
Erfassung und Visualisierung von
Provenance-Information

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Fenghong Zhang, Bsc.
Matrikelnummer 01425097

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Andreas Rauber, Ao.Univ.Prof. Dipl.-Ing. Dr.techn.

Wien, 1. November 2018
Fenghong Zhang Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Capturing and Visualizing
Provenance Information

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering and Internet Computing

by

Fenghong Zhang, Bsc.
Registration Number 01425097

to the Faculty of Informatics

at the TU Wien

Advisor: Andreas Rauber, Ao.Univ.Prof. Dipl.-Ing. Dr.techn.

Vienna, 1st November, 2018
Fenghong Zhang Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Fenghong Zhang, Bsc.
Simmeringer Hauptstraße 170/6/12

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. November 2018
Fenghong Zhang

v

Danksagung

Ich möchte mich besonders bei meinem Betreuer, Ao.univ.Prof. Dr. Andreas Rauber
vom Institut Software Engineering, der Technischen Universität Wien, bedanken. Die
Entwicklung des ProSci-Projekts nahm viel Zeit in Anspruch und musste mehrere Ent-
wicklungsschritte durchlaufen. Prof. Andreas Rauber hat mich bei der Entwicklung des
ProSci-Projekts kontinuierlich begleitet und mich in die richtige Richtung gelenkt. Er
gab mir viel Freiraum in der Entwicklung und ermutigte mich, meine eigenen Ideen
durchzuführen. Bei jedem Treffen mit Ihm bekam ich neue Denkanstöße. Er empfahl
mir eine Vielzahl guter APIs, um den Nutzen der Anwendung zu maximieren. Alles in
allem, ohne seiner Unterstützung und Hilfe, hätte ich diese Arbeit nicht realisieren können.

Des Weiteren bin ich unglaublich Stolz auf meine Universität. Während meines Bachelor-
und Masterstudiums habe ich 6 Jahre an der Technischen Universität Wien verbracht.
In dieser Zeit habe ich viele wertvolle Dinge gelernt. Das Wissen und die Fähigkeiten,
die ich durch das Studium erworben habe, haben mich mit der Kompetenz ausgestat-
tet, dieses Projekt abzuschließen. Ich freue mich auf die bunte Zukunft und danke der
TUWien, dass Sie mir die grundlegenden Fähigkeiten für das spätere Leben vermittelt hat.

Zum Schluss muss ich meinen Eltern meine Anerkennung ausdrücken. Die Ermutigung
und die kontinuierliche Unterstützung, die Sie mir gaben, haben mir sehr geholfen, diese
Forschung durchzuführen. Ohne Ihre Unterstützung würde ich meine Ziele nicht erreichen.
Großes Danke an meine Eltern.

vii

Acknowledgements

At the very beginning, I would like to say thank you to my thesis supervisor Ao.univ.Prof.
Dr. Andreas Rauber of the Information and Software Engineering Group (IFS) at Vienna
University of Technology. The development of the ProSci project took quite a long time
and went through several improvements. During the development of the ProSci project,
Prof. Andreas Rauber guided me with continuous help and lead me in the right direction.
He allowed me and gave me enough space of freedom in the development and encouraged
me to insist on my ideas. Every time, after visiting him, I always came up with new
clues. He suggested me a variety of good API, so that I can maximize the benefits from
others’ researches. All in all, without his support and help I cannot finish this work.

Secondly, I am so proud of my university. I have spent 6 years at the Vienna Uni-
versity of Technology for both my bachelor and master study, during the time I have
learned so many valuable things. The knowledge and the capabilities which I gained
from the study equipped me with the competence to be able to finish this project. I
am looking forward to the colorful future and thanks to the TU Wien for giving me the
fundamental abilities for the later life.

At last, I must express my appreciation to my parents. The encouragement and continu-
ous supports they gave me helped me to be able to accomplish this research. I wouldn’t
achieve my goals without their support. Big Thanks to my parents.

ix

Kurzfassung

In der modernen Wissenschaft wird eine geeignete Methodik für die Verwaltung und
Kontrolle wissenschaftlicher Arbeitsabläufe, sowie deren Daten, eine immer wichtigere
Rolle spielen. Die Berechnungsaufgaben umfassen das Lesen und auch die Verarbeitung
der Daten aus der externen Ressource. Die Aufgaben des gesamten Workflows müssen
manchmal mehrmals abgearbeitet werden. Das Speichern und Steuern zwischen den
einzelnen Workflows ist das Herzstück der Anwendung.

Wenn die Namenskonventionen nicht eingehalten werden, wird die Datei derzeit über-
schrieben und geht verloren. Das Ziel der Arbeit ist es, ein stabiles und funktionsfähiges
Werkzeug, für die Dokumentation des wissenschaftlichen Arbeitsablaufs bereitzustellen.
Das Tool visualisiert diese Arbeitsabläufe mit der hierarchischen Ansicht der historischen
Zwischendateien. Darüber hinaus bietet es Zugriff zu den historisch generierten Herkunfts-
daten. Der Ursprungsprozess des Werkzeugs basiert auf der Theorie der Versionskontrolle.

xi

Abstract

In the perspective of modern science, a proper methodology for managing, monitoring
and controlling scientific workflows for all kinds of collecting data from all fields and
branches plays an increasingly important role. Especially for data analytical science. The
computational tasks involve reading data from the external resource and computing pro-
cessed data or finding evidence during the tasks processing as the final result. The tasks
of the complete workflow sometimes need to run several times. Saving and controlling of
the intermediation between each workflow’s run is valuable and important.

Currently, if the naming conventions are not applied, the file will be overwritten and
get lost. The aim of the work is to provide a stable and functionality enabled tool for
scientific workflow provenance documentation. The tool visualizes the scientific workflows
with the hierarchical view of the historical intermediate files. Moreover, it provides access
to the historical generated provenance data. The provenance process of the tool should
be realized and derived based on the version control theory.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Theoretical Basis 5
2.1 Reproducibility and Replication . 5
2.2 Reliability of the Replicated Research 9
2.3 Scientific Workflow and Workflow Management System 11
2.4 Provenance and Ontology . 15
2.5 Version Control System . 17
2.6 Summary . 18

3 Library Usages 25
3.1 JGit . 25
3.2 ProvToolbox . 26
3.3 JavaFX . 27
3.4 Strace . 28
3.5 Oshi . 29
3.6 Jung . 31
3.7 Summary . 32

4 Project Structure 33
4.1 Use Case . 33
4.2 Description of the Components . 45
4.3 Summary . 61

5 Sample Project 71
5.1 Preparation . 71
5.2 Details about sample.sh and sample.tex 72
5.3 Run sample . 73

xv

5.4 Some More Executions . 74
5.5 Summary . 76

6 Conclusion 79
6.1 Recall the Research Requestions . 79
6.2 Limitations . 80
6.3 Future Work . 81

List of Figures 83

List of Tables 85

Bibliography 87

CHAPTER 1
Introduction

Scientific workflows are clusters of computational tasks, which are connected to each
other and enable different kinds of the function, such like retrieving, processing, analyzing
and abstracting from data. Those computational tasks always involve reading data from
external resources, and computing the processed data or finding evidence during the
tasks processing as final result. Scientific workflows can vary from simple to complex.
Generally, they can be differentiated mainly in the following types: pipeline workflow,
split workflow, merge workflow, diamond workflow and complex workflow.

In the perspective of modern science, a proper methodology for managing, monitoring
and controlling scientific workflows for all kinds of collecting data from all fields and
branches plays an increasingly important role, especially for the data analytical science.
Therefore, the appearance of the scientific workflow management tool, such as Taverna,
Kepler, and VisTrails, is admired. Those workflow management tools have a wide range
of the abstraction levels, and if the workflows are appropriately designed, the provenance
matches quite gut with the experiment semantics [PMBF17]. However, they require a
high learning curve and adoption costs[STVK+08].

The tasks in the complete workflows sometimes need to be run several times due to various
reasons. The saving and controlling of the intermediation between each workflow’s run is
valuable and important. For instance, if the experiment runs several times, the cached
intermediate data can help to avoid expensive operation due to the recomputing[GE11].
Currently, if the naming conventions are not applied, the file will be overwritten and get
lost. Moreover, the provenance data can help scientists to discover and understand the
reasons, why an experiment leads to inconclusive results [PMBF17]. Provenance captures
all computational steps, used data, its output, input, intermediate data and libraries,

1

1. Introduction

and environment dependencies [CSF13]. The reproducing of the scientific experiment
is not always possible because of a dynamic medley of hardware and software [Rot18].
The preparation of a systematically maintained archiving of the provenance data for
scientific workflows is therefore critical and essential from the point of view of the scientific
computational experiment.

Currently, we are missing such a tool, which can automatically catch the provenance
data of the scientific experiment without any manual adaptations or learning curve
required and is able to represent the provenance information which gathered during
the experiment’s run into a human-readable and intractable structure. We may already
hear about Noworkflow[PMBF17]. This tool enables more or less requirement of our
expectations. But unfortunately, it is a language related tool. It can only apply to
Python[Ros95].

To overcome this limitation, the goals of this thesis is to provide a stable and functionality
enabled tool for scientific workflow provenance documentation. The tool aims to supply
a prototype to solve the following questions:

• How to automatically track, monitor and capture system provenance information at
a wide range and system scale on the workflow steps, input, output, intermediate,
library dependencies, hardware, and software environment, etc.

• How to transform the captured provenance data into provenance ontology?

• How to present the collected provenance data and the structured ontology into a
human-readable format with interaction possibilities.

Furthermore, we are looking forward to identifying the outcome by the following criteria:

• How many provenance information can be efficiently and correctly collected by
applying the methodologies which will be introduced in the next paragraph?

• How many information during the experiment by applying our prototype is going
to be lost?

• Which provenance information is necessary for faithful reproduction of the scientific
experiment?

• What kind of benefit is going to be detected through our thesis for the repeatability
of the scientific experiment.

2

Since this paragraph, we are going to introduce the methodology approaches briefly. We
will call our prototype solution "Prosci". It is an abbreviation of the sentence "Prove-
nance of the scientific experiment". The provenance information collecting mechanism
takes the benefits of the versioning and logging. As the tool intends to be deployed
in the Unix system, the tracing tool targets the Strace [Wik19]. The JGit framework
[DSS+14] is considered for the versioning purpose. It is applied comprehensively in our
implementation to provides access to the historical generated provenance data. It is
obvious that in the field of the computational experiment the environmental setting
for executing the work can lead to very different results [GHJ+12]. That is why the
environment for the experiment should simultaneously be taken into account. For solving
this consideration the framework Oshi (https://github.com/oshi/oshi) is employed into
the tool implementation. Last but not least, the representation of the transformation
of the collected provenance data is based on the Prov-O Ontology[LSM+13], which was
published by W3C as standard. To realize the interaction ability between the user and
the transformed ontology, we are going to using Jung [Mor] to visualize the provenance
ontology as a graph and using JavaFX [DHG+14] to facilitate the user interaction.

The tool initially contains three components, the application console, the file monitor
and the graph visualizer. The application console should take responsibility for record-
ing scientific computational tasks. Furthermore, the application console initializes the
workspace for storing the processed results from the computational workflows and the
corresponding logfiles for each separate task. In other words, it deals with the interaction
with the user. The File Monitor is the monitoring tool for detecting the log file entrance
under the workspace domain. The last and also the essential part of the tool is the
workflow ontology visualizer. This component integrates the visualization of the workflow
ontology, monitoring and controlling the computational tasks and its provenance ontology
creator is used mainly for translating and converting the scientific workflows and their
intermediate files into the Extensible Markup Language (XML) format and generate the
visualized graph accordingly as the workflow ontology.

The thesis is organized into six chapters. In chapter 2 we are going to discuss some
related terminologies and penetrate the topic of reproducibility and repeatability of the
scientific experiment. At the same time, we will view some existing approaches. Chapter
3 intends to give us a brief introduction of all used APIs so that we can easily understand
the description of the use cases and structure of the project’s components from chapter
4. In chapter 5 we run the sample project and want to verify the functionality and the
usability of the implemented tool. In the last chapter 6, we recall the research questions
and reflect the limitation of Prosci and the possible future work are also mentioned.

3

CHAPTER 2
Theoretical Basis

In this chapter, we are going to suggest some of the essential technologies which often
used in our project, the related works which are done and published before, the techniques
that exist already and the fundamental milestones on which our project is built upon.
In all words, all subsections in this chapter are quite vital for you to get the idea of the
crucial concepts of the ProSci project.

2.1 Reproducibility and Replication

First of all, you may ask, "what does research reproducibility mean?"[GFI16], obviously
there is no conceptual framework standard and settlement of the "research reproducibility"
across the sciences. We introduce here some new lexicon for research reproducibility from
the publication of Steven N et al.[GFI16]. They defined some basic terms in order to
examine and enhance the reliability of research.

