

Master's Thesis

Development of a feature for the specification of a temporally
variable massage force and integration into an existing system

executed for the purpose of obtaining the academic degree of

Diplom-Ingenieur

 under the direction of

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Wassermann
(E325/A4 Institute of Mechanics and Mechatronics

Measurement and Actuator Division)

Submitted to the Vienna University of Technology

Faculty of Mechanical and Industrial Engineering

by

Leonardo Rafael Abbate Sbaffoni B.Sc.

00929450
Wien

Vienna, June 2019 ____________________

Leonardo Rafael Abbate Sbaffoni

I acknowledge that I’m only allowed to the printing of my work under the classification of

Master's Thesis

only with approval of the examination board.

I declare that I have carried out my master’s thesis independently and according to the recognized
principles for scientific work and that all aids used, in particular the underlying literature, have
been mentioned.

Furthermore, I declare that I have not presented this master’s thesis subject either in Austria or
abroad to an assessor for assessment or in any form as a thesis; and that this work is consistent
with the one assessed by the reviewer.

Vienna, June 2019 ____________________

Leonardo Rafael Abbate Sbaffoni

3

Foreword

This master’s thesis was written at the Institute of Mechanics and Mechatronics of the Vienna
University of Technology to complete my studies in mechanical engineering under the direction of
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Wassermann, whom I want to thank for assigning me to
participate in this project and for all his help during the long debugging sessions.
I also want to thank the colleagues of the laboratory, Manfred Neumann and Reinhold Wagner for
helping me with questions, assisting me when learning new things and helping fix the issues of the
project.

4

Abstract

This master’s thesis continues the development of a prototype for a therapeutic automatic massage
bed to be used in hospitals for the regular treatment of bedridden patients. The automatic functions
and programming capabilities of this device would allow to free up time of valuable therapists
dedicated to routine treatments and allow for preemptive massage care in real world situations
where medical personnel is just too overworked to perform it properly.

With the main core of the prototype being already developed (including user interface on the PC,
preprocessing, fieldbus system, axes’ controllers, sensorics and all their encompassing programming)
the work performed for this thesis focused on improving the functionality of the vertical axis of the
machine that applies the massage force to the patient, expanding its functionality to be able to
perform massages with custom force profiles.

A new interface was programmed in LabVIEW that allows to draw new massage paths by hand
using a pressure sensitive tablet by Wacom. This program stores the pressure values as the desired
force values. The main program that runs in the PC and directs all the peripheral axis controllers
was then modified to accept this new information and transmit it over to the controller of the
vertical axis using the existing fieldbus infrastructure.

On the controller side, a feasibility analysis was performed to assess if the available processing power
and memory of the existing microprocessor was adequate to the task. It was concluded that the
microprocessor can still be adapted to perform this new function. The existing PID cascade
controller was adapted and improved based on the concept of a switching position/force controller
to follow a force setpoint. Additionally, many improvements were made on the handling of the
measured process variable, the force, including a better zeroing logic and the addition of a
programmatic nonlinear median filter to adapt to the existing design of the massage tool.

5

Kurzfassung

Diese Diplomarbeit setzt die Entwicklung eines Prototyps für ein therapeutisches, automatisches
Massagebett fort. Dieser ist für die regelmäßige Behandlung von bettlägerigen Patienten in
Krankenhäusern entwickelt worden. Die automatischen Funktionen und Programmiermöglichkeiten
dieses Gerätes würde wertvolle Zeit von Therapeuten einsparen und zusätzlich den Einsatz von
präventiver Medizin in Situationen erlauben, wo das Personal bereits zeitlich überlastet ist um diese
ordnungsgemäß auszuüben.

Weil der Kern des Prototyps schon entwickelt worden ist (inkludierend der Benutzeroberfläche am
PC, Vorbearbeitung, Feldbussystem, Achsenkontroller, Sensorik und der notwendigen
Programmierung), fokussiert sich diese Arbeit auf die Verbesserung der Funktionalität der
vertikalen Achse der Maschine, die die Kraft auf den Patienten ausübt. Die Funktionalität wurde
erweitert, um Massagen mit personalisierten Kraftprofilen durchführen zu können.

Eine neue Benutzeroberfläche wurde in LabVIEW programmiert, die das händische Zeichnen von
Massagepfaden mit einem drucksensitiven Tablet von Wacom erlaubt. Dieses Programm speichert
die Druckwerte als die gewünschten Kraftwerte. Das Hauptprogramm, das am PC ausgeführt wird
und die Achsenkontroller kontrolliert wurde modifiziert um diese neue Information zu akzeptieren
und zum Kontroller der vertikalen Achse über die vorhandene Feldbusinfrastruktur zu übertragen.

Auf Seite des Kontrollers wurde eine Machbarkeitsanalyse durchgeführt, um die Angemessenheit
des Prozessors und dessen Geschwindigkeit samt Speicherkapazität für die neue
Funktionalitätserweiterung zu beurteilen. Diese Analyse ergab, dass dieser noch für die neue
Funktionalität adaptiert werden kann. Der existierende PID-Kaskadenregler wurde, basierend aufs
Konzept eines hybriden Position/Kraft-Reglers, adaptiert und verbessert, um einen Kraft-Sollwert
zu akzeptieren. Zusätzlich wurden mehrere Verbesserungen in der Behandlung der gemessenen
Regelgröße, die Kraft, unternommen. Diese inkludierten Verbesserungen zur Logik der
Nullpunktmessung und die Inklusion eines nicht-linearen Median-Filters, um sich an das bestehende
Design des Massageroboters anzupassen.

6

Table of contents
Foreword .. 3
Abstract ... 4
Kurzfassung ... 5
Table of contents .. 6
1 Introduction .. 7

1.1 Massage techniques, a short summary ... 8
2 Description of the system ... 9

2.1 Mechanical and electrical ... 9
2.2 Software and hardware ... 12

2.2.1 Human-Machine Interface (HMI) ... 12
2.2.2 Microprocessors .. 18

3 Scope and approach .. 21
3.1 Medical requirements ... 21
3.2 Feasibility analysis .. 23

3.2.1 Benchmarking ... 25
3.3 Approach to the solution .. 26

4 Implementation of the solution .. 28
4.1 Microprocessor adjustments ... 28

4.1.1 Assessment of the force controller .. 28
4.1.2 Process variable improvements ... 33
4.1.3 Changes to the force control sub-routine ... 34
4.1.4 Microprocessor limitations and solutions ... 39

4.2 Main program ... 40
4.2.1 Massage path file format .. 41

4.3 Tablet interface ... 41
5 Conclusions ... 45
6 Appendices ... 47

Appendix A: How to execute a massage .. 47
Appendix B: Location of project files and backups ... 48
Appendix C: How to directly flash a Delfino without CCS ... 49
Appendix D: Wiring diagrams ... 51
Appendix E: Program flowcharts ... 59

References .. 61
List of figures ... 63
List of tables .. 64
List of abbreviations .. 65

7

1 Introduction

The practice of massage is one of the few branches of traditional medicine1 that stood both the test
of time and the scientific rigour of modern medicine. With its first recorded uses dating back
millennia and its practice having started simultaneously all over the planet, massages are very
popular and ingrained into the customs of many cultures. Massage now provide many proven
benefits and serve as effective treatments for many ailments as well as being considerably effective
as a preemptive treatment for several health conditions [1] [2].

Many of these benefits, though, require regular treatments to be effective. This regular practice is
very time consuming and due to this reason often neglected in hospital care. As the majority of
developed nations in the world now struggle with a restricted budget for their health departments,
lack of qualified personnel and a continuously aging population, there is a need to introduce
automatization to the practice of massage to be able to introduce its benefits despite the
organizational and economic hurdles.

Particularly, in modern society, Asian nations show a very strong interest in the use and research
of massage techniques for clinical purposes. Almost exclusively, all performed research in the field
of robotic massage therapy comes from either Japan, China or Korea. In these countries, the
combination of a very strong electronics industry and a cultural inclination to value the effects of
massages on health more highly [3], has led to east Asia leading in this field. Despite the early start,
most of this research was done on niche, specific applications like: massage chairs [4], tapping robots
[5], shoulder massage robots [6] and face massage robots [7]. There hasn’t been yet a development
to the scale of a fully automated hospital massage bed. Therefore, the need for such a product
remains open.

The massage bed in this project is a prototype developed and constructed by Dr. Paul Finsterwalder
and Dipl.-Ing. Klaus Bergkirchner for their respective PhD dissertations. This project continues
their work with the prototype and goes deeper into the planning of massage paths and the
application of customizable force profiles. Different massage techniques require different application
forces and even different patients may have different preferences or pain tolerances that need to be
considered. The goal of the continued development of this project through this master’s thesis is to
allow for more flexibility, customizability and ease of use when planning and deciding on treatments
for the patients.

To achieve this goal two objectives had to be tackled. First, the development of a new interface that
allowed for the creation of custom paths was necessary, opening for new possibilities diverging from
the only two options previously available. This interface has to be user-friendly to allow operation
and usage by non-technical users that have no knowledge of the inner workings of the system, and

1 “Traditional medicine refers to the knowledge, skills and practices based on the theories, beliefs and
experiences indigenous to different cultures, used in the maintenance of health and in the prevention,
diagnosis, improvement or treatment of physical and mental illness” - World Health Organization.

8

additionally improve its functionality and options. This was accomplished by having a pressure
sensitive table where the user can draw the desired path directly on an image of the scanned patient
while at the same time storing the pressure values to simultaneously generate a force profile for the
massage. Second, the structure of the system had to be adapted to process, transmit, and control
the newly acquired force values for the massage. This had to be done while avoiding disrupting the
operation of the existing functions of the system.

1.1 Massage techniques, a short summary

To properly understand the massages mentioned in this document one must know what the different
massage techniques represent. The most relevant techniques for this machine are effleurage and
kneading, as they are the ones that the machine can currently perform with its interchangeable
massage tools (see chapter 2.1).

Effleurage

Effleurage is a soft stroking massage where the hands glide or slide over the skin in long circular
movements. It can be performed with the bottom of the fingertips and the complete palm with a
light or medium pressure. It is normally utilized to soothe the patient and prepare for a firmer
massage like kneading or to finalize the therapy session. This massage affects mostly the superficial
tissue. It is most effective at moving blood through superficial veins and out of capillary beds. It
has the additional effect of stimulating lymphatic return [8].

Kneading

Kneading (also called compressive petrissage) is a massage that applies pressure to compress the
underlying muscles, separating them from the underlying structure. It is performed by using both
hands on opposite sides of the muscle and pressing together to push the superficial tissue upwards.
Its main purpose is to loosen and soften the tissue to allow for better local blood flow but if applied
more energetically it can be used to tone the muscles [8].

Figure 1: Massage movements for kneading (left) and effleurage (right)

9

2 Description of the system

The massage bed prototype is a system that encompasses many engineering disciplines like
informatics, micro-electronics, electrical and mechanical design; together to create a complex
mechatronic device. The bed has a massage carriage, also called arm, moved by an inverted portal
robot that can use two different massage tools to execute two different types of massages: effleurage
and kneading. From the carriage up to the massage tool touching the surface; the bed has six
independent degrees of freedom. The original scope of the project started by the previous students
projected a second massage carriage that could move independently of the first one, but this second
one, was never implemented [1].

This chapter shall serve as an overarching documentation of all the work done by the different
students in this project; concise but complete. It shall provide the basic knowledge of the inner
workings of the system to understand the work done in the project and can also serve as an informed
starting point for future students that may work in this project.

In the following section I’ll list the components of the system, explain what their purpose is and
how they interact with each other. An additional list of all the components can be found in Table
13 in Appendix D: Wiring diagrams.

2.1 Mechanical and electrical

The six degrees of freedom of the bed are each controlled independently by a dedicated external
motor controller. The six axes are often named A1 to A6 in the hardware, documentation and
software. The first three are the translation of the carriage and the last three are the rotation of
the massage tool, as seen in Figure 2. The two coordinates 𝜃𝜃4 and 𝜃𝜃5 determine the rotation of the
massage tool in spherical coordinates while 𝜃𝜃6 describes the orientation of the massage tool’s head.

Axis Coordinate2 Description

A1 z (d1) From feet to head of patient
A2 y (d2) From right to left across the patient
A3 x (d3) Vertical movement of the carriage
A4 𝜃𝜃4 Polar angle of the tool
A5 𝜃𝜃5 Azimuth angle of the tool
A6 𝜃𝜃6 Rotation of the head of the tool

Table 1: Axes of the massage bed

2 x, y and z describe the point where the massage tool makes contact. d1, d2 and d3 are calculated with
an inverse geometric model and describe the point where the massage tool pivots. Regardless, both are
coordinates in the cartesian domain.

10

Each of the motors for the main axes has its own dedicated controller unit. These are external to
the bed and provide the power for the motor directly. In each of these units there is a microprocessor
of model TMS320F28335 by Texas Instruments (further called by its brand name: Delfino) that
takes care of the control algorithm, calculating the power delivery and communicating with the
other components of the system. Additionally, each motor has a rotary magnetic encoder on a small
circuit board placed at the back end of each motor that is used to determine the motor’s position.
These values (along with force values measured by a strain gauge located inside the massage tool,
for the A3-controller) are transmitted by an additional ARM microprocessor (STM32F030K by
STMicroelectronics) in a dedicated communication line directly to the respective Delfino
microprocessor.

All controllers communicate with each other over a custom fieldbus3 based on the RS-485 standard.
The bus is commanded from an additional unit that then communicates with the computer. This
unit contains three Delfino microprocessors, a main bus-controller and two so-called inter-bus
transceivers that divide the system into two sub-buses. The controllers A1 to A6 are all inside a
sub-bus (MB1) belonging to the first massage arm. The second sub-bus (MB2) communicates with
the massage tool to receive the data from the performed scans (see chapter 0).

The two massage tools are named MK1 and MK2 (MK stands for “Massage-Kopf” meaning massage
head). MK2 is used for effleurage and it has all its rollers oriented in one direction (Figure 3). The
orientation of these is then constantly adjusted to always be parallel to the massage path. MK1 is
used only for kneading as the rollers are oriented radially and the head applies a constant rotation
controlled by 𝜃𝜃6. Additionally, the MK1 tool moves the pressure point of the force, in circles, with
a swashplate that simulates the technique used by real masseurs. The swashplate is controlled by
an additional set of three motors that work together to reach the desired angle as seen in Figure 4.

