
DIPLOMARBEIT

Inverse Scattering
in One-dimensional Random Media

Using Deep Learning

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Physik

eingereicht von

Lukas Michael Rachbauer
Matrikelnummer 01255141

ausgeführt am Institut für Theoretische Physik
der Fakultät für Physik der Technischen Universität Wien

Betreuung
Betreuer: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Rotter

Wien, 20.05.2019
(Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Contents

1 Introduction 5

2 One-dimensional forward scattering 7
2.1 Scattering matrix . 7
2.2 Numerical forward scattering: The Numerov algorithm 10
2.3 Localization length . 12

3 One-dimensional inverse scattering 17
3.1 The inverse scattering problem . 17
3.2 Marčenko integral equation . 18
3.3 Iterative Marčenko approximation . 20
3.4 Limitations of the iterative Marčenko approximation 22

4 Basics of Deep Learning 27
4.1 Artificial Neural Networks . 27
4.2 Universal approximation theorem . 30
4.3 Fitting of a model . 30

4.3.1 Cost function . 30
4.3.2 Backpropagation algorithm . 32
4.3.3 Overfitting and Regularization 33
4.3.4 Batch Normalization . 34
4.3.5 Initialization of the trainable parameters 34

4.4 Advanced architectures . 35
4.4.1 Convolutional Neural Networks 35
4.4.2 Recurrent Neural Networks . 40
4.4.3 Mixed and enhanced architectures 42

4.5 Further learning concepts . 43
4.5.1 Transfer Learning . 43
4.5.2 Unsupervised Learning . 43
4.5.3 Generative Adverserial Networks 44
4.5.4 Reinforcement Learning . 44

5 Application of Deep Learning to Inverse Scattering 45
5.1 Delta-potentials . 45

2

5.2 Compactly supported smooth potentials 54
5.2.1 Nonnegative potentials . 55
5.2.2 Zero-mean potentials . 62

6 Summary and Outlook 70

7 Acknowledgements 72

A Technical specifications 73

B Random potential generation 74
B.1 Delta-potentials . 74
B.2 Compactly supported smooth potentials 74

B.2.1 Mapping to zero-mean . 75

C One-dimensional forward scattering 77
C.1 Delta-potential . 77
C.2 Numerical forward scattering procedures 78

C.2.1 Lippmann-Schwinger integral equation 79
C.2.2 Transfer matrix method . 81
C.2.3 Comparison of the numerical forward scattering procedures . . . 85

D One-dimensional inverse scattering 88
D.1 Proof that all considered potentials lie in L1

2 88
D.2 Properties of the normalization constants 88
D.3 Shift and reflection of the potential . 89
D.4 Alternative formulations of the Marčenko integral equation 89
D.5 First-order Born approximation . 91
D.6 Comparison of approximate inversion methods 94

References 101

Index 107

3

Abstract

The inverse scattering problem is in general ill-posed and highly nonlinear. The
aim of this thesis is to develop a fast algorithm that provides solutions to such
inverse scattering problems in compactly supported one-dimensional random me-
dia. A promising candidate for this nonlinear task is Deep Learning, which showed
great success in the recent past. The methodology of this approach is to train an
Artificial Neural Network for a stochastic class of samples on numerically gener-
ated data. Inverse scattering is then performed by means of a simple forward-pass
through the Artificial Neural Network.
It is shown that in cases where the inverse scattering problem has a unique solution
and where the scattering is not too strong, an Artificial Neural Network is able
to solve the inverse scattering problem more efficiently than preexisting methods.

4

1 Introduction

The forward scattering problem (FSP) consists in calculating the scattering behaviour
of a system based on the structure of the system. The inverse scattering problem
(ISP) involves the opposite task, i.e., to find the structure of a system based on the
scattering data as encapsulated, e.g., in the so-called scattering matrix. There are
many applications for the ISP like in medical imaging [1], non-destructive material
testing [2], seismology [3,4] or nuclear physics [5], to name a few. However, conventional
techniques for inverse scattering, like the filtered backprojection – an inversion of the
Radon transform appearing in tomography [6] – do not exploit the effect of multiple
scattering. But these multiply scattered waves also contain very valuable information
about the scattering system.
In this thesis we propose an inverse scattering technique, which does not per se ex-
clude the information from such multiple scattering events, using methods from Deep
Learning (DL). DL is well suited for this task for a number of reasons: DL methods are
able to learn nonlinear mappings from a sufficiently large set of training samples. Since
the FSP is easy and fast to solve (for one-dimensional systems, which we are going to
consider), we are able to produce in a short amount of time a considerable amount of
training data, from which the DL algorithm can learn. A closely related advantage of
DL is that the main computational work is done before the actual application of the
method. This implies that DL algorithms are able to perform their tasks substantially
faster than other methods. Also, the DL model can be “prepared” based on numeric-
ally generated data, and later be applied to real-world measurements. Recent advances
confirm the capabilities of DL methods in inverse scattering scenarios [7–15].
We concentrate on one-dimensional Hermitian quantum systems. In this case the (ana-
lytical) theory of the ISP has already been established in the 1950s and 1960s [16–18].
However, the central integral equation in this theory can only be solved in special cases
[16, 19]. Furthermore, an iterative procedure based on this integral equation [20] does
not always yield satisfactory results. As we will demonstrate explicitly in this thesis,
the proposed DL method is able to overcome those problems. The one-dimensional case
we study is not only an interesting fundamental problem on its own, but also serves as
a precursor for more relevant applications in more than one dimension.

This thesis is structured as follows: In Sec. 2 we give a brief overview over the one-
dimensional FSP. In Sec. 3 we introduce the ISP, the central integral equation of the

5

ISP and an iterative way to solve it numerically. We demonstrate that this iterative
approximation does not always converge. After giving a basic introduction to DL in
Sec. 4, we treat the ISP using methods from DL in Sec. 5.
In the Appendix one can find the specifications of the used machine (Sec. A), how the
random potentials are generated (Sec. B) and supplements regarding forward scattering
(Sec. C) as well as inverse scattering (Sec. D).

6

2 One-dimensional forward scattering

Before dealing with the inverse scattering problem, we provide here a short overview
over the forward scattering problem and its solution for one-dimensional Hermitian
quantum systems. The scattering properties of such a system are fully captured in a
quantity called the scattering matrix, which is introduced and discussed in the following
subsection.

2.1 Scattering matrix

We consider a nonrelativistic quantum particle of mass m > 0 in a one-dimensional
potential V : R → R with the support supp (V) = {x ∈ R : V (x) 6= 0} ⊆ [−a, a] for
some appropriate a > 0. In the asymptotic regions x < −a and x > a, where the
potential vanishes, the momentum of the particle k > 0 fully determines its energy

E (k) =
~2k2

2m
> 0. (1)

The wavefunction ψ (k;x) of the quantum particle satisfies the stationary Schrödinger
equation1

∂2ψ

∂x2
(k;x) =

2m

~2
V (x)ψ (k;x)− k2ψ (k;x) . (2)

The asymptotic behaviour of the wavefunction is given by

∀x < −a : ψ (k;x) = ψ→in eikx + ψ←oute
−ikx,

∀x > a : ψ (k;x) = ψ→oute
ikx + ψ←in e−ikx,

(3)

i.e. the wave can be decomposed into two counter-propagating plane waves in each of
the two asymptotic regions. This is schematically shown in Fig. 1. The mapping from
the incoming waves to the outgoing waves is linear and depends only on the momentum
k, as specified by the scattering matrix1

S (k) =

(
r (k) t′ (k)

t (k) r′ (k)

)
, (4)

1Derivatives are always written as d
dx or ∂

∂x . A prime ′ never denotes a derivative, but always
belongs to the name of a function.

7

x

V

−a a

ψ→in eikx

ψ←oute−ikx

ψ→outeikx

ψ←in e−ikx

Figure 1: Setup of a one-dimensional scattering event. The potential V has a support
inside of the interval [−a, a]. Outside this interval the wavefunction can be decomposed
into inward propagating plane waves (ψ→in eikx and ψ←in e−ikx) and outward propagating
plane waves (ψ←oute−ikx and ψ→outeikx).

which relates the incoming wave amplitudes to the outgoing ones:(
ψ←out

ψ→out

)
=: S (k)

(
ψ→in

ψ←in

)
. (5)

The entries of the scattering matrix can be interpreted as follows:
r (k) . . . reflection amplitude w.r.t. incidence from the left,
t (k) . . . transmission amplitude w.r.t. incidence from the left,
r′ (k) . . . reflection amplitude w.r.t. incidence from the right,
t′ (k) . . . transmission amplitude w.r.t. incidence from the right.

Due to conservation of the probability current the scattering matrix has to be unitary,
i.e.

S† (k)S (k) = 1. (6)

This equation is equivalent to the following set of equations:(
|r (k)|2 + |t (k)|2 r∗ (k) t′ (k) + t∗ (k) r′ (k)

r′∗ (k) t (k) + t′∗ (k) r (k) |r′ (k)|2 + |t′ (k)|2

)
=

(
1 0

0 1

)
, (7)

where the asterisk denotes complex conjugation. The unitarity condition in Eq. (6) can

8

be reformulated to

S (k)S† (k) =

(
|r (k)|2 + |t′ (k)|2 r′∗ (k) t′ (k) + t∗ (k) r (k)

r∗ (k) t (k) + t′∗ (k) r′ (k) |r′ (k)|2 + |t (k)|2

)
=

(
1 0

0 1

)
= 1.

(8)
Therefore it always holds that

|r′ (k)|2 = |r (k)|2 =: R (k) ,

|t′ (k)|2 = |t (k)|2 =: T (k) .
(9)

The functions R (k) and T (k) are called the reflection coefficient and the transmission
coefficient, respectively.
A consequence of the unitarity of S (k) is

|det (S (k))| = |r′ (k) r (k)− t′ (k) t (k)| = 1. (10)

Due to the time-reversal symmetry it holds that

S> (k) = S (k) ⇐⇒ t′ (k) = t (k) . (11)

If the potential is symmetric under a parity transformation, i.e. V (−x) = V (x), then
additionally r′ (k) = r (k).

In the following we distinguish between two scenarios: incidence from the left (i.f.t.l.)
or incidence from the right (i.f.t.r.).
In the first case (i.f.t.l.) the wavefunction has the asymptotic form

∀x < −a : ψ (k;x) =
1

t (k)
eikx +

r (k)

t (k)
e−ikx,

∀x > a : ψ (k;x) = eikx.

(12)

This normalization allows for unique starting values in numerical calculations, where
one typically propagates over the entire potential (i.e. from a to −a). In the second
case (i.f.t.r.) it holds that

∀x < −a : ψ (k;x) = e−ikx,

∀x > a : ψ (k;x) =
r′ (k)

t′ (k)
eikx +

1

t′ (k)
e−ikx.

(13)

9

2.2 Numerical forward scattering: The Numerov algorithm

The forward scattering problem (FSP) can be solved analytically only in very few
special cases. One such case are potentials with a finite number of delta-peaks (cf.
Subsec. C.1). We aim to apply our Deep Learning (DL) inverse scattering method not
only to such potentials, but also more generally to smooth potentials with a compact
support, for which the FSP can not be analytically solved. There are many numerical
methods available, out of which we choose the Numerov algorithm, introduced in this
subsection. In Subsec. C.2 we present two alternative algorithms, compare them against
the Numerov algorithm and show that the latter surpasses the other ones regarding
computation time as well as accuracy.
The Numerov algorithm is designed to solve ordinary differential equations of second
order with no first order derivatives. Take as an example the one-dimensional stationary
Schrödinger equation

∂2ψ

∂x2
(k;x) =

(
2m

~2
V (x)− k2

)
ψ (k;x) =: v (k;x)ψ (k;x) , (14)

which is precisely such a differential equation (for each k independently). In its most ba-
sic form the Numerov algorithm is a finite difference method and requires an equidistant
grid in position space. Let the grid spacing ∆x > 0 be sufficiently small, i.e.

k∆x =

√
2mE

~
∆x� 1. (15)

We define the spatial discretization

∀i ∈ Z : xi := i∆x, fi := f (xi) (16)

for any function f (x). The potential V has a support with supp (V) ⊆ [−a, a]. The
quantity corresponding to the boundary a in the discretized space is

I :=
⌈ a

∆x

⌉
=⇒ a = (I − ε)∆x =⇒ (I − 1)∆x < a ≤ I∆x (17)

with ε ∈ [0, 1). This means that Vi = 0 for i < −I and for i > I.
For convenience we define an auxiliary quantity Qi (k), which has no special physical

10

meaning, but abbreviates the equation describing the Numerov algorithm.

∀i ∈ Z : Qi (k) :=

(
1− (∆x)2

12
vi (k)

)
ψi (k) . (18)

vi (k) ≡ v (k;xi) is defined in Eq. (14). Since the potential Vi and thus vi (x) is known,
one can always switch between Qi (k) and ψi (k). The Numerov algorithm reads

Qi+1 (k) +Qi−1 (k) = 12ψi (k)− 10Qi (k) +O
(
(∆x)6

)
. (19)

The global error is of the order O
(
(∆x)4

)
, the same as with the classical Runge-Kutta

method.
In the case “incidence from the left” we have the asymptotic wavefunction ψ (k;x > a) =

eikx, i.e. ψi (k) = eikxi for i > I. Using the Numerov algorithm we can propagate
through the potential from i = I +2 and i = I +1 (two initial values are needed) down
to i = −I − 1 and i = −I − 2. From the asymptotic form (cf. Eq. (12)) we know that

ψ−I−1 (k) =
1

t (k)
eik(−I−1)∆x +

r (k)

t (k)
e−ik(−I−1)∆x,

ψ−I−2 (k) =
1

t (k)
eik(−I−2)∆x +

r (k)

t (k)
e−ik(−I−2)∆x.

(20)

These equations can be solved for the reflection and the transmission amplitude:

r (k) = −e−ik(2I+3)∆xψ−I−1 (k)− eik∆xψ−I−2 (k)

eik∆xψ−I−1 (k)− ψ−I−2 (k)
,

t (k) = e−ik(I+2)∆x e2ik∆x − 1

eik∆xψ−I−1 (k)− ψ−I−2 (k)
.

(21)

The case “incidence from the right” is treated analogously: One starts with ψi (k) =

e−ikxi for i < −I, propagates through the potential from left to right, calculates ψI+1 (k)

as well as ψI+2 (k) and from these:

r′ (k) = −e−ik(2I+3)∆xψI+1 (k)− eik∆xψI+2 (k)

eik∆xψI+1 (k)− ψI+2 (k)
,

t′ (k) = e−ik(I+2)∆x e2ik∆x − 1

eik∆xψI+1 (k)− ψI+2 (k)
.

(22)

11

2.3 Localization length

In one-dimensional disordered potentials that do not have any symmetric or periodic
shape, waves typically localize. This means that the transmission across such a potential
is exponentially decreasing for increasing potential length. In order to quantify the
scattering strength of such a disordered (random) scattering potential V , one introduces
the localization length ξ. Strictly speaking, one does not define a localization length
for a specific potential, but rather for a whole stochastic class C of random potentials.
Each such class can be characterized by statistical quantities, like the mean squared
value of the potentials per length or the autocorrelation length.
Let L denote the length of a random potential V ∈ C, i.e. the size of its support. We
denote the transmission coefficient of V for a wave with momentum k by T (k, L). Then
the localization length ξC (k) is defined as

1

ξC (k)
:= − lim

L→∞

1

L
〈ln (T (k, L))〉 , (23)

where the angle brackets denote an ensemble average over the appropriate subset
{V ∈ C : |supp (V)| = L}.
Waves with a larger incident momentum k penetrate deeper into the potential, therefore
the localization length ξC increases with k (cf. Fig. 5).
A good overview over the theory of localization is given in Ref. [21]. Localization
originates from multiple interference of partially reflected waves. Bear in mind that the
real-valued potential V does not cause any loss or absorption. In one dimension the
localization length ξ is twice the mean free path ` of the quantum particle.
Let L be the length of a specific random potential V ∈ C. Depending on the relation
of L to the mean free path ` and to the localization length ξ, one distinguishes three
scattering regimes:

• L < `: ballistic regime,
• ` < L < ξ: diffusive transport,
• L > ξ: strong localization.

In one-dimensional systems diffusive transport practically does not occur since ξ = 2`

and the transition between the regimes is not sharp.

In the following we set ~ = m = 1. We want to discuss the impact of different paramet-
ers on the localization length ξ. We found that the class C = S0.01,20,0.01

−10,10,10/512 (σpot, σker, 0)

12

(cf. Sec. B.2) works well for demonstrational purposes. The numbers have the follow-
ing meaning: kmin = 0.01, kmax = 20 and ∆k = 0.01 determine the discretization
of momentum space; xmin = −10, xmax = 10 and ∆x = 10

512
≈ 0.02 determine the

discretization of real space; σpot describes the amplitude of the potentials, σker the
autocorrelation length of the potentials and 0 indicates that the potentials have zero
mean, i.e.

∫∞
−∞ V (x) dx = 0.

At first we keep σpot = 100 and σker = 0.05 fixed. An example is shown in Fig. 2.
The reflection and transmission amplitudes as well as the transmission coefficient are
calculated with the Numerov algorithm and shown in Fig. 3.
For k ? 12.5 the free-space energy E exceeds the maximum potential value Vmax ≈ 78.
This means that for k ? 12.5 the wavefunction is curved towards the x-axis every-
where (meaning oscillatory and no exponential behaviour). Still, the transmission is
mostly close to zero up to k > 15 (cf. Fig. 3). This is an indication for localization by
interference.
By averaging over 104 such random potentials, we can approximate the ensemble average
〈ln (T (k, L))〉. For each potential V (x), the transmission coefficient is calculated for
V (x)Θ (L− a− x) having support of length L, thus yielding T (·, L). Fig. 4 shows
〈ln (T (k = 10, L))〉 as a function of L. Linear regression gives the localization length
ξ (k = 10) ≈ 1.02 as the negative inverse slope of the curve plotted in Fig. 4. (Only the
region L ∈ [4σker, 2a− 4σker] is used for linear regression.) This linear behaviour holds
for the entire inspected k-range, i.e. from k = 0 up to k = 20.
The localization length ξ as a function of momentum k is shown in Fig. 5. One can
clearly see that there is strong localization for k > 15, since in this case the localization
length ξ is much smaller than the length of the potential 2a.
Other reliable indicators of localization are the relatively large fluctuations in the trans-
mission coefficient T (k), as can be seen in Fig. 3 for k ∈ [10, 15]. These fluctuations
do not appear (as opposed to the exponential decay of e〈ln(T)〉) when the potential is
absorbing and not random.
We now keep k = 10 fixed and investigate how the localization length ξ changes with
σpot and σker. Increasing σpot means that the amplitude of the potential is larger, leading
to a shorter penetration depth, hence ξ decreases (Fig. 6). With increasing σker, on the
other hand, the potentials get more autocorrelated, i.e. less random, which reduces the
scattering of the wave and thus leads to larger ξ (Fig. 7).
Now that we have investigated the forward scattering problem and related topics, we
turn our focus to the inverse scattering problem in the subsequent section.

13

−100

−50

0

50

100

−10 −5 0 5 10

V

x

Figure 2: Instance of a random potential with σpot = 100 (determining the amplitude of
the potential) and σker = 0.05 (determining the autocorrelation length of the potential).

−1

−0.5

0

0.5

1

r
<(r)
=(r)

−1

−0.5

0

0.5

1

r′
<(r′)
=(r′)

−1

−0.5

0

0.5

1

t
<(t)
=(t)

0

0.5

1

0 5 10 15 20

T

k

Figure 3: Left reflection amplitude r (k), right reflection amplitude r′ (k), transmission
amplitude t (k) and transmission coefficient T (k) = |t (k)|2 of the potential in Fig. 2.

14

−20

−15

−10

−5

0

0 5 10 15 20

〈ln(T)〉

L

Figure 4: Ensemble average of the logarithm of the transmission coefficient for k = 10.
From this linear relation the localization length can be read off as the negative inverse
slope.

10−1

100

101

102

0 5 10 15 20

Le
ng

th

k

ξ

2a

Figure 5: Localization length ξ as a function of momentum k for fixed σpot = 100 and
σker = 0.05, compared to the length of the potential, 2a.

10−1
100
101
102
103
104
105

0 50 100 150 200

Le
ng

th

σpot

ξ

2a

Figure 6: Localization length ξ as a function of the standard deviation σpot (determining
the amplitude of the potential) for fixed k = 10 and σker = 0.05, compared to the length
of the potential, 2a.

15

10−1

100

101

102

103

104

0 0.05 0.1 0.15 0.2 0.25 0.3

Le
ng

th

σker

ξ

2a

Figure 7: Localization length ξ as a function of the standard deviation σker (determining
the autocorrelation length, i.e. the “smoothness” of the potential – smaller values of σker

mean more strongly fluctuating potentials) for fixed k = 10 and σpot = 100, compared
to the length of the potential, 2a.

