets of TGDs are
finite tree-width sets [4444], and this holds true for weakly frontier-guarded sets of TGDs
as well [1515].

The complexity of answering queries under weakly guarded sets of TGDs is investigated
in [4444], where it is shown that answering queries against weakly guarded sets of TGDs is
2ExpTime-complete in general, and ExpTime-complete if the width of the underlying
schema is assumed to be bounded. Moreover, the problem is ExpTime-complete with
respect to data complexity. Notice that this is in contrast to the PTime-completeness of
the data complexity of answering queries under guarded TGDs. Hence, OMQs based on
weakly guarded sets of TGDs cannot, unlike those based on guarded TGDs, rewritten
into Datalog queries due to the exponential gap concerning data complexity.

For the case of weakly frontier-guarded sets of TGDs, in [1515] it is shown that answering
queries under weakly frontier-guarded sets of TGDs is 2ExpTime-complete with respect
to combined complexity, even for schemas of bounded width. This result is obtained by
reducing the problem to that of answering queries under frontier-guarded sets of TGDs.
Moreover, it turns out that the problem is also ExpTime-complete with respect to data
complexity.

Other Weak Classes

The definition of weakly (frontier-)guarded TGDs relax the definition (frontier-)guarded
TGDs by carefully taking into account the evolution of labeled nulls within the construc-
tion of the chase. This allows one to arrive at classes of TGDs that are still able to
express Datalog queries, yet that have a decidable query answering problem.

It turns out that similar ideas can be exploited for other classes. We are not going to
encounter the underlying details of these classes in this thesis, and we therefore restrict

53

3. Ontology-Mediated Querying

ourselves here to a brief summary of results on them, but we do not bother the reader
with their detailed definitions.

Among these classes are the classes of weakly acyclic sets of TGDs [7676] and weakly
sticky sets of TGDs [4747, 117117]. The former has actually historically been the first class
of TGDs of this kind and has been introduced in [7676] as an extension of acyclic TGDs
in the context of data exchange. Weakly acyclic sets of TGDs belong to the class of
finite expansion sets, and their complexity is pinpointed in [4747, 117117]. It turns out that
query answering under weakly acyclic sets of TGDs is 2ExpTime-complete in terms of
combined complexity. The upper bound is implicit in [7676] and explicitly stated in [117117].
A matching 2ExpTime lower bound was subsequently established in [4747, 117117]. Regarding
data complexity, it turns out that answering queries under weakly acyclic sets of TGDs is
PTime-complete [7676]. The upper bound is implicit in [7676], while the lower bound follows
immediately from the PTime-completeness of the fact inference problem for fixed Datalog
queries [6666]. Just as weakly (frontier-)guarded sets of TGDs can be used to express
Datalog queries, weakly acyclic sets of TGDs can be as well. Thus, it should be clear
that, unlike acyclic sets of TGDs, they cannot be first-order rewritable in general, since
Datalog queries are not first-order rewritable. For more details on first-order rewritability
we again refer to Chapter 55.

The class of weakly sticky sets of TGDs is defined in [4747, 117117] and extends the
class of sticky sets of TGDs. It can be shown that query answering under such sets
is 2ExpTime-complete in terms of combined, and PTime-complete in terms of data
complexity. Again, notice that weakly sticky sets are clearly not first-order rewritable
sets, as OMQs based on them are able to express all Datalog queries.

Warded Sets of TGDs

We have observed above that the “weak” classes of TGDs introduced in the literature
take a more liberal stance on the way how they enforce their syntactic restrictions than
the “non-weak” classes. This results in languages that are able to capture Datalog
queries in their full generality, i.e., all the weak classes above capture Datalog. On the
downside of this is their combined complexity: the classes we have encountered all have a
2ExpTime-complete query answering problem in terms of combined complexity. Warded
sets of TGDs have been introduced in [8484] with the aim to create a language that is
expressive enough to capture Datalog, yet that restricts its syntax in order to obtain
tractable data complexity, as well as a reasonable combined complexity that makes it
amenable to practical implementation.

To formally define wardedness, we need some additional technical notions first. Let
O be an equality-free finite set of TGDs. We call a position a non-affected position of
O if it is not an affected position of O. Consider a TGD τ ∈ O and let x be a variable
occurring in the body of τ .

• We say that x is harmless if it has at least one occurrence in the body of τ at a
position which is non-affected. We call x harmful if it is not harmless.

• We call x dangerous if it is harmful and belongs to the frontier variables of τ .

54

3.4. Decidable Classes of TGDs

We say that O is warded if, for each τ ∈ O, either there are no dangerous variables in the
body of τ , or there exists an atom α ∈ body(τ), called a ward, such that the following
conditions hold:

(i) All the dangerous variables that occur in the body of τ also occur in α.

(ii) Each variable of var(α) ∩ var(body(τ) \ {α}) is harmless.

Finally, a finite set of TGDs O that is not equality-free is called warded, if the result of
O by identifying variables is warded.

Notation. We denote by W the class of all finite warded sets of TGDs.

Example 3.30. An OWL 2 QL ontology can be stored in a database using atoms of the form
Restriction(c, p) stating that the class c is a restriction of the property p, SubClass(c, c′)
stating that c is a subclass of c′, and Inverse(p, p′) stating that p is the inverse property of
p′. We can then compute all the logical inferences of the given ontology using the TGDs:

SubClass(x, y)→ SubClass∗(x, y),
SubClass∗(x, y),SubClass(y, z)→ SubClass∗(x, z),

Type(x, y),SubClass∗(y, z)→ Type(x, z),
Type(x, y),Restriction(y, z)→ ∃wTriple(x, z, w),
Triple(x, y, z), Inverse(y, w)→ Triple(z, w, x),

Triple(x, y, z),Restriction(w, y)→ Type(x,w).

The first two TGDs are responsible for computing the transitive closure of the SubClass
relation, while the third TGD transfers the class type, i.e., if a is of type b and b is a
subclass of c, then a is also of type c. Moreover, the fourth TGD states that if a is of type
b and b is the restriction of the property p, then a is related to some c via the property p,
which is encoded by the atom Triple(a, p, c). Analogously, the last two TGDs encode the
usual meaning of inverses and the effect of restrictions on types.

The above set of TGDs is clearly warded – the underlined atoms are the wards. If no
atom is underlined, then there are no dangerous variables. A variable in an atom with
predicate Restriction, SubClass, SubClass?, or Inverse, is trivially harmless. The frontier
variables that appear at Type[1], Triple[1], or Triple[3] are dangerous. a

Notice that warded sets of TGDs are also weakly frontier-guarded, but not vice versa
(in fact, it is easy to see that there are guarded sets of rules that are not warded). In [8484]
it is shown that query answering under warded sets of TGDs is ExpTime-complete in
combined, and PTime-complete in data complexity. The ExpTime-hardness of combined
and PTime-hardness of data complexity follows from the fact that OMQs based on warded
TGDs allow us to express all Datalog queries. Matching upper bounds are shown by
employing space-bounded alternating algorithms. We are going to revisit these results in
Chapter 66 when we identify a space-efficient fragment of the class W.

We also mention that warded sets of TGDs represent the logical formalism behind
the implementation of Vadalog [2626, 2727], a commercially used reasoner.

55

CHAPTER 4
Containment and Equivalence for

OMQs

This chapter focuses on a crucial static analysis task for OMQs, namely containment:
for two OMQs Q1 and Q2 with data schema S, does Q1(D) ⊆ Q2(D) hold for every
database D over S? A task closely related to containment is that of equivalence: given
Q1 and Q2 with data schema S, does Q1 ≡ Q2 hold, i.e., does Q1(D) = Q2(D) hold for
every S-database D? It is clear that equivalence can be solved by calling an oracle for
containment twice. Hence, the focus in this chapter arguably lies on containment.

Apart from the traditional applications of containment, such as query optimization or
view-based query answering, it has been recently shown that containment of OMQs – and
the methods devised to solve it – have applications in other important static analysis tasks,
namely, distribution over components [3333], and first-order rewritability [3434]. Surprisingly,
despite its prominence, no work to date has carried out an in-depth investigation of
containment for OMQs based on TGDs.

As one might expect, when considered in its full generality, i.e., without any restrictions
on the set of TGDs, the containment problem for OMQs is undecidable. To understand,
on the other hand, which restrictions on the TGDs used lead to decidability, we recall
the two main reasons that render the general containment problem undecidable:

Undecidability of query evaluation As we have seen in Chapter 33, evaluation of OMQs
is, in general, undecidable, and it can be reduced to containment. More precisely,
containment of OMQs is undecidable whenever query evaluation for at least one of the
involved languages (i.e., the language of the left-hand or the right-hand side query) is
undecidable.

Undecidability of containment for Datalog Decidability of query evaluation does not
ensure decidability of query containment. A prime example is Datalog – Datalog
containment is undecidable [126126]. Thus, OMQ-containment is undecidable if the involved
languages extend Datalog.

57

4. Containment and Equivalence for OMQs

Arbitrary arity Bounded arity

Linear PSpace-complete ΠP
2 -complete

Sticky coNExpTime-complete ΠP
2 -complete

Non-recursive In coNExpTimeNP and
PTimeNExpTime-hard

In coNExpTimeNP and
PTimeNExpTime-hard

Guarded 2ExpTime-complete 2ExpTime-complete

Frontier-guarded 2ExpTime-complete 2ExpTime-complete

Table 4.1: Complexity of the containment problem for OMQs using different classes of
sets of TGDs.

In view of the above observations, we focus on languages that have a decidable query
evaluation problem, and that do not extend Datalog. In Chapter 33 we have already
encountered the main classes of TGDs which give rise to OMQ languages with these
desirable properties (i) (frontier-)guarded sets of TGDs, which subsume linear TGDs,
(ii) non-recursive (i.e., acyclic) sets of TGDs, and (iii) sticky sets of TGDs.

While the decidability of containment for these OMQ languages can be established via
translations into query languages with a decidable containment problem, such translations
do not lead to optimal complexity upper bounds (details are given below). Therefore,
the main goal of this chapter is to develop specially tailored decision procedures for the
containment problem under the OMQ languages in question, and, ideally, obtain precise
complexity bounds.

Contributions As said above, the goal of this chapter is to provide specifically tailored
algorithms for solving the containment problems for OMQ languages that are based on
the main classes of TGDs for which query evaluation is decidable. The main results
concerning containment problems for OMQ languages treated in this chapter are depicted
in Table 4.14.1: there, we state the complexity of containment – both for the general and
the case of schemas of bounded width – for different classes of TGDs, assuming that the
query component in the OMQs are UCQs. We divide the contributions of this chapter as
follows:

Linear, non-recursive, and sticky sets of TGDs The OMQ languages based on linear,
non-recursive, and sticky sets of TGDs share a useful property: they are UCQ-rewritable
(implicit in [8282]), that is, their OMQs falling into one of these languages can be (effectively)
rewritten into equivalent UCQs. This property immediately yields decidability for
their associated containment problems, since containment of UCQs is decidable [125125].

58

However, the obtained complexity bounds are not optimal, since the UCQ-rewritings are
unavoidably very large [8282]. To obtain more precise bounds, we reduce containment to
query evaluation, an idea that is often applied in the context of query containment (see,
e.g., [5454, 5555, 125125]).

Consider a UCQ-rewritable OMQ language L. If Q1 and Q2 belong to L, both with
data schema S, then we can establish a small witness property, which states that non-
containment of Q1 in Q2 can be witnessed via a database over S whose size is bounded
by an integer k ≥ 0, where k is the maximal size of a disjunct in a UCQ-rewriting of
Q1. For linear TGDs, such an integer k is polynomial, but for non-recursive and sticky
sets of TGDs it is exponential (implicit in [8282]). The small witness property allows us to
devise a simple non-deterministic algorithm, which makes use of query evaluation as a
subroutine, for checking non-containment of Q1 in Q2: guess an S-database D of size at
most k, and then check if there is a certain answer in Q1(D) that is not a certain answer
in Q2(D). This algorithm allows us to obtain optimal upper bounds for OMQs based on
linear and sticky sets of TGDs. However, the exact complexity of containment for OMQs
based on non-recursive sets of TGDs remains open:
• For OMQs based on linear TGDs, the containment problem is in PSpace, and

in ΠP
2 if the arity is fixed. PSpace–hardness is shown by reduction from query

evaluation, while the ΠP
2 -hardness is implicit in [3535].

• For OMQs based on sticky sets of TGDs, the problem is in coNExpTime, and in
ΠP

2 for schemas of bounded arity. Hardness for coNExpTime is shown by exploiting
a tiling problem of the exponential grid, while ΠP

2 -hardness follows from [3535].
• For OMQs based on non-recursive sets of TGDs, containment is in coNExpTimeNP

and hard for PTimeNExpTime, even for schemas of bounded arity. The lower bound
is shown by exploiting a suitable tiling problem from [7272].

Regarding OMQs based on non-recursive sets of TGDs, although our upper bound is
not optimal, it is nearly optimal. Indeed, NExpTimeNP, which forms the ∆2-level of
the exponential hierarchy (EH), and PTimeNExpTime, which forms the ∆2-level of the
strong EH,11 are tightly related: if the oracle access in NExpTimeNP is restricted “too
much,” then it collapses to PTimeNExpTime [9292].

(Frontier-)guarded sets of TGDs The OMQ language based on guarded TGDs is not
UCQ-rewritable, which forces us to develop different tools to study its containment
problem. Let us remark that guarded OMQs can be rewritten as guarded Datalog queries
(by exploiting the translations devised in [1717, 8585]), for which containment is decidable
in 2ExpTime [4040]. But, again, the known rewritings are very large [8585], and hence the
reduction of containment for guarded OMQs to containment for guarded Datalog does
not yield optimal upper bounds. To solve the containment problem for guarded OMQs,
we devise procedures based on two-way alternating parity tree automata. More precisely,
we first devise automata-based procedures for containment of guarded OMQs that have
atomic queries as their query component. To this end, we first show that such OMQs
exhibit a convenient tree witness property: if Q1 is not contained in Q2, then this is

1The strong EH collapses to its ∆2-level [9292].

59

4. Containment and Equivalence for OMQs

witnessed by a “tree-like” database. We then use this property to reduce containment of
Q1 in Q2 to the question whether the language of a suitable two-way alternating parity
tree automaton is empty. This reduction then proves that containment for guarded OMQs
(that have an atomic query) is in 2ExpTime, and in ExpTime when we assume that
the arity of the underlying schema is bounded. Appropriate lower bounds are inherited
from [3434].

Having a procedure for containment of guarded OMQs with atomic queries at hand,
we solve the task of containment between frontier-guarded OMQs (and guarded OMQs
with an arbitrary CQ as a query) by reducing it the the containment problem for the
atomic case. The reduction is based on the technique of treeification [1818, 2020] and is
inspired by a similar translation of sentences of guarded negation least fixed point logic
(GNFP) into sentences of guarded least fixed point logic (GFP) [2020]. Although this
reduction is exponential, it will still provide us with a 2ExpTime upper bound for
containment of frontier-guarded OMQs (and likewise for OMQs based on guarded TGDs
with a CQ as a query).

Combining languages The above complexity results refer to the containment problem
relative to a certain OMQ language L, i.e., both queries fall into L. However, it is
natural to consider the version of the problem where the involved OMQs fall into different
languages. Unsurprisingly, if the left-hand side query is expressed in a UCQ-rewritable
language (based on linear, non-recursive, or sticky sets of TGDs), we can use the algorithm
that relies on the small witness property discussed above, which provides optimal upper
bounds for almost all the considered cases (the only exception is the containment of sticky
in non-recursive OMQs over schemas of unbounded arity). Things are more interesting if
the ontology of the left-hand side query is expressed using guarded or frontier-guarded
TGDs, while the ontology of the right-hand side query is not (frontier-)guarded. By using
automata techniques, we show that containment of (frontier-)guarded in non-recursive
OMQs is in 3ExpTime, while containment of (frontier-)guarded in sticky OMQs is in
2ExpTime. We establish matching lower bounds, even over schemas of fixed arity, by
refining techniques from [5555].

Related work Investigating the complexity of containment and equivalence of queries
is a classical task in the study of database query languages. Due to its popularity, this
summary of related work is far from being exhaustive.

It is a classical result that containment among CQs is NP-complete [5454] and essentially
amounts to answering CQs. The fact that containment of Datalog queries is undecidable
is shown in [126126]. Containment of Datalog queries in (U)CQs and non-recursive Datalog
queries is studied in [5555], where it is shown that deciding whether a Datalog query is
contained in a UCQ (respectively, a non-recursive Datalog query) is 2ExpTime-complete
(respectively, 3ExpTime-complete). Conversely, containment of UCQs in Datalog queries
amounts to answering Datalog queries (as one can view CQs as databases) and is thus
ExpTime-complete [5353, 6363]. Containment of non-recursive Datalog queries is studied
in [2929] and it is shown that this problem is coNExpTime-complete. The case for various
description logics is investigated in [3434, 3535]. We also mention the works [2020, 2828, 8989],

60

4.1. Containment: The Basics

which study the satisfiability problem for guarded (negation) fixed point logics, as these
logics allow to capture (frontier-)guarded Datalog. Finally, we would like to mention the
paper [4040], which studies containment of expressive query languages that extend guarded
Datalog.

Outline We set up basic terminology for containment and its problem definition in
Section 4.14.1. Containment for UCQ-rewritable languages is studied in Section 4.24.2, while
containment for guarded-based classes is treated in Section 4.34.3. Finally, in Section 4.44.4 we
study containment for the cases when the left-hand side and the right-hand side OMQ
do not fall into the same class. Some lengthy proofs are deferred to Appendix B.2B.2.

4.1 Containment: The Basics

Let Q1 and Q2 be two OMQs that have the same data schema S. As said in the
introductory part of this chapter, we say that Q1 is contained in Q2, written Q1 ⊆ Q2,
if for every S-database D it holds that Q1(D) ⊆ Q2(D). Notice thus that Q1 ≡ Q2 iff
Q1 ⊆ Q2 and Q2 ⊆ Q1. Hence, deciding equivalence of two OMQs amounts to two checks
of containment, and this thus justifies that we put our focus on deciding containment
among OMQs. Let us define the problem of containment among OMQs more formally.

Given two OMQ languages L1 and L2, we define the problem of containment for L1
and L2 as follows:

Problem: Cont(L1,L2)
Input: Two OMQs Q1 ∈ L1 and Q2 ∈ L that have the same

data schema S.
Question: Is it the case that Q1 ⊆ Q2?

Whenever L1 = L2 =: L, then we write Cont(L) instead of Cont(L,L).
In what follows, we establish some simple but fundamental results, which help to

better understand the nature of our problem. We first investigate the relationship between
evaluation and containment, which in turn allows us to obtain an initial boundary for
the decidability of our problem. In particular, we observe that, for reasonable OMQ
languages of our interest, one can only obtain a decidability result for containment if the
evaluation problem for the involved OMQ languages is decidable. We then focus on the
OMQ languages mentioned in the introductory part of this chapter and observe that,
once we fix the class of TGDs, it does not make a difference whether we consider CQs or
UCQs. In other words, we show that an OMQ in (C,UCQ), where C ∈ {FG,G, L,NR, S},
can be rewritten as an OMQ in (C,CQ). This fact simplifies our later complexity analysis
since for establishing upper (respectively, lower) bounds it suffices to focus on CQs
(respectively, UCQs).

4.1.1 Evaluation vs. Containment

As one might expect, evaluation and containment of OMQs are strongly related. In fact,
as we explain below, the former can be easily reduced to the latter. But let us first

61

4. Containment and Equivalence for OMQs

introduce some auxiliary notation. Consider a database D and a tuple c̄ = c1, . . . , cn
over adom(D). We denote by qD,c̄(x̄), where x̄ = xc1 , . . . , xcn , the CQ obtained from the
conjunction of facts occurring in D after replacing each constant c with the variable xc.

Consider now an OMQ Q = (S,O, q(x̄)) from (C,CQ), where C is some class of TGDs,
an S-database D, and a tuple c̄ over adom(D). It is not difficult to show that:

c̄ ∈ Q(D) ⇐⇒ (sig(O),∅, qD,c̄)︸ ︷︷ ︸
Q1

⊆ (sig(O),O, q(x̄))︸ ︷︷ ︸
Q2

.

Let L∅ be the OMQ language that consists of all OMQs of the form (S,∅, q), i.e., the set
of TGDs is empty, where q is a CQ. It is clear that Q1 ∈ L∅ and Q2 ∈ (C,CQ). Therefore,
for every OMQ language L = (C,CQ), where C is a class of TGDs, we immediately obtain:

Proposition 4.1. Eval(L) can be reduced in polynomial time to Cont(L∅,L).

We now show that the problem of answering BCQs under sets of TGDs is also
reducible to the complement of containment. Consider now an OMQ Q = (S,O, q) from
(C,BCQ), where C is some class of TGDs and q a BCQ, and an S-database D. It is easy
to see that

D |= Q ⇐⇒ (S,O∗D, q∗)︸ ︷︷ ︸
Q1

6⊆ (S,∅, ∃xG(x))︸ ︷︷ ︸
Q2

,

where O∗D is obtained from O by renaming each predicate R in O into R∗ 6∈ S and adding
the set of TGDs

{> → R∗(c1, . . . , ck) | R(c1, . . . , ck) ∈ D}, (4.1)

q∗ is obtained from q by renaming each predicate R into R∗ 6∈ S, and the predicate
G/1 does not occur in S. Indeed, the above equivalence holds since G 6∈ S implies that
Q2(D) = ∅, for every S-database D.

Assuming that C is closed under adding the TGDs (4.14.1), it holds that Q1 ∈ (C,CQ),
while Q2 ∈ L∅. We write Cont(L1,L2) for the complement of Cont(L1,L2). Hence, for
every OMQ language L = (C,CQ), where C is a class of TGDs that is closed under adding
TGDs of the form (4.14.1), the following holds:

Proposition 4.2. Eval(L) can be reduced in polynomial time to Cont(L,L∅).

Remark 4.3. Actually, we only reduced Eval(C,BCQ) to Cont(L,L∅). However, it is well-
known and easy to show that Eval(C,CQ) can be polynomially reduced to Eval(C,BCQ)
for all classes of our interest (see, e.g., [4444, 117117]).

For those OMQ languages that contain L∅ we obtain as a corollary of Propositions 4.14.1
and 4.24.2 an initial boundary for the decidability of containment. Namely, decidability of
containment can only hold if at least one of the two involved languages has a decidable
query evaluation problem. More formally:

Corollary 4.4. Cont(L1,L2) is undecidable if Eval(L1) is undecidable or Eval(L2) is
undecidable.

62

4.2. Containment for UCQ-Rewritable Classes

Notice that the converse of Corollary 4.44.4 does not hold, since evaluation for Datalog
queries is decidable, yet containment among Datalog queries is undecidable [126126]. The
undecidability of containment for Datalog queries immediately implies that containment
for OMQ languages based on the weakly acyclic, weakly (frontier-)guarded, and weakly
sticky is undecidable, as they all extend Datalog queries (cf. Section 3.43.4). Therefore, the
focus of the next section is on decision procedures for containment for OMQ languages
that are based on non-weak versions.

From UCQs to CQs Before we proceed to investigate containment problems for
concrete OMQ languages, let us state the following useful result:

Proposition 4.5. Given an OMQ Q ∈ (C,UCQ), where C ∈ {FG,G, L,NR,S}, we can
construct in polynomial time an OMQ Q′ ∈ (C,CQ) such that Q ≡ Q′.

The proof of the above result can be found in Appendix B.2B.2, and relies on the idea of
encoding Boolean operations (in our case the ‘or’ operator) using a set of atoms – this
idea has been used in several works (see, e.g., [2929, 4141, 8383]). Proposition 4.54.5 allows us to
focus on OMQs that are based on CQs. Assuming that C1, C2 ∈ {FG,G, L,NR,S} and
that L is a complexity class that is closed under polynomial time reductions, then:

Cont((C1,CQ), (C2,CQ)) is L-complete ⇐⇒
Cont((C1,UCQ), (C2,UCQ)) is L-complete.

We will employ this result in particular in Section 4.24.2 as it simplifies the presentation
of our results (for Section 4.34.3, the case where we have UCQs as queries is no more
complicated than the case of CQs).

4.2 Containment for UCQ-Rewritable Classes

We now focus on OMQ languages that enjoy the crucial property of UCQ-rewritability.
In Section 3.43.4, we already defined the notion of first-order rewritable sets of TGDs. The
notion of UCQ-rewritability for OMQs lifts this definition to the level of OMQs and
demands the existence of a rewriting that is actually a UCQ. The formal definition is as
follows:

Definition 4.6. We call an OMQ language (C,CQ) UCQ-rewritable if, for each OMQ
Q ∈ (C,CQ), we can effectively construct a UCQ q(x̄) such that Q ≡ q. We call q a
UCQ-rewriting of Q.

We proceed to establish our desired small witness property based on for UCQ-
rewritable languages. By the definition of UCQ-rewritability, for each language L that is
UCQ-rewritable, there exists a computable function fL from L to the natural numbers
such that the following holds: for every OMQQ = (S,O, q(x̄)) from L, and UCQ-rewriting
q1(x̄) ∨ · · · ∨ qn(x̄) of Q, it is the case that max1≤i≤n{|qi|} ≤ fL(Q). Then:

63

4. Containment and Equivalence for OMQs

Proposition 4.7. Consider a UCQ-rewritable language L, and two OMQs Q ∈ L and
Q′ ∈ (TGD,CQ), both with data schema S. If Q 6⊆ Q′, then there exists an S-database D
such that (i) Q(D) 6⊆ Q′(D), and (ii) the number of atoms of D is bounded by fL(Q).

Proof sketch. Assume that q(x̄) =
∨n
i=1 qi(x̄) is a UCQ-rewriting of Q, and let

x̄ = x1, . . . , xn. Since, by hypothesis, Q 6⊆ Q′, we conclude that q 6⊆ Q′, which in
turn implies that there exists an i ∈ [n] such that qi 6⊆ Q′. It is easy to show that
([x1]qi , . . . , [xn]qi) 6∈ Q′(Dqi), where D is the structure corresponding to qi (viewed as a
database). Since ([x1]qi , . . . , [xn]qi) ∈ qi(Dqi), we get that ([x1]qi , . . . , [xn]qi) ∈ Q(Dqi).
Therefore, Q(Dqi) 6⊆ Q′(Dqi), and the claim follows since the number of atoms of Dqi is
clearly bounded by fL(Q). �

In Proposition 4.74.7 we only assume that the left-hand side query falls into a UCQ-
rewritable language, without any assumption on the language of the right-hand side query.
Thus, we immediately get a decision procedure for Cont(L1,L2) if L1 is UCQ-rewritable
and Eval(L2) is decidable. Given Q1 ∈ L1 and Q2 ∈ L2, both with data schema S, we
perform the following steps:

(i) Guess an S-database D that hast at most fL1(Q1) atoms, and a tuple c̄ over
adom(D).

(ii) Verify that c̄ ∈ Q1(D) and c̄ 6∈ Q2(D).

We immediately get:

Theorem 4.8. Cont(L1,L2) is decidable provided L1 is UCQ-rewritable and Eval(L2) is
decidable.

This generic result shows that Cont(C,CQ) is decidable for every class C ∈ {L,NR, S},
but it does not say anything on the precise complexity. This will be the subject for the
remainder of this section.

4.2.1 Linearity

The problem of computing UCQ-rewritings for OMQs in (L,CQ) has been studied in [8282],
where a resolution-based procedure, called XRewrite, has been proposed – we provide
a short description of XRewrite in Appendix AA. This rewriting algorithm takes as an
input a query Q = (S,O, q(x̄)) from (L,CQ) and constructs a UCQ-rewriting q′(x̄) over
S by starting from q(x̄) and exhaustively applying rewriting steps to the rules of O using
resolution. Due to the fact that the set of TGDs is linear i.e., their bodies consist of
single atoms only, it is not possible to obtain a CQ that has more atoms than the original
one during the execution of XRewrite. Therefore:

Proposition 4.9. The function f(L,CQ) satisfies, for any Q = (S,O, q(x̄)) from (L,CQ),
f(L,CQ)(Q) ≤ |q|.

Having the above result in place, it can be shown that the algorithm underlying
Theorem 4.84.8 guesses a polynomially-sized witness for non-containment, and then calls

64

4.2. Containment for UCQ-Rewritable Classes

a C-oracle for solving query evaluation under linear OMQs, where C is PSpace in
general, and NP if the arity is fixed. These complexity classes are obtained from the
fact that Eval(L,CQ) is PSpace-complete (cf. Subsection 3.4.23.4.2). Therefore, Cont(L,CQ)
is in PSpace in general, and in ΣP

2 in case of fixed arity. Regarding the lower bounds,
Proposition 4.14.1 allows us to inherit the PSpace-hardness of Eval(L,CQ). Unfortunately,
in the case of fixed arity, we can only obtain NP-hardness, while Proposition 4.24.2 allows
us to obtain coNP-hardness. Nevertheless, it is implicit in [3535, Theorem 9], where the
containment problem for OMQ languages based on description logics is considered, that
Cont(L,CQ) is ΠP

2 -hard, even for TGDs of the form B(x)→ H(x).

Theorem 4.10. Cont(L,CQ) is PSpace-complete, and ΠP
2 -complete if the width of the

schema is fixed.

4.2.2 Non-Recursiveness

Although the OMQ language (NR,CQ) is not explicitly considered in [8282], where the
algorithm XRewrite is defined, the same algorithm can deal with (NR,CQ). By analyzing
the UCQ-rewritings constructed by XRewrite, whenever the input query falls into (NR,CQ),
we can establish the following result:

Proposition 4.11. For any Q = (S,O, q) from (NR,CQ) it holds that

f(NR,CQ)(Q) ≤ |q| · np(|sig(O)|),

where n := max{|body(τ)| : τ ∈ O}, and p(·) is a polynomial depending on Q.

Proposition 4.114.11 implies that non-containment for queries that fall in (NR,CQ) is
witnessed via a database of at most exponential size. We show next that this bound is
optimal:

Proposition 4.12. There are classes of OMQs from (NR,CQ),

{Qn1 := (S,On1 , q1)}n≥1 and {Qn2 := (S,On2 , q2)}n≥1,

where |sig(On1)| = |sig(On2)| = n+2, such that, for every S-database D, if Qn1 (D) 6⊆ Qn2 (D),
then D has at least 2n−1 atoms.

Proof sketch. Let S = {S/2}. On1 consists of

S(x, y)→ P1(x, y),
Pi(x, y), Pi(y, z)→ Pi+1(x, z), 1 ≤ i ≤ n− 1,

Pn(x, y)→ Ans(x, y),

while q1 := ∃x, y Ans(x, y).

65

4. Containment and Equivalence for OMQs

The set On2 consists of the TGDs

S(x, y)→ R1(x, y),
Ri(x, y)→ Ri+1(x, y), 1 ≤ i ≤ n− 1,

Ri(x, y), Ri(y, z)→ Ri+1(x, z), 1 ≤ i ≤ n− 1,
Ri(x, x)→ Ans(x, x), 1 ≤ i ≤ n,

while q2 := ∃xAns(x, x). This completes our construction.
We show that {Qn1}n≥1 and {Qn2}n≥1 are the desired classes of OMQs belonging

to (NR,CQ). Consider an arbitrary S-database D and let G = (V,E) be the directed
graph with V := adom(D) and E := SD. It can be shown that chase(D,On1) |= Pi(c, d)
implies that G contains a path of length 2i−1 from c to d. Moreover, if Ri(c, d) appears
in chase(D,On2), then G contains a path of length at most 2i−1 from c to d.

Observe that if G contains a cycle of length at most 2n−1, then an atom of the
form Ans(c, c) occurs in chase(D,On2), which in turn implies that D |= Qn2 , and thus,
Qn1 (D) ⊆ Qn2 (D). We conclude that Qn1 (D) 6⊆ Qn2 (D) implies that G does not contain a
cycle of length at most 2n−1. In this case, it can be shown that D |= Qn1 implies that D
contains facts

S(c1, c2), S(c2, c3), . . . , S(cm−2, cm−1), S(cm−1, cm),

where m = 2n−1 + 1, which proves the claim. �

Let us now focus on the complexity of Cont(NR,CQ). By naively combining the algo-
rithm underlying Theorem 4.84.8 and the exponential bound provided by Proposition 4.114.11,
we get that Cont(NR,CQ) is feasible in non-deterministic exponential time with access to
a NExpTime-oracle – the oracle is needed for solving Eval(NR,CQ). This rough upper
bound can be significantly improved. In fact, it can be decreased to NExpTimeNP,
which is nearly optimal (more details are given below), by employing a refined version of
the algorithm underlying Theorem 4.84.8. Recall that NExpTimeNP forms the second level
of the exponential hierarchy, and it collects all the decision problems that can be solved
via an alternating exponential time algorithm with two alternations starting from an
existential state, that is, it can perform a series of existential steps followed by a series of
universal steps. The refined version of the algorithm underlying Theorem 4.84.8 is such an
algorithm.

Before giving this algorithm, let us recall a crucial property of non-recursive OMQs
which is implicit in [103103]. Given an S-database D, an OMQ Q = (S,O, q(x̄)) from
(NR,CQ), and a tuple c̄ over adom(D), if c̄ ∈ Q(D), then there exists a finite22 chase
sequence

D = J0, J1, J2, . . . , Jn−1, Jn(D,O),

2Recall that by definition, all chase sequences are infinite. However, we agreed that by a finite chase
sequence we mean one that repeats the same structure indefinitely at some point (cf. Section 3.33.3).

66

4.2. Containment for UCQ-Rewritable Classes

for D and O, where
n(D,O) := |D| · (max{|body(τ)| : τ ∈ O})|sig(O)|

such that c̄ ∈ q(Jn(D,O)). Having this property in place, we can now present our
alternating algorithm. Given Q1 = (S,O1, q1(x̄)) and Q2 = (S,O2, q2(x̄)) from (NR,CQ),
our algorithm proceeds as follows:

(i) Guess an S-database D with at most f(NR,CQ)(Q1) atoms, and a tuple c̄ ∈
adom(D)|x̄|.

(ii) Guess a chase sequence

D = J0, J1, J2, . . . , Jn−1, Jn(D,O1)

for D and O1.

(iii) Guess a mapping h, which is the identity on adom(D), from the variables in q1 to
adom(Jn(D,O1)).

(iv) If h is a homomorphism from q1 to Jn(D,O1) such that h(x̄) = c̄, then proceed;
otherwise, reject.

(v) Universally select each chase sequence

D = J0, J1, J2, . . . , Jn−1, Jn(D,O2)

for D and O2.

(vi) Universally select each mapping h, which is the identity on adom(D), from the
variables in q2 to adom(Jn(D,O2)).

(vii) If h is a homomorphism from q2 to Jn(D,O2) such that h(x̄) = c̄, then reject;
otherwise, accept.

The above algorithm is an alternating exponential time algorithm with two alternations
that starts from an existential state. Moreover, it accepts iff Q1 * Q2, and the desired
upper bound follows.

It is not known whether our problem is coNExpTimeNP-complete. Nevertheless, we
provide a nearly matching lower bound. In fact, PTimeNExpTime-hardness. More details
on how the above complexity classes are related are discussed below. Let us now explain
how PTimeNExpTime-hardness is obtained – a detailed proof is given in Appendix B.2B.2.
We exploit a tiling problem that has been recently introduced in [7272]. Roughly speaking,
an instance of this tiling problem is a triple (m,T1,T2), where m is a natural number in
unary representation, and T1,T2 are standard tiling problems for the (2n× 2n)-grid. The
question is whether, for every initial condition w of length m, T1 has no solution with w
or T2 has some solution with w. The initial condition w simply fixes the first m tiles of
the first row of the grid. We construct in polynomial time two OMQs Q1, Q2 ∈ (NR,CQ)
such that (m,T1,T2) has a solution iff Q1 ⊆ Q2. The idea is to force every input database
to store an initial condition w of length m, and then encode the problem whether Ti has
a solution with w into Qi, for each i ∈ {1, 2}. Then:

67

4. Containment and Equivalence for OMQs

Theorem 4.13. Cont(NR,CQ) is in coNExpTimeNP, and PTimeNExpTime-hard. The
lower bound holds even if the width of the schema is fixed.

Let us now briefly comment on NExpTimeNP versus the class PTimeNExpTime. It
is known that NExpTimeNP is a delicate class: if we restrict its oracle access “too
much,” it collapses to PTimeNExpTime [9292]. For example, following the notation of [9292],
PTimeNExpTime coincides with NExpTimeNP[poly]tree , where only polynomially many
oracle calls are allowed throughout the computation tree of the Turing machine. Also,
PTimeNExpTime coincides with NExpTimeNP[poly]path [exp]yes,tree , where only polynomially
many oracle calls are allowed on each path of the computation tree, and exponentially
many calls with a Yes answer throughout the computation tree of the Turing machine.
These results support our claim that PTimeNExpTime is a nearly matching lower bound
for the problem Cont(NR,CQ).

4.2.3 Stickiness

We now focus on OMQs that fall into (S,CQ). As shown in [8282], given an OMQ
Q = (S,O, q(x̄)) from (S,CQ), there exists an execution of XRewrite that constructs a
UCQ-rewriting q1(x̄)∨ · · ·∨ qn(x̄) over S with the following property: for each i ∈ [n], if a
variable v occurs in qi in more than one atom, then v already occurs in q. This property
is used in [8282] to bound the number of atoms that can appear in a single CQ qi. Let us
write T (q) for the set of terms (constants and variables) occurring in q, and C(O) for
the set of constants occurring in O. The following result is established in [8282] – recall
that wd(S) denotes width of S:

Proposition 4.14. For any Q = (S,O, q(x̄)) from (S,CQ) it holds that

f(S,CQ)(Q) ≤ |S| · (|T (q)|+ |C(O)|+ 1)wd(S) .

We now study the complexity of Cont(S,CQ). Let us first look at schemas of un-
bounded width. Proposition 4.144.14 implies that the algorithm underlying Theorem 4.84.8
runs in exponential time assuming access to a C-oracle, where C is a complexity class
powerful enough to solve Eval(S,CQ) and its complement. But, since Eval(S,CQ) is in
ExpTime (see Subsection 3.4.23.4.2), both Eval(S,CQ) and its complement are feasible in
NExpTime, and thus the oracle call is not really needed. From this discussion, we
conclude that Cont(C,CQ) is in NExpTime. A matching lower bound is obtained by
a reduction from the standard tiling problem for the (2n × 2n)-grid – details are again
given in Appendix B.2B.2. In fact, the same lower bound is established in [3333]. However, our
result is stronger as it shows that the problem remains hard even if the right-hand side
query uses linear TGDs of a simple form – this is also discussed in Section 4.44.4, where
containment of queries that fall into different OMQ languages is studied.

Regarding schemas of bounded width, Proposition 4.144.14 provides a witness for non-
containment of polynomial size, which implies that the algorithm underlying Theorem 4.84.8
runs in polynomial time with access to an NP-oracle. Therefore, Cont(S,CQ) is in ΣP

2 ,
while a matching lower bound is implicit in [3535]. Summarizing, we obtain:

68

4.3. Containment for Guarded-Based Classes

Theorem 4.15. Cont(S,CQ) is coNExpTime-complete, and hardness holds even if the
sets of TGDs use only two constants. In the case of schemas of bounded width, it is
ΠP

2 -complete even for constant-free TGDs.

4.3 Containment for Guarded-Based Classes

The languages from the previous section shared the property of UCQ-rewritability.
Unfortunately, OMQs whose ontology is formulated using guarded or frontier-guarded
rules do not have this property (see Chapter 55 for more details). We thus have to employ
different techniques in order to solve the containment problem for these classes. This is
the goal of the present section.

Recall that we denote by G the class of all finite guarded sets of TGDs, and by FG
the class of all finite frontier-guarded sets of TGDs. The main goal of this section is to
establish the following theorem:

Theorem 4.16. (i) For each L ∈ {G,FG} and each Q ∈ {UCQ,CQ,AQ}, the problem
Cont(L,Q) is 2ExpTime-complete. Hardness for 2ExpTime holds even for the
problem Cont(G,BCQ) when we only use unary and binary relation symbols.

(ii) For schemas of bounded width, the problem Cont(G,AQ) is ExpTime-complete.

Lower bounds The 2ExpTime lower bound in item (i)(i) for the case L ∈ {G,FG}
and Q ∈ {UCQ,CQ} is inherited from results on the description logic ELI obtained
in [3434], where it is shown that containment among OMQs from (ELI,BCQ) is 2ExpTime-
hard. Since every OMQ from (ELI,BCQ) can be rewritten (in polynomial time) into
an equivalent OMQ from (G,BCQ), the 2ExpTime lower bound immediately follows.33
Likewise, the ExpTime-hardness in item (i)(i) is obtained from the fact that Cont(EL,BAQ)
is ExpTime-hard, as shown in [3434]. In [2323] it is shown that deciding containment of
a (Boolean) guarded Datalog query into a Boolean acyclic CQ (see below) is hard for
2ExpTime. As we shall see in Subsection 4.3.24.3.2, Boolean acyclic CQs can easily be
rewritten (in polynomial time) to OMQs that fall into (G,BAQ). Moreover, guarded
Datalog queries correspond to OMQs from (G,AQ) that have no existential quantifiers in
rule heads. Hence, 2ExpTime-hardness of Cont(G,AQ) follows.

Upper bounds We thus mostly focus in this section on obtaining the upper bounds
named in Theorem 4.164.16. Toward establishing these upper bounds, we will first prove the
following result:

Theorem 4.17. There is a 2ExpTime algorithm for the problem Cont(G,BAQ), and
the second exponent of its runtime only depends on the maximum arity of the relation
symbols used in any of the two input OMQs. Hence, Cont(G,BAQ) is in ExpTime when
we assume schemas of bounded width.

3Recall that answering OMQs from (G,BCQ) with schemas of bounded width is feasible in
ExpTime [4444], and thus Eval(ELI,BCQ) is in ExpTime. Thus, containment is in general more dif-
ficult than evaluation for guarded-based OMQs with schemas of bounded width.

69

4. Containment and Equivalence for OMQs

In order to show that Cont(FG,UCQ) is in 2ExpTime, we are going to facilitate
Theorem 4.174.17 as follows:

• By employing a simple reduction, we show that we can reduce Cont(FG,UCQ) to
Cont(FG,UBCQ), that is, we can focus of unions of Boolean CQs.

• Since Boolean UCQs correspond to frontier-guarded rules (with an empty sequence
of frontier-variables), we can in turn reduce Cont(FG,UBCQ) to Cont(FG,BAQ).

• We provide an exponential reduction from Cont(FG,BAQ) to Cont(G,BAQ). Al-
though this reduction is exponential, it only increases the arity of the relation
symbols used polynomially. We show that this reduction thus still shows that
Cont(FG,BAQ) is solvable in 2ExpTime. The reduction is based on the notion of
treeification [1818, 2020], and is inspired by a similar reduction given in [2020], where it is
shown how to reduce the satisfiability problem for sentences belonging to guarded
negation fixed point logic (GNFP) to the satisfiability problem for sentences be-
longing to guarded fixed point logic (GFP).

For obtaining the ExpTime upper bound in item (i)(i) of Theorem 4.164.16 we simply reduce
Cont(G,AQ) to the problem Cont(G,BAQ) in polynomial time.

Constants and normal form assumption Let us emphasize that in the following,
we assume that all rules are constant-free, as this simplifies the presentation of the
material in this section. We will comment at the end of the section on how to extend
the results to capture also the case where constants are allowed. Notice that, since we
use constants in the proof of Proposition 4.54.5, we prove the upper bound in item (i)(i) of
Theorem 4.164.16 for the case of UCQs.

Apart from constant-free rules, let us also assume that all rules contain only a single
atom in their heads. It is easy to transform (frontier-)guarded rules into such a normal
form. In fact, given the rule

τ : q(x̄)→ ∃ȳ (β1 ∧ · · · ∧ βk),
where β1 ∧ · · · ∧ βk is a conjunction of relational atoms, we pick a fresh relation symbol
Rτ of arity |x̄|+ |ȳ| and rewrite τ into the rules

q(x̄)→ ∃ȳ Rτ (x̄, ȳ),
Rτ (x̄, ȳ)→ βi, 1 ≤ i ≤ k.

Notice that the resulting rules are still (frontier-)guarded. Doing this exhaustively for all
rules enables us to rewrite any OMQ based on guarded or frontier-guarded TGDs into
an equivalent one whose every rule has only one atom in its head. Moreover, it is easy to
see that this transformation can be performed in polynomial time. Therefore, it is safe to
assume sets of rules that are given in this normal form for the remainder of this section.

4.3.1 The Case of Atomic Queries

The goal of this part is to provide a proof of Theorem 4.174.17. To this end, we proceed as
follows:

70

4.3. Containment for Guarded-Based Classes

(i) We first show that, in order to decide containment, it suffices to restrict ourselves
to input databases which are “tree-like” – more precisely, acyclic [135135] in the
standard database sense.

(ii) Following [2828, 5555, 8787], we encode acyclic databases into trees that carry labels over
a finite alphabet in order to make them amenable to the tree automata techniques
presented in Section 2.42.4.

(iii) We devise 2APTA in order to reduce the question of containment to that of
language emptiness for 2APTA.

Guardedness Revisited

Toward a proof of Theorem 4.174.17 – and in particular toward a proof of the tree witness
property – we need several additional technical notions first.

Firstly, recall that a tree decomposition of a structure A is a tuple δ = (T , (X)v∈T)
such that

(i) dom(A) ⊆ ⋃v∈T Xv,

(ii) for every fact R(a1, . . . , an) of A, there is a v ∈ T with {a1, . . . , an} ⊆ Xv, and

(iii) for every a ∈ dom(A), the set {v | a ∈ Xv} induces a connected subtree of T .
The width of δ is wd(δ) := max{|Xv| : v ∈ T} − 1, and the tree-width of A is

tw(A) := min{wd(δ) | δ is a tree decomposition of A}.

Notation. Given a tree decomposition δ = (T , (Xv)v∈T) of A, we write Aδ(v) for the
structure A � Xv, and we omit the subscript “δ” whenever clear from context.

Acyclicity As mentioned in the introductory part of this section, one of the main goals
here is to make the problem Cont(G,AQ) amenable to tree automata techniques. To this
end, we need a notion that captures “tree-likeliness” for structures that have relation
symbols of arbitrary arity. A first candidate for this notion is to consider structures of
bounded tree-width as “tree-like.” However, as we shall see, for the case of guardedness
we can even impose a stronger concept of tree-likeliness – namely the well-known notion
of acyclicity [135135] from database theory. Let us make this notion more precise.

Let A be an S-structure over S. We say that X ⊆ dom(A) is guarded in A, if either
|X| = 1 or there are a1, . . . , an ∈ dom(A) such that

• X ⊆ {a1, . . . , an} and
• there is an R/n ∈ S such that A |= R(a1, . . . , an).

A tuple ā is guarded in A if the set [ā] containing the elements of ā is guarded in A.

Definition 4.18. Let δ = (T , (Xv)v∈T) of A be a tree decomposition of A. We say that
v ∈ T is guarded if there is a guarded set X in A such that X ⊇ Xv. We call δ guarded if
every v ∈ T is guarded. We call A acyclic if it has a guarded tree decomposition.

71

4. Containment and Equivalence for OMQs

{a, b, c}

{b, c, d}

{d, f}

{a, e}

Figure 4.1: A guarded tree decomposition of D from Example 4.194.19 showing that D is
acyclic.

Notice thus that the tree-width of an acyclic S-structure is always bounded by the
number max{0,wd(S)− 1}.

Example 4.19. Let D = {R(a, b), T (a, b, c), R(b, c), R(c, a), T (b, c, d), R(a, e), R(d, f)}. It
is not hard to check that D is acyclic – a guarded tree decomposition of D is shown in
Figure 4.14.1. a

The following lemma states that chasing an acyclic structure gives an acyclic result:

Lemma 4.20. If an S-structure A is acyclic and O is a set of frontier-guarded TGDs,
then chase(A,O) is acyclic as well. Moreover, for ever k ≥ 0, chasek(A,O) is acyclic.

Proof. Let δ = (T , (Xv)v∈T) be a guarded tree decomposition of A. Let π = J0, J1, . . .
be an appropriate chase sequence for A and O, and recall that chasek(A,O) =

⋃k
i=0 Jk.

We successively augment δ by additional nodes according to the construction of π.
More formally, we prove by induction on k that there is a guarded tree decomposition
δk = (Tk, (Xk,v)v∈Tk) of

⋃k
i=0 Ji = Jk. For k = 0, we just take δk := δ.

Suppose now that k ≥ 1. Let α(t̄, λ̄′) be the atom derived in the k-th chase step, where
t̄ are elements contained in dom(Jk−1) and the elements λ̄ are fresh labeled nulls. Suppose
this atom has been derived by an application of (τ, h), where τ ∈ O is frontier-guarded.
Hence, h maps the body of τ to Jk−1. Since τ is frontier-guarded, there is a frontier-guard
β(x1, . . . , xn) in its body. Thus, the set X := {h(x1), . . . , h(xn)} ⊇ [t̄] is guarded in Jk−1.
Let v ∈ Tk−1 be such that X ⊆ Xk−1,v. We construct δk as follows. If the sequence λ̄ is
not empty, then δk arises from δk−1 by adding a new node v′ to δk−1 whose bag equals
[t̄] ∪ [λ̄]. Otherwise, if λ̄ is empty, then δk := δk−1. It is clear that δk is guarded, since
the set [t̄] ∪ [λ̄] is guarded in Jk. Moreover, δk is clearly connected as [t̄] ⊆ X = Xk−1,v.
This completes the induction step.

This shows that chasek(A,O) is acyclic for every k ≥ 0. The fact that chase(A,O)
is acyclic is witnessed by the tree decomposition δ∗ = (T ∗, (X∗v)v∈T ∗), where T ∗ is the
union of all Tk, and X∗v = Xk0,v, where k0 is the minimum k such that v ∈ Tk. It is not
hard to see that δ∗ is well-defined, since every δk+1 extends δk in the sense that it only
adds new nodes to δk. Clearly, δ∗ is a guarded tree decomposition of chase(A,O). �

(Strictly) acyclic CQs The notion of acyclicity can be easily extended to CQs and
UCQs. Let q(x1, . . . , xn) be a conjunctive query over S. Recall from Subsection 2.3.22.3.2 that

72

4.3. Containment for Guarded-Based Classes

Aq denotes the S-structure corresponding to q(x1, . . . , xn), and recall that the domain of
Aq consists of the ∼-equivalence classes – which, for x ∈ var(q), we denote by [x]q – of
the variables appearing in q(x1, . . . , xn).

Definition 4.21. We call q(x1, . . . , xn) acyclic if Aq is acyclic. We say that a UCQ is
acyclic iff each of its constituent CQs is.

Unlike structures, CQs have answer variables as distinguished elements. It turns out
that many of our results only hold if we require that the answer variables are guarded by
an atom in the body of the CQ at hand. The following definition strengthens acyclicity
to that condition:

Definition 4.22. We say that q(x1, . . . , xn) is strictly acyclic, if it has a guarded tree
decomposition δ = (T , (Xv)v∈T) where {[x1]q, . . . , [xn]q} ⊆ Xv for some v ∈ T .

Hence, q(x1, . . . , xn) is strictly acyclic iff all its answer variables are summoned in
one bag of δ. Notice that the body of every guarded TGD is trivially strictly acyclic,
and that every CQ that has at most one answer variable (and thus also Boolean ones)
are strictly acyclic as well.

Example 4.23. The CQ

q(x, z) := ∃y (R(x, y) ∧R(y, z))

is acyclic but not strictly acyclic. On the other hand,

q′(x) := ∃y, z (R(x, y) ∧R(y, z)) ≡ ∃z q(x, z)
is clearly strictly acyclic. a

Recall that a first-order formula is guarded if each of its quantifier occurrences is of
either forms

∀x̄ (α→ ϕ) and ∃x̄ (α ∧ ϕ),

where α is an atomic formula that contains all the free variables of ϕ as arguments – we
say that α guards ϕ. We call a formula strictly guarded if it is either atomic or of the
form ∃x̄ (α ∧ ϕ), where (i) α guards ϕ, and (ii) ϕ is strictly guarded as well. Here we
include the case where x̄ is the empty sequence of variables, so that formulas of the form
α ∧ ϕ (where α guards ϕ and ϕ is strictly guarded) also belong to the class of strictly
guarded formulas.

Notice that every guarded sentence that is only composed of the logical connectives
∃ and ∧ can be written as a strictly guarded formula. Moreover, it turns out that
strictly guarded formulas correspond precisely to the strictly acyclic queries [7777], and
thus Boolean acyclic queries correspond to guarded sentences built up using conjunctions
and existential quantification [8181]:

Lemma 4.24. A conjunctive query is strictly acyclic iff it is equivalent to a strictly
guarded formula.

73

4. Containment and Equivalence for OMQs

Example 4.25. Consider again the CQ q′(x) = ∃y, z (R(x, y)∧R(y, z)) from Example 4.234.23.
Clearly, q′(x) is equivalent to the strictly guarded formula

ϕ(x) := ∃y (R(x, y) ∧ ∃z (R(y, z) ∧R(y, z))).

Here we pedantically followed the definition of strictly guarded formulas, which is why
the subformula R(y, z)∧R(y, z) contains a repetition of the same atom. We will adopt a
more liberal notion when actually working with strictly guarded formulas so that R(y, z)
is considered itself to be strictly guarded.

Notice also that the nesting of quantifier occurrences allows us to reuse variables so
that ϕ(x) is equivalent to

∃y (R(x, y) ∧ ∃x (R(y, x) ∧R(y, x))) ≡ ∃y (R(x, y) ∧ ∃xR(y, x)).

Thus, care has to be taken when passing from a strictly guarded formula to an equivalent
strictly acyclic query – variables have to be consistently renamed due to the fact that
CQs are in prenex-form. a

Guarded (bi)simulations Guarded bisimulations (see, e.g., [55, 2020, 8888]) generalize
the modal bisimulations to the hypergraphs and arbitrary structures. In fact, guarded
bisimulations are pivotal for the nice model-theoretic properties of the guarded fragment,
just as standard modal bisimulations are for those of modal logics [8888, 132132]. We can view
guarded bisimulations as winning strategies for the duplicator in a back&forth-game that
accounts for the quantification pattern of guarded first-order formulas [8888]. Positions in
this guarded bisimulation game on two S-structures A and B are partial isomorphisms
between A and B whose domains (respectively, images) are guarded sets in A (respectively,
B). Following [8888], let us write p : ā 7→ b̄ to indicate that p is a partial function from
dom(A) to dom(B) whose domain is [ā] and whose image is [b̄] with bi = p(ai). For such
a position p : ā 7→ b̄, we require that (i) ā is a guarded tuple in A, (ii) b̄ a guarded tuple in
B, and (iii) p is an isomorphism between the induced substructures A � [ā] and B � [b̄].

Suppose the game is at position p : ā 7→ b̄. When the spoiler makes a move, he first
chooses a structure among A and B, say he chooses A. The spoiler selects a guarded
tuple ā′ of A and some (guarded) tuple ā0 such that [ā0] ⊆ [ā] ∩ [ā′]. Upon that, the
duplicator has to find an extension b̄′ of the tuple b̄0 := p(ā0) such that b̄′ is guarded and
the map p′ : ā′ 7→ b̄′ is again an isomorphism between A � [ā′] and B � [b̄′]. If the spoiler
chooses to play on the side of B, the duplicator has to mirror the spoiler’s move on A
accordingly, with the role of p taken by p−1.