3 A fieldbus (or bus for short) is a system that allows many electronic devices to communicate with each
other over a single common connection by taking turns to send messages.

x

y

z

Figure 2: Movement axes depicted over massage carriage (left) and bed (right)

11

These motors use motor controllers of model DRV8808 by Texas Instruments and are connected to
an MSP430F5510 microprocessor, also by Texas Instruments, that takes care of the calculations
and communication with the bus. The two massage tools can be easily swapped in a plug-and-play
fashion without fasteners or cable connections.

Power is provided to the controllers over a common line (PW1). They then deliver it to the motors
over dedicated AC triphasic lines. The massage tools have a dedicated power supply line (PW2).
The power supply must be set at a constant voltage of 42 V with current limits of ~10.25 A and
~0.75 A for PW1 and PW2 respectively. When turned on and in stand-by, the units drew 0.92 A
and 0.08 A from PW1 and PW2 respectively. Any significant deviation from these values might
indicate an electrical malfunction inside the system.

Capacitance sensor

IR-Sensors

Figure 3: Massage tool MK2 with capacitance and IR distance sensors

Motors

Swashplate

Figure 4: Massage tool MK1 with swashplate and motors

12

2.2 Software and hardware

The software package that drives the massage bed and all its functionality is divided into three
layers with different protocols to communicate between them. Figure 5 provides an overall view of
all components and connections. The main parts of the software system are: the Human-Machine
Interface (HMI for short), the main PC-program and the Delfino microprocessors; will be described
in further detail in this chapter.

2.2.1 Human-Machine Interface (HMI)

At the top is the HMI. This is supposed to be the only point of interaction between the final users
and the whole system. From it, all system functions can be accessed, and many features and
parameters can be controlled using an actual user interface. This part of the software is programmed
in LabVIEW (version 2011).

It is composed of two main interfaces plus a third one that was designed during this master’s thesis:

• Main HMI
Source file: “HMI\HMI.vi”

• Amplifier interface
Source file: “HMI\Labview\Verstaerker_Interface1.vi”

+ Massage path creation interface
Source file: “HMI\Massage path creation interface\Massage path creation interface.vi”

The main interface (Figure 6) provides the controls to initiate all the specific functions of the bed
like scans, massages or zeroing all axes. It also displays the status of the components attached to
the bus and if they are reporting any specific errors. Specific commands can be sent to a desired
component in the bus with the “Send Message” function. “Sub_BUS” specifies the Sub-bus for either
the axes’ controller or the currently installed massage tool. “Master_address” specifies which

Legend:
Dashed line: Software element
Solid line: Hardware element

Blue text: Program
Red text: Communication protocol or intermediary
Yellow: Power control

Figure 5: Diagram of software and hardware connections

13

specific microprocessor receives the command. Appendix A: How to execute a massage, explains in
further detail how to use this interface to execute a massage from start to finish including scanning
the patient.

The amplifier interface (Figure 7) allows controlling the motor of a specific axis for debugging
purposes. The control algorithm can be directly chosen at “Stromsollwertfunktion” (current setpoint
function). This decides which value is used as a setpoint for the control algorithm. The three options
are: position, rotational speed or electrical current and can be adjusted with the vertical bars. Using
the rotational speed is the easiest way to manually move the axes with exception of the A3 controller
(the vertical movement) that needs position control to stay at a desired position. For the A3
controller, the maximum force can also be set trough this interface. This value doesn’t have any
effect on the other five controllers.

At the bottom of the interface one can see the “program_version” that updates if “Status
aktualisieren” (Update status) is pressed. Each controller has the program version hardcoded into
their code and can only be changed by flashing a new version of the program with a different version
number. The version number of the controller code before starting this thesis was 120 and it was
then changed to 130 for the updated program installed for the A3 controller. At last, one can see
the ten simulated LEDs for troubleshooting. These mirror the status of the actual LEDs inside the
controller to be able to troubleshoot without opening the casing every time. More information to
the significance of each one can be derived from reading the circuit diagrams.

This project adds a third interface as an integral part of the LabVIEW program: the “Massage path
creation interface”. This one will be explained in detail in chapter 4.3.

Status and error reporting for MB1

Amplifier interfaces for all axes

Start tablet interface

Control bed functions

Send specific commands

Figure 6: Functions of the HMI test interface

14

Main program

The main program is programmed in C language and executes automatically when the LabVIEW
program starts. This program takes orders from the LabVIEW interface and does all the calculations
necessary to create the massage path which is then sent through the bus to the axes’ controllers.
The two main routines necessary to execute a massage are the scans’ analysis and the creation of
the control values from a given massage path. Its output is given inside a command-line window for
debugging purposes.

Scans and analysis

Before starting any massage, the program must be provided a scan result to adapt the path to the
body of the patient. The bed performs two scans using the MK2 tool that has the scanning sensors.
The first scan is performed with infrared sensors that measure the distance to the massage surface.
This measures the descent of the massage surface due to the patient’s weight. These values are then
used to calculate the orientation of the massage tool to keep it perpendicular to the mattress at all
times. The second scan uses a touch-less capacitance sensor that measures the capacitance of the
object above; in this case, the body of the patient. The sensors can be seen in Figure 3. This creates
an image of the body of the patient. The image is then analyzed to determine a set of body markers

Figure 7: Functions of the amplifier interface

Manual control of the setpoint

Data graphing

Program version and troubleshooting

Turn the motor on and off

Dismiss errors

Update status

Zero only this axis

Choose control algorithm

15

that allow adjusting the massage path to patients of different sizes and body types. The body
markers will be described in further detail in chapter 4.2.1.

When executing a massage for the first time on a patient, the scans must be performed from zero,
but these can be saved for following massages. As long as the patient always places their torso in
the same position, the massage will be executed in approximately the same way. Skipping the
lengthy scan procedure saves valuable time of healthcare professionals and avoids inconveniencing
the patients too often. The placement of the patient can be assisted by marking the massage surface
with a specified position for the head and making sure that the rest of the body is parallel to the
sides of the bed. The position of the arms or legs does not affect the adjustment of the massage
paths in a substantial way so variations in their position can be disregarded. It is regardless
recommended to keep the arms away from the body to help the body-recognition algorithm.

The scan settings are controlled from the main program’s header file: “main_program.h”. To
perform the initial scan of a patient (or in the opposite way, load existing scans) the values must
be set as Table 2 shows. These values are used by the C pre-compiler. This means that a change in
these values requires a new compilation of the program. This can be quickly done by opening the

Figure 8: Capacitance scan (top) and distance scan (bottom)

16

main program’s project file “bed_main.cbp” with “Code::Blocks”4 and clicking the gear icon ,
while the program is not running.

Setting To perform scan To load existing scans

“LOAD_C_SCAN_TESTFILE” 0 1
“LOAD_X_SCAN_TESTFILE” 0 1
“PERFORM_C_SCAN” 1 0

Table 2: Scans’ pre-compiler settings

The performed scans are saved every time in the following temporary files:

• Distance scan: “C:\temp\sideload_dist_mes.txt”

• Capacitance scan: “C:\temp\sideload_cap_mes.txt”

• Additionally: “C:\temp\cap_mes_temp_storage.txt”
(Used by the “Massage path creation interface”, contains the capacitance scan and body markers)

To use these scans for future massages the files must be copied to another location to prevent
overwriting. Existing scans can be loaded by placing them in the same folder where the .exe-file of
the main program is located (“HMI\Main_Program\bin\Debug”). The files must be named as
follows:

• Distance scan: “sideload_dist_mes.txt”

• Capacitance scan: “sideload_cap_mes.txt”

Loading massage paths

The program can either: load one of the two pre-calculated paths for kneading (only for MK1) and
effleurage (only for MK2) or load custom massage paths; created with the massage path creation
interface (described in chapter 4.3) or by any other means as long as they respect the path format.
These paths can also include a third column with information about the massage force or not.

1. Effleurage default massage path location:
“HMI\Main_Program\bin\Debug\effleurage\massage_path1arm_single.txt”

2. Kneading default massage path location:
“HMI\Main_Program\bin\Debug\kneading\massage_path1arm_single.txt”

3. Custom massage path location:
“C:\temp\custom_path.txt”

The appropriate settings for this can be found in the main program’s header file: “main_program.h”.
They can be changed in the same way mentioned in the last section. If “USE_CUSTOM_PATH”

4 “Code::Blocks” is the C programming environment used for this project. Technically any other
environment with a C compiler would work but the project has been already set up for this specific
program.

17

is set to 1 the program will load the custom massage instead of the default one. If
“USE_FORCE_CONTROL” is set to 1 the x-axis will use “HEIGHT_TARGET” as a constant
value for d3 (vertical coordinate) while controlling the force with “MAX_FORCE” as a setpoint.
Additionally, if “USE_PATH_WITH_FORCE” is set to 1 the program will load and use the force
data of the file and send it to the controller to use instead of the constant “MAX_FORCE” value.

The y and z coordinates specified in the massage path represent a point on the flat massage surface,
but these aren’t the values that are sent to the controllers. First, these points are projected down
to the current descent of the massage surface and so the x positions are calculated. The coordinates
of the axes are then calculated by an inverse geometric model and in the end the six values for the
axes are obtained: d1, d2, d3 and 𝜃𝜃4, 𝜃𝜃5, 𝜃𝜃6 (see Table 1). These values are multiplied by ten before
being sent and used in the controllers.

Communication

The main program communicates with the controllers over the bus with a telegram system. The
data or command is packaged into telegrams of a defined length and these are sent over the bus to
be unpacked only by the correct recipient. There are four types of telegrams [1, p. 88] but two are
the most important as they transfer the commands and data. They are divided into sections each
one byte long that serve specific purposes and have the following structure:

AD SA TF1 FC FCS Command without data

AD SA TF2 LE LEr FC PDU FCS Command with data

The individual sections are:
AD Recipient address
SA Sender address
TFx Indicates a command: x = 1 without data / 2 with data
LE Length of the data packet (PDU)
LEr Length of the data packet again
FC Function code
PDU Data packet (LE bytes long)
FCS Checksum

Table 3: Telegrams’ structure

The maximum length of a data packet is limited and a whole massage path doesn’t fit inside a
single packet so the arrays of coordinates for each controller are divided into 200 bytes packets and
sent with a special routine called “SendPathMultiple()” that sends a sequence of telegrams to all
controllers. The routines created for sending information over the bus are very complex and any
changes done to them require a very thorough analysis. Specially in the case of routines that transfer
axis coordinates because these not only transfer data for massage paths but also for general
movements of the massage carriage and for scan paths.

18

2.2.2 Microprocessors

There are three main types of processing units in the system. The main bus controllers, the inter-bus
transceiver and the PWM controllers. For this project the PWM controller is the only one that will
be modified and looked into detail. A brief overview will be now given about the tasks of the other
two.

Fieldbus controllers

The main fieldbus controller takes the role of intermediary between the PC and the SCI bus as the
main program can’t directly send electrical signals over the bus. It receives the telegrams in their
respective protocols (USB from the PC and SCI from the main bus) from both directions and sends
them their way. Inside the same enclosure and connected to the main bus are the inter-bus
transceivers, MB1 and MB2. These serve as a filter for the telegrams to direct them to the correct
sub bus corresponding to either the massage carriage or the massage tool [1, p. 85]. If a package or
command is destined at only one of the two, the whole telegrams is then packed as data inside a
PDU destined to the corresponding inter-bus transceiver. The inter-bus transceiver will then unpack
the telegram and send the data as an individual telegram to the desired controller trough the sub
bus.

PWM controller

The PWM controller works in conjunction with a second circuit board that has the hardware to
provide the triphasic AC currents that directly power the motors. The controller receives the desired
coordinates over telegrams and then executes a routine to ultimately convert them into the necessary
current values.

The control program is structured with many different interrupt service routines (often simply called
interrupts or ISRs) instead of a main loop that executes every cycle. These routines are executed
only when they receive a specific trigger from the microprocessor architecture. The triggers for the
ISRs are handled by dedicated silicon inside the microprocessors [9, p. 52]. This prevents
unnecessary code from running constantly and frees up resources to run the necessary routines on
a just-in-time basis.

Each controller must handle communication with two buses at the same time. Doing this with
interrupts makes it easier to do asynchronously. The main ISRs of the program are called:

• Sub bus RX: “Scirx_isr()”
Sub bus TX: “Scitx_isr()”

• DMA buffers for telegrams: “DMA2_isr()”
“DMA3_isr()”

• Sensor bus (only RX): “SB_isr()”

• PWM controller: “epwm_isr()”

19

The receival and transmission of telegrams is handled by the sub bus RX and TX interrupts on a
FIFO5 basis, respectively, but the actual processing of the telegrams is performed by the
“RX_Delfino()” and “TX_Delfino()” sub routines. “RX_Delfino()” opens the received telegrams
and moves their information to a dedicated buffer called “command_list[]”, trough DMA6. This
way all the telegrams can be received and processed quickly and be executed later, asynchronously.
After being stored they are read by the “Command_execution()” sub routine that takes care of
executing the specific actions corresponding to the specific command received. At this point the
program diverges into the different functions.

“SB_isr()” takes care of receiving and processing the information sent from the sensor of each axis.
This includes the data from the rotary encoders and the values from the strain gauges. It also
executes the calculations to convert the values of the strain gauge to actual force values.

The “epwm_isr()” interrupt does the actual controlling of the motor. This is done by executing the
“Regler()” sub routine. This sub routine can do the controlling with several different algorithms if
told so by the amplifier interface of LabVIEW but by default, the one algorithm used is the one
called “PATHCONTROLL”. Inside this algorithm a series of functions are executed to perform the
actual cascade controlling7:

1. “Control_value_loader()”:
Loads coordinates as setpoint and calculates the necessary speed between points.

2. “Trajektorienplaner()”:
Converts cartesian coordinates to the desired rotational motor position.

3. “Pos_f()”:
Control the motor speed using a P controller and the rotational position as a setpoint.

4. “Drehzal_f_dq()”:
Switching PI controller for the current values using either force or speed as a setpoint.

5. “interpolierer()”:
Interpolate the calculated current value between old and new values.

6. “Stromregler_dq()”:
PI controller for the triphasic motor-driving voltages.

