
DISSERTATION

Extending Optimising Compilation to
Support Worst-Case Execution Time

Analysis

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter Anleitung von

Ao.Univ.Prof. Dr. Peter Puschner

Institut für Technische Informatik 182.1

eingereicht an der Technischen Universität Wien,
Technisch-Naturwissenschaftliche Fakultät

von

Raimund Kirner

Matr.Nr. 9625030

A-2842 Edlitz, Sonnberg 37

Wien, im Mai 2003 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Extending Optimising Compilation to Support Worst-Case
Execution Time Analysis

Embedded real-time systems are increasingly used in control applications. To
guarantee the safe operation it is required to verify that the system can complete its
tasks within their deadlines. Therefore, it is important to know the worst-case exe-
cution time (WCET) of the code running on the system. For the precise calculation
of the WCET, the code has to be analysed at the object code level. The software is
typically written in a language like C and translated by a compiler. Due to undecid-
ability, the calculation of the WCET needs the knowledge of additional control-flow
information – so-called flow facts. It is necessary to specify this information at the
source code level in order to map the information onto the object code. For precise
WCET analysis of programs optimised by the compiler, the flow facts have to be
transformed in parallel to the code transformations performed during optimisation.

This thesis presents a framework to maintain correct flow facts during code op-
timisation. Previous solutions are either based on matching the debug information
with the source code or on logging of only restricted code transformations. This
thesis presents a novel concept to transform flow information in parallel to the code
transformations performed by the compiler. The code transformations are abstracted
to their relevant structural changes. From the structural update and the known se-
mantic control-flow information of the performed code transformation, a safe and
precise transformation of the flow information is induced. A graphical transforma-
tion framework to describe the performed code transformations supports the reader
in understanding the required update of flow facts. The abstract representation of
the control flow graph allows the modelling of blocks with multiple branching edges
which enables the integration of this method into various compilers. The result is a
framework that supports high-quality WCET analysis of optimised code.

Keywords

Real-Time Computing, Worst Case Execution Time (WCET), Timing Analysis,
Flow Facts, Code Optimisation, Optimising Compilers

i

ii

Erweiterung von Optimimierender Programmübersetzung zur
Unterstützung von Statischer Analyse der Maximalen

Programmausführungszeit

Eingebettete Computersysteme werden zunehmend für Steuerungsaufgaben einge-
setzt. Um deren sicheren Betrieb zu gewährleisten, ist sicherzustellen, dass solche
Systeme all ihre Aufgaben innerhalb der vorgegebenen Zeitschranken durchführen
können. Es ist daher notwendig, die maximale Programmausführungszeit (Worst-
Case Execution Time) des auf dem System ausgeführten Programmcodes zu ken-
nen. Um diese WCET möglichst genau berechnen zu können, muss der Programm-
code auf Objektcode-Ebene untersucht werden. Software wird heutzutage typ-
ischerweise in Programmiersprachen wie C geschrieben und mit einem Compiler
übersetzt. Aufgrund von Unentscheidbarkeiten werden allerdings für die Berech-
nung der WCET zusätzliche Kontrollfluss-Informationen benötigt. Es ist aus prak-
tischen Gründen erwünscht, diese Information direkt auf der Ebene des Quellcodes
anzugeben. Die Kontrollfluss-Informationen müssen in diesem Fall für die WCET
Analyse von der Quellcode-Ebene auf die Objektcode-Ebene transformiert werden.
Um die WCET-Analyse auch für Programme, welche durch einen Compiler optimiert
wurden, durchführen zu können, ist es notwendig, die Kontrollfluss-Informationen
parallel zu Programm-Transformationen entsprechend zu aktualisieren.

Im Gegensatz zu früheren Arbeiten stellt diese Arbeit ein Framework zur Kon-
struktion von Transformationen der Kontrollfluss-Informationen bereit, das alle Arten
von Codeoptimierungen unterstützt. Zuvor publizierte Ansätze stellen Beziehun-
gen zwischen Quellcode und Objektcode über Debuginformationen beziehungsweise
Traceausgaben für eingeschränkte Programmtransformationen her. In dieser Ar-
beit wird ein neuartiges Konzept vorgestellt, mit dem Kontrollfluss-Informationen
parallel zu vom Compiler durchgeführten Programmtransformationen aktualisiert
werden. Von den Programmtransformationen wird hierbei auf die relevanten
strukturellen Änderungen abstrahiert. Diese strukturellen Änderungen zusammen
mit der über die durchgeführte Programmtransformation bekannten Kontrollfluss-
Semantik induzieren eine sichere und genaue Transformation der Kontrollfluss-
Informationen. Eine graphische Repräsentation der durchgeführten strukturellen
Programmänderungen erleichtert dem Leser das Verständnis der notwendigen Trans-
formationen von Kontrollfluss-Information. Die verwendete abstrakte Darstellung
des Kontrollflussgraphen erlaubt auch die Verwendung von Blöcken mit beliebig vie-
len Kontrollflusskanten. Damit wird die Integration der Methode in eine Vielzahl
existierender Compiler unterstützt. Das Ergebnis ist ein Framework, welches hoch-
wertige WCET Analyse von optimiertem Code unterstützt.

Schlüsselwörter
(Harte) Echtzeitsysteme, Maximale Programmausführungszeit (WCET), Zeitanal-

yse, Kontrollfluss-Fakten, Codeoptimierungen, Optimierende Compiler

iii

iv

Acknowledgements

This thesis was carried out during my employment as research and teaching as-
sistant at the Institut für Technische Informatik, Real-Time Systems Group, at the
Vienna University of Technology.

First of all I would like to thank my mentor and professor, Ao.Univ.Prof. Dr. Peter
Puschner, for his valuable support and helpful suggestions. Besides his professional
support I want to thank him for being a friend who always finds time for insight-
ful discussions. I would also like to thank O.Univ.Prof. Dr. Hermann Kopetz for
giving me the opportunity to work in a well-equipped and stimulating environment.
I’m grateful to my secondary advisor Ao.Univ.Prof. Dr. Andreas Krall for several
discussions related to compiler technologies.

Further, I want to thank Jan Gustafsson from the Mälardalen University, Jakob
Engblom from Uppsala University, Guillem Bernat from University of York, and
Frank Furrer for their interest on my work and the stimulating technical discussions
we had. Special thanks goes to Jan Gustafsson, because after reading his PhD thesis,
I knew that abstraction would be the key strategy to set up the theory for this thesis.

Thanks also to all my colleagues from the department of Technische Informatik,
Vienna University of Technology, who have given me their technical support as well as
a really pleasent working environment. I would particularly like to express my thanks
and appreciation to Pavel Atanassov for his close cooperation and friendship and also,
Christopher Temple, Thomas M. Galla, Thomas Losert and Andreas Steininger for
interesting discussions about the topic of the thesis.

Besides Peter Puschner and Pavel Atanassov, I also want to thank my colleagues
Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz from the local WCET
team of the Vienna University of Technology for fruitful discussions and exchange of
information.

For the time consuming proof reading of preliminary versions of this thesis special
thanks to Thomas M. Galla, Maria Nassey, and Wilfried Steiner.

I would like to express my gratitude to my parents for their support all the time.
My friends, who were always close to me, appertain sincere thanks. Finally I would
like to thank my girlfriend Lili Zhai for her patience and motivations and her special
sense of humour all the time.

v

vi

Contents

1 Introduction 1

1.1 Motivation and Contributions of the Thesis 2

1.2 Structure of the Thesis . 4

2 Worst-Case Execution Time Analysis 7

2.1 Introduction to WCET Analysis . 7

2.1.1 Hardware Characteristics . 8

2.1.2 Measurement vs. Static WCET Analysis 10

2.1.3 Static WCET Analysis . 12

2.1.4 Calculating the WCET . 17

2.1.5 Measurement of WCET . 18

2.1.6 Visualisation of WCET Results 19

2.1.7 The Current State of the Art . 20

2.2 The Process of Static WCET Analysis 21

2.2.1 A Generic WCET Analysis Framework 21

2.2.2 Formal Definitions . 22

2.2.3 Extraction of Flow Facts . 22

2.2.4 Compilation . 24

2.2.5 Transformation of Flow Facts . 24

2.2.6 Exec-Time Modelling . 25

2.2.7 Calculation of Execution Scenarios 25

2.3 Static WCET Analysis Using IPET . 27

2.3.1 Integer Linear Programming . 28

2.3.2 Timing Analysis based on IPET 28

2.3.3 Flow Information . 30

2.4 Chapter Summary . 31

vii

CONTENTS CONTENTS

3 Related Work 33

3.1 Extraction of Flow Facts . 33

3.1.1 Manual Code Annotations . 33

3.1.2 Semantic Code Analysis Techniques 35

3.2 Transformation of Flow Facts . 36

3.3 Exec-Time Modelling . 38

3.4 Calculation of Execution Scenarios . 40

3.5 Other Related Work . 40

3.5.1 Code Optimisation for Real-Time Software 40

3.5.2 Source-Level Debugging of Optimised Code 42

3.6 Chapter Summary . 43

4 Foundations 45

4.1 Program Flow Representation . 45

4.1.1 Control Flow Graph . 45

4.1.2 Call Graph . 47

4.1.3 Global Control Flow Graph . 48

4.2 Semantics . 49

4.2.1 Operational Semantics . 50

4.2.2 Denotational Semantics . 51

4.2.3 Axiomatic Semantics . 52

4.3 Abstract Interpretation . 52

4.3.1 Definition of the Abstract Interpretation 53

4.3.2 Basic Principles of Abstract Interpretation 53

4.3.3 Domain of the Interpretation . 54

4.3.4 Fixpoint Semantics for Abstract Interpretation 57

4.3.5 Approximate Abstract Interpretation 64

4.3.6 Correctness of Abstract Interpretation 65

4.3.7 Galois Connection . 69

4.3.8 The Safety of the Approximation 75

4.3.9 Induced Operators . 77

4.3.10 Termination of Abstract Interpretation 78

4.3.11 Systematic Design of Galois Connections 80

4.4 Chapter Summary . 81

viii

CONTENTS CONTENTS

5 Classification of Code Transformations 83

5.1 Problem Statement . 83

5.2 Optimisations within a Basic Block . 84

5.3 Changing the Control Flow . 84

5.3.1 Low-Level Optimisations . 84

5.3.2 Partial Evaluation . 86

5.3.3 Redundancy Elimination . 87

5.3.4 Loop Reordering Transformations 88

5.3.5 Other Loop Transformations . 89

5.3.6 Procedure Call Transformations 92

5.4 Control Flow Preserving Optimisations 94

5.4.1 Partial Evaluation . 95

5.4.2 Memory Access Transformations 95

5.4.3 Redundancy Elimination . 95

5.4.4 Loop Reordering Transformations 96

5.4.5 Other Loop Transformations . 96

5.4.6 Procedure Call Transformations 96

5.4.7 Other Transformations . 97

5.5 Chapter Summary . 97

6 Timing Analysis of Optimised Code 99

6.1 The Context of Code Transformations 99

6.2 Dependable Flow Facts Transformation 101

6.2.1 The Correctness of the Transformation 101

6.2.2 Transformation of Flow Facts . 103

6.3 Flow Facts for WCET Calculation . 106

6.3.1 Required Transformation of Flow Facts 107

6.4 Chapter Summary . 110

7 Handling Flow Facts 111

7.1 Data Tuples to Handle Flow Information 111

7.1.1 The Abstract Program Representation 112

7.1.2 Representation of Flow Facts . 113

7.1.3 Transformation of Flow Facts . 114

7.2 Developing a Transformation Framework 116

ix

CONTENTS CONTENTS

7.2.1 Specification of CFP Transformation 116

7.2.2 Specification of Induced ff Transformation 118

7.2.3 Grouping ff Transitions for a Single Code Optimisation 121

7.3 Properties of the Transformation Framework 121

7.3.1 The Completeness of the Approach 122

7.3.2 Refinement of the Transformations 124

7.3.3 Modelling Basic Operations of F̃t2 128

7.4 Chapter Summary . 129

8 Developing Concrete Transformation Rules 131

8.1 General Considerations . 131

8.2 Low-Level Optimisations . 132

8.2.1 If Simplification . 132

8.2.2 Code Elimination . 133

8.2.3 Branch Optimisation . 135

8.2.4 Conditional Moves . 136

8.3 Loop Optimisations . 137

8.3.1 Loop Blocking . 137

8.3.2 Loop Inversion . 142

8.3.3 Loop Interchange . 143

8.3.4 Loop Unrolling . 145

8.3.5 Software Pipelining . 148

8.3.6 Loop Unswitching . 149

8.4 Chapter Summary . 151

9 Assessment 153

9.1 Properties of the Flow Facts Transformation Framework 153

9.1.1 Flow Information described by Flow Facts 153

9.1.2 The Meaning of Precision within this Context 154

9.1.3 The Effect of Code Transformations 154

9.1.4 Resulting Precision for Code Transformations 155

9.2 Experiments . 156

9.2.1 The Target Hardware . 157

9.2.2 The Analysis Framework . 157

9.2.3 The Test Setup for Measurements 158

x

CONTENTS CONTENTS

9.2.4 Example Programs . 159

9.2.5 Performed Experiments . 160

9.3 Implementation Experience . 163

9.4 Chapter Summary . 163

10 Conclusion 165

10.1 Definition of the Role of Flow Facts for WCET Analysis 165

10.2 Development of the Flow Facts Transformation Framework 166

10.3 Assessment of the Flow Facts Transformation Framework 167

10.4 Outlook . 168

Bibliography 169

A Definition of WHILE 181

A.1 The Syntax of WHILE . 181

A.1.1 Grammar Definition . 182

A.2 Comments on the Semantics . 183

B Foundations in Lattice Theory 185

B.1 Properties of Functions . 185

B.2 Sets and Algebraic Structures . 186

C Mathematical Proofs 189

List of Publications 193

Curriculum Vitae 195

Errata 197

xi

CONTENTS CONTENTS

xii

O friend, unseen, unborn, unknown,
Student of our sweet English tongue,
Read out my words at night, alone:

I was a poet, I was young.

James E. Flecker, 36 Poems (1910)

Chapter 1

Introduction

Computer systems have become an essential part of human life. A well-known applica-
tion domain for computer systems is the combination of personal computers and servers
to assist people in their professional activities by processing and storing data. However,
computer systems are used more and more to control their environment. Such computer
systems are equipped with sensors and actuators to interact with the environment. In
the growing market of embedded computing, computer systems are integrated into de-
vices to perform controlling tasks. A current trend in computer science is ubiquitous
computing (often called pervasive or ambient computing). One of the basic ideas of
ubiquitous computing is that the computer hardware will completely disappear from
the view of the user. Ubiquitous computing systems consist of a potentially large num-
ber of small networked components. They typically have to directly interact with their
physical environment, as they rarely have traditional human-computer interfaces.

Computer systems that interact with their physical environment have to be de-
signed to fulfil the temporal requirements of this environment. Besides the numerical
correctness of a calculated result, the timeliness of this result becomes an additional
requirement. Such computer systems are called real-time systems. Important param-
eters to reason about the timeliness of a real-time system are the best-case execution
time (BCET) and the worst-case execution time (WCET) of internally performed tasks.
The WCET of a program code typically depends on the specific target hardware and
the possible values of the input parameters. The development of concepts for WCET
analysis tools that can provide a safe upper bound for the WCET has become an active
research field over the last fifteen years.

In general, WCET analysis can be done dynamically, i.e., by doing runtime mea-
surements, or statically, i.e., by using analytical methods. The work presented in this
thesis is primarily intended to be used within static WCET analysis frameworks, but it
can also be applied to hybrid approaches that combine static and dynamic methods.

1

1.1 Motivation and Contributions of the Thesis 1 Introduction

1.1 Motivation and Contributions of the Thesis

Initially, software for embedded systems written directly in assembly code. The in-
creasing system complexity and the reduced time-to-market requirements demand the
use of more accurate software development tools. Today, most of the embedded soft-
ware is written in a language like C or C++. A current trend is to use more abstract
development tools like Matlab/Simulink that generate code automatically.

The representation level at which a program is developed is relevant when perform-
ing WCET analysis. Due to undecidability, it is proven to be impossible to calculate
the WCET of a program in general (equivalent to solving the Halting Problem). There-
fore, WCET analysis approaches often use additional flow information to search for the
longest execution trace through a program. These pieces of flow information are called
flow facts. To calculate a tight bound for the WCET it is required to calculate flow
facts at object code level, as this is necessary to consider the specific properties of the
target hardware in the WCET analysis. If the flow facts are given manually, it is of
advantage to present them at the same level where the program is developed. This frees
the developer from the error-prone task of translating them manually to the level where
WCET analysis is performed. Also, if flow facts are mainly extracted automatically by
a tool, it is preferable to perform this analysis at higher program representation levels,
as there is typically more information available about the possible program behaviour
than the object code level. An example for this are spilled registers. At object code
level it is possible that the analysis cannot determine whether other memory accesses
are interfering with the content of a spilled register.

To overcome these problems, one needs a mechanism that automatically transforms
the additional flow facts required for the WCET analysis. A generic scheme for WCET
analysis frameworks that are able to deal with different program representation levels
is shown in Figure 1.1. The phase extraction of flow facts performs the calculation
of the flow facts. To reduce the requirement for annotating the code manually with
flow facts, it is a definite advantage to extract as many flow facts as possible, that are
implicitly available in the source code. The execution time of single instructions or
sequences of them is estimated within the exec-time modelling stage. The calculation
within this stage depends on the target hardware for which the analysis has to be
done. Before the WCET can be calculated, it is necessary to transform the flow facts
in parallel to any code transformation. Such code transformations are typically done
by an optimising compiler. Without knowing what code transformations have been
performed, it is generally not possible to map flow facts from the source code to the
object code level. Therefore, a mechanism to update the flow facts is needed, which we
call transformation of flow facts.

The topic of this thesis is to develop a safe and precise concept for the transforma-
tion of flow facts. The supported flow facts have to be flexible enough to allow for the
calculation of tight bounds for the WCET. At the same time, the interface must be
applicable for manual code annotations as well as flow facts automatically derived by
semantic code analysis. The challenges for the development of such a flow facts trans-
formation framework are advanced code optimisations that change the control flow of a

2

1 Introduction 1.1 Motivation and Contributions of the Thesis

Compilation

source
code

Extraction of
Flow Facts

Calculation
of Execution
Scenarios

Exec-Time
Modelling

object
code

WCET
back-annotation

Transformation of
Flow Facts

Figure 1.1: Generic WCET Analysis Framework

program dramatically. The approach has to provide a mechanism that can be integrated
into a compiler with low implementation effort. It also has to be flexible enough to allow
the later expansion for the support of new code optimisations.

Beside correctness, precision is an important quality criterion of a flow facts trans-
formation framework. Within the context of flow facts transformation, two different
aspects of precision can be identified:

• Inherent precision limitations due to the fact that flow facts are orthogonal in-
formation to the program semantics. This precision limitation can be minimised
by selecting a type of flow facts that allows a flexible description of the possible
program control flow.

