
Diplomarbeit

Curvature Based
Surface Mesh Simplification

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Technische Mathematik

eingereicht von

Christoph Lenz, BSc
Matrikelnummer 0828641

ausgeführt am Institut für Mikroelektronik
eingereicht an der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien

Betreuung
Betreuer: O.Univ.Prof. Mag.rer.nat. Dr.techn. Helmut Pottmann
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Josef Weinbub, BSc

Univ.Ass. Dipl.-Ing. Lukas Gnam, BSc

Wien, 14.05.2019

(Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Research Goals . 3
1.3 Outline . 4

2 Meshes and Mesh Simplification 6
2.1 Meshes . 6

2.1.1 Formal Definition . 6
2.1.2 Triangle Quality . 10

2.2 Surface Simplification . 10
2.2.1 Edge Collapse . 11
2.2.2 Lindstrom-Turk Simplification . 11
2.2.3 Distance Between Meshes . 12

3 Mathematical Foundations 14
3.1 Differential Geometry . 14

3.1.1 Surfaces . 14
3.1.2 The Weingarten Map . 18
3.1.3 The Curvature of a Surface . 22

3.2 Curvatures of Discrete Surfaces . 24
3.2.1 Differential Quantities through Osculating Jets 25

3.2.1.1 n-Jets and Jet-Fitting . 25
3.2.2 Discrete Differential-Geometry Operators 26

3.2.2.1 Discrete Mean Curvature . 27
3.2.2.2 Discrete Gaussian Curvature . 31
3.2.2.3 Discrete Principal Curvatures . 32

4 Software Tools 33
4.1 ViennaMesh . 33
4.2 The Computational Geometry Algorithms Library 33

4.2.1 Half-Edge Data Structure . 34
4.3 Visualization Toolkit . 34

5 Simplification of Subdivided Surfaces 36
5.1 Curvature Comparison . 37

5.1.1 Evaluation Setup . 37
5.1.2 Comparison of Curvature Calculation Methods 38

5.1.2.1 Gaussian Curvature . 39
5.1.2.2 Mean Curvature . 46

I

5.2 Feature Detection . 50
5.2.1 Filling Inaccurate Surface Patches . 56

5.3 Curvature Regions of a Surface . 58
5.3.1 Simplification of Regions . 59
5.3.2 Transitions between Regions . 61

6 Results and Discussion 66
6.1 Surface Mesh Simplification Comparison . 66

6.1.1 Square Bay Mesh . 66
6.1.2 Smooth Bay Mesh . 72
6.1.3 Results Without Transition Region . 82
6.1.4 Discussion . 84

7 Summary and Outlook 86

II

Chapter 1

Introduction

1.1 Motivation and Objectives

In the modern world nearly all people use electronic devices based on microprocessors to simplify
their lives, e.g., smart phones, computers, or virtual assistants. Due to the increasing complexity
of these devices, the investigation and evaluation of new as well as adapted fabrication tech-
niques and processes is of major importance in the semiconductor industry. Examples are the
necessary adaptations to improve fabrication processes to sustain the continued miniaturization
efforts of microelectronic devices, e.g., transistor-type devices. Such new processes pose new
challenges, as well as increasing the complexity of both, device design and fabrication processes.
These fabrication steps include processes like etching, deposition, and diffusion [40]. Due to
their high complexity, experimental evaluations have become very time and resource consuming
[20]. Thus, computer simulation became a key tool to accurately predict specific fabrication
steps, thus, enabling the partial replacement of conventional experiments with much faster and
orders-of-magnitude cheaper computer simulations. In semiconductor research and industries,
the umbrella term Technology Computer-Aided Design (TCAD) is used to refer to such com-
puter simulations. TCAD covers not only fabrication processes but also the simulation of the
electrical characteristics of individual devices and the electrical behaviour of entire circuits. [40].

As previously hinted, etching is an important fabrication process and can be modelled and
thus predicted (as for other fabrication processes) using process TCAD 1 simulation tools. In
this case, etching simulations rely on the representation of an evolving surface; evolving be-
cause the actual etching process selectively removes material from the surface and thus the
simulation must be capable of handling time-evolving deformations. Such time-evolving simula-
tions (typically referred to as topography simulations) depend on an accurate representation of
the surface. This representation can for example be conducted using the level-set method [31].
However, the level-set is an implicit representation; to generate an explicit surface an extraction
algorithm has to be applied, e.g., a marching cubes algorithm [19]. The explicit discretization
of the geometry resulting from the extraction algorithm is commonly known as a mesh.

There are multiple kinds of meshes, e.g., volume meshes or surface meshes. Meshes use the
union of simple base geometries to represent more complex geometries. Simplex meshes use, for
example, triangles in the case of surface meshes, or tetrahedrons in the case of volume meshes
for their base geometries. The three points of the triangle, respectively four of a tetrahedron,
are called vertices, and the lines that connect the vertices are called edges.

1In this context, process refers to fabrication processes necessary to build semiconductor devices, e.g., a
transistor-type device.

1

In this work these base geometries are referred to as the elements of a mesh. In literature other
commonly used names for elements are facets or cells. In Figure 1.1 an example of a simplex
surface mesh 2 is shown. There are also non-simplex meshes like quad meshes [1]. However,
this work focuses on simplex surface meshes.

(a) A standard reference model of the so called
Stanford Bunny consisting of 30,338 elements.

(b) A typical surface mesh occurring in semicon-
ductor device simulation with 140,698 elements.

Figure 1.1: Two example surface meshes.

A key aspect in topography simulations for process TCAD is the calculation of quantity
distributions on the surface itself. This is, for example, achieved by a technique called surface
flux calculations which is implemented by using ray tracing [23]. Although level-sets handle
complex surface evolutions robustly [32], ray tracing on level-sets can be accelerated by ex-
tracting an explicit surface of the level-set and subsequently performing the ray tracing on this
explicit surface [21]. After the extraction from the level-set the surface mesh can potentially
have a too high resolution, yielding unnecessarily computationally expensive calculations in the
subsequent simulation steps, see for example, the flat planes in Figure 1.1(b).

A typical use case of surface meshes is the creation of volume meshes, were the surface mesh
acts as a starting point for the subsequent volume mesh generation process, e.g., the advancing
front method [18]. The element quality (tetrahedrons) of the resulting volume mesh depends on
the element quality (triangles) of the surface mesh. The resulting volume mesh is then used for
solving partial differential equations using, for instance, the Finite Element Method (FEM) [2].
The computational complexity of a FEM increases with the number of elements of the given
volume mesh. Additionally, the accuracy of the FEM depends on the quality and the resolution
of the volume mesh elements [10]. All in all, volume meshes, and thus surface meshes, have a
significant impact on the numerical solutions. Optimizing the originating surface meshes via
mesh simplification algorithms by balancing the reduction of the number of elements with geo-
metrical feature preservation is thus of paramount importance and the focus of this work.

The general method to simplify a surface mesh used in this work is the so called edge col-
lapse. This method removes one edge from the surface mesh and replaces it with a vertex.

2Surface meshes find wide-spread application outside of TCAD. They are used, for example, in three-
dimensional (3D)-rendering, e.g., video games or animated films [30].

2

There are multiple strategies to decide which edge is collapsed and which vertex is chosen to
replace it, e.g., the Lindstrom-Turk simplification approach [17] or a simplification approach
based on a discrete curvature norm [16].

The Lindstrom-Turk simplification uses the intersection of three linear independent con-
straints to calculate the new optimal vertex position after an edge collapse.

The simplification based on the discrete curvature norm calculates the value for the discrete
curvature norm for the whole mesh and afterwards removes one vertex at a time and recalculates
the value for the discrete curvature norm. The edge that changes the value of the curvature
norm the least, if removed, is chosen and collapsed.

However, these methods have their drawbacks, they have high computation times and do
not consider the element quality in the case of the discrete curvature norm [16]. The approach
of Lindstrom and Turk reduces the resolution of geometric features too much with respect
to the other elements in the surface mesh [17]. Therefore, this approach creates a simplified
surface mesh that deviates unacceptably far from the geometry of the original surface mesh 3.
Furthermore, the calculation time of the simplification process is important, because when the
calculation time of the simplification process takes longer than the additional computation time
of, e.g., the ray tracing on the original geometry, there is no meaningful improvement to be
gained.

The Lindstrom-Turk simplification algorithm [17] is also designed to simplify surface meshes
were most elements contain information about the geometry of the surface mesh, e.g., most el-
ements of the mesh do not lie in the same plane as their adjacent elements (see Figure 1.1(a)).
However, when certain areas of the surface mesh have simpler geometry than other areas, the
overall number of elements in these areas can be reduced by a larger amount, without deterio-
rating the geometry.

1.2 Research Goals

The goal of this work is to reduce the number of elements whilst balancing with feature preser-
vation of a surface mesh created during the design process of a semiconductor device. Surface
meshes extracted within such a process simulation step potentially consist of too many ele-
ments, were not all of them are necessary for preserving the geometry of the surface (see Figure
1.1(b)). The simplification approach presented in this work, called region simplification utilizes
the so called curvature of a surface mesh. The curvature measures the rate at which the nor-
mal vector changes when it is moved over the surface. Subsequently, the elements are binned
into different regions depending on their curvature. Hence, the created regions have different
geometrical properties, e.g., flat region or high curvature region. For the proper simplification
of the different regions, the Lindstrom-Turk simplification approach with different parameters,
depending on the region’s geometrical properties, is used.

To guarantee a fast and reliable method of calculating the curvature of a mesh, two com-
monly used methods of curvature calculation are compared to determine their viability for the
simplification process developed in this thesis. These methods are jet-fitting [6], which tries to
approximate the local geometry of the given surface with the help of a quadratic minimization
problem, and spatial averaging [22], which uses areas and the values of certain operators to
calculate the curvature.

3Deviations from the original mesh result in principal errors of the overall simulation as the intended geometry
is not properly represented.

3

The surface simplification is only one step of many during the simulation of a fabrication
process of a semiconductor device. Therefore, the computation time of the surface simplification
is of importance regarding the overall simulation performance. To reduce the overall number of
calculations that have to be computed during the simplification process several advanced data
structures, like hash tables, are used to avoid redundant calculations.

1.3 Outline

In Chapter 2, mesh terminologies are defined and the general method used in this thesis to
simplify a mesh is introduced.

In Chapter 3, the mathematical foundation, used in this thesis are established. These contain
surfaces, the curvature of a surface in a given point, and two methods of calculating the curva-
ture of a discrete surface or a mesh. Finally, both methods are evaluated.

In Chapter 4, the software tools that were used to develop the simplification process are intro-
duced.

In Chapter 5, the process to simplify a high resolution mesh developed for this work is intro-
duced.

In Chapter 6, the results from the simplification processes are compared against the approach
of Lindstrom and Turk [17].

In Chapter 7, the work is concluded by giving a summary and an outlook to future work.

4

Nomenclature

X,Y, Z, . . . Sets
N The set of natural numbers
R The set of real numbers
x, y, z, . . . Scalars
Rn An n-dimensional vector space over the real numbers
n̄,xu, . . . Vectors in Rn
‖ · ‖ The euclidean norm
· The standard scalar product in Rn
τn The typology induced by the Euclidean norm
v A vertex
p A point
S A surface in R3

Tp(S) The tangent plane in the point p on the surface S
M A mesh
e An edge in a mesh M
ev, ew The two vertices of an edge

5

Chapter 2

Meshes and Mesh Simplification

The first part of this chapter starts with the formal definition of a mesh. Afterwards the triangle
quality of a mesh is discussed.

In the second part the basic version of the simplification process used in this thesis is
introduced, followed by the description of the simplification algorithm of Lindstrom and Turk.
In the last part a metric is introduced that is used to measure the error introduced by the
simplification process.

2.1 Meshes

The first part of this section is dedicated to the formal definition of a mesh, and the introduction
of necessary terminology which is used in the remainder of this thesis. This section ends with
a short discussion on the quality of meshes and their elements.

Simple geometries like, planes or spheres, are often used to prove the correctness of newly
adapted simulation processes, since it is easy to verify the results, because an analytic solution
can be calculated. However, typical geometries created by process TCAD have a more complex
structure, were no simple analytic solution can be calculated. This introduces the need to find
discrete representations of such geometries.

2.1.1 Formal Definition

In simplest terms a mesh can be described as a subset of Rn that consists of simple connected
elements of this subset. The terms simple, connected, and elements will later be specified, at
first the intuition of these terms should suffice. The remainder of this section is dedicated to
the formal definition of this intuition [28].

6

2.1.1 Definition
If a set ∅ 6= X ⊂ Rn satisfies

1. X is piecewise connected
X =

⋃l
i=1Xi, with Xi ∩Xj 6= ∅, ∀i, j ∈ {1, . . . , l} , and l <∞,

2. every point x̄ ∈ X has a neighbourhood based on the topology τn|X which is homeo-
morph (see remark) to either {ȳ ∈ Rn : ‖ȳ− x̄‖ < r} or {ȳ ∈ Rn : ‖ȳ− x̄‖ < r∧ ȳ ≥ 0̄},

then X is called a k-manifold.

Let X be a k-manifold then the dimension of X is defined as DIM(X) = k.

The set of all k-manifolds of Rn is denoted by Mn
k and Mn =

⋃n
k=0 M

n
k .

Remark: Two sets X,Y are said to be homeomorph if there exists a function f : X → Y
that is one-to-one, continuous, and f−1 is continuous.

Example: An example of a manifold is an atlas. Each page of the atlas is a subset of R2

which can be mapped homeomorphically onto a sphere in R3 and all pages in the atlas envelope
the sphere.

Before we take the next step and describe certain subsets of a k-manifold that will become a
mesh we need to define the relative interior and the relative boundary of a k-manifold.

2.1.2 Definition
Let X be a k-manifold, then the relative interior int?k(X) of X is defined as the set of
x̄ ∈ X which have a neighbourhood based on the topology τn|X which is homeomorph to
{ȳ ∈ Rn : ‖ȳ − x̄‖ < r}.

The relative boundary of X is defined as

bnd?k(X) := X\int?k(X).

For the investigations in this work special subsets of a k-manifold are considered.

2.1.3 Definition
Let E ⊂Mn be a non-empty subset, then E is called an element space and a set E ∈ E is
called an element.

In the next step the elements of an element space are categorized, which helps in discussing the
properties of all elements in a certain category.

7

2.1.4 Definition
Let E be an element space, then the maximum dimension of all its elements
DIMcell(E) := maxE∈E{DIM(E)} is called the cell dimension.

An element is called a facet if DIMfacet(E) = DIMcell(E)− 1.

The set of all elements of dimension k in E is denoted by elemk(E).

The elements in elem0(E) are called vertices.

The goal in this section is to describe geometries as the union of facets. To guarantee that
facets do not intersect we expand the definition of an element space.

2.1.5 Definition
An element space E is called face complete, if for every element E ∈ E the union of all
facets of E is equal to the relative boundary of E and the intersection of the relative interior
of two different facets of E is empty.

Before the next property an element space can have is considered, the following fact has to be
discussed: A facet of dimension k can be considered as a cell that has its own facets of dimension
k − 1. This process can be continued till the element becomes a vertex. The union of all those
facets of facets is called a face.

