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Abstract

Conceptual models of process-centric software can be task- or artefact-centric. These
approaches are mostly used in isolation and no formal connection exists. Tasks in (busi-
ness) processes may be executed by services and operate on business objects (artefacts).
In general, there is no formal definition of the actions a task performs and how this
has effects on business objects. In essence, there is no connection between a task, its
executing service(s) and business object(s). Moreover, business objects may not change
their status arbitrarily but only in a well-defined order according to their object life
cycle. Since there exists no defined connection between the models, they are often not
consistent with each other, e.g., a process may perform an action that does not fit the
object life cycle. Thus, formally verifying consistency of process models and object life
cycles is desirable.

This thesis presents an approach to formally connect tasks in process models and
object life cycles through semantic specifications. We declaratively specify the actions
that a task performs, via pre- and post-conditions, and relate them to attributes of object
life cycles, i.e., we ground them in the object life cycle. This establishes a well-defined
connection between the conceptual models of processes and business objects and enables
checking their consistency.

An additional complication is that in different contexts, defined by business rules, a
task may have different conditions that have to be fulfilled for its execution, i.e., tasks are
context-dependent. Thus, we propose semantically specified context-dependent conditions.
The semantic specifications of tasks in processes are enriched with context information
and their pre- and post-conditions are adapted accordingly. This allows checking the
consistency of process models against object life cycles in a specific context.

In order to guarantee that the same (software) services can be reused for implement-
ing tasks in different contexts, the specifications of the former must be in subtyping
relationships with the specifications of the latter. Even a recursive application of this
approach on different levels of abstractions is possible. On a higher abstraction level,
a composition of tasks may be viewed as a single step in the process as long as the
subtyping relationship is enforced.

In conclusion, the proposed approach enables to formally connect process models,
object life cycles and context-dependent conditions and to verify if they are procedurally
and logically consistent.
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CHAPTER 1
Introduction

Modern (business) software applications are commonly developed with conceptual models
as their foundation. Often the software relies on well-structured process specifications,
which define the order in which functions, or more generally speaking tasks, may be
executed. In the simplest case, tasks are only executed in the same sequential order
each time. For most applications this approach is not sufficient and a more flexible one
is desirable. This is especially true for business software applications in domains with
much variability. In this case, the software may execute tasks in different order each
time depending on some internal events. Such software applications should be flexible
enough to support this kind of behavior and also enable the possibility to easily adapt
the possible processes of tasks, i.e., they should utilize conceptual models of (business)
processes. This approach is called process-centric software development.

In addition, (business) software typically operates on domain entities, e.g., an invoice,
and, during execution, alter the states and values of these entities. In more general terms,
these entities are objects that a software manipulates. As one can possibly imagine, not
all manipulations are permitted at any given time. Typically, an object may only be
altered in a well-defined manner and often changes to their attributes or states are not
retractable, e.g., as soon as an invoice has been paid it cannot be “unpaid”, it can only
be refunded. The possible orders in which an object may be manipulated have to be
defined in a conceptual model as well, i.e., a formally specified object life cycle has to
exist.

For process-centric software and their business processes there exist two major
modeling paradigms: task-centric and artefact-centric. In a task-centric approach the
business process is comprised of tasks which perform actions. The actions of the tasks
drive the process and do not have to be related to an artefact of the domain, e.g., a typical
example could be a timer task. These tasks are often, but not exclusively, performed
by (software) services, e.g., Web services. A current industry standard for modeling
task-centric (business) proccesses is the Business Process Model Notation (BPMN). In
contrast, artefact-centric models regard objects as “first class citizens”, i.e., the data
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1. Introduction

objects drive the process. In this case, all actions are performed on objects and change
the state of one or more objects synchronously. Here the object life cycles are the main
models the software operates on.

Both modeling approaches have their advantages and their use cases, but typically
they are not used in combination.

1.1 Problem Statement
As mentioned above, two modeling approaches for (business) processes exist. Software
applications that combine both approaches could use the best of both worlds. However,
this not only raises questions on how to connect them, but also on how this connection
may be verified for consistency.

One problem is, that both models do not have to be created by the same stakeholder.
In general a process-designer is responsible for creating (business) process models, but
one designer might not be familiar with both modeling approaches. This means, that a
task-centric (business) process model might be created by a different person than the
artefact-centric object life cycle model. In addition, a software developer may implement
a service that executes a task in the (business) process and relies on elements of the
object, e.g., specifies the pre- and postconditions for the service to be executed. All
these involved stakeholders work with these models and thsu all these models have to be
consistent with each other. Figure 1.1 illustrates this problem.

Figure 1.1: Connectivity and Semantic Specification Issues between different Conceptual
Models
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Another issue that arises is, that implementations of services may be used in different
(business) processes. Even more so, the services may be employed in different contextual
situations and the executing tasks may have different pre- and postconditions. The reuse
of service implementations is crucial and should be facilitated. That is, each task should
have its own context-dependent semantic specification.

The main research questions that arise are:

1. How can task-centric and artefact-centric models be connected?

2. Are semantic service specifications sufficient for task-centric process models?

3. How can a software service be reused in a different context without changing its
implementation/specification?

4. Is it possible to decouple semantic specifications from process knowledge?

5. Is formal verification of process models against object life cycles possible?

1.2 Motivation

There exists a variety of publications in the process modeling domain, but only a fraction
considers both major modeling approaches. Often transferring a model from one paradigm
to the other is discussed, e.g., by Meyer and Weske [68], or their advantages are compared,
but combining them both is almost never addressed. This thesis tries to bridge the
gap between different conceptual models and provide the means to formally verify their
consistency. By utilizing semantic specifications we provide the means for a formal
specification of the tasks and their behavior in relation to objects in the domain. More
specifically, we use formal defined object life cycles to relate tasks of (business) processes
as well as their implementing services to artefacts.

Although task specifications using pre- and post-conditions are already well under-
stood, there is no indication for relating them specifically to formal models of object
life cycles. In addition, there is no indication that they can be useful for providing the
means to connect tasks to objects and verify their consistency. The same applies for
their implementing services. (Web) services can already be semantically specified, but
their relation to other conceptual models is rarely addressed. In particular their relation
to tasks of (business) processes is typically only considered as an implementation. The
implemented tasks are not seen as separate entities with their own formal specification,
apart from mappings of local process variables to parameters of the services, e.g., input
and output mapping in BPMN. Figure 1.2 illustrates this issue.

In this thesis, we address these issues and provide meaningful insight on how different
conceptual models may be connected and their consistency formally verified by semantic
specifications.
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1. Introduction

Figure 1.2: Lack of Semantic Specifications of Tasks in Process Models

1.3 Running Example

Throughout this thesis, we use a running example to illustrate problems with existing
approaches and our solutions to them. We decided to base our running example on an
existing reference process from the literature. The running example, shown in Figure 1.3,
is based on a simplified version of the “payment handling” process of [98, p. 108], which
we use here as a reference process.

This payment handling process involves two participants, the Delivery Company and
the Customer Company. Each participant has its own process that is executed in its own
content. The processes are synchronized at specific points illustrated by dotted lines.
Each process is started independently and only at the synchronization points information
is exchanged. One process may only continue if it receives the information necessary
to proceed from the other process. For illustration purposes we omit the data flow of
objects and messages from the figure.

The process of the delivering company starts with the creation of an Invoice. This
is symbolized by the “Create Invoice” step in the figure. Afterwards, the created
Invoice is passed to the “Transmit Invoice” step where a message containing the Invoice
is transmitted to the customer company. The delivering company process continues
immediately and proceeds to the “Receive Payment From Customer” step. There it
awaits the payment of the Invoice, i.e., the process does not continue until the payment
is received.

The process of the customer company starts and proceeds to the first step “Receive
Invoice”. This step blocks the process until an invoice is transmitted by the delivering
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Figure 1.3: Payment Handling Process, Including Authorization 5



1. Introduction

company, i.e., until it receives an invoice. As soon as the delivering company, via
“Transmit Invoice”, transmits a invoice, the customer company process continues. The
next step involves making a payment for the invoice. While the payment is unconditional
in the reference process of [98, p. 108], ours actually includes a conditional authorization
according to an informally given (business) rule. This rule is given in (Business) Rule 1.1
and states, that all invoices that have an amount greater than a threshold have to be
authorized before a payment can be made.

(Business) Rule 1.1. Authorization Required For Payment If Amount Greater Than
Threshold
“If the amount of an invoice is greater or equal than a threshold level, its payment has to
be authorized.”

This authorization replaces the simple payment step of the reference process with a
whole process part. Depending on the amount, the step “Authorize Invoice” is executed
or not. Subsequently the “Pay Invoice” step is reached and the payment of the invoice is
made. This payment is also sent to the delivering company. After making the payment
the customer company process finishes.

At this point the delivering company process receives the information of the payment
and continues. The final step performed is “Book Invoice” where the invoice is booked in
the accounting. Finally, the process of the delivering company finishes.

1.4 Structure of the Thesis
Following this introduction, Chapter 2 provides background information for the conceptual
approach presented in this thesis. The chapter is split into several sections on various
topics. It starts with an overview on (business) process models, including major modeling
paradigms, standardization approaches and implementing technologies, and their use
for software applications. We present Semantic Service Specifications briefly as (Web)
services are typically used to perform actions in (business) process models. In addition,
an introduction to (business) rules and business artefacts, including object life cycles, is
given. Lastly, we present the two approaches used for formal verification in this thesis,
Model Checking and Fluent Calculus. Alongside this background information, we provide
an overview on state-of-the-art approaches in this research topic.

Chapter 3 introduces semantic service specifications and shows how they are used
for service composition. It describes how service specifications are represented in the
Fluent Calculus and how its implementation in FLUX can be used for formal verification.
Finally, it shows a verification and validation mismatch when using semantic service
specifications for service composition in different business context [47].

In Chapter 4, a solution to the identified verification and validation mismatch is
proposed. We present semantic task specifications and show how they are utilized to
solve the problem of over-specifying services [46, 87]. In addition, we show how they
make services and their semantic specifications reusable. To this end, we use conditional
(business) rules to express context information, i.e., they represent context-dependent
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conditions. This enables us to reuse services and their specifications in different contexts.
Finally, we show how our approach can be applied recursively [50].

Chapter 5 describes the conceptual models of our object life cycles and their use for
formal verification [48]. We introduce the definition of semantic specifications without
knowledge of the process and how these specifications are logically grounded in formal
object life cycles and their attributes.

In Chapter 6 we combine all parts presented in the previous chapters (semantic
task specifications, object life cycles, context-dependent conditions) and show how they
can be used for formal verification. We illustrate how these models are transformed to
Finite State Machines (FSMs) and how a model checking tool can be used for consistency
checking. To this end we also present how (business) rules can be formalized for model
checking [90].

Chapter 7 shows the results of our approach and presents its evaluation. We show
how adaption of a (business) rule influences the verification of process models without
the need of adapting them or referenced parts.

In Chapter 8 we discuss limitations and assumptions we made. In addition, we present
ongoing as well as future research topics in this field and relate them to our approach.
We lay out a roadmap of our next steps and how our approach will evolve.

Finally, the thesis ends with Chapter 9, where a conclusion is given.
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CHAPTER 2
Background and Related Work

This chapter provides background information on all supporting concepts of our conceptual
verification approach presented in this thesis. We give an overview, including supporting
technologies, on these concepts and particular focus on their integration with our approach.
We also present state-of-the-art approaches and related work in the research field addressed
in this thesis.

We start with presenting conceptual (business) process models and their use for
process-centric software. The two major modeling paradigms are introduced and current
standardization approaches are discussed. In particular, we present BPMN, a modern
modeling notation for business processes, and how our running example can be expressed
with it.

Subsequently semantic service specifications are introduced, since (Web) services
are commonly used to implement actions in (business) process models. Their formal
specification is one pillar of our verification approach. We relate them to (business)
process models and present current specification approaches.

(Business) Rules and Business Artefacts are introduced next. We classify the (business)
rules used in this thesis and relate them to our verification approach. For business artefacts
we use conceptual models including object life cycles.

Finally, we present the two verification approaches used in this thesis. First, the
Fluent Calculus and its implementation FLUX is presented, where we give an overview
of their fundamentals. Secondly, we introduce model checking.

2.1 Using Process Models for Process-centric Software

Software, and especially business software, is often used to execute tasks (activities),
which create some sort of asset. Typically, these tasks are not executed in isolation, but
are rather processed together, where tasks can provide outputs, which are then used as
inputs for other tasks. The resulting composition of tasks creates a process that may be
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2. Background and Related Work

executed by software. However, this process is often only available hard-coded in the
source code of software. As the requirements for the software change and the software
evolves over time, also the source code has to be adapted [56]. Adapting the source code
for each new requirement is not only time consuming, but also increases maintenance
costs [15]. A flexible approach for executing processes of tasks without the need for
adapting the source code would help to support the software evolution and to reduce
costs [44, 89]. Hence, a separate specification of processes, that expresses the high-level
functionality a software performs, is desirable. Such process models define the flow in
which tasks are executed by the software.

A machine-processable specification of the process models is necessary to automatically
process and execute them. The processable models are loaded by a process-engine and
the embedded tasks are executed according to their specification. This leads to a process-
centric approach to software applications, where the process models are the driving force
of their execution. Figure 2.1 illustrates how a (simplified) process-centric approach can
be realized.

Figure 2.1: Simplified Process-centric Approach to Software

In a process-centric software, some tasks and their implementing services are invoked
and executed automatically by the process-engine. To accomplish this, there has to exist
a defined interface between the services and the engine. Services can be realized with
various technologies and, in essence, they are just software components that are invoked.
Recently, especially with the rise of microservice-based architectures [10, 99], Web Services
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have become the de facto standard for service implementations. Web Services are self-
contained, self-describing components that can be invoked and provide some sort of
functionality [39]. They provide a machine-processable interface description which enables
machine-to-machine interaction over a network. The interface exposes the functionality
of the service and can be consumed by others by sending messages [41]. There exist
various ways [85] to implement and expose Web Services, e.g., Representational State
Transfer (REST) [33] or Web Service Definition Language (WSDL) [24].

Software with an architectural design that heavily relies on (Web) services and is
distributed across a network, is commonly referred to as implementing Service Oriented
Architecture (SOA) [29]. SOA allows finding services through a discovery mechanism
and invoke them during runtime, thus making the software very flexible as services can
be exchanged with ease [120]. This approach is also commonly utilized in a microservice
architecture [116, 28] where the software consists of several services instead of a single
monolithic implementation. SOA facilitates reusing (Web) services.

However, there is still the problem in which order (Web) service are to be executed.
In general there are two options available to organize (Web) services: Choreography and
Orchestration [86]. In choreography, no central unit exists that would control and call all
(Web) services, but the (Web) services rather act autonomously and communicate with
each other via messages. This approach can also be combined with process models as
shown in [119]. Orchestration, in contrast, uses a central unit that controls the execution
of the (Web) services. This approach is closely related to process-centric software and
process models as the software controls the flow of (Web) services. Most process-centric
software applications work according to the orchestration paradigm.

So, combining process-centric software and their models with SOA and (Web) services,
addresses the problem of organizing flow of services [51, 102]. It is important to note
that SOA and process orchestration models are not equivalent, but rather use each
other to enable process-centric software with distributed services [9, 32]. SOA facilitates
reusing (Web) services in different processes, through a registry or a service repository,
and models of processes orchestrate the order in which (Web) services are executed.
Figure 2.2 schematically illustrates how process-centric software can be combined with
(Web) services.

2.1.1 Conceptual (Business) Process Models

Specified process models are the foundation of flexible process-centric software applications.
They specify the order in which tasks are executed and, by doing so drive the logic of a
process-centric application. Davenport [25] describes a process as follows:

“In definitional terms, a process is simply a structured, measured set of
activities designed to produce a specified output for a particular customer
or market. It implies a strong emphasis on how work is done within an
organization, in contrast to a product focus’s emphasis on what.”

11
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Figure 2.2: Combining Process-centric Software with (Web) Services

This also applies to so-called Business Process Models (BPMs). A BPM is a special
kind of process model that is used in business applications of an enterprise and typically
deals with creating or handling assets of the enterprise, i.e., it operates on Business
Artefacts.

Process models, however, not only specify the flow of tasks that are executed, but
also provide additional elements, which further define the process. Generally, process
models specify in which order, by whom and with what tasks are being executed. That
is, they provide the means to specify roles for operators as well as inputs and outputs
of tasks. The order of execution is not fixed and may vary depending on the concrete
enactment of the process. That is, a process model provides the means for conditional
branching and, in some cases, parallel execution of tasks. Hence, each enactment of a
process might take a different path to reach its end. In addition, process models typically
provide some sort of event specification. They are used to handle internal events, e.g., a
timer for errors, or to synchronize the process model with external models, e.g., waiting
for an incoming message. Often there are many more features supported [14, 42], but for
the sake of this thesis these features are sufficient.

Not all process models are constructed the same way and, depending on what they
focus on, they can be differentiated. There are two major paradigms to (business) process
modeling: Task-centric and Artefact-centric [68].

12
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A task-centric approach is what is commonly assumed when talking about process
models. Its emphasis is on connected tasks and what they are doing. For example, an
invoice might first be created, then a check on possible delivery options is performed
and finally it is sent to the customer. Figure 2.3 illustrates such a simplified task-centric
process model.

Figure 2.3: An example of a task-centric process model

As this process model illustrates, not all tasks are directly related to or advance the
invoice, e.g., “Check Delivery Options”. Moreover, the process only states in which order
tasks should be executed, but not what tasks could possibly be executed. For example, it
could be necessary to update the information on the invoice, which could be performed
at any point before sending it to the customer. However, since the process model does
not specify this option, it is also not available.

In contrast, an artefact-centric approach has its focal point on what can be done with
an artefact. A similar process as described above, could be modeled in a artefact-centric
approach as well. In this case, each action performed would be related to an artefact and
its execution would advance the artefact. Figure 2.4 shows a simplified artefact-centric
process model.

Figure 2.4: An example for an artefact-centric process model

As the figure points out, all possible options of subsequent tasks are available at all
times. The focal point is on what can be done with the artefact rather on what should
be done next [107]. In fact, such artefact-centric models are commonly used to express
life cycle of artefacts. Each connection of two states in such a life cycle is performed by
an action.