They define "methods reproducibility" as providing as much as possible detail about
study procedures and enough data so the same procedures could theoretically or in
reality be exactly repeated. "Result reproducibility" points to the receiving of the same
result from the execution of a separate study with closely matched procedures as the
original experiment. Moreover, there are two important terms, that couldn’t be forgotten–
"robustness and generalizability". Robustness in the scientific experiment reproduction
means the variations between the experimental conclusion and the initial assumption as
well as experimental procedures should be stable. Generalizability can be understood as
the persistence of an effect in settings from and outside of an experimental framework.

5

2. Theoretical Basis

Steven N et al suggest last but not the less, "inferential reproducibility", this term. as
the conducting of the qualitatively similar conclusion from an independent replication
and reproducing the original one.

Why is the replication of the research in computational science so important? Replication
can be described as the ability to re-run the experiment under the same condition with the
same methodologies and obtain the same results. "Replication is the ultimate standard by
which scientific claims are judged. With replication, independent investigators address a
scientific hypothesis and build up evidence for or against it."[Pen11], he says, usually the
scientific experiment replication differentiates between two extreme points, full replication
and no replication. Roger D. Peng drew in Fig. 2.1 a spectrum of the possibilities of the
experimental research replication.

Figure 2.1: The spectrum of reproducibility [Pen11]

It is clear, that we aim to make the replication of the research as far as possible to settle
in the right hand of the Fig. 2.1 as possible. "Reproducibility has the potential to serve
as a minimum standard for judging scientific claims when full independent replication
of a study is not possible." [Pen11]. And if there exist some universal regulations for
reproducible computational research? Geir Kjetil Sandve et al. [SNTH13] proposed ten
rules as below:

• For Every Result, Keep Track of How It Was Produced

• Avoid Manual Data Manipulation Steps

• Archive the Exact Versions of All External Programs Used

6

2.1. Reproducibility and Replication

• Version Control All Custom Scripts

• Record All Intermediate Results, When Possible in Standardized Formats

• For Analyses That Include Randomness, Note Underlying Random Seeds

• Always Store Raw Data behind Plots

• Generate Hierarchical Analysis Output, Allowing Layers of Increasing Datail to Be
In spected

• Connect Textual Statements to Underlying Results

• Provide Public Access to Scripts, Runs, and Results

Jasonb[Bro14] extends the rules for reproducible research and targets it in the filed of
machine learning with some more points:

• Use a build system and have all results produced automatically by build targets.

• Automate all data selection, preprocessing and transformations.

• Use revision control and tag milestones.

• Strongly consider checking in dependencies or at least linking.

• Avoid writing code.

• Use a makeup to create reports for analysis and presentation output products.

Keeping all those criteria in mind, now we are going to start some discussion about the
reproducibility of computer science research. In fact, in both wet sciences and applied
computer science, the reproduction of someone’s work is not so easy as we think about.
The problems involved not only the expensive laboratory equipment and detailed proce-
dures respective to the wet science. But also the unavailability of the source code, inability
to build the source code in the field of the applied computer science. Furthermore, the
execution environment and the incomplete codes often occur to be hurdles.

The facts is that many researchers are making efforts to make the reproducibility in
scientific experiment possible.

In the paper "Measuring Reproducibility in Computer System Research"[MSSW13], the
authors collect 613 papers from eight ACM conferences and five journals. After some
positive attempts to get the source code and dataset, 102 from 613 successfully ran. The

7

2. Theoretical Basis

authors proposed a so-called "sharing specification", and they believe that if this method
is generally adopted the willingness to share the code and data of the research will be
positively impacted.

Vandewalle et at. [VKV09] also wrote in their paper and distinguish the 6 different levels
of reproducibility. The level starts with 5 "The results can be easily reproduced by an
independent researcher with at most 15 min of user effort, requiring only standard, freely
available tools", and ends up with 0 where "The results cannot be reproduced by an
independent researcher.". Moreover, various web sites, web repositories, web portal, etc.
like SHARE[GM11], CARMEN[AJF+11] are also available.

Although, we can overwhelm the subjective reasons for sharing research and increase the
accessibility of the source codes, dataset, etc. with the suggested methods from above.
The objective factors such as different execution environment, a different version of the
dependency will still impact the reproducibility of the scientific experiments.

Therefore, Koop et al. [KSM+11] introduce a provenance-based system that captures
workflows and Mache[BCMW11] supports the executable paper concept.

However, executable paper and the infrastructure that intends to support the life cycle
of the executable paper still need a high learning curve and this requirement impacts all
involved individuals, such as author, reader, reviewer of the executable paper. Further-
more, the high adoption costs which also exists in the Workflow Management Systems
can’t be ignored.

Jill P. Mesirov[Mes10] also proposed a Reproducible Research System(RRS) with two
components, they are Reproducible Research Environment (RRE) and Reproducible
Research Publisher(RRP). RRE takes the responsibility of providing computational tools
and monitoring the provenance of data, analysis and their results, also, it packages them
for the future distribution. RRP is a document preparation system, and it seems like a
standard word-processing software.

RRS corresponds to the concept of the executable paper, the advantage of it is the
automation of the tracing of the provenance data and the analysis of the result and
packing them. RRS attempts to achieve the goal so that the reader not only look at

8

2.2. Reliability of the Replicated Research

the table or figure in the paper but also run the computational task to generate them.
However, due to the lack of the visualization of the provenance data of the background
computational task, once the execution of the computational task failed, the reader can’t
find out the reason of the failure.

Adapting the intention of RRS we will overtake the concept of RRE and improve or
change the so-called RRP into a graphic visualizer for illustrating the collected provenance
information to the user directly so that they can interact with the information

Without a doubt, reproducible research plays a more and more important role in all field
of the scientific experiment. We are eager for a common methodology to realize this
purpose and wondering if it can be made into a standard.

In 2008, Peng et al.[PE09] published an article about the topic "Distributed reproducible
research using cached computations." In this article, they present a method, by using
cached computations, the executions of the statistical analysis are stored step by step in
a collection of databases. Those collections of the execution steps can be published sub-
sequently to public users. The interaction between users and researchers are facilitated.

Currently, this approach is implemented for R.

2.2 Reliability of the Replicated Research
We have already mentioned the importance of the reproducibility of scientific research,
the difficulties that we face currently and the methodologies introduced by a various
researcher who makes efforts to improve the standard. However, most of us don’t know
how to measure reliability across multiple data processing conditions. When we talk about
the data processing conditions, we are pointing them to the terms, such as workstation
type, operation system, CPU, RAM, etc.

As an example, we concern the case FreeSurfer [GHJ+12], FreeSurfer is a popular software
package to measure cortical thickness and volume of neuroanatomical structures. To
discover the effects across different data processing conditions, we follow the research from
Gronenschild et al. [GHJ+12]. In their experiment, they investigated the measurement of

9

2. Theoretical Basis

cortical thickness and volume with diverse variables conditions, such as different FreeSurfer
version (v4.3.1, v4.5.0), different workstation (Macintosh and Hewlett-Packard), and
Macintosh operating system version (OSX 10.5 and OSX 10.6). In Fig. 2.2. we show the
workstations used in the study.

Figure 2.2: Workstations used in the study [GHJ+12]

In Fig. 2.3 we can see three parts, and all three parts show the detected percentage of the
absolute differences between the results. Part A establishes the comparison between two
workstations, Mac and HP, for three different versions of FreeSurfer. Part B demonstrates
the differences between FreeSurfer v4.3.1 vs v4.5.0, v4.3.1 vs v5.0.0 and v4.5.0 vs v5.0.0.
Part C describes the comparison between different OS OSX 10.5 and OSX 10.6 for three
different FreeSurfer versions. Surprisedly, significant differences were detected between
the FreeSurfer versions.

According to the study, the authors warn the user of the FreeSurfer to be careful before
applying the upgrade in the FreeSurfer version, OS version or switch to a new workstation
during a continuing study.

When we talk about the reproducibility, we obviously must take various factors that
potentially impact the experiment results into account, those factors include, not only
the version of the tool but also the version of the operation system, the workstation type,
etc.

Regarding the limitation and the potential weakness of the above mentioned related
works. We are raising up some requirements for our work.

First of all, we want to ease the learning curve of the user and accomplish an easy-to-use
conceive. Secondly, we hope the tool is not language-dependently, noWorkflow[PMBF17]
can be seemed as a Counterexample. That is to say, the tool can conquer a wide range

10

2.3. Scientific Workflow and Workflow Management System

of computational tasks and should be used without special training requirement.

Furthermore, we hope the tool can benefit from tracing automation, just like RRE
and it should be able to capture the environmental difference between executions, such
as the different version of the dependency, used library, OS, and etc. The tool enhances
the repeatability by visualizing the provenance information.

2.3 Scientific Workflow and Workflow Management
System

2.3.1 Scientific Workflow

In this section, we are going to dig out the conceptual of the scientific workflows(SWFs).
What exactly SWFs mean? Some authors define the scientific workflow in the following
sentences.

"A scientific workflow is the description of a process for accomplishing a scientific ob-
jective, usually expressed in terms of tasks and their dependencies. Typically, scientific
workflow tasks are computational steps for scientific simulations or data analysis steps.
Common elements or stages in scientific workflows are acquisition, integration, reduction,
visualization, and publication (e.g., in a shared database) of scientific data. The tasks
of a scientific workflow are organized (at design time) and orchestrated (at runtime)
according to dataflow and possibly other dependencies as specified by the workflow
designer. Workflows can be designed visually, e.g., using block diagrams, or textually
using a domain-specific language." [LWMB09]

At the meantime, in the article "the future of the scientific workflows" the authors say, “in
the context of scientific computing, a workflow is the orchestration of multiple computing
tasks over the course of a science campaign. " [DPA+18] They additional define the
SWFs into several sub-catalogs:

• Computational simulations

• Experimental observations

• Data analysis

• Visualization software working in concert to test a hypothesis and arrive at a
conclusion

11

2. Theoretical Basis

Scientific workflow is a practice to express a calculation formally, it involves usually
multiple tasks, and the inter-dependencies between the tasks’ parameters, inputs, and
outputs. There are no limitations on the tasks, a task can be a short or long one, the
tasks couple with each other either loosely or tightly. We often run the same set of
workflow with different dataset.

The workflow series mainly consists of five elements. Task specification, with or without
dependencies. Sometimes, the output of one task may be the input of another task. The
second element is the task scheduling, the tasks can run parallel or one after the other.
Next, computational resources must be obtained. Metadata and the provenance data are
also counted as an indispensable element. Finally, we need to handle the input files and
the output files. The so-called file management deals with the issues, such as making the
input files available for execution and archive the output files.

2.3.2 Scientific Workflow Management System (SWfMS)

After the clarification of the fundamental elements of the workflow, we realize that the
tool that makes the planning, executing and monitoring of the complicated routine of
the scientific workflow is desired.

The software products–Workflow Management System is designed to help users with
creating and executing the workflows. They usually support all kinds of workflows and
automate the workflow pipeline. With the help of the workflow management system, the
tracking of the runtime, environment, arguments, inputs, and outputs of the execution of
the workflows is automated. it ensures the availability of the data which is needed for
the jobs. A prominently structured file storage is guaranteed. Fig. 2.4 illustrates the
functionalities of the SWfMS. [LPVM15]

In the Fig. 2.4, the scientific workflow management system is presented as layers. Basi-
cally, it is divided into five layers. The presentation layer, which in other word is the
user interface, it facilitates the interaction between the user and the SWfMS. The user
services layer provide the desired functions to users. The workflow execution plan(WEP)
generation layer produces the WEP and the generated WEP is executed in the workflow
execution plan(WEP) execution layer. The necessary physical resource is accessible in
the infrastructure layer. The last three layers constitute the scientific workflow execution
engine.

12

2.3. Scientific Workflow and Workflow Management System

Apparently, SWfMSs support the easy modeling of scientific experiments. Commonly, the
modeling is expressed as a directed cyclic graph(DCG) or directed acyclic graph(DAG).
The efficiency of SWfMS relies on several factors. Especially on the parallelism and
scheduling techniques. Under the term of the parallel execution, the parallelism can be
divided further into three types:

• data parallelism

• independent parallelism

• pipeline parallelism

Parallelization defines the workflow tasks which can be executed in parallel in the WEP
to accelerate the job processing time.

Under the concept of the scheduling, we understand it as a process of allocating concrete
tasks to computing resources (i.e. computing nodes) to be executed during workflow
execution.[BL13] The goal of the scheduling is to minimize the resource utilization and
cost of the execution. The subcategory of the scheduling is shown as follow:

• static scheduling

• dynamic scheduling

• hybrid

The modern SWfMSs e.g. Kepler [ABJ+04b], Taverna [WMF+04], Chiron [ODS+13],
etc. which are ongoing nowadays combine different techniques mentioned above allow the
scientists to plan, control and organize the SWF with best efforts. The Fig. 2.5 shows us
a comparison across different SWfMSs.

