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Abstract

This paper presents an analytical model for the study of BBali-elastic non-prismatic beams. Its principal aim
is to accurately predict both displacements and stressieg asimple procedure and few unknown variables. The
approach adopted for the model derivation is the so-caiteéisional reduction starting from the Hellinger-Reissne
(HR) functional, which has both displacements and strezs@sdependent variables. Furthermore, the Timoshenko
beam kinematic and appropriate hypotheses on the stredsfeetonsidered in order to enforce the boundary equi-
librium. The use of dimensional reduction allows to reduee integral over a 2D domain, associated with the HR
functional, into an integral over a 1D domain (i.e., the atlerd beam-axis). Finally, through some mathematical
manipulations, the paper shows how to obtain the six Orglibafferential Equations (ODES) governing the beam
structural behaviour. In order to show the proposed modgdlgidities, the paper illustrates the ODESs solutions for
several non-prismatic beams withfédirent geometries, constraints, and load distribution® rélults are compared
with the ones provided by an already existing, more expensiud refined 2D finite element analysis, showing the
efficiency of the proposed model to accurately predict bothlaigments and stresses, at least in cases of practical
interest.

Keywords: non-prismatic beam, analytical beam model, dimensiomalaton, mixed variational formulation,
boundary equilibrium

1. Introduction

Non-prismatic beams are slender bodies in which the crestses parameters (e.g., dimensions, centroid position,
shape) could vary along the beam longitudinal axis. Prangts are interested in this class of bodies since it is
possible to optimize their shape according to the designirepents. As an example, if the cross-section size varies
proportionally to the internal-stress magnitude, the baahieves the required structural strength with the minimum
amount of material. Therefore, non-prismatic elementswdely used in many engineering fields, such as the design
of bridges, biomedical devices, and blades. Obviously,litigcessary to consider thi#eets of cross-section variation
through adequately refined models, otherwise the benefijsahetry cannot be caught.

Nowadays, Finite Element (FE) analyses based on 3D bodgifsdletization could provide extremely accurate
descriptions. However, the use of 1D models, such as bedithsggresents the most convenient choice for many
applications, at least in civil engineering. Unfortungieln @fective non-prismatic beam modelling is still a non-
trivial issue, as the following literature review demoagss.

The simplest approach proposed in literature for non-patsnibeam modelling assumes the Euler-Bernoulli and
Timoshenko beam sthess-cofficients as functions of the beam-axis coordinate. Portlagmtiéht Association [1]
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uses this approach to evaluate thdfséss of several non-prismatic beams and it still represemslestone for
structural design, as the frequent references to the hakdlmmonstrate [2, 3, 4]. Banerjee and Williams [5] illutgra
another example of the classical beam theory generalizatinon-prismatic beams. Specifically, the authors evaluat
the FE static sffness matrix for a range of non-prismatic beam-columns, ideriag the cross-section area, the
second moment of area, and the torsional rigidity as funstaf the beam-axis coordinate. Similarly, Friedman and
Kosmatka [6] propose a procedure to evaluate axial, bendimgjtorsional stiness cofficients based on opportune
modifications of prismatic beam theory ¢beients. Colunga [2] and Ozay and Topcu [7] present simil@raaches
and apply them to a wide range of span load variations.

Unfortunately, for beams with a rapid cross-section vamgtthe error induced by the poorness of the so far
mentioned procedures may grow significantly. Specificéigir main limitations are listed in the following.

¢ Simplified geometry. Only beams that are symmetric and wilthesar cross-section variation along the beam-
axis are generally considered.

¢ Negligible taper angle. Approaches based on the classteahliheories are not ficiently accurate for study-
ing beams with a significant cross-section variation, as-k@wn since the sixties [8, 9]. The same applies
for Jourawsky formula widely used to recover the shear ségributions [10, 11].

¢ Independence among axial, shear-bending, and torsionatiegs. The simplest approaches are also not able to
capture the flexural and extensional coupling [2, 4, 12].drtipular, to overcome this problem, [2, 4] propose
refined 3D FE analysis in order to evaluate the reéirgtss of non-prismatic elements.

Limiting the attention to stress analyses, Timoshenko apoidir [13] provide the analytical expression of stress
distributions for an infinite long wedge which consists of tombination of some trigonometric functions. It is
worth nothing that, the same expression could be used, wdtble hypotheses, for non-prismatic beams with
linear variation of the cross-section size [11]. Bleich][frbvides another method, known g#eetive shearing force,
for evaluating the maximum shear stress within the crostese Later on, this method has been introduced in many
technical codes [15, 16] and related documents, becom@ngtéimdard stress-analysis procedure for practitiondues. T
effective shear force formula is reported also in some classmaks of continuum mechanics [17]. Unfortunately,
despite its consolidated use, Paglietti and Carta [18, if}jlight that this formula could be extremely inaccurate,
leading to underestimated shear strength values.

Hodges et al. [20] propose a more refined model for planargreamatic beams based on the variational asymp-
totic method. The authors introduce an accurate model arestigate the ffects of the lateral-surface slope associ-
ated with the taper angle. In particular, they prove thatstbpe is a crucial parameter for the boundary equilibrium
definition. Hodges et al. [12] integrate the same model psopgpan &ective stress and strain recovery procedure.
Unfortunately, they limit the study to symmetrically norigmatic beams.