13



2. Background and Related Work

In essence, a task-centric approach focus on what should be done and when, and, in
contrast, an artefact-centric approach puts its focus on what action could be performed.
Which paradigm is a better fit depends on the specific use case and on the operational-
ization of the process model. There are approaches available that allow transforming a
process model of one paradigm to the other [68].

There exist various modeling notations and languages that enable the specification of
process models [70]. Ko et al. [55] did a survey on many of these languages.

2.1.2 BPMN

BPMN [81] is a standard that provides a graphical notation, based on flow-chart tech-
niques, for modeling processes. Early versions up to 1.2 only provided a graphical
representation of the process models but lacked the possibility to execute the models
by a process-engine. It utilized the XML Process Definition Language (XPDL) [113]
standard to provide an interchangeable format that could be translated to Business
Process Execution Language (BPEL) [79] [83]. BPEL is a standard execution language
for BPMs with Web Services as their actions that uses a block-structured approach for
its process models. This is in contrast to BPMN, which uses a directed-graph approach,
thus making the translation of BPMN models to BPEL nontrivial [84].

In 2011 version 2.0 of BPMN was introduced, which addressed many shortcomings
of earlier versions [23]. It introduced a meta-model, which provides a well-defined
specification of the standard, extended the graphical notation for BPMs and introduced
a machine-processable representation of the graphical presentation of BPMs based on
Extensible Markup Language (XML). This machine-processable representation can be
used by process-engines to execute BPMs alongside with their task implementations.
The implementation of tasks can be provided by, but is not limited to, Web services.
Figure 2.5 gives a schematic overview of how a BPMN 2.0 process execution engine
operates.

There are many tools available that support BPMN, but to be fully BPMN-compliant
four types of conformance (Process Modeling Conformance, Process Execution Confor-
mance, BPEL Process Execution Conformance, and Choreography Modeling Confor-
mance) have to be fulfilled. Most tools only support a subset of these and focus on Process
Modeling Conformance and Process Execution Conformance [38]. Unfortunately, there is
currently no reference implementation available, and models are often not interchangeable
between tools as they are vendor specific [37].

We decided to use BPMN 2.0 as the modeling notation for our BPMs as it is the
de facto standard for (business) process modeling that is supported by many vendors,
e.g., IBM or Bonitasoft. In addition, BPMN has a built-in extension mechanism through
which new elements can be introduced or standard elements can be extended. Further
details on BPMN can be found in [2] or the official standard [81].
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Figure 2.5: Schematic overview of a BPMN 2.0 process execution engine 15
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2.1.2.1 Elements of BPMN Models and their Graphical Notation

Most BPMN models consist of only a few basic elements. This is aligned with the intent
behind BPMN to keep the representation of the models simple and clear. Overall, BPMN
organizes elements in five categories with each category containing several groups of
elements. The following list contains a short description of each group in the categories
and also shows examples of their graphical representation on the right.

1. Flow Objects
are essentially the nodes, which are connected to each other in one way or another,
in a process model.
• Events
are something that occurs during execution of
a process and they influence the flow of BPMs.
Often they are triggered by external, collaborat-
ing entities or by internal triggers. They can
have different roles depending on the event type.
Typical elements are message receiving or error
catching events. They are also used to signal the
start or end of a process. Their representation is
a circle with an embedded symbol (depending on
the type of event).

• Activities
are elements that perform some sort of work in
a process. There are two distinct types of ac-
tivities: tasks and sub-processes. A task is a
basic or atomic activity, which is an activity that
cannot be further divided. There are several spe-
cific types of tasks with different functionality,
e.g., service-task, available. A sub-process is an
activity which is composed of several activities.
Activities are symbolized with rounded rectangles
and a symbol representing its type.

• Gateways
influence the sequence flow of nodes in a process.
Depending on the type of gateway the sequence
flow can branch, fork, merge or join. Gateways
can have multiple incoming (merge or join) or
multiple outgoing (branch, fork) sequence flows
and provide conditions on them. There is also a
gateway for parallel execution of several sequence
flows. Gateways are illustrated by a diamond
shape with an internal marker (depending on the
type of behavior control).
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2. Data
represent information about data that is used throughout the process.
• Data Objects

are elements used for storing information and can
be passed from node to node. Often they are used
to represent (business) artefacts that a process
operates on, but this is not essential. They are
symbolized by a sheet of paper.

• Data Inputs
are specific data objects that are used as inputs
for nodes. They are symbolized by a sheet of
paper with an incoming arrow.

• Data Outputs
are specific data objects that are used as outputs
of nodes. They are symbolized by a sheet of paper
with an outgoing arrow.
• Data Stores

are used as a storage for data objects. The graph-
ical notation is a database symbol.

3. Connecting Elements
are used to connect elements with each other.
• Sequence Flows
connect nodes with each other. They are the
typical flow elements of a BPM as they indicate
control flow from task to task. They can be
enriched with data objects as well. Graphically
they are represented by arrows.

• Message Flows
are used to model external relationships or com-
munication with other processes. In addition,
they provide the means for triggering events.
They are symbolized by broken lines.

• Associations
connect additional elements, such as data objects or
annotations, with other elements. They are repre-
sented by dotted lines.

4. Swimlanes
help to organize BPMs and allow splitting one model into more than one process
or participant.
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• Pools
typically represent single processes in the model.
They can be further divided by lanes to organize
a process with several participating roles. They
are represented by rectangles.

• Lanes
organize a process, or in general a pool, with
several participating roles. Each lane represents
one role.

5. Artifacts
provide additional information about the process.
• Group
A group is used to visually organize several ele-
ments in a single element. They are represented
by a rounded, dotted rectangle.

• Text Annotation
gives additional information about elements in
the BPM. Annotations are not processed by an
execution engine.

There are some intricacies about some of these elements, which are necessary for
understanding the remainder of this thesis. In particular, the activities need some more
explanation. We utilize send- and receive-tasks throughout this thesis as they enable
several processes to communicate with each other. A send-task sends asynchronously, i.e.,
it continues immediately, a message, via a message flow, to a collaborating process. The
counterpart is a receive-task, which waits for an incoming message and only continues
when it receives one. These tasks may also perform an additional action.

The flow of data objects can be visualized in BPMN models. However, this rather
clutters the graphical model and thus we omit them from our models. Another reason is,
that data objects are often only passed from one activity to another or transferred via a
message. If the data flow is not obvious, e.g., by the title of an activity, we mention it in
the corresponding description. Although there is no visual representation of the data
flow, there is still a specification of the data flow in the XML representation of the BPM.

2.1.2.2 Extending Elements and Using Custom Elements in BPMN

BPMN allows extending its specification with custom elements as well as extending
existing elements, since one specification for BPMs cannot possible satisfy all custom
requirements in every domain. Each domain or application may have its own custom
needs that a BPM has to fulfill and thus BPMN supports this in a controlled manner
through its Extension Mechanism.

The extension mechanism can be used to make custom elements, e.g., the definition of
a custom data type, available in the process model. If we consider our running example,
then we could provide a formal datatype specification of our Invoice artefact. Even more
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so, we could provide additional information about such an element, e.g., references to an
object life cycle. XML-based structures are preferred as they are easy to process and
integrate nicely with the, also XML-based, BPMN specification. However, all types with
a specification that the BPMN-engine understands, can be used. The same approach is
used to import interface descriptions of WSDL Web Service or other BPMN documents.

Listing 2.1 shows an example of importing a custom element. It imports a specification
of an Invoice, given as an XML-based data structure, into the BPM.

Listing 2.1: Import statement for custom elements in BPMN
<import importType="http://www.w3.org/2001/XMLSchema"

location="InvoiceDefinition.xsd"
namespace="http://ict.tuwien.ac.at/InvoiceData"/>

BPMN allows extending existing elements as well. In this case, the existing elements
are not replaced, but only extended by custom properties or attributes. That is, both
the elements without extension and the elements with extension can be used in the same
BPM. This is accomplished by an ExtensionDefinitions tag, which is available on all
elements. The definition of the extension has to be imported first and then may be
used as needed. We utilize this extension definition, for example, to provide additional
information for tasks on their prerequisites.

Listing 2.2 shows a custom extension for service-tasks, which establishes a link to an
external resource with additional information, e.g., a taxonomy.

Listing 2.2: Select Vacation User Task in running example
<serviceTask id="transmitInvoice" name="Transmit Invoice">

<extensionElements>
<ict:taskInformation
id="transmitInoiceInformation"
name="Additional Information for the Transmit Invoice Task">

http://ict.tuwien.ac.at/taxonomy#TransmitInvoice"
</ict:taskInformation>

</extensionElements>
</userTask>

In this listing a new element ict:taskInformation is used to provide additional infor-
mation. The definition of this element is actually not given in this listing, but is rather
imported as shown in Listing 2.1. Elements may have several attributes, e.g. a name,
and a content. We use the content for providing a link to an external resource.

2.1.2.3 Running Example in BPMN

Throughout this thesis we use BPMN to illustrate BPMs. Hence, we also have to provide
a BPMN representation of our running example of Section 1.3. Overall, the processes
shown in Figure 1.3 remain the same in BPMN as Figure 2.6 shows.
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Figure 2.6: Payment Handling Process in BPMN, Including Authorization
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Each participant of the running example is implemented by a single process (delivering
company process and customer payment process) represented by a pool in BPMN and
each pool has exactly one start and end event. All steps in the processes are represented
by activities, more precisely tasks. We use service-tasks, implemented by Web services,
for tasks that perform some form of action.

As mentioned before, the two participating process are operating synchronized and
all synchronization operations are expressed via send- and receive-tasks. For example, the
“Transmit Invoice” task is a send-task that sends a message from the delivering company
process to the customer payment process. Since these tasks operate asynchronously
the delivering company process continues immediately. However, the customer payment
process is blocked in the “Receive Invoice” task until a message is received.

The conditional execution of the authorization step is accomplished by using an
exclusive-gateway. Exclusive-gateways ensure that only one of its outgoing paths is
executed at a time. The conditions for choosing the “right” path is expressed by the
guard-conditions on the outgoing sequence flow of the gateway, e.g., amount < threshold.
The “Authorize Payment of Invoice” is only executed if the amount of the invoice is
greater or equal than the threshold.

The “Pay Invoice” and “Receive Paid Invoice” tasks are used to synchronize the two
processes. Both processes end when they reach their one end event.

2.2 Object Life Cycles of Business Artefacts

Giving a clear definition of what a Business Artefact is, may differ depending on the
environment. In Business Processes (BPs), businss artefacts are often considered to be
the objects that are used within a specific domain and provide some sort of information.
Nigam and Caswell [75] define business artefacts as:

“Any business, no matter what physical goods or services it produces,
relies on business records. It needs to record details of what it produces in
terms of concrete information. Business artifacts are a mechanism to record
this information in units that are concrete, identifiable, self-describing, and
indivisible. We developed the concept of artifacts, or semantic objects, in
the context of a technique for constructing formal yet intuitive operational
descriptions of a business.”

Generally speaking, business artefacts are the objects that are used in the business
domain. Considering BPM, the data objects involved are the representation of business
artefacts in the process specification. They typically reference a structure, for example
a class or a schema definition, and should be automatically processable. During pro-
cess execution these references are resolved and the actual data is gathered from the
corresponding storage facility where the business artefacts are managed.

It is important to note that we postulate here the closed world assumption, i.e., that
all the relevant knowledge indeed can be represented. While this certainly would not
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be justified, e.g., for robotics in real-world environments, Enterprise Resource Planning
(ERP) systems actually define in their databases what is officially relevant for (real-world)
businesses using them. What is not represented there can neither be officially booked
nor handled.

We also employ models of object life cycles (as sometimes used for business process
modeling). Their states typically correspond to achievements with regard to these objects
in the course of the overall (business) process. A data object is characterized by its states
and state transitions represented as an object life cycle, where each one describes the
allowed behavior of a distinct class of data objects [68].

For formal verification making use of object life cycles, it is necessary to have a formal
specification of these object life cycles. The concept of an object life cycle is independent
of the domain that it is used in, and the concepts from the domain need to provide
their own instantiation of an object life cycle. That is, each domain object has its own
definition of its life cycle. We use ontologies written in Web Ontology Language (OWL)
to specify object life cycles of business artefacts in our (business) domain declaratively.
Figure 2.7 shows an object life cycle for an Invoice of the customer payment process of
our running example as an FSM.

Figure 2.7: Invoice Object Life Cycle FSM

This FSM does not contain any signals among states yet. In our approach, such an
object does not change its states by itself, but the transitions are triggered from the BPM
using an action making changes to the object. In essence, the object life cycle specifies
how a business artefact may evolve over time.

Ryndina et al. [94] present an approach to check the consistency of BPMs and object
life cycles of artefacts. Each artefact that a BPM operates on is represented by a
corresponding object life cycle, both a given one and another one automatically generated
from the BPM. Consistency between the BPM and the given object life cycle is checked
indirectly by formally comparing the latter with the automatically generated object life
cycle. In contrast to our approach, Ryndina et al. do not consider specific contexts in
which a process is enacted. In particular, they do not connect a given process model
with a given object life cycle using semantic task specification as we do.
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2.3 Semantic Service Specification

Semantic service specification has been based upon the OWL [66], which is a knowledge
representation language used to build and administer ontologies or a specific knowledge
base.1 Semantic Markup for Web Services (OWL-S) [40] is an ontology built upon OWL
for semantic descriptions of Web services. OWL-S consists of three parts: Service Profile,
Process Model, and Service Grounding. The latter provides the means for interoperability
with a Web Service Description (given in WSDL) and relates the semantic specification
of a Web service with its WSDL file. This involves the definition of the input and output
parameters including their types. In addition, OWL-S provides pre-defined predicates for
defining preconditions, result values and effects. Services can be modeled either as atomic
or as more complex composite services, where the latter consist of several (orchestrated)
atomic services.

To illustrate how semantic specification works, let us consider the task “Pay Invoice”
of our running example. Within this task, an Invoice is to be paid, and after that passed
along according to the control flow in the BPMN model. The task itself is specified
through its input and output, but it lacks a semantic specification that describes what
the task accomplishes. The output alone is insufficient, as it only specifies the result
of the task in the form of a type (in this case, an Invoice). However, it is not specified
what kind of changes occur during task execution and how the domain in which the BP
is enacted, is affected. This additional specification can be provided using the OWL-S
formalism.

The hasResult predicate of OWL-S specifies the result of a service, where it couples
both outputs and effects. Outputs are passed along from the service and correspond to
an output variable from, for example, a WSDL file specifying a Web service. In addition,
effects specify how the domain changes. To be more precise, they specify the changes that
are caused by the service execution. Effects are specified with the hasEffect predicate. A
semi-formal specification for the “Pay Invoice” Task (as inspired by [47]) is presented in
Listing 2.3.

Listing 2.3: Semi-formal Pay Invoice Specification
Pay Invoice:

Input: Invoice
Output: Invoice
Precondition: --
Effect: paid(Invoice)

This task operates on an Invoice, which is passed to it as an input. It produces an
output, again an Invoice, and also the changes in the domain are modeled as effects and
specified using the hasEffect predicate.

Most times we also need formal condition specifying if a service can be executed.
Listing 2.4 shows this additional precondition in bold face.

1Web Ontology Language: http://www.w3.org/TR/owl2-overview/
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Listing 2.4: Semi-formal Pay Invoice Specification with Precondition
Pay Invoice:
Input: Invoice
Output: Invoice
Precondition: authorized(Invoice)
Effect: paid(Invoice)

Here, there is a formal condition (precondition) is specified on the input, which has to
be fulfilled before the service can be executed. The precondition states, that the Invoice
has to be authorized before a payment.

Semi-formally, a simple example of the task “Create Invoice”, where no precondition
and no input is needed, is shown in Listing 2.5.

Listing 2.5: CreateInvoice Task
CreateInvoice:

Input: --
Output: Invoice
Precondition: --
Effect: created(Invoice)

In our approach, semantic service specification plays a major role, since it provides a
declarative representation of each service. It is the basis for semantic task specification,
also partly inspired by the annotations of BPMs by Weber et al. [111]. They addressed the
problem that control flow does not capture what the process activities actually do when
they are executed. So, they annotated individual activities with logical preconditions and
effects, specified relative to an ontology with axioms of the underlying business domain.
This allowed them to verify the overall process behavior, but they did not utilize semantic
task specification in the context of model checking as our approach does.

In this thesis, we formalize such a specification in two ways, using the Fluent Calculus,
and predicates grounded in an object life cycle, respectively.

2.4 Business Rules
The concept of conditional (business) rules is extensive and to provide a clear, definitive
definition proves to be difficult. According to Huang [49], business rules can be seen as
operational rules that describe how an organization performs miscellaneous tasks. A
similar specification has been given by Ross [93], where business rules are defined as
the basic knowledge of a business including terms, facts and rules. The Business Rule
Group defines business rules in the report [104] “Defining Business Rules – What Are
They Really?” as statements that define or constrain the business of an organization and
classify them into four categories. Their purpose is to influence the business process in a
certain way.
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Essentially (business) rule state that certain conditions yield a specific consequence.
Such rules can be expressed in a variety of notations, e.g., Semantics of Business Vocabu-
lary and Business Rules (SBVR) [80]. We chose Semantic Web Rule Language (SWRL)
as a representation language for our rules, since it is also compatible with specifications
of objects in our domain ontology given in OWL.

Each SWRL-Rule consists of a head and a body. The head is deduced if the conditions
in the body evaluate to true. So, SWRL-Rules provide the means to deduce knowledge
from existing facts. A typical example of an SWRL-Rule is the following relationship in
families: if a parent of a child has a brother, than it can be deduced that this child has
an uncle. Listing 2.6 shows how such a rule can be defined.

Listing 2.6: Example of an SWRL-Rule
hasParent(?child, ?parent) && hasBrother(?parent, ?brother) => hasUncle(?

child, ?brother)

This notation is used since all the basic knowledge in OWL is specified in the form of
triples. They consist of a Subject, a Predicate and an Object, where a predicate relates a
subject to an object. The notation hasParent(?child, ?parent) states that the ?child is
in a relationship with a ?parent through the predicate hasParent. In this example, the
hasParent predicate is used to check if two individuals ?child and ?parent are related.
They are only related if a triple of the form ?child :hasParent ?parent exists in the
knowledge base. The rule is checked for all available individuals.

