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Abstract

This thesis presents a method for soil cover estimation in the field of agriculture
based on semantic image segmentation under the usage of color, Near Infrared
(NIR) and depth information. The main advantage of this approach against
approaches using monocular camera systems is to increase the performance
of the segmentation process by applying additional knowledge about green
vegetation through NIR images. It is shown that the general accuracy of the
segmentation process is sufficient good to estimate the soil composition for
practical usage under the constraint of the rough environmental conditions
and soil composition diversity. The presented method is evaluated against the
monocular camera system approach by using the F1 accuracy score. Further, it
is shown that the extended estimation process leads to a better F1 accuracy score
of 5 for the segmentation of the residues class. Additionally, the implementation
of a camera box for autonomously image capturing is presented.
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Kurzzusammenfassung

In dieser Arbeit wird eine Methode zur Abschätzung der Bodenbedeckung in
der Landwirtschaft vorgestellt, die auf semantischer Bildsegmentierung unter
der Verwendung von Farb-, Near Infrared (NIR)- und Tiefeninformation ba-
siert. Der Hauptvorteil dieses Ansatzes gegenüber Ansätzen mit monokularen
Kamerasystemen besteht darin, die Genauigkeit des Segmentierungsprozesses
zu steigern, indem zusätzliches Wissen über die grüne Vegetation durch die NIR-
Bilder eingesetzt wird. Es wird gezeigt, dass die allgemeine Genauigkeit des
Segmentierungsprozesses ausreicht, um die Bodenzusammensetzung für den
praktischen Gebrauch, unter rauen Umgebungsbedingungen und der vielfältigen
Zusammensetzung des Bodens, abzuschätzen. Die vorgestellte Methode wird
mit Hilfe des F1-Genauigkeitsfaktors gegen den Ansatz des monokular Kame-
rasystems verglichen. Darüber hinaus kann gezeigt werden, dass der erweiterte
Ansatz zu einem besseren F1-Genauigkeitswert von 5 für die Segmentierung der
Rückstandsklasse führt. Zusätzlich wird die Implementierung einer Kamerabox
zur autonomen Bilderfassung vorgestellt.
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1 Introduction

Smart and sustained farming is getting an increasingly important topic, consid-
ering that the world population is continuously growing and the food quality is
decreasing, for example, by the widespread usage of herbicides. One approach
to target these problems is to develop more intelligent machines with envi-
ronmental sensors to optimize agricultural production. Thus the knowledge
about the agriculture environment is essential to set actions against these
developments. The first step to get the knowledge is to collect information
from our environment. Several types of sensors can do this. For example the
knowledge can be collected trough laser scanning, infrared scanning and many
other techniques. In this thesis, we focus on images as information source. Fig-
ure 1.1 shows a classification result from soil covered by living plants, residues
and stones based on images captured under real environmental conditions.

(a) (b)

Figure 1.1: Soil covered with living plants and residues (a) and the classification
result (b).

With the extracted information and the knowledge about soil coverage, it
is possible to react on the current soil composition directly. Thus the main
challenge is to find a way to collect this information and to build a system which
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1.1 Problem 3

can be used under rough environmental conditions. It is not an easy task to
identify the possible best way to solve the soil cover estimation problems. This
thesis scopes on several different approaches of semantic image segmentation
as also on the hardware implementation of such a system. In the following
two sections, a more detailed problem description is given, and our proposed
solution is discussed.

1.1 Problem

The goal is to get information about soil coverage. In detail this means to get
the percentage value of living vegetation, residues, stones and soil. With this
information, we can prevent soil from erosion and gain knowledge about the
uniformity of meddling to promote rotting.
In earlier work, the segmentation process was done via a monocular camera
system. To improve the classification performance, we try to extend this system
with additional feature sources. Further we try to build an autonomous camera
system as also a casing to capture images directly from a farming vehicle,
thus it can be used for practical applications. Section 1.2 briefly describes our
proposed solution.

1.2 Proposed Solution

In our approach, we try to extend the monocular camera approach by adding
additional Near Infrared (NIR) and depth information to the semantic image
segmentation process. Further, we pursue to build an autonomous camera
box which can be installed on a farming vehicle, to capture and stream the
images to a computational unit. We assume a higher quality of the results by
using NIR and depth information during the classification process, based on the
fact that living organic plants can be differenced from not living in the NIR light
spectrum. The depth information could also be helpful because through this
additional information the process chain gets the knowledge about the different
depths of the objects. To capture this information, we use a three-camera setup.
We are using two RGB cameras for relative depth extraction trough stereo
matching and a third specialized NIR camera. To project all three images to
the same spatial coordinate system a very precisely calibration of every single
camera as well as a stereo calibration between the cameras is required.
The camera box is needed to capture training data and evaluation data. Au-
tonomous because thus the box is universally applicable. Additionally, the
box should be resistant against rough environmental conditions. We decided
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1.3 Outline of Thesis 4

to use a Random Forest (RF) algorithm for semantic image segmentation
because we want to evaluate the benefits of the extra information in a short
time of development and this method gives us the possibility to investigate
the impact to the model. Collecting information is one part which has to be
done. The other one is to interpret it. This is colloquially known as semantic
image segmentation. Semantic image segmentation deals with many different
challenges like image acquisition, image preprocessing, feature extraction and
classification as it is shown in Figure 1.2.

Figure 1.2: Semantic image segmentation process

The main challenge is to handle all these tasks to get accurate segmentation
results based on the improved camera set up, which brings additional challenges
in terms of image projection and comprehensive disparity estimation. The
structure of this work is briefly described in Section 1.3.

1.3 Outline of Thesis

After a brief introduction which is given in Chapter 1, an overview of the
related work in Section 2, including semantic image segmentation methods,
image processing in agriculture and NIR, is given. The Chapter 3 mainly
describes our approach by including the camera calibration, stereo matching
and the projection of the images. It also includes the particularities of the
algorithm implementation like the chosen features and layers and a brief
description of the camera box implementation as also of the written software.
Further, the made experiments and the evaluation of our method is discussed
in Chapter 4. Chapter 5 summarizes the achieved results and gives a short
outlook to improvements which can be done in future work. At the end of the
thesis in Section 6, the training and evaluation dataset is listed.
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2 Related Work

The basic problem underlying this work is to get information about the surface
texture from agricultural images. In order to recognize the different components
of an agricultural surface a semantic segmentation has to be carried out. There
are many approaches to get semantic information from data sets. It is very
actual and frequently researched field. To handle the problem statement, there
is no way around semantic segmentation. The following Section 2.1 will discuss
semantic segmentation.

2.1 Semantic Segmentation

Semantic segmentation is the base problem which has to be solved to get the
information hold by features of a data set. In this work, the focus is primarily
on semantic segmentation based on image data.
Before discussing the different approaches to reach this goal an overview of
semantic image segmentation is given. Principal objects or components in
images are formed out of linked pixels. In Figure 2.1 simple objects are shown,
which easily can be recognized and clustered based on their colour. Thus all
blue, orange, yellow and red pixels linked independently together are forming
different objects. Clustering these objects is very simple based on the colour

Figure 2.1: Simple objects in an image
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2.1 Semantic Segmentation 6

feature. However, after the clustering, we still do not know what objects
the individual pixel-groups are symbolizing. Giving clusters a meaning is the
second task which has to be done. In a simple assumption, we could say that
all blue pixel-groups are symbolizing rectangles and all orange pixel-groups
are symbolizing triangles and so on. But this assignment of meaning would
only hold in a world where the colour blue is reserved for rectangles the colour
orange is reserved for triangles and so on. Because it is not true, we need better
assumptions and methods to give pixel-groups a meaning. One approach would
be to use additional features in addition to colour. For example, edges are
compelling features. They can be identified with the help of partial derivatives
of the image like it is done in canny edge detection algorithm [1]. When we
have the information about edges in an image, we could say that four edges
which have a 90-degree angle between each other and forming a closed loop
are symbolizing a rectangle. Thus knowing about edges helps much to identify
objects in an image and consequently give the image meaning. This example
shows the importance of features in semantic segmentation. An image holds
much more information than only colours. Features can hold information about
segmentation and semantic. Every approach to solve semantic segmentation is
only as good as the chosen features.
There are many different approaches to solve the semantic segmentation problem.
Every approach shows another way to handle and compute the information of
the features thus an image can be separated into differed known objects. A basic
separation of semantic segmentation approaches can be done, by grouping them
into traditional methods (2.1.1), methods using neural networks (2.1.2) and
approaches based on RFs (2.1.3). In the following sections, these approaches
will be discussed.

2.1.1 Traditional Methods

Before NNs or RFs came up, feature and classification methods for semantic
image separation were the most important ones [2]. In the following sections,
three heavily used traditional methods are discussed, and their faults and
benefits will be highlighted.

K-means Clustering

K-means clustering is an unsupervised method for semantic segmentation. In
the first step, a fixed defined set of k cluster centroids are randomly placed in
data space. In a simple form, the image space can be spanned by the RGB
colour space. The algorithm assigns each data point to one of the k clusters
by calculating the distance between each data point and each centroid point
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2.1 Semantic Segmentation 7

of a cluster. Every data point is assigned to the nearest centroid. After the
assignment, the k centroids points are repositioned by calculating the average
position of all data points which are assigned to the related cluster. These steps
are repeated until the centroid point does not change any more or a threshold
is reached [3]. The Figure 2.2 shows the basic k-means algorithm.

Figure 2.2: K-means algorithm [3]

The main disadvantage of the k-means algorithm is that the number of
clusters has to be defined before ahead of the computation. This limitation is
very significant because the algorithm cannot define the number of clusters by
its own, and thus it is not very robust against different images. Figure 2.3a
shows a simple image with four objects. With this information, it is no problem
to segment the image into five clusters what is shown in 2.3c. But if the
algorithm gets the wrong information about cluster number, the result is not
the one we expect, like it is shown in 2.3b. In 2.3b the algorithm was initialized
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2.1 Semantic Segmentation 8

with two clusters. Three objects were separated together in one cluster, and
the pentagon was assigned to the background cluster [4].

(a) (b) (c)

Figure 2.3: K-means clustering with different k-values

Support Vector Machine (SVM)

SVMs are supervised and widely used classifiers. They solve the classification
problem by separating the data points with hyperplanes. In the set of training
data each data point is assigned to one of two categories. A data point can be
viewed as an p-dimensional vector and the task is to find a p− 1-dimensional
hyperplane which separate all data point related to their category.
A training data set can be represented as tuple (xi, yi) where xi is the feature
vector and yi ∈ {−1,1} is the binary label vector. A hyperplane can be written
as set of points which satisfy the equation w • x + b = 0. Wherein w is the
normal vector to the hyperplane and b is the bias vector like it is shown in
figure 2.4. In 2D space the axis can be annotated with feature 1 and feature 2
of one data point xi [4].

