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Abstract

In mathematical history the field of discrete differential geometry is a notably young part of
interest. It has many applications including computational design, image analysis, geometry
processing and more.

In this thesis, we study a relatively new definition of an extended discrete shape operator and
its related principal curvatures to optimize discrete surfaces under special constraints, involving
these curvatures. One constraint with special interest is the total absolute curvature of a sur-
face

∫
S(|κ1|+ |κ2|)dA. As demonstrated in this thesis, methods which minimize this functional

denoise data while preserving features. We will compare surfaces with minimal total abso-
lute curvature to many other surface classes, including minimal surfaces, developable surfaces,
Willmore surfaces and more. For computational optimization we introduce an implementation
framework based on so-called guided projection that can be used for the presented classes and
hypothesizes further useful application.
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Kurzfassung

”Ein numerisches Verfahren zur Berechnung
diskreter Flächen unter Nebenbedingungen”

In der Geschichte der Mathematik ist die Theorie der diskreten Differentialgeometrie ein
junger Forschungszweig. Die Anwendungen gehen von computerunterstütztem Konstruieren
und der Analyse von Modellen bis hin zu geometrischer Datenverarbeitung.

In dieser Diplomarbeit untersuchen wir eine relative neue Definition der sogenannten er-
weiterten diskreten Weingartenabbildung und die damit verbundenen Hauptkrümmungen um
damit diskrete Flächen zu optimieren. Diese Flächen sind beschränkt durch spezielle Nebenbe-
dingungen, die von diesen Hauptkrümmungen abhängen. Eine dieser Nebenbedingungen von
besonderem Interesse, ist die totale Absolutkrümmung einer Fläche

∫
S(|κ1| + |κ2|)dA. Wie

in der Arbeit gezeigt wird verringern Methoden, die dieses Integral minimieren Störungen in
den Daten, aber erhalten gleichzeitig Kanten. Flächen mit minimaler totaler Absolutkrüm-
mung werden verglichen mit anderen Klassen, wie zum Beispiel Minimalflächen, abwickelbaren
Flächen und Willmore Flächen. Für den Optimierungsprozess verwenden wir die sogenannte
”guided projection” Methode, deren Ausführung für alle gezeigten Beispiele verwendet werden
kann und zukunftsträchtige Anwendung verspricht.
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1 Introduction

Motivation

The emerging field of discrete differential geometry is strongly related to computer science.
New technologies in 3D scanning, more powerful computers and other development provide new
and varying application of methods based on discrete differential geometry. 3D images can be
analyzed with geometrical interpretation and noise in data may be eliminated (figure 1.1). Users
want smooth surfaces, while features should be preserved. All this applications and more can
be summarized under the term of geometric data processing. On the one hand the number of
possible utilizations seems endless, on the other hand the underlying theory still needs a lot of
adaption and is under constant research.

This thesis aims to address both of this problems. Discrete analogies to smooth definitions of
surface curvatures are presented. These operators can be used to estimate quantities and actively
optimize surfaces to fulfill certain properties. In practice of computational design architectural
drafts can be derived which have specific characteristics, from visual and statical perspective
(figure 1.2).

With the underlying theory, the main part of this thesis is the implementation of an iteratively
solver for such specific problems. We focus on standard surface classes, occurring in different
applications and optimize initial input data to fulfill some objective functionals. The main
advantage of our work is the generality of the setup, which is able to deal with different targets.

One rather new idea is to define the total absolute curvature energy of a surface and optimize
meshes towards a minimum of this functional. Compared to other methods, like the Willmore
energy which deforms a mesh locally towards a sphere, the idea results in less chubby solutions
that preserves sharp edges. Our model is able to deal with this functional in a natural way.

Figure 1.1: The model of a bunny. Large es-
timated curvatures of the surface are colored
purple. http://graphics.stanford.edu/data/3Dscanrep/

Figure 1.2: The Yas Marina Hotel in Abu
Dhabi with a torsion-free support structure.
Rob Alter, https://creativecommons.org/licenses/by/2.0/
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Related work

Energy minimizing functionals have been considered for minimal surfaces [31], developable sur-
faces [37, 22] and Willmore surfaces [4]. In [29] they use a definition of the extended discrete
shape operator from [8] to align principal stress and curvature directions. This idea, based on
normal cycles, is also considered in this thesis to deal with surfaces under different side condi-
tions. To optimize a mesh using the so-called guided projection is processed in [36]. Finally the
question of a discrete surface with minimal total absolute curvature was raised in [23].

Overview

To work round to the goal of optimizing and deriving surfaces under special conditions, we
structure this thesis as follows. We start with an introduction to the basic concepts of differential
geometry and describe some special surfaces formally. Built on the theory for the smooth
case, we define basic concepts of the field of discrete differential geometry and give various
methods of definitions of discrete curvatures. Chapter 3 deals with basics of optimization,
including least squares problems and linear systems, which arise in chapter 4. In this part
we describe our general setup and give information about the specific implementation of the
problem. This includes a description and derivation of the guided projection method. With the
necessary tools in hand, we apply our method to various examples of different surface classes,
including minimal surfaces, developable surfaces, Willmore surfaces and total absolute curvature
minimizing surfaces. We compare the results as well as difficulties in the process and give further
prospects in the final chapter 6.
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2 Differential geometry

The main goal of this chapter is to give a brief introduction to the field of classic differential
geometry and approaches how to discretize the achievements of the smooth case. In section 2.1
we will start with standard definitions of curves and surfaces and give major theorems about dif-
ferent kind of curvatures, besides illustrations and interpretations of the different quantities. In
section 2.2 basic ideas for discrete versions of the smooth case are presented and discussed. The
goal is to derive all necessary preliminaries, to build an implementation for various optimization
goals arising also in this chapter.

2.1 Basics of Differential geometry

This section aims to define the most important objects and propose some of the main results of
the large area of differential geometry briefly. This wide field of research can only be partially
covered and proofs and intermediate steps are often skipped. In general we refer to standard
literature like [6], [2] and [24] for more details.

2.1.1 Curves and Surfaces

We start with some basic definitions, beginning with curves.

Definition 2.1. A parametrized differentiable curve is a differentiable mapping c of an open
interval I to the 3-dimensional space

c : R ⊇ I → R3 : t 7→ c(t) = (x(t), y(t), z(t))

The vector c′(t) = (x′(t), y′(t), z′(t)) ∈ R3 is called the tangent vector of c at t. The image
c(I) ⊆ R3 is the trace of c.

The condition differentiable in the definition above and all following definitions in this chapter
means differentiable as often as necessary e.g. C2. In the following we will mostly require
continuous second order derivatives.

The tangent vector c′(t) defines a straight line (containing the point c(t)) only if c′(t) ̸= 0.
Points with c′(t) = 0 are called singular points. The demand for curves without singular points
in differential geometry leads to

Definition 2.2. A parametrized differentiable curve c : I → R3 is regular if c′(t) ̸= 0 ∀t ∈ I.

For regular curves, by definition the arc length of a curve is s(t) =
∫ t
t0
|c′(τ) dτ with ds

dt =
|c′(t)| ̸= 0. By reparametrization we can obtain a curve with |c′(s)| ≡ 1. W.l.o.g. we will
restrict ourselves to those arc length parametrized curves.
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Definition 2.3. For an arc length parametrized curve c : I → R3 the number κ(s) := |c′′(s)|
is called the curvature of c at s. For κ(s) ̸= 0 the unit vector n(s) := c′′(s)/κ(s), named the
normal vector, is orthogonal(1) to the tangent vector c′(s) and together they span a plane, the
osculating plane at s.

Similarly to curves we can define parametrized surfaces.

Definition 2.4. A subset S ⊆ R3 is called a parametrized surface if for each q ∈ S, there exists
an open set U ⊂ R2 and an open neighborhood V ⊂ R3 of q and a differentiable bijection

x : U → V ∩ S : (u, v) 7→ x(u, v) = (x(u, v), y(u, v), z(u, v))

If the differential dxp : R2 → R3 is one-to-one for all p ∈ U (i.e. the vectors ∂x
∂u ,

∂x
∂v are linearly

independent for all p ∈ U) the surface is said to be regular.

The function x is called the parametrization of the surface S. Some regular surfaces can be
covered with a single parametrization, while others cannot (e.g. the sphere).

Proposition 2.5. For a regular surface the vectors

xu(q) :=
∂x

∂u
(q),xv(q) :=

∂x

∂v
(q)

form a basis of the tangent plane Tq(S) at every point q = x(p) ∈ S, as shown in [6].

For a given point q ∈ S a curve c : R ⊃ I → S on the surface through q = c(t0) can be
written as c = x ◦ β with β : I → U ⊂ R2 : t 7→ β(t) = (u(t), v(t)) and c(t0) = x(β(t0)) = q
respectively. β is a curve in the parameter set U of S. The curve c has a tangent vector at
c(t0) = q in the tangent plane of the surface with coordinates in the basis xu,xv:

c′(t0) = xuu
′(t0) + xvv

′(t0)

2.1.2 First and second fundamental form and shape operator

Restricted to the tangent plane Tq(S) the natural inner product ⟨·, ·⟩q : Tq(S)
2 → R is linear

and symmetric and induces a quadratic form.

Definition 2.6. For q ∈ S the first fundamental form Iq : Tq(S) → R is defined by

Iq(w1,w2) := ⟨w1,w2⟩

For vectors in the standard basis {xu,xv} we can associate Iq(w1,w2) = wT
1 I(q)w2 with the

symmetric matrix I(q) =
(
E F
F G

)
with coefficients

E :=⟨xu,xu⟩ F :=⟨xu,xv⟩ G :=⟨xv,xv⟩

(1)The orthogonality can be derived via differentiation of the equation c′(s) · c′(s) = 1. This trick can be used in
similar ways for many further results.
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q

n(q)

xv

xu

b

b

b

n(q)

Tq

Tq

Figure 2.1: Gauß map n(q) and tangent plane Tq, spanned by xu and xv on the surface (left)
and correspondingly on the sphere (right).

The index q indicates that the first fundamental form depends on the position on the surface.
In particular the matrix I is generally different for distinct points on the surface. Often this
index will be skipped.

With the first fundamental form it is possible to measure lengths, angles and areas on the
surface. For instance the area element can be expressed in terms of I(q) using Lagrange’s
identity.

dA := |xu × xv|du dv =
√

⟨xu,xu⟩⟨xv,xv⟩ − ⟨xu,xv⟩2du dv =
√

EG− F 2du dv (2.1)

Proposition 2.7. The definition of the area A(x(U)) =
∫
U dA is independent of the choice of

parametrization x.

Proof. Let x̃ be another parametrization from Ũ onto the same region of the surface. Let ∂(u,v)
∂(ũ,ṽ)

be the Jacobian of the change of parameters h = x−1 ◦ x̃. Using the theorem of change of
variables in multidimensional integrals we obtain∫ ∫

Ũ
|x̃u × x̃v|dũ dṽ =

∫ ∫
Ũ
|xu × xv|

∣∣∣∣∂(u, v)∂(ũ, ṽ)

∣∣∣∣ dũ dṽ
=

∫ ∫
U
|xu × xv|du dv

Definition 2.8. For a fixed parametrization and a point q ∈ x(U) ⊂ S we can define the unit
normal vector (which is independent from the parametrization, up to orientation) by

n(q) :=
xu × xv

|xu × xv|

A surface is called orientable if this function n : S → S2 ⊂ R3 can be extended to a differentiable
function on the whole surface S. On an orientable surface the function n : S → S2, mapping
each point to the unit sphere, is called the Gauß map of S.

Some surfaces are not orientable, as the example of the Möbius strip shows.
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The differential of n at a point q ∈ S is dnq. Since the tangent planes of the surface in q and
the corresponding point n(q) on the sphere are parallel, dnq can be seen as a linear function
from Tq(S) → Tq(S).

Definition 2.9. For q ∈ S the linear function dnq : Tq(S) → Tq(S) is named the shape operator
or Weingarten map.

The shape operator is self-adjoint with respect to Iq and defines therefore a quadratic form
(see [6, 25]).

Definition 2.10. The quadratic form IIq : Tq(S) → R defined by

IIq(w) = −⟨dnq(w),w⟩

is called the second fundamental form. With respect to the basis {xu,xv} the second funda-

mental form can be associated with a symmetric matrix II(q) :=
(

e f
f g

)
e :=⟨n,xuu⟩ f :=⟨n,xuv⟩ g :=⟨n,xvv⟩

As in case of the first fundamental form, the index q might be skipped. The negative linear
shape operator can also be seen as a matrix W applied to a vector in the basis {xu,xv}. We
use W as the matrix for the negative shape operator −dn, because of definitions in following
sections. With the matrices for I and II we get

W =

(
w11 w12

w21 w22

)
=

(
e f
f g

)(
E F
F G

)−1

and the coefficients are

w11 =
eG− fF

EG− F 2
w12 =

fE − eF

EG− F 2

w21 =
fF − gF

EG− F 2
w22 =

gE − fF

EG− F 2

2.1.3 Principal curvatures, mean and Gaussian curvature

We will give an interpretation of II after the following

Definition 2.11. For a regular curve c on S with normal vector nc and curvature κ at q ∈ S
the number

κn(c, q) := ⟨κnc,n(q)⟩

is the normal curvature of c at q.

The normal curvature is the projection of the curvature of a curve onto the normal of the
surface (figure 2.2). For a regular curve c on the surface the second fundamental form applied
to a tangent vector c′(t) is

IIc(t)(c
′(t)) = κn(c, c(t))

The normal curvature only depends on the tangent vector of a curve, and all curves with the
same tangent vector have the same normal curvature.

6



q
c

κnc

n(q)

κnn

c′(t)

b

Figure 2.2: The normal curvature κn = ⟨κnc,n(q)⟩ for the curve c in point q.

As shown in [6] the tangent plane Tq(S) has an orthonormal basis {a1,a2} such that for the
(linear) shape operator dnq the basis vectors are eigenvectors to the eigenvalues κ1, κ2. The
eigenvalues are the maximum and minimum values of IIq restricted to the unit circle on the
tangent plane, see [25].

Definition 2.12. The eigenvalues κ1, κ2 of the shape operator dnq are called the principal
curvatures at q and the orthogonal eigenvectors a1,a2 the principal directions at q.

dnq(a1) = −κ1a1 dnq(a2) = −κ2a2

In matrix notation this is the solution of the generalized eigenvalue problem(
e f
f g

)(
a
b

)
= κ

(
E F
F G

)(
a
b

)

The principal curvature directions vectors are not unique, but the directions are (iff the
eigenvalues do not coincide). Therefore we will assume a1,a2 to be of unit length 1.