Taverna

As we talking about the SWfMSs, we can not ignore the Taverna [WHF+13] , the most
propagated SWfMSs. Teverna concentrates on the workflow executing and designing
based on the web services. The complex analysis pipelines of Teverna consists of dis-
tributed web services and local tools. The usage of the distributed services has the
advantage such as for reduction of the local infrastructure and maintenance costs and
development and testing the workflow repidly. On the contrary, using third-party web
services are frequently dangerous. Because of the unavailability and the changes of the

13

2. Theoretical Basis

service interfaces.

By using Teverna, the user can access to several thousand different tools and resources
and once the workflow constructed, they can be reused, executed and shared. Some
considerable features of the Teverna are listed below:

• ability to perform implicit iteration, looping and streaming of the dataset.

• the implementation to interact with different types of services, such as WSDL Web
Service, RESTful Web Services, BioMart data warehouses, etc.

• accessibility to the myExperiment repository.

• enable the execution of the workflow on remote computational infrastructure.

• enable the user to choose data and the parameters during the workflow execution.

• provenance suite records service invocation, intermediate and the final results and
exports the W3C PROV model.

• the plugin architecture enable the easy code contributions and extension.

Kepler

As another example, we are going to address some features of Kepler. Kepler is one
of the most popular scientific workflow management systems. It aims to provide the
scientists with an easy-to-use software tool for conducting analyses and run models in
various software and hardware environment. "Kepler attempts to streamline the workflow
creation and execution process so that scientists can design, execute, monitor, re-run, and
communicate analytical procedures repeatedly with minimal effort. Kepler is unique in
that it seamlessly combines high-level workflow design with execution and runtime interac-
tion, access to local and remote data, and local and remote service invocation."[ABJ+04a]

As we mentioned in the introduction section, we notice that those SWfMSs do positively
impact the reproduciability and benifit the development of the scientific experiment.
But the scientists is obligated to define the experiment as workflow steps. Although the
well-defined workflow can achieve a high level of the abstraction, but they still have their
limitations. The user of the SWfMS must be trained before they are able to use them,
thus cause the high learning expense. Moreover, SWfMSs are not using general-purpose
languages and therefore lack of the flexibility[PMBF17].

14

2.4. Provenance and Ontology

In our thesis, we aim to find out a feasible solution which not only increase the useability
but also enable the integration and communication between the user and the provennace
information.

2.4 Provenance and Ontology

2.4.1 Provenance

Across all fields of the science domain, the scientific workflows perform the valuable
adjustment, extraction, and processing on enormous data volume. Taking inputs and
derive meaning outputs, discover the meaningful information behind the huge amount
of the data turns out to be meritorious. However, the workflow can be executed with
different parameters under different conditions, the environment of the execution can
vary from time to time. Therefore, a comprehensive provenance framework is vital for
verifying the quantitative and qualitative of the data and the scientific experiment, for
reproducing and validating the scientific results and for associating the true value from
the data to results.

The tracking of the provenance metadata of the SWFs is beginning from the point of their
creation to intermediate processing, and end up with their end use of the final results.
[SNB+11] Sahoo et al. illustrate the provenance life cycle with four phases in Fig. 2.6.

They distinct the provenance life cycle between pre- and post-publication. The pre-
publication is the state before the publication of the data and the results for the public
access and to the data repository, post-publication describe the phase, when the results
are used by data mining or knowledge discovery. During the pre-phase, the provenance
is collected to describe the experiment design, the platform, in which the experiment
is executed and the tools which are used for analyzing and processing. Instead, the
provenance in post-phase is used to conduct the analysis algorithm and interpretation of
results.

The word provenance comes originally from French. It means "to come from". To
interpret the concept of the provenance we follow the instruction of the Boris Clavic et
al. [GD07]. They distinguish the provenance into two parts: the provenance model and
the provenance management system. They also define the conceptual properties of data
provenance into a hierarchy of categories in Fig. 2.7 2.8 2.9. The three major scheme are:

• Provenance model

15

2. Theoretical Basis

• Query and manipulation functionality

• Storage model and recording strategy.

2.4.2 Ontology

"Before, choosing which data has to be stored, it is necessary to define how these data have
to be structured so that they can be later recovered and understood " [dPHG+13] Renato
de Paula et al. state in their research. The development of diverse provenance models
e.g., Open Provenance Model(OPM) [MCF+11], PROV-DM[MM12] and Provenance
Vocabulary [HZ10] satisfies the need of the provenance demand on scientific workflow.

Concerning the provenance model, we need to explore a related term–ontology. "Com-
putational ontologies are a means to formally model the structure of a system, i.e., the
relevant entities and relations that emerge from its observation, and which are useful to
our purposes." [GOS09]

Indeed, OPM is currently applied in a wide range, many libraries and tools are available,
it facilitates the interoperability of provenance data. Since PROV-O[LSM+13] is the
forthcoming data model and is provided by W3C with specifications as the first official
standard, for tracking the provenance metadata we introduce the PROV-O to describe
the structure of our scientific workflow provenance. PROV-O using OWL2 Web Ontology
Language[HKP+09] and provides a set of classes, restrictions, and properties for describing
and representing the provenance information which generated and produced by various
systems and environmental contexts for different applications and domains. The starting
points of the PROV-O Ontology are:

• prov: Entity

• prov: Activity

• prov: Agent

“Entity is a physical, digital, conceptual, or other kind of thing with some fixed aspects",
usually in the context of SWFs it means dataset, script, etc.

"Activity is something that occurs over a period of time and acts upon or with entities".
Activities, therefore, equal the workflow step itself, it is the action that takes the dataset
as input and runs the script with parameters and gets the result.

16

2.5. Version Control System

Agent in our curriculum is the software agent, who runs the action. It is the environment,
where the workflows are executed.

Accordingly, the properties which are used to describe the relationships between start
points are derived. Fig. 2.11 illustrates some basic properties of the PROV-O. At the
meantime, The Fig. 2.10 shows the intrinsic associations between starting points and
their properties.

2.5 Version Control System

The version control system is the tool, which enables the user to recall, review or return
to the specific previous version of the file system. It records the changes to a series of
the file over time. Software developers use the version control system to control their
programming procedures. Actually, the version control system can be applied to every
kind of files.

Over the decades, the development of the version control system had gone through several
revolutions. Scott Chacon[Cha14] differentiates the version control system into three
types. They are local version control systems, centralized version control systems, and
distributed version control system.

2.5.1 Local Version Control System

The Local VCS is built upon a database, this database keeps all the changes to files. The
famous tool which uses this technology is called rcs[rcs15].

2.5.2 Centralized Version Control Systems

When considering the integration between developers, the next revolution of the version
control system appears. The centralized VCS has a single server that contains all files
and their varying versions, see Fig. ?? . Over the years it became a standard for the
version control system. The implementation of this generation such as Subversion, CVS

17

2. Theoretical Basis

and Perforce were quite recommendable. In spite of the advantage of it, The practice
prone that single point of failure to be its downside. The entire history of the works is
stored in one place, the risk of losing everything is extremely high.

2.5.3 Distributed Version Control Systems

In order to avoid the single point of failure the DVCSs step in. In this kind of version
control system such as Git, Bazaar, etc. the user checks out not only the last version of
the file system but copies the entire repository, see Fig. ??. You can collaborate your
work with different people in different environments simultaneously and don’t need to
worry about the data loss.

2.6 Summary
Reconsider the mentioned related works. We recognize that reproducibility plays a
significantly important role in the computational scientific experiment. With a high
reproducibility, the scientist can enhance the reliability of the research and it can seem
like a minimum standard for judging the scientific claim.

Many researchers consecrate themselves to improving the reproducibility of the scientific
experiment subjectively and objectively, however, we still missing a tool which highly
integrated with the automation tracing process of provenance data and transformation of
the provenance information into human readable ontology standard and illustrating the
ontology as a user interactable representation. In the end, an infrastructure, which can
be applied to diagnose and examine the possibility of the crash in the re-run procedure
of the computational tasks is built.

Recall our thesis purposes, we want to implement a prototype which can compensate
for the above-mentioned absence of the tool. Our Prosci project aims to extend the
concept of the RRE for automatical tracking, monitoring and transforming processes. It
overcomes the language boundary such as noWorkflow [PMBF17]. It eases the learning
effort of the user and thus can be applied for a wide range of the domain. In the next
chapter, we are going to look into the details of the used API, which are used in the
implementation of Prosci.

18

2.6. Summary

Figure 2.3: Effects of data processing conditions on the voxel volumes for a subsample of
subcortical structures [GHJ+12]

19

2. Theoretical Basis

Figure 2.4: Functional architecture of a SWfMS [LPVM15]

Figure 2.5: Comparison of SWfMS [LPVM15]

20

2.6. Summary

Figure 2.6: Provenance lifecycle in the pre and post-publications stage of the translational
research [SNB+11]

21

2. Theoretical Basis

Figure 2.7: Provenance model [GD07]

Figure 2.8: Query and manipulation funcionalities [GD07]

22

2.6. Summary

Figure 2.9: Storage and recording [GD07]

Figure 2.10: The three Starting Point classes and the properties that relate them
[LSM+13]

23

2. Theoretical Basis

Figure 2.11: Qualification Property and Qualified Influence Class used to qualify a
Starting-point Property [LSM+13]

24

CHAPTER 3
Library Usages

After reviewing, collecting and reflecting the related works from other researchers. We
gather the methodologies heuristically and intend to apply them in our ProSci Project.
In this Chapter, we will introduce the external library usages which are used across the
project and how the ProSci is benefited from the utilization of them.

3.1 JGit
Since you shouldn’t be unfamiliar with the Distributed Version Control System Git,
the name "JGit" reminds you trivially as the Java implementation of the Git VCS.
JGit[DSS+14] is a Java framework with very few dependencies, and hence, it is becoming
the appropriate API for embedding in any Java application, which has the demand on
the version control integration.

A repository is a place, where all objects and refs stored for managing resources. Besides,
JGit has four types of objects, they are specified in the Table 3.1.

Furthermore, we have "Ref", it is an object identifier and can references to any kind of
the git object, such as blob, tree, commit and tag. A "RevWalk" walks a commit graph,
The "RevCommit" represents a commit in Git. The "RevTag" represents a tag.

JGit has not only low-level code but also he higher level API to work with Git repository.

25

3. Library Usages

blob store file data
tree a directory, references other trees and blobs

commit references to a single tree
tag marks specific releases

Table 3.1: JGit Objects

• git add: add files to the index

• git commit: perform commits

• git tag: tagging options

• git log: allow the user to walk a commit graph

• ...

3.2 ProvToolbox

"ProvToolbox is a Java library to create Java representations of PROV-DM, and convert
them between RDF, PROV-XML, PROV-N, and PROV-JSON" [Mor15]. The source
code of the ProvToolbox can be found in the Gitlab repository:

https://github.com/lucmoreau/ProvToolbox.

By using the maven configuration we can get the API straightforward. (See Fig3.1)

The last version of the ProvToolbox is 0.7.0. Since version 0.6.1 ProvToolbox is deployed
on Maven central.

The Javadoc of the ProvToolbox is ready to be visited under the url:

https://openprovenance.org/java/site/latest/apidocs/

26

3.3. JavaFX

Figure 3.1: Maven Configuration of ProvToolbox [Mor15]

3.3 JavaFX

JavaFX was originally planned to replace the Swing as the standard GUI API for Java.
It is essentially a software technology for developing and delivering client application
for mobile devices, desktop and built on Java application. JavaFX aims to produce a
modern, efficient and fully featured toolkit for the rich web application. It allows the
developer with the integration of vector graphics, audio, video, and various web assets.

Over the years, JavaFX has stepped across from JavaFX 1.0 to JavaFX 11. Since JavaFX
2.0 the JavaFX is written in "native" Java code. JavaFX is now a part of the JDK/JRE
for Java8. With this version of the JavaFX, the developer gains some new added features:

• 3D graphics

• sensor support

• printing and rich text

• generic dialog template

• MathML

The components of the JavaFX includes:

• The JavaFX SDK

• IDE for JavaFX

27

3. Library Usages

• JavaFX scene builder, this is the user interface for creating and designing the
components and the designing information will later be saved in a FXML file using
XML format.

You can visit the most recent project of the JavaFX there:

https://openjfx.io/

3.4 Strace

"Strace is a diagnostic, debugging and instructional userspace utility for Linux. It is used
to monitor and tamper with interactions between processes and the Linux kernel, which
include system calls, signal deliveries, and changes of process state."[Wik19]

Strace was first published in 1992 by Paul Kranenburg. Later Branko Lankester, Richard
Sladkey, Dmitry Levin, and etc. have taken the responsibility for maintaining strace.

