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Kurzfassung

Quantenphasenübergänge (QPÜ) in stark korrelierten Elektronsystemen sind eins
der faszinierendsten Phänomene in Festkörperphysik. Die reichhaltigen Phasendia-
gramme dieser Systeme erlauben die Präsenz von zahlreichen QPÜs. Andererseits
existiert noch keine umfassende theoretische Beschreibung der quantenkritischen
Eigenschaften korrelierter Elektronen.

Für eines der fundamentalsten Modelle der Festkörperphysik, dem 3D Hubbard Mo-
dell, scheint das quantenkritische Verhalten die konventionelle Hertz-Millis-Moriya
Theorie zu verletzen. Diese unerwartete Erkenntnis wird der Anwesenheit von spe-
ziellen Eigenschaften auf der Fermioberfläche (FO), wie zum Beispiel Kohn Punkte
und/oder Linien, zugeschrieben. In diesem Fall sollte die korrekte Beschreibung von
3D korrelierten Metallen bereits durch Dynamische Molekularfeldtheorie (DMFT)
erreicht werden. Denn DMFT wahrt die Informationen über die FO Geometrie
und behandelt zeitliche Fluktuationen auf korrekte Weise, welche essenziell für
Quantenkritikalität sind.

Das Ziel dieser Arbeit ist das Testen der Hypothese, dass eine DMFT Behandlung
ausreichend ist, das quantenkritische Verhalten von 3D korrelierten Metallen zu
beschreiben ohne auf fortgeschrittene (und wesentlich aufwendigeren!) Quanten
Vielteilchen Methoden. Die DMFT Resultate für das 3D Hubbard Modell mit
Löcherdotierung haben es uns erlaubt, die Position des quantenkritischen Punkt
des magnetischen Übergangs zu bestimmen und die vielversprechenden Trends für
die quantenkritischen Exponenten aufzuzeigen.
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Abstract

Quantum phase transitions in strongly correlated electron materials are one of
the most intriguing phenomena in condensed matter physics. In fact, the rich
phase-diagrams of these systems usually allow for the presence of several quantum
phase transitions. At the same time, a comprehensive theoretical description of
the quantum critical properties of correlated electrons has been not fully developed
yet.

For one of the most fundamental model in solid state physics, the 3D Hubbard
model, quantum critical behaviour appears to violate the conventional Hertz-Millis-
Moriya theory. This unexpected finding has been ascribed to the presence of specific
features on the Fermi surface (FS), such as Kohn points and/or lines. In this is the
case, the correct description of 3D correlated metal should be already accessible
by means of Dynamical Mean Field Theory (DMFT) calculations. DMFT, in fact,
preserves the information about the FS geometry and correctly captures temporal
fluctuations, crucial for the description of quantum criticality.

The main aim of this work is to test the hypothesis that DMFT treatment is
sufficient to describe the quantum critical behaviour of 3D correlated metals,
without resorting to more advanced (and much heavier!) quantum many-body
schemes. Our DMFT results for the hole-doped 3D-Hubbard model have allowed
to determine the location of the quantum-critical point of the magnetic transition
and to highlight promising trends for the associated quantum critical exponents.
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CHAPTER 1
Introduction

Something deeply hidden had to be behind things.

Albert Einstein

Look up at the stars and not down at your feet. Try to make sense of what you see,
and wonder about what makes the universe exist. Be curious.

Stephen Hawking

When talking about phase transitions in general, intuitively one can name several
every day life phenomena, e.g. the transition from water to ice, as can be easily
observed e.g. during a snowfall or when preparing ice cream (and of course in the
opposite direction if it is not eaten fast enough and starts melting again). In both
cases temperature appears to be the essential parameter that drives this transition.
These are so-called 1st order phase transitions, which can be characterized by a
jump in the physical properties and the occurrence of metastable phases (e.g. mix
of ice and water)

We are mostly interested here to the case of continuous (2nd order) phase transi-
tions1.Of course, when looking at this problem on a more general perspective one
notice that not only temperature driven transitions occur, but there exist several
non-thermal parameters, e.g. the magnetic field B, doping n or any other generic

1For this class in contrast to the previously described ones no mixed phase occur
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1. Introduction

parameter g controlling the phase of aggregation of the system of interest.

There are particularly interesting situation in which, for specific “critical” values of
these quantities the temperature of the transition can be brought to zero. Such
points in a (g,T) phase diagram are referred as quantum critical points (QCPs).
Fig. 1.1 qualitatively illustrates the corresponding situation.

Figure 1.1: This figure, taken from [1], schematically shows the phase transition
temperature Tc (light-blue) as a function of a non-thermal parameter g. At a
critical value gc, which defines the QCP, the transition is completely suppressed
and Tc = 0.

The same picture highlights an important aspect of the quantum phase transition.
The problem is not a merely academic T = 0 issue, because its occurrence strongly
influences the physics of a large, funnel-shaped, parameter regime at finite T. In
fact the quantum effects of finite T are often associated with unexpected or exotic
phenomena, which explains the great interest among the scientific community. This
brings us to another fascinating current field of research, the world of strongly

2



correlated electron systems. These are generally highly sensitive to small changes
of external parameters and show a plethora of different physical phases and thus
numerous quantum critical points.

From a theoretical point of view there exist several well established standard
approaches for describing quantum critical systems, for example the Hertz-Millis-
Moriya (HMM) theory [2]. On the other hand, most theoretical models, including
(HMM) have significant limitations in applicability as they have been designed for
weak-coupling systems, which are often the wrong description for many electron
problems, including the model of interest in this work: the 3D Hubbard model.

For theories which describe phase transitions in correlated electron systems, such
as DΓA, pioneering attempts have been made to investigate the general quantum
critical properties for the 3D Hubbard model [3], which represents the fundamental
modelization of strongly correlated electron systems. While no unified theory
exists at the moment, it could be shown that in close proximity to the quantum
critical point features of the Fermi surface, especially Kohn anomalies, are a crucial
ingredient for the functional behaviour of critical exponents and for explaining
results that apparently differ from, conventional, e.g. HMM ones.

Interestingly, analytic calculations performed at the RPA level suggest that, the
arguably most famous theory of strongly correlated electrons, the dynamical mean-
field theory (DFMT) could be already sufficient to fully capture such deviations
from the HMM in correlated metals. On the other hand, no closer investigation
of the quantum critical region in the 3D Hubbard model have been done hitherto.
The lack of previous studies in this rather general framework represents the main
motivation for the work done in this thesis. Here systematic calculations of the
functional behaviour of the magnetic susceptibility and the correlation length of the
3D Hubbard model have been performed in both classical and quantum criticality
parameter regime to test whether, and to what extent, Fermi surface features
influences can be properly described within DMFT.
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CHAPTER 2
Theory and Methods

Misura ciò che è misurabile, e rendi misurabile ciò che non lo è.

attributed to Galileo Galilei

In this chapter a compact overview of quantum field theory methods relevant in the
context of this thesis is given. After briefly introducing the general expression of
the Hamiltonian of an interacting electron system, we will present the formalisms
of the one particle Green’s function as “pivotal” ingredient for many-electron
schemes. Thereafter, we will present some simplified modelizations of the solid
state Hamiltonian aiming to capture fundamental many-electron effects of the
full problem, such as the Hubbard model and Anderson impurity model (AIM).
Furthermore the dynamical mean-field theory (DMFT) will be introduced, as an
approach for treating quantum (temporal) fluctuations in a non-perturbative fashion,
while totally neglecting spatial ones. For extracting the generalized and the physical
susceptibility with DMFT, however, two particle Green’s functions computed from
the auxiliary AIM are needed. Therefore, at the end of this chapter a brief overview
of two particle diagrammatics and quantities is given.

2.1 Many body physics
In solid state physics a quite general expression for a Hamiltonian, including
Coulomb interaction between electrons and ions can be written down explicitly by
means of the second quantization formalism:

H = H0 + Vee (2.1)

5



2. Theory and Methods

with

H0 =
∑

σ=(↑,↓)

∫
d3r Ψ†σ(~r)

− ~2

2m∂2 −
∑
l

e2

4πε0
Zl∣∣∣~r − ~Rl

∣∣∣
Ψσ(~r)

Vee = 1
2
∑
σ,σ′

∫
d3r d3r′ Ψ†σ′(~r′)Ψ†σ(~r) e2

4πε0
1

|~r − ~r′|
Ψσ′(~r′)Ψσ(~r)

In this notation Ψσ(~r) and Ψ†σ(~r) do not represent wave functions but field operators,
creating or destroying an electron of charge −e and spin σ at position ~r. The
index l stands for the lattice ions with their respective charge Zl and position ~R.
The quantities m, ~, ε0 denote the electron mass, Planck constant and dielectric
vacuum constant, respectively. The Hamiltonian in Eq. 2.1 is way to complex to
be solved exactly in QM, if electron correlations are strong. As we will mention
later, approximative models need to be introduced to capture the basic aspects of
the many electron problem.

2.1.1 The one particle Green’s function
Even by neglecting the motion of the ions (Born-Oppenheimer approximation)
the intrinsically many-body effects described by Eq. 2.1 require a quantum field
theoretical (QFT) description. In this context the fundamental building block is
represented by the one particle propagator, also referred to as one particle Green’s
function. This quantity is the basic building brick of quantum field theory (QFT).
In QFT x̂(t) is no longer an operator but “again” a spatial point associated to
an i.e. field operator Ψ(†)(x, t). This (in general time dependent) object creates
(or annihilates) a particle in the Fock space of second quantization. Having this
argumentation in mind, one also notes that in QFT not the wave function of an
electron is the important quantity but the propagation of one electron itself in a
“sea” of other electrons. This is reflected in to the definition for the one particle
Green function:

G(~r, t;~r ′, t′) = −i〈T Ψ(~r, t)Ψ†(~r ′, t′)〉 =

= −i
[
θ(t− t′)〈Ψ(~r, t)Ψ†(~r ′, t′)〉 − θ(t′ − t)〈Ψ†(~r ′, t′)Ψ(~r, t)〉

]
(2.2)

Here T stands for Wick’s time ordering operator, guaranteeing always the correct
time ordering (i.e. later times on the left) of the operator pair within the expecta-
tion value in brackets. This expectation value is with respect to the ground state
(for T=0) or thermodynamic ensemble for finite temperatures. As mentioned during
the last paragraphs the physical interpretation of this quantity is the propagation

6



2.1. Many body physics

of an electron or hole created at ~r′, t′ and annihilated at ~r, t. Alexandre Zagoskin
showed in his book “Quantum Theory of Many-Body Systems” a quite amusing
interpretation of this definition as seen in Fig. 2.1.

Figure 2.1: The illustration is taken from [4] and shows the two possibilities for the
electrons in a “fishy” way: either adding (top picture) or removing (bottom picture)
an electron at ~x′, t′ and letting the electron or respectively the hole propagate until
~x, t, where it is removed (or added) again

.