Figure 2.4: Data points in 2D space desperate by a hyperplane
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2.1 Semantic Segmentation 9

For all data points above the hyperplane, the expression w • x + b has a
positive sign what correspondents to label 1 and for all points, below the
hyperplane, the label is -1 because the expression has a negative sign. The
challenge is to find a suitable hyperplane with the help of the training data
and the corresponding ground truth. This can be done by solving the objective
function

min
1

2
∗ ‖w‖2 (2.1)

subject to
yi(w • xi + b) ≥ 1,∀xi (2.2)

A solution can be found with the help of Lagrange multipliers like it is
explained in the paper of Ton Wen and Alan Edelman [5].
Probably many of these hyperplanes which separate the data points exist. One
choice is to choose the hyperplane, which represents the maximum separation.
To get this hyperplane, the distance from the nearest data points on both
sides should be maximized. Such a hyperplane is known as maximum-margin-
hyperplane. For this approach to works, data points must by linear separable.
If they are not, we would need to choose a non-linear separation function, or
we could project the data points to a higher dimensional space where they
are linearly separable. The second attempt is called kernel trick. Thus SVMs
are not limited by linear separable datasets. Another limitation could be the
number of categories. This limitation can be handled with multi class SVMs
described in the paper [6]. This approach has the same problem with the
semantic relationship to segmentation as described in the previous Section 2.1.1
because the semantic meaning of each segmentation class is not given. In a
simple form, this can be done by adoption that every segmentation section
stands for a specific object.

Markov Random Field (MRF)

Image segmentation according to MRFs is based on probabilities. Herein a
probability measure of all possible segmentations of the set Ω is done and the
one with the highest probability is taken. A Image can be described as set
f = {fs : s ∈ S} where fs is the feature vector of a pixel s. Additionally to that
a label set ω = {ωs : s ∈ S}, which describes a single labelling possibility for
image, is defined. ωs can accept values from a label value set l = {1,2,3,...,n}.
The first thing we have to do is evaluate how any occurrence of ωs fits to
f . This is expressed by the image model P (f |ω) where P is the conditional
probability that f occurs under the condition that ω is true. Secondary a
possibility distribution P (ω) is defined where ω is constrained by properties
regardless to the image [7]. P (ω) describes the possibility that ω satisfy the
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2.1 Semantic Segmentation 10

supposed properties. The post posterior probability is given according to the
Bayes-Therom by

P (ω|f) =
P (f |ω) ∗ P (w)

P (f)
(2.3)

Based on the fact that P (f) is constant the posterior probability can be
simplified to

P (ω|f) ∝ P (f |ω) ∗ P (w) (2.4)

The goal is to find the maximum posterior probability

ŵ = arg max
w∈Ω

P (f |ω) ∗ P (w) (2.5)

Thus P (ω) and P (f |ω) need to be described to find the maximum. Under the
assumption that ω follows a Gibbs distribution P (ω) can be formalized with
help of the energy function U(ω) [7], as follows

P (ω) =
1

Z
exp(−U(ω)) =

1

Z
exp(−

∑

c∈C

Vc(ωc)) (2.6)

where Z is an normalization constant over all possible labellings related to the
cliques. Cliques are associated pixel groups like it is shown in Figure 2.5.

Figure 2.5: First order neighbourhood system [7]

The set of all possible cliques c is named C.With the function

Vc = δ(ωs,ωr) =





+1, ωs 6= ωr

−1, otherwise
(2.7)

the potential of a clique can be measured. The cliques, shown in Figure 2.5
are just defined over a first order neighbourhood. They could also be more
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2.1 Semantic Segmentation 11

complex. P (f |ω) can be found under the assumption that P (ωs|fs) follows a
normal distribution, the likelihood is formalized as

P (fs|ωs) =
1√

(2π)n
(2.8)

and P (f |ω) is the product of all possibilities where s ∈ S.

P (f |ω) =
∏

s∈S

P (ωs|fs) (2.9)

Maximizing the full equation can be done by simplifying and solving the
function like it is described in Section 3.3 and 4 in the paper of Zoltan Kato
and Ting-Chuen Pong [7].
The method after MRFs is not restricted by semantic like the approaches
discussed above because the set of labels can be defined freely, and the algorithm
can classify a subset of these labels to the images.

2.1.2 Methods using Neural Networks (NNs)

NNs are heavily used in semantic data interpretation. Thus they are not
restricted to semantic image segmentation and can be used to solve common
semantic interpretation problems. Before we go deeper into the image specific
approaches, a basic understanding of NNs is important which is given in the
following section.
NNs can be viewed as a net of computation nodes where each node has several
inputs and one output. Connecting these nodes forms a complex computation
network which brings the effort to emulate what we know about biological
neuronal networks. NNs are separated into minimum three layers. The input
layer, which represents the input features, the multiple hidden layers are
representing the core calculation network and the output layer representing the
predicted semantic interpretation [8]. In Figure 2.6 the basic construction of
a NN and the layer segmentation is shown. A single node of any layer is called
neuron and is designed similar to a neuron in the human brain. A neuron takes
several weighted inputs which are analogue to biological synapses. The inputs
are committed to a transfer function where the net input is calculated. This
is done by summing all the weighted inputs. After the net input calculation,
an activation function like a sigmoid or tanh calculates the output which is
used for the next hidden layer or if it is the last hidden layer directly for the
output. To get a fully connected network, each node output is connected to
each node of the next layer. Important is that not all layers must have the
same number of nodes. There are also other types of NNs where intermediate
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2.1 Semantic Segmentation 12

Figure 2.6: Basic neuronal network

node connection is handled differently.
Equation 2.10 shows the principal output calculation of a neural network with
one hidden layer[8].

ok = g[
Nj∑

j=0

wkjg(
Nn∑

n=0

wjnin)] (2.10)

Where g is for example the sigmoid activation function

g(x) =
1

1 + e−x
(2.11)

or the tanh activation function

g(x) = tanh(x) (2.12)

Determining the output is straight forward when all the parameters are known.
The determination of the parameter is the real challenge. This is done by train-
ing the NN with ground truths. In the first round of training, the parameters,
especially the weights, are chosen randomly. Then the input of the first ground
truth is applied to the network, and the outputs are calculated. Comparing
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2.1 Semantic Segmentation 13

the outputs to the anticipated result gives an error which has to be minimized
by backward correction of the parameters. During the training, the loop of
forward estimation, error determination and backward correction is executed
several times until the error is in an acceptable range. All that is not merely
done for one input data but also for several input data sets to get a robust and
commonly usable network in terms of semantic interpretation. [8]

Convolutional Neural Network (CNN)

CNNs are special forms of neural networks with some restrictions and simplifi-
cations that they can be used for semantic image segmentation in an acceptable
way in terms of calculation time and complexity. In Figure 2.7 the typical
process chain of a CNN is shown. The first step is to convolute the input
layer with several different kernels to get the image features. In the next step,
the activation function is executed on the convolution layers. Through the
polling layers downsizing the convolution layers reduce their computational
complexity. The steps from convolution to polling can be repeated multiple
times. At the end of the process chain, the last layer is connected to a fully
connected layer where the resulting labelling is done. CNNs are realized under
3 main adjustments, which are described in the following subsections [9].

Figure 2.7: CNN

13D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
H

au
pt

bi
bl

io
th

ek
 d

er
 T

ec
hn

is
ch

en
 U

ni
ve

rs
itä

t W
ie

n 
au

fg
es

te
llt

 u
nd

 z
ug

än
gl

ic
h.

w
w

w
.u

b.
tu

w
ie

n.
ac

.a
t

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
di

pl
om

a 
th

es
is

 is
 a

va
ila

bl
e 

at
 th

e 
m

ai
n 

lib
ra

ry
 o

f t
he

 V
ie

nn
a 

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y.

w
w

w
.u

b.
tu

w
ie

n.
ac

.a
t/e

ng



2.1 Semantic Segmentation 14

Local receptive fields
In classical NNs every input node is connected to every node of the next layer.
That would mean, under the assumption of a single layer grayscale input image
with a size of 800x600 pixels, that we have to connect 480.000 input nodes to
every node of the next layer. As we can imagine, this would get complex, really
fast and computationally intensive. To handle this problem CNNs are focused
on restricted image areas with the size of the filter kernels [9].

Figure 2.8: Local receptive fields

As it is shown in Figure 2.8, the result of the convolution with the filter kernel
of a restricted area is only connected to one node or pixel of the convolution
layer. Depending on the size of the kernel, the convolution layer accordingly
gets smaller. This can be obviated by increasing the input layer dimension by
half of the filter kernel with interpolated pixels. The restriction of focusing
only on parts of the image can be done under the assumption that the features
of an image are spatial bounded [9].

Shared weights
The second simplification is to reduce the number of parameters by keeping
the local connection weights fixed for all the neurons of the next layer. Thus in
comparison to a basic NN where we would have for example 76800 parameters
for 3 input layer with a size of 32x32 pixels and a kernel size of 5x5 we decrease
the number of parameters to 75. As we can see, this simplification decreases
the complexity of processing and training of the network. As a consequence of
that, the computational intensity also decreases [9].

Pooling
Pooling layers are responsible for reducing the spatial size of the convolution
layers. Two frequently used types of polling are shown in Figure 2.9. Max
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2.1 Semantic Segmentation 15

polling returns the maximum value of the kernel focused area. It also performs a
noise suppressant action by ignoring the other values of the kernel window which
might manipulate the result. Average polling is another approach where the
values covered by the filter kernel are averaged. Based on the noise suppressant
action, we can say that the max polling approach performs a lot better [9].

Figure 2.9: Polling types

This simplification decreases the computational intensity through the dimen-
sionality reduction. Additional it is useful the get rid of dominant features
which would influence the labelling result negative.

Basic CNNs are still computationally intensive, especially for large input
images sizes, and they are also restricted to a fixed input image size. Thus
they have to be reimplemented whenever the input image size is changed.
Further CNNs are just detecting one object per image. If we want to detect
more than one object, we have to split the input image into smaller sub-images
and search in all of them. This approach would take a lot of computation
time, especially when the sub-images are overlapping. In the next two sections,
methods are described which try to get rid of these limitations.

Regional Convolutional Neural Network (RCNN)

The main goal of a RCNN is to detect more than one object in an image but
without splitting the image into every possible sub-image segmentation. Thus
this method tries to identify a smaller number of interesting regions before
the CNN processing, and semantic segmentation of a single object is started.
First, RCNN uses selective search to generate about 2000 region proposals, like
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2.1 Semantic Segmentation 16

it is shown in Figure 2.10. The selective search algorithm is described in the
paper [10]. Region proposals are visualized as red rectangle bounding boxes.

Figure 2.10: RCNN

After establishing the bounding boxes, image classification is done for each
bounding box through CNNs trained for different input image sizes. With the
help of regression, the detected object can be associated with the position in
the input image.
This approach solves only one of the limitations we have with classical CNNs. A
method for solving the struggles with changing input images sizes is described
in the next section [11].

Fully Convolutional Network (FCN)

FCNs extend classical CNN by making them robust against changing input
images sizes and the limitation of single object detection by per-pixel dense
prediction. This is done by using only convolution and polling layers. The fully
connected NN at the end of the process chain is omitted respectively replaced
by additional convolution layers derived from the NN [12]. At the end of the
process chain, an upsampling layer is added to reconstruct the output layer size
to the corresponding input image size. The resulting process chain is shown in
Figure 2.11.

Upsampling from a low resolution after the convolution layers may false
the result because of the high interpolation degree. Thus using the results of
preceding convolution layers improves the result. This technique is known as
output fusing and is described in the paper of Jonathan Long, Evan Shelhamer
and Trevor Darrell [12].
Thus this method does not decrease the computational complexity as the
attempt described above, but it solves the pixel-wise label prediction for each
pixel of the input image, and additionally, it also solves the sizing problem.
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2.1 Semantic Segmentation 17

Figure 2.11: FCN

2.1.3 Random Forest (RF)

RF is a supervised classification algorithm and consists out of multiple indepen-
dent random trees. A random tree can be imagined as a Decision Tree (DT)
with additional adjustments. Before discussing the basic algorithm, DTs will
be discussed for a good basic knowledge [13].