The most common usage of the Strace is to print out all system call. With this function-
ality, the user can detect the system and find out the outlier of their expectation. As we
all know that system calls are events that happen at the kernel interface, a monitoring
mechanism is valuable for detecting system bugs and capturing background problem.

The strace outputs contain in each line usually a system call which name, arguments,
and the return value.

An example output of strace by running command "ls" on Ubuntu System is like:

XX@XX: $ strace ls
execve("/bin/ls", ["ls"], 0x7ffea3e29cb0 /* 69 vars */) = 0

Table 3.2, we list the useful parameters that we are going to use in our ProSci strace
tracing.

28

3.5. Oshi

-ff follow forks with output into separate files
-f follow forks
-y print paths associated with file descriptor arguments
-tt print absolute timestamp with usecs

-s strsize limit length of print strings to STRSIZE chars (default 32)
-o file send trace output to FILE instead of stderr

Table 3.2: Strace Parameters

Most of the parameters in the table are trivial, one may confuse you is the "-s" parameter,
this parameter is used to limit the length of the print strings. The reason why we take it
into account is that we want to avoid the information loss. Normally, with 32 characters,
we can’t capture complete information of a Unix system call including its command name,
parameters, status code and etc. Therefore, as the default value, we currently set it to
2048 in order to make sure that we won’t lose any information.

3.5 Oshi

Oshi[osh] is a free Java API for collecting, retrieving and gathering the information about
the operating system and hardware. It is independently, the installation requires no
additional libraries. Oshi is supported almost in all common operationg systems, such as
Windows, Linux, Mac OS X and Unix (Solaris, FreeBSD).

Currently, various projects are using Oshi for capturing hardware and software informa-
tion. Some markable projects are listed below:

• Apache Flink

• GoMint

• Eclipse Orbit

• Eclipse Passage

• GeoServer

• PSI Probe

• DeepLearning4J

29

3. Library Usages

In the list below we stick a screenshot, which we grabbed out from the homepage of the
Oshi. In this Fig. the supported features of the Oshi are described.

• Computer System and firmware, baseboard

• Operating System and Version/Build

• Physical (core) and Logical (hyperthreaded) CPUs

• System and per-processor load and tick counters

• CPU uptime, processes, and threads

• Process uptime, CPU, memory usage

• Physical and virtual memory used/available

• Mounted filesystems (type, usable and total space)

• Disk drives (model, serial, size) and partitions

• Network interfaces (IPs, bandwidth in/out)

• Battery state (capacity, time remaining)

• Connected displays (with EDID info)

• USB Devices

• Sensors (temperature, fan speeds, voltage)

However, not all feature are implemented across all operating system type. In windows,
the load average is skipped, the sensor’s indicators are read from Microsoft’s Windows
Management Instrumentation. For MacOs time processors spend idle will not be moni-
tored. On the other hand, Linux, Solaris, and FreeBSD may request running as root user.

You may find the resource code of Oshi from the linke below:

https://github.com/oshi/oshi/blob/master/UPGRADING.md

and the API docs can be found there:

http://oshi.github.io/oshi/apidocs/

30

3.6. Jung

Currently, the last version of Oshi is 4.x. You can configure the Oshi in the maven. Oshi
3.x is compatible with the Java 7 and Oshi 4.x requires a minimum version of Java 8.

In our case, analyzing the survey of Gronenschild et al[GHJ+12]. we will take the
following points into consideration:

• Computer System and firmware, baseboard

• Operating System and Version/Build

Besides, the points below are also considered:

• Processor

• Memory

• CPU

3.6 Jung
JUNG is an open-source Java library. JUNG try to avoid the continually re-inventing
from other developers who consecrate themselves to work on the relational data analysis
by providing a common framework for graph and network analysis.

JUNG is initiated in 2003. The aim of the project was to provide "a common and
extendible language for the modeling, analysis, and visualization of data that can be
represented as a graph or network."[Mor]

JUNG supports to illustrate a variety of the entities and their relations as a directed and
undirected graph, graph with different kind of edges and also hypergraph. Each node
and edge can be annotated according to the user demands.

JUNG implements a number of algorithms of the graph theory, data mining and etc.
The user of JUNG can use the ready-to-use layouts from JUNG and they can also create
their own layout.

31

3. Library Usages

The last release of JUNG version 2.1.1 is on 7 September 2016. The repository is
administrated by one of the co-creator of the JUNG project Joshua O’Madadhain. Find
the source code from the URL:

https://github.com/jrtom/jung

Visit the homepage of JUNG:

https://jrtom.github.io/jung/

The Java doc specification is there:

https://jrtom.github.io/jung/javadoc/index.html

Moreover, the JUNG can also integranotenotete with your project by defining the following
maven dependency.

<dependency> <groupId>net.sf.jung</groupId>
<artifactId>jung-[subpackage]</artifactId>

<version>2.1.1</version> </dependency>

3.7 Summary
After the short introduction of the above-mentioned API, we construe the Prosci project
into three parts and each part utilizes the corresponding APIs and consequently perform
its unique function in the project.

Each part proposes to solve one of the question which arose in the introduction section.
The mechanism to automatically tracking, collection, versioning and capturing the prove-
nance data is built upon the help of the Strace, JGit, and Oshi. The possibility for
automatically transforming the provenance information into ontology definition uses the
ProvToolbox as a foundation. Last challenge in the project is the presentation of the
ontology into a human-readable and interactable format. For this intention, Jung and
JavaFX are actively involved in our Prosci project

Let’s go through the implementation detail in the next chapter, to know how the func-
tionalities of Prosci is realized by using those of the APIs.

32

CHAPTER 4
Project Structure

4.1 Use Case

Within this section, I am going to establish the primary use cases of the Prosci tool.
As shown in Figure 4.1. The user of the Prosci, has six main functions to choose. The
description of each use case is shown in the table under certain subsection. The workspace
is playing an essential role of the Prosci tool, every time one the user starts the application,
he needs to define a workspace, the workspace which is defined need to be an existing
one. Or as an option, the user can also create a new one, after the creation the new one
is automatically defined as the "current workspace." Furthermore, some helper functions,
such as "print help menu", "show workspaces" and "save files" are also available, to make
it convenient for the user to control the Prosci tool.

The most import two functionalities of the Prosci, are the Xterm starter and the graphic-
visualizer. The pre-condition for those two functionalities is a specified workspace domain.
Xterm is a standard terminal emulator, and it has the responsibility to simulate the
system terminal so that the user can run their experiment freely using commands.

What we still need to mention about, is the Graphic-Visualizer. It provides the user
an Overview of the entire workflows with the ontology definitions. Additionally, our
Graphic-Visualizer supplies some specific features. Through it, the user is capable to
rerun the historical executions in the system command backlog and they are also in a
position to recover the overwritten files to a specific path under the workspace directory.

33

4. Project Structure

Figure 4.1: Main user cases of the Prosci

4.1.1 Create Workspace

A workspace is a dynamically changed directory, where the source code, the generated
files, the system tracing logs, etc. of the system executions are saved and organized into.

As a consequence, every time once the user wants to start the application, they need to
explain a workspace. The first option is to create a new workspace. A new workspace
needs to be built with a specific creation command. In this case, the user must clarify a
workspace name and define the workspace path in the system.

Moreover, if the path, not exit or path is given wrongly and if the workspace name is

34

4.1. Use Case

already being used. The console of the Prosci, will show up the error message with the
correct command format to instruct the user for the next step.

Once the application be started, the user need to define a workspace. A workspace is a
working directory, where the user can save and edit the files. Only if the files are saved
unter defined directory, they can be traced and reproduced. Every workspace works
independently. They don’t have any interactions with each other.The user can enter an
existing workspace, or the user can create a new one with the following command:

workspace [workspace name] [workspace path]

All workspaces which exit in the system are stored under the prosci.properties in the
home directory. The user is able to switch the workspace with the following command:

workspace [workspace name]

As every workspace is working independently. They have their own main directory.The
user can create thier workspace according to thier demand.

A workspace is a fundamental milestone. If a workspace is created, this freshly created
workspace will be defined automatically as the current workspace. Only if the user wants
to change workspace, they can run setup workspace command to redefine workspace.

In a word, all further executions happen under the current workspace. The details of
this use case are demonstrated below in the Table 4.1

Use Case Identification
Use Case ID: 1.1
Use Case Name: Create workspace
End Objective: A workspace is created with specific name and path
User/Actor User of the Prosci application
Trigger: The user enter the workspace creation command

Frequency of Use:
Every time when the user wants to create a new workspace and
the creation is mandatory if the user starts the application for
first time

Preconditions

35

4. Project Structure

The Prosci software package is successfully installed and the Application Console
is started

Basic Flow: The user starts Application Console, enter the workspace
creation command with correct parameters and press enter key.

Step User Actions System Actions

1 Start Application Console
The Prosci system is started
and waiting for the further
command

2

The user enter the workspace
creation command with correct
parameters:
"workspace [workspace name]
[workspace path]"
and press enter.

The workspace is created
with given name and path,
and the related information
is saved under the Prosci
system property file –
prosci.properties in
the home directory of the
software agent.

Alternate Flow1: Print the help menu
Alternate Flow2: Setup current workspace
Alternate Flow3: Show worksapces

Exception Flow: Once the user doesn’t enter the command with the correct
parameters or the workspace name or path is already existing. An
error message will be shown and a message which contains the correct
command will also be print into the console.

Post Conditions
1. A workspace is created under the given path with given name.
2. In the Prosci system file, the new workspace information is recorded.
If the user creates the workspace for the first time, a prosci.properties file
will initially be created under the user home directory.

Includes or Extension Points
1. Start xterm
2. Save files manually
3. Start graphic visualizer
5. setup current workspace

Table 4.1: Use Case 1.1 Create Workspace

36

4.1. Use Case

4.1.2 Setup current workspace

Of even greater appeal, the "setup current workspace" command is an included step of
the "create workspaces". The pre-condition for this use case is that the system already
has some workspaces. This use case makes it possible, for the user to switch between
different workspaces. As we all know that each workspace has its independent domain
and working directory, they don’t trouble each other. So that the user can freely change
the project and without losing the important data.

The command for this function has the same prefix "workspace" as for the "create
workspace" use case. The difference between those two use case is that for "setup current
workspace" you don’t need to specify a system path for the directory creation. The
workspace is recognized through the workspace name.

Only if the workspace is defined, the further execution steps can be done. The Table 4.2
shows us with the details of this use case.

Use Case Identification
Use Case ID: 1.2
Use Case Name: Set current workspace

End Objective: Define the workspace domain, where the user can dynamically
working on it.

User/Actor The user of the Procsci
Trigger: The user enter the setup current workspace command

Frequency of Use: Every time when the user start the application, a current
workspace need to be defined.

Preconditions
1. The Prosci software package is successfully installed and the Application Console
is started.
2. The workspace name which given by the user must have existed in the system.

Basic Flow: The user starts Application Console, enter workspace setup command
with specific workspace name, which already exits in our system.

Step User Actions System Actions

1 Start Application Console The Prosci system is started and
waiting for the further command

37

4. Project Structure

2

The user enter the workspace
setup command:
"workspace [workspace name]"
and press enter.

The system switchs into the given
workspace, all further processing
steps in the given workspace will
be recorded.

Alternate Flow1: Print the help menu
Alternate Flow2: Create workspace
Alternate Flow3: Show worksapces

Exception Flow: If the workspace setup command not entered correctly or the
given workspace name doesn’t exit. The error message is printed to advise the
user for the further reaction.

Post Conditions
1. Workspace is defined as given one, further executions under this workspace
will be recorded.
2. system property – prosci.properties change the current workspace to the
given one.

Includes or Extension Points
1. Start xterm
2. Save files manually
3. Start graphic visualizer

Table 4.2: Use Case 1.2 Setup Current Workspace

4.1.3 Show Workspaces

Equally important is the ability to show all existing workspaces in the Prosci system.
Next use case is one, which makes it possible to present our Prosci user with an overview
of all workspaces in our system. With the help of this function, the user can control and
manage the workspaces according to their needs.

Even though the users don’t define the current workspace, they are allowed to run this
command. If during the last run, if the user has already set up the working workspace,
this information is also going to be printed. A possible output of this use case is illustrated
in the Figure 4.2.

As we can see from the figure, the existing workspaces are presented with their name
and the path.

38

4.1. Use Case

The details about this use case are described in the Table 4.3

Figure 4.2: Main user cases of the Prosci

Use Case Identification
Use Case ID: 2
Use Case Name: Show workspaces

End Objective: Show all existing workspaces in the system. If current
workspace is already defined, it will also be printed.

User/Actor User of the Prosci application, who want to know the existing
workspaces in the system

Trigger: The user enter the show workspaces command

Frequency of Use: Normally, it happens at every first time, when the user start
the application.