There are several possibilities available to specify such SWRL-Rules. For example, they
can operate on classes or on individuals (instances). One possible OWL representation
of the rule above is shown in Listing 2.7. In this case, the rule operates on concrete
individuals. These are identified via the child and parent variables, and all available
instances in the domain are used.

Listing 2.7: Excerpt from SWRL-Rule Example
<swrlx:individualPropertyAtom swrlx:property="hasParent">

<ruleml:var>child</ruleml:var>
<ruleml:var>parent</ruleml:var>

</swrlx:individualPropertyAtom>

Such rules are often used to describe effects in OWL-S, as they show how the state
of the domain changes. More precisely, the effects specify how the previous state of the
domain is transferred to the new state after task execution. In essence, they allow the
deduction of new knowledge based on the task execution.
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2.5 Fluent Calculus
The original idea was introduced by McCarthy and Hayes [65] long time ago. Their
Situation Calculus consists of three elements:

1. Situations
represent the evolving states of the domain, where certain conditions hold in each
state.

2. Actions
represent the changes between situations. A special predicate poss determines
whether a specific action can be performed or not.

3. Fluents
represent the elements of the domain that can change over time. Typically, predi-
cates are used for this representation, which take a situation as an argument. An
example is the fluent carrying(o,s), which states if an object o is carried, e.g., by a
robot, in situation s.

Based on previous work on the Situation Calculus such as [91], Thielscher [105]
developed the Fluent Calculus. It differs from the Situation Calculus in how situations
are treated and how fluents are used. The Fluent Calculus defines that a new state after
the execution of an action is equal to the previous state with exceptions to the effects
of the action. In addition, fluents are treated as functional terms. The fluents from the
Situation Calculus are stripped off the situation parameter, and special predicates, e.g.,
holds, are introduced. These special predicates take a functional term and a state as an
argument. They are used to check whether specific conditions hold in a specific state or
not. For example, the fluent carrying(o,s) from the Situation Calculus translates to a
functional term carrying(o) in the Fluent Calculus. Hence, this term is not depended on
the current state anymore. To check whether this term holds in a specific state s, the
holds predicate is used, e.g., holds(carrying(o), s).

Hence, the Fluent Calculus provides a formalism to model specific actions that
lead from one situation to another. This is specified using the poss and state_update
predicates. These predefined predicates model the preconditions (poss statement) and
effects (state_update) of an action. Together, they provide a formal specification of an
action.

To illustrate how such an action in Fluent Calculus is applied in FLUX [106], we use
a simple example. Let us use our semi-formally given semantic specification in Listing 2.5
for illustration and explain its formalization in the Fluent Calculus in Listing 2.8, more
precisely formulated in the language of the tool FLUX. In the Fluent Calculus each
Action is specified via an poss and state_update predicate. The poss predicate checks
if a specific action can be executed, i.e. that its preconditions are fulfilled. Since the
“CreateInvoice” Action of Listing 2.5 does not have any preconditions, the body of the
corresponding poss predicate in Fluent Calculus is also empty.
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Listing 2.8: Semantic Specification of CreateInvoice Action in FLUX
poss(createInvoiceAction, Z). % Precondition %

state_update(Z1, createInvoiceAction, Z2,[]) :-
update(Z1, [invoice(invoice), attributeSet(invoice, created)], [], Z2).

% Postcondition %

The postcondition of the action is that the invoice has been created. Thus, the
state_update predicate inserts these facts via the invoice(invoice) and attributeSet(invoice,
created) predicates into the knowledge base. The first part is the head of the predicate
state_update predicate. This head is separated from the body through the :– delimiter.
The signature createInvoiceAction is used to identify the action and link it to the
corresponding poss statement.

An update statement models state transfer and, in general, takes several arguments,
where the second argument specifies the statements to be added to the new state and
the third argument the statements to be removed from the previous state. These two
arguments specify the add and delete list of predicates that are applied to the current
state Z1 and form the new state Z2. This mechanism allows new predicates to be
introduced as well as existing predicates to be removed from a state, in contrast to, e.g.,
predicate calculus. In effect, predicates or facts can change over time or more precisely
after invocation of an action. Furthermore, this enables the calculus to negate existing
facts or set negated facts to true. In this example, the second argument specifies that
attributeSet(invoice, created) is to be added to the new state Z2, while the third argument
is empty since nothing is to be removed.

As another more complex example, Listing 2.9 shows the action “TransmitInvoice”
semi-formally.

Listing 2.9: TransmitInvoice Action
TransmitInvoice:

Pre: created(Invoice)
Eff: transmitted(Invoice)

Its formalization is analogous, but we show it in Listing 2.10, since TransmitInvoice
has a non-empty precondition. This non-empty precondition is illustrated by the non-
empty body of the poss predicate. The statement holds(attributeSet(invoice,created), Z)
checks if, in the current state of the knowledge base, the fact attributeSet(invoice,created)
holds.
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Listing 2.10: Semantic Specification of TransmitInvoice Action in FLUX
poss(transmitInvoiceAction(Invoice), Z) :-
holds(attributeSet(Invoice, created), Z), % Precondition %
knows_val([Invoice], invoice(Invoice), Z). % Input %

state_update(Z1, transmitInvoiceAction(Invoice), Z2, []) :-
update(Z1, [attributeSet(Invoice, transmitted)], [], Z2). % Postcondition %

The body of the poss statement consists of two constraints modeling input and
precondition, which are logically connected with and each. Checking input is specified
with the predicate knows_val and checking preconditions with the predicate holds.
knows_val specifies a check whether for a given variable a value can be found in the
current state. The predicate holds is for specifying whether a given predicate or literate
holds, i.e., is known to be true, in the current state Z.

One additional predicate of the Fluent Calculus is knows_not. It specifies a check
whether a given value is not known in the current state.

Such Fluent Calculus formulations provide the basis for formal verification of the
semantic specification of a composed action against the semantic specifications of the
single actions involved. For example, in a very simple action composition, first an invoice
is created and then transmitted:

< CreateInvoice, T ransmitInvoice >

The semantic action specification of this simple composed action is given semi-formally
in Listing 2.11.

Listing 2.11: Composed Action
Sequence CreateInvoice, TransmitInvoice:

Pre: --
Eff: Invoice(transmitted)

The simple formulization in FLUX is shown in Listing 2.12. All steps are executed
sequential and are and-connected. This means, that the result will only be available in
state Z3 if all statements can be executed.

Listing 2.12: Composed Action in FLUX
poss(createInvoiceAction, Z1),
state_update(Z1, createInvoiceAction, Z2, []),
poss(transmitInvoiceAction(Invoice), Z3),
state_update(Z3, transmitInvoiceAction(Invoice), Z3, []).

In fact, we previously proposed a verification approach based on the Fluent Calculus
already in [45], where all possible sequences of actions are exhaustively tried out by a
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planner and checked against a goal condition that is actually to be avoided. In this thesis,
however, we use Fluent Calculus in combination with semantic action specifications for
formal verification.

The FLUX implementation of the Fluent Calculus is available for the constraint logic
programming system ECLiPSe.2

2.6 Model Checking

Model checking (or property checking) is a formal verification technique based on models
of system behavior and properties, specified unambiguously in formal languages (see, e.g.,
[8]). The behavioral model of the system under verification is often specified using a FSM,
in our case using synchronized FSMs. The properties to be checked on the behavioral
model are formulated in a specific property specification language. Several tools (such as
SPIN [100] or NuSMV [77]) exist for performing these checks by systematically exploring
the state-space of the system. When such a tool finds a property violation, it reports it
in the form of a counterexample.

In this work, we make also use of the branching-time logic Computation Tree Logic
(CTL) for property specification [62].

Since a rough understanding of some of the CTL operators is needed for understanding
our formalization approach, let us briefly sketch these here. CTL provides expressions
of relations between states (path formulas) using operators referring to behavior over
time. It allows modeling properties on the computation tree of a FSM. In CTL the set of
traditional propositional logic operators is extended by operators such as:

• AG (Always Globally): an expression p is true in state s0 if p is true in all states
for all possible state transitions s0 ≥ s1, s1 ≥ s2, . . . . [78, p.37]

• EF (Eventually Future): an expression p is true in state s0 if there exists a series
of transitions s0 ≥ s1, s1 ≥ s2, . . . , sn−1 ≥ sn such that p is true in sn. [78, p.37]

• AF (Always Future): an expression p is true in state s0 if for all series of transitions
s0 ≥ s1, s1 ≥ s2, . . . , sn−1 ≥ sn p is true in sn. [78, p.37]

2.7 Related Work

Salomie et al. [95] studied Web service composition using the Fluent Calculus, viewing
automatically composing Services as an Artificial Intelligence planning problem. This
service composition technique has been further discussed by Bhuvaneswari et al. [16].
While the techniques for automatically composing services and for verifying a given
composition are closely related and both supported by FLUX, none of this previous work
addresses our main topic — V&V of service composition and (business) processes.

2ECLiPSe Constraint Programming System:
http://www.eclipseclp.org
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Another approach for semantic specification of services has been developed by Baryan-
nis et al. [12], where an intermediate language (WSSL) is formulated. WSSL enriches the
basic and standard service specification in WSDL with pre- and postconditions. These are
actually based on the Fluent Calculus and could, in principle, be used for our verification
purposes to V&V as well. In fact, our formulations of pre- and postconditions in FLUX
as given above were informed by WSSL.

There have already been approaches for automatic planning algorithms based upon the
OWL-S specification of services which try to automatically generate composite services
out of atomic services, e.g., Klusch et al. [54, 53] and Ziaka et al. [118]. However, the
approach based on the Fluent Calculus and FLUX seems to be preferable because of its
well-defined semantics.

With respect to the real ends of our own approach built on FLUX, none of these
approaches deals with additional knowledge required for the service composition that
should not be embedded into the service specification itself.

Related research on implicit business knowledge (tacit knowledge) is still in its infancy.
Chesbrough and Spohrer [22] emphasized in their research manifesto for services science
that the nature of tacit knowledge complicates the services exchange — and service
exchange is a corner stone for service composition. More precisely, tacit knowledge
limits the ability of each service-party to fully comprehend the needs and abilities of
each other. The authors point out that a multidisciplinary perspective toward services
becomes increasingly important to gradually codify tacit knowledge. We actually found
very simple cases where tacit knowledge needs to be made explicit for V&V of service
composition and business processes, and we show that this is business knowledge that
should not be encoded in the service specifications.

Montali et al. [71] introduced an alternative way of specifying service choreographies
by directly defining them through a set of policies referred to as constraints. These are
embedded in their flow language, explicitly connecting services, e.g., with their time
flow. Their approach uses Linear Temporal Logic (LTL) to verify conformance checking,
conflicts and dead activities, interoperability between global and local models, etc. In
contrast, we focus less on the choreography aspect but explicitly represent (business)
rules declaratively and use the Fluent Calculus and Model Checking for verification of
composed services against the specifications of the single services including (business)
rules.

Feng and Kirchberg [31] proposed an approach for verifying properties of the process
model of an OWL-S service. Via mapping rules, this approach translates the process
model into a process algebra model and uses a model checker to verify the properties
of such a translated model. It handles the control flow as well as the binding-based
data flow of the process model. In contrast to our approach, implicit knowledge is not
separated from the service specification. Our work makes the (business) rules explicit
that actually glue services together semantically in a BPM.

Li et al. [117] used Propositional Logic for requirements verification of service workflow,
where requirements include business rules. Their work is capable of checking compliance
and also of detecting conflicts of imposed requirements. However, its focus is mainly
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on compliance checking between a Service Workflow Net (SWN) and SWSpec formulas.
This is different from our research on whether semantic service specification is sufficient
for V&V of service composition and BPMs.

Ni and Fan [74] transformed models and formally verified semantic Web services
composition. More precisely, their approach verifies the correctness of semantic Web
services composition based on models of Colored Petri Nets that are transformed from
OWL-S models. It is sound to use such Petri Nets in order to verify reachability and
soundness of composed services (among others). This approach differs from ours as it
does not address our main topic — V&V of service composition and BPMs.

In the dynamic field of late binding and runtime verification of business processes,
Angelis et al. [4] introduced automatic test-case generation aiming at checks of the
behavior of services participating in a given orchestration. Assuming that the business
process is available as a runnable model, their approach applies model-checking techniques
to derive test cases suitable to detect possible integration problems. Our work does not
rely on tests at runtime to find flaws, but uses formal logic at design-time for automated
verification.

In the context of verification of BPMs, Weber et al. [111] addressed the problem
that control flow does not capture what the process activities actually do when they are
executed. So, they annotated individual activities with logical preconditions and effects,
specified relative to an ontology with axioms of the underlying business domain. This
allowed them to verify the overall process behavior, but without making business rules
explicit as such and dealing with them separately from the activities. In contrast, Deutsch
et al. [26] studied automatic verification of data-centric business process specifications.
Their results suggest that significant classes of data-centric business process specifications
may be amenable to automatic verification.

Business rules do not necessarily need to specify how an organization performs tasks
but can also describe technical aspects. Orriens et al. [82] describe in their approach
how business rules can be categorized and how such rules can be used for Web Service
orchestration. They show that it is not sufficient to embed business knowledge in an
orchestration language (like BPEL) directly, but that business rules need to be specified
explicitly. This issue has also been discussed by Rosenberg and Dustdar [92], who show
the need for integrating business rules into BPEL, since they are often changed and thus
a rule-based system should be used. Eijndhoven et al. [108] provide a similar motivation
with the focus of business rules on action rules. Wu et al. [114] propose a rule-based
scheduling engine that can be embedded into frameworks. The idea is to use rules as
role-assignments, which are used to influence process execution, message exchange, and
flow constraints. None of these approaches deals with formal verification based on logic,
however, like our work.

Lovrencic et al. [61] describe business rules as essential parts in today’s business
system model and the need for their formalization. Two approaches based on UML and
ontology-based modeling are discussed in this work.

Earlier work on the interplay of business process models, service/task ontologies, and
domain ontologies was carried out in the project SUPER (Semantics Utilised for Process
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Management within and between Enterprises) [101], where a tool named “Maestro for
BPMN” was developed. Born et al. [17] describe how user-friendly semantic annotation
of process artifacts with tags/markups can be achieved in BPMs via Maestro. These
annotations refer to semantics in domain ontologies, and based on them, this tool allows
one to automatically compose activities within business processes [19]. Maestro also
supports certain consistency checks of the control flow against semantic annotations of
such annotated processes [19]. Born et al. [18] describe how “adequate” services can be
identified for specific tasks through match-making by use of the semantic annotations.

Burkhart et al. [20] define in more recent work a structural description of business
models. Their synthesis of eight existing ontologies and extend this knowledge with
state-of-the-art research progress on business models. This work proposes transformation
of such structural descriptions to business process models, which is a different but possibly
complementary approach to ours.

Marzullo et al. [64] proposed another integration effort, with the purpose of supporting
domain-driven software development. So, it centers around a shared domain specification
to be used as a reference point for software applications. The central domain repository
allows exchanging information in a standardized way between different projects or
companies. So, the focus is clearly on efficient software development, even though
Marzullo et al. [63] describe possibilities to include business process modeling as well. In
contrast to our approach, the domain specification is not based on a formal specification
language or ontology. Saiyd et al. [1] describe a similar approach to Marzullo et al., but
propose an ontological foundation for domain-driven design. However, their work is more
focused on the specification of the ontological concepts than their actual use. So, neither
of these approaches has such a comprehensive integration and the scenarios of its use in
mind that we propose in our work.

While BPMN 2.0 has, in contrast to the previous version BPMN 1.0, a defined
meta-model, it is not based on a logic foundation. Therefore, Natschlaeger et al. [73]
propose an OWL-based upper ontology for BPMN 2.0 to allow a formalized specification
of BPMN 2.0 processes. Using it in our integration approach would certainly be possible
and interesting, since it would make it completely based on ontologies. As it stands,
however, our early feasibility prototypes indicate that using the meta-model of BPMN
2.0 should be sufficient for our currently envisaged scenarios of use.

Cabral et al. [21] show in their work how business process modeling can benefit from
semantic information. They describe the ontology BPMO (Business Process Modeling
Ontology), which includes semantic knowledge about organizational context, workflow
activities and other business process parts. Using this ontology, it is possible to refer to
semantically annotated data and services for working in a coherent way. In contrast, our
approach uses BPMN 2.0 as modeling and orchestration language. In addition, we focus
on combining BPMN with OWL semantics rather than representing business processes
in an ontology.

Semantic Business Process Management (SBPM) helps handling the life cycle of
business process management through ontologies and Web services, as proposed by
Filipowska et al. [36]. They illustrate with various scenarios how SBPM can be used
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in the business process management area. They describe a set of ontologies for SBPM,
which target the spheres of enterprise structures and operations. This work is based
on Web Service Modeling Ontology (WSMO) [110] and its closely related representation
language Web Service Modeling Language (WSML) [109] for combining semantic Web
services with business process management [43]. In contrast, we use OWL-S for semantic
specification of services, and BPMN 2.0 for BPMs, but we do not strive for representing
(business) processes in an ontology.

Previous related work made it absolutely clear that some representation with defined
semantics is a prerequisite for formal verification, also of (business) processes. Given such
a representation, checking correctness properties inherent in the (business) process itself
is possible. Wynn et al. [115] verify business processes against four defined properties
(soundness, weak soundness, irreducible cancellation regions and immutable OR-joins).
Sbai et al. [97] show how a model checker can be used to identify problems with a
specification of a business process to be automated as a workflow, and how a verification
of certain correctness properties can be accomplished. Kherbouche et al. [52] propose an
approach for using model checking as a mechanism to detect errors such as deadlocks or
lifelocks.

Some previous work addressed the question of what to verify a BPM against, to
determine possible violations of certain properties given in addition to the process model
itself. Fisteus et al. [5] propose a framework for integrating BPEL4WS and the SPIN
and SMV verification tools. This framework can verify a process specification against
properties such as invariants and goals through model checking. Armando and Ponta [6]
show how model checking can be used for automatic analysis of security-sensitive business
processes. They propose a system that allows the separate specification of the business
process workflow and of corresponding security requirements. In more recent work [7],
they show how model checking can be specifically used to check authorization requirements
that are implemented in parts of business processes. Barros and Song [11] propose to
check business processes against execution rules incorporated in workflows with model
checking techniques.