2.1.6 Definition
Let E be an element space, then the co-faces of an element E ∈ E are all elements for
which E is a face

cofacesE := {F ∈ E|E ∈ facesE(F)},

with

facesE(E) := {E} ∪
⋃

F∈facetsE(E)

facesE(F)

With the current definition it is possible that the intersection of two elements creates subsets
that are not part of the element space, e.g., two triangles that lie in the same plane and intersect
each other in such a way that the intersection of these two triangles is a rectangle that is not
an element of the element space. This leads to the following extension of the definition of an
element space:

2.1.7 Definition
Let E be an element space. If for any two sets E1, E2 ∈ E , their intersection E1 ∩ E2 is
either empty or a face of both, then the element space is called an element complex.

By uniting all the definitions given above a mesh can be defined as follows.

8

2.1.8 Definition
Let M⊂ E be a subset of an element complex E , then M is called a mesh if

1. M is finite,

2. M is face complete in E ,

3. M has no dangling elements, meaning that every element E ∈ M is either a cell or
E has at least one co-face cell.

Since not all subsets of Rn are suitable elements of a mesh, a set of subsets of Rn has to be
described that satisfies the above definition.

In this thesis a special class of meshes is considered: triangle meshes. To formally define
the elements from which a triangle mesh is built a set of special subsets of Rn has to be defined.

2.1.9 Definition
A set X ⊂ Rn is called convex if for every two points x̄1, x̄2 ∈ X there exists a point that
satisfies λx̄1 + (1− λ)x̄2, with 0 < λ < 1.

The convex hull of a set X is defined as

conv :=
⋂

x̄⊂K,K Convex

K.

To construct a set of minimal convex elements in Rn defined by some points we define an affine
combination.

2.1.10 Definition
Let X = {x̄1, x̄2, . . . , x̄k} ⊂ Rn be a set of points in Rn, then we call the linear combina-
tion

∑k
i=1 ωix̄i with ωi ∈ R and

∑k
i=1 ωi = 1 an affine combination of the set of points X.

If there exist no weights ωi such that X is an affine combination the set is called
affinely independent.

2.1.11 Definition
Let X = {x̄1, x̄2, . . . , x̄k+1} be a set of affinely independent points then

simplex(X) = conv(X)

is called a k-simplex.

In Figure 2.1 the first three types of a simplex are depicted. These are the building blocks of a
triangle mesh. For the remainder of this work, a mesh is considered to be a subset of M3 with
its elements being 0- to 2-simplices.

9

(a) 0-simplex (vertex) (b) 1-simplex (edge) (c) 2-simplex (triangle)

Figure 2.1: First three types of a simplex

Remark: An example for a non-simplex mesh is a quad meshes [1].

2.1.2 Triangle Quality

This section gives a brief introduction into triangle quality metrics. The shape of mesh elements
is a very important metric for the convergence of boundary value problems, one can say that
equilateral triangles have a ’good’ shape for the stability of boundary value problems [33]. Many
different functions have been proposed to measure the quality of elements in a mesh [24]. The
measures used in this thesis are introduced.

Let T = ABC be a non-degenerate triangle, the vertices of T are A, B, C. The angle at A is
α, at B is β, and at C is γ. The edges are a = BC, b = AC, and c = AB. The inscribed circle
is denoted by r and the circumscribed circle as R. The minimum and maximum Angle of T are
denoted by

θ0 = min(α, β, γ),

θ∞ = max(α, β, γ).

For this work the following two metrics are used:

• The minimum angle θ0 measures if T is a Needle, needle is a triangle with one angle
close to 0.

• The radius ratio R
2r measures how close T is to being a right triangle.

2.2 Surface Simplification

In this thesis the edge decimation or edge collapse algorithm is used for the simplification
process [7]. This method requires a mesh that represents a manifold and generally preserves the
topology of the mesh. Furthermore, this method does not need re-triangulation after an edge
is removed.

10

2.2.1 Edge Collapse

At first a basic version of the edge collapse algorithm is discussed. Let in this section EM be
the set of all edges in the mesh M, and e an edge in M.

The simplification process uses three functions:

• a weight function w(e) : EM → R which calculates the weight of an edge,

• a placement function p(e) : EM → R3 which calculates the position of a new vertex,

• and a termination function t :M→ {0, 1} which decides if the simplification process has
to stop.

Example: An example for a simple weight function is the length of the edge e, a simple
placement function chooses the midpoint of the edge e, and a simple termination function
terminates the simplification process when a certain number of edges from the mesh have been
removed.

Now that all functions needed for the simplification process are defined, the process itself can
be described:

First the weight of each edge in the mesh is calculated and the values are stored in a priority
queue. Then the edge with the lowest weight in the queue is chosen. The chosen edge and all
edges adjacent to one of the two vertices that make up the chosen edge are deleted. Afterwards,
the placement function calculates a position were the new vertex is placed. Then all surrounding
vertices are connected to the new vertex (see Figure 2.2). The weight of each of the new edges is
calculated and they are added to the priority queue. Finally, the termination function is called
which decides if the process starts over again with the next edge at the front of the priority
queue or if the simplification process stops.

After a successful edge collapse two faces, four edges, and one vertex are removed from the
mesh (see Figure 2.2).

Figure 2.2: Example of an edge collapse of e into the vertex vn.

2.2.2 Lindstrom-Turk Simplification

The Lindstrom-Turk simplification process [17] tries to preserve the original geometry of a mesh
by minimizing the difference in volume between the original and the simplified mesh. There-
fore, a system of three linearly independent constraints is created for each edge in the mesh.
This system can be interpreted as the intersection of three linearly independent planes in a
three-dimensional space.

11

Solving this system yields the optimal vertex position with respect to the given constraints.

A tetrahedron is a 4-simplex. The Lindstrom-Turk simplification process uses the volume
of tetrahedrons to formulate two of the four constraints. To avoid ambiguities it is mentioned
here that tetrahedrons are used in volume meshing as elements of a mesh. However, for the
purposes of this work tetrahedrons are not part of the mesh and are only used in the formulation
of the constraints.

Each of the constraints is a quadratic optimization problem, which is solved in the least squared
sense. During the Lindstrom-Turk simplification four different constraints are considered

• Boundary Preservation
If a boundary edge is removed the simplification process tries to place the new vertex v
in such a way that it minimizes the change in area between the triangle that is deleted
and the new triangles that replace it.

• Volume Preservation
When a non-boundary edge e is removed from the mesh the new vertex v creates a
tetrahedron with each triangle adjacent to ev0 and ev1 . This constraint tries to minimize
the sum of the volumes of all the tetrahedrons that are created by the edge collapse.

• Volume Optimization
Since in general the solution of the above constraint is not unique, this constraint tries to
minimize the volume of each individual tetrahedron.

• Triangle Shape Optimization
In some cases the constraints above do not yield a single solution, for example, if the
vertices are coplanar, meaning all vertices are in the same plane. In this case the shape
of the triangles is optimized to favour equilateral triangles.

The constraints are considered in the above order and are either accepted or discarded if they are
incompatible with the given edge. When three constraints are found the system of constraints
is solved and the new position of the vertex is calculated. The weight of an edge is calculated
by the weighted sum of all the optimization terms, the weights can be chosen manually.

2.2.3 Distance Between Meshes

Simplifying a mesh reduces its complexity and thus changes its geometry. A commonly used
metric to determine the error introduced by simplifying a mesh is the Hausdorff distance be-
tween two meshes [35].

2.2.12 Definition
Let X,Y ⊂ R3 be two sets. Then the one-sided Hausdorff distance is defined as follows:

dH′(X,Y) := max
p̄∈X

[min
q̄∈Y

[‖p̄− q̄‖]].

12

The one-sided Hausdorff distance is not symmetric, meaning that dH′(X,Y) is not necessarily
equal to dH′(Y,X). When comparing the distance between two objects it is useful to make it
independent of the order in which the objects are compared. To make the one-sided Hausdorff
distance symmetric both distances are calculated and the maximum is chosen:

2.2.13 Definition
Let X,Y ⊂ R3 be two sets. Then the Hausdorff distance is defined as:

dH(X,Y) := max{dH′(X,Y), dH′(Y,X)}.

13

Chapter 3

Mathematical Foundations

The simplification algorithm developed in this work uses the curvature of a vertex to detect
the complexity of the local geometry of a mesh. To define the curvature of a vertex, the
mathematical concept of a surface has to be introduced.

The first part of this chapter discusses surfaces in general, and proofs that parts of a surface
can be represented by a differentiable functions. This function can then be used to calculate
several properties of the surface, one of these properties is the curvature in a point on the surface
x ∈ S with x ∈ R3, see Definition 3.1.2 .

The second half of this chapter introduces two methods to approximate the curvature of
the vertices in a mesh, as, in general parts, of a mesh cannot be expressed as a differentiable
function.

3.1 Differential Geometry

This section introduces some basic concepts from differential geometry. At first surfaces in R3

are discussed and how they can be described in a global and local context. Further, it is shown
that parts of a surface can locally be expressed as a linear map [5].

3.1.1 Surfaces

Before we define a surface, we have to introduce parametrized curves, helping us in defining
some properties of surfaces.

3.1.1 Definition
A regular curve parametrized by arc length is a differentiable map α : I → R3, were
I = (a, b) ⊂ R and |α(s)′| = 1 ∀s ∈ I.

The condition |α(s)′| = 1 ∀s ∈ I guarantees the existence of a tangent line at α(s).

Let α(s), s ∈ (a, b) be a regular curve parametrized by arc length. If |α′′(s)| = 0 then α
defines a straight line in s, so if |α′′(s)| 6= 0 there exists a unit normal vector n(s) in the di-

rection of α′′(s) which is well defined by n(s) = α′′(s)
|α′′(s)| . Furthermore, n(s) is normal to α′(s)

because if we differentiate α′(s) ·α′(s) = 1 we get α′′(s) ·α′(s) = 0, so we are justified in calling
it the normal vector to α at the point s.

For the sake of convenience we call regular curves parametrized by arc length parametrized
curves or curves throughout this thesis.

14

3.1.2 Definition
A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there exists a neighbourhood V in
R3 and a map x : U → V ∩ S of an open set U ∈ R2 onto V ∩ S ⊂ R3 such that

1. x is differentiable,

2. x is a homomorphism,

3. (Regularity condition) For each q ∈ U , the differential dxq : R2 → R3 is injective.

Example: The unit sphere defined by

{(x, y, z ∈ R3;x2 + y2 + z2 = 1}

is a regular surface [5].

The map xp(u, v) = (x(u, v), y(u, v), z(u, v)) is called a parametrization of the regular sur-
face in the neighbourhood of p.

The regularity condition will be very important, so let us bring it into a more familiar form.
For this purpose let us explicitly express the Jacobi-Matrix of dx(u, v) in the standard basis
ē1 = (1, 0), ē2 = (0, 1), in the coordinates (u0, v0), and f̄1 = (1, 0, 0), f̄2 = (0, 1, 0), f̄3 = (0, 0, 1),
in the coordinates (x, y, z).

Let us consider two curves ucurve and vcurve that intersect in the point p = (u, v), with tangent
vectors ē1 and ē2. The derivatives along these vectors are

dxp(ē1) =

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
,

dxp(ē2) =

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
.

The linear map of dxp is given by

dxp =

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 . (3.1)

The regularity condition guarantees that the vectors dxp(ē1) and dxp(ē2) are linear independent,
or in other words at least one of the Jacobi determinants

∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ , ∂(y, z)

∂(u, v)
,
∂(x, z)

∂(u, v)
,

is not zero.

15

We now discuss a special class of regular surfaces, namely surfaces that can be described as the
graph of a function z = f(x, y). We use this finding to motivate further investigations into local
properties of surfaces.

3.1.3 Theorem
Let U be an open subset of R2 and f : U → R a differentiable function.
Then the graph of f , which is defined as

(u, v, f(u, v)) ⊂ R3 for (u, v) ∈ U,

is a regular surface.

Proof :
We only have to show that a map x : U → R3 given as

x(u, v) = (u, v, f(u, v))

satisfies the three conditions of definition 3.1.2.
It is clear that condition 1 holds. For the second condition we see that each point (x, y, z) of
the graph is an image under x of the unique point (u, v) = (x, y) ∈ U . Therefore, x is one to
one, and since x−1 is the restriction to the graph of f , the projection of R3 onto the xy-plane,
x−1 is continuous. To show that condition 3 holds we calculate dx as seen in equation (3.1)
yielding

dx =

 1 0
0 1
∂f
∂u

∂f
∂v

 . (3.2)

We have shown that ∂(x,y)
∂(u,v) = 1. �

In the above theorem we see that some regular surfaces can be described globally as the graph
of a differentiable function. This does not hold for all regular surfaces. Take, for example, the
unit sphere. It does not matter if we choose the xy-, xz-, or yz-plane as the coordinate plane,
because there cannot exist a map that has two different function values for the same parameter.
However, if we choose the north pole of the unit sphere and look at an area around that point,
for example, the northern hemisphere (Figure 3.1(a)), we see that it is possible to select a point
and an appropriate neighbourhood around that point to describe at least part of the sphere as
the graph of a differentiable function. In the next theorem we show that there always exists an
area around a point on any given surface that can be described as the graph of a differentiable
function.

3.1.4 Theorem
Let S ⊂ R3 be a regular surface and p ∈ S. Then there exists a neighbourhood V of p in
S such that V is the graph of a differentiable function which has one of the following three
forms:

z = f(x, y), y = g(x, z), x = h(x, z).

16

(a) Parametrization of the northern hemisphere
of the sphere, which can be represented as the
graph of a differentiable function with values in
its projection plane.

(b) Möbius strip, a parametrized surface which
is non orientable.

Figure 3.1: Examples of parametrized surfaces.

Proof :
Let x : U ⊂ R2 → S be a parametrization of S in p and write x(u, v) = (x(u, v), y(u, v), z(u, v)),
(u, v) ∈ U . By the third condition of definition 3.1.2, one of the Jacobi determinants

∂(x, y)

∂(u, v)
,
∂(y, z)

∂(u, v)
,
∂(x, z)

∂(u, v)

is not zero at x−1(p) = q.

Suppose first that ∂(x,y)
∂(u,v)(q) 6= 0 and consider the map π ◦ x : U → R2, were π is the pro-

jection π(x, y, z) = (x, y). Then π ◦ x(u, v) = (x(u, v), y(u, v)) and since ∂(x,y)
∂(u,v)(q) 6= 0 we can

apply the inverse function theorem to guarantee the existence of neighbourhoods V1 of q, V2

of π ◦ x(q) such that π ◦ x maps V1 diffeomorphically onto V2. It follows that π restricted to
x(V1) = V is one to one and that there is a differentiable inverse (π ◦ x)−1 : V2 → V1. Observe
that, since x is a homeomorphism, V is a neighbourhood of p in S. Now, if we compose the
map (π ◦ x)−1 : (x, y) → (u(x, y), v(x, y)) with the function (u, v) → z(u, v), we find that V
is the graph of the differentiable function z = z(u(x, y), v(x, y)) = f(x, y), and this settles the
first case. The remaining cases can be treated in the same way. �

This theorem allows us to express local properties of a given discrete surface patch without the
need to consider the whole surface.

We now give a definition of the tangent plane of a surface. A formal proof can be found
in [5]. When we talk about a tangent vector in the next definition, we mean the tangent vector
of a parametrized curve α : (−ε, ε)→ S with α(0) = p in 0.

3.1.5 Definition
Let S be a surface and p a point on S then the set of all tangent vectors in p create a
2-dimensional subspace which we call the tangent plane of S in the point p (short Tp(S)).