Theorem 2.13. For a vector in the tangent plane with coordinates in the new (orthogonal)
basis w = cos θa1 + sin θa2 we get Euler’s formula:

II(w) = cos2 θκ1 + sin2 θκ2

Proof. For w defined as above we have

IIq(w) = −⟨dnq(w),w⟩
= −⟨dnq(cos θa1 + sin θa2), cos θa1 + sin θa2⟩
= −⟨cos θdnq(a1) + sin θdnq(a2), cos θa1 + sin θa2⟩
= −⟨cos θ(−κ1)a1 + sin θ(−κ2)a2, cos θa1 + sin θa2⟩
= cos2 θκ1 + sin2 θκ2

7



Definition 2.14. Half of the trace of the negative shape operator −dnq is called the mean
curvature H of S and the determinant of −dnq is the Gaussian curvature K of S. In terms of
the principal curvatures we get

H :=
κ1 + κ2

2
K := κ1 · κ2

With the coefficients of the matrix W of the shape operator we obtain the following identities

H =
1

2
trace(W) =

1

2

eG− 2fF + gE

EG− F 2

K = det(W) =
eg − f2

EG− F 2

κ1,2 = H ±
√

H2 −K

Another interpretation for the Gaussian curvature is the following identity. For a ball Bε(q) of
radius ε around q ∈ S let Vε := Bε(q) ∩ S. Then

|K(q)| = lim
ε→0

area(n(Vε))

area(Vε)

An interesting fact is also this theorem by Gauß.

Theorem 2.15 (theorema egregium). The Gaussian curvature K is an intrinsic invariant, it
is invariant under local isometry. K depends only on the coefficients of the first fundamental
form.

For proofs of the equations and identities we refer to standard literature about differential
geometry, such as [6].

2.1.4 Extended shape operator

The shape operator is only defined in the tangent plane Tq but can be extended to R3 via
dnq(n(q)) = 0, as considered in [38].

Proposition 2.16. Let a1, a2 the unit principal directions and κ1, κ2 the principal curvatures
at q ∈ S, then the extended shape operator can be associated with the symmetric matrix

Wq = κ1a1 ⊗ a1 + κ2a2 ⊗ a2

The operation ⊗ is the outer vector product v ⊗w = vwT ∈ R3×3.

Proof. We verify that the definition is an extension of the previous shape operator by applying
it to ai, i = 1, 2 and n(q).

Wq(ai) = κ1a1 a
T
1 ai︸ ︷︷ ︸
δ1,i

+κ2a2 a
T
2 ai︸ ︷︷ ︸
δ2,i

= κiai

Wq(n) = κ1a1 a
T
1 n︸︷︷︸
0

+κ2a2 a
T
2 n︸︷︷︸
0

= 0

8



S

Sδ

(a) The regular case of Sδ.

S
Sδ

(b) Intersections of Sδ.
S

Sδ

(c) Singularities of Sδ.

Figure 2.3: The δ-shift Sδ and special cases, which can be avoided for δ sufficiently small.

The identity H = trace(W) still holds true.

For the discretization in section 2.2 we also need the shape operator with swapped eigenvalues
to the original eigenvectors. We denote this by W̃ and the extension, defined in the same way

as above, with W̃. W̃a1 = κ2a1 and vice versa.

2.1.5 Steiner’s theorem

Additionally to the mean and Gaussian curvature and the (extended) shape operators we define
equivalent measures on the surface.

Definition 2.17. For a region Q ⊂ S we define the area integrals mean curvature measure

H(Q) :=

∫
p∈Q

H(p)dA(p)

Gaussian curvature measure

K(Q) :=

∫
p∈Q

K(p)dA(p)

and extended shape operator measure

W(Q) :=

∫
p∈Q

W(p)dA(p) W̃(Q) :=

∫
p∈Q

W̃(p)dA(p)

In the following we will consider the δ-shift Sδ of a surface S, which is the set of points at a
(signed) normal distance of maximum δ from a surface

Sδ := {q + γn(q)|q ∈ S, γ ∈ [0, δ]}

The offset δ can be chosen negative, then the offset is ”inside” the surface with respect to the
orientation. It is also possible to define δ(q) depending on q ∈ S. For a smooth surface, with δ
sufficiently small we can avoid intersections, when different parts of the surface come to close
(see figure 2.3b) and singularities, when the curvature is to large (see figure 2.3c). The latter
happens, if [0, δ] contains the inverse of a principal curvature (a principal curvature radius). For
non-positive principal curvatures (e.g. the boundary of a convex set with a Gauß map pointing
outwards) δ > 0 can be arbitrary without having intersections or singularities.

Theorem 2.18 (Steiner’s formula). The volume of the δ-shift Qδ can be expressed as

V (Qδ) = δA(Q)− δ2H(Q) +
δ3

3
K(Q) (2.2)

9



for a sufficiently small region Q ⊂ S (to prevent intersections) and a sufficiently small δ > 0,
that is [0, δ] not containing inverse principal curvatures (to prevent singularities).

If the conditions on δ and Q do not hold true, then parts of the shift will be measured more
than one time or negatively.

Proof. Qδ is the image over U × [0, δ] of the function

(u, v, γ)
s7→ x(u, v) + γn(x(u, v))

With substitution we calculate

V (Qδ) =

∫
Qδ

dq =

∫
u,v

∫ δ

0

∣∣∣∣det( ∂s

∂u
,
∂s

∂v
,
∂s

∂γ

)∣∣∣∣ dγ d(u, v) =
=

∫
u,v

∫ δ

0
|det (xu + γdn(xu),xv + γdn(xv),n(x(u, v)))| dγ d(u, v)

We do another substitution to get a basis of (local) principal directions a1,a2. This transfor-
mation has det(...) = 1 since the two vectors xu,xv must only be rotated about the same angle
and n can be kept fixed. The new basis simplifies to

ai + γdn(ai) = ai + γ(−1)κiai = (1− γκi)ai, i = 1, 2

and the determinant of the matrix in the integral above is

det(

(1− γκ1) 0 0
0 (1− γκ2) 0
0 0 1

 (a1,a2,n)) = (1− γκ1)(1− γκ2)1 · det(a1,a2,n)

Under the assumptions we can skip the norm for the inner integral and get∫ δ

0
(1− γκ1)(1− γκ2)dγ = δ − δ2

2
(κ1 + κ2) +

δ3

3
κ1κ2 = δ − δ2H +

δ3

3
K

For the rest of the integral, one observes, that det(a1,a2,n) = ||a1 × a2|| and gets the area
integral from equation (2.1). This proofs equation (2.2).

2.1.6 Minimal surfaces

In this part of the section we give a definition of a minimal surface and a characterization of
minimal surface area involving the mean curvature. We will follow the notation of [2] and refer
to [9] for a more comprehensive study of surfaces with this property.

Definition 2.19. A minimal surface is a regular surface with constant zero mean curvature for
all points on that surface, H ≡ 0.

We want to explain the name ”minimal”. For a parametrization x of the surface S, we define
a normal variation with a differentiable function h : U → R to the parameter t ∈ (−δ, δ) by

xt(u, v) := x(u, v) + th(u, v)n(u, v)

10



Lemma 2.20. Let xt be a normal variation of a regular surface x over a compact region U .
For δ small enough, xt is also regular and the area of this surface is

A(t) := A(xt(U)) =

∫
U

√
1− 4thH + t2R(u, v, t)

√
EG− F 2d(u, v) (2.3)

with a function R(u, v, t) polynomial in t and the coefficients E,F,G of the first fundamental
matrix I.

Proof. The surface of the normal variation has

xt
u = xu + thun+ thnu

xt
v = xv + thvn+ thnv

Thus, we get the coefficients of the first fundamental form of xt

Et = E + 2th⟨xu,nu⟩+ t2h2⟨nu,nu⟩+ t2h2u

F t = F + th(⟨xu,nv⟩+ ⟨xv,nu⟩) + t2h2⟨nu,nv⟩+ t2huhv

Gt = G+ 2th⟨xv,nv⟩+ t2h2⟨nv,nv⟩+ t2h2v

Therefore, we calculate with coefficients of the shape operator e, f, g

det(It) = EtGt − (F t)2 = EG− F 2 + 2th(−Eg + 2Ff −Ge) + t2R̄

where R̄ is a polynomial in t. With the mean curvature of x

H =
1

2

eG− 2fF + gE

EG− F 2

we get

EtGt − (F t)2 = (EG− F 2)(1− 4thH) + t2R̄ = (EG− F 2)(1− 4thH + t2R)

with R = R̄
EG−F 2 . The regularity of xt follows from the compactness of the region: This provides

boundaries for h,H and R and the determinant of It converges to the determinant of I. Equation
(2.3) follows from the definition of the area of a surface, equation (2.1).

Proposition 2.21. Let x : U → S be a regular surface and let A(t) be defined by (2.3). Then
x(U) is a minimal surface (H ≡ 0) if and only if d

dtA(0) = 0 over all compact sets U and for
all h defining a normal variation.

Proof. We calculate for any compact U

A′(t) =
d

dt
A(t) =

∫
U

−4hH + 2tR+ t2Rt

2
√
1− 4thH + t2R

√
EG− F 2d(u, v)

and get

A′(0) = −2

∫
U
hH

√
EG− F 2d(u, v)

It follows, that for a minimal surface A′(0) = 0 for all h and compact U .

11



Figure 2.4: Soap bubbles are naturally surfaces with constant mean curvature. Source: pixabay.com

On the other hand we suppose that A′(0) = 0 for all h and compact U and choose h = H.

A′(0) = −2

∫
U
H2

√
EG− F 2d(u, v)

If H(u0, v0) ̸= 0 we can find for continuity reasons a set U with H(u, v)2 > 0 for all (u, v) ∈ U .
Since

√
EG− F 2 > 0 we get A′(0) < 0 on U , which is a contradiction, and therefore H(u, v) = 0

for all (u, v) in U .

The first time, that minimal surfaces have been studied, was in 1762 by Lagrange, who con-
sidered a variational problem of finding a minimal surface to a given boundary. This problem
is named the Plateau’s problem. Meusnier discovered the helicoid and catenoid to satisfy La-
grange’s equation and concluded, that surfaces with zero mean curvature minimize the area.
Many mathematicians contributed to this field of research during the next centuries and Dou-
glas and Radó finally completely solved the problem, given a fixed boundary. During the 20th,
many more examples of minimal surfaces have been found.

Equivalent definitions of minimal surfaces include for example the variational definition, a
soap film definition (any small region of a minimal surface is equal to a idealized soap film
between its boundary), a differential equation definition (Euler-Lagrange equation) and many
more [20].

Constant mean curvature surfaces

Constant mean curvature surfaces are a generalization of minimal surfaces. Their mean cur-
vature is H ≡ c with some constant scalar. They have been investigated for a long time and
the research is still not complete. Beginning with the conjecture, that the only closed compact
CMC surface in R3 is the sphere by H. Hopf, the research was continued by H. Wente [41] who
showed the existence of CMC surfaces, which are topologically equivalent to a torus.

In application, CMC surfaces are used as models for minimal surfaces with different air
pressure on both sides. For example a soap bubble is a CMC surface (figure 2.4).

12



Figure 2.5: A cylinder and a cone are special representatives of developable surfaces.

2.1.7 Developable surfaces

We want to study another special class of surfaces.

Definition 2.22. A developable surface is a regular surface S with

K ≡ 0

for all points on that surface.

In fact, that means, that one or both principal curvatures are 0. An interesting property
of developable surfaces can be derived with the theorema egregium (2.15) of Gauß and the
transposition by Minding.

Corollary 2.23. Developable surfaces in R3 are isometric to a plane.

A ruled surface is a surface S with a straight line trough every point q ∈ S, that lies on
S. Developable surfaces are necessarily ruled surfaces. Conversely, not all ruled surfaces are
developable (for example the hyperboloid is ruled, but not developable).

The image of the Gauß map n(S) of a developable surface is either a single point or a curve.

In R3 there are four different types of developable surfaces (see figure 2.5).

1. A plane (sometimes seen as a special case of the other types)

2. A conical surface (including a cone)

3. A generalized cylinder (a cylinder with not only a circle, but any curve as cross section)

4. A tangent developable (the union of tangents of a space curve)

Constant Gaussian curvature surfaces

We want to generalize developable surfaces to some, with constant Gaussian curvature. In 1827
Gauß stated his famous theorema egregium, saying that the Gaussian curvature is constant under
local isometry. Some years later, Minding stated that surfaces with the same constant Gaussian
curvature, are locally isometric. Liebmann proofed, that the only regular closed surface with

13



constant curvature K > 0 in R3 is a sphere. There exists no regular closed surface in R3 with
constant negative curvature. In section 5.4 we treat the example of the so-called pseudosphere,
a surface of revolution with some non regular singularities.

More recent studies of surfaces with constant Gaussian curvature include the question of
finding such surfaces to a given boundary. See for instance [14] in the positive, and [33] for the
negative case.

2.2 Discrete differential geometry

This younger but not less comprehensive part of differential geometry arose with the need of
using the computer to work with data from real or virtual objects, often given by a point cloud
of sample points. Results, that required smooth objects, are not applicable any more, since
those finite data points form only somehow piecewise linear meshes with edges and corners.
Invented methods vary in their applications and have different downsides. We will focus on
ideas, that fit our problems best and only refer to other approaches.

2.2.1 Basics of discrete differential geometry

We want to start with the definition of a mesh.

Definition 2.24. A polyhedral mesh (V,E, F ) is a finite set of points, the vertices

V = (v1, ..., vn), vi ∈ R3, i = 1..n

straight line segments between those points, called edges

E = (ei1j1 , ..., eik,jk), ei,j = (vi, vj)

and planar polygons, the facets

F = (fi1,j1,..., ..., fim,jm,...), fi,j,... = (vi, vj , ...)

A mesh with three vertices forming each facet fi,j,k = (vi, vj , vk) is called a triangle mesh and
the faces are triangles.

A mesh with four vertices forming each face is called a quadrilateral or quad mesh.

Note: In this thesis we will consider only triangular meshes, except if mentioned explicitly.

Definition 2.25. Analog to the Gauß map in the smooth case, we define the facet normals on
a mesh as the oriented unit normals on each facet.

n(fi,j,k,...) =
ei,j × ei,k

||ei,j × ei,k||

We want to define the vertex normals as the normalized sum of adjacent facet.

n(v) =

∑
f ;v∈f n(f)

||
∑

f ;v∈f n(f)||

14
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(a) Volume over facet f .

e

αe

nj

ni

fi
fj

(b) Volume over convex edge e.
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(c) Case of concave edge e.

Figure 2.6: The δ-shift for polyhedral meshes.

2.2.2 Discrete curvature via normal cycles

To find useful definitions for discrete mean and Gaussian curvatures, as well as for the shape
operator, we can intuitively start with Steiner’s formula (2.2). The idea of computing the volume
of a δ-shift can be transformed onto a polyhedral mesh. In the discrete case, we do not have a
continuous Gauß map, so first we have to give a (for the smooth case equivalent) definition for
Sδ

Sδ := {p ∈ R3|d(p, S) ≤ δ, p outside of S}

with the distance function d(p, S) := min
q∈S

||p− q|| and again a sufficiently small δ.

We will define the signed volumes, which should sum up to the volume of the Sδ. separately
for facets, edges and vertices of our mesh (V,E, F ).