Mrasek et al. [72] point out that formalizing properties in CTL is a difficult task
and strive for making it easier through so-called patterns based on textual fragments in
natural language. This approach can work in a given context for entering properties,
and it helped in a case study. In general, however, the interpretation of these textual
patterns is subtle and error-prone. So, they have to be prepared specifically for a given
problem by CTL specialists, anyway. In particular, for our case study in [90] with given
legal text, such an approach would most likely require a variety of different patterns and
still be hard to validate.

Still, no previous work in the context of model checking of BPMs addressed system-
atically formalizing business rules and enriching tasks to our best knowledge, including
model-based business process compliance-checking approaches [13]. Apart from [72],
which addresses formalizing properties (but not formalizing the process), all the publica-
tions on model checking of (business) processes already assume the availability of formal
representations.
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Ligeza et al. [57, 58] consider a specification of business processes and business
rules to a certain degree complementary. They tried to reconstruct BPMN in the logic
programming language PROLOG to provide formal requirements on model correctness.

Lohmann [59, 60] presents an approach based on compliance rules, which are used
to automatically create artefact-centric business processes that are compliant by design.
The building blocks are life cycles of the involved artefacts.

Meyer et al. [68] define a “weak conformance” between process models and synchro-
nized object life cycles. Their algorithm for soundness checking verifies whether each
time an activity needs to access a data object in a particular state, it is guaranteed that
the data object is in or can reach the expected state. They show that it is possible to
transform process-centric BPMs into artefact-centric BPMs. They present algorithms on
how this can be accomplished with synchronized object life-cycles. In contrast to our
approach, they do not verify against additionally specified (business) rules.

Estãnol et al. [30] propose a verification approach based on artefact life cycles
modeled in Unified Modeling Language (UML). It checks certain intrinsic properties such
as liveliness of a class or an association.

In summary, we are not aware of any previous work that studied semantic service
specification for V&V of service composition and (business) processes as we present it in
this thesis, especially not by including (business) rules with semantic specifications into
formal verification.
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CHAPTER 3
Semantic Service Specification for

V&V of Service Composition

Service composition is the process of creating a more complex (Web) service from other
(Web) services. If such a service does not rely on any other services for its functionality,
it is considered a simple or atomic service. Otherwise, we refer to it as a composite
service [3, 67]. Examples could be services for receiving, authorizing and paying invoices,
which are standalone/atomic. They form the new composite service “Processing Invoice”
through service composition.

Much as any software, composite services and (business) software composed from
services needs to be tested. This can (hopefully) find bugs and design problems but
not provide any real guarantees. In contrast, semantic service specification based on
formal logic allows for formal verification of composed services against the specifications
of the single services. More precisely, our verification approach checks whether a defined
sequence of service invocations is consistent with the semantic specifications of the
services involved. In this sense, our verification means to formally and automatically
check whether the composition is built right based on the single services.

In this context, we pose the question whether semantic service specification is suffi-
cient for such a verification of composed services for implementing business processes.
Verification based on logic (involving formally specified pre- and postconditions) may
reveal loop-holes in the knowledge represented in the specification of a composed service
with regard to the business process. Even though the verification of a composed service
may be successful, its validation as a (fragment of) a (business) process may not. That is,
the composition is not right as a (business) process. In such a situation, adding missing
knowledge to the service specification may create a mismatch between this specification
and the service implementation. So, we added specific business rules and achieved
consistent results from V&V of service composition and (business) processes.

Our methodological approach to answering this question is to formulate the hypothesis
that semantic service specification alone is sufficient for such a verification of composed
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services for implementing business processes. By providing an example where this is
not the case, we can reject this hypothesis. For providing such an example, we use a
simplified variant of the customer payment process of our running example for a small and
a large company each (both just hypothetical for the purposes of this thesis), including
the tasks Receive Invoice, Authorize Invoice and Pay Invoice, as well as their respective
dependencies. For each of these tasks we assume implementations as Web services, which
are to be composed accordingly. We assume that the authorization of the payment is
unconditional, i.e., independent of the amount of the invoice, as this is sufficient for
showing a V&V mismatch. This example is very simple on purpose. We claim that the
issue shown with it will most likely be relevant for any real-world processes as well, since
it even occurs in this simple example.

As a means to this ends, we employ given theories and their supporting technology.
When using such knowledge represented in the Fluent Calculus [105], verification of a
composed service can be done in the related tool FLUX.1 It has fully defined semantics
also of its reasoner, which can be employed for this verification. This entails the necessity
to specify pre- and postconditions in the FLUX tool.

Still, we had to extend this approach for our purposes of V&V. We did this by
additionally representing and including a certain kind of (business) rules here.

Figure 3.1 gives an overview of the technologies involved in the context of this V&V
approach. We utilize an OWL-S Semantic Service Specification Repository that contains
semantic descriptions of the (Web) services. Each entry in this repository describes one
WSDL service. In addition, we may reference some sort of Domain/Reference Ontology
where additional information, e.g., on artefacts, is stored. Using this information, we
can automatically generate a Fluent Calculus Knowledge Base in FLUX containing a
specification of each service. For composed services, we use BPMN and their BPM Tasks.
Although service composition is strictly speaking not a (business) process, we can utilize
BPMN for their illustration. Each BPM Task has a reference to an entry of the Semantic
Service Specification Repository and, implicitly, to an implementing WSDL service. This
allows us to systematically create a Service Composition to be verified in FLUX.

We consider V&V of services an integral part of service design. Our approach
may serve as a holistic approach, since it integrates V&V of services and (business)
processes [47].

3.1 Specifying Semantic Knowledge for Service
Composition

Let us assume a very small (hypothetical) company for our customer payment process
of our running example, where an Invoice is simply received first and then paid. There
are two services involved for that, ReceiveInvoice and PayInvoice. Their semantic
specifications are shown (somewhat simplifying, of course) in Listings 3.1 and 3.5.

1FLUX agent: http://www.fluxagent.org/
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Figure 3.1: Technology overview for Verification and Validation

Listing 3.1: ReceiveInvoice Semantic Specification
ReceiveInvoice:

Input: Invoice
Output: Invoice
Precondition: exists(received(Invoice), false)
Postcondition: received(Invoice)

Listing 3.1 shows the semantic specification of the service that receives an invoice. In
this case, the service has one input Invoice, which may be defined in a reference ontology,
and outputs an Invoice. Additionally, a precondition states that there must not exist an
already received invoice. The postcondition states that the service ensures that after its
execution an invoice has been received.

The formulations of the ReceiveInvoice service in Fluent Calculus, more specifically
in FLUX, is implemented using the poss and state_update predicates. The respective
parts are shown in Listings 3.2, 3.3 and 3.4.

In Listing 3.2 the inputs and preconditions of the service represented in FLUX are
shown. The poss predicate contains the name of the action receiveInvoiceAction and its
input parameter Invoice. Inputs are checked via the knows_val predicate, which checks
if for a given variable a value can be found in the current state. The precondition that
no received invoice exists is checked through the knows_not predicate. The service may
only be executed if all inputs and preconditions of the action given in FLUX are fulfilled.
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Listing 3.2: ReceiveInvoice-Action preconditions encoded in FLUX
poss(receiveInvoiceAction(Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z), % Input %
knows_not(received(invoice(_)), Z). % Precondition %

If the preconditions are fulfilled, then the corresponding action can be performed.
Listing 3.3 shows the update operation along with its outputs and postconditions. The
action is specified by values that are added to and removed from the knowledge base.
Hence, the action moves the knowledge base from one state to another by adding and
removing information from it. In this case, a new invoice is added and the fact that
this invoice has been received. This is formalized in the second parameter of the update
predicate. The third parameter is a empty list since nothing is to be removed from the
knowledge base.

Listing 3.3: ReceiveInvoice-Action postconditions encoded in FLUX
state_update(Z1, receiveInvoiceAction(Invoice), Z2,[]) :-

update(Z1,
[invoice(Invoice), received(invoice(Invoice))], %Output,Postcondition%
[],
Z2).

Finally, Listing 3.4 shows how the check if an action can be performed and its actual
update statement are connected. The action of the poss and state_update statement is
identified by its name and parameters.

Listing 3.4: Signature of ReceiveInvoice Action in FLUX
poss(receiveInvoiceAction(Invoice), Z),
state_update(Z, receiveInvoiceAction(Invoice), Z2, []).

In Listing 3.5, the semantic specification of the PayInvoice service is given. It demands,
through its precondition, a received Invoice as its input. After completion of the service
it is ensured that the invoice has been paid.

Listing 3.5: PayInvoice Semantic Specification
PayInvoice:
Input: Invoice
Output: none
Precondition: received(Invoice)
Postcondition: paid(Invoice)

The FLUX specification is created analogously to the one for ReceiveInvoice. In order
to show such a specification in one piece, we include here Listing 3.6. The precondition
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received(Invoice) is checked via the holds predicate, which checks if a certain value holds
in a specific state Z. The state_update statement adds the paid(Invoice) information to
the knowledge base.

Listing 3.6: PayInvoice encoded in FLUX
poss(payInvoiceAction(Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z), % Input %
holds(received(invoice(Invoice)), Z). % Precondition %

state_update(Z1, payInvoiceAction(Invoice), Z2, []) :-
update(Z1, [paid(invoice(Invoice))], [], Z2). % Postcondition %

Algorithm 1 shows the translation of semantic service specifications to FLUX in
pseudo-code.

Algorithm 1 Algorithm for translating Semantic Service Specifications to FLUX
1: procedure TranslateOWLS2FLUX(OWLSRepo)
2: FLUXServices← List < FluxService > ()
3: for ServiceSpec service ∈ OWLSRepo.Services do
4: FLUXServices← TranslateSemanticSpec2FLUX(service)
5: end forreturn FLUXServices
6: end procedure

The algorithm iterates through all service specifications given in OWL-S and calls a
function that generates the corresponding FLUX counterpart using Algorithm 2.

It uses two templates, as shown in Listings 3.7 and 3.8 during the translation. The
values in curly brackets are replaced by the values of the semantic service specification.
Listing 3.7 shows the template for the preconditions and inputs.

Listing 3.7: Poss-Statement Template
poss({ActionName}({InputNames}), Z) :-

{knows_val([{InputName}], {InputCondition}, Z)}, % Inputs: if available
%

{knows_not|holds}({precondition}, Z). % Preconditions: if available%

Listing 3.8 shows the template for the postcondition and outputs.

Listing 3.8: State_update-Statement Template
state_update(Z1, {ActionName}({Inputs}), Z2,[]) :-

update(Z1,
[{Outputs}, {Postconditions}], % Output, Postcondition %
[],
Z2).
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Algorithm 2 Algorithm for translating Semantic Service Specification to FLUX
1: procedure TranslateSemanticSpec2FLUX(ServSpec)
2: possTemplate← LoadPossTemplate(ServSpec.Name)
3: for Input input ∈ ServSpec.Inputs dopossTemplate.addInput(input);
4: end for
5: for Precondition pre ∈ ServSpec.Preconditions do
6: possTemplate.addPrecondition(pre);
7: end for
8: updateTemplate← LoadUpdateTemplate(ServSpec.Name)
9: for Input input ∈ ServSpec.Inputs do

10: updateTemplate.addInput(input);
11: end for
12: for Output output ∈ ServSpec.Outputs do
13: updateTemplate.addOutput(output);
14: end for
15: for Postcondition post ∈ ServSpec.Postconditions do
16: updateTemplate.addPostcondition(post);
17: end for
18: FLUXService← possTemplate.process();
19: FLUXService← updateTemplate.process();

return FLUXService
20: end procedure

For the small company, the obvious service composition resulting in a sequential
business process is shown in Figure 3.2.

Figure 3.2: “Receive and Pay” Business Process of a small Company

In FLUX this service composition is simply expressed by executing the services in
order as shown in Listing 3.9. Each service is expressed via its poss and state_update
predicate and all statements are executed in succession.
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Listing 3.9: “Receive and Pay” Business Process encoded in FLUX
% first check if the action receiveInvoice is applicable %
poss(receiveInvoiceAction(Invoice), Z),
% then perform the action through state_update %
state_update(Z, receiveInvoiceAction(Invoice), Z2, []),

% check if payInvoice is applicable %
poss(payInvoiceAction(Invoice), Z2),
% and then perform its update %
state_update(Z2, payInvoiceAction(Invoice), Z3, []).

Algorithm 3 shows the translation of service compositions to FLUX in pseudo-code.

Algorithm 3 Algorithm for translating Service Compositions to FLUX
1: procedure TranslateServiceCompositonToFLUX(serviceComp)
2:
3: startService← serviceComp.inital
4: while startService.hasNext do
5: service← startService.next
6: FLUXServiceComp← service.createPossUpdateStatement
7: end while
8: return FLUXServiceComp
9: end procedure

Listing 3.10 shows the templates used for service composition in FLUX.

Listing 3.10: Service Composition Template
poss({actionName}({inputs}), Z),
state_update(Z, {actionName}({inputs}), Z2, []).

3.2 Verification using Fluent Calculus
With these two specifications of actions in place, we can perform a formal verification of,
e.g., sequences of actions using the FLUX tool (for our purposes of composed services
or sequential business processes). For example, in the simple business process shown in
Figure 3.2, first an invoice is received and then paid.

This abstract definition of such a sequential business process can be specified in FLUX
as shown in Listing 3.9. However, for formal verification we also have to assign an initial
state with some facts to our knowledge base. This is expressed by the first statement
Z = [invoice(“ExampleInvoice”)] in Listing 3.11. In this case, just one fact of the form
invoice(“ExampleInvoice”) is introduced for use in the action ReceiveInvoice. After this
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initialization, the poss statement specifies a check whether the first action ReceiveInvoice
can be invoked. If poss evaluates to true, then the state_update is performed. The third
step specifies a check whether the action PayInvoice can be applied and, if yes, the
state_update is performed. The FLUX tool interprets all these specifications based on
well-defined semantics and tells that this verification succeeds.

Listing 3.11: “Receive and Pay” Business Process encoded in FLUX for Verification
Z = [invoice("ExampleInvoice")],

% first check if the action receiveInvoice is applicable %
poss(receiveInvoiceAction(Invoice), Z),
% then perform the action through state_update %
state_update(Z, receiveInvoiceAction(Invoice), Z2, []),

% check if payInvoice is applicable %
poss(payInvoiceAction(Invoice), Z2),
% and then perform its update %
state_update(Z2, payInvoiceAction(Invoice), Z3, []).

As shown in this example, this sequence of poss statements along with their corre-
sponding state_update statements has to be provided to the FLUX tool for specifying
the verification of the sequence defined in the business process shown in Figure 3.2. If all
the given statements can be performed in this order, the verification succeeds, otherwise
it fails. So, this is a verification of whether a defined sequence of service invocations is
consistent with the semantic specifications of the services involved.

In FLUX, service specifications are always evaluated on the current state. That is, all
information that is present is also available to the services. This enables the possibility
for more complex links between services. For example, once ReceiveInvoice has received
an invoice, PayInvoice may use it even though other services are invoked in between, as
long as any of them are not explicitly removing the invoice, more precisely the fact that
it has been received, from the knowledge base.

For example, a service might have a precondition not paid(Invoice) and its effect or
postcondition is paid(Invoice). This might seem conflicting first, but can be processed by
FLUX since the check if a service is applicable is separated from the update statement
of the service. In other words, first FLUX checks whether the precondition can be
satisfied and if so, it performs an update that introduces or removes statements to
or from the current state. Of course, the human user of FLUX is responsible for the
state_update predicate and has to take care of conflicting statements. For this example,
the state_update predicate must not only introduce the new statement paid(Invoice) but
also remove the statement not paid(Invoice) from the new state.

A verification of this simple business process corresponding to a service composition
was done against the specification of the atomic services using FLUX as shown above,
and it succeeded. So far, everything looks fine, and the semantic knowledge for straight-
forward service composition appears to be the same as for a business process [47].
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3.3 Verification and Validation Mismatch
Now let us assume a larger (hypothetical) company, where an Invoice needs authorization
before making a payment. For modeling the services, both ReceiveInvoice and PayInvoice
can be reused, but an additional service needs to be specified. The additional service
with its semantic specification is presented in Listing 3.12 and specifies the authorization
of a given Invoice.

Listing 3.12: AuthorizeInvoice Specification
AuthorizeInvoice:

Input: Invoice
Output: Invoice
Precondition: received(Invoice)
Postcondition: authorized(Invoice)

The formulation in the Fluent Calculus is shown in Listing 3.13.

Listing 3.13: AuthorizeInvoice encoded in FLUX
AuthorizeInvoice:

poss(authorizeInvoiceAction( Invoice), Z) :-
knows_val([Invoice], invoice(Invoice), Z), % Input %
holds(received(invoice(Invoice)), Z). % Precondition %

state_update(Z1, authorizeInvoiceAction( Invoice), Z2, []) :-
update(Z1, [invoice(Invoice), authorized(invoice(Invoice))], [], Z2).
% invoice(Invoice) is the output of the action and

authorized(invoice(Invoice)) is the postcondition %

The obvious business process for this larger company integrates the AuthorizeInvoice
process between ReceiveInvoice and PayInvoice as seen in Figure 3.3.

Figure 3.3: Large Company: “Receive, Authorize and Pay” Business Process

A verification of this business process corresponding to a service composition was done
against the specification of the atomic services using the FLUX tool, and it succeeded.

43



3. Semantic Service Specification for V&V of Service Composition

In principle, other business processes may be erroneously defined (which is more
plausible and likely for large and complex processes, of course), such as the invalid
processes shown in Figures 3.4 and 3.5.

Figure 3.4: Invalid Business Process: “Receive, Pay and Authorize”

Somewhat surprisingly, also the verification of these service compositions for (invalid)
business processes succeeded, although any reasonable validation would fail for them,
of course. Note, that such a validation is not tool-supported and would in practice
require expert business knowledge, while for our intentionally simple example it can be
done using common sense. The reason for the process in Figure 3.4 is lack of explicitly
represented knowledge, i.e., authorization is required before making a payment. The
reason for the process in Figure 3.5 is also lack of explicitly represented knowledge, in
this case it does not make sense in reality to authorize an already paid Invoice.

Figure 3.5: Invalid Business Process: “Receive, Authorize, Pay and Authorize”

Representing these pieces of knowledge (for the larger company) may be simply done
by extending the service specifications of AuthorizeInvoice and PayInvoice. In this case a
newly introduced precondition is sufficient and the specification (where the new parts
are given in bold face), is presented in Listings 3.14 and 3.15.
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Listing 3.14: PayInvoice Specification with explicit precondition
PayInvoice:

Input: Invoice
Output: none
Precondition: authorized(Invoice)
Postcondition: paid(Invoice)

The semantic specification of Listing 3.15 states that an invoice may only be authorized
if it is not already paid (not paid(Invoice)).

