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Kurzfassung

Musik ist ein essenzieller Teil unserer Kultur und unseres Erbes. Durch die Jahrhunderte
wurden Millionen an Liedern komponiert und mittels Musiknotation auf Papier festgehal-
ten. Die optische Notenerkennung (engl. Optical Music Recognition, kurz OMR) ist das
Forschungsfeld, das untersucht, wie der Computer das Lesen von Musiknoten erlernen
kann. Trotz jahrzehntelanger Forschung, gilt die optische Notenerkennung bis heute
als alles andere als gelöst. Ein Grund hierfür ist die Tatsache, dass viele traditionelle
Ansätze auf Heuristiken beruhen, die sich nur schwer verallgemeinern lassen. Deshalb
schlage ich in dieser Arbeit einen anderen Weg vor, nämlich den Computer das Lesen von
Musiknoten selbstständig erlernen zu lassen, mittels maschinellem Lernen, insbesondere
Deep Learning.

In zahlreichen Experimenten konnte ich demonstrieren, dass der Computer unter Über-
wachung des Lernprozesses die meisten Herausforderungen der optischen Notenerkennung
robust erlernen kann. Zu diesen Herausforderungen zählen die Analyse der Dokumenten-
struktur, die Erkennung und Klassifikation von Symbolen, sowie die Konstruktion von
einem Musiknotationsgraphen, der als zwischenzeitliche Repräsentation fungiert, die in
ein passendes Format zur Weiterverarbeitung exportiert werden kann. Ein trainiertes
neuronales Netzwerk kann zuverlässig vorhersagen, ob ein Bild Noten enthält oder nicht,
während ein anderes imstande ist, den selben Takt in verschiedenen Ausgaben derselben
Musik zu finden und miteinander zu verknüpfen, sodass man bequem zwischen diesen hin
und her navigieren kann. Die Erkennung von Symbolen in gesetzten und handgeschrie-
benen Noten kann ebenfalls erlernt werden, sofern man ausreichend annotierte Daten
zur Verfügung hat. Die Klassifikation der erkannten Symbole hat sogar eine niedrigere
Fehlerrate als die von Menschen. Für Noten, die in Mensurnotation verfasst wurden,
kann man die gesamte Erkennung in drei Schritte vereinfachen, wovon zwei mittels
maschinellem Lernen gelöst werden können.

Neben dem Verfassen von wissenschaftlichen Artikeln, habe ich auch die größte Sammlung
von Datensätzen für OMR zusammengetragen und dokumentiert, sowie die wahrscheinlich
umfangreichste Bibliographie, die derzeit verfügbar ist. Beide Sammlungen sind online
verfügbar. Desweiteren war ich an der Organisation des 1st International Workshop on
Reading Music Systems beteiligt, habe gemeinsam mit Kollegen ein Tutorial bei der
International Society For Music Information Retrieval Conference zum Thema optischer
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Notenerkennung gegeben, und ein weiterer Workshop bei der Music Encoding Conference
findet im Sommer 2019 statt.

Viele Herausforderungen der optischen Notenerkennung können mit Deep Learning effizi-
ent gelöst werden, wie die Analyse des Layouts oder die Erkennung von Musikobjekten.
Allerdings ist die Musiknotation ein strukturelles Schreibsystem, bei dem die Beziehungen
und das Zusammenspiel zwischen den einzelnen Objekten die Semantik bestimmen. Ein
Musiknotationgraph ist eine geeignete Datenstruktur um diese Information abzubilden
und erlaubt es klar zwischen zwei Dingen zu unterscheiden: der Rekonstruktion von
Informationen aus dem Bild und der Kodierung der rekonstruierten Information in
ein bestimmtes Format unter Berücksichtigung der Regeln der Musiknotation. So eine
Konstruktion eines Musiknotationsgraphen kann zwar erlernt werden, bleiben einige
Forschungsfragen offen. Ich bin zuversichtlich, dass das Trainieren des Computers auf
einem hinreichend großen Datensatz unter menschlicher Überwachung einen nachhal-
tigen Ansatz darstellt, mit dem man in Zukunft viele Anwendungsfälle der optischen
Notenerkennung lösen wird können.
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Abstract

Music is an essential part of our culture and heritage. Throughout the centuries, millions
of songs were composed and written down in documents using music notation. Optical
Music Recognition (OMR) is the research field that investigates how the computer can
learn to read those documents. Despite decades of research, OMR is still considered far
from being solved. One reason is that traditional approaches rely heavily on heuristics
and often do not generalize well. In this thesis, I propose a different approach to let
the computer learn to read music notation documents mostly by itself using machine
learning, especially deep learning.

In several experiments, I have demonstrated that the computer can learn to robustly
solve many tasks involved in OMR by using supervised learning. These include the
structural analysis of the document, the detection and classification of symbols in the
scores as well as the construction of the music notation graph, which is an intermediate
representation that can be exported into a format suitable for further processing. A
trained deep convolutional neural network can reliably detect whether an image contains
music or not, while another one is capable of finding and linking individual measures
across multiple sources for easy navigation between them. Detecting symbols in typeset
and handwritten scores can be learned, given a sufficient amount of annotated data, and
classifying isolated symbols can be performed at even lower error rates than those of
humans. For scores written in mensural notation the complete recognition can even be
simplified into just three steps, two of which can be solved with machine learning.

Apart from publishing a number of scientific articles, I have gathered and documented the
most extensive collection of datasets for OMR as well as the probably most comprehensive
bibliography currently available. Both are available online. Moreover I was involved in
the organization of the International Workshop on Reading Music Systems, in a joint
tutorial at the International Society For Music Information Retrieval Conference on OMR
as well as in another workshop at the Music Encoding Conference.

Many challenges of OMR can be solved efficiently with deep learning, such as the layout
analysis or music object detection. As music notation is a configurational writing system
where the relations and interplay between symbols determine the musical semantic,
these relationships have to be recognized as well. A music notation graph is a suitable
representation for storing this information. It allows to clearly distinguish between the
challenges involved in recovering information from the music score image and the encoding
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of the recovered information into a specific output format while complying with the rules
of music notation. While the construction of such a graph can be learned as well, there
are still many open issues that need future research. But I am confident that training
the computer on a sufficiently large dataset under human supervision is a sustainable
approach that will help to solve many applications of OMR in the future.
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CHAPTER 1
Introduction

“Music is the one incorporeal entrance into the higher world of knowledge
which comprehends mankind but which mankind cannot comprehend."

— Ludwig van Beethoven [Sul36]

Music, rhythm, and dance amounts to a universal language which is used and understood
worldwide. It existed long before spoken languages emerged. It is used to convey
information and emotions as well as to entertain us. Music manifests itself as sound
pressure waves that travel through the air. They are a temporal phenomenon that only
exists between the musician emitting it and the listener perceiving it. To preserve music
it either has to be reproduced by a musician or recorded in one way or the other. Long
before electricity was invented, people thought it worthwhile to preserve music in order
to reproduce it. They invented a language called music notation, which is an abstraction
that captures the essential bits of music. As with other languages, music notation evolved
over the centuries and emerged in many different forms.

Millions of pieces have been composed and written down through the centuries, and this
heritage still lives on and is actively extended by contemporary composers. It represents
an essential part of our culture. Unfortunately, we are not born with the ability to read
and understand music notation but acquire this skill by practicing it throughout our
life. Starting to read music notation is very challenging and presents a large obstacle for
beginners. Even experienced musicians are often surprised when they learn about yet
another aspect of music notation. The reason why music notation is so hard to learn is
its enormous complexity, imposed by the underlying information it tries to abstract and
capture music, which is virtually without limits.

The arguably most prominent music notation is called Common Western Music Notation
(CWMN) or Modern Staff Notation (see Fig. 1.1). It is a visual representation of the
musical parameters: pitch, duration, velocity, and timbre. The sequence of notes and
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1. Introduction

rests are described by specific glyphs within a reference system of (typically) five parallel
lines, called stave. The position on the y-axis represents the relative pitch while the x-axis
depicts the temporal sequence. Additional symbols can contain instructions regarding
velocity, timbre or the lyrics to be sung.

Figure 1.1: Excerpt from the waltz “An der schönen blauen Donau” by Johann Strauss,
Jr.

By following these instructions, musicians can comprehend the original ideas of the
composer, which enables them to reproduce the music—similar to books that can capture
ideas, facts, moods and the likes for others to learn about. However, due to the complexity
of the syntactic and semantic rules of CWMN, which requires years of practicing before
it can be mastered, a large portion of the population cannot read it. One possibility of
teaching them is by having a computer-assisted conversion of the written music scores
into an audible version of the same piece. This process of reading music notation and
automatically decoding it into a machine-readable format is the goal of Optical Music
Recognition (OMR). More precisely:

“Optical Music Recognition is the research field that investigates how to
computationally read music notation in documents.” [CZHjP19]

OMR has plenty of applications, including teaching students how to read music notation.
It can also be used to digitize handwritten manuscripts for restoration and publica-
tion, support musicological examinations of large bodies of music, or enable practical
applications such as providing accompanying voices while practicing a piece of music.

Follow me in this fictional story: imagine Lisa, a sixteen-year-old girl who loves music.
Recently she discovered her passion for rock music. She loves it so much that she decided
to pick up playing the guitar. She got a guitar from her parents for Christmas and took
a few classes but quickly got bored by the music her teacher wanted her to play. She
went on the internet and found a website that offers free scores of her favorite band in
tabulature notation that she quickly understood. After all, tabulature notation can be
much easier to read, since each line corresponds directly to one string on the guitar and
the number indicates the fret of that string (see Fig. 1.2).

While playing the music that she enjoys so much, she keeps on practicing, and her
skills improve considerably. One day, her favorite band releases a new song. Another
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Figure 1.2: First measures from the guitar riff of the song “Enter Sandman” by Metallica.

enthusiastic fan goes through the lengthy process of transcribing the entire song by ear
and publishes the scores on the same website shortly afterward. Unfortunately, it is
written in CWMN instead of tabulature. She grabs her smartphone and takes a picture
of the music score. That picture is processed by an OMR system that produces a digital
version of the scores that she can open in a music score editor. The editor supports her in
automatically converting the music into tabulature notation which she can comprehend.
After playing alone for half a year, she decides to join a band. But given her lack of
experience, she struggles to keep up with the other musicians. So she decides to practice
every day at home, but without the accompanying voices she does not really get in the
right mood for the music. So she grabs her smartphone again and takes a picture of
the full score with all voices of the band. The OMR system detects and reads all voices
and produces a digital version of the song that she can play along to, at a slower tempo.
After a while, she disables the guitar voice and just keeps the other voices to simulate
the presence of her bandmates while she keeps practicing.

Eventually, she learns how to read and write CWMN and composes her first song for the
band. She writes it down on a piece of paper (see Fig. 1.3).

Figure 1.3: The initial three measures of Lisa’s first composition for the piano.

However, Lisa is uncertain if she got everything right and how the song sounds when
played on the piano. Again, she picks up her smartphone, takes a photo of her handwritten
manuscript and runs the OMR application. While listening to the replay, she notices
that the digital version has some errors, so she quickly fixes them in her music notation
editor before creating the final version of a nicely rendered score that she hands over to
her band.

I hope this short fictional story demonstrates the potential of Optical Music Recognition
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1. Introduction

in helping musicians learning and practicing their art. It can even be useful in the
everyday life of professional musicians and composers. Completely new use-cases have
been invented in the last few years, such as a digital music stand that turns pages
automatically. The conductor can jump to a specific location in everyone’s music scores
at the same time without having to wait for them to turn their pages manually.

Despite some existing applications and a history of over 50 years of research, OMR is
still considered a wide-open challenge for everything except very simple music scores.
While there are a few commercial applications, they all have significant drawbacks and
are far away from products that can be used to digitize music scores robustly on a larger
scale. For example, a common wish of many musicians and librarians would be to have a
born-digital version of the International Music Score Library Project (IMSLP), which is
the largest collection of freely available music scores with over 460.000 scores. But instead
of using commercial products, initiatives like OpenScore [GJB+18] rather use humans
to digitize these scores manually. A similar approach is also used in many libraries,
as Laplante and colleagues learned from interviews with librarians [LF16]. While the
potential benefit is unquestioned, they still refrain from using OMR system because of
the high error rate.

So why is OMR still performing so poorly? There are a couple of reasons. Underestimating
the challenges is probably the most common one. Whenever someone joins the field, they
see some scores like the example in Fig. 1.4 and classify it a moderately difficult task.
It is only until they actually start building the system when they realize the number of
problems which the recognition entails.

Figure 1.4: A born-digital version of music scores, typeset by a music score editor and
without artifacts or degradations.

A (naive) computer scientist might see the score above and think: “There are always
five parallel lines, larger and smaller black dots with vertical lines going up or down and
several additional glyphs. This task of recognizing the symbols can be solved by running
a line-detector to find the horizontal staff lines which should be removed first. Then a
connected-component analysis can be applied to find the individual symbols. Finally, one
runs a few scan-lines and template matching algorithms to find the remaining symbols,
which should result in the recognition of everything in that image.” However, that is only
half of the story. First of all, scores more often look like Fig. 1.5. Or they might even be
handwritten, like Fig. 1.6.
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Figure 1.5: The same musical snippet as in Fig. 1.4, but degraded, as it can happen in
real-world scenarios: The stave is slightly slanted, the image is blurred and noisy due
to a poor image capturing process, and some straight lines are bent, which frequently
happens when making photos of scores that are bound in a book.

Figure 1.6: The same musical snippet as in Fig. 1.4, but handwritten on a tablet with a
stylus.

What can be learned from these examples is that the same scores might look very different,
although containing the same information: the stave lines might be skewed, or the image
quality so poor that it can be difficult to reliably count the number of flags attached to
grace-notes or distinguish an articulation dot from noise. Humans usually fill this gap
with their experience and prior knowledge about the rules of music notation. Given two
ways how to interpret a particular situation, they chose the one which makes more sense.

But even if we were able to devise a perfect algorithm for detecting everything in that
score, i.e. we know exactly which pixel belongs to which object and have the right class
information for each object (e.g., quarter rest, g-clef, or notehead), we would still only
be half-way through because unlike Optical Character Recognition (OCR) which tries
to read texts, OMR attempts to read music notation. And unlike text, music notation
is a configurational writing system. This means that the semantics of the primitives,
appearing in music scores are determined by their configuration, i.e. the position and
positional relationship to other primitives. In other words, the letter ‘a’ in the Word
‘Research’ remains an ‘a’, regardless of whether it is slightly shifted upwards or downwards,
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1. Introduction

whereas an ‘A’ in music scores becomes a ‘B’ when moving it a little bit up or a ‘G’ when
moving a little bit down (see Fig. 1.7).

Figure 1.7: The word ‘Research’ written three times with vertically shifted letters, which
always remains the word research, whereas the values of the three notes that are also
slightly shifted vertically represent three different notes with the pitches A, B, and G.

Apart from knowing the vertical position of a note within the reference-system of five
parallel lines, the pitch can furthermore be altered by the presence of accidentals before
that note, the clef at the beginning of the stave, the key signature as well as other symbols
that might appear in the music score. To illustrate this effect of how primitives interact
with each other, consider the snippet in Fig. 1.8.

Figure 1.8: Three quarter-notes appear in the second space from the top within the
reference system. The reference system’s origin is given by the G-Clef at the beginning,
which specifies the G to be on the second line from the bottom. So the first note
corresponds to a C, but with the given key-signature at the beginning which depicts two
sharps with one of them placed on the second space from the top, it makes the note
a C#. The second note has a local modifier that undoes this alteration from the key
signature, which makes the note a C. The third note has no local modifier, but the effect
of the local modifier from the second note is propagated to consecutive notes within the
measure, making it also a C. So even if the first and third note visually look exactly the
same, their semantics (pitch) is different.

As demonstrated, OMR requires more than just the recognition of the primitives, i.e.
something like the construction of a (notation) graph that holds the configuration of
the primitives and their relationships. And finally, the generation of music notation in
the desired machine-readable format, typically a standard for music exchange, such as
MIDI, MusicXML or MEI. Both tasks can become very complex when a system tries to
recognize and process more sophisticated scores.

OMR can also be seen as teaching the machine to read and understand music scores
to a certain extent. A task that certainly can be automated, as demonstrated by many
applications as early as 1985, with the Wabot-2 robot [MSH+85] reading music scores
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and playing them on an organ. Unfortunately, the robot was only capable of playing a
very limited number of songs. Likewise, many systems that were developed in the last
thirty years only worked well on the limited set of scores that were used during their
development. The reason is that the machines did not learn to read music scores, but
were given a set of rules and processing directives by their developers optimized to a
certain body of music. If a music sheet violates the assumptions that were weaved into
these rules or contained cases that were forgotten during development, the system breaks
down and propagates errors through the process. This state of affairs is not satisfying.
It would be preferable if an OMR system was more independent from the developer
and datasets. Ideally, the system would learn the rules of music by itself and be more
generalizable, extensible and robust. This brings us to the fundamental research question
of this thesis:

Can a machine learn to read music scores reliably?

Throughout the last few years I investigated this question from several perspectives and
tried to find ways of how I can teach the computer to learn reading music scores mostly by
itself. The central idea is to devise a data-driven approach that requires as little human
intervention as possible. The most suitable technology for this approach available today
is Machine Learning, especially Deep Learning, which has proven to provide superior
solutions to many image recognition problems among other things.

Given that developing an entire OMR system can be very complex, I decided to adapt
existing workflows and reformulate the individual steps to make them machine-learnable.
They are:

1. Detect and analyze the structure of the music score: This can be a simple decision,
whether there are scores in the image at all, or finding the positions of staffs and
measures, depending on the design of the following steps.

2. Find all objects in the music score: Music scores can contain hundreds of (tiny)
objects in a single image. This step is responsible for finding them and classifying
them accordingly. In computer vision, this task is called object detection, and its
goal is to retrieve the bounding boxes and class labels of all objects in an image.

3. Understanding the relationship between music objects: Once the individual objects
are found, their relationship has to be determined, and a notation graph can be
constructed that holds this information.

4. Exporting the notation graph into music notation: The complete notation graph is
still an abstraction that cannot be read by music notation editors or other programs.
It needs to be exported into a portable format to enable compatibility with these
editors.

Except for the last step, I investigated how to machine-learn them and published my
findings in the following articles.
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CHAPTER 2
Understanding Optical Music

Recognition

During the last two years, I worked closely together with several other researchers. Most
notably was my collaboration with Jorge Calvo-Zaragoza from the University of Alicante
and Jan Hajič jr. from the University of Prague. We co-authored several papers, and our
biggest venture was the paper “Understanding Optical Music Recognition” [CZHjP19].
It is currently under review as tutorial paper for the ACM Computing Survey series. It
discusses fundamental questions, such as: What is OMR? Why is it worth attempting?
What are the underlying challenges that make it into such a hard problem? What are
the outputs of OMR systems and how to classify existing research with regards to them?

To understand what OMR is, we collected and reviewed more than 200 papers that define
or talk about OMR in many different ways. We tried to put an umbrella over them by
proposing the following definition, which we hope will be adopted by future researchers:

Optical Music Recognition is the field of research that investigates how to computationally
read music notation in documents.

The second major contribution from this paper is an in-depth analysis of how OMR inverts
the music encoding process. We begin with the creation of a musical composition, how it
is conceptualized, and then materialized. We then show how OMR can be described as
the inversion of the encoding process.

Furthermore, we discuss how OMR relates to other fields, such as Text Recognition or
other Graphics Recognition challenges and what makes it particularly different from
them, including the complex typographical alignment of objects, the interactions between
objects and the extremely complex semantics, which can even be hard for humans to
interpret correctly.

9

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


2. Understanding Optical Music Recognition

Finally, we propose a comprehensive taxonomy of OMR inputs and outputs. We realized
that the complexity of OMR systems is directly related to the required level of compre-
hension of the document. We propose four categories, starting with document metadata
extraction that requires only limited comprehension up to structured encoding, which
not only tries to recover the musical content, but also the information on how it was
encoded.

We conclude the paper with a brief discussion of current approaches, but in contrast to
most survey papers, we do not discuss technical details. We also provide a list of open
issues and perspectives for future research.
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Understanding Optical Music Recognition

JORGE CALVO-ZARAGOZA∗, University of Alicante, Spain

JAN HAJIČ JR.∗, Charles University, Czech Republic

ALEXANDER PACHA∗, TU Wien, Austria

For over 50 years, researchers have been trying to teach computers to read music notation, referred to as
Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially
those without a significant musical background: few introductory materials are available, and furthermore the
field has struggled with defining itself and building a shared terminology. In this tutorial, we address these
shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing
how OMR inverts the music encoding process to recover the musical notation and the musical semantics
from documents, (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications.
Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional
pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives,
its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it
affords.

CCS Concepts: ·General and reference→ Surveys and overviews; · Information systems→Music re-
trieval; · Applied computing→ Document analysis; Graphics recognition and interpretation; Sound
and music computing; Digital libraries and archives.

Additional Key Words and Phrases: Optical Music Recognition, Music Notation, Music Scores
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Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha. 2019. Understanding Optical Music Recognition.
ACM Comput. Surv. 1, 1, Article 1 (January 2019), 50 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Music notation refers to a group of writing systems with which a wide range of music can be visually
encoded so that musicians can later perform it. In this way, it is an essential tool for preserving a
musical composition, facilitating permanence of the otherwise ephemeral phenomenon of music.
In a broad, intuitive sense, it works in the same way that written text may serve as a precursor
for speech. In the same way that Optical Character Recognition (OCR) technology has enabled
the automatic processing of written texts, reading music notation also invites automation. In an
analogy to OCR, the field of Optical Music Recognition (OMR) covers the automation of this task of
“readingž in the context of music. However, while musicians can read and interpret very complex
music scores even in real time, there is still no computer system that is capable of doing so with
success.
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1:2 Calvo-Zaragoza et al.

We argue that besides the technical challenges, one reason for this state of affairs is also that
OMR has not defined its goals with sufficient rigor to formulate its motivating applications clearly,
in terms of inputs and outputs. Work on OMR is thus fragmented, and it is difficult for a would-be
researcher, and even harder for external stakeholders such as librarians, musicologists, composers,
and musicians, to understand and follow up on the aggregated state of the art. The individual
contributions are formulated with relatively little regard to each other, although less than 500 works
on OMR have been published to date. This makes it hard to combine the numerous contributions
and use previous work from other researchers, leading to frequent “reinventions of the wheel.ž The
field, therefore, has been relatively opaque for newcomers, despite its clear, intuitive appeal.
One reason for the unsatisfactory state of affairs was a lack of practical OMR solutions: when

one is hard-pressed to solve basic subproblems like staff detection or symbol classification, it
seems far-fetched to define applications and chain subsystems. However, some of these traditional
OMR sub-steps, which do have a clear definition and evaluation methodologies, have recently
seen great progress, moving from the category of “hardž problems to “close to solved,ž or at least
clearly solvable [70, 118]. Therefore, the breadth of OMR applications that have long populated
merely the introductory sections of articles now comes within practical reach. As the field garners
more interest within the document recognition and music information retrieval communities
[1, 11, 34, 50, 78, 83, 92, 114, 135], we see further need to clarify how OMR talks about itself.
The primary contributions of this paper are to clearly define what OMR is, what problems it

seeks to solve and why. Readers should be able to fully understand what OMR is, even without
prior knowledge of music notation. OMR is, unfortunately, a somewhat opaque field due to the
fusion of the music-centric and document-centric perspectives. Even for researchers, it is difficult
to clearly relate their work to the field, as illustrated in Section 2.
Many authors also think of OMR as notoriously difficult to evaluate [84]. However, we show

that this clarity also disentangles OMR tasks which are genuinely hard to evaluate, such as full
re-typesetting of the score, from those where established methodologies can be applied straightfor-
wardly, such as searching scenarios.

Furthermore, the separation between music notation as a visual language and music as the
information it encodes is sometimes not made clear, which leads to a confusing terminology. The
way we formulate OMR should provide a framework of thought in which this distinction becomes
obvious.

In order to be a proper tutorial on OMR, this paper addresses certain shortcomings in the current
literature, specifically by providing:

• A robust definition of what OMR is, and a thorough analysis of its inherent structure;
• Terminological clarifications that should make the field more accessible and easier to survey;
• A review of OMR uses and applications; well-defined in terms of inputs and outputs, andÐas
much as possibleÐrecommended evaluation methodologies;

• A brief discussion of how OMR was traditionally approached and how modern machine
learning techniques (namely deep learning) affects current and future research;

• As supplementary material, an extensive, extensible, accessible and up-to-date bibliography
of OMR (see Appendix A: OMR Bibliography).1

The novelty of this paper thus lies in collecting and systematizing the fragments found in
the existing literature, all in order to make OMR more approachable, easier to collaborate on,
andÐhopefullyÐprogress faster.

1https://github.com/OMR-Research/omr-research.github.io

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Understanding Optical Music Recognition 1:3

2 WHAT IS OPTICAL MUSIC RECOGNITION?

So far, the literature onOMRdoes not really share a common definition ofwhat OMR is.Most authors
agree on some intuitive understanding, which can be sketched out as “computers reading music.ž
But until now, no rigorous analysis of this question has been carried out, as most of the literature
on the field focuses on providing solutionsÐor, more accurately, solutions to certain subproblems.
These solutions are usually justified by a certain envisioned application or by referencing a review
paper that elaborates on common motivations, with [132] being the most prominent one. However,
even these review papers [7, 22, 111, 132] focus almost exclusively on technical OMR solutions and
avoid elaborating the scope of the research.
A critical review of the scientific literature reveals a wide variety of definitions for OMR (see

Appendix B: List of OMR definitions and descriptions from published works) with two extremes:
On one end, the proposed definitions are clearly motivated by the (sub)problem which the authors
sought to solve (e.g., “transforming images of music scores into MIDI filesž) which leads to a
definition that is too narrow and does not capture the full spectrum of OMR. On the other end, there
are some definitions that are so generic that they fail to outline what OMR actually is and what it
tries to achieve. An obvious example would be to define OMR as “OCR for music.ž This definition is
overly vague, and the authors areÐas likewise in many other papersÐparticularly unspecific when
it comes to clarifying what it actually includes and what not. We have observed that the problem
statements and definitions in these papers are commonly adapted to fit the provided solution or to
demonstrate the relevance to a particular target audience, e.g., computer vision, music information
retrieval, document analysis, digital humanities, or artificial intelligence.
While people rely on their intuition to compensate for this lack of accuracy, we would rather

prefer to put an umbrella over OMR and name its essence by proposing the following definition.

Definition 1. Optical Music Recognition is a field of research that investigates how to computa-
tionally read music notation in documents.

The first claim of this definition is that OMR is a research field. In the published literature, many
authors refer to OMR as “taskž or “process,ž which is insufficient, as OMR cannot be properly
formalized in terms of unique inputs and outputs (as discussed in Section 6). OMR must, therefore,
be considered something bigger, like the embracing research field, which investigates how to
provide a computer with the ability to read music notation. Within this research field, several tasks
can be formulated with specific, unambiguous input/output pairs.

The term “computationallyž distinguishes OMR from the musicological and paleographic studies
of how to decode a particular notation system. It also excludes studying how humans read music.
OMR does not study the music notation systems themselvesÐrather, it builds upon this knowledge,
with the goal that a computer should be able to read the music notation as well.

The last part of the definition “reading music notation in documentsž tries to define OMR in a
concise, clear, specific, and inclusive way. To fully understand this part of the definition, the next
section clarifies what kind of information is captured in a music notation document and outlines the
process by which it gets generated. The subsequent section then elaborates on how OMR attempts
to invert this process to read and recover the encoded information.

It should be noted that the output of OMR is omitted intentionally from its definition, as different
tasks require different outputs (see Section 6) and specifying any particular output representation
would make the definition unnecessarily restrictive.

To conclude this section, Fig. 1 illustrates how various definitions of OMR in the literature relate
to our proposed definition and are captured by it. A full list of the formulations that have appeared
in OMR papers so far can be found in Appendix B: List of OMR definitions and descriptions from
published works.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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1:4 Calvo-Zaragoza et al.

field of research 

that investigates how to 

OMR is a/the 

computationally read music notation in documents 

into a/an 

 process 

 technique 

 algorithm 

 task 

 tool 

 challenge 

 discipline 

 program 

 system 

to [automatically] 

of [automatically] 

  music 

  music scores 

  score images 

  scores 

  manuscripts 

  music sheets 

  music documents 

  music notation 

  note information 

  musical information 

  music works 

 extract 

 transform 

 understand 

 translate 

 convert 

 recognize 

 read 

 detect 

 interpret 

 transcribe 

 decode 

 digitize 

 process 

 (re-)set 

 [handwritten] 

 [printed] 

 [pen-based] 

 [symbolic] 

 [scanned] 

 [paper-based] 

 machine-readable format 

 symbolic format 

 MIDI file 

 MusicXML file 

 symbolic representation 

 musical codes 

 editable form 

 symbolic music library 

 electronic format 

 symbolic notation format 

 digital representation 

 digital notation format 

Fig. 1. How OMR tends to be defined or described and how our proposed definition relates to them. For
example: łOMR is the challenge of (automatically) converting (handwritten) scores into a digital representa-
tion.ž

3 FROM “MUSIC” TO A DOCUMENT

Music can be conceptualized as a structure of notes in time. This is not necessarily the only way to
conceptualize music,2 but it is the only one that has a consistent, broadly accepted visual language
used to transmit it in writing, so it is the conceptualization we consider for the purposes of OMR.
A note is a musical object that is defined by four parameters: pitch, duration, loudness, and timbre.
Additionally, it has an onset: a placement onto the axis of time, which in music does not mean
wall-clock time, but is measured in relative units called beats.3 Periods of musical time during which
no note is supposed to be played are marked by rests, which only have an onset and a duration.
Notes and rests are grouped hierarchically into phrases, voices, and other musical units that can
have logical relationships to one another. This structure is a vital part of musicÐit is essential to
work it out for making a composition comprehensible.

In order to record this “conceptualization of musicž visually, for it to be performed over and
over in (roughly) the same way, at least at the relatively coarse level of notes, multiple music
notation systems have evolved. A music notation system is a visual language that encodes music
into a graphical form and enriches it with information on how to perform it (e.g., bowing marks,
fingerings or articulations).4 To do that, it defines a set of symbols as its alphabet and specific rules
for how to position these symbols to capture a musical idea. Note that all music notation systems
entail a certain loss of information as they are designed to preserve the most relevant properties

2As evidenced by either very early music (plainchant) or some later twentieth century compositional styles (mostly
spectralism).
3Musical time is projected onto wall-clock time with an underlying tempo, which can further be stretched and compressed
by the performer. Strictly speaking, the notion of beats might not be entirely applicable to some very early music and some
contemporary music, where the rhythmic pulse is not clearly defined. However, the notation used to express such music
usually does have beats.
4Feist [57] refers to notation whimsically as a “haphazard Frankenstein soup of tangentially related alphabets and hiero-
glyphics via which music is occasionally discussed amongst its wonkier creators.ž

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Understanding Optical Music Recognition 1:5

of the composition very accurately, especially the pitches, durations, and onsets of notes, while
under-specifying or even intentionally omitting other aspects. Tempo could be one of these aspects,
where the composer might have expressed precise metronomic indication, given a verbal hint, or
stated nothing at all. It is therefore considered the responsibility of the performer to fill those gaps
appropriately. We consider this as a natural boundary of OMR: it ends where musicians start to
disagree over the same piece of music.

Arguably the most frequently used notation system is Common Western Music Notation (CWMN,
also known as modern staff notation), which has evolved during the seventeenth century from its
mensural notation predecessors and stabilized at the beginning of the nineteenth century. There
have been attempts to supersede it in the avant-garde and postmodern movements, but so far,
these have not produced workable alternatives. Apart from CWMN, there exist a wealth of modern
tablature scores for guitar, used i.e. to write down popular music as well as a significant body of
historical musical manuscripts that are using earlier notation systems (e.g., mensural notations,
quadratic notation for plainchant, early organum, or a wealth of tablature notations for lutes).

Once a music notation system is selected for writing down a piece of music, it is still a challenging
task to engrave5 the music because a single set of notes can be expressed in many ways. For example,
one must make sure that the stem directions mark voices consistently and appropriate clefs are
used, in order to make the music as readable as possible [57, 79, 89, 143]. These decisions not only
affect the visual appearance but also help to preserve the logical structure (see Fig. 2). Afterwards,
it can be embodied in a document, whether physically or digitally.
To summarize, music can be formalized as a structured assembly of notes, enriched through

additional instructions for the performer that are encoded visually using amusic notational language
and embodied in a medium such as paper (see Fig. 3). Once this embodiment is digitized, OMR can
be understood in terms of inverting this process.

4 INVERTING THE MUSIC ENCODING PROCESS

OMR starts after a musical composition has been expressed visually with music notation in a
document.6 The music notation document serves as a medium, designed to encode and transmit a
musical idea from the composer to the performer, enabling the recovery and interpretation of that
envisioned music by reading through it. The performer would:

(1) Read the visual signal to determine what symbols are present and what is their configuration,
(2) Use this information to parse and decode the notes and their accompanying instructions (e.g.,

indications of which technique to use), and
(3) Apply musical intuition, prior knowledge, and taste to interpret the music and fill in the

remaining parameters which music notation did not capture.

Note that step (3) is clearly outside of OMR since it needs to deal with information that is not
written into the music documentÐand where human performers start to disagree, although they

5Normally, music engraving is defined as the process of drawing or typesetting music notation with a high quality for
mechanical reproduction. However, we use the term to refer to “planning the pagež: selecting music notation elements and
planning their layout to most appropriately capture the music, before it is physically (or digitally) written on the page. This
is a loose analogy to the actual engraving process, where the publisher would carefully prepare the printing plates from soft
metal, and use them to produce many copies of the music; in our case, this “printing processž might not be very accurate,
e.g., in manuscripts. The engraving process involves complex decisions [24] that can affect only a local area, like spacings
between objects but can also have global effects, like where to insert a page break to make it convenient for the musician to
turn the page.
6While OMR mainly works with a complete image or document, it is also possible to perform online OMR with the temporal
signal as it is being generated, e.g., by capturing the stylus input on an electronic tablet device, which also results in a
document.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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1:6 Calvo-Zaragoza et al.

(a)

(b)

Fig. 2. Excerpt of Robert Schumann’s łVon fremden Ländern und Menschenž (Engl. łOf foreign countries and
peoplež), Op. 15 for piano. Properly engraved (a), it has two staffs for the left and the right hand with three
visible voices, a key signature and phrase markings to assist the musician. In a poor engraving of the same
music (b), that logical structure is lost, and it becomes painfully hard to read and comprehend the music,
although these two versions contain the same notes.