16

3 One-dimensional inverse scattering

3.1 The inverse scattering problem2

While in the forward scattering problem one wishes to calculate the scattering matrix
S (k) corresponding to a certain potential V (x), the aim of the inverse scattering prob-
lem (ISP) is to find a potential V (x) which reproduces a given (physically meaningful)
scattering matrix S (k). The ISP formulated in this way is ill-defined, i.e. the mapping
V (x) 7→ S (k) is not injective.
From now on we only consider potentials V : R → R belonging to the set

L1
2 :=

{
V : R → R

∣∣∣∣∫ ∞
−∞

|V (x)|
(
1 + x2

)
dx <∞

}
, (24)

since for such potentials a solution to the ISP is guaranteed to exist, if the potential has
no bound states or if one provides additional data about the bound states (see below).
In Subsec. D.1 we show that all potentials considered in this thesis lie in L1

2.
Let S (k) be a scattering matrix and N ∈ N0 a natural number. Then there exists
a 2N -parameter family of different potentials, all giving rise to the given S (k) and
possessing N bound states. This implies that the solution of the ISP is unique if the
underlying potential does not support any bound states (N = 0).
Providing the energies of the N bound states, i.e. the discrete part of the spectrum
of the Hamiltonian, if there is any, does not lift the degeneracy, meaning that there is
still an N -parameter family of potentials, all having the same spectrum and the same
scattering matrix S (k). This remaining degeneracy can be lifted by some knowledge
about the bound-state wavefunctions. For this purpose one defines two wavefunctions
for each bound state, ψl and ψr, differing only by a factor, i.e. they are normalized
differently. The corresponding normalization constants cn and c′n are precisely the ad-
ditional information about the bound states we need to know in order to render the
ISP uniquely solvable. This is established below in more detail.

The scattering matrix S (k) of a given potential V ∈ L1
2 can be analytically continued

from k ∈ R+ to k ∈ C. From Eq. (3) one can read off that

S (k < 0) = S∗ (−k) . (25)
2The following discussion of the theory of the inverse scattering problem is largely based on Refs.

[16, 17].

17

The scattering matrix S (k) is unitary and continuous for k ∈ R. The reflection amp-
litude r (k) is meromorphic (i.e. holomorphic up to isolated poles) in the upper half of
the complex plane C+, possessing only a finite number of simple poles on the positive
imaginary axis. We denote the locations of these poles by iκ1, . . . , iκN . The number of
poles N is exactly the number of bound states of V (x) and the eigenenergies are given
by

En = −~2κ2n
2m

. (26)

The corresponding bound-state wavefunctions ψ (iκn;x) are real-valued and square in-
tegrable in x. Instead of normalizing them to unity we require that

lim
x→−∞

ψl (iκn;x) e−κnx = 1,

lim
x→∞

ψr (iκn;x) eκnx = 1.
(27)

These asymptotic behaviours define two wavefunctions ψl and ψr for each bound state,
differing only by a factor. The left / right normalization constants of the bound states
are defined as

cn :=

(∫ ∞
−∞

ψ2
l (iκn;x) dx

)−1
,

c′n :=

(∫ ∞
−∞

ψ2
r (iκn;x) dx

)−1
,

(28)

respectively. We highlight some general properties of the normalization constants in
Subsec. D.2. It is these normalization constants (either all cn or all c′n) one further has
to provide (additionally to S (k)|k∈R and the bound state energies En) in order to get
a unique solution for the ISP. In fact, one does not need to know the entire scattering
matrix S (k)|k∈R but only the reflection amplitude from one side, i.e. r (k) or r′ (k). In
the following, we select the reflection amplitude from the left r (k).

3.2 Marčenko integral equation

As we have seen in the previous subsection, we need the following data in order to obtain
a unique solution of the inverse scattering problem (ISP): the reflection amplitude from
one side (we choose here w.l.o.g. the left side) r (k), the eigenenergies of all bound
states En = − ~2

2m
κ2n and the left normalization constants of all bound states cn, defined

in Eq. (28). The first central quantity in the theory of inverse scattering contains all

18

this information, is denoted by R and defined by

R (x) :=
1

2π

∫ ∞
−∞

r (k) e−ikx dk +
N∑
n=1

cneκnx. (29)

Since r (k < 0) = r∗ (−k) (cf. Eq. (25)), we can rewrite

R (x) =
1

π

∫ ∞
0

<
(
r (k) e−ikx) dk + N∑

n=1

cneκnx. (30)

From this we can see that R is a real-valued function. With this R one can solve the
ISP by solving an integral equation, called the Marčenko integral equation. From the
solution of this integral equation – the second central quantity in the theory of inverse
scattering – denoted by B (y, x), one can retrieve the potential V (x).
The Marčenko integral equation has a simple form if the potential V (x) vanishes for
x < 0, which we want to assume in the following. In Subsec. D.3 we show how to treat
potentials, which vanish on different half-lines. The Marčenko integral equation reads

R (2x) +B (y, x) + 2

∫ x

0

B (y, y − (x− x′))R (2x′) dx′ = 0, (31)

where x ≥ 0, y ≥ 0 and x ≤ y. From the solution B (y, x) one can calculate the
potential according to

V (x) =
~2

m

dB (x, x)

dx
. (32)

Suppose that the potential V has a finite support supp (V) ⊆ [0, a], then one has to
calculate R on [0, 2a] and B on

{
(y, x) ∈ [0, a]2 : x ≤ y

}
only. This is a great advantage

of the Marčenko integral equation formulated in Eq. (31), as opposed to other formu-
lations, which are found more often in the literature. Two such alternative common
formulations and the transformations between them are discussed in Subsec. D.4.
The stability of this inversion procedure (by solving the Marčenko integral equation)
is discussed in Ref. [22]. In this paper it is shown that the instabilities in the ISP
come from small errors in the poles of r (k) for k ∈ C close to k = 0. Furthermore the
sensitivity to these errors grows with increasing potential values V (x). The physical
explanation behind this analysis is that the energy E of the wave is too small for it to
penetrate deep enough into the potential V .

19

3.3 Iterative Marčenko approximation

The Marčenko integral equation (cf. Eq. (31)) can be analytically solved only for special
cases [16, 19]. Ref. [20] proposes an iterative scheme to approximate the solution. The
initial step of this iteration is obtained by neglecting the whole integral in Eq. (31):

B(0) (y, x) = −R (2x) . (33)

The successive steps are obtained by replacing B in the integrand of Eq. (31) by the
one found in the previous step:

∀ν ≥ 1 : B(ν) (y, x) = −R (2x)− 2

∫ x

0

B(ν−1) (y, y − (x− x′))R (2x′) dx′. (34)

The approximations of the potential are defined by

∀ν ≥ 0 : V
(ν)
Marč (x) :=

~2

m

dB(ν) (x, x)

dx
. (35)

We now show that this iteration does not converge if there are bound states present.
To this end we calculate the first two orders V (0)

Marč and V (1)
Marč explicitly:

V
(0)
Marč (x) =

~2

m

dB(0) (x, x)

dx
= −~2

m

d

dx
(R (2x)) = −2~2

m

dR
dx

(2x)

=
~2

m

(
i
π

∫ ∞
−∞

r (k) ke−2ikx dk − 2
N∑
n=1

cnκne2κnx
)
.

(36)

For V (1)
Marč we calculate

B(1) (y, x) = −R (2x) + 2

∫ x

0

R (2y − 2x+ 2x′)R (2x′) dx′

B(1) (x, x) = −R (2x) + 2

∫ x

0

R2 (2x′) dx′

V
(1)
Marč (x) =

~2

m

dB(1) (x, x)

dx
=

2~2

m

(
−dR
dx

(2x) +R2 (2x)

)
. (37)

The exponential terms ∝ e2κnx from the bound states do not drop out in the iteration
procedure. Hence we can conclude that in the presence of bound states:

∀ν ∈ N0 : V
(ν)
Marč /∈ L1

2. (38)

20

Thus the sequence
(
V

(ν)
Marč

)
ν∈N0

cannot converge to V ∈ L1
2. This means that the

absence of bound states is necessary for the validity (i.e. the convergence) of the iteration
procedure. In Subsec. 3.4 we further investigate the convergence properties of the
Marčenko iteration.
If we neglect the contributions from the bound states, then the first two orders V (0)

Marč

and V (1)
Marč have the following property:∫ ∞

−∞
V

(0)
Marč (x) dx ∝

∫ ∞
−∞

r (k) kδ (k) dk = 0, (39)

∫ ∞
−∞

V
(1)
Marč (x) dx =

~2

πm

∫ ∞
0

|r (k)|2 dk ≥ 0. (40)

Eqs. (36) and (37) are easily translated into terms of the reflection from the right r′ (k)
(cf. Subsubsec. D.3):

R′ (x) := 1

2π

∫ ∞
−∞

r′ (k) eikx dk

{
+

N∑
n=1

c′ne
−κnx

}
(41)

=⇒ V ′
(0)
Marč (x) =

2~2

m

dR′

dx
(2x) ,

V ′
(1)
Marč (x) =

2~2

m

(
dR′

dx
(2x) +R′2 (2x)

)
.

(42)

We call V (ν)
Marč (x) the left νth-order and V ′(ν)Marč (x) the right νth-order Marčenko approx-

imation. In Subsec. D.6 we show that the left and right Marčenko approximations
reconstruct the left and right part of the potential best, respectively. We can combine
the left and right Marčenko approximations into a weighted mean, defined by

∀ν ∈ N0 : W
(ν)
Marč (x) :=

1

2

(
1− x

a

)
V

(ν)
Marč (x) +

1

2

(
1 +

x

a

)
V ′

(ν)
Marč (x) . (43)

The weights for the left and right Marčenko approximations linearly shrink from 1 to
0 and grow from 0 to 1, respectively, when going from x = −a to x = a.
In Subsec. D.5 we introduce another approximate solution of the inverse scattering
problem, originating in the first-order Born approximation. This method is compared
to the iterative Marčenko approach in Subsec. D.6.

21

3.4 Limitations of the iterative Marčenko approximation

In the previous subsection we discussed an iterative scheme for inverse scattering based
on the Marčenko integral equation. We now want to analyse its quality regarding
convergence.
We assume that the potential V has a finite support supp (V) ⊆ [0, a]. In Ref. [23] it is
proven that

x < xcr :=
π

4max (|R|)
(44)

is a sufficient condition for the convergence of the Marčenko iteration in Eq. (34),
i.e. this is the least convergence distance. Nevertheless, we do not know under which
circumstances the iteration converges beyond this limit. Additionally, as shown in the
previous subsection 3.3, the iteration does not converge if the bound-states-contribution
in R is taken into account, i.e. the iteration is not applicable to potentials with bound
states.
We want to focus on two kinds of potentials, namely nonnegative and zero-mean ones.
Nonnegative potentials, i.e.

∀x ∈ R : V (x) ≥ 0, (45)

have no bound states, which means that the inverse scattering problem has a unique
solution based on the reflection amplitudes (cf. Subsec. 3.1). Zero-mean potentials, i.e.∫ ∞

−∞
V (x) dx = 0, (46)

on the other hand have at least one bound state. In Ref. [24] there is a simple proof
of this fact. So strictly speaking the Marčenko iteration cannot be used for zero-mean
potentials. Still, we hope that at least the lowest orders constitute a good approxim-
ation, because the zeroth-order Marčenko approximation has the same property (cf.
Eq. (39)). We intend to treat both nonnegative and zero-mean potentials with Deep
Learning methods in Subsubsecs. 5.2.1 and 5.2.2, respectively.
We first study the convergence characteristics for the class S0.02,20,0.02

0,10,10/511 (10, 0.1,+) (cf.
Subsec. B.2) based on a single randomly chosen sample, which is shown in Fig. 8. The
left reflection amplitude r (k) and its Fourier transform R (x) (cf. Eq. (29)) are plotted in
Fig. 9. With Eq. (44) we can calculate the least convergence distance: xcr ≈ 0.686. The
Marčenko iteration is done up to V (500)

Marč . In Fig. 10 we compare the original potential
to some stages of the iteration process. We see that for x < xcr (indicated by a gray

22

0

2

4

6

8

0 2 4 6 8 10

V

x

Figure 8: Instance of a random potential of the class S0.02,20,0.02
0,10,10/511 (10, 0.1,+), on which

the Marčenko iteration is tested.

−1

−0.5

0

0.5

1

0 5 10 15 20

r

k

<(r)
=(r)

−1.2

−0.8

−0.4

0

0.4

0 5 10 15 20

R

x

Figure 9: On the top: Momentum-dependent left reflection amplitude r (k) of the
potential in Fig. 8. On the bottom: Fourier transform R (x) of the left reflection
amplitude r (k).

23

−6

−4

−2

0

2

4

6

8

0 2 4 6 8 10xcr

V

x

V

V
(0)
M

V
(10)
M

V
(20)
M

V
(50)
M

V
(500)
M

Figure 10: Comparison of the ground truth potential V (x) from Fig. 8 to the left
νth-order Marčenko approximation for ν ∈ {0, 10, 20, 50, 500}. The least convergence
distance is indicated by a dashed line marked with xcr.

−6
−4
−2
0
2
4
6

0 2 4 6 8 10

V

x

Figure 11: Instance of a random potential of the class S0.02,20,0.02
0,10,10/511 (10, 0.1, 0), on which

the Marčenko iteration is tested.

dashed line) the iteration converges within less than 10 steps. For x > xcr there is still a
small region where the iteration converges satisfactorily fast. But for all other x-values
beyond this region, the Marčenko iteration either does not converge at all or too slowly
(one can see that the height of the second peak hardly changes from the 50th iteration
step to the 500th). The 500 iterations already took approximately 20 seconds on the
used machine (cf. Sec. A), so the Marčenko iteration alone is not a good candidate for
a fast inversion procedure for random media.
We now take a look at the class S0.02,20,0.02

0,10,10/511 (10, 0.1, 0). Figs. 11, 12 and 13 show a
potential from this class, its reflection amplitude r (k) with its Fourier transform R (x)

and the left νth-order Marčenko approximation for ν ∈ {0, 10, 20, 30}, respectively.
Although R (x) suggests a least convergence distance of xcr ≈ 1.2, one clearly sees that
the iteration converges essentially nowhere. In fact, the zeroth-order approximation has
the least L2-distance from the original potential. On the other hand, we have to admit
that this is an extreme example and there are instances where convergence is far better

24

−1

−0.5

0

0.5

1

0 5 10 15 20

r

k

<(r)
=(r)

−0.8

−0.4

0

0.4

0.8

0 5 10 15 20

R

x

Figure 12: On the top: Momentum-dependent left reflection amplitude r (k) of the
potential in Fig. 11. On the bottom: Fourier transform R (x) of the left reflection
amplitude r (k).

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8 10xcr

V

x

V

V
(0)
M

V
(10)
M

V
(20)
M

V
(30)
M

Figure 13: Comparison of the ground truth potential V (x) from Fig. 11 to the left νth-
order Marčenko approximation for ν ∈ {0, 10, 20, 30}. The suggested least convergence
distance (by Eq. (29)) is indicated by a dashed line marked with xcr.

25

(only in certain regions and up to a certain iteration step). Still, we can conclude that
the iteration is not suited for all zero-mean potentials.
We see that the Marčenko iteration alone does not yield satisfactory results for non-
negative as well as for zero-mean potentials. In Subsec. 5.2 we address this problem
with methods from Deep Learning. Since this is a new topic in my research group, I
want to give a comprehensive introduction to the fundamentals of Deep Learning in the
subsequent section.

26

4 Basics of Deep Learning

At first we want to clarify the concept of “Deep Learning” (DL) in the context of
“Artificial Intelligence” (AI) and “Machine Learning” (ML).
AI can be defined as “the effort to automate intellectual tasks normally performed by
humans” [25]. Thus AI also encompasses algorithms that are hard-coded and do not
include any kind of “learning”.
ML is a subdiscipline of AI. The task a ML algorithm is supposed to perform is not
implemented hard-coded by hand, but rather learned by the algorithm itself by looking
at data. During training the ML algorithm identifies statistical correlations between the
presented input and output data, which are then (after learning) available as “rules”
to process new data. This is a completely different paradigm compared to classical
programming, where an algorithm is fed with rules and input data and produces some
output data. Another way of describing a ML algorithm is that it searches inside a
predefined hypothesis space a more useful representation of the input data in order to
fulfil the task at hand.
DL is again a subfield of ML, where the just mentioned representation is realized as
a sequence of simpler transformations in a layer-wise manner, each layer constituting
a successively better representation. The term “deep” comes from the fact that DL
algorithms usually consist of several layers.
For historical backgrounds or a more comprehensive introduction to DL we refer to the
literature, especially to Ref. [25].

4.1 Artificial Neural Networks

The structure which underlies the method of DL is an Artificial Neural Network (ANN),
also called a model. Mathematically speaking a model is nothing else than a family of
continuous maps fw : Rn0 → RnL (spanning the hypothesis space) parameterized by
“trainable” parameters w ∈ Rd.
A model is defined by a specific architecture. Here, we only describe the simplest
architecture, a so-called fully connected feedforward neural network, in detail. All the
other more sophisticated architectures are special forms, extensions or modifications
thereof. Some of the most important ones are briefly highlighted in Subsec. 4.4.
A fully connected feedforward neural network (cf. Fig. 14) consists of a fixed number
(L+ 1 with L ∈ N) of layers. The layer with index 0 is called the input layer and the

27

a
(0)
1

a
(0)
2

a
(0)
3

Input layer

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

Hidden layer

a
(2)
1

a
(2)
2

Output layer

w
(1)
11

w
(1)
43

w
(2)
11

w
(2)
24

Figure 14: Schematic architecture of a fully connected feedforward neural network with
L + 1 = 3 layers. The different layers contain n0 = 3, n1 = 4 and n2 = 2 nodes,
respectively. The nodes are indicated by circles, the connections (weights) by lines and
the application of the activation function by a dot. The biases are not indicated and
not all weights are labelled. This model has d = 26 trainable parameters (including the
biases).

28

layer with index L is called the output layer, all the other layers inbetween are called
hidden layers. Each layer contains a fixed number of so-called artificial neurons (or
nodes) each holding a numerical value, called its activation. We denote by nl the
number of artificial neurons in layer l ∈ {0, . . . , L}. Let a(l)i be the activation of the ith

artificial neuron (i ∈ {1, . . . , nl}) in the lth layer. The activations a(0)i of the artificial
neurons in the input layer are simply the values of the input vector. The activation a(l)i
for l ≥ 1 is calculated from the activations of all the artificial neurons in the preceding
layer as

a
(l)
i = φ(l)

(
b
(l)
i +

nl−1∑
j=1

w
(l)
ij a

(l−1)
j

)
=: φ(l)

(
z
(l)
i

)
. (47)

The numbers b(l)i ∈ R and w
(l)
ij ∈ R are called the biases and weights of the lth layer,

respectively. They constitute the trainable parameters w ∈ Rd of the model. The
number of trainable parameters amounts to

d =
L∑
l=1

(nl + nlnl−1) =
L∑
l=1

nl (1 + nl−1) . (48)

The map φ(l) : R → R is called the activation function of the lth layer. Since
the whole model should learn nonlinear mappings, not all the activation functions are
chosen linear. It is common to use monotonically increasing activation functions. Of
course the range of the activation function in the output layer must match the possible
range of desired output vectors. Some common activation functions are listed below:

• Sigmoid (mostly outdated): φ (x) =
1

1 + e−x
.

• Hyperbolic tangent: φ (x) = tanh (x).

• Rectified linear unit (ReLU): φ (x) = xΘ(x).

• Leaky ReLU: φ (x) =

0.01x x < 0

x x ≥ 0
.

• Parametric ReLU (PReLU): φ (x) =

αx x < 0

x x ≥ 0
with trainable α.

• Exponential linear unit (ELU): φ (x) =

α (ex − 1) x < 0

x x ≥ 0
with fixed α ≥ 0.

29

• Scaled ELU (SELU): φ = 1.0507 φELU|α=1.67326 [26].

If the activations of the nodes of a layer are calculated by Eq. (47), then this layer is
called dense. Fig. 14 schematically shows the architecture of a simple fully connected
feedforward neural network.
We now address the versatility of ANNs, on which we can learn something through the
universal approximation theorem, stated in the following subsection.

4.2 Universal approximation theorem

George Cybenko [27] was one of the first to prove the so-called universal approxima-
tion theorem: Let φ ∈ C (R) be a continuous function with limx→−∞ φ (x) = 0 and
limx→+∞ φ (x) = 1. Let f ∈ C ([0, 1]n) be a continuous function on the n-dimensional
unit hypercube and ε > 0, then there exists an integer N ∈ N, N scalars αi, θi ∈ R and
N vectors yi ∈ Rn such that the function gα,θ,y ∈ C ([0, 1]n) defined by

gα,θ,y (x) :=
N∑
i=1

αiφ
(
y>i x+ θi

)
(49)

fulfils
∀x ∈ [0, 1]n : |gα,θ,y (x)− f (x)| < ε. (50)

This means that a fully connected feedforward neural network with a single hidden
dense layer is able to approximate any compactly supported continuous function with
arbitrary accuracy, provided that it possesses sufficiently many nodes. In practice
however one chooses deeper architectures with more hidden layers and less nodes per
layer.
In order to get a model to perform the task we want it to perform, it has to “learn”
from a sufficiently large set of examples. This procedure is called learning, fitting or
training. How this is done is explained in the next subsection.