With regard to non-symmetrically non-prismatic beams, alehi@onsidering a curvilinear centreline and a con-
stant cross-section depth (the so-called arch-beamsyivadiced at the beginning of the past century [21]. However
to the authors’ knowledge, a model capable fééetively describing the behaviour of generic non-prismbaéams is
still not available in literature.

To overcome the limitations observed in previous studtgs,gaper proposes an advanced analytical, 2D, linear-
elastic, non-prismatic beam model, considering also cermgituations such as non-linear and rapid cross-section
variations, as well as symmetric and non-symmetric conditjoms. This work generalizes the procedure illustrated
in Auricchio et al. [22], which uses dimensional reductio ghe Hellinger-Reissner functional for the modelling of
2D linear-elastic prismatic beams. Balduzzi [23] presargtudy of 2D linear-elastic non-prismatic beams following
the same procedure and obtaining encouraging results. Wowaehigh number of variables characterizes the beam
model, which could undermine the methdti@ency.

Therefore, one of the aims of the present work is to explazeattcuracy achievable through a reduced number of
variables. Moreover, in order to facilitate further dey@ttents, the model will satisfy the conditions listed below.

¢ It does not need correction factors, whose evaluation dotddfere with the modelféectiveness.

¢ |t takes adequately into account boundary conditions, Wwhésults to be a crucial factor in non-prismatic
beam-model development.



e It has a clear and consistent derivation path.

The paper structure is detailed in the following: Sectione®irtes the considered 2D problem, introduces the
variational formulation, and provides the displacemert stness field hypotheses; Section 3 develops the analytical
beam model and derives the ODEs, which govern the behavitlue aon-prismatic beam under investigation; Section
4 presents several examples of non-prismatic beam and cesihe results obtained through the proposed analytical
model with the ones provided by other methods (both analyind numerical). Finally, Section 5 resumes the model
capabilities and discusses further developments.

2. Problem formulation

This section introduces the 2D problem to be tackled andhalbissumptions necessary for the model formulation.
Specifically, Subsection 2.1 introduces the problem donirbsection 2.2 presents the HR variational formula to
be used as starting equation, and Subsection 2.3 illusttheehypotheses to be considered within the modelling
derivation procedure.

2.1. Geometry definition

The object under investigation is a planar beam with a gemem-prismatic shape and described as a 2D domain
Q. In particular, we refer to a case in which the plane-stetage hypothesis can be imposed to a 3D body since its
width is negligible, and we limit to the case of small disgatents, small strains, and linear-elastic isotropic nedter

A

Figure 1: Generic non-prismatic beam

As shown in Figure 1, th& axis is a suitably chosen straight and normal line to thessgsestions and thgaxis
has the direction of the (variable) cross-section deptlordier to define the domain, we introduce two siticiently
smooth functionsy(x) andh(x) (such thaty(x) < hy(X) ¥x € £) able of describing the geometry of the upper and
lower limits of the domain. As a consequenfec¢an be rigorously defined in relation to the beam longituldinés
¢ (a closed and bounded subset of th€artesian-coordinate axis) and the cross-sedio) (a closed and bounded
subset of thg Cartesian-coordinate axis). As usual for beams, the lodgial axis is assumed to be the predominant
dimension of the body. Then, the dependenca ofthe subseA(X) is emphasized on indicating the variation of the
cross-section area values along the beam-axis. In sumthargpmaim is defined as follows:

Q c R?x € ¢ andy € A(X) (1)

where
C={xeRIxe[0,L]}, A(X) ={y € Rly € [(X), hu(¥)]} (2)

3



At this point, the domain bounda§$2 = A(0)uU A(L) U hy(x) U hi(X) (see Figure 1), can be divided into two pai€
andoQs, where load and displacement constrains are imposed tesigc

With regard to the definition df,(X) andh(x), we find convenient to introduce two new functions: the calirte
c(x), which defines thg coordinates of the cross-section centroids, and the teadt(x), which is the cross-section
depth assumed as a positive definite function. Therefg(g) andh(x) can be expressed as functionofx) andt(x):

h _ t(x)
S0 = ¢+ — (3)
o o 19

1(X) = c(x) - > (3b)

2.2. Variational formulation

In what follows, the symmetric stress tengoand the displacement vectsare the independent variable fields,
D is the inverse of the fourth order elastic tendois the distributed load vecton indicates the outward unit vector
defined ondQ, s is the suficiently-smooth boundary displacement assigned@Qg, andt is the boundary load
distribution assigned ofi€;.

The functional spaced/, Sy, andS; are defined as follows:

W:={se L*(Q)} (4)
So:= {0 € H(diV, Q) : - Ny, = 0} (5)
Si:={o e H(dV.Q) : 0 nlyg, = t} (6)

where the Sobolev spack$(Q2) andH (div, Q) are explicit hereunder:
L2 (Q) = {s: Q- R?: fs-sd§2< oo}
Q

Hdiv,Q):={0:Q->R>*?: | o:0dQ<wand(V-0) e L%(Q)
s Q

Dimensional reduction starts from the HR principle whiclatterizes the problem solution as the unique saddle
point of the following functional:

