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Abstract

This paper presents an analytical model for the study of 2D linear-elastic non-prismatic beams. Its principal aim
is to accurately predict both displacements and stresses using a simple procedure and few unknown variables. The
approach adopted for the model derivation is the so-called dimensional reduction starting from the Hellinger-Reissner
(HR) functional, which has both displacements and stressesas independent variables. Furthermore, the Timoshenko
beam kinematic and appropriate hypotheses on the stress field are considered in order to enforce the boundary equi-
librium. The use of dimensional reduction allows to reduce the integral over a 2D domain, associated with the HR
functional, into an integral over a 1D domain (i.e., the so-called beam-axis). Finally, through some mathematical
manipulations, the paper shows how to obtain the six Ordinary Differential Equations (ODEs) governing the beam
structural behaviour. In order to show the proposed model capabilities, the paper illustrates the ODEs solutions for
several non-prismatic beams with different geometries, constraints, and load distributions. The results are compared
with the ones provided by an already existing, more expensive, and refined 2D finite element analysis, showing the
efficiency of the proposed model to accurately predict both displacements and stresses, at least in cases of practical
interest.

Keywords: non-prismatic beam, analytical beam model, dimensional reduction, mixed variational formulation,
boundary equilibrium

1. Introduction

Non-prismatic beams are slender bodies in which the cross-section parameters (e.g., dimensions, centroid position,
shape) could vary along the beam longitudinal axis. Practitioners are interested in this class of bodies since it is
possible to optimize their shape according to the design requirements. As an example, if the cross-section size varies
proportionally to the internal-stress magnitude, the beamachieves the required structural strength with the minimum
amount of material. Therefore, non-prismatic elements arewidely used in many engineering fields, such as the design
of bridges, biomedical devices, and blades. Obviously, it is necessary to consider the effects of cross-section variation
through adequately refined models, otherwise the benefits ofgeometry cannot be caught.

Nowadays, Finite Element (FE) analyses based on 3D body fulldiscretization could provide extremely accurate
descriptions. However, the use of 1D models, such as beams, still represents the most convenient choice for many
applications, at least in civil engineering. Unfortunately, an effective non-prismatic beam modelling is still a non-
trivial issue, as the following literature review demonstrates.

The simplest approach proposed in literature for non-prismatic beam modelling assumes the Euler-Bernoulli and
Timoshenko beam stiffness-coefficients as functions of the beam-axis coordinate. Portland Cement Association [1]
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uses this approach to evaluate the stiffness of several non-prismatic beams and it still representsa milestone for
structural design, as the frequent references to the handbook demonstrate [2, 3, 4]. Banerjee and Williams [5] illustrate
another example of the classical beam theory generalization to non-prismatic beams. Specifically, the authors evaluate
the FE static stiffness matrix for a range of non-prismatic beam-columns, considering the cross-section area, the
second moment of area, and the torsional rigidity as functions of the beam-axis coordinate. Similarly, Friedman and
Kosmatka [6] propose a procedure to evaluate axial, bending, and torsional stiffness coefficients based on opportune
modifications of prismatic beam theory coefficients. Colunga [2] and Ozay and Topcu [7] present similar approaches
and apply them to a wide range of span load variations.

Unfortunately, for beams with a rapid cross-section variation, the error induced by the poorness of the so far
mentioned procedures may grow significantly. Specifically,their main limitations are listed in the following.

• Simplified geometry. Only beams that are symmetric and with alinear cross-section variation along the beam-
axis are generally considered.

• Negligible taper angle. Approaches based on the classical beam theories are not sufficiently accurate for study-
ing beams with a significant cross-section variation, as well-known since the sixties [8, 9]. The same applies
for Jourawsky formula widely used to recover the shear stress distributions [10, 11].

• Independence among axial, shear-bending, and torsional equations. The simplest approaches are also not able to
capture the flexural and extensional coupling [2, 4, 12]. In particular, to overcome this problem, [2, 4] propose
refined 3D FE analysis in order to evaluate the real stiffness of non-prismatic elements.

Limiting the attention to stress analyses, Timoshenko and Goodier [13] provide the analytical expression of stress
distributions for an infinite long wedge which consists of the combination of some trigonometric functions. It is
worth nothing that, the same expression could be used, undersuitable hypotheses, for non-prismatic beams with
linear variation of the cross-section size [11]. Bleich [14] provides another method, known as effective shearing force,
for evaluating the maximum shear stress within the cross-section. Later on, this method has been introduced in many
technical codes [15, 16] and related documents, becoming the standard stress-analysis procedure for practitioners. The
effective shear force formula is reported also in some classical books of continuum mechanics [17]. Unfortunately,
despite its consolidated use, Paglietti and Carta [18, 19] highlight that this formula could be extremely inaccurate,
leading to underestimated shear strength values.

Hodges et al. [20] propose a more refined model for planar non-prismatic beams based on the variational asymp-
totic method. The authors introduce an accurate model and investigate the effects of the lateral-surface slope associ-
ated with the taper angle. In particular, they prove that theslope is a crucial parameter for the boundary equilibrium
definition. Hodges et al. [12] integrate the same model proposing an effective stress and strain recovery procedure.
Unfortunately, they limit the study to symmetrically non-prismatic beams.

With regard to non-symmetrically non-prismatic beams, a model considering a curvilinear centreline and a con-
stant cross-section depth (the so-called arch-beams) was introduced at the beginning of the past century [21]. However,
to the authors’ knowledge, a model capable of effectively describing the behaviour of generic non-prismatic beams is
still not available in literature.