In the case of finite temperature calculations, one would obtain time evolution
operators with complex time arguments like eiH(t±iβ), with β representing the
inverse temperature 1

T
. To overcome this problem, one performs a so called “Wick

rotation”1 t→ iτ . From now on we will stick to this formalism.
1named after Gian-Carlo Wick an Italian physicist who originally proposed his theory for a

solution in Minkowski space by substituting imaginary-number variables in euclidean space with
real ones [5].

7



2. Theory and Methods

If the system is, as in many cases, time and space translational invariant, one can
obtain important information by exploiting features of the Fourier transform with
respect to the time and space coordinates. For instance, looking at the transform
from real space to momentum (k) space translational invariance, which holds for a
lattice, leads to [6]:

G(~r, τ ;~r ′, τ ′)⇒ G(~r − ~r ′; τ, τ ′) ~r
′=0= G(~r; τ, τ ′) (2.3)

Moreover, for equilibrium system i.e. time independent Hamilton operators also
translational invariance in time, which can be proven when Fourier transform
τ ⇒ ω (see [6] for the calculation), simplifies the expression in Eq.( 2.2).

G(~r; τ, τ ′)⇒ G(~r; τ − τ ′) τ ′=0= G(~r, τ) (2.4)

In a second step considering the cyclic properties of the trace and commutation
rules for fermionic operators one sees (for details see [6]):

G(~r, τ) = −G(~r, τ + β) (2.5)

The periodicity of G(~r, τ ) in the interval [−β, β] allows to consider discrete Fourier
coefficients ωm (m ∈ Z). These are for fermions (bosons) the so called Matsubara
frequencies, which are the poles of the Fermi-Dirac [Bose-Einstein] distribution
function having the form ωm = (2m+ 1)π

β
[ωm = 2mπ

β
] [6]. The Fourier transform

of the Green’s function then reads as follows:

G(~r, τ) = 1
β

∑
n

G(~r, iωm)e−iωmτ

G(~r, iωm) =
∫ β

0
G(~r, τ)eiωmτ (2.6)

Non interacting Green’s function

Now let us explicitly compute the expression for the non interacting Green’s function
in momentum space, a starting point for several many-body approaches including
the more elaborate calculations in DMFT described in section 2.3.

8



2.1. Many body physics

We begin by looking at the Lehmann representation of the Green’s function (for a
detailed derivation see [6]).

G(~k, τ) = − 1
Z

∑
N,M

e−βEN eτ(EN−EM )
∣∣∣〈N ∣∣∣c~kσ∣∣∣M〉∣∣∣2 (2.7)

Where Z represents the partition function and |N〉 as well as |M〉 are eigenstates
of the non interacting Hamiltonian H0

H0 =
∑
~kσ

εk c
†
~kσ
c~kσ︸ ︷︷ ︸

n̂~kσ

(2.8)

After performing the explicit calculation in the Fock space a simplified expression
for G = G(0) can be obtained [6]

G(0)(~k, τ) = −e−εkτ (1− f(εk)) τ → t= G(0)(~k, t) ≈ eiεkt(1− f(εk)) (2.9)

The physical interpretation of this term is transparent. If an electron with respective
energy can be added [1− f(ε~k) = 1] to the system it will propagate like a plane
wave [∝ eiεkt]. In fact in the non interacting system no scattering events with other
electrons take place, leaving the propagation described by G(0)(~k, τ) undisturbed.
The corresponding Fourier transform of Eq.( 2.9) reads:

G(0)(~k, iω) =
∫ β

0
−e−εkτ [1− f(εk)]eiωmτdτ = 1

iωm − εk
. (2.10)

Interacting Green’s function & Self-Energy

When explicitly taking into account the electronic interaction in the Green’s
function (denoted G(~k, iωm)), a new quantity namely the self-energy Σ(k, iωm) can
be introduced. Thus is defined as a physical difference of the two cases and for
the sake of simplicity the “free” non-interacting Green function will be defined as
G(0)(~k, iω) ≡ G0(~k, iω).

Σ(~k, iωm) = G−1
0 (~k, iω)−G−1(~k, iω), (2.11)

This equation, referred in the literature as the Dyson equation, can be solved for G
and by inserting the expression from Eq. 2.10 one obtains:

9



2. Theory and Methods

G(~k, iω) = 1
iωm − εk − Σ(~k, iωm)

(2.12)

When dealing with the Dyson equation, one encounters the concept of one particle
reducibility. This could be understood as cutting an internal Green’s function line
which separates the diagram into two independent ones. Figure 2.2 illustrates this
idea by means of the Dyson equation.

Figure 2.2: When expanding the interacting Green function in the Dyson equation
a resulting infinite sum of 1P reducible diagrams appears. These corresponding
classification can be done by an imaginary pair of scissors showing that through
cutting an internal Green function line two separate Feynman diagrams can be
obtained [7].

To better understand the physical meaning of the self-energy, let us consider the
case of Fermi liquid theory, which renormalizes non-interacting quantities for a
qualitative understanding. Such renormalization can be understood microscopically
by expanding Σ(k, iωm) = Re Σ(k, iωm) + Im Σ(k, iωm) up to 1st order around the
Fermi energy level (E ≈ Ef , k → kF , iωm → 0) and inserting it into Eq. 2.12.
Consequently, the Fourier transform of the result (for details see [6]) reads:

G(t) ≈ e−i(εk+Re Σ(kF ))te−γt, γ = − Im Σ(kF ) (2.13)

Now it can be easily seen that the real part of Σ(k) leads to corrections of the
non-interacting dispersion or chemical potential, whereas the imaginary part depicts
the (now) finite lifetime of the one particle-excitations: the so-called Landau quasi-
particles. Finally, it should be mentioned at this point that the Green’s function
and even more the self-energy, despite of their importance still remain rather
abstract concepts from the experimental point of view. In order to relate them to
measurable quantities one usually looks at the spectral function which is accessible
through, e.g. Angle Resolved Photoemission Spectroscopy (ARPES). For a detailed
discussion of the topic see [8].

10



2.2. Many body electron correlation modelling

2.2 Many body electron correlation modelling
As the Hamiltonian in Eq. 2.1 cannot be solved exactly, simplified model expressions
have been introduced. For strongly correlated orbitals a typical approach consists in
treating only the major part of the interactions meaning only its local part. These
approximations lead to significantly simpler Hamiltonians, which yet often capture
the fundamental properties of electronic correlations. In the next paragraphs the
arguably two most fundamental models for many body systems, the Hubbard model
and the Anderson Impurity model, will be briefly introduced.

2.2.1 Hubbard Model
The Hubbard model has been originally proposed in the 1960s to describe electrons
in 3d transition metals [9]. Since the radial wave function of the 3d electrons, as
well as that for 4f electrons, has a small spatial extent, this usually leads to an
effectively strong electronic interaction. The quintessence of the independently
proposed “Ansatz” by Hubbard [9], Gutzwiller [10] and Kanamori [11] was to
assume a purely local, strongly screened interaction (U) leading, for a single orbital
case (which is the one we consider in this work), to a Hamiltonian of the form:

H = −t
∑

(i,j),σ
c†iσcjσ + U

N∑
i=1

ni↑ni↓, (2.14)

where the first part of the Hamiltonian describes the transit of the electrons from
site i to j and the second part the energy cost for double occupations at one site.

But let’s go back one step and give a mathematically accurate deviation for Eq. 2.14.

Starting from the expression given by Eq. 2.1 one tries to simplify the H0 term
by a superposition of atomic orbital states called Wannier states. An important
feature of these states is the fact, that they form an orthonormal basis of the single
particle Hilbert space. The basis is defined by unitary transformation between real
(~r) and Wannier space (whose states are typically labeled):

Ψ†σ(~r) =
N∑
i=1

ψ∗~Ri(~r)c
†
iσ. (2.15)

11



2. Theory and Methods

By Fourier transforming the Wannier operators c†iσ to momentum space one can
also rewrite the expression for H0 in momentum space (for the mathematical details
see [12]):

H0 =
∑
~k

εkc
†
kσckσ =

∑
ii′
tii′c

†
iσci′σ (2.16)

where tii′ stands for

tii′ = 1
N

∑
~k

ei
~k(~Ri−~Ri′ )εk =

∫
ddr ψ∗~Ri

~2∂2

2m ψ~R′i
.

When applying a similar procedure to the interaction term in 2.1 one obtains:

H =
∑
i,i′
tii′c

†
iσci′σ +

∑
ii′jj′

Uii′jj′c
†
iσc
†
i′σcjσcj′σ. (2.17)

In the case of weak orbital overlaps only the on-site Coulomb interaction gives
a significant contribution. If one assumes also only nearest neighbour uniform
hopping we finally obtain the expression of Eq. 2.14 for the single band case. The
c†iσ and ciσ are creation and annihilation operators for electrons and ni↑, ni↓ give the
number of spin-up/spin-down electrons at a lattice site i. It now becomes evident
that the second term describes the of potential energy of the problem, since the
energy U has to be paid only in case of double occupancy, whereas the first term is
the kinetic energy. Figure 2.3 shows a schematic illustration of the main features
depicted by the Hubbard Model.

It should be mentioned that although the Hubbard Hamiltonian has a quite simple
form, only few cases (i.e. 1d and d =∞) are exactly solvable today. This is due to
the competition of kinetic and potential terms in Eq. 2.14: the first is diagonal in
momentum (Bloch) space and the second in real (actually Wannier) space, which
makes a non-perturbative solution of the problem very difficult. On the other hand,
due to its fundamental nature the Hubbard model is often a standard starting
point for solid state correlation investigation. With the help of dynamical mean
field theory, described in section 2.3, and its cluster [13] diagrammatic extensions
(e.g. DGA [14]) one has an adequate tool to treat the Hubbard Model satisfactorily,
as it is done in the work of this thesis.

12



2.2. Many body electron correlation modelling

Figure 2.3: The illustration taken from [15] shows the electronic microscopic
processes of the Hubbard model: Hopping from site i to j and ii whenever two
electrons with opposite spin are on the same lattice site, the local Coulomb
interaction U must be paid.

2.2.2 Anderson Impurity Model
Approximately thirty years after the experimental discovery that small amounts of
ion magnetic impurities may cause a pronounced minimum in the electric resistivity,
by de Haas, de Boer, and van den Berg in 1934 [16], Kondo firstly described
this phenomenon accurately [17]. A big step forward towards the microscopic
understanding of this problem came from Philip Warren Anderson who suggested
a Hamiltonian which models the interaction of itinerant band electrons states with
a simplified localised magnetic moment of the ion impurity [18]. This expression
has the following form in second quantization:

HAIM =
∑
kσ

εka
†
kσakσ +

∑
kσ

Vk(c†σakσ + a†kσcσ) + Un↑n↓ − µ(n↑ + n↓) (2.18)

The a†kσ, akσ stand for creation and annihilation operators for an electron with spin
σ at an energy bath εk, whereas c†σ, cσ create/destroy an electron with its respective
spin at the impurity site. The quantity Vk is a measure for the hybridization
strenght between the impurity and the electron bath. U is again the Coulomb
repulsion for double occupancy at the impurity site, where n↑,↓ is a number operator
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2. Theory and Methods

for electrons there. By construction the Anderson Impurity model appears thus
also suited for treating the local (on-site) electronic correlations especially in the
Hubbard model system.

