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1. Abstract

Graphene, a single atomic layer of carbon, first successfully fabricated in 2004
by A. Geim and K Novoselov [44], has since evoked great research interest.
These efforts have lead to a good fundamental understanding of the electronic
structure of the rather novel two-dimensional material [27,38,46].

Despite tremendous improvement in the synthesis of graphene nanostruc-
tures [45], which enables very clean samples with low defect density and
high mobility, understanding the influence of lattice defects in graphene
[9,10,11,12] is often crucial to understanding the properties of a much larger
system.

Quantum dots (QDOT), popularly referred to as ”artificial atoms”, can be
viewed as effectively zero dimensional structures in which confined electrons
display sharp energy levels [47]. Their promising technological applications
(quantum computation, quantum cryptography,...) recently increased re-
search efforts in this field. The presence of Klein tunneling usually restricts
graphene quantum dots to hold merely quasi-bound states. However, con-
finement in single layer graphene via a combination of both electric (scanning
tunneling microscopy tip) and magnetic fields (Landau regime) allows for so
called edge-free quantum dots [1,3,16,17,18,43]. As they are regarded to be
possible alternatives for conventional semiconductor quantum dots (applica-
tions such as spin qubits, etc.) they generate growing research interest in
past years.

The purpose of this thesis is to investigate the interplay of the these edge-free
quantum dots with various types of lattice defects in graphene [9,11,12,21,33].
We particularly focus on investigating the level spacing (orbital splitting ∆O

j

and valley splitting ∆k
j ) of the QDOT states as a function of QDOT-defect

distance and determine the ”character” of the respective states compared to
an edge-free QDOT in pristine graphene.

We describe the system on the tight-binding level of theory and extract the
onsite and hopping terms for embedding different defect types from DFT su-
percell calculations (VASP, [39,40,41,42]) via wannier90 [6,7,8]. Aside from
the ”static” properties of such QDOT-defect systems we also investigate
transition dynamics between QDOT states using time propagation by Mag-
nus operators [32] and compare with analytical predictions (Landau Zener
theory, [19,20]).
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1. Abstract

Promising outlooks for the role of graphene in future spintronics applications
(long spin life times and high spin mobility [5,10,48]) make the single vacancy
defect (with its local magnetic moment) an interesting type of lattice defect
in graphene. Our efforts to add the single vacancy defect to our ”portfolio
of wannierized graphene lattice defects” resonate with recent scientific work
[35,36,37] and opens the possibility for modeling spin scattering in defect
afflicted graphene in future projects.
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2. Theory and Method

We very briefly introduce the theoretical framework of the methods neces-
sary for this master thesis. After a brief introduction in density functional
theory (DFT) we review the concept of maximally localized Wannier func-
tions (MLWF).The specific way of embedding our ”wannierized defects” into
a substantially larger flake of pristine graphene via a tight-binding formalism
is addressed as well.

2.1. Density Functional Theory DFT

2.1.1. Introduction

Investigating systems at the nanoscale usually necessitates modeling atomic
interactions as accurately as possible while simultaneously keeping the com-
putational effort manageable. Empirical interatomic potentials which are
fitted to reproduce some measured quantity as accurately as possible are
one of the more straightforward entry points to computational materials
science. Unfortunately their ability to reproduce physical properties differ-
ent from those they were designed for can be quite limited. Since all such
theories that rely heavily on implicit assumptions for the type of chemical
bonding and other degrees of freedom face problems when applied to sys-
tems showing chemical complexity, the intellectually more appealing choice
are so called ”ab initio” methods. These methods, such as density functional
theory (DFT), start from basic principles of quantum theory to describe a
system without prior knowledge and are thus predictive.

Since a straightforward solution of the many-body Schrödinger equation
Ĥ |Ψ〉 = E |Ψ〉 is virtually impossible for systems of interest, approximations
such as Hartree-Fock or DFT are the standard approach. The main prob-
lem is that the many-electron wavefunction Ψ(~r1, σ1, ..., ~rN , σN) is a complex
scalar field that depends on 3N spatial coordinates. Hartree-Fock simplifies
this by introducing slater determinants of N single particle wavefunctions
which corresponds to solving N coupled one-electron equations with a self-
consistent potential Vi for the orbital Φi that depends on the other N − 1
orbitals.

3

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


2. Theory and Method

DFT, [13,15], solves the scaling problem in a different manner altogether,
since it focuses on uniquely describing a system with a quantity whose com-
plexity grows much slower (if not at all) with system size. The Hohenberg-
Kohn theorems prove the electron density to fulfill such a uniqueness relation.
Since the electron density ρ(~r) depends only on the spatial coordinates and
does not encode degrees of freedom of individual particles it circumvents the
scaling problem altogether.

2.1.2. Hohenberg-Kohn Theorems

Let us consider the non relativistic limit of a spin-compensated system of N-
electrons subject to an external potential Vext(~r). The Hamiltonian of such
a system can be written as:

Ĥ =
N∑

i=1

[

− ~p 2
i

2m
+ Vext(~ri)

]

+
∑

i>j

e2

|~ri − ~rj|
(2.1)

Conventionally the electron density ρ(~r) is determined after solving for the
wavefunction |Ψ〉 via:

ρ(~r) = 〈Ψ|
N∑

i=1

δ(~r − ~ri) |Ψ〉 (2.2)

This ”Ĥ → ρ(~r)” procedure is fairly straightforward. It is however also
possible to go ”backwards”, that is ”ρ(~r) → Ĥ”.

If one, for the sake of simplicity, considers an isolated atom whose ground
state electron density ρ0(~r) is known we can derive the 3 parameters Z, N

and ~R that uniquely define our Hamiltonian, which will inevitably be of the
following form:

Ĥ =
N∑

i=1

[

− ~p 2
i

2m
− Ze2

|~ri − ~R|

]

+
∑

i>j

e2

|~ri − ~rj|
(2.3)

The total number of electrons N , is simply given by
∫
ρ0(~r)d

3r while the

nucleus position ~R is the position at which the density displays the cusp
singularity. The remaining parameter Z can be associated with the radial
density derivative at the cusp:

Z = −
(

a0
2ρ0(~r)

∂ρ0(~r)

∂r

)

~r→~R

(2.4)
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2.1. Density Functional Theory DFT

The proof that this cannot only be done for the Coulomb interaction (Kato
theorem) but for a general external potential was given by Hohenberg and
Kohn in 1964. Their two theorems read:

1) The external potential Vext(~r) as well as the total energy E are unique
functionals of the non-degenerate ground state electron density ρ(~r).

Proof by Contradiction:

Assume two different external potentials V1(~r), V2(~r) yielding the same ground
state density ρ(~r) realized by both Ψ1 as well as Ψ1. The two Hamiltoni-
ans, which share the same kinetic part T̂ and electron-electron interaction
Ĉ read:

Ĥ1 = T̂ + Ĉ + V1(~r) (2.5)

Ĥ2 = T̂ + Ĉ + V2(~r) (2.6)

Computing both ground state energies yields:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 = E2 +

∫

ρ(~r) ·
[

V1(~r)− V2(~r)
]

d~r (2.7)

E2 = 〈Ψ2|Ĥ2|Ψ2〉 < 〈Ψ1|Ĥ2|Ψ1〉 = E1 +

∫

ρ(~r) ·
[

V2(~r)− V1(~r)
]

d~r (2.8)

Adding (2.7) and (2.8) yields the contradiction E1 +E2 < E1 +E2 which in
turn proves the existence of said unique mapping between external potential
and viable electron densities. The first theorem can also be viewed as a
Legendre transformation that allows one to express the total energy as a
function of the density rather than of a potential.

2) E[ρ] is minimized when ρ approaches the exact ground state density.

This second part generalizes the variational principle from wave functions to
densities and naturally follows from the first theorem.

It has been shown that even in the presence of degenerate ground states a
unique functional E[ρ] still exists.
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2. Theory and Method

2.1.3. Energy functionals

The Hohenberg-Kohn theorems, despite very powerful, merely state the ex-
istence of a unique energy functional, yet provide no clue whatsoever about
its form. Let us review the construction of the most simple (and by todays
standards most seldom used) energy functional, the Thomas-Fermi-Hartree
functional ETFH[ρ]. Starting from our non-relativistic N-electron Hamilto-
nian (2.1) we have to rewrite the three expressions in terms of the density.

The external-potential and the Coulomb contribution can, albeit with some
approximations, be brought to:

Eext[ρ] =

∫

Vext(~r)ρ(~r)d~r (2.9)

ECoulomb[ρ] ≈
e2

2

∫ ∫
ρ(~r)ρ(~r ′)

|~r − ~r ′| d~rd~r ′ (2.10)

The two major shortcomings of (2.10) involve firstly that we consider an
electron distribution given by classical charges (as in Hartree theory) and
secondly that we erroneously include the electron self interaction (which is
circumvented by the i > j constraint for the sum in (2.1)). It turns out refor-
mulating the kinetic part is also not trivial at all. If we, for the sake of sim-
plicity, consider the exceedingly simple reference system of a homogeneous
electron gas we can obtain a kinetic energy functional by comparison of E =
∫ EF

0
ǫD(ǫ)dǫ = V 23/2(

√
5π)−2E

5/2
F and ρ =

∫ EF

0
D(ǫ)dǫ = 23/2(

√
3π)−2E

3/2
F .

This leads to T [ρ] = α
∫
ρ5/3d~r, with some irrelevant constant α. The very

crude approximation of generalizing this expression to non-constant ρ(~r)
leads to:

T [ρ] = α

∫

ρ(~r)5/3d~r (2.11)

While this approximation can — to at least some extent — be justified for
very slowly varying ρ(~r), it will, in general, yield only mediocre results at
best.

With this we can collect the terms to form the ”complete” Thomas-Fermi-
Hartree energy functional:

ETFH[ρ] := α

∫

ρ(~r)5/3d~r+

∫

Vext(~r)ρ(~r)d~r+
e2

2

∫ ∫
ρ(~r)ρ(~r ′)

|~r − ~r ′| d~rd~r ′ (2.12)
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2.1. Density Functional Theory DFT

Now that we have successfully expressed the total energy as a function of
the density we can determine the ground state density. We have to restrain
our minimization to densities that correspond to the fixed total number of
electrons

∫
ρ(~r)d~r = N via Lagrange multiplier µ:

δ

δρ(~r)

[

ETFH[ρ]− µ

∫

ρ(~r)d~r

]

=
δETFH[ρ]

δρ(~r)
− µ = 0 (2.13)

2.1.4. Kohn Sham equations

There is an alternative way of computing the ground state density that
includes solving one-particle equations instead of minimizing the energy
functional directly. For the next part we introduce the kinetic energy of
a virtual system of N non-interacting electrons (with the exact same den-
sity as the interacting one) Ts[ρ]. We can now write the exact kinetic en-
ergy of our interacting system of interest as T [ρ] = Ts[ρ] + Tc[ρ] and treat
the correction Tc[ρ] as a marginal contribution. In a similar way the exact
Coulomb term can be decomposed into Hartree term plus correction term
ECoulomb[ρ] = EH [ρ] + ∆E[ρ]. Combining both correction terms we can in-
troduce the exchange-correlation energy functional:

EXC[ρ] = Tc[ρ] + ∆E[ρ] (2.14)

This functional includes:

- exchange effects (Pauli repulsion between electrons of the same spin)
- compensation for the spurious self interaction in EH

- correlation effects (tendency for electrons of different spin to mutually avoid
each other)

Since EXC does not depend on the external potential (it depends only on
the density), once found, it should be equally valid for all materials and
can be decomposed into EXC[ρ] = EX [ρ] + EC [ρ]. The exchange part can
be explicitly written in terms of one-particle orbitals that are put into the
Slater determinant (2.15).

EX

[
{φ}
]
=

e2

2

∑

i,j

∫ ∫
φi(~r)φj(~r

′)φi(~r
′)φj(~r)

|~r − ~r ′| d~rd~r ′ (2.15)
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2. Theory and Method

However formulating it as a functional of the electron density is a very dif-
ficult problem that for the most part can only be done exactly for very aca-
demic systems such as the homogeneous electron gas (HEG). The remaining
correlation term accounts for the so called Coulomb hole which describes the
depression in electron density around another electron. Both exchange and
correlation can be properly treated with diagrammatic techniques in many-
body theory (which leaves the realm of mean-field theories such as DFT).
The two most fundamental — and still widely used — approximations for
EXC are I) The Local Density Approximation and II) The Generalized Gra-
dient Approximation.

I) The Local Density Approximation (LDA)

This approximation is very similar to the approach taken for ETFH. It relies
on the assumption that expressions derived for the homogeneous electron
gas (HEG) have the same functional dependence on the electron density as
the ones for inhomogeneous systems:

ELDA
XC [ρ] =

∫

EHEG
XC [ρ(~r)]d~r (2.16)

Surprisingly, this approximation produces relatively reasonable results even
for systems that are far from homogeneous, due to conserving the so called
sum rule of the exchange correlation hole

∫
ρXC(~r, ~r

′)d~r ′ = −1 which leads
to some degree of error compensation (LDA usually overestimates EX while
underestimating EC). Unsurprisingly LDA also comes with some mayor
deficits, some of which include:

- LDA tends to overbind
- electrons are generally too delocalized
- long-range effects are inherently not included
- the ubiquitous hydrogen bond is poorly accounted for

II) The Generalized Gradient Approximation (GGA)

A first attempt to improve LDA by expansion in terms of the density gradient
(∇ρ(~r),..) resulted in a much worse description due to low density regions
in which the gradient expansion tends to diverge. The fact that truncated
gradient expansions would no longer fulfill the sum rule also meant that
no error cancellation could occur. Using functionals of both density and
gradient (generalized gradient approx.) finally improved the results:

EGGA
XC [ρ] = ELDA

XC [ρ] +

∫

eXC[ρ(~r),∇ρ(~r)]d~r (2.17)
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2.1. Density Functional Theory DFT

The term for eXC would then be either fitted to a set of molecule calcu-
lations performed with accurate many-body methods and/or analytically
constructed in ways that conserve the sum rule while neglecting contribu-
tions from regions that would lead to divergences. The main characteristics
of GGA include:

- GGA can overcorrect LDA
- GGA is better suited for XC-effects in spatially small systems (atoms,
molecules,..)
- hydrogen bonds are well accounted for while long range effects are still
missing
- strongly correlated systems are still out of reach

Our total energy functional now reads

E[ρ] = Ts[ρ] +

∫

Vext(~r)ρ(~r)d~r + EH [ρ] + EXC[ρ] (2.18)

while the variation with respect to the density yields

δE[ρ]

δρ(~r)
=

δTs[ρ]

δρ(~r)
+ Vext(~r) +

δEH [ρ]

δρ(~r)
+

δEXC[ρ]

δρ(~r)
!
= µ (2.19)

The ingenious conjecture of Kohn and Sham was that for any system of N
interacting electrons (Si) with given potential Vext(~r) there exists a system
of N non-interacting electrons (Sn), with the exact same density ρ, that is
obviously subject to a different external potential Vsingle(~r).