4.3 Fitting of a model

4.3.1 Cost function

In order to be able to train a model, one needs a quantitative measure for how good the
performance of the model is. Depending on the task the model is supposed to perform,
one has to choose a cost function (or loss function) C : RnL × RnL → R. Given an

30

input-output pair (x, y) ∈ Γ, where Γ ⊆ Rn0 × RnL is the whole data space (the set
of all possible samples), the cost function C (fw (x) , y) should be a measure of how far
off the model prediction fw (x) is from the desired output vector (the so-called ground
truth) y.
The aim of fitting a model is to find the best model in the hypothesis space {fw}, i.e.
minimize the average

C (w) := 〈C (fw (x) , y)〉(x,y)∈Γ . (51)

Before discussing how to do this minimization in the next subsubsection, we want to
list some common DL tasks (T) with examples (Ex) and (partly empirically, partly
theoretically) verified good choices of activation functions (AF) in the output layer and
cost functions (CF):

• T: Regression: Output vectors have arbitrary range.
Ex: Estimate the price of a house from attributes like number of rooms, access-
ibility to highways and local crime rate (this is referring to the Boston Housing
Price dataset, cf. [28]).
AF: Linear: φ(L) (x) = x.
CF: Mean squared error (MSE): C (y′, y) = 1

nL
‖y′ − y‖22, mean absolute error

(MAE): C (y′, y) = 1
nL

‖y′ − y‖1. nL is the dimension of the vectors y′ and y.

• T: Binary classification: Output vectors are real numbers y ∈ [0, 1] representing
the probability of one class (out of two classes).
Ex: Determine if a review text is positive or negative.
AF: Sigmoid: φ(L) (x) = (1 + e−x)−1.
CF: Binary crossentropy: C (y′, y) = −y ln (y′)− (1− y) ln (1− y′).

• T: Multi-label multiclass classification: Output vectors have components yi ∈
[0, 1] representing the probabilities for each class.
Ex: Determine which kinds of animals are present in a picture.
AF: Sigmoid: φ(L) (x) = (1 + e−x)−1.
CF: Sum of binary crossentropies: C (y′, y) = −

∑
i (yi ln (y

′
i) + (1− yi) ln (1− y′i)).

• T: Single-label multiclass classification: Output vectors have components yi ∈
[0, 1] with

∑
i yi = 1 representing a probability distribution over the mutually

exclusive classes.
Ex: Recognize a handwritten digit.

31

AF: Softmax: φ(L)
i (x) = exi/

∑
j exj .

CF: Categorical crossentropy: C (y′, y) = −
∑

i yi ln (y
′
i).

4.3.2 Backpropagation algorithm

In Eq. (51) we formulated the learning process as the minimization problem of an
average cost function C : Rd → R+

0 with respect to all trainable parameters w. The
hypothesis space (spanned by the w’s) usually has a very high dimensionality d. It
is empirically validated that already simple minimization procedures lead to relatively
good results. The most basic iterative algorithm is gradient descent:

w(k+1) = w(k) − η∇wC
(
w(k)

)
, (52)

where η > 0 is the so-called learning rate.
A hyperparameter of a model is a parameter which has to be set by hand, e.g. number
of layers and nodes, choice of activation functions and cost function, learning rate and
other parameters related to the learning algorithm.
One problem of Eq. (52) is that we do not know the function C since one does not know
the “shape” of the data space Γ (otherwise the DL problem would be solved already).
Thus one approximates C by a mean value over a finite subset of Γ, usually called a
batch {(xβ, yβ) : 1 ≤ β ≤ B}, where B ∈ N is the batch size and ∀β : (xβ, yβ) ∈ Γ.

C (w) ≈ 1

B

B∑
β=1

C (fw (xβ) , yβ) . (53)

Let N ∈ N be the total number of available samples. If the gradient ∇wC is calculated
using Eq. (53) with a batch size of B = 1 / 1 < B < N / B = N , one speaks of
stochastic / mini-batch / batch gradient descent. One usually uses a certain fraction
of all the N available samples for validation purposes, i.e. the model is not trained on
these samples.
Since all the derivatives of all the functions involved in C (fw (xβ) , yβ), i.e. the cost
function and all the activation functions, are known analytically, one can calculate its
gradient w.r.t. w quite easily using the chain rule. The resulting equations can be
reformulated in terms of matrix multiplications. This linear-algebra-formulation of the
calculation of ∇wC (fw (xβ) , yβ) is called the backpropagation algorithm. (Due to
the chain rule one has to “propagate” through all layers starting at the output layer

32

back to the input layer.) The backpropagation algorithm permits a certain degree of
parallelization which can be exploited by graphics processing units (GPUs), which are
typically very well suited for linear algebra computations.
Besides gradient descent there are many other optimization algorithms (cf. Ref. [29]),
some also make use of the Hessian matrix of the cost function.
If one subdivides the N ′ ∈ N training samples into

⌊
N ′

B

⌋
batches of size B (and one

batch of size N ′modB), then all the N ′ training samples can be used to perform
⌈
N ′

B

⌉
iterative optimization steps. One such sweep of all training samples is called an epoch.
Training is usually performed in multiple epochs since the model only learns “a bit” from
a batch when taking an optimization step on it. After each epoch the training data
is shuffled in order to alleviate overfitting, an undesirable phenomenon omnipresent in
the training process. This phenomenon and possible counterstrategies are presented in
the next subsubsection.

4.3.3 Overfitting and Regularization

A central problem in DL is the interrelation between optimization and generaliza-
tion. The former means to train a model to perform better and better on the training
data, whereas the latter is the capability of the model to also perform well on data it
has not encountered before. The main aim is to get good generalization, but one can
only influence the optimization process.
At the beginning of training the model has not yet learned all the important features
in the data (underfitting). Training and validation loss are decreasing (more or less)
proportionally. At some later point however, the model will start to learn patterns that
are specific to the training data but irrelevant for unseen data (overfitting). Hence
the generalizability of the model will get poorer, i.e. the validation loss will stagnate
and eventually even start to rise.
Overfitting is naturally best prevented by using more training data. If this is not
possible, then one has to put restrictions on the model such that it cannot afford to
learn too specific features, leading to a better generalization. This procedure is called
regularization.
A simple regularization method is to reduce the capacity of the model (determined by
the number of trainable parameters) by using fewer layers, fewer nodes in the layers
and so forth. However, the capacity should be large enough, such that the model does
not underfit.

33

Another common regularization technique is weight regularization: in the spirit of
Occam’s razor [30] one should favour “simpler” models, i.e. models where the entropy
of the distribution of the trainable parameters is low. This is achieved by adding to the
average cost function C a penalty term (usually ∝ ‖w‖1 or ∝ ‖w‖22) which forces the
weights of the model to take smaller values. The prefactor (i.e. the importance) of this
penalty term is a hyperparameter which has to be chosen by hand.
Yet another simple way to mitigate overfitting is dropout [31]: During training a
certain percentage p of nodes in the model is randomly set to zero (“dropped out”).
When the model is evaluated (on test or validation data) every node is multiplied
by the factor p to compensate for the higher number of active nodes. It is not yet
fully (mathematically) understood why this often works remarkably well. A heuristic
explanation might be that the noise introduced by dropout makes the model less prone
to accidental meaningless correlations. The so-called dropout rate p is a hyperparameter
of the model.
One must keep in mind that when doing the hyperparameter search by trial and error
(or more sophisticated optimization algorithms), the hyperparameters of the model
eventually overfit to the validation data. Therefore one should always prepare a separate
test data set (or produce new training data for each new training process if possible).
There are two remaining issues concerning the training of a model, which we want to
address in the next two subsubsections.

4.3.4 Batch Normalization

Consider a regression problem, where the value of an input-variable ranges over multiple
orders of magnitude. It is (empirically) verified that models learn more easily if the
distribution of the activations is standardized to zero mean and unit variance [32]. This
is achieved by subtracting the mean value and then dividing by the standard deviation.
Batch normalization [32] is a procedure built into the model as an individual layer,
which standardizes the data on the fly: The layer holds an exponential moving average
of the batch-wise mean and variance of the training data and is thus able to adaptively
standardize data with changing mean and variance.

4.3.5 Initialization of the trainable parameters

The initialization of the trainable parameters should be random, i.e. not all parameters
should be set to the same value. Another desired requirement is that the variance of the

34

activations and of the gradients (averaged over the training data and over the nodes in
each layer separately) stay constant over the layers, because then the model can learn
faster, i.e. the convergence of the training algorithm is better [33]. The most common
initializations follow a truncated normal distribution with mean µinit = 0 and standard
deviation σinit or a uniform distribution over

[
−
√
3σinit,

√
3σinit

]
. There are different

schemes suggesting different values for σinit depending on the used activation function
and on the number of nodes in the previous and current layer, nl−1 and nl respectively:

• “LeCun” [34]: Good for φ = tanh, variance of the gradients not taken into account.
Also good for φ = φSELU [26]. σinit =

√
1

nl−1
.

• “Glorot” (or “Xavier”) [35]: Good for φ = tanh and φ (x) = x. σinit =
√

2
nl−1+nl

.

• “He” [36]: Good for φ = ReLU. σinit =
√

2
nl−1

.

From Eq. (47) we can see that a gradient propagating through the model does not pick
up (multiplicatively) any biases. To be more specific, consider a layer λ somewhere
before the layer l, i.e. 1 ≤ λ < l. Let p(λ) ∈

{
b
(λ)
m , w

(λ)
mn

}
be some trainable parameter

of that layer. It then holds that

∂a
(l)
i

∂p(λ)
=
∂φ(l)

∂z
(l)
i

nl−1∑
j=1

w
(l)
ij

∂a
(l−1)
j

∂p(λ)
. (54)

Therefore the biases of the model can be initialized to zero without concern.

So far we have only discussed fully connected feedforward neural networks. However,
there are other architectures as well, better suited for certain tasks. We want to present
the two most important ones in the following subsection.

4.4 Advanced architectures

4.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are suitable for data with a certain “spa-
tial” structure like images. Each convolutional layer consists of several so-called chan-
nels. For instance, if the input is an RGB-image, then the input layer may consist of
3 color channels. All channels of a layer are usually one-, two- or three-dimensional
arrays of the same shape and size.

35

The connectivity of a convolutional layer to the next layer has two important char-
acteristics: locality and shared weights. Locality implies a structure-conserving
processing of the data and shared weights imply translational invariance.
Locality means that the activation of a certain node in a certain convolutional layer is
calculated from the activations of only a specific subset of the nodes of the previous
convolutional layer. The corresponding set of weights is called a kernel or a filter.
Such a kernel is usually box-shaped.
Let a(l)c,i denote the activation of the node at position i in channel c in layer l. This
activation value is calculated from the activations of the previous layer by

a
(l)
c,i = φ(l)

b(l)c,i +∑
c′

∑
j∈U(i)

w
(l)
c,c′,i,ja

(l−1)
c′,j

 . (55)

The c′-sum runs over all channels of the previous layer. The j-sum is to be taken over
a confined neighborhood U (i) around the “pixel” i. If i lies near or at the boundary of
the data array, then an appropriate padding has to be invoked (or one is fine with the
fact that the array shrinks by nearly the size of the kernel).
The second characteristic “shared weights” means that the filters w(l)

c,c′,i,j and biases b(l)c,i
do not depend on i, i.e. they are the same for every position:

a
(l)
c,i = φ(l)

b(l)c +
∑
c′

∑
j∈U(i)

w
(l)
c,c′,ja

(l−1)
c′,j

 . (56)

For a fixed channel c and pixel i this is visualized in Fig. 15.
Due to these two features (locality and shared weights) a CNN has considerably less
trainable parameters than a fully connected feedforward neural network of the same
size (i.e. number of layers and nodes per layer). An exemplary comparison is given
later.
But why are these features beneficial (besides the reduced hypothesis space)? Take for
example a CNN that should detect the presence of cats in images. Usually a certain
pixel is more strongly correlated to nearby pixels than to pixels further away. This is
why a kernel only has to be local. A CNN can nevertheless detect global structures in
an image by processing the data through several convolutional layers, which has the
effect of widening the field of view. Secondly, the CNN should be able to detect cats
irrespective of their position in the image. This motivates and justifies the usage of

36

Figure 15: Schematic visualization of a convolutional layer for one output channel: On
the top the input array with 3 channels (distinguished by their color) is depicted. The
grey array symbolizes a kernel. The symbol � denotes element-wise multiplication and
subsequent summation. (The bias is omitted in this picture.) This operation is done
for every kernel-sized region in the input array (indicated by red lines). The output
channel is depicted at the bottom and the node, which holds the activation from the
illustrated convolutional operation, is marked in red. (Taken from [37])

37

shared weights.
An alternative, even lighter, variant of a convolutional layer is the depthwise separ-
able convolution. The idea is that the correlation across pixels in the same channel is
more important than the correlation across different channels. A depthwise separable
convolution consists of two parts (cf. Fig. 16):

1. Depthwise convolution: each channel is independently transformed (via convolu-
tion) into one or more representations.

2. Pointwise convolution: The transformed channels are stacked on top of another
and convolved with kernels, which extend over only one pixel (but all channels).

This can be expressed in the following equation (assuming that in the first step each
channel is transformed into only one representation):

a
(l)
c,i = φ(l)

b(l)c +
∑
c′

w̃
(l)
c,c′

∑
j∈U(i)

w
(l)
c′,ja

(l−1)
c′,j

 . (57)

In order to quantify the significant reduction of the hypothesis space, we compare the
number of trainable parameters d1 between

• two dense layers, the first with 3·2242 = 150 528 nodes, the second with 64·2242 =
3211 264 nodes.
d1 = 483 388 358 656.

• two convolutional layers, the first with 3 channels of shape 224× 224, the second
with 64 channels of shape 224 × 224, connected by kernels with a receptive field
of size 3× 3.
d1 = 1792.

• two depthwise separable convolutional layers with the same shapes as in the pre-
vious case. In the depthwise convolution each channel is transformed into one
representation by convolution with a 3 × 3 kernel. The pointwise convolution is
done with 64 kernels, i.e. the second layer has 64 channels.
d1 = 283.

A CNN consists of several convolutional layers stacked on top of another. The general
working principle of a CNN is that the first layers identify simple features like edges in

38

Figure 16: Schematic visualization of depthwise separable convolution for one out-
put channel: The process is illustrated from top to bottom. At first, the 3 channels
(distinguished by their color) are separated and each channel undergoes a convolution
operation with an individual kernel. The channels transformed in this way (depicted as
yellowish arrays) are stacked on top of each other. This stack is pointwise convolved;
or viewed differently: the activation of a node in the output layer (marked in red) is a
linear combination of the activations of the corresponding “pixels” in the transformed
yellowish channels (indicated by red lines). (Taken from [37])

39

images. Deeper layers compose the information from the preceding layers into more and
more sophisticated representations of the data, thereby features of higher and higher
complexity can be detected [38].
The overall architecture of a CNN is often done in an encoder-decoder-scheme:
In the encoder-part of the CNN the layers successively get compressed (in the pixel-
direction) but deeper (in the channel-direction). Compression is (channelwise) achieved
by pooling some neighboring pixels to a single pixel value, either taking the maximum
or the mean value of the activations. In the subsequent decoder-part of the CNN the
procedure is reversed. Such CNNs can be used for semantic image segmentation [39, and
references therein], coloring greyscale-images [40, and references therein], denoising or
sharpening images [41], to name a few examples.
If the decoder-part is replaced by some dense layers, a CNN can perform classification
on the data (like recognizing handwritten digits [42]). More intricate architectures can
perform more sophisticated tasks like artistic style transfer [43].

4.4.2 Recurrent Neural Networks

So far we have described ANNs with a fixed number of input nodes. However, there
is a class called Recurrent Neural Networks (RNNs), which have a variable input
and output size. They can internally store information and thus handle sequences of
more or less arbitrary length. In order to describe sequences, we introduce a discrete
time parameter t ∈ N.
A node in an RNN is more complex than in fully connected feedforward neural networks,
since it receives two input values: one is the output of the previous layer at the same
time step, the other is the output of the same layer at the previous time step:

a
(l)
i (t) = fw(l)

(
a
(l−1)
j (t) , a

(l)
k (t− 1)

)
. (58)

We refer to the map fw(l) of a particular layer l as a cell (also called a unit). The
trainable parameters w(l) do not depend on the time t. Fig. 17 shows two common
illustrations of a recurrent layer.
Care has to be taken when doing the backpropagation algorithm, i.e. when applying
the chain rule, since (in the unwrapped picture) a certain trainable parameter appears
multiple times in the network and there are several “paths” through the network to get
to a specific trainable parameter in a specific node. This type of learning algorithm is
called backpropagation through time.

40

fw(l)

a(l−1)

a(l)

a(l)

≡ fw(l) fw(l) fw(l). . .
a
(l)
t−2 a

(l)
t−1 a

(l)
t . . .

a
(l)
t+1

a
(l)
t−1 a

(l)
t a

(l)
t+1

a
(l−1)
t−1 a

(l−1)
t a

(l−1)
t+1

Figure 17: Schematic illustration of a recurrent layer. Due to lack of space a(l) (t) is
written as a(l)t . On the left is the “wrapped” picture, on the right the “unwrapped”
picture of the recurrent layer. The cell is indicated by a square and the data flow is
depicted by arrows. At a given point in time the cell receives as inputs: the output
from the previous layer at the same point in time, and the output from itself from one
time step ago.

The original plain recurrent layer is defined by

a
(l)
i (t) = tanh

(
b
(l)
i +

nl−1∑
j=1

w
(l)
ij a

(l−1)
j (t) +

nl∑
k=1

w̃
(l)
ik a

(l)
k (t− 1)

)
. (59)

This simple cell however suffers from poor long-term memory [44,45].
In 1997 Hochreiter and Schmidhuber presented an enhanced RNN cell called Long
Short-Term Memory (LSTM) [46], which has an explicit internal memory state
and different gates to control the flow of information inside the cell. Unlike in the plain
RNN cell, the memory is not overwritten in every time step, but information can be
held in the internal state over longer time periods. Ref. [47] gives a nice insight into the
inner workings of LSTM cells. There exist several different variations of LSTM [48].
In 2014 Cho et al. introduced the Gated Recurrent Unit (GRU) [49], which is a
simplified LSTM unit. It has less representational power than the LSTM, but it is
easier to implement and faster to compute.
Both LSTM and GRU outperform the plain RNN cell. However, which of the two
performs better on a given task depends on the task itself [47, 50,51].
An RNN allows for different mappings of data, see Fig. 18. We want to give examples
for each case:

• One to many: image captioning (i.e. image to text).

41

One to many Many to one Many to many,
synchronized

Many to many,
delayed

Figure 18: Depiction (in the unwrapped picture) of the diverse mappings an RNN can
do. The blue boxes symbolize the input, the green boxes the output of the RNN. The
red boxes symbolize the RNN itself (at different points in time).

• Many to one: text classification (i.e. text to label).

• Many to many, synchronized: frame-by-frame analysis of videos.

• Many to many, delayed: translation (i.e. text to text).

Ref. [52] gives an entertaining and insightful overview over what RNNs can and cannot
do regarding text synthesis.
An RNN can also be operated bidirectionally. In this case there is in each layer a
forward and (in parallel) a backward processing of the data.

4.4.3 Mixed and enhanced architectures

The different layers discussed in the previous subsubsections can be combined to form
even more diverse models. A few examples:

• Convolutional layers + dense layers: image classification.

• Recurrent layers + dense layers: text classification.

• Recurrent convolutional layers for film analysis.

Another concept we want to introduce is residual connections [53]. Very deep CNNs
are usually quite hard to train due to vanishing or exploding gradients. Another issue
is that information can get lost in the downsampling (pooling) steps in an encoder-part
of a CNN. In order to mitigate these effects one can introduce residual connections into
the architecture of the model. This means that the input of a certain layer consists not

42

only of the output of the previous layer but also of the output of one or more layers
earlier in the network. A typical example is the so-called U-Net [54].
Ref. [55] lists and compares some common CNN architectures.

In the subsequent subsection we briefly outline some other important DL concepts one
should at least have heard of.

4.5 Further learning concepts

4.5.1 Transfer Learning

A model trained to perform a certain task can be reused to build a model, whose goal
is to perform a more or less similar task as the original one. This is called Transfer
Learning.
For instance: One has a pre-trained CNN able to distinguish cats from dogs and one
wants a model being able to distinguish rabbits from hamsters. Then one can take
the cats-dogs-CNN and train it on rabbits-hamsters-data while keeping the trainable
parameters of the earlier layers fixed (e.g. train only the last dense classification layers).
A heuristic explanation why this works is because the earlier layers usually recognize
very basic features like edges, colors and rough shapes, which are present in both tasks.
The more different the new task is (e.g. distinguish cars from trucks), the less layers
can be kept fixed and more of the later layers have to be retrained.