1
Jur(s o) = f(V-o--s)dQ— —f(o-: D: o-)dQ—f(s f)dQ
Q 2 Q Q (7)
- (c-n-5)dS=0
00
It is worth noticing that there are several formulations d® Functional [24, 25, 22]. Specifically, we adopt the
formulation indicated wittHR div-divby Auricchio et al. [22], in which it was successfully appliso multilayered
planar beams.
Computing the stationary point of the HR functional (7), tbkkowing variational formula is obtained:

Findse W ando € S; such that/ §s € WandV §o € Sy

6Jm=—f68-V-a'dQ—fV-6a'-SdQ—féo': D!:odQ
Q Q Q

—f&s~fdQ+f do-n-sdS =0
Q 805

In Equation (8) the displacement constraig,, = Sis the natural boundary condition, whereas the boundarir equ
librium o - njyo, = t is the essential boundary condition directly enforce®p(see Equation (6)). Alessandrini et al.
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[26] use the HR functional formulation (8) for the derivatiof some plate models, providing mathematical proof of
modelling error. Moreover, HR functional (8) isftéirent from thesecond statement of HR functiomabposed by
Bauchau and Craig [24] because of the omission of the integes the loaded boundary.

Since Equation (8) represents the saddle point of the HR drfiectional, it requires an accurate selection of
both displacement and stress functions in order to ensar@tbblem is well-posed [27]. This aspect could lead
to difficulties in the formulation because of the complexity of fieddiables [28, 29]. However, the HR functional
use gives great advantages in terms of the stress distmibaticuracy, especially if compared with the one-field
functionals, such as the Total Potential Energy [22].

2.3. Hypotheses on displacement and stress fields

In order to apply dimensional reduction, we need to intredsuitable hypotheses on the unknown fiekland
o, expressed in the following as functions of their scalar ponents:

_ (Us(x’ Y)) o= [O'XX(X’ Y) oxy(XY) (9)
Vs(X,Y) Txy(X.Y)  Ty(XY)
The procedure starts assuming the horizooték,y) and the verticalvs(x,y) displacement components to be
respectively a linear and a constant functiorypfvhereu(x), 8(x) andv(x) are the new displacement independent
variables of the problem.

L 1)
Us(x.y) = u(x) +¥ —= 6(x) (102)

Vs(X.¥) = V(X) (10b)

More preciselyu(x) indicates the displacement indirection,8(x) represents the rigid rotation of the cross-section
with respect to the undeformed configuration, &6 is the displacement indirection. Finallyyis a linear function
of y, defined in order to be equal to 1kg{(x), 0 atc(x), and—-1 ath(X):

2
t)
At this point, it can be noticed that the so far introduceglisement variablesis(x, y) andvg(X, y), correspond to
the displacement variables of Timoshenko prismatic beawrth

Before introducing the hypotheses on the stress tensora@oemps, it is important to discuss the essential condition
of the HR variational formula to be imposed on the upper aagtidimits of the domain:

y=(=c)+y) (11)

(-n)n, =0 (c-n)l,=0 (12)

The analytical expressions of,, andn|, are reported in the following:

1 (- 1 (h.’(x)) ,
e e L o

Introducing Definitions (13) in Equations (12), all the sseeomponents can be expressed in terms of the horizontal
stressryx(X, y), which becomes the unique stress variable necessary tedké stress state on the lateral surface:

ox(%y) oy y)| (nx _ (0 oxy(X Y|, = —(nx/ny) xx(% Y|,
‘ = - 2 (14)
Txy(%Y)  oy(xY)| \ny hu 0 (% V|, = (nx/ ny) Txd% V)|,
For the upper limit the following expressions are obtained:
Txy(X% V|, = hu(X) oxxdX, V), (15a)
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Ty (% Y|, = M()? ox(% Y], (15b)

and for the lower limit the following expressions are obgain

Txy(X, Y)ln = h{(X) oxx(X y)|h| (16a)
Ty (% Y|y =M% oxx(X V)], (16b)

We assume thaty(x, y) andoy,(X, y) are linear functions o, whereasry,(X,y) is a quadratic function of, as
detailed hereunder:

Txx(X.Y) =0x0(X) + Yoa(X) (17a)
h(X) -y y-h(x)

Tyy(%Y) =oyy(% )|y ORI Ty (% V)|, W—Ih(x) (17b)
hu(x) — -h o

Txy(X, ) =0xy(X, y)lhI ﬁ + 0xy(X V)|, h:(/T—I(hX,Zx) + b 7(X) (17c)

whereb represents the so-called bubble function, i.e. a quadtatition equal to 0 aty(x) andh(x), and—1 atc(x).
The functionb is analytically defined as:

b= (—c(x) +)? (18)

02 !

Substituting Equations (15) and (16) in Equation (17), tess tensor components can be written as functions of
oxo(X), ox1(X) andr(X), which are the new stress independent variables.

O-XX(X7 y) =0'x0(x) + )70'x1(X) (198)
hu(X) — —-h
Ty Y) =R (92 [0 = ()] % + W92 [or0(X) + ()] hfx)—_'mx) (19)
hy(X) — -h
ny(xv y) =h|/(X) [O-XO(X) - le(x)] ﬁ + h;(X) [O'XO(X) + le(x)] hu>(/X)——IE"I)|(zX) +
+b 7(X) (19¢)

More preciselygyo(X) represents the axial stress contributiom(X) is related to the bending stress, atfs) is the
shear stress contribution.