1. The shift set over a facet f in direction of the normal n(f) is a right prism and has the
volume

V (δ, f) := δA(f)

2. The shift set over an edge can be one of two cases:

a) If the oriented surface (or the body having this surface as boundary, respectively) at
the edge e is convex, the corresponding volume is a sector of a cylinder and we have

V (δ, e) := δ2
αe

2
len(e) (2.4)

The (positive) angle αe is defined between the two normals of the adjacent facets
fi, fj : cos(αe) = n(fi) · n(fj) and len(ei,j) := ||vi − vj ||

b) In the case of a concave edge, we counted volume elements twice by both adjacent
facet volume definitions (figure 2.6c) and therefore we want to have a negative volume.
We use the same definition(2) V (δ, e), but with a negative angle αe < 0.

(2)We note, this does not represent the volume in a correct way. Instead to subtract the volume counted twice,
for concave edges the definition V (δ, e) := −δ2| tan(αe

2
)| len(e) would be better. However, this would lead to

computational problems for implementations. Anyways, the situation at vertices is even more complicated,
so we refer to the notes on page 17.
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Figure 2.7: Spherical polygon between 4 adjacent face normals.

3. For a vertex we get a corresponding spherical polygon in the following way. The normals
of adjacent facets are mapped to the unit sphere and adjacent facet normals are connected
via arcs on that sphere. These arcs have the length αe and the corners of the polygon
on the sphere have internal angles β∗

v,f . They are the angles between the planes e⊥i and

e⊥j of the edges contained in the facet f and sharing the vertex v, and therefore π − βv,f ,
with βv,f being the angle between the two edges ei, ej in the facet f . To get the area
of this spherical polygon, we use the theorem of incident angles for spherical geometry(3)

(see [18]). n is the number of adjacent faces/edges at v.

A =
∑
f ;v∈f

β∗
v,f − (n− 2)π =

∑
f ;v∈f

(π − βv,f )− (n− 2)π = 2π −
∑
f ;v∈f

βv,f

The volume of this spherical sector on a sphere with radius δ is then

V (δ, v) :=
A

4π

4

3
δ3π =

δ3

3
(2π −

∑
f ;v∈f

βv,f ) (2.5)

Again, we note that this guarantees to represent the correct total volume only in the
convex case.

Theorem 2.26. With the definitions above, for an orientable convex closed polyhedral mesh
(V < E < F ) the volume of Sδ is for all δ > 0

vol(Sδ) =
∑
f∈F

V (δ, f) +
∑
e∈E

V (δ, e) +
∑
v∈V

V (δ, v)

With this motivation we can now define a discrete mean and Gaussian curvature.

(3)This statement is an application of the famous Gauß-Bonnet theorem, found in standard literature about
differential geometry, e.g. [6].

16



Definition 2.27 (Discrete mean and Gaussian curvature, version 1). For an orientable poly-
hedral mesh (V,E, F ) with signed angles αe between adjacent facet normals and angles βv,f
between edges of facet f at vertex v we define

H(e) :=− αe

2
len(e) K(v) := 2π −

∑
f,v∈f

βv,f

Corollary 2.28. With the definitions above theorem 2.26 substitutes to

vol(Sδ) = δ
∑
f∈F

A(f)− δ2
∑
e∈E

H(e) +
δ3

3

∑
v∈V

K(v)

This is a discrete version of Steiner’s formula (2.2) and has first been considered in [35].
It explains the motivation of definition 2.27. As in the smooth case we can define curvature
measures.

Definition 2.29. For a region Q in the polyhedral mesh (V,E, F ) we define the discrete mean
curvature measure H(Q) and the discrete Gaussian curvature measure K(G)

H(Q) :=−
∑
e∈E

αe

2
len(e ∩Q) K(Q) :=

∑
v∈V ∩Q

K(v)

Research on the quality of these operators has been done in [8]. The exact definition of
discrete operators analogously to the smooth case, is achieved by the theory of normal cycles
(introduced by [42, 43]). This theory gives also a foundation for the definition (2.4) and (2.5).
For a sufficiently fine ε-sample [1], Delaunay [10] triangle meshM and a smooth surface S, which
may be non-convex, the error between the defined smooth and discrete measure operators is
linear in ε.

Another definition encountered in [8] is the discrete shape operator.

Definition 2.30. For a regionQ in the polyhedral mesh (V,E, F ) we define the discrete extended

shape measures W (Q) and W̃ (Q) in analogy to definition 2.17

W (Q) =−
∑
e∈E

len(e ∩Q)

2
[(αe − sinαe)e

+ ⊗ e+ + (αe + sinαe)e
− ⊗ e−]

W̃ (Q) =−
∑
e∈E

len(e ∩Q)αee⊗ e

with e denotes a unit 3-vector in direction of edge e and e± =
n(fi)±n(fj)

||n(fi)±n(fj)|| the normalized sum

and difference between unit normals of adjacent faces fi, fj .

We note, that the discrete extended shape operator with swapped eigenvalues has a much
nicer representation. Besides the theory in [8] the definition can be motivated by proposition
2.16. The projection operators ai ⊗ ai weighted with κ1 onto the 1-dimensional spaces [ai] are
transfered to the operators onto the edges e with weights αe len(e). The weights represent the

bending over that edge. This explains also the nicer representation of W̃ , because the curvature
κ1 is actually the bending over the vector a2 and vice versa. For the definition of the sum to
make sense we also have to consider Euler’s formula, theorem 2.13, and the assumption, that
the directions of edges at a vertex are equally distributed.
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Figure 2.8: Minimal curvature directions estimated on a mesh of Michelangelo’s David, based
on definition 2.30. Image from [8].

Remark. Again, the discrete shape operators generalize the mean curvature.

trace(W (Q)) = trace(W̃ (Q)) = H(Q)

The principal curvatures and directions (plus the eigenvalue 0 and the normal vector) can be
found by solving the 3× 3 matrix eigenvalue problems.

Wa1 = κ1a1 W̃a1 = κ2a1

Wa2 = κ2a2 W̃a2 = κ1a2

Wn = 0 W̃n = 0

18
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Figure 2.9: A second approach in defining the δ-shift. The offset at edges is connected via plane
surfaces (compare figure 2.6b).

2.2.3 Discrete mean curvature - cotangent formula

A second approach to derive a discrete definition for the mean curvature uses the surface version
of Steiner’s formula. The intuitive approach is similar to the one before. We ”define” now the
surface areas of the δ-shift, A(δ, f) = A(f) and A(δ, e) = 2δ sin(αe

2 ) len(e) as well as A(δ, v) =
δ2(...). The difference to the previous definition of the volumes is the connection at edges via
planar surfaces instead of cylindrical sections (figure 2.9) and at vertices via plane instead of
spherical polygons.

Definition 2.31 (Discrete mean curvature, version 2). For an orientable polyhedral mesh
(V,E, F ) with signed angles αe between adjacent facet normals we define

H(e) := − sin
αe

2
len(e)

Furthermore we define the mean curvature edge vector

−→
H (e) := H(e)

ni + nj

||ni + nj ||

for indices i, j of adjacent faces e ∈ fi, fj .

Finally we define the mean curvature vertex vector

−→
H (v) :=

∑
e:v∈e

−→
H (e) (2.6)

In case of a vertex surrounded by convex edges, the angles αe ≥ 0 and therefore − sin(αe/2) ≤
0. The vectors

−→
H (e) are pointing into the surface and the sum

−→
H (v) too, which is opposite to

the normal vector n(v). This corresponds with the negative mean curvature of convex surfaces.

Proposition 2.32. Let (V,E, F ) be a polyhedral mesh. We use the notation vi ∼ v for adjacent
vertices and positive oriented indexing around all neighbors, so vi+1 ∼ vi. The mean curvature
vertex vector defined by (2.6) is

−→
H (v) =

1

2

∑
vi:vi∼v

Ji(vi − vi+1)

where Ji denotes a 90◦-rotation in the plane of fi spanned by (v, vi, vi+1).
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Figure 2.10: The edge e is rotated in the planes of adjacent facets.

The 90◦-rotation of an edge vi − vi+1 by Ji lets it point away from the vertex v.

Proof. We consider rotation of an edge e = vi− v in two different planes. Notice, that −J(e) =
J(−e).

||Ji−1(vi − v)− Ji(vi − v)|| = 2 len(vi − v)
∣∣∣sin(αev,vi

2

)∣∣∣ = 2|H(ev,vi)|

Actually, we have Ji−1(vi − v)− Ji(vi − v) ∈ [ni−1 + ni] and therefore

−1

2
(Ji−1(vi − v)− Ji(vi − v)) =

−→
H (ev,vi)

The correct orientation follows from geometrical considerations (see figure 2.10).

Further, we have

−→
H (v) =

∑
i:v∼vi

−→
H (ev,vi) =

∑
i:v∼vi

−1

2
(Ji−1(vi − v)− Ji(vi − v))

=
∑
i:v∼vi

1

2
Ji(vi − v)− 1

2
Ji(vi+1 − v)

=
1

2

∑
i:v∼vi

Ji(vi − vi+1)

This proves the equation.

Remark. The mean curvature vertex vector
−→
H (v) also has the representation

−→
H (v) =

1

2

∑
e:v∈e

(cot γe + cotγ̃e)e⃗

With γe and γ̃e being the angles in the adjacent facets of e opposite to the edge (figure 2.11).
This can be derived either straight from proposition 2.32 or via the definition of the discrete
Laplace-Beltrami operator. See [40] for theory about the Laplace-Beltrami operator.

Proposition 2.33. Let T = (V,E, F ) be a triangle mesh with moving vertices v(t). For the
area A(t) of this mesh, we have

d

dt
A(T ) = −

∑
v∈V

⟨
−→
H (v), v̇⟩
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Figure 2.11: The definition of the angles in the alternative cotangent-formula of H⃗(v).

so that means ∇A = −(
−→
H (v))v∈V ∈ (Rn)V .

Proof. It is sufficient, to proof the statement in case of exact 1 moving vertex v(t) and stationary

points for the rest and show d
dtA(T ) = −⟨

−→
H (v), v̇⟩. The general case follows from superposition.

For one facet fv,vi,vi+1 we choose a local coordinate system identified with R2. The area of the
triangle fv,vi,vi+1 is A = 1

2 det(vi+1 − vi, v− vi) =
1
2⟨Ji(vi+1 − vi), v− vi⟩. For a variation of v(t)

in this plane, we have the formula

Ȧ =
1

2
⟨Ji(vi+1 − vi), v̇⟩ (2.7)

For any variation orthogonal to the facet fv,vi,vi+1 , the area will increase, so we have Ȧ = 0 in
this case. The tangential vector v̇ is orthogonal to Ji(vi+1−vi) and (2.7) holds for all variations.
Because of linearity of differentiation (2.7) is true in general for any coordination. Summation
gives

d

dt
A(T ) =

∑
i:v∼vi

1

2
⟨Ji(vi+1 − vi), v̇⟩ = −

∑
e:v∈e

⟨
−→
H (e), v̇⟩ = −⟨

−→
H (v), v̇⟩

Superposition yields the desired result.

Corollary 2.34. A triangle mesh (V,E, F ) has minimal surface, if the mean curvature vertex

vector, defined in equation (2.6), is zero for all vertices,
−→
H (v) = 0, ∀v ∈ V .
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2.2.4 Discrete curvature - osculating paraboloid

A different approach of calculating curvatures on discrete surfaces is via the osculating paraboloid,
as described in [17]. The surface is locally approximated by a bivariate second order polynomial
and then the principal curvatures of this paraboloid are calculated.

For each vertex v, the vertex normal n(v) corresponds to the z-axis of a local coordinate system
(x, y, z) with v at its origin. Via projection, each neighbor vertex vj ∼ v has a representation
in this basis vj = (xj , yj , zj). The osculating paraboloid is then the function

p(x, y) = ax2 + bxy + cy2

such that the least squares problem

f(a, b, c) =
∑
j

(p(xj , yj)− zj)
2

is minimized (see chapter 3 for theory about non-linear least squares problems(4)).

The curvatures of the osculating paraboloid are

H = a+ c K = 4ac− b2

κ1,2 = H ±
√

H2 −K = a+ c±
√

(a− c)2 + b2

While this method is comparably easy to implement and compute, it lacks the definition
of operators and functionals which have derivatives, necessary in any optimization process.
Although iterative algorithms with a paraboloid fitting have been studied [34], we will use this
method only to compare our calculated results with the estimation based on paraboloid fitting.

(4)Alternatively one could consider a reweighted least squares problem to achieve more accurate fitting. We will
not consider this in this thesis.
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3 Optimization techniques

In this chapter we provide a short introduction to some well known optimization methods. We
focus on theory, used in this thesis and refer to [12] and [13] for a more detailed description.

3.1 Least squares problem

Our main focus lies on the so called least squares problem. Consider a finite family of differen-
tiable functions

(fi)i=1..m, fi : Rn → R

The objective function f is defined as the sum of squares of fi.

f(x) :=

m∑
i=1

(fi(x))
2, x ∈ Rn

In the unconstrained case, the aim is to find a minimum x∗ ∈ Rn for this function.(1)

f(x∗) = min
x∈Rn

f(x)

From analysis, we know that a necessary condition is, that x∗ is a critical point of f , that is if
the gradient of f is zero. We get n gradient equations.

∂f

∂xk
=

m∑
i=1

2fi
∂fi
∂xk

= 0, k = 1, . . . , n

First, we consider linear functions, resulting in a linear least squares problem.

fi(x) = aT
i x− bi, ai ∈ Rn, bi ∈ R

With the matrix A ∈ Rm×n, containing the vectors ai as rows, and the vector b ∈ Rm, with
entries bi, we can state the problem as follows. || · || denotes the standard Euclidean norm.

min
x∈Rn

||Ax− b||2 (3.1)

Typically, we have more functions than unknowns, m > n. In this case, Ax = b is called an
overdetermined system of linear equations (or just overdetermined linear system). In general,

(1)A constrained problem involves a subset X ⊂ Rn and one searches for x∗ ∈ X with f(x∗) = minx∈X f(x).
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this problem has no solution, ||Ax−b||2 > 0,x ∈ Rn. To find a minimum, we derive the gradient
equations.

f(x) = ||Ax− b||2

=

m∑
i=1

(

n∑
j=1

aijxj − bi)
2

0 =
∂f

∂xk
(x) =

m∑
i=1

2(

n∑
j=1

aijxj − bi)aik

= 2

m∑
i=1

(

n∑
j=1

aijaikxj − biaik)

= 2

n∑
j=1

(

m∑
i=1

aijaik)xj − 2

n∑
j=1

biaik

We can see, that in the last line each inner sum of the left part is an entry of the matrix ATA
and the right part is the k-th component of AT b. The system of gradient equations is therefore

ATAx = AT b (3.2)

These are called the normal equations. The matrix ATA is symmetric with size n × n and
positive semi-definite. Equation (3.2) can be used with the concepts of section 3.2 to find a
solution for (3.1).