5 FIFO, first in first out, means that all telegrams are processed in a chronological order.
6 DMA, direct memory access, is a hardware feature of the microprocessor that allows to move data
inside the RAM to another location without utilizing the main processor’s pipeline and cache. This
allows for much better performance [9].
7 Cascade controlling is a method of control typically used when controlling electric motors where the
output is wrapped in several layers of control with the setpoint on the outmost layer. In this case there
are 3 layers. The innermost layer, the output, is the desired current. The setpoint for each layer is
calculated by the following layer. The second layer is the speed of the coordinate and in the outmost
layer is the coordinate itself.

20

While all the controllers are set-up as PID controllers, all of them were originally adjusted to have
no differential term (𝐾𝐾𝑑𝑑 = 0). The current stand of the controllers will be explained with more detail
in chapter 4.1.3.

Disclaimer: Regrettably, as the work documenting these functions hasn’t yet been completed by the
original author [10]; the intent, exact inner workings and transfer functions of this controller are
unknown. When writing this information great care was given to being as accurate as possible but
these are deductions and conjectures made from solely reading the source code and might differ
from an official description published by the developer in the future.

21

3 Scope and approach

The main objective of the project was to upgrade the functionality of the massage bed to be able
to execute massage routines with a variable and customizable force. The provided code of the
project developed by the previous students worked by using the controllers to control the height of
the massage carriage, adjusting it to the descent of the massage surface due to the patient’s weight.
This applied a force only as a side-effect of shifting the desired vertical position upwards by 30 mm
and therefore pressing against the patient. The obtained force could not be set to any value and
was only controlled by an upper limit, for security reasons. This functionality was to be improved
to allow for massage paths with controlled and varying massage forces that are relevant to the
specific treatment of each patient.

To achieve this, the code of the different programs needed to be adjusted and new functionalities
included. This isn’t a problem for the program running on the PC as it has plenty of resources. But
on the other hand, any changes made to the code running in the microprocessor might be critical
to the program’s execution. It had already been mentioned in the documentation that resources of
the Delfino microprocessor might not be sufficient for implementing this functionality [1, p. 107]
but it was never made clear on what metric this was determined. Therefore, a feasibility test was
necessary to decide if the microprocessor had to be replaced with a more capable one or if the code
could be changed in a way that allowed creating this new functionality within the limited resources
of the system.

3.1 Medical requirements

As the medical aspects of the theory behind massage therapy and its benefits have been already
researched in detail by Dr. Finsterwalder in his dissertation [1] this thesis will focus on providing
information regarding specific forces of massage therapy and treatments. This is a subject where
not much research has been performed across the world. This is due to the fact that massage therapy
is a practice that is heavily based on the feel, expertise and intuition of the practitioner. The most
tacit knowledge of a professional therapist is hard to describe in words and even harder to transcribe
into numbers, as in the case of forces or velocities. These values would serve no purpose to masseurs
when learning new techniques as they have no information about the applied forces or speeds they
are applying besides their own developed sensation of touch. A second factor would be the fact that
introducing a force sensor between the masseur and the patient interferes with their expected
feedback, and with the ability of the practitioner to perform their techniques as usual. In textbooks
used by the profession, the intensity of the massage is specified as “strong” or “soft”, sometimes with
more extensive descriptions of the expected effect on the skin of the patient. More information
about the necessary direction, frequency or repetition is also provided. The following excerpt
describes how an effleurage massage should be performed.

“Strokes are usually performed from the periphery to central or from distal to proximal and following
the muscle fiber course. They can be executed in numerous variants: with one hand, with two hands

22

or with single fingers. The therapist makes contact with the whole hand (or both hands). The hands
model themselves after the body surface.
Light strokes are applied with only so much pressure that the tissue fluids of the skin are displaced.
The peripheral veins are streaked from distal to proximal. Because of their draining and tonus-
lowering effects, stroking is a good start to the treatment. The frequency of draining strokes is low.
A stroking-cycle of a limb occurs in three to five seconds. During this time, the hands are once
guided from distal to proximal.
Strokes can also be used to stimulate or tone the muscles. For this purpose, a stronger pressure and
a higher frequency are chosen. The dosage of the individual techniques is therefore dependent on the
pressure intensity and the speed of execution. [2, p. 81]”

A search across multiple databases of technical and medicinal research lead to other projects that
implemented robots in the massage practice. These projects all focused on different types of massage
techniques and as a whole give us a good idea of the spectrum of force needed to perform different
types of massage. Regarding massage techniques used to massage the back, force measurement have
been performed for relaxation massages, shoulder tapping, and individual-finger pushing actions.

When it comes to massages for relaxation of the back muscles, performed by robots, this is normally
done in the massage-chair format. The technique used is basically an effleurage massage in the same
way that the massage bed for this thesis performs it, with rollers that move with a constant pressure
across the back of the patient. A massage chair might apply different levels of forces by pushing the
back of the leaned-back patient with the rollers, lifting the bodyweight from its resting position.
This is usually done with a simple mechanism that agnostically moves the roller closer or further
without knowing what force values are being applied but these force values would vary depending
on the patient’s bodyweight and body stiffness (coming from muscle and skin elasticity). For
relaxation massages the comfort and personal sensation of the patients takes priority over
predetermined routines. A study was performed using a massage like the one previously described
that focused on achieving comfortable forces for a varied subset of patients [4]. The patients reported
feeling comfortable with force values ranging from 4 N to 10 N with an average of 8.2 N. The data
also shows that this subjective feeling of comfort does not directly correlate to bodyweight or body
stiffness as shown in Table 4. This accentuates the importance of the feedback by the patient after
the therapist has tested his massage routine; because premade routines with force profiles aren’t
universal solutions that have the same results on all patients. The massage path creation interface
should therefore include functionality to adjust the forces of the massage paths after their creation.

 Patients
Bodyweight (kg) 55 53 44 90 59 56

Body stiffness (N/m) 376 430 276 192 159 190

Comfortable massage force (N) 9.2 9.8 4.0 8.4 9.0 8.8

Table 4: Relation between body-characteristics and massage comfort [4]
Research regarding pushing massage techniques with individual fingers such as pushing motions for
shoulder massages or the Chinese traditional massage technique, Yi Zhi Chan (part of the Tuina

23

massage techniques), also recorded force values as well as force profiles for their movements. Both
massage techniques utilized pulsating forces with relatively low forces with the Tuina forces being
around and below 10 N and the shoulder pushing with values ranging from 4 N to 10 N depending
on the finger of the hand [6] [11]. These kinds of pulsating techniques with small but very precise
force values wouldn’t currently be within the capabilities of our machine due to lack of measuring
precision.

Some massage techniques do use considerably higher forces, than these soft massages. The
measurements performed Dr. Finsterwalder in collaboration with professional therapists of the
Kaiser Franz Joseph Hospital show force values reached by real massage techniques used for
therapeutic purposes (not for relaxation). Friction and effleurage massages where performed over a
custom-made 3-axes force measuring surface. The friction massage with fingertips pulsated between
50 N and a 100 N with about 1.5 Hz. The friction massage with palms pulsated between 50 N and
250 N with 0.5 Hz. The strokes of the effleurage massage sustained a high constant force of 300 N
[1]. Lastly, information regarding forces used in tapping techniques was found that confirms the use
of forces of 70 N for the percussive massage of the shoulder region [5]. This range of forces between
50 N and 200 N is more in order of what our machine was designed for.

3.2 Feasibility analysis

After a thorough analysis of the main program for the PC and the program for the different
microprocessors it became clear that replacing the microprocessor with a faster, more capable one,
could mean replacing the entire system. This is due to several reasons. In the best-case scenario,
one would replace just the microprocessor, use the same code and reconnect all the peripherals; but
in practice even the most compatible processor needs quite substantial work to adapt to the new
system. The processors used inside the motor controllers are of the model TMS320F28335, belonging
to the Delfino family of the C2000 microprocessors destined for low overhead controlling
applications. The processors of the Delfino family offer partial code compatibility within the family
assuming one does a series of code adjustments. The current processor has a frequency of 150 MHz,
68 KB RAM and 512 KB Flash memory8. If we wanted to replace it with a more capable one there
are a couple of options (shown in Table 5). Right after the F2833X series came the C2834X series
with double the processing power and a substantial amount of RAM, 516 KB, the highest of them
all. But this series has a major drawback. It includes no on-chip Flash memory and no on-chip
ADC. This CPU theoretically has the highest potential for the most complex code with its high
RAM and expandable Flash but it’s doubtable that this project will ever reach such complexity,
even considering future development. Due to the large amount of work necessary to implement the
Flash and ADC off-chip, this chip isn’t recommended.

8 A KB, equally spelled kilobyte as the metric unit kB, is a common way to quantify memory capacity
belonging to the JESD21-C standard. The correct technical unit and term for a KB are KiB and kibibyte,
as defined in the IEC 80000 standard.
𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾𝐾𝐾 = 1024 𝐾𝐾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≠ 𝑘𝑘𝐾𝐾 = 1000 𝐾𝐾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

24

A second option was the 28379X series that maintains the full on-chip design with quite substantial
performance improvements. The F28379S is a single core while the F28379D is dual core. To take
advantage of dual core in any meaningful way the whole program would need to be rewritten so
this processor can’t be given much consideration. That leaves the F2837S. Apart from the raw
performance improvements, it offers an additional DAC that isn’t present in the current
microprocessor; and USB connectivity.

As a last consideration it should be mentioned that previous work in improving the processing
power of the controller units has already been done by Mikael Gössl in his Thesis where he developed
an improved controller prototype [12]. A circuit board has already been developed and the code
been partially adapted for an ARM processor with better performance than most of the Delfino
microprocessors, as seen in Table 5.

Processor CPU Frequency
(MHz)

Flash
(KB)

RAM
(KB)

Channels USB

ADC DAC PWM
F28335 C28x 150 512 68 16 0 12 No

C28346 C28x 300 0 516 0 0 18 No

F28379S C28x 400 1024 164 24 3 24 Yes

F28379D 2x C28x 200 1024 204 24 3 24 Yes

Processor used in the improved controller prototype [12]:
ADSP-CM408F ARM 240 2000 384 24 0 12 Yes

Table 5: Considered processors' specifications

If one were to implement the F28379S in the system, the code would need a thorough analysis.
Most peripherals are still supported but some have changed versions and eCAN as well as XINTF
are not available anymore [13]. Additionally, the code will need adjustments in several aspects.
“GPIO mux numbers, options, and code will need to change. Clocking configurations, security, and
general system control is a new architecture.” -Texas Instruments Employee; as a response in their
forums to an inquiry about this topic. The processor is still available in the same package, LQFP9
with 176 leads to the sides, but the pin allocation has changed and therefore the circuit boards
would need to be redone.

Due to the lack of documentation for the design and intent of the motor controllers and their
aggregates (like the additional microprocessor that takes care of sending data through the dedicated
SCI sensor bus, Figure 5) the intended behavior of the system as well as the complex
intercommunication of the different parts would have to be assumed entirely from the source code
if any adjustments were to be made. Additionally, this code has only been very sparsely
commentated, leaving a lot to speculation. There is always the risk that, even after a complete

9 LQFP stands for Low profile Quad Flat Package. The F28379S actually has a HLQFP package that
basically a thicker LQFP with better thermal capabilities. The H means thermally enhanced.

25

replacement of the processor, some non-foreseen or non-documented interaction between the bus
participants prevents this complex system from working properly again.

Due to the introduction of a new processor being a high risk and very long task it was left as a last
resort if other methods were determined as inappropriate or not sufficiently fast. The first task was,
therefore, to benchmark the speed of the system to estimate its suitability for the planned
adjustments.

3.2.1 Benchmarking

To determine the impact of any code changes done to the main controller code of the microprocessor
first a baseline has to be determined for an average execution time of the controller routine. The
internal values of variables in the processor can be read through Code Composer Studio (CCS for
short) if the processor is connected to the PC through a JTAG emulator10. In this case though, to
avoid any kind of unintended delays or slowing down of the processor, an alternative method was
used that avoided the use of the JTAG emulator and the intervention of CCS. To measure the cycle
time of the controller routine the state of one of the GPIO pins11 of the processor was toggled from
within the code every time the controller completes a cycle. This method utilizes a single line of
code and it being so lightweight prevents affecting the value to be measured. The state of this pin
is connected to the Test-Out port already incorporated into the initial design. A ribbon cable was
used to make this port more easily available for testing when the case of the controller is closed.
The changing digital value on the pin can then be measured with an oscilloscope (Model of the
employed oscilloscope: Tektronix MSO 4034) which easily tells us the frequency. This value will be
later compared to the values obtained after modifying the existing code to include the additional
functionality.

The controller cycles aren’t always of the same
length. They may vary depending on the amount of
code to be executed before starting the next cycle.
This can be seen in Figure 9 where each flank
represents a new start of the routine.

It was measured that the average cycle time of the
“Regler()” routine was 19.73 μs with a standard
deviation of 0.34 μs, a minimum of 7.67 μs and a
maximum 34.64 μs.12 This equates to a frequency
of about 50 kHz. If one takes into consideration that

10 Join Test Action Group, also known as JTAG, is a standard for verifying and debugging circuit boards.
A JTAG emulator can connect directly to the memory of the microprocessor to read and write even
while the microprocessor is running.
11 GPIO pins: General Purpose Input Output pins for digital signals.
12 This average was obtained taking the averages of the cycle times already calculated by the oscilloscope
and averaging them together. In the measurements T/DIV equaled 20 μs.

Figure 9: Varying cycle times when benchmarking
routines of the microprocessor

26

the massage paths only specify a coordinate for every 100 ms (the intermediate points are
interpolated, see Table 12) that would mean that this routine is theoretically executed 5000 times
between each coordinate in the path. This is already a quite high temporal resolution that could
still decrease significantly without affecting the movement of the massage carriage or having the
patient notice. Additionally, the rate of arrival of data from the strain gauge was measured with
the method. The results showed that this data is delivered on average every 144.94 μs with a
standard deviation of 5.58 μs, a minimum of 75.19 μs and a maximum 204.2 μs.13 This would mean
that the force controller could even run 7.25 times slower and it would not make any difference, as
the controller would not yet a have new value from the sensor to make any calculations. This data
is again summarized in the following Table 6.