• Precision limitations due to the fact that a flow facts transformation rule of an
optimising compiler does not describe the required flow facts update precisely.
To minimise this precision limitation, it is required for the construction of the
flow facts transformation rule to exploit all information available about a code
transformation.

The flow facts transformation framework we present within this thesis is hardware
independent. This makes the approach universally applicable to various WCET analysis
frameworks.

Contributions of the Thesis

This thesis presents a safe and precise flow facts transformation framework that is ca-
pable to transform flow facts correctly and accurately for any semantically correct code
transformation. Towards the development of the flow facts transformation framework
we provide the following main contributions over the state of the art in WCET analysis:

3

1.2 Structure of the Thesis 1 Introduction

• During the initial stages of our work we had to define the role of flow facts within
the process of WCET analysis. We divided the analysis process into independent
problem categories. During this investigation we encountered problems with the
existing terminology. Therefore, before starting with the development of the trans-
formation framework, it was necessary to make a profound definition of indepen-
dent problem categories. On this basis we developed a generic and implementation
independent WCET analysis framework.

• The main contribution of the thesis is the development of a flow facts transforma-
tion framework that can correctly update the flow facts for any code transformation
performed by the compiler. Within this framework, the flow facts transformation
rule for each code optimisation consists of a set of basic transitions. There is only
a small set of different basic transitions required, which are well-suited to describe
the effects of low-level code transformations. More complex code transformations
are simply handled by grouping a set of basic transitions together.

• We present a method based on the developed transformation framework to con-
struct safe and precise flow facts transformations. This method allows the tool
developer to systematically construct an appropriate flow facts update function
for a given code transformation. The semantic control-flow information known by
the compiler for a given code optimisation is used for that.

1.2 Structure of the Thesis

The content of this thesis is structured as follows:

Chapter 2 presents a detailed introduction to the research field of WCET analysis.
The first part describes different aspects that are important for performing WCET
analysis, including a discussion whether to use an approach based on static analysis or
runtime measurements. Afterwards, we present a motivation for the selection of our
concrete flow facts that are supported by our transformation approach. We also sketch
a WCET calculation method based on these flow facts.

The related work for the context of this thesis is given in Chapter 3. Besides the
issue of flow facts transformation we also present relevant work in the fields of WCET
analysis in general, compilation for real-time systems, and symbolic debugging.

The basic foundations for the construction of our transformation framework are given
in Chapter 4. The theory of abstract interpretation is described in more detail, because
it forms the base for our construction of safe flow facts transformation rules.

Chapter 5 discusses the required update of flow facts in case of code transformations
performed by an optimising compiler.

Chapter 6 describes the theoretical principles behind the construction of our safe
flow facts transformation. It also sketches the operations required to update the flow
facts in parallel to code transformations.

4

1 Introduction 1.2 Structure of the Thesis

Based on these theoretic principles, Chapter 7 presents a concrete flow facts trans-
formation framework. A description of the required operations and data structures is
given.

Chapter 8 describes a scheme for using the transformation framework to develop
concrete flow facts transformation rules that are safe and precise. This is supported by
providing several examples for concrete transformation rules.

Chapter 9 gives an assessment of the approach presented within this thesis. Theo-
retical discussions show the potential of the approach. This is followed by a practical
assessment based on a comparison of the results of the static WCET analysis with those
obtained from runtime measurements.

Finally, Chapter 10 reviews the work done, points out strengths and weaknesses of
our approach, and concludes the thesis giving directions for future research in this field.

5

1.2 Structure of the Thesis 1 Introduction

6

’Is there any other point to which you should draw my attention?’
’To the curious incident of the dog in the night-time.’

’The dog did nothing in the night-time.’
’That was the curious incident,’ remarked Sherlock Holmes

Sir Arthur C. Doyle, Memoirs of Sherlock Holmes (1894)

Chapter 2

Worst-Case Execution Time
Analysis

This chapter describes the context of this thesis, the static WCET analysis. After an
introduction about WCET analysis techniques, a generic WCET analysis framework
is developed. Afterwards, the type of flow information and the corresponding WCET
calculation method we use in this thesis are described.

2.1 Introduction to WCET Analysis

Computer systems often have to interact with their physical environments. As the
environment has its typical temporal behaviour, these computing systems have to be
designed to fulfil certain temporal requirements. Such computer systems are called real-
time systems. The specification of tasks for real-time systems includes deadlines for
the results they had to calculate. Depending on whether the miss of such a deadline is
considered as a critical failure or not, we can distinguish between hard and soft real-time
systems. Soft real-time systems follow a best effort strategy where deadline misses are
in general treated as a question of quality of service.

An example for a real-time system is given in Figure 2.1. t̂observation describes a
request time which can have a static trigger or can occur dynamically. t̂reaction is the time
when the real-time system finishes processing the event and setting the resulting output
signals. The difference (t̂reaction − t̂observation) is the response time tresponse. The internal
architecture of a real-time computing system can have various structures. Typically, it
has a real-time scheduler that triggers the system tasks depending on their deadlines
and worst-case execution times (WCET). The knowledge about the temporal behaviour
and requirements of each task (here described by its WCET and deadline) is mandatory
for the design of hard real-time systems. In the following we use the term program as
a synonym for a simple task or the whole software running on a computer system since
in this thesis we do not deal with the internals of software architectures.

Typical terms used to describe the execution time of a program are shown in Fig-

7

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

system
F

WCET

processing

scheduler

actuatorsensor

t̂observation tresponse t̂reaction

tasks

messages

Figure 2.1: Schematic View of Real-Time System

t

BCET WCETETavg

probability e.g., error handling

ETx

Figure 2.2: Distribution of Execution Time

ure 2.2: WCET is the worst-case execution time and analogous, BCET is the best-case
execution time. ETavg denotes the average execution time. To visualise the requirement
for a systematic WCET approach we have drawn the execution time probability as a
graph with two separate areas. The left area represents the normal program execution
with a variance typically caused by variable input data and variable initial processor
states (the influence of processor states is discussed in Section 2.1.1) having an upper
execution time limit ETx. However, due to the small second peak on the right end of
the figure, the real WCET is much higher than ETx. A reasonable example is handling
of input data being outside specification (e.g., by an exception handler or saturation
function).

A company reported to us that they had sporadically significantly higher results on
runtime measurements of software in production. First, they thought it was a failure
in their system but the reason was the rare case that a certain part of the software
was sporadically executed. As this result was later directly shown by our prototype
WCET analysis tool, the benefit of using analytical methods for WCET analysis has
been demonstrated.

2.1.1 Hardware Characteristics

A processor has to maintain an internal state machine to model the semantics of program
code. In the simplest case the state consists only of several registers and flags, which can

8

2 Worst-Case Execution Time Analysis 2.1 Introduction to WCET Analysis

be modelled easily. Modern complex processors have a larger internal state to improve
peak performance. The execution time of instructions depends on this larger state
which is set by the previous instruction stream. In WCET analysis, approximations
to reduce the set of modelled processor states normally result in impreciseness of the
WCET analysis.

The following list shows performance increasing hardware mechanisms that increase
the internal state space of a processor:

Memory hierarchies are used for a compromise between hardware costs and access
times. Important characteristics of caches are associativity and replacement policy.
Separate data and instruction caches have a less efficient memory usage than
unified caches but their temporal behaviour can be predicted more precisely.

Parallel instruction processing; overlapped instruction execution or
pipelining are used to increase throughput. Pipelining splits the instruction pro-
cessing into several stages like Fetch, Decode, Execute and WriteBack. If
the sequence of previous instructions cannot be modelled unambiguously, we get
pessimism in the pipeline analysis.

Parallel execution units are an extension of the simple pipeline concept. The
pipeline is splitted after a certain stage into multiple parallel pipelines, that form
a so-called scalar pipeline. A further extension with duplicated execution units
and dynamic instruction scheduling is called superscalar pipeline. The instruction
scheduling for a VLIW (very long instruction word) processor is done statically
by the compiler.

Out-of-order execution is used to improve parallelism of superscalar processors as
it reduces the penalty of data hazards. For example, if the processing of an
instruction stalls due to a data hazard, a subsequent instruction may overtake
this instruction.

Out-of-order execution can result in “unexpected” timing behaviour, so-called
timing anomalies. A timing anomaly is given if the execution time of a single
instruction I embedded in an instruction sequence S is increased by a latency of
dI cycles, and the change dS for the whole sequence S does not fulfil 0 ≤ dS ≤ dI .
Timing anomalies caused by a combination of out-of-order execution and data
caches have been studied in the literature [LS99b].

Continuity of instruction stream within the processor pipeline can be improved us-
ing branch prediction, which guesses the control flow of conditional jumps. Dy-
namic branch prediction is based on the execution history. Branch prediction can
be extended by a trace cache which is a special cache that stores sequences of in-
structions including information about which branch history has constructed these
instruction sequences.

The above list of performance increasing hardware mechanisms with non-local tim-
ings effects gives an impression why it can be very complex to make a safe and precise

9

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

prediction about the execution time of code executing on modern processors because
most effects of these mechanisms are interfering with each other.

Timing anomalies or unbounded timing effects of pipelines can arise. Another prob-
lem for WCET analysis, beside the inherent complexity of hardware modelling is, that
it is usually hard to get a detailed documentation (if it exists) about the temporal
behaviour of hardware.

The design of the whole system can increase complexity by involving for example
DRAM refreshes or task preemptions.

Another barrier for developing a universal WCET analysis method are customisable
processors where the manufacturer does not have the control over the final instruction
timing. An example is the ”BIOS update feature” introduced by Intel with the P6
processor family to handle hardware bugs like the infamous Pentium FDIV floating-point
division bug. Another example are configurable or extensible processors that have parts
of its functionality - traditionally realised by register-transfer-level hardware - replaced
by firmware program control. Application developers can write their own firmware
targeted to a specific application domain.

2.1.2 Measurement vs. Static WCET Analysis

A static WCET analysis tool calculates the WCET based on a timing model of the
target hardware. To overcome the problem of undecidability it is in general required to
annotate the code with control flow information. Static WCET analysis tools are usually
designed to calculate a safe upper bound of the WCET. The design and development
of a safe and still precise WCET analysis tool for modern processors is a quite complex
task.

A different approach with a longer tradition is to derive execution time bounds by
measurements. The problem of simple measurements is that it can become infeasible
to cover all execution scenarios (combinations of control flow paths and memory access
locations). A first improvement is to select representative execution scenarios for testing
the critical execution scenarios. By analysing the input-dependent statements of the
source code one can try to extract execution scenarios that potentially result in the
worst-case execution trace. However, in the general case it is not possible to ensure
that the right scenarios have been selected. Typical problems are the manifold internal
states of modern processors. Another problem of measurements is the probe effect (e.g.,
by code instrumentation to set output lines at certain control points). In the following
we discuss why and how measurement could be still an option to derive the WCET for
a piece of code/program.

Execution Time Measurements

As already discussed in the introduction, measurements were used to assess WCET in
the beginning of building real-time systems due to the lack of theoretic foundations for
static WCET analysis. One can argue that the current trend in processor development

10

2 Worst-Case Execution Time Analysis 2.1 Introduction to WCET Analysis

has thrown static WCET analysis back to its roots and therefore execution time mea-
surement has again become an alternative. In the following we discuss more technical
aspects to question the applicability of measurements.

WCET estimation means by default to get a safe upper bound of the real WCET.
Using execution time measurements has the following difficulties to achieve this:

1. The initial processor state (target hardware) influences the measured execution
time.

2. Control transfer instructions (CTI) depending on input data induce multiple exe-
cution traces.

3. Memory references with addresses depending on input data induce different pro-
cessor states.

In general, the above factors yield an exponentially high number of measurement
test cases. For example, measuring the execution time for a real-size program with all
possible combinations of input values can easily take more time than the known age of
the universe1. Therefore, WCET measurement in general cannot test all cases and can
just provide a reasonable unsafe lower bound for the real WCET. There may also be
correlations of overspending with special cases of execution scenarios, e.g., calling an
exception handler in case of a numeric overflow. Techniques like genetic programming
are used to bring systematics into the search for the worst-case input data. However,
such methods only increase the probability that the deviation of the measured execution
time to the real WCET is within a certain bound, they cannot guarantee that the
measured value will be equal to the real WCET. The arguments for favouring the concept
of probabilistic WCET are often that by using statistical methods it would be possible
to reduce the risk of a WCET underestimation to the same magnitude or even lower
than the failure rate of system components. Anyhow, these techniques do not provide
absolute error boundaries.

Advantages of Measurement-Based Techniques

Beside all the problems listed up to here, using measurement to get the WCET has its
obvious benefits:

• Measurement equipment is almost independent of the target hardware.

1We assume a test function that takes an array as input data where n is the length of the array
and k is the bit-width of the array elements. The age of our universe is denoted as T , the time needed
for one measurement as tm. To finish all measurements within the known age of our universe, we have
to fulfil 2k·n ≤ T

tm
, which can be rewritten as n ≤ log(T/tm)

log(2k)
. Some scientists believe in an age of our

universe of about T ≈ 15 · 109 years [Haw01]. Further, we assume that tm = 1 ms and k = 32 bit.
Then, it follows that the maximum feasible array length n for the input parameter of the test function
is only n ≤ 2!

11

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

• Detailed knowledge of the underlying hardware is also required to design good
series of test data for the measurements, but not to the detail needed for static
analysis.

Safe Upper Bounds of WCET by Measurement?

To obtain safe WCET bounds by measurement, the initial state scenario that generates
the WCET has to be determined. For common processors it is not possible to set the
internal processor state to a custom configuration. Instead, they support instructions
to set parts of the internal state to a fixed value (e.g., invalidating all cache lines, en-
forcing all pending memory instructions to be finished, etc.). Even using measurements,
it is therefore still important to carefully examine the behaviour of the processor to
ensure that the initialised processor state represents a worst-case configuration. Timing
anomalies demonstrate that this can be quite tricky.

Assuming that a safe worst-case initial state can be set, execution time measurements
are useful to get a safe WCET bound under the following conditions:

small input space: If the value range of the input parameters is very small (e.g., bit
flags), exhaustive search over the input space may be feasible.

sequential code: If the CTIs in the program do not depend on the input data, only one
measurement is required. Programming paradigms like the single-path approach
can be used to generate sequential code [PB02]. Writing WCET-oriented programs
in general means to reduce the number of input-data-dependent CTIs in a program
[Pus03].

Comparison Summary

Safe upper WCET bounds only can be derived by measurement from code that has
few variations in its control flow paths. Static WCET analysis tools require much more
effort to model the internal architecture of the target hardware.

In the following, both static WCET analysis and measurements are described in
more detail.

2.1.3 Static WCET Analysis

Static WCET analysis is used to obtain safe upper bounds of the WCET. Static program
analysis has its theoretical limitations due to undecidability (e.g., the Halting Problem
[Man74, Lew85]). As a consequence, safe approximations about the program behaviour
have to be used. Not all required information can be extracted by semantic analysis
of source code. Depending on the analysis method, there remains some basic informa-
tion that has to be provided separately, for example by code annotations. Such basic
information could, for example, be the provision of information about the value range
of instances of input variables or the direct specification of loop bounds.

12

2 Worst-Case Execution Time Analysis 2.1 Introduction to WCET Analysis

The challenge for the design of a WCET analysis tool is the calculation of safe and
precise upper bounds of the WCET with a minimum set of program annotations. As
shown in Figure 2.3 the functionality of WCET analysis tools can be classified into
three orthogonal aspects which are called flow facts handling, representation level and
exec-time modelling. They are described in the following subsections.

Exec-Time
Modellingsimple pipelinecaches

simple(only loop bound)

manually

automatic

stateflow

C source

intermediate code

assembly code

Matlab/Simulink

executeable binary

Flow Facts Handling

Representation
Level

symbolic analysis
abstract interpretation

heuristics

A1

A2

data flow analysis

Figure 2.3: Orthogonal Aspects of WCET Analysis

a) Flow Facts Handling

Flow facts ff are used to describe the possible control flow paths CFP of a program P .
The definitions for the terms ff and CFP (as well as CFPopt(P) and CFPff (P)) are given
by Definition 2.1.3 and Definition 2.1.1. The possible CFP of a program P described
by the flow facts ff is denoted as CFPff (P) where the tightest closure of the possible
CFP is denoted as CFPopt(P). In general, the CFPopt(P) cannot be determined due to
undecidability. For correctness it is required that CFPff (P) is a superset of CFPopt(P).
The longest execution trace within CFPopt(P) that yields the WCET is denoted by
CFPWCET ,opt(P) (see Definition 2.1.2).

Definition 2.1.1 Control flow paths CFP(P) specify the set of possible execution
paths of program P with applied execution constraints. Such constraints are for example
ranges for the value instantiation of input parameters. CFP(P) is a description of the

13

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

set of different possible execution traces that occur on execution of program P. In case of
unbounded loops this set is unbounded. We distinguish the following two types of CFP:

• CFPopt(P) . . .Control flow paths for a program P as seen by the omniscient ob-
server. CFPopt(P) is an abstract and exact description of all possible program
execution traces. CFPopt(P) includes only these execution traces that can really
occur on program execution. One can reduce CFPopt(P) by specialisation of the
program execution (e.g., by assuming input parameters of restricted shape or value
range).

• CFPff (P) . . . Control flow paths of a program P described by flow facts ff .
CFPff (P) is an approximation of CFPopt(P) by considering a set of flow facts
ff : CFPopt(P) ⊆ CFPff (P). CFPff (P) can be described as the by ff spawn closure
of execution paths for a program P.

Definition 2.1.2 CFPWCET ,opt(P) is an execution trace that yields to the optimal so-
lution of the WCET (denoted as WCETopt) for a program P. CFPWCET ,opt(P) is de-
rived from CFPopt(P). Its corresponding WCET value is therefore an optimal solution.
CFPWCET ,ff (P) is the analogous execution trace for the calculated WCETcalc, depending
on ff .

Definition 2.1.3 Flow facts ff give hints about the possible CFP of a program P.
The resulting CFP over ff is called CFPff (P). Flow facts can be expressed implicitely
by the structure of the program itself as also by additional information provided by the
user.

To make WCET analysis feasible there must be enough flow facts to limit the exe-
cution count of every statement. Flow facts that can be extracted from the structure
and semantics of the program are denoted by ffimpl (Definition 2.1.4). The extractable
flow facts ffimpl are in general not enough to calculate the WCET since the execution
behaviour of the program may also depend on external data. Additional flow facts ffa

(Definition 2.1.5) have to be specified. ffa are typically given as annotations inside the
source code, by separate data files, or interactively. The specification of ffa inside the
source code is preferable for the user of a WCET analysis tool since it frees the user
from manually mapping or translating the flow facts and the flow facts only have to be
specified once for the same revision of the source code.