To overcome the limitations observed in previous studies, this paper proposes an advanced analytical, 2D, linear-
elastic, non-prismatic beam model, considering also complex situations such as non-linear and rapid cross-section
variations, as well as symmetric and non-symmetric configurations. This work generalizes the procedure illustrated
in Auricchio et al. [22], which uses dimensional reduction and the Hellinger-Reissner functional for the modelling of
2D linear-elastic prismatic beams. Balduzzi [23] presentsa study of 2D linear-elastic non-prismatic beams following
the same procedure and obtaining encouraging results. However, a high number of variables characterizes the beam
model, which could undermine the method efficiency.

Therefore, one of the aims of the present work is to explore the accuracy achievable through a reduced number of
variables. Moreover, in order to facilitate further developments, the model will satisfy the conditions listed below.

• It does not need correction factors, whose evaluation couldinterfere with the model effectiveness.

• It takes adequately into account boundary conditions, which results to be a crucial factor in non-prismatic
beam-model development.
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• It has a clear and consistent derivation path.

The paper structure is detailed in the following: Section 2 defines the considered 2D problem, introduces the
variational formulation, and provides the displacement and stress field hypotheses; Section 3 develops the analytical
beam model and derives the ODEs, which govern the behaviour of the non-prismatic beam under investigation; Section
4 presents several examples of non-prismatic beam and compares the results obtained through the proposed analytical
model with the ones provided by other methods (both analytical and numerical). Finally, Section 5 resumes the model
capabilities and discusses further developments.

2. Problem formulation

This section introduces the 2D problem to be tackled and all the assumptions necessary for the model formulation.
Specifically, Subsection 2.1 introduces the problem domain, Subsection 2.2 presents the HR variational formula to
be used as starting equation, and Subsection 2.3 illustrates the hypotheses to be considered within the modelling
derivation procedure.

2.1. Geometry definition

The object under investigation is a planar beam with a generic non-prismatic shape and described as a 2D domain
Ω. In particular, we refer to a case in which the plane-stress-state hypothesis can be imposed to a 3D body since its
width is negligible, and we limit to the case of small displacements, small strains, and linear-elastic isotropic material.

O

y

x

hu(x)

hl(x)

A(L)

A(0)

c(x)

Ω

x̄

t(x̄)

Figure 1: Generic non-prismatic beam

As shown in Figure 1, thex axis is a suitably chosen straight and normal line to the cross-sections and they axis
has the direction of the (variable) cross-section depth. Inorder to define the domainΩ, we introduce two sufficiently
smooth functionshu(x) andhl(x) (such thathl(x) < hu(x) ∀x ∈ ℓ) able of describing the geometry of the upper and
lower limits of the domain. As a consequence,Ω can be rigorously defined in relation to the beam longitudinal axis
ℓ (a closed and bounded subset of thex Cartesian-coordinate axis) and the cross-sectionA(x) (a closed and bounded
subset of they Cartesian-coordinate axis). As usual for beams, the longitudinal axisℓ is assumed to be the predominant
dimension of the body. Then, the dependence onx of the subsetA(x) is emphasized on indicating the variation of the
cross-section area values along the beam-axis. In summary,the domainΩ is defined as follows:

Ω ⊂ R2|x ∈ ℓ andy ∈ A(x) (1)

where
ℓ = {x ∈ R|x ∈ [0, L]} , A(x) = {y ∈ R|y ∈ [hl(x), hu(x)]} (2)
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At this point, the domain boundary,∂Ω = A(0)∪A(L)∪hu(x)∪hl(x) (see Figure 1), can be divided into two parts∂Ωt

and∂Ωs, where load and displacement constrains are imposed respectively.
With regard to the definition ofhu(x) andhl(x), we find convenient to introduce two new functions: the centreline

c(x), which defines they coordinates of the cross-section centroids, and the thicknesst(x), which is the cross-section
depth assumed as a positive definite function. Therefore,hu(x) andhl(x) can be expressed as function ofc(x) andt(x):

hu(x) = c(x) +
t(x)

2
(3a)

hl(x) = c(x) −
t(x)

2
(3b)

2.2. Variational formulation

In what follows, the symmetric stress tensorσ and the displacement vectors are the independent variable fields,
D is the inverse of the fourth order elastic tensor,f is the distributed load vector,n indicates the outward unit vector
defined on∂Ω, s̄ is the sufficiently-smooth boundary displacement assigned on∂Ωs, and t is the boundary load
distribution assigned on∂Ωt.

The functional spacesW, S0, andSt are defined as follows:

W:=
{

s ∈ L2 (Ω)
}

(4)

S0 :=
{

σ ∈ H(div,Ω) : σ · n|∂Ωt
= 0

}

(5)

St :=
{

σ ∈ H (div,Ω) : σ · n|∂Ωt
= t

}

(6)

where the Sobolev spacesL2 (Ω) andH (div,Ω) are explicit hereunder:

L2 (Ω) :=

{

s : Ω→ R2 :
∫

Ω

s · s dΩ < ∞

}

H (div,Ω) :=

{

σ : Ω→ R2×2
s :

∫

Ω

σ : σdΩ < ∞ and (∇ ·σ) ∈ L2 (Ω)

}

Dimensional reduction starts from the HR principle which characterizes the problem solution as the unique saddle
point of the following functional:

JHR(s,σ) =
∫

Ω

(∇ ·σ · s) dΩ −
1

2

∫

Ω

(σ : D : σ) dΩ −
∫

Ω

(s · f ) dΩ

−

∫

∂Ωs

(σ · n · s̄) dS = 0

(7)

It is worth noticing that there are several formulations of HR functional [24, 25, 22]. Specifically, we adopt the
formulation indicated withHR div-divby Auricchio et al. [22], in which it was successfully applied to multilayered
planar beams.