δE[ρ]

δρ(~r)
=

δTs[ρ]

δρ(~r)
+ Vsingle(~r)

!
= µ (2.20)

If we now look at the variational equation of Sn (2.19) and compare to that
of Si (2.20) we find a simple criterion for them to coincide (2.21):

Vsingle(~r)
!
= Vext(~r) +

δEH [ρ]

δρ(~r)
+

δEXC[ρ]

δρ(~r)
(2.21)
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2. Theory and Method

In principle, whenever (2.21) is fulfilled the solutions ρ and ρn for Si and Sn

respectively, are identical too. However, we still lack an explicit expression
for the kinetic part Ts[ρ] for a general inhomogeneous system. In contrast to
that it is quite straightforward to solve Sn in the form of N non-interacting
Schrödinger-like equations (2.22) and use the virtual single-particle orbitals
to construct a density via an occupation weighted sum (2.23).

[

− ~
2∇2

2m
+ Vsingle(~r)

]

φn(~r) = ǫnφn(~r) (2.22)

ρn(~r) =
∑

i

fi|φi(~r)|2 (2.23)

These are the famous Kohn-Sham equations, that while at first glance similar
to a set of Schrödinger equations, contain Vsingle according to (2.21) and
are thus non-linear. The usual approach is to solve them self-consistently
starting from an initial guess for either density ρ or potential Vsingle(ρ).

In general the Kohn-Sham eigenvalues ǫn lack physical meaning altogether.
They are technically equivalent to Lagrange multipliers that provide the
orthogonality between any two Kohn-Sham orbitals φ of Sn. The only one
to have physical meaning is the highest occupied one, since this theoretically
represents the chemical potential of the system (quite often approximations
for EXC usually falsify this property).

2.1.5. Spin-polarized calculations

While having completely ignored the spin degree of freedom until now (our
occupation numbers fi in (2.23) range from 0 to 2, to compensate for that)
it is no big deal to expand the formalism to non spin compensated systems.
Instead of only specifying the total number of electrons N, we now fix initial
values for N↑ as well as N↓ (while respecting N↓+N↑ = N) and simply solve
a set of Kohn-Sham equations for each spin component. The exchange-
correlation energy will now depend on both ρ(~r) = ρ↑(~r) + ρ↓(~r) as well as
σ(~r) = ρ↑(~r)− ρ↓(~r).

2.1.6. Pseudo-potentials

Many problems in physics allow a distinction in so called ”active electrons”
and ”spectator electrons” by various criteria (considerably different energy
scales, localized in different regions of space, etc.). Condensed matter physics
usually defines the valence electrons of an atom as ”active” since they are
responsible for chemical bonding. Core electrons lie energetically well below
the valence orbitals and are hence considered dormant. In order to reduce
computational effort the influence of the core electrons will henceforth be
encoded into an operator, a so called pseudo-potential.
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2.1. Density Functional Theory DFT

Assembling an all-electron valence orbital |ΨV 〉 (eigenenergy ǫV ) as a linear
combination of a smoothened pseudo orbital |ΦV 〉 and core orbitals |ΨC〉
(eigenenergies ǫC):

|ΨV 〉 = |ΦV 〉+
∑

C

aC,V |ΨC〉 (2.24)

Since |ΨV 〉 and |ΨC〉 are both solutions to Schrödinger’s equation it is straigth-
forward to arrive at:

[

Ĥ +
∑

C

(ǫV − ǫC) |ΨC〉 〈ΨC |
]

|ΦV 〉 = ǫV |ΦV 〉 (2.25)

The Hamiltonian is extended by a non-local, repulsive, short ranged pro-
jector

∑

C(ǫV − ǫC) |ΨC〉 〈ΨC |, the pseudo potential. This formalism speeds
things up by firstly reducing the number of KS orbitals in need of deter-
mination and secondly omitting the representation of rapidly oscillating all-
electron valence orbitals (which arise from staying orthogonal to the core
states). Pseudo potential choice is heavily intertwined with basis choice.
A plane-wave basis usually requires ”soft” pseudo potentials (its Fourier
transform features a most compact support) to be computationally most
efficient.

2.1.7. K-point sampling

There are systems of interest that behave invariant under translations in cer-
tain directions (periodic systems) that have consequences for their numerical
treatment via DFT. In periodic systems, such as crystals, Bloch’s theorem
tells us that while the electronic density — as a physical observable — has
to respect the periodicity exactly, the wavefunction needs only be periodic
up to a unimodular phase:

Ψ(~r + ~R) = ei
~k ~RΨ(~r) (2.26)

The density of ~k vectors in the first Brilouin zone (BZ) is given by Vc

(2π)D

with dimension D and unit cell volume Vc. Increasing system size thus leads
to dense ~k points. Unsurprisingly, numerical treatment of such systems is
restricted to a finite number of ~k points and will computationally benefit
from including as few as necessary when calculating ~k-dependent averages
over the BZ (e.g. real space electron density, see (2.27)).

ρ(~r) =
∑

i

∫

BZ

fi,~k|Ψi,~k(~r)|2d~k (2.27)
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2. Theory and Method

Since the Kohn Sham equations for different ~k points are completely decou-
pled we solve them independently and need only find a way of sufficiently
sampling the BZ as efficiently as possible. For this purpose various strategies
(special point technique — suited for smoothly varying functions within the
BZ —, tetrahedron method — a simplex method for interpolation that takes
the shape of the Fermi surface into account —, etc.) are readily available in
modern DFT codes (in our case VASP).

2.1.8. Geometry Optimization

While DFT is a well developed tool for calculating the ground state density
and the corresponding energy for a system of N electrons, experimental mea-
surements usually provide insights into the response of a system to external
change (for example the change in volume due to external pressure). The
Hohenberg-Kohn theorems introduce the total energy of a system as a func-
tional of the electronic density while concealing the parametric dependence
on some external quantities λ (volume or shape of the unit cell, number and
positions of atoms,...).

In order to make this dependence more obvious we henceforth note the total
energy functional as Eλ[ρ]. For any given set of parameters λ the previously
described standard DFT methods suffice for determining the ground state
density ρλ. If we want to know how the total energy responds to variations
of λ we will generally be interested in an n-th order derivative of the form
δnE
δλn .

We shall restrain our views to first order derivatives with special attention
to atomic forces since they are most relevant for this thesis. Keeping ionic
positions of a system fixed with predefined values (as we have considered
up until now) will in general not lead to physically correct equilibrium con-
figurations. In order to derive a scheme for ionic relaxation we must first
introduce the total Hamiltonian of a system that depends on both electronic
{~rj} and ionic {~Ri} degrees of freedom:

[

Ĥe + T̂n + V̂n

]

︸ ︷︷ ︸

Ĥe+n

|Φ{~Ri},{~rj}
〉 = E |Φ{~Ri},{~rj}

〉 (2.28)
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2.1. Density Functional Theory DFT

This description includes the previously used electronic part Ĥe, the kinetic
energy of the nucleii T̂n and the Coulomb interaction of the ions V̂n which
are detailed below:

Ĥe =
N∑

i=1

[

− p̂2i
2m

+ Vext(~ri, {~Rj})
]

+
∑

i>j

e2

|~ri − ~rj|
(2.29)

T̂n =
N∑

i=1

[

− P̂ 2
i

2M

]

(2.30)

V̂n =
∑

I>J

ZIZJe
2

|~RI − ~RJ |
(2.31)

Employing a product ansatz from Born and Oppenheimer of the form
|Φ{~Ri},{~rj}

〉 := |χ{~Ri}
〉 · |θ{~Ri},{~rj}

〉 for the whole wave function and dropping

some terms proportional to the ratio of masses m/M we end up at:

Ĥe |θ{~Ri},{~rj}
〉 = E({~RI}) |θ{~Ri},{~rj}

〉 (2.32)

and

[

T̂n + V̂n + E({~RI})
]

|χ{~Ri}
〉 = E |χ{~Ri}

〉 (2.33)

The Schrödinger eqaution for the ionic wave function is now equipped with
the potential energy surface E({~RI}) which describes the energy contribution
from the electronic system. Under the assumption that the electronic system
reacts perfectly adiabatically to changes in the nuclear system it would now
suffice to minimize V̂n+E({~RI}) to find the equilibrium of atomic positions.

For such purposes calculating the atomic forces, that is the first order deriva-
tive of the total potential energy V̂n +E({~RI}) with respect to atomic posi-

tions ~fRI
:= −∇RI

[

V̂n + E({~RI})
]

, would simply be unfeasible for systems

of interesting size.
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2. Theory and Method

There is however quite a clever alternative that makes use of the variational
principle of DFT: substituting the eigenvalue E({~RI}) with the energy func-
tional of DFT E~RI

[ρ] that only parametrically depends on ionic coordinates
allows for

~fI = − dVn

d~RI

−
dE~RI

[ρ]

d~RI

(2.34)

with

dE~RI
[ρ]

d~RI

=
∂E~RI

[ρ]

∂ ~RI

+

∫
δE~RI

δρ(~r)
︸ ︷︷ ︸

µ

∂ρ(~r)

∂ ~RI

d~r =
∂E~RI

[ρ]

∂ ~RI

+µ
∂

∂ ~RI

∫

ρ(~r)d~r

︸ ︷︷ ︸

N :=const.

(2.35)

We thus find that the total and partial derivative simply coincide:

dE~RI
[ρ]

d~RI

=
∂E~RI

[ρ]

∂ ~RI

(2.36)

This general result known as the Hellman-Feynman theorem tells us that
we need not determine the change of ρ with respect to any general external
parameter λ. The ionic forces (which have to be evaluated with a converged
ground state density) are then simply:

~fI = −∂(Vn + Vext)

∂ ~RI

(2.37)

This means we can electronically converge our system with some initial ionic
positions using DFT, update our ionic positions according to the nuclear
forces and continue with this twofold process until total convergence is ac-
quired.
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2.2. Wannierization

2.2. Wannierization

Solving for the ground state of periodic crystalline structures is often done
in terms of Bloch orbitals Ψn,~k(~r). Here n denotes the corresponding band

index and ~k the momentum. For some applications a different representa-
tion in terms of orbitals, localized in real space, so called Wannier functions,
is preferable. These Wannier functions have been widely established in the
analysis of excitons, binding forces acting on electrons and generally provide
an elegant way to calculate tight binding parameters (which will be our main
interest). A much more thorough introduction into the Wannier representa-
tion than is attempted here can be found in [6, 7, 8].

These Wannier functions wn(~r − ~R) can be formally defined via a Fourier
transformation of the Bloch orbitals and carry again a band index n and the
lattice vector ~R pointing to their corresponding unit cell of origin. In bra-ket
notation we can write a Wannier function, |~R, n〉, as:

|~R, n〉 = V

(2π)3

∫

e−i~k·~R |n,~k〉 d~k (2.38)

Vice versa the Bloch orbitals, |n,~k〉 can be expanded in a ”Fourier series”
with the Wannier functions as their Fourier components:

|n,~k〉 =
∑

~R

e−i~k·~R |~R, n〉 (2.39)

It is important to realize that Wannier functions are by no means unique,
since within a single band the choice of ~k-dependent phases f(~k) for Bloch
orbitals will result in another, equally valid set of Bloch orbitals:

|um,~k〉 → eif(
~k) |um,~k〉 (2.40)

This freedom generalizes for ”composite bands” (several bands connected by
degeneracies) to a unitary transformation mixing several Bloch states and
shall henceforth be referred to as ”gauge freedom”.

|un,~k〉 →
∑

~k

Umn(~k) |um,~k〉 (2.41)
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2. Theory and Method

Since the bands of interest will most often be intersected by bands that
are to be neglected, the situation of non isolated bands will be the generic
case. The problem of identifying which Kohn Sham eigenvalues correspond
to which band thus poses certain problems in ”crowded” regions where a
vast number of bands crosses each other.

Figure 2.1.: Schematic depiction of the disentanglement process used for as-
signing band indices to KS eigenvalues.

Wannier90 uses a so called ”disentanglement procedure” (see [8] for refer-
ence). Since the computer has no intrinsic notion of bands (only a set of

eigenenergies for each ~k point), the purpose of the disentanglement proce-

dure is to correctly ”connect” the energies at each of the ~k point to form the
bandstructure, see Fig. 2.1.
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2.2. Wannierization

2.2.1. Spread functional Ω

The idea is to use the gauge degree of freedom to find a set of Wannier func-
tions which are, according to some predefined criterion, maximally localized
in real space. In order to find this particular Umn(~k) we must first define our
spread functional Ω.

Ω :=
∑

n

[
〈r2〉n − 〈~r〉2n

]
(2.42)

with:

〈r2〉n = 〈~0, n| ~̂r2 |~0, n〉 (2.43)

〈~r〉n = 〈~0, n| ~̂r |~0, n〉 (2.44)

This particular spread functional can be decomposed in two terms Ωi and
Ωg, with the first one being independent of Umn(~k) (and thus carrying the
subscript i for ”independent of the chosen gauge”) while the latter is gauge
dependent (subscript ”g”).

Ω =
∑

n

[

〈r2〉n −
∑

~R,m

| 〈~R,m| ~̂r |~0, n〉 |2
]

︸ ︷︷ ︸

Ωi

+
∑

n

∑

~R,m 6=~0,n

| 〈~R,m| ~̂r |~0, n〉 |2

︸ ︷︷ ︸

Ωg

(2.45)

Defining a projector onto the bands considered at a given ~k (2.9) allows for
a quite intuitive picture of the ”wannierization procedure”.