Definition 2.1.4 Implicit flow facts ffimpl are ff that are given implicitely by the
program structure and semantics. If the CFPopt(P) of a program P does not depend on
input variables or external events, it can be completely described by ffimpl .

Definition 2.1.5 Flow facts by annotations ffa are ff that are given explicitely
by code annotations. ffa are used to simplify WCET tool implementation (avoiding
complicated code analysis) or to bring in additional information to make WCET analysis
feasible and tight.

14

2 Worst-Case Execution Time Analysis 2.1 Introduction to WCET Analysis

Methods for characterisation of flow facts can have different level of automatism.
In the optimal way ff can be completely extracted automatically from the program’s
structure and semantics. Since not all information about the possible CFP is given im-
plicitely by the program code, additional flow facts are needed, that are given manually
(ffa). At least, the determination of ff that are input data dependent requires the provi-
sion of additional ffa . For simplicity reasons regarding the WCET tool implementation,
also some classes of ff that could be extracted from the program code (ffimpl) are often
specified redundantly by ffa .

Definition 2.1.6 (In)Feasible Paths: A control flow path p of a program P is called
feasible, if it potentially can be taken during program execution: p ∈ CFPopt(P). Anal-
ogously, a control flow path p of a program P is called infeasible, if it cannot be taken
during program execution: p /∈ CFPopt(P). Infeasible paths typically occur in program
analysis when not the complete semantics of a program is considered.

For a CFP that contains cycles (generally called loops), the knowledge of the maxi-
mum execution number of the backward edges (loop bounds) is mandatory for WCET
analysis. To obtain tighter time bounds, additional knowledge about infeasible paths
(see Definition 2.1.6) has to be considered. The following is a list of examples for different
levels of detail of execution frequency constraints (given as ffa):

• loop bounds (exact versus safe overestimating bounds)

• loop bounds + additional constraints (e.g., loop sequences [Pus88], maximum
execution count of a certain operation within a specific scope)

• arbitrary constraints on execution count of blocks

• having only one type of constraints (only conjunctive) versus supporting also dis-
junctive sets of constraints (necessary for completeness of constraints that model
the algorithmic program behaviour)

Another type of ffa are constraints that describe the execution order of operations. An
example for this can be found in [EE00] where the authors describe execution frequency
constraints that also refer to certain iteration ranges within a loop. Other types of ffa

are constraints on the ranges of value instantiation of input parameters [Gus00]. Such
ffa require advanced analysis techniques to transform them into information that can
be used by the underlying WCET calculation method. For domain-specific solutions
the calculation of the CFP can be simplified by using a quite restrictive syntax for the
programming language. Some flow facts of ffa can also be given redundantly to check
for consistency with timing requirements. In [KHR+96] they use time annotations (con-
crete execution times) for certain code fragments and check them against the calculated
WCET. They also use some other type of ffa for the WCET calculation itself.

The automatism of WCET analysis depends on the implemented techniques in the
analysis to extract flow facts. The following are typical techniques to extract and collect
flow facts ffimpl and ffa :

15

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

Abstract interpretation: if the tool performs some kind of abstract interpretation
[CC77] it may be sufficient to specify as ffa only the possible values for instances
of input data. Gustafsson describes a WCET tool that extracts ff by using abstract
interpretation [Gus00].

Simplified methods: they require the user to specify program annotations at a more
abstract level, for example loop bound annotations. Using such annotations it may
suffice to extract only the syntactic program structure as further flow facts.

Symbolic compution: this approach has a computational complexity between the
two above extremes. The CFP is here computed by solving algebraic equations.
Blieberger describes such a framework in [Bli02].

Depending on the expressiveness of the source language to be analysed it can be
complex to develop a precise method based on abstract interpretation. Depending on
the structure of the analysed code, such methods tend to have a high computation effort.

Simplified methods are not required to analyse the semantics of the code. Additional
annotations about infeasible execution paths can enhance the precision of the result. For
example, wcetC is a programming language where it is possible to specify ffa directly
inside the source code [Kir02].

A crucial drawback of symbolic computation is that it is limited to a restricted shape
of expressions and constructs.

b) Representation Level

The coding of a program and the applied WCET analysis may be done at different
representation levels. To obtain accurate and tight time bounds, WCET analysis is
typically performed at assembly/object code level.

Programming in assembly code should only be done where it is strictly necessary
in case of resource limitations, e.g., strict computation time or memory limitations.
Typical representations for program development are third generation languages (3GL).
Actually, research was carried out on WCET interfaces for 3GL like Euclid [KS86],
Modula2 [Vrc94a], Java [BBW00], C [Kir00, Par93], etc. Furthermore, tools that model
an application by its algorithm are for example Matlab/Simulink2 or the Statemate
Statechart system [HN96].

As discussed above, it is required to use flow facts ff about the possible CFP . The
most practical and intuitive approach to provide flow facts ffa is to place them directly
inside the source code at the location where they affect the CFP. If the representation
level of the programming language is different to the one where the WCET analysis is
done, compilers have to transform the ff to the level of analysis (we use the term compiler
here for all kind of program transformations). A generic WCET analysis framework
using ff transformation is shown in Figure 1.1. Compilers typically provide powerful
optimisations that change the structure of the program during transformation down to

2http://www.mathworks.com/

16

http://www.mathworks.com/

2 Worst-Case Execution Time Analysis 2.1 Introduction to WCET Analysis

assembly level dramatically. In this case, the transformation of flow facts cannot be done
without compiler support since the structural matching between source and transformed
code can become ambiguous while applying code optimisation techniques.

This leads to the challenge to transform the ff from the programming language
down to assembly level (specifying the ffa at a different representation level than the
programming language is not feasible in practice because this only means that the user
has to do this transformation manually). Therefore, methods are required to keep the
ff consistent and useful even in presence of such optimisations. Figure 2.3 on page 13
shows an example, where the program is coded in C (marked as A1) and the analysis is
done at assembly level (marked as A2).

c) Exec-Time Modelling

Static WCET analysis requires information about the execution time of each code state-
ment, which we call exec-time information. For simple processors this is just a constant
value for each statement and it may be of parametric form in case of more complex
timing dependencies.

The potential complexity behind exec-time modelling has been described in Sec-
tion 2.1.1. Attempts to model all timing features of modern processors at once have
been shown to be too complex in development and computation. Approaches have been
developed that split exec-time modelling into separate phases that can be computed
sequentially. Such approaches can induce additional overestimation by approximation.
But the benefit is to have simpler components that can be also replaced with less effort,
which could be the base for a retargetable static WCET analysis tool.

For modern processors, i.e. processors optimised for peak-performance, exec-time
modelling would require the knowledge of specific flow facts (e.g., the set of all possi-
ble previous instruction sequences) to build a precise context-dependent timing model.
Exec-time modelling for modern processors is currently an active research topic. The
motivation comes from the fact that modern processors are increasingly being used in
time-critical embedded systems.

The opposite way of tackling the problem of exec-time modelling is to search for
more predictable hardware mechanisms, which is currently less attractive since it does
not target an already available mass market.

2.1.4 Calculating the WCET

The calculation of the WCET is done by searching the longest execution trace through
the CFP. Currently, three techniques have been published to find this longest execution
trace (it is also possible to use hybrid solutions of these WCET calculation methods):

• Tree-based calculations (timing schema) [Sha89, CP00, PK89] calculate the
WCET hierarchically. Such methods are quite simple and fast but very restricted
in the specification of (in)feasible paths.

17

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

• Path-based calculations [HAM+99, SA00] subdivide the program into several
scopes. Typically, each loop is treated as a scope. The WCET calculation works
hierarchically on the scopes by using exhaustive search.

• Implicit path enumeration technique (IPET) based calculation [PS97,
LM95, LMW95a, LMW96] can be applied on the whole program code at once
and allows to consider global flow facts. A program is translated systematically
into a set of IPET constraints. The maximum solution of the goal function is the
desired WCET. This method can be also used hierarchically to reduce computing
resources. A typical technique to resolve the IPET constraints is integer linear
programming (ILP). The IPET based WCET calculation is described in more
detail in Section 2.3.

Due to its elegant modelling of flow facts and simple implementation by using stan-
dard constraint solvers, IPET based WCET calculation has evolved to be the most often
used WCET calculation method. The calculation principle of using IPET for WCET
analysis is presented in Section 2.3.2 on page 28.

Limitations of Static WCET Analysis

Static WCET analysis in general always requires additional flow facts which can be
reduced to a theoretically minimal set by semantic code analysis. Concrete implemen-
tations typically require more annotations to reduce the complexity of the tool.

Depending on the desired target architecture and requirements on the preciseness of
the results, static WCET analysis is ready for industrial use. Current research challenges
are non-local timing effects (e.g., caches, pipelines, etc.) of modern processors and the
development of modular and retargetable analysis frameworks that provide precise and
safe results.

2.1.5 Measurement of WCET

The direct way to measure the execution time of a program run is to use a setup based
on the real target hardware. Triggers of start and stop events can be generated by
instrumenting the code or placing a test wrapper around it. The measurement can be
done by means of a logic analyser where the execution time is given as an interval of
physical time. By using a counter device, the time base of the external processor clock of
the target hardware can be used for measurements. This allows a simple cycle-accurate
execution time measurement.

It is also possible to use a “cycle-accurate” simulator of the target processor which
has the great advantage of requiring no external hardware components and providing
typically more flexibility in setting and monitoring the processor state. The performance
of cycle-accurate simulation can typically be even faster but also orders of magnitude
slower (possibly more than 1000 times) than execution on the real target.

18

2 Worst-Case Execution Time Analysis 2.1 Introduction to WCET Analysis

Considering the problems discussed in Section 2.1.1 on page 8 for modelling the dy-
namic behaviour of the target processor, “cycle-accurate” simulation has similar draw-
backs as exec-time modelling in static WCET analysis has.

Hybrid Measurement Techniques

Hybrid methods are an interesting alternative approach to deal with the inherently high
effort of testing representative execution scenarios: combining static analysis techniques
with measurement by grouping the CFP into blocks. To reduce pessimism, the granu-
larity of the blocks should be coarser than just basic blocks. After measurement of all
blocks, the overall WCET is calculated by a timing composition algorithm, i.e., putting
together the measured execution times of all blocks.

Such hybrid methods can be used to determine safe upper bounds of the WCET as
well as potentially more precise but unsafe probabilistic WCET values. Research has
already been published for both paradigms. When using the probabilistic approach, the
statistic distribution of measurement results is used to estimate the WCET for each
block [PF99]. A possible method to determine safe upper bounds of the WCET is to
measure the execution time of each basic block for all different control flow scenarios
[Eng02].

An advantage of such hybrid methods compared to pure analytical methods is that
it is relatively easy to retarget hybrid methods to a new processor platform.

Discussion of Usability

Execution time measurements have their clear benefits but determining a safe WCET
bound for generic program structures by simple measurements is not feasible for pro-
grams with much input-data-dependent control flow due to the potential exponentially
growing set of CFPs. Thus, pure runtime measurements themselves can only provide a
lower bound of the real WCET.

Hybrid methods or software programming paradigms that enforce a simple program
structure demonstrate that measurement still can be an adequate technique to determine
safe WCET bounds. Hybrid methods can be also used to provide probabilistic WCET
values.

2.1.6 Visualisation of WCET Results

Besides system scheduling, the knowledge of the WCET is also interesting as feedback
for tuning programs. Thus, it is useful to have the WCET result available at a fine
granularity and at different program representation levels. A prototype environment to
propagate the WCET values back to individual instructions of the C source code and
assembly code is described in [KHR+96]. Further research in mapping the WCET results
in case of code optimisations is required to avoid confusing the user due to unexpected
execution time distributions at source-code level. Such an unexpected execution time

19

2.1 Introduction to WCET Analysis 2 Worst-Case Execution Time Analysis

Figure 2.4: WCET results in Matlab/Simulink

distribution can occur when, for example, the compiler reuses code or deletes useless
code. For processors having pipelines or caches it is also interesting to map the WCET
result down to the hardware states to reason about the efficiency of these mechanisms.

A continuous WCET analysis chain for Matlab/Simulink realised in course of a
research project demonstrates a smooth integration of WCET analysis into existing
engineering tools [KLFP02]. The code generator of Matlab/Simulink was modified to
generate additional flow facts. As shown in Figure 2.4 the result of WCET analysis is
propagated back to each block of the Matlab/Simulink model. A nice feature of this
approach is that Matlab/Simulink can use the WCET result to simulate the temporal
behaviour of a distributed system application.

2.1.7 The Current State of the Art

The industrial awareness for the requirement to perform WCET analysis is currently
not very high. Heuristic measurements are common practice to get a rough overview
about the timing behaviour of a computer system. Small pieces of code like interrupt
service routines are typically analysed by counting the execution time of each instruction
manually. Both practices are not really satisfying since it is required for hard real-time
systems to get safe upper WCET bounds without the potentially high risk of having
too much error-prone user interaction involved.

Academic research on methods for static WCET analysis has already provided pro-
totype tools that work very well for relatively simple processors. The sufficient support
of more complex processor architectures is still under research. There are also com-
mercial tools available, but they are limited to specific usability. For example, some of
the available tools model the target hardware only partially (e.g., modelling only one
pipeline out of multiple processor pipelines) or they calculate an upper bound for the
WCET that is too pessimistic to be directly used in an industrial production process.

Retargetability is still a challenge since it currently requires high effort to deal with
problems like changing processor masks and the frequent emergence of new processor
architectures.

20

2 Worst-Case Execution Time Analysis 2.2 The Process of Static WCET Analysis

Due to the increasing complexity of modern processors, research emerges that re-
cycles the measurement approach to deal with such processors in a relatively simple
way. Alternative research is starting in the area of predictable software and hardware.
Favouring the WCET, for example the single path approach [PB02] promotes measure-
ment as an adequate method to get a safe WCET value that is even precise.

To present the WCET results to the developer in a concise form, additional research
would be required in the area of visualisation of WCET results.

2.2 The Process of Static WCET Analysis

The previous section gave an overview of existing WCET analysis techniques. In this
section we introduce the fundamental components of a WCET analysis framework and
analyse their functionality. The “feature space” of WCET analysis is shown in Figure 2.3
on page 13. This section also introduces the operations that provide these features.

2.2.1 A Generic WCET Analysis Framework

To show how the topic of this thesis is used within a WCET analysis framework, we
introduce an abstract WCET analysis framework. This framework is kept quite generic
so that it can be applied to various existing WCET analysis frameworks.

The main components of this framework are shown in Figure 1.1 on page 3. The
input is the source representation of the program. The representation level of the input
program and the required level where analysis has to be performed together determine
what is required from the compilation process. As indicated by a dotted line, the
transformation of ff is directly coupled with the steps performed by the compilation
process. This thesis addresses this ff transformation in a correct and precise way.

Some existing frameworks directly read the compiled object code as input and request
the user interactively to provide the required flow information [LMW95a]. In their case
the extraction of flow facts and transformation of flow facts is completely left to the
intellectual power of the user.

There have been previous attempts to develop a generic WCET analysis framework.
A drawback of previous attempts is that there are mixtures between concepts and con-
crete implementation issues. An example for this are the often used names high-level
analysis and low-level analysis. These names are intended for a certain type of WCET
framework, but they are in general not appropriate. Using our categorisation, they can
be understood as flow facts handling and exec-time modelling, which only describes their
functionality without assuming a specific structure of the underlying WCET analysis
framework.

21

2.2 The Process of Static WCET Analysis 2 Worst-Case Execution Time Analysis

2.2.2 Formal Definitions

We use the operator ♦ from modal logic to model the relation ”it can be” (♦ means
that the given expression can be true under at least one interpretation or variable
instantiation).

Definition 2.2.1 Intermediate Representations The WCET analysis can be di-
vided into several phases. The following operations and intermediate results are consid-
ered:

• Psrc . . . source representation of the program

• Pobj = c(Psrc) . . . object code of the program; obtained by compiling the source code.

• ff = e(Psrc) . . . flow facts that gave hints about the possible execution scenarios;
both, ffimpl and ffa are extracted: ffimpl ∪ ffa = ff = e(Psrc)

• ffobj = c̃(ff) . . . transformed flow facts (from source to object code, including sym-
bolic or numeric calculations); c̃(ff) has to consider the operations performed by
the code compilation c(Psrc)

• mt = tM(Pobj) . . . concrete hardware timing model; used to specify the execution
time of a given code sequence for a specific target hardware

• WCETcalc = ω(ffobj ,mt) . . . calculated WCET

• SCω = βs(WCETcalc, Psrc) . . .WCET, back-annotated to source level

• OCω = βo(WCETcalc, Pobj) . . .WCET, back-annotated to object level

The meaning of the symbols defined in Definition 2.2.1 is described in the following
subsections.

2.2.3 Extraction of Flow Facts

Calculating the WCET by only using ffimpl (see Definition 2.1.4) is in general impossible
since this task can be reduced to the well-known Halting Problem (described in [Man74,
Lew85]). To make WCET analysis feasible, the use of additional ffa (see Definition 2.1.5)
is required:

ff = ffimpl ∪ ffa (2.1)

As shown in Equation 2.2, redundant ffa are often used to simplify the extraction
of ff . The drawback is that specifying ffa explicitely could be a source for errors if it is
done manually by the user.

♦(ffimpl ∩ ffa 6= {}) (2.2)

22

2 Worst-Case Execution Time Analysis 2.2 The Process of Static WCET Analysis

The Dualism between ff and CFPff (P)

To perform WCET analysis for a program P , the minimum required set of ff has to
contain the syntactic structure and bounds for all loops. We call this minimal set of
flow facts ffsyntax ,lb . ffsyntax ,lb spawns the maximal set of execution traces CFPsyntax ,lb(P).
The abstract flow facts that would be required to build CFPopt(P) (Definition 2.1.3) are
called ffopt . All WCET analysis frameworks support some kind of ff within these two
extrema. It requires precise and flexible ff to minimise the potential cause for WCET
overestimation - the infeasible paths: CFPff (P)− CFPopt(P).

The CFPffx (P) for different ffx are in partial order. From the structure of the partial
order we can construct a lattice L〈M,∩,∪,⊥,>〉 where M =

⋃
x∈X CFPffx (P), ⊥ =

CFPopt(P) and > = CFPsyntax ,lb(P). This formalism intuitively shows the effect of
enriching ffx . Figure 2.5 shows an example for such a lattice of CFPs by means of a
Hasse Diagram.