"The music" Conceptualized

with notes

Engraved using 

music notation

Embodied in 

a document

Fig. 3. How music is typically expressed and embodied (written down).

are reading the very same piece of music [98].7 Coming back to our definition of OMR, based on
the stages of the writing/reading process we outlined above, there are two fundamental ways to
interpret the term “readž in reading music notation as illustrated in Fig. 4. We may wish to:

(A) Recover music notation and information from the engraving process, i.e. what elements were
selected to express the given piece of music and how were they laid out? This corresponds to
stage (1) in the analysis above and does not necessarily require specific musical knowledge,
but it does require an output representation that is capable of storing music notation, e.g.,
MusicXML or MEI, which can be quite complex.

(B) Recover musical semantics, which we define as the notes, represented by their pitches, veloci-
ties, onsets, and durations. This corresponds to stage (2)Ðwe use the term “semanticsž to
refer only to the information that can be unambiguously inferred from the music notation

7Analogously, speech synthesis is not considered a part of optical character recognition. However, there exists expressive
performance rendering software that attempts to simulate more authentic playback, addressing step (3) in our analysis.
More information can be found in [36].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Understanding Optical Music Recognition 1:7

"The music" Conceptualized

with notes

Engraved using 

music notation

Embodied in 

a document

Recover musical semantics

Recover music notation

Fig. 4. How łreadingž music can be interpreted as the operations of inverting the encoding process.

document. In practical terms, MIDI would be an appropriate output representation for this
goal.

This is a fundamental distinction that dictates further system choices, as we discuss in the next
sections. Note that counter-intuitively, going backwards through this process just one step (A -
recover music notation) might be in fact more difficult than going back two steps (B - recover
musical semantics) directly. This is because music notation contains a logical structure and more
information than simply the notes. Skipping the explicit description of music notation allows
bypassing this complexity.

There is, of course, a close relationship between recovering music notation and musical semantics.
A single system may even attempt to solve both at the same time because once the full score with
all its notational details is recovered, the musical semantics can be inferred unambiguously. Keep in
mind that the other direction does not necessarily work: if only the musical semantics are restored
from a document without the engraving information that describes how the notes were arranged,
those notes may still be typeset using meaningful engraving defaults, but the result is probably
much harder to comprehend (see Fig. 2b for such an example).

4.1 Alternative Names

Optical Music Recognition is a well-established term, and we do not seek to establish a new one. We
just notice a lack of precision in its definition. Therefore, it is no wonder that people have been
interpreting it in many different ways to the extent that even the optical detection of lip motion for
identifying the musical genre of a singer [53] has been called OMR. Alternative names that might
not exhibit this vagueness are Optical Music Notation Recognition, Optical Score Recognition8, or
Optical Music Score Recognition. While the prefix “Opticalž is not compulsory, it could still prove
beneficial in highlighting the visual characteristics and help distinguish it from techniques that
work on audio recordings.

5 RELATION TO OTHER FIELDS

Now that we have thoroughly described what Optical Music Recognition is, we briefly set it in
context of other disciplines, both scientific and general fields of human endeavors.
Figure 5 lays out the various key areas that are relevant for OMR, both as its tools and the

“consumersž of its outputs. From a technical point of view, OMR can be considered a subfield of

8which is similar to the German equivalent “Optische Notenerkennungž

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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1:8 Calvo-Zaragoza et al.

Fig. 5. Optical Music Recognition with its most important related fields, methods, and applications.

computer vision and document analysis, with deep learning acting as a catalyst that opens up
promising novel approaches. Within the context of Music Information Retrieval (MIR), OMR should
enable the application of MIR algorithms that rely on symbolic data and audio inputs (through
rendering the recognized scores). It furthermore can enrich digital music score libraries and make
them much more searchable and accessible, which broadens the scope of digital musicology to
compositions for which we only have the written score (which is probably the majority of Western
musical heritage). Finally, OMR has practical implications for composers, conductors, and the
performers themselves, as it cuts down the costs of digitizing scores, and therefore bring the
benefits of digital formats to their everyday practice.

5.1 Optical Music Recognition vs. Text Recognition

One must also address the obvious question: why should OMR be singled out besides Optical
Character Recognition (OCR) and Handwritten Text Recognition (HTR), given that they are tightly
linked [18], and OMR has frequently been called “OCR for musicž [25, 26, 68, 80, 93, 94, 109, 128, 129,
147]?9 What is the justification of talking specifically about music notation and what differentiates
it from other graphics recognition challenges? What are the special considerations in OMR that
one does not encounter in other writing systems?
A part of the justification lies in the properties of music notation as a featural writing system.

While its alphabet consists of well-defined primitives (e.g., stems, noteheads, or flags) that have
a clear interpretation, it is only in their configurationÐhow they are placed and arranged on the
staffs, and with respect to each otherÐthat specifies what notes should be played. The properties of
music notation that make it a challenge for computational reading have been discussed exhaustively
by Byrd and Simonsen [29]; we hypothesize that these difficulties are ultimately caused by this
featural nature of music notation.
Another major reason for considering the field of OMR distinct from text recognition is the

application domain itselfÐmusic. When processing a document of music notation, there is a

9Even the English Wikipedia article on OMR has been calling it “Music OCRž for over 13 years.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Understanding Optical Music Recognition 1:9

Fig. 6. How the translation of the graphical concept of a note into a pitch is affected by the clef and accidentals.
The effective pitch is written above each note. Accidentals immediately before a note propagate to other notes
within the same measure, but not to the next measure. Accidentals at the beginning of a measure indicate a
new key signature that affects all subsequent notes.

Fig. 7. This excerpt by Ludwig van Beethoven, Piano Sonata op. 2 no. 2, Largo appassionato, m. 31 illustrates
some properties of the music notation that distinguish it from other types of writing systems: a wide
range of primitive sizes, the same primitives appearing at different scales and rotations, and the ubiquitous
two-dimensional spatial relationships.

natural requirement to recover its musical semantics (see Section 4, setting B) as well, as opposed
to text recognition, which typically does not have to go beyond recognizing letters or words
and ordering them correctly. There is no proper equivalent of this interpretation step in text
recognition since there is no definite answer to how a symbol configuration (=words) should be

further interpreted; therefore, one generally leaves interpretation to humans or to other well-defined
tasks from the Natural Language Processing field. However, given that music is overwhelmingly
often conceptualized as notes, and notes are well-defined objects that can be inferred from the score,
OMR is, not unreasonably, asked to produce this additional level of outputs that text recognition
does not. Perhaps the simplest example to illustrate this difference is given by the concept of the
pitch of the notes (see Fig. 6). While graphically a note lies on a specific vertical position of the
staff, other objects, such as the clefs and accidentals determine its musical pitch. It is therefore
insufficient for the OMR to provide just the results in terms of positions, but it also has to take
the context into account, in order to convert positions (graphical concept) into pitches (musical
concept). In this regard, OMR is more ambitious than text recognition, since there is an additional
interpretation step specifically for music that has no good analogy in other natural languages.
The character set poses another significant challenge, compared to text recognition. Although

writing systems like Chinese have extraordinarily complex character sets, the set of primitives for
OMR spans a much greater range of sizes, ranging from small elements like a dot to big elements
spanning an entire page like the brace. Many of the primitives may appear at various scales and
rotations like beams or have a nearly unrestricted appearance like slurs that are only defined
as more-or-less smooth curves that may be interrupted anywhere. Finally, in contrast to text
recognition, music notation involves ubiquitous two-dimensional spatial relationships, which are
salient for the symbols’ interpretation. Some of these properties are illustrated in Fig. 7.
Furthermore, Byrd and Simonsen [29] argue that because of the vague limits of what one may

want to express using music notation, its syntactic rules can be expected to be bent accordingly; this

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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1:10 Calvo-Zaragoza et al.

Fig. 8. Brahms Intermezzo, Op. 117 no. 1. Adjacent notes of the chords in the first bar in the top staff are
shifted to the right to avoid overlappings (yellow dotted boxes). The moving eighths in the second bar are
forced even further to the right, although being played simultaneously with the chord (red dashed boxes).

happens to such an extent that Homenda et al. [90] argued that there is no universal definition of
music notation at all. Figure 7 actually contains an instance of such rule-breaking: while one would
expect all notes in one chord to share the same duration, the chord on the bottom left contains
a mix of white and black noteheads, corresponding to half- and quarter-notes. At the same time,
however, the musical intent is yet another: the two quarter-notes in the middle of the chord are
actually played as eighth notes, to add to the rich sonority of the fortissimo chord on the first
beat.10 We believe this example succinctly illustrates the intricacies of the relationship between
musical comprehension and music notation. This last difference between a written quarter and
interpreted eighth note is, however, beyond what one may expect OMR to do, but it serves as
further evidence that the domain of music presents its own difficulties, compared to the domains
where text recognition normally operates.

5.2 Optical Music Recognition vs. Other Graphics Recognition Challenges

Apart from text, documents can contain a wide range of other graphical information, such as
engineering drawings, floor plans, mathematical expressions, comics, maps, patents, diagrams,
charts or tables [44, 58]. Recognizing any of these comes with its own set of challenges, e.g., comics
combine text and other visual information in order to narrate a story, which makes recovering the
correct reading order a non-trivial endeavor. Similarly, the arrangement of symbols in engineering
drawing and floor plans can be very complex with rather arbitrary shapes. Even tasks that are
seemingly easy, such as the recognition of tables, must not be underestimated and are still subject
to ongoing research [131, 144]. The hardest aspects of OMR are much closer to these challenges
than to text recognition: the ubiquitous two-dimensionality, long-distance spatial relationships,
and the permissive way of how individual elements can be arranged and appear at different scales
and rotations.
One thing that makes CWMN more complex than many graphics recognition challenges like

mathematical formulae recognition is the complex typographical alignment of objects [7, 29] that
is dictated by the content, e.g., each space between multiple notes of the same length should be
equal. This complexity is often driven by interactions between individual objects that force other
elements to move around, breaking the principal horizontal alignment of simultaneous events (see
Fig. 8, 9 and 10).

10This effect would be especially prominent on the Hammerklavier instruments prevalent around the time Beethoven was
composing this sonata.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


Understanding Optical Music Recognition 1:11

Fig. 9. Sample from the CVC-MUSCIMA dataset [60] with the same bar transcribed by two different writers.
The first three notes and the second three notes form a chord and should be played simultaneously (see right
figure) but is sometimes horizontally spelled out (see left figure) left is sometimes used in violin scores.

Fig. 10. Sample from the Songbook of Romeo & Julia by Gerard Presgurvic [124] with uneven spacing between
multiple sixteenth notes of the same length in the middle voice to align the notes with the lyrics.

Apart from the typographical challenges, OMR also has an extremely complex semantic, with
many implicit rules. To handle this complexity, researchers have started a long time ago to leverage
the rules that govern music notation and formulate them into grammars [4, 123]. For instance, the
fact that the note durations (in each notated voice) have to sum up to the length of a measure has
been integrated into OMR as a post-processing step [120]. Fujinaga [67] even states that music
notation can be recognized by an LL(k) grammar. Nevertheless, the following citation from Blostein
and Baird [22] (p.425) is still mostly true:

“Various methods have been suggested for extending grammatical methods which
were developed for one-dimensional languages. While many authors suggest using
grammars for music notation, their ideas are only illustrated by small grammars that
capture a tiny subset of music notation.ž [22] (p.425; sec. 7 - Syntactic Methods).

There has been progress on enlarging the subset of music notation captured by these grammars,
most notably in the DMOS system [49], but there are still no tractable 2-D parsing algorithms
that are powerful enough for recognizing music notation without relying on fragile segmentation
heuristics. It is not clear whether current parsers used to recognize mathematical expressions [3]
are applicable to music notation or simply have not been applied yetÐat least we are not aware of
any such works.

6 A TAXONOMY OF OMR

Now that we have progressed in our effort to define Optical Music Recognition, we can turn our
attention to systematizing the field with respect to motivating applications, subtasks, and their
interfaces. We reiterate that our objective is not to review the methods by which others have
attempted to reach the goals of their OMR work; rather, we are proposing a taxonomy of the field’s
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goals themselves. Our motivation is to find natural groups of OMR applications and tasks for which
we can expect, among other things, shared evaluation protocols. The need for such systematization
has long been felt [23, 30], but subsequent reviews [111, 132] have focused almost entirely on
technical solutions.

6.1 OMR Inputs

The taxonomy of inputs of OMR systems is generally established. The first fundamental difference
can be drawn between offline and online11 OMR: offline OMR operates on a static image, while online
OMR operates on a time series of user-interactions, typically pen positions that were captured from a
touch interface [31, 72, 73, 150]. Online OMR is generally considered easier since the decomposition
into strokes provides a high-quality over-segmentation essentially for free. Offline OMR can be
further subdivided by the engraving mechanism that has been used, which can be either typeset
by a machine, often inaccurately referred to as printed12, or handwritten by a human, with an
intermediate, yet common scenario of handwritten notation on pre-printed staff paper.

Importantly, music can be written down in many different notation systems that can be seen as
different languages to express musical concepts (see Fig. 11). CWMN is probably the most prominent
one. Before CWMN was established, other notations such as mensural or neumes preceded it, so we
refer to them as early notations. Although this may seem like a tangential issue, the recognition of
manuscripts in ancient notations has motivated a large number of works in OMR that facilitate the
preservation and analysis of the cultural heritage as well as enabling digital musicological research
of early music at scale [50, 51, 69, 158]. Another category of notations that are still being actively
used today are instrument-specific notations, such as tablature for string instruments or percussion
notation. The final category captures all other notations including, e.g., modern graphic notation,
braille music or numbered notation that are only rarely used and for which the existing body of
music is much smaller than for the other notations.

To get an idea of how versatile music can be expressed visually, the Standard Music Font Layout
[148] currently lists over 2440 recommended characters, plus several hundred optional glyphs.
Byrd and Simonsen [29] further characterize OMR inputs by the complexity of the notated

music itself, ranging from simple monophonic music to “pianoform.ž They use both the presence
of multiple staffs as well as the number of notated voices inside a single staff as a dimension of
notational complexity. In contrast, we do not see the number of staffs as a driver of complexity
since a page typically contains many staffs and a decision on how to group them into systems has
to be made anyway. Additionally, we explicitly add a category for homophonic music that only has
a single logical voice, even though that voice may contain chords with multiple notes being played
simultaneously. The reason for singling out homophonic music is that inferring onsets becomes
trivial once notes are grouped into chords, as opposed to polyphonic music with multiple logical
voices: one can simply read them left-to-right without having to do a voice assignment.

Therefore, we propose the following four categories (see Fig. 12):

(a) Monophonic: only one note (per staff) is played at a time.
(b) Homophonic: multiple notes can occur at the same time to build up a chord, but only as a

single voice.
(c) Polyphonic: multiple voices can appear in a single staff.

11Although it might sound ambiguous, the term online recognition has been used systematically in the handwritten
recognition community. Sometimes, this scenario is also referred to as pen-based recognition.
12Handwritten manuscripts can also be printed out, if they were scanned previously, therefore we prefer the word typeset.
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(a) (b)

(c) (d)

Fig. 11. Examples of scores written in various notations: (a) Common Western Music Notation (Dvorak
Symphony No.9, IV), (b) White Mensural Notation (Belli [121]), (c) Tabulature (Regondi, Etude No.10) and (d)
Braille (Beethoven, Sonata No.14 Op.27 No.2).

(d) Pianoform: scores with multiple staffs and multiple voices that exhibit significant structural
interactions. They can be much more complex than polyphonic scores and cannot be disas-
sembled into a series of monophonic scores, such as in polyphonic renaissance vocal part
books. This term was coined by Byrd and Simonsen [29].

This complexity of the encoded music has significant implications on the model design since the
various levels translate into different sets of constraints on the output. It cannot simply be adjusted
or simulated like the visual complexity by applying an image operation on a perfect image [95]
because it represents an intrinsic property of the music.

Finally, as with other digital document processing, OMR inputs can be classified according to their
image quality which is determined by two independent factors: the underlying document quality,
and the digital imaging acquisition mode. The underlying document quality is a continuum on a
scale from perfect or nearly flawless (e.g., if the document was born-digital and printed) to heavily
degraded or defaced documents (e.g., ancient manuscripts that deteriorated over time and exhibit
faded ink, ink blots, stains, or bleedthrough) [29]. The image acquisition mode is also a continuum
that can reach from born-digital images, over scans of varying quality to low-quality, distorted
photos that originate from camera-based scenarios with handheld cameras, such as smartphones
[2, 160].

6.2 OMR Outputs

The taxonomy of OMR outputs, on the other hand, has not been treated as systematically in the
OMR literature. Lists of potential or hypothetical applications are typically given in introductory
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(a) Monophonic

(b) Homophonic

(c) Polyphonic

(d) Pianoform

Fig. 12. Examples of the four categories of music notation complexity.

sections [22, 38, 67, 111]. While this may not seem like a serious issue, it makes it hard to categorize
different works and compare their results with each other because one often ends up comparing
apples to oranges [7].

The need for a more principled treatment is probably best illustrated by the unsatisfactory state
of OMR evaluation. As pointed out by [29, 81, 84], there is still no good way at the moment of how to
measure and compare the performance of OMR systems. The lack of such evaluation methods is best
illustrated by the way how OMR literature presents the state of the field: Some consider it a mature
area that works well (at least for typeset music) [5, 12, 61, 62, 134]. Others describe their systems
with reports of very high accuracies of up to nearly 100% [33, 91, 99, 104, 110, 122, 145, 160, 161],
giving an impression of success; however, many of these numbers are symbol detection scores
on a small corpus with a limited vocabulary that are not straightforward to interpret in terms of
actual usefulness, since they do not generalize [19, 29]13. The existence of commercial applications
[71, 106ś108, 112, 130, 149] is also sometimes used to support the claim that OMR “worksž [13].
On the other hand, many researchers think otherwise [19, 28, 40, 46, 82, 83, 109, 118, 132, 133],
emphasizing that OMR does not provide satisfactory solutions in generalÐnot even for typeset
music. Some indirect evidence of this can be gleaned from the fact that even for high-quality
scans of typeset music, only a few projects rely on OMR,14 while other projects still prefer to

13The problem of incomparable results has already been noted in the very first review of OMR in 1972 by Kassler [96] when
he reviewed the first two OMR theses by Pruslin [126] and Prerau [123].
14Some users of the Choral Public Domain Library (CPDL) project use commercial applications such as SharpEye or
PhotoScore Ultimate: http://forums.cpdl.org/phpBB3/viewtopic.php?f=9&t=9392
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crowdsource the manual transcription instead of using systems for the automatic recognition [78],
or at least crowdsource the correction of the errors produced by OMR systems [141]. Given the
long-standing absence of OMR evaluation standards, this ambivalence is not surprising. However,
a scientific field should be able to communicate its results in comprehensible terms to external
stakeholdersÐsomething OMR is currently unable to do.
We feel that to a great extent this confusion stems from the fact that the question “Does OMR

work?ž is an overly vague question. As our analysis in Section 2 shows, OMR is not a monolithic
problemÐtherefore, asking about the “state of OMRž is under-specified. “Does OMR work?ž must
be followed by “... as a tool for X,ž where X is some application, in order for such questions to
be answerable. There is, again, evidence for this in the OMR literature. OMR systems have been
properly evaluated in retrieval scenarios [1, 10, 66] or in the context of digitally replicating a
musicological study [83]. It has, in fact, been explicitly asserted [81] that evaluation methodologies
are only missing for a limited subset of OMR applications. Specifically, there is no knownmeaningful
edit distance between two scores (whatever their underlying representation).
At the same time, the granularity at which we define the various tasks should not be too fine,

otherwise one risks entering a different swamp: instead of no evaluation at all, each individual work
is evaluated on themerits of a narrowly defined (and oftenmerely hypothetical) application scenario,
which also leads to incomparable contributions. In fact, this risk has already been illustrated on the
subtask of symbol detection, which seems like a well-defined problem where the comparison should
be trivial. In 2018, multiple music notation object detection papers have been published [82, 116, 117,
152], but each reported results in a different way while presenting a good argument for choosing
that kind of evaluation, so significant effort was necessary in order to make these contributions
directly comparable [119]. A compromise is therefore necessary between fully specifying the
question of whether OMR “worksž by asking for a specific application scenario, and on the other
hand retaining sufficiently general categories of such tasks.
Having put forward the reasoning for why systematizing the field of OMR with respect to its

outputs is desirable, we proceed to do so. For defining meaningful categories of outputs for OMR,
we come back to the fundamentals of how OMR inverts the music encoding process to recover
the musical semantics and musical notation (see Section 2). These two prongs of reading musical
documents roughly correspond to two broad areas of OMR applications [105] that overlap to a
certain extent:

• Replayability: recovering the encoded music itself in terms of pitch, velocity, onset, and
duration. This application area sees OMR as a component inside a bigger music processing
pipeline that enables the system to operate on music notation documents as just another
input. Notice that readability by humans is not required for these applications, as long as the
computer can process and “playž the symbolic data.

• Structured Encoding: recovering the music along with the information on how it was encoded
using elements of music notation. This avenue is oriented towards providing the score for
music performance, which requires a (lossless) re-encoding of the score and assumes that
humans read the OMR output directly. Recovering the musical semantics might not in fact be
strictly necessary, but in practice, one often wishes to obtain that information too, in order
to enable digitally manipulating the music in a way that would be easiest done with the
semantics being recovered (e.g., transposing a part to make it suitable for another instrument).

In other words, the output of an application that targets replayability is typically processed by a
machine, whereas humans usually demand the complete recognition of the structured encoding to
allow for a readable output (see Fig. 2).
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1:16 Calvo-Zaragoza et al.

While the distinction between replayability and structured encoding is already useful, there are
other reasons that make it interesting to read musical notation from a document. For example, to
search for specific content or to draw paleographic conclusions about the document itself. Therefore,
we need to broaden the scope of OMR to actually capture these applications. We realized that
some use-cases require much less comprehension of the input and music notation than others.
To account for this, we propose the following four categories that demand an increasing level of
comprehension: Document Metadata Extraction, Search, Replayability, and Structured Encoding (see
Fig. 13).

Level of Comprehension

Search Replayability
Encoding
StructuredDocument Metadata

Extraction

CompletePartial

Fig. 13. Taxonomy of four categories of OMR applications that require an increasing level of comprehension,
starting with metadata extraction where a minimal understanding might be sufficient, up to structured
encoding that requires a complete understanding of music notation with all its intricacies.

Depending on the goal, applications differ quite drastically in terms of requirementsÐforemost
in the choice of output representation. Furthermore, this taxonomy allows us to use different
evaluation strategies.

6.2.1 Document Metadata Extraction. The first application area requires only a partial understand-
ing of the entire document and attempts to answer specific questions about it. These can be very
primitive ones, like whether a document contains music scores or not, but the questions can also
be more elaborate, for example:

• In which period was the piece written in?
• What notation was used?
• How many instruments are depicted?
• Are two segments written by the same copyist?

All of the aforementioned tasks entail a different level of underlying computational complexity.
However, we are not organizing applications according to their difficulty but instead by the type of
answer they provide. In that sense, all of these tasks can be formulated as classification or regression
problems, for which the output is either a discrete category or a continuous value, respectively.

Definition 2. Document metadata extraction refers to a class of Optical Music Recognition appli-
cations that answer questions about the music notation document.

The output representation for document metadata extraction tasks are scalar values or category
labels, and if not, its structure is determined by the user, not by the properties of the domain. Again,
this does not imply that extracting the target values is necessarily easy, but that the difficulties are
not related to the output representation, as is the case for other uses.
Although this type of application has not been very popular in the OMR literature, there are

some works that approach this scenario. In [9] and [118] the authors describe systems that classify
images whether they depict music scores or not. While the former one used a basic computer
vision approach with a Hough transform and run-length ratios, the latter uses a deep convolutional
neural network. Such systems can come in handy if one has to automatically classify a very large
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number of documents [114]. Perhaps the most prominent application is identifying the writer of a
document [63, 64, 77, 139] (which can be different from the composer). This task was one of the
main motivations behind the construction of the CVC-MUSCIMA dataset [60] and was featured in
the ICDAR 2011 Music Score Competition [59].
The document metadata extraction scenario has the advantage of its unequivocal evaluation

protocols. Tasks are formulated regarding either classification or regression, and these have well-
defined metrics such as accuracy, f-measure, or mean squared error.

6.2.2 Search. Nowadays we have access to a vast amount of musical documents. Libraries and
communities have taken considerable efforts to catalog and digitize music scores, by scanning them
and freely providing users access to them, e.g., IMSLP [125], SLUB [140], DIAMM [20] or CPDL
[113], to name a few. Here is a fast growing interest in automated methods which would allow
users to search for relevant musical content inside these sources systematically. Unfortunately,
searching for specific content often remains elusive because many projects only provide the images
and manually entered metadata. We capture all applications that enable such lookups under the
category Search. Examples of search questions could be:

• Do I have this piece of music in my library?
• On which page can I find this melody?
• Where does this sequence of notes (e.g., a theme) repeat itself?
• Was a melody copied from another composition?
• Find the same measure in different editions for comparing them.

Definition 3. Search refers to a class of Optical Music Recognition applications that, given a
collection of sheet music and a musical query, compute the relevance of individual items of the
collection with respect to the given query.

Applications from this class share a direct analogy with keyword spotting (KWS) in the text
domain [74] and a common formulation: the input is a query as well as the collection of documents
where to look for it; the output is the selection of elements from that collection that match the
query. However, “wherež is a loose concept and can refer to a complete music piece, a page, or in
the most specific cases, a particular bounding-box or even a pixel-level location. In the context of
OMR, the musical query must convey musical semantics (as opposed to general search queries,
e.g., by title or composer; hence the term “musicalž query in Definition 3). The musical query is
typically represented in a symbolic way, interpretable unambiguously by the computer (similar to
query-by-string in KWS), yet it is also interesting to consider queries that involve other modalities,
such as image queries (query-by-example in KWS) or audio queries (query-by-humming in audio
information retrieval or query-by-speech in KWS). Additionally, it makes sense to establish different
domain-specific types of matching, as it is useful to perform searches restricted to specific music
concepts such as melodies, sequences of intervals, or contours, in addition to exact matching.
A direct approach for search within music collections is to use OMR technology to transform

the documents into symbolic pieces of information, over which classical content-based or symbolic
retrieval methods can be used [1, 14, 47, 52, 55, 88, 97, 151]. The problem is that these transformations
require a more comprehensive understanding of the processed documents (see Sections 6.2.3 and
6.2.4 below). To avoid the need for an accurate symbol-by-symbol transcription, search applications
can resort to other methods to determine whether (or how likely) a given query is in a document or
not. For instance, in cross-modal settings, where one searches a database of sheet music using aMIDI
file [10, 66] or a melodic fragment that is given by the user on the fly [1], OMR can be used as a hash
function. When the queries and documents are both projected into the search space by the same
OMR system, some limitations of the system may even cancel out (e.g., ignoring key signatures), so
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that retrieval performance might deteriorate less than one would expect. Unfortunately, if either
the query or the database contains the true musical semantics, such errors do become critical [83].
A few more works have also approached the direct search of music content without the need

to convert the documents into a symbolic format first. Examples comprise the works by [100]
dealing with a query-by-example task in the CVC-MUSCIMA dataset, and by [35], considering a
classical query-by-string formulation over early handwritten scores. In the cross-modal setting, the
audio-sheet music retrieval contributions of [54] are an example of a system that explicitly attempts
to gain only the minimum level of comprehension of music notation necessary for performing its
retrieval job.

Search systems usually retrieve not just a single result but all those that match the input query,
typically sorted by confidence. This setting can re-use general information retrieval methodologies
for evaluating performance [87, 101], such as precision and recall as well as encompassing metrics
like average precision and mean average precision.

6.2.3 Replayability. Replayability applications are concerned with reconstructing the notes en-
coded in the music notation document. Notice that producing an actual audio file is not considered
to be part of OMR, despite being one of the most frequent use-cases of OMR. In any case, OMR can
enable these applications by recovering the pitches, velocities, onsets, and durations of notes. This
symbolic representation, usually stored as a MIDI file, is already a very useful abstraction of the
music itself and allows for plugging in a vast range of computational tools such as:

• synthesis software to produce an audio representation of the composition
• music information retrieval tools that operate on symbolic data
• tools that perform large-scale music-theoretical analysis
• creativity-focused applications [162]

Definition 4. Replayability refers to a class of Optical Music Recognition applications that recover
sufficient information to create an audible version of the written music.

Producing a MIDI (or an equivalent) representation is one key goal for OMRÐat least for the
foreseeable future since MIDI is a representation of music that has a long tradition of computational
processing for a vast variety of purposes. Many applications have been envisioned that only require
replayability. For example applications that can sight-read the scores to assist practicing musicians
or provide missing accompaniment.
Replayability is also a major concern for digital musicology. Historically, the majority of com-

positions has probably never been recorded, and therefore is only available in written form as
scores; of these, most compositions have also never been typeset, since typesetting has been a very
expensive endeavor, reserved essentially either for works with assured commercial success, or
composers with substantial backing by wealthy patrons. Given the price of manual transcription, it
is prohibitive to transcribe large historical archives. OMR that produces MIDI, especially if it can do
so for manuscripts, is probably the only tool that could open up the vast amount of compositions
to quantitative musicological research, which, in turn, could perhaps finally start answering broad
questions about the evolutions of the average musical styles, instead of just relying on the works
of the relatively few well-known composers.
Systems designed for the goal of replayability traditionally seek first to obtain the structured

encoding of the score (see Section 6.2.4), from which the sequences of notes can be straightfor-
wardly retrieved [82]. However, if the specific goal is to obtain something equivalent to a MIDI
representation, it is possible to simplify the recognition and ignore many of the elements of musical
notation, as demonstrated by numerous research projects [16, 65, 90, 91, 102, 116, 138]. An even
clearer example of this distinction can be observed in the works of Shi et al. [146] as well as van
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der Wel and Ullrich [157]; both focus only on obtaining the sequence of note pairs (duration, pitch)
that are depicted in single-staff images, regardless of how these notes were actually expressed
in the document. Another instance of a replay-oriented application is the Gocen system [5] that
reads handwritten notes with a specially designed device with the goal of producing a musical
performance while ignoring the majority of music notation syntax.
Once a system is able to arrive at a MIDI-like representation, evaluating the results is a matter

of comparing sets of pitch-onset-duration-triplets. Velocities may optionally be compared too,
once the note-by-note correspondence has been established, but can be seen as secondary for
many applications. Note, however, that even on the level of describing music as configurations of
pitch-velocity-onset-duration-quadruples, MIDI is a further simplification that is heavily influenced
by its origin as a digital representation of performance, rather than of a composition: the most
obvious inadequacy of MIDI is its inability to distinguish pitches that sound equivalent but are
named differently, e.g., F-sharp and G-flat.15

Multiple similarity metrics for comparing MIDI files have been proposed during the Symbolic
Melodic Similarity track of the Music Information Retrieval Evaluation eXchange (MIREX),16 e.g., by
determining the local alignment between the geometric representations of the melodies [153ś156].
Other options could be multi-pitch estimation evaluation metrics [17], Dynamic Time Warping
[54], or edit distances between two time-ordered sequences of pitch-duration pairs [33, 163].

6.2.4 Structured Encoding. It can be reasonably stated that digitizing music scores for “human
consumptionž and score manipulation tasks that a vollkommener Capellmeister17 [103] routinely
performs, such as part exporting, merging, or transposing for available instruments is the original
motivation of OMR ever since it started [6, 67, 123, 126] and the one that appeals to the widest
audience. Given that typesetting music is troublesome and time-consuming, OMR technology
represents an attractive alternative to obtain a digital version of music scores on which these
operations can be performed efficiently with the assistance of the computer.
This brings us to our last category that requires the highest level of comprehension, called

structured encoding. Structured encoding aims to recognize the entire music score while retaining
all the engraving information available to a human reader. Since there is no viable alternative to
music notation, the system has to fully transcribe the document into a structured digital format
with the ultimate goal of keeping the same musical information that could be retrieved from the
physical score itself.

Definition 5. Structured Encoding refers to a class of Optical Music Recognition applications that
fully decode the musical content, along with the information of ’how’ it was encoded by means of
music notation.

Note that the difference between replayability and structured encoding can seem vague: for
instance, imagine a system that detects all notes and all other symbols and exports them into a
MusicXML file. The result, however, is not the structured encoding unless the system also attempts
to preserve the information on how the scores were laid out. That does not mean it has to store the
bounding box and exact location of every single symbol, but the engraving information that conveys
musical semantics, like whether the stem of a note went up or down. To illustrate this, consider the
following musical snippet in Fig. 14. If a system like the one described in [33] recognized this, it
would remain restricted to replayability. Not because of the current limitations to monophonic,

15This is the combined heritage of equal temperament, where these two pitches do correspond to the same fundamental
frequency, and of the origins of MIDI in genres dominated by fretted and keyboard instruments.
16 https://www.music-ir.org/mirex/wiki/MIREX_HOME
17roughly translated from German as “ideal conductorž
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Fig. 14. Beginning of Franz Schubert, Impromptu D.899 No. 2 with omitted thirds starting in the second
measure of the top staff (gray) and a color-coding of the two distinct voices in the second staff (green and
blue).

single-staff music, but due to the selected output representation, which does not store engraving
information such as the simplifications that start in the second measure of the top staff (the grayed
out 3s that would be omitted in the printing) or the stem directions of the notes in the bottom staff
(green and blue) that depict two different voices. In summary, any system discarding engraving
information that conveys musical semantics cannot reach, by definition, the structured encoding
goal.
To help understand, why structured encoding poses such a difficult challenge, we would like

to avail ourselves of the intuitive comparison given by Donald Byrd:18 representing music as
time-stamped events (e.g., with MIDI) is similar to storing a piece of writing in a plain text file;
whereas representing music with music notation (e.g., with MusicXML) is similar to a structured
description like an HTML website. By analogy, obtaining the structured encoding from the image
of a music score can be as challenging as recovering the HTML source code from the screenshot of
a website.

Since this use-case appeals to the widest audience, it has seen development both from the scien-
tific research community and commercial vendors. Notable products that attempt full structured
encoding include SmartScore [106], Capella Scan [37], PhotoScore [108] as well as the open-source
application Audiveris [21]. While the projects described in many scientific publications seem to
be striving for structured encoding to enable interesting applications such as the preservation
of the cultural heritage [39], music renotation [41], or transcriptions between different music
notation languages [135], we are not aware of any systems in academia that would actually produce
structured encoding.