4.5.2 Unsupervised Learning

All Deep Learning methods we have investigated so far require labelled data, i.e. one
has to provide pairs of input data and target output data. Dealing with unlabelled data
is referred to as unsupervised Learning (as opposed to supervised Learning).
An encoder-decoder-CNN is an example for an architecture capable of unsupervised
Learning. In this context it is also called an autoencoder. By taking the input data as
the desired output data, one forces the model to learn more compressed representations
of the data. This (nonlinear) dimensionality reduction can be compared to principal
component analysis (PCA) [56]. PCA is a linear statistical tool to extract the most
relevant directions of a high-dimensional data set.

43

4.5.3 Generative Adverserial Networks

Generative Adverserial Networks (GANs) are an example for unsupervised Learn-
ing [57]. GANs are able to produce synthetical data similar to the training data, e.g.
to come up with fake celebrity images [58].
A GAN consists of 2 neural networks: a generator network G and a discriminator
network D. The aim of G is to produce data which looks like the training data. The
aim of D is to identify if a sample is produced by G or if it is taken from the training
data. The performance of D is measured by the fraction of correctly classified samples,
whereas the performance of G is measured by the fraction of the mistakes that D makes.
Due to this feedback loop both networks G and D simultaneously get better and better
at their respective tasks during training.

4.5.4 Reinforcement Learning

The general setup of Reinforcement Learning is as follows: an agent is situated in
an environment and can observe its state (the whole environment or only parts of it).
Based on the observation the agent performs actions, which may change the state of
the agent itself and/or the state of the environment. The agent rarely receives rewards,
often delayed. The aim of Reinforcement Learning is to find an optimal strategy for
choosing which actions to take in order to maximize the cumulative reward. This
strategy can be implemented by an ANN.
Some applications of Reinforcement Learning are playing games (like AlphaGo [59]),
autonomous driving and robotics.

With the first three sections we set up the theoretical framework for the main purpose
of this thesis: the application of DL methods to one-dimensional inverse scattering,
which is treated in the following section.

44

5 Application of Deep Learning to Inverse Scattering

In this section we present and evaluate our proposed approach to solve the one-dimen-
sional inverse scattering problem using techniques from Deep Learning. From now on
we use units where m = ~ = 1.

5.1 Delta-potentials

As a warm-up, we investigate potentials with a finite (small) number of positive delta-
peaks. Such potentials are easy to handle, they are fully characterized by a small amount
of numbers, namely twice as much as the number of peaks: each peak has a position
and a strength (height). Furthermore, the forward scattering problem can be solved
analytically (cf. Subsec. C.1). Since the peaks are all chosen positive, the potentials
do not possess any bound states, meaning that the inverse scattering problem has a
unique solution. We have not tried to use a Recurrent Neural Network in this setup,
i.e. the numbers of output nodes of the used Artificial Neural Networks (ANNs) are
fixed, which is why we also only consider potentials with a fixed number of delta-peaks.
We choose the setup D0.1,15,0.1

−7,7,0.5 (7; 1, 10) (cf. Subsec. B.1). Fig. 19 shows that the localiz-
ation length ξ (k) corresponding to this class is smaller nearly over the whole considered
k-range than the average length of the potentials 〈L〉 := 〈x7 − x1〉 ≈ 11.2 (x1 is the
position of the leftmost delta-peak and x7 the position of the rightmost delta-peak),
which means that localization is dominant in this setup.
We want to train an ANN to predict the values xi and Vi of a potential

V (x) =
N∑
i=1

Vi δ (x− xi) , (60)

0

5

10

15

0 2 4 6 8 10 12 14 16

Le
ng

th

k

ξ

〈L〉

Figure 19: Momentum-dependence of the localization length ξ for the class
D0.1,15,0.1
−7,7,0.5 (7; 1, 10). 〈L〉 ≈ 11.2 is the average length of the potentials. The localiza-

tion length ξ as well as 〈L〉 are calculated using 105 samples.

45

−1
−0.5

0
0.5
1

r
<(r)
=(r)

−1
−0.5

0
0.5
1

0 2 4 6 8 10 12 14

r′

k

<(r′)
=(r′)

Figure 20: Example of an input vector the ANN receives, i.e. all the numerical values
indicated by small dots and triangles.

withN = 7, Vi ∈ [1, 10], xi ∈ [−7, 7] and xi+1−xi > 0.5, given its left and right reflection
amplitudes r (k) and r′ (k). This is a typical regression problem (cf. Subsubsec. 4.3.1).
Since the values of the Vi are in the same order of magnitude as the positions xi, we
use the average of the mean squared errors as the cost function:

C (x′,V′;x,V) =
1

2

(
1

7
‖x′ − x‖22 +

1

7
‖V′ −V‖22

)
, (61)

where x′ = (x′1, . . . , x
′
7) and V′ = (V ′1 , . . . , V

′
7) are the predictions of the ANN and the

unprimed quantities are the respective ground truths. If the target output values lie in
different orders of magnitude, one would have to standardize them (in the statistical
sense) before showing them to the model (cf. Subsubsec. 4.3.4). The input values should
be standardized as well.
An ANN only takes real values as input. Therefore we split the reflection amplitudes
r (k) and r′ (k) into their respective real and imaginary parts. This results in an input
size (number of nodes in the input layer) n0 = 2 · 2nk, where nk = 150 is the number
of k-values. Since |r (k)| ≤ 1 and |r′ (k)| ≤ 1, all the input values lie in the interval
[−1, 1], which means that we do not have to standardize them. In Fig. 20, which shows
a single exemplary input vector, we see that the data, which the ANN receives, is rather
coarse-grained.
As an architecture we choose a fully connected feedforward neural network. Different
hyperparameters were tested. During the hyperparameter search we always produced
new training data before the fitting process of each newly initialized model. This is
done so that the hyperparameters do not overfit to a single validation data set (cf.

46

Subsubsec. 4.3.3). The following architecture turns out to perform rather satisfactory
(in a sense we quantify later):

• Number of layers L + 1 = 10, number of nodes in each layer: n0 = 4nk = 600,
n1 = 600, n2 = 520, n3 = 440, n4 = 360, n5 = 280, n6 = 200, n7 = 120, n8 = 40,
n9 = 2N = 14.

• After each hidden layer there is a batch normalization layer. The number of
trainable parameters is d = 1253 054.

• The activation functions are chosen as ReLU, except for the last layer, where a
linear activation function is used (because the output values can be negative as
well). The initializers are “He” and “Glorot”, respectively.

• The optimizer is Adam [60] with a learning rate of 5 · 10−3.

Code Snippet 1 displays the Keras implementation of this ANN in order to eliminate
all ambiguities.

Code Snippet 1 Keras implementation of the ANN architecture used for the inverse
scattering of delta-potentials. n_k = nk = 150 and n_scatterers = N = 7.

network = Sequential()
network.add(Dense(600, input_shape=(4*n_k,), activation=’relu’,

kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(520, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(440, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(360, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(280, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(200, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(120, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(40, activation=’relu’, kernel_initializer=’he_normal’))
network.add(BatchNormalization())
network.add(Dense(2*n_scatterers, activation=’linear’, kernel_initializer=’glorot_normal’))
network.compile(loss=’mean_squared_error’, optimizer=Adam(lr=5e-3))

The data set consists of 5 · 105 samples, which is split into training and validation data
at the ratio of 9 : 1. Fitting is done with a batch size of 256 for 500 epochs, where
the training data are shuffled after each epoch. Fig. 21 shows the training and the
validation loss as a function of the epoch number.

47

10−2

10−1

100

101

0 50 100 150 200 250 300 350 400 450 500

Loss

Epoch

Valid
Train

Figure 21: Learning curves of the model used for the inverse scattering of delta-
potentials. “Train” is the training loss – the mean cost function value evaluated on
the training data. “Valid” is the validation loss – the mean cost function value evalu-
ated on the validation data, to which the model is not fitted.

In order to get a qualitative feeling about the performance of the model, we plot six
test examples in Fig. 22. For a quantitative analysis, we compare the model against
a benchmark, a search procedure and a nearest neighbour analysis. In each case we
compute the average of the cost function

C (y,W;x,V) =
1

2

(
1

7
‖y − x‖22 +

1

7
‖W −V‖22

)
, (62)

over a test data set of size 104. (x,V) denotes a test sample. Let r be the corresponding
4nk-dimensional real-valued vector containing the reflection amplitudes. What (y,W)

is, depends on the case:

• Model (ANN): (y,W) = (x′,V′) is the prediction of the model, given r as an
input. There is a subtle problem with this case, which is addressed below.

• Benchmark: (y,W) is the average training datum 〈(y,W)〉(y,W)∈training data.

• Search procedure: (y,W) is the sample in the training data set (to which the
model was fitted, to give a fair comparison), which minimizes ‖s− r‖22, where s

are the reflection amplitudes of (y,W).

• Nearest neighbour: (y,W) is the sample in the training data set, which minimizes
C (y,W;x,V).

The benchmark is the most basic guess one can make. It lies “in the middle” of the
training data and has the least mean distance to any point in the data set.

48

0

2

4

6

8

10

V

GT
MP

0

2

4

6

8

10

−8 −4 0 4 8

V

x
−8 −4 0 4 8

x
−8 −4 0 4 8

x

Figure 22: Six randomly generated test examples of the class D0.1,15,0.1
−7,7,0.5 (7; 1, 10). The

height of each peak is the strength V
(′)
i of the corresponding delta-peak. From the

ground truths “GT” the reflection amplitudes are calculated and fed into the model,
which returns the predictions “MP”. The key, which is displayed only in the top right
subplot, holds for every other subplot as well.

The search and the nearest neighbour procedures both look for the sample in the train-
ing data set, which lies closest to the given test sample. Both procedures however
measure closeness in different ways.
The nearest neighbour approach is somehow unrealistic, because in a “real-life” scenario
one is given r and the training data, but not (x,V). And with this information one
can only do a benchmark guess, train a model or do a search by finding the sample in
the training data set with the least “r-distance” to the given r. However, the nearest
neighbour analysis gives the mean distance of a random sample to the nearest training
data point, i.e. it is a measure of how dense the training data lie in the entire data
space (consisting of all possible samples).
The performance of the model and of the search procedure both scale with the size of
the training data set.
As mentioned above, there is a subtle problem when evaluating the performance of the
model using the cost function in Eq. (62). To see this, we look at the sample in the
test data set, which has the highest ANN-cost according to Eq. (62). Fig. 23 shows
the ground truth of this sample compared to the model prediction, the benchmark, the
search result and the nearest neighbour. The issue with the ANN is that it apparently
confuses the small peaks and mixes up the order of the peaks. But the cost function in

49

0

2

4

6

8

10

V GT
MP

GT
BM

0

2

4

6

8

10

−8 −4 0 4 8

V

x

GT
SR

−8 −4 0 4 8

x

GT
NN

Figure 23: Sample from the test set, on which the model supposedly performs worst.
“GT” is the ground truth, “MP” the model prediction, “BM” the benchmark, “SR” the
search result and “NN” the nearest neighbour. The reason for the high ANN-cost is the
fact that the model rearranges the peaks (e.g. the peak at x ≈ −1.6 is the third in the
ground truth, but the second in the model prediction).

Eq. (62) compares the respective first peaks, second peaks and so forth. This is however
not the way we want to assess the model prediction in Fig. 23. We therefore introduce
a modified cost function for the model evaluation: We construct a “distance matrix”

Dij :=
1

2

(
(x′i − xj)

2
+ (V ′i − Vj)

2
)
, (63)

which is a measure for the distance between the jth peak in the ground truth and the
ith peak in the model prediction. We search for the smallest element of this matrix,
match the corresponding peaks and remove the associated row and column afterwards.
This is iterated N times, such that there is a one-to-one matching between the peaks in
the ground truth and the model prediction. The cost value is then calculated according
to Eq. (62), but using the just described rearrangement. For the sample in Fig. 23
this yields an ANN-cost of 3.6 instead of 13.2 without the matching. This approach is
however not used as the cost function in the first place, because it does not force the
model to predict the peaks in the correct order and hence leaves an ambiguity, which
makes it harder for the model to learn.
The computed average cost values are shown in Table 1. The ANN outperforms all
the other methods. (Using the cost function in Eq. (62) – without the peak-matching

50

Table 1: Average performance (cost value, lower values are better) of the ANN, com-
pared to the benchmark, the search procedure and the nearest neighbour analysis. The
benchmark is the mean value of the training data set. The search / nearest neighbour
procedure takes the sample from the training data set which lies nearest (w.r.t. the
reflection amplitudes / potential parameters (x,V)) to a given sample from the test
data set. The training data set contains 5 · 105 samples and the test data consists of
104 samples. The best value is written in bold.

ANN Benchmark Search Nearest neighbour
Average cost value 0.21 3.9 5.2 0.35

outlined above – results in an average ANN-loss of 0.32.) It is surprising that the search
procedure performs worst, even poorer than the benchmark.
Next, we want to see qualitatively how the model handles data it has not been trained
for. We investigate four such cases: (1) the number of scatterers is reduced toN = 6, (2)
the number of scatterers is increased to N = 8, (3) the minimal separation of scatterers
is reduced to δx = 0.1, (4) the maximal delta-height is increased to Vmax = 12. The
first two cases are interesting because the model is forced to return seven delta-peaks,
but it receives data from a different number of delta-peaks. The last two cases test
the generalizability of the model. In Fig. 24 we see three selected random examples for
each of these cases, showing the typical behaviour of the model. The cases (1) and (2)
reveal that the model “understands” something about the underlying physics. In the
first two examples of (1) and in the first example of (2) we see that the model either
fabricates or ignores small peaks in the middle of the potential, and weaker scatterers
inbetween stronger ones indeed do not have as much impact on the scattering process
as opposed to stronger scatterers. In the remaining examples of (1) and (2) we see that
the model also tends to split a single scatterer into two smaller ones nearby or the other
way around, which also makes sense physically. Case (3) demonstrates that the model
cannot resolve scatterers, which are closer together than in the training data. Instead, it
merges the two neighbouring peaks and “invents” a weak scatterer somewhere else. Case
(4) shows that the model is hardly able to produce heights higher than the maximal
value it was trained on (namely 10). Additionally, the model fails to reconstruct the
scatterers near to the high peak(s).
Finally, we want to test the model’s stability against noise. For this purpose we add
Gaussian noise with a standard deviation of σnoise to the input vectors of the test data
set. In Fig. 25 we see that the performance of the model (measured by the enhanced
cost function including the peak-matching) systematically gets worse with increasing

51

0
2
4
6
8
10

V (1)

GT
MP

0
2
4
6
8
10

V (2)

0
2
4
6
8
10

V (3)

0
2
4
6
8
10
12

−8 −4 0 4 8

V

x
−8 −4 0 4 8

x
−8 −4 0 4 8

(4)

x

Figure 24: Ground truths (GT) and model predictions (MP) for configurations the
model has not been trained for. The key in the top right plot holds for all other
subplots as well. Each row shows three typical examples of a test case, indicated by the
number on the right: (1) N = 6 scatterers, (2) N = 8 scatterers, (3) minimal separation
δx = 0.1, (4) maximal height Vmax = 12.

52

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

Loss

σnoise

Figure 25: Performance of the model depending on the standard deviation σnoise of the
additive Gaussian noise applied to the input vectors. For each value of σnoise the model
was tested on 104 noisy samples.

−1.5
−1

−0.5
0

0.5
1

1.5

0 5 10 15

r

k

Clean <(r)
Noisy <(r)

0

2

4

6

8

10

-8 -4 0 4 8

V

x

GT
MP

Figure 26: Test sample with σnoise = 0.2. On the top a part of the clean input vector is
compared to the noisy version. On the bottom the ground truth (GT) is compared to
the model prediction (MP) based on the noisy signal.

53

σnoise. Nevertheless, the quality of the model predictions stays relatively good, as can
be seen for σnoise = 0.2 in Fig. 26.
In summary, we observe that an ANN is capable of learning inverse scattering for a
given class of delta-potentials. Whenever the model fails to reconstruct a scattering
configuration, it does so in a physically plausible manner.

We now conclude the case of delta-potentials and proceed to compactly supported
smooth potentials.

5.2 Compactly supported smooth potentials

A potential with a fixed number of delta-peaks is rather specific. We now consider the
more general case of compactly supported smooth potentials. We treat the same two
cases as in Subsec. 3.4, namely nonnegative,

∀x ∈ R : V (x) ≥ 0, (64)

and zero-mean potentials, ∫ ∞
−∞

V (x) dx = 0. (65)

The former are convenient because they have no bound states and thus the solution of
the corresponding inverse scattering problem (ISP) is unique (given only the reflection
amplitudes, cf. Subsec. 3.1). The latter unfortunately do have at least one bound
state [24] (cf. Subsec. 3.4). However, this shall not bother us, since the Artificial Neural
Network (ANN) is fitted to a training data set containing samples from a prescribed
class, denoted by the S-symbol introduced in Subsec. B.2. This means that the ANN
learns the statistics of S and is hopefully able to perform its task inside (and also –
desirably – “a bit outside”) of S.
In Subsec. 3.4 we have seen that the Marčenko iteration does not yield satisfactory
results for the investigated classes. We approach this problem with an ANN, which
should learn the mapping from the scattering data (the reflection amplitudes) to the
original potential. This time however, unlike in the case of delta-potentials in Subsec.
5.1, we do not take the raw scattering data as an input of the ANN. The first step
we take is what we call a “backprojection”, by which we mean a transformation of the
scattering data, which lives in momentum space (meaning that the scattering matrix is
a function of the momentum k), into real space. The result of this backprojection should

54

10−2
100
102
104
106
108

0 5 10 15 20

kcr

Le
ng

th

k

ξ

2a

Figure 27: Momentum-dependent localization length ξ (k) of the class
S0.02,20,0.02
−256/51,5,5/255 (10, 0.1,+), based on 104 samples, compared to the length of the poten-

tials 2a. The blue line marks the critical momentum kcr =
√

2〈V 〉 = (2/π)1/4
√
σpot ≈

2.82, below which ξ does not describe localization, but the exponential decay of the
wavefunction inside the classically forbidden region (cf. Eq. (159)).

already resemble a more or less crude approximation of the scattering potential V (x).
We simply take the zeroth- and first-order Marčenko approximations (cf. Subsec. 3.3)
as the backprojection method. The task of the ANN is to retrieve the original ground
truth potential from the backprojection of the scattering data.
We can now state the main reason why we investigate zero-mean potentials, namely
because the zeroth-order Marčenko approximation, which is now a part of the backpro-
jection and thus a part of the input of the ANN, has the same property (cf. Eq. (39))
and we hope that this helps the ANN to learn the correct mapping.
Subsubsec. 5.2.1 is dedicated to the nonnegative potentials and Subsubsec. 5.2.2 to the
zero-mean potentials.

5.2.1 Nonnegative potentials

We investigate the class S0.02,20,0.02
−256/51,5,5/255 (10, 0.1,+), which is essentially the same as the

class S0.02,20,0.02
0,10,10/511 (10, 0.1,+) used in Subsec. 3.4, but with shifted support. In Subsec.