Preconditions
The Prosci software package is successfully installed and the Application Console
is started

Basic Flow: The user starts the application console, enter the show workspaces

command.
Step User Actions System Actions

1 Start Application Console
The Prosci system is started
and waiting for further the
command

2

The user enter the show
workspaces command:
show workspaces
and press enter key.

The console prints all existing
workspaces in the system, if
there also a current workspace
defined in the prosci.properties
file, it will also be printed.

Alternate Flow1: Print the help menu
Alternate Flow2: Setup current workspace

39

4. Project Structure

Alternate Flow3: Create workspace

Post Conditions
1. All workspaces, which exist in the system are shown into the console.
2. If a current workspace is defined, it is shown with prefix: "current workspace"

Includes or Extension Points
1. Start xterm
2. Print help menu
3. Save files manually
4. Start graphic visualizer
5. Redefine workspace domain
6. Create new workspace

Table 4.3: Use Case 2 show Workspaces

Use Case Identification
Use Case ID: 3
Use Case Name: Show help menu

End Objective: Show all possible commands and their correct format which
defined in the system.

User/Actor The user of the Prosci application, who want to know the
correct system commands.

Trigger: The user enter the help command

Frequency of Use: Every time when the user needs the help for getting to
know the correct commands and all command options.

Preconditions
The Prosci software package is successfully installed and the Application Console
is started

Basic Flow: The user starts the application console, enter the help command.
Step User Actions System Actions

1 Start Application Console
The Prosci system is started
and waiting for further the
command

2

The user enter the show
workspaces command:
help
and press enter key.

The console prints all possible
command options and their
correct formats.

40

4.1. Use Case

Alternate Flow1: Show workspaces
Alternate Flow2: Setup current workspace
Alternate Flow3: Create workspace

Post Conditions
1. All possible command options are shown into the console and their correct
formats.

Includes or Extension Points
1. Start Xterm
2. Save files manually
3. Start graphic visualizer
4. Define workspace domain
5. Create new workspace
6. Show all existing workspaces.

Table 4.4: Use Case 3 Show help menu

Use Case Identification
Use Case ID: 4
Use Case Name: Start Xterm

End Objective:

Start the Xterm, the standard terminal emulator. On which
all following executions in the workspace are recorded and
are written into the log files for further provenance and
re-production purposes.

User/Actor The user of the Prosci application, who want to trace his
scientific workflow.

Trigger: The user enter the start xterm command

Frequency of Use: Every time, when the user wants to do some scientific
experiment and hope to save the workflows.

Preconditions
1. The Prosci software package is successfully installed and the Application Console
is started.
2. The current workspace is already defined.
3. The Xterm software package is installed in the system.

Basic Flow: The user starts the application console, enter the start xterm command.
Step User Actions System Actions

1 Start Application Console
The Prosci system is started
and waiting for further the
command

41

4. Project Structure

2
The user either create a new
workspace or define a existing
one as the current workspace

1. If the user creates a new
workspace, after the
successful creation, the
current workspace is
automatically set as fresh
created one.
2. if the user set the workspace
as one, which already exits,
the system property file –
prosci.properties will change
the current workspace into the
defined one.

3

The user enter the start xterm
command:
start
and press enter key.

A new prompt console (Xterm)
is started, our prosci tool is
ready for tracing everything that
happens ,in the xterm terminal.

Alternate Flow:
1. Save files manually
2. Start graphic visualizer
3. Define workspace domain
4. Create new workspace
5. Show all existing workspaces.

Post Conditions
The Xterm terminal is opened, on which the user can do any kind of the scientific
experiment, the workflows, and their inputs and outputs are going to be traced and
recorded, so that the provenance of the scientific workflow is enabled.

Table 4.5: Use Case 3 Start Xterm

Use Case Identification
Use Case ID: 5
Use Case Name: Save files manually

End Objective:
Under the given current workspace, the user is able to add files
manually, and the files, which add by the user manually, will
also be traced for the reproducing purpose.

User/Actor The user of the Prosci application, who want to trace his
scientific workflow.

Trigger: The user enter the start xterm command

Frequency of Use: Every time, when the user wants to do some scientific
experiment and hope to save the workflows.

42

4.1. Use Case

Preconditions
1. In the Prosci application, the current workspace is defined.
2. The Xterm software package is installed in the system.

Basic Flow: The user starts the application console, adds the files into current
workspace and run the save file command.

Step User Actions System Actions

1 Start Application Console
The Prosci system is started
and waiting for further the
command

2
The user adds the files
manually into the current
workspace.

—————————————

3

The user enter save file
command:
save
and press enter key.

The files which are added before
manually by the user are saved
into the system with a separate
commit ID

Alternate Flow:
1. Save files manually
2. Start graphic visualizer
3. Define workspace domain
4. Create new workspace
5. Show all existing workspaces.

Post Conditions
The files which are not produced by the workflow and are manually added into
current workspace are saved into the system. A separate commit ID is generated.
The files are ready to be called and reproduced through our graphic visualizer.

Table 4.6: Use Case 5 Save files manually

Use Case Identification
Use Case ID: 6
Use Case Name: Start graphic visualizer

43

4. Project Structure

End Objective:

The graphic-visualizer tool is started. On which the user can
do some further investigation. For example, they can re-run
the commands from historical workflow backlog or they
can reproduce the file that is overwritten during the
experiment, because the versioning of the historical
files is enabled. Basically, they can view the graphic picture,
on which the ontology description of the current workspace
is illustrated and their detailed information are listed as tabs.

User/Actor The user of the Prosci application, who want to see the
overview and details of the scientific workflows.

Trigger: The user enter the start graphic-visualizer command

Frequency of Use: Every time, when the user wants to do get the overview
of the scientific workflows.

Preconditions
1. In the Prosci application, the current workspace is defined.

Basic Flow: The user starts the application console, start the graphic-visualizer
tool by running the command.

Step User Actions System Actions

1 Start Application Console
The Prosci system is started
and waiting for further the
command

2

The user enter start graphic-
visualizer command:
graphic visualizer
and press enter key.

A new windows is open,
which includes a overview
picture of the all workflow
in the system. All details
are shown as tabs. System
is ready for the user command
such as rerun and reproduce.

Alternate Flow:
1. Save files manually
2. Print help menu
3. Define workspace domain
4. Create new workspace
5. Show all existing workspaces.
6. Start Xterm

Post Conditions

44

4.2. Description of the Components

A new window is opened. On which the user is able to view all historical
commands and their input and output details. In the meantime, an overview
picture of the workflows is shown. In the new window, the user can also
do some further investigation, such as rerun the historical command and
reproduce the overwritten file.

Table 4.7: Use Case 6 Start graphic visualizer

In one word, the use cases, which designed for the operating on the workspace property
in Prosci are intended to limit the monitoring range beyond the system. We are not going
to purposelessly trace all incoming, and generated files, intermediates and etc. among
the system, we are thinking about to limit the place where we actually do the provenance
tracing procedure.

Besides the workspace, Xterm acts in the project as a bridge to connect the usual
command executions and the tracing and recording without any extra impact on the
comfort of the usage of the tool.

Last use case "Start Graphic-Visualizer" is the start point of the user interaction and the
beginning of the analysis on the provenance ontology.

4.2 Description of the Components
The Prosci system consists of three components. They are Application Console, File
Monitor, and Graph-Visualizer.

As shown in the figure 4.3 below, we still have five external software agents, they are
Xterm, JGit, Strace, Oshi, and ProvToolbox. All the foreign software agents are marked
with the pink color in the Figure 4.3.

Xterm is a standard terminal emulator, it establishes a terminal environment, from which
the user can execute the commands for the scientific experiment, and it seems like the
user works on the real terminal environment. At the same time, the Strace will also be
started to log the system behaviors. Strace is a diagnostic, debugging and instructional

45

4. Project Structure

userspace utility for Linux. It is used to monitor and tamper with interactions between
processes and the Linux kernel, which include system calls, signal deliveries, and changes
of process state. The system behaviors which are recorded by the Strace into the log
files are stored under the workspace directory [workspace name]/prosci/trace/log. All
log files will be engaged for the further processing of the ontology structure. The Graph
Visualizer will call the generated ontology structure. Through it, the Graph Visualizer
is, therefore, able to illustrate us the graphic ontology structure and the detail of the
execution.

The Oshi has only one task. It records the system info comprehensively, such as model,
serial number, manufacturer, version, name, etc. of the computer system. Following this,
the information about the processor, memory, CPU, running processes, disks, file system,
network interfaces, network parameters, and power sources are recognized. Similarly, in
the hardware aspect, the displays, sensors, and devices are detected.

The collected information by the Oshi will then be saved in the PROV-O as an agent,
the related details about the software agent will be filtered and then present to the user.

Simultaneously, the second primary component of the Prosci is awaked. Since that
moment, File Monitor starts to control all incoming log files and save all newly added
files which appear in the workspace. For this purpose, File Monitor uses the JGit to
realize it. JGit is a pure Java framework of the Git version control system. JGit is more
than just a Java library for working with Git repository, and you can integrate it into an
existing application or create a tool. The further information and description of the JGit
are talking in section 4.1.1.

In other words, the application console is a central menu tool, and the user can select
the function which they need through our central application console. The application
console is acting as an organizer. It organizes the component-call to the corresponding
one. At the same time application console has the help menu, with the help of it, the
user can print the help menu and find out the useful information from the given message
to understand the options which are provided by the Prosci system.

As mentioned before, File Monitor is a monitoring tool to record the incoming logs and
runs the git commands. It traces the system log directory, and monitor the system
working directory, and once the new registration happens to appear in the system log

46

4.2. Description of the Components

directory, it will check the working directory for saving.

The Graph Visualizer is a visualization tool, which enables the user to build an overall
view of the provenance tracks. It presents the user with a graph, which contains an
ontology structure and as the sub-functions, the user can view all produced files and its
related connections. With the help of it, the user can also reload the data, which may have
been overridden due to the name convention and the user can also rerun the command
from the past command catalog. This part of the functionalities is accomplished with the
help of the external toolbox "ProvToolbox". The precise information is given in section
4.3.3.

Figure 4.3: Main Components of the Prosci

4.2.1 Application console

In this section, I am going to demonstrate the usage and the functionalities of the
application console. As the application console is acting as a central organizer of the
Prosci System, it plays an important role. Once the system is starting, it is waiting for
the first command. As described in section 4.2 our application is working based on the
workspace unit. The user of the Prosci must first define the workspace domain. The
Prosci supports some of the helper functions to make the user get familiar with the main
functionalities of the Prosci. For example, the user can print the help menu with the
command:

help

47

4. Project Structure

or the user can print all workspaces in the system and based on the information given by
the system to choose the corresponding workspace, which they want to work on. The
figure 4.4 shows us the help information.

Figure 4.4: Help menu of the Prosci

As shown in the figure 4.4, we know that the Application Console supplies us with five
options. Next step I am going to present the internal interaction between the components
for each choice and the working sequences of the element: Application Console. So that
you can get familiar with the primary constructor of the Prosci application.

Initialize or change workspace domain

Without the doubt, we know that the workspace is the milestone of the Prosci. The first
step to initiate the tracing process is to set up the workspace domain. The figure 4.5
demonstrates the basic workflow of the Prosci.

Once the user declares that there a new workspace domain should be created, he needs
to enter the workspace name and its location. Or he has a second choice. He can define
the current workspace with an existing one, for this purpose, he doesn’t need to enter
the workspace location, he only needs to enter the workspace name of an existing one
as the parameter. In both cases, the component Application Console will call its own
method: "workspace". The "workspace" is working under specific criteria. We list them
as the following points:

48

4.2. Description of the Components

In all cases, the system property file should be available. If it doesn’t exist, creating a new
workspace domain is mandatory. More especially, the user must declare the workspace
with the name and the supposed location of it. If the given parameters do not consist
path parameter, the error message will be thrown.

• If the user wants to create a new workspace domain.

– If the system property file available?
– If other workspaces have registered the workspace name?
– If given workspace path valid?

• If the user wants to define an existing workspace as current workspace.

– If the system property file available?
– If given workspace name exists in the system property?

Figure 4.5: Initialze or change workspace domain

The Figure 4.5 is a sequence diagram of the workspace manipulation. Four participants are
involved in this activity. The client enters the instruction, and the Prosci system receives
it, it then calls its own class to check the pre-conditions of the creation of a new workspace.

49

4. Project Structure

If all the requirements fulfilled, then the workspace is allowed to be formed, after
completion of generation of the newly defined workspace successfully executed, as the
next rule, the calling to the second component of the Prosci system will be forwarded.

The component File Monitor later requires to check out the current workspace definition
by reading the system property prosci.properties in. The system property as default
is generated under the "user.home" directory. Usually, this verification of the current
workspace won’t cause any error handling. Because the calling is forwarded only after
the pre-condition that the workspace is successfully setup.