CFPsyntax ,lb(P)

CFPff2 (P)

CFPff13 (P)CFPff12 (P) CFPff23 (P)

CFPopt(P)

CFPff1 (P) CFPff3 (P)

Figure 2.5: Partial Order of CFPff (P) and CFPopt(P) for a Sample Program
P

Assuming that all ffx are in normalised form without redundancy, we can show the
dualism between changes in CFPff (P) and ff . ff are in normalised format, when certain
constraints on the CFP are always represented in the same format (e.g., transforming
ranges for the value instantiation of input parameters into execution frequency con-
straints). This normalisation is an abstract model as it is in general not trivial to define
a normalised form for all kinds of ff because it would also depend on the underlying
method for calculating the execution scenarios. From that we get the definition of the
lattice LD〈MD,∩,∪,⊥,>〉 where MD =

⋃
x∈X ffx , ⊥ = ffsyntax ,lb and > = ffopt .

ffz = ffx ∪ ffy ⇐⇒ CFPffz (P) = CFPffx (P) ∩ CFPffy (P)

ffz = ffx ∩ ffy ⇐⇒ CFPffz (P) = CFPffx (P) ∪ CFPffy (P) (2.3)

The dualism of LD and L in modifying ff and CFPff (P) is shown in Equation 2.3. It
demonstrates how enriching ff will bring CFPff (P) closer to CFPopt(P). Additionally,
we can derive the following rules from Figure 2.5:

23

2.2 The Process of Static WCET Analysis 2 Worst-Case Execution Time Analysis

• If (CFPffx (P) = CFPopt(P)) holds, then ffx is an optimal path description.

• If (CFPffx (P) ∩ CFPopt(P) ⊂ CFPopt(P)) holds, then ffx is an invalid path de-
scription and can cause an underestimation of the WCET.

Methods

As already mentioned in Section 2.1.3, methods for characterisation of ff can have
different levels of automatism. To bring the ff into a format useful for the WCET
calculation method, the flow facts extraction pass e(Psrc) has to evaluate and convert
them. e(Psrc) provides implicit as well as explicit ff available at Psrc-level: ffimpl ∪ ffa =
ff = e(Psrc).

The syntactic structure can be extracted easily. The same is true for ffa that act
as simple structure information (e.g., loop bounds). ffa that describe the program
behaviour indirectly, are called indirect ffa . An example for indirect ffa are symbolic
expressions that describe a loop bound in an algorithmic way similar to the program
code.

For all kinds of indirect ffimpl and ffa it is required to perform semantic analysis during
extraction of ff . Examples for semantic analysis techniques are given in Section 2.1.3.

2.2.4 Compilation

To analyse a program for its WCET it has to be transformed from its source representa-
tion (Psrc) to the representation where the analysis is done (Pobj). This transformation
Pobj = c(Psrc) (as defined in Definition 2.2.1 on page 22) is usually the program com-
pilation. This compilation is a surjective projection from Psrc to Pobj . The projection
is defined by the compiler version and the activated compiler switches. Therefore, it is
not possible to match the control structures from Pobj directly with that from Psrc for
all kinds of code optimisations of the compiler.

Obviously, in case Psrc and Pobj are of the same representation level, no transfor-
mation is required. A typical example of this is writing and analysing a program at
assembly level. Another case is described in [PS91], where WCET analysis is done di-
rectly at the C language level (actually on a small subset of C). However, the authors
do virtual code compilation by assuming that the compiler is called with disabled code
optimisations and therefore allows a direct assembly code prediction for each source
statement.

2.2.5 Transformation of Flow Facts

As motivated in Section 2.2.4, it is required to transform the flow facts ff of the program
in accordance with the program compilation. The operation for transforming ff has been
defined in Definition 2.2.1 as ffobj = c̃(ff).

24

2 Worst-Case Execution Time Analysis 2.2 The Process of Static WCET Analysis

c̃(ff) must work in close connection with the compilation process c(Psrc). Using the
debug information of the compiler can sometimes work as a simple mapping solution. In
case of strong code optimisations it is required to get additional support by the compiler.

The simplest approach would be to transform ff manually from Psrc down to Pobj

[LM95]. This technique is simple to implement but hard to maintain in case of program
updates and is potentially error-prone.

Another approach would be to let the compiler generate a code optimisation and
transformation trace [EEA98]. This approach is easier to implement for simple optimi-
sations. However, to support all types of optimisations, it is too complex [Eng97].

An alternative approach is to let the compiler do the mapping and generation of the
correct ffobj [KP01]. This approach requires more compiler modifications but provides
the most flexible support for code optimisations.

2.2.6 Exec-Time Modelling

The subject of exec-time modelling is described in Section 2. To perform WCET analysis,
it is required to derive a concrete time model mt for the program Pobj . As described in
Section 2.2.4, Pobj does not necessarily mean object code.

The operation to derive mt is tM(Pobj) (defined by Definition 2.2.1 on page 22). It is
required that the semantics of mt is compatible with the method for execution scenario
calculation. The construction of an accurate mt together with the search for a minimal
CFPff (P) are most challenging to minimise the overestimation of the WCET. To model
some hardware features, it may be also useful to perform tM(Pobj) at inter-procedural
level, especially for recursive or short callee functions.

It is important to note that different exec-time modelling can yield a different
CFPWCET ,ff (P) for the same ff . Furthermore, Atanassov et al. reported in [AP01] the
effect that adding the effects of DRAM refreshes changed the calculated CFPWCET ,ff (P).

2.2.7 Calculation of Execution Scenarios

As shown by the functions used in Equation 2.4, the calculation of WCETcalc depends
on the sequence of previous operations.

WCETcalc = ω(c̃(e(Psrc)), tM(c(Psrc))) (2.4)

The Worst-Case Execution Trace

In Section 2.2.3 we have seen that all CFPffx (P) are in partial order and converge to
CFPopt(P) by enriching ffx (see Figure 2.5 on page 23). This is because ffx always have
to describe a safe approximation of the possible control flow CFPopt(P).

The WCETcalc calculated by ω(ffobj ,mt) has a corresponding execution trace

25

2.2 The Process of Static WCET Analysis 2 Worst-Case Execution Time Analysis

CFPWCET ,ffobj
(P). The actual execution time of CFPWCET ,ffobj

(P) is at most WCETcalc.
There is still a partial order between CFPff (P) and CFPWCET ,ff (P) as shown in Equa-
tion 2.5. The same is true for CFPWCET ,opt(P). It is also interesting to note that if
(CFPWCET ,opt(P) = CFPopt(P)) then the program has a single-path structure, i.e. se-
quential code. As discussed in Section 2.1.2, pure runtime measurements are an adequate
method to obtain the WCET of programs having a single-path structure.

CFPWCET ,opt(P) ⊆ CFPopt(P)

CFPWCET ,ff (P) ⊆ CFPff (P) (2.5)

Comparing CFPWCET ,ff (P) and CFPWCET ,opt(P) we can see some interesting proper-
ties of the control flow of programs. As shown in Figure 2.6, the various CFPWCET ,ffx (P)
do not converge into CFPWCET ,opt(P). For example, CFPff1 (P) and CFPff12 (P) yield at
least partially different CFPWCET ,ffx (P). Furthermore, CFPff23 (P) shows that we can
get different CFPWCET ,ff (P) for the same ff . The reason for this is due to the fact that
exec-time modelling also influences WCETcalc (as defined in Definition 2.2.1 on page 22).

CFPWCET ,ff23a (P)

CFPsyntax ,lb(P)

CFPff2 (P)CFPff1 (P)

CFPff13 (P)CFPff12 (P) CFPff23 (P)

CFPopt(P)

CFPWCET ,opt(P)

CFPWCET ,ff12 (P)

CFPWCET ,ff23b (P)CFPWCET ,ff1 (P)

CFPff3 (P)

Figure 2.6: Partial Order of the Sets of Execution Traces CFPff (P) and the
Execution Trace CFPWCET ,ff (P) that Yields to the WCET for a
Sample Program P

The fact, that the calculated CFPWCET ,ff (P) can be different from the execution
trace CFPopt(P) of the optimal WCET solution is formulated in Equation 2.6. For the
other case (CFPWCET ,ff (P) = CFPWCET ,opt(P)) we would have found the optimal path
solution. But more important, Equation 2.7 states that if we have not found the optimal
path solution, we have found a CFPWCET ,ff (P), outside of in reality possible execution
paths. Beside incomplete exec-time modelling this is a major reason for overestimating
the WCET.

26

2 Worst-Case Execution Time Analysis 2.3 Static WCET Analysis Using IPET

♦(CFPWCET ,ff (P) 6= CFPWCET ,opt(P)) (2.6)

(CFPWCET ,ff (P) 6= CFPWCET ,opt(P)) −→ (CFPWCET ,ff (P) /∈ CFPopt(P)) (2.7)

Theorem 2.2.2 It is not safe to extrapolate from a calculated WCETcalc value to take
the effects of additional hardware properties into account. Applying a different timing
model can result into a different CFPWCET ,ff (P).

The main result of investigating CFPWCET ,ff (P) is given in Theorem 2.2.2. To
demonstrate this, a practical example for the effect of DRAM refreshes is given in
[AP01].

Calculation Methods

Typical calculation methods for WCETcalc = ω(ffobj ,mt) are discussed in Section 2.1.4.
The result of the execution scenario calculation is the WCETcalc, but some approaches
also deliver additional information like CFPWCET ,ff (P) or the execution frequency of
each statement.

For example, IPET-based WCET analysis (described in Section 2.3) provides in-
formation about the execution frequency of each statement but not the concrete
CFPWCET ,ff (P).

Back-Annotation of Results

To examine the timing behaviour of a program P and looking for best places to optimise
them for lower WCET, it is required to split the WCETcalc to its contribution to blocks
of certain granularity. It is desired to know the WCET contribution for each single
statement. Depending on the target hardware it may be also interesting to know more
about CFPWCET ,ff (P).

Back-annotation can be done on several representation levels within Psrc (SCω =
βs(WCETcalc, Psrc)) and Pobj (OCω = βo(WCETcalc, Pobj)). It depends on the method
used for execution scenario calculation, how much information is available. More aspects
of back-annotation are described in Section 2.1.6 on page 19.

2.3 Static WCET Analysis Using Implicit Path

Enumeration

This section gives an introduction to WCET calculation using implicit path enumeration
technique (IPET). First, a description of integer linear programming (ILP) to be used
as a constraint solver for IPET is given. Afterwards, it is shown how IPET can be
applied to calculate the longest execution trace and what kind of flow facts can be used
to describe (in)feasible paths.

27

2.3 Static WCET Analysis Using IPET 2 Worst-Case Execution Time Analysis

2.3.1 Integer Linear Programming

Integer linear programming (ILP) is a method used in the area of operations research
[Bur72]. ILP is a special form of linear programming where it is possible to require that
certain variables in the solution are integer numbers. A typical mathematical problem
for the use of ILP is the distribution of limited resources to concurrent processes. The
goal in this case is to maximise the overall productivity of all processes.

An ILP problem consists of the following components:

• n parameters c1, c2, c3, . . . , cn of the system

• n decision variables x1, x2, x3, . . . , xn

• the target function Z =
n∑

i=1

cixi . . . is to be maximised

• m constraints like
∑n

j=0 aijxj ≤ bi ∀i ∈ [1,m]

• n nonnegativity conditions xj ≥ 0 ∀j ∈ [1, n]

• specification of integer variables xj ∈ int ∀i ∈ [1, n]

In the context of the resource distribution problem, the components of an ILP prob-
lem can be interpreted as follows:

xj . . . amount produced of product j
cj . . . profit per piece of product j
bi . . . capacity of resource i

aij . . .
input factors (used amount of resource i for the pro-
duction of one piece of product j)

For the purpose of WCET calculation all variables must have integer solutions, be-
cause the decision variables in this case represent the execution counts of the control
flow edges of the program to be analysed. It is therefore assumed throughout this work
that every ILP variable is an integer variable.

2.3.2 Timing Analysis based on IPET

The WCET calculation method used with the proposed framework is based on implicit
path enumeration technique (IPET) [PS97, LM95]. This method is quite flexible and
allows to model the whole program or function globally as one IPET problem. One
advantage of this method is the ability to specify ff that describe global dependencies
between the execution frequency of certain execution paths. All kind of possible IPET
constraints can be given as annotated ff in the source code and are translated safely in
parallel to code transformations.

28

2 Worst-Case Execution Time Analysis 2.3 Static WCET Analysis Using IPET

To demonstrate the expressiveness of the ff supported by our transformation frame-
work, we will give a short introduction to IPET-based WCET calculation.

Assume the structure of a program is given by its control flow graph (CFG). The
edges of the CFG are denoted by 〈Ni, Nj, t〉 which means that there exists a control
flow edge from node Ni to node Nj of type t ∈ {s, b}. An edge of type s denotes
a sequential control flow where a type of b denotes a branching control flow. xNiNj [t]

represents the execution time of a single node Ni in the case it takes the control flow
edge 〈Ni, Nj, t〉. NiNj[t] represents a variable that counts the execution frequency of
a CFG edge 〈Ni, Nj, t〉 during the execution of the program. Using this notation, the
WCET can be expressed by the following IPET target function:

WCET = max
∑

〈Ni,Nj ,t〉∈CFG

xNiNj [t] ·NiNj[t]

The structure of the CFG is modelled as a sequence of constraints over the execution
counting variables NiNj[t]. Furthermore, it is assumed that the minimum value of
each such counter variable is nonnegative. Putting all this together, the solution of the
resulting IPET problem represents the WCET of the program. This solution can be
calculated by using integer linear programming. The structure of the resulting IPET
constraints are explained by showing two examples:

P

A

B

N

D

C

(a) Modelling Alternatives

P

A

B

N

m0

m1

(b) Modelling Loops

Figure 2.7: Modelling Program Structures

Figure 2.7(a) gives an example for alternatively executable CFG edges. There is no
additional ff required to model the control flow of this structure. The possible control
flow can be expressed by the following IPET constraints:

PA[s] = AB[s] + AC[b] (2.9)

AB[s] = BD[s]

AC[b] = CD[s]

BD[s] + CD[s] = DN [s]

29

2.3 Static WCET Analysis Using IPET 2 Worst-Case Execution Time Analysis

An example for a loop is given in Figure 2.7(b). A loop requires at least additional
ff to describe its loop bound LB. The syntactic control flow of the loop is modelled by
the following constraints:

PA[s] + BA[b] = AB[s] + AN [s]

AB[s] = BA[b]

The loop bound is modelled by applying the additional ff :

m0 = PA[s]

m1 = AB[s]

m1 ≤ LB ·m0

In addition to loop bounds, ff can also be used to express further knowledge about
the runtime behaviour of the code. Such ff can be derived by semantic code analysis
or just stated by having additional knowledge about the possible values of the input
parameters.

2.3.3 Flow Information

The WCET calculation method based on IPET allows the specification of additional flow
facts to limit the CFP in a quite flexible way. It is possible to use arbitrary constraints
over the execution frequency of several CFG edges. The use of this flow information to
obtain a more precise WCET value for IPET based WCET calculation is described in
Section 2.3.2. These flow facts basically consist of the following components:

Markers to label control flow edges from the CFG of the program. It is also possible
to assign multiple markers to the same flow edge.

Restrictions to limit the possible CFP by linear constraints over the execution fre-
quency of CFG edges. The markers are used for reference to the CFG edges.

Loop bounds to limit the iteration count of a loop. For each loop the loop bound
specifies the interval of possible iterations counts. Loop bounds can be directly
translated into a combination of markers and restrictions. But during the flow
facts transformation phase in parallel to code optimisations by the compiler they
are kept as distinct values. This allows to transform flow facts more precisely.
Loop bounds are mandatory flow facts to perform WCET analysis.

Such flow facts can be directly integrated into the source code to enable an intuitive
interface for developers. An example for such an integration is wcetC [Kir02] which
is a programming language derived from ANSI C. In wcetC it is possible to specify
additional flow facts by source code annotations. The usage of wcetC in a compiler
within a complete WCET calculation framework is described in [Kir00].

30

2 Worst-Case Execution Time Analysis 2.4 Chapter Summary

One of the initial questions for the start of our work was the selection of the type
of flow facts to be supported by our flow facts transformation framework. As discussed
in Section 2.1.4, IPET allows to consider the most general form of flow facts among the
discussed WCET calculation methods. IPET based WCET calculation has also evolved
to be the most often used WCET calculation method. Therefore, IPET was selected
as the supported WCET calculation method. However, as other WCET calculation
methods will typically exploit only a subset of the flow facts available for IPET, they
will be supported by our method as well. As mentioned above, flow facts for IPET based
WCET calculation allow the specification of arbitrary constraints over the execution
frequency of CFG edges. There exists also a proposal given by Engblom et al. to
extend the flow facts for IPET to support also constraints over on execution sequence
of CFG edges by addressing subsets of a loop’s iteration instances [EE00]. Providing
flow facts at such a granularity becomes awkward when doing it manually. On the
other side, current flow facts extraction techniques also do not support flow facts at this
granularity. As a consequence, we decided not to support flow facts at such a granularity.
But principally, our framework to construct safe flow facts transformation rules could
be also applied to such flow facts.

2.4 Chapter Summary

This chapter described WCET analysis techniques, including a discussion about whether
to use static WCET analysis or runtime measurements. A generic static WCET analysis
framework has been presented to clarify the context of this thesis. Furthermore, the type
of flow information that is used by our flow-facts transformation approach has been
described in Section 2.3. This flow information allows to specify arbitrary constraints
over the iteration frequency of control flow edges.

31

2.4 Chapter Summary 2 Worst-Case Execution Time Analysis

32

There exists a great chasm between those, on one side,
who relate everything to a single central vision. . .

and, on the other side, those, who pursue many ends,
often unrelated and even contradictory. . .

The first kind of intellectual and artistic personality
belongs to the hedgehogs, the second to the foxes.

Sir Isaiah Berlin, Hedgehog and Fox (1953)

Chapter 3

Related Work

This chapter gives an overview about related work about WCET analysis and other
related topics. The basic tasks of a generic WCET analysis framework are shown in
Figure 1.1 on page 3. The related work about WCET analysis is structured according
to the different tasks of the generic WCET analysis framework shown in Figure 1.1.

3.1 Extraction of Flow Facts

Code annotations can be used to express additional flow facts (ff) for a program to
enable the calculation of a (tight) WCET bound. Such code annotations can be im-
plemented in various was, for example by programming language extensions, special
compiler pragmas, separate description files, or as interactive user input. In the follow-
ing we describe existing methods to annotate code with additional ff and to extract
flow facts from the program code.

3.1.1 Manual Code Annotations

This subsection lists various types of ff that are proposed to support WCET analysis.
For assessing the concepts, is also important to note that the ff transformation frame-
work proposed in this thesis is not limited to a certain type of ff . This is because before
ff are transformed by our method, they may be converted to an adequate format by the
flow facts handling features of the WCET analysis framework.

Klingerman and Stoyenko describe the language Real-Time-Euclid [KS86], which was
especially designed to write programs for hard real-time systems. This language disal-
lows the use of recursion or goto statements. Loops are restricted to statically bounded
for loops for which the number of iterations can be bounded easily and time-bounded
generic loops. Real-Time-Euclid does not provide further mechanisms to describe infea-
sible paths.