 Average (μs) Std. dev. (μs) Minimum (μs) Maximum (μs)
Controller
cycle time

19.74 (50.6 kHz) 0.34 7.67 34.64

Strain gauge data
arrival rate

144.94 (6.9 kHz) 5.58 75.19 204.2

Table 6: Summary of data for the benchmarking

Considering this information, it was determined that it is possible to implement the force controller
and additional functionality without slowing down the program in any remarkable way. Due to the
high temporal resolution of the controller any slowing down would most certainly be imperceptible
to the patient.

3.3 Approach to the solution

Being the objective of the project mainly to provide the functionality of force control, theoretically
only one of the six controllers needs to have its code adjusted.14 The controller in focus is the A3
that controls the vertical position of the massage carriage. In the original program, in a normal
execution, the controller follows the given x values and the applied force takes only a secondary
role. There is a section of code dedicated to the control of the motor by force instead of position,
but this section is only activated if a pre-set maximum force was exceeded. This force value acted
practically only as a safety limit that cannot be surpassed but in no way as a desired force value as
there is no minimum to the force. This leads to the massage tool sometimes moving while not even
touching the massage surface, as there is no incentive to move upwards at that moment.

13 As mentioned in the previous note this average is an average of oscilloscope-calculated average values.
In the measurements T/DIV equaled 100 μs.
14 In practice, all six controllers share the same code as they all do basically the same function; control
the revolutions of their assigned motor to follow the received coordinate values. They differentiate inside
the code using different subroutines depending on the controlled axis. Therefore, any changes made must
consider what would happen if another controller were to execute the program.

27

Controlling the vertical position of the carriage and the applied force at the same time is physically
impossible as the force is created by the body weight of the patient when the massage tool presses
against it. The higher the force needed, the higher the tool must go. The maximum possible force
that can be exerted on a patient is physically limited by the weight of the patient itself and the
maximum height that can be reached by the massage tool. From these, the only factor under our
control is the height of the tool and its maximum is the height of the massage surface without a
load. This led to the realization that the height of the massage carriage doesn’t really need to be
controlled as it is only an intermediary to apply a force. Its value can be hardcoded into the program
as the maximum and let the force be controlled instead, with the desired values sent from the PC.
The only hard limitations to the value of the force would be security features15 and body weight,
leaving a range of freedom to the healthcare professional. The detailed explanation of the
implementation of this solution will be described in the next chapter.

15 The force is limited with current limiters, both digitally inside the program of the axes’ controllers
and electrically in the circuit board.

28

4 Implementation of the solution

This chapter describes the changes made to the programs of the system to accommodate for the
force control functionality. It also talks about the new interface and program created to generate
the custom massage paths with force information, using a touch tablet and pressure sensitive pen
by Wacom (Model: Intuos Pro).

4.1 Microprocessor adjustments

As mentioned earlier, the program of the axes controllers already includes code to implement force
control. This sub-routine is in many ways fundamentally different and simpler than the sub-routines
that control the position. The controller for the force was only implemented as a safeguard for the
position controller not to exceed a certain force value. Regardless, after analyzing the code it was
estimated that it may be sufficient to achieve the custom force profiles if tuned properly. Therefore,
the first task was to assess the quality of this controller with simple tests, static loads and massage
paths.

Equally important as the control law of a controller is the quality of the measured process variable.
In this case, the momentary force being applied by the tool. In this machine the force is measured
by a strain gauge integrated into the massage carriage. Analyzing the information received from the
strain gauge can give us valuable information. The quality of the signal, depending on noise,
electrical fluctuations or mechanical oscillations can tell us what amount of precision can be
expected because no value can be precisely achieved if its baseline isn’t at least as precise as the
desired result. From the retrieval rate of the data we can determine what is the maximum
meaningful refresh rate that the controller could have.

4.1.1 Assessment of the force controller

The strain gauge that measures the force is accompanied by a small processor that transfers the
measured data over an SCI bus to the respective controller. We want to gain access to this value
for the upcoming test. The data is transferred digitally and the Delfino processor has no DAC unit,
so these values cannot be read by an oscilloscope. As an alternative to measuring them with
hardware, when the computer is connected through a JTAG probe16 to the microprocessor, CCS
can read values directly from the memory of the processor. The major limitation to this method is
that the maximum poll rate is harshly limited by CCS. In optimal conditions with a low PC load
it may reach 10 Hz [14]. The desired refresh interval can be set in Preferences>Code Composer
Studio>Debug>continuous refresh interval, and its minimum is 100 ms, equaling a poll rate of
10 Hz. This means that only 0.145% of the values are recorded.17 When evaluating the CCS debug

16 The JTAG probe used for this Project was the Blackhawk USB200 JTAG Emulator (BH-USB-200).
17 Refresh rate of CCS/strain gauge data arrival rate = 10 Hz/6.9 kHz = 0.145% (see Table 6)

29

mode graphs, one must remember that the refresh rate inputted into the properties of the graph is
just a scaling value for the time axis and in no way relates to the poll rate for the graph.

Several measurements were made to evaluate the quality of the provided force signal and the existing
method of force control. These measurements were performed using a special mode of the system
where the d3 values (vertical coordinates) are replaced by their maximum safe value of 160 mm
before being sent. This assures that they will reach the maximum force they can exert on a given
subject, as explained in chapter 3.3. To turn on this mode one must change the
“USE_FORCE_CONTROL” setting (found in the main program’s header file, “main_program.h”)
to 1 and recompile the program. Additionally, “USE_PATH_WITH_FORCE” (found in the same
section) must be set to 0 as no force profiles will be loaded.

Static measurements:

To analyze the stability of the measurement of the force, a defined static load test would serve as a
baseline to determine the precision and variability of these values. This test was done by directing
the massage carriage hands-on with the amplifier interface (Figure 7) and placing a weight on it.
The test position was in the center of the bed as to avoid additional load from the massage surface
being restrained from the sides. The vertical position of the massage carriage was 150 mm. This
places the massage tool at approximately the level of the massage surface without a load. The
weight had a mass of 1.316 kg and the program was set to a limit of 50 N maximum. When
measuring force values without using a massage path the force must be zeroed manually with a
command from the HMI when on position. The force values as well as the unmodified strain gauge
values were recorded.

On a first glance it can be observed that the values obtained aren’t very stable; not even when the
arm isn’t under load. This could be caused by several different factors like electrical interference or
due to the lack of precision of the sensor when measuring relatively low force values. The
theoretically expected force of the weight would be 12.91 N. The average of the measured force
under load was 11.41 N with a standard deviation of 2.2 N. When adjusting for the average under
no load of -0.96 N it results on a measured force of 12.37 N. This is a discrepancy of 17.8%. The
measured data is shown in Figure 10 (left). The standard deviations shown in Table 7 give us
information about the stability of the values that would be used by the controller.

Average
with load

Std. dev.
with load

Average
no load

Std. dev.
no load

Adjusted
value18

Maximum
deviation (%)

Force (N) 11.41 2.2 -0.96 2.17 12.37 17.8%
DMS (-)19 4041 68 4436 71.1 394 17.2%

Table 7: Summary of data for the static load measurements

18 The adjusted value is the average with load minus the average without load.
19 The strain gauge values will be referred from now on by their useful German abbreviation, DMS. They
have no physical unit.

30

Additionally, the maximum force that the tool can reach before shutting the motor down due to
the internal security limitations to current in the software had to be determined. By pressing down
on the tool, it was measured that this value lies around 220 N as shown in Figure 10 (right). For
the safety of the system, future massage paths including force values should not surpass 200 N.

Dynamic measurements:

These measurements were performed during the default effleurage massage path performed on a
water pillow to simulate a patient and using body markers based on previous values generated by
a scan of a real subject. The pillow is approximately placed in the position of the left side of the
back of the patient and it is filled with water so that it weighs 4.7 kg. The test setup and markers
are shown in the following Table 8.

Marker20 y (mm) z (mm)

KS 296.66 1600.00
SS 308.33 1280.00
HS 325.00 880.00
SL 609.74 1292.56
SR 50.22 1269.24
HL 489.86 886.87
HR 190.12 874.39

Table 8: Dynamic measurements’ test setup information for reproducibility

20 The format and meaning of the markers are explained in chapter 4.2.1.

-50

0

50

100

150

200

250

-2000
-1000

0
1000
2000
3000
4000
5000
6000

0 2 4 6 8 10 12 14

Fo
rc

e
(N

)

DM
S

va
lu

e
(-

)

Time (sec)

Spike of force

DMS Force (N)

Figure 10: Recorded force and strain gauge (DMS) values for a static load (left) and manually induced
current safety limit (right)

-10

-5

0

5

10

15

20

3400

3600

3800

4000

4200

4400

4600

4800

0 10 20 30 40

Fo
rc

e
(N

)

DM
S

va
lu

e
(-

)

Time (sec)

Static load measurement

DMS Force (N)

31

Several measurements were performed to study the performance of the integrated force controller.
It was important to observe how much the values approached the specified force limit and what
margin of error they had. This data shows negative force values previous to the massage beginning
because its value is zeroed only right before it begins.

In the measurements with a limiting force value of 10 N it can be observed that the force is clearly
cut at the 10 N range (Figure 11 left) but the actual average is 8.76 N with a standard deviation21
of 4.06 N and a median of 8.98 N. This means that these values fluctuate by about 46%, and it can
be clearly seen that some values even become negative. When compared with the DMS values for
the same section it can be seen that their maximum deviation is only 15.6%. This is due to the
multiplicative conversion of the DMS values to force values, as seen in equation (1). Every deviation
in the DMS from its expected adjusted value generates a deviation in the force of: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵 𝑑𝑑𝐵𝐵𝑑𝑑 =
𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝐵𝐵𝑑𝑑 ∙ 0.030637.22 Due to the order of magnitude of the DMS values being two times higher23
the deviations of the force end up being around 3 times the deviations of the DMS. This relation
changes for higher forces, tending to better stability, as can be seen in the last column of Table 9.
This is a good sign as most massages require considerably higher forces than the ones measured
here, but nonetheless any effort done to improve the stability of the DMS value would have 2 to 3
times the positive effect into the stability of the force, which is very important for the force
controller.

Theoretically the water pillow can exert a maximum force of 46 N, but this wouldn’t occur in a
normal situation as part of the weight is carried by the tarp. Further measurements were made to
see how the force controller behaves when not constrained by the force limit. The data measured
for a 30 N and 60 N force limit shows that the force is not cut by the limit and that it oscillates
around the average of approximately 16 N. To determine if the oscillation was also present in some
form in the constrained force massage path of 10 N (meaning that the controller let it trough), an
FFT (Fast Fourier Transformation) was performed on the data of both measurements. In Figure 11
(right) it can be seen that the relative intensity of the constant part of the spectrum is one order of
magnitude higher than the rest of the spectrum. In the non-force-limited massage we can observe a
~10 Hz oscillation in the FFT and its relative intensity has the same order of magnitude as the
constant part of the spectrum (Figure 12, right). All the data corresponding to the dynamic
measurements is summarized in Table 9.

21 The standard deviation of the dynamic data was calculated as the average of a moving standard
deviation with a window of 7 samples (700 ms). The approximate size of this window can be seen in
Figure 13.
22 Value taken from the source code.
23 Values around 4000 for the DMS and around 40 for the force, 100 times bigger.

− 𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑣𝑣𝑣𝑣𝐴𝐴𝐵𝐵 · 0.030637 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵 (1)
𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑣𝑣𝑣𝑣𝐴𝐴𝐵𝐵 = 𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹𝐵𝐵𝐶𝐶𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑣𝑣𝑣𝑣𝐴𝐴𝐵𝐵 − 𝑁𝑁𝐹𝐹 𝑣𝑣𝐹𝐹𝑣𝑣𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑣𝑣𝑣𝑣𝐴𝐴𝐵𝐵 (2)

32

Force
limit (N)

Average
with load

Std. dev.
with load

Median
with load

Average
no load

Adjusted
value

Maximum
deviation (%)

Force (N) 10 8.76 4.05 8.97 N/A N/A 46.3%
DMS (-) 10 4456 112.5 N/A 5236 780 15.7%
Force (N) 30 15.66 3.42 15.59 N/A N/A 21.8%
DMS (-) 30 4215 114.6 N/A 5227 1012 11.3%
Force (N) 60 16.3 3.31 16.8 N/A N/A 20.3%
DMS (-) 60 4071 114.4 N/A 5085 1014 11.3%

Table 9: Summary of data for the dynamic measurements

Figure 12: Recorded force and strain gauge (DMS) values for force limiting at 60 N (left) and FFT of the force values
during the massage (right)

-30

-20

-10

0

10

20

30

40

50

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

Time (sec)

Fo
rc

e
(N

)

DM
S

va
lu

e
(-

)

Constant force limit at 60N

DMS Force (N)

10

100

0 1 2 3 4 5 6 7 8 9 10

Re
la

tiv
e

in
te

ns
ity

 (
-)

Frequency (Hz)

FFT of force during massage

Figure 11: Recorded force and strain gauge (DMS) values for force limiting at 10 N (left) and FFT of the force values
during the massage (right)

-40

-30

-20

-10

0

10

20

30

0

1000

2000

3000

4000

5000

6000

7000

9,
9

19
,9

29
,9

39
,9

49
,9

59
,9

69
,9

79
,9

89
,9

99
,9

10
9,

9
11

9,
9

12
9,

9

Fo
rc

e
(N

)

DM
S

va
lu

e
(-

)

Time (sec)

Constant force limit at 10 N

DMS Force (N) 10N

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10

Re
la

tiv
e

in
te

ns
ity

 (
-)

Frequency (Hz)

FFT of force during massage

33

4.1.2 Process variable improvements

To improve the stability of the strain gauge values, these must be pre-processed with some kind of
low-pass filter to remove as much noise as possible. As an alternative to using an analog low-pass
filter on the electrically measured values, a programmatic nonlinear median filter like a moving
average can be used. The filter was applied on the DMS value before converting it to force values.
As this processor is quite limited in speed and RAM, special attention was placed on the datatypes
used as well as on the data structure for the queue to store the incoming values. A so-called
ring/circular buffer was used to store a predetermined amount of values that are then to be
averaged. A ring buffer provides a speed of O(1) in comparison to O(n) for a traditional array when
storing a new value and deleting the oldest one.24 The moving average was tested with windows of
10 and 100 values. While the function itself is certainly taking longer to run, the cycle time
measurements proved that this implementation did not affect the execution time in any measurable
way. That means that the window for the average could be further increased if necessary, but this
is limited on the other side by the memory usage that has already reached its limit. Alternatively,
the window size can be artificially increased by using only one out of n values. This would practically
increase the window size by a factor of n without utilizing more memory, but it would sacrifice
temporal resolution.