Figure 4.6 demonstrates us with a detailed overview of the workflow of the workspace
manipulation.

The client enters the command, the Application Console first checks the command, if the
path parameter consists in it. If yes, the system runs the generation of a new workspace.
Otherwise, an old workspace, which must be generated before will be set as the current
workspace.

For making a new workspace, we first check if the system property file is already there un-
der the "user.home" directory, for the case, there is no prosci.properties under "user.home",
we generate a new one. Soon after the success in finding system property, we are going
to verify the validity of the given path of the client. If the directory path is already being
used, the error message is thrown. Contrarily, the new workspace with the provided path
will be created, and the current workspace domain in the system property file is written
as newly created one.

For switching into the existing workspace, the system, in any case, need to check the
existence of the system property file. The difference is that, by lacking it, the error is
presented. Oppositely, the current workspace definition in the system property file is
written with the given workspace name, if it is possible to find it in the prosci.properties.

In both cases, as the final step, the system calls the File Monitor component, and it then
starts to monitoring any incoming changes under the current workspace domain. The
detailed information about the working progress of the File Monitor is discussed in the

50

4.2. Description of the Components

Figure 4.6: Activity diagram: Initialize or change workspace domain

next section.

51

4. Project Structure

Last but not the less is the structure of the generated workspace domain. Figure 4.7
is the structure of the created workspace. The project has the name "myWorkspace".
Beneath it, two directories are created. The "input" is the actual working directory, where
the files, data, scripts, graphs, etc. are stored in. The user can manually add them into
the directory, or they may be generated during the scientific experiment.

In the meantime, the second directory called "prosci" is created. This directory is respon-
sible for all the systematical records and executions. Under it, another three folders are
appearing. The functionalities of them are listed below.

• prov: under this folder, the complied provenance ontology structures of the exper-
iment from the Graph Visualizer are saved. They are commonly a graph of the
structure and an XML file. The XML file is the transformed provenance structure
of the workflow of the scientific experiment. The regulation and the criteria of the
transformation are discussed in section 4.3.3.

• trace: is the place where all the tracing results are kept. The tracing results are
obtained by using two external tools and one individual component "File Monitor".
External tools are Strace, Oshi, and they generate the process log files and the
system info for each execution. And internal "File Monitor" takes the responsibility
to write the command.txt file. The usage and formatting of this file are described
in section 4.3.2.

– log: this folder collects the generated log files of each system call by Strace.
– systeminfo: this folder gathers all analyzed system information whenever a

new tracing command is triggered.
– command.txt: the File Monitor maintains this .txt file. The usage and

formatting of this file are described in section 4.3.2.

• version: this specific folder is the location where the user gets the access to the
various version of the files in the "input" directory. They can be the old version
which is overwritten due to the name convention and also can be the latest one,
which currently can be found under the "input" directory.

Start tracing workspace

Of even greater appeal, we now going to talk about the essential function of the Prosci
program–start tracing workspace.

52

4.2. Description of the Components

Figure 4.7: The workspace structure of a sample workspace

Along with the sequence diagram from the figure 4.8 we get a rough overview of the steps
for starting the tracing process. Once the application gets the instruction for starting
tracing. It first calls its embedded class "start". This class must finish three tasks.

To begin with, it calls Oshi, the external tool for collecting the system information. The
information about the software agent is wide. It includes not only the software perspective
but also at the hardware level. Below is a sample system information collections of a
software agent.

Below, we list all the information, which is collected after the analyzing from Oshi.

• Computer System

– manufacturer

53

4. Project Structure

– model
– serial number
– firmware

∗ manufacturer
∗ dmi
∗ version
∗ release date

– baseboard
∗ manufacturer
∗ model
∗ version

• Processor

– Identifier
– ProcessorID

• Memory

– Memory capacity
– Swap used

• Cpu

– Uptime
– percentage occupation
– CPU load
– CPU load averages
– CPU CPU load per processor

• Processes

– number of the processes and threads

• Operating System

– Name
– Version/Build

• Disks

– size

54

4.2. Description of the Components

• FileSystem

– File Descriptors

• Network interfaces

– Name
– MAC Address
– MTU:
– IPv4
– IPv6
– Traffic

• Network parameters

– Host name
– Domain name
– DNS servers

• Displays

– Manuf. ID
– ManufDate
– Preferred Timing
– Manufacturer Data
– Unspecified Text (e.g. LG Display)

• USB Devices

This collected system information is saved then under the workspace directory "[workspace
name]/prosci/systeminfo". Whenever the application is started, the Application Console
triggers the collecting of the information, but during the whole lifetime of the Applica-
tion Console those kinds of information will only be collected once. Even though such
information is collected every time when Application Console started, only when the
information varies from the existing one, it is then be shown to the user in the graphic
user interface in Prosci.

Next, the task of the program is to call the Xterm tool. Before this action, Prosci calls the
system property file first, for reading the current workspace domain. After the workspace
domain is verified. The request to start the Xterm is sent. Xterm simulate the real
terminal. Inside it, the user can run any kinds of execution just like they are working on

55

4. Project Structure

Figure 4.8: Start tracing workspace

a common terminal. This call to the Xterm is return with a message which contains the
process id of the Xterm terminal. This returned process id is reserved for further usage.
The exact activities are illustrated in the figure 4.9.

Finally, we are ready to start the tracing process using the Strace by giving the tagged
process id from previous. Since this moment any tiny activity from the system which
runs through the Xterm terminal and makes the effects such as writing, editing, and
deleting of the files, which happen in the workspace "input" directory, are recorded and
the log files will be saved into the folder "[workspace name]/prosci/log".

Start Graph Visualizer

The process to start Graph Visualizer component of the Prosci is much more simple.
The sequence of the workflow to start the component is shown in the figure 4.10. The
Application Console using Runtime API makes the system call to start the component.
Once the component is started a message for confirmation is obtained.

Show workspaces

Next, we are going to talk about the "show workspaces" command. We already know
that the Application Console saves every the new workspace into the system property file
"prosci.properties", which located under the user.home directory. The clue for getting all
the information about the workspaces is trivial. The figure 4.11 is a sequence diagram
of this command. The only thing to do is read the "prosci.properties" and show the
workspace information into the console for the user.

56

4.2. Description of the Components

Save files

The last feature, which we still want to mention about is the manual saving of the files
using Application Console. The Application Console first read the current workspace
from the system property file and then the location of the git repository is sent to the
Jgit API. Jgit checks if the repository do have some new incoming files or some changes
do really happen. If the changes are found. The Jgit saves the changes.

Actually, the saving of the new file is not obligatory. Even, if the user doesn’t run this
command. The system is going to save the new changes in the repository if there are
some new executions happen.

Having a look into the figure 4.12, we describe the process again with the sequence
diagram.

4.2.2 File Monitor

Since we have discussed the Component "Application Console" in the section before, you
may already hear about the second Component "File Monitor" several times. This part
of the component is the simplest one the whole system.

The file monitor has only one responsibility, it is to monitor the git repositories which
are created under the workspace domain. The figure 4.7 illustrates us the fundamental
workspace folder structure, we have already mentioned it before for the workspace creation
process. Basically, there two git repositories are deployed into the workspace. They are
"log repository" and "input repository". The "log repository" traces all incoming new log
files which are generated by the Strace tool during the Xterm working period. The .git
data can be found under the directory "[workspace name]/prosci/log/.git". The second
git repository is much more important, it is "input repository", it controls the workspace
working directory "input", it saves all newly added files and records the file changes, also
the deleting of the files are reported. This repository is stored under the path "[workspace
name]/input". The execution of the git command for this workspace is only triggered
when we find some new incoming log files under the "log repository". As we all know,
only if the command is running inside the Xterm, the log files for them are going to be
generated and saved, in other words, the user must run his execution inside the Xterm.
Otherwise, nothing is going to happen. The only one action which is allowed during the
provenance process for the scientific experiment is the manual saving of the file into the
workspace input folder.

57

4. Project Structure

Obviously, "File Monitor" plays an important role in the Prosci system. The reason
why we have this extra component is that we are using it to automatically watch the
file entrance of the system, especially for the log files. And the entrance of the log files
triggers the versioning of the workspace files. The description of the working steps and
the communications between two git repository of the "File Monitor" is illustrated in
figure 4.13. This time we are using the flowchart diagram for the illustrating purpose.

As shown in the figure, the "File Monitor" still first need to check the availability
of the workspace domain. Only if the current workspace under the system property
"prosci.properties" can be found, then the "File Monitor" is going to be started. After
the discovering of the current workspace, the "File Monitor" begins to initialize the two
relevant git repository, namely "input git repository" and the "log git repository". After
finishing the initialization the tracing thread is starting. It runs in the background and
keeps to check if there are some new log files is written within the log git repository. In
order to check the "log git repository" the following git command is executed:

logRepository.untracked

If the new entrance is detected. The "File Monitor" will review the "input git repository"
with the same git execution command. If new modifies are appearing, the git executions
are listed as below:

At the same time, the commit version id for current commit and the previous commit
of the input git repository are also written into the command.txt. The reason why the
previous commit id is also be marked we will explain it later in the next section.

In case of the no entrance in the log repository, the process just running the checking git
command for the repository status infinitely, till the end of the total Prosci application.

The implementation of the main functionality of the File Monitor is implemented with
the Java thread. Since we all know Java is a multi-threaded programming language. The
thread enables java program to share the common resource concurrently for the different
parts. The File Monitor is keeking running after the declaration of the workspace domain
all the time. It stops, only when the Prosci program is stopped.

4.2.3 Graph Visualizer

This is the last section for describing the system components of the ProSci System, but
at the same time, the most crucial part of the ProSci is going to be discovered.

58

4.2. Description of the Components

The Graphic Visualizer at first glance, it illustrates us with a graph of workflows of the
certain experiment. Through it, we are able to know the execution steps of the scientific
experiment, we obtain the information about the exact command, which are run and the
effects of them. Furthermore, the status of the OS is catchable, the user can view the
Operating System status by clicking on the agent button in the dashboard of UI of the
Graph Visualizer. The Agent is shown with a unique ID and a short description about
it. Equally important is the readable tracing of the file version. In other words, all files,
which appear in the workspace is reproducible, even if the file is overwritten due to the
naming conversion, is still possible to be reloaded into the workspace directory

First of the all, we want to talk about the main functions of the Graph Visualizer.

Principal, this component has five functions.

1. Show workflow of the experiment with the ontology structure in the diagram.
The properties of an ontology are files, activities and agents. The properties are
represented as the node of the graph, they differentiate from each other through
the color, the color pink is the agent, color blue describes the activity and color
purple presents the file.

2. Show all activities, which happened under the workspace domain, more accurately,
all executions which were running inside the Xterm windows are called activities
and will be shown there.

3. Show all files. The files there include the resource file and the target file. For the
resource file, the auto-versioning of it is not yet supported. The user must run
the system command save in the Application Console to achieve the versioning
purpose.

4. Show all agents. Agent in another word is the OS status, during the execution of
the scientific experiment. The agent is be determined only once, at the time we
start the Xterm terminal.

5. Reload the historical data. The files, which are overwritten and don’t exist anymore
under the current workspace domain are reloadable. After the user open certain
file in the Graph-Visualizer, they have the possibility to restore the file by clicking
on a button called "restore". Once the user clicks on it, the file is going to be stored
under [workspace]/prosci/version.

59

4. Project Structure

6. Search the element of the ontology presentation on the graph or search the element
under separate categories.

The implementation of the user interface is based on the JavaFX. The UI component is
partly designed under the JavaFX Scene Builder. The style of the UI is configured with
parts of the CSS and some are embedded into the java codes.

The Graph Visualizer is written in maven project. Inside the Graph Visualizer, we have
one extra package "prov". This module is employed for the reasoning of the ontology
analysis. See the detail about it from the next subsection "Prov".

For this goal, we invite the "prov" module to analyze the saved log files. At the meantime,
the command.txt file which stores all information about the commit id is also consid-
ered. According to the reported XML file from the ProvToolbox we extract the useful
information and demonstrate them into our UI component so that the user can receive a
readable view of the hiding ontology.

Prov

Prov is a helper package inside the Graphvisualizer. The main involvement of Prov in
the Graphvisualizer is the provenance metadata extraction from the collected logs and
the construction of the provenance ontology by the integration, communication, pairing
and summarizing between log files and the git repository.

The Prov package has only two classes, they are "OntologyCreator" and "VersionChecker".
The workflow of the Prov is illustrated in an activity diagram in Fig. 4.14. As shown in
the graph, OntologyCreator calls the VersionChecker to check out the repository under
the input directory and retrieve all files in the repository and sort them according to the
commit id. After the files regardless of the version are ready to be read. OntologyCreator
fetches the records in the command.txt with the logs and the files. The command.txt
serves there as a dictionary. It aims to pair the command with the correct version of the
files based on the information saved in the log. In Fig. 4.15, we take an example to make
you understand the trails of the OntologyCreator.