In our application we will find quadratic equations fi(x) = xTAix+ bix+ ci (see section 4.5).
To solve such a non-linear least squares problem, we approximate the model and iteratively
generate solution vectors xl, l ∈ N until some criterion is fulfilled. Solving the problem for the
update vector ∆x gives the next guess xl = xl−1 + ∆x. The approximation is a linearized
problem, derived via Taylor’s expansion, using the previous solution as start.

fi(x
l) ≈ fi(x

l−1) +∇fi(x
l−1)T∆x

Therefore this algorithm needs some initial starting vector x0. In notation from above, in each
step one has to solve the linear least square problem with aij =

∂fi
∂xj

(xl−1) and bi = −fi(x
l−1).

This procedure is known as the Gauß-Newton method. It remains to solve the occurring linear
system.

3.2 Solving systems of linear equations

Many approaches have been invented to solve linear systems computationally. Depending on
the size and structure of the problem, different methods appeared to be useful. We start with
direct solvers. These methods lead to (up to numerical errors) exact solutions and can be
applied in general to small systems (compare [21]).

Definition 3.1. A matrix M ∈ Rn×n is symmetric, if MT = M .
A symmetric matrix M ∈ Rn×n is said to be positive definite if

xTMx > 0, ∀x ∈ Rn\{0}
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The matrix is positive semi-definite if

xTMx ≥ 0, ∀x ∈ Rn

Proposition 3.2 (Cholesky decomposition). Given a symmetric, positive definite matrix M ∈
Rn×n. There exists a unique lower triangular matrix L ∈ Rn×n with real, positive diagonal
entries, such that

M = LLT

If M is positive semi-definite, the matrix L may have zero diagonal entries and might be not
unique.

Given a Cholesky decomposition of M , the linear system Mx = r can be solved via forward
and back substitution:

Ly = r, LTx = y

A decomposition can be found with special algorithms, based on Gaussian elimination.

Definition 3.3. A symmetric matrix Q ∈ Rm×m is called orthogonal, if

QTQ = I

In fact, the transpose of Q is its inverse: QT = Q−1.

Proposition 3.4 (QR decomposition). Given a matrix M ∈ Rm×n with m ≥ n. There exists
an m×m orthogonal matrix Q and an m× n upper triangular matrix R (that is a matrix with
an n× n upper triangular block and zeros in (m− n) rows), such that

M = QR

For the linear system of normal equations, the solution can also be found without forming
the matrix ATA explicitly. For a given QR decomposition of the matrix A = QR, the normal
equation is

RTRx = RTQTQRx = (QR)TQRx = ATAx = AT b = RTQT b

A solution to this is equivalent to a solution of Rnx = QT
n b with the n× n upper part Rn of R

and the n×m upper part QT
n of QT .

Methods for finding a QR decomposition include a Gram-Schmidt process, Householder trans-
formation and Givens rotation (see [21]).

Large linear systems with sparse matrices require a different approach: iterative methods.
Starting with an initial guess, the solution vector is adapted each step until some final con-
vergence criterion is fulfilled. The advantage of this methods is the possible handling of huge
matrices at the cost of an exact solution, that might not be found after a finite number of iter-
ation steps (depending on the algorithm). Convergence analysis of a used algorithm is essential
to predict the outcome. A broad overview of different methods is found in [16].

The conjugate gradient method is the most popular iterative solver for linear systems. Given
a symmetric, positive definite matrix M ∈ Rn×n, we define the M -inner product ⟨·, ·⟩M by

⟨u, v⟩M := ⟨Mu, v⟩ = uTMv
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A pair of vectors u, v is said to be conjugate if ⟨u, v⟩M = 0. With the conjugate gradient
algorithm, one computes iteratively a basis (p1, p2, ..., pn) of conjugate vectors and weights αk,
to build a solution vector x∗ =

∑n
k=1 αkpk. In each iteration step the vector xk = xk−1 + αkpk

is updated and due to good convergence, generally the algorithm can stop before it reaches n
steps.

Better convergence can be achieved via so called preconditioning. Instead of Mx− b = 0, the
problem C−1(Mx− b) = 0 is solved, resulting in a better condition number (see [16]).

To adapt to more general matrix properties, methods like the Biconjugate gradient method
[11] or the Least Squares QR algorithm [27] have been invented.
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4 Implementation

We state the following definition of our problem.

General surface optimization problem with special side conditions
Let M = (V,E, F ) be a polyhedral mesh. Let a set of variables x = (x1, . . . , xk)
containing the vertex positions V ⊂ x fulfill some equations (c1, . . . , cl) that are based
on the mesh connectivity

ci(x) = 0, i = 1, . . . , l

We call these equations hard constraints.
Another family of equations (f1, . . . , fm) is called soft constraints.

fi(x) i = 1, . . . ,m

Let (E1, ..., En) be a family of energy functions.

Ei(x) i = 1, . . . , n

Our optimization problem is the following. Given some weights (v1, . . . , vm) and
(w1, . . . , wn). Find a mesh M∗ = (V ∗, E, F ) with new vertex positions and a set
of variables x∗ ⊃ V ∗ with∥∥∥ m∑

i=1

vifi(x
∗)
∥∥∥2 + ∥∥∥ n∑

i=1

wiEi(x
∗)
∥∥∥2 = min

x

∥∥∥ m∑
i=1

vifi(x)
∥∥∥2 + ∥∥∥ n∑

i=1

wiEi(x)
∥∥∥2 (4.1)

such that ci(x
∗) = 0 i = 1, . . . , l (4.2)

In our cases, the set of formally independent variables x(V,E, F ) contains some redundant
values, that could be calculated directly from others. This includes for example the normals ni

and principal curvatures κj . However for now we do not restrict our search space directly, but
with use of the hard constraint equations. More on this in section 4.2. We will give a complete
list of values in x in section 4.1 and also explain the reason for this special treatment. The soft
constraints prescribe some fairness energy. These properties assure a ”good looking” and useful
result (section 4.3). The energies Ei are our desired conditions. They vary from one application
to another. A general description is given in section 4.4 and special applications in chapter 5.
Finally the weights are discussed in section 4.5 and the used software is presented in 4.6.

4.1 Setup and initialization

The achievement of a solution to the stated problem is fairly complex. Some reasons are

� The number of unknowns is generally large. In application meshes contain thousands to
millions of vertices, edges and facets.
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� The problem is highly non linear in the unknowns. For example an energy can be defined
on the principal curvatures, which are eigenvalues to a matrix, which is itself not linearly
dependent on V ,E and F .

� Discretization of a smooth surface leads to approximation error, and so do the discrete ver-
sions of our curvature measures. Therefore an optimum is sometimes impossible without
refinement of the mesh.

� The solution may not be unique and the system can converge to a not desired result. This
leads to the last reason:

� A result may be optimal in numerical reasons, but not in application. Some pathological
local minimums or even global minimums are far away from what a user would expect.
Examples will be presented in the following sections.

To address all these problems, we introduce several techniques. Our implementation will involve
a linear system, which is computed with numerical ideas from section 3.2. To derive this linear
system we use the guided projection method. Basically we reduce our system to quadratic
equations by introducing new variables. Thirdly we play with different fairness energies, to
assure a good solution. Together, the study and examination of these ideas were the main part
of research in this thesis.

Linearization of the involved equations is difficult, because of their large polynomial order.
We introduce additional variables, to decrease the order of the involved equations.

Name
number of
unknowns

description

vi 3|V | vertex coordinates in R3

ni 3|F | face normal coordinates

(n× n)i 2 · 3|E| cross product along halfedge(1) between face normals

Wi 6|V | symmetric 3× 3 extended shape operator(2) at vi

a1i , a
2
i 2 · 3|V | eigenvectors of Wi at vi

κ1i , κ
2
i 2|V | eigenvalues of Wi at vi

|κ|1i , |κ|2i 2|V | absolute values of eigenvalues of Wi at vi

(n× e)i 2 · 3|E| cross product along halfedge between normal and edge

Table 4.1: Complete list of available variables in the general guided projection setup.

Note, that for example (n× n)i is the name of an independent number, although it indicates
the meaning of this variable, e.g. the cross product of normals, or |κ|1i is the absolute value of
a principal curvature. We prefer this notation over using completely new letters.

In total we have 19|V |+12|E|+3|F | unknown variables. For triangle meshes, this is roughly
61|V | unknowns.

These variables are linked via quadratic or linear equations. In the implementation, they are
also initialized via these equations. We use indexing and notation as in figure 4.1.

(1)See section 4.6 about the openmesh data structure.
(2)For simplicity we use the version of swapped eigenvalues W̃ .
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bvi

el

vj
b

fs

ft

vk

Figure 4.1: Section of the mesh and the indices for initialization equations (4.3) - (4.9).

ns =
(vk − vi)× (vj − vi)

||(vk − vi)× (vj − vi)||
(4.3)

(n× n)l = ns × nt (4.4)

Wi = − 1

Ai

∑
l,j:el=(vj ,vi)

(n× n)l ⊗ (vi − vj) (4.5)

a1,2i = eigenvector(Wi), ||a1,2i || = 1 (4.6)

κ1,2i = eigenvalue(Wi), Wia
1,2
i = κ1,2i a1,2i (4.7)

|κ|1,2i = |κ1,2i | (4.8)

(n× e)l = ns × (vj − vi) (4.9)

The operation ⊗ is the outer vector product: x⊗ y = x · yT ∈ R3×3.

Remarks and explanations to equation (4.3) - (4.9).

Equation (4.3) is not unique, since the facet fs belongs to 3 vertices (in the case of a trian-
gular mesh). We can use any two edges, to calculate the facet normal, as long as we presume
orientation of the mesh (all normals point to one side of the mesh).

One out of two equations (4.4) is redundant, since fs × ft = −(ft × fs). Anyways, we keep
both for correct sign and orientation throughout.

Equation (4.5) is different to the previously derived definition of the discrete extended shape
measure with swapped eigenvalues (definition 2.30). Let Q be a region of our polyhedral mesh
and αe the signed angle between adjacent facet normals. e defines the edge vector with ||e|| = 1.
Then

W̃ (Q) = −
∑
e∈E

len(e ∩Q)αee⊗ e

We fix Q to be the region around vi including all adjacent facets. Different approaches can be
used here (figure 4.2), but for sufficiently smooth meshes, they qualitatively give equal results.
Similar to [29], we choose Q =

∪
fs∼vi

fs (figure 4.2a). This leads to

len(e ∩Q) =

{
len(e) vi ∈ e

0 vi /∈ e
Ai := area(Q) =

∑
fs∼vi

area(fs)
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bvi

b

Q

(a) Bounded by adjacent vertices.

bvi

b

Q

(b) Bounded by connections be-
tween circumcircle centers.

bvi

b

Q

(c) Bounded by connections be-
tween center of masses.

Figure 4.2: Different choices of a region Q around vertex vi in the definition of the extended
shape operator measure.

The value Ai will be used in computation, but is not variable. We calculate these quantities at
each iteration step separately and treat them as constants.

W̃ (Q) is a measure over Q. To obtain an operator at vertex vi we define

W (vi) := − 1

Ai

∑
e:vi∈e

len(e)αee⊗ e

For sufficiently smooth meshes, the small angle αe can be approximated by sin(αe). With the
left and right unit facet normals, we have sin(αe) = ||ns ×nt|| and the edge vector is parallel to
this cross product e ∥ ns × nt. We also have len(e) = ||vi − vj || and e ∥ (vi − vj). Finally, both
ns × nt and vi − vj are pointing in the same direction for αe > 0 and in different directions for
αe < 0. Therefore we have

Wi = − 1

Ai

∑
e:vi∈e

(ns × nt)⊗ (vi − vj)

This explains equation (4.5) and the introduction of the variables (n×n)l. This equation is again
quadratic in our unknowns, for fixed area Ai. The resulting matrix Wi is obviously symmetric
and we store only the 6 distinct entries. Figure 4.3 shows a graphic example of approximated
principal curvature directions based on the definition of Wi.

The initialization of a1i , a
2
i , κ

1
i , κ

2
i is in general fairly simple. We compute the 3 distinct eigen-

vectors to Wi with methods from linear algebra and compare their corresponding eigenvalues.
The eigenvalue closest to 0 indicates the eigenvector in direction of the vertex normal (because
of the construction of the extended shape operator, compare section 2.1.4). The other two
eigenvectors are assigned to a1i , a

2
i and the eigenvalues to κ1i , κ

2
i . However, we have to treat

some special cases.

� If the smallest absolute eigenvalue is not especially close to 0, we have a bad mesh triangu-
lation. In this case we can try get a better input data, or guess the two principal directions
as the two eigenvectors, which are orthogonal to the vertex normal. This has shown to be
more stable than simply choosing the two largest absolute values of the eigenvalues.
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Figure 4.3: Approximation (blue) of exact (red) principal curvature directions with Wi. Surface
function x(u, v) = [u, v, u2 − v2]

� For some surfaces the principal curvatures are close to zero themselves (e.g. for a plane). In
this case the eigenvectors form a 2- or 3-dimensional space and we might have eigenvectors
not tangential or orthogonal to the surface at all. We set a1i and a2i orthogonal to the
vertex normal ni via a cross product.

In the end we have to normalize the vectors a1,2i .

The vertex normals ni are used for initialization and also during the iteration process. Like
the area elements Ai, we treat them as constants and update them at each step.

The definition in equation (4.9) is useful for the optimization of minimal surfaces and will be
considered in section 5.1.

Vertices at the boundary play a special role. Definitions of Wi and other operators do not
make sense and therefore we set these variables to 0 throughout (section 4.2.1).

4.2 Hard constraints

We introduced a set of variables and their initialization. In the guided projection setup, hard
constraints play an important role. In general we aim to solve minimize equations (4.1) and
solve equations (4.2) exactly. In this section we consider the second question, the constraints.
To linearize these equations, we want them to be of quadratic order in the unknowns.

We will collect all unknowns in the large vector x of length N . A general quadratic hard
constraint has the form

ci(x) = xTHix+ bTi x+ di = 0

with some matrix Hi ∈ RN×N , a vector bi ∈ RN and a constant di ∈ R.

Again, in this section we consider the case of triangular meshes. For polyhedral meshes some
numbers may change. Equations and their quantities are listed here. We use again the same
indices as in figure 4.1.
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� The face normals yield two constraints, orthogonality and unit length.

ns · (vj − vi) = 0 3|F | equations
ns · ns − 1 = 0 |F | equations

� The cross product between adjacent faces and the correlation between two halfedges at
the same edge give

(n× n)l − ns × nt = 0 3 · 2|E| equations
(n× n)l1 − (n× n)l2 = 0 3 · 2|E| equations

For each coordinate and for each halfedge one hard constraint is stated. Halfedges ending
at a boundary vertex are not considered, therefore we may have fewer equations.

� The shape operator needs

AiWi +
∑

l,j:el=(vj ,vi)

(n× n)l · (vi − vj)
T = 0 6|V | equations

The 3× 3 matrix Wi is symmetric and we only store and constrain 6 distinct entries. For
vertices at the boundary we do not calculate the matrix Wi, we may have fewer equations.
The area Ai, the sum of face areas of adjacent faces, is a constant in this equation, updated
prior to the actual computation step of the unknown variables.