P̂ :=
∑

~k,n

|un,~k〉 〈un,~k| =
∑

~R,n

|~R, n〉 〈~R, n| (2.46)

The Wannier functions obtained by minimizing Ω are found to be identi-
cal with the eigenfunctions of the ”projected position operator” P̂ x̂P̂ in the
one dimensional case. With an orthonormal Wannier eigenbasis and associ-
ated eigenvalues x0m, it follows that 〈~R,m| P̂ x̂P̂ |~0, n〉 = x0mδR,0δm,n. This
means that Ωg will exactly vanish, thus minimizing Ω to Ωi. In three dimen-
sions the situation is somewhat more complicated since the cartesian com-
ponents of the projected space operator (P̂ x̂P̂ , P̂ ŷP̂ , P̂ ẑP̂ ) do not commute
and one has to search for the optimal compromise to ”maximally diagonal-
ize” all three of them simultaneously. With that in mind we can write Ωg as

a sum of band-diagonal Ω
(D)
g and band-offdiagonal contributions Ω

(OD)
g .
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2. Theory and Method

Ωg =
∑

n

∑

~R 6=~0

| 〈~R, n| ~̂r |~0, n〉 |2

︸ ︷︷ ︸

Ω
(D)
g

+
∑

m 6=n

∑

~R

| 〈~R,m| ~̂r |~0, n〉 |2

︸ ︷︷ ︸

Ω
(OD)
g

(2.47)

It is quite straigthforward to see that matrix elements of powers of the po-
sition operator ~̂r in a ”Wannier basis” can be written as:

〈~R, n| ~̂r |~0,m〉 = i
V

(2π)3

∫

e−i~k·~R 〈un,~k| ∇k |um,~k〉 d~k (2.48)

〈~R, n| ~̂r2 |~0,m〉 = −V

(2π)3

∫

e−i~k·~R 〈un,~k| ∇2
k |um,~k〉 d~k (2.49)

In a discrete ~k-space, using the simplest finite difference expressions for the
nabla operators and approximating the integral via a sum, the expressions
above allow us to extract 〈r〉n and 〈r2〉n as

〈~r〉n =
i

N

∑

~k,~b

wb
~b
[
〈un,~k|un,~k+~b〉 − 1

]
(2.50)

〈r2〉n =
1

N

∑

~k,~b

wb

[
2− 2 〈un,~k|un,~k+~b〉

]
(2.51)

with ~b connecting k points to their nearest neighbour, N the number of cells
and wb the weights for each ~b. We will now enforce a somewhat reasonable
property to these expressions. It is evidently desirable that the choice of
”home cell” (which cell we label |~0, n〉) shall not change the spread functional

Ω. This means that a shift of a lattice vector |un,~k〉 → |un,~k〉 e−i~k·~R should
lead to:

〈~r〉n → 〈~r〉n + ~R (2.52)

〈r2〉n → 〈r2〉n + 2 〈~r〉n ~R +R2 (2.53)

These properties are not yet fulfilled by (2.13) and (2.14) but can be incorpo-
rated as follows. Expanding the braket 〈un,~k|un,~k+~b〉 = 1+ ia1b+

a2
2
b2+O(b3)

with a1 and a2 real coefficients, we use the following approximations:

〈un,~k|un,~k+~b〉−1 ≈ ia1b+O(b2) ≈ i Im
[
ln(〈un,~k|un,~k+~b〉)

]
+O(b2) (2.54)
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2.2. Wannierization

2− 2 〈un,~k|un,~k+~b〉 ≈ −a2b
2 +O(b3) ≈ 1− | 〈un,~k|un,~k+~b〉 |2 + a21b

2 +O(b3)
(2.55)

Using (2.54) and (2.55) we can rewrite 〈r2〉n and 〈~r〉n in a form that fulfills
the aforementioned properties (2.52, 2.53):

〈~r〉n = − 1

N

∑

~k,~b

wb
~b Im

[

ln
(
〈un,~k|un,~k+~b〉

)]

(2.56)

〈r2〉n =
1

N

∑

~k,~b

wb

{

1− | 〈un,~k|un,~k+~b〉 |2
(

Im
[
ln(〈un,~k|un,~k+~b〉)

])2
}

(2.57)

After some rearrangement this notation allows us to rewrite the spread func-
tional Ω and again identify ΩI , Ω

OD
g and ΩD

g , mentioned before, as:

ΩI =
1

N

∑

~k,~b

wb

{

N̄−
N̄∑

m=1,n=1

| 〈um,~k|un,~k+~b〉 |2
}

=
1

N

∑

~k,~b

wb Tr
[
P̂(~k)(1−P̂(~k+~b))

]

(2.58)

ΩOD
g =

1

N

∑

~k,~b

wb

∑

m 6=n

| 〈um,~k|un,~k+~b〉 |2 (2.59)

ΩD
g =

1

N

∑

~k,~b

wb

∑

n

(

− Im
[
ln(〈um,~k|un,~k+~b〉)

]
−~b · 〈~r〉n

)2

(2.60)

As can easily be seen now, all three terms are positive definite and as shown
in (2.58) encoding the complicated expression as a trace over projection
operators (P̂(~k)

:=
∑

n |un,~k〉 〈un,~k|) emphasizes the gauge-independence of
ΩI . It is quite obvious that this gauge-independent part ΩI can be evaluated
at the beginning of the ”wannerization” procedure and will not affect the
minimization of the total spread functional.
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2. Theory and Method

2.2.2. Gradient of the spread functional dΩ

dU

In order to minimize the spread functional we have to know the variaton of
Ω with respect to an infinitesimally different gauge to (at least) first order.
Varying our unitary ”gauge matrix” Umn, introduced in (2.41), infinitesi-

mally far from unity, Umn(~k) = δmn+dUmn(~k), corresponds to a change of the

Bloch states |un,~k〉 → |un,~k〉 +
∑

m dUmn(~k) |un,~k〉. Rebranding 〈un,~k|un,~k+~b〉
as Wmn(~k) and inspecting its change yields:

dWnn(~k) = −
[
dU(~k) ·W (~k)

]

nn
+
[
W (~k) · dU(~k +~b)

]

nn
(2.61)

Using the unitarity of U we can express the change for the combination of
ΩI and ΩOD

g as:

dΩI,gOD =
4

N

∑

~k,~b

wbRe
[

Tr
[
dW (~k) ·R(~k)

]]

(2.62)

with:
Rmn(~k) := Wmn(~k)W

∗
nn(

~k) (2.63)

The diagonal part is found to be:

dΩgD = − 4

N

∑

~k,~b

wbIm
[

Tr
[
dW (~k) · T (~k)

]]

(2.64)

with:

Tmn(~k) :=
Wmn(~k)

W ∗
nn(

~k)

{

Im
[
ln(Wnn(~k))

]
+~b · 〈~r〉n

}

(2.65)

Lastly introducing the ”super operators” Ŝ[ô] and Â[ô] we can write the
desired gradient of the spread functional quite elegantly as:

dΩ

dU(~k)
= 4

∑

~b

wb

{

Ŝ
[
R̂(~k)

]
− Â

[
T̂ (~k)

]
}

(2.66)

Ŝ[ô] :=
(ô− ô†)

2
(2.67)

Â[ô] :=
(ô− ô†)

2i
(2.68)
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2.3. Tight-Binding formalism

We can now numerically minimize the spread functional with steepest de-
scent methods using the gradient obtained in (2.66). Updating the unitary
matrix U of our gauge freedom by a small portion of this gradient ensures
that we always minimize our spread functional. For further details of the
numerical implementation see [6,7,8] as mentioned at the beginning of this
chapter.

2.3. Tight-Binding formalism

The purpose of ”wannierizing” our DFT solution is to obtain a set of localized
”atomic-like” orbitals which warrant approximating the defect via a tight-
binding parametrization. Tight-binding calculations are standard methods
of solid state physics [2] that allow to treat substantially larger systems than
for example ab initio methods such as DFT.

The idea is to treat the difference between the real crystal-potential and
a periodically repeated single atom potential as a minor correction, thus
allowing us to expand the wavefunction of the solid |Ψ〉 into any kind of
localized states |Φi〉 (in our case maximally localized Wannier functions):

|Ψ〉 :=
∑

m

∑

n

αm,n |Φm,n〉 (2.69)

While n runs over atomic sites and is confined to the number of atoms
used to build our system, the number of atomic orbitals considered at each
site (indexed by m) can be restricted to the most relevant bands (for ex-
ample pz orbitals in graphene) for numerical feasibility. Condensing both
sums (m and n) into a single one over index j which subsumes both lattice
and band indexes and neglecting potential overlap between atomic orbitals,
〈Φn|Φm〉 = δnm, (2.69) can be interpreted as an expansion over an orthonor-
mal basis. Inserting this expansion into an effective one-particle Schrödinger
equation yields a matrix equation which is a simple eigenvalue problem for
the expansion coefficients αj.

∑

j

αj 〈Φi|Ĥ|Φj〉
︸ ︷︷ ︸

Hij

= E
∑

j

αj 〈Φi|Φj〉
︸ ︷︷ ︸

δij

(2.70)

∑

j

Hij · αj = E · αi (2.71)

Hij is usually multi-diagonal, depending on how many next neighbour inter-
actions we choose to incorporate into the calculation. The diagonal parts are
reffered to as onsite-energies while the off-diagonal terms are the so called
hopping terms. It comes as no surprise that increasing the number of hop-
ping terms increases accuracy and likewise computational effort.
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2. Theory and Method

2.4. Graphene

Graphene, a two dimensional material, consists of a single layer of carbon
atoms. Its hexagonal honeycomb-lattice can be described via two trigonal
sublattices A and B by using a Wigner-Seitz cell (green) that includes two
basis carbon atoms, as shown in Fig. 2.2.

Figure 2.2.: a) Schematic depiction of the honeycomb structure of graphene
and b) its irreducible unit cell with two-atomic base (sublattices
A and B).

Due to its various unique characteristics, graphene is a promising candidate
for future use in capacitors, quantum dot arrays for quantum computation,
batteries and many more electronical applications. The extraction of this ma-
terial has started with A. Geim and K. Novoselov through exfoliation from
highly oriented pyrolytic graphite via pressing an adhesive-coated piece of
glass onto a plasma etched graphite surface and removing it together with a
thin layer of graphene. Nowadays synthesis methods such as chemical vapor
deposition, epitaxial growth or chemical reduction from graphiteoxide are
also in use.
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2.4. Graphene

2.4.1. Bandstructure

One especially interesting property of graphene is its linear dispersion rela-
tion caused by its hexagonal symmetry and diatomic base. The bandstruc-
ture of graphene exhibits two ”disjunct” linear dispersion cones, the so called
”Dirac cones”. This name comes from the resemblance to the bandstructure
derived from the Dirac equation for massless, free, ultrarelativistic particles
(for small ~k-values). These, in total, six cones only two of which are non-
equivalent with respect to symmetry operations, schematically presented in
Fig. 2.3, warp trigonally for increasing |~k|, before connecting in an arch-like
structure.

Figure 2.3.: Schematic picture of graphenes Brillouin zone with the Dirac
cones of sublattices A and B

We can derive the initially linear dispersion relation via the Dirac equation
by eliminating one spinor component:

vF

[
0 p̂x − ip̂y

p̂x + ip̂y 0

](
u
v

)

= E

(
u
v

)

(2.72)

E2 = v2F ·
(
p̂2x + p̂2y

)

︸ ︷︷ ︸

~
2~k2

→ E = ±vF~|~k| (2.73)

The orbitals of the carbon atoms in graphene hybridize to three sp2 (in the
lattice plain) and one pz orbital (orthogonal to the lattice plain) which takes
part in transport processes.
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2. Theory and Method

2.5. Edgeless Quantum Dots

Quantum dots — nanoscale systems that hold a tunable, integer number of
electrons — promise vast technological applications and are thus being in-
creasingly researched in recent years. Often referred to as ”artificial atoms”,
these systems feature sharp energy levels and are dominated by charging ef-
fects and quantum confinement. The most prominent, possible future use of
quantum dots (QDOT), is as qubits used to perform quantum computation
with the spin of the confined electron acting as the fundamental two-level
system for information processing. In another popular research area, spin-
tronic, QDOTs are manipulated to act as spin filters [50] or spin-blockades
[49]. The most advanced QDOTs are based on heterostructures of GaAS and
AlGaAs [51] while we will henceforth focus on graphene as a host material.

Electrostatically confining massless Dirac fermions —present in graphene
— is usually quite challenging due to Klein tunneling [52]. In the case
of graphene one usually has to etch desired structures (e.g. via e-beam
lithography) or employ electric displacement fields which can be used to
open band gaps in bilayer graphene. While the success of the first method
is heavily influenced by edge roughness and the chemical nature of these
edges (which mostly results in unintended charge localization or undesirable
scattering processes) the latter is restricted by how well the localization
can be tweaked. Additionally, the idea of spin qubits in graphene requires
controlled lifting of the valley degeneracy.

An alternative way (proposed in [16,17,18] ) is to use a combination of a
homogeneous magnetic and an electric confinement field.

En = sgn(n)
√

2~ev2F |B||n| n ∈ Z (2.74)

While the magnetic field ensures Landau quantization (with the energy levels
given above, see Appendix A for a concise derivation of relativistic Landau
levels present in graphene), the electric field (typically induced via an STM
tip) is used to induce confinement in the gaps between the bulk Landau levels
thus completely circumventing any edge roughness altogether. The STM tip
locally shifts the energy levels relative to the Landau levels (LL), see Fig.
2.4.

The detailed geometry of the tip determines its electrostatic potential and
thus the form and energy of the induced quantum dot (QDOT) orbitals.
We derive the specific shape of the confinement potential Vtip(~r) by solving a
classical Poisson equation which is described in more detail in the supporting
information of [1].
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2.5. Edgeless Quantum Dots

The energy splitting of the QDOT states is usually about one order of magni-
tude smaller than the first and largest Landau level gap (∆E ≈ 100meV for
B ≈ 7T). Orbital splittings ∆O

j (approx. 5− 10meV) separate these QDOT
states. Taking both real spin and pseudo spin (sublattice degree of freedom)
into account, each orbital will be fourfold degenerate in graphene. While any
form of substrate interaction could in principle lead to finite valley splitting
∆k

j , the homogeneous magnetic field creating the Landau quantization leads
to a spin splitting ∆σ (Zeeman) in the order of 800µeV.

Figure 2.4.: a) schematic setup of STM tip and graphene flake, b) creation
of the confinement within the first Landau gap

From an experimental viewpoint this setup is quite elegant as the STM
tip cannot only be used to create the QDOT but also to measure its level
spectrum to be measured.
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2. Theory and Method

Figure 2.5.: Diagrammatical explanation of probing energy levels via a charg-
ing sequence. a) Energy vs tip-potential with the ”emerging”
QDOT states (three solid blue lines) and the three Landau levels
closest to the Fermi energy (dashed partially transparent blue
lines). b) Electrical charge within the QDOT vs tip potential
and the differential tunnel current with peaks at the point where
a QDOT level crosses EF in a).

Let us briefly outline the process. Some of the, in theory perfectly degenerate,
LLn states (the ones which are spatially close to the STM tip, Fig. 2.5 only
focuses on the LL+1 states) begin to lower their energy once the tip voltage,
Vtip, is slowly switched on. Increasing Vtip shifts these emerging QDOT states
energetically downwards. Whenever one such level then crosses the Fermi
energy of our graphene flake the QDOT is charged (or discharged if Vtip is
reduced) as an additional electron tunnels from the tip into the QDOT.

For this to happen any additional electron must overcome both the sin-
gle particle energy spacings and the electrostatic repulsion of all the other
electrons already present within the QDOT. This sudden increase of the
Hartree energy for all states shifts additional local density of states from
quasi-continuous bulk LLs into the energy window of µgraphene − µtip, which
in turn increases the tunneling current I. The addition energy spectrum
of the QDOT can thus be deduced (including charging effects such as the
Coulomb blockade) by investigating peaks in the differential tunneling cur-
rent dI/dVtip, see Fig. 2.5.
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2.5. Edgeless Quantum Dots

2.5.1. Why graphene?

Despite the various challenges encountered when investigating graphene quan-
tum dots there is vast potential which upholds research interest in the recent
past. As mentioned earlier, an arry of QDOTs combined with tunable coher-
ent coupling equals a universal quantum computer. Graphene offers improve-
ments for both of the main properties of an ideal qubit: easy manipulation
and weak coupling to the environment. Most single spin qubit operations in-
volve manipulating via electron spin resonance (ESR). The Rabi frequency
of this process is given by fRabi =

gµBB
2h

and thus proportional to the electron
spin g-facto, which is material specific. Compared to GaAs, graphene offers
a five times larger g-factor, promising faster manipulation which is crucial
for fault-tolerant quantum computing.