2.3 Dynamical Mean Field Theory
When looking at the Hubbard model in Eq. 2.14 “conventional” Hartree-Fock
type theories, which are based on factorizing correlation functions, are not able
to properly capture the most interesting regime of strong electronic correlation.
Therefore controlled not approximative techniques are required. Most of them start
from a perturbative treating of the problem. Either the interaction term U is very
small, or the hopping term t. But what happens in case of intermediate coupling
U/t ≈ 1? Actually DMFT can also be formulated as a theory in the limit of a large
parameter, the coordination number z. Yet, no other restrictions are made and
local dynamics of the system is, thus, retained. Furthermore 3D systems, which
are evidently quite relevant for physicists, already have a large z2, i.e. for fcc z=12.
Now what is the quintessence of DMFT?

“DMFT maps a many electron problem onto a single site one, which has to be
determined self-consistently. Hence DMFT can be understood as non-perturbative
approximation scheme for the investigation of models and materials with correlated

electrons in d ≤ ∞"

The last sentence has been formulated by Dieter Vollhardt [19], who together with
Walter Metzner, Antoine Georges and Gabriel Kotliar has been one of the pioneers
of DMFT.

Before discussing DMFT in more detail, let us have a brief look at the general
construction scheme for “classic” mean field theories by discussing the famous Ising
model.

Also in this case, by taking the limit z →∞ the spin-spin interaction is replaced
by a mean field term [20], describing the interaction of a single spin with a field
(often referred as mean (molecular) field). Of course when considering z →∞, the
coupling constant J has to be rescaled thus guaranteeing a finite expression for the
mean-field term:

2It should be mentioned here that for theorists in this sector 12 is already quite near to ∞.
One might think this is a joke, but experimental results confirm this assumption in this research
field.
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2.3. Dynamical Mean Field Theory

HIsing = −1
2 J

∑
〈Ri,Rj〉

SiSj =⇒ HMF = −hMF

∑
Ri

Si

with hMF = J
(i)∑
Rj

Sj and J → J∗

Z
, J∗ = const (2.19)

2.3.1 Diagrammatic approach of DMFT
In the quantum regime one can apply some procedure to the Hubbard Hamiltonian.
In this case, a proper rescaling of the kinetic energy term must be considered, while
the potential or interaction term is completely local and therefore is dimension
independent. Following the idea of Metzner and Vollhardt [21], we can exploit
the following result that due to the central limit theorem resulting Gaussian DOS
remains finite for d→∞ only if:

t −→ t∗√
d

t∗ = const. (2.20)

The following derivation is taken from [21], where the most important steps are
summarized now.

• Looking at kinetic energy for T=0 and U=0 we obtain

Ekin = −t
∑
〈 ~Ri ~Rj〉

∑
σ

g0
ij,σ, g0

ij,σ = 〈c†iσcjσ〉. (2.21)

Where the quantity g0
ij,σ can be seen an amplitude for hopping processes

between ~Ri and ~Rj . Thus the probability, which is proportional to its square,
behaves like 1/d.

• In the limit d→∞ one gets:

g0
ij,σ ∼ O

(
1√
d

)
(2.22)

• The non-interacting Green’s function 2.2 obeys the identical scaling relation

• Moreover, the Green’s function and its Fourier transform have to follow the
scaling, since it is not time dependent, for all times.

• Even for d→∞ particles remain mobile and may hop to d nearest neighbours.
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2. Theory and Methods

• This leads to:
G0 ∼ O

(
1/d|| ~Ri− ~Rj ||/2

)
(2.23)

where the quantity ||~R|| = ∑n=1
d

~Rn is denoted in the “New York metric”
allowing only hopping on horizontal or vertical lines.

• This property leads to a collapse of all connected, irreducible perturbation
theory diagrams in position space.

The most important insight of this derivation is the fact that Metzner and Vollhardt
could demonstrate that the self-energy skeleton diagrams become purely local [21].
This means that their Fourier transform will be momentum independent.

Σσ(~k, ω) ≡ Σ(ω) for d→∞ (2.24)

Figure 2.4: This illustration shows Self Energy expressed as the sum of all one
particle irreducible diagrams.

Diagrammatically, DMFT corresponds, thus, to consider all completely local one-
particle irreducible diagrams3 for the electronic self-energy, shown in Fig. 2.4. In
a physical context this means considering only the local part of the electronic
correlation but in a fully non perturbative way.

2.3.2 Self-consistency circle & impurity solver
From the algorithmic point of view, the crucial step when performing DMFT
calculations is the solution of the local problem, where Gloc(ω), the local Green

31P irreducible diagrams are the ones which cannot be separated in two by cutting one
internal fermionic line.
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2.3. Dynamical Mean Field Theory

function, as well as the local self-energy Σ(ω) represent local observables, related to
a dynamical, in this context frequency dependent, mean field heff (ω). Now as A.
Georges et al [13] have summarized in their 1996 review (having achieved the status
of “Encyclopaedia” for DMFT by now) by mapping the problem to the Anderson
impurity model, the same diagrams for the DMFT self-energy can be obtained. If
the impurity interaction coincides with the original Hubbard model one and the
electron bath is properly chosen. Additionally this approach links DMFT to AIM,
for which elaborate numerical codes have already been developed during the 1980’s.
In Fig. 2.5 the hybridization between bath and impurity electron is schematically
shown.

Figure 2.5: This figure, which is taken from [15], illustrates that DMFT is essentially
a mapping of the d-Dimensional Hubbard Model and its corresponding self-energy
Σ(k, ω) onto a single site (described by its determined, auxiliary AIM). Thus the
impurity and the bath electrons hybridize resulting in a local problem, where the
self-energy is momentum independent.

It is now crucial to impose a condition that links the, sort of properly chosen auxiliary
AIM to the DMFT problem by setting Gloc(ω) = GAIM (ω). This prerequisite serves
as self-consistency condition in an iterative DMFT loop. The relation of this two
quantities is associated with the local self-energy Σ(ω) which on the one hand is
included in the AIM Dyson equation:

G−1
0 (ω) = G−1

AIM(ω) + Σ(ω) (2.25)

and on the other hand defines the local Green’s function too:
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2. Theory and Methods

Gloc(ω) =
∑
k∈BZ

1
ω − εk − Σ(ω) (2.26)

The quantity G−1
0 (ω) is describing the hybridization with the electronic bath of the

auxiliary AIM and acts like the Weiss mean field in this quantum case.

In Fig. 2.6 a full DMFT self-consistency loop circle is shown. The most time-
consuming part from the numerical point of view is doubtlessly finding a solution
of the impurity problem. Currently there exist several different impurity solvers,
whereby quantum Monte Carlo (QMC), which will be briefly presented in the
following section and exact diagonalization (ED) are the most common ones.

Figure 2.6: This figure [22] summarizes the process for performing a DMFT self
consistency loop. As highlighted in the picture the most challenging step is the
numerical solution of the AIM.

Impurity solver

Since for the work done in this thesis exclusively QMC algorithms will be utilised,
this method be described in a brief manner now. One of the most popular QMC
schemes was the Hirsch-Fye (HF) method [23], formulated for the first time about
30 years ago. Here the interaction Anderson impurity model is mapped onto a sum
of non-interacting problems with a single impurity particle influenced by an field
with explicit time dependence. Consequently this sum is calculated by standard
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2.3. Dynamical Mean Field Theory

Monte Carlo sampling. Even if for calculations performed in this work CT-QMC
method will be used, during the next paragraphs first the most important steps of
HF-QMC for a basic QMC understanding will be presented, which can be found in
a more detailed manner in [13]:

• First one separates the Anderson Hamiltonian for a local impurity H into an
non-interaction part H0 and an interacting one H1.

• In this numerical step the time interval [0, β] is discretised into L step, often
referred as Trotter discretization:

∆τ = β

L
. (2.27)

• Having performed this step, the partition function can be written considering
the time slices and additionally when applying the Trotter-Suzuki decom-
position a decomposed term, with respect to interacting part of H, can be
achieved, with an error O(∆τ 2).

Z = Tr
(
e−βH

)
= Tr

(
L∏
i=1

e−∆τH
)

(2.28)

e−∆τH = e−
∆τH0

2 e−∆τH1e−
∆τH0

2 +O(∆τ 2) (2.29)

Z ≈ Tr
(

L∏
i=1

e−∆τH0e−∆τH1

)
(2.30)

• By utilising an auxiliary field, the Hubbard-Stratonovich, and exploiting
Hirsch’s identity Eq. 2.31 designed for local interaction Hamilton operators,
the interacting problem has been mapped onto the sum over all possible
configurations of the auxiliary field of non-interacting Ising-spins.

e−∆τU(ni↑ni↓− 1
2(ni↑+ni↓)) = 1

2
∑
si=±1

eλsi(ni↑−ni↓) (2.31)

λ = arccos
(
e

∆τU
2
)

(2.32)

• The partition function has now the following form

Z =
∑

s1,...,sL

det
[
G−1
↑ (s1, ..., sL)

]
det

[
G−1
↓ (s1, ..., sL)

]
(2.33)
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2. Theory and Methods

• The expression inside the sum of Eq.( 2.33) represent the stochastic weight
of the Monte Carlo sampling. Moreover the single spin flip Markov chain
outcome is represented by the s1, ..., sL configurations.

However even if HF-QMC has been state of the art up to the late 2000’s, it presents
limitations especially when treating low-temperature regions in the phase diagram.
As the equal spaced time steps are proportional to β = 1

T
and theory as a whole is

conceived for local (small) interactions. In the case of large U and low temperatures
systematic errors become significant and should be treated carefully.

To overcome some of these difficulties, nowadays continuous time QMC (CT-QMC),
has become the new standard technique, which will be also utilized for this work.
Here again, the starting point is the separation of the Hamiltonian H into a Ha,
containing the bath- and local Hamiltonian (which is the following expression in
interaction representation Hloc = H0

loc +HI
loc) and Hb term, though this time the

partition function Z =−βH is written in the interaction representation with respect
to Ha and expanded in powers of Hb [24]:

Z = Tr

[
Tre
−βHbexp

[
−
∫ β

0
dτHb(τ)

]]

=
∑
k

(−1)k
∫ β

0
dτ1 · · ·

∫ β

τk−1
Tr

[
e−βHbHb(τk)Hb(τk−1) · · · Hb(τ1)

]
(2.34)

The big advantage of this approach is the fact of starting directly in continuous
time and thus avoiding discretisation errors. With respect to coupling strength two
different algorithm will be briefly sketched now, for a detailed review on CT-QMC
one can refer to [24] of which the following explanations have been taken from. For
weak-coupling systems the interaction expansion algorithm (CT-INT) is used [25].
Having as starting point Eq. 2.34 Hb is assumed as interaction part of the local
Hamiltonian and Hb thus is Ha = Hbath +Hhyb +H0

loc. More important for the
work in this thesis is the so called hybridization expansion (CT-HYB) [26]. This
algorithm is used in w2dynamics code [27], which has been utilized in this work.
In contrast to CT-INT at CT-HYB Hb is assumed as hybridization term Hhyb and
thus Ha = Hbath +Hloc. This technique has several advantages, e.g. the expansion
order is much smaller than for CT-INT in case of strong coupled systems. This
means lower temperatures are more accessible, for a detailed discussion see [28].