Concluding, we have introduced six independent varialitege displacements and three stresses, which corre-
spond to the usual variables adopted in most of the first drelem theories. Furthermore, comparing the assumptions
on stress distributions so far introduced with the anadytsolution of an infinite long wedge [13], they result ade-
guate in describing the analytical solution for relativetyall lateral surface slope. In fact, Timoshenko and Gaoodie
[13] notice that, for a axially loaded wedge, the ratio beaweninimum and maximum axial stress is proportional to
co¢ (@) beinge the slope of the wedge edges.

3. Analytical derivation of the differential equations

This section illustrates the procedure to derive the ODE&gong the beam behaviour. Henceforward, in order
to simplify the equation reading, the dependencea after each variable is omitted.

Assumings = 0 andf # 0 (whose two components are generically indicated vijtnd f;), the stationarity of
the HR functional reduces to the following expression:

5JHR(S,0')=—L(5S~V'0')d9—L(V~50"S)d9—jg;(50'1 D:o-)dQ—L(&sf)dQ:O (20)
6



Introducing the displacement and stress approximatiodsdtd (19), the integral ove? is split into two integrals
over the two subsetsand A(x). Analytically solving the integrals oveX(x), Equation (8) reduces to the following
integral over:

L
5JHR(S,0')=—f [5U M+5VO+59Q+50’xo R+5O’SX1]dX
0

L (21)
—f |67 T + 607 U + 607 V + 67’ Z]dx=0
0
where the cofficientsM, O, Q, R, S, T, U, V, Z result defined as follows:
M =t/0'xo + tO';(O + tfl (228)
O =6(t'C’ +tc”)oyo + 6tC' Ty + 32+t )op + 3tt'o, — 4t't — 4tr’ + 6tf, (22b)
Q=—-toa+tol, +4r (22¢c)
R=tU+ (V¢ +1C" W+ s |48+ 48 + (8- 16v)t'? + 3t"* + 96¢7 + 401 *C'?| oo+
t'c’ 72 ’2 At ’
¥(4+4c +1 )axl—ﬁ(lw)m (22d)
r2+tt7) e PR 2t
S —#V— €0+ 3—E(4+4C +1 )O—XO_ 3_E(1+ V)T+
t
—=[16+16c* + 83+ 2)t'% + t* + 32¢'% + 561 °C’?| g (22¢)
48E
- 2t 2’[0 4tc 1 2t 1 16t 1 2o
=T3Vt3g _E( +V)0'xo—£( +V)0'xl+ﬁ( +V)T (22f)
U =tu+tc'v (229)
v=i (3tt'v + t%0) (22h)
6
2 .
Z=--tv 22i
3 (22i)
Integrating by parts the ternés, U, 607, V andér’ Z, the variational formula is obtained:
L
6Jur(s 0) = — f [6u M+ 6v O+ 60 Q+ doxo (R=—U’) + dox1 (S —-V')]dx
0
L (23)
—f [6r (T -2Z)]dx+[- - -15=0
0
where [ - - ]5 indicates the boundary terms considered vanishing duestghbcific boundary conditions. Then,

imposing the stationarity for each independent variabhgtian, su, év, 60, doxo, dox1, andsr, the following six
ODEs result:

Vv + tog+tfy = 0 (24a)
6(t'C’ +tc”)oxo + 6tC' o + B2+ttt )oy + 3tt'oy — 4t'r — 4t +6tf, = 0 (24b)
— o + 20, +4tr =0 (24c)



t
~ 48— 4BICV + = 48+ 48c* + (8 16v)t°% + 3t + 96¢% + 40U °C'?| o+

16tt'c s o 64t

(4+4c?+1%) o - = @+9cr=0 (24d)
,, letc s o 32

24tV + 24tt'0 + 8t°0" — (4 +4c“+t )o-xo + = Q+v)t'r—

t

= 16+ 16c* + 8(3+ 2)t% + t'* + 32¢'% + 561'°C'?| 0q = 0 (24¢)

10t 5t 8t
5tv' + 5t0 — f(l +v)C oy — E(l +t'oy + E(l +v)r=0 (24f)

ODEs (24) are equipped with both natural and essential tiondj as clearly specified in Section 4.2. Moreover, we
notice that the first three equations represent the equitibconditions: Equation (24a) expresses the equilibrium
in the horizontal direction, Equation (24b) expresses tdlidrium in the vertical direction, and Equation (24c)
expresses the rotational equilibrium. On the other handakgns (24d),(24e), and (24f) enforce the compatibility
and the constitutive law equations, even though their glaysheaning is not immediately clear.

4. Non-prismatic beam examples

In this section, we study three cases of non-prismatic leseti beam with a concentrated load in the free edge and
one case of non-prismatic clamped-clamped beam subjedtistrébbuted body load in order to test the capabilities of
the model proposed in Section 3.

Subsection 4.1 introduces the considered geometriese8litis 4.2 specifies the fiierent boundary conditions
to be considered, Subsection 4.3 provides informationsiaihe instruments to be used to evaluate both analytical
and numerical solutions, and Subsection 4.4 illustratdsiistusses the results.

4.1. Geometry definition
The considered cases are

e CASE1 symmetrically linear non-prismatic cantilever bgaee Figure 2),

e CASE?2 symmetrically curvilinear non-prismatic cantilebeam (see Figure 3),

e CASE3 non-symmetrically curvilinear non-prismatic cver beam (see Figure 4),

e CASE4 non-symmetrically curvilinear non-prismatic claadpclamped beam (see Figure 5).