A major stumbling block for structured encoding applications has for a long time been the lack
of practical formats for representing music notation that would be powerful enough to retain the
information from the input score, and at the same time be a natural endpoint for OMR. This is
illustrated by papers that propose OMR-specific representations, both before the emergence of
MusicXML [75, 76] as a viable interchange format [105] and after [86]. At the same time, however,
even without regard for OMR, there are ongoing efforts to improve music notation file formats:
further development of MusicXML has moved into the W3C Music Notation Community Group,19

and there is an ongoing effort in the development of the Music Encoding Initiative format [137],
best illustrated by the annual Music Encoding Conference.20 Supporting the whole spectrum of
music notation situations that arise in a reasonably-sized archive is already a difficult task. This can
be evidenced by the extensive catalog of requirements for music notation formats that Byrd and
Isaacson [27] list for a multi-purpose digital archive of music scores. Incidentally, the same paper

18http://music.informatics.indiana.edu/don_notation.html
19https://www.w3.org/community/music-notation/
20https://music-encoding.org/conference/past.html
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also mentions support for syntactically incorrect scores among the requirements, which is one of
the major problems that OMR has with outputting to existing formats directly. Although these
formats are becoming more precise and descriptive, they are not designed to store information
about how the content was automatically recognized from the document. This kind of information
is actually relevant for systems’ evaluation, as it allows, for example, determining if a pitch was
misclassified because of either a wrongly detected position in the staff or a wrongly detected clef.
The imperfections of representation standards for music notation is also reflected in a lack of

evaluation standards for structured encoding. Given the ground truth representation of a score
and the output of a recognition system, there is currently no automatic method that is capable of
reliably computing how well the recognition system performed. Ideally, such a method would be
rigorously described and evaluated, have a public implementation, and give meaningful results.
Within the traditional OMR pipeline, the partial steps (such as symbol detection) can use rather
general evaluation metrics. However, when OMR is applied for getting the structured encoding of
the score, no evaluation metric is available, or at least generally accepted, partially because of the
lack of a standard representation for OMR output, as mentioned earlier. The notion of “edit costž or
“recognition gainž that defines success in terms of how much time a human editor saves by using an
OMR system is yet more problematic, as it depends on the editor and on the specific toolchain [19].
There is no reason why a proper evaluation should not be possible since there is only a finite

amount of information that a music document retains, which can be exhaustively enumerated. It
follows that we should be able tomeasure what proportion of this information our systems recovered
correctly. The rationale why this is still such a hard problem is because there is no underlying
formal model of music notation. Such a model could support structured encoding evaluation by
being:

• Comprehensive: integrating naturally both the “reprintabilityž and “replayabilityž level (also
called graphical and semantical level in the literature), by being capable of describing the
various corner cases (which implies extensibility);

• Useful: enabling tractable inference (at least approximate) and an adequate distance function;
and

• Sufficiently supported through open-source software.

The existing XML formats for encoding music notation are inadequate representations for OMR.
For example, the XML tree structure is unsuitable, as evidenced by the frequent need for referencing
the XML elements across arbitrarily distant subtrees. Historically, context-free grammars have
been the most explored avenue for a unified formal description of music notation, both with an
explicit grammar [4, 49] and implicitly using a modified stack automaton [8]: this feels natural,
given that music notation has strict syntactic rules and hierarchical structures that invite such
descriptions. The 2-D nature of music notation also inspired graph grammars [56] and attributed
graph grammars [15]. Recently, modeling music notation as a directed acyclic graph has been
proposed as an alternative [82, 86]. However, none of these formalisms has yet been adopted: the
notation graph is too recent and does not have sufficient software and community support, and
the older grammar-based approaches lack up-to-date open-source implementations altogether
(and are insufficiently detailed in the respective publications for re-implementation). Without an
appropriate formalism and the corresponding tooling, the evaluation of structured encoding can
hardly hope to move beyond ad-hoc methods.
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Hajič [81] argues that a good OMR evaluation metric should be intrinsic21 and independent of a
certain use-case. The benefits would be the independence from the selected score editing toolchain
as well as the music notation format and a clearly interpretable automatic metric for guiding OMR
development (which could ideally be used as a differentiable loss function for training full-pipeline
end-to-end machine learning-based systems). This question is still one of the major issues in the
field.

7 APPROACHES TO OMR

In order to complete our journey through the landscape of Optical Music Recognition, we yet have to
visit the arena of OMR techniques. These have recently undergone a paradigm shift towardsmachine
learning that has brought about a need to revisit the way that OMR methods have traditionally
been systematized. As opposed to OMR applications, the vocabulary of OMR methods and subtasks
already exists [132] and only needs to be updated to reflect the new reality of the field.
As mentioned before, obtaining the structured encoding of the scores has been the main moti-

vation to develop the OMR field. Given the difficulty of such objective, the process was usually
approached by dividing it into smaller stages that could represent challenges within reach with
the available technologies and resources. Over the years, the pipeline described by Bainbridge
and Bell [7], refined by Rebelo et al. in 2012 [132] became the de-facto standard. That pipeline is
traditionally organized into the following four blocks, sometimes with slightly varying names and
scopes of the individual stages:

(1) Preprocessing: Standard techniques to ease further steps, e.g., contrast enhancement, binariza-
tion, skew-correction or noise removal. Additionally, the layout should be analyzed to allow
subsequent steps to focus on actual content and ignore the background.

(2) Music Object Detection: Finding and classifying all relevant symbols or glyphs in the image.
(3) Notation Assembly: Recovering the music notation semantics from the detected and classified

symbols. The output is a symbolic representation of the symbols and their relationships,
typically as a graph.

(4) Encoding: Encoding the music into any output format unambiguously, e.g., into MIDI for
playback or MusicXML/MEI for further editing in a music notation program.

With the appearance of deep learning in OMR, many steps that traditionally produced suboptimal
results, such as the staff-line removal or symbol classification have seen drastic improvements
[70, 118] and are nowadays considered solved or at least clearly solvable. This caused some steps
to become obsolete or collapse into a single (bigger) stage. For instance, the music object detection
stage was traditionally separated into a segmentation stage and classification stage. Since staff lines
make it hard to separate isolated symbols through connected component analysis, they typically
were removed first, using a separate method. However, deep learning models with convolutional
neural networks have been shown to be able to deal with the music object detection stage holistically
without having to remove staff lines at all. In addition to the performance gains, a compelling
advantage is the capability of these models to train them in a single step by merely providing
pairs of images and positions of the music objects to be found, eliminating the preprocessing step
altogether. A baseline of competing approaches on several datasets containing both handwritten
and typeset music can be found in the work of Pacha et al. [119].
The recent advances also diversified the way of how OMR is approached altogether: there are

alternative pipelines with their own ongoing research that attempt to face the whole process in a

21Extrinsic evaluation means evaluating the system in an application context: “How good is this system for purpose X?.ž
Intrinsic evaluation attempts to evaluate a system without reference to a specific use-case, asking how much of the encoded
information has been recovered. In the case of OMR, this essentially reduces evaluation to error counting.
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single step. This holistic paradigm, also referred to as end-to-end systems, has been dominating the
current state of the art in other tasks such as text, speech, or mathematical formula recognition
[45, 48, 163]. However, due to the complexity of how musical semantics are inferred from the image,
it is difficult (for now) to formulate it as a learnable optimization problem.While end-to-end systems
for OMR do exist, they are still limited to a subset of music notation, at best. Pugin pioneered this
approach utilizing hidden Markov models for the recognition of typeset mensural notation [127],
and some recent works have considered deep recurrent neural networks for monophonic music
written in both typeset [32, 33, 146, 157] and handwritten [13] modern notation. Unfortunately,
polyphonic and pianoform scores are currently out of reach for end-to-end modelsÐnot just that
the results would be disappointing, there is simply no appropriate model formulation. Therefore,
even when only trying to produce the “notesž (semantics), one may choose to recover some of the
engraving decisions explicitly as well, relying on the rules of inferring musical semantics as in the
last stages of the traditional pipeline.
Along with the paradigm shift towards machine learningÐwhich nowadays can be considered

widely establishedÐseveral public datasets have emerged, such as MUSCIMA++ [86], DeepScores
[152] or Camera-PrIMuS [32].22 There are also significant efforts to develop tools by which training
data for OMR systems can be obtained including MUSCIMarker [85], Pixel.js [142], and MuRET
[135].
On the other hand, while the machine learning paradigm has undeniably brought significant

progress, it has shifted the costs onto data acquisition. This means that while the machine learning
paradigm is more general and delivers state-of-the-art results when appropriate data is available, it
does not necessarily drive down the costs of applying OMR. Still, we would sayÐtentativelyÐthat
once these resources are spent, the chances of OMR yielding useful results for the specific use-case
are higher compared to earlier paradigms.
Tangentially to the way of dealing with the process itself, there has been continuous research

on interactive systems for years. The idea behind such systems is based on the insight that OMR
systems might always make some errors, and if no errors can be tolerated, the user is essential
to correct the output. These systems attempt to incorporate user feedback into the OMR process
in a more efficient way than just post-processing system output. Most notably is the interactive
system developed by Chen et al. [42, 43], where the user directly interacts with the OMR system
by specifying which constraints to take into account while visually recognizing the scores. The
user can then iteratively add or remove constraints before re-recognizing individual measures
until he is satisfied. The most powerful feature of interactive systems is probably the displaying of
recognition results, superimposed on top of the original image, which allows to quickly spot errors
[21, 37, 135, 159].

8 CONCLUSIONS

In this article, we have first addressed what Optical Music Recognition is and proposed to define it
as research field that investigates how to computationally read music notation in documentsÐa
definition that should adequately delimit the field, and set it in relation to other fields such as OCR,
graphics recognition, computer vision, and fields that await OMR results. We furthermore analyzed
in depth the inverse relation of OMR to the process of writing down a musical composition and
highlighted the relevance of engraving music properlyÐsomething that must also be recognized to
ensure readability for humans. The investigation of what OMR is, revealed why this seemingly
easy task of reading music notation has turned out to be such a hard problem: besides the technical
difficulties associated with document analysis, many fundamental challenges arise from the way

22A full list of all available datasets can be found at https://apacha.github.io/OMR-Datasets/
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howmusic is expressed and captured in music notation. By providing a sound, concise and inclusive
definition, we capture how the field sees and talks about itself.

We have then reviewed and improved the taxonomy of OMR, which should help systematize the
current and future contributions to the field. While the inputs of OMR systems have been described
systematically and established throughout the field, a taxonomy of OMR outputs and applications
has not been proposed before. An overview of this taxonomy is given in Fig. 15.

Finally, we have also updated the general breakdown of OMR systems into separate subtasks in
order to reflect the paradigm shift towards machine learning methods and discussed alternative
paradigms such as end-to-end systems and interactive scenarios.
One of the key points we wanted to stress is the internal diversity of the field: OMR is not a

monolithic task. As analyzed in Section 4, it enables various use-cases that require fundamentally
different system designs, as discussed in Section 6.2. So before creating an OMR system, one should
be clear about the goals and the associated challenges.

The sensitivity to errors is another relevant issue that needs to be taken into account. As long as
errors are inevitable [43, 50], it is important to consider the impact of those errors to the envisioned
application. If someone wants to transcribe a score with an OMR system, but the effort needed for
correcting the errors is greater than the effort for directly entering the notes into a music notation
program, such anOMR systemwould obviously be useless [19]. Existing literature on error-tolerance
is inconclusive: while we tend to believe that usersÐespecially practicing musiciansÐwould not
tolerate false recognitions [136], we also see systems that can handle a substantial amount of OMR
errors [1, 50, 83] and still produce meaningful results, e.g., when searching in a large database of
scores. Therefore, it cannot be decided in advance how severe errors are, as it is always the end
user who sets the extent of tolerable errors.
The reader should now comprehend the spectrum of what OMR might do, understand the

challenges that reading music notation entails, and have a solid basis for further exploring the field
on his ownÐin other words, be equipped to address the issues described in the next section.

8.1 Open Issues and Perspectives for Future Research

We conclude this paper by listing major open problems in Optical Music Recognition that signifi-
cantly impede its progress and usefulness. While some of them are technical challenges, there are
also many non-technical issues:

• Legal aspects: Written music is the intellectual property of the composer and its allowed uses
are defined by the respective publisher. Recognizing and sharing music scores can be seen as
copyright infringement, like digitizing books without permission. To avoid this dispute, many
databases such as IMSLP only store music scores whose copyright protection has expired. So
an OMR dataset is either limited to old scores or one enters a legal gray area if not paying
close attention to the respective license of every piece stored therein.

• Stable community: For decades, OMR research was conducted by just a few individuals that
worked distributedly and mostly uncoordinated. Most OMR researchers joined the field with
minor contributions but left again soon afterward. Furthermore, due to a lack of dedicated
venues, researchers rarely met in person [30]. This unstable setting and researchers that were
not paying sufficient attention to reproducibility led to the same problems being solved over
and over again [115].

• Lack of standards representations: There exist no standard representation formats for OMR
outputs, especially not for structured encoding, and virtually every system comes with its
own internal representation and output format, even for intermediate steps. This causes
incompatibilities between different systems and makes it very hard to replace subcomponents.
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Fig. 15. An overview of the taxonomy of OMR inputs, architectures, and outputs. A fairly simple OMR
system could, for example, read high-quality scans (offline) of well-preserved documents that contain typeset,
monophonic, mensural notation, process it in a tradition pipeline and output the results in a MIDI file to
achieve replayability. An extremely complex system, on the other hand, would allow images (offline) of
handwritten music in common western notation from degraded documents as input and strive to recognize
the full structured encoding in an end-to-end system.
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Work on underlying formalisms for describing music notation can also potentially have a wide
impact, especially if done in collaboration with the relevant communities (W3C Community
Group on Music Notation, Music Encoding Initiative).

• Evaluation: Due to the lack of standards for outputting OMR results, evaluating them is
currently in an equally unsatisfactory state. An ideal evaluation method would be rigorously
described and verified, have a public implementation, give meaningful results, and not rely
on a particular use-case, thus only intrinsically evaluating the system [81].

On the technical side, there are also many interesting avenues, where future research is needed,
including:

• Music Object Detection: recent work has shown that the music object detection stage can be
addressed in one step with deep neural networks. However, the accuracy is still far from
optimal, which is especially detrimental to the following stages of the pipeline that are based
on these results. In order to improve the detection performance, it might be interesting to
develop models that are specific to the type of inputs that OMR works on: large images with
a high quantity of densely packed objects of various sizes from a vast vocabulary.

• Semantical reconstruction: merely detecting the music objects in the document does not
represent a complete music notation recognition system, and so the music object detection
stage must be complemented with the semantical reconstruction. Traditionally, this stage is
addressed by hand-crafted heuristics that either hardly generalize or do not cover the full
spectrum of music notation. Machine learning-based semantical reconstruction represents
an unexplored line of research that deserves further consideration.

• Structured encoding research: despite being the main motivation for OMR in many cases,
there is a lack of scientific research and open systems that actually pursue the objective of
retrieving the full structure encoding of the input.

• Full end-to-end systems: end-to-end systems are accountable for major advances in machine
learning tasks such as text recognition, speech recognition, or machine translation. The
state of the art of these fields is based on recurrent neural networks. For design reasons,
these networks currently deal only with one-dimensional output sequences. This fits the
aforementioned tasks quite naturally since their outputs are mainly composed of word
sequences. However, its application for music notationÐexcept for simple monophonic
scoresÐis not so straightforward, and it is unknown how to formulate an end-to-end learning
process for the recognition of fully-fledged music notation in documents.

• Statistical modeling: most machine learning algorithms are based on statistical models that
are able to provide a probability distribution over the set of possible recognition hypotheses.
When it comes to recognizing, we are typically interested in the best hypothesisÐthe one
that is proposed as an answerÐforgetting the probability given to such hypothesis by the
model. However, it could be interesting to be able to exploit this uncertainty. For example, in
the standard decomposition of stages in OMR systems, the semantic reconstruction stage
could benefit from having a set of hypotheses about the objects detected in the previous stage,
instead of single proposals. Then, the semantic reconstruction algorithm could establish
relationships that are more logical a priori, although the objects involved have a lower
probability according to the object detector. These types of approaches have not been deeply
explored in the OMR field. Statistical modeling could also be useful so that the system provides
its certainty about the output. Then, the end user might have a certain notion about the
accuracy that has been obtained for the given input.

• Generalizing systems: A pressing issue is generalizing from training datasets to various real-
world collections because the costs for data acquisition are still significant and currently
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represent a bottleneck for applying state-of-the-art machine learning models in stakehold-
ers’ workflows. However, music notation follows the same underlying rules, regardless of
graphical differences such as whether it is typeset or handwritten. Can one leverage a typeset
sheet music dataset to train for handwritten notation? Given that typeset notation can be
synthetically generated, this would open several opportunities to train handwritten systems
without the effort of getting labeled data manually. Although it seems more difficult to
transfer knowledge across different kinds of music notation, a system that recognizes some
specific music notation could be somehow useful for the recognition of shared elements in
other styles as well, e.g., across the various mensural notation systems.

• Interactive systems: Interactive systems are based on the idea of including users in the recog-
nition process, given that they are necessary if there is no tolerance for errorsÐsomething
that at the moment can only be ensured by human verification. This paradigm reformulates
the objective of the system, which is no longer improving accuracy but reducing the effortÐ
usually measured as timeÐthat the users invest in aiding the machine to achieve that perfect
result. This aid can be provided in many different ways: error corrections that then feed back
into the system, or manually activating and deactivating constraints on the content to be
recognized. However, since user effort is the most valuable resource, there is still a need
to reformulate the problem based on this concept, which also includes aspects related to
human-computer interfaces. The conventional interfaces of computers are designed to enter
text (keyboard) or perform very specific actions (mouse); therefore, it would be interesting
to study the use of more ergonomic interfaces to work with musical notation, such as an
electronic pen or a MIDI piano, in the context of interactive OMR systems.

We hope that these lists demonstrate that OMR still provides many interesting challenges that
await future research.
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APPENDIX A: OMR BIBLIOGRAPHY

Along with this paper, we are also publishing the most comprehensive and complete bibliography
on OMR that we were able to compile at https://omr-research.github.io/. It is a curated list of
verified publications in an open-source Github repository (https://github.com/OMR-Research/
omr-research.github.io) that is open for submissions both via pull requests and via templated issues.
The website is automatically generated from the underlying BibTeX files using the BibTex2HTML
library, available at https://www.lri.fr/~filliatr/bibtex2html/.

The repository contains three distinct bibliographic files that are rendered into separate pages:

(1) OMR Research Bibliography: A collection of scientific and technical publications, that were
manually verified for correctness from a trustworthy source (see below). Most of these entries
have either a Digital Object Identifier (DOI) or a link to the website, where the publication
can be found.

(2) OMR Related Bibliography: A collection of scientific and technical publications, that were
manually verified for correctness from a trustworthy source but are not primarily directed
towards OMR, such as musicological research or general computer vision papers.

(3) Unverified OMR Bibliography: A collection of scientific and technical publications, that are
related to Optical Music Recognition, but they could not be verified from a trustworthy
source and might contain incorrect information. Many publications from this collection were
authored before 1990 and are often not indexed by the search engines, or the respective
proceedings could no longer be accessed and verified by us.

Acquisition and Verification Process

The bibliography was acquired and merged from multiple sources, such as the public and private
collections from multiple researchers that have historically grown, including a recent one by
Andrew Hankinson, who provided us with an extensive BibTeX library. Additionally, we have a
Google Scholar Alert on [174] as it currently represents the latest survey and is cited by almost
every publication.
To verify the information of each entry in the bibliography, we proceeded with the following

steps:

(1) Search on Google Scholar for the title of the work, if necessary with the authors last name
and the year of publication.

(2) Find a trustworthy source such as the original publisher, the authors’ website, the website of
the venue (that lists the article in the program) or indexing services including IEEE Xplore
Digital Library, ACMDigital Library, Springer Link, Elsevier ScienceDirect, arXiv.org, dblp.org
or ResearchGate. Information from the last three services are used with caution and if possible
backed up with information from other sources.

(3) Manually verify the correctness of the metadata by inspecting and correct it by obtaining the
necessary information from another source, e.g., the conference website or the information
state in the document. Suspicious information could be if the author’s name is missing letters
because of special characters or if the year of publication is before that of cited references.

Once we verified the entry, we add it to the respective bibliography with JabRef (http://www.
jabref.org/) and link the original PDF file or at least the DOI. Articles that were only found as PDF
without the associated venue of publication were classified as technical reports. Bachelor theses
and online sources such as websites of commercial applications were classified as ’Misc’ because of
the lack of an appropriate category in BibTex.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


Understanding Optical Music Recognition 1:35

APPENDIX B: LIST OF OMR DEFINITIONS AND DESCRIPTIONS FROM PUBLISHED
WORKS

To demonstrate how versatile OMR was referred to in the literature, we collected a list of definitions
and descriptions (alphabetically ordered by the first author name). While most of these are direct
citations (we omitted quotation marks for better readability), some were shortened or slightly
rephrased to unify their structure and make them comparable.

Optical Music Recognition has been defined or described as:

• technology which transforms sheet music or printed scores into a machine readable format
[1]

• automatic recognition and classification of symbolic music notation [2]
• system that aims to minimise human involvement in music input. The musical score is
scanned to a bitmap image, and the computer attempts to parse the bitmap [3]

• form of structured document analysis where symbols overlaid on the conventional five-line
stave are isolated and identified so that the music can be played through a MIDI system, or
edited in a music publishing system [5]

• identifying musical symbols on a scanned sheet of music, and interpreting them so that the
music can either be played by the computer, or put into a music editor [6]

• system to convert optically scanned pages of music into a versatile machine-readable format
[4]

• system that aims at converting optically scanned pages of music into a versatile machine-
readable format [9]

• system that aims at converting the vast repositories of sheet music in the world into an
on-line digital format [11]

• computer system that can ’read’ printed music [7]
• system that can be used to convert music scanned from paper into a format suitable for
playing or editing on a computer [8]

• technique that makes it possible to automatically build indexes on the actual content of sheet
music [10]

• process to automatically extract symbolic note information from scanned pages [12]
• system to convert sheet music images to symbolic music representations [13]
• the recognition of music scores [15]
• field devoted to transcribe sheet music into some machine-readable format [14]
• the process to convert a music score image into a machine-readable format [16]
• task of transcribing a music score into a machine readable format [17]
• task of recognizing and interpreting printed music and its transformation into MIDI [19]
• research directed towards the recognition of printed scores as well as handwritten music
notation [18] (Actually referred to as Optical Music Reading)

• systems for music score recognition [20]
• software that recognises music notation and produces a symbolic representation of music
[21]

• key problem for coding western music sheets in the digital world [22]
• system that aims at saving time in converting hardcopy of the music score into an electronic
version [23]

• task devoted to convert an image of a music score into a machine-readable format, such as
MIDI, MEI or MusicXML [179]

• systems that consist of three main steps, namely image pre-processing, symbol recognition
and musical reconstruction [24]
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• software unit called Computerized Note Recognition, whose function is to interpret and
recognize handwritten musical notes [26]

• musical analog to optical character recognition [27]
• musical analogue to optical character recognition [29]
• converting images of musical scores into faithful symbolic representations of the same score
[28]

• electronic conversion of scanned or photographed images of handwritten or printed sheet
music into symbolic and therefore editable form [30]

• automatic score transcription tool [36]
• task of automatically extracting the musical information from an image of a score in order to
export it to some digital format [32]

• offline music score recognition systems [37]
• field (of computer science) devoted to providing computers (with) the ability to extract the
musical content of a score from the optical scanning of its source [40, 42, 44, 46]

• ability of a computer to understand the musical information contained in the image of a
music score [35]

• field of computer science devoted to understanding the musical information contained in the
image of a music score [38]

• research field that consists in [sic] extracting the musical content of a given score image in a
structured, symbolic format [41]

• field devoted to the automatic transcription of sheet music into some machine-readable
format [43]

• branch of artificial intelligence, focused on automatically recognizing the content of a musical
score from the optical scan of its source [45]

• systems to import a scanned version of the music sheet and try to automatically export the
information into some type of structured format such as MusicXML, MIDI or MEI [34]

• systems, whose objective is to automatically extract the information contained in the image
of a musical score [48]

• system to automatic transcription of musical documents into a structured digital format [47]
• field of research that investigates how to computationally decode music notation from images
[39]

• research field that focuses on the automatic detection and encoding of musical content from
scanned images [33]

• research field that investigates how to make computers be capable of reading music [31]
• technology for automatically transcribing musical documents [25]
• digitization of music works [49, 50]
• computational process that reads musical notation from images, with the aim of automatically
exporting the content to a structured format [52]

• technique that converts (or interprets) printed musical documents into computer read-
able/editable formats [60]

• automatic processing and analysis of images of musical notation [53]
• musical cousin of Optical Character Recognition, (which) seeks to convert score images into
symbolic (music) representations [54, 59]

• system to transform score images into symbolic music libraries [57]
• key technology in Music Information Retrieval by mining symbolic knowledge directly from
images of scores [56]

• seeking to convert music score images into symbolic representations [55, 58]
• software to convert scanned sheets of music into computer readable formats [62]
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Understanding Optical Music Recognition 1:37

• software to generate a logical representation of the score [61]
• software to transform an image of a score into symbolic format [63]
• field of document analysis [64ś66]
• automatic transcription of scores [67]
• process similar to the well-known optical character recognition to extract score data such as
note events, the key and time signatures and other musical symbols [68]

• process of recognising a printed music score and converting it to a format that is understood
by computers [69]

• program to automatically recognize music scores (translated from German “Ein Programm
zur automatischen Erkennung von Musiknotenž) [70]

• the study of automatic techniques in information engineering, which can be used to determine
the musical style of the singer [71]

• field to recognize and play live the notes in images captured from sheet music [72]
• process of automatically (re-)setting the score to create a symbolic, computer-readable repre-
sentation of sheet music, such as MusicXML or MIDI [73, 74]

• technology that promises to accelerate the process of entering music scores in a machine-
readable format by automatically interpreting the musical content from (the digitized image
of) the printed score [75, 76]

• transformation of digital music score images to computer readable format symbols [77]
• automatic recognition of a scanned page of printed music [78, 79]
• research area that consists in [sic] the identification of music information from images of
scores and their conversion into a machine readable format [80]

• process of identifying music information from images of scores and converting them into
machine legible format [84]

• classical area of interest of Document Image Analysis and Recognition that combines textual
and graphical information [86]

• classical application area of interest, whose aim is the identification of music information
from images of scores and their conversion into a machine readable format [85]

• research field that consists in [sic] the understanding of information from music scores and
its conversion into a machine readable format [87], [82]

• recognition of handwritten music scores [81], [83]
• automatic recognition of music notation by the computer [88]
• task of converting scanned sheet music into a computer readable symbolic music format such
as MIDI or MusicXML [90]

• process of extracting musical note parameters (onset times, pitches, durations) along with
2D position parameters from the scanned image [89]

• task of converting scores into a machine-readable format [91]
• program for recognition of musical notation [92]
• technology which transforms digital images of music into searchable representations of
music notation [93, 94]

• process of automatically transcribing music notation from a digital image [95]
• research field, which focuses on detecting and storing the musical content of a score from a
scanned image. The objective is to import a scanned musical score and export its musical
content to a machine-readable format, typically MusicXML or MEI [96]

• technique to transform paper musical scores into musical acoustic, and it is a basic way to
apply to digital medium music data, large digital music library, robot reading musical score
and perform, computer music education, Chinese tradition music digitalization [sic][97]

• technique to convert scanned pages of music into a machine-readable format [98]
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1:38 Calvo-Zaragoza et al.

• problem of recognising and interpreting the symbols of printed music notation from a scanned
image [100]

• systems designed to perform recognition of music notation, chiefly from a scanned image of
music notation [99]

• process that aims to “recognizež images of music notation and capture the “meaningž of the
music [101]

• system for recognizing music notation [102]
• systems, designed to recognise printed sheet music scores [103]
• branch of OCR oriented to musical documents [104]
• field of document analysis that aims to automatically read musical scores [110]
• process that attempts to extract musical information from its written representation, the
musical score [108]

• task of recovering symbolic musical information such as MIDI from the image of the written
score [105]

• field of graphics recognition that aims to automatically read music [109]
• field of document analysis that aims to automatically read music [111]
• field of computationally reading music notation in documents [107]
• field of automatically reading music notation from images [106]
• tool for document transcription that tries to extract symbolic music from page images for
use in an editor [113]

• technology that can transform large quantities of music document page images into searchable
and retrievable document entities [112]

• field of research that attempts to transcribe musical symbols into digital format [114]
• process of structured data processing applied to music notation [115]
• research and technological field aimed on recognizing and representing music notation [117]
• technology to automatically recognize music notation [116]
• technique for processing music notes in old manuscripts and books [118]
• form of optical character recognition that use different method and algorithms to convert
printed music into its digital form [sic] [119]

• direct path to create rich and extensive symbolic databases for music in machine-generated
common Western notation [121]

• process that automatically converts the image of a music score into symbolic data [120]
• systems that convert music scores into a computer-readable format, similar to Optical Char-
acter Recognition (OCR) except that it is used to recognize musical symbols instead of letters
[122]

• OCR for music [123]
• system that can play printed or handwritten music score images without any knowledge of
music primitives or musical instruments [124]

• system to transform a sheet music into a format readable by a machine [125]
• case of optical character recognition for the automatic recognition and classification of music
notation [126]

• system that can convert digital image data into digital semantic data [127]
• system that addresses the problem of musical data acquisition, with the aim of converting
optically scanned music scores into a versatile machine-readable format [128, 129]

• subcategory of optical character recognition that recognizes an image of printed sheet music
and interprets it to a machine-readable document [130]

• technology that is a rewarding subject for pattern recognition researches [131]
• system for music score recognition [132]
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Understanding Optical Music Recognition 1:39

• technology that makes it possible to extract symbolic representations from scores or micro-
films of scores [133]

• technique that involves interpreting the symbols in a picture, such as a scanned image of
sheet music, and recreating the information in a format that encapsulates the implied audio
content [134]

• process of converting a graphical representation of music (such as sheet music) into a symbolic
format [135]

• process of automatically extracting musical meaning from a printed music score. It is some-
times also called musical score recognition or simply score recognition [137]

• process of automatically processing and understanding an image of a music score [136]
• process that recognized music from any form of score sheet and makes sheet readable and
editable for computer [sic] [138]

• automatic conversion of scannedmusic scores into computer readable data in variable formats,
e.g., MusicXML, or MEI [139]

• technique that achieves the automatic recognition of music notation with high-speed and
further plays music automatically, which is an important topics (sic!) in the process [140]

• process to convert handwritten music symbols on sheets of paper into computer readable
data [141]

• systems that analyze and convert digitized music scores to machine readable formats [142]
• process of automatically recovering the information present onmusic scores based on scanned
data [144]

• input technique to obtain a machine representation of music [147]
• efficient and automatic method to transform paper-based music scores into a machine repre-
sentation [148]

• system that can provide an automated and time-saving input method to transform paper-
based music scores into a machine readable representation, for a wide range of music software,
in the same way as Optical Character Recognition is useful for the processing applications
[145]

• system to transform paper-based music scores and manuscripts into a machine-readable
symbolic format [146]

• equivalent task for music, that is OCR for digital images of words [149]
• system that can automatically interpret the images and automatically create new scores that
can be understood by the computer [150]

• discipline that investigates music score recognition systems [151]
• area of document analysis that aims to automatically understand written music scores. Given
an image of musical scores, an OMR system attempts to recognize the content and translate
it into a machine-readable format such as MusicXML [155]

• branch of artificial intelligence that aims at automatically recognizing and understanding the
content of music scores [156]

• challenge of understanding the content of musical scores [154]
• research field that investigates how to automatically decode written music into a machine-
readable format [152]

• field of research that investigates how to build systems that decode music notation from
images [153]

• field of research that investigates how to computationally read music notation in documents
[157]

• task of recognizing all music symbols in a score sheet [158]
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1:40 Calvo-Zaragoza et al.

• system to convert music scores into a machine-readable data that could be reproduced in
computer and stored as compact digitalised data [sic] [159]

• process of identifying music from an image of a music score [160]
• system to transform paper-based music scores and manuscripts into a machine-readable
symbolic format [161, 162]

• tools for the creation of searchable digital music libraries [163]
• systems that create encodings of the musical content in digital images automatically [164]
• musical analogue to optical character recognition (OCR) [165]
• applications that enable document images to be encoded into digital symbolic music repre-
sentations [167]

• the equivalent of OCR for music [166]
• pathway to a large set of symbolic scores [168]
• analogous to optical character recognition to convert music score images into symbolic form
[169]

• form of structured document image analysis where music symbols are isolated and identified
so that the music can be conveniently processed [172]

• system to transform paper-based music scores and manuscripts into a machine-readable
(symbolic) format [51, 170, 173]

• system with three main objectives: the recognition, the representation and the storage of
musical scores in a machine-readable format [177]

• tool for the automatic recognition of digitized music scores [176]
• computer system that can automatically decode and create new scores [174]
• research field, that deals with the recognition, the representation and the storage of musical
scores in a machine-readable format [171]

• tool to transform pen-based music scores and manuscripts into a machine-readable symbolic
format [175]

• system capable of recognizing printed music of reasonable quality [178]
• task of recognizing images of musical scores [180]
• recognition of images of musical scores [181]
• key tools for publication of music score collections that are currently found only on paper
[182]

• system that can automatically recognize the main musical symbols of a scanned paper-based
music score [183]

• field of research that aims at reading automatically scanned scores in order to convert them
in an electronic format, such as a midi file [184]

• method that aims at automatically reading scanned scores [185]
• method that aims at automatically reading scanned scores in order to convert them into an
electronic format, such as MIDI file, or an audio waveform [186]

• automatic recognition of a scanned page of printed music notation by a computer program
[187]

• translation of a digitized image of a music score into a representation more amenable to
computer manipulation of the musical content [188]

• systems that analyse images of music scores to convert their content to machine readable
formats [143]

• problem of obtaining a complete representation of a musical document given only a digital
image [189]

• problem of recognizing musical scores in images [190]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


Understanding Optical Music Recognition 1:41

• application of optical character recognition to interpret sheet music or printed scores into
editable or playable form [191]

• systems that play a very important role in the process of creating the digital libraries of
musical documents [192]

• tools for automatic sheet music transcription [193]
• system for extracting musical symbols from images similar to the Optical Character Recogni-
tion [194]

• method that involves identifying musical symbols on a scanned sheet of music and trans-
forming them into a computer readable format [195]

• process of converting digitized sheets of music into an electronic form that is suitable for
further processing such as editing and performing by computer [196]

• efficient and automatic method for transforming paper-based music scores into a machine
representation [197]

• algorithm for processing images of musical scores [198]
• work for automatically recognizing music expressions for printed and handwritten music
[199]

• program to convert scanned score into an electronic format and even recognize and under-
stand the contents of the score [200]

• application to automatically transcribe digitized page images of music [202]
• automatic recognition of a scanned music score [203]
• system to input music by detecting musical symbols, based on strokes drawn by the user
[201]

• automatic recognition of scanned music scores [203]
• area of document recognition and computer vision that aims at converting scans of written
music to machine-readable form, much like optical character recognition [204]

• area within music information retrieval with the goal of transforming images of printed or
handwritten music scores into machine readable form, thereby understanding the semantic
meaning of music notation [205]

• process of identifying music from an image of a music score [207]
• process of turningmusical notation represented in a digital image into a computer-manipulable
symbolic notation format [208]

• process of converting a scanned image of pages of music into computer readable and manip-
ulable symbols using a variety of image processing techniques [209]

• process that reads and extracts the content from digitized images of music documents [210]
• a computer system for automatically storing and interpreting musical information (of music
scores) [212]

• system that can automatically interpret images of music scores and create new scores that
the computer could understand [211]

• particular case of high-level document analysis [214, 215]
• task of interpreting the content of the bitmap image of a musical score and reformulating it
with a high-level symbolic structure [213]

• way to convert music notation into a digital representation, and its acoustic rendition [216]
• systems whose main purpose is to convert images of paper-based music scores into digitised
formats [217]

• application of recognition algorithms to musical scores, to encode the musical content to
some kind of digital format [206]

• tool to recognize a scanned page of music scores automatically [218, 219]
• conversion of scanned pages of music into a musical database [220]
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1:42 Calvo-Zaragoza et al.