Listing 3.15: AuthorizeInvoice Specification with explicit precondition
AuthorizeInvoice:

Input: Invoice
Output: Invoice
Precondition: not paid(Invoice)
Postcondition: authorized(Invoice)

These additional preconditions are represented in FLUX as well and the new specifi-
cation encoded in Fluent Calculus is shown in Listings 3.16 and 3.17.

Listing 3.16: PayInvoice Specification with explicit precondition in FLUX
PayInvoice:

poss(payInvoiceAction(Invoice), Z) :-
knows_val([Invoice], invoice(Invoice), Z), % Input %
holds(authorized(invoice(Invoice)), Z). %

Precondition %

state_update(Z1, payInvoiceAction(Invoice), Z2, []) :-
update(Z1, [paid(invoice(Invoice))], [], Z2). % Postcondition %

For the AuthorizeInvoice service the not paid(Invoice) precondition of Listing 3.15 is
expressed as knows_not(paid(invoice(Invoice)), Z) in Listing 3.17.

Listing 3.17: AuthorizeInvoice Specification with explicit precondition in FLUX
AuthorizeInvoice:

poss(authorizeInvoiceAction(Invoice), Z) :-
knows_val([Invoice], invoice(Invoice), Z), % Input %
knows_not(paid(invoice(Invoice)), Z). %

Precondition %

state_update(Z1, authorizeInvoiceAction(Invoice), Z2, []) :-
update(Z1, [invoice(Invoice), authorized(invoice(Invoice)], [], Z2).

Strictly speaking, however, another service composition for an (invalid) business
process as shown in Figure 3.6 was still verified with FLUX, but certainly not validated.
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Figure 3.6: Invalid Business Process: “Receive, Authorize, Authorize and Pay”

Yet another extension of the precondition of AuthorizeInvoice would avoid this (see
the specification in Listing 3.18).

Listing 3.18: Additional Precondition for AuthorizeInvoice
AuthorizeInvoice:
Input: Invoice
Output: Invoice
Precondition: not paid(Invoice) ∧ (not authorized(Invoice))
Postcondition: authorized(Invoice)

Note, that after all these extensions of the semantic specifications, the original business
process shown in Figure 3.2 above for the small company cannot be verified anymore,
although it is a valid process. While this problem is not inherently related to any software
implementation, it is easy to understand when assuming that the basic services introduced
above have implementations fitting the semantic service specifications. Even though the
verification for the small company does not work with the semantic service specification
of PayInvoice for the large company anymore, the service implementation still works,
however.

Hence, there is actually a mismatch of semantic specification and service implemen-
tation, more precisely an over-specification. The additional conditions do not fit the
implementation according to the original specification anymore. In fact, this additional
knowledge encoded is not directly related to these services per se [47].
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CHAPTER 4
Context-dependent Semantic

Task Specification

Tasks of process models and their specifications, as indicated in Chapter 3, must not
directly be replaced by their implementing services and their specifications. These tasks
are enacted in a specific process and require customized specifications, i.e., they have their
own semantic task specification. Hence, our approach does not involve enriching service
specifications, but rather introduces semantic task specifications. The latter incorporate
knowledge of the (business) context in which a task is enacted, given through business
rules. This chapter explains how this context information can be expressed and how it
can be used to construct semantic task specifications.

4.1 Semantic Task Specification

A semantic task specification is available only for tasks in (business) processes. They
formally specify what this tasks requires and ensures in a (business) process. This is
different from the specification of a service as a semantic task specification may also
incorporate knowledge about the business (process). Considering our running example of
the large and small companies again, we might want to specify that an invoice has to
be authorized before its payment can be made. However, this might not necessarily be
a precondition of the implementing service, maybe because all information is available,
even without authorization, for paying an invoice, and thus the service does not specify
it. In this case a separate specification, the semantic task specification, is required
to formally specify this additional demand. These semantic task specifications can
be used to express all additional specifications that are not part of the implementing
service specification. The additional specifications are essentially and-connected pre- and
postconditions. Hence, their pre- and postconditions are propositional logic formulas.
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For example the adapted preconditions of Listing 3.14 could be considered part of a
semantic task specification.

4.2 Making Services Reusable Through Semantic Task
Specifications

Using semantic task specifications facilitates the reuse of services across different business
processes in a formally justified manner (not just running their procedural implementa-
tions). In fact, each service can be used by multiple tasks.

For such reuse, however, a task specification and the specification of its implementing
service need to be in a subtyping relationship where the service specification is a subtype
of the task specification. A subtyping relationship imposes constraints on specifications
[112]. The precondition of the supertype implies the precondition of the subtype, i.e.,
these conditions are either the same or the latter is weaker than the former. In contrast,
the postcondition of the subtype implies the postcondition of the supertype, i.e., these
conditions are either the same or the latter is weaker than the former. Therefore, in our
approach the precondition of the task specification has to imply the precondition of the
specification of the service that implements this task, and vice versa for the postconditions.
Figure 4.1 visualizes the subtyping relationship between service and task specifications.

Figure 4.1: Subtyping relationship between service and task specifications

Through this approach we are able to decouple a service specification from the business
context and, thus, to make the service reusable in different business contexts. Figure 4.2
illustrates such a reuse of Pay Invoice in more than one business process.

These two processes have different contexts. In contrast to the small company, the
process of the large company requires authorization before payment of an invoices. This
additional information is modeled as an extra precondition for the corresponding Pay
Invoice task of the large company. Listing 4.1 shows the semantic task specification of
Pay Invoice for the large company.
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Figure 4.2: Making Services and their Specifications Reusable

Listing 4.1: Pay Invoice Semantic Task Specification
Task: Pay Invoice

Pre: received(invoice) ∧ authorized(invoice)
Post: paid(invoice)

In effect, there are two Pay Invoice tasks in different business processes, with different
semantic specifications, but they use the same service implementation. As shown in
Figure 4.4, the Pay Invoice task in the context of a large company has an additional
precondition, authorized(Invoice), which specifies that the task can only be executed if
an authorized invoice is available. The subtype relationship between this service and
these tasks guarantees substitutability for facilitating reuse.

4.3 Specifying Context Information as Conditional Rules

Until now we have constructed all our semantic task specifications manually, i.e., we did
not have a formal specification of the context in which a process is enacted. Rules are
one option that is commonly used to specify conditions that a process has to adhere to.
Actually, this is business knowledge in addition to these services, more precisely these are
a kind of business rules. So, we propose to make such knowledge explicit in an additional
specification separate from the service and task specification. Essentially, (business) rules
can be considered as formulas in propositional logic.

Let us consider the conditional rule shown in (Business) Rule 4.1.

(Business) Rule 4.1. Authorization Required before making a Payment
“An invoice has to be authorized to make its payment.”

This rule simply states that a task that makes a payment of an invoice can only be
executed if the invoice has been authorized. Essentially, this rule has a condition, invoice
has to be authorized, and a (possible) consequence, invoice can be paid. A semi-formal
representation is given in Listing 4.2.
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Listing 4.2: Business rule stating that an invoice has to be authorized to be paid
Rule Authorize-Before-Payment-Invoice:
condition: paid(invoice)
consequence: authorized(invoice)

This rule can be formally stated as an implication relationship between paid(invoice)
and authorize(invoice). If an invoice is paid, paid(invoice), then it has to be authorized,
authorized(invoice), as well.

paid(Invoice) → authorized(Invoice) (4.1)

As a more complex example, let us consider (Business) Rule 1.1 of our running
example. This rule states that an invoice with an amount greater or equal than a
threshold has to be authorized before its payment can be made. Again, we can formalize
this rule as an implication stating that if an invoice is paid and its amount is greater
than a threshold, it has to be authorized as well.

(paid(Invoice) ∧ (Invoice.amount ≥ threshold)) → authorized(Invoice) (4.2)

However, it would be more convenient to express this (business) rules as a condition
on the payment as this is what we want to restrict. Actually, the rule given above can be
rewritten as:

paid(Invoice) → ((Invoice.amount ≥ threshold) → authorized(Invoice)) (4.3)

This formula is equivalent to the previous one and expresses that if an invoice is paid
then, if its amount is greater or equal than a threshold, has also to be authorized.

Now, let us consider an extension of the (Business) Rule 1.1 in Section 1.3 since it
involves a piece of tacit knowledge. This extension states that an invoice must not be
authorized if its amount is less than a threshold. The rule is shown in (Business) Rule 4.2.

(Business) Rule 4.2. Authorize Only if Amount Greater than a Threshold
“If the amount of an invoice is greater or equal than a threshold level, its payment has
to be authorized. If the amount of an invoice is less than a threshold, it must not be
authorized before its payment”

The extension can be formalized similarly to the rule above as:

(paid(Invoice) ∧ ¬(Invoice.amount ≥ threshold)) → ¬authorized(Invoice) (4.4)
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Again, this can be converted to an implication on paid(Invoice):

paid(Invoice) → (¬(Invoice.amount ≥ threshold) → ¬authorized(Invoice)) (4.5)

Since both parts of the (Business) Rule 4.2 Authorize Only if Amount Greater
than a Threshold condition paid(invoice), we can combine them using a logic and-
connector.

paid(Invoice) →
(((Invoice.amount ≥ threshold) → authorized(Invoice)) ∧

(¬(Invoice.amount ≥ threshold) → ¬authorized(Invoice))) (4.6)

Throughout this thesis, we formalize all context information with (business) rules
using an implication.

4.4 Using Semantic Task Specifications and Conditional
Rules in FLUX

Since the Fluent Calculus essentially works with actions, we model such a (business) rule
as an action that sets a specific state, which is its postcondition, according to its input
and precondition. This does not entail that some specific business actor would have to
perform such an action. It just models the missing business knowledge in such a way
that it fits the given formalism required for automated verification.

Listing 4.3 shows an example of such a representation of a (business) rule based on
the examples introduced in Chapter 3. It sets for a specific invoice (its input) that it
is ready for payment. The rule is only applied if an invoice is present and has already
been authorized. Comparing this listing with the service specification in Listing 3.14
shows that the additional precondition has been moved to an explicit specification of our
(business) rule.

Listing 4.3: Business rule that determines if an Invoice is ready for payment in FLUX
poss(ruleIsReadyForPayment(Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z), % Input %
holds(authorized(invoice(Invoice)), Z).

state_update(Z1, ruleIsReadyForPayment(Invoice), Z2, []) :-
update(Z1, [ruleIsReadyForPayment(invoice(Invoice))], [], Z2).

However, this explicit specification of the (business) rule requires some minor changes
to the service specifications. The idea is that every service where an payment of an invoice
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is made, has an additional precondition that checks if a specific invoice is, in fact, ready
for payment. Only if this condition is fulfilled, the action can be invoked. In our example,
this condition is directly related to the postcondition of the (business) rule defined in
Listing 4.3. Listing 4.4 shows the additional precondition isReadyForPayment encoded
in FLUX. The results of the verification stays the same. That is why the state_update
part has been omitted. This approach can be applied to all service specifications at once,
while the service implementations do not have to be changed.

Listing 4.4: PayInvoice plus precondition for (business) rule encoded in FLUX
poss(payInvoiceAction(Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z), % Input %
holds(isReadyForPayment(invoice(Invoice)), Z). % from Business Rule %

However, there is a problem with the specifications of the previous listings. Pro-
cess 4.3 also verifies with this specification. The problem is that the precondition of the
payInvoiceAction still holds after its invocation and thus it can be invoked again. To
solve this problem, the fact has to be explicitly removed from the knowledge base that
the invoice is ready for its payment. The resulting specification is shown in Listing 4.5,
and with this specification Process 4.3 does not verify anymore.

Figure 4.3: Invalid Business Process: “Receive, Pay and Pay”

Listing 4.5: Amended PayInvoice Specification encoded in FLUX
state_update(Z1, payInvoiceAction(Invoice), Z2, []) :-

update(Z1, [paid(Invoice)], [isReadyForPayment(invoice(Invoice))], Z2).

The same approach is also applied to the authorization action defined in Listing 3.18.
Here we can introduce a new (business) rule that sets for a specific invoice if it is
ready for authorization. The specification of the action must then include this fact as a
precondition.

Listing 4.6 shows this additional (business) rule. In this case, the (business) rule
is quite simple and just specifies that all available invoices are automatically ready for
authorization. Similarly to the payInvoice action, also authorizeInvoice has to be changed
and a new predicate, according to this (business) rule, has to be introduced.
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Listing 4.6: Business rule that determines if an Invoice is ready for authorization
poss(ruleIsReadyForAuthorization(Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z).

state_update(Z1, ruleIsReadyForAuthorization(Invoice), Z2,[]) :-
update(Z1, [isReadyForAuthorization(invoice(Invoice))], [], Z2).

Listing 4.7 shows the adjusted service specification. The additional precondition has
been introduced and also the result of the action has been adjusted, so that the fact that
the invoice is ready for authorization is removed after the invocation of the action.

Listing 4.7: Adjusted AuthorizeInvoice action
poss(authorizeInvoiceAction( Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z),
holds( isReadyForAuthorization(invoice(Invoice)), Z).

state_update(Z1, authorizeInvoiceAction( Invoice), Z2, []) :-
update(Z1,

[authorized(invoice(Invoice))],
[isReadyForAuthorization(invoice(Invoice))],
Z2).

With these explicitly specified (business) rules, only the valid process in Figure 3.3 can
be verified, while the verification correctly fails for all others. However, there is still an
issue with our small company that does not have an authorization action in its (business)
process. So, Figure 3.2 still cannot be verified. Since there is no authorization action,
the (business) rule has to be adjusted. Similarly to the (business) rule in Listing 4.6, we
can specify a (business) rule that states that all invoices are automatically ready for the
pay action. This rule is shown in Listing 4.8.

Listing 4.8: Business rule that determines if an Invoice is ready for payment in a small
company
poss(ruleIsReadyForPayment(Invoice), Z) :-

knows_val([Invoice], invoice(Invoice), Z).

state_update(Z1, ruleIsReadyForPayment(Invoice), Z2,[]) :-
update(Z1, [isReadyForPayment(invoice(Invoice))], [], Z2).

In effect, there is no need to change the service specification anymore. The specifica-
tions shown in Listings 4.4 and 4.5 can be directly reused [47].
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4.5 Context-dependent Semantic Task Specifications
As stated above, the context of the business process is important for a specification
of tasks. Originally, without the information of the context, the task specification is
the same as the one of the service. For example, initially the Pay Invoice task has the
specification given in Listing 4.9.

Listing 4.9: Original Pay Invoice task specification
Task: Pay Invoice

Pre: received(Invoice)
Post: paid(Invoice)

In Figure 4.4, this rule is taken into account by an additional precondition on the Pay
Invoice task. The question is, how can we systematically enrich the task specification
from an existing business rule?

Post: RI = received(Invoice); Pre: AI = received(Invoice); Post: AI =
authorized(Invoice); Pre: PI_L = received(Invoice) ∧ authorized(Invoice); Post: PI_L
= paid(Invoice); Pre: PI_S = received(Invoice); Post: PI_S = paid(Invoice); Pre: PI =

received(Invoice); Post: PI = paid(Invoice);

Figure 4.4: Context-dependent Semantic Task Specification

This depends, of course, on the formalization of the (business) rule. For providing a
systematic approach, we have to look at (business) rules in more detail. The (Business)
Rule 4.1 specifies that “An invoice is only allowed to be paid, if it has been authorized
before”. Intuitively, this leads to the additional precondition authorized(Invoice) of the
corresponding Pay Invoice task specification, but a systematic approach is preferable.

With a business rule formalization of condition → consequence, it is possible to
systematically extract additional preconditions on tasks. To accomplish this, each
postcondition of all tasks has to be examined if a matching business rule is available. A
business rule matches if the consequence of the rule implies the postcondition of a task.
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Considering our example, the condition paid(Invoice) of the (Business) Rule 4.1
Authorization Required before making a Payment in Listing 4.2 matches
the postcondition of the Pay Invoice task from Listing 4.9. Hence, we can derive the
additional precondition authorized(Invoice) for the task. The resulting precondition is
received(Invoice) ∧ authorized(Invoice). The precondition of this task specification is the
same as @Pre: TI_L in Figure 4.4 and, in fact, is equivalent to the one in Listing 4.1,
which we constructed manually without the use of business rules.

Essentially, (business) rules add additional preconditions to a semantic task speci-
fication. These additional preconditions are and-connected with the already specified
preconditions of the semantic task specification.

Considering our (Business) Rule 1.1, we can systematically enrich the “Pay Invoice”
task since it has a matching postcondition paid(invoice). The precondition to be added
to the already specified precondition received(invoice) is shown in Equation 4.3 and is
(Invoice.amount ≥ threshold) → authorized(Invoice). The resulting precondition is
shown in Listing 4.10.

Listing 4.10: Enriched Pay Invoice task specification
Task: Pay Invoice

Pre: received(Invoice) ∧ ((Invoice.amount ≥ threshold) → authorized(
Invoice))

Post: paid(Invoice)

Actually, the precondition can also be rewritten as:

received(Invoice) ∧ (authorized(Invoice) ∨ ¬(Invoice.amount ≥ threshold)) (4.7)

We can use the same approach to automatically enrich the “Pay Invoice” task with
our complex (Business) Rule 4.2. The enriched semantic task specification is shown in
Listing 4.11.

Listing 4.11: Enriched Pay Invoice task specification for Authorize only if amount greater
Task: Pay Invoice

Pre: received(Invoice) ∧
(((Invoice.amount ≥ threshold) → authorized(Invoice)) ∧
(¬(Invoice.amount ≥ threshold) → ¬authorized(Invoice)))

Post: paid(Invoice)
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The precondition can be simplified to:

received(Invoice) ∧
((authorized(Invoice) ∧ (Invoice.amount ≥ threshold)) ∨

(¬authorized(Invoice) ∧ ¬(Invoice.amount ≥ threshold))) (4.8)

Our approach uses the following steps to enrich preconditions:

1. Initially copy semantic service specification to the task, e.g., precondition Pre1 and
postcondition Post1.

2. Look for business rule with matching postcondition Post1.

3. Add the preconditions of the Rule to the preconditions of the task, resulting in a
combination of both, e.g., PreRule1 ∧ Pre1.