Computing the stationary point of the HR functional (7), thefollowing variational formula is obtained:

Find s ∈W andσ ∈ St such that∀ δs ∈Wand∀ δσ ∈ S0

δJHR = −

∫

Ω

δs · ∇ ·σdΩ −
∫

Ω

∇ · δσ · s dΩ −
∫

Ω

δσ : D−1 : σdΩ

−

∫

Ω

δs · f dΩ +
∫

∂Ωs

δσ · n · s dS = 0

(8)

In Equation (8) the displacement constrains|∂Ωs = s̄ is the natural boundary condition, whereas the boundary equi-
librium σ · n|∂Ωt = t is the essential boundary condition directly enforced onSt (see Equation (6)). Alessandrini et al.
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[26] use the HR functional formulation (8) for the derivation of some plate models, providing mathematical proof of
modelling error. Moreover, HR functional (8) is different from thesecond statement of HR functionalproposed by
Bauchau and Craig [24] because of the omission of the integral over the loaded boundary.

Since Equation (8) represents the saddle point of the HR mixed functional, it requires an accurate selection of
both displacement and stress functions in order to ensure the problem is well-posed [27]. This aspect could lead
to difficulties in the formulation because of the complexity of fieldvariables [28, 29]. However, the HR functional
use gives great advantages in terms of the stress distribution accuracy, especially if compared with the one-field
functionals, such as the Total Potential Energy [22].

2.3. Hypotheses on displacement and stress fields

In order to apply dimensional reduction, we need to introduce suitable hypotheses on the unknown fields,s and
σ, expressed in the following as functions of their scalar components:

s =
(

us(x, y)
vs(x, y)

)

σ =

[

σxx(x, y) σxy(x, y)
σxy(x, y) σyy(x, y)

]

(9)

The procedure starts assuming the horizontalus(x, y) and the verticalvs(x, y) displacement components to be
respectively a linear and a constant function ofy, whereu(x), θ(x) andv(x) are the new displacement independent
variables of the problem.

us(x, y) = u(x) + ỹ
t(x)

2
θ(x) (10a)

vs(x, y) = v(x) (10b)

More precisely,u(x) indicates the displacement inx direction,θ(x) represents the rigid rotation of the cross-section
with respect to the undeformed configuration, andv(x) is the displacement iny direction. Finally,ỹ is a linear function
of y, defined in order to be equal to 1 athu(x), 0 atc(x), and−1 athl(x):

ỹ = (−c(x) + y)
2

t(x)
(11)

At this point, it can be noticed that the so far introduced displacement variables,us(x, y) andvs(x, y), correspond to
the displacement variables of Timoshenko prismatic beam theory.

Before introducing the hypotheses on the stress tensor components, it is important to discuss the essential condition
of the HR variational formula to be imposed on the upper and lower limits of the domain:

(σ · n) |hu = 0 (σ · n) |hl = 0 (12)

The analytical expressions ofn|hu andn|hl are reported in the following:

n|hu =
1

√

1+ h′u(x)2

(

−h′u(x)
1

)

n|hl =
1

√

1+ h′l (x)2

(

h′l (x)

−1

)

(13)

Introducing Definitions (13) in Equations (12), all the stress components can be expressed in terms of the horizontal
stressσxx(x, y), which becomes the unique stress variable necessary to define the stress state on the lateral surface:

[

σxx(x, y) σxy(x, y)
σxy(x, y) σyy(x, y)

]

·

(

nx

ny

)
∣

∣

∣

∣

∣

∣

hu/l

=

(

0
0

)

→















σxy(x, y)
∣

∣

∣hu/l
= −

(

nx/ny

)

σxx(x, y)
∣

∣

∣hu/l

σyy(x, y)
∣

∣

∣hu/l
=

(

nx/ny

)2
σxx(x, y)

∣

∣

∣hu/l

(14)

For the upper limit the following expressions are obtained:

σxy(x, y)
∣

∣

∣hu
= h′u(x) σxx(x, y)

∣

∣

∣hu
(15a)
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σyy(x, y)
∣

∣

∣hu
= h′u(x)2 σxx(x, y)

∣

∣

∣hu
(15b)

and for the lower limit the following expressions are obtained:

σxy(x, y)
∣

∣

∣hl
= h′l (x) σxx(x, y)

∣

∣

∣hl
(16a)

σyy(x, y)
∣

∣

∣hl
= h′l (x)2 σxx(x, y)

∣

∣

∣hl
(16b)

We assume thatσxx(x, y) andσyy(x, y) are linear functions ofy, whereasσxy(x, y) is a quadratic function ofy, as
detailed hereunder:

σxx(x, y) =σx0(x) + ỹσx1(x) (17a)

σyy(x, y) =σyy(x, y)
∣

∣

∣hl

hu(x) − y

hu(x) − hl(x)
+ σyy(x, y)

∣

∣

∣hu

y− hl(x)

hu(x) − hl(x)
(17b)

σxy(x, y) =σxy(x, y)
∣

∣

∣hl

hu(x) − y

hu(x) − hl(x)
+ σxy(x, y)

∣

∣

∣hu

y− hl(x)

hu(x) − hl(x)
+ b̃ τ(x) (17c)

whereb̃ represents the so-called bubble function, i.e. a quadraticfunction equal to 0 athu(x) andhl(x), and−1 atc(x).
The functionb̃ is analytically defined as:

b̃ = (−c(x) + y)2
4

t(x)2
− 1 (18)

Substituting Equations (15) and (16) in Equation (17), the stress tensor components can be written as functions of
σx0(x), σx1(x) andτ(x), which are the new stress independent variables.