• process of a computer reading sheet music [221]
• process of converting paper sheets of music score into an electronic format which can be
“readž by computer [222]

• tool that takes a score that is likely to be correct, scans it and tries to recreate what it scans
in a digital notation format [223]
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CHAPTER 3
Towards Self-Learning Optical

Music Recognition

The paper “Towards Self-Learning Optical Music Recognition” [PE17b], published at the
International Conference on Machine Learning and Applications 2017 in Cancun, Mexico,
was the first publication of my research and contains the overall plan of my research. In
particular, it discusses why a new paradigm is needed for OMR and what it could look
like. Along with the discussion, two experiments are presented.

In the first one, a convolutional neural network was trained to distinguish images of music
scores from images depicting something else, such as natural photographs, documents
or tables. The goal was to see if a neural network was capable of learning the concept
of “how music scores look like.” A real-world application emerged at the WoRMS 2018
when a librarian expressed her need for such a classifier to assist her in automatically
finding music scores in millions of documents in her library. For training the network,
a new dataset of 2000 images was collected by taking real photos of scores and other
documents under various angles and lighting conditions. The results on that dataset
were exceptional with nearly 100% accuracy, which means that the task is easily solvable
with deep learning.

The second experiment reproduced a previously conducted study, trying to classify
isolated, handwritten music symbols from the HOMUS [CZO14] dataset with a deep
convolutional neural network. Previously reported results were already very good with
96% and 97% accuracy, so the state of the art could only be improved slightly to
98% accuracy, which is even better than the performance of humans on the same task
(95% accuracy). Another interesting observation was made: the trained network was
coping exceptionally well (97% accuracy) with superimposed staves that were artificially
introduced into the images of isolated symbols. This indicates that the removal of staves
might be superfluous when using convolutional neural networks.
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Alexander Pacha, Horst Eidenberger
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Abstract—Optical Music Recognition (OMR) is a branch of
artificial intelligence that aims at automatically recognizing
and understanding the content of music scores in images.
Several approaches and systems have been proposed that try to
solve this problem by using expert knowledge and specialized
algorithms that tend to fail at generalization to a broader
set of scores, imperfect image scans or data of different
formatting. In this paper we propose a new approach to solve
OMR by investigating how humans read music scores and by
imitating that behavior with machine learning. To demonstrate
the power of this approach, we conduct two experiments
that teach a machine to distinguish entire music sheets from
arbitrary content through frame-by-frame classification and
distinguishing between 32 classes of handwritten music symbols
which can be a basis for object detection. Both tasks can
be performed at high rates of confidence (>98%) which is
comparable to the performance of humans on the same task.

I. INTRODUCTION

Music plays a central role in our cultural heritage with

written music scores being an essential way of communi-

cating the composer’s intention to musicians that perform a

piece of music. The music notation encodes the information

into a graphical form that follows certain syntactic and

semantic rules to encode pitch, rhythm, tempo, and articu-

lation. Optical Music Recognition (OMR) tries to recognize

and understand the notation and the contents of an image

for a machine to be able to comprehend the music. Given a

system that is able to translate an image into a machine-

readable format, the applications are manifold, including

preservation and digitization of hand-written manuscripts,

supporting music education or accompanying musicians that

practice their performance.

Although considerable research has been conducted and

many systems have been developed [1] that reportedly

perform well on the specific set of music scores for which

they have been designed for, the robustness and extensibility

of these systems is limited due to the underlying architecture

and used algorithms that discard information and propagate

errors from one step to the next, e.g. an error in the

binarization which is often the first step of an OMR system

might cause the symbol detection to detect notes where there

are none. Many algorithms have been proposed to improve

individual steps of this linear process, but to the best of

our knowledge, there exists no system that is capable of

automatically recognizing a large set of real-world data with

satisfactory precision, good usability, and reasonably low

editing costs [2] of errors that were introduced during the

process. Many people could benefit from digitizing a large

body of music scores that is accessible and searchable [3].

As a result, there are ongoing projects to do so including

SIMSSA1 and OpenScore2. To support such projects, we

propose a new approach: rather than designing features and

defining rules by hand, the system should learn to extract

features and appropriate rules by itself (given a certain

amount of supervision). Ideally, such a system is capable

of transcribing music scores as accurately as humans.

II. RELATED WORK

OMR has been a subject of interest at least since 1966

[4], and received substantial attention by Bainbridge and Bell

[5] who established a general framework for OMR that has

been adopted by many researchers [1]. Since then, many re-

searchers suggested entire OMR systems [6], [7] or proposed

specialized algorithms for solving or improving sub-tasks

such as binarization [8] or staff-line detection and removal

[9], [10]. However, most of them use ad-hoc solutions

based on expert knowledge that follow widely used practices

that work best on datasets fulfilling certain prerequisites,

e.g. detecting staff-lines with horizontal projections requires

the scores to have straight staff-lines. Unfortunately, these

systems tend to experience difficulties when confronted with

images that deviate from the expected input format for which

they were designed (e.g. if the staff-lines are curved due to

the bonding of a textbook). Adding another preprocessing

step or improving an algorithm can help to overcome one

or the other limitation, but might not help a system to gain

robustness beyond a certain level.

In the last few years, machine learning - and especially

Deep Learning with Convolutional Neural Networks (CNNs)

- received a lot of attention with results that surpass human-

level performance on computer vision tasks such as image

classification [11]. Wen et al. proposed a machine learning

approach for symbol segmentation and symbol classifica-

tion [12] in combination with a pre-defined ruleset. Calvo-

Zaragoza et al. [13] classify music scores at pixel-level

with CNNs into foreground, background, and staff-lines.

Gallego et al. [14] use auto-encoders to remove staff lines

and finally Pinheiro Pereira et al. [15] classify handwritten

1http://simssa.ca/, last visited on Oct. 4, 2017
2http://openscore.cc, last visited on Oct. 4, 2017
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music symbols from the HOMUS database [16] into 32

different categories with a precision of over 96%. Together,

they provide strong evidence, that machine learning can

successfully be applied to develop new types of OMR

systems that are robust and extensible to a wide range of

scores.

III. HOW HUMANS READ SCORES

We believe that an OMR system should be able to read

and comprehend music scores with all their facets as well as

humans. To the best of our knowledge, there exists no system

that would come close to human performance [1]. As far as

it is understood today, humans process visual scenes in a

hierarchical way at three levels [17, p. 557]:

1) Low-level, where contrast, orientation, color, and move-

ment are processed, primarily in the retina and ganglion

cells [17, p. 600]

2) Intermediate-level, where the layout of the scene is

processed by parsing the visual image into contours

and surfaces of objects, segregating them from the

background, involving the primary visual cortex [17,

p. 619].

3) High-level, where actual object identification is per-

formed, by matching surfaces and contours to known

shapes from our memory (or more precisely to their

neuronal representation) which happens primarily in the

Inferior Temporal Cortex [17, p. 622]

By processing visual information in this hierarchical way,

humans become very good at arriving at scene descriptions,

grasping the gist of a scene. But reading music scores

includes not only the visual perception of objects, but

also relating objects to each other and to the context, a

process where, unfortunately, today little is known about

how humans perform this task, apart from certain brain

regions that have been identified to be involved in this

process [18], [17, p. 1353]. Note that for relating elements

to each other and interpreting them correctly, it appears that

humans use all information available. For music scores, this

includes the staff-lines as the reference system, knowledge

about the type of music, the notational system and also

prior knowledge such as the probabilities of continuations

within idioms [18] to resolve ambiguities if the available

information is incomplete or doubtful. The expectancy can

even replace a stimulus, making up for misprints as shown

in the Goldovsky experiment [18] indicating that reading

involves both top-down (or conceptually-driven) and bottom-

up (or data-driven) processes.

Learning from the way humans read scores, binarizing

the image as a first step or removing staff-lines seems

to be counterproductive as it discards potentially relevant

information. In summary, we conclude that OMR systems

could benefit from operating directly on the input image

(which is possible with Deep Learning), providing feedback

loops from later steps to refine earlier steps and consider

information that might not have been used so far.

IV. HOW MACHINES READ SCORES

David Marr proposed a computational framework of vi-

sion that has three levels and to us appears very useful when

discussing vision problems [19]:

• Computational theory, which specifies how a vision task

can be solved in principle

• Algorithmic level, that gives precise details on how the

theory can be implemented. In other words: What is the

input and output and how to obtain the output given the

input?

• Hardware for realizing the algorithm in a physical

system (which is not necessarily computer hardware,

but in our case it is)

Given this framework, we think that the computational

theory of how humans or machines can read scores is correct

and sound: detecting systems, staves and staff-lines and

using them as structural guidance is a solid foundation;

segmenting elements into smaller parts and constructing

a relational mapping leads to a symbolic representation;

finally, this symbolic representation can be interpreted in

its context, according to syntactic and semantic rules that

correspond to a particular notational language.

The algorithmic level, however, seems to be much harder

to solve, possibly because the inherent complexity of the

problem is often underestimated. Many proposed approaches

can be seen as concept-driven because they use prior knowl-

edge of the specific object, in this case, music sheets.

We believe that a data-driven, Deep Learning approach

is a viable alternative that should be investigated further.

Therefore, we propose the following five questions as a

model for bottom-up music processing that are specifically

formulated to facilitate the development of such an Optical

Music Recognition algorithm.

Can a machine mimic human behavior in ...

Q-I distinguishing between music scores and arbitrary con-

tent?

Q-II understanding the structure of music scores (staves,

systems) and distinguish basic music symbols from

each other and from the background?

Q-III detecting and locating music symbols (notes, rests,

ornaments, accidentals, bar-lines, articulations, ...) in

the scores?

Q-IV understanding the relation of objects to each other in

music scores (the relation between a note and the staff-

lines, an accidental to the left of a note which relates

to that note, etc.)?

Q-V fully understanding the syntax and semantics of music

scores (inferring the actual note from relative position,

shape and preceding symbols such as key signatures or

accidentals)?
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These five questions define our research program for the

data-driven investigation of the OMR problem using deep

networks. In our opinion, each question can be solved using

an appropriate model and sufficient data. Note that the ques-

tions are of increasing complexity with Q-V representing a

complete system that is capable of reading scores and fully

understanding their content like humans. Q-I and Q-II can

be implemented by using CNNs that operate directly on

the raw input data. A promising approach for Q-III is to

extend a classifier into an object detector by using region

proposal networks [20]. As for questions Q-IV and Q-V,

Recurrent Neural Networks (RNN) seem to be a good fit

[21], as they can learn relationships in sequential data and

already achieved remarkable results in Optical Character

Recognition [22], a task that is comparable to OMR but

in many regards simpler [5].

V. EXPERIMENTATION

To evaluate whether a data-driven approach is suitable

for improving the state-of-the-art in OMR, two experiments

were conducted that try to answer Q-I and partially Q-II. The

first, to recognize music scores in an image and classify that

image into one of the two categories: ’scores’ or ’other’. The

second, to classify isolated handwritten music symbols into

32 different classes, reproducing [15] in greater depth and

improving their results significantly. For both experiments, a

Convolutional Neural Network was trained using the popular

Deep Learning frameworks Keras3 and Tensorflow4. The

resulting models can then be used for inference on almost

any machine including mobile devices (see Figure 1) to

classify images from the live camera-feed and display a

frame-by-frame classification.

A. Datasets

The dataset used for training, validation, and testing in the

first experiment contains over 5500 images of which 2000

images contain scores and 3500 images contain something

else (see Table I). The largest portion was obtained by using

two publicly available datasets: the MUSCIMA database,

which contains 1000 handwritten music scores [23] and the

training database of the Pascal VOC Challenge 2006 which

contains over 2600 images [24] that were considered part

of the ground-truth for the category ’other’. Additionally,

we created a new dataset containing 2000 imperfect but

realistic images, by taking 1000 images depicting music

scores and 1000 images of text documents and other objects

with a smartphone camera. Preliminary testing showed that

text documents were likely to be confused with scores,

especially if they contain tables. Hence, a large portion of

the additional images contains such documents in order to

enable the network to learn the distinction. The complexity

of the scores ranges from simple childrens’ tunes to modern

3http://keras.io/, last visited on Oct. 4, 2017
4http://www.tensorflow.org/, last visited on Oct. 4, 2017

Figure 1: Screenshots of the Android application, classifying

a sheet of music scores (left top) and a table with data (right

top) with a certainty of 99%. When presented with images

that contain scores and text (left bottom) or unusual forms

(right bottom), certainty drops to approximately 70% but the

system still classifies the image correctly.

orchestral scores, taken in various lighting conditions and

from different angles.

The dataset for the second experiment is the Handwrit-

ten Online Musical Symbols (HOMUS) dataset [16] that

contains 15200 samples of hand-written musical symbols,

written by 100 different musicians5.

B. Architecture and Training

For both experiments, various network architectures were

evaluated, including a VGG-like architecture [25] and resid-

ual networks [26].

The first experiment attempts to answer Q-I and uses

color-images that are non-uniformly resized to 128x128

pixels for the first trial and 256x256 pixels for the second.

For the second experiment that is targeted towards Q-II,

black and white images are generated from the textual

representation of strokes by connecting the points of each

stroke. Since individual symbols vary drastically in size,

while CNNs expect a fixed-size image as input, the following

two approaches were evaluated:

5Note that the original dataset contained a few mistakes and artifacts
that were reported to the authors and corrected before the training see
https://github.com/apacha/Homus for details, last visited on Oct. 4, 2017
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Handwritten scores

Images of scores

Images of documents

Other images

Table I: Sample images of the various categories, as they were shown to the classifier during training (non-uniformly resized).

The upper two rows form the class ’scores’ and the lower two rows the category ’other’.

1) Drawing the symbols in the center of a large enough

canvas that fits most of them (e.g. 192x96 pixels, with

only 23 out of 15200 symbols exceeding this size)

2) Drawing each symbol in a canvas that exactly fits its

size and rescaling all symbols non-uniformly to a fixed

size, e.g. 96x96 pixels

These particular sizes were empirically selected because

they yielded the best results while allowing multiple down-

scaling operations by a factor of two without interpolation.

Batch-normalization, early-stopping, weight-decay and

dynamic learning-rate-reduction are used as regularization

strategies to improve training speed and overall performance.

Random-rotation by 10° and random-zoom of 20% are used

as data-augmentation strategies to simulate the images being

taken from slightly different points-of-view which leads to

results that are robust to minor variations.

C. Evaluation

To evaluate each experiment, the respective dataset was

split into three parts of which 80% are used as training

data, 10% are used for validation during the training and

for hyperparameter optimization and the final 10% are used

for evaluating the performance of the trained model on

previously unseen data.

To obtain a baseline, a subset of the images was also

shown to a number of people that were asked to perform

the same classification task in a desktop application on a

computer screen. The application did not allow for zooming

and the users classified the images using the keyboard but

were allowed to go back and revise their decisions without

any time constraints.

1) First Experiment: Typical training took 30 epochs

before early stopping the training to prevent overfitting. The

trained model classified 98.5% of the images in the test set

correctly on the 128x128 pixels condition and 100% on the

256x256 condition, meaning that this task appears almost

trivial to the machine.

The more than 500 images from the test set were also

shown to three different users, who were asked to manu-

ally classify them either as ’something that displays music

scores’ or ’something else’. The images were down-scaled to

the same 128x128 pixels that correspond to approximately

3.5cm on a desktop screen. In total, they classified over

1500 images with an average precision of 96.49%. The main
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Figure 2: Superimposed staff-lines over isolated symbols

to create meaningful context. Five parallel lines are drawn

with an equal spacing of 14 pixels between each line [16].

From left to right: Quarter-Note, F-Clef, Eighth-Rest, Sharp,

Whole-Half-Rest, Sixty-Four-Note

source of error was due to the very small images. Partially

repeating the process with images of size 256x256 pixels,

which corresponds to approximately 7cm on a desktop

screen, showed that humans can perform this task without

exceptional errors.

2) Second Experiment: The second experiment contains

a wide range of conditions whose effects were investigated:

image-size, stroke-thickness, superimposing staff-lines (see

Figure 2) and of course the hyperparameters for the training

of a deep neural network, including the network architecture,

the used optimizer, and minibatch-size. A total of over 150

different hyperparameter-combinations were tested and doc-

umented. The following hyperparameters have empirically

shown to work very well for this task:

• Monitoring the accuracy on the validation set after each

epoch and reducing the learning-rate by a factor of 0.5

if it does not improve for 8 epochs. Similarly, the entire

training was stopped if no improvement was observed

for 20 epochs.

• Adam, Adadelta and Stochastic gradient descent (SGD)

were evaluated as optimizers with Adadelta performing

slightly better than Adam and much better than SGD.

• Evaluated minibatch-sizes included 16, 32 and 64 but

the impact is rather small and in our opinion can be

neglected.

The obtained results reach up to 98.02% accuracy on a

test-set of 1520 images which is a significant improvement,

compared to previously reported results of 97.26% [27] and

96.01% [15]. For images with undistorted symbols drawn on

a fixed canvas (Section V-B, approach 1) a Res-Net archi-

tecture with 25 convolutional layers and about five million

parameters performed best. Similar results were obtained

with a VGG architecture for non-uniformly resized symbols

(Section V-B, approach 2) that consists of 13 convolutional

layers and about 8 million parameters.

The results of the best run, broken down by symbol class,

are given in Table II and show that the network struggled

most with notes and rests that are only discriminable by the

number of flags, such as Thirty-Two- and Sixty-Four-Notes.

Five users were asked to perform the same task on a

random sample of the dataset. In total, they classified 1520

images with an average precision of 95% and experiencing

most difficulties in Quarter-Rests and Sixteenth-Rests that

Table II: The recall and precision per class for the best

trained residual network in comparison to human perfor-

mance on the same task.

Residual Network Human test subjects
Class name Recall Precision Recall Precision

12-8-Time 1.00 1.00 1.00 0.97
2-2-Time 1.00 1.00 0.95 1.00
2-4-Time 0.97 0.95 1.00 0.98
3-4-Time 0.95 1.00 1.00 0.97
3-8-Time 1.00 1.00 1.00 1.00
4-4-Time 1.00 0.98 0.97 1.00
6-8-Time 1.00 1.00 1.00 1.00
9-8-Time 1.00 1.00 1.00 1.00
Barline 1.00 0.98 0.97 0.92
C-Clef 1.00 1.00 1.00 0.91
Common-Time 1.00 1.00 0.97 1.00
Cut-Time 0.95 1.00 0.98 0.98
Dot 0.97 1.00 1.00 1.00
Double-Sharp 1.00 1.00 0.97 1.00
Eighth-Note 0.99 0.95 0.92 0.98
Eighth-Rest 1.00 1.00 0.98 0.86
F-Clef 1.00 1.00 0.97 0.92
Flat 0.97 1.00 0.95 0.95
G-Clef 1.00 0.95 0.98 0.98
Half-Note 1.00 1.00 0.97 0.94
Natural 0.95 1.00 0.74 1.00
Quarter-Note 1.00 1.00 0.93 0.95
Quarter-Rest 0.95 0.95 0.89 0.82
Sharp 1.00 1.00 1.00 0.97
Sixteenth-Note 0.94 0.95 0.90 0.92
Sixteenth-Rest 0.97 0.97 0.76 0.81
Sixty-Four-Note 0.96 0.95 0.94 0.94
Sixty-Four-Rest 0.97 0.97 0.83 0.97
Thirty-Two-Note 0.91 0.95 0.99 0.91
Thirty-Two-Rest 0.97 0.95 0.91 0.89
Whole-Half-Rest 1.00 0.98 1.00 1.00
Whole-Note 1.00 0.98 1.00 0.98

both have manifestations that deviate from their printed

counterparts dramatically or are simply ambiguous (see

Figure 3).

Another very interesting detail was observed: When su-

perimposing staff-lines as depicted in Figure 2, test-accuracy

remains at high rates of up to 97.03%, indicating that

the network can learn to ignore them almost entirely, thus

providing evidence that staff-line removal might be omitted

in future systems, as discussed in Section III.

VI. CONCLUSION

Given the results presented in Section V-C we conclude

that Q-I can be answered with yes, showing that humans and

machines can achieve similar results on the given dataset.

Detecting music scores and distinguishing them from ar-

bitrary content is a relatively easy problem compared to

the entire challenge of Optical Music Recognition but what

experiment 1 shows, is that machines can learn something

as abstract as the concept of ’what music scores look like’

by just providing enough data and using a Deep Learning

approach. As for Q-II, we showed that a CNN can be trained

to distinguish handwritten music symbols from each other at

high rates of confidence, even with staff-lines being present.
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(a)

(b)

Figure 3: Examples of symbols from the test set that were

misclassified by the machine (a) and by humans (b). Their

intended classes from left top to right bottom: Sixteenth-

Rest, 2-4-Time, Sixteenth-Note, Cut-Time, Quarter-Rest,

Sixteenth-Note, Quarter-Note, Sixty-Four-Note, Sixty-Four-

Rest, Quarter-Rest, Natural, and Sixty-Four-Note.

When combining these results with the work from [28] and

[13] we conclude that Q-II can also be answered with yes.

VII. FUTURE WORK

To promote collaboration and reproducibility, all datasets,

the entire source-code and the raw data from both experi-

ments have been released on Github at https://github.com/

apacha/MusicScoreClassifier and https://github.com/apacha/

MusicSymbolClassifier under a liberal MIT-license. We are

confident, that by following the described path, an OMR

system can be created that is capable of not only classifying

entire images but also recognizing the structure of the

document, reliably detecting objects in the image and even

understanding the relation of elements to each other with-

out formulating explicit rules by only training appropriate

models on a comprehensive dataset.
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CHAPTER 4
Towards A Universal Music

Symbol Classifier

The classification of symbols can be seen as a substantial part of detecting objects in
an image because modern approaches tackle the problem usually in two stages: the
first stage proposes regions of interest in the image and the second stage classifies these
proposals accordingly. Therefore, it is useful to evaluate how well a classification task
can be solved with Deep Learning, especially when using both handwritten and typeset
music scores.

The paper “Towards a Universal Music Symbol Classifier” [PE17a], presented at the 12th
IAPR International Workshop on Graphics Recognition 2017 in Kyoto, Japan, extended
the previously conducted classification experiment [PE17b] to a much larger scale. While
the HOMUS dataset already contains 15 000 samples, the dataset collected for this work
was significantly larger with over 90 000 isolated musical symbols, collected from seven
heterogeneous datasets and categorized into 79 classes (see Fig. 4.1 for a few samples).
The resulting dataset contains more than 74 000 handwritten symbols and more than
16 000 symbols that were typeset, unfortunately with a heavy class-imbalance.

A convolutional neural network was trained to classify the symbols, and the results
were auspicious with an error rate below 2%. More than 200 different hyperparameter
combinations were evaluated, including a range of model architectures (inspired by
VGG [SZ14] and ResNet [HZRS16]), image-sizes and class-balancing methods. Some
combinations performed slightly better than others. However, it should be noted all
tested combinations achieved error-rates between 2%-3%. As with all other experiments,
the source code as well as the dataset and the results, were made publicly available online
[Pac17a]. The exact details of the best-performing hyperparameter combination can be
found there.
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Abstract—Optical Music Recognition (OMR) aims to recognize
and understand written music scores. With the help of Deep
Learning, researchers were able to significantly improve the state-
of-the-art in this research area. However, Deep Learning requires
a substantial amount of annotated data for supervised training.
Various datasets have been collected in the past, but without
a common standard that defines data formats and terminology,
combining them is a challenging task. In this paper we present
our approach towards unifying multiple datasets into the largest
currently available body of over 90000 musical symbols that
belong to 79 classes, containing both handwritten and printed
music symbols. A universal music symbol classifier, trained on
such a dataset using Deep Learning, can achieve an accuracy
that exceeds 98%.

Index Terms—Optical Music Recognition, dataset, classifica-
tion, deep learning

I. INTRODUCTION

Optical Music Recognition (OMR) is an area of document

analysis that aims to automatically understand written music

scores [1]. Given an image of musical scores, an OMR

system attempts to recognize the content and translate it into

a machine-readable format such as MusicXML.

Music symbol classification is the subtask of OMR, where

isolated symbols are assigned with class labels. In this work

we present the first attempt of building a universal music

symbol classifier, that is capable of classifying music symbols

regardless of whether they are well printed or just handwritten.

To build such a classifier, we propose a data-driven approach.

Therefore, we developed tools that can unify multiple datasets

into a single large dataset on which the universal music symbol

classifier can be trained. In our test setup, we were unifying

seven datasets into a collection of over 90000 samples, be-

longing to 79 classes.

II. DATASETS

For training a universal music symbol classifier, we tried to

obtain the largest possible dataset that contains both printed

and handwritten symbols. We did so by combining the follow-

ing publicly available datasets:

• The Handwritten Online Musical Symbols (HOMUS)

dataset [2] contains 15200 samples of isolated music

symbols of 32 different classes.

• The MUSCIMA++ dataset [3] is the largest available

dataset that contains detailed annotations for the un-

derlying CVC-MUSCIMA dataset [4] of handwritten

music scores. More than 55000 complete symbols can

be extracted from the music symbol primitives.

• The group of Rebelo et al. collected at least three different

datasets [5], containing more than 15000 printed music

symbols.

• The group of Fornés et al. collected a dataset of approxi-

mately 4100 images of handwritten symbols [6] depicting

accidentals and clefs.

• The Audiveris OMR dataset1 is a small dataset of four

images of scores, along with annotations of 400 printed

symbols in those images.

• The Printed Music Symbols dataset2 is a new dataset

created by us, in which we collected more than 200

printed music symbols of 36 different classes.

• The OpenOMR dataset3 is the last included dataset, that

contains 500 printed music symbols of seven different

classes.

The resulting dataset contains more than 74000 handwritten

and more than 16000 printed symbols, with a substantial

amount of inter-class variation.

III. UNITING THE DATASETS

A. Selecting classes and resolving ambiguities

Modern musical notation knows over 100 different symbol

classes, with some classes being more present, like quarter

notes or G clefs, whereas other classes are rarely used or just

used for specific instruments like glissando or breath marks.

Apart from selecting which classes to include into the dataset

(ideally all of them), one has to deal with ambiguous class

names. E.g. a quarter note may also be called quaver or a G

clef is also referred to as Treble clef. To resolve this issue, a

common terminology is selected and all aliases and variations

are mapped to those names. The actual names are secondary, as

long as the schema is clear. We follow the naming conventions

of the HOMUS dataset and map all other names to their

respective counterparts or to similar class names if they did

not exist in the HOMUS dataset.

Besides class names, symbols themselves can be ambiguous

too. Although having the same visual appearance, they might

resolve to different semantics depending on the context (e.g.

1https://github.com/Audiveris/omr-dataset-tools
2https://github.com/apacha/PrintedMusicSymbolsDataset
3https://sourceforge.net/projects/openomr/
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tie vs. slur vs. phrase mark or staccato vs. dot of a dotted

note). This ambiguity can not be resolved when working

with isolated symbols outside of a context which determines

the class. Therefore, all ambiguous symbols are placed in a

unifying super-class such as Dot or Whole-Half-Rest.

B. Joining different levels of decomposition

Some creators of OMR systems suggest to decompose

music symbols into individual primitives (e.g. note-heads,

stems, numbers, letters) and combine them in a later stage,

whereas others choose to work with entire sets of symbols

that might consist of multiple smaller units (e.g. eighth-note,

2/4-time). This decision can be made for notes, accidentals,

numbers, and letters. While some primitives form a class

on their own (e.g. flat or sharp), others do not (e.g. stem,

flag). Datasets with different conventions are at least partially

incompatible. To integrate them nevertheless, a decision has

to be made for each type, whether to exclude samples, use

primitive symbol classes, preprocess primitives into compound

symbols or enumerate all variants of combining primitives

(e.g. 2/4-time, 3/4-time, 6/8-time, ...). To lose as little data

as possible when joining the mentioned datasets, we propose

a mixed approach: notes only appear as compound classes

which require preprocessing in some cases, time signatures

are enumerated and key signatures consisting of multiple

flats or sharps are excluded with only their primitives being

considered.

C. Tools for the automatic unification

We have built tools that are capable of automatically

downloading all datasets and processing them. As images are

the input for music symbol classification in OMR, all other

representations have to be processed to obtain images: Our

HOMUS image generator allows to render textual descriptions

into symbol images and the MUSCIMA++ image generator

creates symbol images from the underlying masks. The image

extractor for the Audiveris OMR dataset takes annotations and

extracts sub-images that contain individual symbols while the

image inverter converts the white-on-black images from the

Fornés dataset to black-on-white images. Finally, the entire

dataset can be obtained and split into a training-, validation-,

and test-set by calling a single script, the training dataset

provider.

IV. BUILDING A UNIVERSAL MUSIC CLASSIFIER

A universal music classifier should be able to recognize

all sorts of music symbols, regardless of whether they are

handwritten or printed. Deep neural networks, especially con-

volutional neural networks offer a convenient, yet powerful

way of solving computer vision tasks like the one at hand [7].

Therefore, we aim to build such a classifier by training a con-

volutional neural network on the presented dataset. Extending

it to other notations is possible by adding a respective dataset.

To the best of our knowledge, no such work has been done

before.

V. DISCUSSION AND CONCLUSION

By providing tools for easily obtaining and merging multiple

datasets, we believe that building a universal music symbol

classifier can be reduced to the training of a suitable deep

neural network. We evaluated this thesis by training various

networks on the presented dataset and our preliminary results

are promising with an error rate below 2% and over 98%

precision and recall on an unseen test-set containing 10% of

the data4. Our next step is to analyze the results and build a

music symbol object detector on top of the classifier.

The united dataset is not perfect and currently suffers from

being somewhat unbalanced with some classes having fewer

than 10 instances while others have more than 1000, with the

quarter note alone having almost 18000 samples. This poses

a problem to any classifier that optimizes for accuracy on this

dataset, as it might just learn the underlying distribution and

simply ignore the classes with the fewest samples. Therefore,

there is a need to gather more samples from classes with in-

sufficient instances. Furthermore, our dataset has the following

limitations:

• It currently contains modern notation symbols only.

• Some datasets have one dedicated class for non-

recognizable symbols, including text fragments and dy-

namics. We incorporated that container class and store

symbols in there, that currently do not fit our categoriza-

tion as opposed to discarding them. In the next version,

some symbols will be extracted from this container and

put into their appropriate classes.

• Despite their prominence, beamed notes are currently

underrepresented, because most underlying datasets do

not contain any or decompose them into primitives that

can not be joined easily.

To have the greatest possible impact, we publish all tools

under a liberal MIT license along with a list of other OMR

datasets at https://apacha.github.io/OMR-Datasets/.
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4. Towards A Universal Music Symbol Classifier

Figure 4.1: A small sample of music symbols that are part of the collected music symbols
dataset. It depicts ten different classes of handwritten and typeset symbols in modern
notation.

72

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


CHAPTER 5
Music Object Detection

Being able to classify music symbols so well laid the foundations for building an object
detector with a deep convolutional neural network—which in its simplest form is just a
classifier over a sliding window. However, more advanced approaches for solving object
detection with deep learning were used in subsequent experiments.

5.1 Handwritten Music Object Detection

The first experiments on trying to solve music object detection with deep learning were
conducted for the paper “Handwritten Music Object Detection: Open Issues and Baseline
Results,” [PCC+18] presented at the 13th IAPR International Workshop on Document
Analysis System 2018 in Vienna, Austria. The main idea is to unify all steps of the music
object detection into a single, learnable stage that can be solved by a deep convolutional
neural network. The MUSCIMA++ dataset [HjP17] served as the data source because
it provided a large body of handwritten music scores that were manually annotated.
The full score images were preprocessed into smaller chunks to ease the detection, and
sequentially fed into the network. The entire image was first cropped in such a way
that each sub-image contains only one stave, and then horizontally cropped to maintain
an aspect ratio of approximately 1:2 (see Fig. 5.1). It turned out later that while the
cropping of images per stave makes sense, the additional horizontal cropping does not
because many objects such as beams or slurs often cross boundaries and could, therefore,
not be detected reliably.

Various models and hyperparameter-configurations were evaluated with a Faster R-CNN
model performing best. The mean average precision (mAP), which is a commonly
used metric for object detection tasks, yielded a value of over 80%, which is very high
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5. Music Object Detection

and comparable to the best results for detecting objects in natural images1. We also
showed that the removal of staves has no significant impact on the detection performance,
complying with previously found evidence.

Figure 5.1: Illustration of the sliding window approach, used to crop music scores into
sub-images (red boxes). Boxes overlap both vertically with the boxes above and below as
well as with adjacent crops (orange).

1Top entry of COCO Detection leaderboard [LPR+] as of 2018 was Megvii (Face++) with Average
Precision of 0.53 for IoU=0.5:0.05:0.95 and 0.73 for IoU=0.5, submitted 05.10.2017.
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Abstract—Optical Music Recognition (OMR) is the chal-
lenge of understanding the content of musical scores. Accu-
rate detection of individual music objects is a critical step in
processing musical documents because a failure at this stage
corrupts any further processing. So far, all proposed methods
were either limited to typeset music scores or were built to
detect only a subset of the available classes of music symbols.
In this work, we propose an end-to-end trainable object
detector for music symbols that is capable of detecting almost
the full vocabulary of modern music notation in handwritten
music scores. By training deep convolutional neural networks
on the recently released MUSCIMA++ dataset which has
symbol-level annotations, we show that a machine learning
approach can be used to accurately detect music objects with
a mean average precision of over 80%.