� The eigenvalue problem is stated as

Wia
1
i − κ1i a

1
i = 0 3|V | equations

Wia
2
i − κ2i a

2
i = 0 3|V | equations

Vertices at the boundary are omitted.

� Some other constraints for the principal curvatures were shown to be useful. The vertex
normals ni are constants.

a1i a
2
i = 0 |V | equations

a1ni = 0 |V | equations
a2ni = 0 |V | equations

a1i a
1
i − 1 = 0 |V | equations

a2i a
2
i − 1 = 0 |V | equations

� The absolute values of κ are also important. Note, that these equations are only piecewise
linear and not differentiable at 0.

|κ1i | − |κ|1i = 0

|κ2i | − |κ|2i = 0

|V | equations
|V | equations

(4.10)

� Also the special variables, used for minimal surfaces are constrained

(n× e)l − ns × (vj − vi) = 0 3 · 2|E| equations
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� A number of other constraints have been considered. Some of them have shown to be
more useful than others, for example

κ1i + κ2i − trace(Wi) = 0 |V | equations
Wini = 0 3|V | equations

Totally we have roughly 85|V | equations.

In practice it is not possible to fulfill all these equations. Especially when fairness and energy
functions come into account. Therefore we are treating them in a similar manner as the fairness
and energy functions and simply try to minimize them, but with different weights. More in
section 4.5.

As presented in section 4.5, for a given vector x we need the first derivatives ∇ci(x) of
these equations. These are vectors of size RN . For the general case of a quadratic equation
ci(x) = xTHix+bTi x+di the derivative is ∇ci(x) = Hix+bi. To calculate the derivatives of the
above equations is left to the reader. However, we have to clarify one exception. The equation
|κ1,2i | − |κ|1,2i is not quadratic and not even polynomial or differentiable. We can overcome this
problem with the following idea.

Introduce a new pair of dummy variables at each vertex
√

|κ|1i and
√

|κ|2i . They are, as the

absolute value variables |κ|1,2i indeed new unknowns, but with a name revealing their initializa-
tion and definition of constraints. A setup with truly quadratic equations would be (note the
difference in the power of two (·)2 and the index 2):

(κ1i )
2 − (|κ|1i )2 = 0

(κ2i )
2 − (|κ|2i )2 = 0

(4.11)

(
√

|κ|
1

i )
2 − |κ|1i = 0

(
√

|κ|
2

i )
2 − |κ|2i = 0

If for given κ1,2i variables |κ|1,2i fulfill these equations (with dummy values
√
|κ|1,2i ), they are for

sure not negative and have the same absolute value as κ1,2i . Anyways, this approach has some
downsides. We have to introduce even more variables, to achieve strictly non negative values
and gain a pair of constraint equations with them. This enlarges our system. Additionally the
convergence of |κ|1,2i is worse. In section 4.5 we will see, that we linearize all equations. The
quadratic relation in equations (4.11) will only be approximated, although an exact (piecewise)
linear relation is actually at hand (4.10). We use this fact, omit the idea above and define the
piecewise continuous derivatives to this functions.

∂(|κ1i | − |κ|1i )
∂κ1i

(x) =


1 κ1i > 0

0 κ1i = 0

−1 κ1i < 0

∂(|κ2i | − |κ|2i )
∂κ2i

(x) =


1 κ2i > 0

0 κ2i = 0

−1 κ2i < 0

∂(|κ1i | − |κ|1i )
∂|κ|1i

(x) = −1
∂(|κ1i | − |κ|1i )

∂|κ|1i
(x) = −1

In practice the application of this leads to better results and convergence.
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4.2.1 Boundary conditions

While solving the problem the vertices are almost freely floating around and the variables
follow them with the described properties. To avoid unbounded behavior we must give some
constraints at least on some vertices. This can be achieved in one of the following ways.

1. We do not define any equations on boundary vertices at all. Therefore they are not
being changed in any way by the algorithm. We eliminate them of any equations by
treating the coordinate entries of the boundary vertices as constants and reduce the vector
of unknowns. This leads to a (slightly) smaller problem. The implementation of this
approach is tricky, since many iterators (see section 4.6) do not treat boundary vertices
in a special way and the constant values must be implemented in the system of equations
carefully.

2. A similar approach is not to eliminate the boundary vertex coordinates, but to constrain
them to be at their original position. We get additional equations

vi − v∗i = 0

for some boundary vertices and initial constant values v∗i , that are not changed during
the whole process. In this setup it is fairly important to assign strong weights to these
boundary constraint equations, see section 4.5.

3. A more general attempt would be a boundary curve with free floating boundary vertices
on this curve. Depending on the initial mesh, it may be useful to give this freedom to the
boundary vertices to achieve a better solution.

4. Shape approximation is another way of restricting vertices: Some reference shape, provided
by initialization or even changing during the process is approximated by the surface mesh
and energy equations define the quality of the approximation. With this method a large
number of applications is possible.

During the research of this thesis methods 1. and 2. have been considered and implemented.
The second one gave slightly better results and we chose this for the results in section 5.

Method 3. and 4. were considered in many other papers, for instance in [30]. In [36] they
provide also a setup of shape changing by the user and real-time computation of the mesh.

4.3 Fairness methods

We mentioned before, that a mesh needs some fairness energy, to avoid degeneration. Again, a
number of different approaches can be used. Some examples are found in [19]. We introduce
the most useful for our setup, similar to [36].

The general form of a fairness function is again at most quadratic.

fj(x) = xTHjx+ bTj x+ dj → 0

with some matrix Hi ∈ RN×N , a vector bj ∈ RN and a constant dj ∈ R.
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(a) (b) (c)

Figure 4.4: Linear midpoint of adjacent vertices fairness for a cylinder with weight 1, in initial
condition (a) and after one iteration (b). Squared distance to midpoint after 50
iterations (c). The colors indicate the fairness energy at each vertex from small
(green) to high (red).

� One very popular idea is

1

Ai
(vi −

1

k

∑
v∼vi

v) → 0 3|V | equations

Here k denotes the number of neighbor vertices of vi. Each coordinate is therefore linearly
declared to be the barycenter of its neighbors. Of course, we have to be careful with the
weights for this equation, since a restriction to this definition will lead to a stationary
solution, somehow similarly to a minimal surface (figure 4.4).

� Similarly, we can define the quadratic distance of vi to the barycenter of its neighbors.

1

A2
i

∥∥∥vi − 1

k

∑
v∼vi

v
∥∥∥2 → 0 |V | equations

In a similar way, this energy behaves like a minimizer of the surface area, but with more
focus on outliers, due to the quadratic behavior. In our research this energy provided
worse results and convergence behavior (figure 4.4 (c)).

Better results were achieved with squared distances in each coordinate separately.

� An idea to avoid the strong influence of the first two fairness energies is the tangential
projection fairness. The neighbors of vi are projected onto the tangent plane in vi defined
by the vertex normal ni and then their barycenter is calculated. vi is demanded to be this
point. The process is happening in the 2-dimensional tangent plane and therefore only 2
equations (in the linear case) are necessary, compared to 3 in the regular case. Given a
tangential orthonormal basis {t1i , t2i } we have

1

Ai
(vi · t1i −

1

k

∑
v∼vi

v · t1i ) → 0 |V | equations

1

Ai
(vi · t2i −

1

k

∑
v∼vi

v · t2i ) → 0 |V | equations
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This method leads to less shrinking while obtaining a fairly good mesh. A downside is the
dependency of tangential vectors (which can be computed from ni). For meshes which
are not smooth, the vertex normals are not close to their desired values and so are the
tangent planes. Convergence to a smooth mesh is achieved harder.

� A method, considered in [36] is fairness of the Gauß image, the vertex normals ni re-
spectively. To mix those methods, we have to consider the scale of the mesh and the
corresponding Gauß image.

� Principal curvature and principal directions can be considered in fairness ideas as well.
Smooth meshes have small changes in curvature along adjacent vertices and therefore a
fairness, similarly to the vertex fairnesses, is possible. However, energies that work directly
on the curvatures influence them as well and in practice they often conflict. Weights for
such fairing functions must be relatively small.

� To avoid a strong smoothing influence by the fairness, we come up with another approach.
A nice representation of a mesh has equally distributed edge lengths, in particular the edges
of one facet fs should be more or less of same length. For vertex vi denote by vj , vk the
other vertices of facet fs.

1

Ai
[(vj − vi) · (vj − vi)− (vk − vi) · (vk − vi)] =

1

Ai
[vj · vj − vk · vk − 2vj · vi + 2vk · vi] → 0 3|F | equations

The factor 1
Ai

is important for correct scaling. For example, a vertex 1 unit off its barycenter of
neighbors, can be sufficiently good for a large sized triangles, but even outside of its neighbor
ring, for triangles with less than 1

10 unit edge length.

In application we mostly use linear and tangential fairness of the vertices, as well as edge
length fairness.

4.4 Energy

Depending on the special application, we introduce a quadratic energy function, which is in
general of the form

Ek(x) = xTHkx+ bTk x+ dk → 0

We want to minimize this energy, to achieve a surface with a special property. For example
minimizing the mean curvature H = κ1+κ2

2 gives a linear energy function in the two principal
curvatures. In section 5 we introduce a variety of them and present different results obtained
by varying energies.
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4.5 Guided projection

Based on our set of quadratic equations ci, fj , Ek we derive a linear least square problem. Ac-
cording to chapter 3, each quadratic function can be linearized via first order Taylor expansion.
We show this using the example of ci

ci(x0 +∆x) ≈ ci(x0) +∇ci(x0) ·∆x

In the notation from above, the gradient is ∇ci(x) = Hix+ bi and the problem

ci(x0) +∇ci(x0) ·∆x = 0, i = 1, . . . , l

can be written in matrix notation as(H1x0 + b1)
T

...
(Hlx0 + bl)

T

∆x = −

xT
0 H1x0 + bT1 x0 + d1

...

xT
0 Hlx0 + bTl x0 + dl


This is a standard linear system for the update vector ∆x. This system has more equations
than unknowns and is therefore overdetermined. However, some equations are redundant or
at least ”almost redundant” (due to discretization errors). The fairness functions fj provide
some stability, and the energy functions Ek too. We also avoid instability by using the distance
to a previous approximation as a regularization ||(x0 + ∆x0) − x0||2 = ||∆x||2 → min. Our
hard constraints should be approximated as good as possible, while regularization only works
as guidance. We have to use large and small weights, to express this behavior. Together we
obtain the linear least square problem∥∥∥∥∥∥∥

u1∇c1(x0)
T

...
ul∇cl(x0)

T

∆x+

u1c1(x0)
...

ulcl(x0)


∥∥∥∥∥∥∥︸ ︷︷ ︸

hard constraints

2

+

∥∥∥∥∥∥∥
 v1∇f1(x0)

T

...
vm∇fm(x0)

T

∆x+

 v1f1(x0)
...

vmfm(x0)


∥∥∥∥∥∥∥︸ ︷︷ ︸

fairness

2

+ (4.12)

+

∥∥∥∥∥∥∥
w1∇E1(x0)

T

...
wn∇En(x0)

T

∆x+

w1E1(x0)
...

wnEn(x0)


∥∥∥∥∥∥∥︸ ︷︷ ︸

target energy

2

+

∥∥∥∥∥∥∥ε
1 · · · 0
...

. . .
...

0 · · · 1

∆x+

0
...
0


∥∥∥∥∥∥∥︸ ︷︷ ︸

regularization

2

−→ min

To fit this into the least square setup with one matrix and one vector from chapter 3, we note
that combining the matrices and vectors to one large system leads to the same solution. For
matrices and vectors A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1 , b2 ∈ Rm2 , denote with Ai

j the j-th

row and with bij the j-th coordinate. Then

∥∥A1x+ b1
∥∥2 + ∥∥A2x+ b2

∥∥2 = m1∑
j=1

(A1
jx+ b1j )

2 +

m2∑
j=1

(A2
jx+ b2j )

2 =

∥∥∥∥(A1

A2

)
x+

(
b1

b2

)∥∥∥∥2

A solution of this problem is achieved according to section 3.2. We linearized the quadratic
equations, therefore the result x1 = x0 + ∆x may not solve our initial problem optimally.
Another iteration with the new starting guess x1 gives another result. This is in general xj =
xj−1 +∆x with a solution ∆x of (4.12) to xj−1.
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We summarize the guided projection steps.

0. Define the unknowns x and their hard constraints ci. Define the fairness functions fj
and the target energies Ek. All equations must be quadratic in the vector x. Define the
weights ui, vj , wk, ε.

1. Initialize the vector x0.

2. In step j solve the linearized least square problem (4.12) and update xj . Update the
constants Ai, ni.

3. Repeat this process iteratively until a convergent solution is found or some halt condition
is fulfilled.

We point out, that this method differs from the problem, stated at the very beginning of this
chapter. Instead of the solution of a least square problem (4.1) under the constraints of (4.2),
we solve one single unconstrained least squares problem with the methods of chapter 3.

4.5.1 Weights

The weights ui, vj , wk play an important role in the guided projection setup. In general the
weights are of the following sizes.

� ui: The weights for the hard constraints are in a magnitude of 1. They assure correct
dependencies between the introduced variables.

� vj : These weights for the fairness equations are of magnitude 10−3− 10−5. Smaller values
can result in clunky meshes, while larger values have a lot of influence on the shape.

� wk: The weights for the target energies are of special importance. They are in a magnitude
of 10−2 to 10−5. A stronger influence leads to desired results, but can deform the mesh
or end in no convergence.

Specifically some weights are discussed here. However, they have to be considered carefully
from one application to another and our description may not be optimal for other purposes.

The first group of equations are some of our hard constraints. We found out, that the two
sets of equations for the face normals (orthogonality to the edges and unit length) need strong
weights, namely ui ≈ 1. The same holds true for the cross product variables (n × n)l. Their
equations (cross product of face normals and correlation between halfedges on the same edge)
need weights of size 1 too.

In our application the equations for Wi had slightly smaller weights, with values of 1
2 . We

trace this back to the discretization error in Wi and give more freedom to these variables.
Energies have more influence on the entries in the matrix and this can change the mesh closer
to desired results. Similarly the eigenvalue equations Wa = κa have weights of size 1

2 .

The eigenvectors/principal curvature directions however should be orthogonal to each other
and of unit length. We use weights of size 1, because these properties should be strictly con-
served. Loose equations can lead to swapped principal curvatures and unexpected behavior.

Two equations, that turned out to influence the behavior quite a lot are the orthogonality
between the principal directions and the vertex normal, as well as the conditions κ1i + κ2i =
trace(Wi) and Wini = 0. The first was shown to be quite not fulfilled, even after initialization.
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The inner product between principal direction and approximated vertex normal was as large as
10−2. Even worse, a strong weight on the equation led to much influence on the output result.
Strong fairness energies had to be applied, to prevent this performance, but then energies in
general needed a strong weight, overruling the hard constraints. Similar observations were made
with the second condition. In practice the following handling turned out to be useful. Far away
from our expected solution, at the first steps of our iteration process, we put weights in the size
of 10−3 on these equations. This prevents eigenvalues and -vectors far off principal curvatures
and directions. Closer to our desired result, we lower these weights down to 0 and obtain a
stable and convergent solution.