σxx(x, y) =σx0(x) + ỹσx1(x) (19a)

σyy(x, y) =h′l (x)2 [σx0(x) − σx1(x)]
hu(x) − y

hu(x) − hl(x)
+ h′u(x)2 [σx0(x) + σx1(x)]

y− hl(x)

hu(x) − hl(x)
(19b)

σxy(x, y) =h′l (x) [σx0(x) − σx1(x)]
hu(x) − y

hu(x) − hl(x)
+ h′u(x) [σx0(x) + σx1(x)]

y− hl(x)

hu(x) − hl(x)
+

+ b̃ τ(x) (19c)

More precisely,σx0(x) represents the axial stress contribution,σx1(x) is related to the bending stress, andτ(x) is the
shear stress contribution.

Concluding, we have introduced six independent variables:three displacements and three stresses, which corre-
spond to the usual variables adopted in most of the first orderbeam theories. Furthermore, comparing the assumptions
on stress distributions so far introduced with the analytical solution of an infinite long wedge [13], they result ade-
quate in describing the analytical solution for relativelysmall lateral surface slope. In fact, Timoshenko and Goodier
[13] notice that, for a axially loaded wedge, the ratio between minimum and maximum axial stress is proportional to
cos4 (α) beingα the slope of the wedge edges.

3. Analytical derivation of the differential equations

This section illustrates the procedure to derive the ODEs governing the beam behaviour. Henceforward, in order
to simplify the equation reading, the dependence onx after each variable is omitted.

Assuming ¯s = 0 and f , 0 (whose two components are generically indicated withf1 and f2), the stationarity of
the HR functional reduces to the following expression:

δJHR(s,σ) = −
∫

Ω

(δs · ∇ ·σ) dΩ −
∫

Ω

(∇ · δσ · s) dΩ −
∫

Ω

(δσ : D : σ) dΩ −
∫

Ω

(δs · f ) dΩ = 0 (20)
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Introducing the displacement and stress approximations (10) and (19), the integral overΩ is split into two integrals
over the two subsetsℓ andA(x). Analytically solving the integrals overA(x), Equation (8) reduces to the following
integral overℓ:

δJHR(s,σ) = −
∫ L

0
[δu M + δv O+ δθ Q+ δσx0 R+ δσ Sx1] dx

−

∫ L

0

[

δτ T + δσ′x0 U + δσ′x1 V + δτ′ Z
]

dx= 0

(21)

where the coefficientsM, O, Q, R, S, T, U, V, Z result defined as follows:

M =t′σx0 + tσ′x0 + t f1 (22a)

O =6(t′c′ + tc′′)σx0 + 6tc′σ′x0 + 3(t′2 + t t′′)σx1 + 3tt′σ′x1 − 4t′τ − 4tτ′ + 6t f2 (22b)

Q = − t′σx1 + tσ′x1 + 4τ (22c)

R=t′u+ (t′c′ + tc′′)v+
t

48E

[

48+ 48c′4 + (8− 16ν)t′2 + 3t′4 + 96c′2 + 40t′2c′2
]

σx0+

tt′c′

3E

(

4+ 4c′2 + t′2
)

σx1 −
4t

3E
(1+ ν) c′τ (22d)

S =
(t′2 + tt′′)

2
v−

tt′

6
θ +

tt′c′

3E

(

4+ 4c′2 + t′2
)

σx0 −
2tt′

3E
(1+ ν)τ+

t

48E

[

16+ 16c′4 + 8(3+ 2ν)t′2 + t′4 + 32c′2 + 56t′2c′2
]

σx1 (22e)

T = −
2t′

3
v+

2t

3
θ −

4tc′

3E
(1+ ν)σx0 −

2tt′

3E
(1+ ν)σx1 +

16t

15E
(1+ ν)τ (22f)

U =tu+ tc′v (22g)

V =
1
6

(

3tt′v+ t2θ
)

(22h)

Z = −
2
3

tv (22i)

Integrating by parts the termsδσ′x0 U, δσ′x1 V andδτ′ Z, the variational formula is obtained:

δJHR(s,σ) = −
∫ L

0

[

δu M + δv O+ δθ Q+ δσx0 (R− U′) + δσx1 (S − V′)
]

dx

−

∫ L

0

[

δτ (T − Z′)
]

dx+ [ · · · ]L
0 = 0

(23)

where [ · · · ]L
0 indicates the boundary terms considered vanishing due to the specific boundary conditions. Then,

imposing the stationarity for each independent variable variation, δu, δv, δθ, δσx0, δσx1, andδτ, the following six
ODEs result:

t′σx0 + tσ′x0+t f1 = 0 (24a)

6(t′c′ + tc′′)σx0 + 6tc′σ′x0 + 3(t′2 + t t′′)σx1 + 3tt′σ′x1 − 4t′τ − 4tτ′+6t f2 = 0 (24b)

− tt′σx1 + t2σ′x1 + 4tτ = 0 (24c)
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− 48tu′ − 48tc′v′ +
t

E

[

48+ 48c′4 + (8− 16ν)t′2 + 3t′4 + 96c′2 + 40t′2c′2
]

σx0+

16tt′c′

E

(

4+ 4c′2 + t′2
)

σx1 −
64t

E
(1+ ν) c′τ = 0 (24d)

24tt′v′ + 24tt′θ + 8t2θ′ −
16tt′c′

E

(

4+ 4c′2 + t′2
)

σx0 +
32t

E
(1+ ν) t′τ−

t

E

[

16+ 16c′4 + 8(3+ 2ν)t′2 + t′4 + 32c′2 + 56t′2c′2
]

σx1 = 0 (24e)

5tv′ + 5tθ −
10t

E
(1+ ν)c′σx0 −

5t

E
(1+ ν)t′σx1 +

8t

E
(1+ ν)τ = 0 (24f)

ODEs (24) are equipped with both natural and essential conditions, as clearly specified in Section 4.2. Moreover, we
notice that the first three equations represent the equilibrium conditions: Equation (24a) expresses the equilibrium
in the horizontal direction, Equation (24b) expresses the equilibrium in the vertical direction, and Equation (24c)
expresses the rotational equilibrium. On the other hand, Equations (24d),(24e), and (24f) enforce the compatibility
and the constitutive law equations, even though their physical meaning is not immediately clear.