Keywords-Optical Music Recognition; Object Detection;
Handwritten Scores; Deep Learning

I. INTRODUCTION

Optical Music Recognition (OMR) attempts to under-

stand the musical content of documents containing printed

or handwritten music scores by recognizing the visual

structure and the objects within a music sheet. Once, all

objects are recognized, a semantic reconstruction step at-

tempts to understand the relations of objects to each other

and recover the musical semantics. With recent advances

in computer vision, accelerated by the popularity of deep

convolutional neural networks (CNN), OMR received a

number of groundbreaking contributions that generate very

accurate results for particular sub-problems, such as staff

line removal [1] or symbol classification [2]. In this work,

we investigate the challenge of music object detection

which aims at accurately detecting music objects in music

scores. Music objects can be both primitive glyphs (e.g.

note-head, stem, beam) or compound symbols (e.g. notes,

key-signatures, time-signatures) used in music notation.

A music object detector takes an image and outputs the

bounding-box and class-label for each found object. Tradi-

tionally, this was solved by first removing the staff lines,

followed by symbol segmentation and classification [3]

(see Figure 1).

In this work, we present the first attempt to establish a

baseline for music object detection of handwritten scores

with the full vocabulary of modern music notation. By

following a machine learning approach and using an end-

to-end trainable object detector on the recently published

Digital Image 
of Scores

Image Pre-
processing

Sta�  line
detection and 

removal

Music 
symbol

segmentation

Music 
symbol

classi� cation

Playback,
Reprinting

Music 
encoded
data � le

Music 
notation

reconstruction

Music 
Object Detection

Optical Music Recognition

Figure 1. The traditional pipeline for Optical Music Recognition.
Music object detection subsumes segmentation and classification of
music symbols.

MUSCIMA++ dataset, we demonstrate how to build a

generalizable and accurate music object detector and in-

vestigate the effects of various technical choices like the

use of a particular detector or feature extractor.

II. RELATED WORK

Visual object detection is a very active field of research

with remarkable results on detecting objects in natural

images with a variety of active competitions. Many com-

peting approaches have been proposed in the last few

years such as Faster R-CNN [4], R-FCN [5] and Single

shot detectors [6], [7]. While some optimize for accuracy,

others strive for high-performance [8]. However, all of

them share the fact, that they heavily make use of deep

convolutional neural networks.

The traditional pipeline of segmenting and classifying

symbols has been shown to work well on simple typeset

music scores with a known music font [9]. But when

considering low-quality images, complex scores or even

handwritten ones [10], these systems tend to fail, mainly

because errors propagate from one step to subsequent

steps [11], e.g. a segmentation error could cause incor-

rectly detected objects. Initial attempts to overcome this

limitation by directly detecting music objects with CNNs

were made by Hajič and colleagues, who suggest an

adaptation of Faster R-CNN with a custom region pro-

posal mechanism based on the morphological skeleton to

2018 13th IAPR International Workshop on Document Analysis Systems

978-1-5386-3346-5/18 $31.00 © 2018 IEEE

DOI 10.1109/DAS.2018.51
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accurately detect noteheads [12] and Choi and colleagues,

who are able to detect accidentals in dense piano scores

with high accuracy, given previously detected noteheads,

that are being used as input-feature to the network [13].

However, both of them are limited to experimentations

on a tiny subset of the full vocabulary used in modern

music notation. Although both approaches can be extended

to other classes, it remains an open question, whether a

general purpose detector that can learn a large vocabulary

is superior to multiple class-specific detectors.

A very interesting alternative to the traditional OMR

pipeline is the attempt of solving OMR in a holistic

fashion. The first notable attempt at doing so was by

Pugin [14], who used Hidden Markov Models to read

typographic prints of early music. More recently, the

combination of using CNNs jointly with Recurrent Neural

Networks to build an end-to-end trainable OMR system

[15] was adapted and extended in [16] and [17]. Both train

very similar models on a very large set of monophonic

music scores containing a single staff per image. Although

the reported results on the given datasets are very good,

the two systems mentioned lastly, currently exhibit the

following limitations:

• They operate only on very primitive, printed, mono-

phonic scores. Extending their pipeline to more com-

plex music scores with multiple voices requires a

different formulation of the output data to at least

include onset and offset of each note and not only

the pitch and duration.

• By using pooling operations during the feature ex-

traction, the network gains location invariance that

conflicts with the interest of precise location infor-

mation, which is needed to correctly infer the pitch

of a note.

• By omitting the positional information of individual

symbols and only considering the audible information

of music symbols as output, such systems restrict

themselves to replayability, as reprinting of music

scores requires precise positional information [18].

While in theory semantic segmentation of the scores

would go one step further and extract considerable more

information – basically a classification of each pixel – two

things should be noted: classifying pixels assumes that the

class of each pixel is unique and mutually exclusive [19],

an assumption that might not hold for overlapping symbols

but can probably be ignored for practical applications;

and most traditional systems that attempt to perform

semantic reconstruction operate on detected objects, not on

individual pixels, thus requiring a clustering step after the

semantic segmentation. Therefore we argue, that detecting

bounding boxes of musical objects directly is preferable

for OMR.

III. THE CHALLENGE OF DETECTING MUSIC

SYMBOLS

When comparing music object detection to detection of

objects in natural scenes or optical character recognition,

two unique challenges are worth noting: firstly, music

Figure 2. Beginning of Franz Schubert’s Ave Maria D. 839, with
simplifications in the second bar that intentionally violate the syntactic
rules of common music notation.

scores often have a very high density of objects with more

than 1000 objects printed on a single page. Secondly, the

relative position between a symbol and its staff lines is

crucial. Already a tiny error along the y-axis may have

a significant impact on recovering the correct pitch of a

note.

The detection of music objects is of paramount im-

portance to the overall OMR process because once all

symbols were detected accurately, a set of rules can be

applied to infer the semantics of the objects and perform

music notation reconstruction as demonstrated by [20].

We also suggest that the point right after individual

objects were detected and classified, is probably the best

moment for putting the user into the loop, if that is

intended. Fixing errors at this stage can be performed

locally without dealing with complicated semantic rules

or affecting neighboring symbols (changing the duration

of a single note in a music notation program often entails

side effects on other notes within the same of subsequent

bars). Highlighting uncertain detections and suggesting

likely alternatives could improve the usability and reduce

editing costs even further.

Note that even with all symbols being correctly de-

tected and classified, recovering the musical semantics still

remains a very challenging problem, as demonstrated in

Figure 2. Here, the second staff in the first bar contains

a small 6 for each tuplet, indicating that the first rest and

the following five chords sum up to a quarter note. This

small number is intentionally omitted in the second bar for

simplification but would now result in an invalid meter if

interpreted in isolation. Only with the preceding informa-

tion and prior knowledge about common simplifications,

a musician can interpret such scores correctly.

To be able to introduce such semantics into an OMR

system, it is necessary to formalize and use musical

notation knowledge. Rule-based systems can perform such

formalization. For example, with the DMOS system [20]

it has been possible to formalize the musical notation,

graphically and syntactically, for full polyphonic scores,

and produce a system which allows to assign notes to

multiple voices and use the vertical alignments of syn-

chronized notes in orchestral scores as well as the number

of beats in a bar to detect and correct recognition errors.

This grammatical formalization is built on terminals which

correspond to the musical objects we propose to recognize

with deep convolutional neural networks.
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IV. BUILDING A MUSIC OBJECT DETECTOR

For building a robust and extensible music object de-

tector, we propose a machine-learning approach with deep

convolutional neural networks, which operate directly on

the input image. This simplifies the OMR process to the

following steps: preprocessing, music object detection, and

semantic reconstruction. Steps such as removing the staff

lines and segmenting symbols do not need to be addressed

explicitly. Existing state-of-the-art object detectors such as

Faster R-CNN or R-FCN were designed to detect objects

in natural scenes and have been shown to work well on

challenging datasets such as COCO [21] or ImageNet [22].

But applying them out-of-the-box on sheets of music can

lead to a suboptimal performance, due to the dense nature

of music scores with many tiny objects. Therefore, we

suggest applying a certain amount of preprocessing to the

data and tailor these detectors to perform well on the task

at hand.

A. Dataset and Preprocessing Steps

For training a music object detector, we use the MUS-

CIMA++ dataset [23], as it contains 140 high-quality

images with over 90000 symbol-level annotations, made

by human annotators across 105 different classes of music

symbols for the underlying CVC-MUSCIMA dataset [24].

The images have a high resolution of about 3500x2000

pixel, are binarized and optionally come with staff lines

removed. For consistency, all white-on-black images are

first inverted and then converted to RGB, as the evalu-

ated implementations take colored images as input1. To

efficiently train an object detector on such images, the

image size has to be reduced. We propose to crop the

images in a context-sensitive way, by cutting images first

vertically and then horizontally, such that each image

contains exactly one staff and has a width-to-height-ratio

of no more than 2:1, with about 15% horizontal overlap to

adjacent slices (see Figure 3). Basically, each horizontal

slice extends from the bottom of the staff above to the

top of the staff below. This cropping can also be done

by automatically detecting staffs and then applying the

same slicing rules leading to image crops that partially

overlap both horizontally and vertically. For splitting the

cropped images into a train and test set, we follow the

recommendations from [23] to ensure that the test set

contains scores of all complexities and that there is no

overlap of writers between the training and the test set.

We furthermore used 10% of the remaining training set for

validation during the training. In total, we obtained 6181

samples, that were divided into a training, validation and

test set, containing 4794, 533 and 854 images respectively.

One limitation of this approach is, that all objects

significantly exceeding the size of such a cropped region,

will not appear in the data, as only annotations that have an

intersection-over-area of 0.8 or higher between the object

and the cropped region are considered part of the ground

truth.

1The overhead created by this conversion is only minimal, as the
duplicated information gets merged again in the first layer of the CNN.

Figure 3. Illustration of the sliding window approach, used to crop music
scores into meaningful subimages (red) with horizontally overlapping
areas (orange) between adjacent crops.

As music objects, we consider the full vocabulary of

all 105 classes contained in the MUSCIMA++ dataset,

containing both primitives such as noteheads as well as

compound objects such as key-signatures that consist of

one or multiple accidentals.

B. Experimental Design

For evaluating our suggested approach, we conducted

several experiments to study the performance of vari-

ous object detectors and feature extractors, as well as

the effects of staff line removal, transfer-learning and

removing classes with rare symbols. Using the deep

learning library TensorFlow2, we adapted the work from

[8] to detect music objects by training on the data de-

scribed in Section IV-A. The entire source code, including

training protocols and detailed instructions to reproduce

our results, can be found at http://github.com/apacha/

MusicObjectDetector-TF. We considered:

• the three meta-architectures Faster R-CNN, R-FCN,

and SSD as object detectors. Faster R-CNN and R-

FCN are both two-stage detectors with a region pro-

posal network and a region classifier. The difference

is that Faster R-CNN uses a sliding window for

classification, whereas R-FCN uses position sensitive

score maps and per-RoI pooling, which is more

efficient at the cost of a slightly reduced precision.

SSD is a generalized region proposal network for one

stage detection on multiple feature maps

• ResNet50, Inception-ResNet-v2, MobileNet-v1 and

Inception-v2 as feature extractors, explicitly exclud-

ing custom-made networks that cannot benefit from

transfer-learning

• images with and without staff lines (based on the

images provided along the CVC-MUSCIMA dataset)

• the full vocabulary of all 105 classes included in the

MUSCIMA++ dataset, as well as a reduced set of

only 71 classes, removing 34 classes that appear less

than 50 times in the ground truth and are only of

minor importance such as uncommon numerals and

letters. Exceptions were only made for the classes

double sharp and the numerals 5, 6, 7 and 8: although

they appear less than 50 times in the dataset, we

consider them essential to recover music semantics

such as pitch and time signature.

2https://www.tensorflow.org, last seen 9th February 2018
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Figure 4. Typical sample of a cropped image that serves as input for
the music object detector.

All of the above-mentioned object detectors have a

certain set of hyperparameters that need to be fine-tuned

for the particular dataset. For example, [7] shows that

using statistical analysis to obtain a sensitive number of

anchor boxes, anchor box sizes, and anchor box ratios can

improve the results significantly compared to handpicked

priors. When running similar analysis on the cropped

images, we obtain the following characteristics: For a

typical input image of 600 pixels width and 300 pixels

height (see Figure 4), we found the average square box

size is about 37 pixels with a standard deviation of 48

pixels. Note, that the dataset also contains extreme cases

of small objects like dots with only a few pixels and

large objects that spans hundreds of pixels. The mean

ratio from width to height of boxes is 0.7 which means

that the majority of boxes are higher than they are wide.

Furthermore, cropped images that are to be fed to the

detector contain 19 symbols on average, with a standard

deviation of 11. Concluding the analysis, we decided to

use a grid of 32x32 pixels with a stride of 8 pixels and

aspect ratios of 0.06, 0.29, 0.48, and 2.2 with the scales

0.25, 0.5, 0.75, 1.0, 1.75, and 4.0 to reflect the wide range

of object shapes in the dataset.

C. Evaluation and Results

Following the evaluation protocols of the Pascal VOC

challenge [25], we report the mean average precision

(mAP) for each completed training in Table I and the

detailed average precision per class for the combination

that yielded the best results in Table II. Figure 5 shows a

typical detection within a single image.

We find that the best performing detector with regards to

precision is the Faster R-CNN using the Inception-Resnet

V2 feature extractor, pre-trained on the COCO dataset.

This model produces a mAP of over 80%. The training

on a GeForce GTX 1080 Ti takes approximately one day

per configuration before results become stable. Validating

˜500 images takes about 2-4 minutes, so inference should

take less than half a second per (cropped) image. When

comparing the results of training on images with and

without staff lines, the impact is no longer significant,

supporting the claim of [14], that staff line removal might

no longer be necessary. However, readers should also note

that the staff lines in the CVC-MUSCIMA dataset are

synthetic and do not experience the usual distortions that

apply to scans or pictures of real music scores.

Figure 5. Typical detection results with most symbols recognized
correctly.

Other detectors like the R-FCN or SSD produce good

results as well, with a mAP of 75% and 71% respectively.

Our results, therefore, comply with the findings of [8],

where in particular the SSD model trades smaller accuracy

for higher processing speed. Using pre-trained weights, in-

stead of random initialization and the RMSprop optimizer

as opposed to Stochastic Gradient Descent, improved the

results significantly, speeded up convergence and was

therefore used throughout the experiments. Modifying the

set of classes by removing underrepresented classes as

described in Section IV-B, boosted the mAP by up to 6%

in some cases. Note, that Table II is missing six classes,

that did not have any instances in the test set because

they exceeded the size of the image crops and were thus

discarded during the preprocessing.

V. DISCUSSION AND CONCLUSION

In this work, we show that state-of-the-art deep learning

detectors like Faster R-CNN, R-FCN and SSD can pro-

duce accurate detection results on a wide range of music

symbols. After optimizing different hyperparameters, we

achieve a mAP of over 80%, which is a solid baseline.

However, there are still a couple of open issues, that

need to be addressed in future work, like how to process

a whole page of a score. In this work, we used a sim-

ple overlapping sliding window approach. This method,

although simple to use, has many well-known downsides

like the poor performance of processing empty images or

cutting up large symbols as well as a non-trivial merging

step that has to fuse information from multiple overlapping

sections.

Another problem, specific to OMR, is the inherent

imbalance of symbol classes: some symbols like noteheads

are extremely frequent whereas others like double sharps

are rare and often tied to a specific type of score. Having

experimented with state-of-the-art deep learning object

detectors, we found that classes do not interact with

each other: simplifying the task by removing line-shaped

classes did not improve the overall precision. There also

seems to be a minimum threshold of about 20 samples

per class, in order to be meaningful during the training.

Currently, there is no guarantee, that the model does

not overfit, but with recently published work like the

RetinaNet and its focus loss [26] the effects of this class-

imbalance could be mitigated to improve the training,

especially on hard to detect classes.
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Table I
DETAILED RESULTS FOR VARIOUS HYPERPARAMETER COMBINATIONS OF THE MUSIC OBJECT DETECTOR.

Meta-Architecture Feature Extractor
Number

of classes
Images have

staff lines

Mean Average
Precision on
Test Set (%)

Weighted Mean
Average Precision
on Test Set (%)

Faster R-CNN Inception-ResNet-v2 105 � 81.56 94.22
Faster R-CNN Inception-ResNet-v2 105 ✗ 81.23 94.56

Faster R-CNN Inception-ResNet-v2 71 � 85.12† 94.68

Faster R-CNN Inception-ResNet-v2 71 ✗ 87.80‡ 95.05
Faster R-CNN ResNet50 105 � 76.39 93.07
Faster R-CNN ResNet50 105 ✗ 78.45 93.10
Faster R-CNN ResNet50 71 � 82.30 93.47
Faster R-CNN ResNet50 71 ✗ 84.85 93.63

R-FCN Inception-ResNet-v2 105 � 69.75 89.12
R-FCN Inception-ResNet-v2 105 ✗ 70.88 89.42
R-FCN ResNet50 105 � 75.53 92.59
R-FCN ResNet50 105 ✗ 74.29 92.33

SSD Inception-v2 105 � 71.52 82.44
SSD Inception-v2 105 ✗ 70.40 81.75
SSD MobileNet-v1 105 � 62.30 74.97
SSD MobileNet-v1 105 ✗ 61.56 76.74

Although we used the test set, proposed by the MUS-

CIMA++ authors, where writers in the test set do not

appear in the training set, we are still not certain whether

this system is truly writer independent or not. One way to

confirm this would be to perform a cross-validation, where

each writer in the dataset is evaluated independently.

Finally, we have shown that removing staff lines can

be omitted for music object detection, when using CNNs.

Future experiments that apply data-augmentation using

noise models and deformed images, as proposed for the

staff removal challenge [27], can give even more insights

into the robustness of our approach.
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Table II
DETAILED PRECISION RESULTS PER CLASS FOR THE BEST OBTAINED

MUSIC OBJECT DETECTOR ON THE REDUCED SET OF CLASSES (SEE

TABLE I, LINE 3† AND 4‡).

Class name Total number
of instances

Average precision on the test set (%)

with staff lines† w/o staff lines‡

notehead-full 31084 99.85 99.64
stem 27108 98.82 98.71
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beam 8677 93.86 94.57
slur 3859 90.34 88.54
duration-dot 3195 95.12 94.21
thin barline 3071 99.49 99.64
8th flag 2744 93.46 93.37
measure separator 2649 43.64 52.09
staccato-dot 2507 94.23 94.97
sharp 2420 99.42 99.46
notehead-empty 2385 99.31 99.11
flat 1467 96.97 97.98
natural 1427 96.90 97.61
dynamics text 1374 85.25 87.12
8th rest 1339 98.86 99.36
tie 1085 82.39 81.85
quarter rest 1060 96.05 96.78
letter p 1038 89.70 89.84
letter f 1035 93.10 92.77
letter e 926 82.12 85.29
letter r 750 51.64 62.25
key signature 697 79.31 77.80
letter o 655 94.47 93.82
16th flag 652 36.62 40.19
letter s 649 71.89 74.30
grace-notehead-full 576 85.75 85.37
numeral 3 548 98.73 98.04
16th rest 531 96.17 99.93
letter t 513 92.10 94.42
other text 508 83.99 89.30
letter c 469 89.82 88.57
tuple 459 30.41 77.11
accent 421 99.08 95.75
g-clef 403 100.00 100.00
other-dot 402 94.40 95.19
repeat-dot 359 99.75 100.00
trill 315 100.00 99.74
letter d 313 93.49 89.36
letter m 293 74.19 74.43
f-clef 285 100.00 98.21
half rest 241 95.53 91.16
time signature 221 96.33 95.02
tenuto 216 88.45 74.79
letter l 192 78.75 86.00
c-clef 190 97.68 98.68
whole rest 183 90.73 84.66
letter P 177 45.83 45.80
tempo text 174 69.40 78.32
letter i 171 66.48 81.08
letter n 164 79.51 80.26
numeral 4 155 99.60 99.47
letter a 134 90.36 83.81
multiple-note tremolo 126 81.01 82.42
ornament(s) 123 85.22 83.90
letter M 115 65.83 71.47
grace strikethrough 110 98.14 97.96
letter u 106 65.98 62.69
repeat 73 84.42 88.87
double sharp 44 100.00 100.00
numeral 2 40 100.00 92.50
numeral 6 36 100.00 100.00
numeral 8 36 100.00 91.67
numeral 7 24 28.32 62.59
numeral 5 11 26.67 100.00
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5.2. General Music Object Detection

5.2 General Music Object Detection

Given that multiple competing approaches for solving music object detection were
developed simultaneously, Jorge Calvo-Zaragoza, Jan Hajič jr., and I joined forces to
evaluate these approaches on a common ground—with the same datasets and the same
evaluation protocol. Our efforts resulted in the paper “A Baseline for General Music
Object Detection with Deep Learning,” published in a special issue of the applied sciences
journal [PHjCZ18]. The three approaches Faster R-CNN, RetinaNet, and U-Net were
evaluated on three different datasets: DeepScores [TES+18, ETPS18], MUSCIMA++
[HjP17] and Capitan [PCZ18]. The same evaluation protocol was used for all experiments,
reporting the mAP and weighted mAP. In contrast to the previous paper [PCC+18], the
more strict version of the metric was used, as defined by the COCO evaluation protocol
[LMB+14]. This means that the average precision was not just taken at a single point
where the Intersection over Union (IoU) is 50%, but averaged across a range of different
values for the IoU, ranging from 50% to 95% in steps of 5%.

The results were mixed but particularly disappointing for the Faster R-CNN method on
the MUSCIMA++ dataset, which only produced a mAP of 3.9%, as opposed to over 80%
from previous research [PCC+18]. There are two reasons for this circumstance. First, the
evaluation metric got much stricter. Second, we trained both the Faster R-CNN as well
as the RetinaNet network on the entire image, instead of on sub-images. This increased
the required memory so much that we were forced to reduce the image sizes, which in
turn caused small objects to nearly disappear. On the Capitan dataset, which contained
mostly bigger objects, Faster R-CNN and RetinaNet performed much better with 15.2%
mAP and 14.5% mAP, respectively. In contrast, U-Nets are more independent from the
input image size, since they contain convolutional filters only. Therefore, they could
process the entire image in its full resolution. It also avoids some problems of Faster
R-CNN which has a limited number of region proposals internally, which can become an
issue in densely populated regions.

Unfortunately, the Deep Watershed Detector [TESS18] was not yet available when this
paper was written. However, according to Lukas Tuggener, their results on the DeepScores
dataset were approximately as good as ours.
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Abstract: Deep learning is bringing breakthroughs to many computer vision subfields including

Optical Music Recognition (OMR), which has seen a series of improvements to musical symbol

detection achieved by using generic deep learning models. However, so far, each such proposal has

been based on a specific dataset and different evaluation criteria, which made it difficult to quantify

the new deep learning-based state-of-the-art and assess the relative merits of these detection models

on music scores. In this paper, a baseline for general detection of musical symbols with deep learning

is presented. We consider three datasets of heterogeneous typology but with the same annotation

format, three neural models of different nature, and establish their performance in terms of a common

evaluation standard. The experimental results confirm that the direct music object detection with

deep learning is indeed promising, but at the same time illustrates some of the domain-specific

shortcomings of the general detectors. A qualitative comparison then suggests avenues for OMR

improvement, based both on properties of the detection model and how the datasets are defined.

To the best of our knowledge, this is the first time that competing music object detection systems from

the machine learning paradigm are directly compared to each other. We hope that this work will

serve as a reference to measure the progress of future developments of OMR in music object detection.

Keywords: optical music recognition; deep learning; object detection; music scores

1. Introduction

Optical Music Recognition (OMR) is the field of research that investigates how to computationally

read music notation in documents. Having accurate OMR technology would enable fully integrating

written music into the ecosystem of digital music processing. In recent years, diverse initiatives have

been launched to digitize musical heritage in the written form, such as the The Digital Image Archive of

Medieval Music project [1] on the academic side, or at the same time the crowd-sourced International

Music Score Library Project (IMSLP) repository of public-domain and openly available music [2] which

has grown to become a primary provider of sheet music worldwide. However, making not only the

digital images of all these compositions, but also their structured representation accessible at scale, as

attempted e.g., by the Single Interface for Music Score Searching and Analysis (SIMSSA) project [3],

would constitute a breakthrough in interacting with written music, and making it accessible to both

the professional and the general public in previously unseen ways: content-based search in large

sheet music libraries including cross-modal retrieval, digital musicology at scale and with access to

structured representations of music that only exists in written form, renotation of early notation to

modern notation, manuscript transcription and part-matching to directly cut costs of music directors

Appl. Sci. 2018, 8, 1488; doi:10.3390/app8091488 www.mdpi.com/journal/applsci
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and composers. These (and more) applications have been envisioned in OMR literature for a long

time [4,5]; however, results have not been forthcoming [6].

In order to be able to apply Music Information Retrieval (MIR) algorithms on music scores

and enable this wide range of applications, it is first necessary to bring them into this symbolic,

machine-readable format. Manually creating such symbolic representations by means of specialized

music typesetting software is an expensive effort, and constitutes the bottleneck to digitally encoding

music at large scales—which is, in turn, a bottleneck both for digital musicology, subsequent MIR

applications, and music accessibility.

OMR is expected to provide the enabling technology for scalable structured encoding. From this

perspective, OMR can be seen as the key to diversifying the available symbolic music sources in

reasonable time and cost. Crucially, OMR has seen a shift in paradigms in the last few years,

mainly triggered by advances in the field of computer vision and machine learning through deep

learning [7–10]. This development is further fueled by the availability of large annotated datasets

(e.g., MUSCIMA++, DeepScores) and sufficient computational power to work with such large datasets.

This new paradigm, combined with a better understanding of the challenges [11,12], allow approaching

the problem of OMR somewhat differently.

The entire process of OMR can be broken down into the following steps [6,13–15]:

1. Preprocessing: Standard techniques to ease further steps, e.g., contrast enhancement, binarization,

skew-correction or noise removal. Additionally, the layout should be analyzed to allow

subsequent steps to focus on actual content and ignore the background.
2. Music Object Detection: This step is responsible for finding and classifying all relevant symbols

or glyphs in the image. Note that music object detection is sometimes referred to as music symbol

recognition, but we use the former term because of its relation to “object detection”, which is

commonly used in computer vision to refer to the very same localization and classification task in

(natural) images, answering the question “What is where in this image?”.
3. Relational Understanding: From the detected and classified symbols, a music notational graph

(MuNG) can be constructed that holds both the symbols and their relationships to each other.

Note that, for a complete and unambiguous reconstruction, two kinds of relations are necessary:

a logical relationship (e.g., between a notehead and a stem) and a temporal relationship to

guarantee the correct order of the symbols. The graph formulation essentially re-casts the notation

reconstruction algorithms like that of [16] as a problem of recovering binary labels over symbol

pairs, therefore also making it amenable to machine learning approaches. Again, other works

sometimes refer to the stage after object detection as semantical reconstruction. Note that, in this

approach, this stage only attempts to reconstruct the relations between symbols and a large part

of the semantics is assigned in the encoding stage.
4. Encoding: Given a complete music notation graph, the music can be encoded into any output

format unambiguously, e.g., into MIDI for playback or MusicXML/MEI for further editing in a

music notation program. Keep in mind that this step potentially has to deal with the subtleties of

music notation, such as omitted symbols.

Currently, the hardest challenge of this pipeline is posed by the music object detection step.

Unfortunately, it is unclear to what extent deep learning has been successful in addressing this stage.

Existing studies that focus on music notation objects are dispersed and not comparable with each

other in terms of the used algorithms, datasets, and metrics, which has so far made a fair comparison

impossible. However, there is no good reason for this state of affairs: music object detection can

borrow standard evaluation from generic object detection settings, and the deep learning models

are similarly domain-agnostic. Therefore, this work aims to fill an obvious gap: provide a direct

comparison between the different general deep learning models for object detection that were recently

proposed for the task of music object detection, across the available musical symbol datasets, and thus

establish a clear state-of-the-art baseline.
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We evaluate three competing approaches on three distinct datasets containing both handwritten

and typeset music. To compare the different approaches on common ground, we propose a standard

bounding-box based data model, usable with multiple OMR datasets, and use an up-to-date standard

for evaluating object detection, namely the Common Objects in Context (COCO) evaluation protocol [17].

All scripts for obtaining the test-bed, preprocessing the data and evaluating the results are being made

publicly available [18].

To the best of our knowledge, this marks the first time that music object detection methods based

on machine learning are directly compared against each other. Bellini et at. [19] evaluated a number

of commercial OMR applications in 2007 , but it was done manually, making it difficult to replicate,

and, more importantly, the systems have no published descriptions, which means the comparison

has limited value for guiding future developments. The evaluation methodology in [19] also does not

correspond to current object detection evaluation protocols.

2. Background on Music Object Detection

Traditionally, OMR has been approached by workflows composed of several stages, as outlined

in the previous section. In addition, these stages were further subdivided into smaller steps. Inside

of the music object detection stage, the key step used to be the staff-line detection and removal [20].

Although staves are essential for the understanding of music notation, their presence hindered the

isolation of musical primitives using classical algorithms such as connected-components analysis.

That is why, for many years, much research was devoted to improving staff-line removal [21]. Currently,

thanks to the use of deep neural networks, the staff-line removal can be considered a solved problem,

with selectional auto-encoders outperforming all previously existing methods given a sufficient amount

of training data [22]. However, even with an ideal staff-line removal algorithm, isolating musical

symbols by means of connected components remains problematic, since multiple primitives could

be connected to each other (e.g., a beam group can be a single connected component that includes

several heads, stems, and beams) or a single unit can have multiple disconnected parts (e.g., a fermata,

voltas, f-clef). The second case is particularly severe in the context of handwritten notation, where

symbols can be written with such a high variability (e.g., detached noteheads) that modeling all

possible appearances becomes intractable.

Recently, it has been shown that the use of region-based machine learning models is an alternative

that can deal with the stage of music object detection holistically. These models have been widely

developed in the computer vision community, attaining high performance in detecting objects in images

by using convolutional neural networks. In addition to the performance, a compelling advantage

is that these models can be trained in an end-to-end manner, that is, by merely providing pairs of

images and positions where the objects to be detected are located; these models, therefore, make it

possible to bypass several stages of the classical OMR workflow by directly detecting symbols in music

score images.

Pacha et al. [23] presented the first work that considered region-based convolutional neural

networks for the task of music object detection. They proposed a sliding-window based approach,

that cuts the image in a context-sensitive way into smaller chunks that contain no more than one staff

and ran a Faster R-CNN detector to obtain the positions and classes of all symbols in the cropped

image. While the evaluation is limited to the detection performance on small image chunks instead of

the entire images, the extension of this approach to full pages of handwritten music scores, written in

mensural notation, is reported to yield promising results [24].

Hajič jr. et al. [25] use a different approach: instead of applying an object detection model

directly, they use a semantic segmentation model and a subsequent detection stage. More specifically,

the semantic segmentation is done with the U-Net architecture [26]. The overall detection problem

is broken down into a set of binary pixel classification problems and subsequently uses a connected

components detector to arrive at the final detection proposals. The object detection results are reported

in terms of F-scores, broken down by symbol class with no aggregate result, and the experiments are
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done only for a subset of the symbol classes available in the MUSCIMA++ dataset; on the other hand,

the notation reconstruction step is subsequently applied, and the object detection is evaluated in terms

of the subsequent MIDI inference.

The Deep Watershed Detector proposed by Tuggener et al. [27] is another attempt to solve music

object detection by training a convolutional neural network to learn a custom energy function that is

used in a watershed transformation to perform semantic segmentation of an entire score. They evaluate

their approach on the DeepScores and the MUSCIMA++ dataset. While the results for some classes

are promising, e.g., it works exceptionally well on small objects such as staccato dots, the algorithm

generally struggles with rare classes, overlapping symbols, and accurate bounding box regression.

Unfortunately, no overall results of the detection performance are given by the authors.

As discussed above, while these studies use standard object detection models, they used

completely different datasets, vocabularies, and metrics for the reported results. A major part of

the motivation for this paper is to evaluate these advances in music object detection in a consistent

manner, so that future advances have a clear, up-to-date formulation and baseline.

3. Task Formulation

We formulate the task of object detection in images in the following way. Given an image,

a variable-length list of 6-tuples (y1, x1, y2, x2, c, s) is obtained, where y1, x1 and y2, x2 denote the

coordinates of the top-left and bottom-right corners, respectively, of a predicted bounding box, c is

the category assigned to the object therein, and s is the confidence score given by the model to

such a prediction. In the specific case of music object detection, the categories correspond to the

music-notation primitives that are considered relevant to the user, depending on the specific OMR task.

Note that the requirements may vary depending on both the input music notation and the pursued

application: the interesting primitives for replayability may differ from the interesting ones for getting

a structured encoding of the music.

The main reason to formulate the music object detection as bounding box retrieval is that it

provides a direct relationship between the detection results and the entities to be recognized in the

music score image. It has already been discussed in Section 2 that the traditional segmentation step

based on connected components can produce both super-symbols (a single component that gathers

several symbols) and sub-symbols (a single symbol separated into several parts), which increases the

complexity of post-processing considerably. Similarly, a pixel-wise categorization (known as semantic

segmentation in the computer vision community) might avoid predicting super-symbols, yet the

problem with sub-symbols remains. In addition, a pixel-level annotation provides ambiguities that are

difficult to handle when nearby or touching pixels are labeled in the same way while belonging to

different entities (for example, multiple noteheads in a chord).

Furthermore, the prediction with bounding boxes provides an implicit grouping. Thus, detecting

isolated entities directly, along with their positions in the image, is the kind of information that

the following stages of the OMR workflow might need, in which detected symbols are grouped to

reconstruct the actual music notation. Therefore, once objects have been detected, the image is no

longer relevant, since the bounding boxes are sufficient representatives of the graphical information

that needs to be recovered from the music score image. For example, bounding box dimensions have

long been used as features for symbol classification in pipelines where this step is separate [4]; they are

suitable for filtering false positives [28]; in the dependency graph approach of MUSCIMA++, bounding

boxes already provide useful features for the reconstruction step [14]; and they could be also used to

model terminals of a music notation grammar for the reconstruction stage [29].

In addition to the above, the reality with music documents is that the stylistic and graphical

differences amongst different manuscripts is very pronounced, especially in the case of handwritten

notation. That means it is advisable to build ground-truth data for each type of manuscript with which

to train the recognition models, as is happening in other similar domains such as text recognition [30].

We believe that annotating images at the bounding box level is less expensive than building a dataset
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to train a traditional multi-stage system, in which each stage needs its own ground truth. Furthermore,

this level of annotation represents a good trade-off between effort and accuracy in comparison to

other current approaches in computer vision that include pixel-wise labeling [31]. Although these

fine-grained annotations could eventually lead to better localization results, the required initial effort

for building ground-truth data is much higher, which is especially detrimental when dealing with a

new type of music manuscript.

