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Abstract

Hybrid quantum systems no doubt will play a prominent role in the implementation
of quantum technologies in the coming century, due to their versatility and potential
in control and manipulation of (complex) quantum systems. Bringing these systems
into the realm of solid state physics is the next logical step in scaling up these
technologies and making them interesting to use in large scale applications. Many
experiments have shown such an implementation in solid state devices and many
realizations of quantum technologies nowadays rely on a solid state hybrid quantum
system in one way or another. On the other hand most physical systems in nature
are inherently non-linear, and used in classical examples ranging from lasers to single
photon detectors. In this thesis I try to combine these two principles, something
that has not been done yet in a solid state hybrid quantum system.

Starting from a system that is in the linear regime, and in many ways behaves
like a two coupled harmonic oscillator system, I present two experiments, where we
leave this linear regime and study the occurring non-linearity of the spin system.

In a first experiment I study amplitude bistability, one of the first non-linear
effects discovered in quantum optics, where the system undergoes a phase transition
between the linear and the non-linear regime. This first implementation of amplitude
bistability in such a system allows to study completely new properties of the phase
transition and directly observe the temporal evolution of it on an unprecedented
time-scale of several tens of thousands of seconds, and allows to extract properties
like the critical exponent of the transition.

In a second experiment I show another archetypal non-linear effect, that has not
been shown so far in a solid state hybrid system. Superradiance is a collective non-
linear effect where multiple emitters coupled to a cavity mode behave qualitatively
different than a single emitter, with a collective decay many orders of magnitude
faster than a single spin.

Negatively charged nitrogen vacancy centers in diamond act as as the (non-linear)
spin system, coupled to either superconducting transmission line resonators or
3 dimensional lumped element resonators. The successful implementations give
rise to rather immediate implications in the development of superradiant masers,
quantum batteries, microwave switches and single microwave photon detectors.
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Zusammenfassung

Hybride Quantensysteme werden ohne Zweifel, aufgrund ihrer Flexibilität und
Potential für die Kontrolle und Manipulation von (komplexen) Quantensystemen,
einen entscheidenden Einfluss auf die Entwicklung von Quantentechnologien im
kommenden Jahrhundert haben. Diese Systeme in das Regime von Festkörper-
physik zu bringen ist nur der nächste logische Schritt um sie besser skalierbar und
interessant für größer skalierte Anwendungen zu machen. Viele Experimente haben
bereits eine erfolgreiche Implementierung gezeigt und eine Reihe von Anwendungen
heutzutage verwenden ein Festkörper Hybrides Quantensystem auf die eine oder
andere Weise. Andererseits sind fast alle physikalischen Systeme in der Natur
nicht-linear, und nicht-lineare Systeme werden erfolgreich in klassischen Beispielen
wie dem Laser oder Einzelphotonen Detektoren benutzt. In dieser Arbeit versuche
ich diese beiden Prinzipien zu verknüpfen, etwas was bis jetzt noch nicht in einem
Festkörper Hybriden Quantensystem gelungen ist.

Ausgehend von einem linearen System, dass sich in vielen Punkten wie zwei gekop-
pelte harmonische Oszillatoren verhält, präsentiere ich zwei Experimente, bei denen
dieses harmonische Regime verlassen wird und die nicht-linearen Eigenschaften der
Spins sichtbar werden.

In einem ersten Experiment zeige ich Amplituden Bistabilität, einer der ersten
nicht-linearen Effekte der in der Quantenoptik entdeckt wurde, bei dem das System
einen Phasenübergang zwischen einem linearen und nicht-linearem Regime aufweist.
Diese erste erfolgreiche Implementierung in einem Festkörper Hybriden System gibt
uns die Möglichkeit neue Eigenschaften des Phasenüberganges zu studieren und
direkt das zeitliche Verhalten zu beobachten, auf einer Zeitskala von beispiellosen
zehntausenden von Sekunden. Das gibt die Möglichkeit Eigenschaften wie den
kritischen Exponenten des auftretenden Phasenüberganges zu bestimmen.

In einem zweiten Experiment untersuche ich einen anderen archetypischen nicht-
linearen Effekt, der bis jetzt noch nicht in einem Festkörper System gezeigt werden
konnte. Superradianz ist ein kollektiver nicht-linear Effekt, bei dem viele Emitter
sich qualitativ unterschiedlich zu einem einzelnem Emitter verhalten, mit einem
kollektiven Zerfall viele Größenordnungen größer als ein einzelner Spin.

Um die Experimente zu realisieren verwenden wir ein Hybrides System mit nega-
tiv geladenen Stickstofffehlstellen in Diamant, als das (nicht-lineare) Spin System,
dass entweder an einen supraleitende zweidimensionale oder dreidimensionalen
Resonator gekoppelt wird. Die erfolgreiche Implementierung wird sehr schnell
und sofortigen Einfluss auf die Entwicklung von superradianten Masern, Quan-
tenbatterien, Mikrowellen Switches oder Mikrowellen Einzelphotonendetektoren
haben.
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1 Introduction and Outline

Since its beginnings in the early 20th century, a big part of quantum theory has been
related to the study of light-matter interactions, starting with Einsteins insight that
light consists of photons [1]. Other important milestones like Dirac using quantum
mechanics for the first time to compute the coefficient of spontaneous emission of an
atom [2], or the quantization of Maxwells equation by Feynman in the 1940s [3] are
only a few of many more examples.

Trying to control and make use of this interaction led to the field of cavity quantum
electrodynamics [4] where the quantized field of a cavity gives stronger coupling and
more control over the coupled emitter. This led to numerous implementations [5–7]
and even a Nobel price in 2012 [8, 9].

After successful demonstration of coherent exchange of energy (and information)
between a two-level system and the photon field, these principles were successfully
applied in quantum information physics, and up to this day many (if not all) realizations
for quantum information physics are using cavities to help the readout, initialization
or interaction control. This ranges from trapped ions, superconducting qubits and
quantum dots to spin impurities in solids or optomechanical systems [10–16]. But not
only for quantum computing, simulation or communication these types of systems
play an important role, also for single photon detection or generation [17–19] or
high sensitivity sensors [20–23], hybrid cavity – qubit systems are often used for the
manipulation of electromagnetic fields.

Many of these applications use single or few qubits coupled to the cavity mode
(or the cavity is “only” used as a readout or manipulation device), however, using
large ensembles of qubits coupled to cavities are allowing and will allow new quantum
technological applications, like multimode quantum memories [24–28], to be realized. In
these hybridized systems high cooperativity and strong coupling has been successfully
demonstrated with different species of spin systems [29–35].

Even though these types of systems have proven to be extremely successful and
will most certainly lead to a breakthrough in the coming century, many of these
implementations work in the linear regime of cavity QED [4, 36]. Here the hybrid
system very much behaves like two coupled harmonic oscillators, a system we understand
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1 Introduction and Outline

very well, but does not make use of one of the defining properties of the coupled qubit
system. A two-level-system is by definition natures most an-harmonic system, and
even though using a big ensemble of emitters disguises that, so is an ensemble of them.

In the presented thesis I will go one step further and present work that goes beyond
the linear regime of cavity QED and explores its non-linear regime, a necessary step
towards better understanding the physics of hybrid systems, and a roadmap for quantum
technological applications.

Outline

I will start with a theoretical chapter explaining the theory behind light-matter
interaction and the nature of quantized electromagnetic fields. The second (short)
chapter is then dedicated to the description of the experimental setup, using either
superconducting resonators or 3D resonators coupled to a solid state spin system –
nitrogen-vacancy centers in diamond. Further, I will show the measurement as well as
the numerical software setup necessary to employ and model the results. Finally, the
last chapter shows two successful implementations of non-linear effects in our hybrid
system, both experiments leaving the linear regime of cavity QED and exploring new
and exciting physics.
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2 Cavity Quantum Electrodynamics

The interaction of light and matter is beautifully described by Maxwell’s equations
discovered in the late 19th century. They ingeniously combine both the electric and
magnetic fields to form the electromagnetic field. Quantizing these fields leads to
quantum electrodynamics, one of the most powerful and precise physical theories and
rewarded by a Nobel price for Feynman, Schwinger and Tomonaga in the 1940 [37–39].
This again led to the development of cavity quantum electrodynamics, which describes
the interaction of this quantized field in a cavity with matter; be it atoms, spins or
even mechanical oscillators.

In this chapter I will introduce the basic building blocks of cavity quantum elec-
trodynamics (cQED) and how combining them allows to develop Hybrid Quantum
Systems (HQS)

Parts of this chapter are based on [40–44]

2.1 Cavities - Photons in a Box

Starting from Maxwell’s equations I will introduce the basic principles of quantization
of the electromagnetic field in free space, with properties like Fock and Coherent states
emerging from that, and how introducing boundary conditions leads to the quantized
field inside a cavity.

3



2 Cavity Quantum Electrodynamics

E-field

B-field
z

x

y

Figure 2.1: Representation of the quantized field inside two perfectly conducting walls. The
boundary conditions force the electric field to be zero at 0 and L, whereas the strength
of the magnetic field has to be maximum there. The electric field and magnetic field are
perpendicular to each other and π/2 out of phase.

2.1.1 Quantization of a Single-mode Field

The starting point for the quantization of the electromagnetic field are Maxwell’s
equations in vacuum, given by

∇ ·B = 0,

∇ · E = 0,

∇×B = µ0ε0
∂E

∂t
,

∇× E = −∂B
∂t

.

(2.1)

For a one dimensional cavity along the z-axis (see Fig. 2.1) with perfectly conducting
walls, one gets a solution to these equations using mode expansion [41] as (we arbitrarily
choose the electric field to be polarized in the x-direction)

Ex(z, t) =
∑
j

√
2ω2

j

V ε0

qj(t) sin(kjz),

By(z, t) =
∑
j

(
µ0ε0
kj

)√
2ω2

j

V ε0

q̇j(t) cos(kjz).

(2.2)

Here µ0 and ε0 are the vacuum permeability and permittivity, V the mode volume of
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2.1 Cavities - Photons in a Box

the cavity, ωj the angular frequency of mode j and kj the wave vector of mode j.

These equations full-fill the boundary conditions of a vanishing E-field at z = 0,L

and obey Maxwell’s equations. Note that the E and B-field are π/2 out of phase,
and perpendicular to each other. In the following we only consider single mode fields
(j = 1).

The classical field energy Hamiltonian, is given by,

H =
1

2

∫
dV

[
ε0E

2(r, t) +
1

µ0

B2(r, t)

]
=

1

2

(
q̇2 + ω2q2

)
. (2.3)

It is obvious that this single-mode field is formally equivalent to a simple harmonic
oscillator (with unit mass), where q and q̇ are the canonical variables, equivalent to
position and momentum for a harmonic oscillator. It is instructive to replace q and q̇
by the corresponding operators q̂ and p̂, that satisfy the commutation relation

[q̂, p̂] = i~. (2.4)

In order to recover the familiar form of the quantum harmonic oscillator, we introduce
the so-called creation and annihilation operators

â† =
ωq̂ − ip̂√

2~ω
and â =

ωq̂ + ip̂√
2~ω

, (2.5)

such that they obey the commutation relation [â, â†] = 1.

We can now express the quantum harmonic oscillator with the quantized fields

Ĥ = ~ω
(
â†â+

1

2

)
,

Êx(z, t) = E0(â+ â†) sin(kz),

B̂y(z, t) = −iB0(â− â†) cos(kz),

(2.6)

where E0 =
√

~ω/ε0V and B0 =
√
µ0~ω/V can be identified as the electric and

magnetic field per photon. Note that the time dependence of the field operators is put
into the creation and annihilation operators as â(t) = â(0)e−iωt – this is known as the
Heisenberg picture.

5



2 Cavity Quantum Electrodynamics

2.1.2 Fock States

For a single mode field with angular frequency ω we now can consider the eigenstates
and eigenvalues of the Hamiltonian in Eq. (2.6). If we define |n〉 to be the eigenstate
of the Hamiltonian with eigenenergy En and apply the annihilation operator from the
left, we obtain

Ĥâ |n〉 = (En − ~ω)â |n〉 . (2.7)

This means that the state
â |n〉 =

√
n |n− 1〉 , (2.8)

is also an eigenstate of the Hamiltonian with the reduced energy En − ~ω (the normal-
ization constant

√
n is necessary for the normalization of 〈n− 1|n− 1〉). If we repeat

this procedure n times we move down the energy ladder and end up in the vacuum
state |0〉

Ĥâ |0〉 = (E0 − ~ω)â |0〉 . (2.9)

Since E0 is defined to be the ground state of the system we must conclude that â |0〉 = 0,
and E0 = ~ω/2 is the zero point energy of the vacuum. En = (n+ 1/2) ~ω is therefore
the eigenenergy of the eigenstate |n〉.

The same line of thought applies to the creation operator giving

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.10)

In general we can conclude that the state |n〉 is constructed by applying the creation
operator n-times on the vacuum state:

|n〉 =
(â†)n√
n!
|0〉 . (2.11)

The operator n̂ = â†â acts as a number operator counting the number of photons in an
energy mode.

2.1.3 Coherent States

The field states that most resemble classical states are the so called coherent states
introduced by Roy Glauber 1963 [45] (and awarded with a Nobel price 2005). If a
mode contains a large number of photons N , the fluctuations around the average value
are small and in the order of 1/

√
N making them behave like classical states.
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2.2 Interaction of Light with Matter - From Jaynes-Cummings to Maxwell Bloch
Equations

The coherent states are defined as the eigenstates of the annihilation operator

â |α〉 = α |α〉 , (2.12)

which gives, expanded in the Fock basis

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 . (2.13)

Calculating the average value of the electric field for a coherent state now gives

〈α(t)|Êx(z)|α(t)〉 = E0 sin(kz)|α(0)| cos(φ0 − ωt), (2.14)

i.e. a classical field with phase φ0 and amplitude α(0).

The probability to find a coherent state in a Fock state with exactly n-photons is
given by

| 〈α|n〉 |2 = e−n̄
n̄n

n!
(2.15)

which is a Poisson distribution with average number of photons n̄ = |α|2. The standard
deviation ∆n =

√
n̄ shows that for a large number of photons the width of the

distribution ∆n/n̄ goes to zero, i.e. for α � 1 the coherent state approaches the
classical limit.

To create a coherent state we can use the formal solution of Eq. (2.12), which allows
to generate a coherent state using a unitary displacement operator acting on the
vacuum state as

|α〉 = eαâ
†−α∗â|0〉 = D(α)|0〉. (2.16)

2.2 Interaction of Light with Matter - From
Jaynes-Cummings to Maxwell Bloch Equations

After quantizing the field inside a resonator, the next step to understand the physics
of cavity QED systems. We will look at atoms (or two-level-systems in general) and
the interaction of them with the quantized field.

2.2.1 Interaction of a Single Spin with Quantized Light

The interaction of a two-level-system (TLS) with an electromagnetic field, can be
described by the interaction energy of a magnetic field with the dipole-moment of

7



2 Cavity Quantum Electrodynamics

a single electron spin (note that for the electric field interacting with an electric
dipole-moment the derivation is analogous), given by

Epot = −µ ·B = −geµB
~

S ·B. (2.17)

Here ge is the gyro-magnetic ratio of an electron, and µB the Bohr magneton. Without
loss of generality we can put the quantization axis of the spin in the σ̂x direction, which
then gives Ŝ = ~σ̂x/2, and together with the quantized magnetic field (see Eq. (2.6)),
we end up with an interaction Hamiltonian

Ĥint = −geµB
~

Ŝ · B̂ = i
B0 cos(kz)geµB

2
σ̂x(â− â†) = i~gσ̂x(â† − â), (2.18)

with g = −B0 cos(kz)µBge
2~ as the interaction strength of a single photon with a single

electron magnetic moment. σ̂x can be written in terms of the spin raising and lowering
operator (which creates or destroys an excitation of a TLS, cf. [46]) as σ̂x = σ̂+ + σ̂−.
This gives an interaction Hamiltonian of the form

Ĥint = i~g(σ̂+ + σ̂−)(â† − â) = i~g(σ̂+â
† + σ̂−â

† − σ̂+â− σ̂−â). (2.19)

Both σ̂+â
† and σ̂−â are two photon processes where two quanta of energy are either

destroyed or created, which makes them non energy conserving. For a coupling strength
g � ω (ω being the Larmor frequency of the TLS) we therefore make the well-known
rotating wave approximation (RWA) and neglect both of these terms [40].

This finally leaves us with an interaction Hamiltonian of the form

Ĥint = i~g(σ̂−â
† − σ̂+â), (2.20)

where the first term creates a photon in the cavity mode and destroys an excitation in
the spin system, while the second term does the reverse - destroying a photon in the
cavity mode and putting an excitation into the TLS.

2.2.2 The Jaynes-Cummings Model

After deriving both the quantization of the cavity field and the interaction of that cavity
field with a single TLS, it is rather straightforward to write down the full Hamiltonian
that describes the combined cavity spin system. Taking into account both the energy
of the cavity mode and the TLS plus the interaction of the two, the Hamiltonian to

8



2.2 Interaction of Light with Matter - From Jaynes-Cummings to Maxwell Bloch
Equations

|g, 0〉

|g, 1〉, |e, 0〉

|g, 2〉, |e, 1〉

|g, 3〉, |e, 2〉
|3,+〉

|3,−〉

|2,+〉
|2,−〉

|1,+〉
|1,−〉

ω

ω

ω

±h̄g

±
√

2h̄g

±
√

3h̄g

coupleduncoupled

Figure 2.2: Jaynes-Cummings ladder for cavity and spin in resonance (ωc = ωs = ω). In the
n-excitation regime the coupled eigenstates are shifted by a factor ∝ ±√n compared to the
uncoupled eigenstates.

describe the interaction of a single TLS with the quantized mode of the cavity is

Ĥ = Ĥcav + Ĥspins + Ĥint = ~ωcâ†â+
~ωsσ̂z

2
+ i~g(σ̂−â

† − σ̂+â). (2.21)

Here we removed the vacuum energy of the cavity mode since it is just an energy offset
and makes computations more tedious. Contrary to most problems in modern physics,
this Hamiltonian can be diagonalized and the exact eigenenergies calculated [47].

For a given number of photons in the cavity mode the exact eigenenergies are (see
Fig. 2.2)

E±n = ~ωc
(
n+

1

2

)
± 1

2
~
√

(ωs − ωc)2 + 4g2n (2.22)

with the eigenstates

|n,−〉 = cos(θ/2) |g,n+ 1〉 − sin(θ/2) |e,n〉
|n, +〉 = sin(θ/2) |g,n+ 1〉+ cos(θ/2) |e,n〉 , (2.23)

9



2 Cavity Quantum Electrodynamics

where the angle θ is defined by

θ = tan−1

(
2g
√
n+ 1

ωs − ωc

)
. (2.24)

Here |g〉 and |e〉 denote the spin to be in the ground or excited state, respectively. The
effective coupling strength of the TLS to the cavity, thus, scales with g ∝

√
n+ 1 ,

that is with the square root of the number of photons in the mode.

Now, for zero detuning we have the simple eigenstates

|−〉n =
1√
2

(|g,n+ 1〉 − |e,n〉)

|+〉n =
1√
2

(|g,n+ 1〉+ |e,n〉) ,
(2.25)

with the system being in a superposition of having the excitation in the spin system
(|e〉) or in the cavity mode (|n+ 1〉).

Energy put into the system will oscillate between excitations in the cavity and
excitations in the spins with an oscillation frequency defined by the coupling strength
and the number of photons in the cavity mode.

2.2.3 From One to Many – Tavis Cummings Hamiltonian

Only very few experiments deal with single emitters in a single mode cavity [48] since
the interaction of a single atom or spin with a cavity is usually very small. Especially
for spins, up to date no experiment exists that is able to couple a single spin strong
enough, such that the coupling surpasses the losses in the system (also known as
strong coupling regime). To overcome this limitations, one can couple many spins to
the cavity simultaneously and increase the collective coupling strength by that. This
leads to the generalized Jaynes-Cummings Hamiltonian for N -spins, better known as
Tavis-Cummings Hamiltonian [49]. The derivation of the Tavis Cummings Hamiltonian
for many spins is equivalent to the Jaynes-Cummings Hamiltonian and gives a very
similar looking Hamiltonian

Ĥ = ~ωcâ†â+
N∑
i=1

~ωisσ̂iz
2

+ i~
N∑
i=1

gi(σ̂
i
−â
† − σ̂i+â). (2.26)

Note that we have taken into account not only the fact that each spin not necessarily
has to have the same frequency (known as in-homogeneous broadening), but also that
each spin can have a different coupling strength, thus, the summation over ωis and gi.
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2.2 Interaction of Light with Matter - From Jaynes-Cummings to Maxwell Bloch
Equations

Without in-homogeneous broadening and with homogeneous coupling strength
(ωis = ωs, gi = g), we can introduce the collective spin operators,

Ŝz =
N∑
i=1

σ̂iz

Ŝ± =
N∑
i=1

σ̂i±,

(2.27)

and the Hamiltonian simplifies to

Ĥ = ~ωcâ†â+
~NωsŜz

2
+ i~g(Ŝ−â

† − Ŝ+â). (2.28)

This Hamiltonian is almost equivalent to the Hamiltonian presented in Eq. (2.21) and
shows very similar solutions including eigenenergies and eigenstates. For the single
excitation regime we get

|±〉 =
1√
2

(|1,G〉 ± |0,D1〉) , (2.29)

as the symmetric and anti-symmetric eigenmode. These are not all eigenmodes for the
single excitation regime (as the Hilbert space is larger for multiple spins) but the only
ones that contain photons in the cavity and are therefore visible when probing the
cavity. All the other eigenstates (commonly referred to as dark states) are not visible
in transmission spectroscopy.

|D1〉 is the so called Dicke-state (see Section 2.2.4) (in the single excitation regime
also called W-state) and is represented as a superposition of the excitation(s) shared
between all spins. Each spin contributes to the coupling to the cavity mode (because
of the sum in the definition of the ladder operators) such that

gcoll =
√
g2

1 + g2
2 + g2

3 + ... = g
√
N , (2.30)

for homogeneous coupling strengths. This allows to enter the strong coupling regime
by coupling to many spins instead of one spin.