The measurements summarized in Table 10 show a measurable and significant improvement in the
stability of the reference value. When compared against the values obtained in the previous dynamic
measurements (Table 9) the maximum deviation dropped from 11.3% to 6.2%, 5.4% and then 4.0%
for windows with 10 samples, 100 samples and 100 samples with ½ dropped values, respectively.
Figure 13 shows an exemplary superposition of the unmodified DMS values over the ones averaged
with a 100 samples window. It is clear that the averaged ones have less spikes and overall less
fluctuation. From this point on, the 100 samples moving average was used in all measurements and
tests. Additionally, all negative values for the force will be limited at zero to reduce signal noise as
a negative force has no significance in this application.

Average
window size

Dropped
values

Average
with load

Std. dev.
with load

Average
no load

Std. dev.
no load

Adjusted
value25

Maximum
deviation (%)

10 samples None 3897 72.7 5035 49.2 1138 6.2%
100 samples None 3942 60.5 5063 33.4 1121 5.4%
100 samples 1/2 4064 52.4 5386 31.9 1322 4.0%

Table 10: Summary of measurements for the improvement of the stability of the reference value
(all are DMS values without physical units)

24 Big O notation gives information about the amount of calculations or instruction needed to process
one element. O(1) means one instruction per element while O(n) means n instructions per element where
n is the length of the array.
25 The adjusted value is the average with load minus the average without load.

34

4.1.3 Changes to the force control sub-routine

The controller designed by Klaus Bergkirchner for the axes of the massage bed was based on a
hybrid approach to force/position control. This controller switches between a traditional cascade
controller, as commonly used by CNC axes, that controls the motor currents based on the desired
position, and a second controller that also controls the motor current but based on a desired force
(without cascade control). Both of these use PID control laws on each of their levels of control,
except for the position having solely a pseudo-PD controller. Figure 14 and Figure 15 show the
block diagrams for both controllers.

q-1

KIspeed

KPspeed

q-1

KDspeed

KPpos

KDposq-1

Plant

-

-

d/dt

-

Position
(setpoint)

Position
(measured process variable)

Speed
(calculated process variable)

Speed
(setpoint)

Current
(manipulated variable)

Voltage
controller

Figure 14: Block diagram for the position controller

3200

3400

3600

3800

4000

4200

4400

4600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DM
S

va
lu

e
(-

)

Time (sec)

Comparison of quality of DMS values

Unmodified Average window 100

Figure 13: Superposition of the unmodified DMS values and the averaged ones
(window for calculation of the moving standard deviation shown with vertical lines)

35

q-1

KIforce

KPforce

q-1

KDforce

-

-

Force
(measured process variable)

Force
(setpoint)

Current
(manipulated variable)

PlantVoltage
controller

Figure 15: Block diagram for the force controller

On a hybrid (also called switching) controller the application switches between the two completely
separate control laws depending on a specified condition. The first necessary improvement was to
modify this switching logic so that less switching between the two control laws occurs during a
massage. The objective was to give the force controller precedence, to be able to observe its
dynamics independently of the speed controller and therefore tune them appropriately. The concept
for the chosen switching logic is detailed in Flowchart 1 in Appendix E: Program flowcharts. With
this new logic the force controller leaves behind its role as security feature and now controls the
vertical movement during the complete massage. This whole logic is only active if the
“USE_FORCE_CONTROL” parameter is set by the main program, using a telegram.

To detect the point when the massage starts and differentiate it from general movements for
positioning or scanning, the main program sends a telegram signalizing the start of the transmission
of massage coordinates. From this point on, until the receival of a second equal telegram signalizing
the end of the transmission of coordinates, all massage coordinates are bundled with this
information inside a structure. If a coordinate is part of the path and the force exceeds the force
setpoint multiplied by “FORCE_THRESHOLD”, the force controller activates. It will then only
deactivate if the carriage moves up until the point it reaches the “HEIGHT_RESTRICTION”. After
switching to the position controller, the value “HEIGHT_TARGET” is used as a setpoint for the
position.26 When a set force cannot be reached, the massage carriage will translate between these
two heights. This behavior can be observed in Figure 16 (left).

Stabilization of the baseline controller dynamics

After implementing the filter on the DMS values, several dynamic measurements were performed,
without any load on the tool, at a fixed height. These measurements showed that when moving the
massage carriage up or down quickly, big force spikes and fluctuations are registered on the force
sensor. This happens because of the presence of a considerable mass between the strain gauge and
the point of contact of the massage. Whenever the carriage accelerates (as it was set to do so very
quickly) the whole mass of the vertical axis exerts a force on the sensor. This acceleration force is

26 These constants can be found and changed inside the “Regelung.h” header-file in the PWM_Regler
program. Note: The measured process value for the vertical position that the height restriction is
compared against, equals the x coordinate target + 12 mm. This difference must be accounted for when
setting a height target.

36

quite problematic as it prevents us from measuring the actual force being applied. Additionally, the
spikes can accidentally trigger the force controller at an undesired moment. Without changing the
mechanical design one can only mitigate the problem but not completely solve it. The ideal solution
would be to bring the measurement of the force closer to the contact point. This would minimize
the accelerated mass and reduce the error. A possible location for the force measurement on a future
prototype could be on the shaft of the massage tools themselves (see Figure 3 and Figure 4 in
chapter 2.1). Additionally, the use of a commercial sensor instead of self-applied strain gauges would
be recommended to obtain better values and minimize the development effort. The bottom of the
shaft of the massage tool could be directly supported by a circular load cell to measure the applied
force.

To mitigate the problem in the current machine it was chosen to adjust the settings of the controller
to limit the acceleration of the system. These settings are sent to the controller every time the main
program starts but can also be changed trough LabVIEW using the amplifier interface. The
initialization settings for all controllers can be found in “HMI\Main_Program\bin\Debug\ini”. The
main tweaked setting was the maximum allowed acceleration that was reduced by a factor of a
hundred. This value was probably originally set very high to utilize all the available acceleration as
the force was not a concern in the original design. Additionally, the maximum speed was reduced
by two thirds and finally the speed controller parameters were tweaked down to further improve
the stability of the disturbance response by increasing its settling time. At this point a coefficient
for the differential term of the PID controller was tested to further limit acceleration at the control
level. Previously none of the controllers used a differential term.

To compare the effectivity of these settings at stabilizing the measurements, tests were performed
with a reference massage using force control and a setpoint of 10 N but no load on the massage tool
(Figure 16 left) at a fixed “HEIGHT_TARGET” of 130 mm. Using the original settings, the force
measurement accidentally and repeatedly surpassed the setpoint of 10 N, activating the force
controller and leading to oscillations. The peaks caused by the acceleration regularly reached values
between 20 and 40 N. The final obtained settings reach accidental peaks of only 15 N in comparison;
and provide a stable disturbance response most of the time with a wave decay of around 50%.

The final step of the controller implementation was to find appropriate controller parameters for
the PID terms for both the speed and force controllers with tests during an actual massage path
with a load. This was done by manual tuning, as no mathematical model of the system was
previously calculated by the designer of the electrical system. The tuning of the parameters is done
on an abstract level. Optimally, the controller should have a step response without much overshoot
and with strong dampening for disturbances as accidental movement by the patient can cause strong
disturbances. The rising time is not a priority for optimization in this case. For a case where
minimum over and undershoot is desired, the common method of Ziegler-Nichols is not
recommended as it obtains only a wave decay of a quarter that wouldn’t be sufficient. The conflict
of the application is that the force feedback loop in this machine isn’t adequate for a differential
term in the PID force controller as the process variable contains too much noise. Sudden changes
in the value of the process variable make the differential term fluctuate strongly in its output,

37

resulting in it actually being counter-productive. This was confirmed with tests showing that the
introduction of a differential term to the force controller leads to instability. Due to this fact, the
controller is limited in its dampening value. Regrettably, the manual tuning of the controller values
wasn’t conclusive as the test were unexpectedly interrupted by hardware complications.

Alternative approaches to force control

In the extensive software package of this machine there many interlaced parts of its code that
depend on each other to work as expected. Due to this reason, it proved very difficult to make
considerable changes to the structure of the controller that would allow for a completely different
control model. The main disadvantage of the current switching controller is that the response of the
controller when switching between the two control laws cannot be adjusted properly and the
resulting behavior can be quite difficult to analyze. Additionally, the switching logic can conflict
with other operating modes of the machine giving as a consequence that getting it to work as
planned, required much more testing and refining than planned. These were two aspects that
resulted in substantial development effort during this thesis.

But switching controllers aren’t the only possible way to program systems where process variables
for both force and position must be controlled. The controllers in this general category can be called
simultaneous controllers. The literature shows alternative methods that provide different benefits
for different situations.

Simultaneous controllers are first categorized as either passive or active force controllers. Passive
force controllers limit or restrict the force through mechanical components like springs or dampeners
that have been calculated to provide the desired limiting effect. This method, naturally, is very
dependent on the application and the form and function of the machine and doesn’t foresee any
kind of feedback loop for the force value. Active force controllers measure the force being applied
and integrate it in some way into the controller. Active force controllers are further divided into
direct and indirect controllers. Indirect controllers use the force measurements as an auxiliary value

0
200
400
600
800
1000
1200
1400
1600

0
5

10
15
20
25
30
35
40
45

0 5,1 10,1 15,1 20,1 25,1

Po
sit

io
n

(m
m

·E
^-

1)

Fo
rc

e
(N

)

Time (sec)

Original settings, reference

Force (N) Position (mm·E^-1)

0
200
400
600
800
1000
1200
1400
1600

0
2
4
6
8

10
12
14
16
18

0 5 10 15 20 25 30

Po
sit

io
n

(m
m

·E
^-

1)

Fo
rc

e
(N

)

Time (sec)

Modified settings, disturbance
response

Force (N) Position (mm·E^-1)

Figure 16: Test for dynamics without load (position = target + 12mm)

38

and do not have an actual force feedback loop. Direct simultaneous controllers have a setpoint and
loop for both the position and the force.

1. Passive force control
No force measurement. Force restricted mechanically with springs or dampeners.

2. Active force control
Force measurement integrated into the control law.
2.1. Indirect force control

No force feedback loop. Force measurement is auxiliary.
2.1.1. Impedance control (a.k.a. virtual compliance)
2.1.2. Admittance control

2.2. Direct force control
Uses setpoints for both force and position.

2.2.1. Hybrid control (a.k.a. switching control)
2.2.2. Inner/outer control
2.2.3. Parallel control

Table 11: Classification of simultaneous force/position controllers [15] [16]

Indirect force control requires modelling the system mathematically. In virtual compliance a virtual
(non-existing) spring and dampener are included in the model between the target position and the
actual position of the effector. The parameters of these virtual components can be tweaked to obtain
a desired behavior as the controller will compensate for the non-existing forces of these components.
This results on an increasing force as the effector approaches its target position. Eventually the
virtual resistance prevents the effector from moving further. This method can effectively be used to
limit the force that a robot can exert on a surface while controlling its position. This limitation,
though, will be a constant value. Opposite to impedance control is admittance control, where the
effector is heavily dampened until a force is applied on it, allowing its movement. This method is
relevant for other applications, like collaborative robotics.

In inner/outer control the force controller is located at the outermost layer of the cascade controller
and its output acts as the setpoint for the position controller. Both controllers are provided an
actual measured process variable to calculate the error. Finally, there is parallel control where both
controllers act simultaneously and feed into the output of the system. In this case the force controller
is tuned in a way that it dominates over the position when necessary.

An application like this massage bed could be best suited for inner/outer control, where a force
controller with slower dynamics can output directly into the already accurate position controller.
In cascade control each subsequent layer becomes more dynamic, with shorter rising times and less
dampening. As currently programmed, the force controller outputs to the current controller, the
innermost layer of the cascade controller. This means that the slowest controller of the system is
interfacing with the fastest one. The position controller could also benefit from a feed-forward term
setting a standard height target. Figure 17 shows the block diagram of the proposed controller.

39

Force
controller

Current/voltage
controller Plant 1 Plant 2 Plant 3Position/speed

controller

Position
feed-forward

- - -

Figure 17: Proposed inner/outer controller

4.1.4 Microprocessor limitations and solutions

When introducing the new functionality to the processor it became immediately clear that its
bottleneck and main limiting factor isn’t its processing speed but the amount of available RAM
memory. Most of the RAM has already been allocated to either storing the code of the program or
as buffer for the telegrams. If the program is planning to use too much memory or its functions are
too big to fit in the RAM, the compiler will fail to compile.

Luckily this type of processors offers the programmer complete freedom in the allocation of the
RAM memory with the so-called linker command file. This file allows for manually specifying the
size and address location for each and all sections for data storage. Several considerations must be
taken when programming code for a processor with very limited RAM. First, is that some functions
that are normally stored in the non-volatile FLASH memory of the chip must be loaded onto the
RAM to increase performance. The difference in performance from this is very noticeable. Code
running from it will run remarkably faster. Second, is that not all variables are treated equally by
the compiler. Local undeclared variables used only inside a function or the main() are assigned to
the much smaller “.stack” memory space while global variables declared outside of main() are
assigned to the much bigger variable RAM section. The RAM is divided into two main sections.
Starting at address 0x0 there is a small block of length 0x800,27 where RAMM0 and RAMM1 are
assigned for a total size of 2 Kw [17].28 Further on, at address 0x8000 starts the main RAM
comprising sections RAML0 to RAML7 with a total length of 0x8000 and a total size of 32 Kw.

The main use of the different sections is as follows:

• RAMM1: local variables “.stack”

• RAML0: functions that must be loaded on to ram “ramfuncs” and buffer VARRAML0

• RAML4: global variables “.ebss” & special section DMARAML4 for DMA

• RAML7: special section DMARAML7 for DMA

The existing code has been quite optimized in this aspect using the smallest possible variable size
necessary for each variable, but some further improvements can be made. The code original code

27 A number starting with 0x represents a number in hexadecimal base. In this case the addresses and
section lengths are expressed in hex.
28 1 Kw (Kiloword) = 2 KB (Kilobyte)

40

was compiled years ago and in the meantime the compiler provided by Texas Instruments has
received several updates. These offer better performance and/or better code size depending on the
chosen compilation settings. The original compiler version of the PWM controller was 6.1.2 and the
current version at time of writing is 18.1.5.