4. Experimental Setup

4.1. Object Detection Models

The objective of this work is to provide a good baseline for the music object detection task, and

so we consider three neural models of different nature for performing the experiments. While we do

want our detectors to be as accurate as possible, we primarily wish to exemplify the different deep

learning approaches to object detection. We believe that this is more interesting from the point of view

of some reference results, and can help to draw more interesting conclusions. Thus, we use Faster

R-CNN as a representative of two-stage detectors, RetinaNet as a representative of one-stage detectors,

and U-Nets as a representative of models based on pixel-level segmentation. Figure 1 overviews the

general operation of these types of detectors.

4.1.1. Faster R-CNN

Faster Region-based Convolutional Neural Network (Faster R-CNN) [32] is the evolution of the

first convolutional network schemes for object detection R-CNN [33] and Fast R-CNN [34]. Faster

R-CNN belongs to the class of two-stage detectors, with the first stage generating a sparse set of region

proposals that are classified and further refined in the second stage.

While the previous R-CNN schemes used an external mechanism for generating the proposals,

such as Selective Search [35] or EdgeBoxes [36], Faster R-CNN attempts to learn the object proposal

stage directly from the data employing a region proposal network. The whole process can be carried out

efficiently because the convolutional features are shared between both stages, and therefore computing

the region proposals does not represent a bottleneck. This also increases the efficiency to train such

a network.

The details for training this model followed the recommendations given in the work of

Pacha et al. [23]. That is, an Inception-ResNet-V2 [37] is used for the feature extraction stage, initialized

with pre-trained weights from ImageNet (as provided by TensorFlow Object Detection API [38]). Input

images are rescaled so that the longest edge is no longer than 1000 pixels. A clustering of symbol

bounding box shapes is done for each dataset, in order to establish an appropriate set of bounding box

shapes to predict, therefore providing appropriate hyperparameters for the object proposal stage.

4.1.2. RetinaNet

The RetinaNet [39] belongs to the family of one-stage detectors that are built on convolutional

neural networks. Other prominent representatives are OverFeat [40], Single Shot Detector (SSD) [41]

or You Look Only Once (YOLO) [42]. These one-shot detectors create a dense set of proposals along a

grid and directly classify and refine those proposals. As opposed to the two-stage detectors, they have

to handle a large number of background samples, which potentially can dominate the learning signal.

The RetinaNet [39] is an adaptation of a Residual Network [43] with lateral connections to create

features on multiple scales [44]. Small convolutional subnetworks perform classification and bounding

box regression on each output layer. RetinaNet was proposed along with the focal loss function,

which tries to overcome the hard object-background imbalance issue by dynamically shifting weight to

increase the contribution of hard negative examples and decreasing the contribution of easy positives.

The configuration of the network model requires setting several hyperparameters. We specifically

checked four different back-ends for feature extraction, namely: ResNet50 [43], MobileNet128 [45],
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DenseNet121 [46], and a highly simplified version of the DenseNet. Various anchor dimension settings

were also examined: the ResNet50 feature extractor performed best in preliminary experiments and

was subsequently chosen. The negative overlap threshold was set to 40%, so every box with lower

Intersection over Union (IoU) counts as background; similarly, the positive overlap threshold was set

to 50%, and every box with a higher IoU is treated as foreground; boxes in between are omitted from

the training signal.

Feature Extractor Detection Generator

Object
Classification

Box
Regression

(a) Basic architecture of a one-stage detector.

Feature Extractor

Proposal Generator

Box Classifier

Objectness 
Classification

Box
Regression

Object
Classification

Box
Regression

Crop

(b) Basic architecture of a two-stage detector.

Feature Extractor (U-Net) Detection Generator

Connected 
Components 

SearchThresholding

Probability Map

(c) Basic architecture of the U-Net detector.

Figure 1. Basic architectures of the considered types of object detectors.
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4.1.3. U-Net

The U-Net [26] is a model for performing semantic segmentation that assigns each pixel of the

input image to a certain class. It can be extended to perform object detection, as defined in Section 3.

The U-Net architecture combines three key elements: standard 2D convolutions, the “hourglass”

architecture inspired by auto-encoders, and residual connections from ResNets [43]. As no other

operations than convolutions and element-wise sums of corresponding layers in the “hourglass” are

used, the U-Net can in parallel assign a label—or a numerical value, or a probability distribution—to

each pixel of an arbitrarily large image. The architecture is depicted in Figure 2.

Input
Image

Probability
Map

1x1 Convolution, Sigmoid

3x3 Convolution, Batch-Norm, ELU

⊕
Element-wise Sum

⊕

⊕

2x2 Max Pooling

2x2 Up-convolution, Stride 2

8

16

64

32

Figure 2. The U-Net architecture, with computation flowing left-to-right; the “hourglass” is unrolled

downwards. Green arrows indicate 2D convolution with 3 × 3 kernels, downward orange arrows

indicate 2 × 2 Max-Pooling, upward purple arrows indicate 2 × 2 up-convolution, and blue arrows

indicate element-wise sums that form the residual connections between corresponding parts of the two

“hourglass” halves.

In order to generate the binary pixel mask training data from the bounding box ground truth, we

set all pixels within the bounding boxes of a given symbol class to 1, resulting in rectangular foreground

regions for each symbol instance (despite the fact that the symbols themselves are not rectangles).

One drawback of U-Nets is that they were initially designed for semantic segmentation: based

on the pixel-wise outputs (such as a probability map), one needs to add a detector stage to actually

perform object detection. However, if we thus decide on the detector in advance, we can manipulate

the output masks on which we train the behavior of this detector. In the case of music notation,

for symbols that may consist of multiple connected components or have complex shapes (the f-clef is

an example that combines both), this can be attenuated by training on masks computed from their

convex hulls rather than directly from their pixels [25]. Fortunately, as a side effect of using bounding

box data in this paper to generate the rectangular pixel-wise masks, we are in essence already getting

crude approximations of convex hulls. Note, however, that the bounding box data model thus forces

the model to classify background pixels to belong to the symbol, which might otherwise be some way

off; this is pronounced especially with beams that are slanted or close to each other.

By not considering the bounding boxes themselves at all during training, U-Nets avoid questions

of granularity and the corresponding anchor box hyperparameters, which is a welcome property

given the variability of musical symbol shapes—both inter-class and in some cases intra-class. On the
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other hand, the arbitrary detector step, of course, introduces its own hyperparameters: the masking

threshold, and the pixel merging strategy. One can consider the pixel-wise labels as a very fine-grained

over-segmentation; the detector then acts as the over-segment merging step. The only architectural

hyperparameter one has to set is the size of the receptive field of an output pixel, which is defined

implicitly through the number of convolutional and max-pooling layers and their filter sizes; if we fix

the size of the network, we can also trade off the receptive field size and resolution by downscaling

the images.

Model specifics We follow the architecture of [26] and our U-Nets have four “depth” levels,

as depicted in Figure 2. The final layer that produces the probability map uses 1 × 1 convolutions

with just one filter, with a sigmoid activation. (This is an efficient implementation of computing a

weighted combination of the convolutional features for each pixel from the second-to-last layer.)

Training setup To go from bounding box ground truth to labels for each pixel, we render the

rectangles specified by the bounding box ground truth as foreground. Each image is downscaled with

a factor of 0.5. Training is not performed on entire images; instead, in each epoch, we uniformly sample

a random 256 × 512 window from each training image (corresponding to a 512 × 1024 window from

the original image). If this window contains no foreground pixel for the given class, we re-sample up

to 5 times; this is a general way of slightly oversampling rare classes.

For each symbol class, one U-Net is trained with exactly the same setup. We use cross-entropy

loss, using the Adam optimizer with the default parameters suggested in [47]. Batch size is set to 2.

We use a learning rate attenuation schedule: starting from 0.001, if the validation loss does not improve

for 50 epochs, we multiply the learning rate by 0.2, a process that is repeated five times. Again, none of

these steps are domain specific.

Detection is then performed independently for each symbol class: in this setup, the fact that a

pixel is classified as belonging to, e.g., a barline, does not preclude it from also being classified as a stem

pixel (note that certain music notation symbols indeed overlap to a great extent, e.g., noteheads and

ledger lines). As opposed to [25], we do not experiment with multi-channel outputs, as this is a step

that already requires domain-specific knowledge. For the detection stage, we use simple thresholding

at 50% and a connected component detector, this time following the setup of [25]. The detector

does not output any natural confidence score, so we add a placeholder value of 1 for each detected

foreground region.

4.2. Datasets

As we are considering generic object detection methods, we can evaluate all of them across a

range of OMR datasets for symbol detection [48]. As a side-effect of this evaluation, we also obtain

a notion of the difficulty of these datasets for object detection in general. Each dataset contains a

different kind of typography, adding to the breadth of the baselines we establish.

• DeepScores: DeepScores [49] is a very large synthetic dataset of music scores in Common

Western Modern Notation (CWMN), consisting of 300,000 images along with their ground-truth

annotations for performing symbol classification, image segmentation, and object detection. It is

based on a large collection of freely available MusicXML files from MuseScore [50] that were

converted into Lilypond files and digitally rendered into images using five different fonts to

obtain a higher visual variability. The first version of this dataset only has annotations for a

limited vocabulary that is missing essential glyphs, such as stems, beams, barlines, ledger lines

or slurs. The second version, which is currently under development, contains these missing

annotations and has been made available to us by the original authors. This set contains only

100 pages, but has full annotations for all relevant music symbols.
• MUSCIMA++: MUSCIMA++ [14] is a dataset of handwritten music that has over 90,000 manually

annotated handwritten musical symbols in CWMN. The dataset is built on the CVC-MUSCIMA

dataset for staff removal [51]. The ground truth is defined as a notation graph: in addition to

the individual symbols, their relationships are annotated as well, so that the semantics (pitch,
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duration, and onset) can be inferred and the full OMR pipeline can be trained on the dataset.

However, in this paper, we only focus on symbol detection, equivalent to recovering the vertices

of the notation graph.
• Capitan: Capitan consists of 46 fully-annotated pages in Spanish mensural notation from the

16th–18th century. The manuscripts represent sacred music, composed for vocal interpretation.

The compositions were written in music books by different copyists of that time. To preserve the

integrity of the physical sources, images of the manuscripts were taken with a camera instead of

scanning them in a flatbed scanner, leading to suboptimal conditions in some cases. The corpus is

based on the dataset used in the work of Pacha and Calvo-Zaragoza [24]. However, the refined

version used in this work is focused on obtaining a diplomatic transcript, keeping the information

of how symbols were written in the source as intact as possible. That is why there is a higher

number of categories, since now symbols that have the same meaning—for example, a minima

with the stem pointing up or down—are considered as different categories.

An overview of the corpora considered is given in Table 1, while we show some patches extracted

from their images in Figure 3. As can be observed, the characteristics of the different corpora are quite

heterogeneous, which is interesting for drawing generalizable conclusions from our experiments.

Table 1. Overview of the considered datasets.

Dataset Notation Engraving Images Categories Scores Symbols

DeepScores CWMN Printed Binary 39 100 87,703
MUSCIMA++ CWMN Handwritten Binary 107 140 91,254

Capitan Mensural Handwritten Color 56 46 11,242

It is important to mention the variability in the aspects of the bounding boxes of the elements

within these datasets. This variability appears not only amongst elements of different classes but also,

especially in the case of handwritten notation, amongst elements of the same class. To illustrate this

scenario, Figure 4 shows the different shapes of the boxes to be recognized in each dataset. The majority

of objects in the DeepScores dataset are very tiny. The MUSCIMA++ dataset shows a greater variation

in aspect ratios with one dominant cluster, the noteheads. In addition, the Capitan dataset contains a

significant number of bigger objects, compared to the other two datasets with distinct clusters.

(a) DeepScores (b) MUSCIMA++

(c) Capitan

Figure 3. Samples of notation from the considered datasets.D
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(a) DeepScores (b) MUSCIMA++ (c) Capitan

Figure 4. Scatter plot (top) row and density plot (bottom) row of the normalized object sizes for the

considered corpora to illustrate the challenges of each dataset (best viewed in color). Each point in the

top row depicts one instance from the dataset with the color encoding the respective class. The width

and height of a sample are reported as the fraction of the full image size.

To evaluate the models in the different corpora, we followed a fixed partitioning scheme for

training, validating, and testing. Therefore, the experiments are reproducible, and future results will

be directly comparable. Specifically, 60% of the available data is used for training, to learn the values

of the neural models; 20% for validation and hyperparameter optimization; and 20% for testing and

computing the final evaluation metrics.

4.3. Evaluation

As stated in Section 3, our formulation expects models to provide a set of detection proposals,

each of which consists of a bounding box and the recognized class of the object therein. The models

are also expected to provide a score of their confidence for each proposal. A bounding box proposal Bp

is considered a positive sample if it overlaps with the ground-truth bounding box Bg according to the

Intersection over Union (IoU) criterion
area(Bp ∩ Bg)

area(Bp ∪ Bg)

exceeding a certain threshold (tIoU). If the predicted category matches the actual category of the object,

it is considered a true positive (TP), being otherwise a false positive (FP). Additional detections of the

same object are considered as false positives as well. Those ground-truth objects for which the model

makes no proposal are considered false negatives (FN). From these values, precision (P) and recall (R)

metrics can be computed as

P =
TP

TP + FP
, R =

TP

TP + FN
.
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P measures how reliable detections are (ratio of correct detections), whereas R measures the ability of

the model to detect symbols (ratio of detected symbols).

Object detection can be seen as a retrieval task, in which bounding boxes are ordered by their

associated scores. Then, P and R can be computed as previously described from the top k predictions.

However, different values of P and R are obtained by varying the parameter k. To obtain a single metric

encompassing the performance of the model, the average precision (AP) can be computed, which is

defined as the area under the precision–recall curve for all possible values of k.

A single AP value is obtained independently for each class, and then the mean AP (mAP) is

computed as the average across all classes. Since our problem is highly unbalanced with respect to

the number of objects of each class, we also compute the weighted mAP (w-mAP), in which the mean

value is weighted according to the frequency of each class. The difference between mAP and w-mAP

gives a quick idea of how the evaluated models deal with the rare classes.

When tIoU is set to 50%, the described evaluation protocol matches the PASCAL Visual Object

Classes (VOC) challenge [52]. The accuracy of the localization is especially important for OMR, as

objects are often packed densely. Failing to locate them correctly heavily affects the subsequent

recognition. To account for this, we average mAP and w-mAP over different values of tIoU, ranging

from 50% to 95% by steps of 5%. This evaluation protocol is taken from the COCO challenge [17], and

it is expected to provide figures that are more sensitive to precise symbol localization.

5. Results

The aggregate detection performance of the individual models over each of the datasets is reported

in Table 2, presenting both mAP and w-mAP as defined for the COCO challenge [17]. These results

should serve as the baseline for further music object detection research. Generally, it can be observed

that the results are still very far from the optimal. The evaluated models struggle most with the

MUSCIMA++ dataset, with the U-Net performing best at around 16% mAP and 33% w-mAP. It might

be that the comparison is not entirely fair since the U-Net was specially designed for this dataset.

However, U-Net outperforms the rest of the models in the case of DeepScores as well, where it attains

around 24% in both mAP and w-mAP, leaving Faster R-CNN and RetinaNet below 20% and 10%,

respectively, in both metrics. Concerning the Capitan dataset, all models behave quite similarly, except

for the superior performance from RetinaNet regarding the w-mAP metric.

Table 2. Results in terms of mAP (%) and w-mAP (%) with respect to the dataset and object detector

model following the COCO evaluation protocol.

mAP (%) w-mAP (%)

DeepScores MUSCIMA++ Capitan DeepScores MUSCIMA++ Capitan

Faster R-CNN 19.6 3.9 15.2 14.4 7.9 23.2
RetinaNet 9.8 7.7 14.5 1.9 4.9 34.9

U-Net 24.8 16.6 17.4 23.3 33.6 26.0

In general, Faster R-CNN performs better than RetinaNet. However, it is especially sensitive to the

selection of hyperparameters that regulate the shape and scale of the objects to be detected. The high

variability in the bounding box shapes shown in Figure 4 might explain why Faster R-CNN is far from

offering the performance it demonstrates for detecting objects in natural images. Compared to previous

works that reported 80% mAP for snippets [23] and 76% mAP for full pages [24], a few differences

need to be pointed out to understand the large difference between the numbers: the experiments from

this work used less training data due to a stricter dataset split, the vocabulary of the Capitan dataset

became larger and the final results are computed following the strict COCO evaluation protocol as

opposed to reporting the PASCAL VOC metrics [52].
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In the case of RetinaNet, an in-depth analysis of its operation reveals that it is not capable of

detecting small objects. This explains the noticeable discrepancy between their mAP and w-mAP in

DeepScores, where the noteheads—small objects—are the most represented category. Note that Faster

R-CNN also exhibits this behavior on the DeepScores dataset, where more frequent symbols are also

more problematic for the model than the more rare symbols.

In practical settings, inference speed, and in some situations (re-)training speed, can offset small

differences in detection performance. We give a rough comparison when running the experiments on

a standard consumer PC, equipped with a GTX 1080 graphics card:

• Faster R-CNN: Training time: 8–12 h; inference time: 20–50 s per image,
• RetinaNet: Training time: 1–2 h; inference time: less than 1 s per image,
• U-Net: Training time: 2–3 h per symbol class; inference time: 40–80 s per image, or about 0.8 s

per symbol class.

In this comparison, the RetinaNet has a clear advantage: if one were to find a way to improve its

accuracy to an acceptable level, it would be a clear champion for interactive OMR or online recognition

settings. U-Nets, on the other hand, are impractical for situations where frequent re-training is needed:

unless one has a cluster of graphical processing units (GPUs), training even the minimum 30+ classes

that are necessary for pitch and duration inference would take several days.

Qualitative Results

To illustrate the differences in performance, we show samples of detector outputs across the three

datasets for some selected classes. Figure 5 shows how the detectors fare with the born-digital printed

music of DeepScores. As the rendered symbols have relatively little variability, this sample allows

for comparing the strengths and weaknesses of the models’ designs, especially with respect to music

notation data.

The Faster R-CNN model (Figure 5 top) has trouble with symbols that are bunched together

closely, especially in the upper left corner. This may be due to too few available proposals in a

given region. On the other hand, it can distinguish slanted parallel beams (first and third measure).

The RetinaNet (Figure 5 middle) is unable to deal with symbols smaller than the beams and does not

even find all of them. The U-Nets (Figure 5 bottom) shine in this specific example, perhaps a bit more

than the quantitative results suggest: they also recover the heavily overlapping eighth rest in the third

and fourth measures. On the other hand, the inherent limitation of the connected component detector

causes beams with overlapping bounding boxes to get lumped together. If one were to choose an

image with dense chords, noteheads within a chord would also invariably get merged into one.

Detection performance on the MUSCIMA++ dataset (Figure 6) displays a similar pattern.

The RetinaNet again cannot detect anything but the large objects; Faster R-CNN again seems to

run out of proposals in cluttered regions, or perhaps proposals get inadvertently merged into one due

to insufficient feature map resolution. U-Nets are lucky in this image: the descending thirds in the

first measure are just far enough from each other so that they get detected separately; if they were as

close to each other as the bottom two noteheads on the third and fourth beat of the second measure

of the sample, they would get merged into one. Beams, even though their bounding boxes do not

necessarily overlap (bottom staff, second measure), again get merged, and there are false positive

beams in hairpins.

On the Capitan dataset, the situation changes, as illustrated in Figure 7. We hypothesize

that the main driver for this difference is the change in symbol class definition: instead of using

notation primitives such as noteheads or stems, the Capitan dataset uses composite symbols such as

note.quarter-up, note.beamedLeft1. This discrepancy in defining music notation objects has persisted

throughout the literature on music object detection [19].
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Figure 5. Detection sample on some selected classes from the DeepScores dataset. (top–bottom): Faster

R-CNN, RetinaNet, and U-Nets detection results.

This presents a problem for the U-Nets: the most prominent feature of a note, whether facing

down or up, is the notehead. As the symbols are processed independently, there is a risk that noteheads

will be detected as instances of all applicable objects according to the notehead type. If one looks

at the U-Nets’ output (Figure 7 bottom), e.g., the middle of the second staff on the second page,

eighth notes get classified as quarter notes, and half-note stems fool the quarter-note detector into

false positives. In addition, as the symbols get larger, the U-Net runs into one of its inherent risks

concerning the connected components detector: symbol fragmentation. As the pixels of symbols that

are easily classified tend to be on their extremes, the system may become less certain in their centers,

and the symbol falls apart after thresholding the U-Net output probability map. We have observed

this behavior on barlines and long stems on the MUSCIMA++ dataset as well. This breakup produces

many false positives (in Figure 7, especially for quarter notes).
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Figure 6. Detection sample on some selected classes from the MUSCIMA++ dataset. (top–bottom):

Faster R-CNN, RetinaNet, and U-Nets detection results.

On the other hand, while Faster R-CNN still struggles—although to a much smaller extent—with

false negatives, RetinaNet does not face too small symbols anymore, and learns well: when symbol

class frequencies are used to weight the result, it outperforms both contenders by a large margin.

It falls into none of the U-Nets’ traps.

What can we say regarding the datasets?

For DeepScores, our results seem to confirm the intentions of the dataset authors: the main

difficulty of the dataset is the large number of tiny objects [49]. While Faster R-CNN does outperform

the same baseline architecture of [49] (which, according to the authors, does not detect anything at

all), it does still encounter the limitations that they expected of this class of models. The single-shot

RetinaNet detector runs into even worse trouble (and thus the authors of [49] were probably right to

not use single-shot detection at all).
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Figure 7. Detection sample on some selected classes from the Capitan dataset. (top–bottom): Faster

R-CNN, RetinaNet, and U-Nets detection results.
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The Capitan dataset seems to present a more straightforward object detection challenge. The close

relationship of the composite object classes does not seem to be a problem for standard detectors;

semantic segmentation, however, struggles.

From the perspective of music object detection, the MUSCIMA++ dataset has turned out to

be essentially a more difficult version of DeepScores: the ground truth is defined at the level of

notation primitives, the music contained in the datasets has similar complexity, but MUSCIMA++

is handwritten, which makes the shapes more variable, and topological features such as corners

less reliable.

6. Conclusions

In this work, we establish a baseline for detecting music notation objects with deep learning

models for generic object detection. Experiments were performed over three diverse major OMR

datasets: the synthesized DeepScores dataset of born-digital modern notation, the MUSCIMA++

dataset of handwritten modern notation with varying degrees of writing quality, and the Capitan

dataset that contains mensural notation which is also handwritten, but of consistently high quality.

Three types of neural models have been evaluated, namely the two-stage Faster R-CNN detector, the

one-stage RetinaNet detector, and the U-Net detection mechanism that combines flexible semantic

segmentation with a connected component detector. The choice of experimental setup and evaluation

in this paper can serve as a basis for further music object detection experiments that will, therefore,

be directly comparable to these baselines and will enable drawing conclusions and model design

recommendations from these direct comparisons.

Based on the quantitative and qualitative results in this paper, can we already formulate tentative

practical recommendations for choosing a certain detection approach over another? We are well

aware that three datasets may not be enough to draw such general conclusions; however, it is the

most comprehensive experimentation that the current state of the OMR concerning available data

allows. The suggestions should, therefore, be treated as tentative suggestions for further targeted

investigations rather than fully-fledged conclusions.

U-Nets, except for merging nearby symbols of the same class, do not seem to have a problem

with the recall. Because they process symbol classes independently and do not reduce the output

features resolution, they cannot run into the same (hypothesized) problems as Faster R-CNN, which

has a limited number of region proposals for any single region of the image that the symbols in effect

compete for. The number of available proposals depends on a hyperparameter setting that might

be difficult to set appropriately for areas densely populated of ground truth objects. Furthermore,

the proposal merging step (such as non-maximum suppression) may also lead to false negatives in

cluttered environments. None of these disadvantages concern the U-Nets.

On the other hand, while these properties are ideal for very cluttered data where symbol classes

are set to notation primitives, the design drawbacks of U-Nets do appear when the symbol vocabulary

consists of composite symbols; conversely, this is where the cluttering that presumably hinders

the bounding box-based models ceases to be an important factor, and the relative strength of these

models—the ability to consider a particular region as a whole—becomes more relevant because

composite symbols share visual elements that correspond to the primitives. The choice of a musical

symbol detection model, therefore, seems to be based on the way the detection ground truth is defined.

Now that a deep learning baseline for music object detection has been established, where can

subsequent research be heading?

First, one can use the first insights gained from comparing the models over various datasets to

improve the music object detectors themselves. The weak point of U-Nets seems to be settings with

composite objects; experiments with composites built from MUSCIMA++ primitives by leveraging

their syntactic relationships would be a logical step to investigate this. In order for U-Nets to improve

on datasets with composite symbols (which are cheaper to annotate, as they generally contain fewer

symbol instances, and therefore more likely to be encountered during various music digitization
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efforts), a combination of the pixel-wise approach, which deals very well with highly cluttered areas or

occlusion, and combined properties of the resulting pixel groups can be a viable avenue, while also

perhaps alleviating the problem of parallel beams. In [28], a YOLOv3-like approach has been used to

detect noteheads with joint pixel classification and bounding box regression. A post-filtering step then

significantly improved precision, which is a much bigger problem for U-Nets than recall. The Deep

Watershed Detector used by [27] exhibits a similar combination.

For improving the Faster R-CNN results on music notation data, we would need a better

understanding of the relationship between anchor hyperparameters and expected symbol density. The

inability of the RetinaNet to detect small symbols is disappointing and merits further investigation, as

it persisted regardless of various anchor hyperparameter settings. An idea to test the hypothesis of

some minimum detectable absolute symbol size would be to upscale the image until the objects of

interest reach sufficient size, and run detection on windows of the upscaled image that fit into GPU

memory. The speed of this model both in training and inference would make it an attractive choice for

interactive OMR, which is now probably the most viable approach towards building OMR systems

that can best support creating digital editions of music, such as the Ceres system [53] or the Pixel.js

editor [54].

More can also be done in terms of evaluation to make the baseline more informative regarding

the outputs expected from OMR downstream. While music object detection is a critical step in OMR

pipelines, it is not the final step; for evaluating a detector as part of an OMR system, one should be able

to attribute downstream errors, e.g., in pitch or duration inference, to detection errors or uncertainties.

For instance, Ref. [25] uses several ways of evaluating MIDI inferred on top of the object detection

results, using a baseline reconstruction model. Furthermore, the graph model of MUSCIMA++ offers

hope that the edges can serve as “conduits” from higher-level errors to their lower-level causes, but, so

far, we are not aware of any method that would allow combining such structured gradient flows with

the object detection architectures.

Then, there are exciting challenges of transfer learning. Modern notation follows the same

underlying rules, regardless of whether it is printed or handwritten: can one leverage a printed music

dataset to train for handwritten object detection? At least between DeepScores and MUSCIMA++,

many symbol classes can be directly mapped onto each other—experiments in this direction should

be possible. In this context, the effect of image deformations and other, perhaps more realistic data

augmentation can be explored.

Finally, while it is obvious that merely detecting the musical elements in score images does not

represent a complete OMR system, we believe that addressing music object detection in a generic

machine learning manner brings a series of changes that are quite interesting for the development of

the OMR field. Except for the few attempts at end-to-end OMR that are so far limited to monophonic

output [7,8,55], all OMR systems are explicitly detecting music objects at some point in their recognition

pipeline. Generic deep learning approaches may have the potential to decouple object detection from

actual knowledge of music notation itself—nevertheless, users now need to be aware of how these

systems learn and design them accordingly. The proposed general machine learning approach can

then be used by all of them, regardless of the musical notation system (except for hyperparameter

tuning and cookbook-style model choice recommendations), as opposed to approaches that exploit

specific characteristics of how the music notation system works to build segmentation heuristics.

Then, as the music object detection stage is done, image processing can in principle be forgotten: the

only remaining link to the original image is the bounding box and potentially pixel mask features

associated with the detected objects. The remaining stages—notation reconstruction and exporting an

output representation—then, in turn, do not require computer vision knowledge (while now requiring,

of course, some understanding of how music notation stores content). On the other hand, one can

utilize the syntactic regularities of music notation to improve the object detection stage (and perhaps

perform detection and relational understanding jointly). Incorporating the graph structure, and further

prior knowledge about the properties of music notation (such as expected voice leading), into a
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differentiable loss function that can be optimized by the neural network learning process, represents

an interesting avenue for future research. Both approaches, therefore, open up the possibility for

experts from different areas to establish a synergy that pushes the development of the OMR field from

both perspectives.
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Abbreviations

The following abbreviations and acronyms are used in this manuscript:

OMR Optical Music Recognition

IMSLP International Music Score Library Project

SIMSSA Single Interface for Music Score Searching and Analysis

MIR Music Information Retrieval

MuNG Music Notational Graph

MIDI Musical Instrument Digital Interface

MEI Music Encoding Initiative

MUSCIMA Music Score Images

COCO Common Objects in Context

PASCAL Pattern Analysis, Statistical Modelling and Computational Learning

VOC Visual Object Classes

R-CNN Region-based Convolutional Neural Network

API Application Programming Interface

SSD Single Shot Detector

YOLO You Only Look Once

CWMN Common Western Modern Notation

IoU Intersection over Union

mAP Mean Average Precision

GPU Graphics Processing Unit

ELU Exponential Linear Unit
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CHAPTER 6
Measure Detection and Structure

Analysis

Knowing the structure of music scores can have significant benefits when performing
music object detection, as could be seen in the two previously mentioned papers. When
the images were cut into smaller images, containing only one stave, the results were
extraordinary, whereas they were disappointing, when feeding a shrunken version of the
whole image into the Faster R-CNN network.

But knowing the structure as preprocessing step for music object detection is only one
reason, why it can make sense to analyze the layout and structure of music scores. In
the paper “Identification and Cross-Document Alignment of Measures in Music Score
Images,” Simon Waloschek, Aristotelis Hadjakos, and I worked on the structural analysis
for a completely different reason [WHP19].

When creating critical editions of musical works, musicologists regularly compare multiple
sources of the same musical piece. For allowing them to navigate between them efficiently,
cross-source navigation is required which is aware of the musical content. Traditionally,
measures were annotated by hand and then related to each other. In this paper, we trained
a deep convolutional neural network, similar to the ones used for music object detection,
to detect musical measures on a large, diverse body of over 8000 music scores, containing
both handwritten and typeset scores. The interesting challenge is that musical measure
can span across multiple staves and requires a certain amount of understanding to know
how individual measures are joined into a system. Luckily, the trained object detectors
were capable of learning these things very well and the results look very promising.

After having detected the individual measures, they need to be aligned across multiple
scores for navigating between them. To this end, a second convolutional neural network
was trained to compute the similarity between two measures to determine if they contain
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6. Measure Detection and Structure Analysis

the same music and should, therefore, be linked. Sequences are matched using Dynamic
Time Warping.

My contribution to this work was limited to the first challenge: detecting measures.
Simon Waloschek provided me with the body of manually annotated music scores and I
was in charge of training and optimizing a convolutional neural network that is capable of
solving this task without human intervention. This part of the work is publicly available
on Github [Pac19b].

This paper has been accepted for the 20th International Society for Music Information
Retrieval Conference 2019 in Delft, The Netherlands.
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ABSTRACT

In the course of editing musical works, musicologists regu-

larly compare multiple sources of the same musical piece,

such as composers’ autographs, handwritten copies, and

various prints. For efficient comparison, cross-source navi-

gation is essential, enabling to quickly jump back and forth

between multiple sources without losing the current musi-

cal position. In practice, measures are first annotated by

hand in the individual source images and then related to

each other. Our approach automates this time-consuming

and error-prone process with the help of deep learning. For

this purpose, we train a neural network that automatically

finds bounding boxes of all measures in images. A sec-

ond network is trained to compute the similarity between

two measures to determine if they have the same musical

content and should, therefore, be linked for navigation. Se-

quences of outputs from the second network are matched

using Dynamic Time Warping to provide the final proposal

of measure relationships, so-called concordances. In addi-

tion to cross-source navigation, the results can be used to

spot structural differences across the sources which are es-

sential for editorial work, so that musicologists can focus

more on analytical tasks.

1. INTRODUCTION

Modern musical editions are the result of a long musico-

logical process. From the composer’s manuscript to the

printed music book, a musical work usually undergoes a

large number of iterations and minor corrections, occa-

sionally even substantial changes, such as striking or re-

working complete parts [1]. Many of these changes are ei-

ther unintentional—e.g., errors in handwritten copies, ty-

pographical errors by publishers—or generally not docu-

mented in a transparent manner. Musicologists, therefore,

work on this genesis when editing a work and try to record

the chronological order and causalities in their edition cre-

ation process.

c© Simon Waloschek, Aristotelis Hadjakos, Alexander

Pacha. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: Simon Waloschek, Aristotelis Had-

jakos, Alexander Pacha. “Identification and Cross-Document Alignment

of Measures in Music Score Images”, 20th International Society for Mu-

sic Information Retrieval Conference, Delft, The Netherlands, 2019.

The first step in this process is, therefore, the screening

of the source material to identify differences between the

various sources of a work. To facilitate this process, links

are created between the sources so that editors can quickly

switch back and forth between them. Adequate granular-

ity of these links are usually musical measures, a feasible

compromise between annotation effort and accuracy [29].

Currently, the measures of all sources are manually anno-

tated with bounding boxes and related to each other in a

very time-consuming and error-prone way.

We have automated this multi-stage process by first rec-

ognizing and sorting measures in score images (both hand-

written and typeset) and then linking them according to

their musical content. For this purpose, deep learning was

used to develop a distance metric in an end-to-end fash-

ion without an intermediate representation. The results can

be further processed using classic alignment algorithms

from the MIR community such as Dynamic Time Warping

(DTW). While DTW-based approaches have achieved suf-

ficient quality for practical use, audio-to-score alignment is

still an active field of research [31]. Promising approaches

for the synchronization of scans and sound recordings [5,6]

are currently limited to monophonic and piano music and

have not yet achieved sufficient accuracy for most real-

world scenarios. With the contribution of this paper, we

decrease a potential gap in the "audio – symbolic score –

image" triangle and offer a new way for measure-accurate

alignment across modal boundaries.

2. RELATED WORK

Detecting measures can be seen as a preprocessing step

in Optical Music Recognition (OMR). Therefore, it was

rarely singled out as a dedicated task. While Pedersoli and

Tzanetakis perform document segmentation, they only dis-

tinguish between music scores and text blocks [22]. The

only research we know of, that specifically addresses the

automatic extraction of measures is by Vigliensoni et al.

[30]. In their work, they attempt to extract measures with a

traditional computer vision approach by heuristically find-

ing all bar lines and then joining them into measures. Their

approach requires human intervention for each page and

straight bar lines to work well.