3.4 we saw that the Marčenko iteration does not yield satisfactory results for this class.
We want to provide a solution to this problem with an ANN.
The localization length of the considered class is plotted in Fig. 27. We see that for
k > 2.5 the wave gets exponentially suppressed due to penetration into the classically
forbidden region. The localization regime is rather narrow, namely 3 > k > 3.5. For
k ? 4 the scattering is ballistic.
Regarding the ANN we choose a Convolutional Neural Network (CNN) architecture

55

with residual connections inspired by the so-called U-Net (cf. Subsubsecs. 4.4.1 and
4.4.3). The input of the network is not the raw scattering data like in the case of
delta-potentials, but its backprojection into real space. An input tensor consists of four
channels: the left and right zeroth- and first-order Marčenko approximations (cf. Eqs.
(36), (37) and (42)),

V
(0)
Marč (x) = −2~2

πm

∫ ∞
0

k=
(
r (k) e−2ikx

)
dk, (66)

V ′
(0)
Marč (x) = −2~2

πm

∫ ∞
0

k=
(
r′ (k) e2ikx

)
dk, (67)

V
(1)
Marč (x) = V

(0)
Marč (x) +

2~2

π2m

(∫ ∞
0

<
(
r (k) e−2ikx

)
dk

)2

, (68)

V ′
(1)
Marč (x) = V ′

(0)
Marč (x) +

2~2

π2m

(∫ ∞
0

<
(
r′ (k) e2ikx

)
dk

)2

, (69)

computed on the discrete space lattice. (The integrals are cut off at kmin and kmax.)
This way, and not by passing the weighted means W (0)

Marč and W (1)
Marč defined in Eq. (43)

to the CNN, we let the CNN itself decide which information to take.
The desired output of the network is the original potential V on the discrete space lat-
tice. Therefore the ANN maps from position space (as opposed to momentum space)
to position space, which is the main reason why we use an encoder-decoder CNN ar-
chitecture.
Both the input and output values do not require to be standardized.
Let V = (V (xmin) , . . . , V (xmax)) be some potential (the ground truth, i.e. the desired
output vector) and V′ = (V ′ (xmin) , . . . , V

′ (xmax)) the corresponding prediction of the
model (based on the backprojection of the scattering data of V). We define the mean
squared error

C (V′,V) =
1

nx
‖V′ −V‖22 =

1

nx

∑
i

(V ′ (xi)− V (xi))
2 (70)

as the cost function. nx = 2I = 512 = 29 denotes the number of spatial points.
The number nx is chosen such that it can be evenly divided in half up to nine times.
This allows us to do pooling and upsampling (by a factor of 2) in the CNN without
having to bother about “leftover-pixels”.
The architecture of the used CNN is schematically displayed in Fig. 28 and described in

56

the associated caption. The number of trainable parameters amounts to d = 15 516 525.
Due to memory issues the training data was produced with a Python generator function.
This means that one does not have to provide the entire training data set before and
during the fitting process; a generator function produces training samples on demand
(before each mini-batch gradient step), which are deleted from memory afterwards. The
fitting process is done in 200 epochs and each epoch consists of 156 mini-batch gradient
steps, each based on a mini-batch with 64 samples. In total, the CNN is trained on
nearly 2 · 106 samples, but it “sees” every sample only once. Validation is done on a
fixed validation data set of size 103 at the end of each epoch. As an optimizer we choose
Adam with a learning rate of 10−4. The learning curves (the training and validation
loss at the end of each epoch) of the model are shown in Fig. 29.
The performance of the trained model can be seen qualitatively with six test samples
in Fig. 30. Though it is not perfect, when compared to Fig. 10, we see that the CNN
certainly performs much better than the Marčenko approximation.
For a quantitative analysis, we compare the model against a benchmark and the 50th

order weighted mean Marčenko approximation W
(50)
Marč (cf. Eq. (43)), for which we saw

in 3.4 that it is a good compromise between the number of iterations and the accuracy
around the region of convergence (cf. Fig. 10). A search procedure and a nearest
neighbour analysis, like with the delta-potentials, is omitted, because the entire training
data, to which the model was fitted, was not stored.
Given a ground truth potential V from a test data set, we calculate its reflection
amplitudes. They are used for the backprojection, which is fed into the CNN, producing
some prediction V′, as well as for the Marčenko iteration, yielding after fifty iterations
the weighted mean W

(50)
Marč. The benchmark V is simply the average of 104 potentials

randomly drawn from the class S0.02,20,0.02
−256/51,5,5/255 (10, 0.1,+). The quality of V, V′ and

W
(50)
Marč w.r.t. the ground truth V is measured with the cost function in Eq. (70). We also

record the computation time for the model prediction (including the backprojection)
and the 50th order weighted mean Marčenko approximation. Table 2 displays the cost
function values averaged over a test data set of size 104 (processed in parallel) and
the computation times averaged over 100 sequentially processed samples. The CNN
significantly outperforms the other methods regarding the cost value. The Marčenko
approximation is even far worse than the benchmark. Of course, the computation time
heavily depends on the used machine. Still, the CNN is an order of magnitude faster
than fifty Marčenko iterations. In Fig. 31 we plot the ground truth of a randomly chosen
sample from the test set and compare it to the model prediction, the benchmark, and

57

Input

S(128,9)

S(256,9)

S(512,9)

S(1024,9)

S(2048,9)

S(1024,7)

S(1024,9)

S(512,7)

S(512,9)

S(256,7)

S(256,9)

S(128,7)

S(128,9)

S(50,9)

C(1,1)

Output

MP

MP

MP

MP

US

US

US

US

Figure 28: Schematic visualization of the used CNN architecture for nonnegative po-
tentials: Violet or blue block = two 1D depthwise separable convolutional layers, green
block = one 1D depthwise separable convolutional layer, red block = one 1D convo-
lutional layer. The two numbers in each block give the number of output channels
and the kernel size, respectively. The activation function is always ReLU, except for
the red block, where a linear activation is used. The initializers are “He” and “Glorot”,
respectively. In each convolutional operation the input is padded in such a way that the
output has the same size as the input. After each activation function there is a batch
normalization layer, except for the red block. “MP” denotes a 1D max pooling layer,
which halves the size of the array. “US” denotes a 1D upsampling layer, which doubles
the size of the array. The input of each blue block is the concatenation of the outputs
of the respectively indicated green and violet block (residual connections). The CNN
has d = 15 516 525 trainable parameters.

58

10−1

100

101

0 25 50 75 100 125 150 175 200

Loss

Epoch

Valid
Train

Figure 29: Learning curves of the model used for the inverse scattering of compactly
supported smooth nonnegative potentials. “Train” is the training loss – the average cost
function evaluated on the training data. “Valid” is the validation loss – the average cost
function evaluated on the validation data, to which the model is not fitted.

0

5

10

V

GT
MP

0

5

10

−6 −4 −2 0 2 4 6

V

x
−6 −4 −2 0 2 4 6

x
−6 −4 −2 0 2 4 6

x

Figure 30: Six randomly generated test examples of the class S0.02,20,0.02
−256/51,5,5/255 (10, 0.1,+).

From the ground truths “GT” the reflection amplitudes are calculated, backprojected
according to Eqs. (66) – (69), and then fed into the model, which returns the predictions
“MP”. The key, which is displayed only in the top right subplot, holds for every other
subplot as well.

Table 2: Quantitative comparison of the model (CNN) to the benchmark (mean poten-
tial in the considered class) and to the 50th order weighted mean Marčenko approxim-
ation W (50)

Marč. Averaging is done over a test data set consisting of 104 / 100 samples for
the cost value / computation time. The best values are written in bold.

CNN Benchmark Marčenko approx.
Average cost value 9.3 · 10−2 1.7 16

Average computation time 1.3 · 10−1 s — 1.6 s

59

0

5

10

V GT
MP

−6 −4 −2 0 2 4 6

x

GT
BM

−10

−5

0

5

10

−6 −4 −2 0 2 4 6

V

x

GT
M50

Figure 31: Random sample from the test set. “GT” is the ground truth, “MP” the model
prediction, “BM” the benchmark and “M50” the 50th order weighted mean Marčenko
approximation.

the 50th order weighted mean Marčenko approximation. The performance difference,
already recognizable by the numbers in Table 2, is evident.
Next, we investigate qualitatively the generalizability of the model, i.e. how it copes with
samples which lie outside the class it was trained for. We still demand that all considered
potentials are nonnegative. We examine six such cases: (1) a smoothened rectangular
potential, (2) a triangular potential, (3) a smoothened delta-potential, (4) the standard
deviation of the potential values is increased to σpot = 15, (5) the autocorrelation of
the potentials is reduced to σker = 0.07, (6) the autocorrelation of the potentials is
increased to σker = 0.2. The smoothing in (1) and (3) is done with the same Gaussian
kernel used in the generation of the training data (i.e. having a standard deviation of
σker = 0.1). The rectangular and the triangular potential both are centered at x = 0,
have a width of a = 5 and a height of 〈V 〉 = σpot√

2π
≈ 4. The delta-potential (3) is

initialized with three delta peaks: two larger peaks and a smaller peak inbetween. Fig.
32 shows the three examples (1), (2), (3) and three random samples for each of the cases
(4), (5), (6). The model fails severely with the first three test cases (1-3). Only the
edges of the smoothened rectangular potential are captured to a certain extent. The
higher potentials (4) are reconstructed quite well on the far left and on the far right,
but not in the middle section, where the model underestimates the potential values,
but grasps the rough course of the potential. For the less correlated potentials (5) the
model can predict not more than the margins on the left and on the right, if at all. The
more correlated potentials (6) are reconstructed rather well, albeit not perfectly; also

60

0

2

4

6

V

GT
MP (1-3)

0

4

8

12

V (4)

0

4

8

12

V (5)

0

2

4

6

8

−6 −4 −2 0 2 4 6

V

x
−6 −4 −2 0 2 4 6

x
−6 −4 −2 0 2 4 6

(6)

x

Figure 32: Ground truths (GT) and model predictions (MP) for configurations the
model has not been trained for. The key in the top middle plot holds for all other
subplots as well. The first row shows three special potentials (from left to right): (1)
smoothened rectangular potential of width a = 5 and height 〈V 〉 ≈ 4, (2) triangular
potential of width a = 5 and height 〈V 〉 ≈ 4, (3) three smoothened delta-peaks. The
other rows show three random examples of the other test cases, indicated by the number
on the right: (4) higher standard deviation of potential values σpot = 15, (5) smaller
potential autocorrelation σker = 0.07, (6) larger potential autocorrelation σker = 0.2.
Mind the different scales of the vertical axes.

61

notice the fluctuations in the model predictions on the left and on the right boundary.
From these observations we can conclude that the model prediction is not reliable as
soon as one takes a sample which lies outside of the class of potentials, on which the
model was trained.
To end this subsubsection, we inspect the model’s stability against noise. We intro-
duce multiplicative complex-valued Gaussian noise with a standard deviation of σnoise

(around the value 1) onto the reflection amplitudes before doing the backprojection and
feeding the result into the model. In Fig. 33 we see that the performance diminishes
with increasing σnoise, but the example shown in Fig. 34 reveals that the model is rather
robust against noise.
To summarize, the CNN can perform inverse scattering reasonably well for the class it
was trained on. It surpasses the Marčenko iteration procedure by far and is resistant
against corruption by noise. However, as soon as the potential does not show the cor-
rect statistics, i.e. if it lies outside the class S0.02,20,0.02

−256/51,5,5/255 (10, 0.1,+), the performance
of the CNN rapidly drops.

In the following subsubsection we investigate if a CNN is also able to do inverse scat-
tering for zero-mean potentials.

5.2.2 Zero-mean potentials

For the zero-mean potentials we basically apply the same methods and do the same
analysis as with the nonnegative potentials. Therefore this subsubsection is not so
extensive in text, though equally comprehensive in content.
We choose the class S0.02,20,0.02

−256/51,5,5/255 (10, 0.1, 0), for which we saw in Subsec. 3.4 that the
Marčenko iteration is not applicable. The localization length is shown in Fig. 35. The
scattering is largely ballistic (for k ? 5).
The chosen CNN architecture is depicted in Fig. 36. The input and the output of the
CNN, the cost function (cf. Eq. 70), the handling of the training and validation data
as well as the fitting process are chosen just like in Subsubsec. 5.2.1. Only this time we
find that the training works best using a learning rate of 2 · 10−4. The learning curves
of the model are plotted in Fig. 37.
From the six test samples in Fig. 38 we see qualitatively that the performance is not
as good as the CNN trained for nonnegative potentials (cf. Fig. 30). This can be
traced back to the fact that zero-mean potentials possess bound states and therefore

62

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2

Loss

σnoise

Figure 33: Performance of the model depending on the standard deviation σnoise of
the multiplicative Gaussian noise applied to the reflection amplitudes before doing the
backprojection. For each value of σnoise the model was tested on 104 noisy samples.

−1

0

1

0 5 10 15 20

r

k

Clean <(r)
Noisy <(r)

0

5

10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

V

x

GT
MP

Figure 34: Test sample with σnoise = 0.2. On the top the real part of the clean reflection
amplitude is compared to the noisy version. On the bottom the ground truth (GT) is
compared to the model prediction (MP) based on the noisy signal.

63

100

102

104

106

108

0 5 10 15 20

Le
ng

th

k

ξ

2a

Figure 35: Momentum-dependent localization length ξ (k) of the class
S0.02,20,0.02
−256/51,5,5/255 (10, 0.1, 0), based on 104 samples, compared to the potential length 2a.

Table 3: Quantitative comparison of the model (CNN) to the benchmark (mean poten-
tial in the considered class) and to the 0th order weighted mean Marčenko approximation
W

(0)
Marč. Averaging is done over a test data set consisting of 104 samples. The best value

is written in bold.
CNN Benchmark Marčenko approx.

Average cost value 1.4 4.9 3.5

the inverse scattering problem does not have a unique solution when one is provided
with the reflection amplitudes only. Still, the model predictions are better than the
Marčenko approximations (cf. Fig. 13).
We want to quantify this statement in the following analysis. Like with the nonnegat-
ive potentials, we compare the model to a benchmark and to the zeroth-order weighted
mean Marčenko approximation W

(0)
Marč. The benchmark is the mean potential in the

class S0.02,20,0.02
−256/51,5,5/255 (10, 0.1, 0), namely V = 0. For the Marčenko approximation we

choose the zeroth order because there are instances where this is indeed the best ap-
proximation. The average cost values of all three methods are listed in Table 3. There
is no need for a speed analysis, since the zeroth-order Marčenko approximation is part
of the preprocessing of the model input and hence will always be faster than the model
prediction, which in turn takes approximately as much time as in the case of nonneg-
ative potentials. This time (as opposed to the nonnegative potentials) the Marčenko
approximation is better than the simple benchmark. The CNN however outperforms
both of them. In Fig. 39 we directly compare the three methods based on a single
randomly chosen sample. Though the model prediction is not flawless, it certainly
surpasses the Marčenko approximation.
The generalizability of the model is qualitatively investigated on six test cases: (1) a

64

Input

S(64,9)

S(128,9)

S(256,9)

S(512,9)

S(1024,9)

C(512,7)

C(512,9)

C(256,7)

C(256,9)

C(128,7)

C(128,9)

C(64,7)

C(64,9)

C(32,9)

C(1,1)

Output

MP

MP

MP

MP

US

US

US

US

Figure 36: Schematic visualization of the used CNN architecture for zero-mean poten-
tials: Violet block = two 1D depthwise separable convolutional layers, green block =
one 1D convolutional layer, blue block = two 1D convolutional layers, red block = one
1D convolutional layer. The two numbers in each block give the number of output
channels and the kernel size, respectively. The activation function is always ReLU,
except for the red block, where a linear activation is used. The initializers are “He”
and “Glorot”, respectively. In each convolutional operation the input is padded in such
a way that the output has the same size as the input. After each activation function
there is a batch normalization layer, except for the red block. “MP” denotes a 1D max
pooling layer, which halves the size of the array. “US” denotes a 1D upsampling layer,
which doubles the size of the array. The input of each blue block is the concatenation of
the outputs of the respectively indicated green and violet block (residual connections).
The CNN has d = 16 433 509 trainable parameters.

65

1

2

3
4
5

0 25 50 75 100 125 150 175 200

Loss

Epoch

Valid
Train

Figure 37: Learning curves of the model used for the inverse scattering of compactly
supported smooth zero-mean potentials. “Train” is the training loss – the average cost
function evaluated on the training data. “Valid” is the validation loss – the average cost
function evaluated on the validation data, to which the model is not fitted.

−8

−4

0

4

8

V

GT
MP

−8

−4

0

4

8

−6 −4 −2 0 2 4 6

V

x
−6 −4 −2 0 2 4 6

x
−6 −4 −2 0 2 4 6

x

Figure 38: Six randomly generated test examples of the class S0.02,20,0.02
−256/51,5,5/255 (10, 0.1, 0).

From the ground truths “GT” the reflection amplitudes are calculated, backprojected
according to Eqs. (66) – (69), and then fed into the model, which returns the predictions
“MP”. The key, which is displayed only in the top right subplot, holds for every other
subplot as well.

66

−8

−4

0

4

8

V GT
MP

−6 −4 −2 0 2 4 6

x

GT
BM

−8

−4

0

4

8

−6 −4 −2 0 2 4 6

V

x

GT
M0

Figure 39: Random sample from the test set. “GT” is the ground truth, “MP” the model
prediction, “BM” the benchmark and “M0” the zeroth-order weighted mean Marčenko
approximation.

zero-mean smoothened rectangular potential, (2) a zero-mean triangular potential, (3)
a zero-mean smoothened delta-potential, (4) the standard deviation of the potential
values is increased to σpot = 15, (5) the autocorrelation of the potentials is reduced to
σker = 0.07, (6) the autocorrelation of the potentials is increased to σker = 0.2. In the
cases (1-3) the generated potentials are mapped to zero-mean versions according to Eq.
(74). The smoothing in (1) and (3) is done with the same Gaussian kernel used in the
generation of the training data (i.e. having a standard deviation of σker = 0.1). The
rectangular and the triangular potential both are centered at x = 0, have a width of
a = 5 and a height of σpot = 10. The delta-potential (3) is initialized with three delta
peaks: two larger peaks and a smaller peak inbetween. Fig. 40 shows the three examples
(1), (2), (3) and three random samples for each of the cases (4), (5), (6). The model is
at least qualitatively able to somehow recognize the edges of the rectangular potential
(1) and identify the peak in the middle of the triangular potential (2). The delta-
potential (3) on the other hand is reconstructed surprisingly well. The model prediction
for the higher/deeper potentials (4) is mediocre. The CNN completely fails at the
less correlated potentials (5), but the more correlated potentials (6) are reconstructed
correctly in part. From these observations we conclude that the CNN does not perform
reliably on samples which lie outside of the class of potentials which it was trained for.
We continue with the investigation of the models stability against multiplicative Gaus-
sian noise, just like with the nonnegative potentials. Fig. 41 shows the decay of the
model performance as the noise gets stronger.

67

−6
−3
0
3
6

V

GT
MP (1-3)

−12
−6
0
6

12

V (4)

−12
−6
0
6

12

V (5)

−6

−3

0

3

6

−6 −4 −2 0 2 4 6

V

x
−6 −4 −2 0 2 4 6

x
−6 −4 −2 0 2 4 6

(6)

x

Figure 40: Ground truths (GT) and model predictions (MP) for configurations the
model has not been trained for. The key in the top middle plot holds for all other
subplots as well. The first row shows three special potentials (from left to right): (1)
zero-mean smoothened rectangular potential of width a = 5 and height σpot = 10,
(2) zero-mean triangular potential of width a = 5 and height σpot = 10, (3) three
smoothened delta-peaks mapped to a zero-mean version. The other rows show three
random examples of the other test cases, indicated by the number on the right: (4)
higher standard deviation of potential values σpot = 15, (5) smaller potential autocor-
relation σker = 0.07, (6) larger potential autocorrelation σker = 0.2. Mind the different
scales of the vertical axes.

68

0

1

2

3

0 0.05 0.1 0.15 0.2

Loss

σnoise

Figure 41: Performance of the model depending on the standard deviation σnoise of
the multiplicative Gaussian noise applied to the reflection amplitudes before doing the
backprojection. For each value of σnoise the model was tested on 104 noisy samples.

In conclusion, the quality of the CNN predictions is far from perfect, but it is still
better than the Marčenko approximation. Furthermore, the performance quickly drops
as soon as one tests the model on data outside of the class it was trained on.

69

6 Summary and Outlook

We investigated the inverse Schrödinger scattering problem for one-dimensional Her-
mitian potentials with compact support. The solution to this problem is unique if one
is provided with the reflection amplitude (from the left or from the right), the eigenen-
ergies of the bound states and the normalization constants of the bound states. While
the solution can, in principle, be obtained by solving the Marčenko integral equation,
this is analytically only possible in very few special cases. Also an iterative approach
does not necessarily yield good results. Furthermore, one often does not have access to
the entire information about the bound states.
We approach this problem by training Artificial Neural Networks (ANNs) to do the
inverse scattering. Each ANN is trained on a different statistical class of potentials.
One could ask the question why we do not intend to find an ANN capable of doing
inverse scattering for any potential. On the one hand, this is simply not possible due
to the ill-posedness of the inverse scattering problem in the presence of bound states (if
one only knows the scattering matrix of the system). On the other hand, in most cases
one knows about the statistical properties of the investigated systems (e.g. biological
tissues). This knowledge is an advantage for training ANNs, since it restricts the
hypothesis space and therefore the learning process is more efficient.
For a fixed number of pointlike scatterers the Deep Learning approach we put forward
here works reasonably well. Also for nonnegative potentials, which do not support
bound states, the performance of the ANN is satisfactory, as long as one stays within
the class on which the ANN was trained. Zero-mean potentials possess bound states,
which renders the inverse scattering problem ill-posed. This translates to a reduced
quality of the ANN performance, which we find nonetheless to be superior to the iter-
ated approximate solutions of the Marčenko integral equation.

In future work one could investigate the following scenarios:
One could search for ANN architectures which are suited for potentials with a variable
number of delta-peaks. Such potentials cannot be treated with a rigid architecture like
the ones used in this thesis.
Bound states, as we have seen, are an ever-present issue in the inverse scattering prob-
lem. One could investigate the performance of an ANN trained on a specific class of
nonpositive potentials; or figure out a way to include the eigenenergies and the normal-
ization constants of the bound states into the input-architecture of the ANN, such that

70

the ANN is able to employ this data for the inversion procedure.
One could test other architectures, like bidirectional Recurrent Neural Networks or
Convolutional Neural Networks with locality but without shared weights (since the
problem at hand is not really translationally invariant). Such a layer is implemented
as keras.layers.LocallyConnected1D in Keras.
Localizing potentials, i.e. where ξ (kmax) is considerably smaller than the potential
length, are far more challenging than the smooth potentials considered in this thesis.
An interesting aspect would be the quality of the ANN predictions as a function of
kmax.
One could try to train an ANN on potentials with a range of statistical parameters (like
σker and σpot) instead of fixed values.
It is worthwhile trying to apply the proposed method to other physical systems like
nonhermitian (i.e. complex-valued) potentials with loss and gain, quasi-1D and higher
dimensional systems, or other wave equations like the Helmholtz equation describing
electromagnetic scattering or the acoustic wave equation. Eventually such Machine
Learning algorithms could help to improve state-of-the-art imaging techniques as used
for applications in medicine, geophysics and material science.