60

4.3. Summary

This is a sample record line in the command.txt:

2019:03:28 21:15:00|yyyyyy|xxxxxx.log|000000|

We separate this record into four parts. "2019:03:28 21:15:00" is the timestamp of the
record. "yyyyyy" is package name of the log file, "xxxxxx.log" is the name of the log.
This log is saved under the directory "yyyyyy" and "000000" is the commit id, with this
commit id we can find the corresponding generated files caused by this record. Assuming
that we generated three files by running the command, they are A.java, b.csv, and c.tex.
The OntologyCreator analyzes this record, reads the xxxxxx.log get those three files from
git object from correct commit version.

After the successful pairing, the OntologyCreator save the command which it extracts
from the log as activity and the file as the entity in the provenance ontology with the
XML file format, those arrangements are supported by the ProvToolbox API.

As a result, the provenance ontology sketch is prepared for graph visualization.

Graphvisualizer GUI

Our visualization GUI is built upon the JavaFX. At the beginning of this section, we
have already mentioned the JavaFX, a short description of JavaFX can be found in
section 3.3. The five main features of the Visualizer GUI is represented above. The most
important external library in the GUI component is the JUNG API (see section 3.7).
By using JUNG, we create an interactable provenance ontology. The user can click on
each note in the ontology graph and they will be redirected to the detailed page of the
selected point. Fig. 4.16 is the GUI view of the sample project, the detail about our
sample project can be discovered in the next chapter. The next two figures show the
views, once the user clicks on one of the agent node in the graph and once the user clicks
the "Files" button in the dashboard respectively.

4.3 Summary
In this chapter, we demonstrate the basic use cases and the implementation of Prosci
project in details. We limit the provenance tracing under a certain directory which is

61

4. Project Structure

called "workspace", improve the usability by supplying the help menu and illustrate the
abstract concept of provenance ontology as an interactable Graph-Visualizer.

The construction of the project is separated into three components. Application Console
targets to make the tool easy-to-use and clearly give the user about necessary informa-
tion on the usage of the tool. File Monitor and the Graph-Visualizer answer our main
research questions. They integrate several APIs so that the automation mechanism of
the provenance information collecting is enabled, and the transformation strategy from
provenance data to ontology definition later facilitate the demand on the interaction of
the ontology and the analyzing of the computational task. In return, we hope that the
tool can improve the reproducibility of the scientific experiment and answer the question
of what kind of provenance information is necessary for the reproduction of the scientific
experiment.

62

4.3. Summary

Figure 4.9: Activity Diagram: Start tracing workspace

63

4. Project Structure

Figure 4.10: Activity Diagram: Start Graph Visualizer

64

4.3. Summary

Figure 4.11: Activity Diagram: Show workspaces

65

4. Project Structure

Figure 4.12: Activity Diagram: Save files

66

4.3. Summary

Figure 4.13: Flowchart Diagram: Workflow of the File Monitor

67

4. Project Structure

Figure 4.14: Workflow of helper package: Prov

68

4.3. Summary

Figure 4.15: An example of the Prov working steps for a sample record "2019:03:28
21:15:00|yyyyyy|xxxxxx.log|000000|"

69

4. Project Structure

Figure 4.16: GUI view of Sample Project

70

CHAPTER 5
Sample Project

Until now, all parts of the project was already be shown to you. Last but not the less,
we plan to replace the user guide with a ready to be used sample project.

In this chapter, we construct a sample scientific experiment project, to make you get
familiar with the ProSci tool and teach you with a real solution. This sample project
contains four steps. Each step is an independent workflow action. However, you still need
to do some configuration and initial works to make the project run successfully in your
machine. The details about the preparation are outlined in subsection 5.1. Take a look
on it, follow the instructions and enjoy the final results which produced by the process.

5.1 Preparation
Our sample project is included in our ProSci project package. First of all, please download
the project from our Gitlab reporistory: https://github.com/1425097/ProSci
In the package "ProSci", you can find both source code and the packed .jar file. After
the download, you need to unzip the "ProSci.zip" package, open the main directory, you
will see three .jar packages, one prosci.sh script and a folder with name "sample".

Open the "sample" folder you have two files. One is called sample.sh, the other is the
sample.tex. We will use these two documents for further processing.

71

5. Sample Project

As the next step, we are going to look inside those two files in details.

5.2 Details about sample.sh and sample.tex

The sample.sh is a bash script. A bash script is just a plain text file, in which you can
write any commands, that you normally run in the command line terminal and it is more
convenient to write the commands into a shell script so that we can use it repeatedly.
The Fig below shows us the basic workflow of the sample project. As we can see from
the graph. We first download the necessary data from the link:

http://spatialkeydocs.s3.amazonaws.com/FL_insurance_sample.csv.zip

This dataset contains 36,634 records in Florida for 2012 from a sample company that
implemented an aggressive growth plan in 2012. The data amount is adequate and
it enables us to run some data analysis based on this dataset. After the dataset is
downloaded successfully, we unzip it using the command line.

Next, we want to introduce you the Weka[HFH+09]. Weka is a tool for Data mining.
Weka is a collection of machine learning algorithms for data mining tasks. It contains
tools for data preparation, classification, regression, clustering, association rules mining,
and visualization. You need to make sure that your system has this software installed. If
not, please recovery the comment block from the sample.sh for step 3. But if you already
have Weka installed, just change the path for the Weka calling command in step 4 and
point it to the right directory, where you stored your Weka tool.

Step 4 intends to using ZeroR classifier. This classifier is used to predict the mean for
a numeric class or the mode for a nominal class. In our case, we are going to have the
mean as the processing result.

Last step from our program is writing the result of the Weka data processing into a .pdf
file. For this purpose, we supply the sample.tex. In order to make this file compiled, you
must have Latex in your system. Download Latex before you run the script.

72

5.3. Run sample

5.3 Run sample
After the description above, you should able to start the ProSci and enjoy the running
result from our sample project. Now, go back to the Prosci main directory, the exact
workflows are described as below:

• start the ’prosci.sh’ with your terminal.

• create a new workspace if you don’t have any workspace currently in your application.
Our suggestion is to create a workspace with default name prosci. So the workspace
creation command is like the following: workspace prosci [path]

• start you working section on your current workspace. with command: start

• copy the sample.sh and sample.tex into the home directory of your [workspace
path]/input folder.

• run the sample.sh in the current working section terminal.

• as you complete to run the sample.sh. You can find some new files in your workspace
home folder, they are:

– FL_insurance_sample.csv.zip

– FL_insurance_sample.csv

– sample.aux
– sample.log
– sample.pdf
– sample.tex
– sample.sh
– out.txt

• Now let’s use the advanced feature of the ProSci tool. Optionally, you can close
the working section terminal (Xterm), but it is not necessary. Switch back to the
Prosci main terminal, type the command ’graphic’ to initialize our graph visualizer.
After some seconds, a new window is opened. From there you can get an overview
of the ontology structure of the sample project.

• Totally, you have four options in our graph visualizer. The overview shows you with
a ontology graph, it illustrates the connectivity between every activity(command),
entity (file) and agent(software agent). You can click on the graph to choose the
element, the details of each element in the graph will be displayed as a table. As an
alternative you can also search each property on the graph and on the dashboard on
the left of the visualizer’s window. They are sorted into three catalogs, respectively,
activities, files and agents.

73

5. Sample Project

Figure 5.1: GUI view of Sample Project: click on files-button

5.4 Some More Executions

After completing the steps in section 5.3. We have already generated a basic ontology
structure of a simple scientific experiment, which includes downloading the dataset from
external web service, processing the dataset to receive a short report about the dataset
and generating a pdf document by using latex to report the experiment’s result.

So now we are going to repeat the download dataset and pdf generating step. By changing
the latex file "sample.tex" we intend to generate a second version of "sample.tex" and thus
a second version of the "sample.pdf". We add the following line into the "sample.tex":

This is a test!!!

We read the command of download dataset and pdf generation from Graph-Visualizer
and copy paste them one after the other into Xterm console. Fig [?] shows the newly
generated files in the workspace, they are:

74

5.4. Some More Executions

Figure 5.2: GUI view of Sample Project: click on one of the agent

• sample_v2.log

• sample_v2.pdf

• sample_v2.tex

Thus we verify the ability of the tool to detect the reason why the rerun of the computa-
tional tasks reproduced the same data of the dataset but didn’t produce the same result
for pdf generation. It is obvious, the external service supplies the exctly same dataset of
FL_insurance_sample.csv but the change of the "sample.tex" cause the variation
of the sample.pdf.

Secondly, we hope to abstract the ontology information efficiently from the ontology
graph and also from the separate sub-category of the ontology properties. Fig [?] show
us the searching result of the ".pdf", we can see from the figure, the related file nodes
are colored to red. Fig [?] shows the "Files" pane after applying to the search criteria of
".pdf". They are namely: sample_v1.pdf and sample_v2.pdf.

75

5. Sample Project

Figure 5.3: GUI view of Sample Project: rerun pdf generation command

It is clear, after executing the above-described steps. We still have only a small number
of entities, activities, and agents.

The remaining question is to verify if the tool can deliver stable performance when
processing a high volume task. To test this concentration we modify the sample.sh to run
pdf generation for 100 times and every time add one single character into "sample.tex".
We successfully detected the change of the ontology graph in the Graph-Visualizer.

5.5 Summary
Although, during the testing phase, we notice that the tool works slowly when it is used
to process a big quantitation of the task.

However, it is undeniable, the functionalities such as monitoring, tracking and capturing
of the provenance data of a scientific experiment are approved. And the transforming
mechanism of the provenance data into ontology graph and the user interactive ability
are also available.

76

5.5. Summary

Figure 5.4: GUI view of Sample Project: search ".pdf" from the graph

77

5. Sample Project

Figure 5.5: GUI view of Sample Project: search ".pdf" from the files pane

78

CHAPTER 6
Conclusion

In our ProSci project, we have investigated a new tool, which integrates several APIs
and tools. The whole project is built upon Java 8, using the Maven build tool, based
on the provenance ontology theory. ProSci enables the tracking of the provenance data
during the scientific workflow execution, visualizes the provenance metadata with the
user-friendly GUI view and allows the user to reload the file, which is overwritten by the
name convention.

It maximizes the value of the provenance data and establishes the possibility and abilities
of the reproducibility and replication of the scientific experiment. As we know that the
provenance data of the scientific workflows dedicates itself to verification and validation
of the quality of the result of the scientific experiment.

6.1 Recall the Research Requestions

Recalling the research questions, which are proposed in the introduction section. We
want to obtain provenance information without manual steps. That is to say, we want to
make it fully automatically. The solution to this requirement is a combination of Strace,
JGit, and Oshi. By using them we achieve the automatically tracking, monitoring and
capturing of system provenance information for not only input, output, the intermediate
of the workflow steps, but also the software and hardware environment and the library
dependencies of the experiment.

79

6. Conclusion

By using ProvToolbox we are able to transform the provenance information into the W3C
official standard with the programming language Java. For this purpose, we must take
both log files which are collected from Strace and version control repository into account.
Thus, the question about how to transform the provenance data into an ontology is
solved.

A useful and meaningful interaction possibility of the provenance ontology appears to
be the critical point of our thesis. Remember our goal is by using visualization of the
provenance metadata to improve the reproducibility of the computational experiment.
So we not only want to show the provenance ontology into a human-readable format but
also want to make the representation efficiently and significantly discovery the reason if
the re-run of the computational task failed. For achieving this goal, we apply JavaFX for
UI implementation, Jung for graph establishing and Java DOM for searching through
the provenance XML file. Therefore, we construct a meaningful Graph-Visualizer for
representing the provenance information, which in return benifits the reproduction of the
scientific experiment.

6.2 Limitations
Go through the whole project, we notice that we still have many features in ProSci, that
are improvement required. Some critical points like:

• Limitation on the supported system: the Project Prosci is only supported in the
Linux system.

• Dependencies on the external tool, such as Xterm and Strace limit the extensibility
of the Prosci.

• Better API for graphics visualization is desired. Currently, the API used for
visualization is JUNG. Since JUNG aims only to the modeling, analysis, and
visualization of data that can be represented as a graph or network, it doesn’t
support many advanced features for the provenance ontology visualization. Some
domain-specific API or plugin e.g. Ontograf provides better potentiality and
capability for illustrating the provenance ontology.

• "command.txt" serves as a dictionary for pairing files and commands. The retrieving
method can be improved. So that the seamless program is realized when the user
attempts to work on a huge amount to data volume.

• File Monitor component of the ProSci is keeping running in the background all the
time.

80

6.3. Future Work

• No automatical replication of the scientific workflow is embedded.