For retrieval of sixteenth-century musical texts, Craw-

ford et al. [4] have recently proposed a two-step proce-

dure. They run an OMR algorithm to obtain an intermedi-
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ate format, followed by a second step that uses n-grams and

minimal absent words (MAWs) to find duplicates, related

texts, or parts that have the same musical material. Neural

networks make such intermediate formats partly obsolete

and allow for learning bimodal embeddings end-to-end as

shown by Dorfer et al. [5, 6], who correlate the scanned

music score with a sound recording. For this purpose, syn-

chronization was considered either a reinforcement learn-

ing problem [6] or a metric learning problem [5]. In the

metric learning approach, Dorfer et al. use the pairwise

ranking loss—also known as triplet loss [26]—that draws

triplets from a dataset consisting of an anchor, a positive

example (picture fits the audio) and a negative example

(picture does not fit the audio). This loss function creates

an embedding, where images and audio with the same con-

tent are appear close together, while non-matching images

and audio are placed relatively far apart. Their approach

has successfully been used before in other application do-

mains, such as facial recognition [26]. We resort to a simi-

lar cost function for metric learning (see section 4.2).

As the basis for our detection, we use a convolutional

neural network (CNN). While CNNs are currently an ac-

tive field of research for OMR, the most influential ap-

proaches come from the research area of computer vision.

They are used for many tasks, including image recognition,

semantic segmentation, object detection, and instance seg-

mentation. R-CNN [9] performs object detection by an-

alyzing a large number of heuristically generated region

proposals that are classified into background or one of the

classes of interest. Additionally, the bounding box is re-

fined with regression. R-CNN uses a CNN that extracts

features for object detection. These features are used in a

downstream SVM for classification and regression. Faster

R-CNN [23] improves the process by incorporating both

the region proposal step as well as the classification and

regression into the architecture of the neural network.

CNN-based computer vision approaches are largely

transferable to OMR and actively used for Music Infor-

mation Retrieval: Gallego and Calvo-Zaragoza are using

auto-encoders to remove staff lines [8]. Pacha et al. com-

pare various CNN-based approaches for detecting music

symbols in scores [21]. CNNs can also be used for seman-

tic segmentation for staff-line removal, music and text sep-

aration as well as for layout analysis as shown by Calvo-

Zaragoza et al. [3]. Using U-Nets [25], Hajic et al. do se-

mantical segmentation of handwritten music [10]. Pacha

and Calvo-Zaragoza recognize musical objects in mensural

notation using region-based CNNs [20]. By learning en-

ergy levels that are used as inputs to a watershed algorithm,

Tuggener et al. recognize music symbols [28]. In addi-

tion to the energy levels, the network also predicts class la-

bels and bounding boxes. And finally, Calvo-Zaragoza and

Rizo use convolutional recurrent neural networks trained

with a Connectionist Temporal Classification (CTC) loss

to recognize musical symbols in monophonic music scores

[2]. To simulate non-ideal image conditions, they artifi-

cially distort the images.

3. DATA & ANNOTATIONS

The success of Deep Learning approaches largely depends

on the amount and diversity of data used during training.

Since no dataset of sufficient size was available for mea-

sure recognition or the concordance task, we created a

large dataset ourselves in cooperation with musicologists

and professional musicians.

Our dataset contains measure annotations that were cre-

ated manually by musicologists for digital music editions.

In most cases, the image sources are high-resolution scans

of facsimiles, occasionally supplemented by early music

prints and PDFs exported directly from music engrav-

ing software. Due to an imbalance between handwritten

and typeset scores, we additionally obtained scores from

the IMSLP/Petrucci Music Library while paying attention

to varying image quality, the used engraving mechanism

as well as diverse musical content. We complemented

our collection with 140 pages from the MUSCIMA++

dataset 1 [7, 11].

Our data collection has a total of 8 251 pages with

81 124 annotated measures. The distribution according

to engraving type and the number of systems per page

is given in Table 1. One category is particularly over-

represented: handwritten music scores with just one sys-

tem per page because of a large quantity of full orchestral

scores from operas by Carl Maria von Weber. Pages with

zero systems include book covers, text pages, and prefaces.

Systems per page
Pages per engraving type

Handwritten Typeset

0 413 113

1 5627 932

2 175 553

3 122 175

4 or more 102 39

Total pages 6439 1812

Table 1. Overall distribution of the dataset used.

The accuracy of the measure annotations varies. Since

the exact boundaries are not relevant for musicologists they

were recorded only roughly. That is why many bounding

boxes contain small overlaps with adjacent measures, as

shown in Figure 1.

To annotate the measures in the individual pictures, the

Android app Vertaktoid 2 [18] was used. It allows to con-

veniently draw bounding boxes for all measures with a pen

directly on the tablet screen. The results can then be ex-

ported to the MEI format [24] and used as ground truth

training data.

Data coming from digital music editions are partly pro-

vided with concordance annotations between the measures.

1 The measure annotations are published as separate dataset at
https://apacha.github.io/OMR-Datasets/#muscima

2 https://github.com/cemfi/vertaktoid
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Figure 1. Examples of cropped measures originating from different sources of the same work. All measures represent the

same musical position, i.e. the same measure, within the work, but are in part extremely diverse in terms of instrumentation,

graphic representation and also image resolution.

4. ALIGNING MEASURE SEQUENCES

Our proposed solution for the given task can be split into

three individual parts. First, we have to find the bounding

boxes of all measure in the score images. Then we need

a metric in order to compute the similarity between two

given measure in terms of musical content. And finally, we

have to compute actual concordances for multiple sources

of the same music.

4.1 Optical Measure Recognition

For automatically detecting measures in complete music

scores, we propose a machine-learning approach with deep

convolutional neural networks and a Faster R-CNN detec-

tor [23]. Faster R-CNN has been shown to work well in a

range of situations, including detecting music objects [21].

In this case, there is just one class of objects that needs to

be detected, and the objects typically cover large portions

of the entire image with little overlap. Our implementation

is based on the TensorFlow Object Detection API frame-

work [14] and freely available online 3 .

We split the dataset randomly into 80% for training,

10% for validation, and 10% for testing. To avoid a bias

toward scores with just one system, we categorize the sam-

ples into the ten categories depicted in table 1. From the

training set we only use about 2000 images and draw them

equally distributed from these ten categories, which results

in some examples being used more than once. The only

exemption are images without systems which are sampled

only half as often as the other categories. For the validation

and test sets we use all images from that split.

We tested the three different backbones, ResNet50,

ResNet101 [13], and Inception-ResNet-V2 [27] and re-

stricted ourselves to these to enable transfer-learning by

3 https://github.com/OMR-Research/

MeasureDetector

initializing the networks with weights trained on ImageNet

which generally improves the learning process, especially

at the beginning. Input images are resized to be no longer

than 1024 pixel on the longest edge. The Intersection over

Union (IoU) measures how well two bounding boxes over-

lap. If two predictions are very close, non-maximum sup-

pression filters the box with the lower score. The IoU

threshold is set to 0.6 and a maximum of 600 objects are

detected per image. These parameters are derived from sta-

tistical analysis of the entire data set and cover > 99.99%
of the dataset.

We evaluated the optical measure detection with the

commonly used average precision (AP) metric, as defined

for the COCO detection challenge [15]. It produces a

single number that measures how well objects were de-

tected. A detection is considered a match with the under-

lying ground truth if the IoU is above a certain threshold.

The trained models achieve very good results with 78.7%

AP (IoU=0.5:0.95) on the test set for the top-performing

model with Inception-ResNet-V2 [27] backbone. A few

samples of the detection output are depicted in Figure 2.

Given that the measure recognition step does not neces-

sarily return the measures of a page in the musically correct

order, we sort them according to the measure numbering

rules outlined by Mexin et al. in [18].

4.2 Metric Learning

Now that the scans of all scores are divided into individ-

ual measures, they have to be compared with each other to

identify equivalent measures. Again, we decided to take

a deep learning approach to learn such a musical similar-

ity metric between two measures directly from the images.

The neural network is trained to compute an embedding for

measure images so that similar measures are placed in the

proximity of one another in the embedding space. This al-

lows for convenient comparison of two measures by com-
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Figure 2. Three samples of the detection results. The neu-

ral network is capable of detecting measures robustly in

typeset and handwritten scores, regardless of whether they

contain piano scores or full orchestral scores. It does make

occasional errors, but the majority of measures is being

recognized correctly.

puting their distance, e.g., using the L2 norm.

The idea is based on triplet loss [26]: A pair of equiv-

alent measure images from two different sources is drawn

from the list of concordances. We will call them the an-

chor image and the positive image. Additionally, a nega-

tive measure image is drawn from the same source as the

positive image, serving as a counterexample, i.e. having

no musical relation to the anchor or the positive measure

image. Each of these three images is fed separately into

the same neural network, resulting in three k-dimensional

vectors. The loss function is defined as

L = max(d(fa, fp)− d(fa, fn) + α, 0) (1)

with fa, fp, and fn being the resulting vectors from the

network f for the three images and a distance measure

d. Training with this loss function minimizes the distance

from the anchor to the positive image while maximizing

the distance between the anchor and the negative image.

The additional margin α defines how far away the least

dissimilarity should be. Finally, the surrounding max(...)
function ensures that the loss never gets negative.

We chose ResNet50 as the base network and replaced

the usual final average pooling and classification layers by

a fully connected layer with k-dimensional output. (Other

CNN-based networks used for computer vision would

most likely work comparably well.) All measure images

are resized to 512 × 512 pixels but the original width and

height information is also passed to the network as addi-

tional input.

The success of the used loss function depends heavily

on the sampling strategy for the image triplets as discussed

by Wojke and Bewley in [32]. In our context, there are

three specific problems in the dataset:

1. A randomly sampled negative image might acciden-

tally have the same musical content as the two other

images. Those cases are not covered in the concor-

dance dataset since not all measures with equal con-

tent have to be linked together.

2. Intuitively, it seems beneficial to take the previous

or subsequent measure of the positive sample as the

negative measure with the goal of enhancing the

contrast between them in terms of increased distance

in the embedding space. This would make adja-

cent measures more distinguishable. But again, the

chance of these measures having the same content is

higher compared to random sampling.

3. Especially handwritten sources sometimes exhibit

excessive use of measure repeats and other abbrevia-

tions as can be seen in the left part of Figure 1. Such

symbols are meaningless if their immediate context

is not given.

The first two problems could be solved by manually adding

all measures with the same content to the list of concor-

dances. Given the amount of images, we decided against

doing so and rely on rare collisions thanks to the large

number of data. We also discarded the (perfectly valid)

idea of looking at adjacent measures to form the triplets.

The third problem—presence of measure repeats and

abbreviations—has a direct impact on the appropriate

choice of the distance metric d in our loss function; When

using triplet loss, it is common practice to normalize the

embedding vectors. This constraint puts all embeddings

on a k-dimensional hypersphere, leading to some advan-

tages for further processing (see [26]). Furthermore, co-

sine distance is often used to calculate the distances. Both

decisions make it impossible to get an embedding vector

that is equally distant to all other possible vectors. This

very property, however, characterizes the meaning of mea-

sure repeats if no context is given. We, therefore, opted

for no vector normalization and chose the L2 norm as our

distance metric, resulting in

L =
N
∑

i=1

[

‖fa
i − f

p
i ‖2 − ‖fa

i − fn
i ‖2 + α

]

+
(2)

for a training batch with size N . To speed up training and

ensure fast convergence we select triplets that violate the

following constraint:

‖fa
i − f

p
i ‖2 + α < ‖fa

i − fn
i ‖2 . (3)

This filter step is performed for each batch during training
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and makes sure that only those triplets are used that signif-

icantly contribute to the learning process. It also prevents

the network from overfitting.

4.3 Concordance Computation & Manual

Adjustments

Given the embedding vectors for all measures of each

source of a musical work, we can compare two sources

by computing the distances between all measures from

one source to the other. The resulting similarity matrices

can then be used for dynamic time warping (DTW) as de-

scribed by Müller in [19] to get an alignment path between

the sources as shown in Figure 3.

We implemented the canonical DTW algorithm without

any noteworthy modifications to the core. Allowed step

sizes inside the similarity matrix during path computation

are (0, 1), (1, 0), and (1, 1). It rarely happens that a mea-

sure gets divided into two parts at system or page breaks,

so we penalized steps along a single axis by a factor of 2
to slightly enforce one-to-one mappings of the measures.

The quality of the alignment was evaluated using a

dataset with two sources and given ground truth concor-

dances as outlined in Table 2. We have decided in favor of

this particular dataset because it offers several challenges

that occur only rarely in other works:

Split measures: Some measures are split into two parts at

page breaks. Therefore, one measure of source A

maps to two other measures of source B.

Completely different sections: An entire part of the

piece was replaced in source B. Finding the "cor-

rect" concordance is impossible.

Additional parts: Source B contains a 16-measure Aria

that is not present in the other source.

Missing measure annotations: We also intentionally re-

moved measures from source A to simulate annota-

tion errors.

Pages Measures

Source A (typeset) 250 3098

Source B (handwritten) 532 3176

Total 782 6274

Table 2. Structure of the evaluation dataset.

In the MIR community, DTW is often used to syn-

chronize audio and/or symbolic score sources with each

other [12]. The time resolution of the features in such sce-

narios is usually in the range of several dozen milliseconds.

Deviations in the alignment path are therefore undesirable,

but can often be neglected as long as they do not exceed

certain limits. In our context, however, any deviation from

the ground truth marks a significant error. We took this

into account and defined a very simple score for the over-

Figure 3. Interface for inspecting the computed measure

concordances. The alignment (white) and ground truth

(blue, only available in evaluation dataset) are plotted over

the currently visible part of the similarity matrix. Mea-

sures of both sources (right) can be compared by moving

a cursor within the matrix (green crosshair). A plot at the

bottom indicates potentially interesting positions.

all performance:

score = 1−

Number of (x, y) pairs from

alignment not in ground truth

Total number of concordances

in ground truth

(4)

Our evaluation showed 14 errors in relation to 3079 con-

cordance pairs, resulting in a score of 99.545%.

As pointed out, the remaining 0.455% error rate still

present a non-negligible problem. Therefore, we devel-

oped an interface for manual adjustments to the alignment.

Apart from being able to quickly compare the measures

from two sources as shown in Figure 3, users can define

points in the similarity matrix that have to be part of the

alignment path. Each of these points splits the matrix into

two parts and computes the warping path for each part in-

dividually, ensuring that either the beginning or end of the

path matches the desired point. An event plot at the bottom

of the matrix helps to identify regions with potential errors

by showing where the alignment path is not diagonal, i.e.

taking a step in (0, 1) or (1, 0) direction.

The mentioned obstacles for correct alignment have

been handled successfully by either resulting in a cor-

rect alignment or—in case of substantial structural

differences—indicating a problem that cannot be solved

without human intervention by marking these parts in the

plot below the similarity matrix.

This alignment and adjustment step has to be repeated

for each source in regard to a master source of choice. The

corrected alignment data can then finally be imported into

the tools used by musicologists for their editorial work.
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5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach to automate the te-

dious task of annotating and linking measures in hetero-

geneous score images, thereby allowing for cross-source

navigation between measures without losing the current

musical position. We used deep learning to find bound-

ing boxes of measures in score images, learned a distance

metric for measures, and used that to align measures from

various sources, effectively linking equivalent musical po-

sitions across sources. The evaluation showed that our ap-

proach is feasible and solves a real-world problem while

still retaining complete flexibility in case editors need to

make manual adjustments, thanks to an interactive correc-

tion tool.

The presented solution still does not cover all possible

situations that might occur in the editorial process. If the

measure sequences to be compared have a different order,

the alignment fails for these parts if not completely. We

will address this specific problem in the future by identify-

ing such passages and proposing reasonable re-ordering.

Having a musically meaningful distance metric for

measures also allows closing the gap between score images

and symbolic scores. The latter can be rendered with suit-

able engraving software and divided into individual mea-

sures, followed by the steps of our alignment pipeline.

Since audio can also be rendered from symbolic scores,

alignments between all three modalities are possible.

Another interesting application of our distance metric is

the ability to visualize datasets in image fields as shown in

Figure 4. Using dimensionality reduction algorithms such

as T-SNE [16] or UMAP [17], the measures are positioned

such that musically similar measures appear proximate to

one another, giving new insight into a musical piece but

also into the inner workings of the distance metric. For

example, the visualization shows that measure repeats are

placed almost in the center, indicating that their learned

embedding retains the musical property of being close to

basically every other measure in the embedding space.
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CHAPTER 7
Music Notation Graph

Construction

To complete the proposed OMR pipeline, two steps are remaining after music objects
were successfully detected in the image: constructing the notation graph and exporting
it into the desired output format. In the article “Learning Notation Graph Construction
for Full-Pipeline Optical Music Recognition,” Jorge Calvo-Zaragoza, Jan Hajič jr., and I
investigated how the construction of a notation graph can be formulated as a machine-
learning problem and thus be solved robustly and efficiently [PCZHj19].

The foundation for this work is the (music notation) graph representation inside the
OMR pipeline, which consists of three things: the vertices, which represent the primitives,
appearing in the image, the syntactic edges that relate these primitives with each other,
and the precedence edges that specify the order of events, which is crucial when recognizing
polyphonic music with simultaneous events. The vertices are created as a result of the
music object detection stage. The edges on the other side are still missing. The initial
attempt to build a binary classifier that decides whether a pair of nodes have an edge or
not, showed room for significant improvement [HjDWP18]. We extended the initial work
by adding a grammar which eliminates the proposal of illegal pairs, such as between
two rests. The input of the neural network has changed to three channels: one for the
image-patch that contains the two objects in question, one for the binary mask of the
first object, and one for the binary mask of the second object. The results improved
significantly, and the best model achieves an F1-score of over 95%.

This paper has been accepted for the 20th International Society for Music Information
Retrieval Conference 2019 in Delft, The Netherlands.
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ABSTRACT

Optical Music Recognition (OMR) promises great bene-

fits to Music Information Retrieval by reducing the costs of

making sheet music available in a symbolic format. Recent

advances in deep learning, have turned typical OMR obsta-

cles into clearly solvable problems, especially the stages

that visually process the input image, such as staff line re-

moval or detection of music-notation objects. However,

merely detecting objects is not enough for retrieving the

actual content, as music notation is a configurational writ-

ing system, where the semantic of a primitive is defined

by its relationship to other primitives. Thus, OMR systems

must employ a notation assembly stage to infer such re-

lationships among the detected objects. So far, this stage

has been addressed by devising a set of predefined rules

or grammars, which hardly generalize well. In this work,

we formulate the notation assembly stage from a set of de-

tected primitives as a machine learning problem. Our no-

tation assembly is modeled as a graph that stores syntactic

relationships among primitives, which allows us to cap-

ture the configuration of symbols in a music-notation docu-

ment. Our results over the handwritten sheet music corpus

MUSCIMA++ show 95.2% precision, 96.0% recall, and

an F-score of 95.6% in establishing the correct syntactic

relationships. When inferring relationships on data from a

music object detector, the model achieves 93.2% precision,

91.5% recall and an F-score of 92.3%.

1. INTRODUCTION

Optical Music Recognition is the field of research that in-

vestigates how to read music notation in documents com-

putationally. This technology enables many computational

tasks that, otherwise, could not be performed directly on

the music sources themselves [17]. One interesting appli-

cation of OMR is concerned with reconstructing the notes

encoded in the music-notation document, also referred to

c© Alexander Pacha, Jorge Calvo-Zaragoza, Jan Hajič jr..

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Alexander Pacha, Jorge Calvo-

Zaragoza, Jan Hajič jr.. “Learning Notation Graph Construction for Full-

Pipeline Optical Music Recognition”, 20th International Society for Mu-

sic Information Retrieval Conference, Delft, The Netherlands, 2019.

as replayability [22]. In particular, the objective of the re-

playability application is to recover the pitches, onsets, du-

rations, and velocities of notes from a document and ex-

port them into a symbolic representation. This symbolic

representation—e.g., a MIDI file—is already a very useful

abstraction of the music itself and allows for plugging in a

wide range of music information retrieval tools. However,

despite prolonged efforts, the replayability application is

still under research [4, 7, 16, 36].

Given the wealth of information that is contained in a

music score, the task of decoding its content is usually ad-

dressed by dividing the process into smaller stages that rep-

resent limited challenges. The general pipeline, proposed

first by Bainbridge and Bell [3] and later refined by Re-

belo et al. [29], is considered a de-facto standard, which

organizes the process into four main blocks: i) preprocess-

ing, which works over the input image to ease further steps

and make the system more robust; ii) music object detec-

tion, which is in charge of retrieving and classifying all

objects and glyphs of the image; iii) notation assembly,

which must infer the relationships among the detected ob-

jects to reconstruct the music notation itself; and iv) encod-

ing, which exports the symbolic reconstruction into the de-

sired format, typically MIDI for replayability or an XML-

based encoding such as MusicXML [15] or MEI [19] for

further computational processing.

As our starting point towards completing the OMR

pipeline, we assume that the music object detection stage

can be solved reliably, which allows us to investigate how

to deal with the later stages. In this paper, we want to focus

in particular on the third stage, which is responsible for the

notation assembly. Although previous work exists, most

approaches are based on predefined rules that hardly gen-

eralize, and that only work for a limited set of scenarios.

In contrast, we propose a well-principled machine learning

approach, which addresses the problem in a generalizable

way, provided there is convenient training data.

2. RELATED WORK

Most literature on OMR focuses on the first stages of the

pipeline. This comes as no surprise because if one strug-

gles with detecting music objects in an image reliably, it

is understandable that subsequent stages that build on top

of that are often neglected. With the appearance of deep
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learning in OMR, however, many steps that traditionally

produced suboptimal results, such as the staff-line removal

or symbol classification, have seen drastic improvements

[14, 26] and are no longer considered obstacles for OMR

development.

Deep learning also caused some steps to become obso-

lete or collapse into a single (bigger) stage. For instance,

the music object detection stage, which was traditionally

separated into segmentation plus classification stages, is

currently addressed in a single step. Convolutional neu-

ral networks have been shown to be able to deal with the

music object detection stage holistically, without having to

remove staff lines at all [25]. A compelling advantage is

the capability of these models to be trained in a single step

by merely providing pairs of images and positions of the

music objects to be found, eliminating the preprocessing

step altogether [24, 35]. This issue has been the subject

of intense recent research. A comparison of existing ap-

proaches to holistic music object detection is presented in

the work of Pacha et al. [27].

Since the beginning of the OMR research, there have

been attempts to complete the full pipeline, including the

notation assembly stage. Below, we introduce some par-

ticular proposals to perform this stage that can be found in

the existing literature. They can be broadly divided into

grammar-based approaches, and approaches that rely on

heuristics and pre-defined rules.

2.1 Grammar-based approaches

Formal grammars represent the most widely used descrip-

tion of music notation. This feels natural, given that music

notation has syntactic rules and hierarchical structures that

invite such a formalization. These grammars are manually

built to describe the expected relationships among music-

notation objects and then used to reconstruct the music no-

tation from the detected primitives [1–3, 5, 6, 30, 33]. The

2D nature of music notation also inspired graph grammars,

as in the work of Fahmy and Blostein [12]. A prominent

example of this approach is the DMOS system, proposed

by Coüasnon et al. [8,9], which uses a definite clause gram-

mar for describing the relations between graphical objects

on two levels: a graphical one that assists the recognition

of symbols and a syntactic one, which introduces the mu-

sical semantics into the process.

2.2 Heuristical approaches

The other set of approaches relies on ad hoc rules for the

music notation at hand. This includes assumptions about

the configuration and position of the occurring primitives

to reconstruct composite symbols and the notation graph

[10, 23, 28, 34]. Rossant et al. [31] additionally consid-

ered fuzzy modeling, which allows for self-correction dur-

ing the recognition [32]. Their system evaluated different

hypotheses of recognized symbols to verify the compati-

bility between them.

3. NOTATION ASSEMBLY

The related works clearly show a lack of machine learning

approaches. This work aims to fill that gap, by propos-

ing a formulation of the notation assembly stage based on

machine learning models. The advantage of such models

is that they provide greater flexibility since they can vary

their behavior by just changing the provided training set.

This is especially interesting for OMR, where there is a

great diversity of scenarios depending on the epoch or type

of composition of the music scores.

The conventional OMR pipeline foresees that the nota-

tion assembly stage infers the relationships among previ-

ously detected music objects to retrieve the necessary in-

formation to infer the sequence of notes and rests.

Our approach understands that music notation can be

modeled as a directed graph G = (V, T ), hereafter referred

to as Music Notation Graph (MuNG). V represents the set

of vertices, where ζ(v), v ∈ V is the label associated with

a vertex. T represents the set of directed edges, such that

ti = (v1, v2), ti ∈ T, v1, v2 ∈ V denotes an edge from

vertex v1 to vertex v2. The primitives that make up the

music notation, such as noteheads or stems, are modeled

as vertices of this graph, while the relationships between

these symbols are modeled by the edges. In our MuNG,

the edges are not labeled, but there are two types of rela-

tionships:

• Syntactic edges that relate elements syntactically.

This includes relationships between primitives that

make up a composite symbol, such as an eighth note,

which consist of a notehead, a stem, and a flag or

beam as well as general relationships, e.g., between

an accidental and the notehead that is affected by it.

• Precedence edges that specify the temporal order be-

tween notes. In most cases, the position on the hori-

zontal axis is sufficient to infer this kind of relation-

ship; however, for polyphonic music, a more sophis-

ticated mechanism is needed to handle ambiguous

situations.

We can, therefore, define the set of edges as T = S∪P ,

where S is the set of edges that define the syntactic rela-

tionships and P is the set of edges that define the prece-

dence relationships. A graphical representation of MuNG

is shown in Fig. 1. The primary goal of our work is to train

a machine learning model to construct such a MuNG G

from a music score image.

4. LEARNING MUSIC NOTATION GRAPH

ASSEMBLY

There are existing algorithms that are capable of dealing

with the input image and retrieving a set of detected music-

notation primitives. In other words, these algorithms pro-

cess the input and provide the set of vertices V , along with

its associated labels and bounding-boxes. In order to com-

plete the OMR pipeline for replayability, we also need to

recover the set of edges T .
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Figure 1: Graphical representation of a Music Notation

Graph in a selected excerpt of music notation: vertices

are highlighted with transparent yellow bounding boxes

around the music-notation primitives, syntactic edges are

shown as transparent cyan lines, and precedence edges

are shown as transparent purple lines connecting the note-

heads.

We propose a principled way of inferring T without re-

sorting to a set of fixed rules but using machine learning.

Our system learns to establish these relationships from a

conveniently annotated training set so that the rules are im-

plicitly modeled by the machine learning model.

The edges that relate vertices of the set T have an un-

labeled binary nature; i.e. for each pair of vertices, a rela-

tionship either exists or not. Formally speaking, the infer-

ence of these relationships can be formulated as a function

f : V × V → {0, 1}. However, given their different na-

ture, the set of edges S and P are inferred by independent

models. To learn the functions fS and fP , for the edges

of S and P , respectively, we propose to train binary classi-

fiers that receive two vertices and predict whether such re-

lationship must be established or not. To do so, one would

have to estimate the potential relationship between each

pair of symbols, which entails high computational costs.

However, it is obvious that most of these relationships are

unfeasible. Since the music object detection stage also re-

trieves some associated information, such as the label ζ(v)
associated to each vertex and the bounding box of that ob-

ject in the input score image, we can use this information

to filter edges by two criteria:

1. An edge is only feasible if the distance between the

bounding boxes of their vertices falls below a certain

threshold t. In other words, two vertices that are too

far apart cannot be related.

2. An edge is only feasible if the labels of its associ-

ated vertices are “compatible”, e.g., a notehead with

a stem. This eliminates a large number of incom-

patible combinations, such as an edge between an

accidental and a rest. The compatibility map is a

fixed list of vertex pairs that, according to the syntax

of modern music notation, can hold a relationship to

each other.

Then, given two vertices v1 and v2, for which their edge

is declared feasible, we train a deep convolutional neural

network to predict whether there must be an edge from v1
to v2 or not. We generate a multi-channel image with a

fixed size that serves as input features for the neural net-

work, which consists of:

• Channel 1: the patch of the input score image that is

centered at the objects represented by v1 and v2.

• Channel 2: the binary mask of the object v1

• Channel 3: the binary mask of the object v2

The required information to generate these multi-

channel images can be obtained from the bounding boxes

of v1 and v2, which are expected to be generated during

the preceding music object detection stage. Note, that the

masks for channel 2 and 3 are obtained from the bound-

ing boxes and the underlying image, which means that

the masks can (partially) include other objects as well un-

less the exact masks are provided via pixelwise segmenta-

tion [16, 35].

The network is then fed with this 3-channel image and

trained to predict 1 if there should be a relationship be-

tween the vertices, and 0 otherwise. Visualizations of the

input images are given in Fig. 2.

4.1 Dataset

To carry out our experiments we need a corpus, which

has annotations for both the individual symbols as well

as their relationships. Currently, the only publicly avail-

able dataset which fulfills this requirement is the MUS-

CIMA++ dataset [18] of handwritten music notation. It

provides symbol-level annotations as well as relationship

annotations for 140 out of 1 000 images from the CVC-

MUSCIMA dataset [13]. The MUSCIMA++ dataset con-

tains 91 254 annotated symbols, consisting of both nota-

tion primitives and higher-level notation objects, such as

key signatures or time signatures as well as 82 247 explic-

itly marked relationships between symbol pairs.

Unfortunately, the precedence relationships between

notes are not included in the MUSCIMA++ dataset, so our

experiments consider only the syntactic edges. However,

the formulation and the proposed approach are very simi-

lar and should work for both kinds of edges.

4.2 Relationship Reconstruction

For learning the relationships, we train a convolutional

neural network in PyTorch with five consecutive blocks,

each consisting of a convolution, batch normalization, a

non-linearity (ReLU), and max-pooling, before going into

a fully connected layer with a single output neuron fol-

lowed by a sigmoid activation function that produces the

final estimation. The network has 28 865 parameters in to-

tal. We use the Binary Cross-Entropy loss and train with

the Adam optimizer [20] until the validation performance

has not improved for ten epochs, upon which we stop.

The data-loading routine presents the biggest challenge

because it has to construct the multi-channel images as de-

scribed in Sect. 4. To efficiently generate the set of vertex-

pairs, we compute the pairwise distance between all ob-

jects in an image but filter them considerably afterward by

the distance and compatibility criteria (see Sec. 4). The

distance threshold was set to t = 200 pixels for including

most valid edges from the MUSCIMA++ dataset. Valid re-

lationships between objects that are further apart than 200

pixels are extremely rare and were neglected in favor of
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(a) A positive example of two objects that
are related.

(b) A negative example of two objects that
are unrelated.

(c) A hard negative example of a dot that
could be related to the notehead, but is not.

Figure 2: Three samples of images that are used during training. The mask given in channel 2 is shown as bright green

overlay and the mask from channel 3 as cyan overlay.

computational efficiency. Our compatibility map contains

225 valid combinations of primitives. To improve the per-

formance even further and simplify the classification task,

the input image for the neural network is cropped to a

sub-image of 512 × 256 pixels (width × height), contain-

ing the two objects of interest at its center. Both the dis-

tance threshold and the sub-image dimensions are hyper-

parameters that are dataset-dependent but can be obtained

by running a statistical analysis on the used dataset.

We split the 140 images of the dataset into 60 % train-

ing data, 20 % validation data, and 20% test data. In each

epoch, the network is trained on approximately 250 000

images of candidate pairs. Approximately 25 percent of

the candidates contain positive examples. The best re-

sults were obtained after just 12 epochs before the network

started to overfit and the validation performance declined.

The source-code is publicly available on Github. 1

4.3 Music Object Detection

Since the notation assembly stage begins after the music

objects have been detected in the score image, we also

wanted to evaluate, how well our approach works on ac-

tual detection results. For obtaining such results, we resort

to a state-of-the-art music object detector as proposed by

Pacha et al. [25] with a minor modification: While we do

divide the full page into sub-images containing one stave

each, we do not see the need for cutting the images any fur-

ther. The model selection and training procedure remains

unchanged. We split the dataset into 100 images for train-

ing, 20 images for validation and 20 images for testing, as

proposed by the authors of the MUSCIMA++ dataset. The

improved implementation is publicly available. 2

We evaluate the trained model on the test set for the

stave-wise individual images and report the Mean Average

Precision (mAP) as defined for the COCO challenge [21]

which is a unified metric, commonly used for object detec-

tion tasks. The trained model achieves 69.5 % mAP. For

comparison, we also report a mAP of 93.3 % when using

the mAP as defined for the PASCAL VOC challenge [11],

which was used in the original paper. Finally, the im-

ages are merged into the full-page results upon we achieve:

1 https://github.com/OMR-Research/MungLinker
2 https://github.com/apacha/

MusicObjectDetector-TF

34.5 % mAP / 45.2 % w-mAP 3 (COCO) and 53.8 % mAP

/ 80.9 % w-mAP (PASCAL). As our main focus is on learn-

ing relationships and not music object detection, we do

not go into further details on these numbers. However,

we want to point out that the COCO metric is very strict

and probably underestimating the performance of the mu-

sic object detector (see Fig. 3 for an example output).

4.4 Evaluation Protocol

Once the music objects have been detected, and their rela-

tionships established, the system can produce a complete

MuNG that can be compared with the reference MuNG,

provided as ground truth. However, it is necessary to first

establish the correspondences between vertices from the

prediction and the ground-truth. To do so, we assume that

a detected object v1 corresponds to a ground-truth object

v2 if they depict the same class ζ(v1) = ζ(v2) and their

Intersection over Union exceeds 50 %.

Once the vertices of the ground-truth are matched with

the detected objects, it is possible to compute the statistics.

If an established relationship is correct, it is considered a

true positive (TP); if an established relationship is incor-

rect, it is considered a false positive (FP); and, if an ex-

pected relationship is not predicted, it is considered a false

negative (FN). Then, we can compute precision (P ), recall

(R), and F-score (F1) metrics:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2

P ×R

P +R

P measures how reliable the established relationships

are, whereas R measures the ability of the model to re-

trieve as many relationships as possible. F1 summarizes

both metrics with a single value.

Note that, although our evaluation is primarily focused

on the relationships between objects, the used metrics are

affected by the performance of the music object detector.

Errors from earlier stages of the OMR process propagate

to later stages. So if musical objects were missed, their

relationships are counted as false negatives. To account for

this, we evaluate our model in two ways:

3 Weighted Mean Average Precision is the Mean Average Precision,
weighted by the frequency of the occurring classes, which is higher be-
cause frequent classes yielded better results than rare ones.
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Figure 3: Sample output of the improved music object detector. Each detected object v has a box around it, with the color

representing the class ζ(v) of the particular object, e.g., light green for full-noteheads.