Decision Tree (DT)

DTs are widely used machine learning algorithms and have a typical tree
structure. In this description, we will focus on image data as input data but
they can also be used for more generic data sets, for example in the field of
weather forecast or the domain of finances.
For simplification we assume that we have an image of the size of 10x10 pixels
as it is shown in Figure 2.12a, represented by RGB values. Further, we will
use a binary trees because they are easier to train than trees with more than
two child nodes. As we can see in subsection 2.1.3 we will also use binary trees
for the random trees. A tree with multiple child nodes can be transformed into
a binary tree. Practically, we would use more complex features than just RGB
values, like edges, special filtered or channel modulated image representation
to get better results [14].
To get a two-dimensional feature space, we are just using the green and blue
values. The feature space is shown in Figure 2.12b.
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2.1 Semantic Segmentation 18

(a) (b)

Figure 2.12: RGB nature image with the corresponding green/blue feature
space

The main task of an DT is to separate the feature space into several clus-
ters, thus that the data points can be assigned to their corresponding label.
Thresholding the features does fulfil this requirement. Each node of the DT
can either hold a decision where a threshold is evaluated against a feature or a
resulting label as a leaf node. Thus each stage of the tree makes the semantic
segmentation more granular. This evaluation is done for each pixel of the image
to get an entirely labelling for every pixel. An example tree for the feature
space 2.12b is shown in Figure 2.13 [14].

Figure 2.13: Decision Tree (DT)

The challenge is to find the best decision for each node and to decide when
the error is small enough to stop branching. This can be done by train the tree
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2.1 Semantic Segmentation 19

with the help of ground truth, the concept of information gain and entropy. In
equation 2.13 a entropy definition of a node is given.

E(S) = −
L∑

i

pi log2(pi) (2.13)

Where S is the corresponding subset of training data points to the actual tree
node and pi|i ∈ L is the fraction of data points within the label i ∈ L. L
represents the set of labels. Each traning node is provided with a label i. The
entropy can also be calculated in restriction to a decision or test 2.14.

E(T,X) =
∑

x∈X

P (x)E(x) (2.14)

The set X includes all the subsets x ∈ X of the separated data points throw
the decision. P (x) stands for the possibility of label in subset x. Now we
have two types of entropies the one just for a subset of data points in a node
and the constrained one for a chosen decision. With this information and
the essence that a completely homogeneous dataset has zero entropy, while a
perfectly random dataset converges to maximum entropy. We can define the
equation 2.15 for the information gain [14].

G(T,X) = E(T ) − E(T,X) (2.15)

Now we can calculate the information gain for every possible feature threshold
combination in a specific node. The one with the highest is chosen. If the
information gain of all possibilities is under a certain threshold, branching will
be stopped, and the node becomes a leaf.
Two of the main problems are overfitting and the high amount of computation
time, which is necessary to get the information gain for all possible feature
threshold combinations. One way to prevent overfitting is to give the tree a
maximum depth limitation, and a minimum number of required data points
for a split. The feature threshold degeneration can be stopped, for example
by a weighting function which reduces the complete set of all possibilities to a
manageable subset [14].

Random Tree (RT)

A RT is special form of a DT. During training, the feature threshold possibilities
are chosen randomly. Thus for every node, only a subset of features is chosen.
Further, not all possible thresholds are tried. Only a fixed number of randomly
chosen values is selected. With this restriction, the computational complexity is
reduced dramatically, and the tree also gets robust against overfitting because
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2.1 Semantic Segmentation 20

not always the most likely decision based on the training set is taken [13].
In our case, each node only has two child or leaf nodes. At the end of the
training when every data point is passed through the tree, the leaf nodes are
holding an empirical distribution over classes learned during the training which
is matching each data point to the most likely label as it is shown in Figure 2.13.
Node decisions are also known as tests.

Figure 2.14: Random Tree (RT)

From RTs to a RF

Basically, a RF consist out of n RTs. An example of an RF is shown in
Figure 2.15. For each tree, the features and thresholds, as also the depth
restriction and the minimum amount of data points for splitting is chosen
randomly. Thus it is nearly impossible that two equal trees are generated after
training.
After a data point is passed through each of the n trees the data point has n
labelling distributions. All these distributions are summed up to get an average
labelling distribution. This way of classification is much more robust than just
a single tree because every tree is unique.
If one label of the dataset is dominating the other, it could be possible that the
result quality decreases. Through weighting this behaviour can be prevented.
The weighting factor is proportional to inverse label occurrences.
Using just one tree makes the prediction highly sensitive to noise in the training
set while the average of many trees is not if the trees are completely diverse from
each other. With the randomness and a high amount of trees, this algorithm
gets less sensitive against noise [14].
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2.1 Semantic Segmentation 21

Figure 2.15: Random Forest (RF)

Hyperparameter tuning

Hyperparameters are free settable parameters for the training. Tuning these
parameters increase the quality of the result. For RFs these parameters include
the number of trees and features considered by each node for splitting as also
the maximum tree depth and a minimum amount of data points for splitting.
The parameters do not include the ones of the model itself like thresholds and
the chosen features. Tuning the hyperparameters is more based on experiments
than theory. One way to evaluate them is to using cross-validation. This
evaluation method splits the training data set into k subsets. Now k−1 subsets
are used for training. After training the algorithm is validated against the
validation subset, which was not used for training. To get a more stable test
result, this is done k times but every run with a different validation set. The
whole process is executed for every set of available parameters. In the end, the
parameter set with the best evaluating result is chosen to train a RF with the
whole training data set. As we can imagine, this process takes much time. In
practice tools automate this process. Cross-validation is just one method for
hyperparameter tuning and the only one described in this paper because it is
widely used [15].

2.1.4 Recapitulation

This section shortly summarizes the advantages and disadvantages of the
different approaches for semantic image segmentation. All have their benefits
and faults. Thus it is not easy to decide which one is the best one to use for
further experiments or implementations.
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2.1 Semantic Segmentation 22

K-means Clustering
This method is easy to implement and has a fast execution time. It also has
not to be trained like some other approaches. The main disadvantage is that
the number of classes has to be defined before ahead or a model assumption
had to be made what is, in general, a difficult task because not in every image
all classes are present. Initial seeding of the centroid points has a substantial
impact on the performance of the algorithm also like the order of the dataset.
The performance is quite good in the face of the fact this method is not trained
and the dataset is good separable [4].

Support Vector Machine (SVM)
SVMs are performing very good on unknown datasets. They can separate
even complex-nonlinear problems with the help of the kernel trick, but it could
be tough to find a well-preforming kernel function. This method also has a
good generalization and performs well against overfitting. It can scale high
dimensional data also as lower dimensional data. Additionally SVMs are solved
for global optima, not like NNs or RFs. The performance might be not as
good as the one of NNs or RFs, but in some fields they are indispensable.
The resulting model after training might be very complex and not easy to
understand [4].

Markov Random Field (MRF)
Using MRF for semantic image segmentation can yield to excellent results,
especially considering that the method needs no training. The method is also
able to solve complex nonlinear problems. Semantic segmentation is done
per-pixel. Finding the maximum can lead to an enormous challenge because it
is likely to be stuck at a local optimum.[7].

Methods using Neural Network (NN)
In general, they have the best performance, but it always depends on the
classification problem. They are also able to handle complex nonlinear problems
very well under the usage of large training datasets. For smaller training datasets
the likely convergent to local minima. Another disadvantage is that NNs use a
broad set of parameters thus, they are not intuitively understandable. Further,
they are used in many applications of the global internet players, and thus
these methods are well proven. With the improvements served by RCNNs
and FCNs, CNNs are independent against changing input image size and
the execution time can be decreased. Disadvantages of NNs are that they
need a very high development time and large training datasets to perform
good [9] [10] [12].
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2.2 Image Processing in Agriculture 23

Random Forest (RF)
It is a great method to use early in the development process because it is easy to
build, and it is easy to see how the algorithm works. Further, the performance of
the algorithm is outstanding compared to traditional methods, and it provides
the possibility to handle different types of features, like numerical or nominal
features. Additionally, this method can classify linear also as nonlinear datasets,
which is a significant advantage compared to the traditional SVM algorithm. If
the trees are correlated, this method gets sensitive to noise in the images. Thus
it is essential to take care of proper hyperparameter tuning. The performance
might be not as good as the performance of NNs, but in case of an early
development stage, it is manageable and a good compromise [14].

2.2 Image Processing in Agriculture

Estimating soil cover of arable land brings many benefits for efficiently, modern
farming. The information which is got by semantic segmentation of images
of soil can be used for instance to reduce the number of agrochemicals by
destroying only the weed in the field with herbicides. In traditionally farming,
herbicides are distributed with the same dose over the whole field [16]. Another
advantage is to detect the percentage of soil covered by material. With this
information, it is possible to protect the soil from erosion [17]. There are
a lot of other use cases for how soil cover information can improve modern
and sustained farming. The next section discusses some approaches to get
an overview of the current researching and how they extract the soil cover
information.

2.2.1 Researched Fields

Intelligent Weed Control

Reducing the amount of herbicides in agriculture-based semantic knowledge
of the soil cover is the primary goal of the work of Andres Milioto, Philipp
Lottes and Cyrill Stachniss in their paper "Real-time Semantic Segmentation
of Crop and Weed for Precision" [16]. They use a CNN for pixel-wise semantic
segmentation of crop field images. Their system is able to generalize well
and operates around 20 images per second. Thus it is suitable for real-time
estimation in the field [16].
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2.3 Near Infrared (NIR) 24

Protect Soil from Erosion

Based on the knowledge of soil covered by material, soil erosion protection can
be done. To get the percentage of covered soil, Peter Riegler-Nurscher, Johann
Prankl, Thomas Bauer, Peter Strauss and Heinrich Prankl extended a basic RF
algorithm with entangled features to get better segmentation results. The main
improvement of this approach is the usage of probable labelling information of
the direct neighbourhood pixels as an additional feature during training. More
details are explained in their paper "An Integrated Image Analysis System for
the Estimation of Soil Cover" [17].

Counting Fruits

Counting or detecting fruits is used to yield optimization and harvest scheduling.
One way to achieve this goal is described in the paper "Monocular Camera
Based Fruit Counting and Mapping With Semantic Data Association" [18]. The
team designed a economical, lightweight, and fast CNN based fruit counting
method with just one monocular camera and achieved very good performance
compared to more complex system setups. Keeping the setup as simple as
possible was one of the main challenges they mastered. Thus it is possible to
run their method in regions where expensive hardware is not affordable.

Estimating Plant Health

Under the use of a CNN, Halimatu Sadiyah Abdullahi, Ray E. Sheriff and
Fatima Mahieddine described a maize health classification method in their
paper "Convolution Neural Network in Precision Agriculture for Plant Image
Recognition and Classification" [19]. Given the constantly growing human
population and the parse amount of food, the information about the plant
health becomes more and more important. With their approach, they achieved
an average prediction accuracy of of 99.58 percent.