Since carbon is a light element (Z = 6) we expect weak spin-orbit interaction.
While this argumentation alone is not sufficient in solids — where inversion
asymmetry plays a critical role — the hopefully small ripples in graphene will
most likely not suffice to introduce significant spin-orbit coupling. Carbon
also comes in only two stable isotopes (12C dominating resources up to 99%
and 13C). The hyperfine interaction with nuclear spins will also be negligi-
ble since only 13C features non zero nuclear spin (1

2
). Important quantities

describing the stability of our qubit are the spin relaxation time (spin-orbit
coupling weak but finite) and the spin decoherence time (real spin qubit),
both of which will likely be larger in graphene. We can thus reasonably pro-
pose that graphene is in theory an excellent host material for future QDOT
applications.
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2. Theory and Method

2.6. Lattice Defects of graphene

As most realistic materials are not pristine and will inevitably have some
imperfections with respect to their lattice structure, this section is intended
to briefly familiarize with the most common lattice defects of single layer
graphene, as these are in our case intended and a major part of this thesis.
Recent development has led to great improvements in sample processing
which allows for graphene flakes with very low defect concentration. The
overall idea of this project is to use lattice defects in graphene to actively
induce valley splitting ∆k

j in an edge-free QDOT located in their vicinity.
Focusing only on at least metastable, static defects we can categorize them
in two classes:

I) Imperfections which keep the number of carbon atoms unchanged and
only shift them in position.

Two defects of this category, whose interplay with a nearby QDOT will be
investigated in this thesis, are the so called flower defect (24 carbon atoms
rotated 60 degrees, see Fig. 2.6a) and the Stone Wales defect (2 carbon
atoms rotated 90 degrees, see Fig. 2.6b).

Figure 2.6.: Sketches of lattice defects in graphene (type I) with the relevant
displaced carbon atoms colored in orange. a) flower defect b)
Stone Wales defect.

II) Imperfections that locally remove, substitute or add any sort of atom
to the system.

The most prominent defects in this category include double- (two neighbour-
ing C atoms missing) and single- (single C atom missing) vacancy defects,
see Fig. 2.7. One possible substitution defect is to replace one C atom with
a Si atom, in short the ”Si substitution” (Fig. 2.7b).
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2.7. Embedding Scheme

Figure 2.7.: Sketches of lattice defects in graphene (type II) with the carbon
atoms in the vicinity of vacancies colored in orange and substi-
tuted atoms colored green. a) double vacancy defect b) silicium
substitution defect c) single vacancy defect.

2.7. Embedding Scheme

In order to calculate properties of our QDOT as a function of position (rel-
ative to the defect center) we are inevitably forced to treat the total system
within a tight binding description. The sheer size of the QDOT (approx.
30-40nm in diameter) simply excludes anything more intricate (DFT, etc.).
Implementing defects within a pristine ”tight binding graphene flake” (ap-
prox. 120nm × 100nm in size) can be done in several ways, two of which we
shall examine more closely.

The poor man’s approach to tight binding defects is to stay entirely on the
tight binding level of theory and simply locally adjust on-site and hopping
terms based on an educated guess. Since any such guessing is destined to be
incorrect we think that this approach is only valid for vacancies (in our case
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2. Theory and Method

double- and single vacancy). Vacancies are in zeroth order approximated by
setting the on-site energy of the respective ”vacant” sites absurdly high (for
example 100.000eV) thereby reducing any hopping to or from those sites to
zero. This ”simple” embedding scheme is useful as a reference model for
more involved defect treatments.

A next step in accuracy is to model the defect in DFT. Since we utilize the
VASP package [39-42] (which uses a plain wave basis set) we are restricted
to periodic unit cells. We remove two atoms from such a pristine DFT cell (6
× 6 graphene irreducible unit cells ≡ ”DFT cell”) before starting geometry
optimization. Since starting from high-symmetry configuration often causes
the geometry optimization algorithm to get stuck in local energy minima we
slightly shift the initial positions of the atoms close to the defect to break
any metastable configurations and allow for faster convergence. Geometry
relaxation of the atomic positions (edges of the DFT cell fixed) is performed
before the system is accurately converged electronically. Such a DFT cell is
pictured in Fig. 2.5.

Figure 2.8.: Periodic DFT cell used for the double defect with atoms close
to the defect color coded in red.

We then use wannier90 [6,7,8] to extract maximally localized Wannier func-
tions in real space and conveniently calculate tight-binding parameters at
the same time. The final embedding step is to replace the respective entries
of a pristine graphene Hamiltonian with the on-site and hopping parameters
achieved via Wannierization (granted the pristine flake features the same
number of NN as the defect, in our case ten neighbours). All the defects
used in this thesis (except for the single vacancy defect) have been provided
in ”wannierized form” by Lukas Linhart.
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2.7. Embedding Scheme

If a ten NN description of the total system is not feasible (e.g. electronic
transport through large scale structures) one can make use of the curtain
approach of L. Linhart et. al. [9] which tries to smoothly transition from
a ten NN defect region to a three NN pristine environment by surrounding
the defect with various ”curtains” that sequentially utilize less NN.

2.7.1. Re-enforcing symmetries

Embedding a defect in the previously defined manner — by simply replacing
elements in the Hamiltonian — is quite obviously a simplified approxima-
tion. It is, however, still possible to improve the description by making clever
use of symmetries. In almost all cases a defect does not break all symme-
tries of the pristine lattice but leaves a few of them intact. It turns out our
DFT-Wannier-TB process has room for improvement regarding those. The
restriction to periodic super cells on the DFT level means that almost all
defects suffer (to some degree) symmetry breaking. For example, the double
vacancy defect is in principle perfectly mirror symmetric regarding its ver-
tical and horizontal axes. The DFT cell however is not (due to its required
periodicity). This results in tight binding parameters that do not satisfy the
symmetries of the original defect. While the degree of symmetry breaking
varies for the specific defect under consideration we encountered imbalances
of onsite parameter values of about 1 − 5meV as well as symmetry related
1st and 2nd NN hopping terms that, on average, differ by 10−30meV. While
this magnitude is probably not enough to raise real concerns about the super
cell description used, we still came up with a very fast and simple way to
improve the description, even if only by a small margin.

Figure 2.9.: a) Symmetry expanded, ”wannierized” super cell with added
atoms colored blue and defect vicinity in red as guide to the eye.
b) Four pairs of symmetry equivalent atoms (different shades of
green) used for the averaging in the symmetrization process.
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2. Theory and Method

We go on to reimpose the original symmetries to our ”wannierized” defect.
To do that we first add additional atoms (depictured in blue color in Fig.
2.9a) whose interactions we copy from already existing atom pairs of the
same symmetry. The second part of the symmetrization sees all other atom
pairs of the same symmetry (example of four such pairs pictured in Fig. 2.9b)
assigned an average value of their respective interactions. We thus reestablish
the inherent symmetries of our defect and also increase the average spatial
distance between defect center and bulk description which is quite impressive,
given the simplicity of the procedure.
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3. Results

After recapitulating the DFT-wannierization process for the single vacancy
defect, we calculate the change in level spacing of the six lowest QDOT states
as a function of the distance to the defect center for various defects. Investi-
gating transition dynamics of our system via a state-of-the-art Magnus time
propagation algorithm allows for a comparison with analytic predictions of
Landau Zener theory. Lastly we try to combine defects in certain configu-
rations to precisely tailor the size of avoided crossings in the level spacing
landscape.

3.1. Parametrization of the single vacancy

defect (DFT)

One of the main ambitions of this thesis is to add the single vacancy defect
to our ”portfolio” of wannierized defects. A single vacancy is one of the most
common defects in any crystal structure. In graphene, the ”removal” of a
C atom causes the system to undergo bond reconstruction [36, 37] (in the
form of a Jahn-Teller distortion). Two of the three atoms neighbouring the
vacancy form a complete σ − π bond, whereas the remaining atom is left
with both a dangling σ and a dangling π bond. There remains some discord
about whether or not the structure stays flat or if the latter of the three
atoms is moved out of plane. Both results have been acquired theoretically
and seem very close in total energy.

Since this defect is experimentally known to carry a magnetic moment [33,
35, 37] we will have to perform a spin polarized DFT calculation. We choose
a 6×6 DFT supercell with one C atom removed (Fig. 3.1). This is a reason-
able compromise between numerical feasibility while trying to keep spurious
defect-defect interaction, introduced by the periodic boundary conditions,
minimal. Using a 6×6 SC, that is one of the (3n × 3n) symmetric family,
causes the K and K ′ points to fold back onto the Γ point of the SC Brillouin
zone. This is beneficial by allowing us to pre-converge with a ”Γ-only” VASP
calculation and use the acquired density as a starting point for a subsequent
calculation sampling the Brillouin zone with a 3×3×1 Monkhorst k-grid,
thereby hopefully saving some computation time.

33

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


3. Results

Figure 3.1.: DFT super cell used for the single vacancy. Atoms next to
the vacancy colored orange and atoms kept fixed during the
geoemtry optimization depicted in blue. Green arrows indicate
initial displacement to break trigonal symmetry.

Insights of an impressively thorough investigation of the magnetic moment
of such a single vacancy [11] suggest that standard DFT, using local approx-
imations of exchange-correlation functionals, is not well suited to describe
the transition of delocalized π-states (pristine graphene) to localized defect
states (C atom removed) due to its erroneous self-interaction. We therefore
choose a hybrid functional composed of the PBE functional (Perdew-Burke-
Ernzerhof) and a fraction of Hartree-Fock exchange (α = 0.25). As can be
expected this method drastically increases overall computation times.

We first perform geometry optimization via the Hellman-Feynman theorem
with the edge atoms of our SC fixed. As mentioned before we do so in two
steps with an initial calculation involving only the Γ point before continuing
with a 3×3×1 Monkhorst k-grid. We slightly break all relevant symmetries
(move some atoms out of plane, break trifold angular symmetry) in the de-
fect region to avoid getting stuck in a metastable configuration. Breaking
the trifold symmetry distinctly and limiting the position change in between
each electronic convergence cycle (POTIM parameter in VASP) proved the
safest way to end at the supposedly ”correct reconstruction” with a mag-
netic moment of 2 µB. Future steps include the wannierization of the single
vacancy and introducing a tight binding formalism that includes physical
spin to investigate the magnetic properties of this defect in various setups
(e.g. quantum transport, etc.).
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3.2. Level-spacing landscapes / QDOT states

3.2. Level-spacing landscapes / QDOT states

Having not yet successfully ”wannierized” the single vacancy in the process
outlined in the previous section we still have a multitude of graphene lattice
defects usable on the tight-binding level of theory. As concisely outlined in
chapter 2.5 we will now calculate the lowest eigenstates as of our edgeless
QDOT (as well as their level spacings) in various set ups (defect type, dis-
tance to defect, direction of approach).

Figure 3.2.: Schematic depiction of the system under consideration.
Graphene flake as a grey rectangle with open boundary con-
ditions on all four sides indicated via black lines and fading grey
colour. Center of the structure marked by red rhombus with the
approximate size of the STM tip potential as semi-transparent
blue circle.

Our system for this calculation consists of a graphene flake (that will initially
be pristine, approx. 120nm × 100nm) with open boundary conditions on all
four sides (Fig. 3.2). The center of the tip potential coincides with the center
of our rectangular flake.We include a homogeneous magnetic field (7 Tesla)
perpendicular to the flake via a Peier’s phase. Due to our wannierized defects
(10th NN wannierized) which will eventually be embedded into the center,
the entire flake uses a 10th next-neighbour tight-binding description.
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3. Results

We choose to do so since initial testing revealed the eigenstates to be quite
sensitive to any form of boxing or ”curtaining” [9] which would allow us to
use a 3rd-NN description for the bulk. In order to determine the level spacing
of our QDOT in a way akin to an experimental realization we calculate the
eigenvalue spectrum of our system for varying magnitude of our STM tip
potential Vtip.
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Figure 3.3.: top) real part of the eigenvalue spectrum for varying magnitudes
of Vtip. bottom) same as top) but now only displaying positive
real part values whose corresponding imaginary part is below a
predefined threshold.
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3.2. Level-spacing landscapes / QDOT states

Fig. 3.3 shows a section of the real parts of the eigenvalue spectrum for
varying magnitude of the tip potential (charging sequence in the experiment).
We can clearly determine the Landau levels as the darker sections formed
by massive aggregation of almost perfectly degenerate states (note a shifted
Dirac point in our tight binding parameters, LL0 not at zero energy).

These Landau level energies are the ”starting point” for lines of eigenvalues
decreasing with increasing Vtip. As outlined in chapter 2.5 these are the LL-
states localized near the center of the STM potential well that start to confine
and change into the ”QDOT states”. Introducing the Fermi energy of our
system at zero (EFermi := 0) means that extracting the roots of these lines
(more precisely the points at which they cut the Fermi energy) will be enough
to determine their orbital splitting ∆O

j and valley splitting ∆k
j . At some point

all of these lines will have the same slope and the seemingly random choice
for EFermi will only introduce an arbitrary shift of our values but leave the
relative spacing unchanged. The open boundaries mentioned in the previous
paragraph will now merely act as a tool to elegantly separate the sloping
lines (confined states → low imaginary part of the eigenenergy) from the
”noise” in the background (delocalized bulk-states → high imaginary part
of the eigenenergy), see Fig. 3.3b. We will restrict ourselves to investigating
the lowest six QDOT states — that is the first two orbital splittings ∆O

j and
the first three valley splittings ∆k

j — as they stem from the first LL and
seem to remain ”isolated” from the diving lines originating from the second
LL. Past this point interpreting the densely spaced sequence of QDOT states
can become quite challenging.

Since the valley splitting ∆k
j for the pristine system essentially vanishes we

ensure clean numerical separation by adding an on-site energy of 1meV with
different sign for each sublattice (A,B) to the entire flake which allows us to
separation the almost degenerate pairs in a reproducible manner.

Embedding a defect into the center of our graphene flake (red rhombus in Fig.
3.2) leaves our method unchanged and allows us to investigate the influence
of said defect on both orbital- (∆O

j ) and valley splitting (∆k
j ) of our QDOT.

We can now go a step further and choose to position our tip potential slightly
offset from the defect center. This allows us to study the influence of defect-
QDOT distance on said level splittings and will reveal any ”directionality”
of our defects, as we can displace our QDOT in different directions (we focus
on zigzag and armchair direction due to simplicity).