4. Non-prismatic beam examples

In this section, we study three cases of non-prismatic cantilever beam with a concentrated load in the free edge and
one case of non-prismatic clamped-clamped beam subject to adistributed body load in order to test the capabilities of
the model proposed in Section 3.

Subsection 4.1 introduces the considered geometries, Subsection 4.2 specifies the different boundary conditions
to be considered, Subsection 4.3 provides informations about the instruments to be used to evaluate both analytical
and numerical solutions, and Subsection 4.4 illustrates and discusses the results.

4.1. Geometry definition

The considered cases are

• CASE1 symmetrically linear non-prismatic cantilever beam(see Figure 2),

• CASE2 symmetrically curvilinear non-prismatic cantilever beam (see Figure 3),

• CASE3 non-symmetrically curvilinear non-prismatic cantilever beam (see Figure 4),

• CASE4 non-symmetrically curvilinear non-prismatic clamped-clamped beam (see Figure 5).

For each case, Table 1 specifies the expressions ofc(x) andt(x), which define the beam geometry. Substituting the
expressions ofc(x) andt(x) and their derivatives within Equation (24), it is possibleto write the ODEs for each case.
Their expressions are here omitted due to the derivation simplicity.

The symmetrically linear non-prismatic cantilever beam, shown in Figure 2, represents the simplest case to be
discussed. Furthermore, the analytical expression of the stress distribution, for the considered geometry and load
condition, is reported in [21, 11] and could be compared withthe solution of the proposed analytical model.

The symmetrically curvilinear non-prismatic cantilever beam, shown in Figure 3, represents a particular case,
known in literature as beam with uniform strength [10]. The geometry of this beam is such that its inertia varies
along the beam-axis in a proportionally way with respect to the bending moment. This aspect leads to have the same
maximum axial stress in each cross-section, which makes it convenient in terms of the amount of material used.
Unlike the geometry proposed by Timoshenko [10], in Figure 3the depth at the free edge of the beam is not equal to
zero but sufficiently small to be considered negligible (0.1m). In fact, the proposed analytical model does not work in
the case of vanishing cross-sections for two reasons. The first one is that the cross-section area must be sufficiently
big to transmit the shear force; the second one is that an horizontal outward unit vector implies a not defined stresses
(see Equation (14)).
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Table 1: Analytical expressions of the centrelinec(x) and deptht(x) for each considered example.

EXAMPLES c(x) t(x) L/t(0)

CASE1 0 −
2H

L
x+ 4H 10

CASE2 0 4

√

H2















1−
100x

101L















10

CASE3 −
H(L − x)2

L2

2H(2L2 − 2Lx+ x2)

L2
5

CASE4 −
H(L − 2x)2

L2

4H(L2 − 2Lx+ 2x2)

L2
10

y

O x4H

L

P

2H

Figure 2: CASE1. Symmetrically linear non-prismatic cantilever beam,H = 0.25m,L = 10m, andP = −100kN

xO

L

4H

y
P

Figure 3: CASE2. Symmetrically curvilinear non-prismaticcantilever beam,H = 0.25m,L = 10m, andP = −100kN
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4H

y

N

P

Figure 4: CASE3. Non-symmetrically curvilinear non-prismatic cantilever beam,H = 0.25m,L = 5m,P = −100kN , andN = 100kN

O

L

2H

4H

y

x
f(distributed body load)

Figure 5: CASE4. Non-symmetrically curvilinear non-prismatic clamped-clamped beam,H = 0.25m,L = 10m, andf2 = −50kN/m2
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The non-symmetrically curvilinear non-prismatic cantilever beam , shown in Figure 4, presents a more complex
geometry. In fact, the beam is not symmetric (i.e.c(x) is not a constant function), and less slender (see the parameter
L/t(0) in Table 1). Moreover, for this case we separately consider two different load conditions: a transversal concen-
trated load and an axial concentrated load in order to prove that the model naturally takes the flexural and extensional
coupling into account without further model modifications.

In the end, the non-symmetrically curvilinear non-prismatic clamped-clamped beam (see Figure 5) shows the
capability of the proposed model to yield results even in cases of statically indeterminate (or hyperstatic) beams and
distributed loads.

4.2. Boundary conditions and material properties

Focusing on Figures 2, 3, and 4, the beams are clamped atx = 0 and subject to a transversal concentrated loadP
equal to−100kN, atx = L. Moreover, the distributed body load vectorf has both componentsf1 and f2 equal to 0.