For the higher excitation regime the eigenstates quickly become complicated, but
in principle analytic solutions exist [49]. The eigenenergies for the single excitation
regime now not only scale with the square root of the number of photons in the cavity
mode (as derived for the Jaynes-Cummings model), but also with the number of spins
coupled. For a single excitation the eigenenergies for the symmetric and anti-symmetric
eigenmodes are then given by, and scale with the number of spins coupled to the cavity
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2 Cavity Quantum Electrodynamics

mode as
E± = ~ωc ±

√
N ~g. (2.31)

2.2.4 Dicke Model

Mentioned in the previous section, let us now consider the Dicke model as introduced
in the early 1950s [50, 51]. It describes how atoms in a dense ensemble get excited and
de-excited and which states they can occupy. This is an important concept in cavity
QED since the interaction of the spins with light is always mediated by the cavity,
which exhibits two operators that can excited or de-excite a spin, allowing only the
simplest transition in the spin system. Note that the notion of Dicke states, however,
does not require a cavity mode but was originally conceived with a cloud of atoms
in vacuum, but given the nature of the interaction term, is a necessary concept to
understand cQED systems.

According to the rules of quantum mechanics the individual spins of an N -spin
system arrange such that the total spin ranges from S = N/2,N/2 − 1, . . . 1. The
magnetic quantum number then spans from ms = −|S|, . . . , |S|.
The ground state is given by |D0〉 = |G〉 = |↓↓ . . . ↓〉. This is the first Dicke state

and is by construction a symmetric state (that is the state does not change under spin
exchange).

By continuously applying the ladder operators for spins (which is the only operator
present in the interaction term in the Hamiltonian of Eq. (2.21)) on the ground state

Ŝ± |S,mS〉 = ~
√
S(S + 1)−mS (mS ± 1) |S,mS ± 1〉 , (2.32)

we can reach all the symmetric spin states, which are then known as Dicke states:

|Di〉 =

√
i!(N − i)!

N !

(
Ŝ+

)i
|D0〉 . (2.33)

The transition matrix element from the first to the second Dicke state can be
computed as

MD1←D0 = 〈D1| Ŝ+ |D0〉 =
√
N , (2.34)

which shows the
√
N enhancement due to the coupling of N spins.

In an ideal spin system and starting with a spin ensemble in the ground state, this
would be the only possible states the spins can occupy. In a real system however, also
non fully symmetric states are reached. Due to in-homogeneous broadening each spin
can have a small detuning from the central spin frequency.
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|D0〉

|D1〉

|DN/2〉

|DN−1〉

|DN〉

S =
N

2

N

2
− 1 0

Subradiant States

Da
rk
Sta

tes

Figure 2.3: Dicke ladder for an ensemble of N spins. The leftmost states are the Dicke states,
generated by applying the spin raising operator with N excitations and a total spin of S = N/2.
Transitions between two Dicke states exist, as indicated by the red arrows. Dephasing leads
to an evolution into the subradiant states that still decay within their subspace but with
a smaller coupling to the electromagnetic field (blue shaded area) and a smaller total spin
quantum number. Going up and down in this manifold is again possible with spin raising and
lowering operators. The dark states are the ground states of their respective manifolds and
cannot decay (red shaded area) since their transition matrix element to the real ground state
is zero.

Without loss of generality we look at the case of three spins to exemplify this. The
first Dicke state for three spins is given by:

|D1〉 =
1√
3

(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉) (2.35)

For a Hamiltonian including the detunings for each spin (δωi), like:

Ĥ =
~
2

3∑
i=1

(ωs − δωi)σiz, (2.36)
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this state evolves, depending on the individual detunings, as

|D1〉 =
1√
3

(
ei(δω2+δω3)t |↑↓↓〉+ ei(δω1+δω3)t |↓↑↓〉+ ei(δω1+δω2)t |↓↓↑〉

)
. (2.37)

We can already see, that depending on the time passed, the fully symmetric subspace
is left and other states are reached. These states also couple to the cavity mode, but
the transition matrix elements for these states become smaller, which means that
their coupling to the electromagnetic field is weaker. These states are often called
sub-radiant states (one should be aware that everyone uses different notions here) since
their smaller coupling to the electromagnetic field has the effect of a smaller decay rate
(cf. Section 4.2).

The rightmost state in the Dicke ladder – which would be the fully anti-symmetric
state – does not couple to the electromagnetic field anymore at all. These states for
which the matrix transition element is zero and cannot decay (except for spontaneous
emission processes), are often referred to as dark states.

2.2.5 The Driven Tavis-Cummings

Having derived the unitary system, where Fock states in the cavity mode drive the
transitions in the spin system and prepare the system in eigenstates of the hybrid
system, let us now consider the more experimentally relevant case of driving the cavity
with an external coherent drive (e.g. a laser).

The interaction Hamiltonian of a quantized magnetic field with a classical drive field
(with a drive frequency ωp and possibly time-dependent drive amplitude A0) can be
written as (with the time dependence of the operators explicitly, see Section 2.1.1)

Ĥdr = −i~B0(âe−iωt − â†eiωt)A0 cos(kz) cos (ωpt) . (2.38)

This is equivalent to

Ĥdr = −i~B0

2
(âe−iωt − â†eiωt) cos(kz)A0

(
eiωpt + e−iωpt

)
. (2.39)

Again making a rotating wave approximation and neglecting terms of the form ±(ω+ωp)

we end up with a drive term (note that the operators are again time-dependent here)

Hdr = i~η(â†e−iωpt − âeiωpt). (2.40)

η is here the drive amplitude of the external field (which can be time-dependent, and
is averaged over the whole half period of the cosine).
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Putting all parts together we get the full driven Tavis-Cummings Hamiltonian as

Ĥ = ~ωcâ†â+
N∑
i=1

~ωisσ̂iz
2

+ i~
N∑
i=1

gi(σ̂i−â
† − σ̂i+â) + i~η(â†e−iωpt − âeiωpt) (2.41)

We can get rid of the time-dependence of the driving term, by performing the unitary
transformation

Û = e
−iωpt

(
â†â+

∑N
i=1

~ωisσ̂
i
z

2

)
,

Ĥu = Û †ĤÛ − i~Û ∂Û
∂t

.

(2.42)

This leaves us with a final Hamiltonian of the form

Ĥu = ~∆câ
†â+

N∑
i=1

~∆i
sσ

i
z

2
+ i~

N∑
i=1

gi(σ̂i−â
† − σ̂i+â) + i~η(â† − â), (2.43)

describing N spins coupled to a single mode cavity with the detunings of the form
∆

(i)
j = ω

(i)
j −ωp. This Hamiltonian includes both the in-homogeneous broadening of the

spins as well as a possible in-homogeneous coupling strength of the individual spins.

2.2.6 Maxwell-Bloch Equations

The Hamiltonian in Eq. (2.43) describes (except for the drive term) a closed and
unitary system, which means that dissipation or loss of coherence cannot happen.
Since, however, the presented experiments are carried out in a solid state spin system,
which offers a noisy environment loss of coherence and dissipation of energy are
unavoidable companions. Moreover, losing energy through the cavity is not only
unavoidable but also necessary since it allows to measure the transmission through the
cavity which is our observable in all the following experiments.

Describing a system that is coupled to its environment can be done in the framework
of open quantum systems and the Lindblad Master equation. In the following we
will only show the shortest treatment of open quantum systems, for more in depth
explanations the reader is referred to the excellent explanation in [52]

The standard way to derive the equation of motions for an open quantum system is to
include the interacting environment into the system Hamiltonian. The whole temporal
evolution of the density matrix is then governed by the van Neumann equation

dρ̂tot(t)

dt
= − i

~

[
Ĥtot, ρ̂tot(t)

]
(2.44)
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with the full system Hamiltonian Ĥtot

Ĥtot = Ĥsys + Ĥenv + Ĥint. (2.45)

The environment Hamiltonian Ĥenv and an interaction Hamiltonian Ĥint describe the
interaction of the system with the environment. By tracing over the environmental
degree of freedom in Eq. (2.44) we then obtain an equation of motion for the original
system density matrix:

dρ̂tot(t)

dt
= − i

~
[Ĥ(t), ρ̂(t)] +

1

2

∑
n

[
2L̂nρ̂(t)L̂+

n − ρ̂(t)L̂+
n L̂n − L̂+

n L̂nρ̂(t)
]

. (2.46)

Here L̂n =
√
γn Ân are the collapse operators, with Ân the operator with which the

system couples to the environment with a rate γn. The second part is also known as
the Liouvillian (L̂) of the system.

For the case of our cavity QED system there are three operators that couple the
system to its environment (we assume zero temperature since temperature effects can
be neglected).

1. Loss of energy through photon loss (â) with the cavity dissipation rate κ

2. Decoherence of the spins with a rate γ⊥ (commonly also referred to as T2 time
as γ⊥ = 1/T2) through the operator σ̂z

3. Decay of spin excitations, either through phonon mediated processes [53], or
spontaneous emission, with a rate γ‖ = 1/T1 and the operator σ̂−

Putting that all together leaves us with a Liouvillian of the form (for simplicity we
omit the operator sign from now on)

L = κ
(
2aρa† − a†aρ− ρa†a

)
+
γ‖
2

N∑
j

(
2σj−ρσ

j
+ − σj+σj−ρ− ρσj+σj−

)
+
γ⊥
4

N∑
j

(
2σjzρσ

j
z − 2ρ

)
.

(2.47)

Using 〈o〉 = Tr(ρo) and Eq. (2.46) we end up with a set of coupled differential equations
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describing the dynamics of our system:

˙〈a〉 = −κ 〈a〉 − i∆c 〈a〉+
∑
j

gj 〈σj−〉+ η

˙〈σj−〉 = −i∆j
s 〈σj−〉+ gj 〈aσjz〉 −

(
γ⊥ +

γ‖
2

)
〈σj−〉

˙〈σjz〉 = −γ‖
(
1 + 〈σjz〉

)
− 2gj

(
〈σj−a†〉+ 〈σj+a〉

)
.

(2.48)

This is not a closed set of differential equations since it contains also all the expectation
values like 〈aσjz〉 for which one needs to write down new differential equations. However,
when dealing with large number of emitters (as it is the case in the following experiments)
and a relatively small coupling between the cavity mode and the spins, quantum effects
that are encoded in this correlators are negligibly small and one can make the ansatz
〈aσjz〉 = 〈a〉〈σjz〉. This leads to the famous Maxwell-Bloch equations for N -emitters
coupled to a single mode cavity:

˙〈a〉 = −κ 〈a〉 − i∆c 〈a〉+
∑
j

gj 〈σj−〉+ η

˙〈σj−〉 = −i∆j
s 〈σj−〉+ gj 〈a〉 〈σjz〉 −

(
γ⊥ +

γ‖
2

)
〈σj−〉

˙〈σjz〉 = −γ‖
(
1 + 〈σjz〉

)
− 2gj

(
〈σj−〉 〈a†〉+ 〈σj+〉 〈a〉

)
.

(2.49)

2.3 Holstein-Primakoff Approximation - Two
Coupled Harmonic Oscillators

Our experimental realization of a cavity QED system features a large number of
spins coupled to the cavity mode. In the small excitation limit (much less excitations
in the cavity mode than spins coupled to the cavity) this allows to treat the entire
spin system as an effective harmonic oscillator. This approximation is based on the
Holstein-Primakoff transformation.

For the spin operators it is possible to write down the transformation

S+ = b†
√

2S − b†b
S− =

√
2S − b†b b

Sz =
(
b†b− S

)
,

(2.50)

with b, b† being standard bosonic creation and annihilation operators obeying the
bosonic commutation rules. This transformation is exact and the operators still obey
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the spin-commutation relations.

If the number of spins coupled becomes large and the mode occupation number b†b
is small compared to the number of spins (i.e. S � b†b) we can Taylor expand these
operators and perform the Holstein-Primakoff approximation

S+ ≈ b†
√

2S ≈
√
N b†

S− ≈
√

2S b ≈
√
N b.

(2.51)

The collective Tavis-Cummings Hamiltonian from Eq. (2.28) becomes (note that
the same derivation can also be done for the Tavis-Cummings Hamiltonian without
collective spin operators)

H = ~ωca†a+ ~ωs(b†b− S) + ~g
√
N
(
ab† + a†b

)
, (2.52)

that is two coupled harmonic oscillators with a coupling strength of g
√
N .

This makes sense intuitively since the defining properties of an harmonic oscillator
is the fact, that the eigenenergies are harmonic (i.e. equidistant). This is also true for
a very large spin ensemble, since one excitation is shared between many spins and the
total energy to put another excitation into the system hardly changes (Sz = −N/2 is
valid for all times in this approximation). The spin system accepts another photon
and the probability to excite an already excited spin is negligible. This approximation
is valid as long as the number of spins is much larger than the number of excitations
in the system N � a†a. In this limit the system behaves as two coupled harmonic
oscillators and shows the same eigenmodes and eigenenergies.

This approximation breaks down as soon as the number of photons in the cavity
mode becomes comparable to

√
N and the aforementioned neglection of higher order

terms is not applicable any more. The scope of this thesis is to show experiments
where these approximations break down, and the non-linear regime (i.e. beyond the
Holstein-Primakoff approximation) of cavity QED is reached.
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3 Experimental Setup

Having derived the theoretical background of cavity QED, let me now turn the attention
to the experimental setup. In this chapter I will first introduce the types of cavities
that we are using to implement our experiments, namely transmission line resonators
that gives us strong coupling to the spin system and are easy to handle, and newly
developed 3D Lumped element resonators which allow us to perform experiments not
possible with 2D resonators, due to their specific geometry.

After that I will introduce the spin system used, in order to build a Hybrid Quantum
System. The theoretical background introduced in the last chapter does not specify
which kind of two-level-system to use for a cavity QED experiment, as it describes
not only spins in solids coupled to resonators, but also cold atoms coupled to optical
cavities or even optomechanical setups. In our case we are using nitrogen-vacancy
centers in diamond, a versatile and very robust spin system in a very beneficial host
material.

Finally I will show the experimental setup used to perform our measurements at
low temperatures (30 mK) to obtain thermal polarization of our spin system and a
home-build microwave setup to perform fast and coherent manipulation of our spin
system.

3.1 Cavities

This chapter is based on the following research paper and uses parts of it:

• “Collective strong coupling with homogeneous Rabi frequencies using
a 3D lumped element microwave resonator”
Andreas Angerer, Thomas Astner, Daniel Wirtitsch, Hitoshi Sumiya, Shinobu
Onoda, Junichi Isoya, Stefan Putz, and Johannes Majer
Applied Physics Letters 109, 089901 (2016)

The first building block for a cavity QED system is arguably the cavity, that provides
the quantized mode of radiation to couple the spins to.
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CL

Figure 3.1: Simple schematic of a LC-circuit with inductance and capacitance in series. By
putting charges into the circuit, they will oscillate with an eigenfrequency of ω = (LC)−1/2

between the capacitance and the inductance.

In general there are two × two different ways to build a resonator in the microwave
regime. Resonators can be either distributed element resonators, where the resonating
parts are distributed in coaxial lines, waveguides and/or stubs, or lumped element
resonators, where the resonating parts are discrete capacitors and inductors. The second
distinctive feature of resonators is that they can have either a 2 or a 3 dimensional
design (this distinction is a bit superficial since also one-dimensional resonators exist,
but the statement still makes sense in this context). In this section I will introduce
Transmission Line Resonators (used in one of the presented experiments) as a specimen
of a Distributed Element Resonator in a 2 dimensional design, and newly developed
3D lumped element resonators which give us features not accessible with a planar
geometry and used for the last experiment presented in Section 4.

3.1.1 The Quantized LC-Oscillator

As stated before every cavity (or resonator) in the microwave regime can be understood
in terms of a resonating LC-circuit, no matter if they are distributed or discrete. That
means that somewhere there has to be a capacitance and an inductance, and charges
will oscillate with a given eigenfrequency. To understand, however, why an LC circuit
resonates, and why it can be understood as a harmonic oscillator, let us consider a
simple circuit as displayed in Fig. 3.1.

If we start by putting a charge on one of the capacitor plates, the whole energy of
the circuit is initially stored in the capacitor. This energy is

EC =
1

2

q2
0

C
(3.1)

The capacitor will try to discharge itself via the inductance, which will result in a
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current through the inductance. At some point in time the capacitor will be discharged
and the whole energy is stored in the inductor as

EI =
1

2
Li20 =

1

2

Φ2
0

L
, (3.2)

with the magnetic flux defined as Φ0 = i/L. Since there is no dissipation in the system
these two energies have to be equivalent, and we get for the total electromagnetic
energy for an arbitrary time t

E =
1

2

Φ(t)2

L
+

1

2

q(t)2

C
. (3.3)

Φ and q can now be understood as two conjugated variables with commutation relation
[Φ, q] = −i~. This allows to define the creation and annihilation operator by

q =

√
~C
2L

(
a+ a†

)
and Φ = −i

√
~L
2C

(
a− a†

)
, (3.4)

and we finally recover the quantized harmonic oscillator exactly as derived in Sec-
tion 2.1.1, as

H = ~ω
(
a†a+

1

2

)
, (3.5)

with an oscillation frequency ω = 1/
√
LC .

3.1.2 Transmission Line Resonators

A transmission line resonator is arguably the most straightforward way to build a 2
dimensional resonator. It consists of a transmission line of length L, that is intercepted
at two points. These interception points act as mirrors for the electromagnetic radiation
and a standing wave between the two mirrors is created (cf. Fig. 3.2). As shown in
Section 2.1.1, this can be interpreted as a quantized magnetic field as

B̂x(z, t) = B0(â+ â†) sin(kz), (3.6)

with k = nπ/L. It is important to mention here that the electric and magnetic
field change role here (i.e. the magnetic field is maximum in the middle and zero at
the interceptions), since contrary to before the boundary conditions are not perfect
electrical conductors anymore, but the interceptions are capacitors. This means that
the magnetic field has to vanish, and the electric field has to become maximum at the
boundaries. However, the derivation is completely analogous.
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Figure 3.2: Rendering of a transmission line resonator as it is used in the experiment. On
the left side the capacitance is shown that couples the resonator to its environment. The
quantized mode is generated between two capacitors on both sides of the resonator. The
center conductor is meandering in order to increase the overlap of the oscillating magnetic
field with the sample which is placed on top of the resonator. On the right side the taper
down to the central line is shown with the bonding to a copper PCB on the far right.

Figure 3.3: Picture of a transmission line resonator loaded with a diamond sample. The
superconducting resonator is bonded in a printed circuit board, which is put in a closed
copper box to avoid unwanted box resonances. The diamond sample is the black object in
the center of the device.

The fundamental resonance given by n = 1 (also known as λ/2 since half a wavelength
of radiation is contained in the cavity) is the one used in the experiments and all modes
n > 1 are higher harmonics, disregarded in the following. The quality factor of a cavity
is given by Q = ω/κ (ω is the frequency of the fundamental resonance and κ the rate
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Figure 3.4: a) Measured cavity response spectrum fitted with a Lorentzian line-shape accord-
ing to Eq. (3.16). From the transmission spectrum we can easily deduce the line-width (i.e.
κ) and the resonance frequency of of the cavity. b) Time response of the cavity under a 8 µs
pulse on resonance. The time for which the MW drive is turned on is depicted as blue shaded
area. The cavity field builds up and decays with a characteristic time constant given by the
cavity line-width κ. The time response is equivalent to a Fourier transform of the spectrum
as shown in a) and vice versa.

with which the cavity loses energy) and describes how under-damped or over-damped
a resonator is, or in other words how much energy is stored compared to the energy
dissipated per cycle (see Section 3.1.4 for more details). The quality factor for a 2
dimensional design is mainly limited by radiation loss due to its design and losses in
the interface between conductor and substrate.

The resonators used to carry out the following experiments are made out of a 200 nm

thick Niobium layer sputtered on a 300 µm thick Sapphire substrate. Niobium as a type
II superconductor has the advantage of becoming superconducting at low temperatures
(Tc ≈ 8.5 K for a thin layer) which removes ohmic losses in the conducting material.
The thin layer of Niobium is further structured by optical lithography which allows to
create structures with micron resolution, good enough for creating the transmission
line intercepted at two points.

Measuring the transmission through such a cavity is shown in Fig. 3.4a) and gives
a Lorentzian line-shape (see Section 3.1.4), from which we can deduce the resonance
frequency and the cavity line-width and, thus, the quality factor. We can also measure
the time response of the cavity shown in Fig. 3.4b), by driving it with a microwave
pulse of short duration and measuring the temporal response instead of the frequency
response. The field inside the cavity builds up and decays again with a time constant
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Figure 3.5: Transverse magnetic field distribution of a 2D resonator design showing the
magnetic field generated by a single photon in the cavity mode. The black shaded area
shows the niobium thin film with the center conductor in the middle and the ground plane
on the outside. As can be seen from the plot, the magnetic field distribution is such that
the magnetic field is almost exclusively focused to a region close to the surface of the thin
film. Only spins close to the surface experience a strong effect of the magnetic field, whereas
spins further away are almost not influenced. This produces a huge gradient in the individual
coupling strengths and makes it impossible to coherently manipulate all spins at the same
time.

τ = 1/2κ.

3.1.3 3D Lumped Element Resonators

One big issue with 2D resonator designs is its dependence of the coupling strength on
the transversal, longitudinal position and even worse its dependence on the distance
from the resonator [54] as it is demonstrated in Fig. 3.5. This leads to in-homogeneous
coupling strength depending on where the spin is located relative to the resonator.
However, the strong confinement of the (electro)magnetic field allows to couple very
strongly to the cavity mode which is advantageous since it allows to enter the strong
coupling regime without coupling to too many emitters at the same time.