One very straightforward test to somewhat estimate the quality of our em-
bedding scheme is to plot the onsite energies for the section of our graphene
flake where we embedded the respective defect (see Fig. 3.4). This reveals
that the geometrically small defects (double vacancy, Si substitution) meet
the bulk value of the onsite energy (approx. 0.28eV) quite well at the borders
of their DFT super cell while the flower defect (even though using an 8×8
DFT super cell to accommodate the larger footprint) would need an even
larger super cell to smoothly transition to the bulk level. Even though our
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3. Results

symmetrization procedure has already improved this, whether or to what
extent this discrepancy warrants further investigation — in the form of re-
calculating the DFT solution with a differently sized super cell — for this
defect is hard to discern.

Figure 3.4.: Onsite energies of the graphene flake section where the cor-
responding defect has been embedded. Mind the different
max/min values for the respective color scales (the bulk level
of 0.28 has been kept green for all defects). top left) double
vacancy defect, top right) flower defect, bottom left) Si sub-
stitution, bottom right) Stone Wales defect.

Further analysis in the form of plotting the hopping terms (from 1st- to
10th- NN) could provide more insight but is not attempted here (benefit-cost
estimates point against recalculating the flower defect using a larger DFT
supercell). The Stone Wales defect shows evidence of its trapezoidal super
cell. It is however again quite hard to give an error estimate and decide
whether or not a quadratic super cell (as used for all other defects) would
have resulted in a less obtrusive embedding pattern for the onsite terms.
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3.2. Level-spacing landscapes / QDOT states

3.2.1. Pristine graphene

Applying the aforementioned procedure without embedding a defect yields
the addition energy spectrum of the QDOT in pristine graphene. As shown
in [1, 38] the eigenstates of bulk LL in pristine graphene are of the form:

|ΨK
N 〉 = |Ψ|N |−1〉 ⊗ |⇓〉+ |Ψ|N |〉 ⊗ |⇑〉 (3.1)

|ΨK′

N 〉 = |Ψ|N |〉 ⊗ |⇓〉+ |Ψ|N |−1〉 ⊗ |⇑〉 (3.2)

Where |⇑〉 / |⇓〉 represent the sublattices A / B respectively, while K/K ′ de-
note the two inequivalent valleys of graphene. We mention that for nonzero
LL indices (N 6= 0) the indices on the respective sublattices differ by one
while for N = 0 the part indexed with |N | − 1 simply vanishes. The electro-
static tip potential features radial symmetry and thus suggests a description
via radial (nr ∈ N0) and angular (m ∈ Z) quantum numbers for the modified
QDOT states. A possible adiabatic mapping from LL index N to allowed
combinations of nr and m is given in [1, 53].
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Figure 3.5.: Level spacing of the six lowest QDOT eigenstates depending
on the distance of QDOT and flake center (pristine, no defect!)
in x-directiono. Levels alternately color coded in red/blue for
visibility.
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3. Results

As can be expected from this we find ”degenerate” pairs of QDOT states
whose level spacings (∆O

j and ∆k
j ) do not depend on the position relative to

the flake center (Fig. 3.5).

Figure 3.6.: Probability density of the first six QDOT states along with the
densities present on each sublattice plotted in two smaller boxes
stacked vertically to the right of each total density plot (see
pictorial description at the top of the plot). Order: (top left)
- P1, (top right) - P2, (center left) - P3, (center right) - P4,
(bottom left) - P5, (bottom right) - P6, with P* indicating a
Pristine state.
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3.2. Level-spacing landscapes / QDOT states

As can be seen in Fig. 3.6, we clearly find the eigenstate properties of (3.1,
3.2) with the degenerate pairs (horizontal) differ only by switching their
respective sublattice projections (two smaller depictions at the righthand
side of each of the six subplots). While the two lower pairs stay almost
perfectly spherical we can identify some ”trigonal” warping for state five and
six (bottom of Fig. 3.6) representing the lattice symmetries of graphene.

3.2.2. Stone Wales defect

Embedding a defect into the center of our graphene flake we investigate the
dependence of the level spacing (orbital ∆O

j and valley ∆k
j ) on the distance

and direction of the QDOT displacement (relative to the defect center).
Since we can now take our pristine QDOT states as reference we can al-
ways use the projection | 〈Ψdefect |Ψpristine〉 |2 to characterize the change of
the wave function together with a change in level spacing. This projection
will henceforth be included in our level spacing plots via color coding. A
concise explanation of this projection is attempted in Fig. 3.7.

Figure 3.7.: Schematic explanation of the projection scheme used to de-
termine the change of the defect QDOT states by projecting
them onto the lower of the respective pristine QDOT state pair
(| 〈D1 |P1〉 |2, | 〈D2 |P1〉 |2, ...).
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3. Results

Since the Stone Wales defect essentially represents two neighbouring atoms
rotated 90 degrees — that is it removes no atoms and can be viewed as a
very localized lattice distortion to the pristine lattice — we expect small
level splittings and general likeness to the pristine states.

Figure 3.8.: Probability density of the first six QDOT states along with the
densities present on each sublattice plotted in two smaller boxes
stacked vertically to the right of each total density plot . Order:
(top left) - D1, (top right) - D2, (center left) - D3, (center right)
- D4, (bottom left) - D5, (bottom right) - D6, with D* indicating
a Defect state.

Inspecting the QDOT states with the defect at its centre (Fig. 3.8) reveals
states not unlike the ones of the pristine system with the only difference
being very localized density accumulations at the defect site. Unlike prior
defects we see no clear splitting of the valley-degenerate pairs (1st-2nd, 3rd-
4th, 5th-6th) into more-localized and less-localized defect states.
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3.2. Level-spacing landscapes / QDOT states
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Figure 3.9.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in top)
x-direction and bottom) y-direction. Color coding represents
the ”K-projection” (see detailed explanation in the beginning
of this section) onto the corresponding QDOT state of pristine
graphene (| 〈Ψdefect |Ψpristine〉 |2)
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3. Results

As can be seen in Fig. 3.9 our initial expectations are met quite well. In
fact the defect is so weak that the ”pristine ordering” (blue on top of red,
caused by our A/B separation) remains unchanged for all positions. While
orbital splitting ∆O

j remains essentially unchanged for all relative positions,
valley splitting in the order of 1-2meV can be found for all three orbitals at
distances ranging from 1.5nm to 12nm.

There is however a clear difference in the QDOT state character (color scale
in Fig. 3.23, explained on p. 35). While traversing in x direction causes
a unitary rotation of the pristine states within the valley subspace (green
color in Fig. 3.9) for QDOT-defect distances between 2nm and 11nm (which
ultimately do not change the pristine ordering, blue on top of red), traversing
in y direction shows very narrow mixing regions at 1nm and 11.5nm only for
the two lowest levels and keeps the four higher levels unchanged (no green
regions and blue on top of red for all positions).
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Figure 3.10.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in both x
and y direction

Since the Stone Wales defect is far from spherical we expect some form of
directionality regarding its level splitting. The magnitudes of both orbital-
and valley-splitting however do not seem to be very different when traversing
in y (armchair) direction instead of in x (zigzag) direction (Fig. 3.10).
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3.2. Level-spacing landscapes / QDOT states

3.2.3. Si substitution

The Si substitution meets initial expectations of it being a rather ”weak”
defect quite well. In contrast to most other defects we feel hard pressed to
see clear localization at the defect site. A very tight zoom would reveal some
increase in density at the defect, resulting in a trigonal shape (respecting the
trigonal symmetry of the defect).

Figure 3.11.: Probability density of the first six QDOT states along with
the densities present on each sublattice plotted in two smaller
boxes stacked vertically to the right of each total density plot
. Order: (top left) - D1, (top right) - D2, (center left) - D3,
(center right) - D4, (bottom left) - D5, (bottom right) - D6,
with D* indicating a Defect state.

We find a surprisingly strong similarity between the QDOT states of the Si
substitution defect and their pristine counter parts (see Fig. 3.11). Valley
splitting ∆k

j caused by the Si defect is similar to the Stone Wales defect
in the order of 1-2meV. This once again suggests that the degree in which
the sublattice degree of freedom is broken (Si substitution sees only one
sublattice change a C atom in a Si atom) does not directly result in a large
valley splittings.
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3. Results
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Figure 3.12.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in top)
x-direction and bottom) y-direction. Color coding represents
the ”K-projection” (see detailed explanation in the beginning
of this section) onto the corresponding QDOT state of pristine
graphene (| 〈Ψdefect |Ψpristine〉 |2)
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3.2. Level-spacing landscapes / QDOT states

We again find that all states remain ”pristine” at distance zero despite hav-
ing density on the defect site. The most noticeable feature (regardless of
displacement direction) is the relatively wide green region for the 5th and 6th

state occuring when the defect traverses the wide density maximum of those
states (Fig. 3.12).
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Figure 3.13.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in both x
and y direction

Similar to the Stone Wales defect, comparing x and y direction in Fig. 3.13
reveals the level splittings to be identical. This time however Fig. 3.12 also
suggests that the projection (color scaling) is also identical.

3.2.4. Single vacancy defect

Since the DFT calculation of the single vacancy defect proved to be much
more time consuming (not to mention computationally demanding) than
initially expected (see section 3.1) we do not yet have a correctly converged
wannierized tight binding description for this defect. However in contrast
to Stone Wales defect and Si substitution the single vacancy allows us to
implement a poor man’s description by setting the onsite energy of a specific
lattice place to arbitrarily high values while setting all hopping to the site
to zero. Results of this description can be used as a reference for the ”full”
defect description used in future calculations.
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3. Results

simple single vacancy defect

The simple variant of the single vacancy displays somewhat different prop-
erties to most other defects. While we usually found the valley pair to split
(∆k

j ) into an energetically lower state that is highly localized around the de-
fect site and an energetically higher one with much less density at the defect,
the situation appears inverted for the single vacancy (Fig. 3.14). The states
that localize around the defect feature higher energy.

Figure 3.14.: Probability density of the first six QDOT states along with
the densities present on each sublattice plotted in two smaller
boxes stacked vertically to the right of each total density plot
. Order: (top left) - D1, (top right) - D2, (center left) - D3,
(center right) - D4, (bottom left) - D5, (bottom right) - D6,
with D* indicating a Defect state.

More generally the valley splitting (∆k
j ) seems to act very asymmetric, with

the energy of the ultimately lower state almost unchanged (Fig. 3.15). This
appears to reflect that we break the sublattice symmetry in an uneven way by
effectively removing an atom of only one sublattice. We again find no clear
correlation between valley splitting (∆k

j ) and the character of the associated
states (color scale of the pristine projection in Fig. 3.15).
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3.2. Level-spacing landscapes / QDOT states
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Figure 3.15.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in top)
x-direction and bottom) y-direction. Color coding represents
the ”K-projection” (see detailed explanation in the beginning
of this section) onto the corresponding QDOT state of pristine
graphene (| 〈Ψdefect |Ψpristine〉 |2)
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3. Results

While the density distribution of the states themselves remains mostly pris-
tine (blue/red color scale) — even with the QDOT right on top of the defect
— we still encounter a sizable (asymmetric) valley splitting ∆k

j (approx. 3-
5meV) for the four lowest QDOT states. While such a splitting is not present
for the 5th and 6th states (as with all other defects due to a lack of density at
the origin), the 3rd and 4th states remain noticeably split up to a distance of
about 9nm and the 1st and 2nd level reach their effectively pristine splitting
only for QDOT-defect distances greater than 18nm. We also find various
avoided crossings that connect regions of different valley ordering (red →
blue / blue → red) along both zigzag (x) and armchair (y) directions.
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Figure 3.16.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in both x
and y direction

We calculate almost identical level spacing landscapes for both traversing
directions as can be expected from a highly point symmetric defect type
(Fig. 3.16).
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3.2. Level-spacing landscapes / QDOT states

3.2.5. double vacancy defect

Contrary to initial expectations the double defect seems to be a very ”strong”
type of defect and appears to break the valley degeneracy in a peculiar way.
Despite affecting both sublattices equally (both lack one C atom) we see
large, asymmetric valley splittings ∆k

j (approx. 8-13meV) when the QDOT
is on top of the defect with wave functions that appear to be almost perfect
admixtures of the pristine states (green color coding in Fig. 3.8 and Fig.
3.9). Unlike all the previous defects the double vacancy causes not only a
unitary rotation in the initially degenerate valley subspace but also leaves
this subspace to a significant degree. The sum of squared projections does

not add up to 1 (|〈Ψ(k)
defect|Ψ

(k)
pristine〉|2 + |〈Ψ(k′)

defect|Ψ
(k)
pristine〉|2 6= 1). For some

positions this sum gives a value as low as 0.75. This is also apparent in Fig
3.17 by the different (and not complimentary) shades of green within the
respective valley subspaces at all those positions that exhibit strong defect
localization and hence strong valley splitting. This stems from the fact that
our pristine QDOT states are no longer a sufficient basis to describe the
strong localization caused by this defect type.
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Figure 3.17.: Level spacing of the six lowest QDOT eigenstates depend-
ing on the relative distance of QDOT and defect center in
x-direction. Color coding represents the ”K-projection”
(see detailed explanation in the beginning of this section)
onto the corresponding QDOT state of pristine graphene
(| 〈Ψdefect |Ψpristine〉 |2)
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3. Results

This pronounced level splitting at zero distance is much weaker for the 3rd

and 4th states while state five and state six are very akin to the pristine
counter part and virtually degenerate. Understanding this is most simply
done via Fig. 3.18 where we again plot the density of the first six QDOT
states (at distance zero). Similar to the pristine system we see no density at
the center for states five and six. These states are thus incapable of detecting
the lattice defect and stay ”pristine” in character, as they have for all defect
types investigated.

Figure 3.18.: Probability density of the first six QDOT states along with
the densities present on each sublattice plotted in two smaller
boxes stacked vertically to the right of each total density plot
. Order: (top left) - D1, (top right) - D2, (center left) - D3,
(center right) - D4, (bottom left) - D5, (bottom right) - D6,
with D* indicating a Defect state.