71

7 Acknowledgements

First and foremost, I want to thank my supervisor, Stefan Rotter, for giving me the
opportunity to delve into the exciting and cutting-edge field of Deep Learning, and for
his time he dedicated to fruitful discussions, which always resulted in valuable input
for my work.
I want to thank my colleagues for providing a comfortable yet supportive working
atmosphere. Special thanks to Andre Brandstötter for his helpful input.
Last, but not least, I want to thank my family, especially my parents, and my friends,
who always supported me in all sorts of ways.

72

A Technical specifications

All computations were carried out on a machine with the following core components:
• CPU: Intel Xeon E5-1620 v4.
• GPU: NVIDIA GeForce GTX 1080 Ti (one unit).
• RAM: 32GB.

All models were implemented in and trained using Keras 2.2.2 (written in Python) with
backend TensorFlow 1.8.0 or Theano 1.0.1 (sometimes the former is faster, sometimes
the latter). The functions generating the training data (i.e. solving the forward scat-
tering problems and doing the backprojection) were parallelized using Numba 0.39.0.

73

B Random potential generation

In order not to always repeat the explanation how we generate random potentials, we
introduce a shorthand notation for all the relevant physical parameters involved in a
certain setup.

B.1 Delta-potentials

For a potential consisting of delta-peaks, we use the following parameters:

• N = number of delta-peaks.

• [xmin, xmax] = finite space region, in which the N delta-peaks lie. Two consecutive
delta-peaks must have a minimum separation of δx. If two delta-peaks could get
arbitrarily close together, one would not be able to resolve them.

• [Vmin, Vmax] = interval, from which the strengths of the delta-peaks are randomly
drawn.

• Momentum values kj = kmin + j∆k, where j ∈ {0, . . . , nk − 1} and kmax = knk−1

=⇒ nk =
kmax−kmin

∆k
+ 1.

For such a setup we write the symbol Dkmin,kmax,∆k
xmin,xmax,δx

(N ;Vmin, Vmax).

B.2 Compactly supported smooth potentials

A compactly supported smooth random potential is generated using the following
scheme:

1. Space discretization: xi = i∆x. We distinguish three kinds:

(a) First kind: i ∈ {−I, . . . , I}. xmax = −xmin = I∆x. This is the usual setup
with 2I + 1 space points. The support of the potential is a subset of [−a, a]
with a = I∆x.

(b) Second kind: i ∈ {−I, . . . , I − 1}. xmax +∆x = −xmin = I∆x. This setup is
used whenever CNNs are involved because then the number of space points
is even (2I) and this is a desirable feature for pooling (where the number
of points is halved, cf. Subsubsec. 4.4.1). The support is a subset of [−a, a]
with a = (I − 1)∆x, i.e. x−I = −I∆x = xmin is an auxiliary point.

74

(c) Third kind: i ∈ {0, . . . , I − 1}, i.e. only the positive x-axis is considered.
xmax = (I − 1)∆x. This is choice is convenient for the iterative Marčenko
approximation (cf. Subsubsec. 3.3).

2. The potential values Vraw (xi) are initialized to normally distributed values with a
standard deviation σpot for xi ∈ [−b, b] and set to zero for xi /∈ [−b, b]. The next
bullet point clarifies what b is. If we want to get a strictly nonnegative potential,
then all negative Vraw (xi) are set to zero.

3. The uncorrelated potential Vraw is smoothened by convolution with a Gaussian
kernel of width (standard deviation) σker. This convolution causes the potential to
become nonzero outside of [−b, b]. The support of the potential grows from [−b, b]
to approximately [−b− 4σker, b+ 4σker]. Thus we demand that a = b+4σker, such
that the potential goes to zero at −a and +a.

4. If we want the (smoothened) potential V to have zero mean, then it is mapped
to V̊ according to Eq. (74) in Subsubsec. B.2.1.

5. Momentum discretization: kj = kmin+j∆k, where j ∈ {0, . . . , nk − 1} and kmax =

knk−1 =⇒ nk =
kmax−kmin

∆k
+ 1.

Such a setup is denoted by the symbol Skmin,kmax,∆k
xmin,xmax,∆x

(σpot, σker). If the potentials are
strictly nonnegative / have zero mean, we write Skmin,kmax,∆k

xmin,xmax,∆x
(σpot, σker,+/0). The three

kinds (1.(a), 1.(b) and 1.(c)) can be distinguished by observing the values of xmin and
xmax. The parameters σpot and σker determine the amplitude and the autocorrelation
of the potentials, respectively. For nonnegative potentials it holds that

〈V 〉 =
∫ ∞
0

v · fnormal
(
v|0, σ2

pot

)
dv =

σpot√
2π

≈ 0.4σpot. (71)

As discussed in Subsec. 2.3, the two parameters σpot and σker determine the localization
length ξ (k).

B.2.1 Mapping to zero-mean

Suppose we have a potential V : R → R with supp (V) ⊆ [−a, a] and∫ ∞
−∞

V (x) dx 6= 0. (72)

75

We wish to map this potential V to a potential V̊ : R → R with the properties
supp(V̊) ⊆ [−a, a] and ∫ ∞

−∞
V̊ (x) dx = 0. (73)

One could achieve this by taking the Fourier transform Ṽ (k) of the original potential,
set the values around k = 0 to zero and define V̊ as the inverse Fourier transform of this
modified function. However, this procedure in general produces a non-compact support
of V̊ . Therefore we choose another approach and simply add to V a smooth function
with the compact support [−a, a], i.e. a so-called test function, namely

V̊ (x) = V (x) + A exp

(
− a2

a2 − x2

)
Θ(a− |x|) . (74)

The used test function τa (x) := exp (−a2/ (a2 − x2))Θ (a− |x|) is plotted in Fig. 42.
With

β :=

∫ 1

−1
exp

(
− 1

1− z2

)
dz ≈ 0.443 993 816 (75)

one can calculate the parameter A such that condition (73) is fulfilled:

A = −
∫ ∞
−∞

V (x) dx/ (βa) . (76)

0

0.2

0.4

−a 0 a

τa

x

Figure 42: Plot of the test function τa (x) = exp (−a2/ (a2 − x2))Θ (a− |x|), used for
the mapping of a potential V to its zero-mean version V̊ , cf. Eq. (74).

76

C One-dimensional forward scattering

C.1 Delta-potential

Consider the potential

V (x) =
N∑
i=1

Vi δ (x− xi) , (77)

where N ∈ N, x1 < x2 < . . . < xN and ∀i ∈ {1, . . . , N} : Vi ∈ R. The stationary
Schrödinger equation (2) can be solved analytically with the following ansatz,

∀i ∈ {0, . . . , N} : ∀x ∈ (xi, xi+1) : ψ (k;x) = Ai (k) eikx +Bi (k) e−ikx, (78)

i.e. the quantum particle is propagating freely as a superposition of plane waves between
the peaks. The points x0 and xN+1 are to be understood as −∞ and +∞, respectively.
Take any fixed i ∈ {1, . . . , N} and integrate the Schrödinger equation (2) over the
interval (xi − ε, xi + ε), where 0 < ε < min {xi+1 − xi, xi − xi−1}:

∂ψ

∂x
(k;xi + ε)− ∂ψ

∂x
(k;xi − ε) =

2m

~2
Viψ (k;xi)− k2

∫ xi+ε

xi−ε
ψ (k;x) dx. (79)

Since ψ (k;x) is continuous in x, we get in the limit ε→ 0:

∂ψ

∂x

(
k;x+i

)
− ∂ψ

∂x

(
k;x−i

)
=

2mVi
~2

ψ (k;xi) . (80)

The asymptotic behaviour of the wavefunction in the case “incidence from the left” is
given by

∀x < x1 : ψ (k;x) =
1

t (k)
eikx +

r (k)

t (k)
e−ikx,

∀x > xN : ψ (k;x) = eikx.

(81)

This corresponds to A0 (k) = 1/t (k), B0 (k) = r (k) /t (k), AN (k) = 1 and BN (k) = 0.
For any i ∈ {1, . . . , N} it holds that

∂ψ

∂x

(
k;x+i

)
= ik

(
Ai (k) eikxi −Bi (k) e−ikxi

)
,

∂ψ

∂x

(
k;x−i

)
= ik

(
Ai−1 (k) eikxi −Bi−1 (k) e−ikxi

)
.

(82)

77

Combining these equations with Eq. (80) yields the following recursion formulae:

Ai (k) =

(
1 +

imVi+1

~2k

)
Ai+1 (k) +

imVi+1

~2k
Bi+1 (k) e−2ikxi+1 ,

Bi (k) = Bi+1 (k) + (Ai+1 (k)− Ai (k)) e2ikxi+1 .

(83)

Starting with i = N − 1 one iterates down to i = 0. The transmission amplitude is
then given by t (k) = 1/A0 (k) and the reflection amplitude by r (k) = B0 (k) /A0 (k).
We now turn to the second case “incidence from the right”: The asymptotic boundary
conditions read

∀x < x1 : ψ (k;x) = e−ikx,

∀x > xN : ψ (k;x) =
r′ (k)

t′ (k)
eikx +

1

t′ (k)
e−ikx.

(84)

As in case “incidence from the left” one can derive recursion formulae for the amplitudes
Ai (k) and Bi (k):

A0 (k) = 0,

B0 (k) = 1,

Ai (k) =

(
1− imVi

~2k

)
Ai−1 (k)−

imVi
~2k

Bi−1 (k) e−2ikxi ,

Bi (k) = Bi−1 (k)− (Ai (k)− Ai−1 (k)) e2ikxi .

(85)

After the iteration from i = 1 up to i = N we get t′ (k) = 1/BN (k) and r′ (k) =

AN (k) /BN (k).
In this way the forward scattering problem for delta-potentials can be solved analytic-
ally.

C.2 Numerical forward scattering procedures

In Subsec. 2.2 we introduce the Numerov algorithm for numerically solving the forward
scattering problem of arbitrary smooth and compactly supported potentials. In the
following two subsubsections we present two other numerical procedures and compare
them against the Numerov algorithm in Subsubsec. C.2.3.

78

C.2.1 Lippmann-Schwinger integral equation

Let V : R → R be arbitrary with supp (V) ⊆ [−a, a]. The stationary Schrödinger
equation [

∂2

∂x2
+ k2

]
ψ (k;x) =

2m

~2
V (x)ψ (k;x) (86)

can be reformulated using the Green’s function[
∂2

∂x2
+ k2

]
G (k;x) = δ (x) (87)

to an integral equation, the so-called Lippmann-Schwinger equation

ψ (k;x) = ψ0 (k;x) +
2m

~2

∫ ∞
−∞

G (k;x− x′)V (x′)ψ (k;x′) dx′

= ψ0 (k;x) +
2m

~2

∫ a

−a
G (k;x− x′)V (x′)ψ (k;x′) dx′,

(88)

where the incident wave ψ0 satisfies the homogeneous equation[
∂2

∂x2
+ k2

]
ψ0 (k;x) = 0. (89)

In the case “incidence from the left” we choose the advanced Green’s function

Gadv (k;x) = −Θ(−x) sin (kx)
k

(90)

and ψ0 (k;x) = eikx. With this choice we get

ψ (k;x) = eikx − 2m

~2k

∫ a

−a
Θ(x′ − x) sin (k (x− x′))V (x′)ψ (k;x′) dx′. (91)

This integral equation satisfies the correct boundary condition:

x > a =⇒ ψ (k;x) = eikx,

−a < x < a =⇒ ψ (k;x) = eikx − 2m

~2k

∫ a

x

sin (k (x− x′))V (x′)ψ (k;x′) dx′,

x < −a =⇒ ψ (k;x) = eikx − 2m

~2k

∫ a

−a
sin (k (x− x′))V (x′)ψ (k;x′) dx′

!
=

1

t (k)
eikx +

r (k)

t (k)
e−ikx.

(92)

79

With sin (ϕ) =
(
eiϕ − e−iϕ

)
/ (2i) we can read off the transmission and reflection amp-

litudes:
1

t (k)
= 1 +

im
~2k

∫ a

−a
e−ikx′V (x′)ψ (k;x′) dx′,

r (k)

t (k)
= − im

~2k

∫ a

−a
eikx′V (x′)ψ (k;x′) dx′.

(93)

For the case “incidence from the right” we choose the retarded Green’s function

Gret (k;x) = Θ (x)
sin (kx)

k
(94)

and ψ0 (k;x) = e−ikx, because then

ψ (k;x) = e−ikx +
2m

~2k

∫ a

−a
Θ(x− x′) sin (k (x− x′))V (x′)ψ (k;x′) dx′, (95)

which is equivalent to

x < −a =⇒ ψ (k;x) = e−ikx,

−a < x < a =⇒ ψ (k;x) = e−ikx +
2m

~2k

∫ x

−a
sin (k (x− x′))V (x′)ψ (k;x′) dx′,

x > a =⇒ ψ (k;x) = e−ikx +
2m

~2k

∫ a

−a
sin (k (x− x′))V (x′)ψ (k;x′) dx′

!
=
r′ (k)

t′ (k)
eikx +

1

t′ (k)
e−ikx.

(96)

The transmission and reflection amplitudes are given by

1

t′ (k)
= 1 +

im
~2k

∫ a

−a
eikx′V (x′)ψ (k;x′) dx′,

r′ (k)

t′ (k)
= − im

~2k

∫ a

−a
e−ikx′V (x′)ψ (k;x′) dx′.

(97)

Eqs. (92), (93), (96) and (97) can be integrated numerically and thus an approximate
solution to the FSP is obtained. However, this procedure is rather slow (cf. Subsec.
C.2.3) and memory-intensive, since one must store the entire wavefunction during the
calculation.

80

C.2.2 Transfer matrix method

The fundamental building block of the transfer matrix method is, as the name suggests,
the transfer matrix M (k). This matrix provides a complete description of a one-
dimensional scattering process just like the scattering matrix S (k). The transfer matrix
connects the amplitudes of the wavefunction ψ (k;x) at the left of the potential to the
amplitudes of ψ (k;x) at the right of the potential (cf. Fig. 1):(

ψ→out

ψ←in

)
=:M (k)

(
ψ→in

ψ←out

)
. (98)

For the sake of readability we suppress the k-dependence of all quantities. The inverse
transfer matrix maps the amplitudes at the right of the potential to the amplitudes at
the left of the potential: (

ψ→in

ψ←out

)
=M−1

(
ψ→out

ψ←in

)
. (99)

The transfer matrix M contains exactly the same information as the corresponding
scattering matrix S, i.e. there is a bijection between both matrices:

M =
1

S12

(
S12S21 − S11S22 S22

−S11 1

)
=

1

t′

(
t′t− r′r r′

−r 1

)
(100)

⇐⇒ S =
1

M22

(
−M21 1

M11M22 −M12M21 M12

)
. (101)

The element M11 can be simplified in the following way:

M11 =
t′t− r′r

t′
= t− r′

t′
r = t+

r∗

t∗
r =

|t|2 + |r|2

t∗
=

1

t∗
. (102)

Here we made use of Eq. (7). This allows us to write the transfer matrix in the more
symmetric form

M =

(
1/t∗ r′/t′

−r/t′ 1/t′

)
. (103)

81

The unitarity of the scattering matrix S, which is a consequence of the conservation of
the probability current, translates into the following condition for the transfer matrix:

M †

(
1 0

0 −1

)
M =

(
|M11|2 − |M21|2 M∗

11M12 −M∗
21M22

M∗
12M11 −M∗

22M21 |M12|2 − |M22|2

)
=

(
1 0

0 −1

)
. (104)

In case of time-reversal symmetry, where the scattering matrix is symmetric, it must
hold that (

0 1

1 0

)
M

(
0 1

1 0

)
=M∗ ⇐⇒ M22 =M∗

11 ∧M21 =M∗
12. (105)

Thus the transfer matrix is of the form

M =

(
M11 M12

M∗
12 M∗

11

)
=

(
1/t∗ −r∗/t∗

−r/t 1/t

)
=

(
1/t∗ r′/t

−r/t 1/t

)
. (106)

Furthermore it holds that
det (M) =

S21

S12

=
t

t′
= 1, (107)

tr (M) =M11 +M∗
11 = 2< (M11) ∈ R. (108)

The most interesting property of transfer matrices is their composition: Let M1 and M2

be the transfer matrix of a potential with its support being a subset of [a, b] and [b, c],
respectively. Then the transfer matrix M of the sum of the two potentials is given by
the product

M =M2M1. (109)

This composition rule generalizes rather straightforwardly and lies at the core of the
transfer matrix method: The given potential V (x) is approximated by a piecewise
constant potential V (x), defined by

∀i ∈ Z∀x ∈
[
xi−1 + xi

2
,
xi + xi+1

2

)
: V (x) := V (xi) , (110)

where xi is an arbitrary space discretization. This is schematically depicted in Fig.
43. We can calculate the transfer matrix M (i) of each constant section analytically
(as is done shortly). These individual transfer matrices are multiplied together, giving
the transfer matrix M of the piecewise constant potential V . This matrix M is an

82

xi−1 xi xi+1 xi+2

V

V

Figure 43: Example of an arbitrary potential V and its corresponding piecewise constant
approximation V , based on the space discretization xi. (In a numerical calculation one
would of course do a much finer discretization – for this figure we pick a rather coarse
discretization in order to clearly see what is going on.)

approximation for the transfer matrix M corresponding to the original potential V :

M ≈M =
2I∏
i=0

M (I−i) =M (I)M (I−1) . . .M (−I+1)M (−I). (111)

We now calculate the transfer matrix of the rectangular potential

V (x) =

V0 x ∈ [b1, b2]

0 x /∈ [b1, b2]
(112)

with V0 ∈ R. The stationary Schrödinger equation (2) with this potential can be solved
analytically with the following ansatz:

∀x < b1 : ψ (k;x) = ψ→in eikx + ψ←oute
−ikx,

∀x ∈ [b1, b2] : ψ (k;x) = ψ→0 eik0(k)x + ψ←0 e−ik0(k)x,

∀x > b2 : ψ (k;x) = ψ→oute
ikx + ψ←in e−ikx.

(113)

In the region of the potential, [b1, b2], the quantum particle has the momentum

k0 (k) :=

√
2m (E (k)− V0)

~
=

√
k2 − 2mV0

~2
, (114)

where E (k) is the free-space energy and k is the free-space momentum of the quantum
particle. Depending on the energy E (k), the momentum k0 (k) is real and positive for
E (k) > V0 (classically allowed) or imaginary with = (k0) > 0 (w.l.o.g.) for E (k) < V0

83

(quantum tunneling). In the latter case one usually defines

κ0 (k) := −ik0 (k) =
√

2m (V0 − E (k))

~
∈ R+, (115)

such that
∀x ∈ [b1, b2] : ψ (k;x) = ψ→0 e−κ0(k)x + ψ←0 eκ0(k)x, (116)

emphasizing the exponential behaviour of the wavefunction in the classically forbidden
region.
Demanding that ψ (k;x) and ∂ψ

∂x
(k;x) are continuous in x yields the following transfer

matrix:

M11 = e−ik(b2−b1)
(
cos (k0 (b2 − b1)) +

i
2

(
k

k0
+
k0
k

)
sin (k0 (b2 − b1))

)
= e−ik(b2−b1)

(
cosh (κ0 (b2 − b1)) +

i
2

(
k

κ0
− κ0

k

)
sinh (κ0 (b2 − b1))

)
,

M12 = −e−ik(b1+b2) i
2

(
k

k0
− k0

k

)
sin (k0 (b2 − b1))

= −e−ik(b1+b2) i
2

(
k

κ0
+
κ0
k

)
sinh (κ0 (b2 − b1)) ,

M21 = eik(b1+b2) i
2

(
k

k0
− k0

k

)
sin (k0 (b2 − b1))

= eik(b1+b2) i
2

(
k

κ0
+
κ0
k

)
sinh (κ0 (b2 − b1)) ,

M22 = eik(b2−b1)
(
cos (k0 (b2 − b1))−

i
2

(
k

k0
+
k0
k

)
sin (k0 (b2 − b1))

)
= eik(b2−b1)

(
cosh (κ0 (b2 − b1))−

i
2

(
k

κ0
− κ0

k

)
sinh (κ0 (b2 − b1))

)
.

(117)

One can show that Eqs. (104), (105), (107) and (108) are fulfilled. From Eq. (106) we
can deduce:

r (k) =
e2ikb1 2mV0

~2

2k2 − 2mV0
~2 + 2ikk0 (k) cot (k0 (k) (b2 − b1))

,

r′ (k) =
e−2ikb2 2mV0

~2

2k2 − 2mV0
~2 + 2ikk0 (k) cot (k0 (k) (b2 − b1))

,

t (k) = t′ (k) =
e−ik(b2−b1)

cos (k0 (k) (b2 − b1))− i
2

(
k

k0(k)
+ k0(k)

k

)
sin (k0 (k) (b2 − b1))

.