17

Let x be a fixed parametrization of S and Tp(S) the tangent plane in p. If we calculate the par-
tial derivatives of x in the directions of u and v, we get two vectors x̄u, x̄v ∈ Tp(S) which build
a basis of Tp(S). Further, we know from linear algebra that the cross product x̄u × x̄v yields a
vector that is orthogonal to x̄u and x̄v. By normalizing this vector we get the following definition:

3.1.6 Definition
Let x(u, v) : U ⊂ R2 → S be a parametrization of a surface. Then the normal vector of
the surface in the point p is defined as

n̄ =
xu × xv
|xu × xv|

(p).

3.1.7 Definition
A regular surface S is called orientable if it is possible to cover it with a family of coordinate
neighbourhoods in such a way that if a point p ∈ S belongs to two neighbourhoods of this
family, then the change of coordinates has positive Jacobian at p. The choice of such a
family is called an orientation of S, and S, in this case, is called oriented. If such a choice
is not possible, the surface is called non orientable.

Remark: Not all regular surfaces are globally orientable, see for example, the Möbius strip
(Figure 3.1(b)) [5].

To describe an intuitive approach to orientability let p be a point on a surface S and n̄ the nor-
mal vector in p. If we now choose a parametrized curve β : (a, b)→ S on S, s ∈ (a, b), and move
n̄ along this curve, each time β(s) = p the choice of the normal vector has to be the same. This
is, for example, impossible on the Möbius strip. The positive Jacobian guarantees us that the
coordinate change from one tangent plane into the next does not change the orientation of Tp(S).

With the help of the next theorem and theorem 3.1.4 we see that each surface can be ori-
ented locally. This theorem guarantees locally well defined surface properties.

3.1.8 Theorem
Let S be a regular surface defined by the graph of a differentiable function z = f(x, y) with
(x, y) ∈ U ⊂ R2 open. Then S is orientable.

Proof :
We can parametrize S as xp = (x, y, f(x, y)), if we calculate the matrix dxp (see Equation (3.2)).
It is clear that we have Jacobian 1 in each p which makes S orientable.

�

3.1.2 The Weingarten Map

In this section the Gauss map is defined which is used to describe the Weingarten map. With
the latter specific geometric properties of a given surface can be expressed.

18

3.1.9 Definition
Let S be a regular surface with an orientation N . The map N : S → R3 takes its values in
the unit sphere

S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1}.

The map N : S → S2 is called the Gauss map of S.

To describe the functionality of the Gauss map in a different way let us consider a surface and
each normal vector in each point. The Gauss map maps the shaft of these normal vectors into
the center of the unit sphere (Figure 3.2). The direction of these normal vectors describe points
on the surface of the unit sphere and the union of these points describe a curve.

N−→

Figure 3.2: Example of three normal vectors on a hyperbolic paraboloid (saddle) when the gauss
map is used on the hyperbolic paraboloid.

With knowledge of the Gauss map we can define the Weingarten map.

3.1.10 Definition
The negative derivative of the Gauss map

ω := −dNp

is called the Weingarten map.

At first glance this definition looks arbitrary, but in the next theorem we show that the Wein-
garten map is linear and self-adjoint which allows us to use many results from linear algebra.

3.1.11 Theorem
The Weingarten map ω is a self-adjoint linear map.

19

Proof :
It is obvious that the Weingarten map is a linear map, so let {xu,xv} be a given basis associated
with Tp(S). Let α(t) = x(u(t), v(t)) be a parametrized curve in S, with α(0) = p, if we use −ω
on this curve we get

−ω(α′(t)) = −ω(xu · u′(t) + xv · v′(t)).

If we look at the above equation at the point p and at t = 0 we get

−ωp(α(0)) = n̄u · u′(0) + n̄v · v′(0),

which implies that −ω(xu) = n̄u and −ω(xv) = n̄v.

We want to show that

xuω(xv) = ω(xu)xv ⇔ −xu · n̄v = −xv · n̄u. (3.3)

∀u xu ∈ Tp(S) it follows that xu · n̄ = 0, so

d

dv
(xu · n̄) = xuv · n̄+ xu · n̄v = 0⇔ xuv · n̄ = −xu · n̄v. (3.4)

∀v xv ∈ Tp(S) it follows that xv · n̄ = 0, so

d

du
(xv · n̄) = xvu · n̄+ xv · n̄u = 0⇔ xvu · n̄ = −xv · n̄u. (3.5)

If we use Schwarz’s theorem either on equation (3.4) or (3.5) we get

−xu · n̄v = xuv · n̄ = −xv · n̄u,

which is equivalent to equation (3.3). �

From linear algebra we know that self-adjoint linear maps have real eigenvalues and orthogonal
eigenvectors. It also allows us to associate the map dNp with a quadratic from IIp, which is
called the second fundamental form [13].

Since IIp is a quadratic form it is obvious that it can be expressed as a matrix. We dis-
cuss now how we can express the matrix of the Weingarten map in a given basis. In the first
part of the proof of theorem 3.1.11 we defined the parametrized curve α(t). Let us consider this
curve in the point 0. Then the tangent vector to this curve is given by α′(0) = xuu

′ + xvv
′ and

dN(α′(0)) = N ′(u(t), v(t)) = n̄u · u′ + n̄v · v′. (3.6)

Since both vectors n̄u and n̄v lie in Tp(S) they can be written as

n̄u = a11xu + a21xv,

n̄v = a12xu + a22xv.
(3.7)

If we now substitute these findings into equation (3.6), we see that dN can be be described in
the basis {xu,xv} as the following matrix

dN

(
u′

v′

)
=

(
a11 a12

a21 a22

)(
u′

v′

)
.

20

We now calculate the matrix of dN in the basis {xu,xv}.

−IIp(α′) = dN(α′) · α′ = (n̄uu
′ + n̄vv

′) · (xuu′ + xvv
′)

= (n̄u · xu)(u′)2 + (n̄u · xv)u′v′ + (n̄v · xu)u′v′ + (n̄v · xv)(v′)2

= e(u′)2 + 2fu′v′ + g(v′)2

To obtain the values aij in terms of the coefficients e, f , and g, we are substituting equation
(3.7) into our previous findings and get

−f = n̄u · xv = a11x
2
v + a21xu · xv

= a11F + a21G,

−f = n̄v · xu = a12E + a22F,

−e = n̄u · xu = a11E + a21F,

−g = n̄v · xv = a12F + a22G,

which leads us to,

−
(
e f
f g

)
︸ ︷︷ ︸

=IIp

=

(
a11 a12

a21 a22

)(
E F
F G

)
︸ ︷︷ ︸

:=Ip

.

Remark: The matrix Ip is called the first fundamental form, which can be used, for example,
to calculate the area of a given surface patch [5]. The coefficients are calculated as follows

E = xu · xu,
F = xu · xv,
G = xv · xv.

After a short transformation we have found a way to express the Weingarten map as the matrix
(ai,j), i, j = 1, 2 in the basis {xu,xv}

(
a11 a12

a21 a22

)
= −

(
e f
f g

)(
E F
F G

)−1

.

Now we discuss how we can calculate the Weingarten map of a surface that is described by
a given differentiable function. We have seen in theorem 3.1.4 that we can express parts of
a surface as a differentiable function. So let z = h(u, v) be this differentiable function, with
(u, v) ∈ U ⊂ R2 and U open. Then we can parametrize our surface as

x(u, v) = (u, v, h(u, v)) (u, v) ∈ U.

21

After a simple calculation we get

xu = (1, 0, hu), xv = (0, 1, hv),

xuu = (0, 0, huu), xvv = (0, 0, hvv), xuv = (0, 0, huv).

Thus, we can calculate the coefficients of the first fundamental form

E = 1 + h2
u,

F = huhv,

G = 1 + h2
v.

(3.8)

To calculate the coefficients of the second fundamental form we have to calculate the unit normal
field of the surface by

N(x, y) =
(−hx,−hy, 1)√

1 + h2
x + h2

y

.

The coefficients are given by

e =
hxx√

1 + h2
x + h2

y

,

f =
hxy√

1 + h2
x + h2

y

,

g =
hyy√

1 + h2
x + h2

y

.

(3.9)

3.1.3 The Curvature of a Surface

This section starts with an intuitive approach for defining the curvature of a surface. Then this
intuition is formalized with the help of the Weingarten map.

Let us consider a surface S and a point on this surface p0. Let n̄0 be the normal vector in p0

and Tp0(S) the tangent plane in p0. Since Tp0(S) is a 2-dimensional vector space we can choose
a basis with its origin in p0. Let {b̄1, b̄2} be this basis and let u, v be two parametrized curves
that intersect in p0 (Figure 3.3). If we now move n̄0 in the direction of b̄1 or b̄2 along one of
the curves u or v we see that. The direction of the normal vector can change. Let S now be a
plane we see that the direction of the normal vector does not change no matter were we move
it. Moreover, if S is a sphere and we move the normal vector along one of the previously defined
curves we see that the normal vector changes direction.

It is obvious that the direction of the normal vector can change in two directions. The rates at
which the normal vector changes in these directions are called the principal curvatures κ1 and
κ2 in the direction of b̄1 and b̄2.

To formalize our findings from above we recall that the Weingarten map has real eigenvalues
k1, k2 and orthogonal eigenvectors ē1, ē2. If we choose ē1, ē2 as the orthonormal basis of the
tangent plane Tp0(S) in the point p0 we get ω(ē1) = k1ē1 and ω(ē2) = k2ē2.

22

Figure 3.3: Principal curvatures κ1 and κ2 in a point p0 on a sphere.

Since the second fundamental form is a quadratic form its eigenvalues k1 and k2 are the maxi-
mum and the minimum of the second fundamental form. This yields the following definition.

3.1.12 Definition
Let S be a regular surface and ω its Weingarten map in the point p0. Then the eigenvalues
κ1, κ2 ∈ R of ω are called the principle curvatures of S in p0.

We recall from linear algebra that eigenvalues, eigenvectors, trace, and determinant are invari-
ant to basis transformations. So we know that these properties of the Weingarten map are
independent of the basis we consider the map in.
We use this to further consider the study of the determinant and trace of the Weingarten map.
If we calculate the determinant of the Weingarten map we get

det(ω) = k1k2. (3.10)

Since the orientation of the surface does not change the determinant, we can define the Gaussian
curvature.

3.1.13 Definition
Let κ1 and κ2 be the principal curvatures of a surface S ⊂ R3 in the point x ∈ R3. Then

K = κ1 · κ2

is called the Gaussian curvature of S in the point x

Remark: Surfaces with Gaussian curvature 0 in all points are called developable surfaces.

Let us now consider the trace of the Weingarten map.

trace(ω) = k1 + k2 (3.11)

23

We know that the orientation of the surface does not impact the determinant, but it changes
the sign of the trace.

3.1.14 Definition
Let κ1 and κ2 be the principal curvatures of a surface S ⊂ R3 in the point x ∈ R3. Then

H =
κ1 + κ2

2

is called the mean curvature of S in the point x

Remark: Surfaces with mean curvature 0 in all points are called minimal surfaces.

For the last part of this section we define v̄ ∈ Tp0(S) with v̄ 6= 0 and i = 1, 2.
We now discuss how to calculate the principal curvatures of a point from its mean and Gaussian
curvature. Since −k1 and −k2 are the eigenvalues of the negative Weingarten map −ω, they
satisfy the equation

−ω(v̄) = −kiv̄ = −kiIv̄,

were I is the identity map. Therefore, the determinant is zero.

det(−ω(v̄) + kiI) = 0

Thus, k1 and k2 satisfy the following quadratic equation

k2
i + ki (a11 + a22)︸ ︷︷ ︸

=−2H

+ a11a22 − a21a12︸ ︷︷ ︸
=K

= 0,

which can be rewritten into the following quadratic equation

k2
i − 2Hki +K = 0

Solving this quadratic equation we get

k1,2 = H ±
√
H2 −K. (3.12)

This is another way to express the principal curvatures.

3.2 Curvatures of Discrete Surfaces

After introducing surfaces and their curvatures we turn our attention to meshes. In the previous
section the curvature of a surface was defined with respect to a differentiable representation,
the parametrization, of this surface. Meshes are, in general, not a differentiable function, e.g.,
along an edge that connects two triangles, which do not lie in the same plane, the mesh is not
differentiable. So a method has to be found that approximates a subset of the mesh, e.g., a
vertex and all elements adjacent to it, with a differentiable representation of this part of the
mesh. In this section two methods of calculating the curvature of a mesh are discussed, the
jet-fitting method (see Section 3.2.1) and the spatial averaging method (see Section 3.2.2).
This section only discusses the mathematical background of these methods. The results of the
evaluation studies concerning these two methods are presented in Section 5.1.

24

3.2.1 Differential Quantities through Osculating Jets

The first method that is introduced interpolates a given surface patch and reconstructs its
Weingarten map in order to extract the principal curvatures of a given point.

Since a mesh does not only store point data, but also information about the connectivity
between points (edges) it stores additional information about the surface. This method does
not need information about the connectivity between points, because it is solving a quadratic
minimization problem that only uses point data, so it can be used on more general data sets.

3.2.1.1 n-Jets and Jet-Fitting

In this section a way of approximating the Taylor expansion of a surface, described by a point
cloud is discussed [6].

We have shown in theorem 3.1.4 that any smooth part of a regular surface can be written
as a differentiable function. We call such a function a height function. We can express such
a height function in its Taylor expansion.

3.2.15 Definition
Let f be a height function, x, y ∈ R and b, j, n, k ∈ N. Then

f(x, y) = JB,n +O(‖(x, y)‖n+1), (3.13)

with

JB,n =

n∑
k=1

HB,k(x, y), HB,k(x, y) =

k∑
j=0

Bk−j,jx
k−jyj , (3.14)

is called an n-degree jet or n-jet.

The differential properties of an n-jet coincide with the the first n terms of the Taylor expansion
of the surface. We say that the jet has a n order contact with the surface. The n-jet of a surface
contains Nn = 1 + 2 + 3 + · · · + (n + 1) terms since there are i + 1 monomials of degree i. As
seen in equation (3.9) we need at least a 2-jet to obtain information about the curvature of a
given surface.

The next challenge is finding a way to reconstruct an n-jet from a set of points. Let us as-
sume we have a set of N + 1 points with pi = (xi, yi, zi) and i = 1, . . . , N + 1. We assume
without loss of generality that we want to calculate the n-jet of a given surface in the point
p′ := pN+1, were the origin of the coordinate system is located at p′. In this thesis the point p′ is
the vertex for which the curvature should be calculated, and the points pi the vertices adjacent
to p′.

Remark: From a theoretical standpoint we only have to move the origin to the point p′.
However, when implementing this algorithm on a computer system we have to consider the
additional costs of calculating a transformation matrix T from world coordinates (xw, yw, zw)
into the fitting coordinate system, were the origin is p′, (xf , yf , zf).

25

We want to approximate an n-jet JA,n such that ∀i ∈ 1, . . . , n

f(xi, yi) = JA,n +O(‖(xi, yi)n+1‖). (3.15)

We approximate JA,n in the least squared sense, which gives us a minimization problem

N∑
i=1

(JA,n(xi, yi)− f(xi, yi))
2. (3.16)

The formulation of this problem in terms of linear algebra is

A = (A0,0, A1,0, A0,1, . . . , A0,d)
t,

Z = (z1, z2, . . . , zN)t,

M = (1, xi, yi, x
2
i , . . . , xiy

n−1
i , yni)i=1,...,N ,

were A is our solution vector containing the coefficients of the Taylor polynomials

JA,n = A0,0 +A1,0x+A0,1y +
1

2
(A2,0x

2 + 2A1,1xy +A0,2y
2) + (3.17)

Z is the vector that holds the function values of f(xi, yi) = zi given by the set of points and M
holds all Taylor polynomials up to degree n. The minimization problem (3.16) can be written
with the rectangular N × Nn matrix M as min‖MA − Z‖2, which can be solved by using a
singular value decomposition.