Park and Shaw describe timing schema to calculate the WCET [Sha89, PS91, Par93].
The authors defined a regular-expression-based path language to express possible ex-

33

3.1 Extraction of Flow Facts 3 Related Work

ecution paths. This path language may be expressive enough to exactly specify the
possible CFP , but does not represent an adequate user interface for code annotations.
Therefore, the authors developed the information description language (IDL) to express
(in)feasible paths. IDL allows to express the exclusive, combined, etc. execution of
program parts, but it is in general not flexible enough to describe a program’s CFP pre-
cisely. The integration of a subset of IDL into a commercial compiler has been described
by Börjesson [Bör95].

Puschner and Koza propose the language MARS-C to be used in combination with
a tree-based WCET calculation method [PK89]. Beside bounded loops, they use new
constructs like scopes, markers, and loop sequences to describe infeasible paths. Markers
are used to restrict the execution count of program positions relative to its surrounding
scope. The language also allows to bound loops by specifying a time bound, which
has to be checked at runtime. However, the tree-based WCET calculation is not an
adequate method to handle the flexible type of ff used in MARS-C. Therefore, the
authors restricted the locations where markers can be used inside the code.

With the development of implicit path enumeration (IPET) based WCET calculation
methods [PS97, LM95] it was possible to process more complex ff . Thus, also code
annotation techniques have been developed to explicitely express flow information to be
used for methods like IPET. Vrchoticky presented the programming language Modula/R
[Vrc92, Vrc94b] that includes a generalisation of the marker/scope concept introduced
in [PK89]. Modula/R was a language targeted to the MARS system [KFG+93] with
additional annotations like provision of time bounds. To start with our research of ff
transformation in parallel to code optimisations, we developed a new language, called
wcetC [Kir00, Kir02]. wcetC is derived from ANSI C and contains loop bound,
marker, scope, and restriction constructs as ff to describe the possible CFP of a program.
The ff of wcetC can be directly used for IPET based WCET calculation methods.
Engblom and Ermedahl described a language for IPET based calculation methods that
also allows to address by ff subsets of a loop’s iteration instances. No code example has
been given by the authors, that exploits such an ff extension.

Blieberger has constructed so-called discrete loops to simplify the computation of up-
per loop iteration bounds [Bli94]. Discrete loop constructs demand from the programmer
to describe, in which way each loop-variant variable changes from one iteration to the
next iteration. This information is then analysed to compute a safe upper iteration
bound for the loop. Discrete loops are limited to certain types of loops. For example, it
is required that all loop-variant variables change their values monotonically. Annotated
discrete loops are a compromise between simple manual code annotations without se-
mantic code analysis and complex semantic code analysis methods that are able derive
loop bounds and feasible paths automatically.

A WCET analysis framework that uses just basic program annotations like the value
range of input parameters is described by Gustafsson [Gus00, Gus02]. The semantic
code analysis technique of this WCET analysis framework is discussed in the following
section.

34

3 Related Work 3.1 Extraction of Flow Facts

3.1.2 Semantic Code Analysis Techniques

Before a WCET analysis framework is able start the calculation of a WCET bound,
it has to extract the required flow facts from the input data. Input data are typically
the program code and additional code annotations as describted above. The extraction
of flow facts phase has to calculate from the annotated code the ff in a format that is
suitable for the incorporated WCET calculation method. The complexity of the flow
facts extraction depends on the type of provided code annotations and the possible
complexity of the analysed code. For example, ff provided in a language like wcetC
[Kir02] do not require complex calculations in the extraction phase. Analogous, when
analysing only simple code structures (e.g., straight-line code without loops, as described
by Stappert and Altenbernd [SA00]), the flow facts extraction phase can be kept quite
simple. In the following we describe some approaches that spend more attention to the
flow facts extraction phase.

Chapman described WCET analysis for SPARK Ada, a subset of Ada93 including
annotations for static analysis [CBW94, CBW96]. Iteration bounds for loops are de-
scribed in SPARK Ada by annotations about input data values or the “mode” of the
program. The framework calculates loop bounds and infeasible paths (which are called
dead paths). The approach uses symbolic execution and graph rewriting to calculate the
WCET.

Altenbernd describes a WCET calculation method for real-time programs that uses
only loop iteration bounds and function recursion bounds as ff annotations [Alt96a,
Alt96b]. The described WCET analysis method is used within the CHaRy (C-Lab
Hard Real-Time) system [Alt97]. The presented approach can identify certain infeasible
paths automatically by using symbolic execution. The algorithm initially assumes all
variable values to be undefined and updates them based on assignments or conditional
tests. The accuracy of the method is restricted due to the fact that it does not consider
annotations for input variables and uses a coarse value domain based on simple relations
from variables to constant values.

Healy et al. describes a flow facts extraction framework to bound the number of loop
iterations [HSW98, HW99, Hea99, HSR+00]. The authors present methods to bound the
number of iterations for three special types of loops: loops with multiple exits, iteration
bound depending on unknown variable values (requires annotations about value bounds
of these variables), and inner loops that depend on counter variables of outer level loops.
The analysis method is based on a technique to detect value-dependent constraints.
The proposed analysis methods are relatively efficient for larger programs compared to
methods that can analyse generic loop structures, but the proposed methods are limited
to certain types of loops.

Gustafsson presents a WCET analysis framework for programs written in
RealTimeTalk (RTT) which requires only basic program annotations like the value range
of input parameters as ff [GE98, Gus00, Gus02]. The ff extraction is done by abstract
interpretation. This method can find infeasible paths automatically. Compared to other
approaches, the flow facts extraction phase of this approach takes more computation
time, but automatically calculates precise (in)feasible paths based on simple program

35

3.2 Transformation of Flow Facts 3 Related Work

annotations. It would be also interesting to see how this approach can be applied to
analyse more complex data structures like lists or arrays.

3.2 Transformation of Flow Facts

While the research community has spent intensive effort to develop WCET calculation
methods and modelling the target hardware, the implication of using optimising compil-
ers for WCET analysis has received less attention. Since they radically change the code
structure, the problem of mapping the structure of the source code and additional flow
facts to the object code in case of optimising code transformations by a compiler has
not been tackled sufficiently. The complexity arises when code optimisations radically
change the structure of the generated code.

The group of Mok et al. uses special event markers to keep a mapping between the C
source and the assembly code [MACT89]. Event markers describe the begin and end of
program sections. These event markers are inserted automatically as annotations into
the source code by a tool. A modified compiler [Ame88] has been used to transform
the annotations to assembly code and to generate a timing analysis language (TAL)
script. The TAL [Che87] script is interpreted to calculate the WCET. The authors do
not describe whether they allow code optimisations during the compilation phase. A
drawback of the approach is that the compiler only transforms the event markers from
source to assembly code but no ff that are required for the calculation of the WCET.
The user has to edit the generated TAL script to specify the loop iteration bounds or to
express infeasible paths. The granularity of the timing blocks can be refined by inserting
special “split points” into the annotated assembly code. Even if this approach would
support the transformation of event markers in case of code optimisations, the task to
correctly update the TAL scripts has to be done manually after the compilation phase.

Park et al. modified the GNU C compiler to perform WCET analysis of programs
written in a subset of the C language and translated for the M68010 processor [PS91,
Par93]. The ff are expressed by information description language (IDL) programs. The
IDL statements are mapped with labels to the source statements. The authors perform
WCET analysis at source code with predicting the code, generated by the compiler with
default optimisations. This WCET analysis approach is not appropriate to handle code
optimisations performed by a compiler.

The use of debug information is a simple technique to obtain a mapping between
source and object code. This mapping becomes less precise in case of code optimisations
and sometimes leads to surprising results. In case of radical code transformations,
specifying ff for the source code and mapping them to object code cannot be done
unambiguously [Exl99]. The timing tool described in [LMW96] does not derive ff from
the source code. Instead, it interactively requests the specification of loop bounds from
the user. The framework described in [FHL+01] allows to specify ff like loop bounds or
recursion bounds at the source code and performs an external mapping without compiler
support. Such an approach cannot support generic code optimisations.

36

3 Related Work 3.2 Transformation of Flow Facts

A first improvement is to modify the compiler to output information, for example,
about control flow or memory access addresses. [LBJ+95, HAM+99]. The described
approaches mostly focus on providing information to model the target hardware, whereas
they do not address the handling of ff in case of structure changing code optimisations.

Vrchoticky has taken the approach to completely integrate WCET analysis into the
Modula/R compiler [Vrc94a]. This compiler does not perform any structure changing
code optimisations. Therefore, the underlying ff transformation was not designed to
support techniques like loop optimisations.
Beside the transformation of ff , Vrchoticky also discussed the aspect of presenting the
timing effects of code transformations intuitively inside the source code. The reported
overall WCET for a program or function must be always correct. A further refinement
is to report also the relative execution times of single source statements in an intuitive
way. For example, when performing common subexpression elimination (CSE, discussed
in Section 5.4), it may be more intuitive when the execution time is distributed evenly to
both source statements. Such a simple technique can be only applied when performing
CSE on a single basic block. But more complex code transformations and sequential
applications of them make it impossible to present the execution time of single source
statements in an intuitive way.

Lim et al. let the compiler generate additional optimisation information [LKM98].
Their WCET calculation method is based on extended timing schema. As this calcula-
tion is performed hierarchically, they only need to consider loop bounds as ff . No other
types of ff are supported. By using labels and transformation rules, their approach is
powerful enough to model, for example, the construction of a new loop from two loops
in the original code. But they do not calculate the new loop bound automatically, it
has to be translated manually by the user.

Engblom et al. describe a more advanced approach for compiler generated opti-
misation traces, called co-transformation in [EEA98]. They designed an optimisation
description language (ODL) to reflect the code optimisations performed by the com-
piler. As this approach is currently the most advanced published approach to deal with
ff updates in case of code transformations, we will in the following discuss its limita-
tions in more detail. A more detailed discussion about the capabilities of ODL is given
in [Eng97]. During the code optimisations the compiler has to generate an ODL trace
which is used by an external tool to perform the required ff update. It is desirable to
improve four important aspects of this approach:

1. The co-transformer requires knowledge about how code transformations are per-
formed by the compiler. An update of the optimisation code in the compiler
raises the problem of maintaining the co-transformer itself. It is desireable to have
a solution without the burden of updating two separate tools in parallel.

2. The WCET calculation method is based on the implicit path enumeration tech-
nique (IPET) which directly allows to consider ff like global constraints on the
execution frequency between certain execution paths. But the data structure
maintained by the co-transformer consists only of loop scopes with maximum loop

37

3.3 Exec-Time Modelling 3 Related Work

bounds for each loop and a maximum execution count relative to its surrounding
loop scope for each basic block. These ff cannot describe more advanced relations
like the execution count of triangle loops. Some code transformations, such as loop
unrolling cannot be handled precisely due to this limited flexibility in representing
ff . It is important to represent ff in a more flexible way to support more code
optimisations in a precise way.

3. As stated by Engblom in [Eng97] (p. 56) it is still an open question to find a
representation of infeasible paths in a transformable way. A flexible ff representa-
tion has to be found that supports also the transformation of information about
infeasible paths.

4. The co-transformer maintains a control flow graph (CFG) in addition to the cur-
rent ff . The matching of ODL statements with the CFG is done via the syntactical
structure of its nodes. Edges of the CFG cannot be directly addressed. As a re-
sult, even common optimisations like branch optimisation are not supported. The
introduction of new loops is not supported. The general graph structure in ODL
is flat. It would be preferable to have a hierarchical representation that allows to
match more generic code transformations.

In the ff transformation framework presented in this thesis, we addressed all these
improvement aspects mentioned above. The aspect of Item 1 is addressed by a small set
of transition rules to describe the ff transformation, which are described in Section 7.2.
The flexible ff representation as mentioned in Item 2 and Item 3 has been addressed by
representing the ff in a format close to that at which the ff are finally used to calculate
the WCET. The structure of the data tuples is described in Section 7.1. The argument
of Item 4 is supported by our method since we map all ff that describe infeasible paths
directly to the edges of a program’s CFG. Therefore, our approach supports also low-
level code transformations that directly change control-flow edges of the CFG. Concrete
ff transformation rules for representative code transformations are given in Chapter 8.

3.3 Exec-Time Modelling

Exec-time modelling deals with the construction of a hardware model that is suitable
to reason about the execution time of program statements. Over the last years, the re-
search community has spent high attention on performing exec-time modelling for mod-
ern processors that have performance-enhancing features like caches, pipelines, branch
prediction, etc. This subsection gives an overview of this area by describing some rep-
resentative contributions.

Lim et al. present an extension of the timing schema approach to handle pipeline and
caches [LBJ+95]. Pipelines are modelled by using reservation tables. For cache analysis
the authors assume some kind of cache partitioning to prevent tasks from disturbing
each other’s cache behaviour. The described method works for direct-mapped and set-
associative instruction caches. Data caches are handled in a rather simple way. Lim

38

3 Related Work 3.3 Exec-Time Modelling

et al. have extended the approach in [LHKM98] to in-order superscalar processors, by
maintaining instruction dependence and latency graphs instead of reservation tables.

Li et al. [LMW95b, LMW95a] modelled instruction caches (direct mapped as well
as set associative) and data caches. They constructed a timing model by generating
constraints, which represent some kind of flow facts. The cache analysis is directly
integrated into IPET-based WCET calculation by using cache conflict graphs. The
usage of this approach is limited, because the resulting complexity of the calculation of
execution scenarios becomes infeasible complex for real-world programs.

Arnold et al. introduces static cache simulation for direct-mapped instruction caches
[AMWH94]. The analysis uses the categorisations “always hit”, “always miss”, “first
hit”, and “first miss”. Mueller has extended this static cache analysis method to set-
associative instruction caches [Mue97]. Healy et al. describe this instruction cache
analysis together in combination with a pipeline analysis using reservation tables. This
approach is also able to capture pipeline effects that affect more than just neighboring
basic blocks [HAM+99]. White et al. extend the WCET analysis framework by a data
cache analysis [WMH+97, WMH+99]. Mueller describes in [Mue00] a framework to
model instruction caches with arbitrary levels of associativity.

Colin and Puaut [CP00, CP01] modelled the branch-prediction behaviour of the
Intel Pentium processor. They modelled the instruction cache, the branch prediction
mechanism and the pipeline. They reconstructed the pipeline reservation table of each
instruction by using the tool Salto[BS96]. Mitra et al. model the effect of advanced
branch predictors with global histories using linear constraints [MR01, MRL02].

Ferdinand et al. describe in [FHL+01] a WCET analysis framework of the USES1

group. This framework uses abstract interpretation to model caches (by must analysis
[AFMW96]) and pipelines [SF99]. They reported troubles on modelling the unified
instruction/data cache of the MCF 5307 (Motorola ColdFire) processor since this cache
used a so-called “pseudo round robin” cache replacement policy, that is quite difficult
to model [FHL+01].

Atanassov et al. have done exec-time modelling for the processor C167 from Infineon
[AKP01]. The timing modell was derived and refined by doing measurements on the
real hardware. The authors report the experience that the timing data given in the
processor’s manual are not sufficient to construct a safe timing model.

Engblom et al. describe a method to perform WCET analysis for processors with
pipelines [EE99, EJ02, Eng02]. The exec-time modelling is done by using a standard
trace-driven processor simulator. The authors simulate small code sequences, up to a
length where the pipeline effect disappears.

Lundqvist and Stenström present an approach based on instruction-level architecture
simulation for the PowerPC processor [LS98, LS99a, Lun02]. The method uses symbolic
execution to exclude infeasible paths without having to use manual code annotations.
The analysis is based on a relative simple value domain. Therefore, the path analysis is
less precise than those described in [Gus00].

1USES . . . University of the Saarland Embedded Systems

39

3.4 Calculation of Execution Scenarios 3 Related Work

Petters and Färber describe a combination of static analysis and measurements
[PF99, Pet00, Pet02]. A reduced control graph is generated for the program to be
analysed, which limits the number of paths that have to be analysed. The execution
times of all paths in the reduced graph are then measured on real hardware. The authors
use additional instrumentation code to enforce all path combinations. The execution
times of partitioned blocks are merged using extreme value statics. This approach pro-
vides a probabilistic WCET bound and not a safe upper bound. The retargeting of this
approach to another target hardware is relatively easy, because exec-time modelling is
done by measurements. Bernat et al. [BCP02] describe another probabilistic WCET
analysis method based on measurements that does not rely on code instrumentation.
However, this method relies on the provision of representative input test data to mea-
sure the execution profiles. The WCET is calculated by using a probabilistic variant of
the timing schema.

3.4 Calculation of Execution Scenarios

There have been three basic techniques published for the calculation of the WCET by
searching the longest execution trace: tree-based calculations, path-based calculations,
and implicit path enumeration techniques. These techniques are briefly described in
Section 2.1.4 on page 17.

The implicit path enumeration techniques is used within this thesis to calculate
the WCET after correct transformation of the flow facts. Therefore, this technique is
discussed in more detail in Section 2.3 on page 27.

3.5 Other Related Work

In this section we describe relevant work for this thesis that does not deal with WCET
analysis issues. Instead, the following reseach topics deal with the code transformations
performed by a compiler.

3.5.1 Code Optimisation for Real-Time Software

The scope of this thesis is not to consider the selection criteria for appropriate code
optimisations on real-time programs. Instead, we enable the analysis of their impact on
the WCET. It is a complementing research domain to analyse the effect of certain code
transformations to the real-time behaviour, especially the WCET.

Marlowe et al. have shown that the application of several code transformations to
reduce the average execution time can have serious impacts by causing deadline misses
[MM92]. They argue that code optimisations for hard real-time programs must be
safe in the sense that they will never cause a deadline to be missed in any execution
of the program. The authors identified the following five categories of standard code

40

3 Related Work 3.5 Other Related Work

Optimisation Safety class Notes
DAG optimisation dependent Memory copy vs. immediate initialisation

time.
common subexpres-
sion elimination

dangerous Requires inserting a statement; may delay
events.

copy propagation safe
constant propagation dependent Memory copy vs. immediate initialisation

time.
dead code elimination safe
code hoisting unsafe Code may be hoisted past event; reach defini-

tions analysis needed to determine if tempo-
rary variable must be added.

reduction in strength dependent Safety depends on machine architecture.
invariant code motion fixable Fix by unrolling to cover added initialisation

time.
vectorisation dangerous Safety depends on vector length and relative

execution times of vector and scalar instruc-
tions, if the loop includes events.

loop concurrentisa-
tion

fixable Unroll to cover fork/join time.

loop fusion dangerous May delay events in second loop; safety de-
pends on ability to concurrentise later.

index splitting dependent May be safe if vectorisation is possible later.

Table 3.1: Summary of Optimisations and their Safety [MM92]

transformations:

1. transformations which are always safe (“safe” transformations).

2. transformations which may not be safe but which have safe variants in many cases
(“fixable” transformations).

3. transformations whose safety depends on memory and instruction cost information
(“dependent” transformations).