In order to solve ODEs (24) for CASE1, CASE2, and CASE3, the following boundary conditions are imposed:

θ(0) = 0 σx0(L) = 0

v(0) = 0 σx1(L) = 0

u(0) = 0 τ(L) = −(3P)/(2h)

(25)

whereh represents the beam depth at the free edge.
For the non-symmetrically curvilinear non-prismatic cantilever beam, CASE3 (see Figure 4), an axial concentrated

load case withN equal to 100kN is also considered , using the following boundary conditions:

θ(0) = 0 σx0(L) = N/h

v(0) = 0 σx1(L) = 0

u(0) = 0 τ(L) = 0

(26)

A different choice is made for the hyperstatic beam by applying a distributed body load vector on the whole
domainΩ (see Figure 5). Therefore,f1 is equal to 0 andf2 is assumed equal to−50kN/m2. The boundary conditions
related to CASE4 are listed hereunder:

θ(0) = 0 θ(L) = 0

v(0) = 0 v(L) = 0

u(0) = 0 u(L) = 0

(27)

Finally, the following values of Young’s modulusE and Poisson’s ratioν as material parameters are assumed:

E = 10·107 kN/m2

ν = 0.3
(28)

4.3. Considered models and control parameters

In order to test the proposed analytical model, we consider the following quantities as control parameters:

1. the transversal-displacement evaluated at the free edge, v(L), and its distribution along the beam longitudinal
axis;

2. the maximum value of the shear stress at half length, max
y∈A(L/2)

(σxy), and the shear stress distribution within the

same cross-section;
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3. the maximum value of the horizontal displacement at the free edge, max
y∈A(L)

(us), and the horizontal displacement

distribution within the same cross-section;
4. the maximum value of the horizontal stress at half length,max

y∈A(L/2)
(σxx), and the horizontal stress distribution

within the same cross-section;
5. the transversal-displacement evaluated at half length,v(L/2), and its distribution along the beam longitudinal

axis;
6. the maximum value of the shear stress at one quarter of length, max

y∈A(L/4)
(σxy), and the shear stress distribution

within the same cross-section.

In particular, the parameters defined in 1 and 2 are considered for CASE1, CASE2, and CASE3, the parameters in 3
and 4 are additional control parameters for axial load condition presented in CASE3, whereas 5 and 6 are used for
CASE4 only.

In the following, the models, through which is possible to evaluate the aforementioned parameters and distribu-
tions, are listed.

• Euler-Bernoulli beam theory (EB). The Principle of Virtual Work (PVW) is used together with the hypotheses
of Euler-Bernoulli beam theory to findv(L) and to construct the transversal-displacement distribution along the
beam longitudinal axis. According to the boundary conditions illustrated in Equation (25), the PVW can be
written as follows:

v(x) =
∫ L

0













(L − x)
P (L − x)

EI(x)













dx (29)

whereI (x) represents the second moment of area, which is assumed to vary along the beam-axis.

• Timoshenko beam theory(T). The PVW is used together with the hypotheses of Timoshenko beam theory to
find v(L) and to construct the transversal-displacement distribution along the beam longitudinal axis. According
to the boundary conditions illustrated in Equation (25) thePVW can be written as follows:

v(x) =
∫ L

0













(L − x)
P (L − x)

EI(x)













dx+
∫ L

0













P

(5/6)Gt(x)













dx (30)

whereG represents the shear modulus, defined asG = E
2(1+ν) .

• Jourawsky theory (J). The Jourawsky theory is used to find max
y∈A(L/2)

(σxy) and to construct the shear stress

distribution at half length of the beam.

• Analytical model (AN). Once the analytical expression of the ODEs is obtained, the solution for each beam can
be calculated by means of the Mathematica command NDSolve [Mathematica version 7 30] and by imposing the
boundary conditions specified in Section 4.2. We decide to use the command NDSolve instead of an analytical
procedure, since it is possible to obtain the solution with amore reasonable computational time (CPU time:∼
60 seconds, Intel(R) Core(TM) i5 CPU, 4 GB of RAM, operating system 64 bit).

• FE analysis (FE). 2D FE analyses are performed through the software ABAQUS [31], using the above-
described beam geometries and mechanical parameters,E andν. Then, for CASE1, CASE2, and CASE3 a
fixed support at the left edge of the beam and a boundary load atthe right edge, modelled as a "Surface Trac-
tion" load, are enforced , whereas for CASE4 a fixed support inboth edges of the beam and a distributed body
load directing downwards, modelled as "Body Force", are enforced. Lastly, an appropriate quadrangular mesh
characterized by an approximate element size of 0.05m is generated, arranged by∼ 3000 elements. This choice
is the result of an accurate convergence analysis, which ensured that the numerical error introduced by the con-
sidered geometry discretization is smaller than the numberof digits used to report the results, leading further
computational efforts to be useless.
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In the following sections, the FE solution is considered thereference solution. Therefore, the errors can be
estimated by using the expression hereunder:

eq =
|q− qFE |

|qFE |
(31)

whereq indicates the considered quantity.

4.4. Numerical results

This section illustrates the obtained results and discusses them in order to highlight the main advantages and
limitations of the proposed model.

4.4.1. Symmetrically linear non-prismatic cantilever
Table 2 illustrates the results for the symmetrically linear non-prismatic cantilever beam, depicted in Figure 2. In

particular, the transversal-displacement at the free edgeof the beam,v(L), the maximum value of the shear stress at
half length of the beam, max

y∈A(L/2)
(σxy), and their percentage errors,ev andeσxy, are reported. It is worth noticing that

the transversal-displacement results are quite similar tothe reference solution (FE) with a percentage error less than
0.5% for all methods. Furthermore, Figure 6 shows a high degreeof matching among the transversal-displacement
distributions.

Table 2: Results for the symmetrical linear non-prismatic cantilever beam.