In Section 3.1.2 we have discussed how to calculate the Weingarten map of a two times differ-
entiable function and in this section we have found a Taylor-approximation to a surface patch
of at least order 2. By combining equations (3.17), (3.8), and (3.9) we get

E = 1 +A2
1,0 e =

A0,2√
1+A2

1,0+A2
0,1

,

F = A0,1A1,0 f =
A1,1√

1+1,02+A2
0,1

,

G = 1 +A2
0,1 g =

A0,2√
1+1,02+A2

0,1

.

After these calculations we have a matrix A which represents the Weingarten map of the surface
patch defined by the given point cloud. To calculate the principal curvatures we only have to
calculate its eigenvalues.

3.2.2 Discrete Differential-Geometry Operators

The second method uses the discrete version of two operators, the Laplace-Beltrami operator
and the Gauss-Bennot theorem, to calculate the curvatures of a given vertex in a mesh [22].
This method does not need to transform points to different locations or solve a minimization
problem. Additionally, all calculations needed are values of angles and the length of vectors,
resulting in a much faster calculation time.

26

(a) 1-ring neighbourhood (b) Voronoi region (c) Voronoi region calculation

Figure 3.4: Definition of terms in the 1-ring neighbourhood of a vertex.

The drawbacks of this method are the need for additional information about the connectivity
between points, which is given in a mesh, and the points that are de facto co-local, e.g., points
that have nearly identical coordinates in double precision, will result in numerical errors. Both
operators are integral operators so we have to find a suitable surface area around each vertex,
on which we can apply these operators. From now on we call the set of all vertices incident to
a vertex xi the 1-ring neighbourhood of xi (N1(xi)) (Figure 3.4(a)). Voronoi regions give a
tight error bound for the discrete operators we will use [22].

The Voronoi region (Figure 3.4(c)), of a triangle is defined as

AVoronoi =
1

8

∑
j∈N1(xi)

(cotαij + cotβij)‖xi − xj‖2. (3.18)

Since we cannot guarantee that each triangle in an arbitrary mesh is non-obtuse we have to
consider these special triangles in our area calculation. Both operators yield valid results even
for 1-ring neighbourhoods, which only consist of obtuse triangles. Algorithm 1 shows how
these special cases can be handled. The algorithm iterates over each triangle in the 1-ring
neighbourhood and checks if it has an obtuse angle. If this is the case, the Voronoi region of the
triangle is not well defined and it adds a fraction (see Algorithm 1) of the area of the triangle
to the area of the 1-ring neighbourhood. Otherwise, it calculates the Voronoi region of the
triangle.

3.2.2.1 Discrete Mean Curvature

This section describes how the the mean curvature normal operator of a point pi is used, to
calculate its mean curvature [9].

27

input : 1-ring neighbourhood of the vertex x
output: Amixed

Amixed = 0;
foreach Triangle T in the 1-ring neighbourhood of x do

if T is non obtuse then
// Voronoi formula see (3.18)
Amixed += Voronoi region of x in T ;

else
if the angle of T at x is obtuse then

Amixed += area(T)/2;
else

Amixed += area(T)/4;
end

end

end
Algorithm 1: Calculate the area Amixed.

3.2.16 Definition
Let S be a regular surface and let pi be a point on S, further let n̄i be the normal vector
in pi. Then the Mean Curvature Normal Operator is defined as

H(pi) = 2Hn̄i, (3.19)

were H denotes the mean curvature of S in pi.

The mean curvature normal operator in a point pi can be considered in relation to an infinites-
imal surface area A around pi as

H(pi) = lim
diam(A)→0

∇A
A
, (3.20)

were diam(A) is the diameter of the surface patch A, and ∇A is the gradient with respect to
the coordinates of pi [9].

We want to find a way to calculate the mean curvature normal operator of the 1-ring neigh-
bourhood of a point pi. The gradient of the point pi can be expressed as the integral of the
mean curvature normal operator around the 1-ring neighbourhood [8]∫∫

Amixed

H(pi)dA = ∇A1-ring.

Therefore we need to find a way to calculate the value of
∫∫

Amixed

H(pi)dA. The mean curvature

normal operator can be expressed as a Laplacian operator [9]. Thus, we get

∫∫
Amixed

H(pi)dA = −
∫∫

Amixed

∆u,vdudv. (3.21)

28

The operator above is called the Laplace-Beltrami operator.

3.2.17 Theorem The integral of the mean curvature normal operator in the point pi on
a triangle mesh can be expressed as∫∫

Amixed

H(pi)dA =
1

2

∑
j∈N1(pi)

(cotαij + cotβij)(xi − xj).

Proof :
Let x be a local parametrization of a surface S around a point pi. We use equation (3.21)
to calculate the value of the mean curvature normal operator. To do so, we need to calculate
the integral of the Laplace operator with respect to our parametrization x. By using Gauss’s
theorem we get

∫∫
Amixed

∆u,vxdudv =

∫
∂AMixed

∇u,v · n̄u,vdl,

were the subscripts point out that we look at the integral with respect to the parametrization
of x.

Since we assume that our surface is piecewise linear, its gradient is constant over each tri-
angle of the mesh. Due to this fact the integral of the normal vector of the border ∂AMixed

results in the same expression as the integral of the normal vector within a triangle. Thus,
inside a triangle T = (xi, xj , xk), we can write

∫
∂AMixed∩T

∇u,v · n̄u,vdl = ∇u,vx · [a− b]⊥u,v =
1

2
∇u,vx · [xj − xk]⊥u,v, (3.22)

were a is the midpoint between xi and xj , and b is the midpoint between xi and xk (Figure 3.5).
Furthermore, ⊥ denotes the counter-clockwise rotation of 90 degrees.

Figure 3.5: Sketch of a triangle T in a mesh. xi, xj , xk are the vertices of T . a, b are the midpoints
between the vertices xi, xj and xi, xk. n̄u,v is the normal vector of T . ∇u,vBj(u, v),∇u,vBk(u, v)
are the gradients of the two basis functions.

29

Since the function x is linear over any triangle T , we can use the linear basis functions Bl
over the triangle to express x as

x = xiBi(u, v) + xjBj(u, v) + xkBk(u, v),

and its gradient as

∇u,vx = xi∇u,vBi(u, v) + xj∇u,vBj(u, v) + xk∇u,vBk(u, v). (3.23)

Using the fact that the gradients of the three basis functions of any triangle T add up to zero

0 = ∇u,vBi(u, v) +∇u,vBj(u, v) +∇u,vBk(u, v),

we can rearrange the terms and express ∇u,vBi(u, v) as

∇u,vBi(u, v) = −(∇u,vBj(u, v) +∇u,vBk(u, v)).

Substituting the above equation into equation (3.23) we get

∇u,vx = (xj − xi)(∇u,vBj(u, v)) + (xk − xi)(∇u,vBk(u, v)).

To find a more suitable expression for ∇u,vBj(u, v), we use the fact that the gradient of the
j-th basis function can be expressed as 1

2AT
([xi − xk]

⊥
u,v)

T (Figure 3.5), were the leading term
is the normalization of the vector and AT denotes the area of the triangle. This leads to

∇u,vx =
1

2AT

(
(xj − xi)([xi − xk]

⊥
u,v)

T + (xk − xi)([xj − xi]
⊥
u,v)

T
)
. (3.24)

When we now combine equations (3.22) and (3.24) we get

∫
∂AMixed∩T

∇u,v · n̄u,vdl =
1

4AT

(
([xi − xk] · [xj − xk])u,v(xj − xi)+

([xj − xi)] · [xj − xk])u,v(xk − xi)
)
.

Moreover, the area AT is proportional to the sine of any angle of the triangle. Therefore, we can
use the cotangent of the two angles opposite to xi to simplify the parameter space coefficients
and write

∫
∂AMixed∩T

∇u,v · n̄u,vdl =
1

2

(
cotu,v(xk)(xj − xi) + cotu,v(xj)(xk − xi)

)
. (3.25)

30

If we now look at equation (3.21) and use equation (3.25) on every triangle in the 1-ring
neighbourhood of pi we get

∫∫
Amixed

H(pi)dA =
1

2

∑
j∈N1(pi)

(cotαij + cotβij)(xi − xj),

were αi,j and βij are the two angles opposite to the edge in the two triangles sharing the edge
(xi, xj) (Figure 3.4(c)).

�

To summarize the findings in this section, we first have to calculate the norm of the mean
curvature normal vector over the 1-ring neighbourhood of the vertex xi with the help of the-
orem 3.2.17. Furthermore, we have to divide the norm of the operator by the discrete mixed
area around the vertex to get the correct spatial average. Finally, we have to divide this value
by two (see definition 3.2.16).

Now we can calculate the discrete Mean Curvature Operator of a vertex xi as

Hxi =
‖
∑

j∈N1(xi)
(cotαij + cotβij)(xi − xj)‖

4Amixed
. (3.26)

3.2.2.2 Discrete Gaussian Curvature

To calculate the Gaussian curvature of a given vertex we use the Gauss-Bonnet theorem [5].
However, we first have to consider the relation between the Gaussian curvature at a point pi
and the infinitesimal surface patch around pi. The Gaussian curvature can be expressed as the
limit [9]

K = lim
diam(A)→0

AG

A
,

were A is again the infinitesimal surface patch around pi, and AG is the area of the image of
the Gauss map associated with it. Since the Gauss map maps onto the unit sphere we calculate
part of the surface area of S2. Since, the geodesic curvature of a sphere is zero, we can use a
simplified version of the Gauss-Bonnet theorem∫∫

Amixed

K dA+

k∑
i=0

εi = 2π,

were ε denotes the external angles of the boundary (Figure 3.6(a)). For Voronoi regions it is
easy to see that θi = εi, because both edges of the Voronoi cell are perpendicular to the edges of
the triangle and, therefore, θi+αi = π (Figure 3.6(b)). This equality also holds for non-Voronoi
regions [25].

To conclude our findings we can calculate the discrete Gaussian Curvature Operator
of a vertex xi as

Kxi =

(
2π −

∑f
j=1 θj

)
Amixed

. (3.27)

31

(a) External angles (b) The angle Θ is equal to the angle ε.

Figure 3.6: Angles for Gauss-Bonnet

3.2.2.3 Discrete Principal Curvatures

Since a mesh is a discrete representation of a surface it is possible, although very rarely, that
H2
pi < Kpi , which would result in imaginary values for the principal curvatures. To avoid

numerical errors we just set H2
pi −Kpi to zero if it is negative. Then we can use equation (3.12)

to calculate the principle curvatures.

32

Chapter 4

Software Tools

This chapter gives an overview over the software frameworks used in this thesis. These were
used to develop the simplification algorithm and to calculate the metrics used to determine the
quality of the simplification.

4.1 ViennaMesh

ViennaMesh is a C++ based meshing library that provides the user with a multitude of tools
for generic high quality-mesh generation and mesh adaptation [29] [37]. This library allows the
seamless exchange of meshing tools and mesh generation kernels.

The simplification algorithm presented in this work was created to add a flexible and fast way
to detect the complexity of geometries in parts of a mesh and give ViennaMesh the ability to
simplify parts of a mesh.

4.2 The Computational Geometry Algorithms Library

The Computational Geometry Algorithms Library project (CGAL) [36] is an open source soft-
ware project that provides access to a number of geometric algorithms in the form of a C++
library. It provides the framework that is used to develop and test the simplification algorithm
in this thesis.

CGAL provides a flexible implementation of the edge-collapse algorithm described in Section 2.2.1
and a method to calculate the curvature of a vertex, see Section 3.2.1. Additionally, CGAL
stores a mesh in a half-edge data structure, which is a flexible high performance data structure.

The following packages from CGAL were used:

• 3D Polyhedral Surface to convert the example meshes that were generated through simu-
lation into a format that CGAL can interact with [15];

• Estimation of Local Differential Properties of Point-Sampled Surfaces to calculate the
curvatures of meshes [26];

• Triangulated Surface Mesh Simplification to coarse the meshes [4].

33

4.2.1 Half-Edge Data Structure

In the previous section it was mentioned that CGAL uses a half-edge data structure to store
meshes. A half-edge data structure is a special case of a directed graph:

4.2.1 Definition
An ordered pair G = (V,A) is called a directed graph if

1. V is a set whose points are called vertices,

2. A is a set of ordered pairs of vertices which are called directed edges.

The naming similarity in the above definition with the naming conventions in Chapter 2 are
intentional and are consistent. For the purposes of this thesis a vertex, either a 0-simplex of a
mesh or a point in a graph, describes the same object.

An edge (1-simplex) is made up of two half-edges pointing in the opposite direction of each
other. If an half-edge points from a vertex v1 to another vertex v2 its opposite half-edge points
from v2 to v1. Each half-edge has one incident facet (2-simplex). Border edges have no incident
facet, making it easy to detect the border of the mesh. A half-edge data structure is a
directed graph that satisfies the two conditions above. An example of a half-edge is depicted in
Figure 4.1.

Figure 4.1: Example of a half-edge data structure describing the connection between two vertices
v1 and v2.

4.3 Visualization Toolkit

The Visualization Toolkit (VTK) is an open source software system for 3D computer graphics,
image processing, volume rendering, and scientific visualization [38].

34

VTK is used in two aspects in this work. First it is used to create the visualizations of the
meshes. And second it provides an implementation to calculate the triangle quality metrics as
described in Section 2.1.2 and an implementation to calculate the distance between two meshes
as described in Section 2.2.3. These implementations are provided to the user in from of so
called filters.

The following filters were used in this thesis:

• vtkMeshQuality,

• vtkDistancePolyDataFilter.

35

Chapter 5

Simplification of Subdivided Surfaces

This chapter describes the developed method for simplifying subdivided surfaces. The basic
idea is to detect geometric features using the curvature of the vertices in the mesh and divide
the mesh, using this metric, into regions which can be simplified with different strategies and
parameters.

The meshes shown in Figure 5.1(a) and Figure 5.1(b) are two examples originating from process
TCAD workflows which are used to evaluate the developed techniques. The goal is to coarse
these meshes with the following constraints: The geometric features of the mesh should be
preserved, the elements have to be of high quality, the computation time should be in the same
order of magnitude as the approach of Lindstrom and Turk [17], and the distance to the original
mesh, as described in Section 2.2.3, should be small.

(a) Mesh Smooth Bay (b) Mesh Square Bay

Figure 5.1: The two reference meshes originating from process TCAD used within this thesis,
these meshes were created by a marching cubes algorithm.

The two meshes have the number of elements and vertices shown in Table 5.1. When these
metrics are compared to the geometries shown in Figure 5.1 it is intuitively clear that these
geometries can be represented with a lesser amount of elements. Both meshes have locally flat
and curved areas which can be represented with a differing amount of elements to preserve the
original geometry. The first two sections of this chapter formalize this intuition.

36

Smooth Bay Square Bay

elements 140,698 132,016

vertices 70,831 66,468

Table 5.1: Number of vertices and elements for both test meshes.

All investigations were performed on an Intel R©CoreTMi5-5200U CPU with 2.20GHz and 8 GB
of RAM. The compilation of the code was conducted using gcc version 5.4.1 and optimization
level -O3.