The final memory mapping after compilation can be found in “PWM_Regler.map” inside each build
folder. Using this information, the different compiler versions and settings were compared. Just by
updating the compiler, the size of the “ramfuncs” was reduced by 11%. Additionally, the new
compiler version offers the option to further optimize the code for performance. This option was
tested and rejected as it increased back the size of the “ramfuncs” by 54% while having no
measurable change in the performance of the “Regler()” controller routine (compared to the
benchmarks of chapter 3.2.1). Final adjustments were made by manually shifting the memory
sections and allocating unused space to more important sections. These changes as a whole made it
possible to continue expanding the program with the current hardware.

4.2 Main program

The main program takes care of coordinating all the actions to be performed by the components of
the system as well as performing the necessary pre-processing and calculations that offload
processing time and memory usage from the axes’ controllers. To the interest of this project were
the routines used to load, process and transmit massage paths as well as the receival, analysis and
storage of scans’ information.

The main principle that was followed during the modifications of the program was to keep the
implemented solutions as simple as possible and have them only modify the minimum amount of
functions and data structures. This reduced the chances of involuntarily and unexpectedly affecting
the functionality of other routines of the program as many parts of the program rely on common
code to perform their actions. With this principle in mind, the best approach to deliver the desired
force values to the axes’ controller was determined to be one that used as much as possible of the
already existing communication infrastructure between the controllers and the main program. The
chosen solution uses the telegrams that originally sent the values for the vertical position and
replaces those values with the values for the desired force at each coordinate point that can be
loaded from the massage path file.

The massage bed now has three different operation modes and can either utilize custom or standard
(programmatically generated) massage paths with or without custom force profiles. By changing
the pre-compiler settings in the main program’s header file: “main_program.h” and recompiled as
mentioned previously, in chapter 2.2.1: Loading massage paths. How the combination of settings
leads to the different modes and which combination of setting are not possible is explained in
Flowchart 2 in Appendix E: Program flowcharts. When transmitting force values the force takes
the place of the previously transmitted d3 vertical position as is isn’t utilized in force control mode.
The communication between the main program and the A3 vertical controller occurs over telegrams
where the main program signalizes its intent for an operation mode and the controller switches

41

accordingly. The error handling was updated on both sides to handle the different failure modes
that may occur and reset the operation mode to the traditional control if the massage was
interrupted by any means. Otherwise the controller is completely agnostic to the type of values
being received and may wrongly interpret force values as position coordinates leading to abrupt and
dangerous movements.

4.2.1 Massage path file format

The massage paths are stored in a simple tab-delimited text file. It contains a header with
information about the used body markers, then information for massage intensity in the case of a
kneading massage and finally two or three columns of values depending on the path containing force
values or not (Figure 18, left).

Rows one to three contain the coordinates of the markers that serve as fixed points of reference for
the automatic path to body adjustment. The order of the coordinates is x, y, z and they are given
in mm. Row four specifies which body markers are meant by the previously listed coordinates with
1 meaning used and 0 meaning not used. The order of the markers is from left to right: KS, SS, HS,
SL, SR, HL, HR. These abbreviations respectively mean: head-sagittal, shoulders-sagittal, hips-
sagittal, shoulders-left, shoulders-right, hips-left and hips-right. Rows five and six are only present
for kneading massages and specify the orientation and intensity of the swashplate of massage tool
MK1 [1, p. 104]. The following rows and until the end are the massage coordinates (mm) and the
force (N). These are from left to right: coordinates for the y and z position and finally, the force.
The time interval between each point in the massage path is set at 100 ms as shown in Table 12.

4.3 Tablet interface

To facilitate the creation of custom massage paths that can be adapted to the needs of each patient
and the desired techniques of each physician it was necessary to create a new interface that made
it easy for non-technical personnel to create massage paths. This interface should be easy to
understand at first glance, easy to use and at the same time provide a good functionality to obtain
the desired behavior of the massage tools.

Figure 18: Body markers shown over scan of patient (left), exemplary massage file for a kneading massage
path (right)

42

To make this interface intuitive to the action of performing a massage it was decided to use a touch
tablet with a pressure-sensitive pen. This would speed up and simplify the process of creating the
trajectory for the massage tool while at the same time having the added value of an additional
input for the physician, the force.

The most notable company that produces this kind of digital pressure sensitive tablets is Wacom.
Their models vary strongly in capabilities including ones with or without screen; with or without
integrated PC and with more, or less, sensoring capabilities that allow to measure additional values
such as tilt of the pen in two directions, distance to surface and rotation. The model that was
available was the Intuos Pro. It is a model without screen and with full pen measuring capabilities
(besides rotation), featuring 2048 levels of pressure sensitivity and 60 degrees of tilt. It connects to
the PC as an input device and takes over the movement of the mouse when the pen approaches the
tablet (direct contact isn’t necessary for mouse movement). It is also otherwise impervious to hand
touches, therefore making it easier to draw on it more naturally as if it were on a sheet of paper.
The keyboard and mouse can still be used in conjunction for additional input inside the program.

In our use case, only the position of the pen on the tablet and the pressure value were relevant as
the other values such as tilt and rotation of the massage tool are calculated programmatically and
automatically. To obtain these values, Microsoft Windows has a library available in the form of a
DLL that works with most kinds of touch tablets and can be called from any C/C++ program,
wintab32. DLL stands for dynamic-link library and is a distributable piece of precompiled code that
gathers many functions that may be used by other programs. This allows for distribution of code
for collaboration without making the original source code visible to all users. A DLL usually also
includes an .h or .hpp header file that describes the functions and structures used in the library and
what input they need.

As the information from the tablet is needed inside LabVIEW, the first attempted solution was to
use the included VIs in LabVIEW that allow using DLL functions directly. This turned out not to
be a practical solution because the Wintab API uses a lot of custom data structures that aren’t
easily transferred from and back to LabVIEW. The alternative solution in a case like this is to
create a so-called wrapper-DLL. This new library calls the DLL, that was originally intended to be
used in its C++ code, natively and therefore can make full use of the structures of the API without
any complications. This new library has some functions that encompass all the needed functionality
in the minimum amount of necessary functions for the use of the tablet and with simplified inputs.
This new library is then called from LabVIEW and returns the pressure values of the pen.

The interface was built around the use of an image frame element. Inside the frame any kind of
image can be displayed, and its contents can be drawn on with additional information. The main
imaged displayed on this frame on program start is the last capacitance scan loaded by the main
program. After executing a scan from the LabVIEW interface the massage path creation interface
can be accessed from it (see Figure 6 in chapter 2.2.1) and it will display the scan that was just
loaded or performed. This scan comes from the temporary scan file mentioned in chapter 2.2.1:

43

Scans and analysis. Additionally, the body markers calculated by the body analysis algorithm will
be displayed over the scan, for orientation when drawing the massage path (as shown in Figure 19).

After the pre-processing is completed, the settings for the desired massage must be chosen. First of
all, the type, either effleurage or kneading. If the latter was chosen then additionally the intensity
and orientation values (as explained in the previous chapter) must be entered. The minimum and
maximum forces correspond to the minimum and maximum detectable pressure of the pen. These
can be set to any value between 10 and 200 N and the program will scale the pressure accordingly
to generate the force value. The timestep specifies the fixed time interval that separates one
coordinate from the next one. This time interval varies depending on the type of movement being
executed. The standard time interval for massages is 100 ms. The time intervals for the different
routines are shown in Table 12. If “Save force” was activated, then the massage file will include a
third column with force values; and if “Smooth path” was chosen, the y-z coordinates will be
smoothed by a moving average with a 3-samples window to even out its movements. After finalizing
all settings, the start button must be pressed to enable the drawing surface.

Table 12: Time intervals for the massage paths

Type of routine Time interval (ms)
General 100
MK1 (kneading) 100
MK2 massage
(effleurage)

100

MK2 scan 50

The speed at which the massage is drawn is directly related to the speed at which the massage will
be performed, to make it easy to understand. The program records the position and pressure of the

Figure 19: Massage path creation interface (draw tab), path in orange and body markers as blue dots

Figure 20: Intuos Pro touch tablet

44

pen at a high poll rate. These values are then filtered out at multiples of the chosen time interval
to create the final path file. After drawing the path, it must be saved by pressing the “save path”
flashing button. The results can be then observed in the “analyze” tab as shown in Figure 21. As
an alternative to creating a new massage, the min/max force setting can be used to rescale the force
of a previously drawn massage path to new values. The massage path file to be modified must be
stored as “C:\temp\custom_path.txt”.

Annex: dependencies and requirements of the program

For future reference, these are the required files to compile and/or run the massage path creation
interface:

• Name of Wrapper DLL:
“Wintab32 DLL Wrapper.dll”

• Dependencies for re-compiling:
“WINTAB.H” & “PKTDEF.H” (provided by Wacom)

 “UtilsExpanded.cpp” & “UtilsExpanded.h”
(originally provided by Wacom and then customized)

• Dependencies for running:
 Installed with Wacom drivers: “wintab32.dll”

Figure 21: Massage path creation interface (analyze tab)

45

5 Conclusions

The goal of this thesis can be divided into two main objectives. The first part was the development
of an improved user interface for drawing massage paths with a touch tablet and the second was
the expansion of the communication and controlling capabilities to achieve force control. These two
developments can be utilized independently for different purposes.

The first objective was very satisfactorily achieved, fulfilling all the initial specifications. The
obtained program can, with ease of use, draw any desired massage path, and makes use of all the
relevant information (scans and body markers) provided by the main program to facilitate drawing
the path. The obtained path can afterwards undergo post-processing to improve its smoothness or
scale the specified force. The program was programed independently of the main HMI and therefore
retains its freedom of customizability. The interfacing with the other software elements was designed
in a straightforward way to simplify eventual future development. This new interface fills a very
crucial gap in the concept of the massage bed, connecting the therapists to the program.

The second objective encountered some difficulties in its development. The force controller was in
some respects limited by the existing design. As the key components of the machine have been
already specified by previous work on the project, these could not be changed and had to be worked
around. In contrary to the initial concern, the Delfino microprocessor proved to be fast enough to
execute the desired algorithms but the existing self-implemented sensorics turned out not to be
totally adequate for the implementation of force control. The considerable noise observed in the
force measurement limits the possibilities in controller design by making differential terms in the
PID not applicable, therefore not allowing for good damping. Additionally, the sensor bus had very
frequent unreliability issues that interrupted all movements of the machine for safety reasons. As
substantial development time was being used to troubleshoot sensor issues, these problems led to
halting the search for new parameters for the force controller.

The development of the new force control mode was brought to completion despite these issues. It
includes the transmission of the force values from the drawn path all the way to the vertical axis
controller trough telegrams and a reworked controller logic that allows for two different modes of
force control: fixed force or custom force profile. The only aspect that would still require future
work would be the adjusting of the controller parameters.

For an eventual continuation of this project in the future, some recommendations can be suggested
based on observations made during this thesis. When tackling a completely new development, a
balance should be sought between retaining the customizability of every component by designing
in-house and reliability by buying off-the-shelf products. It can be recommended that, if the
development of a specific component is not the focus of the research itself, that it be acquired as
an off-the-shelf product. This improves the reliability of the implementation, reducing errors,
development time, and practically extending the service life of the prototype. Some component
whose market alternatives could improve the reliability of the machine include the force sensor that

46

could be replaced by a regular load cell with integrated amplifier to transmit a more reliable signal
and regular rotary encoders to tackle the sensorics problems.

The development of this project teaches many lessons about working on complex mechatronic
projects where contributions by many researchers are involved. The documentation of both the
mechanical design as well as the utilized code and algorithms is of the utmost importance. In this
regard, an effort was made to improve the knowledge management of the whole process. The written
code was thoroughly commentated, previously unavailable wiring diagrams of the complete massage
bed were drawn, and all the software elements used by the many different processors were collected
and organized. These contributions, in addition to the integral description of the system written for
this thesis, will facilitate future contributions by any new researchers.

47

6 Appendices

Appendix A: How to execute a massage

To execute a massage from zero, follow these steps:

1. Choose the control method. Decide if position, fixed force or force profile control will
be used by changing the pre-compiler settings in “main_program.h”.

• USE_FORCE_CONTROL

• USE_PATH_WITH_FORCE

• MAX_FORCE (is the setpoint in case of fixed force control)
(see Massage operating modes in Appendix E: Program flowcharts)

2. Decide if new a scan will be performed or an existing one will be sideloaded.
This can also be changed in the pre-compiler settings in “main_program.h”.

• LOAD_C_SCAN_TESTFILE

• LOAD_X_SCAN_TESTFILE

• PERFORM_C_SCAN
(see Table 2 and its corresponding explanation)

3. Decide if a custom massage path will be used, by changing the following pre-compiler
setting.

• USE_CUSTOM_PATH
4. Mount the massage tool:

• MK1 fore kneading

• MK2 for effleurage and/or scanning
5. Turn on the power supply. Turn on and verify the settings (42 V with current limits of

~10.25 A and ~0.75 A for PW1 and PW2 respectively).
6. Start the LabVIEW HMI.
7. Press “Alle referenzieren” to zero all axes.
8. Execute or sideload the scans: “Dist.Scan” first and then “Cap-Scan”. Actually

performing the scan will take several minutes. Wait for the massage carriage to stop
completely at the origin before proceeding.

9. (optional) Open the massage creation interface and draw the desired path. This
step can be skipped and still load a custom path if the path is still present in storage.

10. Load the massage path by choosing the massage type and pressing “LADEN”. To load
a custom path from the previous step, choose effleurage.