• over a hypothetical set of perfect detections, which

we can extract from the ground-truth of the corpus,

and

• over the result of an actual music object detec-

tor, specifically using the state-of-the-art model, de-

scribed in Sect. 4.3.

These settings allow us to answer the two questions:

Does the proposed approach for reconstructing the MuNG

with a machine learning model work at all? If yes, how

well does the system perform in a real-world scenario,

when confronted with (imperfect) object detector results

instead of the perfect ground-truth bounding boxes?

4.5 Results

The main objective of our work is to demonstrate that the

notation assembly stage can be formulated as a machine

learning task. The main results of our experiments are

given in Table 1. It can be observed that the proposed ap-

proach is highly effective: in all cases, values above 90 %

are reported.

When starting from ground-truth music object detec-

tion, our model yields P = 95.2%, R = 96.0%, and

F1 = 95.2%, which indicates a successful approach to

completing the OMR pipeline. In case of starting from

actual results of a state-of-the-art detector, performance

decreases slightly to P = 93.2%, R = 91.5%, and

F1 = 92.3%. We think this is because the location of the

objects is not always exact (leading to a lower P ) and miss-

ing symbols cause relationships to be irrecoverable (lead-

ing to a lower R).

Graph Edges / Relationships

Precision Recall F-Score

Perfect Detection 95.2% 96.0% 95.6%

Real Detector 93.2% 91.5% 92.3%

Table 1: Overall performance of the proposed machine

learning model to reconstruct syntactic edges of the Mu-

sic Notation Graph (MuNG), given hypothetically perfect

detection results (top row), and given results from a state-

of-the-art detector (bottom row).

In order to provide more experimental insights, Table

2 reports 10 out of the 225 compatible combinations of

relationships that are most common in the MUSCIMA++

dataset. As might be expected, the notehead primitives

are involved in all of these frequent combinations. In this

regard, our model obtains nearly optimal results for these

over-represented cases. Note that these relationships are

of particular relevance to be able to decode the notes that

appear in the score. When comparing the individual results

to the overall results in Table 1, the discrepancy can be

explained by looking at the remaining 215 combinations

that are not shown. Many of these have a much lower F1,

probably because they are under-represented in the dataset.
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From To
Number of candidate

pairs in the dataset
F-Score on the test set

notehead-full stem 158064 99.5%

notehead-full beam 61253 98.7%

notehead-full leger_line 47503 98.1%

notehead-full slur 24738 96.4%

notehead-full 8th_flag 12877 97.7%

notehead-full sharp 12563 97.5%

notehead-full duration-dot 12305 96.7%

notehead-empty stem 9488 100.0%

notehead-full staccato-dot 8628 96.8%

notehead-full natural 7160 98.7%

Table 2: Overview of the ten most common combinations of object-pairs, along with the number of generated candidate

pairs in the dataset, as seen by the network. The last column contains the F-scores that were reported for the individual

combinations when evaluating the trained model on the test set, containing the ground truth of music primitives v.

5. CONCLUSION AND OUTLOOK

In this work, we study how to complete the OMR pipeline

from the previous efforts to detect the music objects within

the input image. Our approach seeks the construction of a

music notation graph that stores the information of the no-

tation primitives as well as their syntactic and precedence

relationships. We propose a machine learning model that

can predict whether two primitives are related to each other

or not.

Results over the set of syntactic relationships from the

handwritten sheet music dataset MUSCIMA++ show that

our approach is very effective. We obtain success rates

close to the optimum when establishing the correct rela-

tionships from the ground-truth primitives (F1 = 95.6%).

When re-evaluating the results starting from the primi-

tives detected by a state-of-the-art music object detector, a

slightly lower performance can be observed (F1 = 92.3%).

These figures indicate that the notation assembly stage of

the OMR pipeline can be solved reliably with a machine

learning model, given a curated set of annotated scores.

Comparing our approach to existing methods is extremely

difficult, if not impossible, because:

• most existing solutions are black boxes with closed

source-code, or there is no available implementation

at all,

• only a few systems are capable of handling hand-

written modern notation, and

• it is unclear how to compare the music notation as-

sembly stage between two different systems, espe-

cially given that the notation graph is only an inter-

mediate representation.

So, although the results are promising, we still see many

interesting avenues for further research. For instance, by

adding data augmentation during training to make the no-

tation assembly model more robust against variations in the

bounding box retrieval of the first stage. Also, we plan to

look into providing other meaningful features to the net-

work, such as the class labels ζ(v) of the involved prim-

itives v ∈ V . Furthermore, we observed that the fixed-

sized input patch given to the network is often covering a

much larger area than required to contain the objects of in-

terest, especially when they are very close (see Fig. 2c).

This could be handled by using size-independent neural

network layers such as Global Pooling, instead of flatten-

ing the features and feeding them into a fully-connected

layer, allowing us to adjust the input patch for each sam-

ple.

We also believe that the notation assembly stage could

benefit from having a broader set of hypotheses about the

objects detected in the previous stage, instead of a fixed set

of proposals. State-of-the-art music object detectors are

based on statistical neural models that are able to provide a

probability distribution over the whole set of possible de-

tection hypotheses. When it comes to recognizing, we are

typically interested in the most likely hypothesis—the one

that is proposed as an answer—forgetting the other ones.

However, it is certainly interesting to exploit this statistical

modeling: the notation assembly algorithm could establish

relationships that are more logical a priori, although the

objects involved have a lower probability according to the

object detector. These types of approaches have yet to be

explored in the field of OMR.

And finally, for completing the OMR pipeline, the en-

coding stage is still missing. However, we see two benefits

of the notation graph representation: the encoding can be

implemented by experts in music encoding that are pro-

ficient in a particular format and given a complete graph

representation, there is no restriction on the actual output

format because the graph contains all the information that

is present in the image.
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CHAPTER 8
OMR for Mensural Notation

Before modern stave notation was established, a number of preceding notations have
evolved. One of them is mensural notation. It was used, for example, to write down
sacred chants that were sung during the mass in the Catholic church (see Fig. 8.1).

Figure 8.1: Chant from the Capitan collection, written in mensural notation during the
17th century.

In contrast to modern notation, this early notation system had a smaller vocabulary
and was more limited with regard to what could be expressed with it. This motivated
Jorge Calvo-Zaragoza and me to work on a complete OMR system for these scores, which
requires fewer building blocks than OMR systems that attempt to recognizing modern
stave notation.

In our work “Optical Music Recognition in Mensural Notation with Region-Based
Convolutional Neural Networks,” published at the 19th International Society for Music
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8. OMR for Mensural Notation

Information Retrieval Conference 2018 [PCZ18], we devised a simplified pipeline that
only consists of three stages: music object detection, position classification, and semantics
recognition. The first stage is similar to the one described in the papers above. The
position classification on the other hand represents a new building block which can be
reused in other scenarios to improve the robustness of OMR systems. The idea is to obtain
the vertical position, which corresponds to the pitch,1 by a neural network classifier. The
benefit is that no stave recognition and removal stage is needed, while symbols can be
classified robustly, relying on local information only. The position classification network
worked exceptionally well, making virtually no errors and even spotting errors that were
done by human annotators.

The last step dealt with reconstructing the semantics, which can be done with a set of
simple heuristics. For example, there are no simultaneous events, so notes can simply
be read left to right to determine their order. The encoding step, however, is non-
trivial because the interpretation of the recognized symbols requires specialized domain
knowledge. This part of the research was conducted by David Rizo and published along
with a description of the MuRET project [RCZIn18].

1Note that the actual pitch still depends on other symbols, such as the clef and accidentals.
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ABSTRACT

In this work, we present an approach for the task of opti-

cal music recognition (OMR) using deep neural networks.

Our intention is to simultaneously detect and categorize

musical symbols in handwritten scores, written in mensu-

ral notation. We propose the use of region-based convo-

lutional neural networks, which are trained in an end-to-

end fashion for that purpose. Additionally, we make use

of a convolutional neural network that predicts the rela-

tive position of a detected symbol within the staff, so that

we cover the entire image-processing part of the OMR

pipeline. This strategy is evaluated over a set of 60 ancient

scores in mensural notation, with more than 15000 anno-

tated symbols belonging to 32 different classes. The results

reflect the feasibility and capability of this approach, with a

weighted mean average precision of around 76% for sym-

bol detection, and over 98% accuracy for predicting the

position.

1. INTRODUCTION

The preservation of the musical heritage over the cen-

turies makes it possible to study a certain artistic or cul-

tural paradigm. Most of this heritage exists in written form

and is stored in cathedrals or music libraries [10]. In addi-

tion to the possible issues related to the ownership of the

sources, this storage protects the physical preservation of

the sources over time, but also limits their accessibility.

That is why efforts are being made to improve this situa-

tion through initiatives to digitize musical archives [17,21].

These digital copies can easily be distributed and studied

without compromising their integrity.

Nevertheless, this digitalization, which indeed repre-

sents a progress with respect to the aforementioned situ-

ation, is not enough to exploit the actual potential of this

heritage. To make the most out of it, the musical content

itself must be transcribed into a structured format that can

be processed by a computer [6]. In addition to indexing

c© Alexander Pacha, Jorge Calvo-Zaragoza. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: Alexander Pacha, Jorge Calvo-Zaragoza. “Optical

Music Recognition in Mensural Notation with Region-based Convolu-

tional Neural Networks”, 19th International Society for Music Informa-

tion Retrieval Conference, Paris, France, 2018.

the content and thereby enabling tasks such as content-

based search, this could also facilitate large-scale data-

driven musicological analysis in general [39].

Given that the transcription of sources is extremely

time-consuming, it is desirable to resort to automatic sys-

tems. Optical music recognition (OMR) is a field of re-

search that investigates how to build systems that decode

music notation from images. Regardless of the approach

used to achieve such objective, OMR systems vary signif-

icantly due to the differences amongst musical notations,

document layouts, or printing mechanisms.

The work presented here deals with manuscripts writ-

ten in mensural notation, specifically with sources from

the 17th century, attributed to the Pan-Hispanic framework.

Although this type of mensural notation is generally con-

sidered as an extension of the European mensural notation,

the Pan-Hispanic situation of that time underwent a par-

ticular development that fostered the massive use of hand-

written copies. Due to this circumstance, the need for de-

veloping successful OMR systems for handwritten nota-

tion becomes evident.

Figure 1. A sample page of ancient music, written in men-

sural notation.

We address the optical music recognition of scores writ-

ten in mensural notation (see Figure 1) as an object detec-

tion and classification task. In this notation, the symbols

are atomic units, 1 which can be detected and categorized

independently. Although there are polyphonic composi-

1 Except for beamed notes, in which the beam can be considered an
atomic symbol itself.
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tions from that era, each voice was placed on its own page,

so we can consider the notation as monophonic on the

graphical level. Assuming the aforementioned simplifica-

tions allows us to formulate OMR as an object detection

task in music score images, followed by a classification

stage that determines the vertical position of each detected

object within a staff. If the clef and other alterations are

known, the vertical position of a note encodes its pitch.

We propose using region-based convolutional neural

networks, which represent the state of the art in computer

vision for object detection, and demonstrate their capabili-

ties of detecting and categorizing the musical symbols that

appear in the image of a music score with a high precision.

We believe that this work provides a solid foundation for

the automatic encoding of scores into a machine-readable

music format like Music Encoding Initiative (MEI) [38]

or MusicXML [15]. At present, there are thousands of

manuscripts of this type that remain to be digitized and

transcribed. Although each manuscript may have its own

particularities (such as the handwriting style or the lay-

out organization), the approach developed in this work

presents a common and extensible formulation to all of

them.

2. RELATED WORK

Most of the proposed solutions to OMR have focused on

a multi-stage approach [34]. This traditional workflow in-

volves steps that have been addressed isolatedly, such as

image binarization [4,47], staff and text segmentation [44],

staff-line detection and removal [5, 11, 46], and symbol

classification [3, 30, 33]. In other works, a full pipeline is

proposed for a particular type of music score [31, 32, 43].

Recent works have shown that the image-processing

pipeline can largely be replaced with machine-learning ap-

proaches, making use of deep learning techniques such

as convolutional neural networks (CNNs) [1, 16, 29, 45].

CNNs denote a breakthrough in machine learning, espe-

cially when dealing with images. They have been applied

with great success to many computer vision tasks, often

reaching or even surpassing human performance [18, 22].

These neural networks are composed of a series of filters

that operate locally (i.e. convolutions, pooling) and com-

pute various representations of the input image. These fil-

ters form a hierarchy of layers, each of which represents

a different level of abstraction [20]. The key is that these

filters are not fixed but learnt from the raw data through a

gradient descent optimization process [23], meaning that

the network can learn to extract data-specific, high-level

features.

Here, we formulate OMR for mensural notation as an

object detection task in music score images. Object detec-

tion in images is one of the fundamental problems in com-

puter vision, for which deep learning can provide excel-

lent solutions. Traditionally, the task has been addressed

by means of heuristic strategies based on the extraction of

low-level, general-purpose features such as SIFT [28] or

HOG [7]. Szegedy and colleagues [8, 42] redefined the

use of CNNs for object detection for the first time. Instead

of classifying the image, the neural network predicted the

bounding box of the object within the image. Around

the same time, the ground-breaking work of Girshick et

al. [14] definitely changed the traditional paradigm. In

their work, a CNN was in charge of predicting whether

each object of the vocabulary appeared in selected bottom-

up regions of the image. This scheme has been referred

to as region-based convolutional neural network (R-CNN).

Afterwards, several extensions and variations have been

proposed with the aim of improving both the quality of the

detection and the efficiency of the process. Well-known

examples include Fast R-CNN [13], Faster R-CNN [37],

R-FCN [24], SSD [27] or YOLO [35, 36].

In this work, we use these region-based convolutional

neural networks for OMR, which are trained for the direct

detection and categorization of music symbols in a given

music document. Thereby allowing for an elegant formula-

tion of the task, since the training process only needs score

images along with their corresponding set of symbols and

the regions (bounding boxes) in which they appear.

3. AN OMR-PIPELINE FOR MENSURAL SCORES

Music scores written in mensural notation share many

properties with scores written in modern notation: the se-

quence of tones and pauses is captured as notes and rests

within a reference frame of five parallel lines, temporally

ordered along the x-axis with the y-axis representing the

pitch of notes. But unlike modern notation, mensural

scores are notated monophonically with a smaller vocabu-

lary of only around 30 different glyphs, reducing the over-

all complexity significantly and thus allowing for a simpli-

fied pipeline that consists of only three stages. A represen-

tative subset of the symbols that appear in the considered

notation is depicted in Table 1.

Group Symbol

Note
Semibrevis Minima Col. Minima Semiminima

Rest
Longa Brevis Semibrevis Semiminima

Clef
C Clef G Clef F Clef (I) F Clef (II)

Time
Major Minor Common Cut

Others
Flat Sharp Dot Custos

Table 1. Subset of classes from mensural notation. The

symbols are depicted without considering their pitch or

vertical position on the staff.

3.1 Music Object Detection

The first stage takes as input an entire high-quality image

that contains music symbols. The entire image is fed into
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a deep convolutional neural network for object detection

and yields the bounding boxes of all detected objects along

with their most likely class (e.g., g-clef, minima, flat).

3.2 Position classification

After detecting the symbols and classifying them, the sec-

ond stage performs position classification of each detected

object to obtain the relative position with respect to the

reference frame (staff) which is required to recover a notes

pitch. For this process, we extract a local patch from the

full image with the object of interest in the center and feed

the image into another CNN, which outputs the vertical

position, encoded as shown in Figure 2.

L1

L2

L0

L4

L5

L3

L6

S1

S2

S0

S4

S5

S3

S6

Figure 2. Encoding of the vertical staff line position into

discrete categories. The five continuous lines in the middle

form the regular staff and the dashed lines represent ledger

lines, that are inserted locally as needed. A note between

the second and third line from the bottom would be classi-

fied as S2 (orange).

3.3 Semantics Reconstruction and Encoding

Given the detected objects and their relative position to the

staff line, the final step is to reconstruct the musical se-

mantics and encode the output into the desired format (e.g.,

into modern notation [48]). This step has to translate the

detected objects into an ordered sequence for further pro-

cessing. Depending on the application and desired output,

semantic rules need to be taken care of, such as grouping

beams with their associated notes to infer the right duration

or altering the pitch of notes when accidentals are encoun-

tered.

4. EXPERIMENTS

To evaluate the proposed approach, we conducted exper-

iments 2 for the first two steps of the pipeline. While a

full system would also require the third step, we refrain

from implementing it, to not restrict this approach to a par-

ticular applications. It is also noteworthy, that translating

mensural notation into modern notation can be seen as its

own field of research that requires a deep understanding of

2 Source code is available at https://github.com/apacha/
Mensural-Detector

both notational languages, which exceeds the scope of this

work.

4.1 Dataset

Our corpus consists of 60 fully-annotated pages in mensu-

ral notation from the 16th-18th century. The manuscript

represents sacred music, composed for vocal interpreta-

tion. 3 The compositions were written in music books by

copyists of that time. To ensure the integrity of the phys-

ical sources, the images were taken with a camera instead

of scanning the books in a flatbed scanner, leading to sub-

optimal conditions in some cases. An overview of the con-

sidered corpus is given in Table 2.

Pages 60

Total number of symbols 15258

Different classes 32

Different positions

within a staff
14

Average size of a

symbol (w × h)
44× 84 pixels

Number of symbols per

image
42–447 (∅ 250)

Image resolution

(w × h)
∼ 3000× 2000 pixels

Dots per inch (DPI) 300

Table 2. Statistics of the considered corpus.

The ground-truth data is collected using a framework, in

which an electronic pen is used to trace the music symbols,

similar to that of [2]. The bounding boxes of the symbols

are then obtained by computing the rectangular extent of

the users’ strokes.

4.2 Setup

Our experiments are based on previous research by [29],

where a sliding-window-approach is used to detect hand-

written music symbols in sub-regions of a music score. In

contrast to their work, we are able to detect hundreds of

tiny objects in the full page within a single pass. To train

a network in a reasonable amount of time within the con-

straints of modern hardware, it is currently necessary to

shrink the input image to be no longer than 1000px on the

longest edge, which corresponds to a downscaling opera-

tion by a factor of three on our dataset.

For detecting music objects, the Faster R-CNN ap-

proach [37] with the Inception-ResNet-v2 [41] feature ex-

tractor has been shown to yield very good results for de-

tecting handwritten symbols [29]. It works by having a

region-proposal stage for generating suggestions, where an

3 The dataset is subject to ongoing musicological research and can not
be made public at this point in time, so it is only available upon request.
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object might be, followed by a classification stage, which

confirms or discards these proposals. Both stages are im-

plemented as CNNs and trained jointly on the provided

dataset. The first stage scans the image linearly along a

regular grid with user-defined box proposals in each cell of

that grid.

To be able to generate meaningful proposals, the shape

of these boxes has to be similar to the actual shape of the

objects that should be found. Since the image contains a

large number of very tiny objects (sometimes only a few

pixels), a very fine grid is required. After a statistical anal-

ysis of the objects appearing in the given dataset, including

dimension clustering [35], several experiments were con-

ducted to study the effects of size, scale, and aspect ratios

of the above-mentioned boxes, concluding that sensibly

chosen priors for these boxes work similarly good as the

boxes obtained from the statistical analysis. For the down-

scaled image, boxes of 16x16 pixels, iterating with a stride

of 8 pixels and using the scales 0.25, 0.5, 1.0, and 2.0, with

aspect ratios of 0.5, 1.0, and 2.0 represent a meaningful

default configuration. Accounting for the high density of

objects, the maximum number of box proposals is set to

1200 with a maximum of 600 final detections per image.

For the second step of our proposed pipeline, another

CNN is trained to infer the relative position of an object

to its staff line upon which it is notated (see Figure 2).

Different off-the-shelf network architectures are evaluated

(VGG [40], ResNet [19], Inception-ResNet-v2 [41]) with

the more complex models slightly outperforming the sim-

pler ones. Using pre-trained weights instead of random

initialization accelerates the training, improves the over-

all result, and is therefore used throughout all experiments.

The input to the classification network is a 224×448 pixels

patch of the original image with the target object in the cen-

ter (see Figure 3). The exact dimensions of the patch are

not important, as long as the image contains enough verti-

cal and horizontal context to classify even symbols notated

above or below the staff. When objects appear too close to

the border, the image is padded with the reflection along

the extended edge to simulate the continuation of the page

as shown in Figures 3(d) and 3(e).

(a) (b) (c) (d) (e)

Figure 3. Sample inputs for the position classification net-

work depicting a g-clef (a), semiminima (b), brevis rest (c),

custos (d) and semibrevis (e), with vertical (d) and horizon-

tal (e) reflections of the image to enforce the target object

to be in the center, while preserving meaningful context.

It is important to notice that the vertical position de-

fines the semantical meaning only for some symbols (e.g.,

the pitch of a note or the upcoming pitch with a custos).

Classes for which the position is either undefined or not

of importance include barlines, fermatas, different time-

signatures, beams and in particular for mensural notation:

the augmentation dot. Symbols from these classes can be

excluded from the second step.

4.3 Evaluation metrics

Concerning the music object detection stage, the model

provides a set of bounding box proposals, as well as the

recognized class of the objects therein. The model also

yields a score of its confidence for each proposal. A bound-

ing box proposal Bp is considered positive if it overlaps

with the ground-truth bounding box Bg exceeding 60%,

according to the Intersection over Union (IoU) criterion: 4

area(Bp ∩Bg)

area(Bp ∪Bg)

If the recognized class matches the actual category of the

object, it is considered a true positive, being otherwise a

false positive. Additional detections of the same object

are computed as false positives as well. Those objects for

which the model makes no proposal are considered false

negatives. Given that the prediction is associated with a

score, different values of precision and recall can be ob-

tained for each possible threshold. To obtain a single met-

ric, Average Precision (AP) can be computed, which is de-

fined as the area under this precision-recall curve. An AP

value can be computed independently for each class, and

then we provide the mean AP (mAP) as the mean across all

classes. Since our problem is highly unbalanced with re-

spect to the number of objects of each class, we also com-

pute the weighted mAP (w-mAP), in which the mean value

is weighted according to the frequency of each class. For

the second part of the pipeline (position classification), we

evaluate the performance with the accuracy rate (ratio of

correctly classified samples).

5. RESULTS

Both experiments yielded very promising results while

leaving some room for improvement. The detection of

objects in the full image (see Figure 4) was evaluated by

training on 48 randomly selected images and testing on the

remaining 12 images with a 5-fold cross-validation. This

task can be performed very well and yielded 66% mAP

and 76% w-mAP. When considering practical applications,

the weighted mean average precision indicates the effort

needed to correct the detection results, because it reflects

the fact that symbols from classes that appear frequently

are generally detected better than rare symbols.

When reviewing the error cases, a few things can be

observed: Very tiny objects such as the dot, semibrevis

rest and minima rest pose a significant challenge to the

network, due to their small size and extremely similar ap-

pearance (see Figure 5). This problem might be mitigated,

4 as defined for the PASCAL VOC challenge [9]

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 243

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


Figure 4. Detected objects in the full image with the detected class being encoded as the color of the box. This example

achieves a mAP of approximately 68% and a w-mAP of 85%.

(a) (b) (c)

Figure 5. The smallest objects from the dataset that are

hard to detect and often confused (from left to right): dot,

semibrevis rest, and minima rest.

by allowing the network to access the full resolution im-

age, which potentially has more discriminative information

than the downsized image. Unsurprisingly, classes that

are underrepresented such as dots, barlines, or all types

of rests are also frequently missed or incorrectly classified,

leading to average precision rates of only 10–40% for these

classes.

Another interesting observation can be made, that in

many cases, objects were detected but the IoU with the

underlying ground-truth was too low for considering them

a true positive detection (see Figure 6 with a red box being

very close to a white box).

For the second experiment, a total of 13246 sym-

bols were split randomly into a training (80%), valida-

tion (10%) and test set (10%). The pre-trained Inception-

ResNet-v2 model is then fine-tuned on this dataset and

achieves over 98% accuracy on the test set of 1318 sam-

ples. Analyzing the few remaining errors reveals that the

model makes virtually no errors and that the misclassified

samples are mostly human annotation errors or data incon-

sistencies.

For inference, both networks can be connected in series.

Running both detection and classification takes about 30

seconds per image when running on a GPU (GeForce 1080

Ti) and 210 seconds on a CPU.

6. CONCLUSION

In this work, we have shown that the optical music recogni-

tion of handwritten music scores in mensural notation, can

be performed accurately and extendible by formulating it

as an object detection problem, followed by a classification

stage to recover the position of the notes within the staff.

By using a machine learning approach with region-based

convolutional neural networks, this problem can be solved

by simply providing annotated data and training a suitable

model on that dataset. However, we are aware that our pro-

posal still has room for improvement. In future work we

would like to:
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(a) (b)

(c) (d)

Figure 6. Visualization of the performance of the object detection stage with selected patches of the music documents:

green boxes indicate true positive detections; white boxes are false negatives, that the network missed during detection; red

boxes are false positive detections, where the model reported an object, although there is no ground-truth; yellow boxes are

also false positives, where the bounding-box is valid, but the assigned class was incorrect.

• evaluate the use of different network architectures,

such as feature pyramid networks [25,26], that might

improve the detection of small objects, which we

have identified as the biggest source of error at the

moment. These networks allow the use of high-

resolution images directly, without the inherent in-

formation loss, that is caused by the downscaling

operation.

• merge the staff position classification with the object

detection network, by adding another output to the

neural network, so the model simultaneously pre-

dicts the staff position, the bounding box and the

class label.

• apply and evaluate the same techniques for other no-

tations, including modern notation

• study models or strategies that reduce (or remove)

the need for specific ground-truth data of each type

of manuscript. For example, unsupervised training

schemes such as the one proposed in [12], which al-

lows the network to adapt to a new domain by simply

providing new, unannotated images.

We believe that this research avenue represents a

ground-breaking work in the field of OMR, as the pre-

sented approach would potentially deal with any type of

music scores by just providing undemanding ground-truth

data to train the neural models.
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CHAPTER 9
Other contributions

Apart from the scientific publications mentioned above and two more scientific papers
([Pac18c] and [Pac18a]), some side-projects evolved over the last few years. They gained
significant attention both from the community but also from prospective researchers who
are making use of these projects and the resources that I have shared publicly.

9.1 Optical Music Recognition Datasets project

One of the most pressing issues among OMR researchers has been the lack of datasets.
While music in principle was available on a large scale, annotated datasets were not.
So most researchers resorted to creating their own small datasets while researching the
subject. This situation changed in recent years. Therefore, I collected the datasets that
have been published so far and made that list available online [Pac17b]. It is a curated
list with more than 20 datasets that were developed explicitly for OMR. Each entry
contains a summary, a link to the official website, optionally the scientific publication
where it was published as well as a small example from the dataset, cf. Fig. 9.1:

Apart from the links and the summaries, the OMR datasets project also provides a
Python software package omrdatasettools [Pac18b] that facilitates working with the
datasets, including downloader scripts, converters and image generators for datasets
that only have a textual description of the underlying data. The Github repository also
mirrors most of the referenced datasets to prevent them from suddenly disappearing in
case the original websites are taken down.

This contribution has gained significant attention in the community and is referenced
from various scientific articles.
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9. Other contributions

Figure 9.1: Screenshot of the website for the OMR Datasets project.

9.2 ISMIR Tutorial “Optical Music Recognition for
Dummies”

At the International Society of Music Information Retrieval (ISMIR) Conference 2018
in Paris, France, Jorge Calvo-Zaragoza, Jan Hajič jr., Ichiro Fujinaga, and I gave a
3-hour tutorial on Optical Music Recognition, called “Optical Music Recognition for
Dummies.” It spanned the entire spectrum of OMR: from the history of the field to
modern approaches which were presented a few days later at the conference. The entire
session was recorded by us and published on YouTube [CZHjPF18]. So far, the videos
have been viewed more than 400 times (April 2019).
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9.3. Workshop on Reading Music Systems (WoRMS)

9.3 Workshop on Reading Music Systems (WoRMS)

In 2018 Jorge Calvo-Zaragoza, Jan Hajič jr., and I organized the first Workshop on
Reading Music Systems (WoRMS) [CZHjP18b] which was a satellite event to ISMIR
2018 in Paris, France with about 30 attendees. It was the first time that the majority of
active researchers in OMR sat in the same place. WoRMS was organized similar to the
GREC workshop [FL17], where the idea for a dedicated OMR workshop was born. The
workshop featured 12 talks from researchers who work on OMR as well as users of OMR
systems, such as librarians. Each session was followed by an interactive discussion on the
presented papers. Another WoRMS is planned for 2019 in Delft, The Netherlands, again
as a satellite event to ISMIR [CZPR19].

9.4 Workshop at MEC 2019: Let’s Formalize Music
Notation

The Music Encoding Conference [DKKG19] is an annual conference on music encodings,
digital musicology, digital editions, and symbolic music information retrieval. In 2019, the
workshop “Let’s Formalize Music Notation for OMR” was held by Jorge Calvo-Zaragoza,
Heinz Roggenkemper, and me. The goal of this workshop was to work towards a standard
representation for OMR, something that does not yet exist. Given that the Music
Encoding Initiative has a large body of knowledge in the field and significant interest in
the results of OMR systems, it was an ideal place to jointly work on this subject.

9.5 Discussion Group Summary: Optical Music
Recognition

In 2017, I attended the 12th IAPR International Workshop on Graphics Recognition
[FL17] in Kyoto, Japan. During the workshop multiple discussion groups were formed,
including one on Optical Music Recognition. The discussion was summarized by Jorge
Calvo-Zaragoza, Jan Hajič jr., and me, and published as part of Springer Lecture Notes
in Computer Science [CZHjP18a].

9.6 Community Engagement and Website for
OMR-Research

As a result of the Workshop on Reading Music Systems, the community decided that it
wanted a website for future OMR research. A few months later, we launched https:

//omr-research.net, which is an expanding collection of resources on OMR, links
to upcoming events as well as blog-entries with ideas that are still in rough shape. We
have also established a Slack channel [Pac17c] that is actively being used by researchers
as well as a Github Organization [Pac19a] to channel the development of various OMR
projects.
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9. Other contributions

9.7 OMR Bibliography

A side-effect of writing a thesis is that one has to study the literature of the subject
thoroughly. For writing the paper “Understanding Optical Music Recognition,” we
tried to gather all papers that were written on the subject of OMR. We collected the
BibTex citations for hundreds of articles and manually verified them. Similar efforts were
made before by Ichiro Fujinaga [Fuj00], Kia Ng, and Andrew Hankinson [Han12]. They
published extensive bibliographies on the internet as static websites. We wanted to go one
step further and have published a curated list of BibTeX entries on OMR research along
with a static website that is generated from those entries online. The idea is to make the
life of future OMR researchers easier by providing a verified bibliography of nearly all
past research. The Github repository is open for submissions from the community, the
rendered website can easily be updated, and our ultimate goal is to provide a valuable
asset for all OMR researchers to correctly quote previous research.
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CHAPTER 10
Conclusions and Outlook

The most important conclusion from this thesis is that large parts of the OMR can be
formulated as a machine learning problem, which in turn can be solved efficiently with
deep learning. While the overall pipeline has been slightly reformulated, its general
structure remains unchanged: preprocessing, symbol detection, semantic reconstruction,
encoding. Especially when trying to recover all of the information for structured encoding,
I believe that there will not be an alternative to this anytime soon. While there have been
other attempts to solve OMR in a complete end-to-end fashion—feeding in an image,
and getting encoded music out—they leave much to be desired. Single stave, monophonic
music can be processed this way, but as soon as polyphony is involved or interactions
between multiple staves appear, these approaches face their limits because they rely on
the serializability of the score for encoding music as an ordered sequence. Certainly, it
would be desirable if a system could learn everything from reading an image to producing
a MIDI file, without any intervention being necessary at all. Unfortunately, I see no
evidence that such a system is feasible. An alternative approach could be to learn the
construction of the notation graph directly. But even that exceeds the boundaries of
what I think is possible today.

Coming back to what is actually possible: Music Object Detection, one of the subjects
I spent the most effort on, is now clearly solvable. Object Detectors that use deep
convolutional neural network are powerful enough to provide very good results. I have
shown that the approach generalizes well across datasets, meaning that it performs well
on the dataset it was trained on. However, it is still unclear whether the trained networks
generalize well across datasets. Can they transfer easily from one dataset to another?

While the music object detectors operate well, there is also a catch, which is the need for
large, annotated datasets required for the training. Building such a dataset is a costly
endeavor; so, if anyone decides to put an effort into it, it will be of immense benefit to
publicly share it. To this end, I see the OMR datasets project as a milestone that will help
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10. Conclusions and Outlook

future researchers getting started much faster. I also contributed two smaller datasets,
but more importantly the facilities for finding and working with existing datasets.

With the newly introduced definition of OMR and its taxonomy, it became much clearer
why there is no answer to the question “Does OMR work?”: Because it is an ill-defined
question. Certain applications for OMR already work well, whereas others do not.
Recovering the structured encoding remains a big challenge, and I believe it will still
take some time before we will see reliable OMR systems in commercial products.

One important distinction can help future systems to become more flexible and robust:
decoupling the internal representation used during the recognition from the final repre-
sentation into which the final results are encoded. The reason is that music encodings
such as MusicXML, MEI, MuseScore XML, or MIDI were not designed for the specific
needs of OMR. For example, they struggle to represent syntactically incorrect scores,
which can quickly happen if the recognition fails. By representing music notation in a
graph with vertices and edges, this barrier is removed, which allows the system to store
the information as faithfully as possible. The last part of the OMR pipeline, the export,
can then be handled by someone who is an expert in music encoding and not necessarily
in machine learning or computer vision. While some encodings only require a fraction
of the information from the notation graph, it can be useful in other situations to have
all the information, e.g., when deciding how to resolve ambiguities, or where to ask for
user-intervention if the system fails. Unfortunately, it is unclear, whether the idea of the
notation graph will be picked up and developed further by other researchers or not. The
past has shown that existing tools will only be adopted and used if they provide useful
features, are well-designed, documented, and ready-to-use. Therefore, one key ingredient
that could make the notation graph successful would be if the export into at least one
widely used format was already available.

A benefit of pushing music object detection into the area of clearly solvable problems was
that later process stages now started to receive more attention. For many years, OMR
research was struggling with early stages such as the detection and removal of staff lines.
This has changed for good. I believe that music object detection still has plenty of room
for improvement. For instance, the trained models can probably be much smaller than
200 MB with hundreds of layers, while still producing excellent detection results.

As we started several community activities, we saw more collaboration between the
research groups as well as new application scenarios popping up during discussions. I
think that the research conducted for this thesis pushed the state of the art forward
significantly. Maybe in five years, OMR as a whole will be considered a solved problem,
although I doubt it will. But at least we will be a big step closer to solving it.
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