METHODS v(L)[m] max
y∈A(L/2)

(σxy)[kN/m2] ev[%] eσxy[%]

EB −6.542·10−3 − 4.295· 10−1 −

T −6.585·10−3 − 2.288· 10−1 −

J − −2.000·102 − 4.993·101

AN −6.577·10−3 −1.333·102 1.012· 10−1 4.648·10−2

FE −6.570·10−3 −1.334·102 0 0
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Figure 6: CASE1. Transversal-displacement distributions.

With regard to the shear stress, there is a clear mismatch between the Jourawsky solution (J) and the other two
solutions (FE and AN). As shown in Table 2, the percentage error of J is up to 50%, whereas the percentage error
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Figure 7: CASE1. Shear stress distributions at half length of the beam.

of AN is less than 0.05%, indicating the high accuracy of the developed model in predicting stresses. Figure 7
emphasizes the mismatch between J and AN. In fact, the shear stress distribution of J is parabolic, on the contrary the
shear distributions of FE and AN are constant over the whole cross-section. It is worth noticing that this counter-
intuitive result –already discussed in [32]– is a consequence of the non-trivial dependence of stress distributions on
beam geometry and applied load.

4.4.2. Symmetrically curvilinear non-prismatic cantilever
Table 3 compares results for symmetrically curvilinear non-prismatic cantilever beam, depicted in Figure 3. All

methods provide a value of the transversal-displacement, at the free edge of the beam, very similar to the reference
solution (FE) with a percentage errors less than 1%. Furthermore, Figure 8 shows a high degree of matching among
all transversal-displacement distributions.

Table 3: Results for the symmetrically curvilinear non-prismatic cantilever beam.

METHODS v(L)[m] max
y∈A(L/2)

(σxy)[kN/m2] ev[%] eσxy[%]

EB −7.815·10−3 − 9.631· 10−1 −

T −7.872·10−3 − 2.407· 10−1 −

J − −2.111·102 − 9.440·101

AN −7.857·10−3 −1.076·102 4.309· 10−1 8.605·10−1

FE −7.891·10−3 −1.085·102 0 0

Considering the shear stress results, there is again a clearmismatch between the Jourawsky solution (J) and
the other two solutions (FE and AN). In Figure 9, the J shear stress distribution has an opposite concavity with
respect to the concavity of FE and AN shear stress distributions. The percentage error of J is around 100%, whereas
the percentage error of AN is around 1% (see Table 3). Therefore, we prove that the proposed model (AN) has a
much higher accuracy than Jourawsky formula, which fails inthe case of non-prismatic beams. Moreover, Figure 9
highlights that the shear stress is generally different from zero on the upper and lower limits of the domain, contrary
to the usual shear stress distributions in prismatic beams.The main reason is that, when the beam presents a variable
cross-section, the shear stress on the upper and lower limits of the domain must be different from zero in order to
satisfy the boundary equilibrium (see Equation (14)).
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4.4.3. Non-symmetrically curvilinear non-prismatic cantilever
For the non-symmetrically curvilinear non-prismatic cantilever beam, shown in Figure 4, two load conditions,

separately applied at the free end, are considered: a transversal concentrated load and an axial one. The comparison
results for transversal concentrated load is reported in Table 4. It is worth noticing that the proposed model (AN) shows
a good matching with the reference solution (FE) in both transversal-displacement and shear stress distributions. The
errors,ev andeσxy, are around 0.2% and 0.5%, respectively. Moreover, the high degree of matching is also proven in
Figure 10.

Table 4: Results for the non-symmetrically curvilinear non-prismatic cantilever beam subject to the transversal concentrated loadP

METHODS v(L)[m] max
y∈A(L/2)

(σxy)[kN/m2] ev[%] eσxy[%]

EB −1.178·10−3 − 2.394·100 −

T −1.203·10−3 − 3.645· 10−1 −

J − −2.400·102 − 3.784·101

AN −1.210·10−3 −3.840·102 2.519· 10−1 5.496·10−1

FE −1.207·10−3 −3.861·102 0 0
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Figure 10: CASE3. Shear stress distributions at half lengthof the beam determined by loadP.

Table 5 refers to the case of axial concentrated load. In particular, the transversal-displacement at the free edge of
the beam,v(L), the maximum value of the shear stress at half length of the beam, max

y∈A(L/2)
(σxy), the maximum value of

the horizontal displacement at the free edge of the beam, max
y∈A(L)

(us), the maximum value of the horizontal stress at half

length of the beam, max
y∈A(L/2)

(σxx), and their percentage errors,ev eσxy eu andeσxx, are reported. We do not introduce

EB and T rows because it is standard to neglect coupling, assuming a vanishing value of transversal displacement, i.e.
v(L) = 0. Once more, AN shows a good matching with the reference solution with a percentage error around 2%,
which is acceptable in the most of practical engineering applications.

Figures 11, 12 and 13, highlight a high degree of matching between the AN displacement and stress distributions
and the FE ones, indicating that the proposed model is also suitable for the study of non-symmetric non-prismatic
beam. Furthermore, we highlight that the proposed method has the capability to take the flexural and extensional
coupling into account without needing any further model manipulations or calibrations.
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Table 5: Results for the non-symmetrically curvilinear non-prismatic cantilever beam subject to the axial concentrated loadN

METHODS v(L)[m] max
y∈A(L/2)

(σxy)[kN/m2] ev[%] eσxy[%]

AN −3.780·10−5 6.400·100 1.547·10−1 2.259· 100

FE −3.774·10−5 6.259·100 0 0

METHODS max
y∈A(L)

(us)[m] max
y∈A(L/2)

(σxx)[kN/m2] eu[%] eσxx[%]

AN 1.215·10−5 2.560·102 2.508·10−1 1.875·10−1

FE 1.212·10−5 2.555·102 0 0
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Figure 11: CASE3. Shear stress distributions at half lengthof the beam determined by loadN.
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4.4.4. Non-symmetrically curvilinear non-prismatic clamped-clamped
Table 6 illustrates the results for the non-symmetrically curvilinear non-prismatic clamped-clamped beam, de-

picted in Figure 5. For this case, the transversal-displacement evaluated at half length of the beam, the maximum
value of the shear stress at one quarter of length, max

y∈A(L/4)
(σxy), and their percentage errors,ev andeσxy, are reported.