For each case, Table 1 specifies the expressiocxpéndt(x), which define the beam geometry. Substituting the
expressions of(x) andt(x) and their derivatives within Equation (24), it is possitdevrite the ODEs for each case.
Their expressions are here omitted due to the derivatiopliiity.

The symmetrically linear non-prismatic cantilever beahgven in Figure 2, represents the simplest case to be
discussed. Furthermore, the analytical expression of tiesssdistribution, for the considered geometry and load
condition, is reported in [21, 11] and could be compared Withsolution of the proposed analytical model.

The symmetrically curvilinear non-prismatic cantileveralm, shown in Figure 3, represents a particular case,
known in literature as beam with uniform strength [10]. Thegetry of this beam is such that its inertia varies
along the beam-axis in a proportionally way with respechtliending moment. This aspect leads to have the same
maximum axial stress in each cross-section, which makesnitenient in terms of the amount of material used.
Unlike the geometry proposed by Timoshenko [10], in Figuthe3depth at the free edge of the beam is not equal to
zero but sticiently small to be considered negligible1én). In fact, the proposed analytical model does not work in
the case of vanishing cross-sections for two reasons. Tteofie is that the cross-section area must figcgently
big to transmit the shear force; the second one is that ardmadl outward unit vector implies a not defined stresses
(see Equation (14)).



Table 1: Analytical expressions of the centrela{&) and depttt(x) for each considered example.

EXAMPLES () t(x) L/t(0)
2H
CASE1 0 - TX +4H 10
CASE2 0 H2|1 100x 10
101L
H(L-x)? 2H(2L? - 2Lx+ x?)
CASE3 -—0 = 5
H(L-2X)2  4H(L2 - 2Lx + 2%
CASE4 - 10

L2 L2

y
p
 7
4H 0 = 2H
< T »>

Figure 2: CASEL. Symmetrically linear non-prismatic clengr beamH = 0.25m,L = 10m, andP = —100kN

LA
Y l p
4H 0 >

L

Figure 3: CASE2. Symmetrically curvilinear non-prismatantilever beamt = 0.25m,L = 10m, andP = —100kN



0 i g N

4H

A
v

L

Figure 4: CASE3. Non-symmetrically curvilinear non-presia cantilever beantd = 0.25m,L = 5m, P = —100kN , andN = 100kN

2H

wY

O

lf(distributcd body load)

4H

A
\ 4

L

Figure 5: CASE4. Non-symmetrically curvilinear non-pristin clamped-clamped bead, = 0.25m,L = 10m, andf, = —50kN/m?2
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The non-symmetrically curvilinear non-prismatic cantéebeam , shown in Figure 4, presents a more complex
geometry. In fact, the beam is not symmetric (&) is not a constant function), and less slender (see the Edeam
L/t(0) in Table 1). Moreover, for this case we separately cardido diferent load conditions: a transversal concen-
trated load and an axial concentrated load in order to piwatethe model naturally takes the flexural and extensional
coupling into account without further model modifications.

In the end, the non-symmetrically curvilinear non-prisimatamped-clamped beam (see Figure 5) shows the
capability of the proposed model to yield results even iresad statically indeterminate (or hyperstatic) beams and
distributed loads.

4.2. Boundary conditions and material properties

Focusing on Figures 2, 3, and 4, the beams are clampee: & and subject to a transversal concentrated Pad
equal to—100kN, atx = L. Moreover, the distributed body load vectiohas both components and f, equal to 0.
In order to solve ODEs (24) for CASE1, CASE2, and CASEZ3, thieiong boundary conditions are imposed:

6(0)=0 oxo(L) =0
v(0)=0 ox(L)=0 (25)
u0)=0 (L) = —(3P)/(2h)

whereh represents the beam depth at the free edge.

For the non-symmetrically curvilinear non-prismatic éwer beam, CASE3 (see Figure 4), an axial concentrated
load case wittN equal to 100kN is also considered , using the following b@updonditions:

6(0)=0 ox(L) = N/h
V(O) =0 0'x1(|_) =0 (26)
ui0)=0 (L)=0

A different choice is made for the hyperstatic beam by applyingtilalited body load vector on the whole

domainQ (see Figure 5). Thereford, is equal to 0 and; is assumed equal te50kN/m?. The boundary conditions

related to CASE4 are listed hereunder:
6(0)=0 oLy =0

v(0)=0 vL) =0 (27)

ui)=0 ulL) =0
Finally, the following values of Young's modulisand Poisson’s ratio as material parameters are assumed:

E = 10-10" kN/m?
(28)
y=0.3
4.3. Considered models and control parameters
In order to test the proposed analytical model, we conshuefdllowing quantities as control parameters:

1. the transversal-displacement evaluated at the free &fgde and its distribution along the beam longitudinal
axis;
2. the maximum value of the shear stress at half Ieng&?ﬁ/z)(na@, and the shear stress distribution within the
yé

same cross-section;
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. the maximum value of the horizontal displacement at tee &dge, Rggéus), and the horizontal displacement
ye

distribution within the same cross-section;

. the maximum value of the horizontal stress at half Ienggh(ELlé)(axx), and the horizontal stress distribution
ye

within the same cross-section;

. the transversal-displacement evaluated at half lemiithi2), and its distribution along the beam longitudinal

axis;

. the maximum value of the shear stress at one quarter mgng}%)(axy), and the shear stress distribution
ye

within the same cross-section.