While two dimensional lumped element resonators have been successfully demon-
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Figure 3.6: Simulated field distribution inside a 3D box resonator. As visible from the arrows,
the electric field (note that this analogous for the magnetic field) is uniformly pointing in one
direction. Also the magnitude is very homogeneous in a wide area in the center of the cavity.
However, the plot also shows that the resonator becomes bulky (see the black dashed lines
denoting the dimensions of the cavity) for a resonance frequency of 3GHz, and, due to its
huge mode volume, also the coupling to a single spin is very small.

strated and show even higher coupling strengths [55] to a single spin compared to
transmission line resonators, their disadvantage lies in the fact that the spatial depen-
dence on the coupling strength is even worse than for transmission line resonators.
As such they are not useful to solve the aforementioned problem of in-homogeneous
coupling strength.

One way to solve the in-homogeneous coupling strength to the spin ensemble is to use
box-cavities [56] as a specimen of distributed element resonators in three dimensions,
since the magnetic field distribution in such a box cavity is very homogeneous as shown
in Fig. 3.6. It also provides very high quality factors (especially when using supercon-
ducting material) since its closed structure reduces radiation losses to a minimum [57,
58]. Nevertheless, this types of cavities are not suitable for our experiments because
of two reasons: First, the required frequency of ≈ 3 GHz makes very large and bulky
cavities necessary, as the resonance frequency is defined by the dimensions of the box
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[59]:

ωmnl = ckmnl = c

√(mπ
a

)2

+
(nπ
b

)2

+

(
lπ

d

)2

. (3.7)

Here, a, b, d are length, width and depth of the box. For a frequency of 3 GHz this
requires dimensions of the box of ≈ 10 cm, which makes it hard to handle in an
experimental setup. The second issue with these type of resonators is also linked
to their size. The coupling of the spin system to a single photon (i.e. the vacuum
Rabi splitting) is inversely proportional to the square root of the mode volume (see
Section 2.1.1). Since the mode volume in these types of resonators is huge, the coupling
to a single spin becomes very small < 1 mHz. In order to enter the strong coupling
regime (for our specific spin system and cavities approximately 10 MHz), one needs to
couple to a huge amount of spins > 1018, something hard (or close to impossible) to
synthesize for material scientists.

In order to solve the problem of small and in-homogeneous coupling strength, while
keeping the size of the resonator relatively small, we came up with a combination of
these two designs, namely a 3 dimensional lumped element resonator. In a lumped
resonator, instead of distributed capacitance and inductance, the resonating parts are
discrete parts, where the resonance frequency is not defined by the dimensions of the
enclosing box, but by the value of this discrete components by

ωc =
1√
LC

. (3.8)

As a consequence of that, there are also no higher harmonics since these discrete
components can be much smaller than the wavelength of the radiation 1.

Our implementation consists of metallic structures enclosed in a surrounding con-
ducting box, as shown in Fig. 3.7a). These two bow-tie shaped structures create
two capacitors with the enclosing box, which together with the inductance (which is
unavoidably there because the current has to close the circuit) creates a resonating
LC-circuit (see Fig. 3.8). This resonator actually exhibits two resonances (see Fig. 3.10),
one where the current goes the short path through the metallic structures, and one
where the current closes the LC-circuit through the walls (see Fig. 3.7b)). Since the
inductance is larger for the second mode, its frequency is lower than the frequency of
the mode closing the circuit the short path. The nice feature of the higher frequency
mode is the fact that since the current goes as indicated in Fig. 3.7b), according to

1That’s also how radios work: The wavelength of the radiation is much larger than a real device,
and the resonating part are discrete capacitors and inductors allowing to build them much smaller
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b)

a)

IL1

L2

C1 C2

Figure 3.7: a) Photo of the 3D lumped element resonator design. Shown is a polished copper
cavity with the top lid and the side walls removed for illustrative purposes. The diamond is
placed in between the two metallic “bow-ties” as can be seen in the photo. b) A cut through
the cavity, perpendicular to the direction of the mode. The two capacitors together with the
inductance create an oscillating magnetic field focused in between the two metallic structures
that is pointing out of the plane. The field is coupled into the mode with two pins, one for
coupling into the mode, and the other one for measuring the transmission (Source [60]).

L1

L2

C1 C2

Ccoupl Ccoupl

Figure 3.8: Equivalent circuit for the lumped element resonator. 50Ω terminated input and
output ports are coupled via two coupling capacitors (Ccoupl) to the LC circuit. Inductors
and capacitors are labeled according to Fig. 3.7b) (Source [60]).

Lenz’s law this current creates a magnetic field that is focused to in-between these
two metallic structures and cancels everywhere else (contrary to that the other mode
focuses the magnetic field outside and cancels it in between the two structures).

This feature enhances the coupling strength in a way that allows to enter the strong
coupling regime (see Section 4.1.1) with a moderate amount of spins coupled (1016) and
a similar collective coupling strength we achieve with transmission line or 2D lumped

27



3 Experimental Setup

−6 −4 −2 0 2 4 6

x (mm)

0

1

2

3

z
(m

m
)

5 10 15 20

B (pT)

1%

3%
5%7%

Figure 3.9: Field distribution within the 3D lumped element resonator generated by a single
photon in the cavity mode. The hatched area is where the diamond is located, and the
contourlines show the RMS deviation of the coupling strength for 1%, 3%, 5% and 7%.

element resonators.

Due to its special geometry the magnetic field distribution is on top of that very
homogeneous, with a root-mean-square (RMS) deviation of maximally 7% (see Fig. 3.9).
That allows to homogeneously couple to all spins that are placed within a 4 mm ×
3 mm× 0.5 mm volume.

Since the resonance frequency is defined by the inductance and the capacitance of
the circuit, the design allows us to intrinsically change the resonance frequency by
changing the distance of the two bow-ties which changes the inductance.

We can calculate the total capacitance as two capacitors in series configuration as

C−1
tot = C−1

1 + C−1
2 = 2C−1 =

2

ε0

d

A
, (3.9)

with d the distance between the top lid and the bow-tie, and A the total area of the
bow-tie that forms the capacitance, which for our typical parameters gives us a total
capacitance of 2.9 pF. The inductance can be approximated by the inductance of a
flat wire [61] with

Ltot = 2× 10−10l

(
ln

(
l

w + t

)
+ 0.5 + 0.2235

(
w + t

l

))
. (3.10)

Here w is the width of the wire, which we can approximate by the width of our bow-tie
structures, l the length of the path the current has to take, and t approximated as the
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Figure 3.10: Transmission spectroscopy of the 3D lumped element resonator. Visible are two
resonances with the lower one generally having slightly higher Q values (narrower line-width),
but no magnetic field in the region of interest, and the higher one used in our experiments to
couple the spins to. Apart from the two resonances no higher harmonics are present, with the
box-modes at a much higher frequency.

skin depth of the oscillating current. This gives a total inductance of ≈ 0.95 nH which
estimates a resonance frequency of

ωc =
1√
LC

= 2π · 3.03 GHz. (3.11)

Transmission spectroscopy reveals that the true fundamental frequency is at ωc =

2π · 3.121 GHz (see Fig. 3.10) which, considering the relatively crude approximation of
the inductance, shows that the assumption of discrete circuit elements is valid.

From the transmission spectrum we also obtain the quality factor of Q = 1637 and
the cavity line-width as κ/2π = 1.91 MHz. Finally, finite element studies show that
the achieved single spin coupling strength is given by ≈ 70 mHz which is orders of
magnitude larger than a simple 3D box cavity and good enough to enter the strong
coupling regime.

The quality factor is mainly limited by ohmic losses in the conducting material,
since the need for magnetic fields to tune the spin system limits us to copper as the
conducting material, as the best conductor at low temperatures that does not become
superconducting. Superconducting 3D lumped element resonators with much higher Q-
values of Q ≈ 106 are also easy to fabricate, but their superconducting enclosure makes
it impossible to use magnetic fields to Zeeman tune the spin system (see Section 3.2.1),
but is useful nonetheless for certain types of experiments.
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3.1.4 Cavity Input-Output theory

To understand the presented transmission spectra shown in Section 3.1.2 and Sec-
tion 3.1.3 let us now turn to a description of the cavity, using so called input-output
theory [62]. We consider a simple two sided cavity as presented in Fig. 3.11 with input
coupling rate κ1 and output-coupling rate κ2 and an internal line-width κint. These
individual line-widths all describe a loss of energy, be it through the coupling to the
environment (κ1,κ2) or internal losses (κint). The total line-width of the cavity is then
κtot = κ1 + κ2 + κint.

Before deriving the equations of motions for the cavity system let us consider three
different scenarios for the losses

1. κint � κ1,κ2; κtot ≈ κint: This is known as under-coupled cavity, where the losses
of a cavity are mainly given by the internal losses of the cavity (this is generally
the “unwanted” case, even if there are scenarios where this is desired).

2. κint � κ1,κ2, κtot ≈ κ1 + κ2: This is known as over-coupled scenario and can be
used to maximize the number of photons in the cavity. Here the dissipation of
energy is due to a strong coupling to the environment. Note that also the ratio
of κ1 to κ2 can be changed to achieve different effects.

3. κint = κ1 + κ2 = κ, κtot = 2κ: The resonator is critically coupled (or impedance
matched). In this limit the number of photons in the steady becomes maximum.

Analogous to the derivation of the Maxwell-Bloch equations in Section 2.2.6, we get
a Langevin equation for the Hamiltonian as derived in Eq. (2.6) for the intra-cavity
amplitude as [46, 63]

ȧ = − i
~

[H, a]− (κ1 + κ2 + κint) a+
√

2κ1 ain +
√

2κ2 bin. (3.12)

Here ain and bin are operators that describe an input on both sides of the cavity, and
are coupled to the cavity with the external coupling rates κ1,κ2 (note that here the
first Markov approximation is made, which explains the square roots, please cf. [63]
for a derivation).

In a frame rotating with the drive frequency we get

ȧ = − (i∆c + κtot) a+
√

2κ1 ain +
√

2κ2 bin, (3.13)

with ∆c = ωc−ωp, ωp the drive frequency and ωc the resonance frequency of the cavity.
If we now assume the input from the second mirror to be equal to zero (i.e. bin ≡ 0)
we get

ȧ = − (i∆c + κtot) a+
√

2κ1 ain, (3.14)
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Figure 3.11: Schematic representation of a cavity with input and output fields and losses as
described in the main text. Since we drive the cavity only from the left side we omit bin.

which describes the evolution of a cavity that is driven from one side. The boundary
conditions, relating each of the far field amplitudes on the outside of the cavity to the
internal cavity field [46], are given by

ain + aout =
√

2κ1 a

bin + bout =
√

2κ2 a ⇒ bout =
√

2κ2 a.
(3.15)

For transmission spectroscopy we are only interested in the steady state of the system
(ȧ = 0) which then for the transmission amplitude gives (as the ratio of the transmitted
field amplitude to the input field amplitude)

T =
bout

ain

=
2
√
κ1κ2

i∆c + κtot

, (3.16)

which is a Lorentzian with amplitude 2
√
κ1κ2 and line-width κtot. Often it is useful to

consider the squared transmission amplitude (as it is what is usually measured) and
the case of a symmetric cavity (i.e. κ1 = κ2 = κext

2
). This then further simplifies to

|T |2 =
κ2

ext

∆2
c + κ2

tot

. (3.17)

Depending if the resonator is over-, under- or critically coupled, the transmission either
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approaches T → 1, 0, 1/2 (for the resonant case)

By comparing the equation of motion we derived for the input-output theory as
in Eq. (3.14) to the equations of motions derived for the Maxwell-Bloch equations in
Eq. (2.49), we can immediately make a connection between the input field ain and the
coherent drive amplitude η as

η =
√

2κ1 ain. (3.18)

If we set Pin = ~ωp|ain|2, (i.e. the input power is given by the energy of a single photon
times the field amplitude squared), we get (we assume real values here)

|a|2 |(i∆c + κtot)|2 =
2κ1Pin

~ωp
. (3.19)

Since |a|2 = N is the number of photons (assuming real valued operators), we get the
number of photons in the cavity in the steady state to be

N =
2κ1Pin

~ωp (∆2
c + κ2

tot)
(3.20)

or for a symmetric cavity driven on resonance

N =
κextPin

~ωpκ2
tot

. (3.21)

On resonance, the transmission in Eq. (3.17) can be used to further simplify this
equation to

N =
|T |Pin

~ωpκtot

, (3.22)

an expression that relates the number of photons in the steady state to easily measurable
quantities.

3.2 Spin System

An empty cavity is fundamentally something trivial, as the harmonic oscillator is
arguably the most studied physical system in existence, due to the fact that most
problems in physics can be approximated by it. To do interesting physics we need
an an-harmonic system that couples to this harmonic oscillator. A two-level-system
(or more specifically a spin) is the natural choice, since by definition it is, contrary
to the harmonic oscillator, natures most an-harmonic system. Quite naturally this
leads to new and interesting physics beyond the two coupled harmonic oscillators
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approximation.

In this section I will introduce our spin system of choice, namely the negatively
charged nitrogen-vacancy center and its properties. I will also explain how a large
ensemble of these spins can be used to build a Hybrid Quantum System at low
temperatures and how to use the optical transition to read out the spin state separately
without the detour via the cavity.

3.2.1 The Nitrogen-Vacancy Center

The nitrogen-vacancy center (NV-center) has attracted a lot of interest in the last
couple of decades. Once a very promising candidate for quantum computing, nowadays
the interest has shifted from quantum information physics, to quantum technologies,
like sensing [64–68] or other quantum technologies such as masers [69].

Several properties of the NV center make it very suitable to use it to couple it to
our resonators as building block to create a Hybrid Quantum system. The NV center
is extremely stable (unless the diamond is burned, once an NV center is formed it
will stay), due to its host material [70]. NV centers can be implanted using nitrogen
enriched diamonds and neutron- [71] or even better electron irradiation [72] which is
necessary to create dense ensembles (see Section 2.2.3) and even though it is a solid
state system, a single NV center is (or can be) extremely coherent [73].

The NV center consists of a nitrogen atom replacing an carbon atom in a diamond
lattice with an adjacent vacancy. This gives three dangling bonds from the carbon
atoms and two electrons from the nitrogen. The two electrons from the nitrogen
covalently bind with two electrons from the carbon which leaves one unpaired electron.
All the presented work here is carried out with the negatively charged NV center
where one additional electron from the lattice (probably from another nitrogen atom),
together with the unpaired electron then forms a spin S = 1 system [74, 75].

Due to dipole-dipole interaction of the two electrons we obtain a zero-field splitting
of D = 2π · 2.88 GHz with the ground state being the ms = 0 state (i.e. two spins
in opposite direction is energetically favorable) and the ms = ±1 state the excited
states (note that it is more complicated as there are also non-axial terms, but the
reader is referred to [76] for more information on the exact formalism of dipole-dipole
interaction).

The ground state Hamiltonian of the NV center can be written down as

HNV = ~D
(
S2
z −

1

3
S (S + 1)

)
+ ~E

(
S2
x + S2

y

)
) + ~µNVBext · S, (3.23)
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Figure 3.12: The structure of the NV center in the diamond lattice with its ground state
term-scheme. a) The NV center consists of a nitrogen atom that replaces a carbon atom
in the diamond lattice which then forms the NV center together with an adjacent vacancy.
Plotted is the computed spin density, which shows that the electron of the NV center is mainly
located close to the adjacent carbon atoms. b) The ground state level scheme of the NV
center. The NV center exhibits a zero-field splitting (ZFS) of ≈ 2.88 GHz at low temperatures.
A magnetic field allows to tune the ms = ±1 states in order to change the transition energy
and bringing them in resonance with the cavity mode (Picture taken from [53]).

with a zero-field splitting of D ≈ 2π · 2.88 GHz [77], axial strain E ≈ 10 MHz (this
is very sample dependent and can range from 1MHz to ≈10MHz) the spin magnetic
moment µNV = 28 MHzmT−1 and an external magnetic field Bext. Due to its host
material the NV center has four different possible orientations pointing in the four
corners of a tetraeder in the 〈1, 1, 1〉 directions. For a standard sample generated
by electron or neutron irradiation all four possible orientations do have the same
abundance of NV centers.

All the presented experiments were carried out on resonance (i.e. ωc = ωs; the
central spin frequency is in resonance with the cavity mode), which makes it necessary
to tune the spins into resonance with the cavity. Since the resonance of the cavity as
introduced in Section 2.1 is fixed and defined by its intrinsic geometry, a magnetic field
makes it necessary to tune the spins into resonance instead.

Under relatively weak field conditions (|B| � D/µNV, which is the case for magnetic
fields . 10 mT) the new resonance frequencies for the ms = 0 to the excited state
transitions under the action of an applied magnetic field are given by (we drop the E
term and the energy offset of the D term)[78]

ω± ≈ D ± µNV |Bz|+
1

2
µ2

NVB
2
⊥

3D ∓ µNV |Bz|
D2 − µ2

NV |Bz|2
, (3.24)
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Figure 3.13: Dependence of the NV resonance frequency depending on the direction and
strength of an external bias field. Shown is the response of ms = 0 to the higher energy excited
state transition of the different sub-ensembles for three different magnetic field directions
(see legend). For the [1, 0, 0] direction all four sub-ensembles experience the same shift in
the resonance frequency. For the [1, 1, 1] direction 3+1 and for the [1, 1, 0] direction 2+2
NV-sub-ensembles experience the same projection of the magnetic field on their quantization
axis, respectively.

with B⊥ =
√
B2
x +B2

y . Here Bz is the axial magnetic field, with the z-direction the
natural quantization axis pointing from the nitrogen to the vacancy.

Due to its special lattice symmetries we can tune one, two three or even four sub-
ensembles into resonance with the cavity allowing us to change the number of spins
coupled very precisely. For illustrative purposes let’s consider a cavity with a resonance
frequency of 3 GHz and a magnetic field in the

• [1, 1, 1] direction: The projection of the magnetic field on the NV center in the
[1, 1, 1] direction is maximal and the perpendicular field for this sub-ensemble is
zero, which simplifies Eq. (3.24) to

ω± ≈ D ± µNV |Btot| . (3.25)

For a magnetic field of Btot = 4.28 mT the ms = 0 → +1 transition of the
sub-ensemble in the [1, 1, 1] direction is in resonance with the cavity mode. The
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other three sub-ensembles all exhibit an angle between the magnetic field and
their spin principle axis of cos (θ) = 1/3 which puts them at a frequency of

ω+ ≈ D +
µNV

3
|Btot|+

4

3
µ2

NVB
2
tot

9D − µNV |Btot|
9D2 − µ2

NV |Btot|2
= 2π · 2.926 GHz, (3.26)

and far away from the resonance frequency of the cavity.

If we increase the total magnetic field to Btot = 9.43 mT these three sub-ensembles
are at a frequency of 3 GHz and in resonance with the cavity. The sub-ensemble
parallel to the magnetic field has its resonance frequency at 3.144 GHz

• [1, 1, 0] direction: Two and two sub-ensembles experience the same magnetic field,
since the angle between the NVs in the [1, 1, 1] and [−1,−1, 1] direction and the
magnetic field is cos(θ1) =

√
2/3 , and the angle between the sub-ensembles in

the [1,−1,−1] and [−1, 1,−1] and the magnetic field is θ2 = π/2.

For the first two sub-ensembles this gives

ω+ ≈ D +

√
2

3
µNV |Btot|+

1

6
µ2

NVB
2
tot

9D −
√

6 µNV |Btot|
3D2 − 2µ2

NV |Btot|2
, (3.27)

which for a total magnetic field of Btot = 5.09 mT brings these two sub-ensembles
into resonance with the cavity. Since for the other two sub-ensembles only
non-axial fields exist, they are getting tuned negligibly only.

• [1, 0, 0] direction: For such a magnetic field all four sub-ensembles have the same
angle between their spin principle axis and the magnetic field of cos(θ) =

√
1/3

and experience the same shift of frequency. Therefore, we get for the shift

ω+ ≈ D +

√
1

3
µNV |Btot|+ µ2

NVB
2
tot

9D −
√

3 µNV |Btot|
9D2 − 3µ2

NV |Btot|2
, (3.28)

for all four sub-ensembles, which for a total magnetic field of Btot = 6.68 mT

brings all four sub-ensembles into resonance simultaneously.

The number of spins in each sub-ensemble is equivalent, as the generation of NV center
is an isotropic process [79]. This gives a fast and reliable way to change the number
(and consequently the coupling strength) of spins coupled to the cavity mode.
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Figure 3.14: Fluorescence time traces for the two different spin projections with strong
saturated excitation. The simulation is done using a simple five-level rate equation model
with parameters taken from [81]

3.2.2 The Optical Transition and Thermal Polarization

Additional to a microwave spin triplet with a a ZFS of ≈ 2.88 GHZ which we use to
couple to a cavity mode, the NV center has an optically exited state that also exhibits
a spin triplet (see Fig. 3.15). The transition between the optical ground state and
the exited state are spin conserving with a wavelength of 637 nm [75]. Symmetry
considerations imply that the NV center also features a meta-stable state that is
relatively long-lived compared to the excited state (≈ 300 ns). What makes this excited
state transition so useful is the fact that the excited state ms = 0 state has a high
probability to decay back to its ground state, emitting a red photon, while the excited
ms = ±1 states have a high probability to non-radiatively decay to the meta-stable
state and from there decay back into the ms = 0 ground state (see Fig. 3.15). This
means that the optical transition cannot only be used to polarize the spins into the
ms = 0 state after a few optical cycles, with rather high fidelity [80], but the ms = ±1

states, due to the non-radiative processes emit fewer red photons when decaying back
into the ground state and therefore show lower fluorescence.