We also observe that for each ”valley pair” the lower of the two states seems
to strongly localize on the defect and exhibits an interesting segregation
in real space when plotting only the density on the respective sublattice
A/B (Fig. 3.18). This segregation (level 1 plotted in the top left of Fig.
3.18: sublattice A → south orientation, sublattice B → north orientation)

remains unchanged when inverting the sign of ~B. It is also present for the
less localized states, albeit in a much less pronounced form.
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3.2. Level-spacing landscapes / QDOT states

Displacing the QDOT potential in x-direction reveals a profound stability of
the observed valley mixing. States five and six quickly start to populate the
defect site with density and are thus also subject to increasing valley splitting
∆k

j . This mixing/splitting holds for quite some distance for all six states.
The lowest two and thus spatially narrowest states begin to slowly fall back
to their pristine character at a distance of about 180Å. The higher states
which are larger in real space will return to their pristine state at slightly
larger distances which we chose not calculate with this setup due to possible
interplay of our QDOT steadily approaching the ”open” flake border.
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Figure 3.19.: Level spacing of the six lowest QDOT eigenstates depend-
ing on the relative distance of QDOT and defect center in
y-direction. Color coding represents the ”K-projection”
(see detailed explanation in the beginning of this section)
onto the corresponding QDOT state of pristine graphene
(| 〈Ψdefect |Ψpristine〉 |2)

Displacement in y direction renders quite a different picture (Fig. 3.19). Due
to the north/south weighted sublattice segregation discussed in the second
last paragraph the expected symmetry (+y direction equivalent to −y direc-
tion) is not fully realized. While the valley splitting ∆k

j itself seems to respect
this symmetry, the character of the associated states is vastly different when
displacing the QDOT a certain distance in +y or −y direction.
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3. Results

Moving the QDOT in −y direction sees the admixture (for 1st-2nd states) fall
back to pristine character after only about 50Å while displacement in +y di-
rection sees them become ”inverted pristine” for about 150Å before the total
defect influence subsides and reveals pristine states in the ”correct order”.
Looking at the higher state pairs (3rd-4th, 5th-6th) reveals similar behaviour
albeit more avoided crossings are present before permanently reaching ”cor-
rect pristine” character. This directionality of the double defect which entails
fairly opposite behaviour for the +y and −y direction in combination with
a pretty stable admixing for the x direction makes it one of the ”strongest”
and most interesting defects we have investigated so far. Dropping the color
coding for the level separation plots and combining x and y direction yields
Fig. 3.20. Despite the drastically different character of the associated states
we see little difference for the level separation acquired in the different di-
rections. However, compared to Si substitution, Stone Wales defect and
single vacancy which all feature point symmetry these marginal differences
are comparatively large.
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Figure 3.20.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in both x
and y direction

Simple double vacancy defect

As a sort of consistency check we can perform the very same calculations for
the poor man’s description of the double defect (setting the on-site energy
of two adjacent atoms to ridiculously large values while putting all hopping
terms to those sites to zero).
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3.2. Level-spacing landscapes / QDOT states

As displayed through Fig. 3.12 and 3.13 we see a quantitative change for
the valley splitting ∆k

j which is in general much lower for the simple defect
description. The associated states again display enhanced localization on the
defect site for the lower of the valley state pairs and again exhibit a much less
pronounced north/south segregation in the sublattice density plots (overall
defect now smaller → harder to discern without close zoom). Qualitatively
we see good agreement for the level spacing plots in both x and y direction
with the number and position of avoided crossings matching those of the
”full” defect description.

Figure 3.21.: Probability density of the first six QDOT states along with
the densities present on each sublattice plotted in two smaller
boxes stacked vertically to the right of each total density plot
. Order: (top left) - D1, (top right) - D2, (center left) - D3,
(center right) - D4, (bottom left) - D5, (bottom right) - D6,
with D* indicating a Defect state.

We notice that the valley splitting ∆k
j is not only smaller for the poor

man’s description (approx. 3-4meV) but also much more symmetric. The
localization effects of this description seem to be suppressed as well since
the color scale remains complementary for all positions in both directions

(|〈Ψ(k)
defect|Ψ

(k)
pristine〉|2 + |〈Ψ(k′)

defect|Ψ
(k)
pristine〉|2 ≈ 1).
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3. Results
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Figure 3.22.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in top)
x-direction and bottom) y-direction. Color coding represents
the ”K-projection” (see detailed explanation in the beginning
of this section) onto the corresponding QDOT state of pristine
graphene (| 〈Ψdefect |Ψpristine〉 |2)
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3.2. Level-spacing landscapes / QDOT states

3.2.6. Flower defect

The flower defect has sixfold rotational symmetry which is represented in
the respective QDOT states in the form of a star-like density pattern at
the defect. We again find the energetically lower states to localize more
strongly. At distance zero the four lower states are equal mixtures of the
pristine counterparts while the highest two again lack the necessary density
on the defect site and remain pristine.

Figure 3.23.: Probability density of the first six QDOT states along with
the densities present on each sublattice plotted in two smaller
boxes stacked vertically to the right of each total density plot
. Order: (top left) - D1, (top right) - D2, (center left) - D3,
(center right) - D4, (bottom left) - D5, (bottom right) - D6,
with D* indicating a Defect state.

Projection of the density onto each sublattice (Fig. 3.23) reveals a decom-
position of the six-fold pattern into two trifold patterns rotated 60◦ against
each other. This however does not lead to the surprising symmetry breaking
found with the double defect. The valley splitting in +y and −y direction is
now perfectly symmetric in both its value and the character of the associated
QDOT states (projection onto pristine states → color coding).
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3. Results
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Figure 3.24.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in top)
x-direction and bottom) y-direction. Color coding represents
the ”K-projection” (see detailed explanation in the beginning
of this section) onto the corresponding QDOT state of pristine
graphene (| 〈Ψdefect |Ψpristine〉 |2)
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3.2. Level-spacing landscapes / QDOT states

Compared to the double defect we now encounter a valley splitting ∆k
j much

more symmetric with respect to the degenerate pristine energy levels while
the total magnitude of the splitting is of the same order of magnitude (ap-
prox. 5-7meV). Both displacement direction show much more pronounced
avoided crossings. Those avoided crossings are of different nature this time
since they are more naturally viewed as crossings of defect-mixed states that
briefly demix into pristine character (the double defect in y direction featured
comparatively more pristine like regions (red/blue) with only brief mixing
regions (green)).

Interestingly enough it stands out that a green mixing region for this de-
fect connects two regions of the same pristine ordering (blue on top of red)
(Fig. 3.24) while the double defect in y direction always saw green regions
”causing” an inversion of red and blue states (Fig. 3.19).
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Figure 3.25.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in both x
and y direction

Omitting the projection color scale for the level spacing plots it becomes very
apparent that the sixfold rotational symmetry of the flower defect means that
displacing in x or y direction makes virtually no difference to the observed
spacing (Fig. 3.25).
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3. Results

3.2.7. Defect comparison

Comparing the level spacing landscapes of the various defects (Fig. 3.26)
proves our initial expectations conceived from geometrical properties of the
defects (overall size, expected degree of breaking the sublattice symmetry,
type I) or II) classification). The flower defect, despite being spatially largest,
causes relatively large valley splitting ∆k

j , the double vacancy however still
surpasses it significantly. Since removing atoms can be interpreted as a much
stronger perturbation to the lattice than simply changing their positions,
this seems plausible. It also suggests that removing two adjacent atoms
(that means constituents of different sublattices) does in no way break the
sublattice symmetry any less. Orbital splittings ∆O

j are essentially unaffected
by the presence of lattice defects. These are primarily defined by the specific
choice of electrostatic confinement potential.
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Figure 3.26.: QDOT-defect distance dependent level spacing for the four
types of defects which allowed for a symmetrized DFT em-
bedding scheme.

The Si substitution also shows very little level spacing, since Si is very simi-
lar to C and thus introduces little perturbation. Since the substitution only
affects one sublattice we find an asymmetric valley splitting ∆k

j . This asym-
metry, however, is still much smaller than that introduced by removing two
C atoms (double vacancy) which is somewhat counterintuitive. The Stone
Wales defect is kindred to the flower defect (almost rigidly rotating a certain
region of the original lattice) but shows smaller valley splitting due to its
overall smaller size.
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3.2. Level-spacing landscapes / QDOT states

3.2.8. Influence of correlated disorder

Aiming to be predictive for experimental realization we investigate the influ-
ence of long range disorder, which will most definitely be present (be it from
specific substrates or other external sources) in an experimental setup.

Figure 3.27.: Total potential of the graphene flake (embedded defect + STM
tip + correlated disorder) with left column) varying ampli-
tude and right column) varying correlation length. Mind the
cutoff for the disorder near the system edges to keep the open
boundary conditions fully unscathed.
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3. Results

We choose to recalculate the level spacing landscapes for both double vacancy
in x direction (which displayed long range mixing of the pristine states)
and for the flower defect in x direction (which featured pronounced avoided
crossings), this time including a long range disorder potential with varying
amplitude and correlation length (Fig. 3.27). To avoid messing with our
”localized states filter” (open boundary conditions give all the states not
localized at the defect an increased imaginary part to their eigenenergies) we
omit applying our disorder potential on the outskirts of our graphene flake
(with measurements Wx ×Wy ) by a applying a proper weighting function
(3.3) that introduces a smooth cut off towards the flake boundaries (also
visible in Fig. 3.27). Assessing possible changes will tell us how resilient to
disorder our QDOT-defect properties will be in an actual experiment.

f(x, y) =
1

1 + e
(0.1Wx−x)

8 + e
(x−0.9Wx)

8

× 1

1 + e
(0.1Wy−y)

8 + e
(y−0.9Wy)

8

(3.3)
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Figure 3.28.: Level spacing landscape of the double vacancy defect for vary-
ing disorder potential amplitude of 0 eV (green), 4 meV (red)
and 10 meV (blue), (lcorr = 8.8nm fixed).

Fig. 3.28 presents the results for the level spacing of the double vacancy
traversed in x direction for varying the amplitude (

√

〈V 2
dis〉) of the correlated

disorder. It appears as though the disorder merely shifts the QDOT levels
locally without affecting valley splittings ∆k

j .
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3.2. Level-spacing landscapes / QDOT states

Once the disorder is sufficiently strong, the loss of the mirror symmetry
of the original setup is reflected by the QDOT levels no longer starting
horizontally at zero QDOT-defect distance. Adding the projection onto the
corresponding pristine QDOT states (that is pristine without disorder) as
has been introduced on p. 41, as a color scale, gives Fig. 3.29. While
the overall appearance seems similar for all disorder strengths we see that
the pristine character (blue on top of red) of levels five and six is lost with
disorder strengths of 4meV and above.

level spacing landscape (double vacancy) varying disorder strength √(<V
dis

2
>)
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Figure 3.29.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in x direc-
tion for various amplitudes of the disorder potential top left)
√

〈V 2
dis〉 = 0meV, top right)

√

〈V 2
dis〉 = 0.2meV, bottom

left)
√

〈V 2
dis〉 = 4meV, bottom right)

√

〈V 2
dis〉 = 10meV.

Color coding represents the ”K-projection” (see detailed expla-
nation in the beginning of this section) onto the corresponding
QDOT state of pristine graphene (| 〈Ψdefect |Ψpristine〉 |2)

Since we established that the prominent mixing property of the double va-
cancy defect in x direction is resilient to various amplitudes of disorder we
now want to determine whether the pronounced avoided crossings of the
flower defect are less stable with respect to correlated disorder. At first
glance (Fig. 3.30) we again see merely locally shifted QDOT levels. Closer
inspection however reveals that while still present, the avoided crossings have
also been shifted horizontally.
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3. Results

This is a direct consequence of the QDOT state preferably populating the
disorder valleys which simply deforms it and causes the defect site to pass
through high density regions somewhat sooner (or possibly later for a differ-
ent disorder potential).

Similar to the double defect we see very robust wavefunction character (color
scale in Fig. 3.31). This time however the pristine character of level five and
six (for QDOT-defect distance zero) remains unchanged even for a disorder
potential of up to 10meV.
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level spacing landscape (fower defect, X direction) 
 

 for different disorder amplitudes √(<V2
dis
>)

0
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0.01

Figure 3.30.: Level spacing landscape of the flower defect for varying disorder
potential amplitude of 0 eV (green), 4 meV (red) and 10 meV
(blue), (lcorr = 8.8nm fixed).

Next we investigate the influence of varying the correlation length lcorr of the
disorder potential, that is its characteristic length scale (see right column
of Fig. 3.27). While it is quite apparent that correlation lengths roughly
the size of our QDOT (FWHM ≈ 20nm) will only result in global shifts
of our energy levels without affecting the level splittings (see Fig. 3.33 top
left), shorter correlation lengths lead to different results. Since we are in

the Landau regime (| ~B| ≈ 7T), a second very important length scale for our
system is given by the magnetic length (3.4).

lB ≈ 25nm√
B

→ 9.4nm (3.4)
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3.2. Level-spacing landscapes / QDOT states

level spacing landscape (fower defect) varying disorder strength √(<V
dis

2
>)
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Figure 3.31.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center in x di-
rection for various amplitudes of the disorder potential top
left)

√

〈V 2
dis〉 = 0meV, bottom left)

√

〈V 2
dis〉 = 4meV, bot-

tom right)
√

〈V 2
dis〉 = 10meV. Color coding represents the

”K-projection” (see detailed explanation in the beginning of
this section) onto the corresponding QDOT state of pristine
graphene (| 〈Ψdefect |Ψpristine〉 |2).

Our largest investigated lcorr of 15nm, which is somewhat larger than the
magnetic length lB while still below the QDOT size, leads to almost no
changes in the valley splittings (top left in Fig. 3.33) and results in an almost
homogeneous shift of the levels for most positions. The nature of the states
is slightly affected with levels five and six again no longer pristine. Since
those states have virtually no density at their origin (without disorder) they
can not know that there is a double vacancy present. Introducing disorder
— and with it local puddles of density that fill its ”potential dips” — allows
for finite density at the origin which almost immediately causes these states
to rotate within their sub space (loosing the pristine character → green color
scale) because they are now aware of the vacancy.

The slight tendency of level three towards blue color scaling is merely an
artifact of the specific disorder generated. Since the correlation length under
consideration is now about the same size as the relevant features of the
QDOT states, enhancing or suppressing their characteristic shapes via the
disorder is, while chosen purely random, very plausible.
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3. Results

Reducing lcorr to 9nm, which is close to the magnetic length lb of our system,
we find slightly more variation of the position dependent level spacing since
the disorder now varies on a smaller scale. While the pristine character
of states five and six at position zero is again vacant we no longer see the
somewhat blue hue of state three, which shows that this feature was indeed
(most likely) specific to the previously used disorder realization.

level spacing landscape (double vacancy) varying correlation length l
corr
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Figure 3.32.: Level spacing of the six lowest QDOT eigenstates depending on
the relative distance of QDOT and defect center in x direction
for various correlation lengths lcorr of the disorder potential
top left) lcorr = 15nm, bottom left) lcorr = 9nm, bottom
left) lcorr = 5nm, bottom right) lcorr = 1.8nm. Color coding
represents the ”K-projection” (see detailed explanation in the
beginning of this section) onto the corresponding QDOT state
of pristine graphene (| 〈Ψdefect |Ψpristine〉 |2).

Going further and reducing lcorr well below the magnetic length (lB ≈ 9.4nm)
to 5nm and even 1.8nm (bottom plots of Fig. 3.32 and 3.33) reveals a very
general but still interesting property of our system. If the disorder varies on a
length scale much smaller than the magnetic length, our quantum mechanical
wavefunctions effectively average it away (since we implement symmetric
disorder, 〈Vdis〉 = 0).
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3.2. Level-spacing landscapes / QDOT states

Our system is thus inherently incapable of resolving the short scale variations
of the potential energy and behaves almost as though no disorder was present.
The changes in level spacing, while still present, are (especially for lcorr =
1.8nm) reminiscent of the almost global shifts of lcorr = 15nm (averaging
effect). We even recover the pristine character of states five and six (bottom
right of Fig. 3.32).

level spacing landscape (double vacancy) varying correlation length l
corr
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Figure 3.33.: Level spacing landscape of the double vacancy defect for vary-
ing disorder potential correlation lengths of top left) lcorr =
15nm, bottom left) lcorr = 9nm, bottom leftt) lcorr = 5nm,
bottom right) lcorr = 1.8nm.