20



2.3. Dynamical Mean Field Theory

2.3.3 Advantages and limitations of DMFT
Surely one of the main advantages DMFT gives is the non-perturbative description
of the Mott insulator transition (MIT), where the spectral function of a metal can
subsequently turn to an insulator if the local Coulomb interaction U is large enough.
Before DMFT no globally valid4 theory existed. For instance density functional
theory (DFT) is restricted to quasi-particles regions, if U remains small, whereas
the atomic limit is an adequate tool for Hubbard model description only in the very
large U limit. DMFT though, could be seen as a theory that fully captures the
MIT as gradually spectral weight transfer from quasi particle peaks to Hubbard
sub-bands of the correlated metallic state [29].

An important feature of DMFT, as mentioned before, is momentum independence
of the self-energy Σ(ω). Due to this circumstance the Fermi surface geometry is
not changed by interactions5. This holds also for the spectral function and the
Fermi energy, which is only shifted uniformly[15].

On the other hand, a drawback of DMFT is the fact that even if temporal or
quantum fluctuations are described accurately, spatial ones are not treated at all,
since DMFT remains mean field level from the spatial point of view. This proves
to be a poor description for regions near second-order phase-transitions (here the
correlation length ξ goes to ∞). The same considerations apply to the cases of low
dimension (1D or 2D)6 as DMFT becomes exact only for d =∞.

We recall that when applying DMFT to systems with finite dimensions, the self-
consistency is valid only for one particle quantities. As a consequence of this, the
(local) susceptibility (a two particle density correlation function) of the DMFT isn’t
corresponding to the same quantity of the AIM anymore. These considerations are
of particular importance for approaches which go beyond the limitations of DMFT.

Another important reason for having a more detailed look at two particle quantities
is their importance when performing the Bethe-Salpeter Equation for the extraction
of response functions in DMFT. Hence, a brief introduction to two particle quantities
and extractions of these will be given in the next section , which has been adapted
from [30].

4In this context “globally” intends different regions of the phase diagram
5It should be mentioned here, that of course the notion of a Fermi surface in d =∞ might

appear a little complicated, as the dispersion function is not smooth at all.[15]
63D is still close enough to obtain satisfying results with DMFT
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2. Theory and Methods

2.4 Two-particle diagrammatics & relevant
quantities

In order to calculate the main quantity of interest in this thesis, i.e. the magnetic
susceptibility within DMFT, one has to move to the two-particle level of the
diagrammatics. The two particle Green function is introduced as follows:

G2,σ1,...σ4 = 〈T c†σ1(τ1)cσ2(τ2)c†σ3(τ3)c†σ4(τ4)〉 (2.35)

This immediately leads to the definition for a generalized susceptibility, which is
usually used in the two particle case [31]. Analogously to the 1P case, due to
periodicity, the time interval [0, β] is sufficient and τ4 = 0 can be chosen since
time-translational invariance in the Hamilton operator holds.

χσ1,σ2,σ3,σ4 = G2;σ1,σ2,σ3,σ4(τ1, τ2, τ3, 0)−G1;σ1,σ2(τ1, τ2)G1;σ3,σ4(τ3, 0) (2.36)

When Fourier transforming the above quantity, 2 conventions exist the particle-hole
(ph) and particle-particle (pp) notation, which are shown in Eq. 2.37 and in Fig. 2.7.
As for the spin coordinates, often linear combinations are build for a more physical
description for example the spin channel one: χs = χph,↑↑ − χph,↑↓.

χν,ν
′,ω

ph;σ,σ′ =
∫ β

0
dτ1τ2τ3χσ,σ′(τ1, τ2, τ3)e−iντ1ei(ν+ω)τ2e−i(ν

′+ω)τ3

χν,ν
′,ω

pp;σ,σ′ =
∫ β

0
dτ1τ2τ3χσ,σ′(τ1, τ2, τ3)e−iντ1ei(ω−ν′)τ2e−i(ω−ν)τ3 (2.37)

Figure 2.7: This figure, which has been taken from [31] show a particle-hole
scattering event on the left side and a particle-particle one on the right

Hitherto we have encountered expressions for the so called generalized susceptibility.
However, this quantity is not easily experimentally accessible and the physical
susceptibility of the system instead is obtained by summing over both fermionic
Matsubara frequencies:
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2.4. Two-particle diagrammatics & relevant quantities

χs(ω) = 1
β2

∑
νν′
χνν

′ω
s (2.38)

From now on, however, we will stick to χph ≡ χ, as this quantity is utilized for this
work. The generalised susceptibility can be diagrammatically divided into a “bare”
propagation term and an interaction term the so-called vertex corrections:

χν,ν
′,ω

σ,σ′ = χν,ν
′,ω

0 δσ,σ′ −Gσ(ν)Gσ(ν + ω)F ν,ν′,ω
σ,σ′ Gσ(ν ′)Gσ(ν ′ + ω) (2.39)

where the first term on the right side looks as follows

χν,ν
′,ω

0 = −βGσ(ν)Gσ(ν + ω)δνν′ (2.40)

Figure 2.8 shows the form of 2.39 from a diagrammatic point of view.

Figure 2.8: This figure, which has been again taken from [31] shows the diagram
corresponding to the independent propagation of two particles as well as that
describing the scattering events. The sum of the two contributions yields the
generalized susceptibility χν,ν

′,ω
σ,σ′

In this context F denotes the full vertex function which is made up of all two-
particle connected diagrams. In turn this, physically interpreted, scattering term
can be further decomposed due to reducibility at the 2P level: a diagram is called
2P reducible, of one can cut two fermionic lines, and by this, the diagram will split
into two. For this situation not only one way exists to cut a diagram but 3, the
particle-particle channel (pp), the transversal particle-hole (ph) and the longitudinal
particle-hole one (ph). This immediately leads to another decomposition for the
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2. Theory and Methods

complete vertex function F into a fully irreducible part Λ and reducible parts Φr for
the specific channels r = (pp, ph, ph). The resulting equation is called the parquet
equation.

F = Λ + Φpp + Φph + Φph (2.41)

Figure 2.9: Here one can see the diagrammtic decompostion of the Full Vertex
F into a fully irreducible part Λ and reducible parts Φr for the specific channels
r = (pp, ph, ph) [31]

A different complementary, approach for the division computed by the parquet
equation is obtained introducing another auxiliary quantity the irreducible vertex
Γr for a certain channel r. For example, in the ph channel one has:

F = Λ + Φpp + Φph︸ ︷︷ ︸
Γph

+Φph (2.42)

Γr can be obtained from F with the help of the Bethe-Salpeter integral equation7,
where F can be seen as a sum of all connected diagrams irreducible for a certain
channel r and the reducible ones. These can linked by connecting Γr to F via two
Green’s function lines [31]:

F = Γr +
∫

ΓrGGF (2.43)

2.4.1 Response functions
Response functions can be seen as a connecting link between microscopic theory
and experiments, since they describe the behaviour or response of a system when
an sufficiently weak external perturbation (e.g. a magnetic field) occurs. The most

7It should be mentioned here that the integral symbol stands for summing up over all internal
degrees of freedom [31].
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famous ones are the specific heat cv = ∂U
∂T

the isothermal compressibility κ = − 1
V
∂V
∂p

and the magnetic susceptibility χ = ∂M
∂H

.

Starting point is a system with a Hamiltonian of the form H = H0 +Hv − Â · a(t).
The first two term are time independent, whereas the latter represents an external
perturbation a(t) coupled to an observable of the system Â. Usually experiments
are designed to measure the response of the system to an external perturbation of
another observable B̂8, which is given by the response function:

〈B̂〉v(t)− 〈B̂〉0 =
∫ ∞
−∞

dt χBA(t− t′)a(t) (2.44)

There exist some important features of χBA(t− t′) which will be briefly listed:

• Even if χBA(t− t′) is time dependent it does not depend on a(t) at all.

• Due to causality (effects are caused by action thus happen later in time)
response functions are always retarded.

Within linear response theory (no higher order terms contribution of the perturba-
tion) the Kubo-Nakano formula provides a simple form for χBA(t− t′)9, for which
in this case ~ is set to 1.(for a detailed derivation see [30]).

χBA(t− t′) = iΘ(t− t′)〈[B̂(t), Â(t′)]〉v=0 (2.45)

In our case calculations will be performed within the Feynman diagrammatic
formalism at finite temperatures. Hence the above quantity must be expressed in
imaginary times:

χBA(ω) =
∫ β

0
ei(ω+i0+)〈TτB(τ)A(τ ′)〉v=0 (2.46)

Although these expressions might appear in simple form, actual calculations can
become quite challenging, especially when performing the analytic continuation.
Thus some special cases will be discussed now.

8indeed in many cases B̂ = Â, which does not alter the formalism
9This holds only for time independent Hamiltonian, which are translational invariant. Other-

wise χ would have an explicit time dependence instead of a mere time difference.

25



2. Theory and Methods

U=0 limit of the Hubbard model

First let’s have a closer look at the non-interacting limit. As seen in Eq. 2.46
and 2.45 the thermal average is evaluated with respect to the full unperturbed
HamiltonianH0+Hv. IfHv = 0, Wick’s theorem can directly be applied to evaluate
the resulting combination of fermionic operators and in for the paramagnetic spin
susceptibility one obtains:

χσzσz(~q, iωm) ∼ 1
β

∑
nn′

∑
~k

∑
σ

G~kσ(iνn)G~k+~qσ(iνn + iωm)δn,n′ (2.47)

The summation over n and n’ represents the Fourier transform to momentum space
where all fermionic Matsubara frequencies are summarized, whereas m are bosonic
Matsubara frequencies10, see Sec. 2.1.1. For the static case iωm → 0 the expression
changes to

χSzSz(~q, 0) ∼
∑
~k

∑
σ

nσ(ε~k+~q)− nσ(ε~k)
ε~k − ε~k+~q

(2.48)

which in the ~q → 0, T → 0 becomes the Pauli susceptibility [30].

χSzSz(0, 0) ∼ N (εF ), (2.49)

with

N (εF ) = −
∑
σ

1
Nk

∑
~k

dnσ(εk)
dεk

∣∣∣∣
T=0

(2.50)

Atomic limit of the Hubbard model

As discussed in [30] the atomic limit, which essentially treats the case (U/t→∞)
gives a Curie like expression for the static susceptibility:

χ(~q, 0) ∼ const · 1
T

(2.51)

10For a better readability ω will be used for bosonic frequencies and ν for fermionic ones from
now on.