2.3 Near Infrared (NIR)

Light interacts differently according to the surfaces of objects. This fact is used
to get additional information from plant surfaces. The EMR from plants differs
according to the light frequency [20]. Thus by filtering the frequency spectrum
of the reflected light is from particular interest.
In the spectrum of EMR there are three regions of special interest for plant
light interactions behaviour. The VIS region from about 400nm− 700nm for
green leaves, the NIR region from about 700nm− 1100nm for absorption by
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2.3 Near Infrared (NIR) 25

dry matter and the SWIR region from about 1100nm− 2500nm for absorption
by water takes places [21]. Figure 2.16 show the reflectance spectra signature of
green vegetation. The peak of the curve in the NIR region is clearly identifiable.
This spectral behaviour only takes place of living green vegetation because of
the EMR manipulation while the plant can do photosynthetic activities.

Figure 2.16: Reflectance spectra signature of green vegetation [21].

Filtering the reflected light before the camera sensor between the range
of 700m − 1100nm will provide a Hyperspectral Image (HSI) from the NIR
region.
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3 Soil Cover Estimation

The main goal of this thesis is to perform the soil cover estimation in the field
of agriculture by adding additional NIR and depth information to our semantic
segmentation process. As it is described in Section 2.3, the NIR information
gives us, especially in the field of agriculture, strong features to segment green
and thus living organic elements of the image from the others. Based on the
related work and the benefits of RFs we decided to use this algorithm for
image segmentation because we want to develop the system in a fast time
inference. Further, the RF algorithm gives us the possibility to estimate how
frequently the additional NIR and depth information is chosen for splitting,
what may be an indicator for the advantages of this extra information based
on the information gain.
In the Subsection 3.1 the used camera setup is described. The practical con-
struction and mechanical implementation is specified in Section 3.7.1 in detail.
Camera calibration (3.2) and the stereo matching (3.4) are pre-steps before
projecting of the NIR image to the RGB is possible. After projecting, the infor-
mation sources (3.5) to the same spatial coordinate system the implementation
of the algorithm and the particularities (3.7) also as the used features (3.6.2)
are discussed.

3.1 Camera Setup

Our setup consists of three cameras. Two RGB cameras for stereo depth
information and one camera between them which provides NIR information. A
schematic representation is shown in Figure 3.1.

With this setup, it is possible to merge the 3D information of the current
scene with the NIR information and RGB information. All three cameras are
mechanically fixed on the same metal plate to guarantee that the distances d
between the cameras are not changing. Modifying the distance of the cameras
would require a recalibration of the whole setup. Further, the focus of the
cameras is fixed thus that the sharp field of view is in the distance around
one meter. One disadvantage of this setup is that the cameras are assembled
side by side and thus the shared field of view decreases. This restriction is
minimized by keeping the distance small, but large enough to get accurate
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3.2 Camera Calibration 27

Figure 3.1: Camera setup

depth estimation.

3.2 Camera Calibration

Bring the world coordinate system and the camera coordinate system in relation
depends on a set of lens and image specific parameters. Through calibration
of the cameras, these parameters are determined and thus, is possible to
figure out the relative position of the cameras. Further, we can bring the
three cameras in relation to each other what is necessary for reprojecting
the NIR image to the RGB image and depth information. The parameters are
categorized into three groups, the linear intrinsic, the extrinsic and the nonlinear
intrinsic parameters, also known as distortion coefficients. Figure 3.2 shows the
transformation from the world coordinate system to the image plane coordinate
system. Between these two spaces there is the camera coordinate system. The
extrinsic 4x3 parameter matrix E is used for a perspective transformation from
the world to camera coordinate system. For the camera system to the image 2D
image coordinate system the intrinsic 3x3 parameter matrix K and the camera
pinhole model is used [22]. The combination of these transformations is shown
in Equation 3.1.

pc =

[
E

0T 1

]
pw (3.1a)
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3.2 Camera Calibration 28

pi =
1

zc

[
K 0

]
pc (3.1b)

pi =
1

zc

[
K 0

] [
E

0T 1

]
pw (3.1c)

Where pw is representing a homogeneous point [Xw, Yw, Zw, 1 ]T in the world
coordinate system, pc a homogeneous point [ xc, yc, zc, 1 ]T in the camera coor-
dinate system and pi a homogeneous point[ ui, vi, 1 ]T in the image coordinate
system [22].

Figure 3.2: Pinhole camera model and relation between the camera coordinate
system and the world coordinate system.

The fraction 1
zc

in Equation 3.1 comes from the pinhole camera model. The
camera pinhole model describes the relation of coordinates of a point in 3D
camera space and its projection onto the image plane as it is illustrated in
Figure 3.3.

Figure 3.3: The geometry of a pinhole camera.
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3.2 Camera Calibration 29

Equation 3.2 delineates this projection.
[
u′

f

v′

f

]
=

1

zc

[
f 0
0 f

] [
xc
yc

]
(3.2)

Where [ u′

f
, v′

f ]T are the projected points on the image plane related to the
center. f is the focal length of the model. Comparing the Equations 3.1a
and 3.2 leads to the conclusion that [ f 0

0 f ] is the intrinsic parameter matrix of
the pinhole camera model. Based on the fact that this model does not include
a lens, f is the only intrinsic parameter. In our approach we are using cameras
with lenses and photo sensors, thus we get additional intrinsic parameters which
are discussed in the following section [22].

3.2.1 Intrinsic Parameters

Intrinsic parameters are responsible to describe the camera internal composition,
encompass the focal length f , scale factor relating distances to pixel, a skew
coefficient for u,v relation and a principal point [ ui0, vi0 ]T [22].
Based on the Equation 3.3, which is the homogeneous representation of the
Equation 3.2, the composition is described.



u′

f

v′

f

1


 =

1

zc



f 0 0 0
0 f 0 0
0 0 1 0







xc
yc
zc
1


 (3.3)

To get a relation between the focal length in terms of pixels and the actual
focal length, they get scaled by the scaling factors mx and my [22]. By
substituting fmx = αx and fmy = αy the equation gets modified as it described
below(3.4).



u′

i

v′

i

1


 =

1

zc



αx 0 0 0
0 αy 0 0
0 0 1 0







xc
yc
zc
1


 (3.4)

Further, the skew coefficients are added to the intrinsic matrix delineate by
Equation 3.5.



u′′

i

v′′

i

1


 =

1

zc



αx −αycot(γ) 0 0
0 αy

1
sin(γ)

0 0

0 0 1 0







xc
yc
zc
1


 (3.5)

The actual skew of the image plane in relation to the focal plane is caused
during the manufacturing of the cameras. The angle γ describes the extent of

29D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
H

au
pt

bi
bl

io
th

ek
 d

er
 T

ec
hn

is
ch

en
 U

ni
ve

rs
itä

t W
ie

n 
au

fg
es

te
llt

 u
nd

 z
ug

än
gl

ic
h.

w
w

w
.u

b.
tu

w
ie

n.
ac

.a
t

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
di

pl
om

a 
th

es
is

 is
 a

va
ila

bl
e 

at
 th

e 
m

ai
n 

lib
ra

ry
 o

f t
he

 V
ie

nn
a 

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y.

w
w

w
.u

b.
tu

w
ie

n.
ac

.a
t/e

ng



3.2 Camera Calibration 30

the skew [22].
Because the center of the image and the origin of the image coordinate system
are not equal, the centroid offsets ui0 and vi0 are added to the intrinsic matrix,
shown in Equation 3.6. The point described through [ ui0, vi0 ]T is also known
as optical center.



ui
vi
1


 =

1

zc



αx −αycot(γ) ui0 0
0 αy

1
sin(γ)

vi0 0

0 0 1 0







xc
yc
zc
1


 (3.6)

The determination of these parameters is discussed in Section 3.2.4.

3.2.2 Distortion Coefficients

The pinhole camera model only deals with geometrical distortions caused by the
object projection to the image plane and the inaccuracies during manufacturing.
Distortions in a practical camera system are also caused by lens properties and
there geometric arrangement related to the image plane. There are existing
many of different distortions types but in this thesis we will focus on the radial
(3.2.2) and tangential (3.2.2) distortions. The distortions are described trough
coefficients which are determinated during the calibration process.

Radial Distortions

Radial distortions are the most obvious ones. They are especially noticed when
we expect straight lines but see curved lines in an image. Figure 3.4 illustrates
the three types of radial distortion, the barrel, moustache and pincushion
distortion.

For simplification the radial distortion is approximate as low degree polyno-
mial 3.7 [23]. k1,...,kn are the distortion coefficients.

λ = 1 +
n∑

i=1

kir
2i,n ≪ (3.7a)

r2 = u2
i + v2

i (3.7b)

To get the distorted image points [ ud, vd ]T we have to apply λ to the focal plane
points [ u′

f
, v′

f ]T . This is done in the Equation 3.8 for n = 3.

[
ud
vd

]
= (1 + k1r

2 + +k2r
+k3r

6)

[
u′

f

v′

f

]
(3.8)
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(a) (b) (c)

Figure 3.4: Types of radial distortions. (a) Barrel Distortion, (b) Mustache
Distortion and (c) Pincushion Distortion

Tangential Distortions

The tangential distortions occur when the lens is not completely parallel to a
photosensor. Figure 3.5 shows the effect of the distortion to an image. These
distortions can be approximated through the Equation 3.9 [23].

[
ud
vd

]
=

[
u′

f

v′

f

]
+

[
2p1u

′

fv
′

f + p2(r2 + u′

f )
p1(r2 + v′

f ) + 2p2v
′

fu
′

f

]
(3.9)

Wherein p1 and p2 are the distortion coefficients.

Figure 3.5: The geometry of a pinhole camera.

Merging the Distortions

Finally, we can combine the distortions and the intrinsic parameter matrix to
get a good approximation of projection from the camera coordinate system to
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the image plane, including the most decisive camera system influences.
[
u

v

]
= K

[
ud
vd

]
(3.10)

Wherein [ ud, vd ]T is a combination of the radial and tangential distortions:
[
ud
vd

]
= λ

[
u′

f

v′

f

]
+ d (3.11)

and

d =

[
2p1u

′

fv
′

f + p2(r2 + u′

f )
p1(r2 + v′

f ) + 2p2v
′

fu
′

f

]
(3.12)

3.2.3 Extrinsic Parameters

The extrinsic parameter matrix P projects a point from the world to the camera
coordinate system as it is shown in Figure 3.2. The matrix P consist out of
two parts:

P =
[
R t

]
(3.13)

Wherein R is the rotation matrix and t the translation vector [22]. The rotation
matrix consists out three independent rotations around each axis. They are
defined as follows:

Rx(ψ) =



1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)


 (3.14a)

Ry(θ) =



cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)


 (3.14b)

Rz(φ) =



cos(φ) −sin(φ) 0
sin(φ) 0 cos(φ)

0 0 1


 (3.14c)

Thus the rotation matrix can be thought of a sequence of these three rotations
as its described through Equation 3.15.

R = Rz(φ)Ry(ψ)Rx(θ) (3.15a)

R =

[
cos(θ)cos(φ) sin(ψ)sin(θ)sin(φ)−cos(ψ)sin(phi) cos(ψ)sin(θ)cos(φ)+sin(ψ)sin(phi)
cos(θ)sin(φ) sin(ψ)sin(θ)sin(φ)+cos(ψ)sin(phi) cos(ψ)sin(θ)cos(φ)−sin(ψ)sin(phi)

−sin(θ) sin(φ)cos(θ) cos(φ)cos(θ)

]

(3.15b)
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3.2 Camera Calibration 33

The translation matrix t holds the origin position of the world coordinate
system, expressed in coordinates related to the camera coordinate system [22].
Thus, the system origins are related by 6 parameters, the three angels and the
three positioning values.