With this approach, preconditions can be systematically extracted from formalized
(business) rules and attached to the corresponding tasks [50].

4.6 Semantic Specifications of Composite Tasks

Figure 4.4 shows (sequential) compositions of tasks. Such a composition as a whole
has, in general, certain conditions for its execution and an overall effect. These are its
precondition that has to be fulfilled so that the task composition as a whole can be
executed, and its postcondition specifying the overall effect of an execution of the task
composition. Hence, the precondition necessary for and the effect resulting from such a
sequence (including business rules) can be taken as the semantic task specification of the
composite task defined by this sequence. Still, the question remains how such pre- and
postconditions can be systematically extracted from the task composition.

In fact, this kind of problem has been addressed already long time ago in the context
of planning in Artificial Intelligence. Both for plan execution and for extracting macro-
operators, a Triangle Table was devised [76, 35, 34]. Such a table shows explicitly which
conditions have to be fulfilled for the execution of each action/operator (in our case each
task) of the sequence (to its left), and which conditions result from it (below).

Let us use the composed task sequence for the large company as an example [50].
First an invoice is received, then it is authorized and only after that it is paid. Figure 4.5
presents the corresponding Triangle Table. It shows, for instance, the precondition of the
task Authorize Invoice, received(Invoice), and its postcondition, authorized(Invoice). Both
these conditions together (more precisely their conjunction) make up the precondition of
the task Pay Invoice, given to its left.

Overall, the precondition of the whole sequence is the conjunction of all the conditions
listed in the first column, and its postcondition is the conjunction of all conditions listed
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Figure 4.5: Triangle Table of a Composite Task

in the last row. For our example, the resulting pre- and postconditions of the task
composition are given in Listing 4.12.

Listing 4.12: Resulting pre- and postconditions derived from the Triangle Table
Composite Task: Large Company

Pre: none
Post: received(Invoice) ∧

authorized(Invoice) ∧
paid(Invoice)

We view this task composition as a new task consisting of several tasks. In the
context of a business process, this task can be seen as a sub-process in which several
tasks are executed. The semantic specification of this composite task is the same as the
task composition specification.

In our example, the composite task has actually no precondition, since the first
task does not have any precondition and the subsequent tasks all have preconditions
fulfilled by predecessor tasks. However, this is not necessarily the case for all possible
task compositions. If the Receive Invoice task, for example, had a precondition that
an amount has to be set, then the task composition and, thus, the composite task
would also have this precondition. In addition, subsequent tasks do not necessarily have
only preconditions that are fulfilled by previous tasks. For example, if the Pay Invoice
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task additionally required an address for the invoice, then this would result in an extra
precondition. This extra precondition is not fulfilled by previous tasks and, thus, would
become an additional precondition of the composite task.

4.7 Recursive Application

Such a composite task, which specifies a sub-process, can be itself a building block for a
higher-level business process. That is, each composite task can be used as a single task
within another business process. In case such a composite task is used in another process,
the corresponding task composition of the composite task is executed. This calls for a
recursive application of our approach as described above.

A composite task can be used in the same way as shown for service tasks above.
Its semantic specification as derived above is context-independent with regard to any
higher-level business process it might be used in. This context-independent specification
corresponds to a context-independent service specification as used above. That is, a
higher-level process can use a composite task in the same way a business process uses
a service. The higher-level business process may include an enriched semantic task
specification based on its context, which again relates via subtyping to the context-
independent composite task specification. Figure 4.6 illustrates the reuse of a composite
task.

Figure 4.6: Recursive Application of Composite Tasks

Figure 4.7 illustrates how tasks can be embedded in higher-level business processes.
It shows that the specifications of tasks are enriched depending on the context they are
used in. This is shown in the upper part of the figure above the green broken line, labeled
In specific business context. In the middle part of the picture, labeled Without specific
business context, the corresponding context-independent specifications for the services
and composite tasks are shown. It is important to note that the “Process Fragment Large
Company” on the left side is a task composition, which is enacted in a specific context.
The context is in this case that the large company has a business rule in place, that each
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Figure 4.7: Recursive Application of Semantic Task Specifications 59
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invoice has to be authorized before being paid. On this level, the task specification is
context dependent. However, this task composition forms a new composite task shown
on the right, whose semantic specification may have been systematically derived using a
Triangle Table. This specification is context independent. Yet a higher-level process has
its own context, which additionally can restrict the composite task via business rules.
Handling this works in the same way as described above.

Hence, using the approach above recursively, we are also able to specify new tasks
and use them in higher-level business processes [50].
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CHAPTER 5
Using Object Life Cycles for
Semantic Task Specifications

This chapter explains how we can use semantic task specifications in combination with
artefact-centric models, as we formally ground them in life cycles of objects. We actually
extend object life cycles to include attributes as well and ground pre- and postconditions
on values of these attributes. Using the semantic task specifications in this way enables
us to formalize them without knowledge of the process they are enacted in.

5.1 Specifying Semantic Task Specifications without
Process Knowledge

Using object life cycles allows us to decouple the semantic task specifications from the
process models as they only relate to artefacts and their life cycles. This means, that the
person who specifies the tasks, does not not need to know in which process model they are
used. If we consider the conditional rules of Section 4.3, then the advantage of decoupling
both models becomes apparent. Since the conditional rules provide information about
the business context and should be applicable to many process models, the tasks that
are effected by it should not rely on information from the process model itself.

For example, if we consider our conditional (business) rule from 1.1 again, we could
also imagine it to be specified as “Before executing pay invoice the task authorize invoice
has to be executed”. Although, both rules seem to express the same knowledge, they are
fundamentally different. While the first rule states conditions on a business artefacts,
which are not process specific and valid throughout the business, the second rule only
limits the execution of a specific process model, i.e., the one with an Authorize Invoice
and Pay Invoice task. Moreover, the second rule requires knowledge about concrete tasks
in process models, which may change over time or could be re-factored to do something
else. Hence, the conditional rule only applies to a limited number of process models
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and may not fit anymore after updating it. In contrast, business artefacts are typically
available throughout the business and persist also after re-factoring parts of them.

In [48] we showed how object life cycles can be used to specify properties that the
BPMs are verified against. Thus it is necessary to have a formal specification of these
object life cycles. The concept of an object life cycle is independent from the domain that
it is used in, and the concepts from the domain need to provide their own instantiation
of an object life cycle. That is, each domain concept has its own definition of its life cycle
by creating instances of the object life cycle concepts.

For this purpose, we introduce an ontology to model life cycles in OWL. This ontology
defines that an object life cycle consists of several States and Transitions among them.
The Transitions are defined with the nextState relationship. Furthermore, the nextState
relationship also specifies which sequences of States are allowed in an object life cycle. For
each domain object, a concrete new instance of the object life cycle ontology is created.
The definition of the domain can be provided in OWL as well or be part of an Enterprise
Architecture [87].

Figure 5.1 shows how this life cycle ontology is used for an ontology of domain objects
and their concrete life cycles. More precisely, the figure shows how the domain object
Invoice can be enriched with an object life cycle. The concept Invoice has a relationship
to the State concept, which defines that each instance of an Invoice is in exactly one
state in the object life cycle at any given time. The object life cycle of Invoice is modeled
through instances of the State concept and its Transitions. In this example, an Invoice is
received first and then either authorized or paid. The example also illustrates how more
than one successor state can be defined [87].

When considering our running example of Section 1.3 again, then we realize that
all tasks are performed on objects. In this case the object is an Invoice. This Invoice
cannot be altered arbitrarily but only in a specific way that underlying conditions are
not violated. These conditions are specified by an object life cycle. In fact, there are two
object life cycles of Invoices in place for both participants of the process, the delivering
company and the customer.

Figure 5.2 shows the object life cycle of the invoice of the delivering company as an
FSM. It states that an Invoice first is created, then transmitted, then a payment may be
received and finally it is booked. This object life cycle does not involve any variations in
its path and all states are visited one after another.

Figure 5.3 shows the object life cycle of the invoice of the customer company. Here
an Invoice is first received (from the delivering company) and then paid. However, there
is a variation possible and an Invoice of this life cycle may also be authorized before its
payment.

5.2 Extending Object Life Cycles with Attributes

We extend our object life cycles to include attributes as well. The rationale is that the
FSM that represents an object life cycle as usual is in a particular state at any given
point in time, but it does not have any memory of the previous states it came through.
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Figure 5.1: Part of an Ontology of Domain Objects and Their Life Cycles 63
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Figure 5.2: Object Life Cycle of the Delivering Company

Figure 5.3: Object Life Cycle of the Customer Company

For instance, when the FSM of the traditional Invoice object life cycle in Figure 2.7 is in
state Paid, it has no memory of whether it was in state Authorized before or not. Hence,
we add an attribute to each state for memorizing that an object was in this particular
state.

More precisely, each attribute of an extended object life cycle is represented by an
FSM with two states added to the object life cycle. The first state represents that the
value of the attribute is false, and it is true in the last state. In effect, the current state
of this additional FSM of a certain attribute assigned to a state of the basic FSM of the
object life cycle tells whether the latter state has been visited or not.

Figure 5.4 shows an example of an attribute as an FSM. It represents the state that
an Invoice has been created or not. The attribute has only been set if the FSM has been
in the state Created True.

Figure 5.4: Created Object Life Cycle Attribute
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There is no transition back to the state Created False on purpose. This is to prevent
processes and object life cycles to remove information from the knowledge base. Thus, if
an invoice has been created, this shall remain true. If all properties are modeled using this
approach, a monotonic system is specified. For the purpose of verification we will only
handle monotonic systems. However, it has to be noted that the FSMs of the attributes
could include, in principle, transitions to previous states as well.

These attributes are extensions of the object life cycles of Section 5.1. In fact, the
attributes may only be set by following along the transitions of the object life cycle.
Hence, if a process moves the object life cycle of an artefact from the state Created to
Transmitted, then setting of the attribute Transmitted is triggered, i.e., the attribute
“reacts” to the state of the object life cycle.

Figure 5.5 illustrates how object life cycles and attributes are connected to each other.
The FSMs of the attributes have a condition on their transition, which only triggers if
the object life cycle reaches a specific state. For example, the attribute Transmitted is
only set to true if the object life cycle reaches the state Set Transmitted, as expressed by
the condition State(InvoiceDCP ) = SetTransmitted.

Figure 5.5: Object Life Cycle with its Attributes

In these extended object life cycles the overall state of a specific artefact is given by
the current assignment of all its properties and its position in the object life cycle.
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5.3 Grounding of Semantic Specifications in Extended
Object Life Cycles

In order to define the real meaning of the semantic task specifications in the process
models where the tasks are used, we specify their grounding in object life cycles, more
precisely on our extended version of object life cycles.

Our approach utilizes object life cycles to formally verify process models against.
Hence, formal representation of an object life cycle is a necessity. We use FSMs to directly
specify object life cycles and relate the process models via semantic task specifications,
given as predicates grounded in the object life cycle, to them.

Each semantic task specification may contain several statements related to the
object life cycle and each statement is expressed as a predicate attributeSet. This
predicate operates on a subject and an object. In essence, the predicate is in the form of
attributeSet([Subject],[Object]). In our case, the subject is related to the artefact and the
object to a specific attribute of the formal representation of the object life cycle. Thus,
the predicate can be interpreted as attributeSet([Artefact],[Attribute]) and denotes that
for [Artefact] the attribute [Attribute] is set.

Let us consider our example again. In Listing 5.1, the semantic task specification of
the Transmit Invoice task is specified. It contains one precondition, an invoice had to
be created, and one postcondition, an invoice is transmitted. In this case, the “invoice”
relates to the artefact and “created” or “transmitted” to a specific state of the FSM of the
object life cycle. In this case, the attributeSet predicate is expressed as follows: for the
precondition attributeSet(invoice, created) and for the postcondition attributeSet(invoice,
transmitted). By doing so, we formally ground our predicate on the attributes of the
artefact. In this way, we also connect the declarative and procedural specification formally.

Listing 5.1: TransmitInvoice Task
TransmitInvoice:

Pre: created(Invoice)
Eff: transmitted(Invoice)

Additionally, the semantic task specification also specifies an action that is performed.
This action triggers a transition on the object life cycle. Formally we define this action
as a predicate triggerTransition([Subject], [Object]), which is specified on a subject, i.e.,
the artefact, and an object, i.e., the state to be reached. For example, the Book Invoice
task triggers the transition into Set Booked of the object life cycle.

66



CHAPTER 6
An Approach to Formal

Verification

In the previous chapters, we described how semantic task specifications can be formulated
using business artefacts with life cycles. In this chapter, we want to show how we can
use semantic task specifications in combination with context-dependent conditions, for
formally verifying the consistency of process models with their tasks and life cycles of
artefacts.

The semantic task specifications are the central entity for connecting the other models
together. They formally specify in a declarative way, via preconditions and postconditions,
the actions that a task of a process model performs and relate them to artefacts in the
(business) domain. Thus, they establish a connection between artefact-centric and
process-centric models. In addition, they provide the means to express context-dependent
information, which is only to be considered in certain situations. This context-dependent
information is modeled via conditional rules and can be systematically applied to semantic
task specifications. The executing services of tasks are invoked during enactment of the
process model. Figure 6.1 illustrates how all these concepts are connected and work
together.

As illustrated in the figure, there is no need for references from a task to its implement-
ing services. The services may be chosen and substituted based on their specifications.
However, in some cases an explicit selection of a service might be preferable, e.g., because
of non-functional properties such as execution time. In this case, an explicit reference
may be needed. However, the subtyping relationship with the semantic task specification
has to be ensured.

A task and its effects on the (business) domain is fully established by describing the
state before and after its execution. This state is expressed by the values of all artefacts
in the domain. Essentially, a task performs some action that alters the values of artefacts.
Hence, there exists an assignment of artefact properties before and after its execution.
These changes in property assignments are defined by the semantic task specifications.
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Figure 6.1: Approach for Formal Consistency Verification of Process Models and Artefacts68



6.1. Connecting Process Models and Object Life Cycles Through Semantic Task Specifications

Since not all assignments are admissible at all times, we also need an object life cycle
that constrains these assignments. By combining these parts, we are able to perform
formal consistency verification.

For our formal verification approach, we decided to represent all models necessary
in one modeling notation. As object life cycles are typically defined using FSMs, we
opted to use FSMs as well to represent process models as illustrated in Figure 6.2. More
precisely, we transform these models to several synchronized FSMs. This allows us to
use one notation for our verification approach.

6.1 Connecting Process Models and Object Life Cycles
Through Semantic Task Specifications

Until now, the process models and their tasks have only been connected to attributes of
object life cycles. Basically, a task may only be executed if preconditions are fulfilled, i.e.,
certain attributes have specific values, and after execution postconditions are fulfilled, i.e.,
certain attributes are set to specific values. This does not yet account for the actual life
cycle of the object and when attributes may be set or not. This becomes apparent when
we consider, for example, Figure 5.2 where no conditions are specified on the transitions
in the object life cycle. Thus, the tasks have to relate to the object life cycle, i.e., they
should trigger transitions in it.

This allows us, not only implicitly, through the changes of attributes given by the
postcondition, to define the action a task performs, but also explicitly by triggering
specific transitions in the object life cycle. To be more precise, this decouples the action
a task performs from its postcondition. The actual changes in the domain, i.e., the
attribute of the artefact, are not performed by the task itself via its postcondition, but
rather by the corresponding artefact-centric model, i.e., the extended object life cycle.
By doing so the postcondition can be used to ensure that the execution of the task
has yielded the expected changes. This is in contrast to performing the changes itself.
Figure 6.3 illustrates this behavior.

Decoupling the postcondition from actually performing actions in the knowledge base
is the foundation for our formal verification approach.

6.2 Transforming Extended Object Life Cycles to FSMs

The model of the object life cycle of a knowledge base, as shown in Figure 5.1, can be
systematically translated into an FSM. Each state of the figure is translated to a state in
the FSM. An exception is the first state, which is modeled as a separate state and used
as an entry point for the FSM. Figure 5.3 shows the result of the translation.

The FSM does not contain any signals. This is due to the fact that there are no
signals yet available, and that the transitions are triggered from the process and not from
the object life cycle itself. However, to synchronize the FSMs of the process model, these
signals have to be constructed systematically.
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Figure 6.2: Translating models to FSMs70



6.2. Transforming Extended Object Life Cycles to FSMs

Figure 6.3: Triggering changes in artefact-centric models

Each state in the object life cycle FSM can have a number of successor states. These
states are identified via the nextState predicate. Again, the predicate can be omitted,
and only the subject and the object are of interest. To be more precise, the subject,
which is in this case the previous state, is not even necessary. For example, the state
transition from Created to Transmitted is specified via the nextState predicate. It is of the
form nextState(SetCreated, SetTransmitted). However, we need additional information to
create the signal, since we have to identify the object that the transition is based upon.
When stateOfInvoice(Invoice, SetCreated) and nextState(SetCreated, SetTransmitted) are
known, according to a logical analysis of these two statements, the next state of the
Invoice must be Transmitted. Thus we can derive stateOfInvoice(Invoice, SetTransmitted)
and determine InvoiceSetTransmitted as the signal of the state SetCreated. If a state has
more than one successor states, then the corresponding signal has to be derived for each
transition. This results in the FSM shown in Figure 6.4.

IR = InvoiceSetReceived; IA = InvoiceSetAuthorized; IP = InvoiceSetPaid;

Figure 6.4: Object Life Cycle with systematically constructed Signals of the Customer
Invoice

Additionally, each attribute of an extended life cycle is modeled as an FSM as well. It
consists of two states. The first state represents that the value of the attribute is false, and
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it is true in the last state. The name of the state is constructed as [AttributeName][Value],
e.g., for the attribute Received it is ReceivedFalse and ReceivedTrue. The transition
between these two states is mapped to the corresponding set-state of the object life cycle,
i.e., it is only triggered if the corresponding set-state is reached. Figure 6.5 shows the
extended object life cycle with its attributes [87].

Figure 6.5: Extended Object Life Cycle with Attributes Customer Invoice

6.3 Transforming Enriched Process Models to FSMs
For a rigid approach to verification, it is necessary to have a systematic transformation in
place that translates process models to synchronized FSMs. The transformation approach
builds on the one defined in [87].