The piecewise linear constraints on the absolute values of principal curvatures (4.10) can be
weighted with ui = 1.

Boundary conditions are weighted with strong weights, like 100 or more. Giving some flex-
ibility with small weights to those equations can be helpful to find a result, but should be
considered with care, since the mesh can deform quickly.

For fairness it turned out, that sometimes the weights vi had to be adapted during the process.
Similarly to above, we start with somehow larger values to achieve useful results, but lower them
to smaller values, giving more influence to the energy function at the end. The linear midpoint
fairness, as well as the tangential midpoint fairness, described in section 4.3 are weighted with
values of magnitude 10−3 at the beginning and are dropped as small as 10−5 in the end. The
fairness of edge length is weighted with sizes around 10−6. However, in all cases, the actual
object size comes into account, since larger absolute edge lengths give more influence on all
these equations. Therefore the weights have to be adapted according to the total size of the
mesh and the refinement, leading to different edge lengths. Weights on other fairness equations,
like κ values and so on must be treated with care, since they influence the output mesh in a
strong way. Weights for these equations have to be set to 0 close at a result. Otherwise they
prevent a good convergence, as our experiments have shown.

The energies must be treated in the opposite way. Starting with small values of about 10−5

give fairness methods more power, but can be increased up to 10−2 or even 10−1 to achieve
stable results. The weights depend on the kind of energy, we use in application, considered in
chapter 5.

Last the weight ε for the regularizing identity matrix is discussed. It can be fairly small, in
magnitudes of 10−6 down to 10−10. We experimented with stronger weights on some of the
matrix entries, namely on the vertex coordinates. These affected variables did change less and
the other constraints converged quite fast. However it is not practicable for application, since
a stationary solution, almost not different to the initialization is quite useless, but can be used
for testing of the implementation.

In practice we use equal weights on equal classes of equations. Theoretically our setup allows
completely different weights on every single equation. We experimented with adaptive values,
motivated by the theory of reweighted linear least square problems [7]. Especially for fairness
functions it would be useful, to weight strong outliers with larger values, to bring them back
into a useful area. Experiments showed no significant improvements with such techniques and
we therefore restrict our application to equal weights for the same class of functions. However,
as mentioned above, changing these weights for the whole class during the iteration process is
used.
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b

bc

Figure 4.5: The halfedge data structure and its linked objects in OpenMesh.

4.6 Software

The implementation code itself is written in C++. Some libraries and external programs are
used to meet the necessary requirements. A short introduction to these resources and their
usage in our application is given on the next pages.

OpenMesh

OpenMesh [5] is a data structure, to represent and manipulate polygonal meshes. It is developed
at the Computer Graphics Group, RWTH Aachen. With OpenMesh we can store information
about a polygonal mesh, like vertices, edges, facets and the connectivity between them, but also
access these values in an efficient way. The open source structure comes as a C++ library and
has also python bindings, which makes it possible to use in both languages.

The main concept of OpenMesh is the halfedge data structure. Descriptively this is an oriented
edge, pointing from one vertex to another. It holds information about the following objects (see
also figure 4.5).

� the vertex it points to

� the facet it belongs to

� the next halfedge in this facet

� the opposite halfedge on the same edge

� optional: the previous halfedge

OpenMesh provides various iterators for all purposes. A very common access problem is the
so-called one-ring neighborhood of a vertex. With the halfedge data structure this can be done
in an efficient way. Figure 4.6 illustrates the procedure.

Moreover, OpenMesh supports default and arbitrary properties on its objects, like colors and
other graphical data.
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(a) Begin with a vertex.
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(b) Find one outgoing halfedge at this vertex.

b

bc
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bc
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bc

bc

(c) Switch to the opposite halfedge.

b

bc

b

bc
bc

bc

bc

(d) Take next halfedge, pointing to the next vertex.

Figure 4.6: Iterating over the vertices of the one-ring of a vertex v in OpenMesh using the
halfedge data structure. Repeat steps (c) and (d) until all vertices are traversed.

Eigen

Eigen [15] is an open source C++ library with template headers. It is used for linear algebra
related problems on matrices and vectors, both in dense and sparse case. The library provides
many numerical solvers for exact or iterative solutions and comes with other related algorithms
as well.

In our application we use the data structure for vectors, small 3× 3 and large sparse matri-
ces and use solvers for eigenvalue problems and large linear systems. In particular, we use a
preconditioned CG method for large linear systems, and QR factorization for small least square
problems, arising in the computation of the osculating paraboloid.

For parallelization we made use of the OpenMP library(3).

Evolute

For visualization and basic functionality, we use parts of the software EvoluteTools [32]. Our
C++ code is imported as a plugin. The graphical interface is implemented with Qt(4).

(3)https://www.openmp.org/
(4)https://www.qt.io/
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Python mesh generator

The generation of all presented meshes is done with a self written Python3 (5) program. We can
produce different geometrical shapes, based on their parametrization and apply some pertur-
bation. The mesh can be triangular or quad (figure 4.7). Data is stored in the *.obj (6) format
and then imported into Evolute for processing.

(5)https://www.python.org/
(6)https://www.fileformat.info/format/wavefrontobj/egff.htm

Figure 4.7: From top left to bottom right: Python3 mesh generator user interface, 2D Delaunay
triangle mesh, 3D triangular mesh, 3D triangular mesh with perturbation, 3D quad
mesh.
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5 Application

In this chapter we present various results of application of our guided projection method. The
large number of different variables in the setup can be used to describe a wide variety of problems,
all with some energy integral, depending on those variables. Mainly we focus on energy functions
E(κ1, κ2) depending on the principal curvatures.

In the first section 5.1, minimal surfaces are discussed. Therefore we use the mean curvatureH
and its different representations in the discrete setup. In section 5.2 we discuss the more general
case of surfaces, with constant mean curvature. It is followed by section 5.3, about developable
surfaces, with one principal curvature ki = 0. Section 5.4 again is a generalization about surfaces
with constant Gauß curvature. Sections 5.5 and 5.6 discuss different other energy functions,
involving κi, κ

2
i and |κi|. The last section 5.7 is about quad meshes and their characteristic,

e.g. planarity.

In this chapter we use the notation (V,E, F ) as before. The number of vertices, edges and
facets are |V |, |E|, |F |. Also we define

n := |{v ∈ V |v /∈ δS}|

the number of non-boundary vertices.

Our results are in general presented in two blocks:

� A table with numerical quantities (at the beginning and the end of one computation), like

– Total, hard constraint, fairness and target energies

– Estimated target energy, obtained by osculating paraboloid (section 2.2.4)

– Computation time

– Number of iterations

– Mesh properties like |V |, |E|, |F |

� A figure with graphical results, including

– The initial condition

– Intermediate conditions

– The final result

– A graphical representation of the energies during the computation

For our computations, we used a Laptop with Intel®Core�i7-6820HQ CPU (4 cores, 2 threads
each, 2.7 GHz) and 16GB of RAM.
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(a) Catenoid (b) Helicoid

Figure 5.1: Examples of minimal surfaces.

5.1 Minimal surfaces

The search for minimal surfaces is of great interest and a large number of publications is avail-
able [20, 9]. In section 2.1 we discussed the relation between the mean curvature H and smooth
surfaces with minimal area to boundary conditions. In section 2.2 we presented different ap-
proaches to define the mean curvature in the discrete case, and following that, we will use those
different definitions to state our problem.

�
−→
H (v) = 0, ∀v ∈ V with

−→
H defined in 2.31 (the second version of H)

� κ1(v)+κ2(v) = 0, ∀v ∈ V with the eigenvalues κi of the discrete shape operator W (v),
defined in 2.30 (corresponds to the first version of H)

� trace(W (v)) = 0, ∀v ∈ V W also defined in 2.30

Minimal surfaces are for example the plane, catenoids and helicoids (figure 5.1).
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Version H(v)

According to proposition 2.32 and2.33 we obtain a surface with minimal area by optimizing our

mesh, such that 0 =
−→
H (v) = 1

2

∑
vi:vi∼v Ji(vi − vi+1) for all vertices. Our target energy at each

vertex is therefore
Ek(x) = Ak

∑
l

(e× n)l,

with all l such that it belongs to a halfedge in a facet of vk but does not include vk (so it
is opposite to the vertex). We have 3n equations, the boundary vertices are fixed via large
constraint weights.

This energy, introduced in [31], is used for many applications and under constant research
(see [3] and [26]).

Example figure 5.2 Original Result

Surface type cylinder catenoid

Total energy 7.64 · 10−1 1.73 · 10−3

Hard constraints energy 1.35 · 10−13 8.01 · 10−4

Fairness energy 1.34 · 10−3 7.69 · 10−4

Target energy 7.62 · 10−1 2.13 · 10−4

- max. at vertex 5.44 · 10−3 5.81 · 10−5

H estimated with osculating
paraboloid

1.85 · 10−2 1.18 · 10−3

Computation time: 26.1 s
Number of iterations: 8

220 vertices 620 edges 400 facets

We chose the weights on the fairness energy equations relatively small. During the opti-
mization process, this leads to increasing energy, but realigns in the end. Larger weights
would lead to slower convergence, while smaller weights would end in degenerated meshes,
which can not ”unfold” back to a fair distribution of vertices.

The estimated target energy, which gives a measurement of the quality of our result, is
of course also only an approximation. According to experiments, in this example our
chosen implementation (which can be enhanced) does not entirely represent the actual
mean curvature, but gives a good measure of the quality of our result.

Compared to other target energy definitions, this method is relatively cheap to solve and
we do not need a lot of iterations to achieve good results. This is mainly because of the
few involved hard constraint equations. We can skip everything, involving W , a1, a2 and
curvature and only rely on the introduced variables (n×e)l. Therefore this choice of target
energy and setup is special among the following parts, which all involve the definition of
W and use the curvature variables (but not (n× e)).
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(a) Initial position.
(5.44 · 10−3 max.)

(b) After 1 step. Fairness weights
are chosen small.

(c) After 2 iteration steps. The
mesh realigns to smaller fair-
ness energy.

(d) Result after 8 iteration steps.
Target energy is close to zero.
(5.81 · 10−5 max.)

Figure 5.2
Minimizing H⃗(v) on a cylinder. Col-
ors in figure (a,d) indicate the target
energy in each vertex (green: low; red:
high. Maximum of scale in image cap-
tion.) Colors in figure (b,c) indicate the
absolute change of curvature in each
vertex for this step (bright: small, dark:
big).

(e) Small weights for fairness energy allow fast mesh deformation (b,c). In the end fairness is
restored and the target energy is close to 0. Reinitialization proofed the result to be almost
a catenoid, even if the approximation with the osculating paraboloid indicates some offset.
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Version κ1 + κ2

We want to define the condition of zero mean curvature directly with the two principal curvatures
κ1 and κ2. The target energy is defined as

Ek(x) = (κ1k + κ2k)Ak

This leads to n target energy equations.

Scientific work, involving the discrete extended shape operator and its application in opti-
mization can be found in [29]. D. Pellis and H. Pottmann use guided projection to align principal
curvature directions with principal stress directions.

Since the definition of W and its application is a main part of this thesis, we will present 3
independent examples for this method.

Example figure 5.3 Original Result

Surface type cylinder catenoid

Total energy 1.34 · 10−1 1.50 · 10−2

Hard constraints energy 1.58 · 10−13 1.14 · 10−2

Fairness energy 1.46 · 10−2 9.52 · 10−3

Target energy 5.96 · 10−2 1.26 · 10−3

- max. at vertex 2.02 · 100 1.38 · 10−1

H estimated with osculating
paraboloid

1.85 · 10−2 1.30 · 10−3

Computation time: 76.1 s
Number of iterations: 15

220 vertices 620 edges 400 facets

This example is relatively easy to be solved. Remarkable is the fast and stable convergence
(fig 5.3e). The large jump of hard constraint energy in step one is explained as followed:
The initialization is naturally exact for most of the hard constraint equations. Starting
the optimization process, especially the target energy influences some of the variables to
its ”desired” values. In the following steps the mesh has to transform into a position,
where both, the target energy and the hard constraints are fulfilled as good as possible.
The fairness energy comes into account, to prevent degeneration - for example it prevents
triangles in the middle of the cylinder to collapse more than they do in figure 5.3b.

Here the important role of the weights is clearly visible. We have to keep them as loose
as possible, to allow the target energy to influence the mesh, but especially the fairness
weights must not be to small or large. Either the mesh collapses or they overrule the
target energy. In our example we were bounded to a factor between 1

5 and 5 for each
weight before convergence was lost.
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(a) Initial position.
(2.02 · 100 max.)

(b) 1 iteration.
(7.08 · 10−1 max.)

(c) Result with changes in κ.

(d) The resulting mesh.
(1.38 · 10−1 max.)

Figure 5.3
Minimizing κ1+κ2 on a cylinder.
Colors in figure (a,b,d) indicate
the target energy in each vertex
(green: low; red: high. Maximum
of scale in image caption.) Colors
in figure (c) indicate the change
of curvature in each vertex.

(e) The energies during the optimization process.
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Example figure 5.4 Original Result

Surface type bulgy perturbed cylinder catenoid

Total energy 8.60 · 10−1 1.39 · 10−2

Hard constraints energy 6.61 · 10−2 3.97 · 10−2

Fairness energy 1.28 · 10−1 9.99 · 10−3

Target energy 3.66 · 10−1 7.59 · 10−4

- max. at vertex 2.33 · 10+1 9.84 · 10−2

H estimated with osculating
paraboloid

1.09 · 10−1 9.47 · 10−4

Computation time: 70.8 s
Number of iterations: 13

220 vertices 620 edges 400 facets

This example is similar to the previous one, with the main difference of perturbation at
the initial position. To achieve convergence, larger fairness weights were necessary for the
first step but could then be released to a similar value as before. Noticeable is the irregular
colorization of target energy in the result, which is due to a relatively small number of only
13 iterations. Although more iteration steps would not influence the mesh in a noticeable
way, they would align the variables to the hard constraint equations and lower the target
energy as well, resulting in a smoother coloring.
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(a) Initial position.
(2.33 · 10+1 max.)

(b) 1 iteration with stronger fair-
ness weights.

(c) 3 iterations with stronger and
medium fairness weights.

(d) The resulting mesh after 13 itera-
tions, with small fairness weights
after iteration 3.
(9.84 · 10−2 max.)

Figure 5.4
Minimizing κ1+κ2 on a perturbed
bulgy cylinder. Colors in figure
(a,d) indicate the target energy in
each vertex (green: low; red: high.
Maximum of scale in image cap-
tion.) Colors in figure (b,c) in-
dicate the change of curvature in
each vertex.