Definition 4.26 ([8888]). For two S-structures A and B, a set of partial maps Z between
dom(A) and dom(B) is a guarded bisimulation if it satisfies the following conditions, for
every p : ā 7→ b̄ in Z:

(i) p is an isomorphism between A � [ā] and B � [b̄]. (atom equivalence)

(ii) For every guarded tuple b̄′ of B and each b̄0 with [b̄0] ⊆ [b̄] ∩ [b̄′], there is some
guarded tuple ā′ of A and a p′ : ā′ 7→ b̄′ in Z such that p′−1(b̄0) = p−1(b̄0). (back)

74

4.3. Containment for Guarded-Based Classes

(iii) For every guarded tuple ā′ of A and each ā0 with [ā0] ⊆ [ā] ∩ [ā′], there is some
guarded tuple b̄′ of B and a p′ : ā′ 7→ b̄′ in Z such that p′(ā0) = p(ā0). (forth)

We write A, ā ∼g B, b̄ if there is a guarded bisimulation between A and B that contains
some p : ā 7→ b̄.

Notation. In the following, if a map a1, . . . , an 7→ b1, . . . , bn is specified to be in a
guarded bisimulation Z and i1, . . . , ik ∈ [n], then we assume also that all the maps
ai1 , . . . , aik 7→ bi1 , . . . , bik are in Z, without mentioning them explicitly.

As said above, satisfaction of guarded formulas is invariant under guarded bisimula-
tions [55, 2020, 8888]:

Lemma 4.27. Let A and B be S-structures. For every guarded formula ϕ(x̄) and guarded
tuples ā and b̄,

A, ā ∼g B, b̄ =⇒
(
A |= ϕ(ā) ⇐⇒ B |= ϕ(b̄)

)
.

Let us relax the notion of guarded bisimulation a bit by (i) only requiring that the
maps p : ā 7→ b̄ are partial homomorphisms rather than partial isomorphisms, and (ii) by
only requiring that the forth-condition is satisfied. We call a set of partial maps Z
between A and B that satisfies these two conditions a guarded simulation. We write
A, ā �g B, b̄ if there is a guarded simulation between A and B that contains some
p : ā 7→ b̄. Obviously, every guarded bisimulation is also a guarded simulation, while the
converse is not true. Guarded simulations are adequate for sustaining satisfaction of
strictly guarded formulas (and thus strictly acyclic queries):

Lemma 4.28. Let A and B be S-structures. For every strictly guarded formula ϕ(x̄) and
guarded tuples ā and b̄:

A, ā �g B, b̄ =⇒
(
A |= ϕ(ā) =⇒ B |= ϕ(b̄)

)
.

Proof. Let Z be a guarded simulation containing p : ā 7→ b̄. We proceed by structural
induction on ϕ(x̄). The case where ϕ(x̄) is atomic is trivial, since p : ā 7→ b̄ is a
homomorphism from A � [ā] to B � [b̄].

Suppose now that ϕ(x̄) = ∃ȳ (α(x̄, ȳ) ∧ ψ(x̄, ȳ)), where α guards ψ, and ψ is strictly
guarded. Suppose further that A |= ϕ(ā) and that p : ā 7→ b̄ is in Z. From A |= ϕ(ā), we
know that there is a tuple c̄ such that A |= α(ā, c̄) ∧ ψ(ā, c̄). Thus, the tuple ā′ := āc̄ is a
guarded tuple of A, whence it follows that there is a p′ : ā′ 7→ b̄′ in Z with p′(ā) = p(ā) = b̄.
By induction hypothesis, we know that B |= ψ(b̄′), and we also know that B |= α(b̄′) since
p′ : ā′ 7→ b̄′ is a homomorphism from A � [ā′] to B � [b̄′]. Thus, B |= ∃ȳ (α(b̄, ȳ) ∧ ψ(b̄, ȳ)),
i.e., B |= ϕ(b̄) as desired. �

Guarded unraveling Our goal here is to uniformly construct tree-like models (more
precisely, acyclic models) from models of guarded formulas. The construction is named
guarded unraveling [55, 8888] and extends the standard unraveling of Kripke structures to
the case of arbitrary structures.

75

4. Containment and Equivalence for OMQs

In the following paragraph, we largely follow the notions introduced in [44, 2828]. Fix an
S-structure A. Let Π be the set of finite sequences of the form X0X1 · · ·Xn, where, for
i ≥ 0, (i) Xi is a guarded set in A, and (ii) Xi+1 = Xi ∪{a} for some a ∈ dom(A) \Xi, or
Xi ⊇ Xi+1. The sequences in Π can be arranged in a tree by their natural prefix-order,
and each sequence π = X0X1 · · ·Xn identifies a unique node in this tree. In this context,
we say that a ∈ dom(A) is represented at π whenever a ∈ Xn. Two sequences π, π′ are
a-equivalent, if a is represented at each node on the unique shortest path between π and
π′. For a represented at π, we denote by [π]a the a-equivalence class of π, and let us
specify that [π]a = [π′]b iff (i) a = b, and (ii) π and π′ are a-equivalent.

Definition 4.29. The guarded unraveling of A is the S-structure A∗ with domain

dom(A∗) := {[π]a | a is represented at π},

and

A∗ |= R([π1]a1 , . . . , [πn]an) ⇐⇒df A |= R(a1, . . . , an) and
∃π ∈ Π,∀i ∈ {1, . . . , n} : [π]ai = [πi]ai ,

for all R/n ∈ S.

Lemma 4.30. For every S-structure A and every guarded set X in A, the guarded
unraveling A∗ is acyclic.

Proof. Let δ = (T , (Yπ)π∈T), where T is the natural tree that arises from ordering the
sequences in Π by their prefixes, where Π is as in the definition of A∗. For π ∈ T , let
Yπ := {[π]a | a is represented at π}. We need to show that δ is an appropriate guarded
tree decomposition witnessing that A∗ is acyclic.

Let [π]a ∈ dom(A∗) and suppose θ, ρ ∈ T are two nodes such that [π]a ∈ Yθ ∩ Yρ. We
need to show that [π]a appears in all bags on the unique shortest path between θ and ρ
in T . Let τ be a node on that path. Now [π]a ∈ Yθ ∩ Yρ means that [π]a = [θ]a = [ρ]a,
whence it follows that θ and ρ are a-equivalent, and thus a is represented at τ . This
means that [τ]a = [θ]a = [ρ]a = [π]a and so [π]a ∈ Yτ as needed.

Suppose A∗ |= R([π1]a1 , . . . , [πn]an) for some R/n ∈ S. Then there is a π ∈ T such
that [π]ai = [πi]ai , for all i = 1, . . . , n. Hence, a1, . . . , an are all represented at π and so
{[π1]a1 , . . . , [πn]an} ⊆ Yπ.

It remains to be shown that δ is guarded. Let π ∈ T and consider the set Yπ.
The last element of π, say Z, is guarded in A. Hence, there are a1, . . . , am such that
Z ⊆ {a1, . . . , am} and A |= R(a1, . . . , am) for some R/m ∈ S. Let {b1, . . . , bs} =
{a1, . . . , am} \Z and define ρ := π · (Z ∪ {b1}) · (Z ∪ {b1, b2}) · · · (Z ∪ {b1, . . . , bs}). Then
A∗ |= R([ρ]a1 , . . . , [ρ]am), as desired. �

Given the guarded unraveling A∗ of A, we let π̂ be the natural projection

π̂ : [π]a 7−→ a, for [π]a ∈ dom(A∗).

Lemma 4.31. The function π̂ is a (weak) homomorphism from A∗ to A.

76

4.3. Containment for Guarded-Based Classes

Proof. If A∗ |= R([π1]a1 , . . . , [πn]an) then by definition A |= R(a1, . . . , an). �

Using π̂, we can easily write down a guarded bisimulation between A∗ and A:

Lemma 4.32. For every structure A and every guarded tuple s1, . . . , sk in A∗, it holds
that

A∗, s1, . . . , sk ∼g A, π̂(s1), . . . , π̂(sk).

Proof. Let Z be the relation that contains for every guarded tuple t̄ = t1, . . . , tn of A∗
the map pt̄ with

pt̄ : t1, . . . , tn 7−→ π̂(t1), . . . , π̂(tn).

We claim that Z is a guarded bisimulation between A∗ and A that witnesses

A∗, s1, . . . , sk ∼g A, π̂(s1), . . . , π̂(sk),

for every guarded tuple s̄ := s1, . . . , sk of A∗. Suppose s̄ is of the form [π1]a1 , . . . , [πk]ak
and ā := π̂(s̄) = a1, . . . , ak. Since s̄ is guarded in A∗, there is a π ∈ Π such that, for
i = 1, . . . , k, we have [π]ai = [πi]ai .

We first argue that ps̄ : s1, . . . , sk 7→ [π1]a1 , . . . , [πk]ak is an isomorphism between A∗ �
[s̄] and A � [π̂(s̄)]. Suppose that ps̄(si) = ps̄(sj) for some i, j ∈ [k]. Hence, ai = aj and
thus [πi]ai = [π]ai = [π]aj = [πj]aj . It follows that si = sj and hence ps̄ is injective. The
fact that ps̄ is onto is easy to see as ps̄([{a1, . . . , ak}]a1 , . . . , [{a1, . . . , ak}]ak) = a1, . . . , ak.
For any sub-tuple si1 , . . . , sim of s̄ with ps̄(sij) = aij , and any R/m ∈ S it holds that

A � [π̂(s̄)] |= R(ai1 , . . . , aim) ⇐⇒ A∗ � [s̄] |= R([π]ai1 , . . . , [π]aim)
⇐⇒ A∗ � [s̄] |= R([πi1]ai1 , . . . , [πim]aim)
⇐⇒ A∗ � [s̄] |= R(si1 , . . . , sim).

Hence, ps̄ is indeed an isomorphism between A∗ � [s̄] and A � [π̂(s̄)].
It remains to verify the back&forth-conditions. Suppose b̄ := b1, . . . , bm is a guarded

tuple of A and b̄0 a sub-tuple of b̄ such that [b̄0] ⊆ [ā] ∩ [b̄]. For i = 1, . . . ,m, let
ρ := π · {b1, . . . , bm}, and let t̄ := ([ρ]b1 , . . . , [ρ]bm). By definition, pt̄ : t̄ 7→ b̄ is in Z and
p−1
t̄

(b̄0) = p−1
s̄ (b̄0). This verifies the back-condition.

Suppose now that t̄ := (t1, . . . , tm) is a guarded tuple of A∗ and let ti = [ρi]bi . Consider
also a tuple t̄0 such that [t̄0] ⊆ [s̄] ∩ [t̄]. Let t̄0 = (ti1 , . . . , til) = (sj1 , . . . , sjl) for some
appropriate i1, . . . , il and j1, . . . , jl. We claim that b̄ := (b1, . . . , bm) is the guarded tuple
of A we are looking for. By definition, pt̄ : t1, . . . , tm 7→ b1, . . . , bm is in Z. Moreover,
since t̄0 = (ti1 , . . . , til) = (sj1 , . . . , sjl), we also have also bir = ajr for r = 1, . . . , l, and so
pt̄(t̄0) = ps̄(t̄0), as required. �

Corollary 4.33. For every guarded formula ϕ(x1, . . . , xk) and every guarded tuple
s1, . . . , sk of A∗ it holds that

A |= ϕ(π̂(s1), . . . , π̂(sk)) ⇐⇒ A∗ |= ϕ(s1, . . . , sk).

Proof. Immediate by Lemmas 4.274.27 and 4.324.32. �

77

4. Containment and Equivalence for OMQs

Acyclic Witnesses

The following theorem states our tree witness property:

Theorem 4.34. Suppose Q1 = (S,O1, G1(x̄)) and Q2 = (S,O2, G2(x̄)) are OMQs from
(G,AQ). Then the following are equivalent:

(i) Q1 ⊆ Q2.

(ii) For every acyclic S-database D, Q1(D) ⊆ Q2(D).

Hence, whenever Q1 is not contained in Q2, non-containment is already witnessed
by an acyclic database. Since acyclicity can be understood to capture some form of
tree-likeliness, one can say that Theorem 4.344.34 establishes that we can focus on tree-like
instances when deciding containment and this will later be exploited when we resort to
tree automata in order to decide containment.

To prove Theorem 4.344.34, we prove some additional results first.

Lemma 4.35. Suppose A and A′ are S-structures, and let O be a set of guarded TGDs.
Every guarded bisimulation between A and A′ can be extended to a guarded simulation
between chase(A,O) and chase(A′,O).

Proof. Suppose Z is a guarded bisimulation between A and A′, and let π = J0, J1, . . . be
an appropriate chase sequence for A and O such that J0 = A and chase(A,O) =

⋃
i≥0 Ji.

We shall extend Z successively to a guarded simulation Z according to π.
We now show by induction on i that here are sets of partial maps Z0 ⊆ Z1 ⊆ · · ·

such that, for every i ≥ 0, Zi a guarded simulation between Ji and chase(A,O).
For i = 0, we simply set Z0 := Z. Since Z0 is already a guarded bisimulation between

A and A′, and since chase(A′,O) is just an extension of A′, it is clear that Z0 is a guarded
simulation between J0 = A and chase(A′,O).

Assume now that i ≥ 1. We are going to define Zi as follows, assuming by induction
hypothesis that Zi−1 is already a guarded simulation between Ji−1 and chase(A′,O).
Suppose Ji results from Ji−1 by an application of (h, τ), where τ is a guarded rule of O
of the form

qτ (x1, . . . , xn)→ ∃ȳ R(x1, . . . , xn, y1, . . . , ym),

where qτ (x1, . . . , xn) is a CQ, and h a homomorphism from qτ (x1, . . . , xn) to Ji−1. Assume
moreover that there is a map in Zi−1 of the form

p : h(x1), . . . , h(xn) 7−→ b1, . . . , bn.

Let R(h(x1), . . . , h(xn), λ1, . . . , λm) be the atom derived by the application of (h, τ),
where λ1, . . . , λm are fresh labeled nulls. Assume that λ′1, . . . , λ′m are elements such that

chase(A′,O) |= R(b1, . . . , bn, λ′1, . . . , λ′m).

Notice that such elements must exist since Zi−1 is a guarded simulation, and therefore
by Lemma 4.284.28 chase(A′,O) |= qτ (b1, . . . , bn). Then we set

Zi := Zi−1 ∪ {pi : h(x1), . . . , h(xn), λ1, . . . , λm 7−→ b1, . . . , bn, λ
′
1, . . . , λ

′
m}.

78

4.3. Containment for Guarded-Based Classes

It is not hard to check that Zi is a guarded simulation between Ji and chase(A′,O) since
Ji = Ji−1 ∪ {R(h(x1), . . . , h(xn), λ1, . . . , λm)}. This completes the induction step.

Now let Z∗ be the set of partial maps
⋃
i≥0 Zi. It is easy to see that Z∗ is a guarded

simulation between chase(A,O) and chase(A′,O). �

Lemma 4.36. Suppose Q = (S,O, G(x̄)) is an OMQs from (G,AQ), and suppose that
D |= Q(ā) for some S-database D. Then there is an acyclic S-database B such that the
following hold:

(i) B |= Q(ā).

(ii) There is a weak homomorphism from B to D that is the identity on ā.

Proof. Let D be an S-database such that D |= Q(ā). Let D∗ be the guarded unraveling
of D, and notice that the map π̂ which sends any equivalence class [π]a to a ∈ adom(D)
is a homomorphism from D∗ to D.

By Lemma 4.324.32, we know that there is a guarded bisimulation Z between D∗ and D
that contains all maps of the form

ps̄ : s1, . . . , sk 7−→ π̂(s1), . . . , π̂(sk),

for every guarded tuple s1, . . . , sk of D∗. Obviously, the set of maps Z−1 := {p−1 | p ∈ Z}
is a guarded bisimulation between D and D∗.

By Lemma 4.354.35, we know that Z−1 can be extended to a guarded simulation between
chase(D,O) and chase(D∗,O), and so

chase(D,O), π̂(s1), . . . , π̂(sk) �g chase(D∗,O), s1, . . . , sk,

for every guarded tuple s1, . . . , sk of D∗. Let ā = a1, . . . , an and let

ti := [{a1, . . . , an}]ai , for i = 1, . . . , n.

We know that chase(D,O) |= G(π̂(t1), . . . , π̂(tn)) by assumption, whence by Lemma 4.284.28
we obtain that chase(D∗,O) |= G(t1, . . . , tn). By Lemmas 4.204.20 and 4.304.30 we know that
chase(D∗,O) is acyclic and thus it has a guarded tree decomposition δ = (T , (Xv)v∈T).
From chase(D∗,O) |= G(t1, . . . , tn), we obtain (D∗,O) |= G(t1, . . . , tn), whence by the
standard compactness theorem of first-order logic we know that there is a finite database
D′ ⊆ D∗ such that (D′,O) |= G(t1, . . . , tn). Let δ′ be the tree decomposition that results
from δ by restricting its bags to adom(D′), i.e., δ′ = (T ′, (X ′v)v∈T ′) with T ′ := T and
X ′v := Xv ∩ adom(D′). Notice that δ′ may still be infinite, but only due to the repetition
of nodes. Formally, we call a node w ∈ T ′ a duplicate of v ∈ T ′ if X ′w = X ′v. We mark now
the duplicate nodes in δ′ and for each distinct X ′v we only keep one duplicate unmarked.
Since

⋃
v∈T ′ X

′
v is finite, it is clear that every subtree in T ′ contains only finitely many

unmarked nodes. We let δ∗ = (T ∗, (Yv)v∈T ∗) be the tree decomposition that arises from
δ′ by deleting those subtrees from δ′ that only contain marked nodes.

We still have to ensure that δ∗ is guarded. Suppose v ∈ T ∗ is such that there is no
guarded set Y in D′ such that Y ⊇ Yv (call such a node bad). However, by construction,

79

4. Containment and Equivalence for OMQs

there is a guarded set X in D∗ such that X ⊇ Yv and thus there is a fact R(s̄) in D∗

such that [s̄] ⊇ X ⊇ Yv. We add R(s̄) to D′ and we repeat this process exhaustively for
all bad nodes. Call the resulting structure B′. It is clearly finite and acyclic (it must be
acyclic since D∗ is).

Let B be the S-database that is obtained from B′ by renaming the elements of
dom(B′) via a bijection ρ as follows: t1, . . . , tn are respectively renamed to a1, . . . , an,
all the other elements appearing in dom(B′) to elements of const that are distinct from
a1, . . . , an. Then B |= Q(ā), and the function

h : s 7−→ ρ(π̂(s))

is clearly a weak homomorphism from B to D that is the identity on ā = a1, . . . , an.
Thus, B is the database we are looking for. �

Proof of Theorem 4.344.34. The direction from (i)(i) to (ii)(ii) is trivial, and so we focus on
the other direction. Assume that there is an S-database D such that Q1(D) 6⊆ Q2(D).
Hence, D |= Q1(ā) but D 6|= Q2(ā) for some (guarded) tuple ā. By Lemma 4.364.36, there
is an acyclic S-database B such that B |= Q1(ā), and there is a weak homomorphism
from B to D that is the identity on ā. Since Q2 is closed under weak homomorphisms
(cf. Proposition 3.183.18), we obtain B 6|= Q(ā) as well. �

Encoding Tree-Like Structures

In the following, we are going to show how we encode tree-like structures into trees
over a finite alphabet. This will be used later when we exploit automata techniques in
order to solve containment for guarded-based classes. Formally speaking, what we do
encode is (i) a tree decomposition δ of a structure A together with (ii) information that
specifies which facts of A are true in which bag, i.e., information about the facts of the
substructure of A induced by the corresponding bag. This is formalized as follows.

Let A be a database, and δ = (T , (Xv)v∈T) a tree decomposition of A. An adornment
of the pair (A, δ) is a function η : T → 2A (i.e., η assigns sets of facts of A to nodes of δ)
such that

(i) η(v) ⊆ A � Xv for all v ∈ T , and
(ii) for every fact α of A, there is some v ∈ T such that α ∈ η(v).

Therefore, the pair (δ, η) can be viewed as a representation of the structure A along
with a tree decomposition of it. Notice that, in the first item, we do not require that
η(v) = A � Xv. This has technical reasons and will be used later in Chapter 55, where we
are going to reuse this terminology.

Encoding We now explain how to encode a tuple (A, δ, η), formed by an S-structure
A, a tree decomposition δ of A of width w − 1, and an adornment η of (A, δ), as a
ΓS,w-labeled tree t of degree, where ΓS,w is an alphabet of doubly exponential size in w
and exponential in S, such that each node of δ corresponds to exactly one node of t and
vice versa.

80

4.3. Containment for Guarded-Based Classes

Fix a schema S and let w ≥ 1. Let US,w be a set containing 2w distinct elements.
Elements in US,w are used to encode the elements in dom(A) in trees. Neighboring nodes
in such trees may describe overlapping pieces of the encoded structure. In particular, if
one name is used in neighboring nodes, this means that the name at hand refers to the
same element – this is why we use 2w elements for bags.

Let KS,w be the finite schema defined as follows.

• For every a ∈ US,w, there is a unary relation Da ∈ KS,w.

• For each n-ary relation symbol R ∈ S and every n-tuple ā over US,w, there is a
unary relation Rā ∈ KS,w.

We define ΓS,w := 2KS,w .
Fix a function f : dom(A)→ US,w such that different elements that occur in neighbor-

ing bags of δ are always assigned different elements from US,w. Using f , we can encode
(A, δ, η) as a ΓS,w-labeled tree tA,δ,η such that each node of T corresponds to exactly
one node of tA,δ,η and vice versa. In the following, for a node v from T , we denote the
corresponding node of tA,δ,η by v̂, and vice versa. For each node v ∈ T we have that the
node v̂ in tA,δ,η is labeled with a symbol θv̂ from ΓS,w in such a way that the following
holds:

• Da ∈ θv̂ iff f(c) = a for some c ∈ dom(A) ∩Xv.

• Rā ∈ θv̂ iff R(c̄) ∈ η(v) and f(c̄) = ā.

Intuitively, a symbol Da ∈ tA,δ,η(v) means that the a ∈ US,w is used to name an element,
while Rā ∈ tA,δ,η(v) means that the relation R holds for the elements named by ā in the
node v.

Notation. In the following, if wd(S) = 0, then by ΓS we mean the alphabet ΓS,1, and
if wd(S) > 0, then we are going to write ΓS for ΓS,wd(S). An according convention is
applied for US with respect to US,w.

Decoding While every structure A, together with a tree decomposition δ of it of width
w−1 and an adornment for (A, δ), can be encoded into a ΓS,w-labeled tree t, the converse
is not true in general. However, as shown below, it is possible to define certain consistency
conditions such that every consistent ΓS,w-labeled t can be decoded into an S-structure,
denoted JtK, whose tree-width is bounded by w − 1.

Let t be a ΓS,w-labeled tree. For ρ ∈ ΓS we let names(ρ) := {a | Da ∈ ρ}, and for
v ∈ dom(t) we set names(v) := names(t(v)). We say that t is consistent, if it satisfies the
following properties:

(i) For each node v ∈ dom(t), it holds that |names(v)| ≤ w.
(ii) For every symbol Rā ∈ KS,w and every node v ∈ dom(t), if Rā ∈ t(v), then

[ā] ⊆ names(v).

Suppose now that t is consistent. We show how to decode t into a structure JtK whose
tree-width is at most w − 1. Let a be a name used in t. We say that two nodes v, w of

81

4. Containment and Equivalence for OMQs

t are a-equivalent, if Da ∈ t(u) for all nodes u on the unique shortest path between v
and w. Clearly, a-equivalence defines an equivalence relation, and we denote by [v]a the
a-equivalence class of v. More formally, we define

[v]a := {(w, a) | w is a-equivalent to v},

so that [v]a = [w]b only if a = b. The domain of JtK is the set

dom(JtK) := {[v]a | v is a node of t and a ∈ names(v)},

and, for R/n ∈ S, we define

JtK |= R([v1]a1 , . . . , [vn]an) ⇐⇒df Ra1,...,an ∈ t(v) and
∃v ∈ dom(t),∀i ∈ {1, . . . , n} : [v]ai = [vi]ai .

It is not hard to see that JtK is indeed well-defined. Let δt = (T , (Xv)v∈T) be the
standard tree decomposition for JtK, where T is the same tree in structure as t, and
Xv := {[v]a | a ∈ names(v)}, for all v ∈ T . Moreover, we define the standard adornment
ηt for (JtK, δt) by

ηt(v) := {R([v]a1 , . . . , [v]ak) | Ra1,...,ak ∈ t(v)}, for v ∈ T .

Lemma 4.37. If t is consistent then δt is a tree decomposition of JtK of width at most
w − 1, and ηt an adornment of (JtK, δt).

Proof. We first show that δt is a tree decomposition of JtK of width at most w− 1. The
fact that the width of δt is at most w− 1 is immediate by the consistency of t. We verify
that δt satisfies the properties of a tree decomposition of JtK.

The fact that each element from dom(JtK) is contained in some bag is immediate.
Suppose that JtK |= R([v1]a1 , . . . , [vn]an) for some R/n ∈ S. By definition, there is a
v ∈ dom(t) such that [v]ai = [vi]ai for all i = 1, . . . , n and Ra1,...,an ∈ t(v). By consistency
{a1, . . . , an} ⊆ names(v) and, hence, {[v1]a1 , . . . , [vn]an} = {[v]a1 , . . . , [v]an} ⊆ Xv.

It remains to show that δt is connected. Let v, w ∈ dom(t) be nodes such that
[u]a ∈ Xv ∩Xw for some u ∈ dom(t) and some a ∈ US,w. Hence, [u]a = [v]a = [w]a and
so v and w are a-connected. For any node v′ on the shortest path between v and w in T
we thus must have [u]a ∈ Xv′ , which proves that δt is indeed connected.

It is readily seen by the definition of ηt that ηt is indeed an adornment of (JtK, δt). �

Remark 4.38. Notice that we do not require that consistency of a ΓS,w-labeled tree t
means that JtK is actually acyclic. For our purposes, the fact that the tree-width of JtK is
at most w − 1 is sufficient.

We also remark that we will often view JtK as a database, i.e., we may treat the
elements of dom(JtK) as constants whenever clear from context.

Lemma 4.39. Suppose A is an S-structure of tree-width at most w − 1 and δ a tree
decomposition witnessing this. For every adornment η of (A, δ), it holds that JtA,δ,ηK is
weakly isomorphic to A.

82

4.3. Containment for Guarded-Based Classes

Proof hint. Let δ = (T , (Xv)v∈T) be a tree decomposition of A that has width at most
w − 1. Let f : dom(A) → US,w be the function used to assign names to elements from
dom(A). It is easy to show that the function χ : a 7→ [v̂]f(a), where v ∈ T is such that
a ∈ Xv, is well-defined and indeed a weak isomorphism from A to tA,δ,η. �

Corollary 4.40. Suppose Q1 = (S,O1, G1(x̄)) and Q2 = (S,O2, G2(x̄)) are OMQs
from (G,AQ). Then the following are equivalent:

(i) Q1 ⊆ Q2.

(ii) For every consistent ΓS-labeled tree t, Q1(JtK) ⊆ Q2(JtK).

Proof. This is immediate by Theorem 4.344.34, Lemma 4.394.39, and the fact that every acyclic
S-structure can be encoded into a consistent ΓS-labeled tree, since acyclic S-databases
have tree-width at most max{0,wd(S)− 1}. �

Devising Automata

We now proceed with our automata-based procedure, and we will, as explained in the
introductory part of this section, focus on the problem Cont(G,BAQ), i.e., deciding
containment of guarded OMQs that have a Boolean atomic query as its query component
(thus, a single 0-ary predicate).

We use two-way alternating parity automata that run on finite labeled amorphous
trees (l-2APTA, see Section 2.42.4). Our goal is to reduce Cont(G,BAQ) to the emptiness
problem for 2APTA. Recall that, given a 2APTA A, we denote by L(A) the language of
A, i.e., the set of labeled trees over its input alphabet that it accepts. Recall also that the
emptiness problem for is the problem of deciding, given a 2APTA A, whether L(A) = ∅
holds. Thus, given Q1, Q2 ∈ (G,BAQ), we need to construct a l-2APTA A such that
Q1 ⊆ Q2 iff L(A) = ∅. We have already seen in Section 2.42.4 that deciding whether L(A)
is empty is feasible in exponential time in the number of states, and in polynomial time
in the size of the input alphabet (cf. Theorem 2.292.29). Therefore, in order to obtain the
desired 2ExpTime upper bound, we must construct A in doubly exponential time, while
the number of states must be at most exponential.

We first need a way to check consistency of labeled trees. The construction of an
automaton for this task is fairly standard in the literature on automata for guarded logics
(see, e.g., [2828, 3131] for similar automata).

Lemma 4.41. For any schema S, there exists a l-2APTA CS,w that accepts a ΓS,w-labeled
tree t iff t is consistent. The number of states of CS,w is constant, and CS,w can be
constructed in linear time in the size of ΓS,w.

Proof sketch. Devising CS is pretty straightforward. We need to check two conditions.
First, we need to ensure that no label of the input tree carries more than w constants.
This can clearly be done by a single top-down pass along the tree with constantly many
states. Second, we need to ensure that whenever Rā is a label of a node v, then also
[ā] ⊆ names(v). This can as well be done by a top-down pass using only a constant
number of states.

83

4. Containment and Equivalence for OMQs

The construction time of CS is thus dominated by the size of the input alphabet ΓS,
and we can write down the transition function in linear time in the size of ΓS. �

Now the crucial task is, given an OMQ Q ∈ (G,BAQ), to devise an automaton that
accepts labeled trees which correspond to databases that make Q true:

Lemma 4.42. Consider an OMQ Q = (S,O, G) ∈ (G,BAQ). There is a l-2APTA AQ
such that, for every consistent ΓS-labeled tree t,

t ∈ L(AQ) ⇐⇒ JtK |= Q.

The number of states of AQ is exponential in wd(S ∪ sig(O)) and linear in |S ∪ sig(O)|.
Moreover, AQ can be constructed in doubly exponential time in the size of Q such that
the second exponent of the runtime of this construction depends only on wd(S ∪ sig(O)).

Before providing a proof of Lemma 4.424.42, let us show how to prove Theorem 4.174.17 by
employing Lemma 4.424.42:

Proof of Theorem 4.174.17. Fix two OMQs Q1 = (S,O1, G1), Q2 = (S,O2, G2) belonging
to (G,BAQ). Let w := wd(S) in case wd(S) > 0, and w := 1 otherwise. We construct the
automata (i) CS,w from Lemma 4.414.41, (ii) AQ1 and AQ2 from Lemma 4.424.42. Let

A := CS,w ∩ AQ1 ∩ AQ2 .

By Lemma 4.414.41, A accepts a ΓS-labeled input tree t iff (i) t is consistent, (ii) t ∈ L(AQ1),
and (iii) t 6∈ L(AQ2). By Lemma 4.424.42, this means that t ∈ L(A) iff t is consistent and
JtK |= Q1, but JtK 6|= Q2, whence Corollary 4.404.40 establishes that

L(A) = ∅ ⇐⇒ Q1 ⊆ Q2.

Thus, we can simply check whether L(A) is empty in order to decide Q1 ⊆ Q2. By
Theorem 2.292.29 and Lemmas 4.414.41 and 4.424.42, we can thus perform the check Q1 ⊆ Q2 in
2ExpTime in general, and in ExpTime in case we assume that the maximum arity of
the symbols used in Q1 and Q2 is bounded. �

It thus remains to be shown that Lemma 4.424.42 holds. Before doing so, we need one
additional technical notion.

Derivation trees Let Q = (S,O, G(x̄)) be an OMQ from (G,AQ), and let D be an
S-database. A derivation tree for G(ā) with respect to D and Q is a finite labeled tree
T , with µT being the node labeling function that assigns a fact R(ā) to each node of T ,
where R ∈ S∪ sig(O) and [ā] ⊆ adom(D), such that the following conditions are satisfied:

(i) For the root node v of T we have that µT (v) = G(ā).

(ii) For each leaf node v of T , we have D |= µT (v) or O |= µT (v).

(iii) For each non-leaf node v of T , with u1, . . . , uk being its children, we have that:
(a) {µT (u1), . . . , µT (uk)} is guarded, i.e., it has an atom that contains all the

terms of adom({µT (u1), . . . , µT (uk)}), and

84

4.3. Containment for Guarded-Based Classes

(b) ({µT (u1), . . . , µT (uk)},O) |= µT (v).

Intuitively, a derivation tree for G(ā) with respect to D and Q specifies how to derive
the fact G(ā) from D and O by only using facts with arguments from adom(D).

Remark 4.43. The case O |= µT (v) in the second item above is required to accommodate
certain cases where we use > in the body of TGDs. Indeed, in our setting, there are
OMQs that have a positive answer on the empty database, e.g., Q = (∅, {> → G}, G).

Lemma 4.44. For any OMQ Q = (S,O, G(x̄)) from (G,AQ) and an S-database D, it
holds that D |= Q(ā) iff there exists a derivation tree for G(ā) with respect to D and Q.

Proof. The direction from right to left is fairly standard, and we leave the details to
the reader.

Suppose therefore that D |= Q. In [1717] it is shown that Q can be rewritten into an
equivalent guarded Datalog query whose rules only use symbols from S ∪ sig(O). Recall
that a guarded Datalog rule is just a Datalog rule that is guarded, i.e., it has an atom
in its body that has all the body variables as arguments (we allow that the body is
empty in the sense that it is equivalent to >). Accordingly, a guarded Datalog query is a
Datalog query in which every rule is guarded. More precisely, there is a Datalog query
Q′ = (Π, G) such that the extensional schema of Q′ matches S, and Q′ ≡ Q. In fact, it is
shown that we can take for Π the set44

Π := {τ | O |= τ , where τ is a guarded Datalog rule using symbols from S ∪ sig(O)}.

An easy argument shows that one can assume that Π is finite, since there are, modulo
renaming variables, only finitely many guarded Datalog rules that solely use symbols
from S ∪ sig(O).

We can construct an appropriate derivation tree T for G(ā) w.r.t. D and Q by
employing the Datalog query Q′. Since D |= Q(ā), also D |= Q′(ā). Hence, there is
an ` ≥ 0 such that T `Q′(D) = TnQ′(D) for all n ≥ `. We are going to show that, for all
α ∈ T `Q′(D), there exists a derivation tree Tα for α w.r.t. D and Q′. We will then show
that Tα is also a derivation tree for α w.r.t. D and Q, whence for the case α = G(ā) the
claim follows.

We proceed by induction on `. Suppose first that ` = 0, and let α ∈ T `Q′(D) = D.
Since D |= α we can take Tα to be the tree with a single node whose label via the labeling
function µTα is α.

Assume now that ` > 0 and let α ∈ T `Q′ . Recall that

T `Q′(D) := TQ′(T `−1
Q′ (D)),

where TQ′(·) is the one-step operator for Q′. Let τ ∈ Π be a rule with head α and body
atoms β1, . . . , βk such that T `−1

Q′ (D) |= β1 ∧ · · · ∧ βk. By induction hypothesis, there are
derivation trees Tβ1 , . . . , Tβk respectively for the atoms β1, . . . , βk. We construct Tα as
the tree that has a root node labeled with α, and whose immediate subtrees are the trees

4Recall that we can view each Datalog rule as a logical sentence; see Subsection 2.3.32.3.3

85

4. Containment and Equivalence for OMQs

Tβ1 , . . . , Tβk . It is clear that Tα is a derivation tree for α w.r.t. D and Q′. Notice that
this also holds in case k = 0, since Π |= α in this case. This completes the induction step.

Now Tα is easily seen to be a derivation tree for α w.r.t. D and Q. Consider any
node v of Tα, and suppose that either Π |= µT (v) or v has children v1, . . . , vk such that
({µT (v1), . . . , µT (vk)},Π) |= µT (v). Let τ be the rule from Π that has been used to derive
µT (v). By definition of Π, we have O |= τ , whence ({µT (v1), . . . , µT (vk)},O) |= µT (v)
follows (also for the case k = 0). Thus, Tα is indeed a derivation tree for α with respect
to D and Q. �

We are now ready to prove Lemma 4.424.42.

Proof of Lemma 4.424.42. Let Q = (S,O, G) be an OMQ from (G,BAQ). Consider
a consistent ΓS-labeled tree t. We are going to devise a l-2APTA AQ that runs on
ΓS-labeled input trees such that Eve has a winning strategy in G(AQ, t) if and only if
there is a derivation tree T for G w.r.t. JtK and Q. By Lemma 4.444.44, this entails that AQ
accepts t if and only if JtK |= Q.

Let AQ = (S,ΓS, {0, l}, δ,Ω, s0). The remaining components of AQ are specified in
the following.

• The state set S: Let US be the finite set of names that is used for arguments in ΓS.
The state set S consists of all atomic formulas R(a1, . . . , ak), where R/k ∈ S∪sig(O)
and a1, . . . , ak ∈ US. We set the initial state s0 to be equal to G.

• The priority function Ω: We set Ω(s) := 1 for all s ∈ S. That is, only finite plays
are winning for Eve.

• The transition function δ: We define δ as follows. Consider a symbol ρ ∈ ΓS, and
let R(a1, . . . , ak) be a state from S. We set ā := a1, . . . , ak and distinguish cases.
(C1) If {a1, . . . , ak} 6⊆ names(ρ), then we set δ(R(ā), ρ) := false.

In this case, Eve immediately loses the game, since she cannot ensure that
the atom R(a1, . . . , ak) has the same meaning in the current node as in the
node she came from (the names a1, . . . , ak may denote different elements of
JtK in subsequent moves).

(C2) Otherwise, if R(ā) ∈ ρ then δ(R(ā), ρ) := true.
In this case, Eve immediately wins, since she can prove that R(ā) names a
database fact.

(C3) Otherwise, let

τ1 := α1,1 ∧ · · · ∧ α1,m1 , . . . , τl := αl,1 ∧ · · · ∧ αl,ml

be an enumeration of all (possibly empty) conjunctions of atoms present in
S such that, for all i = 1, . . . , l,
(i) {αi,1, . . . , αi,mi} is guarded with adom({αi,1, . . . , αi,mi}) ⊆ names(ρ),

and
(ii) ({αi,1, . . . , αi,mi},O) |= R(ā).

86

4.3. Containment for Guarded-Based Classes

We let

δ(R(ā), ρ) := 〈l〉R(ā) ∨
l∨

i=1

mi∧
j=1
〈0〉αi,j .

Eve may choose between two possibilities here. Either she moves to some
neighboring node in the tree while remaining in state R(ā), or she may
decide to pick a guarded conjunction τi := αi,1 ∧ · · · ∧ αi,mi . In the latter
case, Adam challenges Eve’s choice by changing the state to one of the αi,j .
This case thus amounts to the construction of a derivation tree, and Eve’s
claim in the second possibility is that the atoms named by αi,1, . . . , αi,mi
are feasible successors for the atom named by R(ā) in a derivation tree.

This concludes the construction of AQ. It is rather tedious, but not very interesting from
a technical point of view, to show that the behavior of A is correct in the sense that AQ
accepts t iff there is a derivation tree for G w.r.t. JtK and Q. We leave this proof as an
exercise to the reader.

Let us briefly comment on the size of AQ and the time needed to construct it. It
is clear that the number of states of AQ is exponential in wd(S ∪ sig(O)) and linear in
|S ∪ sig(O)|. Moreover, the overall construction of AQ takes doubly exponential time in
the size of Q. The determining factor for this upper bound is the construction of δ(·, ·) –
more specifically, the case of item (C3)(C3). Modulo renaming variables, there are at most
doubly exponentially many conjunctions of the form τi = αi,1 ∧ · · · ∧ αi,mi that imply
a given atomic fact under O, and τi is of at most exponential size. Assuming relation
symbols of bounded arity, the number of all τi modulo renaming variables is at most
exponential. Moreover, checking whether an atomic fact is implied by a database and a
set of guarded rules is feasible in 2ExpTime in combined complexity, and in PTime in
data complexity (see Subsection 3.4.23.4.2). Furthermore, the combined complexity drops
to ExpTime once we assume schemas of bounded arity. The transition function can
therefore be constructed in 2ExpTime in the general case, and in ExpTime when we
assume that Q is formulated over a schema of bounded width. �

4.3.2 From Conjunctive Queries to Atomic Queries

As announced in the introductory part of this section, we will now show how to use
Theorem 4.174.17 in order to establish Theorem 4.164.16. For obtaining the upper bounds
mentioned in Theorem 4.164.16, we need to show that

(i) Cont(FG,UCQ) is in 2ExpTime, and

(ii) Cont(G,AQ) is in ExpTime, assuming schemas of bounded width.

The following lemma shows that we can focus on the variants of these problems that
only consider Boolean atomic queries:

Lemma 4.45. (i) Cont(FG,UCQ) can be polynomially reduced to Cont(FG,BAQ).

(ii) Cont(G,AQ) can be polynomially reduced to Cont(G,BAQ).

87

4. Containment and Equivalence for OMQs

Proof. We first prove item (i)(i). Let

Q1 = (S,O1, q1(x1, . . . , xn)) and Q2 = (S,O2, q2(x1, . . . , xn))

be OMQs from (FG,UCQ), where

q1(x1, . . . , xn) =
k1∨
i=1

q1,i(x1, . . . , xn), q2(x1, . . . , xn) =
k2∨
i=1

q2,i(x1, . . . , xn),

for some CQs q1,i(x1, . . . , xn) and q2,i(x1, . . . , xn). Let A1, . . . , An be fresh unary pred-
icates that do not occur in S ∪ sig(O1) ∪ sig(O2), and let S′ := S ∪ {A1, . . . , An}. For
i ∈ {1, 2} and j = 1, . . . , ki, let q′i,j be the BCQ that results from qi,j(x1, . . . , xn) by
adding the atoms A1(x1), . . . , An(xn) as conjuncts to its body and closing the resulting
query off under existential quantifiers. Let G be a fresh 0-ary predicate that does not
occur in S ∪ sig(O1) ∪ sig(O2). For i ∈ {1, 2}, we let

Q′i := (S′,O′i, G),where
O′i := Oi ∪ {q′i,j → G | j = 1, . . . , ki}.

It is not hard to check that Q′i belongs to (FG,BAQ). We claim that Q1 ⊆ Q2 iff Q′1 ⊆ Q′2.
Indeed, if Q′1(D′) 6⊆ Q′2(D′) for some S′-database D′, then there are a1, . . . , an ∈

adom(D′) such that D′ |= A1(a1) ∧ · · · ∧An(an). Let D be the S-database that results
from D′ by restricting D′ to facts over S. It is easy to see that D |= Q1(a1, . . . , an) while
D 6|= Q2(a1, . . . , an), whence Q1 6⊆ Q2 follows.

On the other hand, if Q1(D) 6⊆ Q2(D), then D |= Q1(a1, . . . , an) for some a1, . . . , an ∈
adom(D), yet D 6|= Q2(a1, . . . , an). Hence, for D′ := D ∪ {A1(a1), . . . , An(an)} we have
D′ |= Q′1 but D′ 6|= Q′2, whence Q′1 6⊆ Q′2 follows.

For item (ii)(ii) we proceed likewise. Let

Q1 = (S,O1, G1(x1, . . . , xn)) and Q2 = (S,O2, G2(x1, . . . , xn))

be OMQs from (G,AQ), and let S′ := S∪{A1, . . . , An}, where A1, . . . , An are fresh unary
predicates as before. Pick a fresh 0-ary predicate G, and, for i ∈ {1, 2}, let

Q′i := (S′,O′i, G),where
O′i := Oi ∪ {Gi(x1, . . . , xn), A1(x1), . . . , An(xn)→ G}.

Notice that Oi is indeed guarded. Then, as before, Q1 ⊆ Q2 iff Q′1 ⊆ Q′2. �

Notice that it follows from Lemma 4.454.45 and Theorem 4.174.17 that Cont(G,AQ) is feasible
in ExpTime assuming schemas of bounded width. To establish Theorem 4.164.16 it therefore
remains to be shown that Cont(FG,BAQ) is in 2ExpTime. To this end, we introduce
some additional technical notions. These notions discussed here are mainly inspired from
similar ones defined in [1818, 2020, 4444], but differ in technical aspects.

88

4.3. Containment for Guarded-Based Classes

Squid Decompositions

The following definition relaxes the notion of acyclicity:

Definition 4.46. Let A be an S-structure and C be an induced substructure of A. We
say that A is a C-tree if there is a tree decomposition δ = (T , (Xv)v∈T) of A such that:
(i) Aδ(ε) = C, and (ii) every v ∈ T \ {ε} is guarded.

Intuitively, if A is a C-tree, then A is acyclic, except for the substructure C of A which
is allowed to be cyclic.

Lemma 4.47. Suppose O is a set of frontier-guarded rules. For every k ≥ 0, chasek(A,O)
is an F-tree, where F is the substructure of chasek(A,O) induced by dom(A).

Proof hint. This proof is similar to that of Lemma 4.204.20, but works with tree decompo-
sitions of C-trees rather than guarded tree decompositions. We omit it for brevity. �

Definition 4.48. Let q(x̄) be a CQ over S and let T ⊇ S. A squid decomposition of
q(x̄) over T is a tuple θ = (q0, p1, . . . , pn), where

(i) q0 is a CQ over T, and p1, . . . , pn are strictly acyclic CQs over T.

(ii) |q0| ≤ |q| and |var(q0)| ≤ |var(q)|.
(iii) |q0|+ |p1|+ · · ·+ |pn| ≤ 3|q|+ 4|x̄|.
(iv) q0 ∧ p1 ∧ · · · ∧ pn has the same free variables as q(x̄), and there exists a query

among q0, p1, . . . , pn that has exactly the variables x̄ as answer variables.

(v) q0 ∧ p1 ∧ · · · ∧ pn |= q(x̄).

Whenever it is unambiguous to do so, we will abuse notation and regard θ as the formula
θ(x̄) := q0 ∧ p1 ∧ · · · ∧ pn.

Intuitively, a squid decomposition of q(x̄) describes a way how q(x̄) can be homo-
morphically mapped to a C-tree. The CQ q0 describes the cyclic part of q(x̄), while the
queries p1, . . . , pn represent the acyclic components. The term “squid decomposition”
is taken from [4444], and Definition 4.484.48 is inspired by a similar definition from [4444], but
differs in technical aspects. We can visualize θ as a “squid” whose “head” is q0, and
whose “tentacles” are given by p1, . . . , pn. In the following, we are going to make the
relationship between squid decompositions and C-trees more precise. Before that, let us
analyze homomorphisms from queries to acyclic structures and C-trees more carefully.

A CQ q(x̄) is answer-guarded if it contains an atom in its body that has all answer
variables of q(x̄) as arguments – such an atom is called an answer guard of q(x̄), and we
may speak about the answer guard by simply fixing one if there are multiple. Notice that
every BCQ is trivially answer-guarded. Also notice that the body of any frontier-guarded
rule can be seen as an answer-guarded CQ.

A result similar to the following is shown in [1818], and a full proof of it can be found
in Appendix B.2B.2:

89

4. Containment and Equivalence for OMQs

Lemma 4.49. Suppose A is an acyclic T-structure and q(x̄) an answer-guarded CQ over
a schema S ⊆ T. Then the following are equivalent:

(i) A |= q(ā).

(ii) There is a strictly acyclic p(x̄) over T that has the same answer variables as q(x̄)
such that
(a) p(x̄) |= q(x̄),
(b) A |= p(ā), and
(c) |p| ≤ 3|q|+ |x̄|.

The following lemma highlights the relationship between squid decompositions and
C-trees. A proof of it can again be found in Appendix B.2B.2:

Lemma 4.50. Suppose A is a C-tree over a schema T, and suppose δ = (T , (Xv)v∈T) is
a tree decomposition of A witnessing this fact. Suppose further that q(x1, . . . , xn) is an
answer-guarded CQ over a schema S ⊆ T. Then, for all tuples a1, . . . , an over dom(A),
the following are equivalent:

(i) A |= q(a1, . . . , an).

(ii) There is a squid decomposition θ = (q0, p1, . . . , pk) of q(x̄) over T and homomor-
phisms h0, h1, . . . , hk such that
(a) h0 is a homomorphism from q0 to C.
(b) For i = 1, . . . , k, hi is a homomorphism from pi to

⋃
v∈T\{ε}Aδ(v).

(c) For i = 1, . . . , n and s, r ∈ {0, 1, . . . , k}, if xi ∈ dom(hs) ∩ dom(hr), then
hs(xi) = hr(xi) = ai.

Remark 4.51. We remark that the bounds on the combined number of atoms of the
queries among q0, p1, . . . , pk can be improved by performing a deeper analysis concerning
the construction of the pi. However, we prefer here to keep the analysis simple, and the
stated bounds suffice for our purposes.

Treeification

We now proceed to present the reduction from Cont(FG,BAQ) to Cont(G,BAQ). To this
end, we aim at transforming a given Q ∈ (FG,BAQ) into a Q′ ∈ (G,BAQ) so that Q and
Q′ are equivalent over acyclic databases, though they may not be equivalent over the
class of all databases. It will turn out, given two Q1, Q2 ∈ (FG,BAQ) and their respective
translations Q′1, Q′2 ∈ (G,BAQ), that Q1 ⊆ Q2 iff Q′1 ⊆ Q′2 (Theorem 4.584.58). The
translation from Q to Q′ introduces auxiliary relation symbols and incurs an exponential
blowup in the number of rules. Hence, the translation is in general exponential. However,
it turns out that we only increase the maximum arity used in Q′ only linearly in maximum
number of variables that occurs in a rule body of Q. This suffices to establish that
Cont(FG,BAQ) is indeed in 2ExpTime.

90

4.3. Containment for Guarded-Based Classes

Definition 4.52. Given an answer-guarded CQ q(x̄) over S and a schema S ⊆ T, the
T-treeification of q(x̄) is the set ΛT

q of all strictly acyclic CQs q′(x̄) over T, that have
the same answer variables as q(x̄), such that (i) q′ implies q, that is, q′(x̄) |= q(x̄). (ii) q′
is minimal in the sense that removing one atom from q′ turns q′ into a CQ that is either
not strictly acyclic or does not imply q anymore.

It follows from Lemma 4.494.49 that all the CQs of ΛT
q can be restricted as to contain

only CQs of size at most 3|q|+ |x̄|. Indeed, if one CQ in ΛT
q were bigger than 3|q|+ |x̄|,

then Lemma 4.494.49 tells us that we can find one of size 3|q|+ |x̄|, since we can view a CQ
as a structure and vice versa. It is also not too hard to check that ΛT

q is consists thus of
at most exponentially many CQs each of whose size is linear in the size of q (cf. [1818]).
Hence, ΛT

q can be seen as a UCQ that is of exponential size in the size of q, and we will
often consider ΛT

q as such a UCQ.
Notice that q(x̄) is in general not equivalent to its treeification. However, q(x̄) and

ΛT
q are equivalent over acyclic T-structures [2020]. The following lemma is an immediate

consequence of Lemma 4.494.49 by considering that we can view CQs as structures:

Lemma 4.53. For any acyclic T-structure A and any tuple ā,

A |= q(ā) ⇐⇒ A |= ΛT
q (ā).

Treeifying OMQs from (FG, BAQ) Let Q = (S,O, G) from (FG,BAQ). The width
of O, denoted wd(O), is the maximum number of variables that appear in any body of a
rule from O. Fix a new relation symbol C of arity wd(O).

We are now going to describe a translation ηC(Q) that takes Q and transforms it
into an OMQ ηC(Q) from (G,BAQ) with data schema S ∪ {C}. Firstly, we set

ηC(Q) :=
(

S ∪ {C},
⋃
τ∈O

η
S∪sig(O)
C (τ), G

)
,

where the definition of ηT
C (τ), for τ ∈ O and a schema T, is as follows. Suppose τ is of

the form ϕ(x̄, z̄)→ ∃ȳ β(x̄, ȳ). Then we set

fT
C (τ) :=

{
q(x̄)→ ∃ȳ β(x̄, ȳ) | q(x̄) ∈ ΛT∪{C}

∃z̄ ϕ(x̄,z̄)

}
.

Notice though, strictly speaking, the rules q(x̄) → ∃ȳ β(x̄, ȳ) may not be guarded.
However, since q(x̄) is strictly acyclic, we may unfold q(x̄) → ∃ȳ β(x̄, ȳ) into linearly
many guarded rules by using additional auxiliary predicates. The result of this unfolding
will be denoted ηT

C (τ).
We are going to describe this unfolding step in more detail in the following. Let χ(x̄)

be a strictly guarded formula equivalent to q(x̄) (cf. Lemma 4.244.24). During the unfolding
step, we are going to introduce fresh auxiliary predicates of the form Tη/k, where η is
a subformula of ϕ(x̄) and k is the number of free variables of η. We shall treat these
predicates modulo logical equivalence, i.e., we set Tη1 = Tη2 iff η1 ≡ η2. We unfold the
query q(x̄) inductively according to the construction of χ(x̄).

91

4. Containment and Equivalence for OMQs

• Suppose first that χ(x̄) ≡ α(x̄) for some relational atom α(x̄). We translate q(x̄)
to the rule

α(x̄) → Tχ(x̄)(x̄).

• Suppose now that χ(x̄) ≡ ∃ȳ (γ(x̄, ȳ) ∧ η), where γ(x̄, ȳ) is an atomic formula
guarding η with free variables as indicated. Let η1(x̄1), . . . , ηk(x̄k) be strictly
guarded formulas with free variables as indicated and whose conjunction is equivalent
to η. Then we rewrite q(x̄)→ ∃ȳ β(x̄, ȳ) into the rule

γ(x̄, ȳ), Tη1(x̄1), . . . , Tηk(x̄k) → Tχ(x̄)(x̄),

and, in addition, add the according translations for the formulas η1(x̄1), . . . , ηk(x̄k).

The unfolding55 of the rule q(x̄) → ∃ȳ β(x̄, ȳ) is then the set of rules resulting from
translating χ(x̄) plus the rule

Tχ(x̄) → ∃ȳ β(x̄, ȳ).

As mentioned above, we set

ηT
C (τ) := {σ | σ is a rule occurring in the unfolding of τ}.

It is easy to see that the unfolding introduces at most linearly many new auxiliary
predicates per rule. Thus, the total number of rules in

⋃
τ∈O η

S∪sig(O)
C (τ) is exponential

in the number of rules of O, and we thus may introduce an exponential number of new
auxiliary relation symbols. The OMQ ηC(Q) is called the C-treeification of Q.

Example 4.54. We provide an example that that illustrates the unfolding of rules as
described above. Suppose q(x) = ∃y, z (R(x, y)∧ S(x, x)∧R(y, z)) which is equivalent to
the strictly guarded formula χ(x) := S(x, x)∧∃y (R(x, y)∧∃z R(y, z)). Suppose we want
to unfold the frontier-guarded rule q(x)→ O(x), where O/1 is a unary relation symbol.
Then the unfolding described above yields the set of rules

Tχ(x)(x) → O(x),
S(x, x), T∃y(R(x,y)∧∃zR(y,z))(x) → Tχ(x)(x),

R(x, y), T∃zR(y,z)(y) → T∃y(R(x,y)∧∃zR(x,z))(x),
R(y, z) → T∃zR(y,z)(y).

Notice that here we did not follow the exact translation, since we treat ∃z R(y, z) as a
strictly guarded formula, thereby invoking the fact that it is equivalent to the formula
∃z (R(y, z) ∧R(y, z)). a

5Of course, the notion of unfolding depends on the choice of χ(x̄). However, it is easily seen that we
arrive at an equivalent set of rules, no matter which χ(x̄) equivalent to q(x̄) is chosen.