6.3 Future Work
Reflecting the limitations of the ProSci suggested above, it is necessary to concentrate
on the improvement for both functionality and non-functionality requirements, in order
to make the ProSci project more user-friendly and support in more operating systems.

Furthermore, as the next step, we will investigate the topic about the verification of the
scientific workflows and validation of the result of the scientific experiment [?].

A consummate mechanism for the automation of the replication of the scientific experi-
ment can be yielded based on the excellent provenance data collecting mechanism.

81

List of Figures

2.1 The spectrum of reproducibility [Pen11] 6
2.2 Workstations used in the study [GHJ+12] 10
2.3 Effects of data processing conditions on the voxel volumes for a subsample of

subcortical structures [GHJ+12] . 19
2.4 Functional architecture of a SWfMS [LPVM15] 20
2.5 Comparison of SWfMS [LPVM15] . 20
2.6 Provenance lifecycle in the pre and post-publications stage of the translational

research [SNB+11] . 21
2.7 Provenance model [GD07] . 22
2.8 Query and manipulation funcionalities [GD07] 22
2.9 Storage and recording [GD07] . 23
2.10 The three Starting Point classes and the properties that relate them [LSM+13] 23
2.11 Qualification Property and Qualified Influence Class used to qualify a Starting-

point Property [LSM+13] . 24

3.1 Maven Configuration of ProvToolbox [Mor15] 27

4.1 Main user cases of the Prosci . 34
4.2 Main user cases of the Prosci . 39
4.3 Main Components of the Prosci . 47
4.4 Help menu of the Prosci . 48
4.5 Initialze or change workspace domain . 49
4.6 Activity diagram: Initialize or change workspace domain 51
4.7 The workspace structure of a sample workspace 53
4.8 Start tracing workspace . 56
4.9 Activity Diagram: Start tracing workspace 63
4.10 Activity Diagram: Start Graph Visualizer 64
4.11 Activity Diagram: Show workspaces . 65
4.12 Activity Diagram: Save files . 66
4.13 Flowchart Diagram: Workflow of the File Monitor 67
4.14 Workflow of helper package: Prov . 68
4.15 An example of the Prov working steps for a sample record "2019:03:28

21:15:00|yyyyyy|xxxxxx.log|000000|" 69

83

4.16 GUI view of Sample Project . 70

5.1 GUI view of Sample Project: click on files-button 74
5.2 GUI view of Sample Project: click on one of the agent 75
5.3 GUI view of Sample Project: rerun pdf generation command 76
5.4 GUI view of Sample Project: search ".pdf" from the graph 77
5.5 GUI view of Sample Project: search ".pdf" from the files pane 78

84

List of Tables

3.1 JGit Objects . 26
3.2 Strace Parameters . 29

4.1 Use Case 1.1 Create Workspace . 36
4.2 Use Case 1.2 Setup Current Workspace 38
4.3 Use Case 2 show Workspaces . 40
4.4 Use Case 3 Show help menu . 41
4.5 Use Case 3 Start Xterm . 42
4.6 Use Case 5 Save files manually . 43
4.7 Use Case 6 Start graphic visualizer . 45

85

Bibliography

[ABJ+04a] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock.
Kepler: an extensible system for design and execution of scientific workflows.
In Proceedings. 16th International Conference on Scientific and Statistical
Database Management, 2004., pages 423–424, June 2004.

[ABJ+04b] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Ke-
pler: Towards a Grid-Enabled system for scientific workflows. the Workflow
in Grid Systems Workshop in GGF10-The Tenth Global Grid Forum, Berlin,
Germany, March, 2004.

[AJF+11] Jim Austin, Tom Jackson, Martyn Fletcher, Mark Jessop, Bojian Liang,
Mike Weeks, Leslie Smith, Colin Ingram, and Paul Watson. Carmen: Code
analysis, repository and modeling for e-neuroscience. proceedings of the
international conference on computational science, iccs 2011. Procedia
Computer Science, 4:768 – 777, 2011.

[BCMW11] Grant R. Brammer, Ralph W. Crosby, Suzanne J. Matthews, and Tiffani L.
Williams. Paper mâché: Creating dynamic reproducible science. Procedia
Computer Science, 4:658 – 667, 2011. Proceedings of the International
Conference on Computational Science, ICCS 2011.

[BL13] Marc Bux and Ulf Leser. Parallelization in scientific workflow management
systems. CoRR, abs/1303.7195, 2013.

[Bro14] Jason Brownlee. Reproducible machine learning results by default. Machine
Learning Mastery, 2014. https://machinelearningmastery.com/reproducible-
machine-learning-results-by-default/.

[Cha14] Scott Chacon. Pro Git. Apress, 2014.

[CSF13] Fernando Chirigati, Dennis Shasha, and Juliana Freire. Reprozip: Using
provenance to support computational reproducibility. In Proceedings of the
5th USENIX Workshop on the Theory and Practice of Provenance, TaPP
’13, pages 1:1–1:4, Berkeley, CA, USA, 2013. USENIX Association.

87

[DHG+14] Carl Dea, Mark Heckler, Gerrit Grunwald, Jos Pereda, and Sean Phillips.
JavaFX 8: Introduction by Example. Apress, Berkely, CA, USA, 2nd edition,
2014.

[DPA+18] Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D Carothers, Ker-
stin Kleese van Dam, Kenneth Moreland, Manish Parashar, Lavanya Ra-
makrishnan, Michela Taufer, and Jeffrey Vetter. The future of scientific
workflows. Int. J. High Perform. Comput. Appl., 32(1):159–175, January
2018.

[dPHG+13] Renato de Paula, Maristela Holanda, Luciana S. A. Gomes, Sérgio Lifschitz,
and Maria Emilia Telles Walter. Provenance in bioinformatics workflows. In
BMC Bioinformatics, volume 14 Suppl 11, 2013.

[DSS+14] Moritz Post Dominik Stadler, Remy Chi Jian Suen, et al. Jgit/user guide.
11 2014.

[GD07] Boris Glavic and Klaus R. Dittrich. Data provenance: A categorization of
existing approaches. In Alfons Kemper, Harald Schöning, Thomas Rose,
Matthias Jarke, Thomas Seidl, Christoph Quix, and Christoph Brochhaus,
editors, BTW, volume 103 of LNI, pages 227–241. GI, 2007.

[GE11] Philip J. Guo and Dawson Engler. Using automatic persistent memoization
to facilitate data analysis scripting. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 287–297,
New York, NY, USA, 2011. ACM.

[GFI16] Steven N. Goodman, Daniele Fanelli, and JohnP. A. Ioannidis. What does
research reproducibility mean? Science Translational Medicine, 8:341ps12–
341ps12, 2016.

[GHJ+12] Ed H. B. M. Gronenschild, Petra Habets, Heidi I. L. Jacobs, Ron Mengel-
ers, Nico Rozendaal, Jim van Os, and Machteld Marcelis. The effects of
freesurfer version, workstation type, and macintosh operating system version
on anatomical volume and cortical thickness measurements. PLOS ONE,
7(6):1–13, 06 2012.

[GM11] Pieter Van Gorp and Steffen Mazanek. Share: a web portal for creating
and sharing executable research papers. Procedia Computer Science, 4:589 –
597, 2011. Proceedings of the International Conference on Computational
Science, ICCS 2011.

[GOS09] Nicola Guarino, Daniel Oberle, and Steffen Staab. What Is an Ontology?,
pages 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

88

[HKP+09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider,
and Sebastian Rudolph. OWL 2 Web Ontology Language Primer. W3C
Recommendation, World Wide Web Consortium, October 2009.

[HZ10] Olaf Hartig and Jun Zhao. Publishing and consuming provenance metadata
on the web of linked data. In Deborah L. McGuinness, James R. Michaelis,
and Luc Moreau, editors, Provenance and Annotation of Data and Processes,
pages 78–90, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[KSM+11] David Koop, Emanuele Santos, Phillip Mates, Huy T. Vo, Philippe Bonnet,
Bela Bauer, Brigitte Surer, Matthias Troyer, Dean N. Williams, Joel E.
Tohline, Juliana Freire, and Cláudio T. Silva. A provenance-based infras-
tructure to support the life cycle of executable papers. Procedia Computer
Science, 4:648 – 657, 2011. Proceedings of the International Conference on
Computational Science, ICCS 2011.

[LPVM15] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of
data-intensive scientific workflow management. J Grid Computing, 13(4):457–
493, December 2015.

[LSM+13] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame,
James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan
Zednik, and Jun Zhao. PROV-O: The PROV Ontology. W3C Recommenda-
tion. World Wide Web Consortium, United States, 4 2013.

[LWMB09] Bertram Ludäscher, Mathias Weske, Timothy Mcphillips, and Shawn Bow-
ers. Scientific workflows: Business as usual? In Proceedings of the 7th
International Conference on Business Process Management - Volume 5701,
BPM 2009, pages 31–47, New York, NY, USA, 2009. Springer-Verlag New
York, Inc.

[MCF+11] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul
Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth
Plale, Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche. The open
provenance model core specification (v1.1). Future Generation Computer
Systems, 27(6):743 – 756, 2011.

[Mes10] Jill P. Mesirov. Accessible reproducible research. Science, 327(5964):415–416,
2010.

[MM12] L Moreau and Paolo Missier. Prov-dm: The prov data model. 01 2012.

[Mor] Luc Moreau. Jung. Technical report. https://jrtom.github.io/jung/.

[Mor15] Luc Moreau. Provtoolbox. Technical report, 2015.
http://lucmoreau.github.io/ProvToolbox/.

89

[MSSW13] Gina Moraila, A Shankaran, Zuoming Shi, and AM War-
ren. Measuring reproducibility in computer systems research.
http://reproducibility.cs.arizona.edu/, pages 1–37, 01 2013.

[ODS+13] Eduardo Ogasawara, Jonas Dias, Vítor Sousa, Fernando Chirigati, Daniel
de Oliveira, Fabio Porto, Patrick Valduriez, and Marta Mattoso. Chiron: A
parallel engine for algebraic scientific workflows. Concurrency and Compu-
tation, 25:2327–2341, 11 2013.

[osh] Oshi. Technical report. https://github.com/oshi/oshi.

[PE09] R. D. Peng and S. P. Eckel. Distributed reproducible research using cached
computations. Computing in Science Engineering, 11(1):28–34, Jan 2009.

[Pen11] Roger D. Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011.

[PMBF17] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana
Freire. noworkflow: A tool for collecting, analyzing, and managing prove-
nance from python scripts. Proc. VLDB Endow., 10(12):1841–1844, August
2017.

[rcs15] Gnu rcs, 2015. https://directory.fsf.org/wiki/Rcs.

[Ros95] Guido Rossum. Python reference manual. Technical report, Amsterdam,
The Netherlands, The Netherlands, 1995.

[Rot18] Richard Roth. Reproduzierbarkeit via ontologischer darstellung der prove-
nance. page 81, 1 2018.

[SNB+11] Satya S Sahoo, Vinh Nguyen, Olivier Bodenreider, Priti Parikh, Todd
Minning, and Amit P Sheth. A unified framework for managing provenance
information in translational research. BMC bioinformatics, 12(1):461, 2011.

[SNTH13] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. Ten
simple rules for reproducible computational research. PLOS Computational
Biology, 9(10):1–4, 10 2013.

[STVK+08] Carlos Scheidegger, Huy T. Vo, David Koop, Juliana Freire, and Claudio
Silva. Querying and re-using workflows with vstrails. pages 1251–1254, 01
2008.

[VKV09] P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research in signal
processing. IEEE Signal Processing Magazine, 26(3):37–47, May 2009.

[WHF+13] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams,
David Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra
Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex

90

Hardisty, Abraham Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib
Sufi, and Carole Goble. The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic
Acids Research, 41(W1):W557–W561, 05 2013.

[Wik19] Wikipedia contributors. strace, 2019.

[WMF+04] Anil Wipat, Darren Marvin, Justin Ferris, Kevin Glover, Mark Greenwood,
Martin Senger, Matthew Addis, Matthew R. Pocock, Peter Li, Tim Carver,
and Tom Oinn. Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 06 2004.

91

	Kurzfassung
	Abstract
	Contents
	Introduction
	Theoretical Basis
	Reproducibility and Replication
	Reliability of the Replicated Research
	Scientific Workflow and Workflow Management System
	Provenance and Ontology
	Version Control System
	Summary

	Library Usages
	JGit
	ProvToolbox
	JavaFX
	Strace
	Oshi
	Jung
	Summary

	Project Structure
	Use Case
	Description of the Components
	Summary

	Sample Project
	Preparation
	Details about sample.sh and sample.tex
	Run sample
	Some More Executions
	Summary

	Conclusion
	Recall the Research Requestions
	Limitations
	Future Work

	List of Figures
	List of Tables
	Bibliography