3.2.4 Camera Parameter Estimation

One approach to calibrate the camera is to use a checkerboard. The board is
positioned in many different poses in front of the camera, as it is illustrated in
Figure 3.6. With the knowledge about the (scaled) positions of the checkerboard
corners in world coordinates and the corresponding detected corners in the
image plane, a relation between the respective points can be done. Through
these relations, the intrinsic and extrinsic parameters can be estimated.
In our approach, we used the OpenCV (Intel open source computer vision
library) [24] for calibration, which internally based on the Zhang’s calibration
method [25].

(a) (b) (c)

Figure 3.6: Different orientations of the checkerboard.

Zhang’s Calibration Method

The calibration process after Zhang’s method, roughly based on seven steps [26] [27]
and includes the intrinsic parameter, extrinsic parameter and radial distortion
coefficient estimation.

Step 1
M images from different perspectives of the checkerborad are captured [26].
The camera or the checkerborad should be moved thus the model is in many
different poses and at least in every image area present once.
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3.2 Camera Calibration 34

Step 2
The second step is to detect all corners of the pattern in each of the M

images. Assuming N corners per image will result in MxN image coordinate
points [ uk, vk ]T [26].

Step 3
Now the homographies H1,...,HM are estimated for each independent model
image. A homography describes the mapping of the observed image coordinates
to the real 3D world coordinates. The homography matrix can be estimated
through Direct Linear Transformation (DLT) based on the linear equation
system, which can be defined with the world coordinate system related image
points from step 2. This step is described in detail in the article [26].

Step 4
By ignoring the distortion coefficients the intrinsic parameter can be deter-
minated out of the homography matrices H1,...,HM . For M > 2 and N > 1
assuming a skew of 1, the solution is unique [26].

Step 5
With the knowledge of the intrinsic parameters, the extrinsic parameter ma-
trix P can also be estimated for each captured image. R and t are unique for
each view because there is no depth related information known during the
calibration process. Thus the extrinsic parameters are given with a unique
scale factor for each view [26].

Step 6
The next step is to determine the radial distortions coefficients by least-squares
minimization [26].

Step 7
In the end, the estimated parameters are used as an initial guess for the pa-
rameter refinement. The refinement is done by nonlinear optimizations over all
captured views [26].

The implementation of the OpenCV improves this method by additionally
estimating the tangential distortion coefficients and refine the minimization
process [25].
Finally, a rectifying of the images can be done by using the determined camera
matrices as it is illustrated in Figure 3.7. Where the left figure 3.7a shows the
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3.3 Stereo Calibration 35

distorted image and the right figure 3.7b the undistorted one. On the lower
and right side area of the undistorted image, the corrections are recognizable.

(a) (b)

Figure 3.7: (a) Distorted image (b) Undistorted image

3.3 Stereo Calibration

The goal of stereo calibration is to bring all the camera coordinate systems in
relation through defining the rotation and translation matrices between them,
as is shown in Figure 3.8.

Figure 3.8: Stereo - NIR camera setup.

In our approach we have to do two stereo calibrations, the one between the
left and the right camera and the one between the left and the NIR camera to
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3.3 Stereo Calibration 36

estimate the rotation matrix RLeft−NIR and the translation vector tLeft−NIR
also as the rotation matrix RLeft−Right and the translation vector tLeft−Right.
We decided to choose the left camera coordinate system as origin. The origin
camera system can chosen freely.
The calibration is based on pattern recognition in stereo images which were
captured simultaneously. An example is illustrated in Figure 3.9. A pattern
like one of the checkerboard can be used for this method. If the same corner
is identified in both images, we can calculate the projection matrix between
these two cameras. The calculation and the needed requirements are described
generally in the section below.

(a) (b)

Figure 3.9: Simultaneously captured stereo calibration images.

Before calibration, the cameras must be physically fixed thus that the cap-
tured images are always in the same relation to each other. Further, the
intrinsic parameters must be determined before because the stereo calibration is
executed in undistorted image plane coordinates [28]. Additionally the extrinsic
parameters R1, t1 and R2, t2 of the left and right camera are needed. They can
be determined uniquely for each stereo image pair, as it is described in step 5
of the Zhang‘s calibration method in Section 3.2.4.
For an arbitrary point p in world coordinates the Equations 3.16a and 3.16b
describing the corresponding points p1, p2 for the left and right camera [28].

p1 = R1 ∗ P + t1 (3.16a)

p2 = R2 ∗ P + t2 (3.16b)

The points p1 and p2 are related through the perspective matrix [28]:

p1 = RT (p2 − t) (3.17)
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3.3 Stereo Calibration 37

Through these three equations, the rotation matrix R and translation vector t
of the perspective projection matrix can be determined:

R = R2(R1)t (3.18a)

t = t2 −R ∗ t1 (3.18b)

This process is performed for multiple corner points of each stereo image pair
and several different views thus the error of the resulting perspective matrix
decreases. We used the OpenCV library [24] for stereo calibration which
internally works with the same method.
In the upper half of Figure 3.10 an unrectified stereo image pair is shown. In
the bottom half of Figure 3.10 the same stereo image pair is illustrated after
intrinsic and stereo rectification. Before the rectification, the stones surrounded
with a red circle do not lie on the same horizontal line in the left and right
image. After rectification, the stones lie on the same line with a horizontal
shift. This behaviour is needed for stereo matching what is discussed in the
next Section 3.4.

Figure 3.10: Unrectified stereo images (upper half) compared to the rectified
stereo images (bottom half).
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3.4 Stereo Matching and Disparity Map 38

3.4 Stereo Matching and Disparity Map

Matching a point from the world coordinate system in two different camera
views is known as stereo matching. The matching can only be done for the
overlapping image areas. In our approach, we use the fast and straightforward
block matching algorithm to find corresponding points. The method is described
in the following section. The disparity map( 3.4.2) is generated based on the
results of stereo matching an can be interpreted as unscaled and unitless depth
information [28].

3.4.1 Block Matching

The principle of block matching is to find the same pixel area of one image
in another. This is done by sliding a pixel window of the first image L over
the whole or a restricted area of the second image R. At each location of the
pixel window on the second image, an evaluation metric is calculated. The
evaluation metric is an indicator of the similarity of the two regions [28]. Two
primary evaluation metrics are described below:

MAD =
1

N2

n−1∑

i=0

n−1∑

j=0

|Li,j −Ri,j| (3.19a)

MSE =
1

N2

n−1∑

i=0

n−1∑

j=0

(Li,j −Ri,j)
2 (3.19b)

Wherein MAD is the Mean Absolute Difference and MSE is the Mean Squared
Error. N = n2 is the window size. The region with the lowest deviation error
is taken as matching result.
Working with rectified stereo images brings the benefits of epipolar geometry.
That means it is not necessary to search the whole image to find a corresponding
region. Only the regions along the related epipolar line in the second image
have to be scanned for matches [28]. This decreases the computational time
complexity of O(N2) to O(N).
In our implementation, we used the OpenCV [24] stereo block matching algo-
rithm.

3.4.2 Disparity Map

After matching a 3D point in both images, the disparity can be calculated as
it is described by Equation 3.20.

d = x− x′ (3.20)
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3.4 Stereo Matching and Disparity Map 39

Wherein x is the distance from the point p1 to the camera center C1 and x′ is
the distance from the point p2 to the camera center C2, as it is illustrated in
Figure 3.11

Figure 3.11: Disparity calculation for one match.

Doing this for each match is resulting in a disparity map. Because some
scenes are not seen from both cameras and regions which could not be matched
by block matching, not every pixel gets a corresponding disparity. This leads
to holes in the map as it is shown in Figure 3.13b. For projection of the NIR
image, a comprehensive disparity is necessary. To achieve this, we are using a
disparity filter, described in the next section.

(a) (b) (c)

Figure 3.12: Disparity map (b), calculated from the rectified stereo image pair
(a)(c).

3.4.3 Disparity Filter

To approximate the missing disparity values, a filter can be used. In our
approach, we are using the Weighted Least Squares (WLS) disparity filter
provided by OpenCV [24]. The WLS filter is a guided filter what means that
the features of the original input images are used for an density approximation.
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In general a guided filter can be described through Equation 3.21 [29].

qi =
∑

j

Wij(I)pj (3.21)

Where qi is the output image (disparity), pj the input image (disparity) and I
the origin reference image. i and j are the pixel indexes and W is the filter
kernel.
The WLS filter kernel provided by OpenCV [24] uses two input disparities
maps and one reference input image for processing. One disparity map is
generated conventionally and the other one is generated by interchanging the
left and right input images for block matching and disparity determination.
Figure 3.13a shows the filtered disparity compared to the perforated dispar-
ity 3.13b. As we can see, the filtered disparity map has much fewer holes than
the unfiltered. With these results, we are able to do a sufficiently accurate NIR
image projection 3.5.

(a) (b)

Figure 3.13: Filter disparity (a) compared to non filtered (b).

3.5 NIR Image Projection

Finally, the NIR image can be projected to the left camera coordinate system
thus that it is possible the overlay the NIR and the RGB information pixel-wise.
The projection can be made in four steps.

Step 1
With the disparity map(3.4.2), the perspective projection matrix (3.3) between
the left and right camera and the respective camera parameters (3.2.4) the
image points can be projected to the world coordinate system. This is done
via the triangulation principal.
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(a) (b)

Figure 3.14: Reconstructed 3D point in the world coordinate system (a) and
the corresponding disparity map (b).

Step 2
Second, the 3D points have to be transformed to the left camera coordinate
system by using the extrinsic parameters (3.2.4).

Step 3
The third step is do project the points from the left camera to the NIR camera
coordinate system by using the rotation matrix RLeft−NIR and the translation
vector tLeft−NIR.(3.3)

Step 4
The last step is to project the points from the NIR camera coordinate system
to the image plane.

After these four steps we are able to relate a RGB pixel value to a 3D point also
as the corresponding NIR pixel value. Figure 3.15 illustrates the resulting NIR
image projection overlaying a RGB image partly transparent visible in the left
and upper side of the figure.

Now we can feed our algorithm with the necessary information to do semantic
image segmentation based on RGB, NIR and depth information.

3.6 Features

A feature holds a piece of information from a specific area of the image. What
information features are holding is defined through their construction and how
they are calculated. Thus it is possible to calculate the derivation of a specific
image area to get the information about the degree of change within this area.
Further, features can be calculated on different image channels. Thus it is
possible to get derivation feature information from a simple grayscale image

41D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
H

au
pt

bi
bl

io
th

ek
 d

er
 T

ec
hn

is
ch

en
 U

ni
ve

rs
itä

t W
ie

n 
au

fg
es

te
llt

 u
nd

 z
ug

än
gl

ic
h.

w
w

w
.u

b.
tu

w
ie

n.
ac

.a
t

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
di

pl
om

a 
th

es
is

 is
 a

va
ila

bl
e 

at
 th

e 
m

ai
n 

lib
ra

ry
 o

f t
he

 V
ie

nn
a 

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y.

w
w

w
.u

b.
tu

w
ie

n.
ac

.a
t/e

ng



3.6 Features 42

Figure 3.15: NIR image partly overlaying RGB image.

also as from a normalized green channel image. Before the used features are
discussed, the different image channels are described in the following section.