92

4.3. Containment for Guarded-Based Classes

For the following results, let us fix an OMQ Q = (S,O, G) from (FG,BAQ), and
a relation symbol C of arity at least wd(O) not occurring in Q. In the following, let
T := S ∪ sig(O) and let us write O+ for

⋃
τ∈O η

T
C (τ).

The following lemma lifts Lemma 4.534.53 to the case of OMQs from (FG,BAQ):

Lemma 4.55. For every acyclic (S ∪ {C})-structure A it holds that

A � S |= Q ⇐⇒ A |= ηC(Q).

Proof. Suppose first that A � S |= Q. Hence, chase(A � S,O) |= G, which entails
that chase(A,O) |= G. Since A is acyclic, Lemma 4.204.20 tells us that, for every k ≥ 0,
chasek(A,O) is as well. We prove by induction on k that, for all k ≥ 0, there is a
homomorphism hk from chasek(A,O) to chase(A,O+) such that (i) hk+1 extends hk for
all k ≥ 0, and (ii) h :=

⋃
k≥0 hk is a homomorphism from chase(A,O) to chase(A,O+).

The base case of this induction is trivial, as we can simply chose h0 to be the identity on
dom(A). Consider now chasek+1(A,O) and let β(t̄, λ̄) be the atom derived in the (k+1)-st
chase step using a rule τ : q(x̄)→ ∃ȳ β(x̄, ȳ) from O and a homomorphism h′ such that
h′(x̄) = t̄. Assume that λ̄ is a sequence of labeled nulls that only appear in β(t̄, λ̄) and that
do not appear in chasek(A,O). Since O is frontier-guarded, the variables x̄ are the frontier-
variables of τ , and hence t̄ is a guarded tuple of chasek(A,O). From chasek(A,O) |= q(t̄)
and the fact that chasek(A,O) is acyclic, Lemma 4.534.53 gives us chasek(A,O) |= ΛT∪{C}

q (t̄),
that is, chasek(A,O) |= p(t̄) for some p(x̄) ∈ ΛT∪{C}

q . By induction hypothesis, hk is
a homomorphism from chasek(A,O) to chase(A,O+), whence chase(A,O+) |= p(hk(t̄))
follows. An easy subsidiary induction on the structure of the strictly guarded χ(x̄) ≡ p(x̄)
shows that chase(A,O+) |= p(hk(t̄)) entails chase(A,O+) |= Tχ(x̄)(hk(t̄)) as well. Recall
that Tχ(x̄)(x̄)→ ∃ȳ β(x̄, ȳ) is a rule of O+, and thus we can extend hk to a mapping hk+1
that maps the nulls λ̄ to appropriate nulls in chase(A,O+) – these nulls must exist, since
chase(A,O+) |= Tχ(x̄)(hk(t̄)) – so that hk+1 is a homomorphism from chasek+1(A,O)
to chase(A,O+). This concludes the induction step. It is clear that h :=

⋃
k≥0 hk is a

homomorphism from chase(A,O) to chase(A,O+). Hence, (A,O+) |= G, which means
that A |= ηC(Q), as desired.

Suppose now that A |= ηC(Q), i.e., (A,O+) |= G. We have to show that A � S |= Q,
that is, (A � S,O) |= G. Let B ⊇ A � S be a model of O. We shall first expand B to
a model B+ ⊇ B of O+. To this end, it suffices to specify the interpretation of C plus
the interpretations of the relation symbols of the form Tϕ(x̄), where ϕ(x̄) is a strictly
guarded formula, introduced as new symbols in O+ – more precisely, this means that
ϕ(x̄) appears as a subformula of a strictly guarded formula χ, and χ is equivalent to some
query occurring in the treeification of some rule body of O. For these symbols, we let

B+ |= C(b̄) ⇐⇒df A |= C(b̄), and
B+ |= Tϕ(x̄)(b̄) ⇐⇒df B ∪ A � {C} |= ϕ(b̄),

for all tuples b̄ over dom(B). For all other relations, we specify that B+ agrees with B.
Notice that the interpretation of Tϕ(x̄) in B+ is indeed well-defined, since we identify the
symbols Tϕ(x̄) modulo logical equivalence.

93

4. Containment and Equivalence for OMQs

It remains to be shown that B+ is indeed a model of O+. An easy induction on
the structure of ϕ(x̄) shows that, if Tϕ(x̄)(x̄) is the head atom of a rule τ ∈ O+, then
τ is satisfied in O+. Now let Tϕ(x̄) → ψ(x̄) be a rule of O+ such that ϕ(x̄) ≡ p(x̄),
where p(x̄) ∈ ΛT∪{C}

q for some query q(x̄) that is the rule body of some rule in O.
Observe that if B+ |= Tϕ(x̄)(b̄) for some tuple b̄, then, by the construction of B+, also
B ∪ A � {C} |= ϕ(b̄) and thus B ∪ A � {C} |= p(b̄). Hence, B |= q(b̄) follows due to
p(x̄) |= q(x̄) and the fact that C does not occur in q(x̄). Since B is a model of O, we
obtain B |= ψ(b̄) and so B+ |= ψ(b̄), as B+ extends B only by the interpretation of new
relation symbols, of which none occurs in ψ(x̄). Therefore, B+ is a model of O.

Since B+ ⊇ A and B+ |= O+, we immediately obtain B+ |= G by the assumption
(A,O+) |= G. Hence, also B |= G, and thus (A � S,O) |= G as desired. �

In the following, given an S-database D, we write DC for the (S ∪ {C})-database
that extends D by the facts

{C(a1, . . . , aw) | a1, . . . , aw ∈ adom(D)}.

Lemma 4.56. Suppose chasek(D,O) |= q(t̄) for some answer-guarded CQ q(x̄) over T with
|var(q)| ≤ wd(O). Then there exists a p(x̄) ∈ ΛT∪{C}

q such that chasek(DC ,O) |= p(t̄).

Proof. Let t̄ = t1, . . . , tm and x̄ = x1, . . . , xm. Since chasek(D,O) |= q(t̄), also
chasek(DC ,O) |= q(t̄). Let us write J for chasek(DC ,O) and w for the arity of C
in the following – recall that w ≥ wd(O). By Lemma 4.474.47, we know that J is an F-tree,
where F is the substructure of J induced by dom(DC) = adom(D). Let δ = (T , (Xv)v∈T)
be a tree decomposition witnessing this fact – in particular Xε = dom(D).

By Lemma 4.504.50, there is a squid decomposition θ = (q0, p1, . . . , pn) of q(x̄) over
T ∪ {C} and homomorphisms h0, h1, . . . , hn such that:

(i) h0 is a homomorphism from q0 to F.

(ii) For i = 1, . . . , n, hi is a homomorphism from pi to
⋃
v∈T\{ε} Jδ(v).

(iii) All the homomorphisms h0, h1, . . . , hn agree on all the variables among x1, . . . , xm
that are in their domain and if xi is in the domain of hj , then hj(xi) = ti.

Let us assume w.l.o.g. that the only variables two distinct queries among q0, p1, . . . , pn
share are from x̄. For i = 1, . . . , n, let pi be of the form ∃ȳi ϕi(x̄i, ȳi), where ϕi is a
conjunction of atoms and [x̄i] ⊆ [x̄].

Since θ is a squid decomposition of q(x̄), we know that |var(q0)| ≤ |var(q)| ≤ w.
Let q−0 be the CQ that results from q0 by stripping existential quantifiers off it, and
let u1, . . . , uw be a sequence of variables such that {u1, . . . , uw} = var(q+

0). Hence, the
sequence u1, . . . , uw consists of w variables, possibly with repetitions, that are all members
of var(q−0). Let v̄ be a sequence of variables such that [v̄] = {u1, . . . , uw} \ [x̄]. Consider
the formula

χ := ∃v̄ (C(u1, . . . , uw) ∧ q−0 ∧ p1 ∧ · · · ∧ pn).

94

4.3. Containment for Guarded-Based Classes

Obviously, χ is equivalent to the CQ

s := ∃v̄, ȳ1, . . . , ȳn (C(u1, . . . , uw) ∧ q−0 ∧ ϕ1 ∧ · · · ∧ ϕn).

Since θ is a squid decomposition of q(x̄), one of the q0, p1, . . . , pn has exactly the variables
x̄ as answer variables, hence s has exactly the variables x̄ as answer variables. Moreover,
for i = 1, . . . , n, pi is equivalent to a strictly guarded formula χi. This means that χ is
actually equivalent to a strictly guarded formula, whence it follows by Lemma 4.244.24 that
χ (and thus s) is equivalent to a strictly acyclic query.

Recall that h0 maps q−0 to F and notice that all the w-tuples over dom(F) = dom(D)
are elements of the relation CDC . Thus, the homomorphism h := (h0 ∪ h1 ∪ · · · ∪ hn)
witnesses that J |= s(t̄). Notice that h is well-defined, since we assumed that two distinct
queries among q0, p1, . . . , pn only share variables that are among x̄.

Now since θ(x̄) |= q(x̄) and s(x̄) |= θ(x̄), we obtain that s(x̄) |= q(x̄). Moreover,
since s(x̄) is strictly acyclic, by the definition of ΛT∪{C}

q there must be a strictly acyclic
p(x̄) ∈ ΛT∪{C}

q that results from s(x̄) by only removing atoms. Since p(x̄) differs from
s(x̄) by only removing atoms, it follows that s(x̄) |= p(x̄), whence J |= s(t̄) entails J |= p(t̄)
as desired. �

Lemma 4.57. For any S-database D, if D |= Q then DC |= ηC(Q).

Proof. We shall prove that there is a family {hk}k≥0 of homomorphisms, each of which
is the identity on dom(D), such that (i) hk is a homomorphism from chasek(D,O) to
chase(DC ,O+), (ii) hk+1 extends hk, and (iii) h :=

⋃
k≥0 hk is a homomorphism from

chase(D,O) to chase(DC ,O+).
We proceed by induction on k. The base case is entirely trivial, as we can take the

identity on dom(D) for h0.
For the induction step, suppose that hk is a homomorphism from chasek(D,O) to

chase(DC ,O+), and consider the structure chasek+1(D,O). Let β(t̄, λ̄) be the atom
derived in the (k + 1)-st chase step by the application of some frontier-guarded rule
with body q(x̄) and head ∃ȳ β(x̄, ȳ) using the homomorphism h′ with h(x̄) = t̄. Assume
further that λ̄ is a sequence of labeled nulls that does not occur in chasek(D,O). Since
chasek(D,O) |= q(t̄), Lemma 4.564.56 tells us that there is a p(x̄) ∈ ΛT∪{C}

q such that
chasek(DC ,O) |= p(t̄). Due to the fact that hk is a homomorphism from chasek(D,O)
to chase(DC ,O+), it follows that chase(DC ,O+) |= p(hk(t̄)). We can thus extend hk to
a mapping hk+1 by mapping the nulls λ̄ to appropriate nulls in chase(DC ,O+) so that
hk+1 is a homomorphism from chasek+1(D,O) to chase(DC ,O+). This concludes the
induction step.

It is clear that {hk}k≥0 is a family of homomorphisms with the desired properties. In
particular, it is not hard to check that h :=

⋃
k≥0 hk is a homomorphism from chase(D,O)

to chase(DC ,O+). Since chase(D,O) |= G (in other symbols, D |= Q), it thus follows
that chase(DC ,O+) |= G, that is, DC |= ηC(Q) as required. �

We are now ready to prove the main result that is used to reduce Cont(FG,BAQ) to
Cont(G,BAQ):

95

4. Containment and Equivalence for OMQs

Theorem 4.58. Suppose Q1 = (S,O1, G1) and Q2 = (S,O2, G2) are OMQs that fall into
(FG,BAQ), and suppose C is a relation symbol of arity max{wd(O1),wd(O2)} that does
neither occur in Q1 nor in Q2. Then,

Q1 ⊆ Q2 ⇐⇒ ηC(Q1) ⊆ ηC(Q2).

Proof. Suppose first that Q1 6⊆ Q2. Then there is an S-database D such that D |= Q1
but D 6|= Q2. By Lemma 4.574.57, DC |= ηC(Q1), and thus by Lemma 4.364.36 there is an acyclic
(S ∪ {C})-database B such that B |= ηC(Q1) and a weak homomorphism from B to DC .
Obviously, DC 6|= Q2, and since Q2 is closed under weak homomorphisms, we obtain
B 6|= Q2 as well. Lemma 4.554.55 yields B 6|= ηC(Q2), whence ηC(Q1) 6⊆ ηC(Q2) follows.

Suppose now that ηC(Q1) 6⊆ ηC(Q2). By Theorem 4.344.34, there is an acyclic (S∪ {C})-
database D such that D |= ηC(Q1) but D 6|= ηC(Q2), whence Lemma 4.554.55 yields that
D � S |= Q1 and D � S 6|= Q2. Hence, Q1 6⊆ Q2 as required. �

Putting Everything Together

Now let Q1 = (S,O1, G1) and Q2 = (S,O2, G2) be OMQs from (FG,BAQ). We show
that Q1 ⊆ Q2 can be decided in 2ExpTime. Let C be a fresh relation symbol of arity
max{wd(O1),wd(O2)} that does neither occur in Q1 nor in Q2. We construct ηC(Q1)
and ηC(Q2), and each of these constructions is feasible in exponential time in the size of
the respective OMQ. Notice that ηC(Q1) and ηC(Q2) may introduce exponentially many
rules and exponentially many fresh predicates. However, by Theorem 4.174.17, we can decide
ηC(Q1) ⊆ ηC(Q2) in doubly exponential time in the combined sizes of Q1 and Q2, since
in the construction of ηC(Q1) and ηC(Q2), we only increased the maximum arity used in
any of the two OMQs Q1, Q2 linearly (the relation symbol of maximum arity in any of
the two is C). By Theorem 4.584.58, we know that Q1 ⊆ Q2 iff ηC(Q1) ⊆ ηC(Q2). Hence,
we can decide Q1 ⊆ Q2 in 2ExpTime in the combined size of Q1 and Q2. This proves
that Cont(FG,BAQ) is in 2ExpTime, and Theorem 4.164.16 follows.

4.3.3 On the Use of Constants

Let us now, as promised in the introductory part of this section, explain how to extend
the results of this section to the case where the use of constants is allowed in rules and
queries. It turns out that similar results as those in this section can be proved for this
case, but it involves more complicated concepts from a technical point of view, which is
why we focused on the more specific constant-free case in the first place. The following
aspects need to be adapted in order to accommodate the use of constants:

I The tree witness property stated in Theorem 4.344.34 needs to be adjusted. We
cannot focus on acyclic structures anymore, but we need to be more liberal in the sense
that some part of the tree witness may be cyclic. In fact, having constants in rules
destroys the tree witness property, as constants may query cycles – for example, the rule
R(a, b), R(b, c), R(c, a)→ G, with a, b, c being constants, is guarded, but its body has no
acyclic model over the schema {R}. However, the cycles we must allow in witnessing

96

4.4. Combining Languages

databases turn out to be very mild. In fact, instead of working with acyclic structures,
we can work with C-trees instead, where C only depends on the constants used in the
OMQ. Thus, OMQs having constants still exhibit a tree witness property, but the notion
of “being tree-like” is more liberal in the sense that one part of the structure may have
cycles. A version of Theorem 4.344.34 can then be established that works with C-trees instead
of acyclic structures.
I The encoding and decoding of trees needs to also capture C-trees. This is not hard to

establish at all, as C-trees – once C is appropriately bounded in size – are also structures
of bounded tree-width. Apart from the adjustment toward C-trees, the encoding of them
also needs to have special names for constants in order to ensure that constants denote
the same element in the entire encoding. This adds additional elements to the alphabet
ΓS, but poses no real issue. The consistency criteria for ΓS-labeled trees are then adjusted
to be sure that these names for constants are used appropriately (similar encodings can
be found in [2828]).
I For Lemma 4.444.44, recall that we heavily exploited the fact that OMQs from (G,AQ)

can be equivalently rewritten into guarded Datalog queries. Moreover, we use the
construction of such rewritings as provided in [1717]. The proof of Lemma 4.444.44 can be
carried out without modifications, since in [1717] the case where constants are allowed is
explicitly taken into account.
I The automata CS,w and AQ from, respectively, Lemmas 4.414.41 and 4.424.42 can be devised

in the same manner, as the crucial modifications required to make their constructions
work out for this case have been done made in the previous points.
I Finally, the material from Subsection 4.3.24.3.2 has to be adjusted to accommodate the

use of constants. In particular, acyclic queries are now defined modulo the use of constants,
so the sustain the equivalence between strictly acyclic queries and strictly guarded formulas
that may use constants. For example, the formula q := R(a, b) ∧R(b, c) ∧R(c, a), with
a, b, c being constants, is strictly guarded in this sense as well, and thus is considered
to be acyclic as well – in fact, the treeification of q equals q itself. The definitions of
treeification, etc. are along the established lines, but employ this definition of acyclicity
modulo the use of constants. Once these concepts are set up in that way, one can proceed
with the results of Subsection 4.3.24.3.2 in an according fashion, which at the end cumulates
in the 2ExpTime-membership of Cont(FG,BAQ).

4.4 Combining Languages

In the previous three sections, we studied the containment problem with the focus on a
single language L, i.e., both OMQs fall into L. However, it is natural to consider the
version of the problem where the involved OMQs fall into different languages. This is
the goal of this section. Our analysis proceeds by considering two cases. In the first case,
the left-hand side query falls into a UCQ-rewritable OMQ language, while in the second
case, it is guarded or frontier-guarded. As we shall see below, we will mostly exploit the
machinery developed in Sections 4.24.2 and 4.34.3 with some notable exceptions.

97

4. Containment and Equivalence for OMQs

4.4.1 The Left-Hand Side Query is UCQ-Rewritable

As an immediate corollary of Theorem 4.84.8, we obtain that Cont((C1,CQ), (C2,CQ)),
for C1 6= C2, C1 ∈ {L,NR,S} and C2 ∈ {L,NR,S,FG,G}, is decidable. By exploiting the
algorithm underlying Theorem 4.84.8, we establish optimal upper bounds for all the problems
at hand with the only exception of Cont((S,CQ), (NR,CQ)). For the latter, we obtain a
coNExpTimeNP upper bound by providing a similar analysis as for Cont(NR,CQ), while
a NExpTime lower bound is inherited from query evaluation by exploiting Proposition 4.14.1.
It is rather tedious – and not very interesting from a technical point of view – to go
through all the containment problems in question and explain in detail how the exact
upper bounds are obtained.

Regarding the matching lower bounds, in most of the cases they are inherited from
query evaluation or its complement by exploiting Propositions 4.14.1 and 4.24.2, respectively.
There are, however, some exceptions:

• Cont((S,CQ), (L,CQ)), in the case of unbounded arity, is coNExpTime-hard, as-
suming that the sets of TGDs are allowed to use two constants. This is shown by a
reduction from the standard tiling problem for the exponential grid. A proof of
this fact can be found in Appendix B.2B.2 in the proof of Theorem 4.154.15.

• Cont((L,CQ), (S,CQ)) and Cont((S,CQ), (L,CQ)) in the case of schemas of bounded
width, where both problems are ΠP

2 -hard even for constant-free TGDs. This
result is implicit in [3535], where containment for OMQ languages based on different
description logics is considered.

4.4.2 The Left-Hand Side Query is (Frontier-)Guarded

We proceed with the case where the left-hand side query is (frontier-)guarded, and we
show the following result:

Theorem 4.59. The problem Cont((L,CQ), (C,CQ)), where L ∈ {G,FG}, is
(i) 2ExpTime-complete in case C ∈ {L,S}, and
(ii) 3ExpTime-complete in case C = NR.

The lower bounds hold even for the case where we use schemas of bounded width.

Lower Bounds

Recall that in [2323] it is shown that containment of guarded Datalog queries in acyclic CQs
is 2ExpTime-hard. This immediately implies that Cont((G,CQ), (C,CQ)) is 2ExpTime-
hard for C ∈ {L, S}.

We only describe briefly how the 3ExpTime-hardness of Cont((G,CQ), (NR,CQ)) is
obtained and omit the rather tedious details. One can establish this matching lower bound
by refining techniques from [5555], where it is shown that containment of Datalog queries
in UCQs is 2ExpTime-complete, while containment of Datalog queries in non-recursive
Datalog queries is 3ExpTime-complete. The lower bounds hold for predicates of bounded

98

4.4. Combining Languages

arity and constant-free rules. Interestingly, the left-hand side query in these proofs can
be transformed into a Datalog query such that each rule has a body-atom that contains
all the variables, i.e., one that is guarded. This is achieved by increasing the arity of some
predicates in order to have enough positions for all the body variables. However, for each
rule, the number of unguarded variables that we need to guard is constant, and thus the
arity of the schema remains constant. Providing details for this reduction requires to
revisit the (rather lengthy) proofs in [5555] which is why we omit details here. This allows
us to conclude that Cont((G,CQ), (NR,CQ)) is 3ExpTime-hard.

Upper Bounds

For C = L, membership in 2ExpTime is an immediate corollary of Theorem 4.164.16, since
every set of linear TGDs is also guarded. This is not true when C ∈ {NR,S}, since the
right-hand side query is not guarded. But in this case, since (NR,CQ) and (S,CQ) are
UCQ-rewritable, one can rewrite the right-hand side query as a UCQ, and then apply
the machinery developed in Section 4.34.3 for solving containment among (frontier-)guarded
OMQs. Before going into details, let us point out that it is an immediate corollary of
Theorem 4.164.16 that the problem of deciding whether a Q ∈ (FG,CQ) is contained in a CQ
q is feasible in 2ExpTime.

Now given OMQs Q1 ∈ (FG,CQ) and Q2 ∈ (C,CQ), where C ∈ {NR, S}, it holds that
Q1 ⊆ Q2 iff Q1 ⊆ q, where q is a UCQ-rewriting of Q2. Thus, an immediate decision
procedure, which exploits the algorithm XRewrite, is the following:

(i) Let q := XRewrite(Q2).

(ii) If Q1 6⊆ q′ for some disjunct q′ of q, then reject; otherwise accept.

The above procedure runs in triply exponential time. The first step is feasible in doubly
exponential time [8282]. Now, for a single CQ q′ that is a disjunct of q, the check whether
Q1 ⊆ q′ can be done by using the machinery developed in Theorem 4.164.16, which reduces
our problem to checking whether the language of a suitable 2APTA is empty. It should
not be forgotten that q′ is of exponential size, and thus membership in 3ExpTime follows.

The case of sticky OMQs Although the above algorithm establishes an optimal
upper bound for OMQs based on non-recursive sets of TGDs, a more refined analysis
is needed for those based on sticky sets of TGDs. In fact, we need a more refined
complexity analysis for the problem Cont((FG,CQ),UCQ), that is, to decide whether a
frontier-guarded OMQ is contained in a UCQ. To this end, we provide an automata
construction that takes the shapes of the rewritings of sticky OMQs into account. This
allows us to establish a refined complexity upper bound for the problem in question. To
this end, let us introduce some auxiliary notation. Let us for simplicity again assume
that all the sets of TGDs and CQs we encounter are constant-free.

Given a BCQ q and k ≥ 1, we write var≥k(q) for the set of variables of var(q) that
occur in more than k distinct relational body atoms of q. Accordingly, var≤k(q) denotes
the set of variables among var(q) that appear in at most k distinct atoms of q. It turns

99

4. Containment and Equivalence for OMQs

out that we can devise more fine-grained automata for CQs when taking that measure
into account:

Lemma 4.60. Let q be a BCQ over a schema S. There exists a l-2APTA Aq such that,
for every consistent ΓS-labeled tree t,

t ∈ L(Aq) ⇐⇒ JtK |= q.

Its number of states is exponential in |var≥2(q)|, and polynomial in |var≤1(q)|+ wd(S).
Furthermore, we can construct Aq in exponential time.

A proof of Lemma 4.604.60 can be found in Appendix B.2B.2. We can employ Lemma 4.604.60 to
show that Cont((FG,CQ), (S,CQ)) is in 2ExpTime as follows. It is not hard to show that
Cont((FG,CQ), (S,CQ)) can be reduced in polynomial time to Cont((FG,BAQ), (S,BCQ))
– a proof of this fact can be carried out mutatis mutandis to the proof of Lemma 4.454.45
and is left as an exercise for the reader.

Let Q1 = (S,O1, q1) from (FG,BAQ) and Q2 = (S,O2, q2) from (S,BCQ). Let
q := XRewrite(Q2) be the UCQ obtained from applying XRewrite to Q2, and assume that
q =

∨n
i=1 q

′
i for BCQs q′1, . . . , q′n.66 It holds that (see [8282]):

(i) The UCQ q consists of at most doubly exponentially many CQs.

(ii) Each disjunct of q is of at most exponential size.

(iii) For each disjunct q′ of q, the set var≥2(q′) is a subset of the variables of the CQ q2.

Let C be a fresh predicate of arity wd(O1). We then construct ηC(Q1) in exponential
time as detailed in Subsection 4.3.24.3.2. Recall that ηC(Q1) falls into (G,BAQ), and that the
maximum arity of any relation symbol occurring in ηC(Q1) is bounded by the arity of
C. Let B be the intersection of (i) the l-2APTA from Lemma 4.414.41 that accepts exactly
the consistent ΓS-labeled trees, and (ii) the l-2APTA AηC(Q1) from Lemma 4.424.42. Again,
although ηC(Q1) is of exponential size in the size of Q1, the automaton B has at most
exponentially many states in the size of Q1. Now for each disjunct q′i of q, we construct
the automaton Aq′i according to Lemma 4.604.60. Due to item (ii)(ii) above, each of these
automata has at most exponentially many states in the size of Q2. Now we put

A := B ∩ (Aq′1 ∪ · · · ∪ Aq′n).

Observe that A still has only exponentially many states in the combined sizes of Q1
and Q2, since there are only exponentially many disjuncts in q, and union of 2APTA is
feasible in polynomial time (see Proposition 2.312.31).

We claim that Q1 ⊆ Q2 iff L(A) = ∅. The “only if” direction is immediate by
Lemmas 4.414.41, 4.424.42 and 4.604.60. Suppose therefore that Q1 6⊆ Q2, that is, Q1 6⊆ q′i for some
i ∈ {1, . . . , n}. Hence, there is an S-database D such that D |= Q1, yet D 6|= q′i. By

6Actually, we need to convert Q2 into normal form first, as required by XRewrite (see Appendix AA).
According to this normal form, each TGD of Q2 has at most one atom in the head and at most one
existential variable in the head. It is not hard to show that putting Q2 into this normal form is feasible
in polynomial time [4747].

100

4.5. Summary

Lemma 4.364.36, there is an acyclic S-database D′ such that (i) D′ |= Q1, and (ii) there is a
weak homomorphism from D′ to D. Since satisfaction of constant-free CQs is preserved
under weak homomorphisms, we must have D′ 6|= q′i. Now we can encode D′ as a finite
and consistent ΓS-labeled tree t as detailed in Section 4.34.3 such that JtK |= Q1 and JtK 6|= q′i
(cf. Lemma 4.394.39). By Lemmas 4.414.41, 4.424.42 and 4.604.60, we obtain t ∈ L(A), as required.

4.5 Summary

We investigated the query containment problem for OMQ languages based on prominent
classes of TGDs. We established the relationship between query evaluation and query
containment, and showed that the decidability of the latter depends crucially on the
decidability of the former. The solutions to query containment depend on the question
whether the involved languages are UCQ-rewritable. For the case where both languages
are UCQ-rewritable, we solved containment by exploiting the construction of UCQ-
rewritings for the OMQs at hand. Nearly all the problems were solved optimally, with
the notable exception of containment of OMQs based on non-recursive sets of TGDs,
where we established PTimeNExpTime-hardness and membership in coNExpTimeNP.
For (frontier-)guarded OMQs, which are not UCQ-rewritable, we established a tree-like
witness property and resorted to automata techniques. Finally, we also considered cases
where we combined different languages, i.e., we considered the containment problem where
the left-hand side query and the right-hand side query fall into different languages. It
turned out that interesting cases arise when the left-hand side query is (frontier-)guarded,
and we developed specifically tailored decision procedures for these cases.

101

CHAPTER 5
First-Order Rewritability for

Guarded-Based OMQs

In Subsection 3.4.23.4.2 we called a set of O TGDs first-order rewritable, if, for every UCQ q,
one can effectively construct a first-order query ϕq,O such that ϕq,O(D) = certq,O(D) for
every database D. In Section 4.34.3 we lifted the notion of rewritability to the level of OMQs
and called an OMQ UCQ-rewritable, if we can effectively construct a UCQ equivalent
to it. Likewise, we call an OMQ first-order rewritable if we can effectively construct
a first-order query equivalent to it – in fact, we will see that an OMQ is first-order
rewritable iff it is UCQ-rewritable.

Having a first-order rewritable Q at hand allows us to solve the evaluation problem
for Q using standard database technology – indeed, given Q and a database D, we can
compute Q(D) by first rewriting Q into an equivalent first-order query ϕ, and then
pass ϕ to a relational database management system in order to compute ϕ(D) = Q(D).
Therefore, it is not surprising that the task of checking first-order rewritability – and
finding appropriate rewritings – is of paramount interest in the context of ontology-
mediated querying.

As we have already observed in Subsection 3.4.23.4.2 and Section 4.24.2, for OMQs based on
linear, non-recursive, and sticky sets of TGDs, first-order rewritings are always guaranteed
to exist. Therefore, the question whether such OMQs are first-order rewritable trivializes.
The situation looks quite different for OMQs whose ontology is (frontier-)guarded. As we
shall see, there are (frontier-)guarded OMQs that are inherently recursive, and thus not
expressible as a first-order queries. This brings us to our main question of this chapter:
can we check whether a (frontier-)guarded OMQ is first-order rewritable, and, if yes,
pinpoint its exact complexity? Notice that, for OMQs based on more expressive classes of
TGDs that capture Datalog, the answer to the above question is negative, since checking
whether a Datalog query is first-order rewritable is an undecidable problem. Actually,
we know that a Datalog query is first-order rewritable iff it is bounded [33], while the
boundedness problem for Datalog is undecidable [7878].

103

5. First-Order Rewritability for Guarded-Based OMQs

The above question has been studied in [3434] for OMQ languages based on Horn-
DLs, including those from the EL-family, which are, as already mentioned, special cases
of OMQs based on guarded TGDs. More precisely, in [3434] first-order rewritability is
semantically characterized by a locality property on tree-shaped ABoxes (i.e., databases),
which in turn allows the authors to pinpoint the complexity of first-order rewritability
by employing automata-based procedures. As usual in the context of description logics,
schemas consist only of unary and binary relations. However, in our setting we have
to deal with relations of higher arity. This entails, as we shall see, that the techniques
devised for checking first-order rewritability for DL-based OMQs cannot be directly
applied to OMQs based on (frontier-)guarded rules. We therefore develop new semantic
characterizations and procedures that are significantly different from those for OMQs
based on description logics.

Outline and contributions Our plan of attack and contributions can be summarized
as follows:

I In Section 5.15.1, we introduce the problem setting formally, and we provide some
background on it. We point out that, toward a solution of first-order rewritability for
frontier-guarded OMQs, we first focus on the simpler OMQ language based on guarded
TGDs and Boolean atomic queries, i.e., the language (G,BAQ). This is reminiscent of
the solution of the containment problem for OMQs based on (frontier-)guarded TGDs in
Section 4.34.3.
I In Section 5.25.2 we provide a semantic characterization of first-order rewritability

that forms the basis for applying tree automata techniques.
I We then exploit, in Section 5.35.3, standard two-way alternating parity tree automata.

In particular, we reduce first-order rewritability to the problem of checking whether the
language accepted by a certain automaton is finite. The reduction relies on a refined
version of the characterization of first-order rewritability established in Section 5.25.2. This
provides a transparent solution to our problem based on standard tools, but unfortunately
does not lead to an optimal result in terms of complexity.
I Toward an optimal complexity result, in Section 5.45.4 we use a more sophisticated

automata model, known as cost automata [3131, 5858, 6060]. This allows us to show that
first-order rewritability for OMQs from (G,BAQ) is in 2ExpTime, and in ExpTime
for schemas of bounded width. Our application of cost automata is quite transparent,
which again relies on a refined version of the characterization of first-order rewritability
established in Section 5.25.2. However, the complexity analysis relies on an intricate result
on the boundedness problem for a certain class of cost automata from [3131, 5959].
I Finally, in Section 5.55.5 we obtain our main results. We show that first-order

rewritability is 2ExpTime-complete for OMQs based on guarded TGDs and on frontier-
guarded TGDs, no matter whether the actual queries are conjunctive queries, unions
thereof, or simply atomic queries. This remains true when the width of the underlying
schema is bounded, with the exception of guarded TGDs and atomic queries, for which
the complexity then drops to ExpTime-completeness. A proof of this result relies again
on the treeification technique, which we have already encountered in Section 4.34.3.

104

5.1. Problem Statement

5.1 Problem Statement

We remind the reader again that, in Subsection 3.4.13.4.1, we called a set of TGDs O a
first-order rewritable set if, for every UCQ q, one can effectively construct a first-order
query ϕq,O such that ϕq,O(D) = certq,O(D) for every database D. We observed in
Subsection 3.4.23.4.2 that linear, non-recursive, and sticky sets of TGDs are always first-order
rewritable, and the procedure XRewrite from Section 4.24.2 revealed that actually their
rewritings are always UCQs (this is no coincidence, as we shall see below in Lemma 5.55.5).
Thus, first-order rewritability was defined for a set of TGDs and the existence of first-order
rewritings is demanded universally for every UCQ. However, the rewriting ϕq,O may
depend on q, while it is important to notice that the rewriting ϕq,O is uniform for all
input databases.

The following definition lifts the notion of first-order rewritability to the level of
OMQs:

Definition 5.1. An OMQ Q = (S,O, q(x̄)) is first-order rewritable, if there exists a
first-order query ϕQ(x̄) over S that is equivalent to Q, i.e., for every S-database D it
holds that

Q(D) = ϕQ(D).

We call ϕQ(x̄) a first-order rewriting of Q.

A fundamental static analysis task for an OMQ language (L,Q), where L is a class
of TGDs and Q is a class of queries, is deciding first-order rewritability:

Problem: FO⇐(L,Q)
Input: An OMQ Q ∈ (L,Q).
Question: Is it the case that Q is first-order rewritable?

Obviously, if O is a first-order rewritable set, then any OMQ of the form Q = (S,O, q)
is first-order rewritable. For a class of first-order rewritable sets L, FO⇐(L,CQ) is thus
trivial. On the other hand, it is easy to check that here are very simple OMQs that are
not first-order rewritable:

Example 5.2. Consider the OMQ Q = ({E/2},O, T (x, y)), where O consists of the two
rules

E(x, y)→ T (x, y),
T (x, y), T (y, z)→ T (x, z).

Q can be viewed as a Datalog query that computes the transitive closure of the input
relation E. Hence, for an {E}-database D, we have that D |= Q(a, b) iff b is reachable
from a via a directed E-path in D. It is well-known that Q is an example of a Datalog
query that has no first-order rewriting, since reachability in a graph is not first-order
expressible (see, e.g., [7171, 102102] for this classical result).

105

5. First-Order Rewritability for Guarded-Based OMQs

As another example, take the OMQ Q′ = ({A/1, E/2},O′, B(x)), where O′ consists
of the two rules

A(x)→ B(x),
B(x), E(x, y)→ B(y).

Q′ again corresponds to a Datalog query. Notice however that, unlike Q above, Q′
is guarded and even monadic, that is, all its intensional predicates are unary.11 For
any {A,E}-database D, D |= Q′(b) iff b can be reached via a directed E-path from
some element a ∈ adom(D) such that D |= A(a). Thus, Q′ also encodes some form
of reachability when viewing D as a directed graph. We will see later that Q′ is not
first-order rewritable either.

On the other hand, consider the OMQ Q′′ = ({A/1, E/2, B/1},O′′, G(x, y)) taken
from [3434], where O′′ consists of the three rules

A(x), E(x, y)→ A(y),
B(x), E(x, y)→ A(y),

B(x), E(x, y), A(y)→ G(x, y).

Then ϕ(x, y) := B(x) ∧ E(x, y) is a first-order rewriting of Q′′. a

(Un)decidability results Let us elaborate on the existing literature on related results
on first-order rewritability here. Considering the case of Datalog queries, it turns out
that a Datalog query Q = (Π, G) is first-order rewritable iff it is bounded [33], i.e., iff
there exists a uniform k ≥ 0 such that, for every input database D and every tuple ā, it
holds that D |= Q(ā) iff T kQ(D) |= G(ā). Intuitively, a Datalog query is thus first-order
rewritable iff its least fixed-point can be reached within a fixed number of k steps such
that is uniform for all input databases.

Unfortunately, it turns out that the problem of deciding boundedness – and thus
that of deciding first-order rewritability – is undecidable [7878]. This has led to quite some
activity in the research community to identify Datalog fragments for which boundedness
is decidable. As in the case of query containment, it turns out that fragments of Datalog
that exhibit some form of tree-model property enjoy a decidable boundedness problem.
To wit, in [6262] it is shown that boundedness for monadic Datalog queries is decidable.
In [3838] it is shown that decidability of the boundedness problem over the class of all trees
extends to monadic least fixed-point recursion based on positive monadic second-order
formulas. Roughly speaking, given a formula ϕ(x̄, X) with a second-order variable X
that only occurs under an even number of negations, the boundedness problem asks
whether the least-fixed point induced by ϕ(x̄, X) is reached within some uniform bound
that is independent of the structure at hand. Notice that this extends the notion of
boundedness of Datalog queries to arbitrary formulas from least fixed-point logic (LFP);
see, e.g., [102102] for more details on LFP vs. Datalog. The authors of [3838] extend their
results to the case of guarded second-order logic (GSO) over classes of structures of fixed,

1Notice that monadic Datalog queries are also frontier-guarded.

106

5.1. Problem Statement

finite tree-width. These results entail a number of decidability results for the boundedness
problems of Datalog fragments, e.g., it follows that boundedness is decidable for guarded
and frontier-guarded Datalog as well. Moreover, they also imply that boundedness of
guarded least fixed-point logic (GFP) and guarded negation fixed-point logic (GNFP)
is decidable, since both of them can be naturally expressed as formulas of guarded
second-order logic.

Benedikt et al. [3131] study the problem of boundedness for guarded negation formulas
in depth, and they show that boundedness of formulas ϕ(x̄, X) is decidable in elementary
time when ϕ(x̄, X) is a guarded formula or a guarded negation formula. In fact, they
even show that this problem is 2ExpTime-complete, and that 2ExpTime-completeness
extends to the case of GNFP-formulas. To this end, they exploit cost automata models
and show that boundedness of guarded negation and GNFP-formulas can naturally
be reduced to the question of whether (the cost function defined by) a suitable cost
automaton is bounded uniformly across its inputs. We will heavily use the machinery
developed in [3131] for our purposes in Section 5.45.4.

In the context of ontology-mediated querying, first-order rewritability is investigated
in [3434, 3636] for description logics between EL and Horn-SHIF . In particular, it is shown
that first-order rewritability is 2ExpTime-complete for any OMQ-Language between
(ELI,CQ) and (Horn-SHIF ,CQ), while it is ExpTime-complete for (EL,AQ). These
results are obtained by showing that first-order rewritability for these classes can be
characterized by the fact that any tree-like database D satisfying such an OMQ Q at
hand already satisfies Q when one restricts D to a certain depth that only depends
on Q (see below for more details). Decision procedures for first-order rewritability are
then obtained by employing automata on trees. We will see below in Section 5.25.2 that
the methods developed in [3434, 3636] cannot be extended to our setting due to the use of
predicates of arity greater than two.

First-order rewritability for the class (FG, UCQ) As mentioned in the introduc-
tory part of this chapter, our goal here is to investigate the problem FO⇐(FG,UCQ).
More specifically, our main result reads as follows:

Theorem 5.3. (i) For Q ∈ {UCQ,CQ,AQ}, the problem FO⇐(FG,Q) is 2ExpTime-
complete, and this holds even for schemas of bounded width.

(ii) For Q ∈ {UCQ,CQ}, the problem FO⇐(G,Q) is 2ExpTime-complete, and this
holds even for schemas of bounded width.

(iii) FO⇐(G,AQ) is 2ExpTime-complete, and ExpTime-complete assuming schemas
of bounded width.

Lower bounds Let us first explain how to obtain the lower bounds stated in Theo-
rem 5.35.3. The 2ExpTime-hardness in items (i)(i) and (ii)(ii) is inherited from [3434], where it is
shown that deciding first-order rewritability for OMQs from (ELI,CQ) is 2ExpTime-
hard. For the 2ExpTime-hardness in item (iii)(iii), we exploit the fact that containment for
OMQs from (G,BAQ) is 2ExpTime-hard, even if the right-hand side query is first-order

107

5. First-Order Rewritability for Guarded-Based OMQs

rewritable – this is implicit in [2323] has already been discussed in Section 4.34.3. A proof
of the fact that FO⇐(G,BAQ) is 2ExpTime-hard is given in Appendix B.3B.3. Finally,
the ExpTime-hardness in the third item is inherited from [3636], where it is shown that
deciding first-order rewritability for OMQs from (EL,BAQ) is ExpTime-hard.

Upper bounds For obtaining the upper bounds stated in Theorem 5.35.3, we proceed in
a similar fashion as we did for containment of guarded-based OMQs in Section 4.34.3. We
first show the following result:

Theorem 5.4. The problem FO⇐(G,BAQ) is decidable in 2ExpTime such that the
second exponent on the runtime only depends on the width of the underlying schema.
Hence, FO⇐(G,BAQ) is in ExpTime for predicates of bounded arity.

We then use Theorem 5.45.4 for solving FO⇐(FG,UCQ) as follows:

(i) We first show that we can reduce FO⇐(FG,UCQ) to FO⇐(FG,UBCQ) in polynomial
time.

(ii) Since Boolean UCQs correspond to frontier-guarded rules we can in turn reduce
FO⇐(FG,UBCQ) to FO⇐(FG,BAQ).

(iii) As in the case of containment, in Section 5.55.5 we provide an exponential reduction
from the problem FO⇐(FG,BAQ) to FO⇐(G,BAQ). This reduction again relies on
the treeification technique introduced in Subsection 4.3.24.3.2. Although this reduction
is exponential, it will, as in the case of containment, turn out that this reduction
still yields a decision procedure for FO⇐(FG,BAQ) that runs in 2ExpTime.

For obtaining the ExpTime upper bound in item (iii)(iii) of Theorem 5.35.3 we simply reduce
FO⇐(G,AQ) to FO⇐(G,BAQ).

First-order rewritability for the class (G, BAQ) The main focus of this chapter
is thus on establishing Theorem 5.45.4. A first guess on how to prove that FO⇐(G,BAQ) is
indeed in 2ExpTime, is to extend the methods developed in [3434, 3636] for languages from
the EL-family to the setting where the use of relation symbols of arity greater than two
is allowed. However, as mentioned above and as we shall show in Section 5.25.2, this is not
possible since we lose a crucial property of first-order rewritable OMQs when passing to
the setting of higher-arity relations. Hence, the methods developed in [3434, 3636] do not
seem to lead us to a solution for FO⇐(G,BAQ).

Our plan of attack toward a proof of Theorem 5.45.4 can be summarized as follows:

I We provide a simple, yet useful, semantic criterion that characterizes the first-order
rewritable OMQs within (G,BAQ). This characterization differs from the characterizations
provided in [3434, 3636], as these refer to trees over a schema consisting of unary and binary
predicates only, while ours is “coarser” in the sense that it accounts for more general
structures. On the other hand, it is not immediate how this semantic characterization
can be employed toward a decision procedure for FO⇐(G,BAQ).
I Therefore, we refine the mentioned semantic characterization in Section 5.35.3 in order

to make it accessible to tree automata techniques. In particular, we provide a decision

108

5.1. Problem Statement

procedure for FO⇐(G,BAQ) that is based on two-way alternating parity automata. This
procedure reduces FO⇐(G,BAQ) to the question whether the language accepted by a
suitable automaton is finite. It turns out, however, that this procedure is not optimal as
it runs in 3ExpTime. We nevertheless find this procedure to be appealing in the sense
that it provides useful insights on the nature of the problem FO⇐(G,BAQ).
I We observe that the reason why the mentioned procedure based on classical automata

techniques is not optimal is because classical automata lack a natural concept of attaching
a quantitative measure to input structures. Moreover, the procedure from Section 5.35.3
crucially uses a minimization step in the construction of automata, and this minimization
step turns out to be computationally expensive. We attack this problem by revising the
semantic characterization devised in Section 5.25.2 so that it accounts for a quantitative
measure assigned to input databases. Roughly speaking, given an OMQ Q and an input
database D, we would like to measure the length of a minimal rewriting of Q into a CQ
that witnesses that D |= Q. It turns out that if we can uniformly bound the length of
such rewritings, we can conclude that Q is indeed first-order rewritable. To obtain a tight
2ExpTime upper bound, we then reduce FO⇐(G,BAQ) to the question whether (the
cost function defined by) a certain cost automaton is uniformly bounded over all inputs.
We then invoke a result from [3131, 5959] concerning the decidability of the boundedness
problem for cost automata like ours. From this we obtain a 2ExpTime upper bound for
FO⇐(G,BAQ) in the general case, and an ExpTime upper bound for the case of schemas
of bounded width.

FO-rewritability vs. UCQ-rewritability Before diving into the technical details of
this chapter, we want to elaborate on the relationship of first-order rewritability and
UCQ-rewritability of rule-based OMQs. It is no coincidence that all OMQ languages we
have encountered so far actually always exhibit UCQ-rewritings whenever they exhibit
first-order rewritings. This is the content of the following lemma:

Lemma 5.5. An OMQ Q from (TGD,UCQ) is first-order rewritable if and only if it is
UCQ-rewritable.

Proof. The “if” direction is immediate since every UCQ is obviously a first-order query.
Suppose that Q = (S,O, q(x̄)) is first-order rewritable, with ϕQ(x̄) being a first-order
rewriting of it. Recall from Proposition 3.183.18 that Q is closed under homomorphisms,
and thus so is ϕ. By the celebrated homomorphism preservation theorem (over finite
structures) due to Rossman [123123], it follows that ϕQ(x̄) is equivalent to a UCQ q′(x̄). �

Hence, deciding first-order rewritability for the languages of our interest amounts to
deciding whether an according UCQ-rewriting exists. We will exploit this fact throughout
this chapter without further citing the contents of Lemma 5.55.5.

Let us also point out that, throughout this chapter, we assume that all sets of TGDs
and all queries are constant-free. The methods devised here can be extended to the case
where constants are allowed in a similar fashion as in the case of containment among
(frontier-)guarded OMQs (cf. Subsection 4.3.34.3.3).

109

5. First-Order Rewritability for Guarded-Based OMQs

5.2 Semantic Characterization

As mentioned in the previous section, our goal here is to state the semantic characterization
of the first-order rewritable OMQs among (G,BAQ). This characterization is simple, yet
quite useful for the decision procedures devised in this chapter. Before presenting it, let
us before revisit the semantic characterizations provided in [3434, 3636] for OMQs formulated
using description logics from the EL-family.

Locality vs. FO-rewritability Let Q = (S,O, A(x)) be an OMQ where A(x) is an
atomic query and O is formulated using a member of the EL-family. Roughly speaking,
we can imagine that O is guarded and uses only unary and binary predicates (see [1010, 1111]
for more details on description logics belonging to the EL-family). The characterizations
in [3434, 3636] essentially state that Q is first-order rewritable iff there is a uniform bound
k ≥ 0 such that, whenever the root of a tree-shaped S-database D is an answer to Q,
then this already holds for the restriction of D up to depth k. Notice that – since we are
dealing here with databases formulated using unary and binary predicates only – the
notion of tree-shaped can be taken literally in the sense of graphs (unlike in the case of
arbitrary structures, where one resorts to tree decompositions to capture tree-likeliness).

Intuitively, the semantic characterizations from [3434, 3636] are based on a locality argu-
ment. To formalize this properly, let us provide some technical definitions. Given an
S-structure A, the Gaifman graph of A is the undirected graph G(A) = (V,E), where
V := dom(A) and

E := {{a, b} | a 6= b and there is an R ∈ S and a tuple c̄ ∈ RA such that a, b ∈ [c̄]}.

Given elements a, b ∈ dom(A), we write dA(a, b) for the distance between a and b in
G(A) provided they are reachable from each other (otherwise, we set dA(a, b) :=∞), and
we call dA(a, b) the Gaifman distance between a and b. For a tuple ā = a1, . . . , an over
dom(A) and ` ≥ 0, we let

BA
` (ā) := {b | min

1≤i≤n
dA(ai, b) ≤ `},

BA
` (ā) := A � BA

` (ā).

Hence, BA
` (ā), called the `-ball around ā, is the substructure of A induced by the set of

elements consisting of those that have Gaifman distance at most ` from some ai.
Now consider again the OMQ Q = (S,O, A(x)) from above, where O is formulated

using a member of the EL-family, and A(x) is a unary atomic query. In [3434, 3636] it is
shown that the following are equivalent:

(i) Q is first-order rewritable.

(ii) There exists a k ≥ 0 such that, for every tree-shaped database D with root a, if
D |= Q(a) then also BD

k (a) |= Q(a).

Let us call Q local if it satisfies the property stated in item (ii)(ii). The proof of the
(contrapositive of the) “only if” direction of this statement establishes that, if there is no

110

5.2. Semantic Characterization

c

a1a2

a3

a4

a5

a6

ak−1

a0, A

ak, B

...

{ak−1, ak, c}

{ak−2, ak−1, c}

{ak−3, ak−2, c}
...

{a0, a1, c}

Figure 5.1: Illustration of the database Dk from Example 5.65.6 (to the left), including a
(guarded) tree decomposition of width two of Dk (to the right).

such bound k ≥ 0, then this is witnessed by an infinite sequence of deeper and deeper
tree-shaped databases that establish the non-locality of Q. Moreover, it turns out that
the locality of Q is beneficial when one aims to devise procedures for deciding first-order
rewritability that are based on tree automata. Roughly speaking, the reason for this
is that an automaton can easily keep track of the Gaifman distances of the elements
required to satisfy Q.

When passing from OMQs that only use predicates of arity at most two to OMQs that
use predicates of higher arity, one needs to resort to a different notion of tree-likeliness in
order to make reasoning about these OMQs accessible to tree automata techniques. To
wit, recall that in Section 4.34.3 we resorted to databases of bounded tree-width – where the
bound on the tree-width only depended on the OMQ at hand – in order to devise tree
automata procedures for OMQs from (G,AQ). A natural question arising in the context
of first-order rewritability for (G,AQ) is whether the equivalence between locality and
first-order rewritability also holds for OMQs from (G,AQ) when assuming that “being
tree-like” stands for “being of bounded tree-width.” Unfortunately, this is not the case,
as the following example shows:

Example 5.6. Let Q = (S,O, G(x)) be from (G,AQ), where S = {T/3, A/1, B/1}, and O
consists of the rules

T (x, y, z), A(z)→ R(x, z),
T (x, y, z), R(x, z)→ R(x, y),

T (x, y, z), R(x, z), B(y)→ G(y).

We will prove below that Q is not first-order rewritable. For k ≥ 1, consider the
S-database Dk given by

Dk := {T (c, ai, ai−1) | i = 1, . . . , k} ∪ {A(a0), B(ak)}.

Notice that Dk is acyclic and of tree-width two. An illustration of Dk together with a
guarded tree decomposition of it can be found in Figure 5.15.1. Observe that Dk |= Q(ak).

111

5. First-Order Rewritability for Guarded-Based OMQs

We recursively define a family of formulas {ϕn}n≥0 as follows:

ϕ0(x, y, z) := T (x, y, z) ∧A(z),
ϕn+1(x, y, z) := T (x, y, z) ∧ ∃vn ϕn(x, y/z, z/vn).

Let χn(y) := ∃x, z (B(y) ∧ ϕn(x, y, z)). It is not hard to check that, for all n ≥ 0, χn is
(equivalent to) a strictly guarded formula. Hence, by Lemma 4.244.24, χn is equivalent to a
strictly acyclic query pn(y). Moreover, the infinite disjunction

q(y) :=
∨
n≥0

pn(y)

is easily seen to be equivalent to Q.
Suppose D is an arbitrary S-database such that D |= Q(a) for some a ∈ adom(D).

Hence, D |= pk(a) for some k ≥ 0, and thus there is a homomorphism h from pk(y)
to D with h(y) = a. Observe that pk can be viewed just as the CQ corresponding to
Dk, whence it follows that there is a weak homomorphism hk from Dk to D such that
hk(ak) = a. Moreover, BDk

2 (ak) is isomorphic to Dk, and it is easy to prove that, by
the construction of χk, BD

2 (a) |= pk(a) must hold as well.22 Hence, BD
k (a) |= Q(a). This

proves that Q is local but, as we shall prove below, Q is not first-order rewritable.33 a
Intuitively, Example 5.65.6 shows that locality notions used for first-order rewritability

in the context of description logics from the EL-family do not yield a sufficient condition
for first-order rewritability for OMQs that fall into (G,AQ). This becomes clear when
one inspects the tree decompositions of the databases Dk depicted in Figure 5.15.1. Indeed,
it turns out that, in terms of Gaifman distance, all the elements of Dk are close to each
other – the maximum Gaifman distance between any two elements equals two –, while
any the underlying trees of suitable tree decompositions of Dk have to grow in depth
with increasing k.

Our semantic characterization We have seen above that a semantic characterization
based on locality notions is unlikely to yield a useful characterization of the first-order
rewritable OMQs from (G,AQ). Instead of enforcing a uniform bound on the Gaifman
distance of the elements used to satisfy Q, we uniformly bound the number of facts
required to satisfy Q.

This is the content of the following statement. In the following, given a schema S, let
us write wd∗(S) for max{0,wd(S)− 1}.

Proposition 5.7. Consider an OMQ Q ∈ (G,AQ) with data schema S. The following
are equivalent:

(i) Q is first-order rewritable.
2Formally, one uses the fact here that pk is a connected CQ [3333, 3434], i.e., the Gaifman graph of the

structure corresponding to pk consists of a single connected component.
3Notice that, in fact, we did not assume anything about the structure of D. Thus, Q is not only local

for “tree-like” input databases, but local with respect to the class of all S-databases.

112

5.2. Semantic Characterization

(ii) There is a k ≥ 0 such that, for every S-database D of tree-width at most wd∗(S),
if D |= Q(ā), then there is a D′ ⊆ D with at most k facts such that D′ |= Q(ā).

Proof. Assume first that Q = (S,O, G(x̄)) is first-order -rewritable. Then there is a
first-order query ϕQ(x̄) which is equivalent over all S-databases to Q. By Lemma 5.55.5 we
actually know that Q is equivalent to a UBCQ qQ(x̄) =

∨n
i=1 pi(x̄). Let k := max{|pi| :

i = 1, . . . , n}. We claim that k is the bound we are looking for in item (ii)(ii). Indeed, if
D |= Q(ā), for a database of tree-width at most wd∗(S), then also D |= qQ(ā) and so
there is a homomorphism h that maps some pi to D such that h(x̄) = ā. The image of pi
under h is a database D′ with at most k facts that satisfies qQ, i.e., D′ |= qQ(ā). Since Q
is equivalent to qQ, we infer that D′ |= Q(ā), as required.

Suppose now that there is a k ≥ 0 such that, for every S-database D of tree-width
at most wd∗(S), if D |= Q(ā), then there is a D′ ⊆ D with at most k facts such that
D′ |= Q(ā). Let S be the class of all tuples (D, ā), such that

(i) D is an S-database and ā a tuple over adom(D) of length |x̄|,
(ii) D contains at most k facts, and

(iii) D |= Q(ā).