26



2.4. Two-particle diagrammatics & relevant quantities

2.4.2 Calculation of momentum dependent response
functions in DMFT

The standard procedure retrieving momentum dependent susceptibilities from
DMFT, which is a crucial step in our work, will be sketched now.

• In a first step one performs a DMFT self consistency calculation of which
the local Green’s function and also the local generalized susceptibility are
extracted from the auxiliary Anderson impurity model, i.e., they are obtained
at the end of the self-consistent procedure.

• Secondly one considers the Bethe Salpeter equation (BSE) for the local AIM
of DMFT

χνν
′ω

AIM = χνν
′ω

0,AIM + χνν
′ω

0,lAIM Γνν′ωAIM χνν
′ω

AIM (2.52)

• By inverting this equation, an expression for the irreducible vertex Γνν′ωAIM can
be evaluated

Γνν′ωAIM = β2
[(
χνν

′

AIM

)−1
−
(
χνν

′

0,AIM

)−1
]ω

(2.53)

where

(
χνν

′ω
AIM

)−1
= G

(2)
AIM −G

(1)
AIMG

(1)
AIM , (2.54)

and

χνν
′ω

0,AIM = −βGAIM(iν)GAIM(iν + iω). (2.55)

• In a final step the BSE for the lattice is formulated in a ladder where Γνν′ωloc

is inserted, since when included in a ladder decomposition the irreducible
vertex becomes purely local [13]. Additionally, the momentum dependent
Green’s function from DMFT GDMFT (ν,~k) is taken to build the momentum
dependent χ0 terms, as seen in Fig. 2.10.

χνν
′ω

k,k′,q = χ0 νν′ω
k,k′q + χ0 νν′ω

k,k′,q Γνν′ωAIM χνν
′ω

k,k′;q (2.56)
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Figure 2.10: Ladder decomposition of the response function χ(q, iω).

• By inverting the last expression one obtains a result for the momentum
dependent generalised susceptibility

(
χνν

′ω
k,k′q

)−1
=
(
χ0 νν′ω
k,k′,q

)−1
− Γνν′ωAIM . (2.57)

were the inversions are performed with respect to the fermionic variables
(k, ν, k′, ν ′) for each (fixed value) of the bosonic ones (q, ω)

• Finally to obtain the momentum dependent physical susceptibility , the
internal (fermionic) frequency momentum summation must be performed:

χ(q, ω) =
∑
k,k′

ν,ν′

χνν
′ω

k,k′,q (2.58)
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CHAPTER 3
Quantum phase transitions

In this house, we obey the laws of thermodynamics!

The Simpsons

In this second methodological chapter the main formalism for describing and char-
acterizing phase transitions will be introduced. Starting from classical ones, the
most fundamental concepts, such as order parameters or universality classes will
be concisely presented. In a second step, the whole theory will be extended to not
thermally induced phase transitions, the so-called quantum phase transitions. The
regions of the phase diagrams in the proximity of a quantum critical point exhibit
various interesting physical phenomena, some of which will be investigated within
this thesis. Their general importance will be shortly illustrated with some textbook
examples. Subsequently in the next part of the chapter theories for adequately
describing classical (Landau Theory) as well as quantum criticality (Hertz-Millis-
Moriya Theory) will be concisely presented. In the last section eventually the most
recent literature results for the classical as well as the quantum critical behaviour
of the Hubbard Model will be discussed.

3.1 Classical phase transitions and criticality
Before we start with any theories or formalisms let us first define the term “phase”
from a physical point of view:

“Phases can be seen as defined states of a matter distinguishable by means of clear
differences in their thermal, mechanical and magnetic properties”
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3. Quantum phase transitions

Transitions between different phases occur when changing a certain external control
parameter, e.g. the temperature T , the magnetic field h, the chemical potential µ
etc. More rigorously, the “clear differences” mentioned above correspond to a non
analytic behaviour of thermodynamic potential, like the Free Energy F .

By further examining the phase transitions, two main subclasses of can be identified,
for which the following table 3.1 captures the principal differences, adapted from [32].

1st order phase transitions 2nd order phase transitions

• 1st derivative of thermodynamic po-
tential discontinuous

• continuous 1st derivative of thermo-
dynamic potential

• latent heat QL = T0∆S • no latent heat QL = 0

• metastable phases occur • unsteady or divergent behaviour of
response functions (χ, cv, κ)

Table 3.1: Differences between 1st and 2nd order phase transitions are confronted

From now on, however, when talking about phase transitions we will stick to 2nd

order ones, because these exhibit the critical phenomena investigated within this
thesis. In this respect, we should recall that such transitions are often accompanied
by a symmetry breaking process, e.g. rotational symmetry breaking in a antifer-
romagnet, where the disordered high temperature paramagnetic phase changes
into the ordered antiferromagnetic phase, spontaneously breaking the symmetry of
its Hamiltonian. In the classical case thermal (spatial) fluctuations destroy long
range order.1 This transition can be seen by the disappearance of a so called order
parameter, i.e. for the above case the magnetization ~M at T ≥ TN , where TN
stands for the Néel transition temperature from a antiferromagnetic (AF) to a
paramagnetic (PM) state.

In Fig 3.1 shows the generic behaviour for a typical second order phase transition
is illustrated as a function of a non thermal parameter, i.e. the pressure p. For
the parameter region slightly above and under (blueish in picture) TN (brown line)
scalings of several thermodynamic quantities exhibit power-law behaviors.

1The paramagnetic state for T > Tc is not intended to be a non-magnetic state as assumed in
the Stoner model, but it can be seen as a state where the non-interacting (or weakly correlated)
individual moments still exist [33].
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3.1. Classical phase transitions and criticality

Table 3.2 shows the functional dependencies in case of an Ising antiferromagnetic
system.

Figure 3.1: This adapted figure from [34] depicts the classical critical regime of a
2nd order phase transition.

It can be immediately seen that all quantities, since γ > 0, ν > 0 show a power-law
divergent behaviour at T = Tc. As mentioned above these exponents do not depend
on microscopic properties of the system but rather on macroscopic parameters like,
dimensionality d of the system or the interaction range. This leads to the definition
of the universality classes. These are a large collection of different systems which
exhibit phase transitions with the same critical exponents, i.e. the mean field
theory class2 γ = 1 and ν = 0.5.

2For finite-T (classical) phase transitions, DMFT belongs to this class which will be discussed
in more detail in 3.3.1.
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3. Quantum phase transitions

thermodynamic quantity scaling relation

specific heat cv cv ∼
∣∣∣T−Tc
Tc

∣∣∣−α
order parameter m m ∼

∣∣∣T−Tc
Tc

∣∣∣β
susceptibility χ χ ∼

∣∣∣T−Tc
Tc

∣∣∣−γ
correlation length ξ ξ ∼

∣∣∣T−Tc
Tc

∣∣∣−ν
Table 3.2: Scaling relation for the critical exponents α, β, γ, ν for a magnetic system
are shown

3.2 Quantum criticality
As one can see in Fig. 3.2, which has been adapted from the original Fig. 3.1, for
a certain value of the (non-thermal) control parameter p = pc the temperature
of phase transition can vanish (Tc = 0). For higher values of p, thus, no ordered
state can be found. This means that for the isothermal T = 0 line nonetheless a
phase transition occurs. Of course this one is not driven only by spatial or thermal
fluctuations but also by quantum or temporal ones. Intuitively, one would also
assume that for T = 0 particles would rest, which due to uncertainty principle
is not possible and could be seen as a confirmation of the existence of quantum
fluctuations. These might progressively suppress the long range order.

At this point, one might pose argument formulated within the 3rd law of thermody-
namics which essentially states: “It is impossible by any procedure, no matter how
idealized, to reduce the temperature of any closed system to zero temperature in
a finite number of finite operations.” [35]3 This would reduce the problem and its
consequential physic to a merely T = 0 academic problem.

If we recall the Tab. 3.2, another important parameter describing the classic phase
transitions is the correlation length ξ. Now we shall briefly refresh this concept in
an short intermezzo

3In graduate physics course my teacher Prof. Aumayr once explained this law with the
statement of a former student of him: “We cannot win the game” which I think captures the
quintessence of the law.
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3.2. Quantum criticality

Figure 3.2: This figure from [34] depicts the phase diagram region of quantum
critical behaviour, where temporal fluctuations are dominant.

Intermezzo for spatial fluctuations

Remembering the general expression for (electronic) correlations G(~r) [32]:

G(~r) = 〈ϕ(~r)ϕ(0)〉 − 〈ϕ(~r)〉〈ϕ(0)〉. (3.1)

In a bulk (3D) system, correlations are connected to the correlation length via the
following relation:

G(~r) ∼ e−|~r|/ξ

|~r|
(3.2)

The expression in Tab. 3.2 for ξ shows that for T → Tc its values goes to ∞, which
is a general feature of second order phase transitions. The “energy scale” of these
has the order of magnitude ∼ kBTc
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3. Quantum phase transitions

After this introduction of ξ = ξr
4 we will now have a look at the correlation length

of temporal (quantum) fluctuations. These depend on temperature ξt ∼ T−ν , but
more important they can be linked also on non-thermal control parameters (i.e.
pressure p) [2]:

ξt = |p− pc|−zν , (3.3)

where z is the so called dynamical critical exponent, which will be explained in 3.3.2.

When looking again at Fig. 3.2 in the quantum critical region inside the blue lined
cone 1/ξt << ξr holds and the effects of the presence of the quantum critical point
need to be considered in this parameter region. On the other hand, in the so called
“(quantum) disordered stated where 1/ξt >> ξr they can be safely neglected.

A remarkable experimental realization of this schematic phase diagram has been
found by J. Custers et al. [36]. They showed that for the heavy fermion compound
Y bRh2Si2 using a transversal magnetic field B as non thermal parameter a different
behaviour for the low-temperature resistivity emerges. Fig. 3.3 illustrates the
situation, where in the orange funnel shaped region the usual, Fermi-liquid ρ(T ) ∼
ρ0 + AT 2 changes to a linear one ρ ∼ ρ0 +BT .

3.3 Theories for phase transitions
After this rather phenomenological section, now two theories for characterizing
classical phase transitions, the Landau theory and its respective counterpart the
Hertz Millis Moriya (HMM) extending theory for quantum phase transitions will
be introduced formally now.

3.3.1 Landau Theory for classical phase transitions
In 1938 the Russian physicist Lew Landau formulated for the first time a theory
for 2nd order classical phase transitions, by recognizing in the symmetry breaking
processes a crucial point. On the basis of this consideration he formulated the
following assumptions, which have been adapted from [32].

• A phase transition is characterized by an order parameter ϕ or its respective
density ψ(~r).