√

〈V 2
dis〉 = 4meV fixed.

We conclude that both orbital ∆O
j and valley ∆k

j splittings as functions of
QDOT-defect distance are very robust against both long- and short-range
disorder of various amplitudes. Experimental realization of our calculations
should thus, at least in principle, not fail due to substrate induced disorder.
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3. Results

3.3. Transition dynamics

3.3.1. Landau Zener Formalism

Once we have deduced the QDOT orbitals of our QDOT-defect system for
a set of relative distances between QDOT and defect center we will have
acquired cuts through a set of two dimensional energy surfaces. With the
value for each distance coming from independent eigenvalue calculations this
represents the ”static” energy surface and is thus in principle identical to an
infinitely slow dynamical probing of this energy landscape.

Figure 3.34.: Typical avoided level crossing of a two level quantum system.
The red and green arrow represent the two possible transitions
when propagating a prepared state ”past” the crossing.

The next step will be to investigate transition dynamics in our system. Theo-
retically we can imagine moving the STM tip in the x,y-plane and thus move
our QDOT with a certain velocity ~v towards, from or around any present
defect along a trajectory of our choosing. Experimental realization of such
a thought experiment will inevitably have to rely on an array of electrical
gates that create and move our QDOT potential since an STM tip will be
restricted to very slow movement. One interesting phenomenon occurs at an
avoided level crossing.

Granted that our orbital splitting ∆O
j is large enough — compared to the

valley splitting ∆k
j — we can treat the system as an effective two level system

with a time dependent Hamiltonian. The stereotypical textbook form of such
an avoided level crossing in a two-level system (|↓〉, |↑〉) can be seen in Fig.
3.34.
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3.3. Transition dynamics

The Hamiltonian that describes this system can be written as:

H(t) =
1

2

[
αt ∆12

∆12 −αt

]

(3.5)

Starting at the lower of the two states, |↓〉, at a time far left of the crossing we
would now like to investigate how this state propagates ”past” the crossing.
In principle only two possible scenarios can happen (see Fig. 3.34):

I) ”adiabatic propagation”
(the system remains on the initial energy level)

II) ”diabatic transition”
(the system transitions onto the other energy level)

Landau Zener theory [19, 20] provides a formalism to calculate the probabil-
ity of these events. A very short derivation is given in the following. Plugging
the ansatz |Ψ(t)〉 := a1(t) |↑〉+ a2(t) |↓〉 into the time dependent Schrödinger
equation using the Hamiltonian in (3.5) gives two coupled equations for the
coefficients a1(t) and a2(t):

ȧ1(t) = − iαt

2
a1(t)−

i∆12

2
a2(t) (3.6)

ȧ2(t) =
iαt

2
a1(t)−

i∆12

2
a1(t) (3.7)

As we aim to find an expression for ( ȧ1
a1
) in the limit of large t, simply

decoupling the above equations yields a single equation that solely contains
a1(t).

ä1(t) = −
{ iα

2
+

∆2
12

4
+

α2t2

4

}

a1(t) (3.8)

At t → ∞, a1 should display constant modulus with the only time depen-
dence given by a complex phase. Using a1(t) := |a1|eiφ(t) gives:

{

− iφ̈(t)− φ̇2(t) +
iα

2
+

∆2
12

4
+

α2t2

4

}

a1(t) = 0 (3.9)

Separating this equation into real and imaginary parts we find the real part
to give:

φ̇(t) = ±1

2

√

∆2
12 + α2t2 ≈

︸︷︷︸
t→±∞

αt

2
(1 +

∆2
12

2α2t2
) (3.10)
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3. Results

It is now a common trick to assume that ( ȧ1
a1
) = −iφ̇ is well defined when

expanded onto the complex plane, thus allowing one to circumvent the exact
solution of a1(t) when deriving the Landau Zener formula.

Now we can identify the real integration with one along an infinite half circle
ĥc (z := Reiθ):

∫ ∞

−∞

ȧ1
a1

dt = −
∫

ĥc

ȧ1
a1

(z)dz (3.11)

ln
( a1(∞)

a1(−∞)

)

= i lim
R→∞

∫ ±π

0

( iαR2e2iθ

2
+

i∆2
12

4α

)

dθ (3.12)

ln
( a1(∞)

a1(−∞)

)

= ∓π∆2
12

4α
(3.13)

With this we have found a relation between a1(−∞) and a1(∞). For obvious
normalization reasons the physically meaningful sign in (3.13) is the negative
one. Assuming we begin with |a1(−∞)|2 = 1 we can now write the diabatic
transition probability PLZ as:

PLZ = e−
π∆2

12
2α (3.14)
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3.3. Transition dynamics

3.3.2. Controlling the adiabatic/diabatic transition

Having successfully calculated the static ”energy landscape” of an edgeless
QDOT in the vicinity of various defect types we would now like to investigate
the dynamic properties of such a system. By that we mean propagating an
initial state with a time dependent Hamiltonian that incorporates a QDOT
potential (from the STM tip) which moves across the graphene flake at var-
ious speeds. In regions where the valley splitting of our defects is small
compared to the orbital splitting of our QDOT we may argue to view it
(albeit in a rather crude approximation) as a two level system. Features of
particular interest are avoided crossings that allow for numerically studying
simple transition dynamics and (given the two level approximation) compar-
ing to analytical predictions of Landau Zener theory.
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Figure 3.35.: Zoom in of the y direction energy landscape for the double
defect. Close up view of the avoided crossing between 3rd and
4th QDOT state used for studying transition dynamics.

Let us focus on the barely recognizable avoided crossing of the double defect
system visible at a QDOT shift of about 90Å in −y direction. That this is
indeed an avoided crossing between the 3rd and 4th QDOT state becomes
clear through the color coding in Fig. 3.35. What we would like to achieve is
passing ”over” this particular crossing by starting with a ”pure” 3rd QDOT
state some distance away from it (taken from the static calculations), prop-
agating that very state with a time dependent QDOT potential that moves
past the crossing at different speeds and then check the composition of our
final state by projecting onto the static 3rd and 4th QDOT state.
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3. Results

According to Landau Zener theory we should find adiabatic behaviour for
slow speeds and an increasing probability for an adiabatic transition at higher
speeds. To elucidate this proposition we have to slightly adapt (3.14) for our

scenario. We substitute the temporal derivative by ∂(E4−E3)
∂t

≈ ∂y
∂t

∂(E4−E3)
∂y

=

v∂y(E4 − E3) and obtain:

PLZ = e
−

2π∆2
34

~v∂y(E4(y)−E3(y)) (3.15)

A closer look at our avoided crossing (Fig. 3.35) allows us to estimate ∆34

(≈ 5.6076 · 10−22J) as half the level separation at the crossing and the aver-
age slope of the level separation ∂y(E4 −E3) (≈ 2.0561 · 10−12J/m ). Those
parameters are all thats necessary to plot the expected diabatic transition
probability (3.15) as a function of v (blue line in Fig. 3.41). The applica-
tion of Landau Zener theory to our crossing might not be fully appropriate
because:

- Starting with one of the initially calculated ”static” states we will have to
smoothly and slowly accelerate ((3.16), see Fig. 3.36) our QDOT potential
(3.17) to minimize the leakage of probability into other eigenstates of the
system:
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Figure 3.36.: Velocity profile (3.16) used for smoothly accelerating our initial
QDOT state via a time dependent potential. Parameter a in
(3.16) allows for tuning of the acceleration in response to the
starting distance available for each calculation.

v(t) :=
(

1− 1

ea·t + 1

)2

(3.16)
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3.3. Transition dynamics

VSTM(x, y, t) → VSTM(~r − ~r0(t)) with ~r0(t) = ~r0 + ~v(t) (3.17)

- We will only be able to propagate a state over some limited distance with
the crossing somewhere in the middle (PLZ only assumes a single crossing
and gives probabilities for asymptotic limits).

- Keeping the acceleration as low as possible while ensuring that the region
of the avoided crossing is traversed with some nearly constant final veloc-
ity will require a long enough run-up distance. Getting the QDOT up to
speed is often limited by trying not to pass another avoided crossing when
accelerating towards the chosen avoided crossing.

- In contrast to our static calculations of the previous chapter the newly
developed time propagation code did (at the time of calculation) only feature
hermitian Hamiltonians, limiting us to hard boundaries. Given the size of
the QDOT, once the crossing was traversed we were most likely in a region
of the flake were reflection at these hard walls also deteriorates the validity
of our projection procedure.

- Using a very recently written time propagation code (by T. Jawecki and
T. Fabian based on [32]) that is not yet fully parallelized we are somewhat
limited in total simulation time. The choice of avoided crossing (double
defect, yshift = −90Å, 3rd and 4th level) turned out to be the only one where
both diabatic and adiabatic behaviour could be observed. If the crossing is
too narrow, the low speeds necessary for adiabaticity are computationally
out of reach whereas if the crossing is too large we lack enough runway to
smoothly get our QDOT up to the necessary speed for a diabatic transition
to occur (without interplaying with a neighbouring crossing).

- We reuse our static QDOT states investigated in the previous chapter to
project our dynamically propagated state onto and thus identify its change
of ”character” during propagation. Fig. 3.37 illuminates the kind of error
introduced in this process. While the strength of our STM potential is
varied for the identification of our level separation in the ”static case”, time
propagation sees our STM potential move along a given trajectory without
changing its magnitude. This means that instead of projecting on the static
states marked by the red crosses (Fig. 3.37) we should rather project onto
the states indicated by the green crosses (Fig. 3.37). Contrary to initial
expectations the red cross states (Fig. 3.37) work remarkably well too, which
can be explained by the state itself being less sensitive to the magnitude of
the potential. Projecting the red cross states onto each other reveals that
they are almost perfectly orthogonal. We thus conclude that the use of our
red cross states as the ”static states” constitutes valid approximation.
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3. Results

Figure 3.37.: Schematic illustration of different methods for identifying
QDOT states. a) red crosses mark states calculated for identi-
fying the level separation of the QDOT. b) green crosses repre-
senting eigenstates of the QDOT at a given constant magnitude
of the STM tip potential.

We now propagate our QDOT over the avoided crossing with different speeds
(Fig. 3.39). We can clearly see that while always starting with the same
initial state we end up with fairly different results once the crossing (at
y ≈ 90Å has effectively been passed. As we previously assessed, the 3rd

QDOT state is one that is very localized on the defect. We find that the
diabatic transition (large velocity, right column in Fig. 3.39) taking place
can be recognized by comparing the degree of localization at the defect site
for the initial and final states.

Another interesting aspect of this propagation (one that is quite hard to
visualize without a video) is that depending on the speed of motion the
QDOT does not move along a straight path but begins to slightly wobble
from left to right for increasing velocities. We know from previous work that
the honeycomb lattice of graphene makes for some ”preferred directions”
(Fig. 3.38) which often manifest themselves in either six or threefold patterns
when investigating scattering wavefunctions or (as in the previous chapter)
eigenstates of lattice defects. We thus propose that the wiggling motion of
our defect is due to the wavefunction ”trying” to follow these ”preferred
directions” while repeatedly being reflected by the QDOT well.
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3.3. Transition dynamics

With increasing speed the wavefunction gains more momentum and is thus
able to penetrate the QDOT potential further, causing a more pronounced
wiggling motion to occur (see Fig. 3.39).

Figure 3.38.: top) Energy landscape for the double defect in -y direction with
the initial QDOT-defect distance marked by the dashed pink
line. Solid pink circle and arrow highlight the starting point
and the direction of motion for our time propagation respec-
tively. bottom left) Electron density of the initial 3rd QDOT
state with pink arrow pointing in the direction of motion and
initial offset (in Å) highlighted. bottom right) Schematic de-
piction of the graphene lattice with sublattices in red and blue
and green arrows highlighting the ”preferred directions” of the
QDOT.
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3. Results

Figure 3.39.: Electron density of the initial QDOT state propagated with
three different velocities (columns). Time increases from top
to bottom resulting in five ”snapshots” at comparable posi-
tions (given in Å) for each of the velocities (rows). The wig-
gling motion encountered at high speeds is reflected in the lack
of mirror symmetry with respect to the vertical axis at the
rightmost column.
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3.3. Transition dynamics

In order to get a numerical estimate for the diabatic transition probabil-
ity we proceed to calculate the squared overlap of the dynamically propa-
gated wavefunction and the static states obtained in the previous chapter,
〈”dyn”|”stat”〉. For the 3rd and 4th static state (”S3”, ”S4”) we obtain results
plotted in Fig. 3.40. Given that our avoided crossing is not very isolated
from its neighbouring crossings and our limited starting distance for get-
ting the QDOT up to speed we find excellent agreement with Landau Zener
theory. Increasing the traversing speed clearly promotes the likelihood for
diabatic change.

projection of 3
rd

 double state propagated past an avoided crossing 
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Figure 3.40.: Projection of an initial state dynamically propagated past an
avoided crossing at a defect distance of about 90 (x-axis) (ini-
tially 3rd QDOT state with double defect present) onto the 3rd

(red) and 4th (blue) static QDOT states at the respective po-
sition in time. The six subplots correspond to different speeds
of QDOT motion.

If we take the value of the blue lines in Fig. 3.40, that is the diabatic pro-
jection projection | 〈D3|S4〉 |2, once its value seems to have converged we
have an estimate of the diabatic transition probability. Fig 3.41 compares
our numeric values (green crosses) with the prediction of Landau Zener the-
ory. We appear to have made quite a lucky guess for estimating the slope
parameter of our crossing as the agreement seems almost too good given all
the approximations involved.
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3. Results

While there is indeed some wiggle room to estimate the slopes of pathological
avoided crossings such as ours we find that the form of the Landau Zener
probability deviates from our simulation results (Fig. 3.41). This is most
likely due to the fact that the wiggling motion of our QDOT becomes more
pronounced with increasing speeds (thus artificially altering the projection
value).
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Figure 3.41.: Comparison of the diabatic transition probability as a func-
tion of traversing speed, (green crosses) calculated from the
projection data acquired in the time propagation (rightmost
value of the blue lines in the previous figure, Fig. 3.5), (blue
line) represents the Landau Zener diabatic transition prob-

ability PLZ(v) = e
−

2π∆2
34

~v∂E34 with parameters for level splitting
and average slope estimated for this particular avoided cross-
ing (double defect, QDOT shifted in −y direction about 90Å).

Regardless of the above mentioned error sources which undoubtedly leave
vast room for improvement we were able to investigate the dependence of
the diabatic transition probability on the traversing speed of our QDOT
potential and qualitatively reproduce the results of Landau Zener theory.
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3.4. Defect-defect interaction

3.4. Defect-defect interaction

Motivated by our tedious search for a suitable avoided crossing for our tran-
sition dynamics investigation we would now like to try and specifically tailor
a level spacing landscape by combining several defects at chosen distances
from each other. Since the number of possible parameters seemingly explodes
with the added degrees of freedom (x, y distance) for every added defect we
will focus on two vertically stacked double vacancies. We do so since the
pronounced directionality of this defect indicates possibly rich effects while
only combining two defects.