Let us say that two tuples (D, ā) and (D, b̄) are isomorphic if there exists a weak
isomorphism χ from D to D′ such that χ(ā) = b̄. Consider S factorized modulo
isomorphisms, and observe that S is thus finite. Let

qQ :=
∨

(D,ā)∈S
qD,ā,

where qD,ā is the CQ that is obtained by simultaneously replacing each constant c in the
database D with the variable xc, and existentially quantifying over all xc for which c 6∈ [ā]
holds. We claim that qQ is a UCQ equivalent to Q, and thus a first-order rewriting of Q.

Suppose first that D |= Q(ā) for some S-database D. By Lemma 4.364.36, there is an
acyclic S-database B – hence it has tree-width at most wd∗(S) – such that B |= Q(ā) and
there is a weak homomorphism h from B to D that is the identity on ā. By assumption,
there is a database D′ ⊆ B with at most k facts such that D′ |= Q(ā). It follows that
some isomorphic representative of (D′, ā) is contained in S. Therefore, D′ |= qQ(ā) and,
since D′ ⊆ B, also B |= qQ(ā), i.e., there is a homomorphism hQ from some CQ p of qQ
to B that maps the output variables of p to ā. Therefore, hQ ◦h is a homomorphism from
p to D mapping the output variables of p to ā, from which we conclude that D |= qQ(ā).

Suppose now that D |= qQ(ā). Then there is some (D′, ā) ∈ S such that D |= qD′,ā(ā),
i.e., there is a homomorphism from qD′,ā to D that maps the output variables of qD′,ā to
ā, or, equivalently, a weak homomorphism from D′ to D that is the identity on ā. By
the construction of S, it is also the case that D′ |= Q(ā). Since Q is closed under (weak)
homomorphisms (cf. Proposition 3.183.18), we obtain D |= Q(ā) as desired. �

Example 5.8. Reconsider the OMQ Q = (S,O, G(x)) from Example 5.65.6, and, for k ≥ 1,
let Dk denote the S-database from Example 5.65.6. As promised before, we now argue that
Q is indeed not first-order rewritable. To this end, recall that Dk |= Q(ak), and notice

113

5. First-Order Rewritability for Guarded-Based OMQs

that Dk has tree-width two (in fact, it is acyclic), and that Dk consists of k + 2 facts.
However, for every D′ ⊂ D that has at most k + 1 facts we clearly have D′ 6|= Q(ak).
Hence, by Proposition 5.75.7, we can conclude that Q is not first-order rewritable. a

Example 5.9. Reconsider now the OMQ Q′ = ({A/1, E/2},O′, B(x)) from Example 5.25.2,
where O′ consists of the two rules

A(x)→ B(x),
B(x), E(x, y)→ B(y).

For k ≥ 0, let

Dk := {A(a0), E(a0, a1), . . . , E(ak−1, ak)}.

Obviously, Dk |= Q′(ak) for every k ≥ 0. Notice further that Dk has tree-width one, as
it is simply a directed path. Now Dk consists of k + 1 atoms, but for every D′ ⊂ D of at
most k atoms, it holds that D′ 6|= Q′(ak), which by Proposition 5.75.7 entails that Q′ is not
first-order rewritable. a

5.3 Alternating Automata Approach

In this section, we exploit the semantic characterization from Section 5.25.2 and 2APTA
running on finite trees of bounded branching degree to prove that FO⇐(G,BAQ) can
be solved in elementary time, more specifically, in 3ExpTime. Although our result is
not optimal in terms of complexity, our construction provides a transparent solution to
FO⇐(G,BAQ) based on standard tools. This is in contrast to existing results on guarded
logics, in which all elementary bounds heavily rely on the intricate use of results on cost
automata [3131, 3838]. We are also going to employ cost automata later, but only to pinpoint
the exact complexity of FO⇐(G,BAQ).

Notice that the decidability of FO⇐(G,BAQ) in elementary time already follows from
the fact that OMQs from (G,BAQ) can be equivalently expressed as guarded Datalog
queries of elementary size, while guarded Datalog queries can in turn be expressed using
sentences of GFP [3131]. Since boundedness for GFP is decidable in 2ExpTime [1919, 3131],
and boundedness of guarded Datalog queries is equivalent to their first-order rewritability,
an elementary upper bound follows. Again, the obtained upper bound is far from optimal,
and we prefer here to provide an alternative procedure which, though not optimal, yields
interesting insights into the problem FO⇐(G,BAQ) from a conceptual point of view.

The main result of this section reads as follows:

Theorem 5.10. The problem FO⇐(G,BAQ) is solvable in 3ExpTime, and in 2ExpTime
if we assume predicates of bounded arity.

The main lemma toward a proof of Theorem 5.105.10 will be the following:

114

5.3. Alternating Automata Approach

Lemma 5.11. Let Q = (S,O, G) be an OMQ from (G,BAQ). There is an m-2APTA BQ
on trees of branching degree at most m := 2wd(S) such that

Q is first-order rewritable ⇐⇒ L(BQ) is finite.

The state set of BQ is of doubly exponential size in wd(S ∪ sig(O)), and of exponential
size in |S ∪ sig(O)|. Furthermore, BQ can be constructed in triply exponential time in the
size of Q, where the third exponent depends only on wd(S ∪ sig(O)).

Before explaining how to establish Lemma 5.115.11, let us show how to infer Theorem 5.105.10
from Lemma 5.115.11.

Proof of Theorem 5.105.10. Let Q = (S,O, G) be an OMQ from (G,BAQ), and let BQ
be the m-2APTA as stated in Lemma 5.115.11. By Theorem 2.282.28, there is a 1NTA B′Q
that accepts the same trees as BQ, and whose number of states is exponential in the
number of states of BQ, i.e., triply exponential in wd(S∪ sig(O)), and doubly exponential
in |S ∪ sig(O)|. Moreover, B′Q can be constructed in exponential time in the size of
BQ. In [131131] it is shown that the problem of deciding whether a 1NTA accepts a finite
language is feasible in polynomial time. Thus, we simply check whether L(B′Q) is finite,
whence the claimed upper bounds stated in Theorem 5.105.10 follow. �

The remainder of this section is devoted to establish Lemma 5.115.11. To this end, we
proceed as follows:

I We provide a semantic characterization of the first-order rewritable OMQs in
(G,BAQ) that refines Proposition 5.75.7. Intuitively, this semantic characterization encodes
some minimality criterion for the class of all input databases of bounded tree-width.
I We then devise an m-2APTA that only accepts (encodings of) input databases

that are feasible candidates for the “minimal” databases, as singled out by the refined
semantic characterization.
I To actually implement the minimality criterion, we use projection on m-2APTA.

The use of projection explains why the upper bounds stated in Theorem 5.105.10 are not
optimal – indeed, we will see that projection is applied upon an m-2APTA whose state
set is already exponential, and projection incurs an additional exponential blowup to its
state set (cf. Proposition 2.322.32).

5.3.1 A Refined Semantic Characterization

For introducing a semantic characterization that refines the one given in Proposition 5.75.7,
we need some additional technical notions.

Let D be an S-database and δ = (T , (X)v∈T) be a tree decomposition of D. Recall
that an adornment of the pair (D, δ) is a function η : T → 2D such that

(i) η(v) ⊆ D � Xv for all v ∈ T , and
(ii) for every fact α of D, there is some v ∈ T such that α ∈ η(v).

115

5. First-Order Rewritability for Guarded-Based OMQs

{a, b}, η1 : {R(a, b), A(b)}

{b, c}, η1 : {R(b, c)}

{b}, η1 : ∅

{b, d}, η1 : {R(b, d)}

{b}, η1 : {B(d)}

(a)

{a, b}, η2 : {R(a, b)}

{b, c}, η2 : {R(b, c)}

{b}, η2 : {A(b)}

{b, d}, η2 : {R(b, d)}

{b}, η2 : {B(d)}

(b)

Figure 5.2: Both figures depict a tree decomposition together with an adornment ηi
whose values are specified for each node of the respective tree decomposition. For a node
v, a label of the form Xv, ηi : Yv specifies that Xv is the bag of v in the tree decomposition
at hand, and that ηi(v) = Yv. Nodes that are black with respect to ηi are underlined.
The tree decomposition in (a) is neither η1-well-colored nor η1-simple, while the one in
(b) is both η2-well-colored and η2-simple.

Hence, the pair (δ, η) can be viewed as a representation of the database D along with
a tree decomposition of it. For the intended characterization, it is important that this
representation is free of redundancies, which we formalize in the following.

We say that δ is η-simple if the following conditions hold:

(i) |η(v)| ≤ 1 for all v ∈ T .
(ii) Non-empty η-labels are unique, that is, η(v) 6= η(w) for all distinct v, w ∈ T with

η(v) and η(w) non-empty.

Nodes v ∈ T where η(v) is empty are called white (w.r.t. η) from now on. These white
nodes are required since we might not have a (unique!) fact available to label them. Note,
though, that white nodes v are still associated with a non-empty set of constants from D
via Xv. All nodes that are not white are called black (w.r.t. η). While δ being η-simple
avoids redundancies that are due to a fact occurring in the label of multiple black nodes,
additional redundancies may arise from the inflationary use of white nodes.

We say that a node v ∈ T is η-well-colored if it is black, or it has at least two
successors and all its successors are η-well-colored. We say that δ is η-well-colored if
every node in T is η-well-colored. For example, δ is not η-well-colored if it has a white
leaf, or if it has a white node and its single successor is also white. Informally, requiring δ
to be η-well-colored makes it impossible to blow up the tree by introducing white nodes
without introducing black nodes.

Example 5.12. Consider the database

D := {R(a, b), A(b), R(b, c), R(b, d), B(d)}.

In Figure 5.25.2 we depict two tree decompositions of D (of width one) together with
adornments ηi (i ∈ {1, 2}) for them. The first one is neither η1-simple nor η1-well-colored,
while the second one is both η2-simple and η2-well-colored. a

116

5.3. Alternating Automata Approach

For i ∈ {1, 2}, letDi be a database, δi a tree decomposition ofDi, and ηi an adornment
of (Di, δi). We say that (D1, δ1, η1) and (D2, δ2, η2) are isomorphic if the latter can be
obtained from the former by consistently renaming constants in D1 and tree nodes in δ1.

We are now ready to refine the characterization of first-order rewritability for OMQs
from (G,BAQ) given in Proposition 5.75.7:

Proposition 5.13. Consider an OMQ Q ∈ (G,BAQ) with data schema S. The following
are equivalent:

(i) Q is first-order rewritable.

(ii) There are finitely many non-isomorphic triples (D, δ, η), where D is an S-database,
δ a tree decomposition of D of width at most wd∗(S), and η an adornment of
(D, δ), such that
(a) δ is η-simple and η-well-colored,
(b) D |= Q, and
(c) for every α ∈ D, it is the case that D \ {α} 6|= Q.

The proof of Proposition 5.135.13 depends on several lemmas stated in the following.

Lemma 5.14. If D has tree-width w, then there is a tree decomposition δ of D of width
w and an adornment η for (D, δ) such that δ is η-simple and η-well-colored.

Proof. Let δ = (T , (Xv)v∈T) be a tree decomposition of D of width w. Let δ′ =
(T ′, (X ′v)v∈T ′) be a tree decomposition of D defined as follows. Initially, we define that δ′
equals δ. In a second step, we add additional nodes to δ′. For any v ∈ T , if |D � Xv| = n
(for n ≥ 2) then we add n− 1 copies of v to δ′ that become children of v in δ′. Let v ∈ T
and suppose D � Xv = {α1, . . . , αn}. Let v1, . . . , vn−1 be the copies of v in δ′. We then
set η(v) := {α1}, and η(vi) := {αi+1} for i = 1, . . . , n − 1. Clearly, η is an adornment
for (D, δ′) satisfying |η(v)| = 1, for all v ∈ T ′. By construction, observe that δ′ is also
η-simple.

Now we show how we can modify δ′ in order to become η-well-colored. Let B denote
the set of black nodes of T ′. Let T ∗ be the smallest set such that

(i) B ⊆ T ∗, and
(ii) if v is the greatest common ancestor of some T0 ⊆ T ∗, then also v ∈ T ∗.

Hence, T ∗ is the closure of B under greatest common ancestors. Let δ∗ := (T ∗, (Yv)v∈T ∗),
where T ∗ is a tree with node set T ∗ and, for v, w ∈ T ∗, we have that w is a successor of
v in T ∗ iff v ≺T ′ w. Notice that δ∗ is a tree decomposition of D that has width w, as it
contains all black nodes of T ′ with respect to η. It is now easy to check that δ∗ is also
η-well-colored. �

Lemma 5.15. Suppose η is an adornment for (D, δ) and that δ is η-simple. Then D
contains at least as many facts as δ contains black nodes with respect to η.

Proof. By induction on the number n of black nodes of δ = (T , (Xv)v∈T) with respect

117

5. First-Order Rewritability for Guarded-Based OMQs

to η. If n = 1 the claim is trivial. Suppose δ has n + 1 black nodes with respect to η.
There must be a black node v ∈ T such that v has no descendant that is also black.
Let δ′ = (T ′, (Xv)v∈T ′) be the tree decomposition that arises from δ by removing the
subtree rooted at v. Let D′ :=

⋃
v∈T ′ η(v). Then δ′ is a tree decomposition of D′ and

δ′ has n black nodes with respect to η. Now, if D′ = D then it must be the case that
η(v) = η(w) for some w 6= v. Hence, δ cannot be simple. Therefore, D′ ⊂ D. By the
induction hypothesis, |D′| ≥ n and we thus obtain |D| ≥ n+ 1. �

Lemma 5.16. Suppose D is a database that has at least one fact. If δ is an η-well-colored
tree decomposition of D, then the number of white nodes of δ is strictly less than the
number of black nodes of δ with respect to η.

Proof. Let bδ (wδ, respectively) denote the number of black (white, respectively) nodes
of δ = (T , (Xv)v∈T) with respect to η. We proceed by induction on the depth of T ,
i.e., the maximum length of a branch leading from the root node to a leaf node. If T
consists only of a single node and δ is η-well-colored, this single node must be a black
node – recall that D has at least one fact – and so the claim holds trivially. Assume
that T is of depth n+ 1 and δ is η-well-colored. Let T1, . . . , Tk enumerate the subtrees
of T rooted at the child nodes of the root of T , and let δi (i = 1, . . . , k) be the tree
decomposition that arises from δ if we restrict T to Ti. If the root of T is black, the
claim is again trivial. Otherwise, if it is white, we see that k ≥ 2 since δ is η-well-
colored. For i = 1, . . . , k, let bδi (wδi , respectively) denote the number of black (white,
respectively) nodes of Ti with respect to η. Using the induction hypothesis, we conclude
that wδ = wδ1 + · · ·+ wδk + 1 < bδ1 + · · ·+ bδk = bδ. �

Proof of Proposition 5.135.13. Assume that item (ii)(ii) does not hold. That is, there are
infinitely many non-isomorphic triples (D, δ, η) that satisfy conditions (a)(a) to (c)(c). Let S
be the set of all these triples and let S ′ be S factorized modulo our notion of isomorphism,
i.e., S ′ contains a representative for every isomorphism type of S. Let

Φ := {T | (D, δ := (T , (Xv)v∈T), η) ∈ S ′}

be the set of trees on which the tree decompositions of the elements of S ′ are based, and
consider Φ factorized modulo usual tree isomorphism. Notice that Φ must be infinite
as well. Since all the tree decompositions on which the trees in Φ are based on are of
bounded width, it must be that case that, for every k ≥ 0, Φ contains a tree that has
at least k nodes. Thus, by Lemma 5.165.16, for every k ≥ 0, we can find a (Dk, δk, ηk) ∈ S ′,
where δk = (Tk, (Xv)v∈Tk), such that Tk has at least k black nodes with respect to ηk.
Thus, by Lemma 5.155.15, Dk has at least k facts. Now Dk |= Q by assumption, but D0 6|= Q
for every D0 ⊂ Dk. This shows that, for every k, we can find a database D of tree-width
at most wd∗(S) (namely, Dk) such that D |= Q, but for every D0 ⊆ D of at most k atoms
we have D0 6|= Q. Hence, item (i)(i) does not hold.

Suppose now that Q is not first-order rewritable. That is, by Proposition 5.75.7, for
every k ≥ 0, there is a database Dk of tree-width at most wd∗(S) such that D |= Q,
yet for every D0 ⊂ D with at most k facts we have D0 6|= Q. Let S be the set of all

118

5.3. Alternating Automata Approach

S-databases D of tree-width at most wd∗(S) such that D |= Q, yet for any D0 ⊂ D we
have D0 6|= Q. Let S ′ be S factorized modulo weak isomorphisms. It is easy to check
that S ′ must be infinite as well (cf. the proof of Proposition 5.75.7 for a similar argument).
By Lemma 5.145.14, for every D ∈ S ′, there is a tree decomposition δD and an adornment ηD
of (D, δD) such that δD is ηD-well-colored and ηD-simple. Now for two distinct D,D′ ∈ S ′
it must be the case that (D, δD, ηD) and (D′, δD′ , ηD′) are non-isomorphic, for otherwise
D and D′ would be weakly isomorphic as well, which is absurd as we assume that S ′ is
factorized modulo weak isomorphisms. For D ∈ S ′ we know that, by the construction of
S ′, D \ {α} 6|= Q for all α ∈ D. Hence, the class

{(D, δD, ηD) | D ∈ S ′}

is a class of infinitely many, pairwise non-isomorphic triples such that conditions (a)(a)
to (c)(c) of item (ii)(ii) are satisfied. Thus, item (ii)(ii) does not hold either. �

5.3.2 Devising Automata

Let us outline how the 2APTA announced in Lemma 5.115.11 is constructed. Throughout
this subsection, we fix an OMQ Q = (S,O, G) from (G,BAQ). Our goal is to devise an
automaton BQ whose language is finite iff item (ii)(ii) from Proposition 5.135.13 is satisfied. By
Propositions 5.75.7 and 5.135.13, Q is then first-order rewritable iff L(BQ) is finite.

The 2APTA BQ will be the intersection of several automata that check the properties
stated in item (ii)(ii) of Proposition 5.135.13. As in the case of Section 4.34.3, our automata will
work on ΓS-labeled trees, and we point the reader to Section 4.34.3 for the definition of ΓS.
For our automata constructions that follow, it will be convenient to work on ΓS-labeled
trees whose branching degree can be bounded by the constant mS := 2wd(S), so that we
can work with mS-2APTA. The following statement shows that we can always assume
this without loss of generality.

Lemma 5.17. Suppose D is an S-database and δ a tree decomposition of D. Then there
exists a tree decomposition δ′ of D such that δ′ has the same width as δ, yet the branching
degree of the tree δ′ is based on is at most mS = 2wd(S).

Proof. Let δ = (T , (Xv)v∈T) be a tree decomposition of D of width at most wd∗(S).
For v ∈ T , let bδ,v be the branching degree of v in T and let dδ,v be the length of the
longest path that leads from v to some leaf node in T . Moreover, let

bδ :=
∑
{dδ,v(bδ,v −mS) | bδ,v > mS, v ∈ T}.

We are going to prove the statement of the lemma by induction on bδ. Moreover,
we will show that δ′ results from “reorganizing” nodes of δ, and that we can view any
adornment η of (D, δ) also as an adornment of (D, δ′).

For bδ = 0 the claim holds trivially. Suppose therefore that bδ = n+ 1. Then there
is a node v ∈ T such that bv > mS. Assume v is chosen such that it has, among all
nodes of branching degree greater than mS, maximal distance to the root. Let v1, . . . , vk
enumerate all children of v, and assume for the sake of simplicity that k = mS + 1 –

119

5. First-Order Rewritability for Guarded-Based OMQs

the case where k > mS + 1 is treated analogously. For i = 1, . . . , k, let Yi := Xv ∩Xvi .
Hence, Yi ⊆ Xv, and since there are at most mS = 2wd(S) subsets of Xv, it must be the
case that Yi = Yj for some i 6= j. Let δ′ be the tree decomposition that arises from δ by
removing the subtree rooted at vj from T , while inserting it below vi so that vj becomes
a child node of vi. Notice that, in δ′, vi has branching degree at most mS + 1 by the
choice of v. Moreover, δ′ is still a tree decomposition of D of width at most wd∗(S), since
connectivity is clearly ensured. Observe that

bδ′ =
∑
{dδ′,w(bδ′,w −mS) | bδ′,w > mS, w ∈ T}

≤
∑
{dδ,w(bδ,w −mS) | bδ,w > mS, w ∈ T \ {v, vi, vj}}+ dδ′,vi(bδ′,vi −mS)

<
∑
{dδ,w(bδ,w −mS) | bδ,w > mS, w ∈ T \ {v, vi, vj}}+ dδ,v(bδ,v −mS)

= bδ.

(Notice that dδ′,vi < dδ,v and bδ′,vi ≤ bδ,v.) Now an application of the induction hypothesis
yields the claim. �

By Lemma 5.175.17 we can thus always assume that the encoding of an S-database
together with an associated tree decomposition and an adornment has branching degree
at most mS = 2wd(S).

We now proceed with the automata constructions to prove Lemma 5.115.11. Firstly, we
would like to recall the automaton CS from Lemma 4.414.41:

Lemma 5.18. There is an mS-2APTA CS that accepts an mS-ary ΓS-labeled tree t iff t
is consistent. The number of states of CS is constant. Moreover, CS can be constructed in
polynomial time in the size of ΓS.

Proof. The automaton CS is equally constructed as the automaton from Lemma 4.414.41.
Actually, the only difference between CS and the one from Lemma 4.414.41 is the fact that
the CS constructed here works on mS-ary trees instead of amorphous trees. However, the
construction proceeds similar to the one of Lemma 4.414.41 and we omit details. �

Just as a version of CS that works on mS-ary trees can be constructed, the same
holds accordingly for the automaton AQ from Lemma 4.424.42:

Lemma 5.19. There is an mS-2APTA AQ that accepts a consistent ΓS-labeled tree t iff
JtK |= Q. The number of states of AQ is exponential in wd(S ∪ sig(O)) and linear in
|S ∪ sig(O)|. We can construct AQ in doubly exponential time in the size of Q, and the
second exponent of the runtime of this construction only depends on wd(S ∪ sig(O)).

For a ΓS-labeled tree t, recall that δt denotes the standard tree decomposition of t, and
ηt denotes the standard adornment of t. Since t thus incorporates the information about
a tree decomposition and an adornment, the notions of being well-colored and simple
can be naturally defined for t as well. Formally, we say that t is simple (respectively,
well-colored) if δt is ηt-simple (respectively, ηt-well-colored).

120

5.3. Alternating Automata Approach

Lemma 5.20. There is am mS-2APTA RS that accepts a consistent ΓS-labeled tree iff it
is well-colored and simple. The number of states of RS is exponential in wd(S ∪ sig(O))
and linear in |S|. Moreover, RS can be constructed in polynomial time in the size of ΓS.

Proof. We can devise RS as the intersection of two separate mS-2APTA, R1,S and
R2,S, where the former checks whether the input tree t is simple and the latter checks
whether t is well-colored. Recall from Proposition 2.312.31 that building the intersection of
two mS-2APTAs is feasible in polynomial time.

The automaton R1,S. Let us first explain how the automaton R1,S is constructed. In
order to check whether t is simple, we have to check two conditions:

(i) |ηt(v)| ≤ 1, for each node v in t, and

(ii) ηt(v) 6= ηt(w), for all black nodes v, w in t with v 6= w.

The first condition is easy to check with anmS-2APTA (respecting the stated size bounds)
in a single top-down pass. We describe how the check the second one, assuming that the
input tree satisfies the first condition – the final automaton R1,S is again the intersection
of the two separate automata.

We shall describe the game G(R1,S, t). Adam will have a winning strategy in the
game G(R1,S, t) iff ηt(v) = ηt(w) for some black nodes v 6= w. Adam first navigates to
an arbitrary black node v for which he wants to prove that there is some other w 6= v
such that ηt(v) = ηt(w). He then selects the one and only atom Rā ∈ t(v) and guesses
the path to the node w for which he thinks that ηt(v) = ηt(w). While navigating to w,
Adam must ensure that the tuple ā appears at all nodes along his path of navigation, for
otherwise, the label Rā he finds will denote an atom distinct from the one in ηt(v). If he
finds such a node, he wins. During navigation to w, he must remember the atom Rā in
the states and also the last direction he came from. He must remember the directional
information due to the fact that we require v 6= w. Thus, the number of states of R1,S
also depends linearly on the branching degree mS, which still allows us the respect the
stated size bounds as mS = 2wd(S). While navigating to w, Adam is not allowed to
traverse the tree backwards in the direction he came from. For storing this information,
we need exponentially many states in wd(S) and linearly many in |S| and mS.

The automaton R2,S. Recall that a node v in t is well-colored iff it is either black, or
it has at least two successor nodes which are both well-colored. Having this definition in
place, devising R2,S becomes quite easy. In G(R2,S, t), Adam’s tasks is to prove that some
node v is not well-colored. Adam’s strategy to do so is as follows. Adam navigates to a
node v that is not well-colored and that has a maximum distance from the root. Since v
is not well-colored, v is white and it has less than two successors that are well-colored.
Moreover, since v has maximum distance from the root, v must have either no successors
or it has a single successor that is black. (Two black successors would turn v into a
well-colored node, while one black and a white successor – both not well-colored – would
turn the white successor into a node which is not well-colored, but has larger distance to
the root.) Therefore, all Adam has to do is to challenge Eve to show the existence of
that second successor. Adam will win if Eve cannot point to such a second successor.

121

5. First-Order Rewritability for Guarded-Based OMQs

Notice that the size of the state set of this automaton is independent from S. In fact,
R2,S has constantly many states. �

Remark 5.21. Let us remark here that the reason why we resort to mS-2APTA in this
section (rather than l-2APTA) lies in the construction of RS, since Adam needs to be in
control of the direction in which he moves.

The crucial task is to check condition (ii)(ii)(c)(c) of Proposition 5.135.13, which states the key
minimality criterion. Unfortunately, this involves an extra exponential blowup:

Lemma 5.22. There is an mS-2APTA MQ that accepts a consistent ΓS-labeled tree t
iff JtK \ {α} 6|= Q for all α ∈ JtK. The state set of MQ is of doubly exponential size
in wd(S ∪ sig(O)) and of exponential size in |S ∪ sig(O)|. Furthermore, MQ can be
constructed in triply exponential time in the size of Q, where the third exponent depends
only on wd(S ∪ sig(O)).

Proof. Firstly, we define an auxiliary alphabet ΛS that is the cross product of ΓS
together with an alphabet ΞS which carries information on “tagged” facts. Formally, we
set

ΞS := 2F , where F := {R]a1,...,an | R/n ∈ S, a1, . . . , an ∈ US},

and

ΛS := ΓS × ΞS.

Hence, the alphabet ΛS contains symbols of the form (ρ, ξ), where ρ ∈ ΓS and ξ is a set
of facts of the form R]ā which we will call tagged in the following. Intuitively, a tagged
fact R]ā specifies that the minimization procedure – which is to be implemented inMQ

in the following – should aim to satisfy Q without the need of Rā.
Given a ΛS-labeled tree t, recall that πΓS(t) (respectively, πΞS(t)) denotes the ΓS-

projection (respectively, ΞS-projection) of t. We say that t is consistent if

(i) πΓS(t) is consistent.

(ii) There exists at least one node v ∈ dom(t) such that πΞS(t) 6= ∅.

(iii) For all v ∈ dom(t), if R]ā ∈ πΞS(t), then also Rā ∈ πΓS(t).

If t is a consistent ΛS-labeled tree, we define

JtK := JπΓS(t)K \ {R([v]a1 , . . . , [v]an) | v ∈ dom(t), (ρ, ξ) ∈ t(v), R]a1,...,an ∈ ξ}.

That is, JtK removes those facts from JπΓS(t)K which are tagged.

Lemma 5.23. There is an mS-2APTA NQ that accepts a ΛS-labeled tree t if and only if

(i) t is consistent, and

(ii) JtK |= Q.

122

5.3. Alternating Automata Approach

The number of states of NQ is exponential in wd(S ∪ sig(O)) and linear in |S ∪ sig(O)|.
Moreover, NQ can be constructed in doubly exponential time in the size of Q, where the
second exponent only depends on wd(S ∪ sig(O)).

Proof sketch. The mS-2APTA NQ can be constructed as the intersection of two
2APTA, where one checks consistency and the other ensures that JtK |= Q. The former
can be constructed in a similar fashion as the one from Lemma 5.185.18 by additionally
checking that (i) the input tree contains at least one tagged fact, and (ii) if a tagged
fact occurs in a label, then also its non-tagged version does. Doing these checks is easily
achieved by a single top-down pass. The latter can be constructed in a similar spirit as
AQ from Lemma 5.195.19 so that NQ and the time needed to construct it respect the same
bounds. �

Having NQ from Lemma 5.235.23 in place, we are now going to construct MQ. The
mS-2APTAMQ will accept a consistent ΓS-labeled input tree t if and only if there is no
ΛS-labeled t′ such that

(i) πΓS(t′) = t,

(ii) t′ is consistent, and

(iii) Jt′K |= Q.

Equivalently,MQ will accept a consistent ΓS-labeled t iff there is no non-empty set of
facts A ⊆ JtK such that JtK \A |= Q.

Constructing MQ is easy using the machinery from Section 2.42.4. According to
Proposition 2.322.32, from NQ we can construct an mS-2APTA NQ,Γ such that L(NQ,Γ) =
πΓ(NQ). The number of states of NQ,Γ is exponential in the number of states of NQ, and
the time needed to construct it is exponential in the size of NQ. NowMQ is just defined
as the complement of NQ,Γ. Building the complement is feasible in polynomial time
(cf. Proposition 2.312.31), whence the claimed upper bounds on the size of the state set ofMQ

and the time needed to construct it follow from Lemma 5.225.22 and Proposition 2.312.31. �

We are now ready to prove Lemma 5.115.11:

Proof of Lemma 5.115.11. We can obtain BQ by intersecting the respective mS-2APTA
from Lemmas 5.185.18 to 5.205.20 and 5.225.22. It is clear BQ has doubly exponentially many states
in wd(S ∪ sig(O)) and, moreover, BQ can be constructed in triply exponential time as
claimed in the statement of Lemma 5.115.11. Thus, BQ accepts a ΓS-labeled tree t if and
only if

• t is consistent,
• t is well-colored and simple,

• JtK |= Q, and

• JtK \ {α} 6|= Q for all α ∈ JtK.

For a proof of Lemma 5.115.11, it thus remains to be shown that the language of BQ is

123

5. First-Order Rewritability for Guarded-Based OMQs

infinite iff Q is not first-order rewritable.
Suppose first that L(BQ) is infinite. Since the branching degree of the input trees

is bounded (recall that we run BQ on mS-ary trees), the mS-2APTA BQ accepts trees
of arbitrary height. Hence, there are infinitely many trees t0, t1, . . . , tk, . . . and natural
numbers h0, h1, . . . , hk, . . . such that, for i ≥ 0,

• ti has height hi,
• JtiK |= Q,

• ti is well-colored and simple, and

• JtiK |= Q, while JtiK \ {α} 6|= Q for all α ∈ JtiK.

Moreover, we can assume that i 6= j implies hi 6= hj (otherwise we simply drop tj). For
i ≥ 0, consider the standard tree decomposition δti and the standard adornment ηti
of ti. It is clear that δti is ηti-well-colored and ηti-simple as well. Moreover, for i 6= j,
the triples (JtiK, δti , ηti) must be non-isomorphic, since the height of ti and tj differ, i.e.,
hi 6= hj . We thus obtain by Proposition 5.135.13 that Q cannot be first-order rewritable.

Suppose now that Q is not first-order rewritable. By Proposition 5.135.13 there is an
infinite class S of pairwise non-isomorphic triples (D, δ, η) – where D is an S-database, δ
a tree decomposition of D of width at most wd∗(S), and η an adornment of (D, δ) – such
that

• δ is η-well-colored and η-simple,

• D |= Q, and

• for every α ∈ D it holds that D \ {α} 6|= Q.

Recall that we can encode every such triple γ = (D, δ, η) as a ΓS-labeled tree tγ .
Considering the encoding, for two non-isomorphic triples γ, γ′ ∈ S we must have tγ 6= tγ′ .
By construction we then have {tγ | γ ∈ S} ⊆ L(BQ). Hence, L(BQ) must be infinite since
S is. This completes the proof of Lemma 5.115.11. �

5.4 Cost Automata Approach

We proceed to study FO⇐(G,BAQ) using the more sophisticated model of cost automata.
This allows us to improve the complexity of FO⇐(G,BAQ) as stated in Theorem 5.45.4.
That is, we show that FO⇐(G,BAQ) is in 2ExpTime, and in ExpTime for schemas of
bounded width.

As in the previous approach, we develop a semantic characterization that relies on a
minimality criterion for trees accepted by cost automata. The extra features provided
by cost automata allow us to deal with such a minimality criterion in a more efficient
way than standard 2APTA. While our application of cost automata is transparent, the
complexity analysis relies on an intricate result on the boundedness problem for a certain
class of cost automata from [3131, 5959]. Before we proceed further, let us first introduce the
cost automata model.

124

5.4. Cost Automata Approach

5.4.1 Cost Automata

Cost automata [3131, 5858, 6060] extend traditional automata by providing counters that can
be manipulated at each transition. Instead of assigning a Boolean value to each input
structure (indicating whether it is accepted or not), these automata assign a value from
N∞ := N ∪ {∞} to each input – thus, cost automata define cost functions.

Here, we focus on cost automata that work on finite trees of unbounded degree, and
allow for two-way movements. In fact, the automata we need are those that extend
2APTA over finite trees with a single counter. The operation of such an automaton A
on each input t will be viewed as a two-player cost game G(A, t) between the players Eve
and Adam. Recall that the acceptance of an input tree for a conventional 2APTA can
be formalized via a two-player game as well. However, instead of sequences of priority
values, plays in the cost game between Eve and Adam will be assigned costs, and the
cost automaton specifies via an objective whether Eve’s goal is to minimize or maximize
that cost.

We remark that in this section we are going to work on amorphous labeled trees, i.e.,
that have an arbitrary branching degree. This is not necessary for a technical reason,
but it simplifies the presentation of our constructions.

Objectives An objective is a triple Obj = (Act, f, goal), where Act is a finite set of
actions, f an objective function, which assigns values from N∞ to sequences of actions, and
goal ∈ {min,max}. We shall consider a run of a (two-way) alternating cost automaton
as a two-player game with players Eve and Adam, where goal specifies whether Eve’s
aim is to minimize or maximize the objective function.

An example for an objective can be given by the well-known parity acceptance
condition which we also used for plain 2APTA. This condition can be recast into a parity
objective parity = (P, costparity, goal), where P is a finite set of priorities and costparity
is specified as follows: if goal = min (goal = max, respectively) then costparity maps a
sequence of priorities to 0 (∞, respectively), if the least priority that occurs infinitely
often is even, and to ∞ (0, respectively) otherwise.

The cost automata model In the following, given a set X, we denote by B+(X)
the set of all positive Boolean formulas without the use of true and false. Let Γ be an
alphabet. A two-way alternating cost automaton A that runs on Γ-labeled trees is a
tuple (S,Γ,Dir, s0,Obj, δ), where
• S is a finite set of states.

• Obj is an objective.

• s0 is the initial state.

• Dir, as in the case of 2APTA, describes the possible directions; in our case, we will
always have Dir = {0, l}.

• δ : S × Γ→ B+(tran(A)) the transition function, where

tran(A) := {〈d〉(s, c), [d](s, c) | s ∈ S, c ∈ Act, d ∈ Dir}.

125

5. First-Order Rewritability for Guarded-Based OMQs

To emphasize the objective that is used, we often call an automaton in the form of A an
Obj-automaton, and we call the class of all Γ-labeled trees its input trees. Notice that
each transition also carries information on the action c ∈ Act that is to be performed
when transitioning to a new state. We will present the concrete actions available to our
automata model below. We remark also that we excluded the formulas true and false
from the possible transitions only for the sake of simpler definitions.

Cost game semantics Fix an Obj-automaton A = (S,Γ,Dir, s0,Obj, δ). As in the
case of 2APTA, we assign owners to each formula from B+(tran(A)) in the expected
manner. That is, conjunctions are owned by Adam, disjunctions are owned by Eve,
atomic formulas of the form [d](s, c) are owned by Adam, while those of the form 〈d〉(s, c)
are owned by Eve.

Let t be a Γ-labeled tree. We define a two-player cost game G(A, t) for A and t.
The arena of the game is B+(tran(A))× dom(t), and the notion of possible choices for a
position (χ, v) in the game is defined as in the case of 2APTA, that is:

• If χ = χ1 ∧ χ2 or χ = χ1 ∨ χ2, then the possible choices are {(χ1, v), (χ2, v)}.
• If χ = [d](s, a) or χ = 〈d〉(s, a), then the possible choices are given by

{(δ(s, t(w)), w) | w ∈ dt(v)}.

Let χ0 := δ(s0, t(ε)). The initial position of the game is (χ0, ε), and, from any position
(χ, v), the game proceeds as follows:

• The player who owns χ selects a (χ′, w) from the possible choices of (χ, v), provided
there is one, and if so then

• the game continues from position (χ′, w).

The transition from (χ, v) to (χ′, w) is a move. If χ is of the form 〈d〉(s, c) or [d](s, c),
then we say that the output of (χ, v) is c. Otherwise, we simply say that the move has no
output. A play in G(A, t) is a (finite or infinite) sequence (χ0, ε), (χ1, v1), (χ2, v2), . . . of
positions arising from successive moves, and a strategy for one of the players is a function
that, given the history of the play, returns the next choice for that player. Again, fixing
a strategy for both players uniquely determines a play in G(A, t). A play π is consistent
with a strategy ξ, if there is a strategy ξ′ for the other player such that ξ and ξ′ yield
π. The output of a play π = (χ0, v0), (χ1, v1), . . . is the sequence of actions ci0 , ci1 , . . .
such that (i) 0 ≤ i0 < i1 < · · · , (ii) cij is the output of (χij , vij), for all j ≥ 0, and (iii) if
ij < ` < ij+1 or 0 ≤ ` < i0, then (χ`, v`) has no output.

Suppose Obj = (Act, f, goal). The cost of a play π with respect to Obj is the value of
f on the output of that play. If goal = min (goal = max, respectively) then an n-winning
strategy for Eve is a strategy such that the cost of any play consistent with that strategy
is at most n (at least n, respectively) with respect to Obj. We define

JAK : t 7−→ op{n | Eve has an n-winning strategy in G(A, t)},
where op = inf (respectively, op = sup) if goal = min (respectively, goal = max). We say
that JAK is the cost function defined by A.

126

5.4. Cost Automata Approach

Counter actions As in [3131], we are interested in objectives that are based on counters.
We use the elementary actions increment & check ic, reset r, and no change ε. Let γ be
a counter. Its initial value is 0 and afterwards it can take values from N according to a
sequence ū of actions from {ic, r, ε}. The meanings of r and ε are clear. The operation
ic increments the counter value (the increment) and, at the same time, indicates that we
are interested in the current value of the counter (the check). Let Cγ(ū) denote the set
of values at the moment(s) in the sequence ū when γ is checked, i.e., when the operation
ic occurs. For example, Cγ(icicricricicic) = {2, 1, 3} and Cγ(icicricic) = {2}.

Distance and parity automata The distance objective is

dist := ({ic, r, ε}, costdist,min),

and we assume that dist only has a single counter, say γ. The function costdist maps
a sequence ū of counter actions over {ic, r, ε} to supCγ(ū). We will be interested in
an objective that combines dist with the parity acceptance condition parity. Formally,
given two objectives O1 = (Act1, f1,min), O2 = (Act2, f2,min), we denote by O1 ∧O2 the
objective (Act1 × Act2,max{f1, f2},min).

We concentrate on dist ∧ parity-automata [3131], which are cost automata with a single
counter, and where Eve’s objective is to minimize the cost while satisfying the parity
condition.

Boundedness A key property of cost functions defined by cost automata is boundedness.
We say that A is bounded over a set C of input trees, if there exists an n ∈ N such that
JAK(t) ≤ n for every t ∈ C. Moreover, we say that A is bounded if it is bounded over the
set of all input trees. The following result establishes that, for dist∧ parity-automata, the
boundedness problem is decidable in singly exponential time.

Theorem 5.24. There is a polynomial f such that, for every dist ∧ parity-automaton A
using priorities {0, 1} for the parity acceptance condition, boundedness for A is decidable
in time ‖A‖f(m), where m is the number of states of A.
Remark 5.25. This result is formally stated in [3131]. The authors of [3131] rely on an
unpublished result from [5757]. This result has subsequently been published in [5959].

Our goal is to reduce FO⇐(G,BAQ) to the boundedness problem for dist ∧ parity-
automata. To this end, we first devise a semantic characterization of the first-order
rewritable OMQs from (G,BAQ) that is suitable for the use of cost automata. We then
devise a cost automaton that exploits this semantic characterization.

5.4.2 A Refined Semantic Characterization

Let Q = (S,O, G) be an OMQ from (G,BAQ), and D an S-database. Recall the notion
of a derivation tree for G with respect to D and Q from Subsection 4.3.14.3.1. Given such
a derivation tree T , the height of T is the maximum length of a path that leads from
the root node to a leaf node plus one, i.e., the maximum number of nodes of a branch.

127

5. First-Order Rewritability for Guarded-Based OMQs

Notice that the height of a derivation tree is defined such that every derivation tree has
a height of at least one. We say that T is k-ary if its branching degree is at most k.

Lemma 5.26. For every S-database D, the following are equivalent:

(i) D |= Q.

(ii) There exists a kQ-ary derivation tree for G w.r.t. D and Q, where

kQ := |S ∪ sig(O)| · wd(S ∪ sig(O))wd(S∪sig(O)).

Proof sketch. The direction from (ii)(ii) to (i)(i) is immediate by Lemma 4.444.44. The other
direction result essentially already follows from Lemma 4.444.44 by further analyzing the
derivation trees constructed in the proof of Lemma 4.444.44. More precisely, one observes
that the maximum number of non-equivalent bodies of guarded Datalog rules that one
can construct using symbols from S∪ sig(O) is bounded by kQ. This allows one to restrict
to such rules, whence the branching degree of the constructed derivation tree is bounded
by kQ. �

We define

cost(D, Q) := min{n | there is a kQ-ary derivation tree
for G w.r.t. D and Q of height n},

while the cost of Q is defined as

cost(Q) := sup{cost(D, Q) | D |= Q, D is an S-database with tw(D) ≤ wd∗(S)}.

In other words, the cost of Q is the least upper bound of cost(D, Q) over all S-databases
D of tree-width at most wd∗(S) such that D |= Q. If there is no such a database, then the
cost of Q is zero since sup∅ := 0. Actually, cost(Q) = 0 indicates that Q is unsatisfiable,
since D |= Q implies that cost(D, Q) ≥ 1.

If Q is unsatisfiable, then Q is trivially first-order rewritable. More generally, it turns
out that Q is first-order rewritable iff its cost is bounded. This is the content of the
following statement:

Proposition 5.27. For every OMQ Q ∈ (G,BAQ), the following are equivalent:

(i) Q is first-order rewritable.

(ii) cost(Q) <∞.

Proof. Let Q = (S,O, G). Throughout the proof, we let w := wd∗(S). Suppose first
that Q is first-order rewritable. By Proposition 5.75.7, this means that there is a k ≥ 0
such that, for every S-database D of tree-width at most w, if D |= Q, then there is a
D′ ⊆ D with at most k facts such that D′ |= Q. We show that cost(Q) <∞. Let S be
the class of all S-databases D with at most k facts such that D |= Q, and consider S
to be factorized modulo weak isomorphisms. Clearly, S must be finite. For each D ∈ S,
let TD be a kQ-ary derivation tree for G w.r.t. D and Q. Let n <∞ be the maximum

128

5.4. Cost Automata Approach

height among all the trees TD. We claim that cost(Q) ≤ n. Indeed, suppose that D is
an S-database of tree-width at most w such that D |= Q. By assumption, we can find a
D′ ⊆ D of at most k atoms such that D′ |= Q. Hence, (some weakly isomorphic copy
of) D′ is contained in S. Consider a kQ-ary derivation tree T for G w.r.t. D and Q of
minimal height. In case the height of T is greater that n, we know that TD′ is also a
derivation tree for G w.r.t. D and Q due to the fact that D′ ⊆ D. In this case, T is not
the minimal one, which is absurd by assumption. Therefore, the height of T is at most
n, and so cost(Q) ≤ n as required.

Suppose now that cost(Q) = n for some n ∈ N. Let D be an S-database of tree-width
at most wd∗(S). Given a kQ-ary derivation tree T for G w.r.t. D and Q, we define a
BCQ qT as follows. Let

ϕT :=
∧
{α | α is an S-fact and the label of a leaf node of T }.

We define qT to be the BCQ that results from ϕT by renaming all constants to variables
and closing the resulting formula off under existential quantifiers. Notice that if ϕT is
empty, then qT ≡ ϕT ≡ >. Now let

S := {qT | T is a kQ-ary derivation tree for G w.r.t. D and Q
of minimal height, where tw(D) ≤ wd∗(S)},

and let S ′ be the set S factorized modulo homomorphic equivalence. We claim that

q :=
∨
S ′

is a UBCQ equivalent to Q, and hence a first-order rewriting of Q. Observe first that
q is clearly a finite disjunction, since the number of atoms of each query in S is clearly
uniformly bounded due to the bound on the height and the branching degree of the
derivation trees. Hence, up to homomorphic equivalence, there are only finitely many
BCQs in S.

Suppose first that D |= Q for some S-database D. By Lemma 5.265.26 there exists a
kQ-ary derivation tree T for G w.r.t. D and Q. Hence, (some query homomorphically
equivalent to) qT is present in S ′, whence D |= q follows immediately by construction.

Suppose now to the contrary that D |= q for some S-database D, i.e., D |= qT for
some qT present in S ′. A straightforward induction on the height of T shows that D |= Q
holds as well. �

5.4.3 Devising automata

Consider an OMQ Q = (S,O, G) from (G,BAQ). Our goal is to devise a dist ∧ parity-
automaton BQ such that BQ is bounded iff cost(Q) is finite. Therefore, by Proposition 5.275.27,
to check whether Q is first-order rewritable, we simply need to check if JBQK is bounded,
which, by Theorem 5.245.24, can be done in exponential time in the number of states of BQ.

The input trees to our automata will be over the same alphabet ΓS that is used to
encode tree-like S-databases in Sections 4.34.3 and 5.35.3. Recall that a dist∧parity-automaton

129

5. First-Order Rewritability for Guarded-Based OMQs

A is bounded over a certain class C of input trees, if there is an n ∈ N such that JAK(t) ≤ n
for every tree t ∈ C. The following lemma is the main ingredient toward a proof of
Theorem 5.45.4:

Lemma 5.28. There is a dist ∧ parity-automaton HQ using priorities {0, 1} such that

HQ is bounded over consistent ΓS-labeled trees ⇐⇒ cost(Q) <∞.

The number of states of HQ is exponential in wd(S ∪ sig(O)) and linear in |S ∪ sig(O)|.
Moreover, HQ can be constructed in doubly exponential time such that the second exponent
of the runtime only depends on wd(S ∪ sig(O)).

Proof. Let Q = (S,O, G) be an OMQ from (G,BAQ). Consider a consistent ΓS-labeled
tree t. We are going to devise a dist ∧ parity-automaton HQ running on ΓS-labeled trees
such that Eve has an n-winning strategy in G(HQ, t) if and only if there is a derivation
tree T for G w.r.t. JtK and Q of height at most n.

Let HQ = (S,ΓS, {0, l}, s0, dist ∧ parity, δ). For the parity condition, we shall only
use the priorities {0, 1}. The remaining components of HQ are specified in the following.

• The state set S: Let US be the finite set of constants that is used for arguments in ΓS.
The state set S consists of all atomic formulas R(a1, . . . , ak), where R/k ∈ S∪sig(O)
and a1, . . . , ak ∈ US. We set the initial state s0 to be equal to G. For technical
reasons, we include an additional sink state, denoted sink.

• The transition function δ: We define δ as follows. Consider a symbol ρ ∈ ΓS.
Firstly, we set

δ(sink, ρ) := 〈0〉(sink, ε, 0).

Secondly, let R(a1, . . . , ak) be a state different from sink. We set ā := a1, . . . , ak
and distinguish three cases:
(C1) If {a1, . . . , ak} 6⊆ names(ρ), then

δ(R(ā), ρ) := 〈0〉(R(ā), ic, 1).

In this case, Eve will lose the game as she loops in this state while incre-
menting the counter and producing an infinite run whose least priority that
occurs infinitely often (i.e., the priority 1) is odd.

(C2) Otherwise, if O |= R(ā), then

δ(R(ā), ρ) := 〈0〉(sink, ic, 1).

In this case, the atomic R(ā) is already entailed by O alone, and Eve wins
unconditionally by switching again to the sink state. Notice that, since we
assume constant-free rules, this is only possible when [ā] = ∅.

(C3) Otherwise, if R(ā) ∈ ρ then

δ(R(ā), ρ) := 〈0〉(sink, ic, 1).

130

5.4. Cost Automata Approach

Eve will win the game as she first changes to the sink state (incrementing the
counter once), and then she loops in the sink state while not incrementing
the counter. In the sink state, she thus produces an infinite play whose least
priority that occurs infinitely often (the priority 0) is even.

(C4) Otherwise, let

τ1 := α1,1 ∧ · · · ∧ α1,m1 , . . . , τl := αl,1 ∧ · · · ∧ αl,ml

be an enumeration of all non-empty guarded conjunctions of atomic facts from
S for which it holds that ({αi,1, . . . , αi,mi},O) |= R(ā), for all i = 1, . . . , l.
Notice that l ≥ 1 since ({R(ā)},O) |= R(ā). We let

δ(R(ā), ρ) := 〈l〉(R(ā), ε, 1) ∨
l∨

i=1

mi∧
j=1
〈0〉(αi,j , ic, 1).

Eve may choose between two possibilities here. Either she moves to some
neighboring node in the tree while remaining in state R(ā), or she may
decide to pick a guarded conjunction τi := αi,1 ∧ · · · ∧ αi,mi . In the latter
case, Adam challenges Eve’s choice by changing the state to one of the αi,j
while incrementing the counter. Notice that this case corresponds to the
unfolding of a (series of) rules and thus to the built-up of a derivation tree.

This completes the construction of HQ. Notice also that the construction is reminiscent
of the one provided in the proof of Lemma 4.424.42. We briefly comment on the size of HQ
and the time required to construct the same.

It is clear that the number of states of HQ is exponential in wd(S∪ sig(O)) and linear
in |S ∪ sig(O)|. Moreover, the overall construction of HQ takes doubly exponential time
in the size of Q. An analysis of this is performed as in the proof of Lemma 4.424.42. The
determining factor for this upper bound is again the construction of δ(·, ·).

It is technically rather tedious, but not very interesting, to show that the behavior
of HQ is indeed correct, that is, if t is a consistent ΓS-labeled tree, then Eve has an
n-winning strategy in G(HQ, t) iff there is a derivation tree T for G w.r.t. JtK and Q of
height at most n. We leave this technical result as an exercise to the reader.

Hence, for any consistent ΓS-labeled tree t, we have that JHQK(t) = n if and only if n
is the minimal n0 such that there is a derivation tree for G w.r.t. JtK and Q of height
n0. Therefore, for all n ∈ N, it is the case that JHQK(t) = n iff cost(JtK, Q) = n. We
thus obtain that HQ is bounded over consistent ΓS-labeled trees iff cost(Q) < ∞. By
Proposition 5.275.27, this means that HQ is bounded over all consistent ΓS-labeled trees iff
Q is first-order rewritable. This concludes the proof of Lemma 5.285.28. �

We are now in a position to prove Theorem 5.45.4:

Proof of Theorem 5.45.4. The desired dist∧ parity-automaton BQ is defined as C′S ∩HQ,
where C′S is similar to the 2APTA CS of Lemma 4.414.41 that checks for consistency of
ΓS-labeled trees. Notice that C′S is essentially a dist ∧ parity-automaton that assigns

131

5. First-Order Rewritability for Guarded-Based OMQs

zero (respectively, ∞) to input trees that are consistent (respectively, inconsistent). One
can take build the intersection of two cost automata with the objectives O1 and O2 in
polynomial time similarly as in the case of ordinary 2APTA (cf. Proposition 2.312.31) so that
the resulting cost automaton has the objective O1∧O2. It is easy to check that C′S∩HQ is
again a dist ∧ parity-automaton that only uses priorities {0, 1}, since C′S uses no counters.
Since we can build the intersection C′S ∩HQ in polynomial time, Lemmas 5.285.28 and 4.414.41
imply that BQ has exponentially many states, and that it can be constructed in doubly
exponential time within the required time bounds stated in Theorem 5.45.4. Moreover,
Lemma 5.285.28 also implies that BQ is bounded iff cost(Q) <∞.

It remains to be shown that the boundedness of JBQK can be checked in double
exponential time. By Theorem 5.245.24, there is a polynomial f such that the latter task
can be carried out in time ‖BQ‖f(m), where m is the number of states of BQ, and the
claim follows. For schemas of bounded width, one easily checks that a similar analysis
that yields a singly exponential time upper bound. �

5.5 Frontier-Guarded OMQs

As announced in the introductory part of this chapter, we will now show how to employ
Theorem 5.45.4 in order to arrive at the upper bounds stated in Theorem 5.35.3. To this end,
we need to show the following:

(i) FO⇐(FG,UCQ) is in 2ExpTime, and

(ii) FO⇐(G,AQ) is in ExpTime, assuming that we only use relation symbols of
bounded arity.

As in Subsection 4.3.24.3.2, it turns out that we can focus on the Boolean variants of
these problems:

Lemma 5.29. (i) FO⇐(FG,UCQ) can be polynomially reduced to FO⇐(FG,BAQ).

(ii) FO⇐(G,AQ) can be polynomially reduced to FO⇐(G,BAQ).

Proof. We only prove the first item, the second one is shown accordingly. The reduction
is similar to the one presented in the proof of Lemma 4.454.45 and is based on an according
one for description logics given in [3434]. Let Q = (S,O, q(x1, . . . , xn)) be an OMQ from
(FG,UCQ), where

q(x1, . . . , xn) =
k∨
i=1

qi(x1, . . . , xn),

and all the qi(x1, . . . , xn) are CQs. Assume w.l.o.g. that the variables x1, . . . , xn are all
pairwise distinct. Pick fresh unary relation symbols A1, . . . , An that do not occur in Q,
and, for i = 1, . . . , k, let q′i be the BCQ that results from qi by (i) adding the atoms
A1(x1), . . . , An(xn) as conjuncts to the body atoms of qi, and (ii) closing it off under
existential quantifiers. Let S′ := S∪ {A1, . . . , An}, and let O′ consist of the rules from O

132

5.5. Frontier-Guarded OMQs

plus the rules

q′i → G, i = 1, . . . , n,

where G is a 0-ary predicate not occurring in Q. Let Q′ := (S′,O′, G). We claim that Q
is first-order rewritable iff Q′ is.

Indeed, if ϕQ(x1, . . . , xn) is a first-order rewriting of Q, then obviously

ϕQ′ := ∃x1, . . . , xn (ϕQ(x1, . . . , xn) ∧A1(x1) ∧ · · · ∧An(xn))

is a first-order rewriting of Q′.
Conversely, suppose qQ′ is a UCQ-rewriting of Q′. By the construction of Q′, it

is easy to show that we can assume w.l.o.g. that each disjunct of qQ′ has body atoms
A1(v1), . . . , An(vn), where v1, . . . , vn is a sequence of pairwise distinct variables. Moreover,
we can assume that these are the only atoms over the schema S′ \ S that qQ′ contains in
its constituent BCQs. Let us rename the variables v1, . . . , vn to x1, . . . , xn in qQ′ .