5.1 Curvature Comparison

The simplification method presented in this chapter uses the curvature of vertices in the mesh
to detect the complexity of the local geometry. Hence, the first challenge is to calculate the
curvature of each vertex in the mesh. In Section 3.2 two different methods of calculating the
curvature of a mesh were introduced. The jet-fitting method is implemented in CGAL [26].
The spatial averaging method was implemented during this work. This section is dedicated to
the comparison and evaluation of these two approaches.

Both test meshes have a small amount of edges, i.e., 12 for Smooth Bay and four for Square
Bay, with a length being 20 orders of magnitude shorter than their neighbours. These edges
were treated as numerical artefacts and, thus, have been removed in a pre-processing step.

The jet-fitting approach only uses vertex data and calculates an approximation of the Taylor
expansion of the given surface patch. During this process a minimization problem is solved
which has a computational complexity of O(Nnm) [14], were Nn is defined as in Section 3.2.1.1.
For the investigations presented in this section n is set to 2, and m ∈ N is the number of points,
or in the case of a mesh the number of vertices, used for the calculation.

The spatial averaging approach calculates the value of two operators in a vertex and relates this
value to a surface patch around this vertex. This approach uses the connectivity provided by
the edges in a mesh. Thus, it only requires the calculation of angles, edge length, and areas,
which has a computational complexity of O(m), were m ∈ N is the number of vertices in the
1-ring neighbourhood of the vertex.

Remark: The curvature of a surface is a real number and thus has no unit, but, the curvature
changes with respect to the scale of the surface. Hence, to define a unit for the curvature the
size of the object has to be taken into consideration. However, the chosen unit has no effect on
the calculations in this thesis and would only result in additional computation costs. For this
reason the curvatures are shown as real numbers and the scales in all Figures are chosen such
that they highlight the important differences.

5.1.1 Evaluation Setup

To asses the curvature calculation two metrics were used in the following empirical studies. The
first metric is the calculation time of the two algorithms and the second is the quality of the
curvature calculation. The evaluated metrics are averaged using 100 executions.

37

Since spatial averaging always uses a fixed amount of vertices the 1-ring neighbourhoods of
both test meshes were analyzed. This was done to find a starting point, were both approaches
are provided with the same information, enabling a proper evaluation. The number of vertices
in the 1-ring neighbourhoods of both test meshes is shown in Figure 5.2(a) and Figure 5.2(b).

(a) Smooth Bay (b) Square Bay

Figure 5.2: Number of vertices in the 1-ring neighbourhood of both test meshes.

The average size of the 1-ring neighbourhoods in both meshes is approximately 6 (see Figure 5.2).
This gives an average computation time of the curvature for each vertex of O(m2) and O(m),
respectively, were m is the size of the average 1-ring neighbourhood.

When provided with the same mesh and the same number of vertices both algorithms always
produce the same results for the curvatures of the vertices in the mesh. However, when jet-fitting
is used there is the option of providing additional point data which will increase the accuracy
of the calculation at the cost of additional computation time.

5.1.2 Comparison of Curvature Calculation Methods

First, the calculation time of both algorithms can be seen in Figure 5.3. It has to be noted, that
the number of points that is provided to the approach implemented in CGAL is a lower bound,
meaning that if there are more than the specified number of points in the 1-ring neighbourhood
of a vertex all vertices are considered in the calculation of the curvature of this vertex. This
explains the sudden jumps in the calculation times at 6, 18, 35, and 40 vertices seen in Figure 5.3.

It can be seen that the calculation times of both approaches follow the expected patterns due
to their differing computational complexities. Since jet-fitting has a quadratic computational
complexity and is able to utilize additional vertex data, the computation time is higher than
with spatial averaging, which has a linear computational complexity. Additionally, it can be
seen that jet-fitting takes more points into consideration when provided with 6, 18, 35, and 40
vertices. This has to be taken into account for a proper comparison of both methods.

38

(a) Smooth Bay (b) Square Bay

Figure 5.3: Average curvature computation times.

Since the border of an open mesh is not continuous it has no curvature. However, both meth-
ods discussed yield values for such vertices. To guarantee that the border of the mesh has a
consistent curvature, a constant Gaussian and mean curvature is assigned.

A mesh is a discrete representation of a surface, so there will be numerical errors in the calcu-
lation of the curvature. So the following definition is given:

5.1.1 Definition
The curvature calculation of a vertex v has an error, if the curvature value of v differs from
the curvature value a continuous surface would have in this vertex.

5.1.2.1 Gaussian Curvature

First, the Gaussian curvature of both approaches is compared. In Figure 5.4 the results from
spatial averaging and in Figure 5.5 the results from jet-fitting as implemented in CGAL with
an increasing number of points are shown.

When comparing the results of the Gaussian curvature calculation with 6 and 18 points two stark
differences can be observed (see Figure 5.6 and Figure 5.7 as well as Figure 5.8 and Figure 5.9).
The errors shown in Figure 5.6 and Figure 5.7 are a consequence of the position of the vertices
in the 1-ring neighbourhood around the vertex v for which the curvature is calculated. These
errors occur because, the function that is calculated during the jet-fitting process has to fit the
provided point data and as a consequence of this, is acute in v. To counteract these errors ad-
ditional points around the vertex have to be taken into consideration. However, this would give
rise to the error shown in Figure 5.8 and Figure 5.9. The vertices along the ridge of the mesh
are coplanar, meaning at least three vertices of the ridge lie on the same line, implying that one
of the principal curvatures should be 0. As a consequence the Gaussian curvature should also
be 0. However, the jet-fitting approach tries to find a C2-function that fits the provided data.
So, it introduces an error into the calculation and creates a curvature along the ridge.

39

(a) Smooth Bay (b) Square Bay

Figure 5.4: Gaussian curvature calculated with spatial averaging. The colors indicate the rate
of the curvature. Spacial averaging only takes the 1-ring neighbourhood of a vertex into con-
sideration, thus, it is possible that ,locally, the curvatures of two adjacent vertices are curved
in opposite directions.

When considering the ridges of the meshes shown in Figures 5.5(c)-(h) a similar effect is visible.
Since the vertices that are added to the calculation of the jet-fitting algorithm have to be chosen
in a neutral way, vertices might lie in a locally flat part of the surface get a curvature value
6= 0. This happens because one vertex that was added to the calculation and is not part of the
1-ring neighbourhood of the vertex v does not lie in the same plane as all vertices in the 1-ring
neighbourhood and v.

However, the Gaussian curvature in other parts of the meshes stays the same. To quantify
this observation the difference in the calculated Gaussian curvature between jets with a differ-
ent number of points is compared in Figure 5.10. The differences are plotted in the range of
[−100, 100], because there were approximately 1, 000 outliers with a very high difference in the
calculated Gaussian curvature. These vertices are part of sharp ridges in the geometry of the
mesh, so they are dismissed as numerical errors. Both histograms show that the vast majority
of vertices have approximately the same Gaussian curvature and that on average only a few
thousand points have a significant deviation in the difference of their Gaussian curvature. This
shows that not much additional information about the local geometry of the mesh is gained
when increasing the number of points provided to the jet-fitting algorithm.

The results in Figure 5.10 suggest that 18 data points are a good trade-off between the two
previously discussed errors. Furthermore, the errors shown in Figure 5.6 and Figure 5.7 are
gone and the error discussed in the previous paragraph does not extend far into the flat planes
of the mesh. This leads to the comparison between spatial averaging and jet-fitting. Figure
5.11 shows the differences between the values of the Gaussian curvature calculated with spatial
averaging and jet-fitting. For this Figure the same specifications apply as for Figure 5.10.

The number of errors in the calculation of the Gaussian curvature increases when the number
of points for jet-fitting is increased (see Figure 5.11(b)). This happens due to the error in the
calculation of vertices that lie on ridges. As previously discussed the magnitude of this error is
negligible when 18 points are used and thus can be ignored.

Of the two presented methods that calculate the Gaussian curvature of a vertex in a mesh, the
preferred method is spatial averaging. This method has a far superior computation time and as
has been shown, it computes superior results over jet-fitting.

40

(a) Smooth Bay with a minimum of 6 vertices. (b) Square Bay with a minimum of 6 vertices.

(c) Smooth Bay with a minimum of 18 vertices. (d) Square Bay with a minimum of 18 vertices.

(e) Smooth Bay with a minimum of 35 vertices. (f) Square Bay with a minimum of 35 vertices.

(g) Smooth Bay with a minimum of 40 vertices. (h) Square Bay with a minimum of 40 vertices.

Figure 5.5: Gaussian curvature calculated with jet-fitting. The colors indicate the rate of the
curvature. Jet-fitting only takes a certain number of vertices into consideration to approximate
the Weingarten map ,thus , it is possible that ,locally, the curvatures of two adjacent vertices
are curved in opposite directions.

41

The colors indicate the curvature of the vertices in
the mesh Smooth Bay

(a) Locally flat 1-ring neighbourhood of a vertex
with a Gaussian curvature 6= 0.

(b) Locally flat 1-ring neighbourhood of a vertex
with a Gaussian curvature 6= 0.

Figure 5.6: Error (see Definition 5.1.1) in Gaussian curvature calculation with 6 points Smooth
Bay.

42

The colors indicate the curvature of the vertices in
the mesh Square Bay

(a) Locally flat 1-ring neighbourhood of a vertex
with a Gaussian curvature 6= 0.

(b) Locally flat 1-ring neighbourhood of a vertex
with a Gaussian curvature 6= 0.

Figure 5.7: Error (see Definition 5.1.1) in Gaussian curvature calculation with 6 points Square
Bay.

The colors indicate the curvature of the vertices in
the mesh Smooth Bay

(a) Vertices that get a Gaussian curvature 6= 0 that
should be 0.

Figure 5.8: Error (see Definition 5.1.1) in Gaussian curvature calculation with 18 points Smooth
Bay.

43

The colors indicate the curvature of the vertices in
the mesh Square Bay

(a) Vertices that get a Gaussian curvature 6= 0 that
should be 0.

Figure 5.9: Error (see Definition 5.1.1) in Gaussian curvature calculation with 18 points Square
Bay.

(a) Smooth Bay (b) Square Bay

Figure 5.10: Differences in the Gaussian curvature between jets with 18, 35, and 40 points.

44

(a) Smooth Bay (b) Square Bay

Figure 5.11: Differences in the Gaussian curvature between spatial averaging and jet-fitting.

45

5.1.2.2 Mean Curvature

The evaluation and comparison of the results from the mean curvature calculation is treated
in a similar way as the Gaussian curvature calculation. In Figure 5.4 the results from spatial
averaging and in Figure 5.5 the results from jet-fitting are displayed with an increasing number
of points.

It has to be noted that spatial averaging only calculates the absolute value of the mean cur-
vature, so information about the direction of the curvature is not present. However, for the
investigations in this work only the information about the magnitude of the curvature is needed
since it gives information about the complexity of the geometry; the direction of the curvature
only provides information about the type of geometry.

(a) Smooth Bay (b) Square Bay

Figure 5.12: Mean curvature calculated with spatial averaging. The colors indicate the rate of
the curvature.

Both previously discussed errors, the error were vertices that are part of a flat part of the mesh
get a curvature value greater zero when using 6 points (see Figure 5.6 and Figure 5.7), and the
error were the vertices that are part of a locally flat part of the mesh but are near a ridge get
a curvature greater zero (see Figure 5.8 and Figure 5.9), are also present in the calculation of
the mean curvature. As argued in the previous section 18 data points provide a good basis for
the comparison of the two approaches. However, the mean curvature calculated with spatial
averaging has an error (see Figure 5.14) that is not present when calculating the curvature with
jet-fitting. The vertex from which the curvature is calculated has one coordinate which value
has an order of magnitude of 10−3 and the value of the same coordinate of the vertices in its
1-ring neighbourhood is 10−17. Hence, spatial averaging calculates a curvature for this vertex.
This error is due to the provided data and, thus, has to be handled as a numerical error.

To ensure that the values of the mean curvature are comparable between spatial averaging and
jet-fitting the absolute value of the mean curvature is used to create the histograms shown in
Figure 5.15 and Figure 5.16.

Unlike with the calculation of the Gaussian curvature there have not been any outliers in
the calculation of the difference in mean curvature. This is due to the fact that on sharp ridges
the product of the two principle curvatures grows faster than their sum. The results in Figure
5.15 suggest that a limited amount of accuracy is gained when the number of points provided
to the jet-fitting approach is increased.

46

(a) Smooth Bay with a minimum of 6 vertices. (b) Square Bay with a minimum of 6 vertices.

(c) Smooth Bay with a minimum of 18 vertices. (d) Square Bay with a minimum of 18 vertices.

(e) Smooth Bay with a minimum of 35 vertices. (f) Square Bay with a minimum of 35 vertices.

(g) Smooth Bay with a minimum of 40 vertices. (h) Square Bay with a minimum of 40 vertices.

Figure 5.13: Mean curvature calculated with jet-fitting. The colors indicate the rate of the
curvature.

47

The colors indicate the curvature of the vertices in
the mesh Smooth Bay

Zoom of highlighted region in left figure (a): Vertex
(green circle) gets a curvature 6= 0 because of a
small difference in in one coordinate.

Figure 5.14: Error (see Definition 5.1.1) in mean curvature calculation when using spatial av-
eraging Smooth bay.

Figure 5.16 shows that only about 2, 000 vertices have a difference in the calculated value of
the absolute mean curvature between spatial averaging and jet-fitting.

These investigations lead to the conclusion that if the direction of the mean curvature is needed,
jet-fitting provides a more straightforward solution. However, when only the rate of the curva-
ture is needed spatial averaging provides comparable accuracy with a faster calculation time.

Choosing a preferred method to calculate the mean curvature of a vertex is not as easy as
with the Gaussian curvature. However, spatial averaging was chosen for several reasons. The
quality of the curvature calculation of this approach is comparable to the quality of jet-fitting
which is provided with at least 18 vertices. The calculation time of spatial averaging is at least
one order of magnitude faster then jet-fitting. A drawback of spatial averaging is that it only
calculates positive values for the mean curvatures. However, this is not relevant for this work,
since the rate of the curvature is the important metric and its direction does not provide useful
information. When Jet-fitting is provided with a larger number of points, it starts smoothing
the surface and detects vertices which lie in a flat plane but are near a ridge as curved vertices,
which is counterproductive.

48

(a) Smooth Bay (b) Square Bay

Figure 5.15: Differences in the mean curvature between jets with 18, 35, and 40 points.

(a) Smooth Bay (b) Square Bay

Figure 5.16: Differences in the mean curvature between spatial averaging and jet-fitting.

49

5.2 Feature Detection

In the previous section the quality and calculation time of the mean and Gaussian curvature
calculation was discussed. Figure 5.17 and Figure 5.18 show the results of the mean and Gaus-
sian curvature values for both test meshes calculated with spatial averaging. These suggest that
the vertices of a mesh can be separated into different sets based on their curvature values. This
section argues how these metrics can be used to detect parts of a mesh with different geometries.

(a) Mean curvature (b) Gauss curvature

Figure 5.17: Curvatures of the mesh Smooth Bay. The colors indicate the curvature of the
vertices calculated with spacial averaging.

(a) Mean curvature (b) Gauss curvature

Figure 5.18: Curvatures of the mesh Square Bay. The colors indicate the curvature of the
vertices calculated with spacial averaging.