Each task in a process model is transformed to a corresponding FSM part. There are
three states created for each task and a transition, without any condition, between them
as illustrated in Figure 6.6.

The control flow between tasks in process models is directly translated to the FSM and
connects the two adjacent tasks. For example, if the task Transmit Invoice is transformed
into an FSM, then it is connected to the previously transformed task Create Invoice
according to the control flow defined in the process model.
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Figure 6.6: Translating Tasks of Process Models to FSMs

Each task is defined through a semantic task specification and this specification defines
the transitions between the states. The first state Task A Entry represents the entry
point of the task. This state may only be reached if the precondition of the corresponding
semantic task specification is fulfilled. Thus, the preconditions impose a guard condition
on the incoming transition of Task A Entry. The second state Task A Running represents
a currently executing task. As mentioned in Section 6.1, each task may trigger the object
life cycle. Hence, the incoming transition of Task A Running has a trigger. Finally, the
third state Task A Finished represents an already completed tasks. This state may only
be reached if all postconditions are fulfilled. Therefore, it includes a guard condition
on its incoming transition. A translated task according to its semantic specification is
shown in Figure 6.7.

Figure 6.7: Translating Tasks with Semantic Specifications to FSMs

We differentiate three types of tasks in a process model: Action Tasks, Send Tasks
and Receive Tasks. Action Tasks are used to perform some sort of action that alter
the domain. These are the most common tasks in process models and they behave as
described above. Send- and Receive-Tasks are special kinds of tasks and thus have to be
treated separately. These tasks are implemented by a service, but are also specified using
semantic task specifications.

In case of the Receive-Task, a waiting operation for an incoming message, or more
generally an external trigger, is in place. An incoming message has to be received first,
and only then the next transition is executed. Hence, an additional incoming signal is
necessary in the FSM to model this waiting operation, see Figure 6.8.

The corresponding Receive-Task, for example Receive Invoice, has an incoming signal
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Figure 6.8: Translating Receive Tasks with Semantic Specifications to FSMs

and is only triggered when this signal is set by an external entity. This signal can be
directly translated from the process model. If a task has an incoming message edge,
then the signal is constructed based on this edge and the task name. For example, the
Receive Invoice task of Figure 2.6 has one incoming message edge from the task Transmit
Invoice. Hence, the trigger signal of the corresponding entry state in an FSM can be
systematically constructed as [IncomingTaskName], e.g., TransmitInvoice.

Send-Tasks are the counterpart to the Receive-Tasks as they send messages to other
participants. These messages are sent concurrently to the execution of the task and thus
are modeled as an additional trigger, see Figure 6.9. The signals of these tasks can be
constructed systematically as [SendTaskName].

Figure 6.9: Translating Send Tasks with Semantic Specifications to FSMs

In essence, Send- and Receive-Actions are used to synchronize parallel processes.
Their signals are not related to the extended object life cycle as they are not influencing
the domain artefacts.
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The transformation of all three types of tasks can be shown together as illustrated in
Figure 6.10.

Figure 6.10: Generalized Transformation of Tasks with Semantic Specifications to FSMs

The guard conditions and the trigger signals of the tasks have to be constructed
systematically to fit the existing extended object life cycles that the semantic task speci-
fications reference. As mentioned in Section 5.3, the semantic specifications are formally
grounded in extended object life cycles. Hence, the preconditions, the postconditions
and the actions that they perform reference the object life cycle and its attributes.

First, let us consider the action a task executes. As mentioned above, the action
is actually a trigger that produces a state transition in the object life cycle. This is
formally defined by the predicate triggerTransition. For example, the Authorize Invoice
task triggers the transition into the state Set Authorized of the object life cycle. We can
use the subject and object to systematically construct the trigger signal in the FSM. The
specification of the performed action of Authorize Invoice is triggerTransition(Invoice,
Set Authorized). We can use the subject, Invoice, and the object, Set Authorized, to
systematically construct the signal InvoiceSetAuthorized. This resulting signal is the same
as the systematically constructed signal in the object life cycle shown in 6.2, connecting
the actions that a task performs via a triggering signal with the FSM of the object life
cycle.

A similar systematic approach is needed for the pre- and postconditions. Here
the semantic specification does not use the object life cycle, but rather references the
attributes of our extended version of object life cycles. The conditions are specified
using the attributeSet predicate, which is defined on a subject, an artefact, and an
object, a state of the artefact. We can now systematically construct the conditions as
state([Subject][Object]True). This essentially states that the condition is only fulfilled if
the subject is in state [Subject][Object]True. Let us consider the Authorize Invoice task
and its semantic specification again. The precondition is defined by attributeSet(Invoice,
Received). The resulting guard condition in our FSM is state(InvoiceReceivedTrue),
which is the same as the systematically constructed name for states of attributes. Hence,
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we connect the resulting FSMs of the process model and the object life cycle through
preconditions. The same approach is applied for postconditions as well.

In addition, Decision Nodes and Merge Nodes have to be treated separately. A
corresponding state in the FSM is created for both nodes, however, their incoming and
outgoing edges are treated differently. As Decision Nodes split the execution path of a
process model it may only contain one incoming edge from the previous state. This state
correlates to the last action, according to the control flow, of the BPM. The number of
outgoing edges correlate to the number of outgoing control flows of the BPM. If one of
these outgoing control flows also contains a condition, the condition is directly translated
to the corresponding outgoing edge of the decision state. The counterpart of the Decision
Node is the Merge Node. A Merge Node may have several incoming control flows and
only one outgoing control flow. In the FSM, the Merge Node is represented as a single
state and its incoming edges correspond with the incoming control flows of the node in
the BPM. However, in contrast to the BPM, each incoming edge is directly connected
to the previous state of the corresponding control flow. The outgoing edge is directly
connected to the following state according to the control flow of the process model.

The resulting FSM of the customer payment process of our running example is shown
in Figure 6.11.

As this representation is very verbose we opt to use a simplified version. We can
combine the three states that are created for a task to just one state. In this version,
we combine the precondition and the trigger on one incoming transition of the task’s
FSM. The outgoing transition contains the postcondition as a guard. This outgoing
transition is also combined with the incoming transition of the subsequent task. More
precisely, it is combined with the precondition of the next task. Figure 6.12 illustrates
this simplification.

This simplified depiction, however, does prevent us from showing some of the more
intricate characteristics of our verification approach. Hence, we use the simplified version
to give an overview and only resort to the more verbose version if it is necessary to show
specific details of the verification.

Using this transformation approach with the simplification, we can systematically
construct an FSM representation of the process models of our running example. The
resulting FSMs of these processes, together with their synchronization through their
Receive- and Send-tasks, are shown in Figure 6.13.

Using the systematically constructed signals, the models can be connected to the
FSMs of the extended object life cycles from Section 6.2. The resulting FSMs are shown
all together in Figure 6.14.

We are aware, however, that certain more complex processes cannot be translated
to FSMs due to their inherent limitation of expressiveness. Thus, we only translate a
subset that is sufficient for our verification approach. For example, BPMN multi-instance
tasks, which can create a potentially infinite number of parallel task instances, cannot
be translated to FSMs, also not to a fixed number of FSMs that are synchronized with
signals. In essence, we do not support multiple instances of tasks, parallelism and loops
in BPM with our verification approach.
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Figure 6.11: Customer Payment Process represented as an FSM 77
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Figure 6.12: Simplifying Tasks in FSMs

6.4 Modeling Business Rules as FSM Properties

There are several options how a business rule can be formalized. For the purpose of
model-checking, a formula in temporal logic would typically refer to the states of the
process model, but this requires that the property modeler knows the process model he
is supposed to check [90]. However, we use our extended life cycle models of business
artefacts, so that the formulas can refer to their states instead.

Let us explain this approach with the the rule defined in (Business) Rule 1.1. Strictly
speaking, this business rule defines a characteristic of the data object Invoice. So,
relating its formalization to a model of the Invoice object life cycle seems to be straight-
forward. We use our life cycle models to specify the (business) rule, without any additional
knowledge of the process itself and especially its control flow. Still, variables for specifying
characteristics of the Invoice object may be relevant, in our example amount. In addition,
the threshold value defined in the customer company is needed, which is defined as an
additional constant.

Using our formalization of (business) rules using implications of Section 4.3, we can
express them as CTL properties using always globally. The AG operator states that for
all possible transitions its content has to hold in each state. Essentially, our (business)
rule in propositional logic specifies a global constraint that has to be fulfilled. Thus, its
translation to CTL is straight forward as we “only” have to add our propositional logic
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Figure 6.13: Process Models as simplified FSMs

formula to the AG operator, which checks if the condition is fulfilled after all transitions,
i.e., at all times. The following CTL formula defines a property corresponding to the
(Business) Rule 1.1 as

AG(((Invoice.state = paid)) →
((Invoice.amount ≥ threshold) → (Invoice.state = authorized))) (6.1)

The same formalization can be used for our more complex (Business) Rule 4.2.

AG((Invoice.state = paid) →
(((Invoice.amount ≥ threshold) → (Invoice.state = authorized)) ∧

(¬(Invoice.amount ≥ threshold) → ¬(Invoice.state = authorized)))) (6.2)

Using the simplified version of Equation 4.8 yields the property shown below:

AG((Invoice.state = paid) →
((Invoice.state = received) ∧

((Invoice.amount ≥ threshold) ∧ (Invoice.state = authorized)) ∨
(¬(Invoice.amount ≥ threshold) ∧ ¬(Invoice.state = authorized)))) (6.3)

So, while the object life cycle on its own does not represent the business rule, of
course, these properties together with it do.
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Figure 6.14: Simplified Synchronized FSMs for Running Example
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CHAPTER 7
Evaluation and Results

In the previous chapters, we explained how the conceptual models can be connected
with each other through semantic task specifications and how their consistency can be
formally verified. These models are not bound to one specific modeling notation, but
rather represent higher conceptual ideas that can be expressed in a variety of notations.
However, for formally verifying concrete instances of process models one notation has
to be selected. This chapter presents an evaluation of our formal verification approach
using BPMN, OWL and NuSMV.

We use ontologies in OWL to represent the domain knowledge, i.e., our knowledge
base. The rationale for OWL is, that it already supports semantic specification of concepts
via description logic. With OWL it is relatively simple to create semantic concepts of
object life cycles and their attributes as illustrated in Section 5.1.

There are many pre-defined upper ontologies available for a multitude of application
fields. One such upper-ontology is OWL-S, which provides the means to semantically
specify services. We use these specifications to relate services to our object life cycle
ontology defined above. In essence, the preconditions and effects of a service are related
to states or attributes in an object life cycle.

Another benefit of using OWL is the availability of inference rules. There are many
rule engines available and we decided to use SWRL and the tool Protege. In essence,
SWRL models an implication between a body and a head. The head represents the
consequence that must hold if the body evaluates to true. We use SWRL as a means to
specify our context information as conditional rules (see Section 4.3). For our formal
verification approach, we do not use the inference that rule engines provide, but rather
use SWRL as a means to specify information that is further processed.

For process models we decided to use BPMN. BPMN is not only a well-established
modeling notation for BPMs, but also provides the means to extend and customize its
notation. We use this extension mechanism to connect tasks with their corresponding
semantic task specifications. Further details on BPMN are given in Section 2.1.2.
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Figure 7.1: Technologies for Evaluating Verification Approach82



Figure 7.1 provides an overview of the technologies used for evaluating the verification
approach. As this figure suggests, the verification is not performed directly on the models.
We use model checking via the tool NuSMV for formally verifying the consistency of the
models involved. To perform formal verification, we have to generate a representation of
our models in NuSMV. This representation has to contain combined information of the
models as well as the definition of the conditional rules as properties. The properties are
actually what we verify our models against. NuSMV supports properties expressed in
CTL (see Section 6.4).

Before we can define the transformation of our models to NuSMV, we first have to
specify how we logically connect the models together. For logically connecting task-
and artefact-centric models, we adopt parts of OWL-S specifications previously defined
for services and employ them for semantic task specification. In essence, we utilize the
possibility to specify conditions and effects, to provide a formal semantic specification
of all tasks that are embodied in a process model. That is, each task in BPMN has a
counter-part in OWL-S, which semantically specifies its behavior. The conditions and
effects relate to the object life cycle defined in OWL and thus connect the two models
together.

The predicate hasResult in OWL-S couples outputs and effects. Effects are closely
related to tasks, since they specify how the domain objects change, and are specified via
the hasEffect predicate. To be more precise, they specify the changes that are caused by
the service execution. In our approach, we relate these changes to state transitions in an
object life cycle. That is, each service execution may change the state of a domain object.

The complete semantic specification of a task in OWL-S is very verbose. We show
only an excerpt containing the output and the effect in Listing 7.1. The task is identified
via the rdf:about=“AuthorizeInvoice” statement and is modeled as an AtomicProcess. An
AtomicProcess executes an atomic operation, for example a WSDL operation. The next
part, starting with the predicate hasResult in Listing 7.1, describes the result. It shows
the output (rdf:ID=“InvoiceOutput”) and its binding. The binding is actually omitted
here, since it does not influence the specification of the effects. These are specified in
the hasEffect predicate. In Listing 7.1, an SWRL-Rule is used to define the effect. The
rule is identified by the rdf:ID StateTransition. Recalling that all statements in RDF
are represented as triples of the form Subject, Predicate and Object, we can determine
the meaning of the rule. The rule basically specifies that in our domain ontology the
predicate stateOfInvoice is set for the subject InvoiceOutput to the object Set Authorized.
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Listing 7.1: Excerpt of OWL-S Specification of Authorize Invoice Task with its Effect
<process:AtomicProcess rdf:about="AuthorizeInvoice">
...
<process:hasResult>

<process:Result>
<process:hasResultVar>

<process:ResultVar rdf:ID="InvoiceOutput">
<process:parameterType rdf:resource="#Invoice"/>

</process:ResultVar>
</process:hasResultVar>
<process:withOutput>

<process:OutputBinding>
...

</process:OutputBinding>
</process:withOutput>
<process:hasEffect>
<expr:SWRL-Condition rdf:ID="StateTransition">
<swrl:AtomList>

<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="stateOfInvoice"/>
<swrl:argument1 rdf:resource="#InvoiceOutput" />
<swrl:argument2 rdf:resource="#SetAuthorized" />

</swrl:IndividualPropertyAtom>
</rdf:first>

</swrl:AtomList>
</expr:SWRL-Condition>

</process:hasEffect>
</process:Result>

</process:hasResult>
...

</process:AtomicProcess>

With these specifications, the tasks are directly related to the object life cycles of the
domain objects [87].Additionally, we use SWRL-Rules to specify context information as
conditions on object life cycles. Let us consider our Invoice example again to illustrate
this. A service Authorize Invoice is semantically specified and has the effect that an
Invoice is authorized. In this case, the effect of the task execution is that the attribute
Authorized of the Invoice is set to the state AuthorizedTrue. Such information basically
expresses that “An Invoice has to be received before it can be authorized”. The naive
implementation of this rule is shown in Listing 7.2.

Listing 7.2: Naive implementation of Received before Authorized Rule
attributeSet(Invoice,ReceivedTrue) -> attributeSet(Invoice,AuthorizedTrue)

This rule, however, is not correct as it expresses an implication between ReceivedTrue
and AuthorizedTrue. This implication states that if an Invoice has been received, and
attributeSet(Invoice, ReceivedTrue) evaluates to true, an Invoice also has to be authorized,
attributeSet(Invoice, AuthorizedTrue) evaluates to true. This is not what the rule above
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given in natural language expresses and it is also logically not correct as not all received
invoices have to be authorized.

We actually have to switch the two statements in the implication or the direction
of the implication as illustrated in Listing 7.3. This rule states, that in order for
attributeSet(Invoice, AuthorizedTrue) to be evaluated to true also attributeSet(Invoice,
ReceivedTrue) has to be evaluated to true. Otherwise, the implication would fail and the
rule would be broken.

Listing 7.3: Implementation of Received before Authorized Rule
attributeSet(Invoice,AuthorizedTrue) -> attributeSet(Invoice,ReceivedTrue)

These rules can be used to systematically enrich semantic task specifications. In
essence, they add additional preconditions to a semantic task specification with matching
postcondition. For example, if there is a semantic task specification that has in a postcon-
dition that the Authorized attribute should be set (attributeSet(Invoice,AuthorizedTrue)),
then we can match the body of the rule with this postcondition. Since the rule specifies
a condition that has to be fulfilled for it to evaluate to true, we can derive that the
consequence of the rule should be added as precondition as well.

Let us express this with a more complex example. In our running example, there is a
task called Pay Invoice in the Customer Payment Process. It can be reached through
two paths: directly from Receive Invoice or diverted through Authorize Invoice. Which
path is taken depends on the amount of the received invoice. If the amount is larger
than a threshold, then an extra authorization step is necessary. The corresponding rule
is shown in (Business) Rule 1.1. Let us assume the (business) rule is formalized as shown
in Listing 7.4.

Listing 7.4: Implementation of Authorized before Paid Rule
attributeSet(Invoice,PaidTrue) → (attributeSet(Invoice,ReceivedTrue) ∧ (¬(

Invoice.amount ≥ threshold) ∨ (attributeSet(Invoice,AuthorizedTrue) ∧
(Invoice.amount ≥ threshold))))

Actually, the rule in Listing 7.4 can be simplified to the one in Listing 7.5.

Listing 7.5: Implementation of Authorized before Paid Rule
attributeSet(Invoice,PaidTrue) → (attributeSet(Invoice,ReceivedTrue) ∧ (¬(

Invoice.amount ≥ threshold) ∨ attributeSet(Invoice,AuthorizedTrue)))

The task Pay Invoice has a semantic task specification that does not differ from
its implementing semantic service specification, which states that a received invoice is
necessary to make a payment. The semantic task specification is expressed in Listing 7.6.
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Listing 7.6: Pay Invoice Semantic Task Specification
Pay Invoice:

Pre: attributeSet(Invoice,ReceivedTrue)
Eff: attributeSet(Invoice,PaidTrue)

As we can see, the postcondition attributeSet(Invoice, PaidTrue) of the Pay Invoice
task matches the body of the (business) rule. Thus, we can add the conditions of the
rule as an additional precondition to the semantic task specification. Listing 7.7 shows
this enriched semantic task specification.