Let qQ be the UCQ resulting from qQ′ by dropping all atoms from qQ′ of the form
Ai(xi) and their existential quantifiers ∃xi. We claim that qQ is a UCQ-rewriting of Q.

Suppose that D is an S-databases such that D |= Q(a1, . . . , an). Let D′ be the
S′-database D ∪ {A1(a1), . . . , An(an)}. From D |= Q(a1, . . . , an) we infer that D′ |= Q′,
whence D′ |= qQ′ follows. Hence, there is a disjunct p of qQ′ that contains atoms of the
form Ai(vi) so that D′ |= p, whence it follows that D |= qQ(a1, . . . , an).

Suppose on the other hand that D is an S-database such that D |= qQ(a1, . . . , an).
Let D′ := D ∪ {A1(a1), . . . , An(an)}. It follows that D′ |= qQ′ , whence from D′ |= Q′ we
conclude that D |= Q(a1, . . . , an). �

Now Theorem 5.45.4 and Lemma 5.295.29 immediately entail that the problem FO⇐(G,AQ)
is in ExpTime for schemas of bounded width. Therefore, it remains to be shown that
FO⇐(FG,BAQ) is in 2ExpTime.

Treeification As mentioned in the introductory part of this chapter, to show that
FO⇐(FG,BAQ) is in 2ExpTime, we exploit the treeification techniques developed in
Subsection 4.3.24.3.2.

Fix an OMQ Q = (S,O, G) from (FG,BAQ), and let C be a fresh relation symbol of
arity wd(O) – recall that wd(O) denotes the maximum number of variables occurring
in a rule body of O. We remind the reader that ηC(Q) denotes the C-treeification of Q
defined in Subsection 4.3.24.3.2. As in the case of containment, first-order rewritability is
preserved when passing from an OMQ to its C-treeification. This is the content of the
following lemma:

Lemma 5.30. Q is first-order rewritable iff ηC(Q) is.

Before proving Lemma 5.305.30, we need one additional technical results first:

Lemma 5.31. Let D be an S-database. If D |= Q, then there exists an S-database B of
tree-width at most max{0,wd(O)− 1} such that

133

5. First-Order Rewritability for Guarded-Based OMQs

(i) B |= Q, and

(ii) there is a weak homomorphism from B to D.

Proof. Suppose that D |= Q, and consider the C-treeification ηC(Q) of Q. Lemma 4.574.57
tells us that D |= Q implies DC |= ηC(Q), where DC denotes the (S ∪ {C})-database
obtained by exhaustively adding all possible {C}-facts toD using constants from adom(D).
By Lemma 4.364.36, we know that there is an acyclic (S ∪ {C})-database B′ such that
B′ |= ηC(Q), and a weak homomorphism from B′ to DC . Let B be the S-database
obtained by building the S-retract of B′, i.e., B := B � S. Obviously, there is a weak
homomorphism from B to D. Moreover, we can easily see that B has tree-width at most
max{0,wd(O) − 1}, since B′ is acyclic and the arity of C is wd(O). This proves the
claim. �

Proof of Lemma 5.305.30. Throughout the proof, let us write w for max{0,wd(O)− 1}.
We can assume that w > 0, as the case w = 0 is entirely trivial, since in this case, Q and
ηC(Q) are always first-order rewritable. Suppose first that Q is first-order rewritable,
and let q =

∨n
i=1 pi be a UCQ-rewriting of Q. By the tree-width of a CQ p, we mean the

tree-width of the structure corresponding to p.

Claim 5.32. The UBCQ q is equivalent to a UBCQ whose disjuncts are all of tree-width
at most w.

Proof. Let q′ be a UBCQ that contains a disjunct p′ iff (i) p′ has tree-width at most w,
(ii) p′ |= pi for some i = 1, . . . , n, and (iii) p′ is minimal with respect to these properties.
Moreover, we demand two distinct disjuncts of q′ are not homomorphically equivalent.
Thus, q′ is indeed a finite UBCQ. We show that q is equivalent to q′.

Suppose first that D |= q. Then also D |= Q, whence by Lemma 5.315.31 there is an
S-database B of tree-width at most w such that B |= Q and a weak homomorphism
from B to D. Hence, B |= q. Since B has tree-width at most w, there is a B′ ⊆ B
and a disjunct p of q′ such that B′ and p are weakly homomorphically equivalent, i.e.,
there is a weak homomorphism from Ap to B′ and vice versa. Hence B′ |= p and thus
B |= p. Since there is a weak homomorphism from B to D, it follows that D |= p and
thus D |= q′.

Suppose now that D |= q′, i.e., D |= p for some disjunct p of q′. Since p |= pi, we
immediately obtain D |= q. �

By Claim 5.325.32 we may therefore assume w.l.o.g. that each pi has tree-width at most
w. For each i = 1, . . . , n, let δi = (Ti, (Xi,v)v∈Ti) be a tree decomposition of width at
most w of the structure Api corresponding to pi. Let

q′ :=
∨
{ΛS∪{C}

pi | i = 1, . . . , n}

be the disjunction of the (S ∪ {C})-treeifications of the queries p1, . . . , pn. Obviously, q′
is a finite UBCQ, and we claim that q′ is a UCQ-rewriting of ηC(Q).

Indeed, suppose D is an (S ∪ {C})-database such that D |= ηC(Q). According to
Lemma 4.364.36, there is an acyclic (S∪ {C})-database B such that B |= ηC(Q) and a weak

134

5.5. Frontier-Guarded OMQs

homomorphism from B to D. By Lemma 4.554.55 we have B � S |= Q as well, whence
B � S |= pi for some i = 1, . . . , n and thus B |= pi. Lemma 4.534.53 tells us that

B |= pi ⇐⇒ B |= ΛS∪{C}
pi ,

since B is acyclic. Hence, also B |= q′, whence D |= q′ follows due to the fact that there
is a weak homomorphism from B to D.

Conversely, suppose that D |= q′, i.e., D |= p for some p that is a disjunct of
the (S ∪ {C})-treeification of some pi. Consider the structure Ap corresponding to p.
Obviously, Ap |= p and since p |= pi also Ap |= pi, whence Ap |= q and thus Ap � S |= Q
follows. By Lemma 4.554.55 we obtain Ap |= ηC(Q) as well. Now D |= p obviously entails
that there is a weak homomorphism from Ap to D. Hence, D |= ηC(Q) since OMQs are
closed under weak homomorphisms (Proposition 3.183.18).

Suppose now that ηC(Q) is first-order rewritable and let q =
∨n
i=1 pi be a UCQ-

rewriting of ηC(Q). We show that Q is first-order rewritable as well. We can assume
that q is actually a disjunction of acyclic BCQs, since, if not, we can replace q simply by
the disjunction of all (S ∪ {C})-treeifications of the BCQs pi. It is not hard to show that
the resulting UBCQ is equivalent to the original q.

For i = 1, . . . , n, let p′i be the BCQ that results from pi by dropping all body atoms
of the form C(x0, . . . , xw). Moreover, let q′ :=

∨n
i=1 p

′
i. We claim that the UBCQ q′ is a

UCQ-rewriting of Q.
Suppose first that D |= Q for an S-database D. By Lemma 5.315.31 there is an S-database

B of tree-width at most w such that B |= Q and there is a weak homomorphism from
B to D. Fix a tree decomposition δ = (T , (Xv)v∈T) of B. We can turn B into an
acyclic (S ∪ {C})-database by adding to B all facts of the form C(a0, . . . , aw) such
that {a0, . . . , aw} ⊆ Xv for some v ∈ T . Call the resulting database D′. Obviously,
D′ � S |= Q, and since D′ is clearly acyclic, we obtain D′ |= ηC(Q) by Lemma 4.554.55.
Therefore, D′ |= pi for some i = 1, . . . , n, whence D′ |= p′i since p′i does not have any
occurrence of the predicate C. Hence, also B |= p′i, whence D |= p′i follows since p′i is
closed under weak homomorphisms. This proves that D |= q′, as required.

Conversely, suppose now that D |= q′, i.e., D |= p′i for some i = 1, . . . , n and an
S-database D. Let Ai denote the S-structure corresponding to p′i, and notice that there is
thus a weak homomorphism from Ai to D. Obviously, Ai must have tree-width at most w
by the construction of p′i. Let Api be the structure corresponding to pi. By definition, we
have Api |= pi, whence Api |= ηC(Q). By Lemma 4.554.55, we obtain Api � S |= Q. Obviously,
the structures Api � S and Ai are weakly isomorphic by construction. Hence, also Ai |= Q,
whence D |= Q follows, since Q is closed under weak homomorphisms. This concludes
the proof of Lemma 5.305.30. �

We are now ready to conclude the proof of Theorem 5.35.3:

Proof of Theorem 5.35.3. Let Q = (S,O, G) be an OMQ from (FG,BAQ), and let
C be a fresh predicate of arity wd(O). To decide whether Q is first-order rewritable,
we first compute ηC(Q) which is clearly feasible in exponential time. We then decide
whether ηC(Q) is first-order rewritable using the algorithm devised in the proof of

135

5. First-Order Rewritability for Guarded-Based OMQs

Theorem 5.45.4. Although ηC(Q) is of exponential size, we only increase the maximum arity
of the predicates used by a polynomial factor. Hence, we can decide whether ηC(Q) is
first-order rewritable in 2ExpTime with respect to the size of Q. By Lemma 5.305.30, Q is
first-order rewritable iff ηC(Q) is. This concludes the proofs of the upper bounds stated
in Theorem 5.35.3. As announced in the introductory part of this section, a 2ExpTime
lower bound for the problem FO⇐(G,AQ) – in fact, for the problem FO⇐(G,BAQ) – is
given in Appendix B.3B.3. �

5.6 Summary

In this chapter, we studied first-order rewritability for OMQs based on (frontier-)guarded
sets of TGDs. We observed that the setting in the case of having relations of arity greater
than two renders the problem of deciding first-order rewritability more challenging. The
main result of this section arguably is that first-order rewritability for OMQs from
(FG,UCQ) is 2ExpTime-complete. The (tight) upper bound was obtained by relying on
the rather sophisticated model of cost automata. In addition, we provided non-optimal
results for first-order rewritability by relying on classical automata methods. Though not
optimal, we believe that the techniques developed to prove it are interesting in their own.

Directions for future research include an investigation on the worst-case size of possible
UCQ-rewritings. For the DL-setting, this has been studied in [3636], where it is shown
that there is a class of OMQs based on EL whose smallest UCQ rewritings are triply
exponential in size. Rough upper bounds for the size of UCQ-rewritings can be obtained
by analyzing the algorithm based on alternating automata given in Section 5.35.3. However,
we do not believe that the obtained bounds there are optimal. Concerning lower bounds,
one can inherit the triply exponential lower bounds from [3636] since guarded rules extend
EL. We conjecture that a tight bound for the size of rewritings of guarded-based OMQs
(also frontier-guarded) is actually a tower of exponentials of height four. We do not go
into details here and leave this question up to future research.

Apart from theoretical results, another question for future research concerns the
practical implementation of procedures that decide first-order rewritability. First steps
have been taken in [9191] for the description logic EL. However, for logics that support
inverse roles and predicates of higher arity, practical algorithms are still unknown.

136

CHAPTER 6
Pushing the Warded Envelope

Further

In the previous chapters we studied static analysis tasks for various ontology-mediated
query languages. A common feature of the languages studied is their incapability of
expressing all Datalog queries. As we observed, this is necessary, since both containment
and first-order rewritability are undecidable for Datalog queries. However, it turns out
that some languages designed for practical reasoning neglect this fact and prefer to
expose the full power of recursion to their users, i.e., they capture all Datalog queries. To
wit, recall that Vadalog [2626, 2727] is a language based on warded rules,11 and is designed
for complex reasoning over knowledge graphs that provides full Datalog recursion and
ontological reasoning capabilities, while still having tractable data complexity.

Let us examine Datalog queries more closely. Given a Datalog query Q = (Π, G),
it is known that Q is equivalent to a possibly infinite union q =

∨
k≥1 qk of conjunctive

queries [5555]. Roughly speaking, we can view qk as a result of “unfolding” the rules of
Qi backwards. Each of these “unfoldings” gives rise to a tree whose nodes are labeled
with atomic formulas such that (i) leaf nodes are labeled by atoms having an extensional
predicate, and (ii) if a node is not a leaf node, is labeled by an atom α, and has children
respectively labeled by β1, . . . , βk, then the rule β1, . . . , βk → α arises from a Datalog
rule of Π by renaming variables. Let us call such a tree a proof tree. The CQs qk are
then obtained by taking the conjunction of the leaf nodes of some proof tree, and the
UCQ q is the exhaustive union of all such CQs that arise from proof trees.

It turns out that proof trees are convenient structures that can be employed for
several decision problems for Datalog queries. To wit, in [5555], the authors show how proof
trees can be employed in order to provide an automata-based decision procedure for the
problem asking whether a Datalog query is contained in a UCQ. Apart from that, proof
trees represent computations that the Datalog query performs over an input database

1Recall that we denote by W the class of all finite warded sets of rules.

137

6. Pushing the Warded Envelope Further

D. Indeed, if D |= Q(ā) for some tuple ā over adom(D), then there is a k ≥ 1 such that
D |= qk(ā). Thus, the proof tree from which qk is obtained describes the derivation of
the goal G(ā) using the rules from Π.

The starting point of this chapter is the question whether we can provide a reasonable
notion of proof tree for rule-based OMQs, and, if yes, whether we can employ this
notion to solve important questions concerning rule-based OMQs. We provide affirmative
answers to both of these questions. More specifically, we provide a notion of proof tree for
rule-based OMQs that serves as an elegant technical tool for answering rule-based OMQs.
Moreover, they also enable us to provide a strong sufficient criterion for rule-based OMQs
that to be expressible as Datalog queries. This allows us to show that OMQs from
(W,CQ) are Datalog rewritable. Apart from that, we identify a fragment of (W,CQ)
and use proof trees to show that this fragment has, under standard complexity-theoretic
assumptions, a query evaluation problem of lower complexity than that of warded rules.
By studying this fragment, we contribute to the theory of Vadalog since its language is
based on warded sets of rules.

Contributions Let us give more details on the contributions of this chapter:

Proof trees for OMQs We first generalize the notion of proof trees to capture rules
having existential quantifiers in their heads. Just as proof trees for Datalog queries are
trees labeled by atomic formulas, proof trees for OMQs will be trees labeled by CQs
that are constructed according to prescribed rules. Essentially, proof trees for OMQs
turn out to be closely related to resolution-based proof procedures such as XRewrite from
Section 4.24.2. However, the primary goal of proof trees is not to be a data structure for a
particular algorithm. Instead, the guiding principle of proof trees is to provide a generic
tree structure, where each node label contains all and only the information necessary to
prove that node label using resolution. Another way to view proof trees is to consider
them as computation trees of a generic alternating query answering algorithm – the CQs
labeling the nodes of a proof tree can be viewed as memory snapshots of this alternating
algorithm when its computation progresses to the according node.

Having this machinery and its relationship to alternating query answering algorithms
in place has interesting applications. Firstly, it allows us to devise simple and elegant
query answering algorithms for popular classes of TGDs. In fact, we shall provide a simple
alternating algorithm for answering OMQs based on warded sets of rules. This algorithm
will turn out to run in polynomial space, whence by the equality APSpace = ExpTime,
it follows that Eval(W,CQ) is in ExpTime – this is a result first established in [8484].
Secondly, proof trees allow us to identify a strong sufficient criterion for OMQs based on
existential to be rewritable into Datalog queries. We use this result to show that OMQs
from (W,CQ) are Datalog rewritable, and we show how to effectively construct Datalog
rewritings for them. It is an open question whether the size of these rewritings is optimal,
and it is open whether the sufficient criterion provided is also necessary, i.e., whether
this criterion characterizes Datalog rewritability of rule-based OMQs.

A space-efficient fragment of warded rules As mentioned above, Vadalog is a system
for performing complex reasoning tasks such as those required for advanced knowledge

138

graphs [2626, 2727]. Its main language is based on warded sets of rules, and it is designed
to handle large amounts of data, since knowledge graphs tend to be rather huge in size.
Vadalog is Oxford’s contribution to the Vada research project22 and has already found
industrial applications. In the context of the development of Vadalog, the following
question has emerged:

Can we limit the recursion allowed by wardedness in order to obtain a formalism
that provides a convenient syntax for expressing useful statements, importantly,
most of the scenarios provided by our industrial partners, and at the same
time achieves efficiency in terms of space, in particular, NLogSpace data
complexity?

Let us stress that NLogSpace data complexity is the best that one can hope for,
since navigational capabilities are vital for graph-based structures, and already graph
reachability is well-known to be NLogSpace-hard. It is known that NLogSpace is
contained in the class NC2 of parallelizable problems. This means that reasoning in the
more refined formalism that we are aiming is, in principle, parallelizable, unlike warded
sets of rules, for which query answering is PTime-complete in data complexity and thus
(presumably) intrinsically sequential.

Extensive benchmark results based on a variety of scenarios are available for the
Vadalog system, including (i) ChaseBench [3030], a benchmark that targets data exchange
and query answering problems (ii) iBench, a data exchange benchmark developed at the
University of Toronto [77] (iii) iWarded, a benchmark specifically targeted at warded sets
of TGDs, (iv) a benchmark based on DBpedia, and (v) a number of other synthetic and
industrial scenarios [2727]. Let us stress that all the above benchmarks contain only warded
sets of TGDs. In fact, a good part of them are not warded by chance, i.e., they contain
joins among harmful variables, which is one of the distinctive features of wardedness
(cf. [2727] and Subsection 3.4.23.4.2). After analyzing the above benchmarks, we observed that
recursion is often used in a restricted way. Approximately 70% of the TGDs use recursion
in as follows: the body of a TGD contains at most one atom whose predicate is mutually
recursive with a predicate in the head. More specifically, approximately 55% of the TGDs
directly use the above type of recursion, while 15% can be transformed into warded sets
of TGDs that use recursion as explained above. This transformation relies on a standard
elimination procedure of unnecessary non-linear recursion. For example, the rules

E(x, y)→ T (x, y), T (x, y), T (y, z)→ T (x, z),

which compute the transitive closure of the extensional binary relation E using non-linear
recursion, can be rewritten as the set

E(x, y)→ T (x, y), E(x, y), T (y, z)→ T (x, z),

that uses linear recursion [111111, 113113], which allows only one occurrence of an intensional
predicate to appear in each rule body. Interestingly, the type of recursion discussed above

2http://vada.org.ukhttp://vada.org.uk

139

http://vada.org.uk

6. Pushing the Warded Envelope Further

has been already studied in the context of Datalog, and is known as piecewise linear [22].
It is a refinement of linear recursion, which we already mentioned in the above example.

Based on this key observation, the following research questions have immediately
emerged:
(i) Do warded sets of rules with piecewise linear recursion achieve space-efficiency for

ontological query answering?33

(ii) Is the combination of wardedness and piecewise linearity justified? In other words,
can we achieve the same with piecewise linear rules without the wardedness
condition?

(iii) What is the expressiveness of the ontology-mediated language based on warded
sets of rules with piecewise linear recursion relative to prominent query languages
such as Datalog?

We provide answers to all these questions in the following. More precisely, our results
can be summarized as follows:
(i) We show that query answering under warded sets of rules that use piecewise linear

recursion is NLogSpace-complete in data complexity, and PSpace-complete in
combined complexity. To establish this result, we heavily rely on proof trees for
sets of TGDs discussed above. In particular, we show that query answering under
warded sets of rules that use piecewise linear recursion boils down to the problem
of checking whether a proof tree of a certain shape exists. This in turn can be
done via a space-bounded non-deterministic algorithm.

(ii) It turns out that query answering under arbitrary sets of TGDs that use piecewise
linear recursion is undecidable. We show this via a simple reduction from the
standard unbounded tiling problem. Hence, the combination of wardedness and
piecewise linearity is indeed justified from an algorithmic point of view.

(iii) We again resort to the machinery of proof trees to show that OMQs based on
warded piecewise linear sets of TGDs are in fact always rewritable into piecewise
linear Datalog queries.

Outline After this introductory part, we introduce the central notion of proof tree in
Section 6.16.1. In Section 6.26.2, we study piecewise linear warded sets of TGDs, and we show
that query answering under them is PSpace-complete in combined, and NLogSpace-
complete in data complexity. Moreover, we re-establish the complexity of query answering
under warded sets of TGDs, i.e., ExpTime-completeness in combined, and PTime-
completeness in data complexity. We also show that query answering under piecewise
linear sets of TGDs, without assuming they are warded, is undecidable. In Section 6.36.3,
using proof trees, we study rewritability of rule-based OMQs into Datalog queries. Finally,
we close this chapter in Section 6.46.4 and provide directions for future research. Some of
the proofs are deferred to Appendix B.4B.4.

3The idea of combining wardedness with piecewise linearity has been already mentioned in the invited
paper [2626], where the obtained formalism is called strongly warded.

140

6.1. Proof Trees

6.1 Proof Trees

It is known that given a CQ q and a set O of TGDs, we can unfold q using the TGDs of
O into an infinite union of CQs qO such that, for every database D, certq,O(D) = qO(D)
(cf. [8282, 9999] and the algorithm XRewrite presented in Appendix AA). Let us clarify that in
our context, an “unfolding” – which is essentially a resolution step – is more complex
than in the context of Datalog due to the existentially quantified variables in the heads
of TGDs. The intention underlying our notion of proof tree is to encode the sequence of
CQs, generated during the unfolding of q with O, in a tree that leads to a certain CQ q′

of qO in such a way that each intermediate CQ, as well as q′, is carefully decomposed
into smaller subqueries that form the nodes of the tree, while the root corresponds to q
and the leaves to q′. As we shall see, if we focus on well-behaved classes of TGDs such as
(piecewise linear) warded sets of TGDs, we can establish upper bounds on the size of
these subqueries, which in turn allows us to devise space-bounded algorithms for query
answering.

In what follows, we define the notion of proof tree (Definition 6.56.5), and establish its
correspondence with query answering (Theorem 6.66.6). To this end, we need to introduce
the main building blocks of a proof tree: chunk-based resolution (Definition 6.16.1), a
query decomposition step (Definition 6.36.3), and the notion of specialization for CQs
(Definition 6.46.4).

Notational conventions Before presenting the three main building blocks of proof
trees, let us fix some notation that we are going to use throughout this chapter. We will
denote conjunctive queries by rule-based expressions of the form

q(x1, . . . , xn)← α1, . . . , αm,

where α1, . . . , αm is a list of relational atoms. The expression q(x1, . . . , xn) is the head
predicate of the CQ, and when naming the CQ presented above we shall, if unambiguous,
simply refer to it via its head predicate. The sequence of variables x1, . . . , xn is allowed
to contain repetitions of variables, and we call this sequence the answer variables of
q(x1, . . . , xn). Likewise, we write body(q) for the set {α1, . . . , αm} of its body atoms. Let
y1, . . . , yk be the variables that occur in the body atoms of q, and let v1, . . . , vn be a
sequence of pairwise distinct variables that do not occur in q. The meaning of q is simply
the first-order formula

∃y1, . . . , yk (v1 = x1 ∧ · · · ∧ vn = xn ∧ α1 ∧ · · · ∧ αm),

which is a standard conjunctive query as defined in Subsection 2.3.22.3.2. All the notions
defined for CQs defined in previous chapters immediately carry over to this slightly
modified definition. We can, however, assume that the body atoms of q do not contain
any equality atoms, since we can identify variables and we can repeat variables in the
sequence x1, . . . , xn (cf. also Remark 2.142.14 in Subsection 2.3.22.3.2).

Concerning sets of TGDs, throughout this chapter, we assume that none of the TGDs
employed contains equality atoms in its body. Thus, we also assume that none of the

141

6. Pushing the Warded Envelope Further

TGDs has a body equal to >, since > is defined as ∃xx = x. Notice that if a TGD has at
least one relational atom in its body, we can remove equality atoms by simply identifying
variables. These omission of bodies equal to > is made for technical reasons, but all the
results hold, with mild modifications, also for the case where we allow > for rule bodies.

Chunk-based resolution Let A and B be sets of relational atoms that mention only
constants and variables. The sets A and B unify if there is a substitution γ, which is the
identity on const, called unifier for A and B, such that γ(A) = γ(B). A most general
unifier (MGU) for A and B is a unifier γA,B for A and B such that, for each unifier γ
for A and B, γ = γ′ ◦ γA,B for some substitution γ′. It is easy to see that, if two sets of
atoms unify, then there exists always a MGU which is unique modulo renaming variables.
Hence, we shall always denote by γA,B a canonical most general unifier of A and B and
call it the most general unifier of A and B.

Given a CQ q(x̄) and a set of atoms S ⊆ body(q), we say that a variable y ∈ var(S)
is S-shared if y ∈ [x̄], or y ∈ var(body(q) \ S). A chunk unifier of q with a TGD τ
(where q and τ do not share variables) is a triple (S1, S2, γ), where ∅ ⊂ S1 ⊆ body(q),
∅ ⊂ S2 ⊆ head(τ), and γ is a unifier for S1 and S2 such that, for each x ∈ var(S2)∩var∃(τ),

(i) γ(x) 6∈ const, i.e., γ(x) is not a constant, and

(ii) for all variables y 6= x, if γ(x) = γ(y), then y occurs in S1 and is not S1-shared.

The chunk unifier (S1, S2, γ) is most general (MGCU) if γ is an MGU for S1 and S2.
Notice that the variables of var∃(τ) occurring in S2 unify (via γ) only with variables of
S1 that are not S1-shared. This ensures that S1 is a “chunk” of q that can be resolved as
a whole via τ using γ.44 Without the additional conditions on the substitution γ, we may
get unsound resolution steps. Consider, e.g., the CQ and TGD

q(x)← R(x, y), S(y) and P (x′)→ ∃y′R(x′, y′).

Resolving the atom R(x, y) in the query q with the given TGD using the substitution
γ = {x 7→ x′, y 7→ y′} is an unsound step since the shared variable y is “lost.” This is
because y′ is unified with the shared variable y. On the other hand, {R(x, y), S(y)} can
be resolved with the TGD τ : P (x′)→ ∃y′ (R(x′, y′) ∧ S(y′)) using γ. In fact, the chunk
unifier is (body(q), head(τ), γ).

Definition 6.1. Let q(x̄) be a CQ and τ a TGD. A τ -resolvent of q is a CQ q′ with

body(q′) = γ((body(q) \ S1) ∪ body(τ)),

for some MGCU (S1, S2, γ) of q with τ .

Query decomposition As discussed above, the purpose of a proof tree is to encode
a finite branch of the unfolding of a CQ q with a set O of TGDs, which is obtained by
applying chunk-based resolution. Such a branch is a sequence q0, . . . , qn of CQs, where
q = q0, while, for each i ∈ [n], qi is a τ -resolvent of qi−1 for some τ ∈ O.

4A similar notion known as piece unifier is defined in [9999].

142

6.1. Proof Trees

Here is a simple example, which will serve as a running example for the remainder of
the section, that illustrates the notion of unfolding.

Example 6.2. Consider the set O of TGDs consisting of

R(x)→ ∃y T (y, x),
T (x, y), S(y, z)→ T (x, z),
T (x, y), P (y)→ G.

and the CQ that simply asks whether the atomic query G is entailed, i.e., the CQ q ← G.
Since the unfolding of q with O should give the correct answer for every input database,
and thus for databases of the form

{R(cn), S(cn, cn−1), . . . , S(c2, c1), P (c1)}, for n > 0,

one of its branches should be q = q0, q1, . . . , qn, where

q1 ← T (x, y1), P (y1),

obtained by resolving q0 using the third TGD,

qi ← T (x, yi), S(yi, yi−1), . . . , S(y2, y1), P (y1), for 1 < i < n,

obtained by resolving qi−1 using the second TGD, and

qn ← R(yn), S(yn, yn−1), . . . , S(y2, y1), P (y1),

obtained by resolving qn−1 using the first TGD. a
At this point, one may think that the proof tree that encodes the branch q0, . . . , qn of

the unfolding of q with O is the finite labeled path v0, . . . , vn, where each vi is labeled by
qi. However, another crucial goal of such a proof tree, which is not achieved via the naive
path encoding, is to split each resolvent qi, for i > 0, into smaller subqueries q1

i , . . . , q
ni
i

– which are essentially the children of qi –, in such a way that they can be processed
independently by resolution. The crux of this encoding is that it provides us with a
mechanism for keeping the CQs that must be processed by resolution small. It should be
clear from Example 6.26.2 that, by following the naive path encoding without splitting the
resolvents into smaller subqueries, we may get CQs of unbounded size.

The key question here is how a CQ q can be decomposed into subqueries that can be
processed independently. The subtlety is that, after splitting q, occurrences of the same
variable may be separated into different subqueries. Thus, we need a way to ensure that
a variable in q, which appears in different subqueries after the splitting, is indeed treated
as the same variable, i.e., it has the same meaning. We deal with this issue by restricting
those variables of q whose occurrences can be separated during the splitting step. More
specifically, we can only separate occurrences of an answer variable. This relies on the
convention that answer variables correspond to fixed constant values of const, and thus

143

6. Pushing the Warded Envelope Further

their name is “frozen” and never renamed by subsequent resolution steps. Hence, we
can separate occurrences of an answer variable into different subqueries, i.e., different
branches of the proof tree, without losing the connection between them.

Summing up, the idea underlying query decomposition is to split the CQ at hand
into smaller subqueries that keep all the occurrences of a non-answer variable together,
but with the freedom of separating occurrences of answer variables.

Definition 6.3. For a CQ q(x̄), a decomposition of q is a set of CQs {q1(x̄1), . . . , qn(x̄n)},
where n ≥ 1 and

⋃
i∈[n] body(qi) = body(q), such that, for each i ∈ [n], the following hold:

(i) x̄i is the restriction of x̄ to the variables in qi.

(ii) For every α, β ∈ body(q), if α ∈ body(qi) and var(α) ∩ var(β) 6⊆ [x̄], then β ∈
body(qi).

Query specialization From the above discussion, one expects that a proof tree of
a CQ q w.r.t. a set O of TGDs can be constructed by starting from q, which is the
root, and applying two steps, resolution and decomposition. Unfortunately, this is not
enough for our purposes as we may run into the problem that some of the subqueries
will mistakenly remain large since we have no way to realize that a non-answer variable
corresponds to a fixed constant value, which in turn would allow us to “freeze” its name
and separate different occurrences of it during decomposition steps. This is illustrated by
Example 6.26.2. Observe that the size of the CQs {qi}i>0 grows arbitrarily, while our query
decomposition has no effect on them since they are Boolean queries, and thus we cannot
split them into smaller subqueries.

This issue can be resolved by having an intermediate step between resolution and
decomposition, the so-called specialization step. A specialization of a CQ is obtained
by converting some non-answer variables of it into output variables, while keeping their
name, or taking the name of an existing output variable.

Definition 6.4. Let q(x̄) be a CQ with body(q) = {α1, . . . , αn}. A specialization of q is
a CQ

q′(v̄)← ρz̄(α1), . . . , ρz̄(αn),

where [x̄] ⊆ [v̄], [z̄] ∩ [v̄] = ∅, and ρz̄ is a substitution from [z̄] to [v̄].

Consider, for example, the CQ q1 from Example 6.26.2

q1 ← T (x, y1), P (y1)

obtained by resolving q = q0 using the third TGD. The query decomposition cannot split
it onto smaller subqueries since the variable y1 is not an answer variable, and thus, all its
occurrences should be kept together. We can consider the following specialization of q1

q1(y1)← T (x, y1), P (y1),

144

6.1. Proof Trees

q ← G

q ← T (x, y1), P (y1)

q(y1)← T (x, y1), P (y1)

q(y1)← T (x, y1)
q(y1)← P (y1)

q(yi−1)← T (x, yi−1)

q(yi−1)← T (x, yi), S(yi, yi−1)

q(yi−1, yi)← T (x, yi), S(yi, yi−1)

q(yi)← T (x, yi)
q(yi−1, yi)← S(yi, yi−1)

q(yn−2)← T (x, yn−2)

q(yn−2)← T (x, yn−1), S(yn−1, yn−2)

q(yn−2, yn−1)← T (x, yn−1), S(yn−1, yn−2)

q(yn−1)← T (x, yn−1)

q(yn−1)← R(yn−1)

q(yn−1, yn)← S(yn, yn−1)

Figure 6.1: Partial trees of the proof tree that encodes the branch q = q0, . . . , qn of the
unfolding of q with O from Example 6.26.2.

which simply converts y1 into an answer variable, and now we can decompose it into the
atomic queries

q1(y1)← T (x, y1) and q1(y1)← P (y1).

Proof trees We are now ready to introduce our new notion of proof tree. But let us
first explain the high-level idea by exploiting our running example. Consider the set O of
TGDs and the CQ q from Example 6.26.2. The branch q0, . . . , qn of the unfolding of q with
O given in Example 6.26.2 is encoded via a proof tree that consists of trees T1, . . . , Tn−1
such that (i) each Ti is a rooted tree with two leaf nodes, and (ii) for i = 1, . . . , n− 2,
Ti+1 is rooted in the left-most child of Ti. The actual trees are depicted in Figure 6.16.1:
the left one is T1, the middle one are the Ti (i = 2, . . . , n − 2), while the right one is
Tn−1. For i = 1 . . . , n− 1, the child of the root of Ti is obtained via resolution, then we
specialize it by converting the variable yi into an answer variable, and then we decompose
the specialized CQ into two subqueries. In the tree Tn−1, we also apply an additional
resolution step in order to obtain the leaf node q(yn−1) ← R(yn−1). The underlined
CQs are actually the subqueries that represent the CQ qn of the unfolding. Indeed, the
conjunction of the atoms occurring in the underlined CQs is precisely the CQ qn.

We proceed to give the formal definition. Given a partition π = {S1, . . . , Sm} of
a set of variables, we write eqπ for the substitution that maps the variables of Si to
the same variable xi, where xi is a distinguished element of Si. We should not forget
the convention that answer variables cannot be renamed, and thus, a resolution step
should use a MGCU that preserves the output variables. In particular, given a CQ q
and a TGD τ , a τ -resolvent of q is an IDO-(τ -)resolvent, if the underlying MGCU uses a
substitution that is the identity on the answer variables of q. Finally, given a TGD τ
and some arbitrary object o (e.g., o can be the node of a tree, or an integer number), we

145

6. Pushing the Warded Envelope Further

write τo for the TGD obtained by renaming each variable x in τ to xo. This is a simple
mechanism for uniformly renaming the variables of a TGD in order to avoid undesirable
clutter among variables during a resolution step.

Definition 6.5. Let q(x̄) be a CQ with body(q) = {α1, . . . , αn}, and O a set of TGDs.
A proof tree of q w.r.t. O is a triple P = (T , λ, π), where T is a finite rooted tree, λ a
labeling function that assigns a CQ to each node of T , and π a partition of [x̄], such that,
for each node v of T :

(i) If v is the root node of T , then λ(v) is the CQ

qv(eqπ(x̄))← eqπ(α1), . . . , eqπ(αm).

(ii) If v has only one child u, λ(u) is an IDO-τv-resolvent of λ(v) for some τ ∈ O, or a
specialization of λ(v).

(iii) If v has k > 1 children u1, . . . , uk, then {λ(u1), . . . , λ(uk)} is a decomposition
of λ(v).

Assuming that v1, . . . , vm are the leaf nodes of T , the CQ induced by P is defined as

qP(eqπ(x̄))← β1, . . . , β`,

where {β1, . . . , β`} =
⋃m
i=1 body(λ(vi)). Moreover, we call π the equality type of P.

The purpose of the partition π is to indicate that some answer variables correspond
to the same constant value – this is why variables in the same set of π are unified via the
substitution eqπ. This unification step is crucial in order to safely use – in subsequent
resolution steps – substitutions that are the identity on the answer variables. If we
omitted this initial unification step, we would lose important resolution steps and would
thus be incomplete for query answering purposes. The main result of this section, which
exposes the connection between proof trees and query answering, follows (its proof can
be found in Appendix B.4B.4):

Theorem 6.6. Consider a database D, a set O of TGDs, a CQ q(x̄), and a tuple
ā ∈ adom(D)|x̄|. The following are equivalent:

(i) ā ∈ certq,O(D).

(ii) There exists a proof tree P of q w.r.t. O such that D |= qP(ā).

6.2 Piecewise Linearity

Linear Datalog is a key fragment of Datalog queries that achieves a good balance between
expressivity and complexity [111111, 113113]. In particular, answering linear Datalog queries is
PSpace-complete in combined, and NLogSpace-complete in data complexity. Formally,
a Datalog query is linear if each of its rule has at most one atom in its body whose
predicate is intensional. After analyzing several real-life examples of warded sets of

146

6.2. Piecewise Linearity

TGDs, we observed that the use of recursion goes beyond the syntax of linear Datalog
queries. On the other hand, most of the examples coming from our industrial partners
use recursion in a restrictive way: each TGD has at most one body atom whose predicate
is mutually recursive with a predicate occurring in the head of the TGD. Interestingly,
this more liberal version of linear recursion has been already investigated in the context
of Datalog, and is known as piecewise linear recursion [22].

Let us formally define the class of piecewise linear sets of TGDs. To this end, we
need to define when two predicates are mutually recursive, which is defined using its
predicate graph. Recall that the predicate graph of a set O of TGDs, denoted pg(O), is a
directed graph whose set of nodes is sig(O), and that has an edge from a predicate P to
a predicate R iff there exists a TGD τ ∈ O such that P occurs in body(τ) and R occurs
in head(τ). Two predicates P,R ∈ sig(O) are mutually recursive w.r.t. O if there exists
a directed cycle in pg(O) of length at least one that contains both P and R (i.e., R is
reachable from P by a non-trivial directed path and vice versa). We are now ready to
define piecewise linearity for TGDs:

Definition 6.7. A set O of TGDs is piecewise linear if, for each TGD τ ∈ O, there
exists at most one atom in body(τ) whose predicate is mutually recursive with a predicate
in head(τ). We denote by PWL the class of piecewise linear sets of TGDs.

We will focus on piecewise linear sets of TGDs that are also warded. The main result
of this section reads as follows:

Theorem 6.8. The problem Eval(W ∩ PWL,CQ) is PSpace-complete in combined com-
plexity, and NLogSpace-complete in data complexity.

The lower bounds are inherited from the complexity of answering linear Datalog
queries. We thus mainly focus on the upper bounds. As we shall see, our notion of proof
tree leads to a space-bounded algorithm that allow us to establish the upper bounds
stated in Theorem 6.86.8.

Besides proving Theorem 6.86.8, we will also establish the following result:

Theorem 6.9. Eval(W,CQ) is ExpTime-complete in combined complexity, and PTime-
complete in data complexity.

Theorem 6.96.9 has already been established in [8484]. However, our algorithm is signifi-
cantly simpler than the one given in [8484], and it reveals the main property of warded sets
of TGDs that we are going to use later for devising Datalog rewritings.

Our strategy toward proofs for Theorems 6.86.8 and 6.96.9 is to first strengthen Theorem 6.66.6
of Subsection 6.2.16.2.1 for warded and piecewise linear warded sets of TGDs. We then use
these strengthened versions of Theorem 6.66.6 in Subsection 6.2.26.2.2 to prove Theorems 6.86.8
and 6.96.9.

147

6. Pushing the Warded Envelope Further

6.2.1 Query Answering via Proof Trees

Theorem 6.66.6 states that checking whether a tuple ā is a certain answer boils down to
deciding whether there exists a proof tree P such that ā is an answer to the CQ induced
by P over the given database. Of course, the latter is an undecidable problem in general.
However, if we focus on (piecewise linear) warded sets of TGDs, it turns out that it
suffices to check for the existence of a well-behaved proof tree with certain properties,
which in turn allows us to devise space-bounded decision procedures.

We proceed to make this more precise. For technical clarity, we assume, without loss
of generality, TGDs with only one atom in the head. It is easy to check that we can
always convert, a (piecewise linear) warded set of TGDs in linear time into one with
single-atom heads, while certain answers are preserved (cf. the transformation given in
Section 4.34.3).

Piecewise linear warded sets of TGDs For piecewise linear warded sets of TGDs,
we can strengthen Theorem 6.66.6 by focussing on a certain class of proof trees that enjoy
two properties: (i) they have a path-like structure, and (ii) the size of the CQs that label
their nodes is bounded by a polynomial. The first property is formalized via a linearity
property on proof trees. Let P = (T , λ, π) be a proof tree of a CQ q w.r.t. a set O of
TGDs. We call P linear if, for each node v ∈ T , it holds that v has at most one child
that is not a leaf. For example, the proof tree given above, which consists of the partial
trees depicted in Figure 6.16.1, is linear. The second property relies on the maximum size
of a CQ occurring as a label of P. The node-width of P is

nwd(P) := max
v∈T
{|λ(v)|},

i.e., the size of the largest CQ that labels a node of T .
Before defining the polynomial we use to bound the node-width of proof trees, let us

introduce some additional technical notions. Let O ∈ PWL. For a predicate P ∈ sig(O),
we write rec(P) for the set of predicates of sig(O) that are mutually recursive to P
according to pg(O) = (V,E). Let `O : sig(O)→ N be the unique function that satisfies

`O(P) = max{`O(R) | (R,P) ∈ E,R 6∈ rec(P)}+ 1,

with `O(P) being the level (w.r.t. O) of P . If α is an atom whose predicate is P , we
write `O(α) for `O(P). We say that O is in level-wise normal form, if the following
condition is satisfied for every σ ∈ O: if the head predicate of σ has level k, then each of
the predicates occurring in body(σ) has level k or k − 1.

Lemma 6.10. Every piecewise linear set of TGDs O can be transformed into a piecewise
linear O+ in level-wise normal form such that, for any CQ q(x̄) over sig(O) and any
database D over sig(O), we have that certq,O(D) = certq,O+(D).

Moreover, `(O+) ≤ `(O), and O+ can be obtained from O by introducing polynomially
many fresh predicates and rules.

148

6.2. Piecewise Linearity

Proof. Suppose O is not in level-wise normal form. Then there is a σ ∈ O of the form

R1(x̄1), . . . , Rm(x̄m)→ ψ,

such that ni := `O(P)−`O(Ri) > 1, where P is the predicate of the single atom belonging
to ψ – let us call such a σ bad in the following. For i = 1, . . . ,m, we add to O+ the rules

Ri(x̄i)→ Rσ,1i (x̄i),

Rσ,ki (x̄i)→ Rσ,k+1
i (x̄i), for k ∈ [ni − 1].

Here, the predicates Rσ,ki are all fresh. Notice that `O+(Rσ,ki) = `O(Ri) + k, and thus
`O+(Rσ,ni−1

i) = `O(P)− 1.
Now we add to O+ the rule

Rσ,n1
1 (x̄1), . . . , Rσ,nmm (x̄m)→ ψ.

Notice that `O+(P) = `O(P). We do this step exhaustively for all bad rules σ ∈ O.
Moreover, we add to O+ those rules from O that are not bad without any change.

It is not hard to check that this construction introduces only polynomially many
fresh predicates and rules. Moreover, it is clear that O+ is still piecewise linear, and that
certq,O(D) = certq,O+(D) for every CQ q(x̄) over sig(O) and every database D. �

We now define

fW∩PWL(q,O) := (|q|+ 1) ·max{`O(P) : P ∈ sig(O)} ·max{|body(τ)| : τ ∈ O}.

We can now strengthen Theorem 6.66.6 as follows:

Theorem 6.11. Consider a database D, a set O ∈WARD ∩ PWL of TGDs in level-wise
normal form, a CQ q(x̄), and ā ∈ adom(D)|x̄|. The following are equivalent:

(i) ā ∈ certq,O(D).

(ii) There is a linear proof tree P of q w.r.t. O with nwd(P) ≤ fW∩PWL(q,O) such
that D |= qP(ā).

We shall prove Theorem 6.116.11 below. Before that, we discuss strengthen Theorem 6.66.6
for warded sets of TGDs.

Warded sets of TGDs In the case of arbitrary warded sets of TGDs, we cannot focus
only on linear proof trees. Nevertheless, we can still bound the node-width of the proof
trees that we need to consider by the following polynomial:

fW(q,O) := 2 ·max{|q|,max{|body(τ)| : τ ∈ O}}.

Theorem 6.66.6 can be strengthened as follows:

Theorem 6.12. Consider a database D, a set O ∈ W of TGDs, a CQ q(x̄), and
ā ∈ adom(D)|x̄|. The following are equivalent:

149

6. Pushing the Warded Envelope Further

(i) ā ∈ certq,O(D).

(ii) There exists a proof tree P of q w.r.t. O with nwd(P) ≤ fW(q,O) such that
D |= qP(ā).

For the proofs of Theorems 6.116.11 and 6.126.12 we need some additional technical notions
first. Our strategy for these proofs is as follows:

I We introduce the auxiliary notion of chase tree, which can be seen as a concrete
instantiation of a proof tree. It serves as an intermediate structure between proof trees
and chase derivations, which allows us to use the chase as our underlying technical tool.
The notions of linearity and node-width can be naturally defined for chase trees as well.
I We then show that the existence of a (linear) chase tree for the image of q to

chase(D,O) with node-width at most m implies the existence of a (linear) proof tree P
of q w.r.t. O with node-width at most m such that D |= qP(ā) (Lemma 6.156.15).
I We finally show that, if the given tuple of constants ā is a certain answer to the

given CQ q w.r.t. the given database D and (piecewise linear) warded set O of TGDs,
then there exists a (linear) chase tree for the image of q to chase(D,O) such that its
node-width respects the bounds given in the above theorems (Lemmas 6.166.16 and 6.176.17).

Thus, our goal is to introduce chase trees in order to make use of them as explained
above. The definition of chase trees relies on several intermediate technical notions: we
first need to introduce chase graphs, then introduce unravelings of chase graphs, and
finally introduce unfolding and decomposition steps for sets of atoms in the unraveling of
the chase graph. All these notions will be detailed in the following.

The chase graph and its unraveling Fix a database D and a set O of TGDs. Let
π = J0, J1, . . . be a chase sequence for D and O, and suppose that Ji+1, for i ≥ 0, results
from Ji by an application of (hi, τi). The chase graph for π is a directed edge-labeled
graph Gπ = (V,E, µ) whose set of nodes V is the set of all facts occurring in

⋃
i≥0 Ji and

that has an edge (α, β) ∈ E labeled (via µ) with (hi, τi) iff α ∈ hi(body(τi)) and β is a
fact of Ji+1 but not one of Ji. In other words, α has an edge to β labeled (hi, τi) if β is
derived using α ∈ hi(body(τi)) and if β is new in the sense that it has not been derived
before in the chase sequence π. Notice that Gπ depends on π, however, we write GD,O for
the chase graph for πD,O, where πD,O is the globally fixed chase sequence for D and O.

Consider the chase graph GD,O = (V,E, µ) for D and O and a node v ∈ V . The
unraveling of GD,O around v is the directed tree GD,Ov = (Vv, Ev), where

• Vv is the set of all finite sequences

v̄ := v1v2 · · · vn
of nodes from V such that v1 = v and vi+1Evi for all i = 1, . . . , n− 1. We write
last(v̄) for vn.

• For v̄ = v1 · · · vn and v̄′ = v1 · · · vnvn+1 we have that v̄Evv̄′ iff vn+1Evn.

Given a set Θ ⊆ V of nodes (i.e., facts from chase(D,O), the unraveling of GD,O around Θ
is the directed node- and edge-labeled forest GD,OΘ = (VΘ, EΘ, µΘ), where VΘ :=

⋃
v∈Θ Vv

150

6.2. Piecewise Linearity

and EΘ :=
⋃
v∈ΘEv. For the definition of the labeling function µΘ, we need some

auxiliary notions first. Intuitively, GD,OΘ is a forest-like reorganization of the facts of
chase(D,O) that are needed to derive Θ. Due to its forest-like nature, it may contain
multiple copies of facts of chase(D,O). Most importantly, these multiple copies are
supplied with redundant fresh labeled nulls formalized via the notion of t-connectivity
that we are going to define in the following.

A pseudo path in GD,OΘ is a sequence of nodes v1, . . . , vn from VΘ such that, for all
1 ≤ i < n, one of viEΘvi+1, vi+1EΘvi, or |vi| = |vi+1| = 1 holds. Thus, a pseudo path
in the forest GD,OΘ is a path in GD,OΘ where we consider the root nodes of the forest to
be connected. Notice that there is thus a unique shortest pseudo path between any two
nodes of GD,OΘ .

Let v and w be nodes from GD,OΘ . If v and w lie in the same tree component T , then
we denote by gca(v, w) the singleton set consisting of the greatest common ancestor of v
and w w.r.t. the natural tree order ≺T . If, on the other hand, v and w are respectively
located in different tree components T1 and T2, then we set gca(v, w) = ∅.

Given a term t, we say that v and w are t-connected in GD,OΘ , if one of the following
holds:

(i) t is a constant, and t occurs in µ(last(v)) and in µ(last(w)).

(ii) t occurs in µ(last(u)) for every u 6∈ gca(v, w) that lies on the unique shortest
pseudo path between v and w in GD,OΘ .

Clearly, the notion of being t-connected defines an equivalence relation among the nodes
of GD,OΘ . We write [v]t for the according equivalence class of v ∈ VΘ.55 Moreover, if a is a
constant, then since [v]a = [w]a for any v, w ∈ VΘ, we identify the class [v]a simply with
a. For [v]t with t being a labeled null, we call [v]t a (labeled) null as well.

For v ∈ VΘ and µ(last(v)) = R(t1, . . . , tk), we define

µΘ(v) := R([v]t1 , . . . , [v]tk).

Moreover, if vEΘw and µ(last(v), last(w)) = (τ, h), we set

µΘ(v, w) := (τ, h∗), where h∗ : x 7−→ [v]h(x).

We write U(GD,O,Θ) for the structure corresponding to the set of facts {µΘ(v) | v ∈
VΘ}. Notice that since we identify [v]a with a when a is a constant, this entails that if a
fact R(a1, . . . , an), where a1, . . . , an ∈ const, lies on some path in GD,O leading from a
fact of D to some atom in Θ, then R(a1, . . . , an) is also a fact of U(GD,O,Θ).

Given a node v of GD,OΘ , we denote by succτ,h(v) the set of labels of all children of v
whose edge from v is labeled (τ, h). Accordingly, we write succ(v) for the set of all labels
of children of v. When using this notation, we assume that the particular unraveling
we are referring to is clear from context. We write α1, . . . , αk ⇒τ,h β if there is a node
v of GD,OΘ such that µΘ(v) = β and succτ,h(v) = {α1, . . . , αk}. Accordingly, we write
α1, . . . , αk ⇒ β if there is a τ ∈ O and some h such that α1, . . . , αk ⇒τ,h β.

5Formally, we set [v]t := {(u, t) | u is t-connected to v} to ensure that [v]t = [w]t′ only if t = t′.

151

6. Pushing the Warded Envelope Further

Lemma 6.13. Consider a node v of GD,OΘ and suppose that succτ,h(v) = {β1, . . . , βk} for
some τ ∈ O and some h. Then if some labeled null occurs in βi, it either occurs also in
µΘ(v), or it does not occur in the label of any node of GD,OΘ that is not a descendant of v.

Proof. Immediate by the definitions of the equivalence classes [v]t and the labeling
function µΘ. �

Let us remark that there is an obvious homomorphism hΘ from Θ to U(GD,O,Θ)
defined by hΘ : t 7→ [v0]t, where v0 is any of the root nodes whose label has an occurrence
of t. Notice that hΘ is well-defined, since [v0]t = [w0]t for all t ∈ adom(Θ) and all root
nodes v0, w0 of GD,OΘ that have an occurrence of t in their labels.

Blocking, depth, and rank Consider again the unraveling GD,OΘ around Θ, and let
α be a fact from U(GD,O,Θ), and suppose that β1, . . . , βk ⇒ α. For a set of facts
Γ ⊆ U(GD,O,Θ), we say that the application of β1, . . . , βk ⇒ α is blocked in Γ, if there is
a labeled null occurring in α that occurs in Γ \ {α}, but that does not occur in any of
the facts β1, . . . , βk.

Given a node v of GD,OΘ , the depth of v, denoted dp(v), is defined inductively as
follows:

dp(v) := max{dp(u) | u is a child node of v in GD,OΘ }+ 1,

For a fact α from U(GD,O,Θ), we define the depth of α as

dp(α) := min{dp(v) | µΘ(v) = α}.

Notice that dp(α) = 1 iff α a leaf node in GD,OΘ . For a set of facts Γ, we set

dp(Γ) := max{dp(α) | α ∈ Γ}.
The rank of v, denoted rk(v), is defined as

rk(v) :=
{

1 if v is a leaf node in GD,OΘ ,∑
u∈succ(v) rk(u), otherwise.

For a fact α from U(GD,O,Θ), we define the rank of α as

rk(α) := min{rk(v) | µΘ(v) = α}.
For a set of facts Γ, we set

rk(Γ) :=
∑
α∈Γ

rk(α).

Intuitively, the rank of a fact gives a measure of how many database facts are used to
derive that fact.

Both the depth and rank will be used as induction parameters in the proofs of this
section. We remark that these parameters are, of course, always defined relative to a
particular unraveling U of GD,O. The concrete unraveling of GD,O they refer to will
always be clear from context in the following, and we adhere to no particular additional
notation to indicate the reference to U .

152

6.2. Piecewise Linearity

Chase trees Given sets of facts Γ,Γ′ ⊆ U(GD,O,Θ), we say that Γ′ is an unfolding of
Γ, if there are α ∈ Γ and β1, . . . , βk ∈ Γ′ such that the following conditions hold:

(i) It holds that β1, . . . , βk ⇒ α, and its application is not blocked in Γ.

(ii) Γ′ = (Γ \ {α}) ∪ {β1, . . . , βk}.
Given a non-empty set of facts Γ ⊆ U(GD,O,Θ), a decomposition of Γ is a set

{Γ1, . . . ,Γn}, where n ≥ 1, of non-empty subsets of Γ such that (i) Γ =
⋃n
i=1 Γi, and

(ii) i 6= j implies that Γi and Γj do not share a labeled null.

Definition 6.14. Consider a database D, a set of TGDs O, and a set of facts Θ ⊆
chase(D,O). A chase tree for a set of facts Γ ⊆ U(GD,O,Θ) (w.r.t. GD,OΘ) is a pair
C = (T , λ), where T is a finite rooted tree, and λ a labeling function that assigns sets of
facts from U(GD,O,Θ) to each node of T , such that, for each node v ∈ T , the following
conditions hold:

(i) If v is the root node of T , then λ(v) = Γ.

(ii) Suppose v has the children u1, . . . , uk (k ≥ 1). Then one of the following holds:
(a) k = 1 and λ(uk) is an unfolding of λ(v).
(b) {λ(u1), . . . , λ(uk)} is a decomposition of λ(v).

(iii) If v is a leaf node, then λ(v) ⊆ D.

The node-width of C is nwd(C) := maxv∈T {|λ(v)|}. Moreover, we say that C is linear if
each node of T has at most one child that is not a leaf node.

The following lemma – whose proof can be found in Appendix B.4B.4 – states that
transitioning from the existence of a chase tree allows us to construct an appropriate
proof tree that respects according size bounds:

Lemma 6.15. Consider a set of facts Θ ⊆ chase(D,O), let q(x̄) be a CQ, and ā a tuple
of constants such that h(body(q)) ⊆ U(GD,O,Θ) and h(x̄) = ā for some homomorphism
h. If there is a (linear) chase tree C for h(body(q)) with nwd(C) ≤ m, then there is a
(linear) proof tree P for q w.r.t. O such that nwd(P) ≤ m and D |= qP(ā).