4. transformation which are in general unsafe, whose safety depends upon the place-
ment of events in the program being optimised (“dangerous” transformations).

5. transformations which provably cannot be applied to at least some real-time pro-
grams, and whose safety cannot be determined from local analysis of the trans-
formed code (“unsafe” transformations).

A categorisation summary of concrete code transformations given in Table 3.1 has been
extracted from [MM92].

41

3.5 Other Related Work 3 Related Work

Younis et al. investigated the effect of optimising a single process to other processes
by introducing contention for shared resources [YMTS96]. An algorithm to safely apply
machine-independent compiler optimisations to distributed real-time systems. The al-
gorithm is based on resources’ busy-idle profiles to investigate effects of optimising one
process on other processes, whereby a restricted form of resource contention is assumed
to simplify the analysis.

3.5.2 Source-Level Debugging of Optimised Code

A similar problem to WCET analysis of optimised code is source-level debugging of
optimised code (SDOC). For precise WCET analysis of source programs at object code
level it is necessary to update flow facts that describe the possible CFP of a program.
To support source-level debugging of optimised code, a mapping has to be established
between the statements of the source and the object code for each execution instance.
Such a mapping can be complex since it has to handle the following two problems that
arise for SDOC:

Code location problem; is determining which source statement corresponds to a cer-
tain instruction in the object code, and vice versa.

Data value problems; concerns the question where the value of a certain variable
can be found for a given breakpoint of the program and whether this value is
up-to-date.

The code location problem is also relevant for WCET analysis since the calculated timing
information has to be reported back to the source code level. In the following we give a
brief description of some work in the field of SDOC.

The definitions of several basic terms used in SDOC are given in [Hen82].

Copperman uses data flow analysis to deal with the data value problem [Cop94]. He
performs the analysis on a single graph, which represents both the unoptimised and the
optimised programs, to determine whether variables are current, noncurrent, or endan-
gered (is noncurrent for certain control flow) at breakpoints. Thus, data value problems
are partially handled. The described approach cannot handle all code transformations,
for example, loop interchange is not handled. The author gives examples how to han-
dle basic graph transformations (e.g., introducing a block, deleting a block or edge,
coalescing two blocks, inlining a subroutine, unrolling a loop).

Wismüller describes a method to handle the data value problem in loops [Wis94a,
Wis94b]. He maintains a copy of both the flow graph for the source and the object code
of a program and preserves a relation on them, that is called CODE. An example for the
creation of the mapping by CODE is given in [Wis94a]. For the static analysis, loops are
unrolled in the unoptimised and optimised CFGs to distinguish among different instances
of definitions. Then, data flow analysis is performed on the unrolled unoptimised and
optimised program CFGs to determine whether variables are current or noncurrent at

42

3 Related Work 3.6 Chapter Summary

breakpoints. The data value problem is therefore only partially handled. This approach
works only with static information.

Adl-Tabatabai and Gross present an approach to handle the data value problem
[ATG96]. In contrast to the approach from Wismüller described above, the method of
Adl-Tabatabai and Gross uses analyses that are very similar to other analyses that are
done by the compiler and can thus take advantage of an infrastructure that is already
present. The work has resulted in a prototype implementation as part of the cmcc

optimising C compiler. This approach is also based on only static information and the
data value problem is handled only partially.

Jaramillo et al. describes an approach called FULLDOC, a solution for SDOC that
can report every value that should be reportable at a breakpoint and is actually com-
puted [JGS98, Jar00]. FULLDOC is based on static and dynamic information to handle
the data value problem. Jaramillo et al. propose a code mapping that reflects the
effects of code transformations. The mappings are established by analysing how the po-
sition, number, and order of instances of a statement can change in a particular context
when transformations are applied. To report precariously placed values, FULLDOC also
gathers dynamic information during execution. FULLDOC saves values before they are
overwritten and deletes them as soon as they are no longer needed for reporting. FULL-
DOC also prematurely executes the optimised program until it can report a value while
saving the values overwritten by the roll ahead execution, so that they can be reported
at subsequent breakpoints. The only limitation of FULLDOC is that it cannot report
values if their calculation has been omitted due to code optimisations. But as stated in
[Jar00], existing techniques can be incorporated that recover some of these problems.

To conclude, the common task to support WCET analysis or to support source-level
debugging is to transform meta-information in parallel to the code transformations. For
WCET analysis, this meta-information describes the possible CFP of a program, where
for source-level debugging, the meta-information forms a mapping of code locations and
data values between source and object code. The meta-information for WCET analysis
has a completely different semantics than the meta-information for SDOC. Therefore,
new transformation methods have to be developed to support WCET analysis of opti-
mised code. The context of WCET analysis and source-level debugging for optimised
code is also discussed in Section 6.1 on page 99.

3.6 Chapter Summary

This chapter has presented scientific work related to the context of our thesis. Numerous
work has been published on the issues of WCET calculation methods. Over the last
years there has been a strong research focus on extraction of flow facts and exec-time
modelling. Currently, there has been less attention on the issue of performing WCET
analysis of optimised code.

There has been no work published on flow facts transformation methods that support
arbitrary code transformations performed by the compiler. The topic of this thesis

43

3.6 Chapter Summary 3 Related Work

extends the state of the art in WCET analysis by providing such a method.

44

Never explain – your friends do not need it
and your enemies will not believe you anyway.

Elbert Hubbard, Motto Book (1907)

Chapter 4

Foundations of Program
Transformation and Abstract
Interpretation

The formalisation of program transformations requires solid theoretical foundations.
This chapter describes an abstract program representation based on the control flow
graph. Formal semantics is introduced to describe the meaning of a program. Based
on this semantics, abstract interpretation is described as a method to safely construct
an approximation of a program execution. Further, techniques to combine abstract
interpretations are discussed.

4.1 Program Flow Representation

In this thesis, the abstract program representation to describe code transformations is
the control flow graph, which is described as follows:

4.1.1 Control Flow Graph

The control flow graph (CFG) describes the possible control flow through the program.
Formally, a CFG is a possibly cyclic, directed Graph given by the quadruple G =
〈N, E, s, t〉, where N is the set of nodes, E is the set of directed edges, s is a unique
start node of in-degree 0 and t is a unique exit node of out-degree 0. For regular cases,
all nodes n ∈ N are reachable from s and t is reachable from all nodes n.

Series-Parallel Flowgraphs

Most popular definitions of structured programming assert that a program is structured
if it is ’built-up’ using only a small number of allowed ’constructs’, which are sequence,
selection and iteration [Fen91]. Boehm and Jacopini showed in 1966 the classical result

45

4.1 Program Flow Representation 4 Foundations

that every algorithm may be implemented using just sequence, selection and iteration
[BJ66]. The corresponding flowgraph of these constructs is shown in Figure 4.1. All
programs that are only built of these three constructs have a so-called ’D-structured’
(or just structured) CFG .

S1 S2 Sn
. . .

S
f

b) Selection:

E

tf
S

E
t

c) Iteration:

S1; S2; . . . ; Sn

a) Sequence:

if E then S while E do S

Figure 4.1: Basic Constructs for Structured Code

Each structured CFG is automatically also a series-parallel graph which follows from
the hierarchical composition. A series-parallel graph is constructed starting from one
start and one termination node by only applying series and parallel replacement rules
[Miz02] as shown in Figure 4.2. Series-parallel graphs (as also structured graphs) are
always reducible due to their construction rules.

b

a

b b

aa

b

a

Figure 4.2: Series and Parallel Graph Replacement Rules

It is obvious that to guarantee series-parallel CFGs, program statements like
continue, break or goto of ANSI C are not allowed. But also switch/case is not
allowed since it violates the series-parallel structure if the break statement at the end
of a case part (except the last one) is not given.

Reducible Flow Graphs

Series-parallel flowgraphs as described above represent structured programs. However,
quite few common languages follow this strictly structured program syntax. Even con-
structs like early-loop-exit or skip-to-next-loop-iteration do violate the series-parallel flow-
graph structure.

In practice, program analysis algorithms that are not applicable for generic program
structures require a reducible flow graph [ASU97]. A flow graph G is reducible if and only

46

4 Foundations 4.1 Program Flow Representation

if its edges can be partitioned into two disjoint groups, the forward edges and backward
edges with the following two properties:

1. The forward edges form an acyclic graph in which every node can be reached from
the initial node of G.

2. The back edges consist only of nodes whose heads dominate their tails.

a

cb

Figure 4.3: Irreducible Flow Graph

The flow graph given in Figure 4.3 is obviously irreducible since neither b nor c
do dominate each other, but according to the above definition one of them has to be
classified as a back edge.

In practice, programs rarely have irreducible flow graphs. Irreducible flow graphs can
be typically constructed by generic jump statements (like goto in ANSI C). Program
transformations like loop unrolling (described in Section 5.3.5) cannot be applied to a
loop with an irreducible structure.

Control Flow Path

Normally, the CFG is directly derived from the syntax tree of the parsed program.
Considering the semantics of the program statements and maybe also some a-priori
knowledge about possible values of the input data, it can happen that not all execution
traces represented by the CFG potentially can be taken during execution. The resulting
set of possible execution traces is called control flow paths (CFP). A definition of CFP
is given in Definition 2.1.1 on page 14. The concrete type of CFP to be considered for
a certain static analysis technique depends on the needs of the analysis algorithms and
the required precision. A technique to gradually improve efficiency of program analysis
is to rewrite the CFP during analysis after preliminary results are available.

4.1.2 Call Graph

Problems that address any kind of interprocedural control-flow analysis are based on
the call graph of the program. The call graph G is a directed multigraph1 [Jun90] and
can formally be defined as G = 〈N,S, E, s〉, where N is the set of nodes, S are the call

1multigraph . . . multiple edges allowed between two nodes

47

4.1 Program Flow Representation 4 Foundations

site labels, E ⊆ N × S ×N is the set of directed edges and s is the distinguished start
node. The call graph is a graph where each node represents a function and each edge
is a function call. Recursive function calls are marked by cycles in the graph. To be
potentially executed, a function n ∈ N must be reachable from s.

01 function f()

02 begin

03 call g();

04 if () then

05 call g()

06 else

07 call h();

08 end

09 function g()

10 begin

11 call h();

12 if () then

13 call i();

14 end

15 function h()

16 begin

17 end

18 function i()

19 begin

20 end

(a) Program Code

g

i

h

f

〈11〉

〈3, 5〉
〈7〉

〈13〉

(b) Call Graph

Figure 4.4: Example for a Call Graph

The corresponding call graph for the sample program given in Figure 4.4(a) is shown
in Figure 4.4(b). The source line numbers are used as call site labels to mark different
multiple calls to a callee function within the same caller.

4.1.3 Global Control Flow Graph

CFGs are typically constructed at function level. Applications that depend on the
syntactical structure of programs only have to construct the CFG at function level.
This is typically the case for traditional software development tool chains where the
compiler generates object files that are linked together afterwards by the linker. It is
obvious that the restriction to a single function can limit the effectiveness of CFG based
program analysis applications.

Each time a callee function is called within any caller function, it represents a differ-

48

4 Foundations 4.2 Semantics

ent calling instance of the callee functions. Constructing the global control flow graph
(GCFG) allows to pass specific information to and from the calling instance. Several
WCET analysis processing steps would benefit from this technique.

The GCFG is built by combining the call graph (Section 4.1.2) [Muc97] with the set
of CFGs. Inlining of function calls is a simple GCFG construction method applicable
for small programs with an acyclic call graph. A more flexible approach that also deals
with cyclic graphs is virtual inlining.

An example for such a GCFG is presented in [AMW95] which is called extended
super graph. It can be described as a graph with virtually inlined function calls. This
virtual inlining works by duplicating the data fields for each CFG node for different caller
functions. The data fields are the analysis-specific information in each node. Cyclic call
graphs are resolved by allocating a set of data fields with the size limited to a constant
value k. Additionally to the GCFG structure a set of mapping functions that connect
the data index of the caller instance with the data index of the callee instance is needed.
The call string approach [SP81] is used to distinguish different caller instances.

01

G

04

03

05

G

07

H

08

18

20

Subgraph I

Subgraph G

15

17

Subgraph H

09

11

H

13

I

14

Global CFG

12

Figure 4.5: Global Flow Graph

The concrete modelling of a GCFG depends on the specific features of the pro-
gramming languages. A GCFG having unbounded recursive function calls has to be
modelled descriptively and calculated on demand. A compact GCFG for the sample
program given in Figure 4.4(a) by defining subgraphs is given in Figure 4.5.

4.2 Semantics

The semantics describes the interpretation (i.e., the meaning) of a set of commands
or statements. The semantics defines the resulting output and may also be defined on

49

4.2 Semantics 4 Foundations

other input parameters than just the commands. In this work, we do not limit the term
semantics to interpretation of computer programs only. It is needed for different kinds
of executing commands. Consequently, Definition 4.2.1 defines the relation between
execution and semantics generically. The term interpreter is used to name the (abstract
or concrete) machine or algorithm that is considered to execute the given commands.

Definition 4.2.1 (Execution) is the processing of several commands under the control
of a certain semantics S.

In the following we will sketch three typical ways to describe the semantics of com-
mands in computer programs [Feh89]. Examples for the definitions of semantics are
given for the example language WHILE (see Annex A).

4.2.1 Operational Semantics

The operational semantics So describes the meaning of a program as a stepwise update
of the state of the interpreter. To focus on relevant properties, the modelled states
are usually an abstraction of the concrete states of the interpreter. The operational
semantics is suitable for describing the meaning of programming languages in view of
their implementation.

A configuration c is a pair 〈ξ, ε〉 where ξ is a program control point referring to the
next statement to be executed and ε is the environment. An environment ε is a tuple
〈σ, η, θ〉 where σ is the local store (Var→(Num ∪ {free})), η is the input file and θ is
the output file. Based on the above terms and the syntax of WHILE (Annex A) we
define the following tokens for the definition of the operational semantics of WHILE:

Token Description
Input: (Num ∪ Bool)∗ the set of input files η
Output: (Num ∪ Bool)∗ the set of output files θ
Store: Var→(Num ∪ {free}) the set of local variable bindings σ
Env: Store×Input×Output the set of environments ε
Pref the set of program control points ξ

(reference point marked with ↓)
Conf: Pref×Env the set of configurations c

The operational semantics of WHILE is defined by four semantic functions:

So
A[[aexp]]ε: (Aexp×Env) → (Num×Env)
So

B[[bexp]]ε: (Bexp×Env) → (Bool×Env)
So

S[[ξ]]ε: Conf → Conf
So

P [[↓ prog]]ε: Conf → Conf

The semantic function So
A[[aexp]]ε defines the semantics of a numeric expression aexp,

So
B[[bexp]]ε the semantics of a boolean expression bexp, So

S[[ξ]]ε the semantics of a single

50

4 Foundations 4.2 Semantics

program statement at control point ξ, and So
P [[↓ prog]]ε defines the semantics for the

whole program prog. The symbol ↓ denotes the current program control point. The
following shows some fractions of the definition of these semantic functions to give an
example of how they have to be defined (a more complete description of operational
semantic functions is given in [Feh89]):

Arithmetic Operation:
So

A[[a1 + a2]]ε
=⇒ (n1 + n2, ε

′′) where (n1, ε
′) = So

A[[a1]]ε and (n2, ε
′′) = So

A[[a2]]ε
′

Assignment:
So

S[[↓ V := a; S2]]ε
=⇒ 〈(V := a; ↓ S2), ε

′′〉 where (n, 〈σ′, η′, θ′〉) = So
A[[a]]ε and

ε′′ = 〈σ′[V 7→ n], η′, θ′〉
For modelling the occurrence of errors during program execution, the semantic func-

tions have to be extended to deal with error values in their value domain. Based on the
above semantic functions we can define the operational semantics by a mathematical
machine M = 〈C,→, C0, CT 〉, where C ⊆Conf is the set of possible states (configura-
tion), C0 is the set of initial states, CT is the set of termination states and → is the
transition function as defined in Definition 4.2.2.

Definition 4.2.2 (Transition Function →) The transition function Conf→Conf
is defined as 〈ξ, ε〉 7→ 〈ξ′, ε′〉 where 〈ξ′, ε′〉 = So

S[[ξ]]ε. This transition function is also
called small step program transition function.

4.2.2 Denotational Semantics

The denotational semantics S\ is a mathematic formalism suitable to describe the mean-
ing of a programming language in an abstract, short, concise and complete way. The
denotational semantics abstracts from the stepwise state update of an interpreter and
statically assigns to each program a function that maps from the program input to the
output. The denotational semantics is also called standard semantics as it describes
the “meaning” of single commands in a program. To derive the semantic functions for
denotational semantics, the principle of the curry-isomorphism is used:

A : (Aexp×Env)→Aexp
B : (Bexp×Env)→Bexp

curry
⇐⇒

A : Aexp→(Env→Aexp)
B : Bexp→(Env→Bexp)

Using this isomorphism, the denotational semantics of WHILE is defined by four
semantic functions:

S\
A[[aexp]]: Aexp → (Env→(Num×Env))

S\
B[[bexp]]: Bexp → (Env→(Bool×Env))

S\
S[[stmt]]: Pref → (Env→Env)

S\
P [[prog]]: Pref → (Env→Env)

Some fractions of the definition of denotational semantic functions as presented in
the following (a more complete description can be found in [Feh89]):

51

4.3 Abstract Interpretation 4 Foundations

Arithmetic Operation:

S\
A[[a1 + a2]]ε

=⇒ (n1 + n2, ε
′′) where (n1, ε

′) = S\
A[[a1]]ε and (n2, ε

′′) = S\
A[[a2]]ε

′

Assignment:

S\
S[[V := a; S2]]ε

=⇒ S\
S[[S2]](S\

S[[V := a]]ε)

=⇒ S\
S[[S2]]ε

′′ where (n, 〈σ′, η′, θ′〉) = S\
A[[a]]ε and ε′′ = 〈σ′[n/V], η′, θ′〉

To model arbitrary control flow, arising for example with goto statements, the above
defined denotational semantics has to be extended with continuation semantics [Bru81].
As described in [Feh89], the continuation semantic function for statements is written as:

S\
S[[stmt]]ε: Stmt → ((Env→Env)→ (Env→Env))

4.2.3 Axiomatic Semantics

The axiomatic semantics [Feh89] provides further abstraction than the denotational
semantics. The axiomatic semantics does not describe state transitions but provides
logical propositions about states. The meaning of a program P is characterised by the
weakest precondition (given by the logical formula Q) and the strongest postcondition
(given by the logical formula R):

{Q}P{R}

The semantics of compound statements is derived by rules like

{Q}S1{R} , {R}S2{T}
{Q}S1; S2{T}

An application of the axiomatic semantics is given in [HL99] for the concept of
generic loop unrolling. This technique is only described by manual experiments and not
implemented into an optimising compiler. Therefore, we have decided not to deal with
this code optimisation in more detail within this thesis.