Further, due to its solid state character the NV center shows a large phonon sideband
in the optically excited state [81] which means that it is not necessary to hit the
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Figure 3.15: Term scheme of the NV center with the optical excited and ground state.
Electrical dipole (i.e. optical photon emitting) transitions are indicated as solid (dark) red
arrows with the transition rates written next to the dashed lines. The ms = 0 state in the
optical excited state almost exclusively decay back in the optical ms = 0 state whereas the
ms = ±1 states primarily take the detour via a meta-stable state with a comparably long
lifetime of ≈ 300 ns. This gives a fluorescence difference (i.e. less directly emitted red photons)
that we can use to distinguish the ms = 0 from the ms = ±1 states (Numbers taken from
[80]).

resonance exactly but we can excite the spins with off-resonant green light. That makes
it rather easy to separate the green excitation light from the scattered red fluorescence
to read out the spin state and reduces the requirements on the excitation laser. This
property of the NV center is used in Section 4.2 where we use the optical transition to
read out the spin state via a separate channel without the need of a cavity.

To create a Hybrid Quantum system with an ensemble of NV centers, the spin
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Figure 3.16: Thermal polarization of the NV center over temperature. The thermal mean
value of the S2

Z operator (blue curve) tells us how many spins are thermally polarized in the
ground state. The red curve shows the value of 1− 〈Sz〉, which is a measure for how many
spins are thermally polarized in the ground state. For temperatures < 50 mK almost all spins
are in the ms = 0 i.e. the ground state, with the 〈S2

Z〉-value close to zero. For temperatures
T →∞ the polarization into the ms = ±1 states approaches 2/3 and the spin system is in a
completely mixed thermal state with the ms = 0 and the ms = ±1 states equally occupied.

temperature needs to be cold, since a thermal state does not couple to the cavity [53].
As derived in Section 2.2.2 the Hamiltonian couples the ground state of the system
(all spins in the ground state and the cavity empty) to the first excited state (one
excitation in the system shared between cavity and spins). As mentioned before, this
could be done by optical pumping at room temperature (there are actual experiments
showing strong coupling at room temperature [82, 83]), but considerations like thermal
population of the cavity mode [84, 85], superconducting cavities and fidelity of the
polarization make it useful to go to low temperatures, instead of relying on optical
pumping.

The energy between the ms = 0 and ms = ±1 state in the NV center (without a
magnetic field) corresponds to a temperature T = ~D/kB = 138 mK. By operating
the experiments on a temperature much lower than that, we can, instead of optical
pumping, use thermal polarization, to polarize the spins in the ms = 0 state.

For an infinite temperature (i.e. room temperature for such a low energy transition),
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the steady state of the spins is a state equally distributed between the ms = 0,±1

states, with 〈
S2
z

(
T � ~ωs

kB

)〉
st

≈ 2

3
. (3.29)

For zero temperature on the other hand all spins would be polarized in the lower energy
ground state with 〈

S2
z (T = 0)

〉
st

= 0. (3.30)

The steady state for an arbitrary temperature can be derived by Maxwell-Boltzmann
statistics (for the three level term scheme of the NV center), as

〈ni〉∑
ni

=
1

Z
gie
−εi/kT , (3.31)

with gi the degeneracy of the energy level, and Z the partition function as

Z =
∑
i

gie
−εi/kT . (3.32)

The individual ni describe the occupation of the respective energy levels. The Maxwell-
Boltzmann statistics describe the average occupation of each level, for a given tem-
perature T . For the specific level scheme of the NV center with its two (almost)
degenerate excited states, the occupation of the ms = ±1 (i.e. n+1 + n−1) levels can
be interpreted as the expectation value of the 〈S2

z 〉 operator in the steady state (cf.
previous paragraph).

It immediately follows, that

n+1 + n−1 =
2

e
~ωs
kBT + 2

, (3.33)

and
n0 =

1

2e
−~ωs
kBT + 1

. (3.34)

The polarization depending on the temperature is shown in Fig. 3.16, and shows
that operating below 50 mK achieves polarization in the ground state of above 95%.
Since all of the experiments presented are typically carried out at 30mK, after the
spins had enough time to reach their equilibrium state (which can be annoyingly long
[53]), we start our experiments with our spin states in an almost perfect ground state.
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3.3 The Experimental Setup

Due to the reasons mentioned in the previous section, all the experiments are carried
out at temperatures < 50 mK, which is made possible by using a 3He/4He dilution
refrigerator. The cryostat used is an Oxford Instruments Triton 400 fridge with a
cooling power of 400 µW at a base temperature of 100 mK.

The operating principle of a dilution refrigerator is, that below a critical temperature
of 870 mK a 3He/4He mixture undergoes a phase separation, forming a 3He rich phase
and a 3He dilute phase (with a minimum of 6.5% 3He [86]). Due to their different
densities the mixture is arranged in layers with the 3He rich phase on top. By removing
3He from the diluted mixture by pumping on it (with turbo pumps), 3He from the rich
phase has to condense into the diluted mixture. This removes energy as condensation
energy from the system and cools it down [86].

This guarantees cooling power down to very low temperatures (in principle down to
0K) since the minimum amount 6.5% of 3He in the mixture is maintained, even at 0K.

The precooling down to 870 mK is done with a pulse-tube cooler [87] that can reach
temperatures of about 2.7 K. Going below the critical temperature of 870 mK where
the condensation of the mixture is working, is then achieved by evaporative cooling on
3He. With the condensation procedure, temperatures below 30 mK can be achieved,
routinely.

The experimental setup can be seen in Fig. 3.17, where a photograph shows the
lowest stage of the experiment and a schematic of the microwave setup. To study our
cavity QED system we always measure the transmission of the system as derived in
Section 3.1.4. To measure the transmission, we use a VNA (Keysight E5071C ENA
Vector Network Analyzer) that allows to measure the scattering parameters directly.
This VNA offers high dynamic range and a low noise floor, but it only allows to measure
steady states as its temporal resolution is limited.

For time-resolved measurements we use a home-built auto-dyne detection scheme.
We modulate a waveform on a carrier frequency using an arbitrary waveform generator
and an IQ-mixer (IQ LMP1545 Marki Microwave) (more details on that in the following
section). The signal is then fed into the fridge where the Hybrid System is mounted on
the coldest stage, and the transmitted signal is demodulated again with an IQ-mixer
and referenced to the same carrier frequency.

Next, 3D Helmholtz magnetic coil cages allow to apply magnetic fields in arbitrary
directions of up to 100 mT. The resonator (either a superconducting 2D resonator or a
Lumped 3D resonator) is placed in this Helmholtz cage, with semi-rigid SMA cables
going down from room temperature to 30 mK, properly heatsinked and attenuated
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Figure 3.17: a) Frequency response measurement scheme using a Vector Network Analyzer
(VNA) to perform frequency spectrum measurements. The down-line to the resonator are
heat-anchored on every stage to properly cool down the line. A low-noise amplifier (LNF)
amplifies the signal coming out of the resonator, which is then fed back into the VNA, which
then measures the forward scattering parameter S21(ω). b) Photograph of the lowest stage
of the fridge showing three measurement setups, each with their respective 3D Helmholtz
magnetic field cage (Source: [88]).

at each stage when working in the low photon regime (as in Section 4.1) or with the
attenuators removed when working in the high excitation regime (as in Section 4.2).
These attenuators make sure that thermal photons from higher temperatures do not
heat up the spin system and/or thermally occupy the cavity mode.

With the 3D lumped element resonator it is possible to open a small hole on one
side of the resonator to allow putting a fiber into it (see Fig. 3.18). This allows to
make use of the optical transition of the NV center and read out the spin state. For
that we glue the fiber on one side of the diamond sample (with super glue) such that
we illuminate a small part of the sample. Since this resonator manipulates all spins
equally due to its homogeneous coupling strength, reading out only a small part of
the spin ensemble makes it possible to extrapolate to the whole ensemble. We use a
multimode fiber coupled into the fridge to illuminate with green 532 nm light from a
fast bandwidth laser-diode, and use an avalanche photo-diode to measure the scattered
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Figure 3.18: Experimental setup for time resolved measurements showing our homo-dyne
detection setup. A local oscillator (LO) frequency source sends in the probe tone which is
split up with one arm going into the fridge and the other one used for reference. An IQ mixer
modulates a signal from a fast AWG onto the carrier signal which is then amplified and sent
into the fridge. The signal going through the fridge is down-modulated using the reference
signal and recorded by a fast oscilloscope. Shown is also the optical detection scheme where
a fast laser-diode provides short green laser pulses which are sent to the NV center using a
multimode fiber. The scattered fluorescence is then collected by the same fiber and measured
by an avalanche photo-diode (Source: [89])

red fluorescence. The red light is collected through the same fiber with a dichroic
mirror separating the in-going green laser light and the scattered red light.

Only a read-out of the spins using very short (i.e. 50 ns) optical pulses is possible. A
polarization in the ground state, which is usually done at room temperature experiments,
would not only deposit way too much power, which would heat up the fridge very
quickly, but dense NV ensembles are usually also pitch black which does not allow to
illuminate the whole ensemble; something necessary when trying to polarize the whole
ensemble 1.

1Optical polarization of a whole ensemble can be achieved using total internal reflection [90], but
the requirements on the sample and the necessary laser power of several Watts are very hard to meet
in a fridge
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3.3.1 Homo-dyne Measurement and IQ-modulation

Working in the microwave regime offers several advantages over optical photons (also
certain disadvantages), be it availability of affordable devices due to its use in telecom-
munication industry, the easy to build and use wave-guides and cables, and last but
not least the possibility to shape and modify them with relative ease.

Microwave radiation allows us to shape both quadratures of the radiation (or real and
imaginary part; phase and magnitude) using relatively simple and affordable devices.
We perform these manipulation using two mixers for frequency up and down conversion,
both featuring quadrature amplitude manipulation. The first mixer up-converts two
quadratures onto a carrier signal which is then sent into the fridge. The signal produced
after up-conversion is given by

RF (t) = I(t) cos (ωpt)−Q(t) sin (ωpt) . (3.35)

ωp is the carrier frequency (usually tuned to the resonance frequency of the cavity),
with the two (possibly time dependent) quadratures provided by a moderately fast
arbitrary waveform generator (Agilent 33500B). It allows to change the phase of the
applied drive by using either the I- or the Q-channel of the mixer.

The total input power of such a signal is given by Pin = I2(t) +Q2(t).

The transmitted signal through the cavity is then down-converted using the same
frequency source ωp to measure the effect of the Hybrid System on the input drive and
measured in two channels of a fast oscilloscope individually, which is able to measure
the amplitude and the phase of the transmitted signal. The down-converted signals
read [91]

Imeas(t) =RF ′(t) cos (ωpt)

Qmeas(t) = −RF ′(t) sin (ωpt) ,
(3.36)

with RF ′(t) the modified signal send through the fridge.

If one removes the device under test (i.e. RF ′(t) = RF (t)) the down-converted
signal becomes

Imeas(t) =RF (t) cos (ωpt) =
1

2
(I(t) + I(t) cos (2ωpt)−Q(t) sin (2ωpt))

Qmeas(t) = −RF (t) sin (ωpt) =
1

2
(Q(t)− I(t) cos (2ωpt)−Q(t) sin (2ωpt)) ,

(3.37)

which (after a low pass filter) shows that the original signal is recovered.

Both quadratures can be understood analogous to an E- and B-field of an electromag-
netic wave in the cavity (see Section 2.1). This allows to make the same derivation as for
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the driven Tavis-Cummings Hamiltonian in Eq. (2.40), which gives us an Hamiltonian
taking into account both quadratures of the driving field as

H = ~∆câ
†â+

N∑
i=1

~∆i
sσ

i
z

2
+i~

N∑
i=1

gi(σ̂i−â
†−σ̂i+â)+i~I(t)(â†−â)+~Q(t)(â†+â). (3.38)

This gives modified Maxwell-Bloch equations of the form

˙〈a〉 = −κ 〈a〉 − i∆c 〈a〉+
∑
j

gj 〈σj−〉+ I(t)− iQ(t)

˙〈σj−〉 = −i∆j
s 〈σj−〉+ gj 〈a〉 〈σjz〉 −

(
γ⊥ +

γ‖
2

)
〈σj−〉

˙〈σjz〉 = −γ‖
(
1 + 〈σjz〉

)
− 2gj

(
〈σj−〉 〈a†〉+ 〈σj+〉 〈a〉

)
.

(3.39)

and full control of the spin system using (time-dependent) quadrature amplitudes I(t)

and Q(t).

3.3.2 Numerical Modeling

The large system size and the, therefore, small influence of quantum fluctuations in the
system makes it possible to very accurately model the experiment, using Eq. (3.39). It
is virtually impossible to simulate 1016 spins (i.e. solve a set of 2× 1016 + 1 coupled
differential equations), therefore, some simplifications have to be made. To make the
problem tractable we discretize the continuous spectral density as [92]

ρ (ω) =
1

g2
coll

N∑
k=1

g2
kδ (ω − ωk) . (3.40)

With
∫
ρ (ω) dω = 1 (i.e. the spectral density is normalized) it is now straightforward

to see that gcoll =
√∑N

k=1 g
2
k , which is of course the result we want to obtain and

shows that the discretization is valid.

In order to obtain the individual coupling strengths for each k-value, we assume our
spin distribution to be approximated by a set of rectangular bars, with width ∆ω (see
Fig. 3.19), which allows us to write

ωk+∆ω/2∫
ωk−∆ω/2

ρ (ω) dω ≈ ρ (ωk) ∆ω =
1

g2
coll

ωk+∆ω/2∫
ωk−∆ω/2

N∑
k=1

g2
kδ (ω − ωk) dω =

g2
k

g2
coll

. (3.41)
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Figure 3.19: Discretization of the spin ensemble. Each frequency step ωk is approximated by
a rectangle with width ∆ω for which the spin density is assumed to be constant (not to scale).

Since we know that g2
coll =

∑
g2
k, we finally get

∆ω =
1∑N

k=1 ρ (ωk)
, (3.42)

and

gk = gcoll

√
ρ (ωk)∑N
k=1 ρ (ωk)

. (3.43)

If we now use this discretization for our coupling strength and assume a q-gaussian
spin distribution ρ(ω), as it has been shown to be correct for ensembles of NV-center
[84, 85, 92, 93], we can very accurately model our experiment by solving only 2N + 1

differential equations (2 for each spin, and one for the cavity amplitude), a task possible
using modern computer hardware, when using moderate values for N (≈ 1000).

To show how well this approach models our experiment, we show a simulation
compared with data in Fig. 3.20b). The simulation was carried out with N = 701,
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Figure 3.20: Comparison for experiment and theory. In a) we see the pulse that is send
into the cavity, with non constant amplitude in both quadratures. In b) the resulting cavity
amplitude is measured and compared to the simulation. Shown in blue is the experimental
data, while the red curve shows the simulated cavity amplitude as long as the pulse is turned
on, and the black dashed curve the simulated free evolution afterwards. The parameters for
the simulation are as stated in the main text.

gcoll/2π = 2.98 MHz, κ/2π = 1.8 MHz, γq = 2 MHz, q = 1.98 and a pulse that is not
constant over time but has some oscillatory behavior in both quadratures as introduced
in the previous section (see Fig. 3.20a); Section 5.1 explains the motivation for such
pulses). Note that we apply the pulse with very little power, which means that we
don’t leave the linear regime. That makes it easier to compare to numerical results
as it is not necessary to know the exact drive power in the experiment to model it
numerically.

As it is apparent, the agreement between theory and experiment is almost perfect
and allows us to accurately describe the occurring behavior. All subsequent numerical
results have been obtained using this method.
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After developing the theoretical framework of cavity QED and presenting the exper-
imental setup to perform these kind of experiments, let us know turn to the main
part of this thesis: the presentation of the experimental results. I will present two
experiments that both show, when and under which conditions our cavity QED system
cannot be described with the Holstein-Primakoff approximation, qualitatively behaving
differently than two coupled harmonic oscillators.

Both of the presented experiments are examples for such experiments and have
been studied and understood since the early beginnings of quantum optics [50, 94–99].
However, observing them in a solid state system, which makes them much more useful
to use in quantum technological applications, has proven to be a difficult problem.

Here we present the implementation in our solid state hybrid system in the microwave
regime that allows us to study new regimes of these effects and study properties that
are not present in most of the “standard” implementations.

4.1 Amplitude Bistability – Operating between the
Linear and Non-linear Regime

Parts of this chapter are based on:

• “Ultralong relaxation times in bistable hybrid quantum systems”
Andreas Angerer, Stefan Putz, Dmitry O. Krimer, Thomas Astner, Matthias
Zens, Ralph Glattauer, Kirill Streltsov, William J. Munro, Kae Nemoto, Stefan
Rotter, Jörg Schmiedmayer and Johannes Majer
Science Advances (2017) Vol. 3, no. 12, e1701626

Amplitude bistability is one of the archetypical non-linear (or an-harmonic) effects in
cavity QED and has been studied extensively both theoretically [94–96, 100] and exper-
imentally [97, 98]. It is arguably the (experimentally) easiest experiments that leaves
the harmonic regime of cavity QED which explains when and how the approximation
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of two coupled harmonic oscillators breaks down. For that we will first introduce the
strong coupling regime of cavity QED where this approximation is still valid and shows
eigenmodes one would also expect from a system of two coupled harmonic oscillators.
By driving this system harder and harder this explanation, however, starts to break
down and the an-harmonicity of the spin system becomes apparent.

Interestingly, these two regimes are connected by a first order phase transition (if
the so-called cooperativity parameter is large enough) with a bistable region where
depending on the history of the system two stable solutions exist.

We perform this experiments on a two dimensional transmission line resonator (see
Section 3.1.2) as it offers easily accessible strong coupling. For this experiment we are
also not sensitive to in-homogeneous coupling strengths, which makes a transmission
line resonator suitable. The NV ensemble used is a neutron irradiated sample (BS13b
in [71], N1 in [53]) with a high density of 40 ppm and a spectral distribution of a
q-Gaussian [92, 93] with a q-value of q = 1.39 and a line-width of γq = 2π · 9.4 MHz

(FWHM).

4.1.1 The Strong Coupling Regime of Cavity QED

The starting point to understand amplitude bistability, and why it is an experiment
that leaves the linear regime of cavity QED, is to understand the strong coupling
regime of cavity QED first.

In general the strong coupling regime of cavity QED is reached as soon as the losses
in the system are smaller than the collective coupling strength g

√
N � Γ +κ, between

the cavity and the spin system on resonance. Here Γ is an approximation of all spin
losses in the system and incorporates γ⊥, γ‖ and in-homogeneous broadening (we will
introduce a more formal definition in Section 4.1.2). A useful figure of merit is the
system cooperativity parameter which sets these quantities in relation (again for a
more formal definition the reader is referred to Section 4.1.2)

C =
Ng2

κΓ
. (4.1)

In general a cooperativity value larger than one describes the case of strong coupling,
whereas the case of C < 1 is known as the weak coupling regime where the losses in
the system are dominating over the coupling strength. Note that this is only true if
Γ ≈ κ, i.e. by only making the cavity better and better one cannot enter the strong
coupling regime, without improving the spin properties at the same time.

In the experiment we tune the magnetic field as described in Section 3.2.1 such that
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Figure 4.1: The two eigenmodes of a coupled harmonic oscillator system. The oscillators
can be either in phase, oscillating in the same direction (upper plot), which corresponds to
the symmetric eigenstate in the experiment, or out of phase, oscillating against each other,
corresponding to the anti-symmetric eigenstate. In the case of these classical oscillators the
anti-symmetric mode has the higher energy (contrary to our cavity-spin system) due to a
negative sign in the coupling force.

(e.g. two) sub-ensembles are in resonance with the cavity. From Eq. (2.28) we know
that the collective coupling strength scales with

√
N .

If we probe the system with very little power such that the cavity occupation
number is much smaller than the number of spins (a†a� N) the Holstein-Primakoff
approximation is valid and we observe the eigenmodes of a two coupled harmonic
oscillator system (see Fig. 4.1), coupled with the coupling strength g

√
N . The two

oscillators can either oscillate in phase or out of phase as

|±〉 =
1√
2

(|10〉 ± |01〉) , (4.2)

with eigenenergies
E± = ~ωc ± ~g

√
N . (4.3)

The symmetric state gains energy from the coupling whereas the anti-symmetric one
loses energy.

This behavior can be seen in Fig. 4.2a) where we tune the spins in and out of
resonance with the cavity using a magnetic field. Far from resonance the cavity behaves

51



4 Experiments

7.5 8.0 8.5 9.0

B-field (mT)

2.66

2.67

2.68

2.69

2.70

2.71

F
re

q
u

en
cy

(G
H

z)

a)

2.64 2.66 2.68 2.70 2.72 2.74

Frequency (GHz)

−80

−60

−40

−20

0

T
ra

n
sm

is
si

on
(d

B
)

b)

g

√
2g

|+〉 |−〉

Figure 4.2: a) Magnetic field spectroscopy on our hybrid system with two sub-ensembles
in resonance with the cavity, showing the transmission through the cavity. By tuning the
spins into resonance we see that the eigenstates split up with the maximum separation on
resonance, for a magnetic field of 8.4mT. b) Measured strong coupling with two (blue) or
four (orange) sub-ensembles in resonance with the cavity. Increasing the number of spins
by a factor of two corresponds to an increase in the splitting by a factor of

√
2 . The two

eigenstates (|+〉 and |−〉) are clearly distinguishable in both cases. The slight asymmetry in
the peak height stems from a Fano resonance [101].

like a single harmonic oscillator that exhibits a Lorentzian response to a drive. On
resonance the eigenmodes of the coupled system become apparent and we observe an
avoided crossing with a splitting ∆ω = 2

√
N g.

By bringing more spins into resonance with the cavity mode we also observe the
typical

√
N behavior as can be seen in Fig. 4.2b) where we observe that changing the

number of spins by a factor of two, changes the splitting by a factor of
√

2 .