(e) The energy graph is similar to 5.3e. Increment of fairness weights in step 1 are noticeable.
In step 2 they are already lowered.
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Example figure 5.5 Original Result

Surface type perturbed helicoid helicoid

Total energy 1.28 · 100 1.02 · 10−2

Hard constraints energy 4.93 · 10−1 4.63 · 10−1

Fairness energy 2.31 · 10−2 8.77 · 10−3

Target energy 6.27 · 10−1 2.78 · 10−4

- max. at vertex 6.59 · 100 1.01 · 10−2

H estimated with osculating
paraboloid

3.99 · 10−2 7.42 · 10−5

Computation time: 57.6 s
Number of iterations: 14

209 vertices 568 edges 360 facets

In this example, we start with a quite noisy data. Step 1 already results in a much
smoother surface. However, the underlying non-visible variables (all but the vertices) are
still messed up, due to the bad initialization. To speed convergence up, we re-initialize the
variables, based on the current vertex positions. This results in a fast convergence after
only 14 steps.

In step 7 we also lowered the fairness weights, to allow better convergence towards a small
target energy.

Generally, this target energy method appears to be quite stable. However the fairness terms
must be weighted carefully and sometimes these weights have to be changed during the iteration
process.
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(a) Initial perturbed position.
(6.59 · 100 max.)

(b) After 1 iteration with
stronger fairness weights and
re-initialization after this
step. (2.94 · 100 max.)

(c) The curvature κ1 ∈ [0.5, 1.9]
at each vertex of the result.

(d) The resulting mesh after 14 iterations, with small
fairness weights after iteration 7.
(1.01 · 10−2 max.)

Figure 5.5
Minimizing κ1+κ2 on a perturbed helicoid. Col-
ors in figure (a,b,d) indicate the target energy in
each vertex (green: low; red: high. Maximum
of scale in image caption.) Colors in figure (c)
indicate the curvature κ1 in each vertex (light:
small, dark: big). As in all examples, we fix any
boundary vertex, on the top, bottom and sides.

(e) At the beginning, strong fairness weights assure a useful direction of optimization. At step
7, the weights are lowered, resulting in smaller target energy without strong restriction
about fairness. The resulting mesh, once in a stable position, does not diverge much from
this point.
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Version trace(W )

It was shown by [8], that the trace of the extended discrete shape operator converges towards
the mean curvature measure. Therefore we can aim to minimize this trace, reducing the explicit
equations for eigenvalues and -vectors of W . Our target energy is then

Ek(x) = (W 1,1
k +W 2,2

k +W 3,3
k )Ak

We have n equations.

Example figure 5.7 Original Result

Surface type cylinder catenoid

Total energy 3.52 · 100 6.09 · 10−4

Hard constraints energy 1.33 · 10−13 1.25 · 10−7

Fairness energy 9.44 · 10−4 6.09 · 10−4

Target energy 3.52 · 100 2.25 · 10−8

- max. at vertex 2.03 · 100 1.5 · 10−8

H estimated with osculating
paraboloid

1.85 · 10−2 1.11 · 10−3

Computation time: 192.1 s
Number of iterations: 37

220 vertices 620 edges 400 facets

In this example we decided to run more iterations. Figure 5.6 shows the result after only
7 iterations, leading to an almost perfect mesh, but with worse fulfilled hard constraints.
This gives the irregular coloring. The graphs in figure 5.7e show the converging results
after more than 30 steps. The fairness energy halts at a certain level, because the target
energy prevents further shrinking of the mesh, which fairness alone would tend to.

Figure 5.6: Remarks to example figure 5.7. After only 7 iteration steps, the resulting
mesh is almost at its convergent final position. The colors indicate the target energy (red:
3.33 · 10−6 max.). Irregular patterns hypothesize not fulfilled hard constraints at step 7. More
iterations lead to a smooth solution (figure 5.7 (d) and (e)).
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(a) Initial position.
(2.03 · 100 max.)

(b) After 1 step. Small fair-
ness and small target energy.
(2.15 · 10−6 max.)

(c) The second iteration com-
pensates the large con-
straint energy from step 1.
(6.03 · 10−6 max.)

(d) Result after 37 iteration steps.
Target energy is close to zero.
(1.5 · 10−8 max.)

Figure 5.7
Minimizing trace(W ) on a cylinder.
Colors in figure (a-d) indicate the tar-
get energy in each vertex (green: low;
red: high. Maximum of scale in im-
age caption.) The final mesh is almost
obtained after step 7. More iterations
give convergence in constraint and tar-
get energy, but do not affect the mesh
much (see also figure 5.6).

(e) Small fairness energy weights result in a divergence in the step: Fairness and target energies
go down, but are not connected. More iterations give a stable solution.
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5.2 Constant mean curvature surfaces

Constant mean curvature surfaces are a generalization of minimal surfaces. Their mean curva-
ture is H ≡ c with some constant scalar c. Numerical application of generating and optimizing
CMC surfaces exist in a huge variety. Various different approaches were considered, for example
in [28].

For application examples we will focus on the easiest case of (parts of) spheres. We choose the
third (referring to the previous sections) definition of the mean curvature, involving the trace
of W . It is a good trade-of between fewer equations while involving the complex definition of
W . However, other definitions do not influence the quality of our results. Our energy is

Ek(x) = (trace(Wk)− c)Ak

We have again n equations.

Example figure 5.8 Original Result

Surface type circular disc hemisphere

Total energy 4.12 · 10−1 1.48 · 100
Hard constraints energy 4.80 · 10−2 1.47 · 100
Fairness energy 2.32 · 10−2 7.38 · 10−3

Target energy 3.40 · 10−1 2.77 · 10−4

- max. at vertex 2.62 · 100 2.35 · 10−3

H estimated with osculating
paraboloid

1.70 · 10−2 3.80 · 10−4

Computation time: 100.3 s
Number of iterations: 20

225 vertices 616 edges 392 facets

This example demonstrates the effect of negative (figure 5.9) and positive (figure 5.9)
mean curvature, leading to a convex or concave surface, depending on the direction of the
Gauß map. Here the target energy acts acts as a blow up on the initial surface, while the
fairness tries to prohibit this effect. Because of this tension, larger constants lead to more
unstable results.
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(a) Initial position.
(2.62 · 100 max.)

(b) After 1 iteration step. (c) Resulting mesh with small
changes in some vertices to
improve hard constraint en-
ergy.

(d) The final result after 20 iteration steps.
The target energy is close to zero, ex-
cept for few points near the boundary.
(2.35 · 10−3 max.)

Figure 5.8
Solving trace(W ) = c on a circular disc.
Choosing c = −1 leads to a hemisphere.
Colors in figure (a,d) indicate the tar-
get energy in each vertex (green: low;
red: high. Maximum of scale in im-
age caption.) The colors in figure (b,c)
indicate the absolute change of curva-
ture in each vertex (bright: small, dark:
large).

(e) From iteration 12, the weights for the target energy were raised, leading to a better ap-
proximation.
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Figure 5.9: Remarks to example figure 5.8. Minimizing trace(W ) = c with the same initial
position, but with c > 1. The positive constant leads to a concave solution (normals
points upwards at initial, respectively inwards at resulting mesh) compared to the
convex solution for a negative constant. The large constant cannot be fulfilled with
the given boundary constraint, therefore the solution is not stable. (picture at
iteration 20 with 1.58 · 10−1 max.)

5.3 Developable surfaces

A brief study of developable surfaces is given in section 5.3. Smooth examples are planes, cylin-
ders, cones and other solids, involving partially differentiable surfaces, gluing other developable
surfaces together.

The Gaussian curvature of developable surfaces is constantly 0. We define the energy as

Ek(x) = (κ1kκ
2
k)Ak

This leads to n target energy equations in our setup.

Example figure 5.10 Original Result

Surface type hyperboloid cylinder

Total energy 2.21 · 10−1 1.35 · 10−3

Hard constraints energy 3.30 · 10−3 1.87 · 10−6

Fairness energy 4.62 · 10−2 1.35 · 10−3

Target energy 1.72 · 10−1 3.02 · 10−6

- max. at vertex 5.30 · 100 7.76 · 10−5

H estimated with osculating
paraboloid

8.26 · 10−2 1.13 · 10−6

Computation time: 83.2 s
Number of iterations: 16

220 vertices 620 edges 400 facets

In this example of a cylinder, we can use small fairness weights, leading to a degeneration
in the first steps, but are remodeled in the final shape. The osculating paraboloid fits our
data better, showing a almost perfect resulting target energy after only 16 steps.
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(a) Initial position.
(5.30 · 100 max.)

(b) Changes in the first 4 steps.
Fairness is lost at the begin-
ning, but later restored.

(c) At the result one of the
two principal curvatures is
close to 0 in each vertex.
(4.21 · 10−5 max.)

(d) The final result after 16 iteration
steps. The target energy is close to 0,
changes in color are effectively small.
(7.76 · 10−5 max.)

Figure 5.10
Minimizing κ1 · κ2 on a hyperboloid.
Colors in figure (a,d) indicate the tar-
get energy in each vertex (green: low;
red: high. Maximum of scale in image
caption.) The colors in figure (b) indi-
cate the absolute change of curvature
in each vertex and in (c) the curvature
κ1 (bright: small, dark: large).

(e) The convergence of the target energy aligns with the estimated target energy from the
osculating paraboloid. Small fairness weights allow degeneration in step 1-4 (figure 5.10c),
but once the resulting shape is obtained, fairness terms can be fulfilled too.
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Example figure 5.11 Original Result

Surface type flattened cone sector cone sector

Total energy 1.63 · 10−1 1.48 · 10−3

Hard constraints energy 9.43 · 10−2 6.33 · 10−4

Fairness energy 2.46 · 10−2 8.31 · 10−4

Target energy 4.44 · 10−2 1.97 · 10−5

- max. at vertex 1.85 · 100 5.88 · 10−5

H estimated with osculating
paraboloid

2.63 · 10−3 7.76 · 10−5

Computation time: 40.1 s
Number of iterations: 30

121 vertices 320 edges 200 facets

To test another example mesh, we start with a cone, flattened between its boundaries. As
visible in figure 5.11a, the mesh already has a very small overall bending. This is important
for initialization. Starting with planar parts (which already have zero Gaussian curvature),
results in problems during the optimization. The target energy does not allow the mesh
to leave its local minimum. This demonstrates the influence of the model in the whole
process. Small differences in the initial position can lead to completely different outputs.

Another interesting fact in this example is the increment (!) of target weights by a factor
of 10 in step 21 (figure 5.11e). This is clearly visible in the graph, but already one step
later, the target energy is smaller again and converges towards a very small value, resulting
in better convergence of the hard constraints.

Developable surfaces are interesting to explore. To deal with more representatives of this class
of surfaces, some adjustments must be made in the implementation, for example dealing with
non smooth parts in the surface to represent non differentiable kinks in the smooth equivalents.
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(a) Initial position.
(1.85 · 100 max.)

(b) After step 3. (c) The non-zero principal curva-
ture κ2 ∈ [0.65, 2.24] of the re-
sulting mesh.

(d) A cone sector is obtained after 30 iter-
ation steps. (5.88 · 10−5 max.)

Figure 5.11
Minimizing κ1 · κ2 on a deformed flat-
tened cone sector. Colors in figure (a,d)
indicate the target energy in each ver-
tex (green: low; red: high. Maximum
of scale in image caption.) The col-
ors in figure (b) indicate the absolute
change of curvature in each vertex and
in (c) the non-zero curvature κ2 (bright:
small, dark: large).

(e) Starting from step 21 the weights for the target energy are increased by a factor of 10.
This results in a better convergence of both, target energy and hard constraints.
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Figure 5.12: A tractricoid, generated by revolving a tractrix about its asymptote. This
surface is also called a pseudosphere, due to the constant negative Gaussian curvature (in
analogy to the constant positive Gaussian curvature of a sphere). It has a singularity at
its equator. A parametrization of the tractricoid in the figure with K = −1 is (u, v) 7→
(sechu cos v, sechu sin v, u− tanhu), u ∈ (−∞,∞), v ∈ [0, 2π).

5.4 Constant Gaussian curvature surfaces

Similar to constant mean curvature, we generalize developable surfaces to meshes, with constant
Gaussian curvature. A closed surface with constant positive curvature is a sphere (K = 1

R2 ). An
example with singularities, but constant Gaussian curvatureK < 0 is the so-called pseudosphere
(figure 5.12).

We define our energy
Ek(x) = (κ1kκ

2
k − c)Ak, c ∈ R

Again, this leads to n target energy equations.

Example figure 5.13 Original Result

Surface type sphere cap, r = 1.5 sphere cap, r = 1

Total energy 9.00 · 10−2 7.03 · 10−2

Hard constraints energy 9.67 · 10−4 6.86 · 10−2

Fairness energy 6.04 · 10−2 1.17 · 10−3

Target energy 2.87 · 10−2 5.96 · 10−4

- max. at vertex 6.86 · 10−1 2.25 · 10−1

H estimated with osculating
paraboloid

7.55 · 10−3 8.54 · 10−4

Computation time: 46.6 s
Number of iterations: 16

159 vertices 444 edges 286 facets

Approximating a constant Gaussian curvature K ≡ c ̸= 0 is more difficult, due to more
distinct solutions. This is due to the fact, that the Gaussian curvature is (in contrast to
the mean curvature) an intrinsic measure (the famous theorema egregium by C.F. Gauß).
For example, the dome mirrored at the xy-plane, visualizing a cup instead of a cap, has
exactly the same Gaussian curvature and is therefore another stable solution. The starting
position and other constraints have strong influence to the result (if there is any at all).
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(a) Initial position.
(6.86 · 10−1 max.)

(b) Step 1. Fairness energy
shrinks the triangles on top of
the cap.

(c) Step 2. The mesh keeps blow-
ing up to increase the Gaus-
sian curvature.

(d) After 16 steps, a part of a sphere
with radius 1 is obtained. Problems
with the target energy and hard con-
straints occur at the top of the dome.
(2.25 · 10−1 max.)

Figure 5.13: Minimizing κ1 ·κ2 = 1 on a sphere cap (radius of initial sphere r = 1.5, K ≡ 1.44).
Due to the starting position, the mesh converges to the upper part of a sphere with
a smaller radius, increasing the Gaussian curvature to K ≡ 1. Colors in figure
(a,d) indicate the target energy in each vertex (green: low; red: high. Maximum
of scale in image caption.) The colors in figure (b,c) indicate the absolute change
of curvature in each vertex (bright: small, dark: large).

(e) Due to the mesh connectivity and fairness energy, the triangles on top shrink, making it
harder for the algorithm to converge in target and hard constraints. However, the result
is stable and pictures the exact solution quite well.
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Example figure 5.14 Original Result

Surface type cone tractricoid

Total energy 1.25 · 10−1 6.83 · 100
Hard constraints energy 9.73 · 10−5 6.81 · 100
Fairness energy 5.03 · 10−2 4.90 · 10−3

Target energy 7.44 · 10−2 9.63 · 10−3

- max. at vertex 1.00 · 100 7.55 · 10−1

H estimated with osculating
paraboloid

1.97 · 10−2 2.25 · 10−3

Computation time: 137.7 s
Number of iterations: 16

220 vertices 620 edges 400 facets

As in the previous example, the structure of the mesh is essential for the resulting surface.
As visible in the pictures and energy graph, the hard constraints cannot be completely
fulfilled at vertices close to the boundary next the singularity. In further application it
might be possible to implement a mesh refinement method, to deal with such cases.