11. Start the massage by pressing “Starte Massage”.

48

Appendix B: Location of project files and backups

Inside the main project folder:

 Software_package
 Backups_Pfinsterwalder-Bergkichner_finalDelivery

 HMI
 HMI.vi
 Main_Program

 Microprocessors_sourcecode
 BUS Schnittstelle Delfino (Main BUS)
 InterBusTransceiver (Interbus transceivers, both)
 PWM_Regler_Rom_isr V2.12 (Motor controllers, all equal)
 MSP430F5510MK_Sensorik (MK2)
 MSP430F5510MK_Steuerung V1.3 (MK1)

 Microprocessors_flashdumps
 Main BUS.bin
 Interbus MB1.bin
 Interbus MB2.bin
 PWM controller.bin (all equal)

 Actual_Abbate_finalDelivery
 HMI

 HMI.vi ←UPDATED

 Massage path creation interface.vi ←UPDATED

 Main_Program ←UPDATED
 Microprocessors_sourcecode

 PWM_Regler_Rom_isr V2.13 (Motor controller A3) ←UPDATED
 MSP430F5510MK_Sensorik (MK2)
 MSP430F5510MK_Steuerung V1.3 (MK1)
 BUS Schnittstelle Delfino (Main BUS)
 InterBusTransceiver (Interbus transceivers, both)
 PWM_Regler_Rom_isr V2.12 (Motor controllers, A1,A2,A4-A6)

49

Appendix C: How to directly flash a Delfino without CCS

The flash memory of the microprocessors can be accessed directly to execute read or write
operations. This way code can be backed up without access to its source code and later restored
one to one to its original state.

The general flash memory is divided into eight sections named FLASHA to FLASHH. Each section
has a length of 0x8000 and every address stores 2 bytes.29 This results in a size of 64 KB per section
and a total size for the whole Flash of 512 KB [17]. The Flash memory starts at address 0x300000
with section FLASHH and ends at 0x33FFFF with section FLASHA. This information about
memory allocation to each of the sections can be found in the linker command file of each program,
“F28335.cmd”, that specifies how all memory, RAM and Flash, is allocated.

The whole memory can be read and saved into a .bin-file of 512 KB that stores pure binary data.
This file can then be used to write again to flash and overwrite any existing information. The
program used to do so during this project was Uniflash (v4.6)30. To connect to the microprocessor
in question one must use a JTAG emulation probe. The probe used was the Blackhawk USB200
JTAG Emulator (BH-USB-200). The JTAG pins of the controller boards are accessible without
opening the enclosure. For the main bus and inter-bus transceivers the enclosure must be opened
to access the JTAG pins.

Once in Uniflash a target configuration file must be chosen to tell the program how we want to
reach the processor (as an alternative, the type of processor and JTAG probe can be selected from
the lists). Target configuration files have a .ccxml-file type and are located inside the folder of the
source code for each microprocessor, by example: “PWM_Regler.ccxml”.

• To read:
In the Memory tab, press Read Target Device to show the memory of the microprocessor.
To export the complete program stored in the flash memory of the microprocessor press
Export and enter address 0x300000, number of bytes 0x40000 and export as a .bin-file.

• To write:
In the Program tab, select a flash image to write to the microprocessor. This file can either
be a previously stored binary .bin-file or a compiled .out-file (stored inside the build folder
of a CCS project); by example:
“PWM_Regler_Rom_isr V2.12\Debug Modern\PWM_Invertercontroller.out”.

29 A number starting with 0x represents a number in hexadecimal base. In this case the addresses and
section lengths are expressed in hex.
30 Note: Uniflash v4.0 or higher doesn’t provide native support for Blackhawk probes. See [25] for details
on compatibility.

50

When writing a binary file, an address must be additionally provided as this file contains
no information about its original location. For a complete Flash dump this address would
be 0x300000.

Press: Load Image to write to the microprocessor.

• To verify:
To verify the program present in the flash memory of the microprocessor without making
any changes to it, a flash image can be chosen in the same way.
Press: Verify Image.
If the program is exactly the same as the one loaded, the verification will be successful.
Warning: The checksum cannot reliably verify a program and should not be used for that
purpose!

51

Appendix D: Wiring diagrams

Table 13: List of components

Component Identification Page

Power supply, TTi CPX400 DUAL =PW-TB 1
PC =PC-KE 2

Bus controller =BUSCON-KF1 2
FSB LED -PFA 2

FSB Jumper -QB 2
Axis controller -A1 3
Axis controller -A2 3

Axis controller -A3 3
Axis controller -A4 3

Axis controller -A5 3
Axis controller -A6 3

Motor -MA1 4
Motor -MA2 4

Motor -MA3 4
Motor -MA4 4

Motor -MA5 4
Motor -MA6 4

Magnetic rotary encoder -BGF1 4
Magnetic rotary encoder -BGF2 4

Magnetic rotary encoder -BGF3 4
Magnetic rotary encoder -BGF4 4
Magnetic rotary encoder -BGF5 4

Magnetic rotary encoder -BGF6 4
Sensor bus controller =SB-KE1 4

Sensor bus controller =SB-KE2 4
Sensor bus controller =SB-KE3 4

Sensor bus controller =SB-KE4 4
Sensor bus controller =SB-KE5 4

Sensor bus controller =SB-KE6 4
Limit switch -BGA1.1 4

Limit switch -BGA1.2 4
Limit switch -BGA2.1 4

Limit switch -BGA2.2 4
Limit switch -BGA3.1 4

Limit switch -BGA3.2 4
Limit switch -BGA5.1 4

Limit switch -BGA5.2 4

52

Vertical position switch -BGA5.3 4
Strain gauge -BW3 4

Processing unit, Texas Instruments MSP430F5510 =MK1-KE7 5
Processing unit, Texas Instruments MSP430F5510 =MK2-KE8 5
SIM sliding connector -X1 5
Motor, Faulhaber 1717A024S R IE2-16 15A 5.3:1 -M7.2 5

Motor, Faulhaber 1717A024S R IE2-16 15A 5.3:1 -M7.2 5
Motor, Faulhaber 1717A024S R IE2-16 15A 5.3:1 -M7.3 5

Motor controller, Texas Instruments DRV8808 -KE7.1 5
Motor controller, Texas Instruments DRV8808 -KE7.2 5

Motor controller, Texas Instruments DRV8808 -KE7.3 5
Rotary encoder -BGF7.1 5
Rotary encoder -BGF7.2 5

Rotary encoder -BGF7.3 5

Identifications according to: DIN EN 81346 [18].

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

T
IT

LE
:

Po
w

e
r

su
p

p
ly

R
E
V
:

1
.0

D
a
te

:
2

0
1

9
-0

4
-0

5

S
h
e
e
t:

1
/6

D
ra

w
n
 B

y:
Le

o
n
a
rd

o
 A

b
b
a
te

C
o
m

p
a
n
y:

T
U

 W
ie

n

PM
K

P2P1

42
.3

V
 D

C
, 1

0.
25

A
 m

ax
P

W
1

42
.3

V
 D

C
, 0

.7
5A

 m
ax

P
W

2

/3/2

P
E

Po
w

er
 s

up
pl

y
T

T
iC

PX
40

0
D

U
A

L

=P
W

-T
B

W
al

l p
ow

er

+
E
X

T
E
R

N

++ - -

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

T
IT

LE
:

P
C

-c
o
n
n
e
ct

io
n

R
E
V
:

1
.0

D
a
te

:
2

0
1

9
-0

4
-0

5

S
h
e
e
t:

2
/6

D
ra

w
n
 B

y:
Le

o
n
a
rd

o
 A

b
b
a
te

C
o
m

p
a
n
y:

T
U

 W
ie

n

P1

M
B

1

FS
B

M
B

2

/3

/1

+
E
X

T
E
R

N

PC=P
C

-K
E

-Q
B

FS
B

 J
um

pe
r

B
us

 c
on

tr
ol

le
r

=B
U

SC
O

N
-K

F1

-P
FA

FS
B

 L
E

D

PS
/2

3-
PI

N

PS
/2

3-
PI

N

U
SB

-B

P1PC

M
B

2

FS
B

M
B

1

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

T
IT

LE
:

A
xe

s'
 c

o
n
tr

o
lle

rs
R

E
V
:

1
.0

D
a
te

:
2

0
1

9
-0

4
-0

5

S
h
e
e
t:

3
/6

D
ra

w
n
 B

y:
Le

o
n
a
rd

o
 A

b
b
a
te

C
o
m

p
a
n
y:

T
U

 W
ie

n

P2

M
B

1

PM
K

SB
1

SB
2

SB
3

SB
4

SB
5/

M
B

2
SB

6/
PM

K

M
P1

M
P2

M
P3

M
P4

M
P5

M
P6

FS
B

/1 /2

/4

+
E
X

T
E
R

N

P
E

-A
1

A
xi

s
co

nt
ro

lle
r PS/2

D-SUB3W3

RS-458

D-SUB7W2

Mainbus

MotorPower

Sensorbus+Adresscoding

Power+FailSafebus

-A
2

A
xi

s
co

nt
ro

lle
r PS/2

D-SUB3W3

RS-458

D-SUB7W2

Mainbus

MotorPower

Sensorbus+Adresscoding

Power+FailSafebus

-A
3

A
xi

s
co

nt
ro

lle
r PS/2

D-SUB3W3

RS-458

D-SUB7W2

Mainbus

MotorPower

Sensorbus+Adresscoding

Power+FailSafebus

-A
4

A
xi

s
co

nt
ro

lle
r PS/2

D-SUB3W3

RS-458

D-SUB7W2

Mainbus

MotorPower

Sensorbus+Adresscoding

Power+FailSafebus

-A
5

A
xi

s
co

nt
ro

lle
r PS/2

D-SUB3W3

RS-458

D-SUB7W2

Mainbus

MotorPower

Sensorbus+Adresscoding

Power+FailSafebus

-A
6

A
xi

s
co

nt
ro

lle
r PS/2

D-SUB3W3

RS-458

D-SUB7W2

Mainbus

MotorPower

Sensorbus+Adresscoding

Power+FailSafebus

op
en

co
nn

ec
to

r

M
B

2

FS
B

/5

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

T
IT

LE
:

M
o
to

rs
 a

n
d

 s
e
n
so

rs
R

E
V
:

1
.0

D
a
te

:
2

0
1

9
-0

4
-0

5

S
h
e
e
t:

4
/6

D
ra

w
n
 B

y:
Le

o
n
a
rd

o
 A

b
b
a
te

C
o
m

p
a
n
y:

T
U

 W
ie

n

SB
1

SB
2

SB
3

SB
4

SB
5/

M
B

2
SB

6/
PM

K

M
P1

M
P2

M
P3

M
P4

M
P5

M
P6

-B
G

A
1.

1

+
B

E
D

St
ra

in
 g

au
ge

-B
W

3 N
-B

G
A

1.
2

V

W

U

P
E

M
ag

ne
tic

 ro
ta

ry
 e

nc
od

er

-B
G

F1

T
R Se

ns
or

 b
us

 c
on

tr
ol

le
r

=S
B

-K
E

1

-M
A

1

M 3

V

W

U

P
E

M
ag

ne
tic

 ro
ta

ry
 e

nc
od

er

-B
G

F2

T
R Se

ns
or

 b
us

 c
on

tr
ol

le
r

=S
B

-K
E

2

-M
A

2

M 3

V

W

U

P
E

M
ag

ne
tic

 ro
ta

ry
 e

nc
od

er

-B
G

F3

T
R Se

ns
or

 b
us

 c
on

tr
ol

le
r

=S
B

-K
E

3

-M
A

3

M 3

-B
G

A
2.

1

-B
G

A
2.

2

V

W

U

P
E

M
ag

ne
tic

 ro
ta

ry
 e

nc
od

er

-B
G

F4

T
R Se

ns
or

 b
us

 c
on

tr
ol

le
r

=S
B

-K
E

4

-M
A

4

M 3

V

W

U

P
E

M
ag

ne
tic

 ro
ta

ry
 e

nc
od

er

-B
G

F5

T
R Se

ns
or

 b
us

 c
on

tr
ol

le
r

=S
B

-K
E

5

-M
A

5

M 3

V

W

U

P
E

M
ag

ne
tic

 ro
ta

ry
 e

nc
od

er

-B
G

F6

T
R Se

ns
or

 b
us

 c
on

tr
ol

le
r

=S
B

-K
E

6

-M
A

6

M 3

SB1

SB2

SB3

SB4

SB5

SB6

-B
G

A
3.

1

-B
G

A
3.

2

-B
G

A
5.

1

-B
G

A
5.

2

PM
K

/3/3

/5

M
B

2

-B
G

A
5.

3

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

T
IT

LE
:

M
a
ss

a
g

e
 h

e
a
d

s
R

E
V
:

1
.0

D
a
te

:
2

0
1

9
-0

4
-1

4

S
h
e
e
t:

5
/6

D
ra

w
n
 B

y:
Le

o
n
a
rd

o
 A

b
b
a
te

C
o
m

p
a
n
y:

T
U

 W
ie

n

+
M

K
1

+
M

K
2

Pr
oc

es
si

ng
 u

ni
t

=M
K

1-
K

E
7

Pr
oc

es
si

ng
 u

ni
t

=M
K

2-
K

E
8

T
ex

as
 In

st
ru

m
en

ts
M

SP
43

0F
55

10
T

ex
as

 In
st

ru
m

en
ts

M
SP

43
0F

55
10

M
ot

or
co

nt
ro

lle
r

-K
E

7.
1

T
ex

as
 In

st
ru

m
en

ts
D

R
V

88
08

R
ot

ar
y

en
co

de
r

-B
G

F7
.1

T
R

-M
7.

1 M

M
ot

or
co

nt
ro

lle
r

-K
E

7.
2

T
ex

as
 In

st
ru

m
en

ts
D

R
V

88
08

R
ot

ar
y

en
co

de
r

-B
G

F7
.2

T
R

-M
7.

2 M

M
ot

or
co

nt
ro

lle
r

-K
E

7.
3

T
ex

as
 In

st
ru

m
en

ts
D

R
V

88
08

R
ot

ar
y

en
co

de
r

-B
G

F7
.3

T
R

-M
7.