4.1.2 Steady-state Bistability

Observing strong coupling in our system is the first step towards understanding the
behavior of bistability. All the considerations in the previous section have been carried
out in the low-excitation regime where the system is driven very weakly in order not to
disturb the spin system. Due to this small drive the Holstein-Primakoff approximation
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with Sz ≡ −N/2 is applicable and we observe the eigenmodes of two coupled harmonic
oscillators. It should be noted that for such a transmission spectroscopy, only the
steady state of the system is of interest, since all the relevant dynamics happen on a
timescale much shorter than the probing frequency of the vector network analyzer.

Operating between two Regimes

When driving the system harder, a different approach is necessary to understand the
steady state behavior of the system, and the simple approximation Sz ≡ −N/2 cannot
be applied anymore. We take the Maxwell-Bloch equations as in Eq. (2.49) and, as we
are only interested in the steady state of the system set all time derivatives to zero.
This gives (for clarity we omit all the symbols for the expectation values)

0 = −κa− i∆ca+
∑
j

gjσ
j
− + η

0 = −i∆jσj− + gjaσ
j
z −

(
γ⊥ +

γ‖
2

)
σj−

0 = −γ‖
(
1 + σjz

)
− 2gj

(
σj−a

† + σj+a
)

.

(4.4)

Expressing σj− from the second equation gives

σj− =
2gjaσ

j
z

γ‖ + 2γ⊥ + 2i (∆c + ∆j)
, (4.5)

with ∆j = ωjs − ωc the detuning from the respective spin to the cavity resonance
frequency. Putting that in the first and the third equation then gives

σjz = − γ‖

γ‖ +
8(γ‖+2γ⊥)|a|2g2j

γ2‖+4γ‖γ⊥+4(γ2⊥+∆2
c)+8∆c∆j+4∆2

j

,

|a|2 =
η2

κ2

(
1−

n∑
j=1

2(γ‖+2γ⊥)g2jσ
j
z

κ
(

4∆2
c+4∆j(2∆c+∆j)+(γ‖+2γ⊥)

2
)
)2

+

(
∆c +

n∑
j=1

4g2j (∆c+∆j)σjz

(γ‖+2γ⊥)
2
+4∆2

c+4∆j(2∆c+∆j)

)2 ,

(4.6)
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with n the total number of the spins coupled. In the following we only consider a drive
resonant with the cavity (i.e. ∆c = 0), which simplifies these expressions to:

σjz = − γ‖

γ‖ +
8(γ‖+2γ⊥)|a|2g2j
(γ‖+2γ⊥)

2
+4∆2

j

,

|a|2 =
η2

κ2

(
1−

n∑
j=1

2(γ‖+2γ⊥)g2jσ
j
z

κ
(

4∆2
j+(γ‖+2γ⊥)

2
)
)2

+

(
n∑
j=1

4g2j∆jσjz

(γ‖+2γ⊥)
2
+4∆2

j

)2 .
(4.7)

The second equation can be simplified even further by assuming a symmetric spin
distribution around its center frequency (which is generally the case), since the sum
(
∑

∆j)
2 averages to zero. We are finally left with

σjz = − γ‖

γ‖ +
8(γ‖+2γ⊥)|a|2g2j
(γ‖+2γ⊥)

2
+4∆2

j

|a|2 =
η2

κ2

(
1−

n∑
j=1

2(γ‖+2γ⊥)g2jσ
j
z

κ
(

4∆2
j+(γ‖+2γ⊥)

2
)
)2 .

(4.8)

We can now define the aforementioned cooperativity factor for a single spin as

Cj =
g2
j

κ
(γ‖

2
+ γ⊥

)(
1 +

∆2
j( γ‖

2
+γ⊥

)2
) , (4.9)

and the collective cooperativity as Ccoll =
∑
Cj. With this definition of cooperativity

the steady state solution for the cavity intensity and the inversion simplifies to

σjz = − 1

1 +
4|a|2Cjκ

γ‖

,

|a|2 =
η2

κ2

(
1−

n∑
j=1

Cjσ
j
z

)2 .
(4.10)

We can immediately see that this gives rise to different regimes. As long as the
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Holstein-Primakoff approximation is valid (i.e. σjz = −1) the cavity transmission is

|T |2 =
κ2 |a|2
η2

=
1

(1 + Ccoll)
2 , (4.11)

which for a collective cooperativity that is large tends towards zero. It should be noted
that strictly speaking the transmission intensity as given above is only valid for an
over-coupled symmetric cavity (see Section 3.1.4). As this is the case in the following
experiment, the statement holds true.

Driving the system strongly and with a lot of photons in the cavity mode, Eq. (4.10)
tells us that σjz = 0 for |a|2 →∞. Thus, the transmission through the cavity becomes

|T |2 =
κ2 |a|2
η2

= 1. (4.12)

This behavior can be understood as the transition between a system that acts like two
coupled harmonic oscillators in the low excitation regime, which gives low transmission
when driven on resonance due to the normal mode splitting, to the point where the
spin system is completely saturated and does effectively not couple to the cavity mode
anymore. All that is left in this scenario is the bare cavity transmission function.

Bistable Behavior

As presented in the previous paragraph a large cooperativity parameter gives rise
to two different regimes of cavity QED and a breakdown of the Holstein-Primakoff
approximation when driving the system strongly. However, so far we only have looked
at two extreme cases where the system is either driven very weakly or very strongly.

To understand the steady states in between these two extremes, we can first reduce
the two equations for the spin inversion and the intra-cavity intensity to a single
equation as

|a|2 =
η2

κ2

(
1 +

n∑
j=1

Cj

1+|a|2/nj0

)2 . (4.13)

Here we introduced the additional dimensionless parameter nj0 = γ‖/4Cjκ, sometimes
called the saturation photon number [102]. n0 =

∑
nj0 is (roughly) the number of

photons necessary in the cavity mode where the Holstein-Primakoff approximation
starts to break down [44].

This equation does not have a closed solution for |a|2 and therefore can only be

55



4 Experiments

10−1 101 103

η2/κ2n0

10−3

10−2

10−1

100

101

102

103

104

|a|
2
/n

0

a) b)

ωp/2π (GHz)

2.66
2.68

2.70
2.72

P i
n
/P

cr
it
(G
H
z)

−5.0
−2.5

0.0
2.5
5.0
7.5

|T
/T

m
a
x | 2

(d
B
)

−40

−30

−20

−10

0

Figure 4.3: a) Steady state bistability simulated according to Eq. (4.15) for different values of
cooperativity (C = 2, 8, 32, 128, 512, 2048 from blue to red) for a single spin without detuning
in resonance with the cavity mode. We observe that starting with a critical cooperativity of
C = 8 the system starts to exhibit three stable solutions for one input power. This is the
effect known as amplitude bistability. b) Measured steady state transmission spectra for
different drive powers for two sub-ensembles in resonance with the cavity mode. For small
drive powers the system behaves like two coupled harmonic oscillators, and exhibits normal
mode splitting; for a certain critical drive power (Pin = Pcrit) the splitting vanishes and only
one peak is visible (note the green curve denoting the position of the maxima/maximum)
(Source [103])

solved numerically. However, we already see that this equation is a non-linear equation
in |a| with the cooperativity value defining how large this non-linearity becomes.

To gain qualitative understanding of this equation, we only consider a single spin
coupled to the cavity mode, such that the equation simplifies to

|a|2 =
η2

κ2
(

1 + C
1+|a|2/n0

)2 . (4.14)

With x2n0 = |a|2 and y2 = η2/κ2n0, the now dimensionless equation finally simplifies
to

y2 =
x2 (1 + C + x2)

2

(1 + x2)2 . (4.15)

In Fig. 4.3a) we plot the steady states as computed from Eq. (4.15) and different
cooperativity values. This plot shows that for a certain cooperativity value (C ≥ 8) the
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transmission (or intra-cavity intensity) starts to show more than one stable solution
for a given input power y.

This behavior is known as amplitude bistability, where operating between these two
regimes shows two stable solutions depending on the history of the system. Which
steady state the system tends towards, depends on the history of the system.

Even though an analytic solution is not possible in a many spins scenario with
different cooperativity values for each spin, numerical simulations show a similar
behavior. If the system starts from a state that is driven weakly, the steady state it
approaches is the one in the lower branch. If, however, the system is prepared in the
strongly driven branch, the system relaxes to the steady state in the upper branch.

Experimental Implementation

We perform the steady-state experiments on a λ/2-transmission line resonator (see
Section 2.1) with a cavity line-width of κ/2π = 440 kHz (HWHM) and a fundamental
resonance frequency of ωc/2π = 2.691 GHz. The cavity is operating in the over-
coupled regime such that the internal losses of the cavity are much smaller than the
coupling losses (κint � κext), which allows to approximate the total losses as κ ≈ κext.
The system is always probed with a frequency resonant with the cavity resonance
frequency ωp = ωc. This cavity design gives us a single spin coupling rate of g ≈ 12 Hz.
We estimate the transverse relaxation rate as γ⊥/2π ≤ 33 kHz and the longitudinal
relaxation rate as γ‖/2π ≤ 3.6 mHz (T1 = 44 s)[30]1.

The spin system has a spin density according to a q-Gaussian distribution [84, 85],
with a full-width-half-maximum line-width of γq = 2π · 9.4 MHz and shape parameter
q = 1.39 [93] (For more information about the sample and the implications of the
specific shape of the spin distribution the reader is referred to [93]).

We perform this experiment for three different cooperativity values which we change
by bringing two or four sub-ensembles into resonance with the cavity. This changes
the collective cooperativity value by roughly a factor of two. Since the experiment is
performed on a transmission line resonator we can only apply magnetic fields parallel
to the [1, 1, 0] direction, which limits us to the case of either two of four sub-ensembles
in resonance with the cavity mode (see Section 3.2.1). The thin superconducting
Niobium layer of the resonator does not allow magnetic fields perpendicular to it.
Niobium as a type II superconductor would create normal conducting vortices until the
superconductivity breaks down which lowers the quality of the cavity until the resonance

1As we learned later [53], this is actually not the real T1 time, but the spin diffusion time T ∗
1 ,

which is orders of magnitude shorter than the real one. Since it has the same effect in this experiment
we use it here as an effective T1 time.
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Figure 4.4: Measurement of the steady-state bistability transmission through the cavity as a
function of increasing (blue) and decreasing (red) input power Pin. In a), the transmission
measurements are plotted for the cooperativity value Ccoll ≈ 18 using two sub-ensembles in
resonance with the cavity, while partly quenching the cavity to lower the cooperativity value.
b) Same transmission measurement with Ccoll ≈ 49. A small bistable area is visible where
the system evolves to different steady states depending on the history of the system in either
the upper or lower branch. c) Same measurement as in a), with an increased cooperativity of
Ccoll ≈ 78 (by using all four NV sub-ensembles in resonance with the cavity). The dashed
curves are numerical solutions of Eq. (4.8). The dashed lines in b) show the asymptotic
solutions in the limit of large and small drive amplitudes η. Two critical values of the input
power, at which a phase transition between two stable branches occurs, are characterized by
a saddle-node bifurcation and labeled as P dcrit and P

u
crit. For all three cases, a sketch of the

corresponding potential is also depicted, which shows the occurrence of either one or two
stable solutions (red and blue solid circles) and one unstable solution (in figures b) and c))
(green solid circles) for a fixed value of the input power Pref . Tunneling through the potential
barrier does not occur in our case because of the large system size such that the system does
not switch back and forth between the steady states in the bistable area. (Source: [103])

vanishes completely. We can, however, lower the cooperativity value intentionally by
applying weak perpendicular magnetic fields for a short amount of time. This increases
the cavity line-width to κ/2π = 1.2 MHz and consequently decreases the cooperativity
of the system.

We start the experiment by probing the full transmission spectrum of the Hybrid
system with two sub-ensembles in resonance with the cavity (and high quality factor)
for different drive powers. We start with a low drive power, measure the transmission
spectrum and then increase the power in a step-wise manner. The experimental data
is shown in Fig. 4.3b), where we immediately spot the two regimes. For low drive
powers we observe the normal mode splitting (indicated by the blue trace in front)
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which corresponds to the linear regime (or the description of the two coupled harmonic
oscillators). For a certain threshold power (called Pcrit) the system undergoes the
transition to a decoupled system where the spin system is bleached (σjz ≈ 0) and the
spins are uncoupled. The cavity starts to behave like an empty cavity again.

This nonlinear saturation behavior is the first step towards measuring bistability.
However, whether it is observable or not is only determined by the systems cooperativity
value (see previous section). In order to investigate that, we do not perform full
transmission spectra but we drive the system only on resonance. We again start in
the low drive regime and wait until a steady state of the transmission is reached.
Afterwards we increase the drive power and repeat the experiment. For a critical
drive power (P u

crit), and if the cooperativity is large enough, the system undergoes
a phase transition from the lower branch to the upper branch. Once we are deep
in the strongly driven branch, we decrease the drive power again and measure the
transmission intensity of the steady state.

Again, for a critical drive power (P d
crit) the system undergoes the transition from the

large drive power branch to the lower branch. If now P u
crit 6= P d

crit we observe bistability
which is only dependent on the value of the cooperativity.

The behavior of amplitude bistability can also be understood as a bifurcation,
where close to the critical drive a saddle-node bifurcation occurs (for more details
about saddle-node bifurcation see [104]). For input powers between P u

crit and P d
crit two

attractors coexist and the system evolves to one of these two attractors depending if
they are approached from below or above. These two attractors are connected – if the
cooperativity is large enough – by a first order phase transition.

To define the critical cooperativity for which bistability exists, we take Eq. (4.13)
and express η as a function of the cavity amplitude |a| as

η = |a|κ
(

1 +
n∑
j=1

Cj

1 + |a|2 nj0

)
. (4.16)

If the slope of this function η(|a|) becomes negative for any value of the cavity amplitude,
amplitude bistability is observed. Thus,

1 +
n∑
j=1

Cj
(
1− |a|2 nj0

)(
1 + |a|2 nj0

)2 ≤ 0, (4.17)

is the necessary condition for observing bistable behavior. For a homogeneously
broadened line-shape of the spin distribution this can be computed to be Ccoll ≥ 8, while
for a q-Gaussian distribution only numerical results are available. These numerical
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Figure 4.5: Simulated steady state solutions by solving Eq. (4.13) for the steady states for
the reference power Pref . For the simulation we use our system parameter and change the
cooperativity by changing the collective coupling strength. We simulate with n = 3001 spins,
a number sufficiently high enough to model our experiment. For a critical cooperativity of
Ccoll = 42.2 the system starts to show more than one steady state, with the middle one
unstable and impossible to prepare in the experiment. Which of the other stable fix-points
the system tends towards is determined by the history of the system. Shown are also the
measured values for the cavity amplitude as in Fig. 4.4 for the three cooperativity values
presented there. As it is obvious from the plot the occurrence of the saddle node-bifurcation
is very well reproduced by the experimental data.

simulations show that, for a distribution as used for our experiment, the effect of
bistability can be observed for a collective cooperativity (as defined in Eq. (4.9))
Ccoll ≥ 42.2, as shown in Fig. 4.5.

This is very well reproduced by the experiment as shown in Fig. 4.4 and Fig. 4.5
where for three different cooperativity values the measurements are shown. For a
cooperativity value of Ccoll = 18 – by coupling to two sub-ensembles and partly
quenching the resonator – the cooperativity value is not large enough to show bistable
behavior. For a cooperativity value of Ccoll = 49 – by using two sub-ensembles and
the unperturbed cavity – we see a small bistable area, where two stable solutions for
one input power start to form. For a cooperativity value much larger than the critical
cooperativity of Ccoll = 78 – using all four sub-ensembles – we observe clear signs of
amplitude bistability within a 2 dB range.
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For these three cases we also plot the corresponding potential ∝ d2η/d|a|2 (for the
reference drive power Pref) which shows that as soon as bistable behavior occurs more
than one local minimum in the potential exists. In general a tunneling between these
“stable” steady states should happen on its own driven by quantum fluctuations [105],
however, due to our large number of spins these quantum fluctuations are extremely
mitigated and a switching between these steady states does not occur in a measurable
timescale.

4.1.3 Temporal Behavior of the Phase Transition

Steady state bistability is a well-known and well-understood effect. Many experiments
have observed it using cold atom setups or trapped ions and it has led to numerous
technological applications and is nowadays commonly used in optical switches [106].
Our implementation of amplitude bistability allows us to do something that has not
been possible (or very limited [107, 108]) with other experiments so far. Our solid state
hybrid quantum system shows properties, where the difference in dissipation rates are
huge and ordered as κ > γ⊥ � γ‖. This difference allows us to adiabatically eliminate
the a and the σj− variables, since in first order approximation the cavity amplitude |a|
and the polarization σj− always are in a steady state (since their dynamics is much
faster, due to the much larger rates) compared to the extremely slow behavior of the
spin inversion σjz, and follow the evolution of the σjz variable adiabatically [109].

To understand the temporal evolution it is, therefore, only necessary to consider the
time evolution of the spin inversion, which gives (see Eq. (2.49))

0 ' −κa− i∆ca+
∑
j

gjσ
j
− + η

0 ' −i∆jσj− + gjaσ
j
z −

(
γ⊥ +

γ‖
2

)
σj−

σ̇jz = −γ‖
(
1 + σjz

)
− 2gj

(
σj−a

† + σj+a
)

.

(4.18)

These equations capture the dynamics on a timescale where all the dynamics is defined
by the slow evolution of the σjz variable. All the fast dynamics that happens in the a and
σj− variables are not playing a role there anymore (such as coherent Rabi oscillations).
In fact in this limit the evolution of both of these variables is enforced by the evolution
of the σjz variable, as a change in σjz also changes both the cavity amplitude and the
σj− variable. This can be seen by reducing Eq. (4.18) to a set of two equations (again
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we omit ∆c), one for the cavity amplitude one for the spin z-component, as

|a|2 =
η2

κ2
(

1−∑n
j=1C

jσjz
)2 ,

σ̇jz = −γ‖
(
1 + σjz

)
− η2γ‖σjz

κ2nj

(
1−∑n

j=1 C
jσjz
)2 .

(4.19)

This equations show that the cavity amplitude is enslaved by the evolution of the σjz
variable, and changes with it adiabatically.

Still, for this set of equations a closed polynomial expression for the cavity amplitude
does not exist when including in-homogeneous broadening and many spins. In order to
analyze the qualitative behavior of the collective spin ensemble we can, however, derive
an equation for a giant spin in resonance with the cavity mode (i.e. a single spin that
couples with a coupling strength

√
N g) which gives for the temporal evolution of the

cavity amplitude (enforced by the evolution of the σjz variable) a first-order differential
equation of the form

d|a|2
dt

= −8Ccollκ
2|a|5

η
+ 8Ccollκ|a|4 −

2κγ‖
η

(1 + Ccoll) |a|3 + 2γ‖|a|2. (4.20)

Using the same dimensionless parameters as before this reduces to the very simple
equation

dx2

dt
= −2γ‖

(
x5

y
− x4 +

x3 (1 + Ccoll)

y
− x2

)
. (4.21)

This equation describes the temporal evolution of the cavity intensity for an arbitrary
drive amplitude. The equation again does not have a simple analytic solution, but
is rather straightforward to solve numerically. We immediately see that the whole
evolution is globally scaled by the longitudinal relaxation rate – with the cooperativity
being the only parameter affecting the “shape” of the evolution – which in the case
of the NV center is orders of magnitude smaller than for other implementations of
amplitude bistability. One should note that, even though this is only the equation
for a single spin coupling to the cavity mode and such a nice closed form does not
exist for an in-homogeneously broadened line-width, the results for a more complicated
line-width show the same qualitative behavior.

In Fig. 4.6 we show the solution of this equation for a collective cooperativity value
of C = 128 and a longitudinal relaxation rate of γ‖ = 0.0001. The initial state is such
that the system is prepared in an initial state with y →∞, after which the temporal
evolution of the system with a smaller drive value is studied. We observe, that close
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Figure 4.6: Simulated behavior for a quench measurements solving the differential equation
Eq. (4.21) for a cooperativity of 128 and γ‖ = 0.0001. As long as the system is driven harder
than a critical drive power η2

crit the system settles to a steady state in the upper branch. For
drive powers lower than this critical drive the system relaxes to a steady state in the lower
branch. Close to the critical drive the evolution becomes extremely slow and it takes an
increasingly long time for the system to settle in a steady state.

to the critical drive value y → n0 the system takes increasingly long to settle to a
steady state. For drive values, which are either much smaller or larger than the critical
drive the system settles to a steady state much faster. The effect of extremely slow
evolution close to the critical drive is known as “critical slowing down” or saddle-node
“ghost” [110] and is usually hard to observe since the relative magnitudes of the decay
rates have to have the proper ratios [107]. Note that instead of the cavity amplitude
∝ x we plot the transmission |T | ∝ x/y, since it corresponds to what we measure in
the experiment and gives the intuitive picture that the transmission approaches 1 for
y →∞.

In our solid state system the extremely small longitudinal relaxation rate of the NV
center allows to observe this critical slowing down on extremely long timescales, which
allows to study the temporal evolution of the phase transition directly.
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Experimental Implementation

In the experiment we perform this quench dynamics measurement with four sub-
ensembles in resonance with the cavity. Quench refers to the abrupt switching of the
drive power from very high drive powers to lower drive powers. We start the experiment
by preparing the system in an initial state to Pin � P d

crit for several minutes, such
that the spin system is completely saturated and decoupled from the cavity. We then
non-adiabatically switch to a lower “target” drive power, after which we look at the
evolution of the transmission through the cavity.

The results are shown in Fig. 4.7 where we observe that close to the critical drive
value η2

in ≈ η2
crit (see Fig. 4.4) the system takes extremely long to reach a steady state.

When driven far away from the critical drive value either in the strongly or the weakly
driven branch the system on the other hand settles to a steady state rather quickly. If
the drive is stronger than the critical drive it settles in the upper branch where the
drive is stronger than any dissipation mechanisms in the system and a steady state
with (mainly) saturated spins is reached.