3.6.1 Channels

Channels are different image interpretations. Thus it is possible to make them
more robust against external influences, but also extract more information out
of the raw RGB, NIR and depth channel by transforming or normalize them. In
our approach, we transform the RGB channels into the L*a*b* colour space to
get more robust against lightness changes. Further, we normalize the basic NIR
image to the Normalized Difference Vegetation Index (NDVI) channel to get
specific knowledge about the vegetation environment. Additionally, we are
using a normalized green channel because thus it is possible to split the green
vegetation better from the rest. The depth information is added by using the
disparity map. In the following subsection, the channels are described briefly.

LAB Color Space

The RGB colour space is not invariant against illumination, and the channels
are not linearly separable. Additionally, the RGB colour space does not cover
the complete perceptible range of colours and also holds no direct useable
lightness information. To solve these restrictions, the LAB colour space was
introduced. Where the L stands for the lightness, A for the red/green value
difference and B for the blue/yellow value difference as it is shown in Figure 3.16.
Thus the image can be separated into illumination channel and linear separable
a and b channels. The LAB values can be calculated from the RGB colour
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space over the XYZ colour space as it is described by Equation 3.22a. After
the calculation of the XYZ colour space values it is possible to calculate the
LAB values by using the Equations 3.22b, 3.22c and 3.22d [30].



X

Y

Z


 =



0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502






R

G

B


 (3.22a)

L = 116 3

√
Y

Yn
− 16 (3.22b)

A = 500( 3

√
X

Xn

− 3

√
Y

Yn
) (3.22c)

B = 200( 3

√
Y

Yn
− 3

√
Z

Zn
) (3.22d)

Figure 3.16: LAB colour space.

Wherein Xn, Yn, Zn are constants related to the kind of illumination. Two
very common illumination types are D65 and D50.
We are using the LAB colour space to get rid of the lighting difference between
the images. Thus the algorithm gets more robust against lighting because
it is not trained for specific lightness conditions rather than for independent
lightness conditions.
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Normalized Green

The normalized green channel represents the difference between the red and
green channel and especially holds information about the green vegetation.
Thus the difference between vegetation and the other objects gets larger. In
general, green regions are good indicators for living vegetation, but if other
objects are also green, this assumption is false. This channel is calculated as it
is defined by Equation 3.24.

NG =
G−R

G+R
(3.23)

Wherein NG is the normalized green value calculated by using the green
channel G and red channel R. Figure 3.17 shows the basic RGB image 3.17b
compared to the normalized green image 3.17b. It is clearly recognizable that
the green areas can be extracted from the rest because of the large distance
between the values. Based on the larger value distances the feature thresholding
gets more sufficient.

(a) (b)

Figure 3.17: Normalized green channel (b) compared to the captured scene (a).

Near Infrared (NIR)

The projected NIR channel is used directly and in two normalized forms.
Especially, the NIR channel should provide us with reliable information about
the green vegetation. Thus it is possible to separate the data with a high
information gain related to living and non-living organic material. The two
normalized NIR channels are described in the following Sections 3.6.1and 3.6.1.
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Normalized Difference Vegetation Index (NDVI)

The NDVI channel quantifies the vegetation by measuring the difference between
the NIR channel and the red channel of the RGB image. The NDVI values are
always in a range from −1 to +1. A value near to −1 indicates that it is likely
water. Where values near to +1 are indicators for living green vegetation. The
values can be calculated as it is described by Equation 3.24.

NDV I =
NIR −R

NIR +R
(3.24)

Wherein, R stands for the red channel values and NIR for grayscaled NIR
values. This calculation is done for every pixel to get a full range NDVI
channel. Figure 3.18 clearly shows the extraction of vegetation. This vegetation
extraction approach is more general than with the normalized green channel
(3.6.1) because the extraction is not only based on colour information, rather
than real vegetation information from the NIR channel.

(a) (b)

Figure 3.18: NDVI channel (b) compared to the captured scene (a).

Optimized Soil-Adjusted Vegetation Index (OSAVI)

The OSAVI channel is another normalization of the NIR channel in combination
with the red image channel optimized for agricultural monitoring [31]. The
normalization is defined through the Equation 3.25.

OSAV I =
NIR −R

NIR +R + 0.16
(3.25)

Where the coefficient 0.16 describes the optimal value to minimize the
variation with soil background [31]. The calculation is similar to the one of
the NDVI channel besides the introduced normalization coefficient.
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Depth information

In our approach, we use the depth information in the form of the disparity
map (3.4.2) because we only need a relative relation between the values and
no absolute depth information. The depth information channel is different
from the others in the sense of feature thresholding. Thus if we split the image
based on depth information, related regions are separated. However, in an
early stage of the algorithm execution, this information can nevertheless be
helpful in terms of splitting the flat soil from objects on it. As it is shown in
Figure 3.19, the different grayscales are representing different depths which
could be split into soil and objects on the soil.

(a) (b)

Figure 3.19: Disparity map (b) compared to the captured scene (a).

3.6.2 Features

As it is described above, features hold specific information of an image area.
In this thesis, we focus on five different types of features. Each feature extracts
different information from the image. Some of the features are more reliable at
early algorithm execution stages and others more on later stages. The used
features are described in the following sections.

Absolute

The absolute feature is calculated by the mean value of the region R with an
relative pixel offset ∆ to the pixel coordinate x as it is defined by Equation 3.26.

fabs,C(x,∆,R) = IC(R(x+ ∆)) (3.26a)

C ∈ {L,A,B,NG,NDV I,OSAV I} (3.26b)
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This feature is calculated and implemented on each image channel described
above. With this information, the specific channel is separated by a threshold
according to the absolute mean value of a region. Thus it is the purest form of
grouping the pixel values of a channel.

Unary

With this feature, the absolute mean difference of two regions of the size of R
at two-pixel coordinates is calculated. The first region is placed at the current
evaluation position, and the offset ∆ shifts the second to this position. This is
formalized by Equation 3.27.

funary,C(x,∆,R1, R2) = IC(R1(x)) − IC(R2(x+ ∆)) (3.27a)

C ∈ {L,A,B,NG,NDV I,OSAV I} (3.27b)

Like the absolute feature, this is also applied on each channel. It is an
indicator for the similarity of the current evaluation region compared to a
nearby region.

Pairwise

Similar to the unary feature the pairwise feature is also an indicator for
similarities of neighbouring regions with the variation that the difference is not
calculated against the current evaluation region rather to another neighbouring
region shifted by the offset ∆1. The second neighbouring region is shifted by ∆2.
This feature can also be seen as an image gradient, thus it is robust against
illumination differences and can be applied to each image channel [17]. It is
described through Equation 3.28.

fpairwise,C(x,∆1,R1,∆2,R2) = IC(R1(x+ ∆1)) − IC(R2(x+ ∆2)) (3.28a)

C ∈ {L,A,B,NG,NDV I,OSAV I} (3.28b)

Variance

The variance feature describes the variance of a specific region R around the
current evaluation position shifted by an offset ∆ as it expressed through
Equation 3.29.

fvar,C(x,∆,R) = V AR(IC(R(x+ ∆))) (3.29a)

C ∈ {L,A,B,NG,NDV I,OSAV I} (3.29b)
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This feature is an indicator for the level of scattering of a region. That means,
for example, a channel representation can be split into flat and less flat regions
by evaluating this feature on it.

Linearness-/Pointness-Feature

This feature consists of two parts. The first part describes the variance of
region R at the point x from the derived image, as is shown by Equation 3.30.
Where the resulting value indicates the reliability of the value.

flt,C(x,R) = V AR(arctan(
∂xIC(R(x))

∂yIC(R(x))
)) (3.30a)

C ∈ {L,NDV I} (3.30b)

The second part of this feature indicates the line structure in the region R.
Which is used to calculate the mean derivations at the point x as it is described
by Equation 3.31.

fg,C(x,R) = MEAN(||∂xIC(R(x))|| + ||∂yIC(R(x))||) (3.31a)

C ∈ {L,NDV I} (3.31b)

The feature is only implemented for the L and the NDV I image channel
because it has massive computational complexity and is consuming much
memory.

3.7 Implementation

The following section describes how image segmentation based on the the RF
algorithm is implemented. Our implementation approach is described in Sec-
tion 3.7.3. Before the algorithm can train or classify images, preparatory work
has to be done. The preparatory work can be split into the image capturing
( 3.7.1) and data preparation ( 3.7.2). Wherein the first section deals with a
special build camera-box for autonomous image capturing and related streaming
software. In the second section, the principal data preparation, according to
the data container and labelling software, is explained.

3.7.1 Image Capturing

For image capturing, we designed a camera-box which can stream images
autonomously to a computer on which a streaming software is running. The
box has to be autonomous because it has to be possible to use it without
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significant circumstances to an agriculture field or fix it on a vehicle without
any wiring.
Additional to the box implementation, an image streaming service has to be
realized on the used ODROID-XU4 micro controller [32] board as well as a
client streaming software to receive the images. The realization of this related
work is described in the following sections.

Camera-Box Components

The camera-box consists of five main components. They are all necessary to
realize the required functionality. Figure 3.20 shows the box and its components,
which are described in the following subsections.

(a) (b) (c)

Figure 3.20: Different views on the camera box.

Power Management
For the autonomous power supply, we are using a conventional power bank
and a twelve to five voltage DC-DC voltage converter, which is shown in
Figure 3.20b on the lower left side inside the box.

Cameras
The camera construction which is shown in the upper part of the box in
Figure 3.20b consist out of two UI-32521LE RGB cameras with a resolution
of 1600x1200 pixels and one UI-3241LE-NIR-GL NIR camera with a resolution
of 1280x1024 pixels in the middle of them [33].

Wireless
For the wireless communication of the box software with the PC software, a
conventional wireless stick is used. Thus it is possible to open a hotspot on the
box side of the application and set up a connection to it.
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Micro Controller
The host the box software we are using a ODROID-XU4 [32] single board
computer with an SAMSUNG Exynos 5422 processor and 2 GB RAM. This
microcontroller can handle the camera image capturing and sending the images
over wireless LAN at the same time by relatively low power consumption.

Casing
The casing is 3D printed and joins all the components together, which are
described in the upper sections. It consists of four main parts. The fixing
construction and the cover is shown in Figure 3.21a and 3.21b. The fixing
construction is designed to hold the three cameras in the front as also the
microcontroller board and voltage converter in the back part. The front consists
of a plexiglass. Thus it is guaranteed that the cameras are protected from
environmental influences. The back of the box is a 3D printed element with
ventilation slots as Figure 3.21a illustrates. The ventilation slots are necessary
because of the heat caused by the cameras and the microcontroller. Finally,
the cover holds all the 3D printed components together and protects them.

(a) (b)

Figure 3.21: Model of the 3D printed camera casing.
(a) Fixing construction and (b) Cover

Capturing Software

The capturing software consists of two central parts. The one which is running
on the microcontroller inside the camera box and the one which runs on a con-
ventional computer. These two applications communicate over a wireless LAN
connection which is provided by the operating system of the microcontroller.
In the following two sections, these two software parts are explained in more
detail.
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Box Software
On the microcontroller, software consisting of two main parts is running. The
first part is responsible for the parallel image capturing of all three cameras.
This is realized with an external trigger signal which is connected to all cameras.
When the trigger signal rises, the cameras take an image which is saved to
the internal memory, and the camera driver is notified that new images are
available. The notification is passed to the software, and so it is possible to load
the three synchronous captured images to the internal box software memory.
Second, the software also handles image streaming. This is done by starting a
TCP server which the PC software can connect. For a live update, a small-sized
image is streamed to the PC. If the PC software requests a recording the latest
three images are sent in full quality. Further, image capturing is also possible
when no PC connection is possible, for example, during driving. For this case
a temporary on device capturing mode is implemented. The images are stored
locally on the device. When it is connected to PC again, all captured images
can be transferred to the PC.