We now proceed to establish the crucial lemmas that are used to prove Theorems 6.116.11
and 6.126.12. We begin with the warded case. Recall that, for a set of facts Γ and a set of
TGDs O, we have

fW(Γ,O) := 2 ·max{|Γ|,max{|body(τ)| : τ ∈ O}}.

Lemma 6.16. Let Θ ⊆ chase(D,O) be a set of facts and consider a set of facts Γ ⊆
U(GD,O,Θ). If O ∈W, then there exists a chase tree C for Γ such that nwd(C) ≤ fW(Γ,O).

Proof. We are construct a chase tree C for Γ (w.r.t. GD,OΘ), whose node-width is bounded
by mΓ := fW(Γ,O), by induction on dp(Γ).

Assume first that dp(Γ) = 1. Then we must have Γ ⊆ D, i.e., Γ solely consists of
facts of D, and a trivial chase tree for Γ is thus the tree consisting of a single node whose

153

6. Pushing the Warded Envelope Further

root is labeled with Γ. The node-width of that tree is trivially at most mΓ.
Suppose now that dp(Γ) = n+ 1. We perform a subsidiary induction on the number

of facts in Γ that have depth n+ 1.
Suppose first that there is exactly one fact α ∈ Γ that has depth n+ 1. Let β1, . . . , βk

be such that such that the application of β1, . . . , βk ⇒ α is not blocked in Γ. (It is
easy to see that such an application cannot be blocked, since α is of maximal depth.)
Since O is warded, there is at most one fact βi such that all the nulls occurring in
α are also present in βi. Moreover, by the construction of the unraveling GD,OΘ , βi
does not share any other nulls with any of the βj , for j 6= i. In case such a fact βi
exists, we set Γ′ := (Γ \ {α}) ∪ {βi} and Γ′′ := {β1, . . . , βi−1, βi+1, . . . , βk}. Otherwise,
we set Γ′ := Γ \ {α} and Γ′′ := {β1, . . . , βk}. In both cases, we see that {Γ′,Γ′′} is a
decomposition of Γ, since the nulls that do not appear in α, yet that appear in some
fact among β1, . . . , βk, are all fresh by Lemma 6.136.13. Moreover, we know that there are
no nulls that are present in α, yet not in any of the β1, . . . , βk, since the application of
β1, . . . , βk ⇒ α is not blocked in Γ.

Notice that we have dp(Γ′) ≤ n and dp(Γ′′) ≤ n. Hence, by induction hypothesis,
there are chase trees C′ and C′′ that are respectively for Γ′ and Γ′′. We build a chase
tree C for Γ by labeling its root v0 with Γ, and declaring that v0 has one child v1 whose
label is Γ′ ∪ Γ′′. Furthermore, v1 has two children, v′ and v′′, that are respectively
labeled with Γ′ and Γ′′. Notice that mΓ′ ≤ mΓ and that mΓ′′ ≤ mΓ. Moreover,
|Γ′ ∪ Γ′′| ≤ |Γ|+ max{|body(τ)| : τ ∈ O} ≤ mΓ. Thus, C is a chase tree for Γ with the
desired bound on the node-width.

The induction step of the subsidiary induction is performed mutatis mutandis to the
base case, and we thus omit it for brevity. �

Proof of Theorem 6.126.12. Consider a CQ q(x̄) and a tuple ā ∈ adom(D)|x̄| such that
ā ∈ certq,O(D). We need to show that if O ∈ W, then there exists a proof tree P of q
w.r.t. O with nwd(P) ≤ fW(q,O) such that D |= qP(ā).

By hypothesis, there is a homomorphism h such that h(body(q)) ⊆ chase(D,O) and
h(x̄) = ā. Let Θq be the set of facts h(body(q)). Recall that there is a homomorphism
hΘq that maps Θq to U(GD,O,Θq). Thus, the homomorphism h′ := hΘq ◦ h is such that
h′(body(q)) ⊆ U(GD,O,Θq) and h′(x̄) = ā. By Lemma 6.166.16, there exists a chase tree C
for h′(body(q)) with nwd(C) ≤ fW(h′(body(q)),O). By Lemma 6.156.15, there exists a proof
tree P of q w.r.t O with nwd(P) ≤ fW(h′(body(q)),O) ≤ fW(q,O) such that D |= qP(ā),
and the claim follows. �

For the remainder of this subsection, we focus on the (technically more intriguing)
proof of Theorem 6.116.11. For a set of facts Γ and a set of TGDs O ∈ PWL, recall that

fW∩PWL(Γ,O) := (|Γ|+ 1) ·max{`O(P) : P ∈ sig(O)} ·max{|body(τ)| : τ ∈ O}.

Our goal is to show that we can find linear chase trees for all sets Γ ⊆ U(GD,O,Θ), whose
node-width is bounded by fW∩PWL(Γ,O), provided O is warded and piecewise linear.
This is the content of the following lemma, which is the main ingredient toward a proof
of Theorem 6.116.11:

154

6.2. Piecewise Linearity

Lemma 6.17. Let Θ ⊆ chase(D,O) be a set of facts and consider a set of facts Γ ⊆
U(GD,O,Θ). If O ∈ W ∩ PWL is in level-wise normal form, then there exists a linear
chase tree C for Γ such that nwd(C) ≤ fW∩PWL(Γ,O).

Fix a set of TGDs O ∈W∩PWL. We are going to write `(α) for `O(α) in the following,
and `(O) for max{`O(P) | P ∈ sig(O)}. Moreover, let us abbreviate max{|body(q)| : τ ∈
O} by b in the following. Before proceeding to the actual proof Lemma 6.176.17, we need
some additional technical notions first.

Conflict-free facts The stratification of O is a partition (S1, . . . ,S`(O)) of sig(O) such
that, for P ∈ sig(O) we have that P ∈ Sk iff `O(P) = k. We let (Γ[S1], . . . ,Γ[S`(O)])
denote the unique partition of Γ ⊆ U(GD,O,Θ) such that for every α ∈ Γ we have
α ∈ Γ[Sk] if and only if k = `(α).

Given a set of facts Γ, the join graph of Γ is the undirected edge-labeled graph
J(Γ) whose set of nodes is Γ and that has an edge between α and β labeled with terms
t1, . . . , tk iff (i) α 6= β, and (ii) t1, . . . , tk exhausts all terms that jointly occur in α and β.

We say that a fact α ∈ Γ[Si] is conflict-free (in Γ), if there is no fact β ∈ ⋃j>i Γ[Sj]
such that there is a path from α to β in J(Γ) that has an occurrence of a null in each
of its edge labels – we shall call such a path conflicting. Hence, a fact that only has
constants as arguments is trivially conflict-free. Notice also that every Γ trivially has
conflict-free facts, namely those that are among Γ[Sr], where r is the largest number such
that Γ[Sr] is non-empty.

Size measures For a set of facts Γ ⊆ U(GD,O,Θ), we let

lΓ := min{k | ∃α ∈ Γ[Sk] : α is conflict-free}.

Given Γ, we let

(aΓ
1 , . . . , a

Γ
`(O)) and (nΓ

1 , . . . , n
Γ
`(O))

be sequences of natural numbers such that aΓ
i = |Γ[Si]|, and nΓ

i is the number of facts
from Γ[Si] that are not conflict-free.

We set

mΓ :=
`(O)∑
i=1

b ·max{aΓ
i , 1 + nΓ

i }.

We are now ready to prove Lemma 6.176.17:

Proof of Lemma 6.176.17. Throughout the proof, fix a set of facts Γ ⊆ U(GD,O,Θ). We
are going to prove that there exists a chase tree C for Γ (w.r.t. GD,OΘ) whose node-width
is bounded by mΓ. This suffices to prove the claim, since mΓ ≤ fW∩PWL(Γ,O). To this
end, we shall proceed by induction on rk(Γ).

Base case. Suppose first that rk(Γ) = 1. The level depth of Γ is

ldp(Γ) := max{dp(α) | α ∈ Γ[SlΓ] and α is conflict-free}.

155

6. Pushing the Warded Envelope Further

We perform an auxiliary induction on ldp(Γ) in order to prove our claim.
Suppose that ldp(Γ) = 1. Since rk(Γ) = 1, this means that actually Γ = {α} for some

fact α ∈ D. A linear chase tree for Γ of node-width at most mΓ ≥ |Γ| is simply the tree
with a single node whose label is Γ.

Suppose now that rk(Γ) = 1 and ldp(Γ) = n+ 1. This means that Γ = {α} for some
α such that β ⇒ α for some β with dp(β) = n. Notice that the application of β ⇒ α is
trivially not blocked. We let Γ′ := {β}, and we observe that ldp(Γ) = n. By induction
hypothesis, there is a linear chase tree C′ for Γ′ whose node-width is bounded by mΓ′ .
Let C be the linear chase tree whose root v0 is labeled with Γ such that v0 has a single
child labeled with Γ′. It is easy to check that mΓ = mΓ′ = b. Thus, C is a linear chase
tree for Γ whose node-width is bounded by mΓ, as desired.

Induction step. Suppose now that rk(Γ) = m + 1. A reduction sequence for Γ is a
finite sequence (Γ0,Γ1, . . . ,Γk,Ξ) of sets of facts that satisfy the following conditions:

(i) Γ0 = Γ,

(ii) mΓ0 ≥ mΓ1 ≥ · · · ≥ mΓk ,

(iii) each Γi+1 is an unfolding of Γi, where i = 0, . . . , k − 2,

(iv) rk(Γk) ≤ m, and

(v) Ξ = Γk−1 ∩D and Γk = Γk−1 \ Ξ. Thus, {Γk,Ξ} is a decomposition of Γk−1.

Lemma 6.18. There exists a reduction sequence for Γ.

Proof. We shall again perform a subsidiary induction on ldp(Γ) to show that, for every
n ≥ 1, if ldp(Γ) = n, then there exists a reduction sequence for Γ.

So suppose first that ldp(Γ) = 1. This means that Γ contains at least one fact from
D. Let Γ ∩D = {α1, . . . , αk}. We form the reduction sequence π := (Γ,Γ′, {α1, . . . , αk}),
where Γ′ := Γ \ {α1, . . . , αk}. Notice that rk(Γ′) ≤ m. In order to prove that π is indeed
a reduction sequence for Γ, it remains to be shown that mΓ′ ≤ mΓ. Observe that

mΓ −mΓ′ =
`(O)∑
i=1

b ·max{aΓ
i , 1 + nΓ

i } −
`(O)∑
i=1

b ·max{aΓ′
i , 1 + nΓ′

i }

= b ·max{aΓ
lΓ , 1 + nΓ

lΓ}︸ ︷︷ ︸
= aΓ

lΓ
since k ≥ 1

− b ·max{ aΓ′
lΓ︸︷︷︸

= aΓ
lΓ
−k

,

= 1+nΓ
lΓ︷ ︸︸ ︷

1 + nΓ′
lΓ}.

Now if aΓ
lΓ
− k ≥ 1 + nΓ

lΓ
, then we obtain

mΓ −mΓ′ = baΓ
lΓ − b(a

Γ
lΓ − k) = bk > 0,

and if aΓ
lΓ
− k < 1 + nΓ

lΓ
, we obtain

mΓ −mΓ′ = baΓ
lΓ − b(1 + nΓ

lΓ) ≥ 0, since 1 + nΓ
lΓ ≤ a

Γ
lΓ .

156

6.2. Piecewise Linearity

Thus, in both cases we have that mΓ ≤ mΓ′ .
Suppose now that ldp(Γ) = n+ 1. Let α1, . . . , αk enumerate all the conflict-free facts

from Γ[SlΓ] of depth n+ 1. For i ∈ [k], let βi,1, . . . , βi,ki be facts such that the application
of βi,1, . . . , βi,ki ⇒ αi is not blocked in Γ – these facts exist, since the αi are conflict-free
in Γ and of maximal depth. Let τi ∈ O and hi be such that βi,1, . . . , βi,ki ⇒τi,hi αi. Let
Γ0 := Γ and Γi := (Γi−1 \ {αi}) ∪ {βi,1, . . . , βi,ki}, for all i ∈ [k].

Claim 6.19. For i = 1, . . . , k, either lΓi = lΓi−1 or lΓi = lΓi−1 − 1.

Proof. As a preliminary remark, notice that, by our normal form assumptions, we know
that `(βi,j) ∈ {`(αi), `(αi)− 1} for all j = 1, . . . , ki.

We distinguish cases. Suppose first that αi has no labeled nulls as arguments. In
this case, all nulls appearing in βi,1, . . . , βi,ki must be new in the sense that they do not
appear in Γi−1 (cf. Lemma 6.136.13). Thus, at least one of βi,1, . . . , βi,ki must be conflict-free
in Γi and hence lΓi = lΓi−1 or lΓi = lΓi−1 − 1 since O is in level-wise normal form. This
proves the claim for this case.

Suppose now that αi has labeled nulls as arguments. Since O is warded, it must be
the case that τi has at most one atom in its body (the ward) that shares nulls with αi at
all. Suppose first that τi has no ward in its body. All labeled nulls that appear in αi are
thus not present in βi,1, . . . , βi,ki (Lemma 6.136.13) and, moreover, all the nulls that appear
in βi,1, . . . , βi,ki do not appear in Γi−1, whence it follows that at least one of βi,1, . . . , βi,ki
must be conflict-free in Γi. Hence, lΓi = lΓi−1 or lΓi = lΓi−1 − 1.

Suppose now that βi,j is the ward among βi,1, . . . , βi,ki . If ki ≥ 2, then the claim is
immediate, since the facts from {βi,1, . . . , βi,ki} \ {βi,j} are all conflict-free in Γi due to
the fact that the nulls they contain do not appear in Γi−1 by Lemma 6.136.13. Suppose now
that ki = 1. Then βi,j is conflict-free in Γi or not. In the former case, we immediately
obtain lΓi ≤ lΓi−1 and thus lΓi = lΓi−1 or lΓi = lΓi−1 − 1 by our level-wise normal form
assumption. In the latter case, βi,j is connected to some fact γ ∈ ⋃r>`(βi,j) Γi[Sr] in the
join graph of Γi−1 via a path that is conflicting. Notice again that all the nulls that occur
in βi,j are either only contained in βi,j or they also appear in αi (cf. Lemma 6.136.13). Hence,
there is also a conflicting path in J(Γi−1) that connects αi and γ. Since αi was assumed
to be conflict-free in Γi−1, it follows that γ ∈ Γi−1[S1] ∪ · · · ∪ Γi−1[S`(α)]. Moreover, this
entails that γ is conflict-free in Γi−1. Now γ must also be conflict-free in Γi, since all
the nulls present in Γi that do not occur in Γi−1 must be solely contained in βi,j . Thus,
lΓi ≤ lΓi−1 and so lΓi = lΓi−1 or lΓi = lΓi−1 − 1, since O is in level-wise normal form. �

Claim 6.20. Assume that lΓi = lΓi−1 − 1 and that there is a βi,j that is not conflict-free
in Γi. Then there is a γ ∈ Γi[SlΓi−1

] that is conflict free in Γi.

Proof. Notice that `(βi,j) = lΓi , since all the nulls appearing in βi,j either occur also
in αi or are fresh. Hence, if we had `(βi,j) = lΓi−1 = lΓi + 1, then α would not be
conflict-free as well. Now since βi,j is not conflict-free, it follows that βi,j is connected
via a conflicting path to some γ ∈ ⋃r>`(βi,j) Γi[Sr]. It is easy to see that, in fact, we must
have `(γ) = `(βi,j) + 1 = lΓi−1 . Now βi,j therefore shares a null with γ, and thus γ shares
a null with αi. Hence, γ must be conflict-free since αi is. �

157

6. Pushing the Warded Envelope Further

Claim 6.21. Suppose that lΓi = lΓi−1 = 1. Then ki = 1.

Proof. Since ldp(αi) = n+ 1 ≥ 2, `(αi) = 1 only if αi is derived by a sequence of facts
that have the same predicate as αi. Hence, we must necessarily have ki = 1, since O is
piecewise linear. �

Claim 6.22. Assume that l = lΓi = lΓi−1 > 1. Then |Γi[Sl] \ Γi−1[Sl−1]| ≤ 1, that is,
aΓi
l−1 − a

Γi−1
l−1 ≤ 1.

Proof. Suppose aΓi
l−1 − a

Γi−1
l−1 > 1, i.e., at least two of the βi,1, . . . , βi,ki have level l − 1.

Since lΓi = lΓi−1 , this means that they are actually not conflict-free, whence it follows that
they share a null with αi. But this is impossible, since at most one of the βi,1, . . . , βi,ki
can share nulls with αi by wardedness. �

Claim 6.23. For i = 1, . . . , k it holds that mΓi ≤ mΓi−1.

Proof. For the sake of readability, let us set l := lΓi−1 , l′ = lΓi , Γ := Γi−1, and Γ′ := Γi
in the following. We proceed by distinguishing cases.

Case 1. Suppose first that l = l′. We distinguish subcases.
Subcase 1.1. Suppose first that l = l′ = 1. Then,

mΓ −mΓ′ = b ·max{aΓ
1 , 1 + nΓ

1} − b ·max{aΓ′
1 , 1 + nΓ′

1 }
= baΓ

1 − baΓ′
1

= baΓ
1 − b(aΓ

1 + ki − 1) = 0, since ki = 1 by Claim 6.216.21.

Hence, mΓ′ ≤ mΓ.
Subcase 1.2. Suppose that l > 1. Then one can verify that

mΓ −mΓ′ = b ·max{aΓ
l , 1 + nΓ

l }+ b ·max{aΓ
l−1, 1 + nΓ

l−1}
− b ·max{aΓ′

l , 1 + nΓ′
l } − b ·max{aΓ′

l−1, 1 + nΓ′
l−1}.

Notice that, by Claim 6.226.22, we know that aΓ′
l−1 ≤ aΓ

l−1 + 1. Now if aΓ′
l−1 = aΓ

l−1, we
immediately obtain mΓ −mΓ′ ≥ 0 due to aΓ

l = aΓ′
l .

Therefore, assume now that aΓ′
l−1 = aΓ

l−1 + 1, and also observe that we must have
nΓ′
l−1 = aΓ′

l−1 and aΓ
l−1 = nΓ

l−1, since Γ and Γ′ do not have any conflict-free facts of level
l − 1 by assumption. Moreover, notice that nΓ′

l = nΓ
l . From this bulk of information, we

obtain

mΓ −mΓ′ = b ·max{aΓ′
l + ki, 1 + nΓ′

l }+ b ·max{aΓ′
l−1 − 1, aΓ′

l−1}
− b ·max{aΓ′

l , 1 + nΓ′
l }︸ ︷︷ ︸

= aΓ′
l

by Claim 6.206.20

− b ·max{aΓ′
l−1, 1 + aΓ′

l−1}

= b(aΓ′
l + ki) + b · aΓ′

l−1 − b(aΓ′
l−1 − 1)− b · aΓ′

l

= b(ki − 1) ≥ 0.

158

6.2. Piecewise Linearity

This proves the claim for the case where l = l′ > 1.
Case 2. Now suppose that l′ = l − 1. Observe that

mΓ −mΓ′ =
`(O)∑
i=1

b ·max{aΓ
i , 1 + nΓ

i } −
`(O)∑
i=1

b ·max{aΓ′
i , 1 + nΓ′

i }

= b ·max{aΓ
l′ , 1 + nΓ

l′} − b ·max{aΓ′
l′ , 1 + nΓ′

l′ } +
b ·max{aΓ

l , 1 + nΓ
l }︸ ︷︷ ︸

= aΓ
l

by assumption

− b ·max{aΓ′
l , 1 + nΓ′

l }

≥ b ·max{aΓ
l′ , 1 + nΓ

l′} − b ·max{aΓ′
l′ , 1 + nΓ′

l′ },

where the last inequality holds since aΓ′
l ≤ aΓ

l by piecewise linearity and thus

max{aΓ′
l , 1 + nΓ′

l } = max{aΓ′
l , 1 + nΓ

l } ≤ aΓ
l .

By the construction of Γ′, we know that aΓ
l′ = nΓ

l′ and aΓ′
l′ ≤ aΓ

l′ + ki ≤ aΓ
l′ + b. We are

going to distinguish two subcases.
Subcase 2.1. Suppose first that max{aΓ′

l′ , 1 + nΓ′
l′ } = aΓ′

l′ . Then,

mΓ −mΓ′ = b(1 + nΓ
l′)− b · aΓ′

l′ ≥ 0,

since aΓ′
l′ ≤ aΓ

l′ + b and nΓ
l′ = aΓ

l′ .
Subcase 2.2. Suppose now that max{aΓ′

l′ , 1 + nΓ′
l′ } = 1 + nΓ′

l′ . Now 1 + nΓ′
l′ ≥ aΓ′

l′

entails that the number of conflict-free facts in Γ′[Sl′] is at most 1. Since l′ = l − 1, it
must actually be the case that the number of conflict-free facts in Γ′[Sl′] is exactly one,
i.e., aΓ′

l′ − nΓ′
l′ = 1. Therefore, we must have nΓ′

l′ = nΓ
l′ . Now we obtain

mΓ −mΓ′ = b(1 + nΓ
l′)− b(1 + nΓ′

l′) = 0,

which proves that mΓ ≥ mΓ′ . �

By construction we know that ldp(Γk) ≤ n, whence by induction hypothesis it follows
that there is a reduction sequence π′ = (Γ0,k,Γ1,k, . . . ,Γk′,k,Ξ) for Γk such that Γ0,k = Γk,
rk(Γk′,k) ≤ m, and mΓ0,k ≥ mΓ1,k ≥ · · · ≥ mΓk′,k . Now we construct the reduction
sequence

π := (Γ0,Γ1, . . . ,Γk,Γ1,k, . . . ,Γk′,k,Ξ),

and recall that Γ0 = Γ. Now Claim 6.236.23 yields mΓ = mΓ0 ≥ mΓ1 ≥ · · · ≥ mΓk , whence it
follows that

mΓ = mΓ0 ≥ mΓ1 ≥ · · · ≥ mΓk ≥ mΓ1,k ≥ · · · ≥ mΓk′,k .

Thus, π is a reduction sequence for Γ. This concludes the induction step of our subsidiary
induction on ldp(Γ) and thus the proof of Lemma 6.186.18. �

159

6. Pushing the Warded Envelope Further

We can now easily conclude the induction step for the induction on rk(Γ) as follows.
We know by Lemma 6.186.18 that there is a reduction sequence (Γ0,Γ1, . . . ,Γk,Ξ) for Γ such
that

(i) Γ0 = Γ,

(ii) mΓ0 ≥ mΓ1 ≥ · · · ≥ mΓk ,

(iii) each Γi+1 is an unfolding of Γi, where i = 0, . . . , k − 2,

(iv) rk(Γk) ≤ m, and

(v) Ξ = Γk−1 ∩D and Γk = Γk−1 \ Ξ.

Since rk(Γk) ≤ m, by induction hypothesis, there exists a linear chase tree C′ for Γk
whose node-width is bounded by mΓk . Let C be the linear chase tree for Γ constructed
as follows. The root v0 of C is labeled Γ, and there are nodes v1, . . . , vk, v

′
k such that

(i) for all i = 0, 1, . . . , k− 1, vi is labeled with Γi, (ii) for all i = 0, 1, . . . , k− 2, vi+1 is the
only child of vi, while (iii) vk−1 has two children, namely vk and v′k, where the former
is labeled with Γk and the latter with Ξ. We declare that C′ is a subtree of C that is
rooted in vk. Then C is a linear chase tree for Γ whose node-width is bounded by mΓ, as
required. This concludes the induction step and thus the proof of Lemma 6.176.17. �

Proof of Theorem 6.116.11. This proof is carried out mutatis mutandis as the proof of
Theorem 6.126.12 by invoking Lemma 6.176.17. �

6.2.2 Algorithms for Query Answering

We now have all the tools for showing that answering CQs under piecewise linear
warded sets of TGDs is in PSpace in combined complexity, and in NLogSpace in data
complexity (Theorem 6.86.8), and also for re-establishing the complexity of warded sets of
TGDs (Theorem 6.96.9) in a more transparent way than the approach of [8484].

The case of Eval(W ∩ PWL, CQ) Given an OMQ Q = (S,O, q(x̄)) that falls into
(W ∩ PWL,CQ), an S-database D, and a tuple ā ∈ adom(D)|x̄|, by Theorem 6.116.11, our
problem boils down to checking whether there exists a linear proof tree P of q w.r.t. O
such that nwd(P) ≤ fW∩PWL(q,O) and D |= qP(ā). This can be easily checked via a
space-bounded algorithm that aims to build such a proof tree in a level-by-level fashion.
Essentially, the algorithm builds the i-th level from the (i−1)-th level of the proof tree by
non-deterministically applying the constituent operations for proof trees, i.e., resolution,
decomposition, and specialization.

The algorithm is depicted in Algorithm 6.16.1. Here is a semi-formal description of it.
The first step is to store in p the BCQ obtained after instantiating the output variables
of q with ā. The rest of the algorithm is an iterative procedure that non-deterministically
constructs p′ (the i-th level) from p (the (i − 1)-th level) until it reaches a level that
can be matched to the database D. Notice that p and p′ always hold one CQ, since at
each level of a linear proof tree only, one node has a child, while all the other nodes
are leaves, which essentially means that their atoms appear in the database D. At each

160

6.2. Piecewise Linearity

Algorithm 6.1: Algorithm for Eval(W ∩ PWL,CQ)
Input: An OMQ Q = (S,O, q(x̄)) from (W ∩ PWL,CQ), an S-database D, and

ā ∈ adom(D)|x̄|.
Output: Accept if D |= Q(ā); otherwise, Reject.

1 Let p be the CQ q(ā)← α1, . . . , αn, where {α1, . . . , αn} = body(q(ā));
2 repeat
3 guess op ∈ {r, d, s};
4 if op = r then
5 guess a TGD σ ∈ O;
6 if mgcu(p, σ) = ∅ then
7 Reject;
8 else
9 guess U ∈ mgcu(p, σ);

10 if |p[σ, U]| > fW∩PWL(q,O) then
11 Reject;
12 else
13 p′ := p[σ, U];
14 end
15 end
16 end
17 if op = d then
18 let p′ be the CQ obtained from p by deleting all body atoms of p that

occur as facts in D;
19 end
20 if op = s then
21 guess V ⊆ var(p) and a substitution γ : V → adom(D);
22 p′ := γ(p);
23 end
24 p := p′;
25 until body(p) ⊆ D;
26 Accept;

iteration, the algorithm constructs p′ from p by applying resolution (r), decomposition
(d), or specialization (s):

I Resolution It guesses a TGD σ ∈ O. If the set mgcu(p, σ), i.e., the set of all MGCUs
of p with σ, is empty, then it rejects; otherwise, it guesses U ∈ mgcu(p, σ). If the size
of the σ-resolvent of p obtained via U , denoted p[σ, U], does not exceed the bound
given by Theorem 6.116.11, then it assigns p[σ, U] to p′; otherwise, it rejects. Recall that,
during a resolution step, we need to rename variables in order to avoid undesirable
clutter. However, we cannot blindly use new variables at each step since this will
explode the space used by algorithm. Instead, we should reuse variables that have

161

6. Pushing the Warded Envelope Further

been lost due to their unification with an existentially quantified variable. A simple
analysis shows that we only need polynomially many variables, while this polynomial
depends only on q and O.

I Decomposition It deletes from p the atoms that occur in D, and it assigns the obtained
CQ to p′. Notice that this CQ may be empty in case body(p) ⊆ D. Essentially, the
algorithm decomposes p in such a way that the subquery of p having the body atoms
body(p) ∩ D forms a child of p that is a leaf, while the subquery having the body
atoms body(p) \D is the non-leaf child.

I Specialization It assigns to p′ a specialized version of p, where some variables are
instantiated by constants of adom(D). Notice that the convention that answer variables
correspond to constants is implemented by directly instantiating them with actual
constants from adom(D).

After constructing p′, the algorithm assigns it to p, and this ends one iteration. If
body(p) ⊆ D, then a linear proof tree P such that D |= qP(ā) has been found, and the
algorithm accepts; otherwise, it proceeds with the next iteration.

It is easy to see that the algorithm uses polynomial space in general. Moreover, in
case the set of TGDs and the CQ are fixed, the algorithm uses logarithmic space, which
is the space needed for representing constantly many elements of adom(D) – each element
of adom(D) can be represented using logarithmically many bits. Hence, the desired upper
bounds claimed in Theorem 6.86.8 follow.

The case of Eval(W, CQ) The non-deterministic algorithm discussed above cannot be
directly used for warded sets of TGDs, since it is not enough to search for a linear proof
tree as in the case of piecewise linear warded sets of TGDs. However, by Theorem 6.126.12,
we can search for a proof tree that has bounded node-width. This allows us to devise
a space-bounded algorithm, which is similar in spirit as the one presented above, with
the crucial difference that it constructs in a level-by-level fashion the branches of the
proof tree in parallel universal computations using alternation. Since this alternating
algorithm uses polynomial space in general, and logarithmic space when the set of TGDs
and the CQ are fixed, we immediately get an ExpTime upper bound in combined,
and a PTime upper bound in data complexity (recall that APSpace = ExpTime and
ALogSpace = PTime). This confirms Theorem 6.96.9 established in [8484]. However, our
new algorithm is significantly simpler than the one employed in [8484], and Theorem 6.126.12
reveals the main property of warded sets of TGDs that leads to the desirable complexity
upper bounds.

Remark 6.24. We remark that it would be possible to solve Eval(W ∩ PWL,CQ) using
word automata as well. In fact, linear proof trees can be easily encoded as words over
a finite alphabet (see [5555]), and one can devise an appropriate automaton that, given
an input database, checks for the existence of a linear proof tree whose induced CQ
is satisfied by the input database. Likewise, one can employ non-deterministic tree
automata to solve Eval(W,CQ). However, we find that the exposition using Algorithm 6.16.1
is simpler and more transparent.

162

6.2. Piecewise Linearity

6.2.3 A Justified Combination

We have studied the complexity of query answering under sets of TGDs that are both
piecewise linear and warded. In fact, in Theorem 6.86.8, we established that query answering
under such sets of TGDs is PSpace-complete in combined, and NLogSpace-complete
in data complexity. It is interesting to observe that the class of piecewise linear warded
sets of TGDs generalizes the class of intensionally linear sets of TGDs, denoted IL,
where each TGD has at most one body atom whose predicate is intensional. Therefore,
Theorem 6.86.8 will immediately imply that Eval(IL,CQ) is PSpace-complete in combined,
and NLogSpace-complete in data complexity. Notice that OMQs that have ontologies
from IL generalize linear Datalog queries. Thus, we can extend linear Datalog by allowing
existentially quantified variables in rule heads, which essentially leads to IL, without
affecting the complexity of query answering.

At this point, one maybe tempted to think that the same holds for piecewise linear
Datalog, i.e., that we can extend it with existentially quantified variables in rule heads,
which leads to PWL, without affecting the complexity of query answering, that is, PSpace-
complete in combined, and NLogSpace-complete in data complexity. However, if this is
the case, then wardedness becomes redundant since the formalism that we are looking
for is the class of piecewise linear sets of TGDs, without the wardedness condition. It
turned out that this is not the case. To our surprise, the following holds:

Theorem 6.25. Eval(PWL,CQ) is undecidable in data complexity.

Proof. We exploit an undecidable tiling problem [3939]. A tiling system is a tuple
T = (T, L,R,H, V, a, b), where T is a finite set of tiles, L,R ⊆ T are special sets of left
and right border tiles, respectively, with L ∩R = ∅, H,V ⊆ T × T are respectively the
horizontal and vertical constraints, and a, b ∈ T are distinguished tiles of T called the
start and the end tile, respectively. A tiling for T is a function f : [n] × [m] → T , for
some n,m > 0, such that f(1, 1) = a, f(1,m) = b, f(1, i) ∈ L, f(n, i) ∈ R for every
i ∈ [m], and f respects the horizontal and vertical constraints. In other words, the first
and the last rows of a tiling for T respectively start with a and b, while the leftmost and
rightmost columns respectively contain only tiles from L and R.

We reduce from the unbounded tiling problem, that is, given a tiling system T =
(T, L,R,H, V, a, b), decide whether there is a tiling for T. The goal is to construct in
polynomial time a database DT, a set of TGDs O ∈ PWL, and a BCQ q such that, for
the OMQ Q = (O, q) it holds that DT |= Q iff T has a tiling. Note that O and q should
not depend on T.

The database DT. It simply stores the tiling system T:

DT := {Tile(t) | t ∈ T} ∪ {Left(t) | t ∈ L} ∪ {Right(t) | t ∈ R} ∪
{H(t, t′) | (t, t′) ∈ H} ∪ {V (t, t′) | (t, t′) ∈ V } ∪ {Start(a),End(b)}.

The set of TGDs O. It is responsible for generating all the candidate tilings for T – i.e.,
tilings not necessarily satisfying the condition f(1,m) = b – of arbitrary width and depth.
Whether there exists a candidate tiling for T that satisfies the condition f(1,m) = b will

163

6. Pushing the Warded Envelope Further

be checked by the CQ q. The set O essentially implements the following idea: construct
rows of size ` from rows of size `− 1, for ` > 1, that respect the horizontal constraints,
and then construct all the candidate tilings by combining compatible rows, i.e., rows that
respect the vertical constraints. A row r is encoded as an atom Row(p, c, s, e), where p is
the identifier of the row from which r has been obtained, i.e., the previous one, c is the
identifier of r, i.e., the current one, s is the starting tile of r, and e is the end tile of r.
We write Row(c, c, s, s) for rows consisting of a single tile which do not have a previous
row (hence the identifier of the previous row coincides with the identifier of the current
row), and the starting tile is the same as the end tile. The following two TGDs construct
all the rows that respect the horizontal constraints:

Tile(x)→ ∃z Row(z, z, x, x),
Row(_, x, y, z), H(z, w)→ ∃uRow(x, u, y, w).

Here we write ‘_’ for a “don’t-care” variable that occurs only once in the TGD. The
next TGDs construct all the pairs of compatible rows, i.e., pairs of rows (r1, r2) such that
we can place r2 below r1 without violating the vertical constraints. This is done again
inductively as follows:

Row(x, x, y, y),Row(x′, x′, y′, y′), V (y, y′)→ Comp(x, x′),
Row(x, y,_, z),Row(x′, y′,_, z′),Comp(x, x′), V (z, z′)→ Comp(y, y′).

We finally compute all the candidate tilings, together with their bottom-left tile, using
the following two TGDs:

Row(_, x, y, z),Start(y),Right(z)→ CTiling(x, y),
CTiling(x,_),Row(_, y, z, w),Comp(x, y), Left(z),Right(w)→ CTiling(y, z).

This concludes the definition of O.
The BCQ q. Recall that q is responsible for checking whether there exists a candidate

tiling such that its bottom-left tile is b. This can be easily done via the query

q ← CTiling(x, y),End(y).

By construction, the set O of TGDs belongs to PWL. Moreover, there is a tiling for
T iff DT |= Q. �

6.3 Expressive Power

In this section, we are going to provide a sufficient criterion for OMQs from (TGD,CQ) to
be expressible as Datalog queries. Moreover, we are going to show that every OMQ from
(W,CQ) is expressible as a Datalog query, and that every OMQ from (W ∩ PWL,CQ) is
even expressible as a piecewise linear Datalog query.

To this end, we exploit the existence of (linear) proof trees of bounded node-width for
OMQs based on (piecewise linear) warded sets of TGDs (Theorem 6.126.12 and Theorem 6.116.11).

164

6.3. Expressive Power

In fact, it turns out that uniform bounds on the node-width of proof trees provides a
criterion for Datalog rewritability for any OMQ from (TGD,CQ). This is the content of
the following statement, which is the main result of this section:

Theorem 6.26. An OMQ Q = (S,O, q(x̄)) from (TGD,CQ) is equivalent to a (linear)
Datalog query, if there exists a constant kQ such that, for every S-database D and all
tuples ā ∈ adom(D)|x̄|, it holds that D |= Q(ā) implies that there is a (linear) proof tree
P of q(x̄) w.r.t. O such that

(i) D |= qP(ā), and

(ii) nwd(P) ≤ kQ.
Proof. We carry out the proof for the case of arbitrary Datalog queries and explain
the case of linear Datalog queries later. Let S be the set of all CQs over S ∪ sig(O)
whose number of body atoms is bounded by kQ. Consider S to be factorized modulo
query equivalence, i.e., if (the queries defined by) two CQs p, p′ over S ∪ sig(O) with at
most kQ atoms are equivalent, then p and p′ are represented in S by the equivalence
class [p] = [p′]. Notice that all the CQs of an equivalence class have the same number of
answer variables by definition, and notice also that S is clearly finite.

For each equivalence class α = [p(v1, . . . , vn)] ∈ S, let Cα be a fresh n-ary predicate.
A successor rule of α ∈ S is a Datalog rule of the form

C[p1](v̄1), . . . , C[pk](v̄k)→ Cα(v̄), (6.1)

such that the following holds: there are CQs qi(v̄i) ∈ [pi] (i = 1, . . . , k) and a q′(v̄) ∈ α
such that there is a proof tree P of q′(v̄) w.r.t. O that has k > 0 children whose respective
labels are q1(v̄1), . . . , qk(v̄k). We may assume w.l.o.g. that the number of atoms in the
rule bodies of successor rules is bounded, since the number of body atoms of each CQ in
α is bounded, and the branching degree of a proof tree can only be arbitrarily inflated
by a decomposition step that introduces repetitive CQs.

Notice, however, that α may have infinitely many successor rules, since one can choose
different variables for these rules. We denote by R(α) the set of all successor rules of α
factorized modulo logical equivalence, i.e., R(α) consists of equivalence classes containing
logically equivalent successor rules of α. It is clear that R(α) is finite, since there are
only finitely many predicates of the form Cβ, and since we assume that the number of
atoms in rule bodies of successor rules is bounded.

We inductively construct sets of Datalog rules Π0,Π1, . . . as follows:

(i) We let Π0 be the set of rules containing precisely one representative of each rule
in R([q(x̄)]).

(ii) Πn+1 consists of all rules of Πn plus the following rules: for all rules

C[p1](v̄1), . . . , C[pk](v̄k)→ Cα(v̄),

of Πn, we add, for all i = 1, . . . , k, precisely one representative τ of each rule in
R([pi]), provided τ is not equivalent to any rule contained in Πn.

165

6. Pushing the Warded Envelope Further

A little thought shows that, up to logical equivalence, there are only finitely many rules
of the form (6.16.1) at all. Hence, it must be the case that Πl = Πm for all l ≥ m. Thus,
the set Π′ :=

⋃
i≥0 Πi is finite. Now we add to Π′ all rules of the form

R(v1, . . . , vk)→ C[pR](v1, . . . , vk), R/k ∈ S, (6.2)

where pR is the atomic query pR(v1, . . . , vk) ← R(v1, . . . , vk). These rules ensure that
the resulting Datalog query will have S as an extensional schema. Call the resulting set
of rules Π, and let Q′ := (Π, C[q(x̄)](x̄)) be the resulting Datalog query. It is not hard to
show that Q′ is equivalent to Q, i.e., Q′(D) = Q(D) for all S-databases D. Let us only
give some hints for the proof of this fact.

If D |= Q′(ā), then, for each predicate C[p(v̄)](v̄), one can show by induction on n that
TnQ′(D) |= C[p(v̄)](b̄) entails that (D,O) |= p(b̄). Thus, (D,O) |= q(ā), that is, D |= Q(ā).

On the other hand, if D |= Q(ā), then there is a proof tree P of q(x̄) w.r.t. O such
that D |= qP(ā). An induction on the height of P shows that if a node is labeled by a
CQ p(v̄), then (D,O) |= p(b̄) implies that (D,Π) |= C[p(v̄)](b̄). Since (D,O) |= q(ā) by
assumption, one obtains (D,Π) |= C[q(x̄)](ā) and thus D |= Q′(ā) as desired.

Notice that if we use linear proof trees in the construction of the rules of the form (6.16.1),
then the set Π′ constructed above is linear. Instead of adding to Π′ rules of the form (6.26.2),
we construct Π as follows. For each atomic query pR(v1, . . . , vk)← R(v1, . . . , vk) (with
R ∈ S), we replace occurrences of C[pR](v̄) in rule bodies of Π′ simply by R(v̄). The
Datalog query Q′ := (Π, C[q(x̄)](x̄)) is then easily seen to be linear. This concludes the
proof of Theorem 6.266.26. �

Using Theorem 6.266.26, we can almost immediately conclude the following:

Corollary 6.27. Every OMQ from (W,CQ) is equivalent to a Datalog query. Moreover,
every OMQ from (W ∩ PWL,CQ) is equivalent to a linear Datalog query.

Proof. Consider a Q = (S,O, q) from (W,CQ). Let kQ := fW(O, q). The result is now
immediate by Theorems 6.126.12 and 6.266.26. The result for the case of Q ∈ (W ∩ PWL,CQ) is
shown accordingly by letting kQ := fW∩PWL(O, q) and invoking Theorem 6.116.11. �

Notice in particular that Corollary 6.276.27 states that OMQs based on piecewise linear
warded sets of TGDs are not only equivalent to piecewise linear Datalog queries, but
even to linear ones. This is not surprising, as it is known that every piecewise linear
Datalog query can be rewritten into an equivalent linear one [22].

6.4 Summary

We introduced proof trees for rule-based OMQs and applied them to obtain several
interesting results. We showed that they provide a useful tool for query answering
algorithms and for establishing Datalog rewritability. Moreover, we contributed to the
theory of Vadalog by identifying a space-efficient fragment of warded sets of rules. This
fragment is based on piecewise linear recursion, and we established that the evaluation

166

6.4. Summary

problem for OMQs based on piecewise linear warded sets of TGDs is PSpace-complete
in combined, and NLogSpace-complete in data complexity. The lower bounds were
inherited from (piecewise) linear Datalog, while the upper bounds were proved by using
our novel notion of proof tree. In this context, we also re-established the complexity of
answering OMQs from (W,CQ). Finally, we provided a strong sufficient criterion based
on proof trees for arbitrary rule-based OMQs to be Datalog rewritable, and we used
this result to show that OMQs from (W,CQ) are rewritable into Datalog queries, while
those from (W ∩ PWL,CQ) are even rewritable into (piecewise) linear Datalog queries.
We mention that the optimal size of these rewritings is open, but we conjecture that
these rewritings can be improved to be polynomial by developing more refined rewriting
algorithms that make better use of wardedness. It is also an open question whether this
criterion is also necessary, i.e., whether this criterion characterizes Datalog rewritability
for all OMQs from (TGD,CQ).

It would be interesting to devise query answering algorithms based on proof trees
for other known decidable classes of TGDs. In fact, we view proof trees as a generic
tool for studying the complexity of classes of TGDs, where one can obtain space-
bounded query answering algorithms once the bounds on the node-width are settled.
For languages that are Datalog rewritable, their Datalog rewritability can be elegantly
established by providing appropriate uniform bounds on the node-width, as demanded
by Theorem 6.266.26. For example, we believe that it should not be too hard to establish
that OMQs based on guarded sets of TGDs always permit proof trees whose node-width
is exponentially bounded in the maximum arity of the OMQ in question. This would
yield an AExpSpace = 2ExpTime algorithm for answering guarded OMQs, which is
optimal. Furthermore, the obtained bound should be independent of the actual input
data, whence Datalog rewritability follows.

Concerning more applied research directions, we mention that the Vadalog system
is currently optimized for piecewise linear warded sets of TGDs in three ways [2727]: (i) the
first one is related to the way that existential quantifiers interact with recursion, (ii) the
second one is related to the optimizer, which detects and uses piecewise linearity for
the purpose of join ordering, and (iii) the third way is related to the architecture of the
system. Here are some promising directions for future research:

I As NLogSpace is contained in the class NC2 of highly parallelizable problems,
this means that reasoning under piecewise linear warded sets of TGDs is principally
parallelizable, while reasoning under warded sets of TGDs is presumably not. We plan
to exploit this for the parallel execution of reasoning tasks.
I Reasoning with piecewise linear warded sets of TGDs is LogSpace-equivalent to

reachability in directed graphs. Reachability in very large graphs has been well-studied
and many algorithms and heuristics have been designed that work well in practice (see,
e.g., [5656, 9595, 9898]). We are confident that several of these algorithms can be adapted for
our purposes.
I Reachability in directed graphs is known to be in the dynamic parallel complexity

class DynFO [6868, 116116]. We plan to analyze whether reasoning under piecewise linear
warded sets of TGDs, or relevant subclasses thereof, can be shown to be in DynFO.

167

CHAPTER 7
Conclusion

In this thesis, we studied static analysis tasks for ontology-mediated queries (OMQs)
which are based on TGDs. Static analysis tasks are data-independent and aim at deciding
semantic properties of OMQs, which may be useful for query optimization. In our study,
we focused on problems for the arguably most popular classes of TGDs, namely linear,
(frontier-)guarded, sticky, and non-recursive sets of TGDs.

In Chapter 44 we studied the containment problem for OMQs based on well-established
decidable classes of TGDs. Since containment is undecidable for languages that capture
Datalog queries, we focused on linear, sticky, non-recursive, and (frontier-)guarded sets
of TGDs. For these classes of TGDs, we devised specifically tailored algorithms for
solving the containment problem. For UCQ-rewritable languages (i.e., linear, sticky, and
non-recursive sets of TGDs), we relied on the existence of UCQ-rewritings to decide
containment, while for guarded-based classes, we exploited a tree-like witness property of
these queries and resorted to automata techniques for deciding containment. Moreover,
we also considered case of containment problems where the left-hand side and right-hand
side query fall into different languages. The algorithms devised turn out to be worst-case
optimal in all cases, except for the case of non-recursive TGDs, where we established
PTimeNExpTime-hardness and membership in coNExpTimeNP. Establishing a tight
complexity bound for this case is left for future research.

We continued in Chapter 55 to study the problem of first-order rewritability for OMQs
based on (frontier-)guarded sets of TGDs. It was shown that the setting of having
relations of arity greater than two renders the problem more challenging. We provided a
semantic characterization for first-order rewritability that exploited the tree-like witness
property of (frontier-)guarded OMQs. Then, we first provided a non-optimal solution
to first-order rewritability based on classical automata techniques, and afterward we
resorted to cost automata in order to obtain worst-case optimal algorithms. It turned
out that deciding first-order rewritability is 2ExpTime-complete for frontier-guarded
TGDs, even if we assume schemas of bounded width. An open question concerning
first-order rewritable (frontier-)guarded OMQs is the worst-case size of their rewritings:

169

7. Conclusion

we conjecture that their worst-case size is a tower of exponentials of height four and leave
this question for future research.

At this point we would like to stress again that containment and first-order rewritability
become undecidable once one focuses on plain Datalog queries. One can attribute the
decidability of containment and first-order rewritability for the case of (frontier-)guarded
OMQs to the existence of tree-like witnesses. Indeed, tree-like witnesses allowed us
to resort to tree automata, which served as a generic tool to answer the universal
claims posed by the problems of containment and first-order rewritability. Likewise,
for first-order rewritable OMQs, the decidability of containment can be attributed to
the existence of UCQ-rewritings, since for containment of UCQs is clearly decidable.
A natural research question is therefore to identify the limits of the containment and
first-order rewritability problems for all classes of OMQs. More specifically, let us consider
the case of containment. We know that all (frontier-)guarded OMQs can be naturally
expressed as (frontier-)guarded Datalog queries. Hence, containment of such OMQs
reduces to the containment problem for special classes of Datalog queries. Moreover,
it is known that deciding whether a Datalog query is contained in a (frontier-)guarded
Datalog query is decidable [4040]. A natural question is therefore to provide a non-trivial
characterization of those classes C of Datalog queries for which Cont(Datalog, C) is
decidable, where Datalog denotes the class of all Datalog queries. Likewise, it would
be interesting to characterize those classes C for which Cont(C,Datalog) is decidable.
We leave these open questions to future research.

Although we were cautious in Chapters 44 and 55 to exclude OMQ languages capturing
all Datalog queries from our study, we revisited the study of such languages in Chapter 66.
More specifically, we analyzed proof trees built using Datalog rules, and we extended
them to the case of OMQs based on existential rules. While proof trees for Datalog
queries are trees labeled by atomic facts, proof trees for OMQs are trees labeled by
CQs. We observed that the size of the largest CQ present in such proof trees (i.e.,
their node-width) provides guidance for the space consumption of an alternating query
answering algorithm. This observation allowed us to use proof trees to specify elegant
query answering algorithms – we provided such algorithms for OMQs based on warded
sets of rules, and for those based on piecewise linear warded sets of rules. Warded sets of
TGDs constitute the main language of Vadalog – a reasoning system developed at the
University of Oxford –, while piecewise linear warded sets of TGDs are a space-efficient
fragment thereof. We showed that the data complexity of answering OMQs based on
piecewise linear warded sets of TGDs is NLogSpace-complete in data complexity, and
PSpace-complete in combined complexity. As NLogSpace is contained in the class
NC2 of parallelizable problems, there is hope to exploit these insights when it comes to
the development of parallel reasoning algorithms.

Apart from the study of Vadalog, we believe that the notion of proof tree developed
in this thesis is useful for query answering algorithms for other decidable classes of TGDs
as well. In fact, it would be interesting to devise query answering algorithms based on
proof trees for existing classes of TGDs, thereby establishing a unifying framework for
query answering algorithms.

170

The nice structural properties of proof trees allowed us to answer another open
question concerning OMQs based on warded sets of rules, namely that they can be
equivalently expressed as Datalog queries. Likewise, we showed that OMQs based on
piecewise linear sets of rules are always expressible as (piecewise) linear Datalog queries.
In fact, these results were based on a more general insight: we provided a strong sufficient
criterion for any OMQ based on TGDs to be expressible as a Datalog query – this is
the case whenever one can always find proof trees of bounded node-width, uniformly
across all input databases. A natural question that arises is whether this criterion is also
necessary, i.e., whether it characterizes expressibility of OMQs based on TGDs in the
language of Datalog. Again, we leave this highly interesting question to future research.

171

APPENDIX A
The Procedure XRewrite

In view of the fact that the rewriting algorithm XRewrite is heavily used in our complexity
analysis in Chapter 44, we would like to recall its definition. We only introduce the basic
concepts here that are needed for the proofs of some of the results from Section 4.24.2 – for
a more thorough presentation, we refer the interested reader to [8282]. This algorithm is
based on resolution, and thus, before proceeding further, we need to recall the notion of
unification (cf. also Chapter 66). A set of atoms A = {α1, . . . , αn}, where n ≥ 2, unifies
if there exists a substitution γ, called unifier for A, such that γ(α1) = · · · = γ(αn). A
most general unifier (MGU) for A is a unifier for A, such that for each other unifier γ
for A, there exists a substitution γ′ such that γ = γ′ ◦ γA. Notice that if a set of atoms
unify, then there exists an MGU. Furthermore, the MGU for a set of atoms is unique
(modulo variable renaming), and we denote by γA an MGU for A that is fixed.

The algorithm proceeds by exhaustively applying two steps: rewriting and factor-
ization, which in turn rely on the technical notions of applicability and factorizability,
respectively. We assume, w.l.o.g., that TGDs and CQs do not share variables. Given a
CQ q, a variable x is called shared in q if x is a free variable of q, or it occurs more than
once in q. In what follows, we assume, w.l.o.g., that TGDs are in a convenient normal
form: they have only one atom in the head, and only one occurrence of an existentially
quantified variable [4747]. Moreover, we can assume that neither q nor the body of any
rule contains equality atoms (except for rules with body >), as these can be eliminated
by identifying variables. We write π∃(τ) for the position11 at which the existentially
quantified variable of τ occurs. In case τ does not mention any existentially quantified
variables, then π∃(τ) := ε.

We are now ready to recall applicability and factorizability. Consider a CQ q and
a TGD τ . Given a set of atoms S ⊆ body(q), we say that τ is applicable to S if the
following conditions are satisfied:

(i) the set S ∪ {head(τ)} unifies, and
1Recall that a position R[i] identifies the i-th attribute of a predicate R.

173

A. The Procedure XRewrite

Algorithm A.1: The algorithm XRewrite
Input: An OMQ Q = (S,O, q(x̄)) from (TGD,CQ)
Output: A UCQ q′(x̄) such that Q(D) = q′(D), for every S-database D

1 i := 0;
2 Qrew := {〈q, r, u〉};
3 repeat
4 Qtemp := Qrew;
5 foreach 〈q, x, u〉 ∈ Qtemp, where x ∈ {r, f} do
6 foreach σ ∈ O do

/* rewriting step */
7 foreach S ⊆ body(q) such that σ is applicable to S do
8 i := i+ 1;
9 q′ := γS,σi(q[S/body(σi)]);

10 if there is no (q′′, r, ∗) ∈ Qrew such that q′ ' q′′ then
11 Qrew := Qrew ∪ {〈q′, r, u〉};
12 end
13 end

/* factorization step */
14 foreach S ⊆ body(q) that is factorizable w.r.t. σ do
15 q′ := γS(q);
16 if there is no (q′′, ∗, ∗) ∈ Qrew such that q′ ' q′′ then
17 Qrew := Qrew ∪ {〈q′, f, u〉};
18 end
19 end
20 end

/* the query q is now explored */
21 Qrew := (Qrew \ {(q, x, u)}) ∪ {(q, x, e)};
22 end
23 until Qtemp = Qrew;
24 Qfin := {q | 〈q, r, e〉 ∈ Qrew, and q contains only predicates of S};
25 return Qfin;

(ii) for each α ∈ S, if the term at position π in α is either a constant or a shared
variable in q, then π 6= π∃(τ).

Roughly, whenever τ is applicable to S, this means that the atoms of S may be generated
during the chase procedure by applying τ . Therefore, we are allowed to apply a rewriting
step (which is essentially a resolution step) that resolves S using τ , i.e., S is replaced by
body(τ), and a new CQ that is “closer” to the input database is obtained.

If we start applying rewriting steps blindly, without checking for applicability, then
the soundness of the rewriting procedure is not guaranteed. However, it is possible that
the applicability condition is not satisfied, but we should still apply a rewriting step.
This may happen due to the presence of redundant atoms in a query. For example, given

174

the CQ

q := ∃x, y, z (R(x, y) ∧R(x, z)),

and the TGD

τ : P (u, v)→ ∃wR(w, u),

the applicability condition fails since the shared variable x in q occurs at the position
π∃(τ) = R[1]. However, q is essentially the CQ q = ∃x, y R(x, y), and now the applica-
bility condition is satisfied. From the above informal discussion, we conclude that the
applicability condition may prevent the algorithm from being complete, since some valid
rewriting steps are blocked. Because of this reason, we need the so-called factorization
step, which aims at converting some shared variables into non-shared variables, and
thus, satisfy the applicability condition. In general, this can be achieved by exhaustively
unifying all the atoms that unify in the body of a CQ. However, some of these unifications
do not contribute in any way to satisfying the applicability condition, and, as a result,
many superfluous CQs are generated. It is thus better to apply a restricted form of
factorization that generates a possibly small number of CQs which are vital for the
completeness of the rewriting algorithm. This corresponds to the identification of all the
atoms in the query whose shared existential variables come from the same atom in the
chase, and they can be unified with no loss of information.