Let τ ∈ R be a user defined number. The value of τ depends on the underlying mesh. In
the second part of this section it is discussed how τ is determined for Smooth Bay and Square
Bay. From now on vertices with at least one absolute principal curvature larger than τ are
called feature vertices and vertices were both absolute principal curvatures are smaller than
τ are called flat vertices. This convention allows the vertices in a mesh to be assigned to two
disjunct sets: The set of flat vertices Mflat, and the set of feature vertices Mfeature.

50

Algorithm 2 shows how the vertices in a mesh can be assigned to one of the previously defined
sets.

input : mesh M, tolerance ∈ R
output: Mflat, Mfeature

set Mflat ← ∅
set Mfeature ← ∅
foreach vertex v in M do

// κ1(v) and κ2(v) denote the 2 principle curvatures of v
if (v is NOT part of the border of M) then

if |κ1(v)| ≥ tolerance ∨ |κ2(v)| ≥ tolerance then
Mfeature ←Mfeature ∪ v;

else
Mflat ←Mflat ∪ v;

end

end

end
Algorithm 2: Partition of vertices into Mflat and Mfeature.

In Algorithm 2 border vertices are not assigned to one of the sets Mflat or Mfeature. During
the simplification process the border vertices have to be taken into consideration to ensure that
the shape of the mesh stays in tact, so a method is needed to assign these vertices to one of
the two previously defined sets. However, as previously discussed, vertices that are part of the
border of a mesh have no curvature so the following method is used: The 1-ring neighbourhood
of each border vertex is analysed and border vertices whose 1-ring neighbourhood only consists
of vertices that are in Mflat are assigned to this set. In all other cases the border vertex is
assigned to Mfeature (see Algorithm 3).

input : mesh M, Mflat, Mfeature

output: Mflat, Mfeature

foreach border vertex v in M do
foreach vertex vi in N1(v) do

if vi is a feature ∧ vi not a boarder vertex then
Mfeature ←Mfeature ∪ v;
GOTO next vertex;

end

end
Mflat ←Mflat ∪ v;
next vertex:

end
Algorithm 3: Adding border vertices to the partition.

Algorithm 3 requires a partitioning of all inner vertices of the mesh, thus, it has to be computed
after Algorithm 2. As can be seen in Figure 5.18 the mesh Square Bay has huge areas which
have zero curvature and it has only a few sharp ridges. Due to this fact the tolerance value
does not impact the assignment of the vertices as much as the assignments of the vertices of
the mesh Smooth Bay so only the latter mesh is used for the further discussion in this section.

51

The partition of the vertices with four different tolerances is shown in Figure 5.19.

When comparing Figure 5.19(a) and Figure 5.19(d) the impact of the chosen tolerance on the
quality of the partitioning of the vertices is observable. However, neither produces a satisfying
partition, i.e., with no errors. Figure 5.20 shows all vertices with a ratio between the flat ver-
tices and all vertices in the 1-ring neighbourhood larger than zero: All vertices which are on the
border between the setsMflat andMfeature of the mesh. A genuine border vertex between these
two sets should have a ratio between 0.4 and 0.6, because approximately half of the vertices in
the 1-ring neighbourhood should lie in Mflat and Mfeature. If this is not the case the border
between the regions is rigid, resulting in bad triangles during the simplification process. It is
obvious that there have to be border vertices with a lower or higher ratio in an arbitrary mesh,
but Figure 5.20 shows that there is a significant number of such vertices.

(a) τ = 0.5 (b) τ = 0.1

(c) τ = 0.001 (d) τ = 0.0001

Figure 5.19: Vertex partitioning of the mesh Smooth Bay with different tolerances τ ∈ R. If
both principal curvatures of a given vertex are less than τ this vertex is put into Mflat (blue
areas) otherwise it is put into Mfeature (red areas).

Figure 5.21 shows the errors encountered during the feature detection process.
It can be seen in Figure 5.22(a) that if the tolerance is too high, as in the case of Smooth

Bay τ = 0.5, big areas of a curved part of the mesh are detected as flat planes. This is the
result of triangles with at least one very short edge.

52

Figure 5.20: Quality of the partition with τ = 0.1.

One way to deal with these errors is to reduce the tolerance. The second way is to use the
information gained from the calculation of the transition region as described in Section 5.3.2
and use it to fix these errors.

Figure 5.22(b) shows that if the tolerance value is too small, areas of the mesh with a very
small curvature are detected as features. This implies that setting a very small value for the
tolerance is not a feasible solution.

As discussed in Section 3.2, the curvature of a vertex is calculated by approximating an
operator and a suitable surface patch around this vertex. If the vertices that make up the
1-ring neighbourhood of a vertex lie in the same plane, the curvature of this vertex is correctly
calculated as zero. However, the other vertices in the 1-ring neighbourhood of this vertex can
have different curvatures. These errors are shown in Figure 5.22(c) and Figure 5.22(d). They
occur due to inaccuracies during the discretization process of the surface. These vertices have
to be detected and their set allocation has to be adapted accordingly. A solution to fix these
errors is introduced in Section 5.2.1.

The error shown in Figure 5.22(e) occurs when one coordinate of a vertex is near the mini-
mum value of a double precision variable and the same coordinate in an adjacent vertex is just
a small number, for example, the vertices v1 = (0, 0, 10−300) and v2 = (0.5, 0, 10−3). This error
is again due to the discretization of the surface. It is fixed by adding the flat vertices between
the two feature vertices to the set of feature vertices as described in Section 5.3.2.

53

(a) τ = 0.5 (b) τ = 0.0001

Figure 5.21: Errors in the feature detection (Smooth Bay). The highlighted areas (a-e) refer to
the zoomed areas shown in Figure 5.22.

54

(a) Triangles with a short edge. (b) Flat vertices detected as feature.

(c) Error in a single vertex. (d) Holes in features.

(e) Small differences in point data.

Figure 5.22: Zoomed-in errors (green circles) in the feature detection (Smooth Bay).

55

5.2.1 Filling Inaccurate Surface Patches

In the previous section it was discussed that when only the curvature of a given vertex is con-
sidered, the partition of the vertices contained errors. This is a consequence of the shape and
position of triangles in the mesh. Hence, a solution is needed to find these inaccurate subsets
of vertices and change their assignment fromMflat toMfeature. It is straightforward to identify
vertices as seen in Figure 5.22(c) and change their assignment. For holes in the partition (see
Figure 5.22(d)) a more sophisticated approach has to be taken. The setMflat has to be divided
into subsets of a certain defined size that are surrounded by vertices of the set Mfeature. Algo-
rithm 4 shows how this partitioning problem is solved. It can be used for a single vertex or a
previously defined number of vertices.

input : mesh M, Mflat, set Mfeature, size ∈ R
output: Mflat, Mfeature

set current-hole ← ∅;
set current-hole-tmp ← ∅;
foreach vertex v in M do

if v ∈Mflat then
current-hole ∪ v;
current-hole-tmp ∪ v;

end
// in this context | · | denotes the cardinality of a set

while |current-hole | ≤ size + 1 ∧ current-hole-tmp 6= ∅ do
w ← get vertex from the set current-hole-tmp;
current-hole-tmp← current-hole-tmp\w;
foreach vertex wi in N1(w) do

if wi is a flat vertex then
current-hole ∪ wi;
current-hole-tmp ∪ wi;

end

end

end
if |current-hole | ≤ size then
Mfeature ←Mfeature ∪ current-hole;
Mfeature ←Mflat\current-hole;

end
current-hole ← ∅; current-hole-tmp ← ∅;

end
Algorithm 4: Filling inaccurate surface patches.

After applying Algorithm 4 to the previously calculated partitioning the results displayed in
Figure 5.23 were produced. Figure 5.24 shows that the number of vertices, were the 1-ring
neighbourhood has an uneven ratio of vertices between the setMflat andMfeature, thus creating
ridges in the partition, is reduced by half. This shows that filling the inaccurate surface patches
has increased the quality of the feature detection. This improved version of the partition is used
for the remainder of this work.

56

Figure 5.23: Smooth Bay with fixed errors.

Figure 5.24: Quality of the partition with τ = 0.1 after fixing the errors.

57

5.3 Curvature Regions of a Surface

The partitioning divides the mesh into regions, as indicated in Figure 5.23. From now on the
set of flat vertices Mflat is called the flat region of the mesh, and the set of feature vertices
Mfeature is called the feature region of the mesh. Edges were both vertices are in the set of
Mflat are called flat edges, and edges were both vertices are in the set of Mfeature are called
curved edges.

5.3.2 Definition
Let M be a mesh, VM be the set of the vertices of M, and let f(v) : VM → {0, 1} be a
function. Then a region R of M is defined as

R := {v ∈ VM|f(v) = 1}.

The edges of a mesh that connect two different regions play a significant role in the further
investigations.

5.3.3 Definition
Let M be a Mesh, EM the set of edges in M, and R1, R2 be 2 regions of M. Then the set
CE ⊂ EM is called the set of critical edges if

CE := {e ∈ EM|(ev ∈ R1 ∧ ew ∈ R2) ∨ (ew ∈ R1 ∧ ev ∈ R2)},

Elements of CE are called critical edges.

This Section discusses the simplification of these regions of the mesh with different approaches
as well as different parameters, e.g., region specific placement functions or region specific stop
conditions. The study of the results of this simplification approach illustrates some problems
with the element quality of certain elements of the simplified mesh. A possible solution to this
problem is proposed in Section 5.3.2.

In the discussion in the following section the scale of a mesh is needed so the following definition
is given:

5.3.4 Definition
LetM be a mesh, lavg(M) the average edge length ofM, and lBB(M) the maximum edge
length of the Bounding Box [12] of M.

Then the scale of a mesh is defined as:

lavg(M)

lBB(M)
.

58

5.3.1 Simplification of Regions

When simplifying the flat regions of a mesh it is clear that the local geometry of the mesh is
planar. When calculating the new position of a vertex the attention can be focused on the
shape of the triangles around this vertex and the preservation of the border of the mesh if the
collapsed edge was a border edge. This can be achieved by minimizing the distance from each
edge in the 1-ring neighbourhood of the new vertex v. Let dist(v, w) := ‖v − w‖ denote the
distance between the two vertices v and w. Then the minimization problem can be formulated
as follows

∑
vi∈N1(v)

dist(v, vi)
2 → min.

The edge that yields the best shape for all incident triangles after it is collapsed is chosen as
the edge to collapse. The position of the new vertex is calculated via a minimization problem.

On the other hand, when simplifying the feature regions of the mesh the Lindstrom-Turk sim-
plification algorithm is applied (see Section 2.2.2).

Remark: Both of the methods discussed above can be implemented by using the implemen-
tation of the Lindstrom-Turk algorithm in CGAL [4].

Since the flat region of the mesh can be simplified to a larger degree than the feature region,
without the loss of geometric information, the maximum edge length for each region is taken
as the termination function (see Algorithm 5). The maximum edge length for each region is a
user supplied parameter, which has to be chosen in concordance with the scale of the supplied
mesh (see Definition 5.3.4) and the desired level of simplification.

input : edge e of the mesh M, l ∈ R
output: stop the simplification process

// ‖e‖ := dist(ev, ew) were ev and ew are the two vertices of the edge e
if ‖e‖ ≤ l then

false;
else

true;
end

Algorithm 5: Edge length termination function.

When applying the simplification techniques discussed above with different parameters on
the two test meshes, the results shown in Figure 5.25 are obtained. Together with the his-
tograms in Figure 5.26 it is shown that this way of simplifying the mesh leads to bad triangles
(see Section 2.1.2) at the border between the flat and feature region of the mesh. The edges
that are responsible for the bad triangles are the critical edges; handling those will be discussed
in the next section.

59

(a) Curved region of Smooth Bay simplified until
the edge length of curved edges is 0.03 and the
length of flat edges is 0.3.

(b) Flat region of Square Bay simplified until the
edge length of flat edges is 0.3.

Figure 5.25: Simplification of the flat and feature regions. The edge lengths are chosen in
accordance with the scale of the mesh (see Definition 5.3.4).

(a) Smooth Bay curved length 0.03 flat length 0.3
minimum angles.

(b) Square Bay flat length 0.3 minimum angles.

Figure 5.26: Triangle quality after the simplification.

60

5.3.2 Transitions between Regions

The previous section discussed how the critical edges between the flat and feature region of the
mesh lead to bad triangles after the simplification process. To create a smoother transition,
in the sense of triangle quality, a third mesh region is introduced: The transition region
Mtransition. The transition region creates a buffer between the elements of the flat and feature
regions of the mesh. The idea is to find suitable edge lengths between the average edge length
of the flat and feature region to avoid creating triangles that have one short edge or one large
angle.
Before describing the process of creating the transition region, additional notations have to be
introduced.

5.3.5 Definition
Let M be a mesh, VM be the set of all vertices in M, and EM the set of all edges in M.
Then a path P of length n is defined as

P = (v1, v2, . . . , vn) ∈ VM × VM × · · · × VM,

were vi is connected to vi+1 through an edge e ∈ EM.

5.3.6 Definition
Let P be a path of length n in M . Then the distance of the path P is defined as

d(P) :=

n−1∑
i=1

dist(vi, vi+1).

The calculation of the transition region starts with a collection phase in which the flat vertices
of all critical edges from the flat region to the feature region are stored in a set. After the
collection phase ends, the transition region ”grows” from the feature region into the flat region
until each vertex of Mflat has a distance value associated with it (see Algorithm 6).

Remark: Until this point only sets were needed to describe the algorithms in this work. In
Algorithm 6 a more complex data structure, that provides additional functionality, is needed.
To that end, a Hash-List L of vertices is defined as follows: The elements in a Hash-List are
ordered. So the first element of a Hash-List can be accessed L.first() and an element can be
added at the end of the Hash-List L.pushback(element). Additionally, elements of the Hash-List
can be accessed as L(v), were v is a vertex.

It was mentioned in Section 5.2 that the calculation of the transition region is used to fix errors
in the feature detection (see Figure 5.22(e)). Each vertex in the list after the collection phase
is checked and added to Mfeature, if it is only surrounded by other feature vertices or vertices
in the set after the collection phase (see Algorithm 7).

Figure 5.27 shows the transition region calculated with Algorithm 6 for both test meshes. Now
that the transition regions are calculated the simplification of the transition regions remains to
be discussed.

61

input : mesh M, set Mfeature, set Mflat

output: Mtransition

Hash-List transition-region← ∅;
Hash-List transition-distances← ∅;
set Mtransition ← ∅;
foreach critical edge e in M do

transitiona-region.pushback(flat vertex of e);
transition-distances(flat vertex of e) ← dist(ev, ew);

end
while transition-region 6= ∅ do

v ← transition-region.first();
transitiona-region← transitiona-region\v;
Mtransition ∪ v;
foreach vertex vi in N1(v) do

if vi /∈Mfeature then
if transition-distances(vi) ≤ transition-distances(v) + dist(v, vi) then

transition-distances(vi) ← transition-distances(v) + dist(v, vi);
end
transitiona-region← transitiona-region ∪ vi;

end

end

end
Algorithm 6: Calculating the transition region.

input : mesh M, set Mflat, set Mfeature

output: Mflat, Mfeature

set transition-region← ∅;
foreach critical edge e in M do

transitiona-region ∪ flat vertex of e;
end
foreach vertex v in transitiona-region do

foreach vertex vi in N1(v) do
if vi /∈ transitionare-region ∨ vi /∈Mfeature then

GOTO next vertex;
end

end
Mflat\v;
Mfeature ∪ v;
next vertex:

end
Algorithm 7: Fixing errors in the feature detection.