The limitations of such a defect array description are manyfold. Similar to
embedding single defects we have to keep in mind that our DFT description
with a periodic supercell will most likely include defect-defect interactions
with its periodic images if our super cell is not sufficiently large. While one
might think that embedding two defects in some vicinity of each other could
benefit from these shortcomings, such an assumption can only hold for two
identical defects positioned akin to the periodicity of our super cell descrip-
tion. Using a number of different defects in some complex arrangement will
inevitably suffer from multiple such description errors.

3.4.1. Two double-vacancies vertically stacked

Figure 3.42.: Schematic depiction of the system under consideration.
Graphene flake as a grey rectangle with open boundary con-
ditions on all four sides indicated via black lines and fading
grey colour. Embedding sites of the two defects indicated by
red markers. Vertical defect distance marked as W .
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3. Results

Since for the time being we restrict ourselves to two identical double vacancy
defects stacked exactly vertically (y direction) with distances W of 17.5nm
and 22.5nm (see Fig. 3.42), we omit detailed investigation of the proximity
limits of our description. Due to the fact that the defect size (LEMB in Fig.
3.42) and the QDOT size (LDOT in Fig. 3.42) differ by about an order of
magnitude we can place the two defects at a distance W at which they can
essentially be viewed as two separately embedded defects.
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Figure 3.43.: Level spacing of the six lowest QDOT eigenstates depending on
the relative distance of QDOT and defect center for the cases
of a single defect embedded (grey / grey dashed) and two dou-
ble vacancy defects embedded with the color scale representing
| 〈Ψdefect |Ψpristine〉 |2. The defects are placed at a distance of
top) W = 17.5nm, bottom) W = 22.5nm.
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3.4. Defect-defect interaction

The size of our QDOT then allows the wavefunction to simultaneously inter-
act with both defect sites. As mentioned before, we would like to produce
avoided crossings in the level spacing landscape when traversing our QDOT
potential from defect center 1 to defect center 2. Our first calculation, pre-
sented in Fig. 3.43 (top) , shows the resulting level spacing landscape for two
double vacancies that are 175Å apart (blue) on top of the prior results with
only one defect embedded (black). We clearly succeeded in forming avoided
crossings which for levels 1,2,4 and 6 result are much smaller valley splitting
∆k

j (approx. 20-40meV) than for the single-defect-system. Contrary to that,
level 3 and 4 feature a slightly stronger splitting (approx. 60meV) in the
two-defect system.

Figure 3.44.: Schematic explanation for the independence of the sublattice
directionality (double vacancy) with respect to the specific em-
bedding site of choice.

Inspecting the corresponding density plots of our QDOT states (Fig. 3.45)
for both defects equidistant to the QDOT center shows other interesting
features. The sublattice-projected density (to the right of every large total
density plot) features the prominent directionality of the double vacancy.
Strikingly, this directionality is the same for both defect sites. However this
remarkable property is not specific to the particular embedding situation
as can be easily understood with Fig. 3.44. When removing the two C
atoms vertically (instead of the two other 120 deg inclined directions) we
will inevitably remove the same A/B configuration (that is, for our sublattice
counting, A on top of B) regardless of the specific pair chosen.
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3. Results

Recalculating these properties with the defects further apart (225Å) reveals
a different set of avoided crossings (Fig. 3.43 bottom). Naively one would
now expect narrower crossings throughout, since the average distance of
the QDOT to a defect is larger. While this assumption holds for the lowest
avoided crossings (1-2, 3-4), which are somewhat narrower, levels five and six
are now further apart. This can be understood when remembering the fact
that the higher states extend further towards the QDOT edge. Comparing
state six in Fig. 3.45 and Fig. 3.46 shows an, at first glance, reasonably
similar density distribution, however, focusing on the defect sites shows that
the state is much more localized on the defects for W = 175Å, which could
explain the decrease in energy and thus the reduced valley splitting.

Figure 3.45.: Probability density of the first six QDOT states (with the
QDOT potential centered between the two defect sites,W =
17.5nm) along with the densities present on each sublattice
plotted in two smaller boxes stacked vertically to the right of
each total density plot . Order: (top left) - D1, (top right) -
D2, (center left) - D3, (center right) - D4, (bottom left) - D5,
(bottom right) - D6, with D* indicating a Defect state.
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3.4. Defect-defect interaction

Figure 3.46.: Probability density of the first six QDOT states (with the
QDOT potential centered between the two defect sites, W =
22.5nm) along with the densities present on each sublattice
plotted in two smaller boxes stacked vertically to the right of
each total density plot. Order: (top left) - D1, (top right) -
D2, (center left) - D3, (center right) - D4, (bottom left) - D5,
(bottom right) - D6, with D* indicating a Defect state.

As condensed in Fig. 3.47, we have shown that it is — to some extent
— possible to tailor avoided crossings with specific widths by placing the
defects in different distances to each other. While such control is simple in
theory, experimental realization of a few well separated defects seems at least
plausible and makes for possible interesting future comparisons.
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3. Results
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Figure 3.47.: Comparison of the level spacing landscape for two vertically
stacked double vacancy defects embedded at distances W =
175Å (blue) and W = 225Å (red). Note that the x axis no
longer depicts actual distances but measures them relative to
the corresponding embedding distance W .

84

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


3.4. Defect-defect interaction

3.4.2. Two double-vacancies with relative rotation

While assuming somewhat controlled defect creation in an experimental
setup we cannot realistically expect to accurately control the orientation
of a directional defect type. That is we cannot control which of the three
possible directions (120◦ rotated to each other, see Fig. 3.48) for a double
vacancy will be realized at a specific site. If however there was a method
with adequate reproducibility one could consider the relative angle as an ad-
ditional parameter to influence the level spacing landscape. We briefly study
the effects of different embedding directions by rotating one of the double
vacancies by 120◦.

Figure 3.48.: Schematic depiction of the three possible directional (e1, e2,
e3) realizations of a double vacancy defect.

Examining the resulting level spacing landscape we find that this change of
direction for one of the defect sites leads to an asymmetric valleysplitting as
can be seen in Fig. 3.49. There is however a much more fundamental change
regarding the nature of our avoided crossings. This change appears to affect
the three orbital levels quite differently.
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3. Results

We can, in fact, no longer really speak of an avoided crossing between the 1st

and 2nd level for the rotated defect system since the nature of the respective
wavefunctions no longer changes at the point of smallest valley splitting —
as is the case for the unrotated system. By that we mean that the unro-
tated system abruptly swaps the ordering of the very pristine-like 1st and
2nd states at the halfway point between both defect sites. This happens
for both defect-defect distances W that were investigated but remains com-
pletely absent when one of the defects is rotated 120◦. The rotated system
has robust pristine-like states (1st and 2nd levels) with their ordering deter-
mined by the unrotated defect (compare Fig. 3.50 and Fig. 3.43, unrotated
defect always to the right). The influence of the rotated defect appears sup-
pressed and is thus incapable of causing an abrupt change in the respective
wavefunctions.
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level spacing landscape for two vertically stacked double vacancies 
 

 with different relative defect-defect orientation but same distance (17.5nm)
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Figure 3.49.: Comparison of the level spacing landscape for two vertically
stacked double vacancy defects embedded at distance W =
175Å.Blue line representing a system of equally oriented de-
fects. Orange line representing a system with one defect (left
side in plot) rotated 120◦.
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3.4. Defect-defect interaction

The position dependent valley splitting ∆k
j of the highest investigated orbital

(5th and 6th states) is significantly affected. The specific value at the halfway
point is about twice as large as that in the unrotated system and resembles
that of the larger defect-defect distance (Compare Fig. 3.50 and Fig. 3.47).
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Figure 3.50.: Level spacing of the six lowest QDOT eigenstates depending
on the relative distance of QDOT and defect center for the
cases of a single defect embedded (grey dashed) and two dou-
ble vacancy defects embedded with the color scale representing
| 〈Ψdefect |Ψpristine〉 |2. The defects are placed at a distance of
W = 17.5nm with the top-defect rotated 120◦ (left in plot).

Checking our embedding by plotting the probability density of the 1st QDOT
level for both systems (equally oriented defects, top defect rotated 120◦) we
can clearly identify the top defect to be rotated (Fig. 3.51). The promi-
nent directionality (north- / south- weighted projections on sublattices) acts
as handy indicator for the defect orientation. We also notice that the sec-
ond defect appears slightly more populated in the rotated system for both
QDOT positions depicted (QDOT center congruent with top-defect posi-
tion and QDOT center congruent with bottom-defect position) even though
the defect-defect distance W is identical (up to restrictions due to lattice
positions) in both systems.
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3. Results

Figure 3.51.: Probability density of the first QDOT state of the left col-
umn) system with equally oriented double vacancy defects
right column) system with two double vacancy defects ro-
tated 120◦ relative to each other. Both systems feature the
same defect-defect distance of W = 17.5nm. row 1) QDOT at
top-defect site, row 2) QDOT at bottom-defect site.

We thus conclude that both defect-defect distance W and the relative ori-
entation of the two double vacancies can in principle be used to actively
manipulate the general level spacing landscape as well as specifically change
the width (valley splitting ∆k

j ) of an avoided crossing. While experimental
realization of such precise control will be challenging, there is always the op-
tion to simply recreate the specific defect realization achieved in experiment
on a theoretic level.
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4. Summary & Outlook

We have succeeded in producing a converged DFT calculation of the single
vacancy defect. Vital insights from [11] and quite some computational effort
(Vienna Scientific Cluster) helped in converging to the experimentally ap-
proved reconstruction with a magnetic moment of 2µB.. Next steps involve
the wannierization of this DFT solution thus adding the single vacancy de-
fect to our portfolio of wannierized DFT defects thereby providing a ”tool”
for future utilization in tight binding calculations (e.g quantum transport,
spin scattering,...).

Improving embedding schemes (DFT→ wannier→ TB) for various graphene
lattice defects by enforcing original defect symmetries that were lost due to
the required periodicity of the DFT supercell and precise 10th next-neighbour
tight binding description throughout the system have proven critical for in-
vestigating the influence on the level spacing of an edgeless quantum dot in
the vicinity of any such lattice defect.

We calculated the change in level spacing when traversing the lattice defect
region with our QDOT potential in different directions. It is possible to
predict the effects of a certain defect type to some extent via its geometrical
properties (overall size, degree of sublattice symmetry breaking,...). We have
however also found interesting directionality effects which for certain defect
types (e.g. double vacancy defect) indicate that moving the QDOT away
from the defect site in either +y direction or -y direction inverts the ordering
within the (originally almost degenerate) sublattice subspaces.

Studying transition dynamics by smoothly accelerating the quantum dot in
a prepared state followed by dynamically traversing the defect site allowed
us to control the diabatic (or adiabatic) transition probability by tuning
the QDOT velocity. Comparison with two level Landau Zener theory yields
surprisingly good agreement, given the numerous approximations involved.

Lastly we tried tailoring an avoided crossing with a specific width by combin-
ing two double vacancy defects (aligned vertically at a distanceW ). Different
embedding distances W and embedding orientations showed somewhat in-
tuitive changes in the resulting width of the avoided crossing. Since the
number of possible parameters of such a defect array seemingly explodes
when considering already a handful of defects one might think of interesting
configurations to be investigated in future projects.
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3.38. top) Energy landscape for the double defect in -y direction
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pink line. Solid pink circle and arrow highlight the starting
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respectively. bottom left) Electron density of the initial 3rd
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Schematic depiction of the graphene lattice with sublattices
in red and blue and green arrows highlighting the ”preferred
directions” of the QDOT. . . . . . . . . . . . . . . . . . . . 75
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A. Relativistic Landau levels

The change in quantization for the energy of an electron moving through
a solid with a finite magnetic field applied is known as the formation of
Landau-levels. Since the dispersion relation of graphene, when restricted to
one of the Dirac cones, equals that of a massless Dirac fermion which can
be described via the Dirac equation, one can simply apply the formalism of
minimal coupling to this manifestly Lorentz-invariant equation to derive the
eigenenergies of the Landau levels.

Starting with a homogeneous magnetic field ~B in z-direction and a vector
potential ~A in Coulomb gauge (A.1).

~B :=





0
0
B



 ~∇ · ~A := 0 ~A = B





−y
0
0



 (A.1)

We insert this vector potential via minimal coupling in a Weyl equation
which is the simpler case of the Dirac equation for massless fermions that
only involves a two-dimensional spinor. Making use of the low dimensionality
of graphene, pz = 0, yields a system of two equations (A.2).

vFermi ·
(

~p− e

c
~A

)

· ~σ
︸ ︷︷ ︸

.

.

.

·
(
u
v

)

= E ·
(
u
v

)

(A.2)

.

.

.

︷ ︸︸ ︷









0
(
p̂x − e

c
Âx

)
− i
(
p̂y − e

c
Ây
︸︷︷︸

=0

)

(
p̂x − e

c
Âx

)
+ i
(
p̂y − e

c
Ây
︸︷︷︸

=0

)
0









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A. Relativistic Landau levels

Expressing the spinor component v in the lower line and inserting into the
upper one gives:

v2F ·
[

p̂x − ip̂y −
e

c
Âx

]

·
[

p̂x + ip̂y −
e

c
Âx

]

· u = E2 · u (A.3)

[

p̂2x + p̂2y + i
e

c

[
p̂y, Âx

]

−
︸ ︷︷ ︸

i~B

+
e2B2

c2
ŷ2 − 2

e

c
Bp̂xŷ

]

· u =
E2

v2F
︸︷︷︸
:=ǫ

·u (A.4)

[

p̂2y + p̂2x +
e2B2

c2
ŷ2 − 2

e

c
Bp̂xŷ

︸ ︷︷ ︸

e2B2

c2

(
ŷ− c

eB
p̂x

)2

]

· u =

[

ǫ+
eB~

c
︸︷︷︸

”energy shift”

]

︸ ︷︷ ︸

ǫ
′

·u (A.5)

Identifying a constant shift to the energy scale and completing the square
(A.5) results in an equation that can be interpreted as a harmonic oscillator
with the frequency ω (A.6) and thus delivers quantized eigenenergies (A.7)
which ultimately lead to the relativistic Landau levels of graphene:

[

p̂2y +
mω2

2
(ŷ − ŷ0)

2

]

u = ǫ
′

u with ω = 2
eB

c
(A.6)

ǫ′n = ~ω(n+
1

2
)

!
=

E2

v2F
+

~eB

c
(A.7)

En = vF · sgn(n)
√

2~e

c
|B||n| with n ∈ Z (A.8)

The linear dispersion relation of graphene, caused by its resemblance to the
Dirac equation for massless particles, leads to Landau levels with a square
root dependence on the magnetic field in contrast to ”ordinary” Landau
levels that linearly depend on B.
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