PC Software
In Figure 3.22 a screenshot of the PC capturing software is shown. On the
left side, the buttons for starting a live stream, image capturing and initiated
a temporary on-device image capturing are placed. The three images in the
middle show the latest images saved in full quality. Further right, the small
live stream image is shown. Additionally, the cameras can be reinitialized via
the re-init cameras button on the lower left side.

Figure 3.22: Image capturing PC software.
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3.7.2 Data Preparation

After image capturing the image processing also as the NIR image projection
(3.5) and the labelling has to be done. To handle and provide a good overview
of this process, an individual image viewer as also a labelling software was
implemented and is explained in the following two subsections. Additionally, a
train, classify, and evaluation program was implemented, which is described in
more detail in Section 3.7.3.

Image Viewer

The image viewer provides an overview over the currently loaded image set,
the related rectified images, the disparity map, and overlay view from the NIR
image and the RGB image and a 3D point cloud view of the disparity values
(3.23).

Figure 3.23: Image Viewer

With the help of the image viewer, it is possible to adjust the stereo parame-
ters and the projection parameters. Each tuning effect of these parameters can
be verified directly in this view. Because the complete process is susceptible
to small changes, it is constructive to get an overview of the data preparation
effects.
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Labelling

The labelling is implemented as a semi-automatic pre-segmentation method as
it is shown in Figure 3.24. With this implementation, it is possible to paint the
specific parts of the image with the corresponding label with a mouse click on the
current pixel. In the background, the pre-segmentation algorithm automatically
detects corresponding pixel clusters and fills them with the selected label into
the label image, which overlays the original image. Considering this method, a
fast and efficient semi-automatic image labelling can be done.

Figure 3.24: Image Labelling Software

3.7.3 Algorithm Implementation

The algorithm consists of three main parts, namely the training, classification
and evaluation part. These three parts are working with the same base imple-
mentation, which are described in Section 3.7.3. The special properties in terms
of implementation and efficient computation are discussed in the following
section.

Training, Classification and Evaluation

The implementation of the training and classification is very similar and follows
the basic algorithm described in Section 2.1.3. To decrease the computational
time, the algorithm is implemented as a multi-threading system. Thus for each
node, the complete data container which holds all the image channels of the
complete dataset is evaluated against the actual feature. After splitting the
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dataset, the next level of the trees is computed in separated threads for the
left and right child node until the cancellation criteria reached. Additionally,
loop parallelism is implemented thus it is possible to calculate several feature
threshold combinations parallel during training. Based on this efficient parallel
implementation approach, the tree is growing unbalanced. The classification
uses the same underlying implementation, but in fact, only the trained feature
is evaluated.
That the unbalanced occurrences of the labels in the training dataset can be
regularized a level weighting is introduced which provides the system from
disregarding infrequent labels.
The evaluation algorithm takes the classified and the ground truth label images
as input. Under the used performance measure metric, which is explained in
Section 4.2, the result is calculated pixel-wise.

Hyperparameters

The RF algorithm offers much flexibility in term of adjustable parameters.
They can be grouped into two main categories, the algorithm specific and
feature specific parameters. To have adjustable parameters can be very helpful
because then it is possible to tune the algorithm especially for the needed use
case but on the other hand, it is hard to find the right ones the achieve the best
results. The parameter evaluation of our approach is discussed in Section 4.3.
The properties of both parameter groups are described in more detail in the
following sections.

Feature Specific Parameters

As it is described in Section 3.6.2 all the features are implemented over a region.
The size of these regions is known as the window size. Additionally, these
regions can be shifted by an ∆ offset from the currently viewed pixel.

Window Size
The window size defines the size of the region which is used for calculation of
the average or the variance. This parameter is sensitive to the features and
the resolution included in the image. For images with a high resolution, the
window size can be chosen smaller than for lower resolution images because the
image with a higher resolution holds more information within a smaller region
compared to lower resolution images.

Pixel Offset
Every image has based on the resolution and the feature density another
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distance between the different objects. The offset which is used for differential
information extraction should not be so large that the viewed region is in
another object than the directly neighbouring.

Algorithm Specific Parameters

The algorithm-specific parameters can be split into termination criteria pa-
rameters and robustness parameters. They directly influence the behaviour
of the algorithm. The eight main algorithm parameters are described in the
subsections below.

Minimum Information Gain
With the minimum information gain, the propagation of the tree can be stopped
because if the information content is low for a further split, it has no positive
effect on the performance of the algorithm.

Minimum Number of Points for Splitting
The minimum number of points for a split is also a propagation termination
criteria. From a certain number of nodes in a tree node, it would gain no
improvement to continue with splitting.

Number of Features
The number of features tried in each node influences the performance of the
algorithm. A high number of features results in more accurate results, but it
also increases the computational complexity. Thus there has to be found a
compromise between accuracy and computational intensity.

Number of Thresholds
The number of tried thresholds has a similar behaviour as the number of tried
features. There also has to be found a compromise between accuracy and
computational intensity. The thresholds are tried after the feature is fixed
for the current tree node. Thus it is an improvement of the feature with the
temporary best information gain.

Image Subset Size
For robustness, not the complete image set is chosen for training. Every tree
does only take a subset of the available training images. Thus it is guaranteed
that each tree does not have the same information for training, and this makes
the forest more robust against changes in the classification dataset.
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Feature Subset Size
The idea behind the feature subset size is similar than the one behind the
image subset length. Using not all features for every tree makes the resulting
forest more robust.

Maximum Tree Depth
The tree depth is also a propagation cancellation criteria and is limiting the
trees to a maximal depth. It prevents the trees from becoming too fine-granular.

Number of Trees
For robustness, the number of trees is essential because as it is described above
the trees are trained with a different image and subset ratio. Thus every
tree has another speciality and only with a set of trees it is possible to cover
all the scenes and soil compositions with their peculiarities. To find a good
number of trees, we tried to estimate with a lightweight estimation described
in Section 4.3.2.
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4 Experiments

Using additional NIR and depth information is the core of this thesis. Our
approach is based on the hypothesis that the additional information source
which is sensitive to plants increase the performance of the semantic image
segmentation process. Thus it is possible to give a more accurate prediction
about soil coverage. To measure the performance improvement, we use the
F1 score, which is described in Section 4.2. The training dataset and the
evaluation dataset is explained in Section 4.1. In Section 4.3 the evaluation of
the hyperparameters is described. The segmentation results of both experiments
are described and discussed in Section 4.4.

4.1 Dataset

The training dataset consists of more than 70 images which have been labelled
with the method described in Section 3.7.2. To cover a wide range of different
scenes, we decided to focus on four main soil coverage compositions which are
shown in Figure 4.1. The first composition is shown in sub Figure 4.1a and
mainly consists of soil and residues. Figure 4.1b represents scenes, which have
a high amount of soil and plants. The third scene ( 4.1c) covers a mix of soil,
plants and residues. The last scene has a high incidence of stones and residues.
Additional to the training dataset an evaluation dataset consisting out of 20
labelled images is provided. It also includes the four scenes to make a reliable
performance measurement possible.

(a) (b) (c) (d)

Figure 4.1: Different soil coverage scenes

The images were captured under conventional environmental conditions with-
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out any artificial light. Thus, the results are nearly comparable with the ones
in practical usage excepted to air impurities and the impacts of movements.
All the images and their labels are listed in the appendix (6).
For the preparation of the datasets, we use image subregions of the size 320x240
pixel. These subregions are selected in a way that each holds different informa-
tion about the scenes in terms of surface texture, illumination and quality. A
wide field of different subregions is necessary to make the classification more
robust, especially when the training dataset is limited. The low resolution of
the images decreases the computational complexity of the training as also of
the classification but make it harder for the algorithm to perform well. In our
approach, we decided to choose the resolution that we get a good compromise
between computational complexity and performance.

4.2 Performance Measure

To measure the performance of multi-class classification algorithms, many
different methods exist. One frequently used is the F1 score, which also
takes the unbalanced occurs of labels into account compared to the accuracy,
which gives no reliable results on unbalanced label distributions. The F1 score
performance measurement is explained in Section 4.2.1.

4.2.1 F1 Score

The basis of the F1 performance metric is the confusion matrix which describes
the true conditions against the actual predicated conditions for each label.
Thus it is possible to determine each classified pixel against the ground truth.
With the help of the information held by this matrix (4.2.1) the precision and
the recall value of each label can be calculated. These two factors are necessary
to calculate the F1 score metric, which is explained above [34].

Label A Label B Label C
Predicted Label A 30 20 10 Total predicted label A
Predicted Label B 50 60 10 Total predicted label B
Predicted Label C 20 20 80 Total predicted label C

Total label A Total label B Total label C

Table 4.1: Confusion matrix with sample values

The diagonal of the confusion matrix contains the true positives for each
label. Summing up the columns results in the number of pixels which should
have the specific label and the sum of rows is the number of pixels which were
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predicted for the specific label. Thus the precision, as an indicator for positive
predicated pixels, can be calculated as it is defined through equation 4.1.

precision(X) =
true positives label X

total predicted label X
(4.1)

The recall value, which holds the sensitivity information of each label can be
calculated as it is shown by equation 4.2.

recall(X) =
true positives label X

total label X
(4.2)

Finally, the F1 score performance metric is defined through twice of the
multiple of precision and recall divided by the sum of these values 4.3.

F1 score(X) = 2 ∗
precision(X) ∗ recall(X)

precision(X) + recall(X)
(4.3)

4.3 Hyperparameter Estimation

For our approach, we did a lightweight parameter estimation based on fast and
efficient evaluation progress. As initial parameter settings, we took the ones
from the paper [17] and adapted them for our particular case. It turned out
that some parameters have more influence on the results than others. Thus it
was possible the assume some of them in our lightweight hyperparameter tuning
process (4.3.1). A good number of trees is evaluated based on the performance
result described in Section 4.3.2. Additional a sufficient analysis of window
size, pixel offset and minimum information gain was done as it is explained in
Section 4.3.3.

4.3.1 Adopted Parameters

The parameters explained in the following section are adapted from the pa-
per [17] and were not explicitly evaluated based on our approach of developing
the system in a fast interference.

Minimum Number of Points for Splitting
The minimum number of points for a further split is set to five. This assumption
is based on the experience we made during training and the observation of
the most common termination criteria. The number of minimum points for
splitting is scarce in terms of termination in comparison to the information
gain.
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Image Subset Size
The image subset size is set to an image ratio of 0.75. With this ratio, the
trees are individual but also sufficient enough intersection, thus that they can
be used for a meaningful voting process.

Feature Subset Size
The feature subset size is set to a ratio of 0.9. This feature restriction also
results in higher robustness because of the individuality of each tree.

Number of Features
In our approach 32 features are implemented. After the limitation of the feature
subset length, every tree gets a set of 29 features to evaluate. Expecting a
feature threshold scaling from 100 thresholds per feature results in 2900 possible
feature threshold combinations. Assuming that the window size and the pixel
offset is also chosen randomly in a specific range, we decided to evaluate 4000
feature threshold combinations for each tree node.