For a drive much smaller than the critical drive, the combination of all dissipation
rates dominate and the system loses energy faster than it is replenished by the drive,
and thus settles in a steady state in the linear branch.

Very close to the critical drive, the drive power, putting energy back in the system,
and the dissipation mechanisms are (almost) equal and opposite in effect, and, thus,
the system cannot set in a steady state fast. This results in a very slow evolution
towards the steady state of the system on a timescale of ∼ 40 000 s, known as “critical
slowing down” in literature [107]. According to Eq. (4.20) close to the critical drive,
the system becomes scale invariant and is characterized by an infinite correlation time
[111]. Here the system shows a saddle-node bifurcation where the dynamics exhibits
power law divergence. The timescale of this evolution is governed by the slowest decay
rate in the system – in our case given by the longitudinal decay γ‖.

In Fig. 4.7b) we also show the time derivative of the cavity amplitude, closer and
closer to the critical drive value η2

crit. We see that the derivative can approach zero
arbitrarily close, the closer we approach the critical drive.

A nice thing about our implementation is that due to its slow dynamics (which
makes it also tedious to measure) it allows us to extract rather easily the behavior of
the phase transition close to the critical drive value. If we compute the time it takes
for the system to undergo the phase transition from the upper to the lower branch (for
powers smaller than the critical drive), we observe a simple power law divergence, as it
is expected from such a phase transition. By using the ansatz tswitch ≈ |η2

in − η2
crit|
−α –

note that we define the switching time as the inverse of the smallest time derivative for
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Figure 4.7: a) Quench dynamics of the high cooperativity Ccoll ≈ 78 configuration and an
initial state far in the strong driving branch. The transmission |T/Tmax|2 is plotted over
time for different drive intensities where the time to reach a steady state strongly depends
on the input intensity. For drive intensities larger than a critical drive value ηcrit (defined
as the power where the system undergoes the phase transition from the upper to the lower
branch, the spin system remains saturated and sets into a state on the upper branch, whereas
in the opposite case, the system evolves into a steady state on the lower branch. Close to the
critical drive this time scale is extremely prolonged and approaches 4× 104 s. The dashed
lines correspond to full numerical simulations predicted from solving Eq. (4.18). The similarity
to Fig. 4.6 is immediately apparent. b) The numerically calculated time derivative of the
transmission through the cavity when doing a quench measurement as in a). The further
away from the critical drive (either to high or too low), the faster the system evolves to a
steady state. Close to the critical drive (small inset) the system can take arbitrarily long to
reach a steady state, and the evolution becomes extremely slow. (Source [103])

a given curve – we observe a critical exponent of α = 1.2± 0.04 (see Fig. 4.8).

The value for the measured critical exponent depends on the precise structure of
the so-called normal form (given for a system without in-homogeneous broadening by
Eq. (4.20)). For the case without in-homogeneous broadening it is pretty straightforward
to see that the critical exponent should be given by α = 1. If we, however, include
in-homogeneous broadening and solve Eq. (4.18) numerically, we observe excellent
agreement between theory and experiment.

Therefore, this experiment is the first of its kind that really allows to study the
dynamics of the bistable phase transition in a regime not accessible before, and a
critical slowing down on a timescale not observable before, and gives the opportunity
to study the nature of the occurring phase transition.
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Figure 4.8: Time it takes for the system to undergo the phase transition from the strongly
driven branch to the lower branch. We define the switching time (ttrans) as the inverse of the
smallest gradient for a given curve extracted from Fig. 4.7. Close to the critical drive, the
switching time diverges, and the time to reach a steady becomes arbitrarily long. The dashed
blue line is a fitting function of the form ttrans ≈ |η2 − η2

crit|α with α = 1.20± 0.04.

4.1.4 Outlook and Discussion

To summarize, we have shown how to implement a first non-linear experiment in
cavity QED based on driving the system strong enough to break the description of two
coupled harmonic oscillators. The spin system saturates and decouples from the cavity
mode. By measuring the steady state behavior of the system we saw that changing the
cooperativity value, changes the occurrence of a bistable region – a regime where the
hybrid system shows, depending on its history, more than one stable solution. The
occuring phase transition also allows us to set-up our system to switch between the
linear and non-linear regime.

Due to its peculiar ordering of the decay rates we then showed that this allows us
to use adiabatic elimination to also explain the temporal behavior of this occurring
phase transition in a regime not easily accessible. This allows us to extract a critical
exponent of the phase transition, and show that it exhibits a power law divergence
close to the critical drive value.

This experiment is a first experiment to better understand the non-linear behavior
of such hybrid systems, and paves the way towards quantum technological applications,
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such as microwave isolators or microwave switches, which all rely on these type of
non-linear effects.
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4.2 Superradiance – Collective Non-linear Behavior

Parts of this chapter are based on:

• “Superradiant emission from colour centres in diamond”
Andreas Angerer, Kirill Streltsov, Thomas Astner, Stefan Putz, Hitoshi Sumiya,
Shinobu Onoda, Junichi Isoya, William J. Munro, Kae Nemoto, Jörg Schmied-
mayer, Johannes Majer
Nature Physics 14, 1168–1172 (2018)

In the previous sections I have presented a first experiment showing a non-linear
effect in cavity QED. It is fundamentally based on saturating the spin system such
that the coupling of the spins to the cavity mode becomes zero. This means that when
driving the system, we lose all the coherence and operate between two states where
the spins are either all in the ground state (and by definition a phase or coherence is
not defined there) or in a state where all the coherence is gone, because the system
has been driven much longer than dephasing and decoherence times.

This is, however, not the only way to show and study non-linear effects in our system.
An inverted spin system is fundamentally something that is different from a harmonic
oscillator (in a sense it is actually exactly what a harmonic oscillator isn’t, since a
harmonic oscillator cannot be in its “excited” state).

The non-linearity of an excited spin ensemble becomes apparent in an effect known
as superradiance. Superradiance is the effect where an ensemble of excited spins decay
fundamentally different than a single spin, as it was pointed out by Dicke in 1954
[50]. Dicke introduced this idea with two neutrons that are close to each other with a
distance smaller than the radiation wavelength but still far enough from each other so
that dipole-dipole interaction is negligible.

A single neutron that is prepared in its excited state (for example the higher energy
spin state in a magnetic field) decays with a rate that corresponds to its spontaneous
emission rate. The naive assumption would be that putting a second neutron which
is in its ground state would not alter the radiation process of the excited neutron.
However, this assumption is not correct. With one of the neutrons being in the excited
state and the other one in the ground state, the probability of finding one neutron
in the excited state tends towards 1/2 and not 0, and after t → ∞ we still find a
probability of 1/2 for one of the two neutrons excited (even though it is impossible to
say which one is excited and which one de-excited).

The difference in the radiation process stems from the fact that an arrangement of
two neutrons with one of them excited and the other one in its ground state can be
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either a singlet or triplet state, like

|Ψ〉triplet =
1√
2

(|↑↓〉+ |↓↑〉)

|Ψ〉singlet =
1√
2

(|↑↓〉 − |↓↑〉) .
(4.22)

As we already derived in Section 2.2.4 only the triplet state couples to the electromag-
netic field of radiation and can therefore decay; the other one is usually referred to as
“dark” state and cannot decay. Since both of these configurations are equally likely, the
chance to find both neutrons in their ground state tends towards 1/2 for time goes to
infinity. From that we immediately see that the radiation process of a single emitter
is fundamentally different from that of an ensemble of emitters that are placed in a
distance smaller than the wavelength of the emitted radiation.

Superradiance is now the case when the system is prepared in the symmetric triplet
state, where it turns out that the spins decay with a rate four times as large as a single
spin – hence the name superradiance.

4.2.1 Superradiance – An Interference Effect

Even though Eq. (4.22) suggests that the effect observed is of quantum mechanical
nature, superradiance can actually be understood in terms of classical fields and is
fundamentally a “classical” interference effect. The difference between the singlet
and the triplet state in the previous example is obviously the phase relation between
spin one and spin two. In the case of the singlet, the emitted wave would interfere
destructively (their phase difference is π) and therefore no light is emitted, thus, the
emitter cannot get de-excited by emitting a photon. For the case of the triplet state
the phase difference between the two particles is zero and the light emitted interferes
constructively.

This means that if the phase of the emitters during decay is and stays zero, the
amplitude adds up and, since the intensity is the proportional to the square of the
amplitude, the emitted photon number scales as1 N2. If on the other hand we prepare
the ensemble in a state where the emitted radiation interferes destructively, the spins
can not decay at all (sometimes called “sub-radiance”, even though everyone uses these
notions a bit differently)

There are several states that show this constructive interference: If the permutation
1This is similar to how a laser works. Coherence is maintained through the common radiation

field which preserves this amplification. This is, however, significantly different to superradiance,
where the coherence is maintained by the spins themselves
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of two particles does not change the sign of the wave function the phase between the
emitters has to be zero. If there is no mechanism to change the symmetry of the wave
function during decay this coherence is maintained and superradiance unavoidably
occurs.

States that are obviously symmetric states are the Dicke states as introduced in
Section 2.2.4. They are symmetric under permutations of two spins, and therefore
decay superradiantly. As such a cavity QED system is the perfect system to study
superradiance as its coupling term does not allow to leave this symmetric subspace.
This is the same as saying, that when starting with an excited spin system (which is
the uppermost Dicke state), and considering only the interaction with the cavity, we
can never leave this symmetric subspace of Dicke states and superradiance will occur.

But the Dicke states are not the only states that exhibit the necessary symmetry to
observe superradiance. Also the spin coherent state – which is the state we obtain in
the spin system when driving the cavity with a coherent drive – has a phase of zero
between its emitters and, thus, shows superradiance1:

|ψ〉 =
N∏
i=1

(
cos

(
θ

2

)
|↓〉i + i sin

(
θ

2

)
|↑〉i
)

. (4.23)

Here θ goes between 0 and π and gives the inclination of the coherent state from the
ground state. To obtain this state we use the displacement operator for spins on the
ground state and rotate them with an angle θ. This has the same effect as driving the
spins with a coherent laser field, as this is equivalent to the time evolution operator for
a spin (system) driven by a coherent drive:

|ψ〉 = eiθSx| ↓↓ . . . ↓〉. (4.24)

This state, even though not showing any entanglement as it is a product state, is
symmetric under permutations of the spins, and therefore shows constructive interfer-
ence i.e. superradiance2. All states that show constructive interference (i.e. a phase
difference of zero for all times) show superradiance and entanglement is therefore not a
necessary condition to observe it.

Let us now turn to the qualitative description: Classical Dicke superradiance with
the typical N2 scaling of the emitted radiation, only exists when the emitters are
coupled to the vacuum mode (as it was introduced in Dicke’s thought experiment), let

1These states are in a sense the analogous extension of the coherent state as in introduced
in Section 2.1.3. They are the most “classical” spin states, and are obtained by using an unitary
displacement operator

2The excited spin state is both: a spin coherent state and the uppermost Dicke state

70



4.2 Superradiance – Collective Non-linear Behavior

us therefore neglect the cavity mode for now (for details how we solve the “problem” of
the cavity mode in our experiment see Section 4.2.2).

The Hamiltonian for N spins in vacuum is simply given by

Hvac = ~ωs
Sz
2

. (4.25)

Here we only consider identical spins, but qualitatively the same can be derived with
in-homogeneous broadening.

By again making a Master-equation approach, the only way to dissipate energy in
this system is by spontaneous emission processes with a rate γ‖ due to of vacuum
fluctuations that happen by the coupling to the vacuum mode. This is often referred to
as the natural T1 time and fundamentally limited by Heisenbergs uncertainty relation.
In addition we also consider decoherence processes through the transverse rate γ⊥
(the whole derivation is very similar to the one done in Section 2.2.6), which destroy
coherence but do not dissipate energy.

This then gives the equation of motion as

ρ̇ = −iωs
2

[Sz, ρ] + γ‖ (2S−ρS+ − S+S−ρ− ρS+S−) +
γ⊥
2

(SzρSz − ρ) . (4.26)

For the inversion and the polarization we then obtain in the frame rotating with the
spin

˙〈Sz〉 =− 2γ‖ 〈S+S−〉
˙〈S−〉 =− i∆s 〈S−〉 −

(
γ⊥ +

γ‖
2

)
〈S−〉 ,

(4.27)

also known as optical Bloch equations. Due to conservation of energy a loss in inversion
has to correspond to the emission of photons into the vacuum mode, thus, 〈S+S−〉 ∝ 〈n〉
[112] and:

Iem = I0 〈S+S−〉 , (4.28)

with the emitted radiation as Iem and some reference intensity I0.

For a symmetric state (we will use the Dicke states here because they are the easiest
to compute, but the calculation would be analogous for any other symmetric states
with phase difference of zero), this straightforwardly computes to

Iem = I0 〈S,ms|S+S− |S,ms〉 = I0(S +ms)(S −ms + 1). (4.29)

We immediately see that for an excited spin system (S = N/2,ms = N/2), this is
proportional to the number of spins N and equivalent to each spin decaying with its
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individual decay rate. If, however, we consider the symmetric state with 〈Sz〉-projection
ms = 0, correlations (i.e. coherence) have build up within the spin system and the
emission intensity becomes proportional to N2. This non-linear scaling of the emitted
radiation intensity is the characteristic behavior of superradiance.

Not only the scaling of the emitted radiation is of interest but also the shape and
dynamics of this burst of photons, which can be extracted from Eq. (4.27). For an
arbitrary Dicke state the first Bloch equation becomes (S = N/2)

˙〈Sz〉 = −2γ‖

(
N

2
+ 〈Sz〉

)(
N

2
− 〈Sz〉+ 1

)
, (4.30)

which can be solved for the condition 〈Sz〉 (td) = 0 (i.e. for a certain delay time td the
system has 〈Sz〉-component zero where correlations are largest) as

〈Sz〉 = −N
2

tanh
(
γ‖N (t− td)

)
, (4.31)

when assuming N � 1. Since ˙〈Sz〉 ∝ 〈a†a〉 we get

I ∝ −dSz
dt

=
N2

2
sech2

(
γ‖N (t− td)

)
, (4.32)

with a FWHM of the photon burst duration of

τsr =
2 cosh−1

(√
2
)

N
. (4.33)

For emitters that emit photons independently from each other we would assume a
rate Γs = 2γtN , i.e. a rate that is dependent on the number of emitters, but scales
linearly. In the case of superradiance however, the rate changes such that cascading
down the Dicke ladder the sth = (S−ms)th spin decays with a rate (as derived before)

Γs = Γms→ms−1 = 2γ‖ (S +ms) (S −ms + 1) . (4.34)

For the beginning of the decay this can be “linearized” to [48]

Γs = 2γ‖Ns. (4.35)

This means that the first spin decays with a rate 2γ‖N the second with a rate 4γ‖N
and so on. The average time interval of this process can then be approximated by
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summing the inverse of these decay rates

td ∼
1

2Nγ‖

(
1 +

1

2
+

1

3
+ ... +

1

N

)
=

log(N)

2Nγ‖
. (4.36)

4.2.2 Operating in the “Fast” Cavity Limit of Cavity QED

As shown in the previous section, superradiance is an effect that shows up when coupling
an ensemble of emitters to the vacuum mode of radiation. This poses a problem though
since the initial assumption of emitters that are close enough to share correlations in
their wavefunctions, but still are far enough from each other in order to retain their
mutual coherence is problematic. In fact, as it turns out, dipole-dipole interaction
between emitters is always just large enough to destroy the necessary coherence to
observe the effect [48] and “pure” superradiance in a cloud of atoms is impossible to
observe. This makes sense intuitively as the coupling between emitters has the same
nature as the coupling of an emitter to the electromagnetic vacuum which leads to
an energy shift. This can be seen from Eq. (4.27), where a dipole dipole interaction
leads to a slight detuning, which changes the dynamics considerably and destroys the
non-linear scaling.

As we have seen in the previous section, the operator that is related to the coherence
in the system is the two spin operator which we can write as

〈S+S−〉 =
N∑
i

〈
σi+σ

i
−
〉

+
N∑
i 6=j

〈
σi+σ

j
−
〉

. (4.37)

As obvious from the second Bloch equation, a detuning (as it would originate from
dipole-dipole interaction) leads to a pick up of phase. For the case of dipole-dipole
interaction (or in-homogeneous broadening in general) this is random for each spin,
and the second term in Eq. (4.37) averages to zero. Only the first term, which is
proportional to the number of emitters, remains.

However, the requirement for superradiance is that the relative phase of emitters
is zero (or a multiple of 2π). Clever configurations in optical lattices [113–115] or
other special geometries (1D BEC [116]) allow to observe superradiance in these type
of systems with the atoms much further apart than the wavelength of the emitted
radiation, where dipole-dipole interaction between emitters is indeed negligible.

A different approach is to use a cavity, where the coupling to the mode of radiation
is enhanced by the Purcell factor (an effect I will explain later), while the dipolar
interaction stays the same [117]. Nevertheless, in order to resemble the conditions in
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vacuum one has to use a “fast” (or “bad”) cavity where the cavity line-width is much
larger than the dynamics that occur in the system [118, 119]. That allows to resemble
a situation where the effect is similar to the case in vacuum with the difference that
the coupling to the mode is enhanced.

The starting point for the “fast” cavity description is the Hamiltonian as derived in
Eq. (2.43), and assuming homogeneous coupling (see Section 4.2.3)

H = ~∆ca
†a+

~
2

N∑
i=1

∆i
sσ

i
z + i~g

N∑
i=1

(σ̂i−a
† − σi+a) + i~η(a† − a). (4.38)

As derived earlier this gives rise to an equation of motion for the cavity amplitude as

ȧ = −κ
2
a− i∆ca+ g

∑
j

σj− + η. (4.39)

Note that here we use κ as the FWHM (thus the additional factor of one half), as it
allows easier comparison of quantities in the fast cavity limit.

For the limit of κ� g
√
N , we can make the ansatz ȧ = 0 since the presence of the

spins (i.e. the coupling) does not alter the cavity amplitude which remain unchanged
by the presence of the spin system.

The limit of κ� g
√
N is often called the “bad” cavity limit, but I would like to make

distinction between a “bad” and a “fast” cavity: A cavity that loses energy very quickly
through internal losses is indeed a “bad” cavity (and not what is generally desired),
whereas a “fast” cavity is determined through a strong coupling to the environment.
This allows to effectively put photons into the system and get them out, which is
fundamentally different to a “bad” cavity, where the photons are lost through ohmic
losses (i.e. heat) or scattering out of the mode. This means that the limit for a “fast”
cavity really is (see Section 3.1.4) κext � κint, g

√
N .

If we also assume the pump tone to be in resonance with the cavity mode (∆c = 0),
we can extract

a =
2g

κ

∑
j

σj− +
2η

κ
(4.40)

and the Hamiltonian changes to the form

Hat =
~
2

N∑
j=1

∆j
sσ

j
z − 2~

gη

κ

N∑
j=1

(
σj+ + σj−

)
. (4.41)

Again using the Lindblad master equation as in the derivation of Eq. (2.49), introducing
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loss channels for the cavity mode and the spins we derive the equations of motion for
the cavity spin system in the fast cavity limit. Note that we also express the Lindblad
superoperator for the cavity losses in terms of atomic operators as

Lcav =
2g2

κ

N∑
j,k

(
2σj−ρσ

k
+ − σj+σk−ρ− ρσj+σk−

)
. (4.42)

This then finally gives the equations of motion describing the dynamics of our system
as

˙〈Sz〉 = −4gη

κ
〈Sy〉 − γ‖

(
〈Sz〉+

N

2

)
− 4g2

κ
〈S+S−〉 . (4.43)

Here the collective operator Sy = i
∑

(σ− − σ+).

This equations shows very strong resemblance to the equation derived in vacuum
as in Eq. (4.27). We see that instead of spontaneous emission into the vacuum mode
(γ‖) the correlations enhance the so called Purcell factor 4g2/κ. The Purcell factor
describes how much stronger the coupling of the spin to a cavity mode is compared to
the coupling to the vacuum mode of the electromagnetic field.

Even though the coupling to the mode is enhanced by many orders of magnitude,
for a single spin this effect is still very hard to observe [120], as the value in our case is
as small as ΓPurcell = 10−10. However, due to the N2 enhancement of 〈S+S−〉 and the
huge number of spin (∼ 1016) in our experiment, the effect becomes visible.

The longitudinal relaxation γ‖ in our case is not given by spontaneous emission into
the vacuum mode, but by relaxation due to phonon interaction with the solid state
environment and is small enough to be neglected [53]. That leaves the first term, which
describes the evolution of the spin system due to a coherent drive. This term allows us
to use a coherent drive to achieve inversion of our spin system after which we set η = 0

and only consider the undriven evolution of the spins.

4.2.3 Experimental Implementation

Having derived the theoretical framework, let us now turn to the experimental im-
plementation. For this experiment we are using a 3D Lumped element resonator (as
introduced in Section 3.1.3) that allows us to coherently drive all the spins and prepare
states with almost full inversion of all spins. We estimate the single spin coupling rate
to be ≈ 72 mHz which with the number of spins of ≈ 1015 changes the coupling from
3.1 to 6.2 MHz depending on the number of sub-ensembles coupled (see Section 3.2.1).
In order to increase the number of photons in the cavity – a necessary requirement to
perform fast spin inversion – we operate the cavity in the largely over-coupled regime
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Figure 4.9: a) Measured transmission spectrum for the case of one sub-ensemble in resonance
with the cavity mode. We can fit the measured spectrum with the steady state solution of
Eq. (2.49) (orange curve), which allows to reconstruct the coupling strength of 3.1MHz and
the spin density in b), as well as all the other parameters such as the spin line-width and
q-value. The cavity line-width we measure separately with the spins far detuned. We can
also clearly observe the hyper-fine splitting of 2.8MHz which becomes visible because of the
small broadening of the individual lines. Note that in order to extract the coupling and spin
line-width more precisely, this plot was done with a “good” cavity with Q = 1200, which
puts the cavity far from the “fast” cavity limit. In order to increase the cavity line-width
afterwards we only increased the input coupling, which in turn is not changing the coupling
strength or the spin properties.

with the input coupling much larger than the output coupling (κ1 � κ2 � κint; i.e.
fast cavity limit).