In particular, the parameters defined in 1 and 2 are consldereCASE1, CASE2, and CASE3, the parametersin 3
and 4 are additional control parameters for axial load didpresented in CASE3, whereas 5 and 6 are used for
CASE4 only.

In the following, the models, through which is possible talexate the aforementioned parameters and distribu-
tions, are listed.

Euler-Bernoulli beam theory (EB). The Principle of Virtual Work (PVW) is used togethettivthe hypotheses
of Euler-Bernoulli beam theory to fing[L) and to construct the transversal-displacement distabw@long the
beam longitudinal axis. According to the boundary condgidlustrated in Equation (25), the PVW can be

written as follows: L P(L-x)
- X
V(X) = ﬁ {(L —X) T(x)} dx (29)

wherel (X) represents the second moment of area, which is assumedytaloag the beam-axis.

Timoshenko beam theory(T). The PVW is used together with the hypotheses of Timokbd&eam theory to
find v(L) and to construct the transversal-displacement distabw@ong the beam longitudinal axis. According
to the boundary conditions illustrated in Equation (25)B\AVN can be written as follows:

L P(L-x) L P
0= [ | g [ o 0

whereG represents the shear modulus, define@ asﬁ.

Jourawsky theory (J). The Jourawsky theory is used to fintz(L/g;(@&y) and to construct the shear stress
ye.
distribution at half length of the beam.

Analytical model (AN). Once the analytical expression of the ODEs is obtaitteglsolution for each beam can
be calculated by means of the Mathematica command NDSolagidmatica version 7 30] and by imposing the
boundary conditions specified in Section 4.2. We decide ¢alws command NDSolve instead of an analytical
procedure, since it is possible to obtain the solution withae reasonable computational time (CPU tirge:
60 seconds, Intel(R) Core(TM) i5 CPU, 4 GB of RAM, operatiggtem 64 bit).

FE analysis (FE). 2D FE analyses are performed through the software AB3(Q31], using the above-
described beam geometries and mechanical param&ensdy. Then, for CASE1, CASE2, and CASE3 a
fixed support at the left edge of the beam and a boundary lotiet aight edge, modelled as a "Surface Trac-
tion" load, are enforced , whereas for CASE4 a fixed suppdrbth edges of the beam and a distributed body
load directing downwards, modelled as "Body Force", are@eafd. Lastly, an appropriate quadrangular mesh
characterized by an approximate element size@#® is generated, arranged by8000 elements. This choice
is the result of an accurate convergence analysis, whialredshat the numerical error introduced by the con-
sidered geometry discretization is smaller than the nurobdigits used to report the results, leading further
computational forts to be useless.
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In the following sections, the FE solution is considered tbference solution. Therefore, the errors can be
estimated by using the expression hereunder:
_ 9 - Orel (31)
el
whereq indicates the considered quantity.

4.4. Numerical results

This section illustrates the obtained results and dissudsem in order to highlight the main advantages and
limitations of the proposed model.

4.4.1. Symmetrically linear non-prismatic cantilever

Table 2 illustrates the results for the symmetrically linean-prismatic cantilever beam, depicted in Figure 2. In
particular, the transversal-displacement at the free efitfee beamy(L), the maximum value of the shear stress at
half length of the bearr},eA(rLr)g(ny), and their percentage erroe,ande,,, are reported. It is worth noticing that

the transversal-displacement results are quite similtinegaeference solution (FE) with a percentage error less tha
0.5% for all methods. Furthermore, Figure 6 shows a high degf@eatching among the transversal-displacement
distributions.

Table 2: Results for the symmetrical linear non-prismagiotitever beam.

METHODS  v(L)[m] max (o) kN /m?] a[%] €y [%]
YeA(L/2)

EB -6.542-10°3 - 4.295-10° -

T -6.585-10°3 - 2.288-10° -

J - ~2.000- 102 - 4.993 10"

AN -6.577-10°3 -1.333-1? 1.012-101  4.648 102

FE -6.570-10°3 -1.334-1? 0 0

X

Figure 6: CASE1. Transversal-displacement distributions

With regard to the shear stress, there is a clear mismatebebatthe Jourawsky solution (J) and the other two
solutions (FE and AN). As shown in Table 2, the percentager@rfrJ is up to 50%, whereas the percentage error
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Figure 7: CASE1. Shear stress distributions at half lengthebeam.

of AN is less than M5%, indicating the high accuracy of the developed modelrgdisting stresses. Figure 7
emphasizes the mismatch between J and AN. In fact, the stness slistribution of J is parabolic, on the contrary the
shear distributions of FE and AN are constant over the whialesssection. It is worth noticing that this counter-
intuitive result —already discussed in [32]— is a consegaaf the non-trivial dependence of stress distributions on
beam geometry and applied load.

4.4.2. Symmetrically curvilinear non-prismatic cantiev

Table 3 compares results for symmetrically curvilinear-poismatic cantilever beam, depicted in Figure 3. All
methods provide a value of the transversal-displacemettiedree edge of the beam, very similar to the reference
solution (FE) with a percentage errors less than 1%. Furtbe, Figure 8 shows a high degree of matching among
all transversal-displacement distributions.