62

Starting from the critical edges of the mesh, the transition regions are simplified with a certain
edge length l1 ∈ R.

After this first simplification step the transition regions are simplified with another, larger edge
length l2 ∈ R. This time the starting positions for the simplification process are not the critical
edges of the mesh, but the edges of the mesh that are a certain distance l1 ∗ s away from the
critical edges of the mesh. The parameter s ∈ R is a user supplied parameter, which has to
be chosen with respect to the scale of the mesh (see Definition 5.3.4) and the desired element
quality. This process repeats until the transition regions are simplified with all provided lengths
l1, l2, . . . , ln. Algorithm 8 and Figure 5.28 shows the process and some results, respectively.

(a) Transition region Smooth Bay. (b) Transition region Square Bay.

Figure 5.27: Transition region of both test meshes. The dark blue areas with the value −1
are Mfeature, the coloured areas transitioning from blue to red are the transition regions. The
distance is defined as in Definition 5.3.5.

input : mesh M, set Mtransition, list edge-length, transition-size ∈ R
output: mesh Msimplified

start = 0.0;
foreach length l in edge-length do

simplify Mtransition with an edge length of l starting at distance start ;
start = start + transition-size ∗l

end
Algorithm 8: Simplifying the transition region.

When the methods discussed in this section are applied to the two test meshes the results shown
in Figure 5.29 are produced. In Figure 5.30 it can be seen that the triangle quality significantly
improves due to the transition region. In the next Chapter 6.1 the results from this method are
evaluated and more examples are given.

63

(a) l1 = 0, 03 (b) l1 = 0, 03, l2 = 0, 09

(c) l1 = 0, 03, l2 = 0, 09, l3 = 0, 3

Figure 5.28: Visual example of the successive simplification described in Algorithm 8 on the
mesh Square Bay. l1, l2, l3 are the maximum edge length of the three regions used in this
example.

(a) Smooth Bay simplified with transition region.
(b) Square Bay simplified with transition region
(see Figure 5.28(c)).

Figure 5.29: Example of of both test meshes simplification with transition region.

64

(a) Smooth Bay (b) Square Bay

Figure 5.30: Minimal angle distribution after simplification with transition region.

65

Chapter 6

Results and Discussion

This chapter discusses the results gained from the approach of subdivided surface simplification
presented in Chapter 5, which will be further referred to as region simplification. The approach
presented in the previous chapter is an extension of the Lindstrom-Turk simplification algorithm.
Both methods are compared with respect to execution time and resulting mesh quality. Finally,
a short summary is given together with potential further improvements of the method.

6.1 Surface Mesh Simplification Comparison

This section discusses several applications of the region simplification approach and compares
them with the Lindstrom-Turk simplification approach.

The investigations in this section are structured in the following way. At first, only the flat
regions of the meshes are simplified and appropriate transition regions are calculated to ensure
a good element quality. These results are then compared to the Lindstrom-Turk simplification
strategy. To guarantee a baseline for a fair comparison between these two approaches the mesh
simplified with the Lindstrom-Turk approach is simplified until it reaches the same amount of
vertices as the region simplification.

Although the number of vertices in the simplified meshes is the same, the number of elements
differs. This happens because an edge collapse of an inner edge of the mesh removes two elements
of the mesh (see Section 2.2.1). However, an edge collapse of a border edge of the mesh only
removes one element, since there is only one element that can be removed. Thus, the Lindstrom-
Turk simplification process removes more elements than region simplification, because it removes
a larger amount of inner edges.

Finally, four quality metrics of both meshes are compared: the minimum angle distribution,
the radius ratio, the distance of each vertex in the simplified mesh to the original mesh, and
the execution time of both approaches. The results are averaged over 100 runs. Afterwards,
the findings from those metrics are discussed and used to motivate further investigations.

6.1.1 Square Bay Mesh

The first investigation, using the Square Bay mesh, uses the parameters shown in Table 6.1.
The number in the first column in Table 6.1 is the value for ’transition-size’ in Algorithm 8.
The number in the second column is the minimum edge length to stop the simplification of the
feature region (see Algorithm 5).

66

Region size Feature region Flat region 1 Flat region 2 Flat region 3 Flat region 4

1.5 0.0 0.03 0.06 0.12 0.25

Table 6.1: Investigation 1 Square Bay parameters for region simplification.

Region simpl. Lindstrom-Turk simpl.

elements 10,617 10,500

vertices 5,353 5,353

Table 6.2: Investigation 1 Square Bay, elements and vertices in the mesh after the simplification.

The last four numbers in the columns of Table 6.1 are the entries in the list ’edge-length’ in Al-
gorithm 8. These parameters were chosen in such a way that the elements of the mesh maintain
a good shape (see Section 2.1.2). This yields the mesh shown in Figure 6.1(a) with the number
of elements shown in Table 6.2.

(a) Region simplification (b) Lindstrom-Turk simplification

Figure 6.1: Investigation 1 Square Bay output.

Figure 6.2 compares the metrics of the results gained from both simplification processes. The
approach of Lindstrom-Turk changes the geometry of the mesh, this can be seen in Figure 6.2(c)
since the Lindstrom-Turk simplification has vertices with a Hausdorff distance greater than 0 to
the original mesh. On the other hand region simplification has a Hausdorff distance of 0 to the
original mesh, and thus does not change the geometry of the original mesh. This behaviour is
a consequence of the fact that the feature region (see Section 5.3) of the mesh is not simplified.
Additionally the transition region (see Section 5.3.2) prevents the formation of bad elements
like needles. However, Figure 6.2(a) shows that on average region simplification has a lower
element quality. The elements with the lower quality are the elements that connect two different
regions and thus, cannot maintain a higher element quality. The calculation time is about 30
% in favour of the Lindstrom-Turk simplification (see Figure 6.3).

67

(a) Minimum angles of all elements. (b) Radius ratio of all elements.

(c) Vertex distance to the original mesh.

Figure 6.2: Investigation 1 Square Bay quality.

In this first investigation the region simplification managed to preserve the geometry of the
original mesh and reduce the number of vertices in the mesh by about 92 %. In the next inves-
tigation the feature region is simplified to get an overall lower amount of vertices.

68

Figure 6.3: Investigation 1 Square Bay calculation times.

69

In the next investigation the feature region of the mesh Square Bay is simplified with the pa-
rameters shown in Table 6.3. In Table 6.4 the remaining number of elements can be seen, and
Figure 6.4(a) displays the mesh after the simplification

Region size Feature region Flat region 1 Flat region 2 Flat region 3 Flat region 4

1.2 0.04 0.06 0.1 0.2 0.3

Table 6.3: Investigation 2 Square Bay parameters for region simplification.

Region simpl. Lindstrom-Turk simpl.

elements 3,610 3,546

vertices 1,838 1,838

Table 6.4: Investigation 2 Square Bay, elements and vertices in the mesh after the simplification.

(a) Region simplification (b) Lindstrom-Turk simplification

Figure 6.4: Investigation 2 Square Bay output.

Figure 6.5, and in particular Figure 6.5(c) clearly show that the previously preserved geometry
of the original mesh is no longer sustained when simplifying the feature region of the mesh
Square Bay. The element quality improved with respect to the first investigation (see Figure
6.5(a) and 6.5(b). However, this is because the minimum edge length of the feature and transi-
tion regions are closer together. Figure 6.6 depicts that the difference in the average calculation
time dropped to about 16 % in favour of the Lindstrom-Turk simplification.

70

(a) Minimum angles of all elements. (b) Radius ratio of all elements.

(c) Vertex distance to the original mesh.

Figure 6.5: Investigation 2 Square Bay quality.

Figure 6.6: Investigation 2 Square Bay calculation times.

71

6.1.2 Smooth Bay Mesh

The mesh Smooth Bay originally has 57,058 feature vertices whereas the previous mesh, Square
Bay, has 2,765 which is a significantly higher number. This fact leads to a greater variety in
possible results. The mesh shown in Figure 6.7(a) was simplified with the parameters shown in
Table 6.5.

Region size Feature region Flat region 1 Flat region 2 Flat region 3 Flat region 4

1.5 0.0 0.02 0.06 0.12 0.25

Table 6.5: Investigation 1 Smooth Bay parameters for region simplification.

The remaining number of elements and vertices are shown in Table 6.6.

Region simpl. Lindstrom-Turk simpl.

elements 115,790 115,493

vertices 58,183 58,183

Table 6.6: Investigation 1 Smooth Bay, elements and vertices in the mesh after the simplification.

(a) Region simplification (b) Lindstrom-Turk simplification

Figure 6.7: Investigation 1 Smooth Bay output.

Figure 6.8 depicts key metrics of the simplification processes. Figure 6.8(a) shows that the
simplified mesh has several elements with a minimum angle smaller than 20 degree. These are
bad elements and are already part of the original mesh Smooth Bay (see Figure 6.9). They are
not created by the simplification, but are a consequence of the discretization process. However,
when considering Figure 6.8(c) it can be seen, as expected since the feature region is not simpli-
fied, that the region simplification keeps the original geometry in tact. Figure 6.10 shows that
the difference in calculation time is about 60 % in favour of the Lindstrom-Turk simplification
approach. This is the case, because the feature detection needs additional computation time
during the region simplification that is not needed by the Lindstrom-Turk simplification.

72

(a) Minimum angles of all elements. (b) Radius ratio of all elements.

(c) Vertex distance to the original mesh.

Figure 6.8: Investigation 1 Smooth Bay quality.

These results suggest that in the case of Smooth Bay the overall element quality could be
improved by simplifying the feature region of the mesh with a very small edge length, while
maintaining a low distance to the original mesh.
Based on these insights, Figure 6.11(a) depicts another investigation using the parameters as
listed in Table 6.7:

73

Figure 6.9: Minimum angles of the original mesh Smooth Bay.

Figure 6.10: Investigation 1 Smooth Bay calculation times.

74

Region size Feature region Flat region 1 Flat region 2 Flat region 3 Flat region 4

1.5 0.009 0.02 0.06 0.12 0.25

Table 6.7: Investigation 2 Smooth Bay parameters for region simplification.

The remaining number of elements and vertices are shown in Table 6.8.

Region simpl. Lindstrom-Turk simpl.

elements 79,369 78,994

vertices 39,798 39,798

Table 6.8: Investigation 2 Smooth Bay, elements and vertices in the mesh after the simplification.

(a) Region simplification (b) Lindstrom-Turk simplification

Figure 6.11: Investigation 2 Smooth Bay output.

The results of this investigation are shown in Figure 6.12. Figure 6.12(a) proves that the element
quality has improved and that the distance to the mesh with no simplification in the feature
region increased only by a small amount (see Figure 6.13). The average difference in calculation
time is approximately 30 % in favour of the Lindstrom-Turk simplification (see Figure 6.14).
This investigation proves that region simplification preserves the original geometry of the mesh
in more details and additionally improves the element quality.

Considering the results of the last two investigations the number of vertices was only reduced
by 18 and 44 %, respectively. Hence, in the next investigation, the focus will be on reducing
the number of vertices and elements.

75

(a) Minimum angles of all elements. (b) Radius ratio of all elements.

(c) Vertex distance to the original mesh.

Figure 6.12: Investigation 2 mesh Smooth Bay quality.

Figure 6.13: Distance between simplified and not simplified feature region of the mesh Smooth
Bay.

76

Figure 6.14: Investigation 2 Smooth Bay calculation times.

77

The mesh Smooth Bay has a large ratio of feature vertices, approximately 79 %. To reduce
the overall number of elements by a larger amount, this region has to be simplified to a higher
degree. Figure 6.15(a) shows the mesh simplified with the parameters shown in Table 6.9:

Region size Feature region Flat region 1 Flat region 2 Flat region 3

1.3 0.04 0.06 0.12 0.25

Table 6.9: Investigation 3 Smooth Bay parameters for region simplification.

The remaining number of elements and vertices are shown in Table 6.10.

Region simpl. Lindstrom-Turk simpl.

elements 6,284 6,179

vertices 3,186 3,186

Table 6.10: Investigation 3 Smooth Bay, elements and vertices in the mesh after the simplifica-
tion.

(a) Region simplification (b) Lindstrom-Turk simplification

Figure 6.15: Investigation 3 Smooth Bay output.

Figure 6.16 displays the results of this investigation. The element quality is not as high as
with the Lindstrom-Turk simplification as seen in Figure 6.16(a). However, a lower distance
to the original mesh is maintained (see Figure 6.16(c)). The lower element quality is the re-
sult of the minimal edge lengths between the feature and the transition regions. Figure 6.17
shows that the difference in calculation time is still about 15 % faster when considering the
best case for the approach of Lindstrom and Turk and the worst case for region simplification.
However, when the average case is considered the difference in calculation time is lower than 8 %.

When studying all previous histograms showing the distances to the original mesh Smooth Bay,
it can be seen that the differences in the distance to the original geometry shrinks for both
methods. The next investigation thus simplifies the mesh in such a way that the feature region
of the mesh is simplified by a high degree to show the limitations of region simplification.

78

(a) Minimum angles of all elements. (b) Radius ratio of all elements.

(c) Vertex distance to the original mesh.

Figure 6.16: Investigation 3 Smooth Bay quality.

Figure 6.17: Investigation 3 Smooth Bay calculation times.

79

In this investigation, the parameters listed in Table 6.11 are used. These were chosen in such a
way that the total number of vertices in the simplified mesh is about 1 to 2 % of the number
vertices in the original mesh (see Figure 6.18(a) and Table 6.12).

Region size Feature region Flat region 1 Flat region 2 Flat region 3

1.0 0.075 0.09 0.18 0.3

Table 6.11: Investigation 4 Smooth Bay parameters for region simplification.

The remaining number of elements and vertices are shown in Table 6.12.

Region simpl. Lindstrom-Turk simpl.

elements 1,891 1,846

vertices 974 974

Table 6.12: Investigation 4 Smooth Bay, elements and vertices in the mesh after the simplifica-
tion.

(a) Region simplification (b) Lindstrom-Turk simplification

Figure 6.18: Investigation 4 Smooth Bay output.

Figure 6.19 shows the results of this investigation. The approach of Lindstrom and Turk achieves
a higher element quality (see Figure 6.19(a) and Figure 6.19(b)). The difference in the distance
to the original mesh of the two approaches is nearly identical (see Figure 6.19(c)). Figure 6.20
shows that the average difference in calculation time is 7 % in favour of the Lindstrom-Turk
simplification process. This investigation shows that if the feature region is vastly simplified
region simplification cannot preserve the original geometry in greater detail.

80

(a) Minimum angles of all elements. (b) Radius ratio of all elements.

(c) Vertex distance to the original mesh.

Figure 6.19: Investigation 4 Smooth Bay quality.

Figure 6.20: Investigation 4 Smooth Bay calculation times.

81

6.1.3 Results Without Transition Region

One of the primary goals of this work was to maintain a high element quality in the mesh
after the simplification process. For this purpose the transition region (see Section 5.3.2) was
introduced. However, this approach of surface mesh simplification also offers the possibility
to ignore element quality in favour of an overall lower number of elements while maintaining
geometric features with their original resolution (see Figure 6.21 and Figure 6.22). These
meshes were obtained by using region simplification with the parameters shown in Table 6.13
and Table 6.15.

Feature region Flat region

0.0 0.5

Table 6.13: Parameters for Square Bay with no transition region.