In practice, we explored some other problems with the CGC energy setup. Because of Mind-
ings theorem, a mesh with constant Gaussian curvature is only unique up to isometry. Therefore
sometimes more than one solution might be possible. Sometimes single vertices or regions of the
mesh try to converge towards one solution, while the rest goes to some other. This leads to a
local minimum, which cannot be left easily. For example a stable solution to one of the encoun-
tered problems, with one vertex flipped to the other side of the mesh (from convex to concave
or vice versa) might be enough already, to be in that case. This problem could be addressed
with special weights on single equations, or other fairness term, that treat this behavior. We
did not specifically test such ideas in the framework of this thesis.
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(a) Initial position.
(1.00 · 100 max.)

(b) The mesh after the first iter-
ation step. Fairness energy
tightens the neck.

(c) A second iteration step. Tar-
get energy operates against
this effect.

(d) A part of a tractricoid is obtained after 16 itera-
tion steps. (7.55 · 10−1 max.)

Figure 5.14
Minimizing κ1 · κ2 = −1 on a cone part. Colors
in figure (a,d) indicate the target energy in each
vertex (green: low; red: high. Maximum of scale
in image caption.) The colors in figure (b,c) in-
dicate the absolute change of curvature in each
vertex (bright: small, dark: large). Close to the
singularity of the tractricoid (figure 5.12), the al-
gorithm has difficulties to generate an optimal
congruence with the hard constraints.

(e) Convergence close to the final mesh is achieved in relatively few steps. A stable solution,
however, requires some more iterations. The hard constraints are not perfectly fulfilled in
the end, but the target and estimated target energies are close to zero.
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5.5 Willmore surfaces

Consider a compact smooth surface S. The Willmore energy is defined as

E(S) =

∫
S
(H2 −K)dA =

∫
S
(
κ21
4

+
κ1κ2
2

+
κ22
4

− κ1κ2)dA =
1

4

∫
S
(κ1 − κ2)

2dA

This energy is always greater or equal to zero. In the set of closed compact surfaces, only
spheres have zero Willmore energy. Therefore this integral measures the distance of a surface
to being spherical. The Willmore energy is conformally invariant, making it important in the
study of conformal geometry [39]. Many approaches on minimizing this energy in the field of
discrete differential geometry were made, for example in [4].

Our target energy is stated with use of our discrete principal curvatures. The integral is
approximated with a sum.

E(x) =
∑
j

(κ1j − κ2j )
2Aj

The index j iterates over all vertices of the mesh. This energy is only one single equation in our
problem.

Example figure 5.15 Original Result

Surface type cylinder sphere

Total energy 6.63 · 10−3 6.84 · 10−3

Hard constraints energy 1.60 · 10−4 5.96 · 10−3

Fairness energy 2.78 · 10−3 8.75 · 10−4

Target energy 3.69 · 10−3 3.69 · 10−6

- max. at vertex 1.92 · 100 1.13 · 10−1

H estimated with osculating
paraboloid

3.69 · 10−3 3.71 · 10−6

Computation time: 343.1 s
Number of iterations: 40

220 vertices 620 edges 400 facets

With the use of the Gauß-Bonet theorem one can show, that for a compact surface with
fixed boundary, a minimizer of the Willmore energy is also a minimizer of total curvature∫
S(κ

2
1 + κ22)dA [4]. We give an example with a discrete version of this energy.

E(x) =
∑
j

((κ1j )
2 + (κ2j )

2)Aj

Again, this energy smooths a surface towards a sphere.
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(a) Initial position.
(1.92 · 100 max.))

(b) The mesh after the first iter-
ation step.

(c) 5 iteration steps.
(2.35 · 100 max.)

(d) The sphere is almost exactly approximated after
40 iteration steps. (1.13 · 10−1 max.)

Figure 5.15
Minimizing

∑
(κ1−κ2)

2 on a slightly bulgy cylin-
der. Colors in figure (a,c,d) indicate the target
energy in each vertex (green: low; red: high.
Maximum of scale in image caption.) The colors
in figure (b) indicate the absolute change of cur-
vature in each vertex (bright: small, dark: large).
The surface is converging towards a sphere with
zero Willmore energy.

(e) During the first steps, the target energy pulls the mesh towards a sphere, violating the hard
constraints. Once a spherical form is obtained, the hards constraints can start converging.

67



Example figure 5.17 Original Result

Surface type kink and buckle round kink and planar

Total energy 1.56 · 10−1 1.95 · 100
Hard constraints energy 1.40 · 10−1 1.95 · 100
Fairness energy 1.23 · 10−2 3.38 · 10−3

Target energy 3.06 · 10−3 3.91 · 10−4

- max. at vertex 6.90 · 10+1 1.75 · 10+2

H estimated with osculating
paraboloid

8.53 · 10−3 8.55 · 10−4

Computation time: 6118 s
Number of iterations: 50

561 vertices 1584 edges 1024 facets

This example demonstrates the behavior of the Willmore energy. The surface tends to
converge locally towards a sphere (or a plane, which can be seen as a sphere with r = ∞).
The boundary prescribes the resulting shape.

For this example we chose relatively small fairness and target weights. One reason, is the
definition of the target energy:

∑
κ21+κ22. Only in the special case of a plane, this energy

is equal to zero. In other cases it can have a local minimum larger than zero. Big target
weights would therefore dictate curvature values, that can never be achieved by a uniform
surface, resulting in divergence. On the other hand, the fairness weights must correlate
to prevent influence in the shape of the output, but stabilize the result. Together the
iteration process is converging slowly but stable.

To verify the quality of the solution, we compare it to the result after 50 iterations with-
out a target energy, but unchanged weights for all other equations. The fairness terms
themselves do not influence the resulting shape significantly (figure 5.16).

Figure 5.16: With the parameters from example figure 5.17, but without target energy, the
algorithm rarely affects the mesh after 50 steps of iteration.
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(a) Initial position.
(6.90 · 10+1 max.)

(b) After 10 iterations, the buckle
is already much smaller and
some changes in the kink are
visible. (2.68 · 10+2 max.)

(c) The result after 50 iteration
steps shows a smooth surface
at the kink apart from the 2
corners at the sides.

(d) After 50 iteration steps, the surface
is at is final position. The buckle
is completely flattened and the kink
round. The only remaining vertices
with large target energy are next
to the corners, which are stationary.
(1.75 · 10+2 max.)

Figure 5.17
Minimizing

∑
κ21 + κ22 on a kinked surface with a buckle. Colors in figure (a-d) indicate the

target energy in each vertex (green: low; red: high. Maximum of scale in image caption.) The
behavior is as expected. The buckle is smoothened to a flat piece, while the kink is rounded,
although the corners of the boundary make this more complex.

(e) The first iteration step lowers the target energy significantly, at the cost of the hard con-
straints. During the rest of the process, hard constraints are corrected and fairness improved,
resulting in the stationary solution, pictured above.
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5.6 Surfaces with minimal total absolute curvature

For a given surface S the total absolute curvature energy is defined as∫
S
(|κ1|+ |κ2|)dA

Compared to the Willmore energy and its equivalent, the total energy, it is far less studied. One
reason is the difficulty of building derivatives of absolute values. Potential application is possible
in building construction and architectural design. In [23] M. Kilian and D. Pellis showed, that
total absolute curvature plays an important role in combined form and stress optimization of
freeform structures. They used a discrete 2×2 shape operator to derive the principal curvatures
and guided projection for optimization.

With our setup, we can easily define our energy functional

Ek(x) =
∑
j

(|κ1j |+ |κ2j |)Aj

Like in the previous chapter, we have one single target equation. The total absolute curvature
behaves also like a smoother, but with different effect on kinks. The following example will
demonstrate this.

Example figure 5.18 Original Result

Surface type kink and buckle round kink and planar

Total energy 1.53 · 10−1 1.31 · 10−1

Hard constraints energy 1.40 · 10−1 1.30 · 10−1

Fairness energy 1.23 · 10−2 1.31 · 10−3

Target energy 3.53 · 10−4 1.16 · 10−4

- max. at vertex 1.66 · 10+1 1.65 · 10+1

H estimated with osculating
paraboloid

1.70 · 10−3 7.49 · 10−4

Computation time: 12060 s
Number of iterations: 90

561 vertices 1584 edges 1024 facets

This example demonstrates the behavior of the total absolute curvature energy. The sharp
kink is not decreased while the bulge is flattened. We explain this behavior as follows. Of
course zero principal curvature at each vertex is optimal for the functional and therefore
every bulge is ”worse” than a planar surface. However the kink in the boundary does not
allow the surface to bend towards a plane overall. For small values, the sum of squares is
less than the square of the sum∑

i

|xi|2 < (
∑
i

|xi|)2, xi < 1

and the Willmore energy ”spreads” the overall curvature which was first concentrated in
few vertices over adjacent neighbors. The linear total absolute curvature however, does
not change when curvature is distributed over different vertices and therefore the kink
already has (constant) minimal total absolute curvature.
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(a) Initial position.
(1.66 · 10+1 max.)

(b) After 50 iterations with
a small target weight,
the buckle is smaller,
but convergence is slow.
(1.65 · 10+1 max.)

(c) The result after 90 iteration
steps shows almost no changes
in the kink.

(d) A stationary solution is obtained af-
ter 90 iteration steps. The buckle
is flat and the kink unchanged (the
maximum energy in one vertex is still
1.65 · 10+1 )

Figure 5.18
Minimizing

∑
|κ1|+ |κ2| on a kinked surface with a buckle. Colors in figure (a-d) indicate the

target energy in each vertex (green: low; red: high. Maximum of scale in image caption.) With
weights of the same magnitude, the algorithm performs similar to the Willmore energy case,
except for the kink. Changes would not decrease the total absolute curvature.

(e) After 50 iteration steps with a relatively low target weight, we increased it and observed
faster convergence with stable results after 90 iteration steps.
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Figure 5.19: A mesh with highly non planar quad facets on the left (color indicates energy at
each facet. Red: high, green: low. 1.56 · 10−2 max.). After 10 iteration steps, the
constraints on the facet normals together with fairness terms converged towards a
mesh with planar facets, with only relatively large errors next the fixed boundary
(5.36 · 10−3 max.).

5.7 Quad meshes

In this last chapter we want to an example of our guided projection framework applied on a quad
mesh. The hard constraints, presented in chapter 4, are initially fulfilled for triangle meshes
and converge towards zero energy for a stable resulting mesh. For an arbitrary mesh with four
vertices per facet, the face normal is not well defined. The introduced hard constraints deal
with this problem. Orthogonality of the facet normals with each edge of the facet bring the
mesh close to a planar quad mesh, this is vertices of each facet lying in one plane. Planar facets
are used in architectural application, for example in [36].

To demonstrate the effect, we reduce our constraints only to the ones, necessary for the facet
normals and add a simply fairing term. The result is shown in figure 5.19.
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6 Conclusion

In this thesis we examined basics of discrete differential operators, in particular the extended
shape operator for triangular meshes based on normal cycles. Principal curvature and its rela-
tives were built on this fundamentals. The main goal was the finding of a method to optimize
meshes under constraints involving these quantities. With use of guided projection, this was
achieved and demonstrated on various examples.

Specifically more variables were introduced in addition to the mesh vertices and linked via
hard-constraints. During the iteration process, these constraint equations were violated, but as
seen in the graphics, later restored, once a stable mesh position was found. Similarly the softer
fairness terms converged (after diverging from the initial position in the first steps) towards
a fair result. Our main target, the energy functional defining our specific constraint was not
perfectly fulfilled at the beginning and defined the primary changes in variables.

In general the first iteration step performed significantly different from the rest. Initially
the hard constraints are nearly perfectly fulfilled and the fairness and target energy terms
made major changes on the visible mesh. The hard constraints therefore degraded strongly.
In the second step, this effect was partially dulled, in many cases resulting in a position even
closer to the initial, compared to the result after the first step. More steps led to convergence
towards more convergence in all three energies, hard constraints, fairness and target. In some
applications, the hard constraints were not possible to be fulfilled steadily, before a stable mesh
with low target energy was achieved.

In our examples we studied minimal surfaces with different approaches of target energy. All of
them showed good convergence. Methods with fewer equations and variables involved naturally
performed faster. Developable surfaces were easily achieved, unless the original mesh was in
a position, close to a local but not global minimum. We studied Willmore energy functionals
and demonstrated its behavior. Noticeable the equivalent total curvature functional performed
worse on complex examples. This was mainly because of an optimal solution with large positive
energy and the fact, that the vertex area Aj is constant in each iteration step, misleading the
algorithm under some circumstances. The total absolute curvature happened to have similar
problems. On the other hand the approach with additional variables for absolute values of
curvature did not fail to impress, assumed the initial mesh was useful.

Main problems in the implementation were the time consuming computations for complex
problems. Due to many equations and a ill conditioned sparse matrix the linear system took a lot
of time to be iteratively solved. For application a more efficient solver is essential. Depending of
the size of the problem, a Cholesky factorization attempt might be more promising, since it can
use the structure of the sparse matrix, which does not change for individual steps. Only values
within this matrix must be adapted. Another important restriction is the influence of weight
parameters. We noticed, that even small changes can make the difference between convergence
and not. Theory about their magnitude might be helpful but is very difficult due to many
distinct equations and dependencies of initial data.
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The broad field of application with the presented and not mentioned classes and side condi-
tions makes it generally difficult to find optimal values during iteration and stating explicit rules
about the quality of results. Adaptions for individual practices are necessary. The presented
method also lacks a theory about the general existence of a convergent solution. We illustrated
examples with useful results, but as mentioned, the weights and original mesh have a huge
impact and the algorithm may fail to present an expected result.

For further work we highlight the importance of more testing and experimenting with different
examples in combination with a more powerful solver to address complex data. Also more than
one target energy, and equations respectively, can be joint to achieve a combination of surface
classes, resulting in a huge space of possibilities. More methods, using principal curvatures
as well as principal directions can be explored and implemented. The setup indicates an easy
integration of more equations based on the existing variables.

Special attention can be brought to quadrilateral meshes and polyhedral meshes. Theoretical
study of the presented operators in the case of non-triangular meshes are of interest and might
give promising results. The implementation itself is not restricted to any category of meshes,
but the definitions have to be studied prior to usage.

One adaption of interest would be the implementation and study of more complex boundary
restrictions like boundary curves or even reference shapes (compare [36]). Interactive design
with real-time calculation can be very interesting, provided the computational time can be
sufficiently decreased. Also adaptive meshes which may change connectivity (for example by
inserting or deleting vertices) can prove useful to approximate desired surfaces even better.

In summary the presented framework provides many possibilities for further research and
additional application.
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