Moreover, we evaluate the horizontal reactions at the two edges,N (0) =
∫

A(0)
σxxdy andN (L) =

∫

A(L)
σxxdy. The

results remark once more that the proposed model catches correctly the coupling occurring between axial and flexural
equations.

It is worth noticing that the transversal-displacement result, obtained by using AN, is quite similar to the reference
solution (FE) with a percentage error less than 3%, acceptable in the most of practical engineering applications. The
high degree of matching between the transversal-displacement distributions is also shown in Figure 14.

With regard to the shear stress, the percentage error is around 1.5% (see Table 6 and Figure 15), proving that the
model catches accurate results even in cases of hyperstaticnon-prismatic beam.

Table 6: Results for the non-symmetrically curvilinear non-prismatic clamped-clamped beam subject to the transversal concentrated loadP

METHODS v(L/2)[m] max
y∈A(L/4)

(σxy)[kN/m2] ev[%] eσxy[%] N (0) [kN] N (L) [kN]

AN −2.314·10−4 −1.514·102 2.753·100 1.317·100 −131.543 −131.543
FE −2.252·10−4 −1.494·102 0 0 −131.233 −131.233

4.4.5. Final remarks
Figures 16 and 17 summarize the results introduced in Section 4.4 for CASE1, CASE2, and CASE3 (beam subject

to loadP).
In particular, Figure 16 compares the percentage errors related to the transversal-displacement results at the free

edge of the non-prismatic cantilever beams. The green columns refers to EB, the yellow columns to T, and the blue
columns to AN. It is worth noticing that the proposed model presents much higher accuracy than EB and similar
accuracy to T. In particular, for CASE3, the EB model shows the worst error, maybe because the beam is less slender
with respect to the other cases.

It is worth noting that, Equation (30), resulting from the Timoshenko beam theory, considers a shear correction
factor equal to 5/6. On the contrary, Figures 7 and 9 highlight that the stress distribution does no longer correspond to
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the usual Jourawsky profile, indirectly proving a variationof the shear correction factor along the beam axis. To this
end, an important advantage of the proposed analytical model is its natural capability of capturing the shear correction
factor variation. Therefore, a further development of the present work could be the investigation into the effects of the
lateral surface slope on the shear correction factor and itsexplicit evaluation for a generic non-prismatic beam.

Moreover, both Equations 29 (in EB hypotheses) and 30 (in T hypotheses) are not able to distinguish the case of a
symmetrically non-prismatic beam from the case of a non-symmetrically one. For instance, considering the boundary
conditions 25 for the study of two linearly non-prismatic beams, respectively symmetric and non-symmetric, with
the same length and same cross-section area at the two edges,Equations 29 and 30 provide the same transversal-
displacement even though it could be very different. The reason is that Equations 29 and 30 are not able to capture the
fact that all cross-section centroids belong to the beam-axis (condition verified in the symmetric case only), but they
only account for the cross-section variation due to the dependence onx of the area and of the second moment of area.
On the contrary, the proposed analytical model (AN) naturally overcomes the aforementioned limitation and predicts
transversal-displacements with a high degree of accuracy.

With regard to stresses, Figure 17 compares relative errorsof shear stress, specifically the green columns are
related to J, and the blue ones to AN. It is evident how the analytical model can calculate the shear stress distribution
with high accuracy, which is another advantage over Euler-Bernoulli and Timoshenko beam theories. Moreover, it is
clear that AN achieves much higher accuracy than J and its mismatch with the reference solution (FE) is less than 1%
in all cases.

All the remarks can be also referred to the more complicated study of indeterminate beam discussed in Section
4.4.3.

In conclusion, the proposed model is able to reach a very goodaccuracy in terms of stress and displacement
distributions because it provides results as accurate as the ones obtained by using more expensive 2D FE analyses.
Furthermore, since the proposed model consists of six ODEs,whose solution could be evaluated through standard
analytical and numerical tools, it represents a good compromise between computational efficiency and solution accu-
racy.

5. Conclusions

The study conducted in this paper allowed the modelling of beams with complex geometries through simple
kinematic assumptions, guaranteeing highly accurate stress results nonetheless.

In Sections 2 and 3, we presented the general derivation of the proposed analytical beam model, obtaining six
ODEs suitable for studying a generic 2D linear-elastic non-prismatic beam. In section 4, we focused on three examples
of cantilever non-prismatic beam with a concentrated load at the free edge and one example of clamped-clamped
beam subject to a distributed body load. The result comparison shows that the analytical model provides results with
percentage errors around 1% in isostatic case and around 3% in hyperstatic case, even though the number of un-known
variables is substantially lower than the FE analysis (reference solution).

This model can be easily generalized to the study of more complex problems, such as non-homogeneous non-
prismatic beams, 3D beams and beams characterized by and/or non-linear constitutive laws, due to the absence of
limiting hypotheses in the formulation. Lastly, the possibility to derive a suitable FE analysis, as suggested by [23],
will allow its integration within existing structural analysis software.
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