4In order to avoid misunderstandings the subscripts r denotes the spatial correlation length

34



3.3. Theories for phase transitions

Figure 3.3: This figure from [36] shows the “high temperature” properties of a
QCP, which perfectly matches the schematization of Fig. 3.1.

• The free energy F (T, h) explicitly depends on an external field (i.e. the
Magnetic field) and its first derivative ∂F

∂h
defines the order parameter.

• For T . Tc the order parameter ϕ is so small that the free energy is expanded
in terms of it. Due to the fact of invariance of F under symmetry trans-
formations in case of h=0, only even powers of ϕ survive and temperature
dependence is captured in the respective constants:

F (T, ϕ) ≈ F0(T )− hϕ+ a(T )ϕ2 + b(T )ϕ4 + ... (3.4)
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3. Quantum phase transitions

Evaluating the expression in Eq. 3.4 for the equilibrium state, where the free energy
is in a minimum we obtain the following results for the order parameter in case of
no external field:

for a(T ) > 0:

ϕ = 0 (3.5)

for a(T ) < 0:

ϕ = ±

√√√√−a(T )
2b(T ) (3.6)

Hence, as Landau observed, the minimal qualitative description of a 2nd order
phase transition can be obtained by assuming the the temperature dependence of a
and b is simply given by a ≈ a0(T − Tc) and b ≈ b0 > 05: we see the three different
cases for T ≷ Tc and T = Tc illustrated in Fig. 3.4. For temperatures above Tc
there is only on minimum of f for a disappearing order parameter ϕ = 0 (dotted
line), whereas for temperatures below Tc there exist two symmetric, with respect
to origin, with a non-zero ϕ (dashed line).

As we will show now the Landau theory is essentially a good description for mean
field approximation. We show thus explicitly, as an example, the the critical
exponent γ controlling the critical behaviour of the susceptibility χ ∼

∣∣∣T−Tc
Tc

∣∣∣−γ.
The following derivation has been adapted from [32]. Starting point is again the
standard definition of the susceptibility (ie of the magnetic system):

χ = −∂
2F

∂h2 = ∂ϕ

∂h

∣∣∣∣
h=0

(3.7)

Differentiating Eq. 3.3.1 with respect to ϕ and minimizing the expression we get:

2a0(T − Tc)ϕ+ 4b0ϕ
3 = h (3.8)

After performing another derivate with respect to h and inserting the definition of
3.7 an expression for the susceptibility can be found

5This constant has to be always positive in order to guarantee the existence of a global
maximum
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3.3. Theories for phase transitions

Figure 3.4: The dotted line show the functional behaviour of the free energy per
Volume f for T > Tc, the continuous one for T = Tc and the dashed one for T < Tc

χ = 1
2a0(T − Tc) + 12b0ϕ2 (3.9)

Exploiting the relations of Eq. 3.5 and 3.6 we obtain a final expression for χ:

χ


1

2a0(T−Tc) T > Tc
1

4a0(Tc−T ) T < Tc
(3.10)

It can be seen for T = Tc the susceptibility diverges corresponding with a critical
exponent γ = 1 both above (γ) and below (γ′) Tc, which in fact coincides with the
mean field exponent. Analogous results for the critical behaviour of the correlation
length or the order parameter itself can be found. It should be recalled at this
point that Landau theory completely neglects all spatial correlation (which explains
the circumstance of its mean field “character”). This may lead to quantitative
discrepancies for phase diagram region in immediate vicinity of a critical point/line
if the dimensionality of the system or the range of the interaction are not large
enough. For example DΓA which goes a step beyond DMFT including spatial
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3. Quantum phase transitions

correlations will be, in general, not describable with the Landau theory.

While having now talked about model theories for classical phase transitions we in
a next step we will have a brief look into the conventional theory for the quantum
case, which can be qualitatively understood as an inclusion of quantum fluctuations
within the Landau formalism.

3.3.2 Hertz Millis Moriya Theory for quantum criticality
Roughly 40 years after the pioneering work of Lev Landau. John Hertz published
a scientific review which investigated phase transition at zero temperature [37]. He
came to the conclusion that the Landau formalism for describing classical phase
transition can be extended by taking into account the time as additional dimension.
This approach can be motivated by the fact that while in the classical statistic
description spatial configuration are crucial whereas in the quantum case the weight
is expressed through the Schrödinger factor e−iHt. As mentioned in the last section
at any phase transition the correlation length diverges, however, at a QCP also the
correlation time ξt shows a similar behaviour with respect to the critical doping
nc [2]:

ξt ∼ |n− nc|−z (3.11)

resulting into an effective dimension:

deff = d+ z (3.12)

Now one could naively assume that deff = d+1. However, in general the problem is
more complex than simply taking only time as an additional dimension. Hertz who
mainly investigated itinerant electron systems by renormalization group methods
could show that z depends on the scaling between spatial an temporal fluctuation.
For instance in case of insulators one finds z=2 and for metals z=3 [2]. On the
other hand, important limits of applicability of this “conventional” theory have
emerged in the last 40 years (wrong order of phase transition, wrong description
for certain compounds which show a heavy fermion behaviour). In fact several
attempts to save this theory have been made, among which we recall the most fa-
mous one by Millis who extended the scaling relation equation for temperature [38].
Furthermore, we also recall the Moriya’s extensions of the theory for describing mag-
netic materials with strong spin fluctuations outside the quantum critical region. [38]
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3.4. Criticality by means of the Hubbard model

Despite this progress some drawback could not be overcome. Since it is based on
renormalization group treatment it can be seen as a perturbative approach to the
problem thus making its application more problematic for strong coupled systems.
Another important aspect is the complete neglection of Fermi surface features of
the compound (in the next chapter we will see that these will be a crucial factor
for the failure of HMM for the 3D Hubbard model in the quantum critical region).

3.4 Criticality by means of the Hubbard model

3.4.1 Classical criticality for the HM
After introducing and discussing the generic formalisms for characterizing the
classical and the quantum criticality, now a closer look will be given to the critical
behavior of the model of interest in this work: the 3D Hubbard Model. As a first
step, we consider the n=1 half-filled case and briefly resume the main results of
Refs. [39], [40]. Fig 3.5 illustrates the variation of the Néel temperature TN for
different interaction strengths U computed in DMFT and its extensions. This
critical temperature is determined by the divergence of the momentum dependent
spin susceptibility χ(ω, ~Q) (for which the “extraction” process within DMFT is
sketched in Sec. 2.4.2) computed at the underlying ordering vector, which corre-
sponds to ~Q = (π, π, π) in case of half filling. One can immediately draw several
crucial conclusion from this picture.

Starting from weak-coupling regime, we see a first significant increase of TN For
small values of U, TN displays a “renormalized” mean-field (exponential) behavior,
see [41], [42], [43]. This gets gradually weakened by increasing U resulting in a
maximum around U ≈ 2. We observe that in general the DMFT and the DΓA
Néel temperature are deviating from each other since in DΓA the additional space
correlations (here AF correlations) further suppress the ordering tendency of the
system. The significant deviation of DΓA from a mean-field description is also
visible in the T-behavior of the critical properties illustrated in Fig 3.6, where
the inverse antiferromagnetic transition susceptibility computed in DΓA is plotted
for several U values. In fact the χ−1 significantly differs from a linear mean field
behavior in a T interval, which becomes larger at intermediate U due to the higher
impact of spatial correlations in this regime. 6

6For the work performed in this thesis scaling for t=1 has been chosen in contrast to 1/2
√

6
previous studies shown here (including T. Schäfer’s work discussed later) meaning that quantities
like the interaction strength U, the temperature T and its inverse β have to be multiplied (or
divided) by this pre factor.
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3. Quantum phase transitions

Figure 3.5: This picture (taken from [40]) shows the Néel Temperature of the 3D
Hubbard Model as a function of the interaction strength U (in unit of 2

√
6t = 1)

for DMFT and its diagrammatic extensions as well as (for comparison) the ones of
the Heisenberg model.

Eventually for U > 2, the DΓA results are approaching rather precisely the quan-
titative behaviour of the Heisenberg model (HBM), where TN decreases with U .
A similarity was also recognized for the scaling relations of the susceptibility as
well as for the correlation length which in both the 3D HBM and DΓA gets larger
than the corresponding mean-field value. Similar trends have been also obtained in
dual-fermion (DF) [44]. This is in contrast to DMFT, which besides overestimating
TN , always yields mean-field critical exponents (γ = 1 and ν = 0.5): DMFT is a
pure mean-field from the point of view of spatial correlations.

It shall be also mentioned, that DMFT and DΓA (within the precision of numerical
data) obey the Fisher relation:

γ

ν
= 2− η (3.13)
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3.4. Criticality by means of the Hubbard model

Figure 3.6: This picture (taken from [39]) shows the inverse susceptibility for
different values of U. In the lower inset a linear mean field (DMFT) behaviour is
shown, while in the upper one the deviation between DΓA and DMFT behaviour
is zoomed in for U=1.25 and U=1.50.

As pointed out in [45] in any case for the three dimensional systems considered
here, the anomalous exponent η, which vanishes completely for higher dimensions
than the upper critical one, is typically neglected. For DMFT, a mean-field theory
in space, η is always zero.

It is also important to recall recent studies by L. del Re et al. which investigated
the attractive Hubbard model out of half filling [46] by means of DΓA: Fig. 3.7 show
numerical fit of the particle-particle susceptibility taking into account sub-to-leading
orders, see also [47]. This refined analysis demonstrates that DMFT yields for
the superconducting phase transition mean-field classical critical exponents, while
ladder DΓA calculations, with momentum independent Moriya corrections [48], [40],
yields the exponents to understand spherically symmetric classes (i.e.:γ = 2, ν = 1)
analogously to the two particle self-consistent (TPSC) approach [49], [50]. As the
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3. Quantum phase transitions

spherically symmetric model corresponds to the universality class (N=∞, finite
d), this is in contradiction to expected 3D-XY model ones. Tab. 3.3 shows the
comparison between values of different universality classes and the results computed
in DΓA by L. del Re et al. [46].

Further investigation will be needed to carried out whether a refinement of the
critical exponents o DΓA can be obtained by means of momentum dependent Moriya
corrections [40] or by an explicit/fully self-consistent ladder-DΓA algorithm.

Table 3.3: This table, taken from [46], show the values for critical exponents of
different universality classes compared to results obtained by ladder-DΓA (the
results for ladder-DΓA AFM, however, have been taken from [39])

Figure 3.7: This figure taken from [46], show the comparison between two numerical
fits for the inverse particle-particle susceptibility. The red-dashed line, which takes
sub-to-leading order into account show a slightly lower critical temperature. The
latter seems in better agreement with the remarkably different critical exponents
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3.4. Criticality by means of the Hubbard model

It should be pointed out here, that DΓA results for critical exponents are always
obtained by numerical fits of data which are limited to regions with a finite distance
with respect to the calculated critical temperature. As described by the work of
Tremblay [47], where he pointed out that including sub-to-leading order might be
necessary for controlling the intrinsic uncertainty of this fitting procedure [45], this
circumstance may result in missing information of “last minute” changes in the
curvature of data in proximity to Tc. For this reason in the work by L. del Re et
al. both fitting procedures were adopted (see Fig. 3.7). Nevertheless, the steady
computational physics progress of the last years will progressively mitigate this
kind of issues.