Table 3: Results for the symmetrically curvilinear nonspratic cantilever beam.

METHODS  v(L)[m] max (o) [N /m?] a[%] €,y [%]
yeA(L/2)

EB -7.815-10°° - 9.631-101 -

T -7.872-10°¢ - 2.407-101 -

J - -2111-1¢° - 9.440- 10"

AN -7.857-10°° -1.076-1C° 4.309-10' 8.605-10"

FE -7.891-10° -1.085- 1% 0 0

Considering the shear stress results, there is again a roisamatch between the Jourawsky solution (J) and
the other two solutions (FE and AN). In Figure 9, the J sheasstdistribution has an opposite concavity with
respect to the concavity of FE and AN shear stress distdbati The percentage error of J is around 100%, whereas
the percentage error of AN is around 1% (see Table 3). Thexefee prove that the proposed model (AN) has a
much higher accuracy than Jourawsky formula, which faih@case of non-prismatic beams. Moreover, Figure 9
highlights that the shear stress is generalfedent from zero on the upper and lower limits of the domaintiey
to the usual shear stress distributions in prismatic bedims.main reason is that, when the beam presents a variable
cross-section, the shear stress on the upper and lowes liththe domain must be fiiérent from zero in order to
satisfy the boundary equilibrium (see Equation (14)).
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Figure 9: CASE2. Shear stress distributions at half lengthebeam.
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4.4.3. Non-symmetrically curvilinear non-prismatic déeter

For the non-symmetrically curvilinear non-prismatic ¢ner beam, shown in Figure 4, two load conditions,
separately applied at the free end, are considered: a gesa\concentrated load and an axial one. The comparison
results for transversal concentrated load is reportedbite® It is worth noticing that the proposed model (AN) shows
a good matching with the reference solution (FE) in bothsvansal-displacement and shear stress distributions. The
errors,e, ande,. , are around 2% and 05%, respectively. Moreover, the high degree of matchingdsis proven in
Figure 10.

xy!

Table 4: Results for the non-symmetrically curvilinear fmismatic cantilever beam subject to the transversal @unated load®

METHODS v(L)[m] ygg(%(oxy)[kN/mZ] e[%)] €5,y [%0]
EB -1.178-10°3 - 2.394.10° -

T -1.203-10°3 - 3.645-101 -

J - —2.400- 1% - 3.784.10"
AN -1.210-10°3 —3.840- 1¢? 2519-101 5.496-101
FE -1.207-10°3 -3.861-1C% 0 0

0.2}

0.1f
0.0§ o FE _,/
i J /
- B
-0.1f - AN /
-0.3 / ]

-400 -300 -200 -100 0
0'xy(L/2)

Figure 10: CASE3. Shear stress distributions at half lenfthe beam determined by lo&d

Table 5 refers to the case of axial concentrated load. Incpéat, the transversal-displacement at the free edge of
the beamy(L), the maximum value of the shear stress at half length of daert /EPL%(O-W), the maximum value of
ye

the horizontal displacement at the free edge of the be%m),(mg)ame maximum value of the horizontal stress at half
ye
are reported. We do not introduce

xx?

length of the beam, A(rLr}%(«rxx), and their percentage erros,e,,, e, ande,
ye

EB and T rows because it is standard to neglect couplingna@ssia vanishing value of transversal displacement, i.e.
v(L) = 0. Once more, AN shows a good matching with the referenceisolwith a percentage error around 2%,
which is acceptable in the most of practical engineerindieations.

Figures 11, 12 and 13, highlight a high degree of matchingéen the AN displacement and stress distributions
and the FE ones, indicating that the proposed model is alsabseifor the study of non-symmetric non-prismatic
beam. Furthermore, we highlight that the proposed methadHe capability to take the flexural and extensional
coupling into account without needing any further model ipalations or calibrations.
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Table 5: Results for the non-symmetrically curvilinear fmismatic cantilever beam subject to the axial concesdrédadN

METHODS v(L)[m] ygg(%(oxy)[kN/ m?] &[%)] €y [%0]
AN -3.780-10°° 6.400- 10° 1547-101 2.259.1C°
FE —3.774-10°° 6.259- 1¢° 0 0
2 0, 0,
METHODS yglg;(us)[m] ygg(ég;(z)(oxx)[kN /m?] eu[%] € [%0]
AN 1.215-10°° 2.560- 1(% 2508-101 1.875.10!
FE 1212-10°° 2.555. 1(% 0 0
: A
0.2F /
0.1f
X ( e FE
0.0: — AN [
> r
—0.2! \\ ,
-0.3f \\
-2 0 2 4 6

0'xy(|—/2)

Figure 11: CASE3. Shear stress distributions at half lenfthe beam determined by load
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Figure 12: CASES. Horizontal displacement distributiohtha free edge of the beam determined by Idad
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Figure 13: CASE3. Horizontal stress distributions at hetigth of the beam determined by losd

4.4.4. Non-symmetrically curvilinear non-prismatic clagal-clamped
Table 6 illustrates the results for the non-symmetricalljvdinear non-prismatic clamped-clamped beam, de-
picted in Figure 5. For this case, the transversal-disptece evaluated at half length of the beam, the maximum

value of the shear stress at one quarter of Ieng/t_\r(1ﬂ/4)(nag;), and their percentage erroe,ande,, , are reported.
ye

Moreover, we evaluate the horizontal reactions at the twgesd (0) = fAO) oxxdy andN (L) = fA(L) oxxdy. The
results remark once more that the proposed model catchesctigithe coupling occurring between axial and flexural
equations.