The remaining number of elements and vertices are shown in Table 6.14.

Region simpl.

elements 5,641

vertices 2,840

Table 6.14: No transition region Square Bay, elements and vertices in the mesh after the sim-
plification.

(a) Simplified mesh (b) Element quality

Figure 6.21: Investigation with no transition region using the mesh Square Bay.

82

Feature region Flat region

0.0 0.5

Table 6.15: Parameters for Smooth Bay with no transition region.

The remaining number of elements and vertices are shown in Table 6.16.

Region simpl.

elements 113,732

vertices 57,109

Table 6.16: No transition region Smooth Bay, elements and vertices in the mesh after the
simplification.

(a) Simplified mesh (b) Element quality

Figure 6.22: Investigation with no transition region using the mesh Smooth Bay.

83

6.1.4 Discussion

Since the mesh Smooth Bay has a larger amount of feature vertices the graphs in this section
are created with data gained from only this mesh. The feature region in the mesh Square
Bay is so small, that if this region is simplified much information about the geometry is lost
(see Figure 6.5(c)). However, the conclusions drawn about the transition and flat regions of the
mesh are also valid for Square Bay.

All investigations in the previous section show that region simplification preserves geometric
features with a higher resolution when the mesh is simplified to the same number of vertices
than using the Lindstrom-Turk simplification (see Figure 6.25). Depending on the application
the mesh is needed for, the number of elements that need to be removed from the feature region
has to be adjusted. This influences the overall geometry of the mesh which is better preserved
by using region simplification.

Figure 6.23: Accumulated absolute distance to the original mesh compared to the degree of
simplification Smooth Bay.

Region simplification creates a transition region between high and low simplification regions.
This improves the overall number of elements that can be removed, but this process also has the
side effect that some elements have to have a lower quality since they have to connect different
regions of the mesh with different edge sizes. Figure 6.24 shows that region simplification cre-
ates more elements with a minimum angle between 10 and 35 degree than the Lindstrom-Turk
simplification. It is also possible that this approach creates a few elements with a very low
quality, but they can be fixed in a post processing step further discussed in Section 7.

In terms of calculation time the Lindstrom-Turk simplification process is faster than region
simplification (see Figure 6.23). However, this was expected since region simplification is an
extension of the Lindstrom-Turk simplification approach which simplifies certain parts of the
mesh with different parameters. This additional computation time stems from the fact that the
mesh has to be analyzed and split into different regions. Furthermore, the difference in average
computation time was at most two seconds which is not even a difference of one order of mag-
nitude between the computation time of both approaches. The largest differences in calculation
time occurs in the investigations that do not simplify the feature region of the mesh.

84

This is due to the fact that in these investigations only the flat regions of the mesh are simplified,
which in turn increases the impact of the feature detection on the overall calculation time.

(a) Region simplification

(b) Lindstrom-Turk simplification

Figure 6.24: Minimum angle of the mesh Smooth Bay after the simplification.

Figure 6.25: Smooth Bay calculation time compared to the degree of simplification.

85

Chapter 7

Summary and Outlook

In this work an extension of the Lindstrom and Turk simplification algorithm has been intro-
duced and discussed. This extension categorizes the vertices of a mesh into two regions based
on their geometric properties, and simplifies these regions with different strategies to minimize
the distance (see Section 2.2.3) to the original geometry. To maintain a high element quality
for all mesh elements an additional region was introduced (see Section 5.3.2) that creates a
transition between the previously created regions.

Regarding future work: The simplification approach developed in this work is an extension of
the Lindstrom and Turk simplification algorithm. However, since this approach allows to apply
different simplification strategies to different regions of the mesh, it would be of interest to
investigate the effects of other simplification strategies onMfeature, for example, the strategies
presented in [11] or [34].

At the moment the transition region is calculated trough a breadth-first search. Depth-first
search or other search algorithms could be investigated whether they yield improved transition
regions.

In some cases the transition region has bad elements (see Figure 7.1). A post processing step
could be developed that would fix those by changing the position of one vertex of the element.
This process would have a computational complexity of O(n), were n ∈ N is the number of
vertices in the mesh M and would increase the overall runtime of the algorithm by a constant
amount of time.

It is possible to detect a third set of vertices, the significant features (see Figure 7.2(a)), and
incorporate it into the algorithm. After detecting a feature vertex it is tested if the absolute
mean curvature or the absolute Gaussian curvature is greater than a set tolerance. If one
of these conditions is true the vertex is put into the set of significant feature vertices. The
computation time of this additional region would only increase the runtime by a constant
amount and thus would not effect its computational complexity. This additional region would
improve the distance to the original mesh with an overall lower amount of elements in the mesh.

86

(a) Mesh Square Bay (b) Mesh Smooth Bay

Figure 7.1: Examples of bad elements in the transition region.

(a) Tolerance 10.0 (b) Errors in the detection algorithm.

Figure 7.2: Significant features of Smooth Bay.

87

Bibliography

[1] D. Bommes, L. Bruno, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. “State
of the Art in Quad Meshing.” In: Proceedings of the Annual Conference of the European
Association for Computer Graphics (Eurographics). 2012.

[2] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods (Texts in
Applied Mathematics). Springer, 2007. isbn: 0387759336.

[3] J. W. Bruce and P. J. Giblin. Curves and Singularities: A Geometrical Introduction to Sin-
gularity Theory. 2nd ed. Cambridge: Cambridge University Press, 1992. isbn: 9781139172615.

[4] F. Cacciola. “Triangulated Surface Mesh Simplification.” In: CGAL User and Reference
Manual. 4.12.1. CGAL Editorial Board, 2018.

[5] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. 2nd ed. New York: Dover
Publications, 2016. isbn: 9780486806990.

[6] F. Cazals and M. Pouget. “Estimating Differential Quantities Using Polynomial Fitting
of Osculating Jets.” In: Computer Aided Geometric Design 22.2 (2005), pp. 121–146. doi:
10.1016/j.cagd.2004.09.004.

[7] P. Cignoni, C. Montani, and R. Scopigno. “A Comparison of Mesh Simplification Al-
gorithms.” In: Computers & Graphics 22.1 (1998), pp. 37–54. doi: 10.1016/S0097-

8493(97)00082-4.

[8] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. “Implicit Fairing of Irregular Meshes
using Diffusion and Curvature Flow.” In: Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH). 1999, pp. 317–324. doi:
10.1145/311535.311576.

[9] U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab. Minimal Surfaces I. Springer-
Verlag, 1991. isbn: 3540531696. doi: 10.1007/978-3-662-02791-2_3.

[10] I. Farmaga, P. Shmigelskyi, P. Spiewak, and L. Ciupinski. “Evaluation of Computational
Complexity of Finite Element Analysis.” In: Proceedings of the 11th International Con-
ference The Experience of Designing and Application of CAD Systems in Microelectronics
(CADSM). 2011, pp. 213–214.

[11] M. Garland and P. S. Heckbert. “Surface Simplification Using Quadric Error Metrics.”
In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH). 1997, pp. 209–216. isbn: 0897918967. doi: 10.1145/258734.
258849.

[12] B. Gill and H.-P. Sariel. “Efficiently Approximating the Minimum-Volume Bounding Box
of a Point Set in Three Dimensions.” In: Journal of Algorithms 38 (2001), pp. 91–109.
doi: 10.1006/jagm.2000.1127.

[13] H. Havlicek. Lineare Algebra für Technische Mathematiker. Heldermann, 2008. isbn:
9783885381167.

88

http://dx.doi.org/10.1016/j.cagd.2004.09.004
http://dx.doi.org/10.1016/S0097-8493(97)00082-4
http://dx.doi.org/10.1016/S0097-8493(97)00082-4
http://dx.doi.org/10.1145/311535.311576
http://dx.doi.org/10.1007/978-3-662-02791-2_3
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1006/jagm.2000.1127

[14] L. Hogben. Handbook of linear algebra. CRC Press, Taylor & Francis Group, 2016. isbn:
9781138199897. doi: 10.1201/b16113.

[15] L. Kettner. “3D Polyhedral Surface.” In: CGAL User and Reference Manual. 4.12.1.
CGAL Editorial Board, 2018.

[16] S. -J. Kim, C. -H. Kim, and D. Levin. “Surface Simplification Using a Discrete Curvature
Norm.” In: Computers & Graphics 26.5 (2002), pp. 657–663. doi: 10.1016/S0097-

8493(02)00121-8.

[17] P. Lindstrom and G. Turk. “Fast and Memory Efficient Polygonal Simplification.” In:
Proceedings of the Conference on Visualization. IEEE Computer Society Press, 1998,
pp. 279–286. doi: 10.1109/VISUAL.1998.745314.

[18] S. H. Lo. “A New Mesh Generation Scheme For Arbitrary Planar Domains.” In: Inter-
national Journal for Numerical Methods in Engineering 21.8 (1985), pp. 1403–1426. doi:
10.1002/nme.1620210805.

[19] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm.” In: Computer Graphics 21.4 (1987), pp. 163–169. doi: 10.1145/
37402.37422.

[20] P. L. Manstetten. “Efficient Flux Calculations for Topography Simulation.” Doctoral Dis-
sertation. TU Wien, 2018.

[21] P. Manstetten, J. Weinbub, A. Hössinger, and S. Selberherr. “Using Temporary Explicit
Meshes for Direct Flux Calculation on Implicit Surfaces.” In: Procedia Computer Science
108 (2017), pp. 245–254. doi: https://doi.org/10.1016/j.procs.2017.05.067.

[22] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. “Discrete Differential-Geometry
Operators for Triangulated 2-Manifolds.” In: Visualization and Mathematics III. Ed. by
Hans-Christian Hege and Konrad Polthier. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 35–57. isbn: 9783662051054. doi: 10.1007/978-3-662-05105-4_2.

[23] M. Pharr and G. Humphreys. Physically Based Rendering: From Theory to Implementa-
tion. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004. isbn: 9780128007099.

[24] P. P. Philippe and J. B. Timothy. “Analysis of Triangle Quality Measures.” In: Mathe-
matics of Computation 72. 2003, pp. 1817–1839. doi: 10.1090/S0025-5718-03-01485-6.

[25] K. Polthier and M. Schmies. “Straightest Geodesics on Polyhedral Surfaces.” In: Pro-
ceedings of the International Conference and Exhibition on Computer Graphics and In-
teractive Techniques (SIGGRAPH) Courses. 2006, pp. 30–38. isbn: 1595933646. doi:
10.1145/1185657.1185664.

[26] M. Pouget and F. Cazals. “Estimation of Local Differential Properties of Point-Sampled
Surfaces.” In: CGAL User and Reference Manual. 4.12.1. CGAL Editorial Board, 2018.

[27] K. J. Renze and J. H. Oliver. “Generalized Surface and Volume Decimation for Unstruc-
tured Tessellated Domains.” In: Proceedings of the IEEE Virtual Reality Annual Inter-
national Symposium (VR). 1996, pp. 111–121. isbn: 0818672951. doi: 10.1109/VRAIS.
1996.490518.

[28] F. Rudolf. “Symmetry- and Similarity-Aware Volumetric Meshing.” Doctoral Disserta-
tion. TU Wien, 2016.

[29] F. Rudolf, J. Weinbub, K. Rupp, and S. Selberherr. “The Meshing Framework ViennaMesh
for Finite Element Applications.” In: Journal of Computational and Applied Mathematics
270 (2014), pp. 166–177. doi: 10.1016/j.cam.2014.02.005.

89

http://dx.doi.org/10.1201/b16113
http://dx.doi.org/10.1016/S0097-8493(02)00121-8
http://dx.doi.org/10.1016/S0097-8493(02)00121-8
http://dx.doi.org/10.1109/VISUAL.1998.745314
http://dx.doi.org/10.1002/nme.1620210805
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.067
http://dx.doi.org/10.1007/978-3-662-05105-4_2
http://dx.doi.org/10.1090/S0025-5718-03-01485-6
http://dx.doi.org/10.1145/1185657.1185664
http://dx.doi.org/10.1109/VRAIS.1996.490518
http://dx.doi.org/10.1109/VRAIS.1996.490518
http://dx.doi.org/10.1016/j.cam.2014.02.005

[30] P. V. Satheesh. Unreal Engine 4 Game Development Essentials : Master the Basics of Un-
real Engine 4 to Build Stunning Video Games. Packt Publishing, 2016. isbn: 1784398454.

[31] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Univ. Press,
2007. isbn: 9780521645577.

[32] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cam-
bridge University Press, 1999. isbn: 9780521642040.

[33] J. R. Shewchuk. “What is a Good Linear Element? Interpolation, Conditioning, and Qual-
ity Measures.” In: Proceedings of the International Meshing Roundtable (IMR), pages
115-126, 2002. 2002.

[34] Z. Shi, K. Qian, K. Yu, and X. Luo. “A New Triangle Mesh Simplification Method with
Sharp Feature.” In: Proceedings of International Conference on Digital Home (ICDH).
2018, pp. 324–328. doi: 10.1109/ICDH.2018.00063.

[35] R. Straub. “Exact Computation of the Hausdorff Distance between Triangular Meshes.”
In: Proceedings Eurographics Short Papers. 2007. doi: 10.2312/egs.20071023.

[36] The CGAL Project. CGAL User and Reference Manual. 4.12.1. CGAL Editorial Board,
2018.

[37] ViennaMesh. 2016. url: http://viennamesh.sourceforge.net/.

[38] W. Schroeder. The Visualization Toolkit. 4th ed. Kitware, 2006. isbn: 9781930934191.

[39] K. Weiler. “Edge-Based Data Structures for Solid Modeling in Curved-Surface Envi-
ronments.” In: IEEE Computer Graphics and Applications 5.1 (1985), pp. 21–40. doi:
10.1109/mcg.1985.276271.

[40] Y. -C. Wu and Y. -R. Jhan. 3D TCAD Simulation for CMOS Nanoeletronic Devices.
Springer Singapore, 2018. isbn: 9811030669.

90

http://dx.doi.org/10.1109/ICDH.2018.00063
http://dx.doi.org/10.2312/egs.20071023
http://viennamesh.sourceforge.net/
http://dx.doi.org/10.1109/mcg.1985.276271

	Introduction
	Motivation and Objectives
	Research Goals
	Outline

	Meshes and Mesh Simplification
	Meshes
	Formal Definition
	Triangle Quality

	Surface Simplification
	Edge Collapse
	Lindstrom-Turk Simplification
	Distance Between Meshes

	Mathematical Foundations
	Differential Geometry
	Surfaces
	The Weingarten Map
	The Curvature of a Surface

	Curvatures of Discrete Surfaces
	Differential Quantities through Osculating Jets
	n-Jets and Jet-Fitting

	Discrete Differential-Geometry Operators
	Discrete Mean Curvature
	Discrete Gaussian Curvature
	Discrete Principal Curvatures

	Software Tools
	ViennaMesh
	The Computational Geometry Algorithms Library
	Half-Edge Data Structure

	Visualization Toolkit

	Simplification of Subdivided Surfaces
	Curvature Comparison
	Evaluation Setup
	Comparison of Curvature Calculation Methods
	Gaussian Curvature
	Mean Curvature

	Feature Detection
	Filling Inaccurate Surface Patches

	Curvature Regions of a Surface
	Simplification of Regions
	Transitions between Regions

	Results and Discussion
	Surface Mesh Simplification Comparison
	Square Bay Mesh
	Smooth Bay Mesh
	Results Without Transition Region
	Discussion

	Summary and Outlook