3 M

Faulhaber
1717A024S R IE2-16
15A 5.3:1

Faulhaber
1717A024S R IE2-16
15A 5.3:1

Faulhaber
1717A024S R IE2-16
15A 5.3:1

PM
K

/4

M
B

2

C
ap

ac
iti

ve
 s

en
so

r

-B
A

B

p
F

IR
 s

en
so

r

-B
G

B
1

m
m

IR
 s

en
so

r

-B
G

B
2

m
m

Sh
ar

p
0A

41
SK

Sh
ar

p
0A

41
SK

+
B

E
D

FS
B

/3
SI

M
 s

lid
in

g
co

nn
ec

to
r

-X
1

SI
M

 s
lid

in
g

co
nn

ec
to

r
SI

M
 s

lid
in

g
co

nn
ec

to
r

-X
1

-X
1

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

T
IT

LE
:

C
o
n
n
e
ct

o
rs

R
E
V
:

1
.0

D
a
te

:
2

0
1

9
-0

4
-0

9

S
h
e
e
t:

6
/6

D
ra

w
n
 B

y:
Le

o
n
a
rd

o
 A

b
b
a
te

C
o
m

p
a
n
y:

T
U

 W
ie

n

P1

D
-S

U
B

7W
2

FS
B

_I
N

_B
3

FS
B

_I
N

_A
1 4

FS
B

_O
U

T
_A

2

FS
B

_O
U

T
_B

5

4
0

V
A

2

G
N

D
A

1

P2
+F

SB

3-
PI

N

G
N

D
32

4
0

V
1

M
B

_

PS
/2

M
B

_O
U

T
_B

4

M
B

_O
U

T
_A

6 2

M
B

_I
N

_B
3

M
B

_I
N

_A
51

SB
_

R
S-

45
8

A
D

D
_B

it
0

7

A
D

D
_B

it
2

8

A
D

D
_B

it
3

4

A
D

D
_G

N
D

9

S
B

_B
6

S
B

_A
1

A
D

D
_3

.3
V

5

A
D

D
_B

it
1

3

S
B

_5
V

2

A
d
re

ss
co

d
in

g

A
dr

es
sc

od
in

g

=A
D

D

B
it

0
B

it
1

B
it

2
B

it
3

A
1

A
2

A
3

A
4

A
5

A
6

1
0

1
1

1
1

1
1

1
1

0
0

0
0

0 0
0

0
0

0
0

0
0

0

A
D

D
_B

itX
=1

G
N

D

3.
3V

A
D

D
_B

itX
=0

FS
B

3-
PI

N

FS
B

_I
N

32
FS

B
_O

U
T

1

M
P_

D
-S

U
B

3W
3

U
A

1

W
A

3

V
A

2

SB
6

R
S-

45
8

A
D

D
_B

it
0

7

A
D

D
_B

it
2

8

A
D

D
_B

it
3

4

A
D

D
_G

N
D

9

S
B

_B
6

S
B

_A
1

A
D

D
_3

.3
V

5

A
D

D
_B

it
1

3

S
B

_5
V

2

=A
D

D
A

dr
es

sc
od

in
g*

*
=A

D
D

 is
n'

t a
 p

hy
si

ca
l c

om
po

ne
nt

.

It
 re

pr
es

en
ts

 in
st

ru
ct

io
ns

 to
 c

on
ne

ct
 th

e
A

D
D

_B
itX

 p
in

s.

+
E
X

T
E
R

N

59

Appendix E: Program flowcharts

Controller switching logic

“PWM_Regler_Rom_isr\Regelung.c\Drehzahl_f_dq()”

Program starts with position
control

“USE_FORCE_CONTROL”

Operation mode
sent by main

program
FC 0x2D

Position >
“HEIGHT_RESTRICTION”

FALSE

Force > Force setpoint

TRUE “forcecon” = 0

“is_massage_path”

Notification sent
by main program

when massage
path starts

FC 0x2C

TRUE

“forcecon” = 1TRUE

Force control

“forcecon”

FALSE

1

Position control0

FALSE

1

0

Flowchart 1: controller switching logic (FC stands for function code)

60

Massage operating modes

“HMI\Main_Program\bed_main.cbp”

Load massage path

“USE_CUSTOM_PATH”

“C:\temp\
custom_path.txt”

“HMI\Main_Program\bin\Debug\
effleurage\

massage_path1arm_single.txt”

1

0

“USE_PATH_WITH_FORCE”

“USE_FORCE_CONTROL” “USE_FORCE_CONTROL”

d3 = “path.force” d3 = d3
(no change)

1

0

Generated by:
Massage path

creation interface

Choose either
effleurage or

kneading in HMI

Exemplary path for
effleurage

Send path with d3 values

Send corresponding
notification telegrams:

USE_FORCE_CONTROL: FC 0x2D
USE_PATH_WITH_FORCE: FC 0x2E

“USE_PATH_WITH_FORCE”

1 0

Error

d3 = “HEIGHT_TARGET”

1

0

1

Flowchart 2: massage operating modes (FC stands for function code)

61

References

[1] P. Finsterwalder, „Analyse und mechanisches Konzept therapeutisch wirksamer
Massagebewegungen,“ TU Wien, 2015.

[2] B. C. Kolster, Massage, Springer, 2006.

[3] M. Clobert, T. L. Sims, Y. Miyamoto, H. R. Markus, M. Karawasa and C. S. Levine, Feeling
Excited or Taking a Bath: Do Distinct Pathways Underlie the Positive AffectӿHealth Link in
the U.S. and Japan?, American Psychological Association, 2019.

[4] T. Teramae, D. Kushida, F. Takemori and A. Kitamura, "Construction of an Intelligent
Massage System Based on Human Skin–Muscle Elasticity," Electronics and Communications
in Japan, Vol. 94, No. 10; Wiley Periodicals, Inc., 2011.

[5] C.-g. Kang, B.-j. Lee, I.-x. Son and H.-y. Kim, "Design of a Percussive Massage Robot
Tapping Human Backs," 16th IEEE International Conference on Robot & Human Interactive
Communication, 2007.

[6] P. Minyong, T. Miyoshi, K. Terashima and H. Kitagawa, "Exper Massage Motion Control
by Multi-fingered Robot Hand," Proceedings of the 2003 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systemts, 2003.

[7] H. Ishii, H. Koga, Y. Obokawa, J. Solis, A. Takanishi and A. Katsumata, "Path generator
control system and virtual compliance calculator for maxillofacial massage robots," Int J
CARS (2010) 5:77ӿ84; Springer, 2009.

[8] P. Archer, Therapeutic Massage in Athletics, Lippincott Williams and Wilkins, 2006.

[9] Texas Instruments, "TMS320C28x CPU and Instruction Set Reference Guide (SPRU430F),"
2015. [Online]. Available: http://www.ti.com/lit/ug/spru430f/spru430f.pdf. [Accessed 2018].

[10] K. Bergkirchner, „Entwicklung eines mechatronischen therapeutischen Massagesystems,“ TU
Wien, (not yet published).

[11] F. Lei, F. Min and G. Min-min, "Study on Force Mechanism for Therapeutic Effect of
Pushing Manipulation with One-Finger Meditation Base on Similarity Analysis of Force and
Waveform," Chin J Integr Med 2018 Jul;24(7):531-536, 2018.

[12] M. Gössl, „Entwicklung eine Motorsteuerung für ein mehrachsiges Aktorsystem,“ TU Wien,
2015.

[13] Texas Instruments, "C2000 Real-Time Control Peripherals Reference Guide (SPRU566M),"
2018. [Online]. Available: http://www.ti.com/lit/ug/spru566m/spru566m.pdf. [Accessed
2018].

[14] Texas Instruments, "Code Composer Studio User’s Guide (SPRU328B)," 2000. [Online].
Available: https://www.eit.lth.se/fileadmin/eit/courses/eti121/References/ccs.pdf.
[Accessed 2018].

[15] A. Owen-Hill, "Force Sensors in Robotics Research," Robotiq, 2016.

62

[16] S. Chiaverini, B. Siciliano and L. Villani, "Force and Position Tracking: Parallel Control
With Stiffness Adaptation," Proceedings of the 1997 IEEE international Conference on
Robotics and Automation, 1998.

[17] Texas Instruments, "C2000 Delfino Multi-Day Workshop," 2010. [Online]. Available:
http://processors.wiki.ti.com/index.php/C2000_Multi-Day_Workshop. [Accessed 2018].

[18] Deutsches Institut für Normung, DIN EN 81346: Industrielle Systeme, Anlagen und
Ausrüstungen und Industrieprodukte ӿ Strukturierungsprinzipien und
Referenzkennzeichnung, 2010.

[19] Texas Instruments, "Running an Application from Internal Flash Memory on the
TMS320F28xxx (SPRA958L)," 2013. [Online]. Available:
http://www.ti.com/lit/an/spra958l/spra958l.pdf. [Accessed 2018].

[20] Texas Instruments, "F2833x Firmware Development Package Users’s Guide," 2018. [Online].
Available: http://dev.ti.com/tirex/content/tirex-product-
tree/C2000Ware_1_00_06_00_Device/device_support/f2833x/docs/F2833x_DEV_USE
R_GUIDE.pdf. [Accessed 2018].

[21] Texas Instruments, "TMS320x2833x, 2823x Serial Communications Interface (SCI)
Reference Guide (SPRUFZ5A)," 2009. [Online]. Available:
http://www.ti.com/lit/ug/sprufz5a/sprufz5a.pdf. [Accessed 2018].

[22] B. Reichert, Massage-Therapie, Thieme, 2015.

[23] W. Wang, P. Zhang, C. Liang and Y. Shi, "Design, path planning improvement and test of
a portable massage robot on human back," International Journal of Advanced Robotic
Systems July-August 2018: 1ӿ11; Sage, 2018.

[24] P. Dutkiewicz and M. Michalek, "Impedance control with virtual compliance," DOI:
10.1109/ROMOCO.2002.1177085; Poznan University of Technology, 2002.

[25] M. Brandstötter, S. Mühlbacher-Karrer, D. Schett and H. Zangl, "Virtual Compliance
Control of a Kinematically Redundant Serial Manipulator with 9 DoF," International
Conference on Robotics in Alpe-Adria Danube Region, 2016.

[26] Blackhawk, "CCS UniFlash v4 - Blackhawk Support," [Online]. Available:
https://www.blackhawk-dsp.com/support/uniflashv4. [Accessed 2018].

[27] Deutsches Institut für Normung, DIN EN 60617: Graphische Symbole für Schaltpläne, 1997.

63

List of figures

Figure 1: Massage movements for kneading (left) and effleurage (right) .. 8
Figure 2: Movement axes depicted over massage carriage (left) and bed (right) 10
Figure 3: Massage tool MK2 with capacitance and IR distance sensors ... 11
Figure 4: Massage tool MK1 with swashplate and motors .. 11
Figure 5: Diagram of software and hardware connections ... 12
Figure 6: Functions of the HMI test interface ... 13
Figure 7: Functions of the amplifier interface.. 14
Figure 8: Capacitance scan (top) and distance scan (bottom) ... 15
Figure 9: Varying cycle times when benchmarking routines of the microprocessor 25
Figure 10: Recorded force and strain gauge (DMS) values for a static load (left) and manually
induced current safety limit (right) ... 30
Figure 11: Recorded force and strain gauge (DMS) values for force limiting at 10 N (left) and FFT
of the force values during the massage (right) .. 32
Figure 12: Recorded force and strain gauge (DMS) values for force limiting at 60 N (left) and FFT
of the force values during the massage (right) .. 32
Figure 13: Superposition of the unmodified DMS values and the averaged ones 34
Figure 14: Block diagram for the position controller .. 34
Figure 15: Block diagram for the force controller .. 35
Figure 16: Test for dynamics without load (position = target + 12mm) 37
Figure 17: Proposed inner/outer controller ... 39
Figure 18: Body markers shown over scan of patient (left), exemplary massage file for a kneading
massage path (right) .. 41
Figure 19: Massage path creation interface (draw tab), path in orange and body markers as blue
dots .. 43
Figure 20: Intuos Pro touch tablet .. 43
Figure 21: Massage path creation interface (analyze tab) ... 44

64

List of tables

Table 1: Axes of the massage bed .. 9
Table 2: Scans pre-compiler settings.. 16
Table 3: Telegrams’ structure .. 17
Table 4: Relation between body-characteristics and massage comfort [4]....................................... 22
Table 5: Considered processors' specifications ... 24
Table 6: Summary of data for the benchmarking .. 26
Table 7: Summary of data for the static load measurements .. 29
Table 8: Dynamic measurements’ test setup information for reproducibility 30
Table 9: Summary of data for the dynamic measurements ... 32
Table 10: Summary of measurements for the improvement of the stability of the reference value 33
Table 11: Classification of simultaneous force/position controllers [15] [16] 38
Table 12: Time intervals for the massage paths .. 43
Table 13: List of components ... 51

65

List of abbreviations

a.k.a. Also known as
ADC Analog to digital converter
API Application programming interface
CCS Code composer studio
CNC Computer numerical control
DAC Digital to analog converter
DAM Direct memory access
DLL Dynamic-link library
DMS Dehnmessstreifen (Strain gauge)
eCAN Enhanced controller area network
FFT Fast Fourier transformation
FIFO First in first out
FSB Fail-safe bus
GPIO General purpose input output
HMI Human-machine interface
ISR Interrupt service routine
JTAG Joint test action group
MB Main-bus
MK Massage-Kopf (Massage head/tool)
N/A Not available
PID Proportional-integral-derivative
PW Power
RX Receiver
SCI Serial communication interface
TX Transmitter
UART Universal asynchronous receiver-transmitter
XINTF External interface

	Foreword
	Abstract
	Kurzfassung
	Table of contents
	1 Introduction
	1.1 Massage techniques, a short summary
	Effleurage
	Kneading

	2 Description of the system
	2.1 Mechanical and electrical
	2.2 Software and hardware
	2.2.1 Human-Machine Interface (HMI)
	Main program
	Scans and analysis
	Loading massage paths
	Communication

	2.2.2 Microprocessors
	Fieldbus controllers
	PWM controller

	3 Scope and approach
	3.1 Medical requirements
	3.2 Feasibility analysis
	3.2.1 Benchmarking

	3.3 Approach to the solution

	4 Implementation of the solution
	4.1 Microprocessor adjustments
	4.1.1 Assessment of the force controller
	Static measurements:
	Dynamic measurements:

	4.1.2 Process variable improvements
	4.1.3 Changes to the force control sub-routine
	Stabilization of the baseline controller dynamics
	Alternative approaches to force control

	4.1.4 Microprocessor limitations and solutions

	4.2 Main program
	4.2.1 Massage path file format

	4.3 Tablet interface
	Annex: dependencies and requirements of the program

	5 Conclusions
	6 Appendices
	Appendix A: How to execute a massage
	Appendix B: Location of project files and backups
	Appendix C: How to directly flash a Delfino without CCS
	Appendix D: Wiring diagrams
	Table 13: List of components

	Appendix E: Program flowcharts
	Controller switching logic
	Massage operating modes

	References
	List of figures
	List of tables
	List of abbreviations