Number of Thresholds
To optimize the node-specific feature, 4000 randomly chosen thresholds are
tried because a good value for the threshold has a massive impact on the
segmentation performance.

Maximum Tree Depth
Also, the minimum number of points for splitting, the maximum tree depth is
a termination criterion which is compared to the information gain very rare
efficient in our approach. Thus we are chose 25 for the maximum tree depth to
guarantee that the tree depth has not much impact on the results and a too
huge tree growing is avoided.

4.3.2 Number of Trees

The number of trees is determined through a performance measurement of
several different tree numbers as it is shown in the chart 4.2. The quality of
classification increases with the chosen number of trees. Between the usage
of 2 trees and 6 trees, the most noticeable improvement is recognizable, but
from 6 to 10 trees also improvement is visible. Thus we chose 10 trees for the
forest because the results are good enough, and the increase of the performance
for a remarkable tree number does not justify to the increasing computational
complexity.
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Figure 4.2: Number of trees estimation

4.3.3 Window Size, Pixel Offset and Minimum Information

Gain

To evaluate the minimum acceptable information gain, several different values
in the range from 0.5 to 0.01 were evaluated. Based on these experiments
it has shown that for our training dataset which includes many different soil
compositions in a high density the information gain has to be very low because
it is not possible to split the dataset with a relative high information gain. Thus
we decided to use 0.01 for the minimum information gain need for a further
split. A larger dataset could avoid this limitation.
Based on our image quality and object density, window size and pixel tuning
was done. Regions from 8 to 20 pixels in the square were also evaluated as
pixel offsets from 7 to 15 pixels. The results showed that regions from the size
of 20 pixels in square and an offset from 15-pixel yield to the best performance.

4.4 Classification Results

To evaluate the influence of the additional NIR information on the segmentation
process, two experiments were done with the hyperparameters described above.
First, a segmentation with additional NIR information against the evaluation
dataset was done and second an evaluation without this additional information
source was done (4.4.2). The results are described in detail in the following two
Subsections 4.4.1 and 4.4.2. In Section 4.5 a comparison of the results takes
place.
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4.4.1 Classification with NIR Information

The following four figures are showing the segmentation results individually
for the four trained classes measured with the F1 score metric against the
evaluation dataset. Figure 4.3 shows a sample classification result from a scene,
including all classes.

(a) (b)

Figure 4.3: Classification result including additional NIR information.

Figure 4.4 show the result for the soil classification accuracy, which has an
average F1 score of 0.81. Based on the hard differentiation between soil and
residues and the variance of the labelling process, which is nearly in the same
range, the result is sufficient.
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Figure 4.4: Soil detection accuracy with NIR information
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With an average F1 score of 0.71 the plant classification (4.5) also representing
meaningful results. Especially the edges of the plants mostly interpret larger
then they are. This deviation from the ground truth labelling is responsible for
a slightly lower value.

1 2 3 4 5 6 7 8 9 1011121314151617181920
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
.6

5

0
.3

8

0
.7

1

0
.6

6 0
.7

7

0
.8

0
.6

4

0
.6

3

0
.8

8

0
.8

1 0
.8

7

0
.8

5

0
.7

4

0
.8 0
.8

6

0
.8

4

0
.5

4

0
.4

5

0
.6

1

0
.6

7

Evaluation Image Number

F
1

sc
or

e

Figure 4.5: Plants detection accuracy with NIR information

The classification of the residues proportion turned out to be not as manifestly
the other classes because of the difficult differentiations of residues in the
images from the other classes, especially in dark and edge regions. Thus the
classification reached an average F1 score from 0.46.
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Figure 4.6: Residues detection accuracy with NIR information

The stone detection accuracy reached the second highest average F1 score
from 0.8 compared to the other classes. This result can be explained by the
fact that some of the evaluation images do not include stones, and thus these
specific images reached an F1 score from 1.
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Figure 4.7: Stone detection accuracy with NIR information

4.4.2 Classification without NIR Information

The second experiment focused on the classification with out NIR information.
An example classification result is shown in Figure 4.8. The result of the four
different classes is discussed based on the following four charts.

(a) (b)

Figure 4.8: Classification result excluding additional NIR information.

An average F1 score from 0.82 rates the accuracy for the estimated soil
coverage. As the results with NIR information, this value is sufficient for soil
cover estimation based on the problematic datasets and the laborious labelling
process which is also a challenge for a human eye based on the rare image
quality and the low resolution. To train and evaluate an image segmentation
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algorithm with this hard environmental conditions can also be viewed as an
advantage because it is an indicator for robustness.
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Figure 4.9: Soil detection accuracy without NIR information

For the living organic plants, the classification without NIR information
reaches an average F1 score from 0.71 and is thus comparable with the results
without NIR information. As the experiment with NIR, the lower score can be
lead back to the same arguments in terms of edge inaccuracies.
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Figure 4.10: Plants detection accuracy without NIR information

The classification results for residues is not as good as the one with NIR
information and reaching an average F1 score from 0.41. The generally lower
values for residues are based on the fact that residues are often harsh to
distinguish from the soil. Especially under these conditions, the labelling
process of the evaluation and training dataset also has to be afflicted by an
error, which directly leads to significant errors during training and classification.
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Figure 4.11: Residues detection accuracy without NIR information

For stones, the results are showing an average F1 score from 0.78. This high
value also based on the evaluation images which are including no stones and
thus they reached an accuracy from 1.

1 2 3 4 5 6 7 8 9 1011121314151617181920

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
.5

8

0
.4

4

0
.4

8 0
.5

6 0
.6

7

0
.5

5

1 1 1 1 1

0
.5

1

1 1

0
.6

8

0
.6

2 0
.7

1 1 1

Evaluation Image Number

F
1

sc
or

e

Figure 4.12: Stone detection accuracy without NIR information

In the following Section 4.5 the classification results from the two experiments
are compared and discussed.
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4.5 Comparison

In this section, the two experiments are compared and briefly discussed for
each class in the following subsections to give a short summary of the results.

Soil
The F1 scores for soil are nearly the same. This similarity is the result which we
expected because the additional NIR information has not much influence on soil
classification. However, all in all, the results are suitable for both experiments
under the constraint that there is also a variance on the label images which are
used for training and evaluation.

Plants
As the soil classification, the segmentation results for plants are also very
similar. This result was not expected because the NIR information should gain,
especially in the segmentation of plants a considerable benefit. We suppose
that the result is impaired by the short dataset and the significant variance
during labelling. However, with an F1 score of 0.71, the results are precise
enough for predictions in terms of soil coverage estimation and protecting soil
from erosion.

Residues
Because the estimation of the residues proportion is very hard, based on the
not clear demarcation to the soil, the F1 score is both experiments not high.
We can see that the results with NIR information are reaching a higher F1
score by 0.5. This increase is an effect based on the additional NIR information,
which not only extracts plants better from the soil but also the residues.

Stone
Stones are rated in both experiments very well. These results are good because
some of the evaluation images do not include stones at all. Thus they are
reaching an F1 score from 1 and increasing the average score. Without these
images, the results would not be as good as they are. For both experiments,
the results are in a range from 0.78 to 0.8. Also, as residues, stones are hard to
extract from the underlying soil, especially when it is not clear if the stones
are lying on soil or fine granular rock underground. That the results are nearly
in the same range was expected because additional NIR information has not
much impact on stone segmentation.
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5 Conclusion and Future Work

This chapter summarizes the findings of soil cover estimation without NIR
information and with additional NIR information. The main goal and the
achieved results from this work also as the gained knowledge is summarized
below. Improvements which could be done in future work are to optimize the
results and bring the system to a state, that the camera box can be used in
practical applications are given in Section 5.2.

5.1 Conclusion

Estimating the differences between soil cover estimation with NIR information
and without was the primary goal of this work. A further aim was to build a
camera box for image capturing. To achieve this goal, an autonomous camera
box was build to capture stereo image pairs also as the corresponding NIR image.
With these three images, a projection of the NIR image to the RGB colour
image could be done. In a further step, these image pairs were labelled manually
to get an training dataset as also an evaluation dataset. The training dataset
was used to train a RF with NIR and another one without NIR information.
Finally, both RFs were evaluated against the same evaluation training dataset
set to get a meaningful comparison between the two approaches.
We showed that the results are significantly suitable for both methods under
the constraint of the labelling variance and the problematic environmental
conditions which lead to lower image quality and hard separable classes. For
the residues class, we showed that the influences of additional NIR information
performed significantly better by an F1 score difference from 0.5. This apparent
difference yields from the hard separability of the residues class and the other
classes in RGB images. In the NIR images residues are better separatable
and thus easier to classify. The other classes performed very similarly. This
effect can be traced back to small training dataset and labelling variance. The
hyperparameter estimation is also a point which could be optimised to achieve
a more precise differentiation between the approaches.
Additionally to the semantic image segmentation the 3D printed camera box
was built and used for image capturing under nearly real conditions. Further,
a whole software suite for image capturing, streaming, receiving, labelling,
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training and classification was written to achieve the proposed goal.
A short overview of future work which could be done to improve the results
and bring the whole system to a state where it can be used in real practical
applications is given in Section 5.2.

5.2 Future Work

The classification results proposed in this work are sufficient for soil cover
estimation and thus also for the application fields which could benefit from
these results. Netherless there are some improvements which could be done in
future work. First, the segmentation performance could be increased by several
different approaches which are described lower. The second improvement is
the calculation time and the hardware integration.
To increase the segmentation performance, the datasets for training and eval-
uation has to become larger and include more meaningful scenes. Thus the
algorithm could be trained more robust and the NIR information would possibly
get more effective on the results. Additionally, the image quality and capture
process could be optimized. Thus, the labelling process could be done with
a smaller variance what would possible lead to better-trained trees and more
accurate classification results.
Another improvement which would be possible is to decrease the classifica-
tion time by decreasing the trees depth, feature calculation time and data
preparation calculation time. One attempt would be to implement the whole
calculations directly in hardware. Another attempt would be to optimize the
calculation parallelism. Thus, it would be possible to do the calculations on a
microcontroller.
With all the improvements described above, it would be possible to get a tool to
prevent soil from erosion, which could be directly added to farming machinery.
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6 Appendix

In the following two sub sections the training dataset (6.1) and the evaluation
dataset (6.2) is shown.

6.1 Training Data

The training dataset shown below includes all the colour image sub regions as
also the ground truth labelled images which were used to train the algorithms.

Figure 6.1: Training dataset with the color image and the label image.
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Figure 6.1: Training dataset with the color image and the label image.
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Figure 6.1: Training dataset with the color image and the label image.
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Figure 6.1: Training dataset with the color image and the label image.
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Figure 6.1: Training dataset with the color image and the label image.
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Figure 6.1: Training dataset with the color image and the label image.
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6.2 Evaluation Data

The evaluation data set shown in figure 6.2 consists out of the color images,
the ground truth labelled image and image classified by the algorithm.

Figure 6.2: Evaluation dataset with the color image, labelled image and the
classified image.
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Figure 6.2: Evaluation dataset with the color image, labelled image and the
classified image.
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Figure 6.2: Evaluation dataset with the color image, labelled image and the
classified image.
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Figure 6.2: Evaluation dataset with the color image, labelled image and the
classified image.
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Figure 6.2: Evaluation dataset with the color image, labelled image and the
classified image.
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