3.4.2 Quantum critical Hubbard model out of half filling
In the following paragraphs we will focus again on the repulsive Hubbard model in
3D. This time, however, we will leave the n=1 density “cut” in order to system-
atically approach the critical doping δc = 1− nc where a QCP occurs. It should
be mentioned briefly here that, when talking about doping the system, we have
considered the case of hole doping. The main results and conclusions of the work
by T. Schäfer et al. [51] will be explicitly presented below, as they provide the
main motivation for the work performed within this thesis.

Schäfer et al. examined the three dimensional Hubbard by DΓA. As starting
point the interaction U=2 (or respectively 9.789) has been chosen, since for this
value the second order phase transition Néel temperature exhibits its maximum,
as seen in Fig. 3.5. In Fig 3.10 the four most interesting phase diagram cuts
are shown. For n=1 the same results, both for TN and the critical behaviour
(γ = 2ν, γ > 1, ν > 0.5), as obtained in [39], could be confirmed.

In the small doping regime the numerical values of ν and γ remain quite stable,
however as it could be seen in the second column of Fig 3.10 a a certain hole doping
level a more complicate T-dependence is seen. This results from the competition
of a second incommensurate ~q-peak different from the one at (π, π, π). This cir-
cumstance will be treated in a more detailed manner when discussion the DMFT
results in chapter 4.

By reducing further the density, at about n = nc ≈ 0.8 (where TN vanishes) the
values of ν and γ change significantly from the 3D Heisenberg ones, but also from
the Hertz-Millis-Moriya ones (ν = 0.75, γ = 1.5). In fact, the peculiar values of the
DΓA exponents (ν ≈ 1, γ ≈ 0.6), appear to strongly violate the Fisher relation of
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3. Quantum phase transitions

Figure 3.8: This figure, adapted from [3], shows the Néel-Temperature as a function
of the doping concentration. For a critical density n = nc ≈ 0.8. The Néel
temperature vanishes, marking the existence of a quantum critical point.

Eq. 3.13. This unexpected behavior has been ascribed to the geometrical properties
of the underlying Fermi surface: the so-called of Kohn anomalies, such as Kohn
points or Kohn lines, which are shown in Fig. 3.9. In general the Kohn points are
a generalization of the nesting/Van Hove properties of highly symmetric Fermi
surfaces. Kohn points are defines as the points of the FS that (i) are connected by
the commensurate/incommensurate vector ~Q and (ii) have opposite Fermi velocities.

As it was explicitly shown by hands on RPA calculations in the Appendix of [51],
the presecne of Kohn lines can strongly affect the values of the quantum critical
exponents. For the case of KOhn lines, relevant here, one finds γ = 0.5, ν = 1.

In fact the main aim of this work is to confirm the very same unusual quantum
critical behavior for the more general case of DMFT calculations of magnetic
transitions in correlated metals. If confirmed this result could have an important
impact for the calculations of metallic QCP in realistic cases.

Finally when looking at a region beyond the QCP, which is shown in the last column
of 3.11 a Fermi liquid behavior with finite susceptibility for zero temperature can
be identified. Here the numerical fit has been performed for point situated in the
quantum critical cone shaped regime,see Fig 3.2, where the results are similar to
ones at the QCP.

44



3.4. Criticality by means of the Hubbard model

Figure 3.9: In this picture, taken from [51], Kohn lines in the 3D Fermi surface of
the simple cubic lattice, with assumed nearest-neighbor hopping (left) are shown.
In the right panel a 2D cut of the left picture including the SDW vector ~Q0 can be
seen.

Figure 3.10: This figure which has been taken from [51] show the inverse correlation
length ξ−1 in the upper row as well as the inverse susceptibility χ−1 for n=1.0 and
n=0.87. For the fitted functions the green points have been considered.
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3. Quantum phase transitions

Figure 3.11: This figure which has been taken from [51] show the inverse correlation
length ξ−1 in the upper row as well as the inverse susceptibility χ−1 for n=0.805
and n=0.79. For the fitted functions the green points have been considered.
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CHAPTER 4
Phase Diagram and quantum

criticality: DMFT results

How wonderful that we have met with a paradox. Now we have some hope of making
progress.

Niels Bohr

In this chapter the Hubbard model in three dimensions is investigated by means of
the dynamical mean-field theory (DMFT). As a first step calculations are performed
for the half filling (n=1.0) case: Here the magnetic susceptibility’s and correlation
length’s temperature dependence is examined. Successively by varying the filling (hole
doping) the magnetic transitions and its corresponding classical critical regions are
analyzed: the critical exponents of the emerging incommensurate magnetic transition
regimes are explicitly determined. By continuing the doping process the ordering
temperature is suppressed until a quantum critical transition is reached. The physical
properties of the QCP will be investigated more closely, to test whether they show
significant deviations from expected Hertz-Millis-Moriya theory predictions. In
particular the obtained numerical results are examined in the context of the possible
relation with the Kohn points on the Fermi surface, already discussed in the context
of and DΓA and RPA
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4. Phase Diagram and quantum criticality: DMFT results

4.1 General determination process for critical
exponents

Before we start discussing our DMFT results let us first briefly resume the main
workflow for the numerical evaluation of critical exponents. The main algorithmic
steps are:

• Step 1: A DMFT calculation is performed until convergence is reached (e.g.
for the impurity lattice self energy and the chemical potential). In this thesis
the w2dynamics code [27], which is based on CT-HYB see Sec. 2.3.2, has
been used for such calculations.

• Step 2: The results from fully converged DMFT runs have been used as input
for a so-called “statistical” DMFT cycle from which the local one and two
particle Green’s function (of the auxiliary AIM of DMFT) as well as the
generalized local susceptibility can be extracted.

• Step 3: In order to obtain an expression for the physical susceptibility. An
adapted Fortran module code from T. Schäfer which has been successfully
used in [3] was utilized. As input the two particle Green’s function G2

AIM and
susceptibility χAIM from the auxiliary AIM are needed and the irreducible
vertex ΓAIM is extracted by the inversion of the BSE of the impurity. Subse-
quently the momentum dependent susceptibility χ(q) is obtained in a direct
way by the BSE of the lattice, where the detailed calculation see Sec. 2.4.2.

• Step 4: The output data for the physical susceptibilities is now utilized for a
fit of the correlation lenght ξ by exploiting usual Ornstein-Zernike relation

χ(ω = 0, ~q) = A

(~q − ~Q)2 + ξ−2
(4.1)

In addition to fitting ξ, the maximum peak at ~Q must be fitted too. As
mathematical method the least square fitting procedure has been used as
in [3].

• Step 5: The results of Step 3 and 4 are obtained for a finite number of
Matsubara frequencies, due to time limits of the computational algorithms.
Computations of Step 3 have to be repeated with different values of Matsubara
frequencies nω of the interval [−ω, ω] with ω = π

β
(2nω + 1).

• Step 6: Eventually all nω dependent frequencies results for a phase diagram
point are extrapolated for nω →∞ by the following function:
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4.2. Classical criticality parameter regions

h(nω) = a0 + a11
nω

(4.2)

The value of a0 will now yield the actual numerical value for a specific quantity
(either χ, ξ, ~Q or A) Fig. 4.1 shows schematically the extrapolation process.
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Figure 4.1: This figure illustrates the fit for the correlation length frequency
extrapolation for n=0.825 and β = 10. The x-axis show the number of fermionic
frequencies used for the calculations of Step 3.

Doping n Matsubara frequencies nω
1.0, 0.9, 0.850, 0.825 60, 40, 30
0.8 120, 100, 80, 60
0.7885 150, 125, 100, 80
0.775 120, 100, 80

Table 4.1: This table shows the Matsubara frequencies used for each a determined
doping in this work.

4.2 Classical criticality parameter regions
Half filling n=1.0

As anticipated we start by having a closer look at the half filled state n=1 for
U=9.789, see Sec. 3.4 for the choice of this specific U value. Fig. 4.2 shows a fit (see
Eq. 4.3 for an expression of the function) for the inverse susceptibility as well as
for the correlation length. Close enough to the transition as expected, the results
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4. Phase Diagram and quantum criticality: DMFT results

clearly show an evident mean-field behaviour with γ ≈ 1 and ν ≈ 0.52. At this
filling the Néel-temperature is TN ≈ 0.48 indicating no QCP in close proximity.
The transition temperature has been calculated via the fitting functions with:

f(T ) = B · (T − TN)γ g(T ) = C · (T − TN)ν (4.3)

which yield consistent results.
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Figure 4.2: This figure shows the maximum values inverse susceptibility χ (left)
and the inverse correlation length ξ (right), as a function of temperature, for n=1.0.
The fitted blue lines have been used for obtaining numerical values of the critical
exponents γ and ν. Only low-temperature points have been used for the fit (red
dots as well as insets). This procedure has been repeated for all dopings.

At this commensurate order regime the susceptibility displays its maximum value
at the wave vector ~Q = (π, π, π), indicating a commensurate (G-type) antiferro-
magnetic transition.

Out of half filling commensurate at order n=0.9

Fig. 4.3 shows a fit for the inverse susceptibility as well as for the correlation length,
for the case of 10% hole doping (n=0.9). Here again results are mean-field like
with γ ≈ 1 and ν ≈ 0.53. However, the ordering temperature has dropped now to
significantly smaller value (TN ≈ 0.3) than for n=1.0. At the same time, we are
still in the region of commensurate magnetic fluctuations, since χ has its maximum
at the wave vector ~Q = (π, π, π).
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Figure 4.3: This figure shows the maximum values inverse susceptibility χ (left)
and the inverse correlation length ξ (right), as a function of temperature, for n=0.9.

Incommensurate order at n=0.850 and n=0.825

By further increasing the (hole) doping of the system (n=0.850), we find the results
presented in Fig. 4.4, where we plot the inverse susceptibility, the correlation length
as well as their respective fits. While the critical behavior still remains mean-field
like with γ ≈ 0.99 and ν ≈ 0.5, for the inverse correlation length at intermediate
temperatures apparent deviations from the mean-field behavior can be noted. In
fact, they result from the emergence of another (incommensurate) peak in the
susceptibility other than the antiferromagnetic commensurate one at ~Q = (π, π, π).

As it can be seen in Fig. 4.5 at high temperatures a plateau emerges between the
two peaks at (π, π, π) and (π, π, π− δqz). While reaching lower temperature regions
the peak at (π, π, π − δqz) becomes more pronounced while the one at (π, π, π)
progressively suppressed. A similar evolution of the susceptibility has been also
observed for DΓA results in [3]. This crossover affects the functional behavior
of the inverse susceptibility (inset of right panel of Fig. 4.4) as discussed in [3],
which indicated a smooth evolution from an antiferromagnetic to a spin density
wave (SDW) phase transition.