4.3 Abstract Interpretation

Abstract interpretation is a formalised interpretation method that supports the sys-
tematic construction of a safe and correct interpretation based on a given concrete
interpretation.

As described in Section 4.2, an interpreter executes commands with respect to a
certain semantics. We have described three ways how to specify the semantics, but so
far we have not discussed the value domain on which the semantic functions operate.
We implicitely assumed an ideal interpreter with standard semantics for mathematic

52

4 Foundations 4.3 Abstract Interpretation

operations and without numeric overflow, even for the description of the operational
semantics. Therefore, all these described types of semantics are abstract semantics.
In fact, it is not possible to completely describe the concrete semantics for a specific
interpreter since it would be too complex to describe and model all of its temporal
properties. Here, we call temporal properties the steps performed to get the result and
static properties the type and value of the generated results.

Applications like program analysis interpret programs with the goal to extract certain
classes of information about the program behaviour. Such analysis is done is based on
a semantics that is defined with an abstract value domain. The calculation of certain
program properties is equivalent to the Halting Problem [Man74, Lew85]. Another
problem for program analysis is state explosion.

Therefore, approximations that introduce new properties to guarantee termination
and manageable calculation complexity have be taken into account. An example for
such an approximation is the use of intervals instead of concrete values. Abstract in-
terpretation is an interpretation, based on a formalism to guarantee the preservance of
consistent abstract properties in relation to the concrete semantics.

Abstract interpretation has its historical roots in program analysis starting in the
1960s. A similar idea called pseudo-evaluation [Nau92] was used by Naur in an Algol
compiler in 1965. Much of the early work in program analysis was rather ad-hoc and
the algorithms did not always preserve the semantics of the analysed language. In 1977,
P. Cousot and R. Cousot presented a formal basis of abstract interpretation [CC77].

4.3.1 Definition of the Abstract Interpretation

This section presents a formal, quite abstract definition of an abstract interpretation
given in Definition 4.3.1 (taken from [CC77]; with generalisation in [CC02] by using
posets). In classical abstract interpretation frameworks [CC77] the domain 〈DP ,v〉 was
defined to be a complete lattice 〈DP ,v,t,u,>,⊥〉.

Definition 4.3.1 (Abstract Interpretation) An abstract interpretation of a program
P is a tuple 〈DP , FP 〉, where DP is a poset po〈DP ,v〉 (the semantic domain) and
FP : DP → DP is a semantic transition function. FP must be monotone.

The following sections give a description of the basic terms like program semantics,
semantic transition function F , domain for interpretation D, fixpoint solution, etc.

4.3.2 Basic Principles of Abstract Interpretation

Abstract interpretation of programs is an approximation of their semantics. The correct-
ness proof of an abstract interpretation requires the existence of the standard semantics
which describes the possible behaviour of programs during their execution. As stated in
[CC92a], the abstract semantics focuses on classes of program properties which are usu-
ally defined by a collecting semantics. This collecting semantics can be an instrumented

53

4.3 Abstract Interpretation 4 Foundations

version of the standard semantics or, alternatively, a reduced version of the standard
semantics to the essentials in order to ignore “irrelevant” program execution details2.

To construct a safe abstract interpretation framework, it is required to formalise the
concrete semantic domain D and the concrete semantic transition function F ∈ D ½
D3. An element d ∈ D could be for example a set of maximal execution traces, a
function, an input-output relation, a set of states, etc. [CC92a]. For the construction
of the abstract interpretation several basic choices have to be made:

1. design of the abstract domain D̃.

2. definition of the correspondence between concrete and abstract properties. The
meaning of the abstract properties can be described by means of a correctness
relation R : D × D̃ → {true, false} where dR d̃ 7→ true means that the concrete

semantics d of the program has the abstract property d̃.

3. design of the abstract semantic transition function F̃ ∈ D̃ ½ D̃.

4. selection of extrapolation operators for inducing the abstract semantics. If the
correctness relation R : D × D̃ → {true, false} includes conditions like ∃d ∈
D,∃d̃1, d̃2 ∈ D̃ : (dRd̃1)∧(dRd̃1)∧(d̃1 6= d̃2), then the concrete semantic transition

function F may have many different abstract semantic transition functions F̃ . The
choice of the abstract properties can be done using the extrapolation operators
widening: Oe ∈ ℘(D̃) ½ D̃ and narrowing: Me∈ ℘(D̃) ½ D̃ [CC92a].

5. selection of a convergence acceleration method ensuring rapid termination of the
abstract interpreter even for abstract domains D̃ with infinite height (e.g. if D̃ is
a poset containing chains of infinite lengths). The convergence acceleration will

also be achieved by using some widening: Oe ∈ D̃×D̃ ½ D̃ and narrowing: Me∈
D̃×D̃ ½ D̃ operators [CC77]. The issue of convergence acceleration is discussed
in more detail in Section 4.3.10 on page 78.

The following subsections define the fundamental terms introduced above and show
their construction in more detail.

4.3.3 Domain of the Interpretation

To describe the semantics of a program it is required to define the semantic domain D

and the semantic transition function F : D → D.

The semantic domain D is a structure that contains all data objects of a certain
type. A transition function F of an interpretation has to operate on a well-defined

2for practical reasons, also the concrete semantics has to be reduced to certain properties that are
considered relevant for correct program execution behaviour

3A ½ B denotes the set of all functions F : A′ → B′ with A′ ⊆ A and B′ ⊆ B (A ½ B is the set
of all partial functions F from A to B)

54

4 Foundations 4.3 Abstract Interpretation

domain. The required structural properties on a semantic domain D depend on the
specific interpretation method. The interpretation method is derived from the type of
semantics description (operational, denotational, . . .) and the interested properties of
program execution. These interested properties are application specific.

As stated in [CC02] the semantic domains used in abstract interpretation must be a
poset (partial ordered set) 〈D,v〉. However, semantic domains often also enjoy stronger
properties. The following lists some typical structures of domains:

• partial order po 〈D,v〉,
a set D of elements partially ordered by the relation v (poset).

• complete partial order cpo 〈D,v,u,⊥〉,
a partially ordered set with a least element ⊥ and the greatest lower bound oper-
ator u.

• dual complete partial order (co-cpo) ccpo 〈D,v,t,>〉,
a partially ordered set with a top element > and the least upper bound operator
t.

• complete lattice,
〈D,v,t,u,>,⊥〉 a partially ordered set with a bottom element ⊥, a top element
>, a greatest lower bound operator u, and a least upper bound operator t.

The concrete interpretation of a program P is defined using the concrete semantic
domain. We denote the concrete domain with D. An abstract program interpretation
is defined using an abstract domain which we denote as D̃. The domain D̃ will only
describe execution properties instead of the concrete execution of a program P .

The following describes examples of semantic domains:

• An example of interesting program properties is the set of possible values for a
variable at a certain program point during execution. A typical program analysis
based on this domain is constant propagation [Muc97]. The domain used for con-
stant propagation is given in Figure 4.6(a), where > denotes that a variable could
refer to more than one value during program execution.

• A domain suitable for sign analysis of variable values is given in Figure 4.6(b).
The quite simple domain given in Figure 4.6(c) is expressive enough to perform
reachability analysis for code blocks. The result of this analysis can be used for
unreachable code elimination [ASU97].

• An abstract interpretation based on abstracting from sets of possible values of
variables to a value interval can be done with the domain shown in Figure 4.7.
Furthermore, this domain is an example of an abstract domain of infinite height.
Therefore, special attention is needed to ensure termination of the interpretation.

55

4.3 Abstract Interpretation 4 Foundations

⊥

−1−2 0 1 2.

>

(a) Constant Propagation

−

0

+

⊥

±

(b) Sign Analysis

>

⊥

(c) Reachability

Figure 4.6: Example Domains for Abstract Interpretation

[−∞,∞]

⊥

[0, 0] [1, 1] [2, 2][−1,−1][−2,−2]

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1] [−1,∞]

[0,∞]

[1,∞]

Figure 4.7: Domain for Value Interval Analysis

In this thesis we focus on correct program transformations to support correct and
precise WCET calculation of programs. The concrete domain contains the code of a
program that is to be transformed by the optimisation rules given by the semantic
function F . The code is annotated with additional flow information given by a prior
static analysis or by manual code annotations. The abstract domain D̃ represents the

56

4 Foundations 4.3 Abstract Interpretation

possible control flow graph of this annotated program. The final result in the abstract
domain will be used for timing analysis to calculate the best- and worst-case execution
time of the concrete code (see Chapter 6 and Section 7.1).

4.3.4 Fixpoint Semantics for Abstract Interpretation

As shown in Section 4.2 the semantic transition function F of an abstract interpretation
〈〈D,v〉, F,

Π

,⊥〉 is defined in general on single-program-statement level as a partial map
F ∈ D ½ D (where A ½ B is the set of partial functions from the set A to the set B).
The program iteration can be specified by transfinite recursion using a basis ⊥ ∈ D (the
initial environment) together with the semantic transition function F and an inductive
join

Π∈ ℘(D) ½ D so that [CC92a]:

F n =




⊥ if n = 0

Π

β<nF
β if n > 0 is a limit ordinal

F (F n−1) otherwise
(4.1)

Due to the fact that F and

Π

are partial functions, we can distinguish between
total (Definition 4.3.3) and partial (Definition 4.3.2) iterations. The existence of non-
deterministic statements like ideal calculation of random numbers will lead to partial
iteration.

Definition 4.3.2 (Partial iteration) An iteration based on a partial semantic tran-
sition function F and a partial join

Π

is called partial iteration if at least one of its
iterates is not well-defined.

Definition 4.3.3 (Total iteration) An iteration based on a partial semantic transition
function F and a partial join

Π

is called total iteration if all its iterates are well-defined.

The iteration is said to be convergent with limit F ω whenever it is total and ultima-
tively stationary. From a convergent iteration it follows that ∃ω ∈ ordinal : such that
∀n > ω : F n = F ω.

The semantics S[[P]] of a program P can be expressed as [CC02]4:

S[[P]] = lfpv⊥F [[P]] (4.2)

The symbol lfp itself denotes the least fixpoint of fixpoint iteration and is defined
in Definition 4.3.4. The symbol lfpv⊥ represents a v-least fixpoint which is defined in
Definition 4.3.5 [Cou02].

Definition 4.3.4 (Least fixpoint) The least fixpoint lfp of a monotone function
f : D → D on a poset 〈D,v〉 is defined by lfp f = f ε where ε is the least ordinal
such that f(f ε) = f ε.

4The concrete notation depends on the type of semantics

57

4.3 Abstract Interpretation 4 Foundations

Definition 4.3.5 (Restricted least/greatest fixpoint) lfpv` F is the v-least fixpoint
of F greater than or equal to `, if it exists and dually, gfpv` F = lfpw` F is the v-greatest
fixpoint of F less than or equal to `, if it exists.

The inductive join

Π

can be defined as the least upper bound
⊔

whereas ⊥ may be
then the infimum ⊥. For the sequence definition given in Equation 4.1 the least upper
bounds

⊔
β<n F β are needed only for the iterations F n, n ≤ ω and not for all directed

sets of D. This clearly shows that the domain 〈D,v〉 does not necessarily need to be a
cpo.

The iteration definition given by Equation 4.1 gives a sequence definition that
leads to precise execution properties but at the same time to a potentially high
computation effort. By merging sequences F β more often (like for example F n =
F (

Π

β<nF
β)

Π

(

Π

β<nF
β) for all n ∈ ordinal) the computation effort will be reduced

and termination of the interpretation may be accelerated. But this comes at the cost
of gaining less precise execution properties. An example for this is given in [Gus00]
where the program analysis done by abstract interpretation is performed by merging
the different execution traces after each loop iteration and for each loop exit over all
iterations.

The following describes properties of semantics based on different common definitions
of iteration sequences:

The Trace Semantics Sτ
P

As described in [Cou01] the trace semantics Sτ
P is an execution of a program for a given

initial state c ∈ C0. The trace semantics is defined as sequences σ of states σi, observed
at discrete intervals of time, starting from an initial state, then moving from one state
to the next state by executing an atomic program step or transition and either ending in
a final regular or erroneous state or nonterminating, in which the trace is infinite. The
definition of different sequence types [Cou02] is given in Definition 4.3.6. An example
of the execution sequences, computed for a set of initial states {a1, a2, . . . , a6} is given
in Figure 4.8 (from [Cou01]).

Definition 4.3.6 (Sequences) Based on the assumption that A is a nonempty alphabet
we define the following types of sequences:

- A
~0 , {~ε} where ~ε is the empty sequence.

- A~n|n > 0 is the set of finite sequences σ = σ1, . . . , σn−1 of length |σ| , n ∈ N over the
alphabet A.

- A~+ ,
⋃

n>0

A~n is the set of nonempty finite sequences over A.

- A~∗ , A
~0
⋃

A~+ is the set of finite sequences over A.

- A~ω , N 7→ A is the set of infinite sequences σ1, . . . , σn−1 . . . over A.

58

4 Foundations 4.3 Abstract Interpretation

Final states of the
finite traces

j2
Infinite
traces

b1

0 1 2 3 4 5 6 7 8

Intermediate states
Initial states

a5

a6

a4

a3

a2

a1 c1

discrete time

g1

i3

k4

Figure 4.8: Computation Traces, recorded by the Trace Semantics Sτ
P

- A ~∞ , A~+
⋃

A~ω is the set of all nonempty sequences over A.

- A~∝ , A~∗ ⋃
A~ω is the set of all sequences over A.

Based on the representation of the operational semantics So
P [[]] as a mathematical

machine M = 〈C,→, C0, CT 〉 (Section 4.2.1) we assume a transition system 〈Σ, τ〉 where
Σ is the set of possible states C and τ : Σ × Σ → {true, false} is the binary transition
relation between a state and its possible successors. As in [Cou02] we formally define
the maximal trace semantics Sτ

P = τ ~∞ of this transition system 〈Σ, τ〉 by using the
following trace semantics:

- τ
.
~n , {σ=σ0 . . . σn−1 ∈ Σ~n | ∀i < n−1 : σi τ σi+1} is the set of partial execution traces

where σ0 must be from the set of initial states C0.

- τ~n , {σ=σ0 . . . σn−1 ∈ τ
.
~n | σn−1 ∈ CT} is the set of maximal/complete execution

traces of length n > 0 terminating with a final/blocking state σn−1 ∈ CT .

- τ ~+ ,
⋃

n>0

τ~n is the maximal finite trace semantics.

- τ ~ω , {σ ∈ Σ~ω | ∀i ∈ N : σi τ σi+1} is the infinite trace semantics.

- τ ~∞ , τ ~+
⋃

τ ~ω is the maximal trace semantics.

The transition function So
S[[ξ]]ε: Conf→Conf is defined for a concrete operational

semantics (Section 4.2.1) and maps a configuration c to a new unique configuration c′.
To also model the case where the result of a transition function is not simply a unique
configuration c = 〈ξ, ε〉 we introduce a more generic transition function to define the
maximal trace semantics Sτ

P = τ ~∞:

Sτ
S: Conf→℘(Conf)

59

4.3 Abstract Interpretation 4 Foundations

A transition function will result into multiple configurations for example in languages
that have nondeterministic constructs. Another, for our context more interesting exam-
ple, is the usage of an abstract semantics that uses a different definition for the content
of a configuration. This is the case when using an interval of possible values instead of
a concrete value in variable binding to reduce the resource requirement during program
analysis by abstract interpretation. An analysis based on this semantic abstraction
is used for example in [Gus00] to automatically derive the possible control flow paths
through a given program.

The formal definition of the fixpoint trace semantics τ ~+ for finite execution traces is
given in Definition 4.3.7.

Definition 4.3.7 (Fixpoint finite trace semantics τ ~+) The fixpoint finite trace
semantics τ ~+ is defined as

τ ~+ = lfp⊆∅ F ~+ = gfp⊆
Σ~+

F~

where F ~+: ℘(Conf)→℘(Conf) is defined as
F ~+[[τ]] , C0 ∪ {σss′ | σs ∈ τ ∧ s = 〈ξ, ε〉 ∧ s′ ∈ Sτ

S[[ξ]]ε} .

Analogously, the formal definition of the fixpoint trace semantics τ ~ω for infinite
program execution is given in Definition 4.3.8.

Definition 4.3.8 (Fixpoint infinite trace semantics τ ~ω) The fixpoint infinite trace
semantics τ ~ω is defined as

τ ~ω = gfp⊆
Σ ~∞F ~ω = lfp⊆

Σ~ωF ~ω

where F ~ω: ℘(Conf)→℘(Conf) is defined as
F ~ω[[τ]] , C0 ∪ {σss′ | σs ∈ τ ∧ s = 〈ξ, ε〉 ∧ s′ ∈ Sτ

S[[ξ]]ε} .

Theorem 4.3.9 (Fixpoint fusion) Let {D+, Dω} be a partition of D∞ and
〈℘(D+),v+〉 and 〈℘(Dω),vω〉 be fixpoint semantics specifications. Using the following
definitions:

X+ , X ∩D+

Xω , X ∩Dω

F∞(X) , F+(X+) ∩ F ω(Xω)

X v∞ Y , X+ v+ Y + ∧ Xω vω Y ω

⊥∞ , ⊥+ ∩ ⊥ω

>∞ , >+ ∩ >ω

t∞i∈MXi , t+
i∈MX+

i ∪ tω
i∈MXω

i

u∞i∈MXi , u+
i∈MX+

i ∩ uω
i∈MXω

i

it follows:

60

4 Foundations 4.3 Abstract Interpretation

- if 〈℘(D+),v+〉 and 〈℘(Dω),vω〉 are posets (respectively complete lattices) then so is
〈℘(D∞),v∞〉;

- if F+ and F ω are monotone (resp. complete t-morphisms) then so is F∞;

- if lfp⊆
+

F+ and lfp⊆
ω

F ω are well-defined then
lfp⊆

∞
F∞ = lfp⊆

+

F+
⋃

lfp⊆
ω

F ω;

Proof: given in annex C on page 189.

By using the results from Theorem 4.3.9 [Cou02], the formal definition of the fixpoint
maximal trace semantics Sτ

P = τ ~∞ is given in Definition 4.3.10.

Definition 4.3.10 (Fixpoint maximal trace semantics τ ~∞) The fixpoint maximal
trace semantics τ ~∞ is defined as
τ ~∞ = lfpF∞ = lfpF+

⋃
lfpF ω.

The Collecting Semantics SCP
The collecting semantics SCP is an abstraction of the trace semantics Sτ

P . The trace
semantics collects the history of computation in an order-preserving manner. The col-
lecting semantics is an abstraction by skipping the information of execution order. In-
stead, the collecting semantics collects all the configurations that can be reached during
program execution.