Since the total decay rate of the cavity is given by the sum κ1 + κ2 + κint, this also
means that the cavity decay rate κtot ≈ κ2 = 13.6 MHz is larger than the collective
coupling and the in-homogeneous broadening of the spin distribution. This allows to
assume that we are working in the fast cavity regime (see Section 4.2.2).

The sample is a type-Ib high-pressure, high-temperature diamond crystal with an
initial nitrogen concentration of 50 ppm. To create lattice vacancies, the sample is
irradiated with electrons of energy 2MeV at 800 °C and is subsequently annealed
multiple times at 1000 °C. The total electron dose was 5.6× 1018 cm−2. This gives
a total NV density of 13 ppm and an in-homogeneously broadened line-width of
γinh = 4.7 MHz (see Fig. 4.9) (FWHM). This value is fundamentally limited by the
hyperfine coupling to the nuclear spin of nitrogen (2.3MHz). The small spectral
broadening allows us to increase our signal-to-noise ratio and number of photons
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emitted during the superradiant decay, since coherence is maintained more effectively.

The longitudinal decay of the spin ensemble is mediated by phonon-phonon interac-
tions [53] and can be as small as 3× 10−5 s−1 but is still orders of magnitude larger
than the single spin Purcell factor which on resonance computes to

ΓP = 4
g2

κ
= 2π · 7.5× 10−10 Hz. (4.44)

As introduced in Section 3.1.3 an optical fiber grants us additional access to measure
the spin projection of our NV centers and observe the decaying spins directly.

4.2.4 Thermal Occupation

In order to reduce the time that is needed to perform a π-pulse – this is important
because the shorter the pulse the less dephasing and decoherence effects have an
influence during drive – we remove all the attenuators going from room temperature
down to 30 mK. The result of that is, that the cavity mode is effectively at a temperature
close to 300K, which naively means that the spin system should be affected and be at
the same temperature in a thermal state as well.

Looking closer at numbers though this assumption is misleading: For a thermal
(steady) state the number of excitations in the cavity mode can be computed by Bose
statistics [84, 85] as

〈n〉therm =
1

e
~ωc
kBT − 1

. (4.45)

Even for room temperature at 300K this computes to the very small number of
〈n〉therm ≈ 2000, which gives a ratio of 〈n〉therm /Nspins ≈ 10−12, and, therefore, can be
neglected compared to the number of spins1. This can be seen in Fig. 4.10 where we
show the thermal occupation of the cavity mode versus the temperature, which shows
that for a cavity resonance frequency of 3GHz the influence of thermal photons in the
cavity mode is negligible.

4.2.5 Optical Measurements

For an experiment that measures the enhanced decay of the spins it is imperative
that a direct measurement of the spins is possible. As laid out in Section 3.3 this is

1That is also the reason why strong coupling can be shown at room temperature, if the number
of spins coupled to the cavity mode is large enough [121], since the thermal occupation at room
temperature does not change the spin state considerably
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Figure 4.10: Thermal cavity occupation over temperature and a cavity frequency of 3GHz.
For low temperatures the thermal population is negligible, but even for higher temperatures
the thermal population is as small as 2000 photons which is 12 orders of magnitude smaller
than the number of spins in the ensemble.

possible in our experiment by using an optical multi-mode fiber that both sends green
light to the sample using a high bandwidth laser-diode and collects the scattered red
light which is then separated by a dichroic mirror and measured using an avalanche
photo-detector.

In Fig. 4.11b) it is depicted how this is done in the experiment. We drill a hole in
one side of the resonator (this doesn’t change the Q-factor of the resonator much, since
the current density is small there) and glue the fiber onto the sample directly using
super-glue.

In Fig. 4.11a) we see two measured fluorescence curves, one before an inversion pulse
(high fluorescence) and one after an inversion pulse. The difference in fluorescence
gives us a direct measurement for the inversion of our spin system and allows us to
monitor the evolution of the spin after inversion.

4.2.6 Nonlinear Scaling and Enhanced Decay

We start the measurements by applying 50 ns microwave pulses to the sample with
a certain power level, and look at the response of the system. By repeating this
measurement after all spins have relaxed back into their ground state – either due to
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Figure 4.11: a) Photograph of the cavity with a fiber glued onto the diamond sample. The
diamond is illuminated with green laser light and the scattered red light is collected through
the same fiber. b) The difference in fluorescence for the spins in the ground state (blue
curve) before any microwave pulse was played, compared to the fluorescence after maximum
inversion pulse was played (red curve). The measurement is averaged 500 times. The small
difference in fluorescence makes it very hard to measure the population difference.

the enhanced decay or longitudinal relaxation for the remaining incoherent inversion –
with increased power, at some point we reach the point where the spin ensemble is
maximally inverted.

The state we produce by the coherent drive of the cavity, can be computed from
Eq. (4.41), where the time evolution operator (assuming no in-homogeneous broadening
for simplicity) applied to the ground states produces states like:

|ψ〉 = U(t) |↓↓ ... ↓〉 = e−
i
~Ht |↓↓ ... ↓〉 . (4.46)

With the Hamiltonian from Eq. (4.41) this generates the aforementioned spin coherent
states

|ψ〉 =
N∏
l=1

(
cos

(
t
2gη

κ

)
|↓〉l + i sin

(
t
2gη

κ

)
|↑〉l
)

, (4.47)

with the value of θ/2 = 2tgη/κ defining the inclination “angle”. This state, as we
showed in Section 4.2.1, is a fully symmetric state, and thus shows superradiance.

If the angle θ is now large enough by increasing the drive amplitude η (for a fixed
duration t) we enter the previously defined non-linear regime and the correlations
become strong enough such that the emission of radiation gets enhanced.
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Figure 4.12: a) Intra-cavity intensity of a measurement where we apply a 50 ns MW pulse
and continuously increase the power while monitoring the emitted radiation with three
sub-ensembles in resonance with the cavity. At a power level of ≈ 5 dB attenuation of the
maximum power available for the experiment (this is indicated by the black dashed line)
we observe maximum inversion and see a (relatively strong) pulse being emitted from the
cavity (the delay of this pulse is indicated by the green dashed line and is fitted according to
Eq. (4.51)). For higher powers the delay of the burst becomes smaller, since excess photons
in the cavity lead to stimulated emission (source [89]). b) Fluorescence measured directly
after the MW pulse ended, to confirm that the inversion is maximum for an input power of
−5 dB, which corresponds to the lowest fluorescence.

For small drive powers not much happens. The spin system gets partly inverted but
the inversion is not large enough that correlations can build up and the spins decay
back into their ground state without emitting a significant amount of radiation. When
increasing the power of the drive pulse, we start to enter the non-linear regime where
correlations leads to an increased emission of photons.

This can be seen in Fig. 4.12 where by increasing the power, we see more and
more additional radiation after the drive pulse is turned off. This we can attribute to
constructive interference.

For a certain threshold amplitude η the state in Eq. (4.23) becomes fully inverted
(i.e. θ = π; roughly at −5 dB in Fig. 4.12). This is the same situation as derived in
Section 4.2.1 from which we can deduce the delay and shape of the superradiant burst.
If we further increase the drive power, we “over-rotate” our spin system (i.e. inclination
angles θ > π, which has the effect that the delay becomes shorter again. Note, that
the amplitude of the emitted burst does not change in this case, since the amount of
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coherence (or correlations) is maximum at the equator, which means that as long as
we don’t over-rotate with an angle θ > 3π/2 we don’t change the amount of coherence
in the decaying spin system

We can plug the definition of the spin coherent state into Eq. (4.43) (omitting γ‖
and setting η = 0), and get

˙〈Sz〉 = −4g2

κ

(
N2

4
+
N

4
+ 〈Sz〉 − 〈Sz〉2 +

〈Sz〉2
N

)
(4.48)

which again shows the N2 dependence.

The expectation value for the 〈Sz〉 component of the spin for a spin coherent state
can be computed as

〈Sz〉 = −N
2

cos (θ(t)) , (4.49)

which allows to solve the differential equation analytically with the initial state 〈Sz(0)〉 =

−N/2 cos (θ), and then solved for t and 〈Sz〉 = 0 in order to determine the delay of
the emitted pulse (as the emission is maximum at the equator of the Bloch sphere).
This gives

tdelay =
κ

4g2N
log

(
− (N + 1) (cos(θ)− 1)

N cos(θ)− cos(θ) +N + 1

)
, (4.50)

which for N � 1 simplifies to

tdelay ≈
κ

4g2N
log

(
tan2

(
θ

2

))
, (4.51)

which can be seen in Fig. 4.12 as the green dashed line. The line-shape and dynamics
of the spin decay can be obtained from this solution as

〈Sz〉 = −N
2

tanh

(
2g2N

κ
(t− td)

)
, (4.52)

with the intensity of the emitted radiation as (note the nonlinear scaling)

I ∝ −dSz
dt

=
g2N2

κ
sech2

(
2g2N

κ
(t− td)

)
(4.53)

and a FWHM for the burst duration of

τsr =
κ cosh−1(

√
2 )

Ng2
. (4.54)
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Even though these equations model the maximum delay for full inversion and can
explain the width of the emitted pulses reasonably well, naively we would assume a
symmetric response around full inversion no matter if we under-rotate or over-rotate
the spins. As long as we are dealing with a perfect system this assumption is true,
no matter if we drive the system to a state with angle θ − α = π or θ + α = π

(with 0 ≤ α ≤ π/2) the response of the system is the same. This can be seen in
Fig. 4.13b) where a same powerscan is simulated without in-homogeneous broadening
and decoherence. We observe maximum delay for a fully inverted spin system and the
delay and the amplitude of the emitted pulse is symmetric for cases where we under-
or over-rotate with respect to full inversion.

As soon as we include decoherence and/or dephasing, this symmetry vanishes and it
seems that coherence is lost for states with an inclination angle smaller than π (see
Fig. 4.13a)). The reason for that can be explained by looking at Eq. (2.49) which
shows that inhomogeneous broadening (i.e. a detuning) and decoherence only has an
effect on the dynamics if the 〈S−〉 value (often referred to as polarization) is not equal
to zero. This means that a larger integrated 〈S−〉 value leads to more decoherence
which destroys the built-up correlations.

To understand why states with θ < π have a larger integrated 〈S−〉 value, Fig. 4.14
compares the case of an in-homogeneously broadened ensemble that is driven into
a state with θ = 3π/4 and a state with θ = 5π/4. It is obvious that the state with
θ = 3π/4 has a larger integrated 〈S−〉 value, which in turn reduces the amplitude of the
superradiant burst. This also makes sense intuitively because in this case the dynamics
have to “slow down” close to the equator. The drive and the decay have opposite signs
in the evolution of the 〈Sz〉-component, which keeps the spins close to the equator for
an extended period of time.

For a drive that brings the spins further than full inversion, this effect is reversed,
as the spins do not have to slow down but rather only speed up through the decay
process towards their ground state. The smaller decoherence and dephasing in the
system the less this effect is pronounced.

Enhanced Decay

If we now take a closer look at experimental data and an individual trace for maximum
inversion we see the expected behavior: We drive the system until the system reaches
full inversion. After that the cavity empties itself very fast (since we are working in a
fast cavity), but the excitations stay in the spin system for an extended period of time.
Some fluctuations (be it thermal, quantum or seeded polarization) drive the system
then out of the metastable equilibrium position – something that is comparable to a
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Figure 4.13: Numerical solution of the intra-cavity intensity for Eq. (2.49) for the same pa-
rameters as in the experiment, but once with (a) and without (b) in-homogeneous broadening.
For the case of in-homogeneous broadening we see the same asymmetry as in the experiment,
whereas for the non broadened case we see a symmetric structure around the maximum
inversion, as explained in the main text.

pendulum that is turned upside down – and the spins decay with a fast rate, while
emitting a lot of photons into the cavity mode at the same time.

As explained earlier, the optical transition in the NV center also allows us to measure
the spin inversion directly, as is shown in Fig. 4.15 as blue trace. This confirms that the
decay of the spin is fastest when a maximum of photons are emitted from the system
and that the spins stay excited for an extended period of time after the microwave
pulse is turned off. The maximum decay rate is 16 orders of magnitude faster than the
single spin Purcell rate. This can be approximated by fitting the trace by Eq. (4.52),
and looking at the maximum slope of this function. This gives a maximum decay rate
of Γsr ≈ 17 MHz; an increase of more than 16 orders of magnitude compared to the
Purcell enhancement for a single spin.
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Figure 4.14: | 〈S−〉 | values for traces for inclination of (a) θ = 3π/4 and (b) θ = 5π/4.
Shown are the integrated values of the 〈S−〉 up until the time when both traces reach the
inversion corresponding to this inclination (shaded gray area). As it can be seen from this
simulation, due to the fact that the state with smaller inclination has a larger integrated 〈S−〉
value, it makes sense that decoherence and dephasing have a stronger effect, reducing the
intensity of the emitted radiation.

Non-linear Scaling

The enhanced decay and the nice accordance with the expected behavior gives strong
evidence of the superradiant nature of the emitted light, but in order to claim non-linear
behavior we have to explicitly show the non-linearity. Fortunately the NV center allows
to intrinsically change the number of emitters that is coupled to the cavity mode
by applying different magnetic fields as explained in Section 3.2.1. By doing so and
adjusting the power such that we get maximum inversion for all of these four cases we
can study the emitted radiation for all of them.

As it turns out the emitted power for these four cases indeed shows a non-linear
behavior, i.e. the emitted radiation intensity does not scale linearly (Pemitted 6∝ N). In
Fig. 4.16 we show the non-linearity. It is apparent that the radiation does not scale
linearly but exhibits a scaling that is proportional to Pemitted ∝ N1.52. The scaling is
not N2 as it would be expected from perfect superradiance, but this we can mainly
attribute to the fact that we are not working deep enough in the bad cavity limit.
The approximations in Section 4.2.2 that provide the N2 scaling are only valid in the
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Figure 4.15: The red measurement curve shows a detailed view of the trace for the emitted
photon intensity with three NV sub-ensembles in resonance with the cavity and where the
inversion of the spin ensemble is maximum (depicted as a black dashed line in Fig. 4.12).
The shaded area is the time for which the excitation drive is turned on. Shown in blue is
the dynamics of the spin inversion, measured using the optical transition of the NV center
and the inversion polarization normalized to the number of spins. After maximum inversion
is reached the spins remain in a metastable state until fluctuations lead to a superradiant
decay. This is accompanied by a burst of photons that builds up in the cavity mode. The
blue solid line represents a fit of the fluorescence data according to a hyperbolic tangent as in
Eq. (4.52). (Source [89])

limit of a perfect vacuum, and operating in the cavity changes this scaling factor [122].
Further, the more sub-ensembles have to be brought in resonance with the cavity mode
the harder it becomes to align the magnetic fields exactly. If the magnetic fields are
slightly mistuned, this leads to an additional line-broadening which again leads to more
dephasing and reduces the amplitude of the emitted burst for more sub-ensembles in
resonance.

Nonetheless, the non-linear scaling shows that the observed effect cannot be explained
in the framework of the Holstein-Primakoff approximation and is, thus, a clear signature
of non-linear physics in this system.
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Figure 4.16: a) Measurement of either N , 2N , 3N or 4N spins in resonance with the cavity
mode showing the dependence of the emitted photon intensity on the number of spins.
Depicted here are the traces for each of these cases where maximum inversion is reached, and
a microwave drive duration of 50 ns, with the blue dots indicating the maximum power of the
emitted radiation intensity. b) By measuring the maximum value of the emitted intensity
we observe the nonlinear scaling of |A|2 ∝ N1.52. The dashed gray lines show N and N2

scaling. c) The delay and the width of the superradiant burst as functions of the number
of spins. The width of the pulse can be modeled by Eq. (4.54), and shows the expected
1/N dependence. The delay of the burst does not closely follow Eq. (4.51), since it is very
sensitive to small deviations in the inclination angle, which are experimentally hard to prevent.
Further, for smaller number of spins the theoretically predicted delay is much longer than
other fluctuations driving the spins out of the metastable state earlier. (Source [89])

4.2.7 Outlook and Discussion

The presented experiment is one of the first experiments that shows superradiance in a
solid-state system in the microwave regime. It has proven to be extremely difficult to
show superradiance in such a system, because dephasing and decoherence processes
usually destroy phase coherence, the ultimately most important thing to sustain
for a superradiant enhancement. By using our newly developed 3D lumped element
resonators and NV samples with remarkably small line-widths we were able to overcome
these limitations and show real Dicke superradiance the first time in a solid state spin
system. The enhanced radiation together with the non-linear scaling are clear evidence
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that we observe the effect.

Superradiance as an effect, will play a very important role in the development
of quantum technologies, as it enables the development of technologies such as the
superradiant maser or high precision sensors [123, 124] or even single microwave
detectors and quantum batteries. Especially the NV center is a promising candidate for
these applications as its interesting level structure – it offers an optical level that could
be used for pumping a maser transition – and its long coherence provides a promising
framework for implementation of them [69].

More experiments that study the nature of the emitted light are also of interest, since
the emitted light most certainly exhibits quantum entanglement, which might give the
possibility to observe non-classical states of light and/or spin squeezing. This would
in turn be interesting for quantum entanglement experiments and/or high precision
sensing applications.
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The two presented experiments both showed how we can design experiments to leave
the well-known, and in a sense, well-understood linear regime of cavity QED. The
common thing for both these experiments is that in order to leave this linear regime,
especially for a large number of spins, strong driving of the system is necessary to
achieve that. In the following concluding chapter we will introduce ideas and first
implementations to make that easier by either using optimal control to improve the
fidelity of pulses applied to the spin system and on the other hand a new and improved
version of the 3D lumped element resonator to further increase the coupling strength
of the spin ensemble to the cavity.

5.1 Optimal Control of a Hybrid System

For the superradiance experiment as introduced in Section 4.2, one of the most
challenging parts was to achieve full inversion of the spin system in order to monitor
the decay of such an inverted spin ensemble. The way we achieved that was to use
simple rectangular pulses, as per construction they provide the maximum energy over
the shortest period of time. On the other hand step functions are always smeared out
by the cavity response and are not the most optimal way to achieve full inversion.

During the last decades big progress has been made in how to control a (potentially
complex) system, in the framework of optimal control theory (OCT).

I will introduce here a very basic implementation of optimal control theory in a
hybrid system (I’m by no means an expert in OCT), but I think that this can lead
to important applications and could make the presented experiments much more
convincing.

The goal of optimal control pulses in our setup would be to achieve full inversion of
a spin system starting in the ground state with no photons in the cavity. According
to Eq. (3.39) there are two drive amplitudes corresponding to the two quadratures of
the microwave radiation we can use to manipulate our spin system. This large degree
of freedom allows to efficiently manipulate the spin system, much better than simple
rectangular pulses.
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The most straightforward ansatz is then to use a Fourier series ansatz for both of
these time dependent amplitudes

I(t) =
n∑
j=1

Ij sin (jωgt)

Q(t) =
n∑
j=1

Qj sin (jωgt) .

(5.1)

That gives two time dependent amplitudes with arbitrary number of Fourier components
n and base frequency ωg. Note that this is only one simple ansatz (commonly known
as CRAB ansatz [125] and used in one of our published experiments [126, 127]), but
different basis functions or ways to produce pulses might give much better results.

To find the time dependent amplitudes we use a Metropolis algorithm [128] imple-
mented in pythons scipy library as scipy.optimize.basinhopping, that searches for
a minimum in a landscape with many local minima. Our fitness function is then simply
1− 〈Sz〉, which we need to minimize in order to achieve full inversion.

The most straightforward and “clean” way to optimize these kind of pulses would be
directly on the experiment (direct optimal control), and try to optimize on the output
of the experiment. This is, however, not possible in our implementation because we
don’t have direct access to the inversion (the quantity we want to optimize on), and
therefore have to revert to optimization on simulations. Fortunately it is possible to
model our experiment very precisely and numerics gives us an almost perfect agreement
between theory and experiment [92] (see also Section 3.3.2). This can be achieved
by modeling the in-homogeneous broadened spin density as ∼ 1000 spins equally
distributed over the frequency region of interest, with coupling strengths corresponding
to the spectral density. This proven to be correct and useful way [92, 93] allows to
include in-homogeneous broadening into the system of coupled differential equations
given by Eq. (3.39), and solving 1000 differential equations is easily doable on modern
computer hardware.

I present again here the figure showing a first implementation of such a pulse
(Fig. 5.1b), for an input power that is much smaller than the necessary power to achieve
full inversion, in order to confirm the agreement between theory and experiment.
As stated already in Section 3.3.2, we see that the agreement between theory and
experiment is almost perfect, which gives confidence that also the simulated inversion
is accurate.

In Fig. 5.2 we then see the (predicted) behavior for the correct input power, which
ideally should give 80% inversion. This is better by almost 30% compared to a simple
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Figure 5.1: First implementation of an OCT pulse in our hybrid quantum system in the
linear regime. In a) we see the pulse that is send into the cavity, generated by optimizing on
maximum inversion after the pulse. In b) the resulting cavity amplitude is measured and
compared to the simulation. The parameters for the simulation are as stated in Section 3.3.2.

rectangular pulse with the same input power and shows the advantage of using these
kind of pulses over un-optimized pulses.

So far I was not able to show a perfectly successful implementation of these pulses,
as it requires very precise control of the microwave radiation, something difficult to
achieve experimentally. Also, the ever present in-homogeneity in the coupling strength,
that, albeit mitigated by the 3D LER design, is still present, will make the agreement
between theory and experiment smaller. Further, more understanding of the right
ansatz and optimization routine is necessary to increase to convergence of these pulses.