(118)

84

C.2.3 Comparison of the numerical forward scattering procedures

In (supervised) DL it is essential to have a considerable amount of training data in
order for the model to learn well (cf. Subsubsec. 4.3.3). Besides calculating in parallel
using a GPU, the procedure used to calculate the scattering data itself shall be fast
and accurate.
In Subsec. 2.2 as well as in Subsubsecs. C.2.1 and C.2.2 we presented three procedures
for numerically calculating the scattering data of arbitrary smooth potentials. The
different procedures are listed in Table 4 along with some of their main properties.
nx denotes the number of spacial points and nk the number of k-values. What deter-
mines the choice of nx and nk? The accuracy of each procedure gets better with
increasing nx (decreasing the grid spacing ∆x, a lower bound is determined by the
machine precision). Since the scattering problem is solved for each k independently,
the number nk is simply determined by the number of k-values at which one wishes to
know the scattering matrix.
The column “No. prop.” gives the number of times one has to propagate over the
potential in order to get the whole scattering matrix. The last column states if the
procedure can calculate and return the wavefunctions. One of the main differences
between the Lippmann-Schwinger integration and the Numerov algorithm is that in
the former one has to store the whole wavefunction for the entire calculation, whereas
the latter is a two step method, i.e. it does not require such a storage.
In order to quantitatively compare the different procedures, we keep the setup fixed
to S0.005,5,0.005

−5,5,0.05 (10, 0.3) (cf. Sec. B.2). We also want to compare the accuracies of the
procedures, thus we need a benchmark. For this purpose we could simply take piecewise
constant potentials (where the widths of the constant pieces are much larger than ∆x),
where the analytical solutions are known. But this would give the transfer matrix
method an advantage, since it yields the exact solution per construction. Therefore
we proceed as follows: A potential V is created on a grid with ∆x = 0.01. The
scattering amplitudes are calculated using the Numerov algorithm. This serves as the

Table 4: List of the forward scattering procedures and some of their properties.
Procedure Complexity No. prop. Wavefunctions

Lippmann-Schwinger integration O (n2
xnk) 2 yes

Numerov algorithm O (nxnk) 2 yes
Transfer matrix method O (nxnk) 1 no

85

Table 5: Quantitative comparison of forward scattering procedures. The best values
are written in bold.

Procedure 〈time〉 〈acc [S]〉 〈acc [ψ]〉 〈unit [S]〉
Lippmann-Schwinger integration 132 s 1.7 · 10−3 2.8 · 10−2 5.6 · 10−16

Numerov algorithm 0.72 s 1.1 · 10−3 1.2 · 10−2 4.5 · 10−14
Transfer matrix method 3.6 s 2.2 · 10−3 — 4.0 · 10−15

benchmark (regarding accuracy). Then the potential V is downsampled onto a grid
with ∆x = 0.05. The three different procedures are evaluated on this downsampled
potential. The results are shown in Table 5.
Angle brackets 〈·〉 without index denote an ensemble average. “〈time〉” is the mean
computation time (averaged over 25 sequential runs). For “〈acc [S]〉” and “〈unit [S]〉”
104 samples are processed in parallel and the mean value is taken in the end. The same
is done for “〈acc [ψ]〉”, but with 300 samples only (due to memory issues).
In order to define the accuracies and the deviation from unitarity we introduce the x-
and the k-average of a function f (x) or g (k):

〈f (x)〉x :=
1

2a

∫ a

−a
f (x) dx ≈ 1

2I

I∑
i=−I

f (xi) , (119)

〈g (k)〉k :=
1

kmax − kmin

∫ kmax

kmin

g (k) dk ≈ 1

nk − 1

nk−1∑
j=0

g (kj) . (120)

Let Sb (k) be the benchmark scattering matrix and S (k) the scattering matrix calcu-
lated with either of the three procedures. We define the accuracy of S as

acc [S] := 〈‖S (k)− Sb (k)‖F 〉k , (121)

where ‖·‖F denotes the Frobenius norm.
Let ψl/rb (k;x) be the benchmark wavefunction w.r.t. incidence from the left and right,
respectively, and ψl/r (k;x) the wavefunctions obtained by Lippmann-Schwinger integ-
ration or the Numerov algorithm. The wavefunctions are normalized according to

lim
x→±∞

ψ
l/r
(b) (k;x) e∓ikx = 1. (122)

86

We define the accuracy of the wavefunctions as

acc [ψ] :=

〈〈∣∣ψl (k;x)− ψlb (k;x)
∣∣+ |ψr (k;x)− ψrb (k;x)|
2

〉
x

〉
k

. (123)

The deviation of the scattering matrix S from unitarity is defined as (dropping the
k-dependencies, cf. Eqs. (7) and (8))

unit [S] :=
〈
|T +R− 1|+ |T ′ +R′ − 1|+ |r∗t′ + t∗r′|+ |r∗t+ t′∗r′|

4

〉
k

. (124)

Table 5 reveals that the Numerov algorithm outperforms the other procedures in nearly
all regards. Only the deviation from unitarity is largest for the Numerov method, but
it is still reasonably small. Therefore we choose the Numerov algorithm for all the
numerical forward scattering calculations.
One could argue that the results are biased in favour of the Numerov algorithm, since the
benchmark is done with it. However, the time and unit [S] do not require any benchmark
in the first place. And when using the transfer matrix method as the benchmark, the
results for 〈acc [S]〉 are the same. The Lippmann-Schwinger integration was not tried
as a benchmark due to memory issues.

87

D One-dimensional inverse scattering

D.1 Proof that all considered potentials lie in L1
2

In Subsec. 3.1 we state that if a potential V : R → R lies in the set

L1
2 =

{
V : R → R

∣∣∣∣∫ ∞
−∞

|V (x)|
(
1 + x2

)
dx <∞

}
, (125)

then the corresponding inverse scattering problem has a unique solution, if (additionally
to the scattering data) one has enough information about the bound states of V . We
want to show that all potentials considered in this thesis lie in this set.
The first category of potentials have a finite number of positive delta-peaks, i.e.

V (x) =
N∑
i=1

Vi δ (x− xi) , (126)

where N ∈ N is the number of peaks, xi ∈ R are their positions and Vi ∈ R+ their
strengths. It holds that

∫ ∞
−∞

|V (x)|
(
1 + x2

)
dx =

N∑
i=1

Vi

∫ ∞
−∞

δ (x− xi)
(
1 + x2

)
dx =

N∑
i=1

Vi
(
1 + x2i

)
<∞

(127)
and hence V ∈ L1

2.
The other category of potentials under consideration have a finite support, supp (V) ⊆
[−a, a] with a < ∞, and reach only finite values, ∀x ∈ R : |V (x)| ≤ F < ∞. For such
potentials we can estimate∫ ∞

−∞
|V (x)|

(
1 + x2

)
dx ≤ F

∫ a

−a

(
1 + x2

)
dx = 2Fa

(
1 +

a2

3

)
<∞ (128)

and thus V ∈ L1
2.

D.2 Properties of the normalization constants

There is a link between the normalization constants cn and c′n, defined in Eq. (28), and
the analytical continuation of the reflection amplitudes r (k) and r′ (k): If the potential
V (x) vanishes for x < x0 for some x0 ∈ R, then the left normalization constants cn are
related to the residues rn of the left reflection amplitude r (k) at its poles k = iκn (cf.

88

Subsec. 3.1) by [18]
cn = −irn. (129)

If the potential V (x) vanishes for x > x0 for some x0 ∈ R, then the right normalization
constants c′n are related to the residues r′n of the right reflection amplitude r′ (k) at its
poles k = iκn by

c′n = −ir′n. (130)

D.3 Shift and reflection of the potential

In Subsec. 3.2 we assume that the potential V (x) vanishes for x < 0. If the potential
vanishes on a different half-line, one has to shift and/or mirror the potential in order
to get it to a form where it vanishes for x < 0.
Suppose the potential V (x) vanishes for x > 0, then the mirrored potential Vmir (x) :=

V (−x) vanishes for x < 0. Therefore one can solve the Marčenko integral equation for
Vmir and mirror it back to obtain the original potential V . In order to do so, one has
to find the corresponding function Rmir (x) (cf. Eq. (29)). It is clear that the left and
right reflection amplitudes r (k) and r′ (k) change roles when the potential is mirrored,
i.e. rmir (k) = r′ (k) and r′mir (k) = r (k). The energies of the bound states do not
change under a parity transformation of the potential, but the normalization constants
do change according to cmir,n = c′n and c′mir,n = cn.
Now suppose that the potential V (x) vanishes only for x < − δ

2
for some δ > 0. The

shifted potential Vshift (x) := V
(
x− δ

2

)
vanishes for x < 0. The reflection amplitudes

and the normalization constants change according to rshift (k) = eikδr (k), r′shift (k) =

e−ikδr′ (k), cshift,n = e−δκncn and c′shift,n = eδκ1c′n. One can solve the Marčenko integral
equation for Vshift and shift it back to retrieve the original potential V .
If the potential V (x) vanishes only for x > δ

2
for some δ > 0, then one has to apply

both a shift and a reflection.

D.4 Alternative formulations of the Marčenko integral equation

Besides the formulation of the Marčenko integral equation given in Eq. (31), favourable
for numerical calculations, there are other common formulations, which come about
by simple coordinate transformations. In this subsection we want to show two such
formulations. The function R (x) stays the same, but the function B (y, x) has to be
replaced by K (ζ, η) or K (x, z), respectively. We start with one of the two alternative

89

formulations, transform it to the second one, which in turn is transformed into the
formulation given in Subsec. 3.2.
For the first alternative formulation we do not demand that the potential V (x) has to
vanish for x < 0, but for x < − δ

2
for some δ ≥ 0. Then the Marčenko integral equation

for the unknown function K (ζ, η) reads

R (ζ + η) +K (ζ, η) +

∫ ζ

−(η+δ)
K (ζ, ζ ′)R (η + ζ ′) dζ ′ = 0 (131)

together with the restrictions ζ ≥ η and ζ ≥ − (η + δ). From the solution K (ζ, η) of
this equation one can retrieve the potential by

V (x) =
~2

m

dK (x, x)

dx
. (132)

In the literature one mostly finds the special case δ = 0, i.e. V (x) vanishes for x < 0,
which we also want to assume in the following. In the previous subsection D.3 we
describe how to transform all the quantities if V is shifted or mirrored.
For the second alternative representation, one introduces the variables

x :=
ζ + η

2
, z :=

ζ − η

2
⇐⇒ ζ = x+ z, η = x− z (133)

and defines

K (x, z) := K (x+ z, x− z) ⇐⇒ K (ζ, η) = K

(
ζ + η

2
,
ζ − η

2

)
. (134)

Then the Marčenko equation in Eq. (131) turns into

R (2x) +K (x, z) + 2

∫ x

0

K (x′ + z, x− x′)R (2x′) dx′ = 0 (135)

together with |x− z| ≤ x+ z =⇒ x+ z ≥ 0. The potential is then given by

V (x) =
~2

m

dK (x, 0)

dx
. (136)

The representation given in Eq. (31) is obtained by keeping x, replacing z by

y := x+ z ⇐⇒ z = y − x (137)

90

and defining

B (y, x) := K (x, y − x) ⇐⇒ K (x, z) = B (x+ z, x) (138)

The restrictions on the variables translate to y ≥ 0 and |2x− y| ≤ y, which is equivalent
to x ≥ 0, y ≥ 0 and x ≤ y.

D.5 First-order Born approximation

We can use the first-order Born approximation from forward scattering and invert it
to get an approximate solution of the inverse scattering problem. In the first-order
Born approximation one essentially replaces the wavefunction ψ in the integrand of the
Lippmann-Schwinger equation (88) by the incoming wave ψ0:

ψ (k;x) ≈ ψ0 (k;x) +
2m

~2

∫ ∞
−∞

G (k;x− x′)V (x′)ψ0 (k;x
′) dx′. (139)

Here we use a special Green’s function, obtained by adding a solution of the homogen-
eous equation [

∂2

∂x2
+ k2

]
ghom (k;x) = 0, (140)

which is a linear combination of the functions sin (kx) and cos (kx), to a particular
solution of the inhomogeneous equation[

∂2

∂x2
+ k2

]
G (k;x) = δ (x) , (141)

namely the retarded Green’s function given by

Gret (k;x) = Θ (x)
sin (kx)

k
. (142)

The new special Green’s function is defined as

GF (k;x) := Gret (k;x) +
1

2ik
cos (kx)− 1

2k
sin (kx) =

eik|x|

2ik
. (143)

This Green’s function is referred to as the “anti-Feynman Green’s function” [61]. We
will see shortly why this Green’s function is advantageous here.
In the case “incidence from the left” we have the following conditions (note the difference

91

to Eq. (12)):
ψ0 (k;x) = eikx

ψ (k;x) =

eikx + r (k) e−ikx x < −a

t (k) eikx x > a

(144)

with k ≥ 0. Eq. (139) evaluated at x < −a and x > a yields

r (k) e−ikx ≈ 2m

~2

∫ a

−a

e−ik(x−x′)

2ik
V (x′) eikx′ dx′

⇐⇒ r (k) ≈ m

i~2k

∫ ∞
−∞

e2ikx
′
V (x′) dx′

(145)

and

(t (k)− 1) eikx ≈ 2m

~2

∫ a

−a

eik(x−x′)

2ik
V (x′) eikx′ dx′

⇐⇒ t (k)− 1 ≈ m

i~2k

∫ ∞
−∞

V (x′) dx′
(146)

respectively. If we had chosen another Green’s function, then the complex exponential
factors on the left hand sides would not cancel and thus a single x-dependent factor
would be left over.
Performing the same calculations in the case “incidence from the right”, i.e.

ψ0 (k;x) = e−ikx

ψ (k;x) =

t′ (k) e−ikx x < −a

e−ikx + r′ (k) eikx x > a

(147)

with k ≥ 0, yields the following equations:

r′ (k) ≈ m

i~2k

∫ ∞
−∞

e−2ikx
′
V (x′) dx′, (148)

t′ (k)− 1 ≈ m

i~2k

∫ ∞
−∞

V (x′) dx′. (149)

As we can see, in the first-order Born approximation the transmission amplitudes con-
tain only a single numerical information about the scattering potential V , namely its
integral. The reflection amplitudes however resemble the Fourier transform of the po-
tential and therefore contain much more information about V . Since r (k) and r′ (k)

92

are only defined for k ∈ R+
0 , we introduce the function ρ : R → C by

ρ (k) :=

r (k) k ≥ 0

r′ (−k) k < 0
. (150)

It then holds that
ρ (k) ≈ m

i~2 |k|

∫ ∞
−∞

e2ikx
′
V (x′) dx′. (151)

The inversion of this Fourier transformation gives

V (x) ≈ i~2

πm

∫ ∞
−∞

e−2ikx |k| ρ (k) dk

=
i~2

πm

∫ ∞
0

k
(
e−2ikxr (k) + e2ikxr′ (k)

)
dk =: VBorn (x) .

(152)

Since the approximate potential VBorn : R → C is just the Fourier transform of |k| ρ (k),
it contains the same information as the reflection amplitudes themselves.
The approximate potential VBorn shows some desirable features:

• In the absence of any potential, i.e. for V (x) = 0, we have r (k) = r′ (k) = 0 and
therefore also VBorn (x) = 0.

• If V is symmetric under a parity transformation, i.e. V (−x) = V (x), then r′ (k) =
r (k) and consequently VBorn (−x) = VBorn (x).

On the other hand, there are also major restrictions, e.g.∫ ∞
−∞

VBorn (x) dx =
i~2

m

∫ ∞
0

k (δ (k) r (k) + δ (k) r′ (k)) dk = 0, (153)

since |r (k)| ≤ 1 and |r′ (k)| ≤ 1.
We highlight a close link between the zeroth-order Marčenko approximations and the
real part of the first-order Born approximation. From < (iz) = −= (z) and Eq. (152)
we get

< (VBorn (x)) = −=
(

~2

πm

∫ ∞
0

k
(
e−2ikxr (k) + e2ikxr′ (k)

)
dk

)
. (154)

Using r (−k) = r∗ (k) (cf. Eq. (25)) and i (z − z∗) = −2= (z) one can calculate

V
(0)
Marč (x) = −=

(
2~2

πm

∫ ∞
0

r (k) ke−2ikx dk
)

(155)

93

and
V ′

(0)
Marč (x) = −=

(
2~2

πm

∫ ∞
0

r′ (k) ke2ikx dk
)
. (156)

We see that
< (VBorn (x)) =

1

2

(
V

(0)
Marč (x) + V ′

(0)
Marč (x)

)
, (157)

i.e. the real part of the first-order Born approximation is the mean of the two zeroth-
order Marčenko approximations.

D.6 Comparison of approximate inversion methods

We compare here the two inversion methods presented in Subsubsecs. D.5 and 3.3 (cf.
Eqs. (152), (36), (37) and (42)) qualitatively and quantitatively. We introduce the
abbreviations

• BA := first-order Born approximation,
• MA := Marčenko approximation,
• MA0 := zeroth-order Marčenko approximation,
• MA1 := first-order Marčenko approximation.

For a qualitative comparison we use six (not strongly scattering) test scenarios: a
small, a medium and a large positive rectangular potential, once unmodified (i.e. sharp)
and once smoothened. The positivity of the potential means that there are no bound
states, i.e. the ISP can be solved uniquely (cf. Subsec. 3.1). The space and momentum
parameters are chosen as S0.01,20,0.01

−2,2,0.01 (cf. Subsec. B.2). The small / medium / large
potential has height 0.25 / 0.5 / 0.75 and width 0.5 / 1.0 / 1.5, all centered at x = 0.
Smoothing is achieved by convolution with a Gaussian kernel with a standard deviation
of 0.05.
Fig. 44 shows the reflection amplitudes of all six potentials as a function of momentum.
Since all approximation methods solely build upon the reflection amplitudes, the trans-
mission amplitudes are omitted. Due to the symmetry of the potentials it holds that
r′ (k) = r (k). Fig. 45 shows the reflection coefficients of all six potentials as a func-
tion of momentum. One can see that the reflection decays faster if the potential is
smoothened.
The different approximations are compared to the original potentials in Fig. 46. There
are several interesting observations:
All the approximations of the sharp potentials show oscillatory behaviour and the Gibbs
phenomenon is present at the discontinuities. This can be explained by the finite range

94

−1

0

1

Small

r

<(r)
=(r)

−1

0

1

0 5 10 15 20

r

k

<(r)
=(r)

Medium

<(r)
=(r)

0 5 10 15 20
k

<(r)
=(r)

Large
Sharp

<(r)
=(r)

0 5 10 15 20

Sm
ooth

k

<(r)
=(r)

Figure 44: Left reflection amplitudes r (k) of the six rectangular potentials. The top
row is for the sharp (unsmoothened) potentials and the bottom row for the smoothened
potentials. The left column is for the small (height = 0.25, width = 0.5) potentials,
the middle column for the medium (height = 0.5, width = 1.0) potentials and the
right column for the large (height = 0.75, width = 1.5) potentials. One can barely
see the differences between the sharp and the smoothened potentials, which is why the
reflection coefficients |r (k)|2 are shown in Fig. 45 in a logarithmic scale, where the
discrepancies are more evident.

10−9

10−6

10−3

100

0 5 10 15 20

Small

R

k

Sharp
Smooth

0 5 10 15 20

Medium

k

Sharp
Smooth

0 5 10 15 20

Large

k

Sharp
Smooth

Figure 45: Reflection coefficients R (k) of the six rectangular potentials. Note the
logarithmic scale. In each plot the decay of R (with increasing momentum k) of the
sharp potential is compared to the one of the corresponding smoothened potential.
The former always decays slower than the latter. One can also identify the locations of
resonant transmission (R = 0 ⇐⇒ T = 1).