Consider a CQ q and a TGD τ . Given a set of atoms S ⊆ body(q), where |S| ≥ 2, we
say that S is factorizable w.r.t. τ if the following conditions are satisfied:

(i) S unifies,

(ii) π∃(τ) 6= ε, and

(iii) there exists a variable x 6∈ var(body(q) \ S) that occurs in every atom of S only at
position π∃(τ).

The algorithm XRewrite Having the above key notions in place, we are now ready
to recall the algorithm XRewrite, which is depicted in Algorithm A.1A.1. As said above, the
UCQ-rewriting of an OMQ Q = (S,O, q) is computed by exhaustively applying (i.e.,
until a fixpoint is reached) the rewriting and the factorization steps. Notice that the CQs
that are the result of the factorization step, are nothing else than auxiliary queries which
are critical for the completeness of the final rewriting, but are not needed in the final
rewriting. Thus, during the iterative procedure, the queries are labeled with r (resp., f)
in order to keep track which of them are generated by the rewriting (resp., factorization)
step. The CQ that is part of the input OMQ, although is not a result of the rewriting
step, is labeled by r since it must be part of the final rewriting. Moreover, once the two
crucial steps have been exhaustively applied to a CQ q, it is not necessary to revisit
q, since this will lead to redundant queries. Hence, the queries are also labeled with
e (respectively, u) indicating that a query has been already explored (respectively, is
unexplored). Let us now describe the two main steps of the algorithm. In the sequel,

175

A. The Procedure XRewrite

consider a triple (q, x, y), where (x, y) ∈ {r, f} × {e, u} (this is how we indicate that q is
labeled by x and y), and a TGD σ ∈ O.
Rewriting Step For each S ⊆ body(q) such that σ is applicable to S, the i-th application
of the rewriting step generates the query q′ = γS,σi(q[S/body(σi)]), where σi is the TGD
obtained from σ by replacing each variable x with xi, γS,σi is the MGU for the set
S ∪ {head(σi)} (which is the identity on the variables that appear in the body but not in
the head of σi), and q[S/body(σi)] is obtained from q be replacing S with body(σi). By
considering σi (instead of σ) we basically rename, using the integer i, the variables of σ.
This renaming step is needed in order to avoid undesirable clutter among the variables
introduced during different applications of the rewriting step. Finally, if there is no
(q′′, r, ∗) ∈ Qrew, i.e., an explored or unexplored query that is the result of the rewriting
step, such that q′ and q′′ are the same (modulo variable renamings), denoted q′ ' q′′,
then (q′, r, u) is added to Qrew.

Factorization Step For each S ⊆ body(q) that is factorizable w.r.t. σ, the factorization
step generates the query q′ = γS(q), where γS is the MGU for S. If there is no
(q′′, ∗, ∗) ∈ Qrew, i.e., a query that is the result of the rewriting or the factorization step,
and is explored or unexplored, such that q′ ' q′′, then (q′, f, u) is added to Qrew.

176

APPENDIX B
Missing Proofs

B.1 Proofs for Chapter 22

B.1.1 Proof of Theorem 2.282.28

In the following we are going to provide a sketch of a proof for Theorem 2.282.28. The
construction we are going to provide closely follows the well-known translation by Vardi
who shows in [133133] how to convert two-way alternating parity automata working on
infinite trees, where every node has the same fixed branching degree, to one-way non-
deterministic parity tree automata. The construction of Vardi also incurs an exponential
blowup in the number of states of the constructed automaton. In contrast to Vardi’s
construction, we are going to work exclusively on finite trees, and this is why we translate
to ordinary 1NTAs (cf. Definition 2.192.19) instead of transitioning to non-deterministic
parity tree automata. However, the construction provided here is pretty close to that
in [133133], and therefore we cite results from [133133] when their proofs are mutatis mutandis
to according results in [133133].

Throughout the proof, let us fix an m-2APTA

A = (S,Γ,Dir := {−1, 0, 1, . . . ,m}, δ,Ω, s0).

Before proving Theorem 2.282.28 we need several additional notions first.

Strategy trees Consider a Γ-labeled input tree t. A candidate strategy for t w.r.t. A is
a class of functions τ = (τx)x∈dom(t), where each function τx is of type S → 2Dir×S . Notice
that the graphs of the functions τx can be conceived to be subsets of S × Dir × S and
thus each τx can be captured by a finite alphabet. Intuitively, an element (d, s′) ∈ τx(s)
tells us that, once we reach node x in state s, we should send a copy of A in state s′ to
x ·d. We call the pair (t, τ) a strategy tree for A on t if it satisfies the following conditions:

(i) τε(s0) 6= ∅.

177

B. Missing Proofs

(ii) For all x ∈ dom(t) and all s ∈ S, the assignment θs,x, defined as follows, satisfies
δ(s, t(x)):
• for all d ∈ Dir, θs,x(〈d〉p) = 1 iff (d, p) ∈ τx(s);
• for all d ∈ Dir, θs,x([d]p) = 1 iff dt(x) = ∅ or (d, p) ∈ τx(s).

A strategy path in (t, τ) is a sequence α = (x1, s1), (x2, s2), . . . of pairs from dom(t)× S
such that, for all k ≥ 0, there is some d such that (sk+1, d) ∈ τxk(sk) and xk+1 = xk · d.
We say that α is accepting if the minimal number n such that Ω(si) = n, for infinitely
many i, is even. We say that (t, τ) is accepting if all infinite strategy paths in (t, τ) that
start in (ε, s0) are accepting.

A proof of a (slightly different) variant of the following lemma can be found in [133133]:

Lemma B.1. A accepts t iff there is an accepting strategy tree for A on t.

Priority annotations Let M := {i | ∃s ∈ S : Ω(s) = i}, i.e., M is the set of priorities
that are assigned to states of A. Let t be a Γ-labeled tree. A priority annotation for t is
a class η = (ηx)x∈dom(t) of functions which are all of type S → 22M×S , that is, each ηx
assigns to every state s ∈ S a set of pairs of the form (H, s′), where H ⊆M and s′ ∈ S.
Intuitively, a pair (H, s′) ∈ ηx(s) states that, when a copy of A is launched at node x
in state s, then it is possible that another copy of A returns to x in state s′ and, on
its way “back” to x, it encountered states with priorities among H. Thus, ηx provides
information about the possible upward and stationary movements of A from node x.

Given a strategy tree (t, τ) for A on t, we say that η annotates (t, τ) if the following
properties are satisfied for all x ∈ dom(t):

(i) If (H1, s
′) ∈ ηx(s) and (H2, s

′′) ∈ ηx(s′), then (H1 ∪H2, s
′′) ∈ ηx(s).

(ii) If (0, s′) ∈ τx(s) then ({Ω(s′)}, s′) ∈ ηx(s).

(iii) If x = y · i for some i = 1, . . . ,m, (−1, s′) ∈ τx(s), (H, s′′) ∈ ηy(s′), and (i, s′′′) ∈
τy(s′′), then (H ∪ {Ω(s′),Ω(s′′′)}, s′′′) ∈ ηx(s).

(iv) If y = x · i for some i = 1, . . . ,m, (i, s′) ∈ τx(s), (H, s′′) ∈ ηy(s′), and (−1, s′′′) ∈
τy(s′′), then (H ∪ {Ω(s′),Ω(s′′′)}, s′′′) ∈ ηx(s).

We call the triple (t, τ, η) an annotated strategy tree for A on t.
A downward path α in (t, τ, η) is a sequence (x0 = ε, s0, β1), (x2, s2, β2), . . . of triples,

where each xi is from dom(t), each si is from S, and for each βi either of the following
holds:

• βi ∈ τxi(si) and βi = (d, si+1) with d ∈ {1, . . . ,m} and xi+1 = xi · d. In this case,
we define Ω(βi) := Ω(si+1).

• βi ∈ ηxi(si) and βi = (H, si+1) with H ⊆M and xi+1 = xi. In this case, we define
Ω(βi) := minH.

If α is infinite, then we let Ω(α) be the minimal n such that Ω(βi) for infinitely many i.
If α is finite, i.e., of the form (x0 = ε, s0, β1), . . . , (x`, s`, β`) with β` = (H, s`) ∈ ηx`(s`),

178

B.1. Proofs for Chapter 22

then we let Ω(α) := Ω(s`). We say that α violates the parity condition if Ω(α) is odd. We
say that (t, τ, η) is accepting, if no downward path in (t, τ, η) violates the parity condition.

Using Lemma B.1B.1, the following lemma can be shown (see again [133133] for an according
result):

Lemma B.2. A accepts t iff there is an accepting annotated strategy tree for A on t.

Fully annotated strategy trees Fix a strategy tree (t, τ) for A on t. For x ∈ dom(t)
and d ∈ {−1, 0, 1, . . . ,m}, let

ζx·d :=
{
τx·d, if dt(x) 6= ∅,
], otherwise.

Thus, ζx·d is the function τx·d in case x · d is a node of t (i.e., dt(x) 6= ∅), and the special
symbol] otherwise. Suppose η = (ηx)x∈dom(t) is a priority annotation for t that annotates
the strategy tree (t, τ). Let

ζ : x 7−→ (ζx·−1, ζx·0, ζx·1, . . . , ζx·m), x ∈ dom(t),

and let us write (t, ζ, η) for the labeled tree defined by

(t, ζ, η) : x 7−→ (t(x), ζ(x), ηx), x ∈ dom(t).

Notice that (t, ζ, η) is over the finite alphabet

Λ := Γ× (2S×Dir×S ∪ {]})m+2 × 2S×2M×S .

We call (t, ζ, η) a fully annotated strategy tree for A on t and we call ζ the strategy
information of (t, ζ, η). Thus, given a node x, the label of x in a fully annotated strategy
tree carries information on the strategy labellings τy for all neighbors y of x. In addition,
if a neighbor in a certain direction does not exist, this is indicated in the label of x via
the special symbol], and (t, ζ, η) is thus also capable of storing information concerning
the existence of its neighbors. We use the same terminology for fully annotated strategy
trees as introduced for annotated strategy trees, that is, a downward path in (t, ζ, η) is
just a downward path in (t, τ, η), and (t, ζ, η) is accepting iff (t, τ, η) is.

The following lemma shows that fully annotated strategy trees are recognizable by
1NTAs:

Lemma B.3. There is a 1NTA C running on Λ-labeled trees that accepts a Λ-labeled tree
(t, ζ, η) iff it is a fully annotated strategy tree for A on t. The state set of C is exponential
in the state set of A, and C can be constructed in doubly exponential time from A, where
the second exponent only depends on |M |.
Proof sketch. We only sketch a high-level construction here and leave the details
to the reader. C has to perform several tasks, each of which can be considered to be
performed by a separate 1NTA. The 1NTA C will then be the intersection of all the

179

B. Missing Proofs

separate 1NTAs. By Proposition 2.202.20, we have to devise each of the separate automata
in such a way that they respect the size and time bounds as given in the statement of
the lemma.

Suppose t′ is a Λ-labeled tree and let x ∈ dom(t′). Suppose that

t′(x) = (t(x), ζ(x)
−1 , ζ

(x)
0 , ζ

(x)
1 , . . . , ζ(x)

m , ηx),

and let us write t for the Γ-labeled tree defined by t : x 7→ t(x) as dictated by t′. The
following list enumerates the tasks that are performed by the separate automata.

(i) Firstly, we must check that τ := (ζ(x)
0)x∈dom(t) is such that (t, τ) is indeed a

strategy tree for A on t. Doing this is not hard – the 1NTA simply traverses the
tree, checks as a first step that τε(s0) 6= ∅, and ensures that δ(s, t(x)) is satisfied
by the assignment θs,x as defined in the definition of strategy trees.

(ii) Secondly, we must ensure that the strategy information ξx·−1, ξx·0, ξx·1, . . . , ξx·m
matches the information present in the respective nodes x · −1, x · 0, x · 1, . . . , x ·m
(for x · 0 = x this is of course trivial). That is, for all d ∈ {−1, 0, 1, . . . ,m}, we
have

dt(x) 6= ∅ =⇒ ζ
(x·d)
0 = ζ

(x)
d . (B.1)

Achieving this is computationally the most expensive task: Being at node x, the
1NTA has to remember in its state the information presented by ζ(x)

0 in the current
node. It passes this information down to its children via states. The copies of the
1NTA that read the labels of the children can use the information present in the
states to verify condition (B.1B.1). Notice that the 1NTA has to have an exponential
supply of states in order to be able to store the information of ζ(x)

0 .

(iii) Thirdly, we have to ensure that η := (ηx)x∈dom(t) is a priority annotation that
annotates the strategy tree (t, (η(x)

0)x∈dom(t)). Doing this is easy, since we can use
the strategy information ζ(x)

−1 , ζ
(x)
0 , ζ

(x)
1 , . . . , ζ

(x)
m of the neighboring nodes to verify

the conditions that η has to satisfy.

It is not hard to check that all the automata described can be constructed within the
required size bound. �

We are now ready to sketch a proof of Theorem 2.282.28. The proof of this result closely
follows an according result in [133133] with the difference that we always rely on automata
that work on finite objects only.

Proof sketch of Theorem 2.282.28. Suppose t′ is a Λ-labeled tree and let x ∈ dom(t′).
Suppose that

t′(x) = (t(x), ζ(x)
−1 , ζ

(x)
0 , ζ

(x)
1 , . . . , ζ(x)

m , ηx),

and let us again write t for the Γ-labeled tree defined by t : x 7→ t(x) as dictated by t′.

180

B.1. Proofs for Chapter 22

We first construct an automaton B that accepts a finite t′ iff (i) t′ is a fully annotated
strategy tree for A on t, and (ii) t′ is accepting. B is the intersection of two automata,
the first one is C from Lemma B.3B.3, and the second one is B′ whose construction we are
going to describe in the following.
B works on fully annotated strategy trees for A. Thus, suppose (t, ζ, η) is a fully

annotated strategy tree for A on the finite Γ-labeled tree t. B′ has to ensure that
(t, ζ, η) is indeed accepting – by Lemma B.2B.2, this entails that t is accepted by A. Let
α = (x0, s0, β0), (x1, s1, β1), . . . be a downward path in (t, ζ, η). Since t is finite, it is easy
to check that α must be finite as well – i.e., α = (x0, s0, β0), . . . , (x`, s`, β`) for some
` ≥ 0 with β` = (H, s`) ∈ ηx`(s`). Hence, α violates the parity condition iff Ω(α) = Ω(s`)
is odd. We call the sequence (s0, β0), . . . , (s`, β`) the projection of α. Notice that the
projection of α is over the finite alphabet

S × ((S × {−1, 0, 1, . . . ,m} × S) ∪ (S × 2M × S)),

and we can devise a non-deterministic word automaton N that accepts a projection of a
finite downward path α iff α violates the parity condition. All that N does is (i) checking
that α indeed satisfies the properties of a downward path, and (ii) checking whether
there is some (si, βi) with βi = (H, si), in which case it accepts if Ω(βi) = minH is
odd. To achieve this, it only needs linearly many states in |S| (when it traverses the
sequence α = (s0, β0), . . . , (s`, β`), it has to remember si when proceeding from (si, βi)
to (si+1, βi+1) in order to check whether α is indeed a downward path). From N , we can
construct another non-deterministic word automaton N ′ that operates on sequences on
words over the alphabet

(2S×Dir×S ∪ {]})m+2 × 2S×2M×S .

The automaton N ′ thus reads words that contain the strategy information and the
priority annotation of (t, ζ, η). It accepts if and only if it finds a projection of a downward
path that violates the parity condition. The state set of N ′ is the same as that of N ,
but it has to operate on a richer alphabet and guesses possible projections of downward
paths. Now let N ′′ be the determinization of the complement of N ′. The construction of
N ′′ involves the standard powerset construction [120120] and incurs an exponential blowup
in the size of N ′. Moreover, the construction be carried out in exponential time [120120].
We define B′ to be the 1DTA that is obtained by simply running N ′′ in parallel over
all branches – notice that B′ knows the successors of each node due to the strategy
information present in the labels of (t, ζ, η).

Now recall that B is the intersection of the automaton B′ thus constructed and the
automaton C from Lemma B.3B.3. Now the desired automaton A′ is simply obtained from
B by building its Γ-projection so that it accepts Γ-labeled input trees (Proposition 2.222.22).
By construction, A′ accepts the same finite Γ-labeled trees as A. Since, by assumption,
A accepts finite trees only, we obtain L(A) = L(A′) as desired. Moreover, A′ the state
set of A′ is of exponential size in the size of the state set of A. �

181

B. Missing Proofs

B.2 Proofs for Chapter 44

B.2.1 Proof of Proposition 4.54.5

The construction underlying Proposition 4.54.5 relies on the idea of encoding Boolean
operations (in our case the ‘or’ operator) using a set of atoms. This idea has been
exploited in several other works; see, e.g., [2929, 4141, 8383]. Let Q = (S,O, q(x̄)) be an OMQ
from (C,UCQ). Our goal is to construct in polynomial time a Q′ = (S,O′, q′(x̄)) that
falls into (C,CQ) such that Q ≡ Q′. We assume, w.l.o.g., that the predicates of S do not
appear in the head of a TGD of O. Indeed, we can copy the content of a relation R/k ∈ S
into an auxiliary predicate R∗/k, using the TGD R(x1, . . . , xk)→ R∗(x1, . . . , xk), while
staying inside C, and then rename each predicate R in O and q(x̄) by R∗. The set O′
consists of the following TGDs:

(i) For every R/k ∈ S:

R(x1, . . . , xk)→ R′(x1, . . . , xk, 1),True(1).

These TGDs are annotating the database atoms with the truth constant “true,”
indicating that these are true atoms.

(ii) Assuming that q(x̄) = ∃ȳ ϕ(x̄, ȳ), a TGD

True(t)→ ∃x̄, ȳ, f (ϕ′∧(x̄, ȳ, f) ∧ ψ(t, f)),

where ϕ′∧ is the conjunction of atoms in ϕ after replacing each atom R(v1, . . . , vk)
with R′(v1, . . . , vk, f), and ψ is the conjunction of atoms

False(f),Or(t, t, t),Or(t, f, t),Or(f, t, t),Or(f, f, f).

This TGD generates a “copy” of the atoms in q, while annotating them with a null
value that represents the truth constant “false,” indicating that are not necessarily
true atoms. Moreover, the truth table of ‘or’ is generated.

(iii) Finally, for each TGD ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) in O, where ϕ(x̄, ȳ) and ψ(x̄, z̄) are
conjunctions of atoms, we add a TGD

ϕ′(x̄, ȳ, w)→ ∃z̄ ψ′(x̄, z̄, w),

where ϕ′ and ψ′ are obtained from ϕ and ψ, respectively, by replacing each atom
R(v1, . . . , vk) with R′(v1, . . . , vk, w). In fact, this is the actual set of TGDs O, with
the difference that the value at the last position of each atom – which indicates
whether it is true or false – is propagated to the inferred atoms.

Now, assuming that q(x̄) = q1(x̄) ∨ · · · ∨ qn(x̄), the CQ q′(x̄) is defined as follows. Let
v̄ = v1 . . . vn and w̄ = w1 . . . wn+1. Then:

q′(x̄) := ∃v̄, w̄ (False(w1) ∧
∧

1≤i≤n
(q′i[vi] ∧ Or(wi, vi, wi+1)) ∧ True(wn+1)),

182

B.2. Proofs for Chapter 44

where w̄ and v̄ are fresh variables not in q, and q′i[vi] is a conjunction of atoms obtained
from the body atoms of qi by replacing each atom R(t1, . . . , tk) by R′(t1, . . . , tk, vi). This
completes our construction.

It is not difficult to show that Q ≡ Q′. The key observation is that, in order to satisfy
True(wn+1) in the CQ q′, at least one of the vi must be mapped to 1, which means that
at least one qi must be mapped via a homomorphism to chase(D,O). Finally, it is easy
to verify that, for each C ∈ {G,FG, L,NR, S}, O ∈ C implies O′ ∈ C, and Proposition 4.54.5
follows. �

B.2.2 Proof of Proposition 4.114.11

Stratification Let us first give give an alternative definition for non-recursiveness that
is based on the well-known notion of stratification, which is more convenient for the
combinatorial analysis that we are going to perform in the proof of Proposition 4.114.11.

Definition B.4. Consider a set O of TGDs. A stratification of O is a partition
{O1, . . . ,On}, where n > 0, of O such that, for some function µ : sig(O)→ {0, 1, . . . , n},
the following hold:

(i) For each predicate R ∈ sig(O), all the TGDs with R in their head belong to Oµ(R),
i.e., they belong to the same set of the partition.

(ii) If there exists a TGD in O such that the predicate R appears in its body, while
the predicate P appears in its head, then µ(R) < µ(P).

We call µ a stratification function for O. We say that O is stratifiable if it admits a
stratification.

It is an easy exercise to show that the predicate graph of a set O of TGDs is
non-recursive/acyclic iff O is stratifiable. Then:

Lemma B.5. O is non-recursive iff it is stratifiable.

We are now ready to prove Proposition 4.114.11:

Proof of Proposition 4.114.11. We assume, w.l.o.g., that the predicates of S do not
appear in the head of a TGD of O. For if predicates of S appear in the head of a TGD
of O, we can simply introduce auxiliary predicates and rules that copy the contents of
the according relations in these predicates. Assume also that O is in normal form as
required by XRewrite. Starting from O, this transformation and the one that ensures
that predicates from S do not appear in the heads of TGDs only introduce at most
polynomially many new predicates. Let p(·) be this polynomial, and let us abuse notation
and write O for the resulting set of TGDs as well. Since O ∈ NR, by Lemma B.5B.5, O admits
a stratification {O1, . . . ,On} with stratification function µ : sig(O)→ {0, 1, . . . , k}.

Let us briefly explain how the rewriting tree TQ of the OMQ Q = (S,O, q) is defined.
TQ is a rooted labeled tree with q being the label its root (let us identify nodes with their
labels in the following). The i-th level of TQ consists of the CQs obtained from the CQs of

183

B. Missing Proofs

the (i−1)-th level by applying rewriting steps (see the algorithm XRewrite in Appendix AA
for details on the rewriting step) using only TGDs from Ok−i+1. It is easy to verify that
the CQs of the i-th level contain only predicates P such that µ(P) < k − i + 1. It is
now clear that the k-th level of TQ (i.e., the leaves of TQ) consists only of CQs obtained
during the execution of XRewrite that contain only predicates from S. Thus, in order to
obtain the desired upper bound, it suffices to show that the number of atoms that occur
in a CQ that is a leaf of TQ is at most |q| ·np(|sig(O)|), where n := max{|body(τ)| : τ ∈ O}.

To this end, let us focus on one branch B of TQ from the root q to a leaf q′. Such a
branch can be naturally represented as an n-ary forest FBQ , where the root nodes are
the atoms of q, and whenever an atom α is resolved during the rewriting step using a
TGD τ , the atoms of body(τ), after applying the appropriate MGU, are the child nodes
of α. Therefore, to obtain the desired upper bound, it suffices to show that the number
of leaves of FBQ is at most |q| · np(|sig(O)|).

By construction, FBQ consists, in general, of |q| different n-ary rooted trees, where
all are of depth at most k. Hence, the number of leaves of FBQ is at most |q| · nk. Since
k ≤ p(|sig(O)|), the claim follows. �

B.2.3 Proof of Theorem 4.134.13

A proof sketch for the coNExpTimeNP upper bound is given in the main body of the
thesis. We proceed to establish PTimeNExpTime-hardness. Our proof is by reduction
from a tiling problem that has been recently introduced in [7272], which in turn relies on
the standard Exponential Tiling Problem. Let us first recall the latter problem.

An instance of the Exponential Tiling Problem is a tuple T = (n,m,H, V, s̄), where
n,m are numbers (in unary), H,V are subsets of {1, . . . ,m} × {1, . . . ,m}, and s̄ is a
sequence of numbers from {1, . . . ,m}. Such a tuple specifies that we desire a 2n×2n grid,
where each cell is tiled with a tile from {1, . . . ,m}. H (respectively, V) is the horizontal
(respectively, vertical) compatibility relation, while s̄ represents a constraint on the initial
part of the first row of the grid. A solution to such an instance of the Exponential Tiling
Problem is a function f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → {1, . . . ,m} such that:

(i) f(i, 0) = si, for each 0 ≤ i ≤ |s̄| − 1.

(ii) (f(i, j), f(i+ 1, j)) ∈ H, for each 0 ≤ i ≤ 2n − 2 and 0 ≤ j ≤ 2n − 1.

(iii) (f(i, j), f(i, j + 1)) ∈ V , for each 0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ 2n − 2.

We will refer to {0, . . . , 2n − 1} × {0, . . . , 2n − 1} as a grid, with the pairs in it being
cells. A cell consists of two coordinates, the column-coordinate (for short col-coordinate)
and the row-coordinate, and any function on a grid is a tiling. The Exponential Tiling
Problem is defined as follows: given an instance T as above, decide whether T has a
solution. It is known that this problem is NExpTime-hard (see, e.g., Section 3.2 of [9696]).

We are now ready to recall the tiling problem introduced in [7272], called Extended Tiling
Problem (ETP), which is PTimeNExpTime-hard. An instance of this problem is a tuple
T = (k, n,m,H1, V1, H2, V2), where k, n,m are numbers (in unary), and H1, V1, H2, V2
are subsets of {1, . . . ,m} × {1, . . . ,m}. The question is as follows: is it the case that for

184

B.2. Proofs for Chapter 44

every sequence s̄, where |s̄| = k, of numbers of {1, . . . ,m}, T1 := (n,m,H1, V1, s̄) has
no solution or T2 := (n,m,H2, V2, s̄) has a solution? If this question can be answered
positively, then we say that T has a solution.

We give a reduction from the ETP to Cont(NR,CQ). More precisely, given an instance
T = (k, n,m,H1, V1, H2, V2) of the ETP, our goal is to construct in polynomial time two
queries Qi = (S,Oi, qi) ∈ (NR,CQ), for i ∈ {1, 2}, such that T has a solution iff Q1 ⊆ Q2.

The Data Schema S

The data schema S consists of:

• 0-ary predicates Cji , for each i ∈ {0, . . . , k − 1} and j ∈ {1, . . . ,m}. The atom Cji
indicates that si = j.

The Query Q1

The goal of the query Q1 is twofold: (i) to check that the so-called existence property of
the input database, i.e., whether, for every i ∈ {0, . . . , k − 1}, there exists at least one
atom of the form Cji , is satisfied, and (ii) to check whether T1 := (n,m,H1, V1, s̄), where
s̄ is the sequence of tilings encoded in the input database, has a solution.

To this end, the query Q1 will mention the following predicates:

• 0-ary predicates Ci, indicating that there exists at least one atom of the form Cji
in the input database.

• A 0-ary predicate Existence, indicating that the input database enjoys the existence
property.

• Unary predicates Tilei, for each i ∈ {1, . . . ,m}. The atom Tilei(x) states that x
represents the tile i.

• A binary predicate H. The atom H(x, y) encodes the fact that (x, y) ∈ H1.

• A binary predicate V . The atom V (x, y) encodes the fact that (x, y) ∈ V1.

• 5-ary predicates Ti, for each i ∈ {1, . . . , n}. The atom Ti(x, x1, x2, x3, x4) states
that x is a (2i× 2i)-tiling obtained from the (2i−1× 2i−1)-tilings x1, . . . , x4 – details
on the inductive construction of (2i × 2i)-tilings from (2i−1 × 2i−1)-tilings are given
below.

• Unary predicates Initiali, for each i ∈ {0, . . . , k − 1}. The atom Initiali(x) states
that si = x, i.e., the i-th element of the sequence s̄ is x.

• Binary predicates Topji , for each i ∈ {1, . . . , n} and j ∈ {0, . . . , k − 1}. The atom
Topji (x, y) states that in the (2i × 2i)-tiling x the tile at position (j, 0) is y.

• A 0-ary predicate Tiling, indicating that there exists a (2n × 2n)-tiling that is
compatible with the initial tiling s̄ encoded in the input database.

185

B. Missing Proofs

Z3 Z4 W3 W4

Z1 Z2 W1 W2

X3 X4 Y3 Y4

X1 X2 Y1 Y2

(a)
Z3 Z4 Z4 W3

Z1 Z2 Z2 W1

Z1 Z2 Z2 W1

X3 X4 X4 Y3

X1 X2 X2 Y1

X3 X4 X4 Y3 Y3 Y4

Y1 Y2

Y3 Y4

W1 W2

W1 W2

W3 W4

(b)

Figure B.1: Inductive construction of tilings.

• A 0-ary predicate Goal, which is derived whenever the predicates Existence and
Tiling are derived.

Q1 is defined as the query (S,O1,Goal), where O1 consists of the following TGDs:

• For each i ∈ {0, . . . , k − 1} and j ∈ {1, . . . ,m},

Cji → Ci,

and the TGD that checks for the existence property

C0, . . . , Ck−1 → Existence.

• Generate the tiles:

> → ∃x1 . . . ∃xm (Tile1(x1) ∧ · · · ∧ Tilem(xm)).

• Generate the compatibility relations:
For each (i, j) ∈ H1,

Tilei(x),Tilej(y)→ H(x, y).

For each (i, j) ∈ V1,

Tilei(x),Tilej(y)→ V (x, y).

• Generate the (2n × 2n)-tilings. The key idea is to inductively construct (2i × 2i)-
tilings from (2i−1 × 2i−1)-tilings. It is easy to verify that the grid in Figure B.1aB.1a is

186

B.2. Proofs for Chapter 44

a (2i × 2i)-tiling iff the nine subgrids of it, shown in Figure B.1bB.1b, are (2i−1 × 2i−1)-
tilings. This has been already observed in [6767], where Datalog with complex values
is studied.
First, we construct tilings of size 2× 2 (the base case of the inductive construction):

H(x1, x2), H(x3, x4), V (x1, x3), V (x2, x4)→ ∃xT1(x, x1, x2, x3, x4).

Then, we inductively construct tilings of larger size until we get tilings of size
2n × 2n. This is done using the following TGDs: for each i ∈ {2, . . . , n},
Ti−1(x1, x11, x12, x21, x22), Ti−1(x2, x12, x13, x22, x23), Ti−1(x3, x13, x14, x23, x24),
Ti−1(x4, x21, x22, x31, x32), Ti−1(x5, x22, x23, x32, x33), Ti−1(x6, x23, x24, x33, x34),
Ti−1(x7, x31, x32, x41, x42), Ti−1(x8, x32, x33, x42, x43), Ti−1(x9, x33, x34, x43, x44)→

∃xTi(x, x1, x3, x7, x9).

• Extract from the (2n × 2n)-tilings those tiles at positions (0, 0), (1, 0), . . . , (k− 1, 0).
This is done using the following TGDs:

T1(x, x1, x2, x3, x4) → Top0
1(x, x1) ∧ Top1

1(x, x2),
T2(x, x1, x2, x3, x4),Top0

1(x1, y0),Top1
1(x1, y1) → Top0

2(x, y0) ∧ Top1
2(x, y1),

T2(x, x1, x2, x3, x4),Top0
1(x2, y0),Top1

1(x2, y1) → Top2
2(x, y0) ∧ Top3

2(x, y1),
...

T`(x, x1, x2, x3, x4),
Top0

`−1(x1, y0), . . . ,Top2`−1−1
`−1 (x1, y2`−1−1) → Top0

` (x, y0) ∧ · · · ∧
Top2`−1−1

` (x, y2`−1−1),
T`(x, x1, x2, x3, x4),

Top0
`−1(x1, y0), . . . ,Topk−2`−1−1

`−1 (x1, yk−2`−1−1) → Top2`−1
` (x, y0) ∧ · · · ∧

Topk−1
` (x, yk−2`−1−1),

where ` = dlog ke. Moreover, for each i ∈ {`+ 1, . . . , n}:
Ti(x, x1, x2, x3, x4),Top0

i−1(x1, y0), . . . ,Topk−1
i−1 (x1, yk−1)→

Top0
i (x, y0) ∧ · · · ∧ Topk−1

i (x, yk−1).

• Check whether there exists a (2n × 2n)-tiling that is compatible with the sequence
of tilings s̄:
For each i ∈ {0, . . . , k − 1} and j ∈ {1, . . . ,m}:

Cji ,Tilej(x)→ Initiali(x),

and the TGD

Top0
n(x, y0), Initial0(y0), . . . ,Topk−1

n (x, yk−1), Initialk−1(yk−1)→ Tiling.

187

B. Missing Proofs

• Finally, we have the output TGD

Existence,Tiling→ Goal.

This concludes the construction of Q1.

The Query Q2

The goal of the query Q2 is twofold: (i) to check that the so-called uniqueness property
of the input database, i.e., for every i ∈ {0, . . . , k − 1}, there exists at most one atom of
the form Cji , is satisfied, and (ii) to check whether T2 := (n,m,H2, V2, s̄), where s̄ is the
sequence of tilings encoded in the input database, has a solution.

Q2 mentions the same predicates as Q1, and is defined as Q2 := (S,O2,Goal), where
O2 consists of the following TGDs:

• For each i ∈ {0, . . . , k − 1} and j, ` ∈ {1, . . . ,m} with j < `,

Cji , C
`
i → Goal.

• The rest of O2 encodes the tiling problem T2 in exactly the same way as O1 encodes
the instance T1.

This concludes the construction of Q2 and thus the proof of Theorem 4.134.13 �

B.2.4 Proof of Theorem 4.154.15

The coNExpTime upper bound, as well as the ΠP
2 -hardness in case of predicates

of bounded arity, are discussed in the main body of the thesis. Here, we show the
coNExpTime-hardness. The proof proceeds in two steps:

(i) First, we show that Cont((FNR,CQ), (L,UCQ)) is coNExpTime-hard, where FNR
denotes the class of full non-recursive sets of TGDs, i.e., non-recursive sets of tgds
without existentially quantified variables. Notice thus that OMQs using sets of
TGDs from FNR correspond to non-recursive Datalog queries.

(ii) Then, we reduce Cont((FNR,CQ), (L,UCQ)) to Cont((S,CQ), (L,UCQ)) by show-
ing that (under some assumptions that are explained below) every OMQ from
(FNR,CQ) can be rewritten into an OMQ from (S,CQ).

By Proposition 4.54.5, we immediately get that Cont((S,CQ), (L,CQ)) is coNExpTime-hard,
as needed.

Step 1: coNExpTime-hardness of Cont((FNR,CQ), (L,UCQ))

We show that Cont((FNR,CQ), (L,UCQ)) is coNExpTime-hard when we focus on 0-1-
queries, that is, queries Q with following property: for every database D, Q(D) = Q(D01),
where D01 ⊆ D is the substructure of D induced by the set {0, 1}. The proof is by
reduction from the Exponential Tiling Problem, and is a non-trivial adaptation of

188

B.2. Proofs for Chapter 44

the one given in [2929] for showing that containment of non-recursive Datalog queries is
coNExpTime-hard.

Given an instance T = (n,m,H, V, s̄) of the Exponential Tiling Problem, we are going
to construct an OMQ QT from (FNR,CQ), which is a 0-1-query with data schema S, and
an OMQ Q′T from (L,UCQ), which is also a 0-1-query having data schema S, such that
T has a solution iff QT 6⊆ Q′T.

The data schema S The data schema S consists of:

• 2n-ary predicates TiledByi, for i ≤ m. An atom TiledByi(x1, . . . , xn, y1, . . . , yn)
indicates that the cell with coordinates ((x1, . . . , xn), (y1, . . . , yn)) ∈ {0, 1}n×{0, 1}n
is tiled by tile i. Notice that we use n-bit binary numbers to represent a coordinate,
which is the key difference between our construction and the one of [2929].

The query QT The goal of the query QT is to assert whether the input database
encodes a candidate tiling, i.e., whether the entire grid is tiled, without taking into account
the constraints, that is, the compatibility relations and the constraint on the initial part
of the first row. To this end, the query QT will mention the following predicates:

• Unary predicate Bit. The atom Bit(x) simply says that x is a bit, i.e., x ∈ {0, 1}.
• 2n-ary predicates TiledAboveColi, for each i ≤ n. The atom TiledAboveColi(x̄, ȳ)
says that for the row-coordinate ȳ there are tiled cells with coordinates (x̄′, ȳ) for
every col-coordinate x̄′ that agrees with x̄ on the first i− 1 bits. In other words,
for the row corresponding to ȳ, every column extending the first i− 1 bits of x̄ is
tiled. In particular, TiledAboveCol1(x̄, ȳ) says that the entire row ȳ is tiled.

• 2n-ary predicates TiledAboveRowi, for each i ≤ n. The atom TiledAboveRowi(ȳ)
says that for every ȳ′ that agrees with ȳ on the first i− 1 bits, the row ȳ′ is fully
tiled.

• An n-ary predicate RowTiled. The atom RowTiled(ȳ) says that the row ȳ is fully
tiled.

• A 0-ary predicate AllTiled, which asserts that the entire grid is tiled.

• A 0-ary predicate Goal, which is derived whenever the predicate AllTiled is derived.

QT is defined as QT := (S,O,Goal), where O consists of the following rules:

• Generate the Bit-atoms:

> → Bit(0), > → Bit(1).

• The relation RowTiled is defined as follows:

189

B. Missing Proofs

For each j, k ≤ m,

TiledByj(x1, . . . , xn−1, 1, y1, . . . , yn),TiledByk(x1, . . . , xn−1, 0, y1, . . . , yn),
Bit(x1), . . . ,Bit(xn−1),Bit(y1), . . . ,Bit(yn),Bit(w)→

TiledAboveColn(x1, . . . , xn−1, w, y1, . . . , yn)

For each 2 ≤ i ≤ n,

TiledAboveColi(x1, . . . , xi−1, 1, xi+1, . . . , xn, y1, . . . , yn),
TiledAboveColi(x1, . . . , xi−1, 0, x′i+1, . . . , x

′
n, y1, . . . , yn),

Bit(wi), . . . ,Bit(wn)→
TiledAboveColi−1(x1, . . . , xi−1, wi, . . . , wn, y1, . . . , yn).

A row is fully tiled:

TiledAboveCol1(x1, . . . , xn, y1, . . . , yn)→ RowTiled(y1, . . . , yn)

• The relation AllTiled:

RowTiled(y1, . . . , yn−1, 1),RowTiled(y1, . . . , yn−1, 0),Bit(w)→
TiledAboveRown(y1, . . . , yn−1, w).

For each 2 ≤ i ≤ n,

TiledAboveRowi(y1, . . . , yi−1, 1, yi+1, . . . , yn),
TiledAboveRowi(y1, . . . , yi−1, 0, y′i+1, . . . , y

′
n),

Bit(wi), . . . ,Bit(wn)→
TiledAboveRowi−1(y1, . . . , yi−1, wi, . . . , wn).

The entire grid is tiled:

TiledAboveRow1(y1, . . . , yn)→ AllTiled,
AllTiled→ Goal.

This concludes the construction of the query QT.

The query Q′
T Q′T is defined in such a way that Q′T(D) is non-empty exactly when

the input database D encodes an invalid tiling, i.e., when one of the constraints on the
tiles is violated. The query Q′T will mention the following intensional predicates:

• A unary predicate Bit. As above, Bit(x) says that x is a bit.

• 2i-ary predicates LastFirsti, for each 1 ≤ i ≤ n. The atom

LastFirsti(x1, . . . , xi, y1, . . . , yi)

says that (x1, . . . , xi) = (1, . . . , 1) and (y1, . . . , yi) = (0, . . . , 0).

190

B.2. Proofs for Chapter 44

• 2i-ary predicates Succi, for each 1 ≤ i ≤ n. The atom Succi(x̄, ȳ) says that the
i-bit binary number ȳ is the successor of the i-bit binary number x̄.

• A 0-ary predicate Goal.
Q′T is defined as the query Q′T := (S,O′, q′), where O′ and q′ are specified as follows.

The set O′ consists of the following linear TGDs:

• Generate the Bit-atoms:

> → Bit(0), > → Bit(1).

• Generate the successor predicates:

> → Succ1(0, 1), > → LastFirst1(1, 0).

For each 1 ≤ i ≤ n− 1,

Succi(x1, . . . , xi, y1, . . . , yi)→ Succi+1(0, x1, . . . , xi, 0, y1, . . . , yi),
Succi(x1, . . . , xi, y1, . . . , yi)→ Succi+1(1, x1, . . . , xi, 1, y1, . . . , yi),

LastFirsti(x1, . . . , xi, y1, . . . , yi)→ Succi+1(0, x1, . . . , xi, 1, y1, . . . , yi),
LastFirsti(x1, . . . , xi, y1, . . . , yi)→ LastFirsti+1(1, x1, . . . , xi, 0, y1, . . . , yi).

The UCQ q′ consists of the following (Boolean) CQs. For brevity, the existential
quantifiers in front of the CQs are omitted:

• Tile consistency: for each i 6= j ≤ m,

TiledByi(x1, . . . , xn, y1, . . . , yn) ∧ TiledByj(x1, . . . , xn, y1, . . . , yn) ∧
Bit(x1) ∧ · · · ∧ Bit(xn) ∧ Bit(y1) ∧ · · · ∧ Bit(yn).

• Tile compatibility:
For each (i, j) 6∈ V ,

Succn(x1, . . . , xn, y1, . . . , yn) ∧
TiledByi(w1, . . . , wn, x1, . . . , xn) ∧ TiledByi(w1, . . . , wn, y1, . . . , yn) ∧

Bit(w1) ∧ · · · ∧ Bit(wn).

For each (i, j) 6∈ H,

Succn(x1, . . . , xn, y1, . . . , yn) ∧
TiledByi(x1, . . . , xn, w1, . . . , wn) ∧ TiledByi(y1, . . . , yn, w1, . . . , wn) ∧

Bit(w1) ∧ · · · ∧ Bit(wn).

191

B. Missing Proofs

• Tiling of the first row:
For each j ≤ n, let fj : {1, . . . , n} → {0, 1} be such that fj(1) · · · fj(n) is the number
j in binary representation, and let k ∈ {1, . . . ,m} be different to sj (recall that s̄ is
a sequence of numbers from {1, . . . ,m} that represents a constraint on the initial
part of the first row of the grid). Then, we have the CQ

TiledByk(x1, . . . , xn, z, . . . , z︸ ︷︷ ︸
n

) ∧ Succ1(z, o),

where, for each i ∈ {1, . . . , n}, xi = z if fj(i) = 0, and xi = o if fj(i) = 1.

This concludes the definition of the query Q′T, and hence the proof that the problem
Cont((FNR,CQ), (L,UCQ)) is coNExpTime-hard.

Step 2: coNExpTime-hardness of Cont((S,CQ), (L,UCQ))

Let F denote the class of finite sets of full TGDs, i.e, those that do not contain rules with
existential quantifiers in their heads. Our goal is show that every 0-1-query Q = (S,O, q)
from (F,CQ) can be equivalently rewritten as a 0-1-query Q′ = (S,O′, q′), where all the
TGDs of O′ are lossless, i.e., all the body-variables appear also in the head, which in
turn implies that O′ is sticky.

Proposition B.6. Consider a 0-1-query Q ∈ (F,CQ). We can construct in polynomial
time a 0-1-query Q′ ∈ (S,CQ) such that Q ≡ Q′.
Proof. Let Q = (S,O, q), and assume that n is the maximum number of variables
occurring in the body of a TGD of O. We are going to construct in polynomial time a
0-1-query Q′ = (S,O′, q′) from (S,CQ) such that Q ≡ Q′.

The set O′ consists of the following TGDs:

• Initialization rules:
We first transform every database atom of the form R(c̄) into an atom

R′(c̄, 0, . . . , 0︸ ︷︷ ︸
n

, 0, 1).

This is done by adding the following rules to O′:

> → Bit(0), > → Bit(1)

and, for each k-ary predicate R ∈ S, we have the lossless TGD

R(x1, . . . , xk),Bit(x1), . . . ,Bit(xk)→ R′(x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
n

).

Notice that we can safely force the variables x1, . . . , xk to take only values from
{0, 1} due to Q being a 0-1-query.

192

B.2. Proofs for Chapter 44

• Transformation into lossless TGDs:
For each TGD τ ∈ O of the form

R1(x̄1), . . . , Rk(x̄k)→ R0(x̄0),

we have the lossless TGD

R′1(x̄1, 0, . . . , 0︸ ︷︷ ︸
n

), . . . , R′k(x̄k, 0, . . . , 0︸ ︷︷ ︸
n

)→ R′0(x̄0, y1, . . . , yn),

where, if {v1, . . . , v`}, for ` ∈ {1, . . . , n}, is the set of variables occurring in the
body of τ (the order is not relevant), then yi = vi, for each i ∈ {1, . . . , `}, and
yj = v1, for each j ∈ {`+ 1, . . . , n}.

• Finalization rules:
Observe that each atom obtained during the chase due to one of the lossless TGDs
introduced above is of the form R′(x̄, ȳ), where ȳ ∈ {0, 1}n. If ȳ 6= (0, . . . , 0), then
we need to ensure that eventually the atom

R′(x̄, 0, . . . , 0︸ ︷︷ ︸
n

)

will be inferred. This is achieved by adding to O′ the following TGDs. For each
k-ary predicate R occurring in O, and for each 1 ≤ i ≤ n, we have the rule:

R′(x1, . . . , xk, y1, . . . , yi−1, 1, yi+1, . . . , yn)→
R′(x1, . . . , xk, y1, . . . , yi−1, 0, yi+1, . . . , yn).

This concludes the definition of O′.
The CQ q′ is defined analogously. More precisely, assuming that q is of the form (the

existential quantifiers are omitted)

R1(x̄1) ∧ · · · ∧Rk(x̄k),

then the CQ q′ is defined as

R′1(x̄1, 0, . . . , 0︸ ︷︷ ︸
n

) ∧ · · · ∧R′k(x̄k, 0, . . . , 0︸ ︷︷ ︸
n

).

It is easy to verify that O′ consists of lossless TGDs, and thus Q′ ∈ (S,CQ). It also
not difficult to see that, for every S-database D, Q(D01) = Q′(D01). Thus, since Q is a
0-1-query, Q(D) = Q′(D), and the claim follows. �

By the fact that Cont((FNR,CQ), (L,UCQ)) is coNExpTime-hard and Proposi-
tion B.6B.6, we immediately get that Cont((S,CQ), (L,UCQ)) is coNExpTime-hard, as
required. �

193

B. Missing Proofs

B.2.5 Proof of Lemma 4.494.49

The fact that item (ii)(ii) implies item (i)(i) is immediate, we thus focus on the other direction
for which we mainly follow [1818].

Let h be a homomorphism from q(x̄) to A that witnesses A |= q(ā). Let δ =
(T , (Xv)v∈T) be a tree decomposition that witnesses that A is acyclic. Since δ is guarded,
we can pick for each v ∈ T a fact βv such that (i) βv contains all elements from Xv as
arguments, and (ii) Aδ(v) |= βv. Moreover, for each atom α of q(x̄), there is a node vα
such that Aδ(vα), h |= α. Let W be the set of all these vα closed off under greatest lower
bounds w.r.t. �T . Consider the set Q+ := h(q) ∪ {βv | v ∈ W} (Q+ may also contain
equality atoms). Notice that at least half of the nodes in W are of the form vα – hence,
|Q+| ≤ 3|q|. Now from Q+ we can construct an acyclic CQ q+ by identifying elements
named in the atoms of Q+ by variables. In particular, we ensure that the elements h(ā)
are renamed to x̄. We existentially quantify over every variable in q+ except those among
x̄. It may be the case that not all of the variables of x̄ are answer variables of q+, as
h may not be injective on [x̄]. In this case, for each variable xi among x̄ that is not
an an answer variable of q+ we add a conjunct xi = v, where v is an arbitrary answer
variable (notice that v exists by assumption). This step is repeated exhaustively for all
such xi, call the resulting CQ p(x̄). It is clear that |p| ≤ 3|q|+ |x̄| and that A |= p(ā) by
construction. Moreover, it is also easy to see that p(x̄) |= q(x̄). �

B.2.6 Proof of Lemma 4.504.50

Throughout the proof, let x̄ := x1, . . . , xn and ā := a1, . . . , an.
Suppose first that A |= q(ā), and let h be a homomorphism witnessing this fact.

Let T1, . . . , Tk enumerate the subtrees rooted at the children of the root ε of T . For
i = 1, . . . , k, let

A0 := C and Ai :=
⋃
v∈Ti

Aδ(v).

Let α1, . . . , αn be an enumeration of all the atoms from q(x̄), and let h(α1), . . . , h(αn)
denote the result of these atoms by applying h as a substitution to them – hence, h(αi)
may also be an equality atom of the form c = c, where c ∈ dom(A). Let A0, A1, . . . , Ak
be a partition of the atoms h(α1), . . . , h(αn) so that h(αi) ∈ Aj implies that αi is true
in Aj under the assignment h. For i = 0, 1, . . . , k, let qi be the CQ that results from Ai
by taking the conjunction of all atoms contained in it, and by replacing the elements
of dom(A) that also occur in Ai by variables in such a way that ā is renamed to x̄. Let
` ∈ {0, 1, . . . , k} be such that the h-image of the answer guard of q(x̄) is contained in A`.
In q` we declare all the variables that are among x̄ as answer-variables, while for i 6= `,
we close qi off under existential quantification so that qi is boolean. Thus, only q` has
answer variables at all, provided q(x̄) has some. However, it may be the case that q` does
not have exactly the variables x̄ as answer variables. Suppose xi occurs in x̄ but not in q`.
Then we pick a v ∈ free(q`) and add to q` the conjunct v = xi. We do this exhaustively
for all such variables xi. For i = 0, 1, . . . , k, let x̄i denote the answer variables of qi.

194

B.2. Proofs for Chapter 44

Now it is easy to check that, for i = 1, . . . , k, Ai is acyclic. Hence, for i = 1, . . . , k,
we now invoke Lemma 4.494.49 in order to obtain a strictly acyclic pi(x̄i) over T such
that pi(x̄i) |= qi(x̄i) and Ai |= pi(h(x̄i)). Let hi be a homomorphism witnessing that
Ai |= pi(h(x̄i)), and let h0 be a homomorphism witnessing that A0 |= q0(h(x̄0)). We claim
that θ := (q0, p1, . . . , pk) is a squid decomposition of q(x̄) with the desired properties,
and that h0, h1, . . . , hk are the desired homomorphisms.

By construction, θ = q0 ∧ p1 ∧ · · · ∧ pk has the same free variables as q(x̄), and one
of them has exactly the variables x̄ as answer variables (namely q0 in case ` = 0 and
p` otherwise). Moreover, it is easy to check that θ(x̄) |= q(x̄) and that all sub-items of
item (ii)(ii) are satisfied by construction. Also note that |q0| ≤ |q| and |var(q0)| ≤ |var(q)|.
Now Lemma 4.494.49 tells us that |pi| ≤ 3|qi|+ |x̄i| and we also know that |x̄i| = 0 for all
i 6= `. From this and

|q0|+ |q1|+ · · ·+ |qk| ≤ |q|+ |x̄|,

(recall here again that we added equality atoms to q` in order to accommodate missing
answer variables) we obtain

|q0|+ |p1|+ · · ·+ |pk| ≤ |q0|+ 3|q1|+ · · ·+ 3|qk|+ |x̄`|
≤ 3(|q|+ |x̄|) + |x̄`|
= 3|q|+ 4|x̄|.

Thus, θ satisfies the required size bounds, and θ is the squid decomposition of q(x̄) we
are looking for.

The fact that item (ii)(ii) implies item (i)(i) is immediate since item (ii)(ii) implies that
A |= θ(ā), whence θ(x̄) |= q(x̄) gives A |= q(ā). �

B.2.7 Proof of Lemma 4.604.60

We are going to construct Aq = (S,ΓS, {0, l}, δ, s0,Ω). Let x1, . . . , xn be the variables of
var≥1(q) and fix a total order x1 ≺ x2 ≺ · · · ≺ xn among them. Define the state set S to
be

S := {sy,θ | θ : V → US, V ⊆ var≥2(q), y ∈ var≤1(q) ∪ {]}},

where] 6∈ var(q) is a special symbol. Notice that |S| = O(|var≤1(q)| · wd(S)|var≥2(q)|). Let
us set Ω(s) := 1 for all s ∈ S, and s0 := s],∅ where ∅ denotes the empty substitution.

For brevity, let us set X := var≥2(q) in the following. For the presentation of δ, let
us introduce some auxiliary notation. Given a set of atoms A whose arguments are
elements from US and variables from var(q) and a symbol ρ ∈ ΓS, a homomorphism
from A to ρ is a function h : var(A) ∪ US → US that is the identity on US such that if
R(t1, . . . , tk) ∈ A, then also Rh(t1),...,h(tk) ∈ ρ. Abusing notation, we write ρ |= A if there
is a homomorphism from A to ρ.

Now, for ρ ∈ ΓS and sy,θ ∈ S, we define δ(sy,θ, ρ) by case distinction as follows:

(i) If y =], we distinguish the following sub-cases:

195

B. Missing Proofs

(a) Suppose first that there is an atom α(v̄) occurring in q such that Y :=
dom(θ) ∩ [v̄] ∩X 6= ∅ and θ(Y) ∩ US 6⊆ names(ρ). Then δ(s],θ, ρ) := false.

(b) Otherwise, if dom(θ) = X, then we set δ(s],θ, ρ) := 〈0〉sx1,θ.
(c) Otherwise, we set

δ(s],θ, ρ) :=
∨
{〈0〉s],η | η ⊇ θ, ρ |= η(body(q)) \ θ(body(q))} ∨ 〈l〉s],θ.

(ii) Suppose now that y = xi for some i = 1, . . . , n. Let αi denote the unique body
atom of q that has an occurrence of xi. Let αi,θ be the atom resulting from αi by
applying the substitution θ to its arguments. We set

δ(sxi,θ, ρ) :=

〈0〉sxi+1,θ, if ρ |= {αi,θ} and i < n,
true, if ρ |= {αi,θ} and i = n,

〈l〉sxi,θ, otherwise.

Intuitively, the automaton works in two passes. The first pass consists of the runs working
on states of the form s],θ. In this pass, the automaton tries to find an assignment for
the variables in the query that appear in at least two distinct atoms. When a candidate
assignment θ is found, the automaton changes to state sx1,θ which is the beginning of
the second pass. A state of the form sxi,θ means that the assignment θ can be extended
to all variables x ≺ xi and, in this state, the automaton tries to extend θ to cover the
variable xi. The automaton makes use of the fact that the variable xi occurs in only one
atom αi. Therefore, to extend θ to xi, it suffices to find a single value from US that can
be assigned to xi in such a way that the resulting fact is named in a label of the input
tree. The automaton accepts iff it is able to extend the candidate assignment θ to all
variables x1, . . . , xn. �

B.3 Proofs for Chapter 55

B.3.1 Proof of Theorem 5.35.3

The only missing part of the proof of Theorem 5.35.3 is the 2ExpTime lower bound for the
problem FO⇐(G,AQ). We are going to show in the following that actually FO⇐(G,BAQ)
is 2ExpTime-hard. Recall that in [2323] it is shown that the problem of deciding whether
an OMQ from (G,BAQ) is contained in a Boolean acyclic CQ is 2ExpTime-hard. As we
mentioned in Section 4.34.3, we can view a Boolean acyclic CQ as an OMQ from (G,BAQ)
that is even first-order rewritable. Hence, the following result is implicit in [2323]:

Theorem B.7. The problem of deciding whether or not an OMQ Q1 = (S,O, G1) from
(G,AQ0) is contained in an OMQ Q2 = (S,O, G2) is hard for 2ExpTime. This is true
even for the case where Q2 is first-order rewritable.

To prove that FO⇐(G,BAQ) is hard for 2ExpTime, we are going to reduce the
problem mentioned in Theorem B.7B.7 to FO⇐(G,BAQ).