This would allow to create arbitrary states for this system and definitely will allow
for interesting future experiments, using inverted spin ensembles or even arbitrary
initial states.

A fully inverted spin-ensemble would immediately lead to interesting applications
like quantum batteries or weak microwave signal detectors, as technologies relying on
an extremely non-linear system.
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Figure 5.2: c) and d) show experimental results and numerical modeling of the intra-cavity
intensity of a power scan performed with the pulse presented in Fig. 5.1. The agreement
between theory and experiment is good, as can be seen in a), where the cavity intensity for
maximum inversion is plotted. The simulated inversion of the pulse is shown in b). Compared
to the linear regime (see Fig. 5.1) the agreement is still not satisfactory and further care has
to be taken to control the experiment more precisely.

5.2 Loop Gap Resonators for Stronger Coupling

In both presented experiments the cooperativity value played a crucial role as it
describes how strong the coupling is compared to the losses in the system. On a general
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Figure 5.3: Photograph of the new resonator design, with an even smaller mode volume, and,
therefore, stronger coupling. One can clearly see the capacitance as the small air-gap between
top and bottom part. The diamond sample is placed in the hole in the middle. The two
round circles on each site are necessary to close the magnetic field lines. Simulations show
that an improvement in coupling of roughly a factor 5 is feasible.

level a higher cooperativity value is desired, as a stronger coupling usually leads to a
stronger effect (cf. the cooperativity value in the bistability experiments). Moreover,
the stronger the coupling, the more interesting fields of physics can be explored where
for example the rotating wave approximation starts to break down.

The coupling of the spin system to the quantized mode of radiation is only de-
termined by the mode volume and consequently by the current that is flowing in a
resonator geometry as it is the quantity producing the magnetic field. As introduced
in Section 3.1.3 our three-dimensional resonator design allows to do that and is a first
step towards reducing the mode volume down to the minimum amount.

A design that is using the same principle of a 3D lumped element resonator but
decreases the mode volume even further has been published by [129] in 2018. As we
are also interested in stronger coupling we used this design to increase the coupling
of our spin system to the cavity mode even further. Simulations and first tests show
that an increase in coupling strength of a factor of approximately five is within reach,
compared to our current 3D LER design.

In Fig. 5.3 we see the design of such a cavity, showing the building blocks for the
discrete LC circuit that builds up the resonator. The small gaps act as the capacitor
necessary for tuning the resonance frequency to a value reasonable for our experiments.
Analogous to our design the inductance is simply given by the path the current has to
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go to close the circuit; in this case the path is closed around the two big holes in the
design. These holes are also necessary because the magnetic field has to close its field
lines, which are guided through these two holes on the left and right side and then
through the smaller hole in the middle. Because of that all the magnetic field lines
are forced to go through the relatively small hole in the middle, where the sample is
then placed. This reduces the mode volume and therefore increases the coupling even
further.

Further measurements have to be carried out, but first tentative results show that
an improvement of roughly a factor of five in terms of coupling strength (albeit slightly
smaller Q-values because of the higher current densities) is possible. This should
improve the cooperativity value by the same amount and would allow to carry out
more interesting experiments in the near future.

Higher Q-values by using dielectric materials instead of conducting materials might
be another way to improve the cooperativity of the system while keeping all other
parameters the same.

5.3 Conclusion

The presented work revealed fundamental physical effects in hybrid quantum systems.
Contrary to most of the physics dealt with in these kind of systems, I have shown how
it can be brought one step further, leaving the well understood linear regime of cavity
QED and showing experiments where the Holstein-Primakoff approximation breaks
down.

After introducing the theoretical framework in Section 2 and the setup to carry out
the experiments in Section 3.3 I have shown two examples of experiments that show
this non-linear behavior. First, an experiment showing amplitude bistability has been
presented, one of the most fundamental experiments to show this non-linear behavior
has given valuable insight. As one of the first experiments this implementation has
allowed us to study the temporal behavior of the occurring phase transition something
almost impossible with implementations so far. This also allowed us to extract a critical
exponent for the phase transition. This effect gives important insight in fundamental
physics, and could potentially find use in microwave switches or generation of squeezed
microwave radiation.

The second experiment, dealt with one of the most important non-linear effects,
namely superradiance, which has also sparked a lot of interest in the last few years
as it is one of the effects that will lead to applications in quantum technology rather
immediate. As one of the first implementations in a solid state system this is a milestone
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in solid state hybrid systems. Developments like superradiant masers or high sensitivity
measurements are the next logical steps. Our implementation clearly shows that we
indeed see superradiance with an improved decay rate of many orders of magnitude
compared to a single spin and a clear non-linear scaling as another building block
in non-linear cavity QED. Further experiments using optimal control theory and our
newest resonator design will bring these experiments to a new level.

Many interesting experiments are still waiting to be explored, using different spin
systems that couple much stronger than the NV centers; more dense samples showing
the direct NV-NV interaction in the samples or experiments using the microwave to
optical properties of the NV center.

I’m confident many more interesting things will be explored in this Lab!
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3.8 Equivalent circuit for the lumped element resonator. 50Ω terminated
input and output ports are coupled via two coupling capacitors (Ccoupl)
to the LC circuit. Inductors and capacitors are labeled according to
Fig. 3.7b) (Source [60]). . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Field distribution within the 3D lumped element resonator generated
by a single photon in the cavity mode. The hatched area is where the
diamond is located, and the contourlines show the RMS deviation of
the coupling strength for 1%, 3%, 5% and 7%. . . . . . . . . . . . . . . 28

3.10 Transmission spectroscopy of the 3D lumped element resonator. Visible
are two resonances with the lower one generally having slightly higher
Q values (narrower line-width), but no magnetic field in the region of
interest, and the higher one used in our experiments to couple the spins
to. Apart from the two resonances no higher harmonics are present,
with the box-modes at a much higher frequency. . . . . . . . . . . . . . 29

3.11 Schematic representation of a cavity with input and output fields and
losses as described in the main text. Since we drive the cavity only from
the left side we omit bin. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 The structure of the NV center in the diamond lattice with its ground
state term-scheme. a) The NV center consists of a nitrogen atom that
replaces a carbon atom in the diamond lattice which then forms the
NV center together with an adjacent vacancy. Plotted is the computed
spin density, which shows that the electron of the NV center is mainly
located close to the adjacent carbon atoms. b) The ground state level
scheme of the NV center. The NV center exhibits a zero-field splitting
(ZFS) of ≈ 2.88 GHz at low temperatures. A magnetic field allows to
tune the ms = ±1 states in order to change the transition energy and
bringing them in resonance with the cavity mode (Picture taken from
[53]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.13 Dependence of the NV resonance frequency depending on the direction
and strength of an external bias field. Shown is the response of ms =

0 to the higher energy excited state transition of the different sub-
ensembles for three different magnetic field directions (see legend). For
the [1, 0, 0] direction all four sub-ensembles experience the same shift
in the resonance frequency. For the [1, 1, 1] direction 3+1 and for the
[1, 1, 0] direction 2+2 NV-sub-ensembles experience the same projection
of the magnetic field on their quantization axis, respectively. . . . . . . 35

3.14 Fluorescence time traces for the two different spin projections with
strong saturated excitation. The simulation is done using a simple
five-level rate equation model with parameters taken from [81] . . . . . 37
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3.15 Term scheme of the NV center with the optical excited and ground
state. Electrical dipole (i.e. optical photon emitting) transitions are
indicated as solid (dark) red arrows with the transition rates written
next to the dashed lines. The ms = 0 state in the optical excited state
almost exclusively decay back in the optical ms = 0 state whereas the
ms = ±1 states primarily take the detour via a meta-stable state with a
comparably long lifetime of ≈ 300 ns. This gives a fluorescence difference
(i.e. less directly emitted red photons) that we can use to distinguish
the ms = 0 from the ms = ±1 states (Numbers taken from [80]). . . . . 38

3.16 Thermal polarization of the NV center over temperature. The thermal
mean value of the S2

Z operator (blue curve) tells us how many spins
are thermally polarized in the ground state. The red curve shows the
value of 1− 〈Sz〉, which is a measure for how many spins are thermally
polarized in the ground state. For temperatures < 50 mK almost all
spins are in the ms = 0 i.e. the ground state, with the 〈S2

Z〉-value close
to zero. For temperatures T → ∞ the polarization into the ms = ±1

states approaches 2/3 and the spin system is in a completely mixed
thermal state with the ms = 0 and the ms = ±1 states equally occupied. 39

3.17 a) Frequency response measurement scheme using a Vector Network
Analyzer (VNA) to perform frequency spectrum measurements. The
down-line to the resonator are heat-anchored on every stage to properly
cool down the line. A low-noise amplifier (LNF) amplifies the signal
coming out of the resonator, which is then fed back into the VNA, which
then measures the forward scattering parameter S21(ω). b) Photograph
of the lowest stage of the fridge showing three measurement setups, each
with their respective 3D Helmholtz magnetic field cage (Source: [88]). . 42

3.18 Experimental setup for time resolved measurements showing our homo-
dyne detection setup. A local oscillator (LO) frequency source sends in
the probe tone which is split up with one arm going into the fridge and
the other one used for reference. An IQ mixer modulates a signal from
a fast AWG onto the carrier signal which is then amplified and sent
into the fridge. The signal going through the fridge is down-modulated
using the reference signal and recorded by a fast oscilloscope. Shown is
also the optical detection scheme where a fast laser-diode provides short
green laser pulses which are sent to the NV center using a multimode
fiber. The scattered fluorescence is then collected by the same fiber and
measured by an avalanche photo-diode (Source: [89]) . . . . . . . . . . 43

3.19 Discretization of the spin ensemble. Each frequency step ωk is approx-
imated by a rectangle with width ∆ω for which the spin density is
assumed to be constant (not to scale). . . . . . . . . . . . . . . . . . . 46
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3.20 Comparison for experiment and theory. In a) we see the pulse that is
send into the cavity, with non constant amplitude in both quadratures.
In b) the resulting cavity amplitude is measured and compared to the
simulation. Shown in blue is the experimental data, while the red curve
shows the simulated cavity amplitude as long as the pulse is turned on,
and the black dashed curve the simulated free evolution afterwards. The
parameters for the simulation are as stated in the main text. . . . . . . 47

4.1 The two eigenmodes of a coupled harmonic oscillator system. The
oscillators can be either in phase, oscillating in the same direction (upper
plot), which corresponds to the symmetric eigenstate in the experiment,
or out of phase, oscillating against each other, corresponding to the
anti-symmetric eigenstate. In the case of these classical oscillators the
anti-symmetric mode has the higher energy (contrary to our cavity-spin
system) due to a negative sign in the coupling force. . . . . . . . . . . . 51

4.2 a) Magnetic field spectroscopy on our hybrid system with two sub-
ensembles in resonance with the cavity, showing the transmission through
the cavity. By tuning the spins into resonance we see that the eigenstates
split up with the maximum separation on resonance, for a magnetic
field of 8.4mT. b) Measured strong coupling with two (blue) or four
(orange) sub-ensembles in resonance with the cavity. Increasing the
number of spins by a factor of two corresponds to an increase in the
splitting by a factor of

√
2 . The two eigenstates (|+〉 and |−〉) are

clearly distinguishable in both cases. The slight asymmetry in the peak
height stems from a Fano resonance [101]. . . . . . . . . . . . . . . . . 52

4.3 a) Steady state bistability simulated according to Eq. (4.15) for different
values of cooperativity (C = 2, 8, 32, 128, 512, 2048 from blue to red) for
a single spin without detuning in resonance with the cavity mode. We
observe that starting with a critical cooperativity of C = 8 the system
starts to exhibit three stable solutions for one input power. This is
the effect known as amplitude bistability. b) Measured steady state
transmission spectra for different drive powers for two sub-ensembles
in resonance with the cavity mode. For small drive powers the system
behaves like two coupled harmonic oscillators, and exhibits normal mode
splitting; for a certain critical drive power (Pin = Pcrit) the splitting
vanishes and only one peak is visible (note the green curve denoting the
position of the maxima/maximum) (Source [103]) . . . . . . . . . . . . 56
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4.4 Measurement of the steady-state bistability transmission through the
cavity as a function of increasing (blue) and decreasing (red) input
power Pin. In a), the transmission measurements are plotted for the
cooperativity value Ccoll ≈ 18 using two sub-ensembles in resonance with
the cavity, while partly quenching the cavity to lower the cooperativity
value. b) Same transmission measurement with Ccoll ≈ 49. A small
bistable area is visible where the system evolves to different steady states
depending on the history of the system in either the upper or lower
branch. c) Same measurement as in a), with an increased cooperativity
of Ccoll ≈ 78 (by using all four NV sub-ensembles in resonance with the
cavity). The dashed curves are numerical solutions of Eq. (4.8). The
dashed lines in b) show the asymptotic solutions in the limit of large and
small drive amplitudes η. Two critical values of the input power, at which
a phase transition between two stable branches occurs, are characterized
by a saddle-node bifurcation and labeled as P d

crit and P u
crit. For all three

cases, a sketch of the corresponding potential is also depicted, which
shows the occurrence of either one or two stable solutions (red and blue
solid circles) and one unstable solution (in figures b) and c)) (green solid
circles) for a fixed value of the input power Pref . Tunneling through the
potential barrier does not occur in our case because of the large system
size such that the system does not switch back and forth between the
steady states in the bistable area. (Source: [103]) . . . . . . . . . . . . 58

4.5 Simulated steady state solutions by solving Eq. (4.13) for the steady
states for the reference power Pref . For the simulation we use our system
parameter and change the cooperativity by changing the collective cou-
pling strength. We simulate with n = 3001 spins, a number sufficiently
high enough to model our experiment. For a critical cooperativity of
Ccoll = 42.2 the system starts to show more than one steady state, with
the middle one unstable and impossible to prepare in the experiment.
Which of the other stable fix-points the system tends towards is deter-
mined by the history of the system. Shown are also the measured values
for the cavity amplitude as in Fig. 4.4 for the three cooperativity values
presented there. As it is obvious from the plot the occurrence of the
saddle node-bifurcation is very well reproduced by the experimental data. 60
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4.6 Simulated behavior for a quench measurements solving the differential
equation Eq. (4.21) for a cooperativity of 128 and γ‖ = 0.0001. As long
as the system is driven harder than a critical drive power η2

crit the system
settles to a steady state in the upper branch. For drive powers lower
than this critical drive the system relaxes to a steady state in the lower
branch. Close to the critical drive the evolution becomes extremely slow
and it takes an increasingly long time for the system to settle in a steady
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 a) Quench dynamics of the high cooperativity Ccoll ≈ 78 configuration
and an initial state far in the strong driving branch. The transmission
|T/Tmax|2 is plotted over time for different drive intensities where the
time to reach a steady state strongly depends on the input intensity.
For drive intensities larger than a critical drive value ηcrit (defined as the
power where the system undergoes the phase transition from the upper
to the lower branch, the spin system remains saturated and sets into
a state on the upper branch, whereas in the opposite case, the system
evolves into a steady state on the lower branch. Close to the critical
drive this time scale is extremely prolonged and approaches 4× 104 s.
The dashed lines correspond to full numerical simulations predicted from
solving Eq. (4.18). The similarity to Fig. 4.6 is immediately apparent. b)
The numerically calculated time derivative of the transmission through
the cavity when doing a quench measurement as in a). The further
away from the critical drive (either to high or too low), the faster the
system evolves to a steady state. Close to the critical drive (small inset)
the system can take arbitrarily long to reach a steady state, and the
evolution becomes extremely slow. (Source [103]) . . . . . . . . . . . . 65

4.8 Time it takes for the system to undergo the phase transition from the
strongly driven branch to the lower branch. We define the switching
time (ttrans) as the inverse of the smallest gradient for a given curve
extracted from Fig. 4.7. Close to the critical drive, the switching time
diverges, and the time to reach a steady becomes arbitrarily long. The
dashed blue line is a fitting function of the form ttrans ≈ |η2−η2

crit|α with
α = 1.20± 0.04. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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4.9 a) Measured transmission spectrum for the case of one sub-ensemble
in resonance with the cavity mode. We can fit the measured spectrum
with the steady state solution of Eq. (2.49) (orange curve), which allows
to reconstruct the coupling strength of 3.1MHz and the spin density in
b), as well as all the other parameters such as the spin line-width and
q-value. The cavity line-width we measure separately with the spins
far detuned. We can also clearly observe the hyper-fine splitting of
2.8MHz which becomes visible because of the small broadening of the
individual lines. Note that in order to extract the coupling and spin
line-width more precisely, this plot was done with a “good” cavity with
Q = 1200, which puts the cavity far from the “fast” cavity limit. In
order to increase the cavity line-width afterwards we only increased the
input coupling, which in turn is not changing the coupling strength or
the spin properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 Thermal cavity occupation over temperature and a cavity frequency of
3GHz. For low temperatures the thermal population is negligible, but
even for higher temperatures the thermal population is as small as 2000
photons which is 12 orders of magnitude smaller than the number of
spins in the ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 a) Photograph of the cavity with a fiber glued onto the diamond sample.
The diamond is illuminated with green laser light and the scattered red
light is collected through the same fiber. b) The difference in fluorescence
for the spins in the ground state (blue curve) before any microwave
pulse was played, compared to the fluorescence after maximum inversion
pulse was played (red curve). The measurement is averaged 500 times.
The small difference in fluorescence makes it very hard to measure the
population difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 a) Intra-cavity intensity of a measurement where we apply a 50 ns MW
pulse and continuously increase the power while monitoring the emitted
radiation with three sub-ensembles in resonance with the cavity. At a
power level of ≈ 5 dB attenuation of the maximum power available for
the experiment (this is indicated by the black dashed line) we observe
maximum inversion and see a (relatively strong) pulse being emitted
from the cavity (the delay of this pulse is indicated by the green dashed
line and is fitted according to Eq. (4.51)). For higher powers the delay
of the burst becomes smaller, since excess photons in the cavity lead to
stimulated emission (source [89]). b) Fluorescence measured directly
after the MW pulse ended, to confirm that the inversion is maximum
for an input power of −5 dB, which corresponds to the lowest fluorescence. 80

106



List of Figures

4.13 Numerical solution of the intra-cavity intensity for Eq. (2.49) for the
same parameters as in the experiment, but once with (a) and without (b)
in-homogeneous broadening. For the case of in-homogeneous broadening
we see the same asymmetry as in the experiment, whereas for the non
broadened case we see a symmetric structure around the maximum
inversion, as explained in the main text. . . . . . . . . . . . . . . . . . 83

4.14 | 〈S−〉 | values for traces for inclination of (a) θ = 3π/4 and (b) θ = 5π/4.
Shown are the integrated values of the 〈S−〉 up until the time when
both traces reach the inversion corresponding to this inclination (shaded
gray area). As it can be seen from this simulation, due to the fact that
the state with smaller inclination has a larger integrated 〈S−〉 value,
it makes sense that decoherence and dephasing have a stronger effect,
reducing the intensity of the emitted radiation. . . . . . . . . . . . . . . 84

4.15 The red measurement curve shows a detailed view of the trace for the
emitted photon intensity with three NV sub-ensembles in resonance with
the cavity and where the inversion of the spin ensemble is maximum
(depicted as a black dashed line in Fig. 4.12). The shaded area is the
time for which the excitation drive is turned on. Shown in blue is the
dynamics of the spin inversion, measured using the optical transition of
the NV center and the inversion polarization normalized to the number
of spins. After maximum inversion is reached the spins remain in a
metastable state until fluctuations lead to a superradiant decay. This is
accompanied by a burst of photons that builds up in the cavity mode.
The blue solid line represents a fit of the fluorescence data according to
a hyperbolic tangent as in Eq. (4.52). (Source [89]) . . . . . . . . . . . 85
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4.16 a) Measurement of either N , 2N , 3N or 4N spins in resonance with the
cavity mode showing the dependence of the emitted photon intensity on
the number of spins. Depicted here are the traces for each of these cases
where maximum inversion is reached, and a microwave drive duration of
50 ns, with the blue dots indicating the maximum power of the emitted
radiation intensity. b) By measuring the maximum value of the emitted
intensity we observe the nonlinear scaling of |A|2 ∝ N1.52. The dashed
gray lines show N and N2 scaling. c) The delay and the width of the
superradiant burst as functions of the number of spins. The width of
the pulse can be modeled by Eq. (4.54), and shows the expected 1/N

dependence. The delay of the burst does not closely follow Eq. (4.51),
since it is very sensitive to small deviations in the inclination angle,
which are experimentally hard to prevent. Further, for smaller number
of spins the theoretically predicted delay is much longer than other
fluctuations driving the spins out of the metastable state earlier. (Source
[89]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 First implementation of an OCT pulse in our hybrid quantum system
in the linear regime. In a) we see the pulse that is send into the cavity,
generated by optimizing on maximum inversion after the pulse. In b) the
resulting cavity amplitude is measured and compared to the simulation.
The parameters for the simulation are as stated in Section 3.3.2. . . . . 91

5.2 c) and d) show experimental results and numerical modeling of the
intra-cavity intensity of a power scan performed with the pulse presented
in Fig. 5.1. The agreement between theory and experiment is good, as
can be seen in a), where the cavity intensity for maximum inversion is
plotted. The simulated inversion of the pulse is shown in b). Compared
to the linear regime (see Fig. 5.1) the agreement is still not satisfactory
and further care has to be taken to control the experiment more precisely. 92

5.3 Photograph of the new resonator design, with an even smaller mode
volume, and, therefore, stronger coupling. One can clearly see the
capacitance as the small air-gap between top and bottom part. The
diamond sample is placed in the hole in the middle. The two round circles
on each site are necessary to close the magnetic field lines. Simulations
show that an improvement in coupling of roughly a factor 5 is feasible. 93
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