Listing 7.7: Enriched Pay Invoice Semantic Task Specification
Pay Invoice:

Pre: attributeSet(Invoice,ReceivedTrue) ∧ ((attributeSet(Invoice,
ReceivedTrue) ∧ ¬(Invoice.amount ≥ customer.threshold) ∨ (
attributeSet(Invoice,AuthorizedTrue))))

Eff: attributeSet(Invoice,PaidTrue)

The question is, does this enriched semantic task specification still fulfills the subtyping
relationship with the implementing service? To answer this question we have to consider
the precondition as a Boolean logic formula. The precondition of a subtype has to be
equal or weaker than the one of the supertype. Hence, all interpretations in which
the enriched semantic task specifications evaluate to true, have also to be true for the
subtype. We can directly conclude that this has to be true as the original precondition is
and-connected with the additional conditions, i.e., the enriched precondition can only
evaluate to true if attributeSet(Invoice, ReceivedTrue) evaluates to true. The formula can
be simplified to the one in Listing 7.8.

Listing 7.8: Simplified Enriched Pay Invoice Semantic Task Specification
Pay Invoice:

Pre: (attributeSet(Invoice,ReceivedTrue) ∧ ¬(Invoice.amount ≥ customer.
threshold)) ∨ attributeSet(Invoice,AuthorizedTrue)

Eff: attributeSet(Invoice,PaidTrue)

In the same way we can systematically enrich the PayInvoice task with (Business)
Rule 4.2. The result is shown in Listing 7.9 and corresponds with the property for
NuSMV defined in Equation 4.8.
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Listing 7.9: Simplified Enriched Pay Invoice Semantic Task Specification for Authorize
Only
Pay Invoice:

Pre: (attributeSet(Invoice,ReceivedTrue) ∧ ((¬(Invoice.amount ≥ customer.
threshold) ∧ ¬(attributeSet(Invoice,AuthorizedTrue))) ∨ ((Invoice.
amount ≥ customer.threshold) ∧ attributeSet(Invoice,AuthorizedTrue)))

Eff: attributeSet(Invoice,PaidTrue)

In our approach, we use BPMN as the notation for process models. We connect
each task of our running example in Figure 2.6 with a corresponding task specification
in OWL-S. The result is shown in Figure 7.2, witch each task containing annotations
illustrating its semantic task specification. This is similar to the annotations in [111]. In
case of existing task specifications in OWL-S, they can be reused, otherwise they have to
be created from scratch.

For our systematic approach, each and every task in BPMN needs to have a semantic
task specification given in OWL-S. Also for tasks that are not implemented by a (Web)
service, a corresponding OWL-S specification has to exist. An example of such a task
is Transmit Invoice. This task is a BPMN Send-Task, which is used to send messages
to other tasks or processes. Such tasks sometimes do not use a service implementation
for execution, but are directly executed by the BPMN engine. We employ OWL-S
specifications for such tasks as well. Another example is the BPMN Receive-Task, which
is the counterpart of a BPMN Send-Task.

We utilize the extension mechanism of BPMN to connect tasks with OWL-S speci-
fications. The custom tag semanticTaskRef defines the reference to the corresponding
OWL-S specification for a task in BPMN. Listing 7.10 shows how the connection between
BPMN and the semantic task specification is established.

Listing 7.10: Connect BPMN Task to Semantic Task Specification
<serviceTask id="TransmitInvoice" name="Transmit Invoice" ...>

... // INPUT/OUTPUT Binding
<extensionElements>
<semService:semanticTaskRef id="transmitInvoiceSemanticTaskRef">

http://ict.tuwien.ac.at/ontologies/semanticTaskSpec#TransmitInvoice
</semService:serviceRef>

</extensionElements>
...

</serviceTask>

The BPMN engine does only need a reference to the semantic task specification, all
additional information can be accessed from there. We use a Uniform Resource Identifier
(URI) to reference a specific instance of an semantic task specification in our knowledge
base given in OWL. To process this information during enactment of the process, the
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Figure 7.2: Running Example in BPMN with Annotations88



tasks in BPMN has to be adapted, of course. Since our focal point is on verification and
not execution we do not have to provide an adapted BPMN execution engine.

Using these techniques allows us to connect all our models together. However, the
actual verification of their consistency still remains open. As stated above, formal
verification using model checking in NuSMV requires a representation in NuSMV source-
code. We decided against a direct translation of our models to NuSMV source-code as it
would limit using our approach with other technologies. Instead, we opted to translate
our models to an intermediate representation that is already closely resembling how
models in NuSMV operate.

FSMs are our representation of choice, since NuSMV also operates on state machines.
From a technical point of view we utilize state machines from the UML. Figure 7.3
illustrates the transformation of the higher-level models to NuSVM source-code.

Figure 7.3: Transformation Approach for BPMN models

We use model-driven technologies to perform the transformation of the models.
First, we transform our process models given in BPMN with Operational Query View
Transformation (QVTO) to UML state machines. QVTO is a rule-based model-to-model
transformation language. In the course of this transformation the references to the
semantic task specification, provided by extended BPMN tasks, are used to create the
state machines accordingly. The transformation of process models in BPMN to FSMs is
based on the one described in Section 6.3.
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Transforming of BPMN models to FSMs and their interleaved establishment of
connections with the FSMs representing object life cycles works systematically according
to the following steps:

1. For each Pool in BPMN, create an FSM.

2. For each Task or Gateway in this Pool, create states in the FSM according to
Section 6.3.

3. If this Task has an outgoing message, create a corresponding signal setting on each
outgoing transition of the resulting states.

4. If this Task has an incoming message, create a signal trigger on the corresponding
outgoing transition of the states.

5. For each BPMN control flow element, create a corresponding transition.

6. For each annotated BPMN control flow element, (additionally) create a correspond-
ing signal setting.

7. For each condition specified on a control flow element (from a Gateway), create a
corresponding signal trigger on the corresponding outgoing transition of the state
(of this Gateway).

The object life cycles and their attributes represented in OWL are transformed to
FSMs according to Section 6.2. For this transformation, we use QVTO as well.

The synchronized FSMs at the intermediate level are self-contained, i.e., they contain
all information necessary for creating an NuSMV representation. The transformation of
the intermediate FSMs uses a template-based model-to-text approach. For our evaluation,
we use Xtend to generate the NuSVM source-code. Listing 7.11 shows the resulting
NuSMV source-code representation of the invoice used in the delivering company process.
The transition from a state to another is encoded in the next case statement and only
triggers if the corresponding signal is set.
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Listing 7.11: Object Life Cycle represented in NuSMV source-code
init(InvoiceDCPLifeCycle) := InvoiceDCPLifeCycleInitial;
next(InvoiceDCPLifeCycle) :=
case

(InvoiceDCPLifeCycle = InvoiceDCPLifeCycleSetTransmitted) :
InvoiceDCPLifeCycleSetPaymentReceived;

(InvoiceDCPLifeCycle = InvoiceDCPLifeCycleInitial) &
DCPCreateInvoiceSignalEvent : InvoiceDCPLifeCycleSetCreated;

(InvoiceDCPLifeCycle = InvoiceDCPLifeCycleSetPaymentReceived) &
DCPLifeCycleSetBookedSignalEvent : InvoiceDCPLifeCycleSetBooked;

(InvoiceDCPLifeCycle = InvoiceDCPLifeCycleSetCreated) &
DCPTransmitInvoiceSignalEvent :
InvoiceDCPLifeCycleSetTransmitted;

no_signal_InvoiceDCPLifeCycle : InvoiceDCPLifeCycle;
TRUE : InvoiceDCPLifeCycleError;

esac;

Attributes of our extended object life cycles are essentially represented in the same
manner as they are also expressed as FSMs. The created attribute of the invoice used in
the delivering company is shown in Listing 7.12.

Listing 7.12: Attribute of an Extended Object Life Cycle represented in NuSMV source-
code

init(InvoiceDCPCreated) := InvoiceDCPCreatedFalse;
next(InvoiceDCPCreated) :=
case

(InvoiceDCPCreated = InvoiceDCPCreatedFalse) & (InvoiceDCPLifeCycle
= InvoiceDCPLifeCycleSetCreated) : InvoiceDCPCreatedTrue;

TRUE : InvoiceDCPCreated;
esac;

Given all the resulting connected FSMs and the property formulas in NuSMV, the
model checking tool can do formal and automatic verification against (business) rules.

The models shown in Figure 6.14 can be verified against the (business) rule defined
in Equation 6.1 of Section 6.4 and no violations are identified. However, another process,
shown in Figure 7.4, can also be verified. This process performs an unconditional
authorization of the invoice after receiving it and the amount of the invoice has no
influence on the execution of the Authorize Invoice task. This is not in conflict with the
(business) rule as it does not imply any conditions on whether an authorization can be
made if the amount is less than a threshold.

Using (Business) Rule 4.2 and its formalization in CTL shown in Equation 6.3, this
process does not verify anymore, but the one given in Figure 6.14 still does.

Using our verification approach, we can identify if conditions in the process models are
not corresponding to a (business) rule. For example, let us consider the process fragment
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Figure 7.4: Customer Payment Process which Authorization at all times

in Figure 7.5, where the conditions in the customer payment process are swapped. In
this process, an invoice is to be authorized only if its amount is less than a threshold.

Figure 7.5: Customer Payment Process with Swapped Conditions

This does, of course, violate the (business) rule given above and the model checking
tool provides a counter-example. Additionally, the corresponding input signals of the pay
invoice states are not fulfilled and, thus, the task can not be performed.

As this evaluation illustrates, there are neither adaptions on the services and their
semantic specifications nor the semantic task specifications necessary to change the
properties a process is verified against. Actually, only changing the (business) rule is
sufficient for verifying processes against different kinds of properties.
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CHAPTER 8
Discussion and Future Work

The verification does not account for a process to actually reach a final state, i.e., to reach
its end. Processes such as the one shown in Figure 8.1 can still be verified. Technically
speaking, this behavior is not wrong as the process does not breach any conditions, but
the object life cycle is not processed all the way through, i.e., the “booked” attribute is
never set.

Figure 8.1: Delivering Company Process without Book Invoice Task

To account for processes that do not finish in a final state, we would have to introduce
additional properties in NuSMV. Essentially, we would have to define that all involved
state machines have to reach a final state. Technically, this could be accomplished by
introducing properties, which check whether a state machine is in a defined state and if
this state is not left anymore, i.e., the process stays in this final state.

Business rules can be implemented in WS-BPEL (Business Process Execution Lan-
guage), a popular orchestration language for Web services, which includes procedural
constructs such as loops and conditional selection of services [79]. However, in contrast to
our approach, business rules are not identifiable as such in the procedural code. So, it is
very difficult to extract what a business rule exactly states, and they are difficult to reuse.
This approach is inherently different from ours as presented above and requires a different
form of verification. In our approach, we actually bridge the gap between declarative
and procedural specifications and connect them via semantic task specifications.
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Business rules can also be implemented within (Web) services. However, this requires
knowledge about variability for different processes in their specification (possibly with
conditional preconditions) and of all tacit business rules as well. And it reduces the
reusability of such services and contradicts the intention of the service approach. We
showed above that simply adding knowledge of a business process to a semantic service
specification makes it specific to this process and does not allow the reuse of this service
in another business process any more.

While this thesis deals with verification of service composition, it is also possible
to provide an automatic composition of services based on our combination of semantic
Web-service specifications and business rules. Since FLUX also provides the possibility to
automatically generate plans and even to develop an additional planner, it is possible to
automatically generate service compositions for achieving a given goal condition. These
would be verified by definition through this way of being generated. In addition, when a
complete set of additional business rules is employed, the related business processes would
be valid, too. Of course, the completeness of business rules cannot really be guaranteed,
so that a validation of generated service compositions as business processes will still be
required. In [45] we actually used a planner in FLUX for formal verification.

It is also possible for FLUX to have multiple operations to be triggered by a single
operation. In such a situation, it creates all possible plans, from which a valid one in
the sense of the business process may be chosen. FLUX can even deal with concurrency.
For further information on the Fluent Calculus implemented by FLUX, we refer the
reader to the FLUX manual at http://www.fluxagent.org. Overall, our verification
approach using FLUX can handle everything that FLUX can.

This planning feature of FLUX can also be used for a different kind of verification
approach. In this paper, we focus on the verification of given sequences of services, but
FLUX also provides the means for a verification of whether a goal condition can be
achieved by such a sequence. In [45] we used a negative goal condition as a condition to
be avoided and used a planner to check whether this goal condition can be reached. If
the goal condition can be reached the proposed models can not be verified.

Since our new approach connects task- and artefact-centric models systematically, it
may also be useful for automatically verifying their consistency. Such consistency checks
are complementary to the approach by Lohmann et al. [60], which employs compliance
rules to automatically construct artefact-centric models from task-centric BPMs.

We tacitly assume that the OWL-S specification of the used Web services are defined
using the same ontology as the one used for defining the object life cycles. In the context
of an Enterprise Architecture, this assumption appears to be valid, because everything
should be consistently defined within it.

FSMs (including synchronization through signals) are sufficient for our example, but
certain more complex processes cannot be translated to FSMs at all, due to their inherent
limitation of expressiveness. For example, BPMN multi-instance tasks, which can create
a potentially infinite number of parallel task instances, cannot be translated to FSMs,
also not to a fixed number of FSMs that are synchronized with signals.

Instead of FSMs, however, Petri nets may be used. BPMN models can be transformed
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(automatically) to Petri nets according to, e.g., Raedts et al. [88] and Dijkman et al. [27].
Still, our approach intrinsically needs additional object life cycle models. These can

be represented in Petri nets as well (possibly even translated from FSMs). Meyer et
al. [69] actually propose an approach that can integrate process models with object life
cycles in Petri nets.

For using model checking tools, yet another transformation from Petri nets to their
specific input languages is needed. For example, Raedts et al. [88] also propose automatic
translation from Petri nets to mCRL2 to facilitate the use of model checking tools based
on this language for the verification of process models.

Based on this related work, our new approach of formalizing properties using object
life cycles can be easily generalized for unrestricted BPMN. Due to the change of the
formalism, the formulation of properties representing a business rule has to be changed as
well. Since Petri nets focus on transitions and places rather than states, small adaptations
in these property formulas are necessary (i.e., references to places instead of states).

Procedural modeling languages allow for deliberately complex orchestration of Web
services. We restrict service composition to sequences of services, where its semantic
specification can be derived based on previous work in [76, 34], in order to achieve at
least some systematic derivation.

Teschke in his contribution to [103] proposes to create a specification according to a
business process requirement for retrieving components that are in a subtyping relationship
to this specification. According to this idea, services may substitute components if they
are in a behavioral subtyping relationship. This may involve pre- and postconditions
as well. In fact, our approach could retrieve services for tasks based on their semantic
specifications as well, since they adhere to subtyping. An automatic matching approach
is conceivable.

Sanchez et al. [96] state that it is difficult to align business processes and the underly-
ing information technology, i.e., implementing IT services. They identify incompatibilities
between tasks in BPMN with their implementing services and formalize them mathemati-
cally. In contrast to our work, they focus on incompatibilities of service names or different
input and output parameters and, in contrast to our approach, do not consider pre- and
postconditions of services. Utilizing algorithms allows them to minimize incompatibilities
and to find matching services more efficiently as they show in a case study. This approach
could be combined with the approach of this thesis to identify possible matches of services
for tasks that are not solely based on semantic task specifications.

Our systematic approach for deriving enriched task specifications from business rules
was only studied yet for a specific kind of business rule formalized in a specific way.
Future work should investigate this further.

Throughout this thesis we used a business process model to demonstrate the theoretical
constructs of our approach. Our approach is however not limited to business processes or,
more generally, a specific domain, but can rather be used in a variety of process models.
Currently, we are applying our approach to a problem in the automotive domain. This
involves a cyber-phyiscal system with a physic environment model.
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CHAPTER 9
Conclusion

In artefact-centric modeling of business processes, artefacts and their life cycles are
considered first-class citizens. This is in contrast to the more wide-spread modeling of
business processes with the control flow between tasks in mind. Our approach bridges the
gap between these two philosophies by annotating the tasks in BPMs with semantic task
specification, which is defined using the object life cycles of artefacts. More generally,
this approach implements a connection between task- and artefact-centric models. We
show how this connection can be used for a seamless formal verification approach of
BPMs through model checking.

The key research questions addressed in this thesis are:

1. How can task-centric and artefact-centric models be connected?
We use semantic task specifications to relate tasks to artefact-centric models, i.e.,
we ground their logic representation in attributes of (extended) object life cycles.

2. Are semantic service specifications sufficient for task-centric process models?
We found that semantic service specifications are not sufficient for task-centric
models. Using only semantic service specification would limit the reusability of
services in different process models. Moreover, adapting the semantic service
specifications to fit more than one process model leads to over-specification of their
implementing services.

3. How can a software service be reused in a different context without changing its
implementation/specification?
Providing a declarative specification of context information allows us to reuse
services. We use (business) rules to express context-dependent conditions and
enrich semantic task specifications with the information necessary. Neither the
services nor their semantic specification have to be altered in our approach and
thus over-specification does not occur. This enables reuse in different contexts.
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4. Is it possible to decouple semantic specifications from process knowledge?
We propose to relate the semantic specifications exclusively to attributes of (ex-
tended) object life cycles. Thus, no knowledge about the process that tasks are
enacted in is required.

5. Is formal verification of process models against object life cycles possible?
Formal verification of process models against object life cycles can be performed
using semantic task specifications and (business) rules. We use NuSMv to formally
verify the consistency of process models and the object life cycles they operate on.

Connecting conceptual models of processes and artefacts enables us to address all these
questions. We use semantic task specifications to establish a formal connection between
(extended) object life cycles and tasks of process models. The necessity of semantic task
specifications is motivated by a verification and validation mismatch when using only
semantic service specification. Actually, not only would services be over-specified, but
also their reuse would be limited. In fact, they cannot be reused easily in different context
without changing their implementation. Semantic task specifications decouple the service
and its implementation from the context they are invoked in and, by doing so, enables
their reuse. We used the Fluent Calculus implemented in FLUX to identify this V&V
mismatch.

We use conditional (business) rules as a means to specify context information, i.e.,
they specify context-dependent conditions. These rules restrict process models, more
precisely the paths taken in a process model, and are related to (extended) object life
cycles. Using this approach allows us to decouple context information and semantic task
specifications from process knowledge.

All these connected models together provide the means for formal verification through
a model checker.
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