It is worth noticing that the transversal-displacementitesbtained by using AN, is quite similar to the reference
solution (FE) with a percentage error less than 3%, accépiialthe most of practical engineering applications. The
high degree of matching between the transversal-displecedistributions is also shown in Figure 14.

With regard to the shear stress, the percentage error in@rbbs (see Table 6 and Figure 15), proving that the
model catches accurate results even in cases of hyperstatiprismatic beam.

Table 6: Results for the non-symmetrically curvilinear fymismatic clamped-clamped beam subject to the trandvessaentrated loaé

METHODS  v(L/2)[m] T(?-/)‘(l)(a'xy)[kN /m?] e[%] €,y [%0] N(0) [kN] ~ N(L)[kN]
ye

AN -2.314-10* -1.514-1¢? 2753.10° 1.317-10° -131543 -131543

FE -2.252-10* -1.494- 1% 0 0 -131233 -131233

4.4.5. Final remarks

Figures 16 and 17 summarize the results introduced in Segtibfor CASE1, CASE2, and CASE3 (beam subject
to loadP).

In particular, Figure 16 compares the percentage erraatectto the transversal-displacement results at the free
edge of the non-prismatic cantilever beams. The green aiduefers to EB, the yellow columns to T, and the blue
columns to AN. It is worth noticing that the proposed modedgants much higher accuracy than EB and similar
accuracy to T. In particular, for CASE3, the EB model shoveswiorst error, maybe because the beam is less slender
with respect to the other cases.

It is worth noting that, Equation (30), resulting from theniishenko beam theory, considers a shear correction
factor equal to 56. On the contrary, Figures 7 and 9 highlight that the stressllution does no longer correspond to
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Figure 15: CASE4. Shear stress distributions at one quaftezam length.
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Figure 16: Errors related to the transversal-displacemeslts.
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Figure 17: Errors related to the shear stress results.
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the usual Jourawsky profile, indirectly proving a variatadrihe shear correction factor along the beam axis. To this
end, an important advantage of the proposed analytical httie natural capability of capturing the shear correttio
factor variation. Therefore, a further development of thespnt work could be the investigation into theeets of the
lateral surface slope on the shear correction factor arekjiBicit evaluation for a generic non-prismatic beam.

Moreover, both Equations 29 (in EB hypotheses) and 30 (ingotheses) are not able to distinguish the case of a
symmetrically non-prismatic beam from the case of a nonrsgirically one. For instance, considering the boundary
conditions 25 for the study of two linearly non-prismatiabes, respectively symmetric and non-symmetric, with
the same length and same cross-section area at the two é&gestjons 29 and 30 provide the same transversal-
displacement even though it could be verffelient. The reason is that Equations 29 and 30 are not abletireahe
fact that all cross-section centroids belong to the beaisi{agndition verified in the symmetric case only), but they
only account for the cross-section variation due to the ddpece orx of the area and of the second moment of area.
On the contrary, the proposed analytical model (AN) naly@alercomes the aforementioned limitation and predicts
transversal-displacements with a high degree of accuracy.

With regard to stresses, Figure 17 compares relative eafoskear stress, specifically the green columns are
related to J, and the blue ones to AN. It is evident how theydical model can calculate the shear stress distribution
with high accuracy, which is another advantage over EutmnBulli and Timoshenko beam theories. Moreover, it is
clear that AN achieves much higher accuracy than J and itmatch with the reference solution (FE) is less than 1%
in all cases.

All the remarks can be also referred to the more complicatedlysof indeterminate beam discussed in Section
4.4.3.

In conclusion, the proposed model is able to reach a very goodracy in terms of stress and displacement
distributions because it provides results as accurateeasribs obtained by using more expensive 2D FE analyses.
Furthermore, since the proposed model consists of six OldBsse solution could be evaluated through standard
analytical and numerical tools, it represents a good comj@®between computationdtieiency and solution accu-
racy.

5. Conclusions

The study conducted in this paper allowed the modelling @ne with complex geometries through simple
kinematic assumptions, guaranteeing highly accuratesstesults nonetheless.

In Sections 2 and 3, we presented the general derivationeopitbposed analytical beam model, obtaining six
ODEs suitable for studying a generic 2D linear-elastic pasmatic beam. In section 4, we focused on three examples
of cantilever non-prismatic beam with a concentrated ldathe free edge and one example of clamped-clamped
beam subject to a distributed body load. The result compasgiows that the analytical model provides results with
percentage errors around 1% in isostatic case and arouna B§pérstatic case, even though the number of un-known
variables is substantially lower than the FE analysis (egfee solution).

This model can be easily generalized to the study of more &mgroblems, such as hon-homogeneous non-
prismatic beams, 3D beams and beams characterized Bgrarah-linear constitutive laws, due to the absence of
limiting hypotheses in the formulation. Lastly, the pod#ijpto derive a suitable FE analysis, as suggested by [23],
will allow its integration within existing structural angis software.
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