196

B.4. Proofs for Chapter 66

Let Q1 = (S,O1, G1) and Q2 = (S,O2, G2) be as in the hypothesis of Theorem B.7B.7.
Without loss of generality, we may assume that the predicates Q1 and Q2 use and that
do not appear in S are distinct. We are going to construct an OMQ Q′ that falls into
(G,BAQ) such that Q′ is first-order rewritable iff Q1 is contained in Q2.

Let Q′ = (S,O′, G2), where

• S′ := S ∪ {R/2, A/1, B/1}.
• O′ is the union of O1 and O2 plus the rules

R(x, y), A(y)→ A(x),
A(x), B(x), G1 → G2.

Notice that G2 is also the query component of Q′.

Lemma B.8. Q1 is contained in Q2 iff Q′ is first-order rewritable.

Proof. Assume first that Q1 is not contained in Q2. Then there is an S-database D
such that D |= Q1 and D 6|= Q2. By Lemma 5.315.31, there is a B of tree-width at most
wd∗(S) such that B |= Q1 and a weak homomorphism from B to D. Since Q2 is closed
under weak homomorphisms, we must also have B 6|= Q2. For each k > 0, let Dk be the
S′-database extending B by the facts

B(a0), R(a0, a1), . . . , R(ak−1, ak), A(ak),

where a0, . . . , ak do not occur in dom(B). It is easy to check that Dk |= Q′ for all k > 0.
Moreover, no proper substructure of Dk satisfies Q′. By virtue of Proposition 5.75.7, Q′ is
thus not first-order rewritable.

Conversely, suppose that Q1 is contained in Q2. Since Q2 is first-order rewritable,
there is a UBCQ q over S that is equivalent to Q2. We claim that q is a UCQ-rewriting
of Q′ as well. Indeed, suppose first that D |= q for some S′-database S. Since q uses
only symbols from S, we obtain that D � S |= q as well. Since q is equivalent to Q2, we
get D � S |= Q2 and, by construction of Q′, so D |= Q′. Suppose now that D |= Q′ for
some S′-database D. By construction of Q′, we must then have D |= Q2 or D |= Q1. In
the former case, we are done since Q2 and q are equivalent. In the latter case, we get
D � S |= Q1, whence D � S |= Q2, since Q1 is contained in Q2. Therefore also D � S |= q
and thus D |= q. This proves the claim. �

It is clear that Q′ can be constructed from Q1 and Q2 in polynomial time. Therefore,
2ExpTime-hardness for FO⇐(G,BAQ) follows by virtue of Lemma B.8B.8. �

B.4 Proofs for Chapter 66

B.4.1 Proof of Theorem 6.66.6

Let us call a branch of the unfolding of q with O a sequence of CQs q0, q1, . . . , qn, where
q = q0, while, for each i ∈ [n], qi is a σ-resolvent of qi−1 for some σ ∈ O. It is not difficult
to see that the following statements are equivalent:

197

B. Missing Proofs

• There exists a proof tree P of q w.r.t. O such that D |= qP(ā).

• There exists a branch q0, q1, . . . , qn, for some n ≥ 0, of the unfolding of q with O
such that D |= qn(ā).

Thus, to establish Theorem 6.66.6, it suffices to show that the following statements are
equivalent:

(a) ā ∈ certq,O(D).

(b) There exists a branch q0, q1, . . . , qn, for some n ≥ 0, of the unfolding of q with O
such that D |= qn(ā).

Proof of (a)(a) ⇒ (b)(b)

We first establish the following auxiliary lemma:

Lemma B.9. Consider a CQ q(x̄), and an initial segment of a chase sequence

J0, J1, . . . , Jm, for m ≥ 0,

for D and O such that Jm |= q(ā). Then, there exists a sequence

q0, q1, . . . , qm

of CQs such that q0 = q, qi is qi−1 or a σm−i-resolvent of qi−1, for each i ∈ [m], and
Jm−i |= qi(ā), for all i = 0, 1, . . . ,m.

Proof. By induction on the length of the the initial segment of the chase sequence at
hand.

Base case. The statement holds trivially since J0 |= q(ā). In other words, the desired
sequence of CQs consists only of q.

Induction step. Assume that there exists a chase sequence J0, J1, . . . , Jm+1 such that
Jm+1 |= q(ā). Suppose, for i = 1, . . . ,m+ 1, that Ji results by the application of (hi, σi).

Clearly, there exists a homomorphism h such that h(body(q)) ⊆ Jm+1 and h(x̄) = ā.
Let H be the set of facts h′m(head(σm)), where h′m is an extension of hm that maps
the existentially quantified variables of the head of σm to fresh nulls. It is clear that
H ⊆ Jm+1. We proceed by considering two cases:

Case 1. Assume that H ∩ h(body(q)) = ∅. This implies that Jm |= q(ā). Thus,
by induction hypothesis, there exists a sequence of CQs q′0, . . . , q′m, where q′0 = q, that
enjoys the desired properties. Thus, the claim follows by the existence of the sequence of
CQs q, q, q′1, . . . , q′m.

Case 2. The interesting case is when H ∩ h(body(q)) 6= ∅. Let S ⊆ body(q) be a
set of atoms such that h(S) ⊆ H, while H ∩ h(body(q) \ S) = ∅. In other words, S is
the maximal subset of body(q) that is mapped to H via µ. Let S′ be a set of atoms of
head(σm) such that h′m(S′) = h(S). It is easy to verify that (S, S′, γ), where γ := h′m ∪ h
is a chunk unifier of q with σm – we assume, w.l.o.g., that σm and q do not share variables,
and thus, γ is a well-defined substitution. Indeed, for every x ∈ var(S′) ∩ var∃(σm), γ(x)

198

B.4. Proofs for Chapter 66

is not a constant since, by construction h′m(x) is a null, and γ(x) = γ(y) implies that y
occurs in S and is not shared. By contradiction, assume that y is shared, which means
that it occurs in body(q)\S. Observe that, by definition of the set S, h(body(q)\S) ⊆ Jm,
and thus, h(y) = γ(y) is a null occurring in Jm, which is a contradiction, since h(y) is
fresh in H, and thus, it occurs only in dom(Jm+1) \ dom(Jm). Since (S, S′, γ) is a chunk
unifier of q with σm, there exists a most general one, say (S, S′, γ̂). We define q̂ in such
a way that body(q̂) = γ̂((body(q) \ S) ∪ body(σm)) i.e., as a σm-resolvent of q, while its
free variables are γ̂(x̄). We can show that Jm |= q̂(ā), i.e., there exists a homomorphism
h′′ such that h′′(body(q̂)) ⊆ Jm and h′′(γ̂(x̄)) = ā. By definition of the MGU, γ = θ ◦ γ̂
for some substitution θ. It is clear that θ maps body(q̂) to Jm since γ(body(σm)) ⊆ Jm
and γ(body(q) \ S) ⊆ Jm. Moreover, θ(γ̂(x̄)) = γ(x̄) = ā. Thus, Jm |= q̂(ā) as claimed
above. By induction hypothesis, there exists a sequence of CQs q′0, . . . , q′m, where q′0 = q̂,
that enjoys the desired properties. Thus, the claim follows by taking the sequence of
CQs q, q̂, q′1, . . . , q′m. �

We can now complete the proof of the statement (a)(a) ⇒ (b)(b). By hypothesis, c̄ ∈
certq,O(D), and thus, there exists an initial segment J0, J1, . . . , Jm of a chase sequence
for D and O such that Jm |= q(ā). By Lemma B.9B.9 there exists a sequence of CQs
q0, q1, . . . , qm, where (i) q0 = q, (ii) qi is either qi−1 or a σ-resolvent of qi−1, where σ ∈ O,
for each i ∈ [m], and (iii) D |= qm(ā). However, strictly speaking, q0, q1, . . . , qm is not a
branch of the unfolding of q with O due to the fact that some CQs are repeated. Indeed,
there may be an i ∈ [m] such that qi is not a resolvent of qi−1 but is rather identical to
qi−1. We can easily convert q0, q1, . . . , qm into a proper branch of the unfolding of q with
O of length n ≤ m by simply removing the repeated CQs from q0, q1, . . . , qm.

Proof of (b)(b) ⇒ (a)(a)

We first establish the following auxiliary lemma:

Lemma B.10. Consider a branch q0, q1, . . . , qn, for n ≥ 0, of the unfolding of q with O.
For every i = 0, 1, . . . , n, ā ∈ certqi,O(D) implies ā ∈ certq,O(D).

Proof. We proceed by induction on i ≥ 0.
Base case. Clearly, ā ∈ certq0,O(D) implies ā ∈ certq,O(D) holds trivially since, by

definition, q0 = q.
Inductive step. Suppose now that ā ∈ certqi,O(D), for i > 0. To show that ā ∈

certq,O(D), by induction hypothesis, it suffices to show that ā ∈ certqi−1,O(D), i.e., there
exists a homomorphism h that maps body(qi−1) to chase(D,O) such that h(x̄i−1) = ā,
where x̄i−1 are the answer variables of qi−1.

Since, by hypothesis, ā ∈ certqi,O(D), we conclude that there exists a homomorphism
h′ such that h′(body(qi)) ⊆ chase(D,O) and h′(x̄i) = ā with x̄i being the output variables
of qi. Recall that qi is a σ-resolvent of qi−1 for some σ ∈ O, i.e., qi is such that
body(qi) = γ((body(qi−1) \ S) ∪ body(σ)), while its free variables are γ(x̄i−1), for an
MGCU (S, S′, γ) of qi−1 with σ. Let µ := h′ ◦ γ. Observe that µ(body(σ)) ⊆ chase(D,O).
Thus, µ′(head(σ)) ⊆ chase(D,O), where µ′ ⊇ µ is an appropriate homomorphism that

199

B. Missing Proofs

maps each existentially quantified variable of the head of σ to a fresh null. We define the
substitution

h′′ := h′ � var(qi) ∪ {γ(z) 7→ µ′(z)}z∈var(S′)∩var∃(σ)

We proceed to show that

• h′′ is a well-defined substitution.

• The desired homomorphism h such that h(body(qi−1)) ⊆ chase(D,O), as well as
h(x̄i−1) = ā, is h′ ◦ γ.

To show that h′′ is a well-defined substitution, it suffices to show that, for each z ∈
var(S′) ∩ var∃(σ), γ(z) is not a constant, and γ(z) does not occur in the domain of
h′ � var(qi). By contradiction, assume that γ(z) is either a constant, or is in the domain
of h′. It is easy to verify that in this case there exists a z ∈ var(S′) ∩ var∃(σ) such that
γ(z) is a constant, or γ(z) = γ(y) for a variable y that is in S′, or in S but shared. This
contradicts the fact that (S, S′, γ) is a chunk unifier.

We proceed to show that the desired homomorphism h is h′′ ◦ γ. Clearly, it holds
that h′′(γ(body(qi−1) \ S)) ⊆ chase(D,O). Moreover, h′′(γ(S)) = h′′(γ(S′)) = µ′(S′) ⊆
chase(D,O), since all atoms in S′ occur in head(σ) and µ′(head(σ)) ⊆ chase(D,O).
Finally, since γ(x̄i−1) = x̄i and h′(x̄i) = ā, we get that h′′(γ(x̄i−1)) = ā, and the claim
follows. �

Having the Lemma B.10B.10 in place, we can now show that (b)(b) ⇒ (a)(a). By hypothesis,
there exists a branch q0, q1, . . . , qn, for some n ≥ 0, of the unfolding of q with O such
that D |= qn(ā). Thus, ā ∈ certqn,O(D) due to the monotonicity of CQs. By Lemma B.10B.10
we get that ā ∈ certq,O(D), and the claim follows. �

B.4.2 Proof of Lemma 6.156.15

For a sequence of variables v̄ that are all among var(q), we let ∼h,v̄ be the equivalence
relation defined by

vi ∼h,v̄ vj ⇐⇒ h(vi) = h(vj),

and we let πh,v̄ be the partition of the variables v̄ given by the set of equivalence classes
of ∼h,v̄.

We show the following lemma which is a slightly more general statement than that of
Lemma 6.156.15:

Lemma B.11. If there is a (linear) chase tree C for h(body(q)) w.r.t. GD,OΘ such that
nwd(T) ≤ m, then there is a (linear) proof tree P of q(x̄) w.r.t. O such that

(i) P has equality type πh,x̄,

(ii) nwd(P) ≤ m, and

(iii) D |= qP(ā).

200

B.4. Proofs for Chapter 66

Proof. Let α1, . . . , αs be an enumeration of the body atoms of q(x̄). We proceed by
induction on the depth of C (i.e., the longest among all branches).

Suppose first that the depth of C equals 1, that is, T consists of just a single node v0
whose label equals h(body(q)). Then the proof tree P that has equality type πh,x and
that just consists of a single node labeled with

q(eqπh,x̄(x1, . . . , xn))← eqπh,x̄(α1), . . . , eqπh,x̄(αs),

is obviously a proof tree for q(x̄) w.r.t. O such that D |= qP(ā).
Suppose now that the depth of C is larger than one such that nwd(C) ≤ m. We

distinguish cases.
Case 1. Suppose first that the children of the root v0 of C, whose label equals

h(body(p)), result from a decomposition step. Assume that v0 has exactly two children,
say v1 and v2, that are respectively labeled Θ1 and Θ2 – the case with any other number
of children is treated analogously. Therefore, {Θ1,Θ2} must be a decomposition of
h(body(p)) such that h(body(p)) = Θ1 ∪Θ2, and Θ1 and Θ2 do not share any labeled
null. Let C1 and C2 respectively be the subtrees rooted in v1 and v2, and notice that
nwd(C1) ≤ m and nwd(C2) ≤ m. Moreover, let ȳ = y1, . . . , yk enumerate all variables
from var(q) \ {x1, . . . , xn} such that (i) h(yi) is a constant, and (ii) yi occurs in atoms α
and β of q(x̄), but neither h({α, β}) ⊆ Θ1, nor h({α, β}) ⊆ Θ2 holds.

Let P be the proof tree with equality type πh,x̄ whose root v0 is labeled with

q(eqπh,x̄(x̄))← eqπh,x̄(α1), . . . , eqπh,x̄(αs), (B.2)

and that has exactly one child v′ whose label is

q′(eqπh,x̄,ȳ(x̄, ȳ))← eqπh,x̄,ȳ(α1), . . . , eqπh,x̄,ȳ(αs). (B.3)

It is easy to check that (B.3B.3) results from a specialization step from (B.2B.2). Now let
βi1 , . . . , βil enumerate those atoms from eqπh,x̄,ȳ(α1), . . . , eqπh,x̄,ȳ(αs) whose image under h
lies in Θ1, and βj1 , . . . , βjr those whose image under h lies in Θ2. Let z̄ be the restriction
of eqπh,x̄,ȳ(x̄, ȳ) to var({βi1 , . . . , βil}), and let w̄ be the restriction of eqπh,x̄,ȳ(x̄, ȳ) to
var({βj1 , . . . , βjr}). We let v1 and v2 be children of v′ in P whose labels are respectively
q1(z̄) ← βi1 , . . . , βil and q2(w̄) ← βj1 , . . . , βjr . Then these two queries result from a
decomposition step from (B.3B.3). Since h({βi1 , . . . , βil}) = Θ1 and h({βj1 , . . . , βjr}) = Θ2,
by induction hypothesis, there are proof trees P1 and P2 that have equality types πh,z̄
and πh,w̄, respectively, such that nwd(P1) ≤ m and nwd(P2) ≤ m. Furthermore, we have
D |= qP1(h(z̄)) and D |= qP2(h(w̄)). Notice that eqπh,z̄(z̄) = z̄ and eqπh,w̄(w̄) = w̄ by
construction. Moreover, ∃v̄ (qP1(z̄) ∧ qP2(w̄)) ≡ qP , where v̄ is the sequence of variables
that appear in the head of (B.3B.3), but not in the head of (B.2B.2). Hence, D |= qP(ā), and
P is thus the proof tree of q(x̄) w.r.t. O we are looking for.

Case 2. Suppose now that the root v0 of C has exactly one child, say v′, that is labeled
with Θ′ which results from h(body(q)) by unfolding. Let τ ∈ O, h0, β1, . . . , βk, and
α ∈ h(body(q)) be such that β1, . . . , βk ⇒τ,h0 α and Θ′ = (h(body(q))\{α})∪{β1, . . . , βk}.
Thus, τ is of the form

Rβ1(x̄1), . . . , Rβk(x̄k)→ ∃wi1 , . . . , wil Rα(w1, . . . , wr),

201

B. Missing Proofs

for some predicates Rβ1 , . . . , Rβk , Rα. Moreover, q(x̄) contains an atom of the form
Rα(t1, . . . , tr) such that

h(Rα(t1, . . . , tr)) = α = h0(Rα(w1, . . . , wr))

(the t1, . . . , tr are terms each of which is either a variable or a constant). Now let
τv0 be a copy of τ , where every variable occurrence x is renamed to xv0 . Let h′ be
the homomorphism defined by h′ : xv0 7→ h0(x). Moreover, let eqπh,x̄(t1, . . . , tr) =
s1, . . . , sr. Notice that {t1, . . . , tr} ⊆ {s1, . . . , sr} and observe that h(Rα(s1, . . . , sr)) =
α = h′(Rα(w1,v0 , . . . , wr,v0)). Let γ be a substitution such that, for all i, j ∈ [r],

γ(zi) = γ(wj,v0) := vt ⇐⇒ t = h(zi) = h′(wj,v0),

where the vt are newly chosen variable names (for the other variables not mentioned,
γ is simply the identity). In particular, γ(xi) = γ(xj) iff xi ∼h,x̄ xj , for all answer
variables xi and xj of q(x̄) that are among {s1, . . . , sr}. Let γ0 be an MGU such that
γ = η ◦ γ0 for some substitution η. Notice that, if xi and xj are answer variables of
q(x̄) among {s1, . . . , sr}, then γ0(xi) = γ0(xj) implies xi ∼h,x̄ xj . On the other hand, for
x̂i := eqπh,x̄(xi) (i = 1, . . . , n), if xi ∼h,x̄ xj , then there is exactly one k ∈ [n] such that
h(x̂k) = h(xi) = h(xj). Thus, γ0 is bijective when restricted to the (representatives of
the) equivalence classes of ∼h,x̄ and we can henceforth assume w.l.o.g. that γ0(x̂i) = x̂i
for all i = 1, . . . , n.

Let P be the proof tree with equality type πh,x̄ whose root v0 is labeled with

q(x̂1, . . . , x̂n)← eqπh,x̄(α1), . . . , eqπh,x̄(αs). (B.4)

We introduce a new node v′ in P that is a child of v0 and whose label is

q′(x̂1, . . . , x̂n)← γ0(A), (B.5)

where

A := (eqπh,x̄({α1, . . . , αs}) \ {Rα(s1, . . . , sr)}) ∪ {Rβ1(x̄1,v0), . . . , Rβk(x̄k,v0)}.
It is clear that (B.5B.5) is a σv0-resolvent of (B.4B.4). Notice in particular that the variables
occurring in eqπh,x̄(α1), . . . , eqπh,x̄(αs) that unify with some existential variable from the
head of τv0 cannot be shared, since the application of β1, . . . , βk ⇒σ,h0 α is not blocked
in h(body(p)). Moreover, the resolvent must be an IDO-resolvent, since γ0 is the identity
on {x̂1, . . . , x̂n}.

Let us write q′(x̂1, . . . , x̂n) for the CQ (B.5B.5). Now let h′′ be the homomorphism that
extends h so that h′′ maps q′ to Θ′ and h′′(x̂1, . . . , x̂n) = ā. Notice that h′′ exists by
construction. Now the subtree of C that is rooted at v′, call it C′, has smaller depth than
C, whence by induction hypothesis it follows that there is a proof tree P ′ of q′ w.r.t. O
such that (i) P ′ has equality type πh′′,x̂1,...,x̂n , (ii) nwd(P ′) ≤ m, and (iii) D |= qP ′(ā).
We can thus simply declare that P ′ becomes a subtree of P rooted at the node v′ of
P. Then P is a proof tree for q(x̄) that has equality type πh,x̄ such that nwd(P) ≤ m.
Moreover, we must have D |= qP(ā), since P and P ′ have the same leaf nodes.

Notice that the constructions performed in the all cases above yields a linear P
whenever T is linear, and thus Lemma B.11B.11 follows. �

202

List of Theorems

2.13 Theorem2.13 Theorem . 18
2.15 Theorem2.15 Theorem . 21
2.18 Theorem2.18 Theorem . 23
2.20 Proposition2.20 Proposition . 26
2.21 Proposition2.21 Proposition . 26
2.22 Proposition2.22 Proposition . 26
2.23 Theorem2.23 Theorem . 27
2.28 Theorem2.28 Theorem . 31
2.29 Theorem2.29 Theorem . 31
2.30 Theorem2.30 Theorem . 31
2.31 Proposition2.31 Proposition . 31
2.32 Proposition2.32 Proposition . 32

3.9 Lemma3.9 Lemma . 39
3.14 Lemma3.14 Lemma . 41
3.15 Lemma3.15 Lemma . 41
3.16 Corollary3.16 Corollary . 41
3.18 Proposition3.18 Proposition . 42
3.20 Theorem3.20 Theorem . 43
3.25 Theorem3.25 Theorem . 44
3.27 Theorem3.27 Theorem . 46

4.1 Proposition4.1 Proposition . 62
4.2 Proposition4.2 Proposition . 62
4.4 Corollary4.4 Corollary . 62
4.5 Proposition4.5 Proposition . 63
4.7 Proposition4.7 Proposition . 63
4.8 Theorem4.8 Theorem . 64
4.9 Proposition4.9 Proposition . 64
4.10 Theorem4.10 Theorem . 65
4.11 Proposition4.11 Proposition . 65
4.12 Proposition4.12 Proposition . 65
4.13 Theorem4.13 Theorem . 68

203

4.14 Proposition4.14 Proposition . 68
4.15 Theorem4.15 Theorem . 69
4.16 Theorem4.16 Theorem . 69
4.17 Theorem4.17 Theorem . 69
4.20 Lemma4.20 Lemma . 72
4.24 Lemma4.24 Lemma . 73
4.27 Lemma4.27 Lemma . 75
4.28 Lemma4.28 Lemma . 75
4.30 Lemma4.30 Lemma . 76
4.31 Lemma4.31 Lemma . 76
4.32 Lemma4.32 Lemma . 77
4.33 Corollary4.33 Corollary . 77
4.34 Theorem4.34 Theorem . 78
4.35 Lemma4.35 Lemma . 78
4.36 Lemma4.36 Lemma . 79
4.37 Lemma4.37 Lemma . 82
4.39 Lemma4.39 Lemma . 82
4.40 Corollary4.40 Corollary . 83
4.41 Lemma4.41 Lemma . 83
4.42 Lemma4.42 Lemma . 84
4.44 Lemma4.44 Lemma . 85
4.45 Lemma4.45 Lemma . 87
4.47 Lemma4.47 Lemma . 89
4.49 Lemma4.49 Lemma . 90
4.50 Lemma4.50 Lemma . 90
4.53 Lemma4.53 Lemma . 91
4.55 Lemma4.55 Lemma . 93
4.56 Lemma4.56 Lemma . 94
4.57 Lemma4.57 Lemma . 95
4.58 Theorem4.58 Theorem . 96
4.59 Theorem4.59 Theorem . 98
4.60 Lemma4.60 Lemma . 100

5.3 Theorem5.3 Theorem . 107
5.4 Theorem5.4 Theorem . 108
5.5 Lemma5.5 Lemma . 109
5.7 Proposition5.7 Proposition . 112
5.10 Theorem5.10 Theorem . 114
5.11 Lemma5.11 Lemma . 114
5.13 Proposition5.13 Proposition . 117
5.14 Lemma5.14 Lemma . 117
5.15 Lemma5.15 Lemma . 117
5.16 Lemma5.16 Lemma . 118

204

5.17 Lemma5.17 Lemma . 119
5.18 Lemma5.18 Lemma . 120
5.19 Lemma5.19 Lemma . 120
5.20 Lemma5.20 Lemma . 120
5.22 Lemma5.22 Lemma . 122
5.23 Lemma5.23 Lemma . 122
5.24 Theorem5.24 Theorem . 127
5.26 Lemma5.26 Lemma . 128
5.27 Proposition5.27 Proposition . 128
5.28 Lemma5.28 Lemma . 130
5.29 Lemma5.29 Lemma . 132
5.30 Lemma5.30 Lemma . 133
5.31 Lemma5.31 Lemma . 133

6.6 Theorem6.6 Theorem . 146
6.8 Theorem6.8 Theorem . 147
6.9 Theorem6.9 Theorem . 147
6.10 Lemma6.10 Lemma . 148
6.11 Theorem6.11 Theorem . 149
6.12 Theorem6.12 Theorem . 149
6.13 Lemma6.13 Lemma . 152
6.15 Lemma6.15 Lemma . 153
6.16 Lemma6.16 Lemma . 153
6.17 Lemma6.17 Lemma . 155
6.18 Lemma6.18 Lemma . 156
6.25 Theorem6.25 Theorem . 163
6.26 Theorem6.26 Theorem . 165
6.27 Corollary6.27 Corollary . 166

B.1 LemmaB.1 Lemma . 178
B.2 LemmaB.2 Lemma . 179
B.3 LemmaB.3 Lemma . 179
B.5 LemmaB.5 Lemma . 183
B.6 PropositionB.6 Proposition . 192
B.7 TheoremB.7 Theorem . 196
B.8 LemmaB.8 Lemma . 197
B.9 LemmaB.9 Lemma . 198
B.10 LemmaB.10 Lemma . 199
B.11 LemmaB.11 Lemma . 200

205

Index

abstract class, 4242
acceptance parity game, 3030
accepting

annotated strategy tree, 179179
strategy path, 178178
strategy tree, 178178

active domain
of a set of facts, 1414
of a structure, 1414

acyclic
conjunctive query, 7373
union of conjunctive queries, 7373

acyclic set of TGDs, 4747
adornment, 8080, 115115
alphabet, 2424
alternating parity tree automaton, 2727

one-way, 2828
two-way (2APTA), 2828
running onm-ary trees (m-2APTA),
2828

running on amorphous trees (l-
2APTA), 2828

answer guard, 8989
answer tuples, 1616
answer variables, 1818
applicability, 173173
arena, 3030
arity

of a predicate, 1313

bags, 4444
black node, 116116
body atoms

of a CQ, 1818

of a TGD, 3636
of a Datalog rule, 2121

bounded
Datalog query, 106106

boundedness, 127127

C-tree, 8989
candidate strategy, 177177
certain answers, 3737
chase, 4040
chase sequence

finite, 4040
chase graph, 150150
chase sequence, 4040
chase tree, 153153

linear, 153153
chunk unifier, 142142

most general (MGCU), 142142
conjunctive query (CQ), 1818
conjunctive query (CQ), 1818

answer-guarded, 8989
atomic, 1818
Boolean (BCQ), 1818
constant-free, 1818
corresponding to the body of a Dat-

alog rule, 2121
empty, 1818
induced by a proof tree, 146146
strictly acyclic, 7373

containment
of OMQs, 6161

cost automaton, 125125
cost game, 126126
cost function, 125125

207

defined by a cost automaton, 126126
counter actions, 127127

data schema, 3737
database, 1515
Datalog

linear, 146146
non-recursive, 4747
piecewise linear, 147147
program, 2121
query, 2121
rule, 2121
guarded, 4848

Datalog± rule, see TGD
Datalog query

guarded, 4848
decoding, 8181
decomposition, 153153
derivation tree, 8484
determined, 3030
deterministic (top-down) automaton on

finite trees (1DTA), 2525
direction, 2727
dist ∧ parity-automaton, 127127
downward path, 178178

encoding, 8181
equality atom, 1313
equality type, 146146
equality-free, 5050
evaluation

of a query over a database, 1616
existential rule, see TGD
expansion of a structure, 1616
Exponential Tiling Problem, 184184
Extended Tiling Problem, 184184

factorization, 173173
finite expansion set, 4343
finite tree-width set, 4444
first-order

formula, 1313
rewritable
set of TGDs, 4545

rewriting, 105105
of a UCQ w.r.t. an ontology, 4545

formula
atomic, 1313

frontier variables, 3636
frontier-guard, 5050

Gaifman distance, 110110
Gaifman graph, 110110
guard, 4848
guarded

fragment of first-order logic, 4848
set, 7171

guarded simulation, 7575
guarded bisimulation, 7474

head predicate of a CQ, 141141
head atom of a Datalog rule, 2121
head atoms of a TGD, 3636
homomorphically equivalent, 1616
homomorphism

from a CQ to a structure, 1919
from a set of atoms to a structure,

1919
from a structure to a structure, 1616
weak, 1616

intensionally linear sets of TGDs, 163163
interpretation, 1414
isomorphic structures, 1616
isomorphism, 1616

labeled nulls, 3939
labeled tree, 2424

consistent, 8181
language

of a 2APTA, 3030
of an 1NTA, 2626

level-wise normal form, 148148

model, 1414
of a database, 1515

n-winning-strategy, 126126
node-width, 148148, 153153

208

non-deterministic (top-down) automaton
on finite trees (1NTA), 2525

non-recursive set of TGDs, 4747

objective, 125125
OMQ, see ontology-mediated query
one-step operator, 2222
ontology, 3737
ontology-mediated query (OMQ), 3737

first-order rewritable, 105105
language, 3838
rule-based, 3737

ontology language, 3838

parity acceptance condition, 3030
parity game, 3030
parity objective, 125125
play, 3030
position, 5151

affected, 5252
positive Boolean formula, 2727
predicate, 1313

extensional, 2121
intensional, 2121

predicate graph, 4747, 147147
priority annotation, 178178
projection, 2525
proof tree, 146146

linear, 148148

query, 1616
Boolean, 1616
equivalence, 1717
first-order, 1818
language, 1717
of an OMQ, 3737

query decomposition, 144144
query evaluation problem, 1717
query answering problem, 1717

relation name, 1313
relational atom, 1313
relational schema, 1313
resolvent, 142142

IDO-, 145145

retract of a structure, 1616
run

of an 1NTA over a tree, 2525

sentence
first-order, 1313

squid decomposition, 8989
standard adornment, 8282
standard tree decomposition, 8282
sticky set of TGDs, 5151
strategy, 3030

memoryless, 3030
winning, 3030

strategy path, 178178
strategy tree, 177177

annotated, 178178
stratification, 183183
stratification function, 183183
strictly guarded formula, 7373
structure, 1414

acyclic, 7171
corresponding to a CQ, 2020

syntactic class, 4242

term, 1313
TGD, 3636

constant-free, 3636
frontier-guarded, 5050
full, 188188, 192192
guarded, 4848
linear, 4646
lossless, 192192

tiling system, 163163
tree-width, 4444, 7171

of a CQ, 134134
treeification

of an answer-guarded CQ, 9191
of an OMQ, 9292

tree decomposition, 4444, 7171
guarded, 7171
simple, 116116
well-colored, 116116

tuple-generating dependency, see TGD
two-way alternating cost automaton, 125125

209

UCQ-rewritable, 6363
UCQ-rewriting, 6363
unbounded tiling problem, 163163
unfolding, 153153
unifier, 142142, 173173

most general (MGU), 142142
most general (MGU), 173173

union of conjunctive queries (UCQ), 2020
Boolean, 2020
constant-free, 2020

universal model, 3939
unraveling

guarded, 7676
of a chase graph, 150150

variable
assignment, 1414
dangerous, 5454
harmful, 5454
harmless, 5454

ward, 5555
warded set of TGDs, 5555
weakly frontier-guarded set of TGDs, 5252
weakly guarded set of TGDs, 5252
white node, 116116
width

of a schema, 1313
of a tree decomposition, 4444, 7171

XRewrite, 6464, 173173

210

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. Linearisability on datalog
programs. Theor. Comput. Sci., 308(1-3):199–226, 2003.

[3] Miklós Ajtai and Yuri Gurevich. Datalog vs First-Order Logic. J. Comput. Syst. Sci.,
49(3):562–588, 1994.

[4] Antoine Amarilli, Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom.
Query Answering with Transitive and Linear-Ordered Data. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI ’16,
pages 893–899, 2016.

[5] Hajnal Andréka, István Németi, and Johan van Benthem. Modal Languages and
Bounded Fragments of Predicate Logic. J. Philosophical Logic, 27(3):217–274, 1998.

[6] Marcelo Arenas, Richard Hull, Wim Martens, Tova Milo, and Thomas Schwentick.
Foundations of Data Management (Dagstuhl Perspectives Workshop 16151).
Dagstuhl Reports, 6(4):39–56, 2016.

[7] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. The iBench
Integration Metadata Generator. PVLDB, 9(3):108–119, 2015.

[8] Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach.
Cambridge University Press, 2009.

[9] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[10] Franz Baader. Least Common Subsumers and Most Specific Concepts in a Descrip-
tion Logic with Existential Restrictions and Terminological Cycles. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI
’03, pages 319–324, 2003.

[11] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL Envelope. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, IJCAI ’05, pages 364–369, 2005.

211

[12] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[13] Jean-François Baget. Improving the forward chaining algorithm for conceptual
graphs rules. In Principles of Knowledge Representation and Reasoning: Proceedings
of the Ninth International Conference, KR ’04, pages 407–414, 2004.

[14] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On
rules with existential variables: Walking the decidability line. Artif. Intell., 175(9-
10):1620–1654, 2011.

[15] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël
Thomazo. Walking the Complexity Lines for Generalized Guarded Existential
Rules. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, IJCAI ’11, pages 712–717, 2011.

[16] Jean-François Baget, Marie-Laure Mugnier, and Michaël Thomazo. Towards
Farsighted Dependencies for Existential Rules. In Proceedings of the Web Reasoning
and Rule Systems - 5th International Conference, RR ’11, pages 30–45, 2011.

[17] Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting Guarded Nega-
tion Queries. In Mathematical Foundations of Computer Science 2013 - 38th
International Symposium, MFCS ’13, pages 98–110, 2013.

[18] Vince Bárány, Georg Gottlob, and Martin Otto. Querying the Guarded Fragment.
Logical Methods in Computer Science, 10(2), 2014.

[19] Vince Bárány, Balder ten Cate, and Martin Otto. Queries with Guarded Negation.
PVLDB, 5(11):1328–1339, 2012.

[20] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded Negation. J. ACM,
62(3):22:1–22:26, 2015.

[21] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-Order
Rewritability of Frontier-Guarded Ontology-Mediated Queries. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
’18, pages 1707–1713, 2018.

[22] Pablo Barceló, Gerald Berger, and Andreas Pieris. Containment for Rule-Based
Ontology-Mediated Queries. In Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS ’18, pages 267–279,
2018.

[23] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Does query evaluation
tractability help query containment? In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’14, pages
188–199, 2014.

212

[24] Catriel Beeri and Moshe Y. Vardi. The Implication Problem for Data Dependencies.
In Proc. of the ICALP, pages 73–85, 1981.

[25] Catriel Beeri and Moshe Y. Vardi. A Proof Procedure for Data Dependencies.
J. ACM, 31(4):718–741, 1984.

[26] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. Swift
Logic for Big Data and Knowledge Graphs. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI ’17, pages 2–10,
2017.

[27] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The Vadalog System:
Datalog-based Reasoning for Knowledge Graphs. PVLDB, 11(9):975–987, 2018.

[28] Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. A Step Up in
Expressiveness of Decidable Fixpoint Logics. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 817–826,
2016.

[29] Michael Benedikt and Georg Gottlob. The Impact of Virtual Views on Containment.
PVLDB, 3(1):297–308, 2010.

[30] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo
Papotti, Donatello Santoro, and Efthymia Tsamoura. Benchmarking the Chase. In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS ’17, pages 37–52, 2017.

[31] Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom.
The Complexity of Boundedness for Guarded Logics. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’15, pages 293–304, 2015.

[32] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. The Space-
Efficient Core of Vadalog, 2019. To appear in PODS ’19.

[33] Gerald Berger and Andreas Pieris. Ontology-Mediated Queries Distributing over
Components. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI ’16, pages 943–949, 2016.

[34] Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First Order-
Rewritability and Containment of Conjunctive Queries in Horn Description Logics.
In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI ’16, pages 965–971, 2016.

[35] Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. Query Containment in De-
scription Logics Reconsidered. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR ’12, 2012.

213

[36] Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-Order Rewritability of
Atomic Queries in Horn Description Logics. In Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, IJCAI ’13, pages 754–760, 2013.

[37] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-
Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP.
ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[38] Achim Blumensath, Martin Otto, and Mark Weyer. Decidability Results for the
Boundedness Problem. Logical Methods in Computer Science, 10(3), 2014.

[39] Peter Van Emde Boas. The Convenience of Tilings. In Complexity, Logic, and
Recursion Theory, pages 331–363. Marcel Dekker Inc, 1997.

[40] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. Reasonable Highly
Expressive Query Languages - IJCAI-15 Distinguished Paper (Honorary Mention).
In Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI ’15, pages 2826–2832, 2015.

[41] Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. Guarded-
Based Disjunctive Tuple-Generating Dependencies. ACM Trans. Database Syst.,
41(4):27:1–27:45, 2016.

[42] Pierre Bourhis, Michael Morak, and Andreas Pieris. Acyclic Query Answering
under Guarded Disjunctive Existential Rules and Consequences to DLs. In Informal
Proceedings of the 27th International Workshop on Description Logics, pages 100–
111, 2014.

[43] Luca Cabibbo. The Expressive Power of Stratified Logic Programs with Value
Invention. Inf. Comput., 147(1):22–56, 1998.

[44] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the Infinite Chase: Query
Answering under Expressive Relational Constraints. J. Artif. Intell. Res., 48:115–
174, 2013.

[45] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based
framework for tractable query answering over ontologies. J. Web Sem., 14:57–83,
2012.

[46] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas
Pieris. Datalog+/-: A Family of Logical Knowledge Representation and Query Lan-
guages for New Applications. In Proceedings of the 25th Annual IEEE Symposium
on Logic in Computer Science, LICS ’10, pages 228–242, 2010.

[47] Andrea Calì, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology
languages: The query answering problem. Artif. Intell., 193:87–128, 2012.

214

[48] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable Reasoning and Efficient Query Answering in Description
Logics: The DL-Lite Family. J. Autom. Reasoning, 39(3):385–429, 2007.

[49] Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Decidable contain-
ment of recursive queries. Theor. Comput. Sci., 336(1):33–56, 2005.

[50] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you Always Wanted to
Know About Datalog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng.,
1(1):146–166, 1989.

[51] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Surveys in computer science. Springer, 1990.

[52] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

[53] Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded Implica-
tional Dependencies and their Inference Problem. In Proceedings of the 13th Annual
ACM Symposium on Theory of Computing, STOC ’81, pages 342–354, 1981.

[54] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive
Queries in Relational Data Bases. In Proceedings of the 9th Annual ACM Symposium
on Theory of Computing, STOC ’77, pages 77–90, 1977.

[55] Surajit Chaudhuri and Moshe Y. Vardi. On the Equivalence of Recursive and
Nonrecursive Datalog Programs. J. Comput. Syst. Sci., 54(1):61–78, 1997.

[56] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and
Distance Queries via 2-Hop Labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[57] Thomas Colcombet. A Safra-like construction for regular cost functions over finite
words.

[58] Thomas Colcombet. The Theory of Stabilisation Monoids and Regular Cost Func-
tions. In Automata, Languages and Programming, 36th Internatilonal Colloquium,
ICALP ’09, pages 139–150, 2009.

[59] Thomas Colcombet and Nathanaël Fijalkow. The Bridge Between Regular Cost
Functions and Omega-Regular Languages. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP ’16, pages 126:1–126:13, 2016.

[60] Thomas Colcombet and Christof Löding. Regular Cost Functions over Finite Trees.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS ’10, pages 70–79, 2010.

215

[61] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tatahttp://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th
2007.

[62] Stavros Cosmadakis, Haim Gaifman, Paris Kanellakis, and Moshe Vardi. Decid-
able Optimization Problems for Database Logic Programs. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages
477–490, 1988.

[63] Stavros S. Cosmadakis and Paris C. Kanellakis. Functional and Inclusion Depen-
dencies. Advances in Computing Research, 3:163–184, 1986.

[64] Oliver Costich. A Medvedev Characterization of Sets Recognized by Generalized
Finite Automata. Mathematical Systems Theory, 6(3):263–267, 1972.

[65] Bruno Courcelle. The Monadic Second-Order Logic of Graphs, II: Infinite Graphs
of Bounded Width. Mathematical Systems Theory, 21(4):187–221, 1989.

[66] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. ACM Comput. Surv., 33(3):374–425,
2001.

[67] Evgeny Dantsin and Andrei Voronkov. Complexity of Query Answering in Logic
Databases with Complex Values. In Logical Foundations of Computer Science, 4th
International Symposium, LFCS ’97, pages 56–66, 1997.

[68] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas
Zeume. Reachability Is in DynFO. J. ACM, 65(5):33:1–33:24, 2018.

[69] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Proceedings
of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’08, pages 149–158, 2008.

[70] John Doner. Tree Acceptors and Some of Their Applications. J. Comput. Syst. Sci.,
4(5):406–451, 1970.

[71] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in
Mathematical Logic. Springer, 1995.

[72] Thomas Eiter, Thomas Lukasiewicz, and Livia Predoiu. Generalized Consistent
Query Answering under Existential Rules. In Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Fifteenth International Conference, KR ’16,
pages 359–368, 2016.

[73] E. Allen Emerson and Charanjit S. Jutla. Tree Automata, Mu-Calculus and
Determinacy (Extended Abstract). In 32nd Annual Symposium on Foundations of
Computer Science, FOCS ’91, pages 368–377, 1991.

216

http://www.grappa.univ-lille3.fr/tata

[74] Ronald Fagin. A Normal Form for Relational Databases That Is Based on Domians
and Keys. ACM Trans. Database Syst., 6(3):387–415, 1981.

[75] Ronald Fagin. Inverting schema mappings. ACM Trans. Database Syst., 32(4):25,
2007.

[76] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–124,
2005.

[77] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-
decompositions. J. ACM, 49(6):716–752, 2002.

[78] Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecid-
able Optimization Problems for Database Logic Programs. J. ACM, 40(3):683–713,
1993.

[79] Georg Gottlob, Erich Grädel, and Helmut Veith. Datalog LITE: a deductive query
language with linear time model checking. ACM Trans. Comput. Log., 3(1):42–79,
2002.

[80] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, Thomas
Schwentick, and Michael Zakharyaschev. The price of query rewriting in ontology-
based data access. Artif. Intell., 213:42–59, 2014.

[81] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and
guards: game theoretic and logical characterizations of hypertree width. J. Com-
put. Syst. Sci., 66(4):775–808, 2003.

[82] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Query Rewriting and Optimization
for Ontological Databases. ACM Trans. Database Syst., 39(3):25:1–25:46, 2014.

[83] Georg Gottlob and Christos H. Papadimitriou. On the complexity of single-rule
datalog queries. Inf. Comput., 183(1):104–122, 2003.

[84] Georg Gottlob and Andreas Pieris. Beyond SPARQL under OWL 2 QL Entailment
Regime: Rules to the Rescue. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI ’15, pages 2999–3007, 2015.

[85] Georg Gottlob, Sebastian Rudolph, and Mantas Simkus. Expressiveness of guarded
existential rule languages. In Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’14, pages 27–38,
2014.

[86] Erich Grädel. On The Restraining Power of Guards. J. Symb. Log., 64(4):1719–1742,
1999.

217

[87] Erich Grädel. Guarded fixed point logics and the monadic theory of countable
trees. Theor. Comput. Sci., 288(1):129–152, 2002.

[88] Erich Grädel and Martin Otto. The Freedoms of (Guarded) Bisimulation. In Johan
van Benthem on Logic and Information Dynamics, pages 3–31. Springer, 2014.

[89] Erich Grädel and Igor Walukiewicz. Guarded Fixed Point Logic. In 14th Annual
IEEE Symposium on Logic in Computer Science, LICS ’99, pages 45–54, 1999.

[90] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina
Magka, Boris Motik, and Zhe Wang. Acyclicity Notions for Existential Rules
and Their Application to Query Answering in Ontologies. J. Artif. Intell. Res.,
47:741–808, 2013.

[91] Peter Hansen and Carsten Lutz. Computing FO-Rewritings in EL in Practice: from
Atomic to Conjunctive Queries. In Proceedings of the 30th International Workshop
on Description Logics, Montpellier, France, July 18-21, 2017., 2017.

[92] Lane A. Hemachandra. The Strong Exponential Hierarchy Collapses. J. Com-
put. Syst. Sci., 39(3):299–322, 1989.

[93] Neil Immerman. Expressibility as a complexity measure: results and directions.
In Proceedings of the 2nd Annual Conference on Structure in Complexity Theory,
1987.

[94] Neil Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999.

[95] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering
reachability queries on very large directed graphs. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD ’08, pages
595–608, 2008.

[96] David S. Johnson. A Catalog of Complexity Classes. In Handbook of Theoretical
Computer Science, pages 67–161. MIT Press Cambridge, MA, USA, 1990.

[97] David S. Johnson and Anthony C. Klug. Testing Containment of Conjunctive
Queries under Functional and Inclusion Dependencies. J. Comput. Syst. Sci.,
28(1):167–189, 1984.

[98] Valerie King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths
and Transitive Closure in Digraphs. In 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, pages 81–91, 1999.

[99] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo.
Sound, complete and minimal UCQ-rewriting for existential rules. Semantic Web,
6(5):451–475, 2015.

218

[100] Markus Krötzsch and Sebastian Rudolph. Extending Decidable Existential Rules
by Joining Acyclicity and Guardedness. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI ’11, pages 963–968, 2011.

[101] Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana. A
Single Approach to Decide Chase Termination on Linear Existential Rules. In 22nd
International Conference on Database Theory, ICDT ’19, pages 18:1–18:19, 2019.

[102] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2004.

[103] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris, and Gerardo I.
Simari. From Classical to Consistent Query Answering under Existential Rules. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI
’15, pages 1546–1552, 2015.

[104] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing Implications of
Data Dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

[105] Bruno Marnette. Generalized schema-mappings: from termination to tractability.
In Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’09, pages 13–22, 2009.

[106] Donald A. Martin. Borel Determinacy. Annals of Mathematics, 102(2):363–371,
1975.

[107] Michael Meier, Michael Schmidt, and Georg Lausen. On Chase Termination Beyond
Stratification. PVLDB, 2(1):970–981, 2009.

[108] Michael Morak. The impact of disjunction on reasoning under existential rules.
PhD thesis, University of Oxford, 2014.

[109] Andrzej Wlodzimierz Mostowski. Hierarchies of Weak Automata and Weak Monadic
Formulas. Theor. Comput. Sci., 83(2):323–335, 1991.

[110] David E. Muller and Paul E. Schupp. Alternating automata on infinite trees.
Theor. Comput. Sci., 54:267–276, 1987.

[111] Jeffrey F. Naughton. Data Independent Recursion in Deductive Databases. In
Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, PODS ’86, pages 267–279, 1986.

[112] Jeffrey F. Naughton. Data Independent Recursion in Deductive Databases. J. Com-
put. Syst. Sci., 38(2):259–289, 1989.

[113] Jeffrey F. Naughton and Yehoshua Sagiv. A decidable class of bounded recursions.
In Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’87, pages 227–236, 1987.

219

[114] Adrian Onet. The chase procedure and its applications. PhD thesis, Concordia
University, Canada, 2012.

[115] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[116] Sushant Patnaik and Neil Immerman. Dyn-FO: A Parallel, Dynamic Complexity
Class. J. Comput. Syst. Sci., 55(2):199–209, 1997.

[117] Andreas Pieris. Ontological Query Answering: New Languages, Algorithms and
Complexity. PhD thesis, University of Oxford, 2011.

[118] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maur-
izio Lenzerini, and Riccardo Rosati. Linking Data to Ontologies. J. Data Semantics,
10:133–173, 2008.

[119] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Massachusetts,
1967.

[120] Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems.
IBM Journal of Research and Development, 3(2):114–125, 1959.

[121] Raymond Reiter. Deductive Question-Answering on Relational Data Bases. In
Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de
recherches de Toulouse, France, 1977., pages 149–177, 1977.

[122] Svan Rocher. Querying Existential Rule Knowledge Bases: Decidability and Com-
plexity. PhD thesis, University of Montpellier, France, 2016.

[123] Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):15:1–
15:53, 2008.

[124] Sebastian Rudolph and Michaël Thomazo. Characterization of the Expressivity of
Existential Rule Queries. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, IJCAI ’15, pages 3193–3199,
2015.

[125] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences Among Relational Expres-
sions with the Union and Difference Operators. J. ACM, 27(4):633–655, 1980.

[126] Oded Shmueli. Equivalence of DATALOG Queries is Undecidable. J. Log. Program.,
15(3):231–241, 1993.

[127] Mantas Simkus. Nonmonotonic Logic Programs with Function Symbols. PhD thesis,
Technische Universität Wien, 2010.

[128] Giora Slutzki. Alternating Tree Automata. Theor. Comput. Sci., 41:305–318, 1985.

[129] Johan van Benthem. Modal correspondence theory. PhD thesis, University of
Amsterdam, 1976.

220

[130] Moshe Y. Vardi. The Complexity of Relational Query Languages (Extended
Abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, STOC ’82, pages 137–146, 1982.

[131] Moshe Y. Vardi. Automata Theory for Database Theoreticans. In Theoretical
Studies in Computer Science, to Seymour Ginsburg on the occasion of his 26.
birthday, pages 153–180, 1992.

[132] Moshe Y. Vardi. Why is Modal Logic So Robustly Decidable? In Descriptive
Complexity and Finite Models, Proceedings of a DIMACS Workshop 1996, pages
149–184, 1996.

[133] Moshe Y. Vardi. Reasoning about The Past with Two-Way Automata. In Automata,
Languages and Programming, 25th International Colloquium, ICALP ’98, pages
628–641, 1998.

[134] Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus.
Bull. Belg. Math. Soc. Simon Stevin, 8(2):359–391, 2001.

[135] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In Very Large Data
Bases, 7th International Conference, VLDB ’81, pages 82–94, 1981.

221

Gerald Berger
Curriculum Vitae

Personal Information
Birth date May 21, 1990 in Wels, Austria
Citizenship Austria
Languages German (native tongue), English (fluent)

Education
from April 2015 PhD studies in Computer Science, TU Wien.

Thesis Static Analysis for Ontology-Mediated Querying
Adviser Prof. Georg Gottlob

Student in the doctoral college Logical Methods in Computer Science (LogiCS).

2013–2015 Master studies in Computational Intelligence, TU Wien.
Graduation with highest distinction.

Thesis Provability Interpretations of a Many-Sorted Polymodal Logic.
Advisers Prof. Hans Tompits

Prof. Lev D. Beklemishev (Steklov Mathematical Institute, Moskow)

2010–2013 Bachelor studies in Software & Information Engineering, TU Wien.
Graduation with highest distinction.

Thesis On Axiomatic Rejection for the Description Logic ALC.
Adviser Prof. Hans Tompits

2004–2009 High school diploma, HTL Grieskirchen, Austria.
Graduation (“Matura”) with highest distinction.

Specialization IT and Business.

Professional Activities
Sept 2016–July

2018
External Lecturer, University of Vienna.

from Sept 2016 DOC fellowship holder, Austrian Academy of Sciences.
Abelegasse 26/2/11 – 1160 Wien, Austria

H +43 660 123 4899 • B gberger@dbai.tuwien.ac.at 1/3

Nov 2015–Sept
2016

University Assistant, Institute for Information Systems, TU Wien.

Jun 2015 to
Nov 2015

Senior Lecturer, Faculty of Informatics, TU Wien.

Teaching Duties
Sept 2016–July

2018
External Lecturer, University of Vienna.
{ Course Theoretical Computer Science.

Jun 2015–Sept
2016

Senior Lecturer and University Assistant, TU Wien.
{ Courses Object-oriented Modeling, Formal Modeling, and Data Modeling.

2011–2015 Tutor and Teaching Assistant, TU Wien.
{ Numerous teaching activities for undergraduate courses of computer science curricula.

Reviews for Conferences
{ 30th International Conference on Logic Programming (ICLP’14)
{ 13th International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR’13)

{ 21st European Conference on Artificial Intelligence (ECAI’14)
{ 23rd Workshop on Functional and Constraint Logic Programming (WFLP’14)
{ 25th International Joint Conference on Artificial Intelligence (IJCAI’16)
{ 44th International Colloquium on Automata, Languages and Programming
(ICALP’17)

{ 27th International Conference on Automated Deduction (CADE’19)

Prizes and Grants
{ PhD fellowship from the Austrian Academy of Sciences, 2016. Total amount of
funding: e 111k. Duration: three years.

{ Prize for outstanding studies by the Austrian Federal Ministry for Science,
Research, and Economics (“Staatspreis”), 2015.

{ Scholarships from the Faculty of Informatics of TU Wien in the years 2011 to
2014.

{ Scholarships from TU Wien in the years 2011 to 2013.

Miscellaneous
{ Certificates:
{ Oracle Certified Associate: PL/SQL-Developer
{ CISCO CCNA Exploration: Network Fundamentals
{ CISCO CCNA Exploration: LAN Switching and Wireless
{ CISCO CCNA Exploration: Routing Protocols and Concepts

{ Student speaker at the doctoral program LogiCS from 2016 to 2017.

Abelegasse 26/2/11 – 1160 Wien, Austria
H +43 660 123 4899 • B gberger@dbai.tuwien.ac.at 2/3

Publications
Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-Order
Rewritability of Frontier-Guarded Ontology-Mediated Queries. In IJCAI, pages
1707–1713, 2018.

Pablo Barceló, Gerald Berger, and Andreas Pieris. Containment for Rule-Based
Ontology-Mediated Queries. In PODS, pages 267–279, 2018.

Gerald Berger, Lev D. Beklemishev, and Hans Tompits. A many-sorted variant of
Japaridze’s polymodal provability logic. Logic Journal of the IGPL, 26(5):505–538,
2018.

Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. The
Space-Efficient Core of Vadalog. In PODS, 2019. To appear.

Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and Jan Van den
Bussche. Additive first-order queries. In ICDT, pages 19:1–19:14, 2019.

Gerald Berger and Andreas Pieris. Ontology-Mediated Queries Distributing over
Components. In IJCAI, pages 943–949, 2016.

Gerald Berger and Hans Tompits. On Axiomatic Rejection for the Description
Logic ALC. In Proceedings of the KDPD 2013, pages 65–82, 2013.

Abelegasse 26/2/11 – 1160 Wien, Austria
H +43 660 123 4899 • B gberger@dbai.tuwien.ac.at 3/3

	Kurzfassung
	Abstract
	Contents
	Introduction
	Research Challenges
	Road Map

	Background
	Basic Notation
	Background from Logic and Databases
	Database Query Languages
	Automata Techniques

	Ontology-Mediated Querying
	Tuple-Generating Dependencies
	(Rule-Based) Ontology-Mediated Queries
	The Chase Procedure
	Decidable Classes of TGDs

	Containment and Equivalence for OMQs
	Containment: The Basics
	Containment for UCQ-Rewritable Classes
	Containment for Guarded-Based Classes
	Combining Languages
	Summary

	First-Order Rewritability for Guarded-Based OMQs
	Problem Statement
	Semantic Characterization
	Alternating Automata Approach
	Cost Automata Approach
	Frontier-Guarded OMQs
	Summary

	Pushing the Warded Envelope Further
	Proof Trees
	Piecewise Linearity
	Expressive Power
	Summary

	Conclusion
	The Procedure XRewrite
	Missing Proofs
	Proofs for ch:background
	Proofs for ch:containment
	Proofs for ch:forewr
	Proofs for ch:wardedness

	Index
	Bibliography