Another interesting observation is the following: at n=1.0 and n=0.9 the behavior
of the susceptibility displays a certain degree of symmetry in the qx, qy plane of the
Brillouin Zone (not explicitly shown here, but it has the same form as for the left
top picture in Fig. 4.5), at lower dopings and low-temperatures as an hallmark of
incommensurate fluctuations the (π, π, δqz) direction appears associated to higher
values, while for qx = qy lines the peak structure becomes rather blured.
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Figure 4.4: This figure shows the maximum values inverse susceptibility χ (left) and
the inverse correlation length ξ (right), as a function of temperature, for n=0.850.

Figure 4.5: Momentum resolved susceptibility profile (qx, π, qz) for n=0.850, β=5
(left top), 6 (right top), 6.25 (left bottom), 6.50 (right bottom)
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For the results at n=0.825, shown in Fig. 4.6, essentially the same argumentation
holds as in the case of n=0.850. On the other hand, some changes should be outlined.
While the susceptibility still show a conventional mean-field behavior, the inverse
correlation length starts to display deviations from pure mean-field value ν ≈ 0.5 but
now being ν ≈ 0.6. This circumstance might originates either from the numerical
precision of the data or from the inapplicability of the standard Lorentzian Ornstein-
Zernike relation between χ and ξ. In fact, it could be observed while performing the
fitting procedure, that the region for a acceptable fit has been reduced from [0, π]
to a region [Q− δ,Q+ δ]. Still the results do not deviate largely from mean-field
values. In accordance with the results of n=0.850 an incommensurate behavior for
the susceptibility (Fig. 4.7) can be observed. However, especially in case of low
temperatures the (π, π, δqz) shaping is emerging more visibly.
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Figure 4.6: This figure shows the maximum values inverse susceptibility χ (left) and
the inverse correlation length ξ (right), as a function of temperature, for n=0.825.

4.3 Quantum critical effects
Inside the quantum critical “funnel” n=0.8

At this doping level, intermediate temperature points might be already situated
at the border or inside the quantum critical funnel schematically depicted: we
find in Fig 3.2. Here both critical exponents γ and ν strongly deviate from their
mean-field values γq ≈ 0.65 and νq ≈ 0.85 with an almost complete inversion of
the Fisher relation 3.13, shown in Fig. 4.8. The fit, however, also yields a finite
ordering temperature, which might indicate that the points considered actually
describe only a sharp crossover between an higher T (quantum critical?= and
a lower T ∼ TN (classical regime). In any case, for low-temperature points, we
certainly leave the funnel-shaped are of quantum critical regime and both γ and
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4. Phase Diagram and quantum criticality: DMFT results

Figure 4.7: Momentum resolved susceptibility profile (qx, π, qz) for n=0.825, β=4
(left top), 6 (right top), 8 (left bottom), 11 (right bottom)

ν show again mean field behavior with γc ≈ 1 and νc ≈ 0.5. At this doping the
Néel-Temperature reaches TN ≈ 0.0371 indicating a QCP in proximity.

Beyond the QCP n=0.775

When overdoping the system at n=0.775 the situation, as shown in Fig. 4.9, appears
as follows. For a intermediate temperature regime we obtain values for the critical
exponents similar to the quantum critical ones, however, further investigation is
needed to confirm this hypothesis. For the lowest temperature point (T < 0.02)
we can observe a clear flattening of the data points and by extrapolating towards
T=0 we get a finite value for the susceptibility, which can be interpreted as a
conventional Fermi-liquid (or Pauli-like) behaviour.

It should be noted that the numerical treatment of these low-temperature points
has become quite challenging, mostly because a higher number of Matsubara
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Figure 4.9: Maximum values inverse susceptibility χ as a function of temperature,
for n=0.775.

frequencies is needed to perform correctly the calculations. This is the reason why
data for the inverse correlation length needs a refined study and are not shown
here.

Néel Temperature behaviour

Before coming to discuss the quantum critical point regime, we have a look at
the Néel temperature as a function of doping, shown in Fig. 4.10. Comparing
this picture with its DΓA counterpart in Fig. 3.10, observe as expected, systemati-
cally higher values for TN . In fact, DMFT by neglecting all spatial fluctuations
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systematically overestimates phase transition temperatures with respect to DΓA.
The suppression of TN by increasing hole doping happens to be weaker (but only
slightly) than for DΓA [3].
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Figure 4.10: This figure shows the Néel temperature as a function of density n.

Non thermal critical exponents

As a preparatory step before discussing the critical behaviour at (or in immediate
proximity) of the QCP we briefly discuss the functional behaviour of the non-thermal
critical exponent for the susceptibility. Fig. 4.11 show the T=0 extrapolated finite
values of χ−1 of “overdoped” phase diagram cuts (n=0.7875, 0.7825, 0.775). A
linear function the form a+ bx is used for the fit of the three lowest-temperature
points, as seen in Fig. 4.9. The fit is performed by least-squares method. With
this method an estimate for the quantum critical point can be given, since the
susceptibility scales with the following relation:

χ−1
T=0 = (δ − δc)γ∗ (4.4)

with δ being the tunning parameter. The relation with n reads δc = 1− nc.

This treatment is still preliminary (we have only 3 data point for n=0.7875 and
n=0.7825), since in contrast to n=0.775 where data points show a convergent be-
haviour, especially for n=0.7875 (not explicitly shown here) the lowest-temperature
point (β = 100) has been excluded from the fit as data it is not numerically
precise for the determination of the critical exponent δc. In this case the number
of Matsubara frequencies (here 150) is still not adequately chosen to correctly
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4.4. Critical doping n=0.7885?

describe the behavior, which resulted in a significantly overestimated value for the
inverse susceptibility. Therefore a 2P DMFT calculation (see Sec. 4.1) with 200
fermionic will have to be done. However, from the numerical point of view this will
be extremely challenging. To overcome computational time limits on the Vienna
Scientific luster (VSC), the QMC sweep parameter will be reduced (from 5 · 105

to 105) and the number of nodes for the calculation will be set as high as possible
(from currently 80 to 125, as this can increase the statistics of the calculation).

This fit might suggest a linear behaviour of the (non-thermal) quantum critical
exponent yielding nc ≈ 0.7884. On the other hand for the inverse correlation
length, due to numerical challenges at low temperatures, no estimate could made
and thus further refined calculation with the previously describe adaption need to
be performed to complete this new part of the work.
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Figure 4.11: This figure shows the T=0 extrapolated values for the inverse suscep-
tibility χ as a function of electron density.

4.4 Critical doping n=0.7885?
Finally we have arrived at a our estimated critical doping at n=0.7885. Here it can
be seen from Fig. 4.12 that for low-temperature points again the frequency box of
Matsubara frequencies is not large enough, resulting in progressively overestimated
values for the inverse correlation length. This suspect becomes evidently when
extrapolating the data for infinite frequencies. We can see in the right panel of
Fig. 4.12, that we are still in a sort of“linear” frequency regime and the expected
tendency to saturation towards a constant value has not been reached (in contrast to
te assumed fitting function of Step 6 in 4.1). Here again calculations with a higher
number of fermionic Matsubara frequencies need to be performed (at least 250
instead of 150). Also the same changes with respect to computational parameters,
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4. Phase Diagram and quantum criticality: DMFT results

describe in the previous paragraphs need to be done to obtain reliable results. On
the other hand, at the critical doping we might will observe a quantum critical
behaviour for much higher temperature points (e.g., presumably in the interval
between β = 40 to β = 25). Therefore we plan to perform future calculations in the
enlarges T-interval, exploiting to our advantage te high-T impact of the underlying
QCP.
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Figure 4.12: Maximum values inverse correlation length ξ (left), as a function of
temperature, for n=0.7885. The right panel illustrates the values of the (not inverse)
correlation for a different number of fermionic Matsubara frequencies (#ff).
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CHAPTER 5
Conclusion & Outlook

Physicists like to think that all you have to do is say, these are the conditions, now
what happens next?

Richard P. Feynman

In this thesis the hypothesis has been tested that DMFT treatment can be used to
describe quantum critical behaviour of strongly correlated metal systems as in the
prototype case of the 3D Hubbard model.

Our DMFT calculations have allowed to determine quite precisely the position of
the magnetic QCP in the phase diagram of the 3D-Hubbard model as a function of
hole-doping. Further, we have studied the critical properties of te systems in both
sides of the QCP. In particular, it could be shown that leaving the classical critical
parameter regime, where the critical exponents appeared mean-field like γ ≈ 1
and ν ≈ 0.5, when entering the quantum critical funnel-shaped phase diagram
region for both investigated critical exponents γ and ν, abrupt changes could be
observed. In case of n=0.8 the values inside the funnel changed to γ ≈ 0.65 and
ν ≈ 0.85, which display a promising trend with respect to previous DΓA studies [3].
This results are driven by Fermi surface features, in this case Kohn lines or Kohn
points. As DMFT preserves the information about the FS geometry and correctly
captures temporal fluctuations, crucial for the description of quantum criticality,
this behaviour has been initially expected.

However at the presumed critical doping at n=0.7885 low temperature point could
not be obtained by enough numerical precision, as shown in Fig. 5.2. Therefore
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Figure 5.1: This figure shows the quantum critical behaviour the critical exponent
γq at n=0.8

future calculations with higher frequency boxes will need to be performed. The
same presumably incorrect low-temperature behaviour could also be observed for
slightly overdoped phase diagram “cuts”. Here again numerical precision will have
to be increased.

 0

 0.005

 0.01

 0.015

 0.02

 0  0.005  0.01  0.015  0.02  0.025

χ
−

1

T

Figure 5.2: This figure illustrates the fact of using a not sufficient number of
fermionic Matsubara frequencies resulting in an overestimate for the inverse sus-
ceptibility.

In case of the critical doping, however, quantum critical features should manifest
at a broader temperature range including intermediate values (β = 40 to β = 25
parameter regime). Thus future calculation in this, from the numerical point of
view more precisely accessible, phase diagram region will be performed.

Moreover, although the main focus in this work has been on thermal critical expo-
nents, as mentioned in the last part of Sec. 4.3, also non thermal critical exponents
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are of great interest since they complete they characterization of a quantum phase
transition and they represent a helpful tool for identifying more precisely, the
position of a quantum critical point. Due to the numerical challenges during the
extrapolation of the required low temperature data points for functional fits, further
investigation will be needed to prove whether this exponents show a behaviour
as predicted by HMM theory, which would pave the route for interesting new
investigations on the quantum criticality in correlated systems.

The promising results of this work show a concrete possibility that the deviations
from te HMM prediction can be already captured for correlated metallic systems
at the level of DMFT, without the need of more complex DΓA calculations. IT
definitely confirmed this information can be of crucial importance for the realistic
treatment f quantum criticality in correlated materials.
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