95

of k-values and the fact that the reflection amplitude converges slower to zero with
increasing k if the potential is sharper (cf. Fig. 45).
Both the BA and the MA0’s have zero mean (cf. Eqs. (153) and (39)).
The more interesting parts of the BAs are their respective real parts. They are symmet-
ric just like the original potentials, which is why they are “pulled downwards” symmet-
rically (due to the zero mean property). The heights of the (smoothened) discontinuities
however are in good agreement with the ones in the original potentials. As stated in Eq.
(157), the real parts of the BAs are exactly the mean values of the respective MA0’s.
The MA0’s, in turn, are not symmetric and can therefore afford to reconstruct the
potential quite well in a certain region until they are also eventually pulled downwards.
This region is at the left / right side of the potential for the left / right MA. The heights
of the discontinuities are approximately correct.
The MA1’s have nonnegative mean (cf. Eq. (40)) and can thus correct for some of the
errors of the zeroth order.
We now turn to a more quantitative analysis with the setups S0.01,20,0.01

−10,10,0.02 (0.5, 0.05,+/0),
i.e. nonnegative and zero-mean random smooth potentials. The parameters are chosen
such that the scattering is not very strong (as opposed to the classes considered in
Subsecs. 3.4 and 5.2). In each case we work with 104 samples.
There is an issue with the localization length of strictly nonnegative potentials, which
we briefly want to explain. Fig. 47 shows that the average potential of the class
S0.01,20,0.01
−10,10,0.02 (0.5, 0.05,+) has a height of 〈V 〉 = σpot√

2π
≈ 0.2 (cf. Eq. (71)). The mean

logarithmic transmission coefficient 〈ln (T)〉 is plotted as a function of the potential
length L for k = 3 and for k = 0.5 in Fig. 48. There are very prominent oscillations
in the case k = 3, which can be traced back to resonant effects: On average, the wave
has the reduced momentum 〈k〉 =

√
k2 − 2 〈V 〉 in the region of the potential. Now,

〈ln (T)〉 for a given L is calculated by simply setting the potential to zero after a length
of L. There is a resonance in transmission whenever the potential length L is an integer
multiple of half of the wave’s wavelength 〈λ〉 = 2π

〈k〉 :

L = n
〈λ〉
2

= n
π

〈k〉
= n

π√
k2 − 2 〈V 〉

. (158)

For k = 3 the distance between the resonances is calculated to ∆L ≈ 1.07, which can

96

0.00

0.10

0.20

BA

V

<(VB)

=(VB)

Left MA

V

V
(0)
M

V
(1)
M

Right MA

S
sharp

V

V ′(0)
M

V ′(1)
M

0.00

0.10

0.20

S
sm

ooth

−0.25

0.00

0.25

0.50 M
sharp

−0.25

0.00

0.25

0.50

M
sm

ooth

−0.60

0.00

0.60 L
sharp

−0.60

0.00

0.60

−2 −1 0 1 2

x
−2 −1 0 1 2

x
−2 −1 0 1 2

M
sm

ooth

x

Figure 46: Comparison of the approximations to the original potentials. The rows
display the different potentials, indicated by the label on the right side (S = Small,
M = Medium, L = Large). The columns show the different approximations, indicated
by the label on the top (BA = Born approximation, MA = Marčenko approximation).
The BA is split into real and imaginary part. The zeroth and the first order of both
MAs is shown. The keys are given only in the first row, they hold for all plots in the
respective column. Mind the different scales of the vertical axes.

97

0

0.1

0.2

0.3

−10 −5 0 5 10

〈V 〉

x

Figure 47: Average potential of the class S0.01,20,0.01
−10,10,0.02 (0.5, 0.05,+) calculated from 104

samples. The mean height of the potentials is approximately 0.2.

−4 · 10−3
−3 · 10−3
−2 · 10−3
−1 · 10−3

0

0 5 10 15 20

k = 3

〈ln
(T

)〉

L

〈ln (T)〉
LinRegr

−16

−12

−8

−4

0

4

0 5 10 15 20

k = 0.5

L

〈ln (T)〉
LinRegr

Figure 48: Average of the logarithm of the transmission coefficient 〈ln (T)〉 depending
on the potential length L for k = 3 and k = 0.5 for the class S0.01,20,0.01

−10,10,0.02 (0.5, 0.05,+),
calculated from 104 samples. The linear regressions are shown with dashed lines. A
striking feature of the curve for k = 3 are the oscillations.

98

100
102
104
106
108

0 5 10 15 20

Nonnegative

kcr

Le
ng

th

k

ξ
2a

0 5 10 15 20

Zero-mean

k

ξ
2a

Figure 49: Momentum-dependence of the localization length ξ for the classes
S0.01,20,0.01
−10,10,0.02 (0.5, 0.05,+) (left) and S0.01,20,0.01

−10,10,0.02 (0.5, 0.05, 0) (right), compared to the
length of the potentials 2a = 20. The blue line in the left plot indicates the crit-
ical momentum kcr below which ξ does not describe localization, but the exponential
decay of the wavefunction inside the classically forbidden region.

be verified in Fig. 48. Below the critical value of

kcr =
√

2 〈V 〉 = (2/π)1/4
√
σpot, (159)

i.e. kcr ≈ 0.63, the wave is (on average) exponentially suppressed as can be seen in Fig.
48 for k = 0.5. Despite the oscillations for k > kcr, we do a linear regression in order to
obtain the localization length ξ (k), just like in Subsec. 2.3. For k < kcr one does not
really obtain a localization length, but more a penetration depth into the classically
forbidden region. The results are shown in the left part of Fig. 49. The blue line marks
the critical momentum kcr.
The effect just discussed is absent for zero-mean potentials, which are zero on (ensemble)
average. The right part of Fig. 49 shows the localization length for the zero-mean
potentials.
In both cases – nonnegative as well as zero-mean potentials – the scattering is ballistic
nearly over the entire k-range, namely for k ? 1 (cf. Subsec. 2.3).
For the quantitative analysis we employ the x-average introduced in Eq. (119) to define

acc [VA] := 〈|VA (x)− V (x)|〉x , (160)

where VA is the approximated potential and V is the exact potential. From our qual-
itative analysis above we know that the left / right MA gives a good reconstruction in
the left / right region of the potential. We can combine them into a weighted mean as

99

Table 6: Quantitative comparison of approximate inversion methods. The right MA0
V ′

(0)
Marč performs as good as the left MA0 V (0)

Marč and the right MA1 V ′(1)Marč performs as
good as the left MA1 V (1)

Marč, which is why the respective values are not listed here. The
functions W (ν)

Marč are weighted averages of the left and the right MAs (cf. Eq. (43)). The
ensemble mean value 〈·〉 is calculated using 104 samples. The best values are written
in bold.

VA

〈acc [VA]〉 Class
S0.01,20,0.01
−10,10,0.02 (0.5, 0.05,+) S0.01,20,0.01

−10,10,0.02 (0.5, 0.05, 0)

< (VBorn) 1.96 · 10−1 2.54 · 10−2

V
(0)
Marč 1.97 · 10−1 2.62 · 10−2

V
(1)
Marč 1.86 · 10−1 2.56 · 10−2

W
(0)
Marč 1.93 · 10−1 2.44 · 10−2

W
(1)
Marč 1.74 · 10−1 2.36 · 10−2

defined in Eq. (43). The computed ensemble averages of the accuracies are arranged in
Table 6. The values for the right MAs are essentially the same as for the left ones.
We see that the approximations are in general more accurate if the potentials have
zero mean (rightmost column), as opposed to strictly nonnegative potentials. This is
explained by the fact that in the lowest orders all approximations have zero mean (cf.
Eqs. (153) and (39)).
The weighted MA1 W (1)

Marč performs best in both cases.
Disregarding the weighted MAs, we see the following: The (real part of the) BA is more
accurate than the MA0 in both cases. Although the MA1 is always better than the
MA0, in surpasses the BA only for nonnegative potentials.

100

References

[1] van den Berg, P. & Abubakar, A. Inverse Scattering and its Applications to Medical
Imaging and Subsurface Sensing. URSI Radio Science Bulletin 2002, 13–26 (2002).

[2] Büyüköztürk, O. Imaging of concrete structures. NDT&E International 31,
233–243 (1998).

[3] Weglein, A. B. et al. Inverse scattering series and seismic exploration. Inverse
Problems 19, R27–R83 (2003).

[4] de Hoop, M. V. Microlocal Analysis of Seismic Inverse Scattering. In Uhlmann, G.
(ed.) Inside Out: Inverse Problems and Applications, vol. 47, 219–296 (Cambridge
University Press, 2003).

[5] Mackintosh, R. S. Inverse scattering: applications to nuclear physics. https:

//arxiv.org/abs/1205.0468v1 (2012).

[6] Müller, P., Schürmann, M. & Guck, J. The Theory of Diffraction Tomography.
https://arxiv.org/abs/1507.00466v3 (2016).

[7] Sun, Y., Xia, Z. & Kamilov, U. S. Efficient and accurate inversion of multiple
scattering with deep learning. Optics Express 26, 14678–14688 (2018).

[8] Kamilov, U. S., Liu, D., Mansour, H. & Boufounos, P. T. A Recursive Born
Approach to Nonlinear Inverse Scattering. IEEE Signal Processing Letters 23,
1052–1056 (2016).

[9] Wei, Z. & Chen, X. Deep-Learning Schemes for Full-Wave Nonlinear Inverse
Scattering Problems. IEEE Transactions on Geoscience and Remote Sensing 57,
1849–1860 (2019).

[10] Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522
(2015).

[11] Almansouri, H., Venkatakrishnan, S., Buzzard, G., Bouman, C. & Santos-
Villalobos, H. Deep neural networks for non-linear model-based ultrasound re-
construction. In IEEE Global Conference on Signal and Information Processing,
6–10 (2018).

101

https://arxiv.org/abs/1205.0468v1
https://arxiv.org/abs/1205.0468v1
https://arxiv.org/abs/1507.00466v3

[12] Li, Y., Xue, Y. & Tian, L. Deep speckle correlation: a deep learning approach
toward scalable imaging through scattering media. Optica 5, 1181–1190 (2018).

[13] Li, S., Deng, M., Lee, J., Sinha, A. & Barbastathis, G. Imaging through glass dif-
fusers using densely connected convolutional networks. Optica 5, 803–813 (2018).

[14] Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using arti-
ficial neural networks. Science Advances 4 (2018).

[15] Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training Deep Neural Networks for the
Inverse Design of Nanophotonic Structures. ACS Photonics 5, 1365–1369 (2018).

[16] Kay, I. The Inverse Scattering Problem. Research Report EM-74, New York Uni-
versity, Insitute of Mathematical Sciences, Division of Electromagnetic Research
(1955).

[17] Deift, P. & Trubowitz, E. Inverse Scattering on the Line. Communications on
Pure and Applied Mathematics 32, 121–251 (1979).

[18] Aktosun, T. & Klaus, M. Inverse Theory: Problem on the Line. In Pike, R. &
Sabatier, P. (eds.) Scattering, chap. 2.2.4, 770–785 (Academic Press, 2002).

[19] Kay, I. The Inverse Scattering Problem When the Reflection Coefficient is a Ra-
tional Function. Communications on Pure and Applied Mathematics 13, 371–393
(1960).

[20] Ge, D. B. An iterative technique in one-dimensional profile inversion. Inverse
Problems 3, 399–406 (1987).

[21] Müller, C. A. & Delande, D. Disorder and interference: localization phenomena.
https://arxiv.org/abs/1005.0915v3 (2016).

[22] Dorren, H. J. S., Muyzert, E. J. & Snieder, R. K. The stability of one-dimensional
inverse scattering. Inverse Problems 10, 865–880 (1994).

[23] Szu, H. H., Carroll, C. E., Yang, C. C. & Ahn, S. A new functional equation in
the plasma inverse problem and its analytic properties. Journal of Mathematical
Physics 17, 1236–1247 (1976).

[24] Brownstein, K. R. Criterion for existence of a bound state in one dimension.
American Journal of Physics 68, 160–161 (2000).

102

https://arxiv.org/abs/1005.0915v3

[25] Chollet, F. Deep Learning with Python (Manning Publications, 2018), 1st edn.

[26] Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing
Neural Networks. https://arxiv.org/abs/1706.02515v5 (2017).

[27] Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math.
Control Signal Systems 2, 303–314 (1989).

[28] Housing Values in Suburbs of Boston. URL https://www.kaggle.com/c/boston-

housing/overview.

[29] Ruder, S. An overview of gradient descent optimization algorithms. https://

arxiv.org/abs/1609.04747v2 (2017).

[30] Gibbs, P. & Hiroshi, S. What is Occam’s Razor? URL http://math.ucr.edu/

home/baez/physics/General/occam.html.

[31] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research 15, 1929–1958 (2014).

[32] Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. https://arxiv.org/abs/1502.03167v3

(2015).

[33] Perunicic, A. Understanding Neural Network Weight Initialization. URL https:

//intoli.com/blog/neural-network-initialization/.

[34] LeCun, Y., Bottou, L., Orr, G. B. & Müller, K.-R. Efficient BackProp. In Orr,
G. B. & Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, chap. 1, 9–50
(Springer Berlin Heidelberg, 1998).

[35] Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, vol. 9, 249–256 (2010).

[36] He, K., Zhang, X., Ren, S. & Sun, J. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. https://arxiv.org/abs/
1502.01852v1 (2015).

103

https://arxiv.org/abs/1706.02515v5
https://www.kaggle.com/c/boston-housing/overview
https://www.kaggle.com/c/boston-housing/overview
https://arxiv.org/abs/1609.04747v2
https://arxiv.org/abs/1609.04747v2
http://math.ucr.edu/home/baez/physics/General/occam.html
http://math.ucr.edu/home/baez/physics/General/occam.html
https://arxiv.org/abs/1502.03167v3
https://intoli.com/blog/neural-network-initialization/
https://intoli.com/blog/neural-network-initialization/
https://arxiv.org/abs/1502.01852v1
https://arxiv.org/abs/1502.01852v1

[37] Pandey, A. Depth-wise Convolution and Depth-wise Separable Convolu-
tion. URL https://medium.com/@zurister/depth-wise-convolution-and-

depth-wise-separable-convolution-37346565d4ec.

[38] Zeiler, M. D. & Fergus, R. Visualizing and Understanding Convolutional Networks.
In Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T. (eds.) Computer Vision –
ECCV 2014, vol. 8689, 818–833 (Springer, Cham, 2014).

[39] Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 39, 2481–2495 (2017).

[40] Zhang, R. et al. Real-Time User-Guided Image Colorization with Learned Deep
Priors. ACM Transactions on Graphics 36, 119:1–119:11 (2017).

[41] Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and Com-
posing Robust Features with Denoising Autoencoders. In Proceedings of the 25th
International Conference on Machine Learning, 1096–1103 (2008).

[42] LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE 86, 2278–2324 (1998).

[43] Gatys, L. A., Ecker, A. S. & Bethge, M. Image Style Transfer Using Convolu-
tional Neural Networks. In IEEE Conference on Computer Vision and Pattern
Recognition, 2414–2423 (2016).

[44] Hochreiter, J. Untersuchungen zu dynamischen neuronalen Netzen. Diplomarbeit,
Technische Universität München (1991).

[45] Bengio, Y., Simard, P. & Frasconi, P. Learning Long-Term Dependencies with
Gradient Descent is Difficult. IEEE Transactions on Neural Networks 5, 157–166
(1994).

[46] Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Computation
9, 1735–1780 (1997).

[47] Karpathy, A., Johnson, J. & Fei-Fei, L. Visualizing and Understanding Recurrent
Networks. In International Conference on Learning Representations (2016).

104

https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec

[48] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J.
LSTM: A Search Space Odyssey. https://arxiv.org/abs/1503.04069v1 (2015).

[49] Cho, K. et al. Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), 1724–1734 (Association
for Computational Linguistics, 2014).

[50] Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. https://arxiv.org/abs/1412.
3555v1 (2014).

[51] Józefowicz, R., Zaremba, W. & Sutskever, I. An Empirical Exploration of Recur-
rent Network Architectures. In Proceedings of the 32nd International Conference
on Machine Learning, 2342–2350 (2015).

[52] Karpathy, A. The Unreasonable Effectiveness of Recurrent Neural Networks. URL
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[53] He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recogni-
tion. In IEEE Conference on Computer Vision and Pattern Recognition, 770–778
(2016).

[54] Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Navab, N., Hornegger, J., Wells, W. M. &
Frangi, A. F. (eds.) Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, vol. 9351, 234–241 (Springer, LNCS, 2015).

[55] Das, S. CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and
more ... URL https://medium.com/@sidereal/cnns-architectures-lenet-

alexnet-vgg-googlenet-resnet-and-more-666091488df5.

[56] Abdi, H. & Williams, L. J. Principal component analysis. WIREs Computational
Statistics 2, 433–459 (2010).

[57] Goodfellow, I. et al. Generative Adversarial Nets. In Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q. (eds.) Advances in Neural
Information Processing Systems 27, 2672–2680 (Curran Associates, Inc., 2014).

105

https://arxiv.org/abs/1503.04069v1
https://arxiv.org/abs/1412.3555v1
https://arxiv.org/abs/1412.3555v1
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

[58] Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive Growing of GANs
for Improved Quality, Stability, and Variation. In International Conference on
Learning Representations (2018).

[59] Silver, D. et al. Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016).

[60] Kingma, D. P. & Ba, J. L. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations (2015).

[61] Dereziński, J. & Gérard, C. Mathematics of Quantization and Quantum Fields,
chap. 18, 499 (Cambridge University Press, 2013), 1st edn.

106

Index
A
Activation a(l)i , 29
Activation function φ(l), 29
Artificial Intelligence (AI), 27
Artificial Neural Network (ANN), 27
Artificial neuron, 29
Autoencoder, 43

B
Backprojection, 54
Backpropagation algorithm, 32
Batch, 32
Batch gradient descent, 32
Batch normalization, 34
Bias b(l)i , 29
Binary crossentropy, 31
Born approximation, first-order, 91

C
Categorical crossentropy, 32
Cell, 40
Channel, 35
Classification problem, 31
Convolutional Neural Network (CNN), 35
Cost function C, 30
Crossentropy, binary, 31
Crossentropy, categorical, 32

D
Deep Learning (DL), 27
Depthwise separable convolution, 38
Dropout, 34

E
Epoch, 33

Exponential linear unit (ELU), 29

G
Gated Recurrent Unit (GRU), 41
Generalization, 33
Generative Adverserial Network (GAN), 44
Gradient descent, 32
Gradient descent, batch, 32
Gradient descent, mini-batch, 32
Gradient descent, stochastic, 32

H
Hyperparameter, 32
Hypothesis space, 27

K
Kernel, 36

L
Leaky ReLU, 29
Learning rate η, 32
Lippmann-Schwinger equation, 79
Localization length ξ, 12
Long Short-Term Memory (LSTM), 41
Loss function C, 30

M
Machine Learning (ML), 27
Marčenko approximation, iterative, 20
Marčenko integral equation, 19
Mini-batch gradient descent, 32
Model, 27

N
Neural Network, Artificial (ANN), 27
Neuron, artificial, 29

107

Node, 29
Normalization constant cn, 18
Numerov algorithm, 10

O
Overfitting, 33

P
Parametric ReLU (PReLU), 29
Pooling, 40

R
Rectified linear unit (ReLU), 29
Recurrent Neural Network (RNN), 40
Reflection amplitude r (k), 8
Reflection coefficient R (k), 9
Regression problem, 31
Regularization, 33
Reinforcement Learning, 44
Residual connection, 42

S
Scaled ELU (SELU), 30
Scattering matrix S (k), 7
Sigmoid activation function, 29
Stochastic gradient descent, 32

T
Transfer Learning, 43
Transfer matrix method, 81
Transfer matrix M (k), 81
Transmission amplitude t (k), 8
Transmission coefficient T (k), 9

U
Underfitting, 33
Universal approximation theorem, 30
Unsupervised Learning, 43

W
Weight w(l)

ij , 29

108

	1 Introduction
	2 One-dimensional forward scattering
	2.1 Scattering matrix
	2.2 Numerical forward scattering: The Numerov algorithm
	2.3 Localization length

	3 One-dimensional inverse scattering
	3.1 The inverse scattering problemThe following discussion of the theory of the inverse scattering problem is largely based on Refs. Deift+Trubowitz,Kay-ISP.
	3.2 Marčenko integral equation
	3.3 Iterative Marčenko approximation
	3.4 Limitations of the iterative Marčenko approximation

	4 Basics of Deep Learning
	4.1 Artificial Neural Networks
	4.2 Universal approximation theorem
	4.3 Fitting of a model
	4.3.1 Cost function
	4.3.2 Backpropagation algorithm
	4.3.3 Overfitting and Regularization
	4.3.4 Batch Normalization
	4.3.5 Initialization of the trainable parameters

	4.4 Advanced architectures
	4.4.1 Convolutional Neural Networks
	4.4.2 Recurrent Neural Networks
	4.4.3 Mixed and enhanced architectures

	4.5 Further learning concepts
	4.5.1 Transfer Learning
	4.5.2 Unsupervised Learning
	4.5.3 Generative Adverserial Networks
	4.5.4 Reinforcement Learning

	5 Application of Deep Learning to Inverse Scattering
	5.1 Delta-potentials
	5.2 Compactly supported smooth potentials
	5.2.1 Nonnegative potentials
	5.2.2 Zero-mean potentials

	6 Summary and Outlook
	7 Acknowledgements
	A Technical specifications
	B Random potential generation
	B.1 Delta-potentials
	B.2 Compactly supported smooth potentials
	B.2.1 Mapping to zero-mean

	C One-dimensional forward scattering
	C.1 Delta-potential
	C.2 Numerical forward scattering procedures
	C.2.1 Lippmann-Schwinger integral equation
	C.2.2 Transfer matrix method
	C.2.3 Comparison of the numerical forward scattering procedures

	D One-dimensional inverse scattering
	D.1 Proof that all considered potentials lie in L21
	D.2 Properties of the normalization constants
	D.3 Shift and reflection of the potential
	D.4 Alternative formulations of the Marčenko integral equation
	D.5 First-order Born approximation
	D.6 Comparison of approximate inversion methods

	References
	Index