An example of configurations, collected by the collecting semantics SCP for a set of
initial states {a1, a2, . . . , a6} is given in Figure 4.9 (from [Cou01]).

a4

a3

a2

a1

a5

a6

a4

a3

a2

a1

a5

a6

Initial
states

k4

i3

j2

g1

Final
states

b1 c1 g1

i3

j2

k4

Reachable states

Figure 4.9: Set of Configurations, recorded by the Collecting Semantics SCP

A suitable domain for the calculation of the collecting semantics is the complete
lattice 〈℘(Conf),v〉 with a set transfer function F C: ℘(Conf)→℘(Conf).

Similar to the transition function Sτ
S of the trace semantics Sτ

P , the result of the
transition function SCS of the collecting semantics SCP is not simply a single configuration:
SCS [[ξ]]ε: Conf→℘(Conf).

61

4.3 Abstract Interpretation 4 Foundations

The formal definition of the collecting semantics SCP is given in Definition 4.3.11.

Definition 4.3.11 (Collecting semantics SCP) The collecting semantics SCP [[ξ0]]ε0 for
a program ξ and an initial configuration c0 = 〈ξ0, ε0〉 is defined as:

SCP [[ξ0]]ε0 =
⋃
i≥0

CC
i

CC
0 = c0 = 〈ξ0, ε0〉

CC
i+1 = F C(CC

i)

F C(C) = {c | c′ ∈ C ∧ c ∈ SCS}

where SCS [[ξ]]ε is the small step semantic function depending on the semantic computa-
tions.

Following from its formal definition, the collecting semantics can be directly derived
from the trace semantics Sτ

P :

SCP [[ξ]]ε =
⋃

σ∈Sτ
P [[ξ]]ε




|σ|−1⋃
i=0

{σi | σi ∈ σ}


 (4.3)

The collecting semantics SCP has the same calculation complexity as the trace se-
mantics Sτ

P and therefore cannot be calculated in general for programs using a semantic
transfer function SCS [[ξ]]ε based on a concrete semantics.

The “Sticky” Collecting Semantics SSCP

The collecting semantics SCP computes a set C ⊆ Conf of potentially reachable config-
urations. An alternative representation is the “sticky” collecting semantics SSCP (Defini-
tion 4.3.12)where each program point is associated with its possible set of environments.

Definition 4.3.12 (“Sticky” collecting semantics SSCP) The “sticky” collecting se-
mantics SSCP of a program ξ with an initial configuration ε is defined for each program
point ξi as: SSCP [[ξi]]ε = {ε′ | 〈ξi, ε

′〉 ∈ SCP [[ξ]]ε}

A suitable domain for the calculation of the “sticky” collecting semantics
SSCP is the complete lattice 〈℘(Pref×℘(Env)),v〉 with a set transfer function
F SC: Pref×℘(Env)→℘(Pref×℘(Env))

The “sticky” collecting semantics can be calculated by solving a set of recursive
equations that model the effect of all possible transitions to the environment at a certain
program point. These equations given in Definition 4.4 are called data flow equations.

SSCP [[ξi]] = fi(SSCP [[ξ0]], . . . ,SSCP [[ξn]]) (4.4)

62

4 Foundations 4.3 Abstract Interpretation

As shown in Definition 4.3.13 the data flow equations fi can be derived from the
semantic transition function SSCS by collecting all environments that are the result of
any transition to a program point ξi.

Definition 4.3.13 (Data flow equations fi) The data flow equations to solve the
“sticky” collecting semantics SSCP are defined as:

Σi = fi(Σ0, . . . , Σn)

=
n⋃

j=0

{
ε′ | ε ∈ Σi ∧ 〈ξi, ε

′〉 = SSCS [[ξj]]ε
}

where Σi denotes SSCP [[ξi]] and ξi, 0 ≤ i ≤ n are the discrete program points.

The set of recursive data flow equations can be solved with several methods. A quite
efficient method is to solve them algebraically, but at the price of a high implementation
effort.

An alternative are iterative solutions that are much more simple to implement. The
simplest iterative solution method is the Jacobi iteration. Given the above data flow
equations, the “sticky” collecting semantics SSCP can be solved as Jacobi iteration using
the following iterative definition (the index j denotes the iteration counter):

SSC,0
P [[ξi]] = ∅

SSC,j+1
P [[ξi]] =

⋃
0≤i≤n

fi(SSC,j
P [[ξ0]], . . . ,SSC,j

P [[ξn]]) (4.5)

The “sticky” collecting semantics SSCP [[ξi]], 0 ≤ i ≤ n is obtained as the least upper
bound (lub) of the following ascending chain:

SSC,0
P [[ξi]], ∀0 ≤ i ≤ n

SSC,1
P [[ξi]], ∀0 ≤ i ≤ n

SSC,2
P [[ξi]], ∀0 ≤ i ≤ n

...

The Jacobi iteration does not exploit the structure of the program to be analysed
and therefore usually provides poor performance. There are more efficient methods to
calculate the fixpoint solution. One of them is chaotic iteration as described in [Nil92]
(chapter 6.2).

Summary of the Fixpoint Semantics

A common property of the trace semantics Sτ
P , the collecting semantics SCP and the

“sticky” collecting semantics SSCP is that they are precise in the sense of collecting

63

4.3 Abstract Interpretation 4 Foundations

all environments they encountered during interpretation. Therefore, they cannot be
calculated for semantic domains of quite large or even infinite sizes. To overcome this
limitation, one has to use an abstract interpretation method that uses a smaller domain
at the cost of loosing precision due to data abstraction. As already mentioned in the
beginning of this section, an alternative is to use more often the inductive join operator

Π

during interpretation.

4.3.5 Approximate Abstract Interpretation

As discussed for fixpoint semantics (Section 4.3.4), the program interpretation based on
a concrete semantics may not be computable in general. As proposed in [CC77, CC92b,
CC92a], the solution is to approximate the interpretation based on the concrete domain

〈D,v〉 by an interpretation based on a simpler domain 〈D̃,ve〉.
To bring both interpretation methods in context to each other, their domains D and

D̃ are connected by the functions α : D → D̃ and γ : D̃ → D. α is called the abstraction
function and γ is called the concretization function. This principle of connecting domains
is shown in Figure 4.10.

The abstract domain D̃

γ

The concrete domain D

γ(d̃) d̃

α(d)d
α

Figure 4.10: Connection of Domains

The concrete interpretation is denoted as 〈〈D,v〉, F 〉. The abstract interpretation
has to be designed following the steps 1 - 5 described in Section 4.3.2 with the require-
ment that the resulting abstract interpretation

is safe: the calculated abstract results mapped back to the concrete domain always
have to be a safe approximation of the concrete value.

terminates: abstract interpretation used as program analysis should be able to provide
information about the properties of the concrete interpretation, even in the case
the concrete interpretation does not terminate.

Efficiency Aspects of Abstract Interpretation

Beside the functional requirements it is also important to consider low resource usage
to make the abstract interpretation feasible, even for large programs. Therefore, the

64

4 Foundations 4.3 Abstract Interpretation

approximate semantic function F̃ and the mapping functions (α, β) between the concrete
and the abstract domain have to be designed as compact as possible to achieve efficient
calculation and increased termination speed.

Precision Aspects of Abstract Interpretation

Performing abstract interpretation usually requires to obtain very precise information
about the execution behaviour of a program. This requires to design the abstract domain
D̃ to contain at least all the required information. The approximate semantic function
F̃ and the domain mapping functions α, β have to be designed to provide tight results.

The efficiency and precision aspects induce design requirements that are contradict-
ing each other. Therefore, a trade-off often has to be made between efficiency and
precision.

4.3.6 Correctness of Abstract Interpretation

The correctness of an abstract interpretation 〈〈D̃,ve〉, F̃ 〉 of a program is measured
against the concrete semantics of this program. We denote the concrete semantics here
by its semantic transition function F : D → D. We call elements d ∈ D values of the
program. Elements d̃ ∈ D̃ are called properties of the program. The semantic transfer
function

F : D1 → D2; D1,D2 ⊆ D

calculates the program value d2 ∈ D2 based on an initial value d1 ∈ D1. In a similar
way, program analysis based on the abstract semantic transfer function

F̃ : D̃1 → D̃2; D̃1, D̃2 ⊆ D̃

calculates how the program transforms a property d̃1 ∈ D̃1 into a property d̃2 ∈ D̃2.

For expressing correctness, we have to differ between the following two types of
program analysis based on abstract interpretation:

first-order analysis: program properties directly describe sets of program values. Ex-
amples are: Constrant Propagation Analysis or Control Flow Analysis.

second-order analysis: program properties are related to relations between program
values. An example of this is Live Variable Analysis.

In the following section we will describe correctness for both types of analyses.

65

4.3 Abstract Interpretation 4 Foundations

Correctness for Single-Order Analysis

For single-order analysis, correctness is established by directly relating properties to
program values using a correctness relation

R : D× D̃ → {true, false}

It has to be proven that the correctness relation is preserved under computation: if
the relation holds between the initial value and the initial property then it also holds
between the final value and the final property. This can be formulated by the following
implication:

d1R d̃1 ∧ d2 = F (d1) ∧ d̃2 = F̃ (d̃1) ⇒ d2R d̃2 (4.6)

and is expressed by Figure 4.11(a).

=⇒

d2

F̃

F

d̃2

d1

d̃1

R R

(a) Correctness Relation

d̃2
F̃d̃1

w w

β =⇒

d2

F
d1

β

(b) Representation Function

Figure 4.11: Correctness for Single-Order Analysis

To show correctness of an abstract interpretation we have to relate elements of the
abstract domain to the correctness relation. For the most common scenario that 〈D̃,ve〉
is a complete lattice 〈D̃,ve,te,ue, >̃, ⊥̃〉 we impose the following relationship between R
and D̃ [NNH99]:

dR d̃ ∧ d̃ ve d̃′ ⇒ dR d̃′ (4.7)

(∀d̃ ∈ D̃′⊆D̃ : dR d̃) ⇒ dR (ueD̃′) (4.8)

Equation 4.7 shows that the smaller a property is with respect to the partial ordering,
the more precise it is. However, much data flow analysis algorithms in the literature
denote a greater property to be more precise. This is no problem since the principle of
duality from lattice theory shows that these representations can be mapped into each
other by an isomorphism (see Definition B.2.12 on page 187).

66

4 Foundations 4.3 Abstract Interpretation

An alternative approach to the use of the correctness relation R : D × D̃ →
{true, false} is to use a representation function

β : D → D̃

that maps a value to the best program property describing it (as shown in Fig-
ure 4.11(b)). The correctness criterion for the analysis will then be formulated as given
in

β(d1) ve d̃1 ∧ d2 = F (d1) ∧ d̃2 = F̃ (d̃1) ⇒ β(d2) ve d̃2 (4.9)

To show the equivalence between the correctness formulations [NNH99] based on R
and β, we show how to define a correctness relation Rβ from a given representation
function β:

dRβ d̃ iff β(d) ve d̃
A representation function βR can be defined from a correctness relation R as follows:

βR(d) = u{d̃ | dR d̃}

Lemma 4.3.14 (Equivalence of R and β)

(i) Given β : D → D̃, then the relation R : D × D̃ → {true, false} satisfies the
conditions given in Equation 4.7 and Equation 4.8, and furthermore βRβ

= β.

(ii) Given R : D × D̃ → {true, false} that satisfies Equation 4.7 and Equation 4.8, it
follows that βR is well-defined and RβR = R.

Proof: given in annex C on page 189.

The generation of the correctness relation Rβ from the representation function β is
visualised in Figure 4.12.

The abstract domain D̃The concrete domain D

d

β(d)

β

R

Figure 4.12: Correctness Relation R generated by Representation
Function β

67

4.3 Abstract Interpretation 4 Foundations

Correctness for Second-Order Analysis

For second-order analysis we have to use two different correctness relations, R1 for the
initial program properties and R2 for the computed properties:

R1 : D1 × D̃1 → {true, false}, generated by β1 : D1 → D̃1

R2 : D2 × D̃2 → {true, false}, generated by β2 : D2 → D̃2

The relations R1 and R2 are expressed in Figure 4.13(a). Based on them we define

the correctness of the semantic function F̃ as follows:

d̃1RF F̃ (d̃1) ⇔ ∀d1, d2 : d1R1 d̃1 ∧ d2 = F (d1) ∧ d2R2 F̃ (d̃1)

d2

F̃

F

d̃2

d1

d̃1

R1R1

=⇒

RF

(a) Correctness Relations

d̃2
F̃d̃1

w w
βF

d2

F
d1

β1β1

=⇒

(b) Representation Functions

Figure 4.13: Correctness for Second-Order Analysis

The correctness relation RF can be generated from βF , which is defined as:

βF (d̃1) = ∀d1 : t{β2(d2) | β1(d1) ve d̃1 ∧ d2 = F (d1)}

The representation function βF is expressed in Figure 4.13(b). Lemma 4.3.15
[NNH99] shows that RF generated from βF defines a correctness relation.

Lemma 4.3.15 (RF is a correctness relation, generated from βF) If Ri is a

correctness relation for Di and D̃i that is generated by the representation function
βi : Di → D̃i, i ∈ {1, 2} then RF is a correctness relation and it is generated by
the representation function βF .

Proof: given in annex C on page 189.

68

4 Foundations 4.3 Abstract Interpretation

4.3.7 Galois Connection

The Galois connection framework provides constructive methods to design a correct
abstract interpretation based on a concrete interpretation. The domain D of the concrete
interpretation 〈〈D,v〉, F 〉 and the domain D̃ of the abstract interpretation 〈〈D̃,ve〉, F̃ 〉
are assumed to be partial ordered sets with having for every element d ∈ D a best
approximation in D̃.

The correspondence between the concrete and the abstract domain is given by a

Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 using the following functions:

- α : D → D̃ is the abstraction function. Its purpose is to map elements from D to
approximated elements in D̃ while keeping the partial order. Hence, if an abstract
element α(d) ∈ D̃ is an approximation of d ∈ D and α(d) ve d̃ then d̃ is also a

correct, but possibly less precise approximation of d. The fact that an element d̃ ∈
D̃ is a valid approximation of d ∈ D is expressed as α(d) ve d̃ (applications using
greater values for more precise results can be directly applied by an isomorphism
due to the principle of duality from lattice theory; as shown in Definition B.2.12
on page 187).

- γ : D̃ → D is the concretization function. Its purpose is to map elements from D̃ to
elements in D while keeping the partial order. Assuming γ(d̃) is a concretization

of d̃ ∈ D̃ and d v γ(d̃) then d̃ is a correct approximation of the concrete value d,

although d may give more precise information than γ(d̃). The fact that an element

d̃ ∈ D̃ is a valid approximation of d ∈ D is expressed as d v γ(d̃) (respective the
opposite for the dual representation of a lattice, see the function α above).

The Galois connection does not lose safety by going back and forth between the two
domains, although precision may be lost. The formal definition of a Galois connection
is given in Definition 4.3.16.

Definition 4.3.16 (Galois connection) A Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉
between the two domains 〈D,v〉 and 〈D̃,ve〉 is defined by two monotone functions

α ∈ D ½ D̃ and γ ∈ D̃ ½ D iff

∀d ∈ D ∧ ∀d̃ ∈ D̃ : α(γ(d̃)) ve d̃ ∧ d v γ(α(d)) (4.10)

The definition of the Galois connection is illustrated in Figure 4.14. Starting from
the domain D, we have a class of elements d ∈ D′ ⊆ D that map to a unique element
α(d). But going back again we get the element γ(α(d)), which is an upper bound of all
elements in D′: ∀d, d′ ∈ D′ : d′ v γ(α(d)). The consequence is that we lose precision

69

4.3 Abstract Interpretation 4 Foundations

The abstract domain D̃The concrete domain D

γ

γ(d̃)
γ

α

d
v

γ(α(d))
v

v˜
d̃

α(γ(d̃))
v˜

α(d)α

Figure 4.14: Galois Connection

by stepping into and back from D̃. A dual relation happens when starting from the
abstract domain. In this case α(γ(d̃)) will result into a lower bound of all elements

d̃ ∈ D̃ that map to the same element γ(d̃). Figure 4.14 also shows that α and γ are
monotone functions.

There is also an alternative formulation of the Galois connection

〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 that is frequently easier to work with [NNH99]. (D
α−−−−→←−−−−
γ

D̃) is

defined as an adjunction (Definition 4.11) between the domains 〈D,v〉 and 〈D̃,ve〉 iff
the mapping functions α and γ are “inverse” to each other.

Definition 4.3.17 (Adjunction) An adjunction (D
α−−−−→←−−−−
γ

D̃) is a pair of total func-

tions 〈α, γ〉 between the domains 〈D,v〉 and 〈D̃,ve〉 iff

∀d ∈ D ∧ ∀d̃ ∈ D̃ : α(d) ve d̃ ⇐⇒ d v γ(d̃) (4.11)

The abstract domain D̃The concrete domain D

γ

γ(d̃)

v˜
d̃

α(d)
v

d
α

Figure 4.15: Adjoined Functions

The definition of the adjunction is illustrated in Figure 4.15. The equivalence be-
tween the Galois connection and the adjunction is given in Theorem 4.3.18.

70

4 Foundations 4.3 Abstract Interpretation

Theorem 4.3.18 (Equivalence of adjunction and Galois connection) An ad-

junction (D
α−−−−→←−−−−
γ

D̃) is also a Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 and vice versa.

Proof: given in annex C on page 189.

Properties of Galois Connections

As given in [NNH99], a Galois connection provides additional properties, which are listed
in the following.

Lemma 4.3.19 (Interrelation between α and γ) If 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 is a Galois

connection then

(i) α uniquely determines γ by γ(d̃) = t{d |α(d) ve d̃} and γ uniquely determines α

by α(d) = u{d̃ | d v γ(d̃)}.
(ii) α is completely additive and γ is completely multiplicative.

Proof: given in annex C on page 190.

As shown by Lemma 4.3.20, it is sufficient to specify either a completely additive
abstraction function α or a completely multiplicative concretization function γ in order

to obtain a Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉.
Lemma 4.3.20 (Existence of α respectively γ) If α : D → D̃ is a completely

additive function then there exists a function γ : D̃ → D such that 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉
is a Galois connection. Dually, if γ : D̃ → D is completely multiplicative then there

exists α : D → D̃ such that 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 is a Galois connection.

Proof: given in annex C on page 190.

Lemma 4.3.21 shows that we do not lose or gain precision by iterating abstraction
and concretisation.

Lemma 4.3.21 (Iteration invariance of the Galois connection)

If 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 is a Galois connection, then

α ◦ γ ◦ α = α and γ ◦ α ◦ γ = γ .

Proof: given in annex C on page 191.

71

4.3 Abstract Interpretation 4 Foundations

Construction of a Galois Connection

In this section we describe how to construct a Galois connection by using a representation

function β (see Section 4.3.6). A Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 for a concrete

domain D can be constructed systematically following steps 1 - 5:

1. Start with the concrete domain D having the partial order v. D and D̃ must be
posets.

2. Design the corresponding abstract domain to describe the desired properties of
the concrete domain.

3. Specify a correctness relation R : D× D̃ → {true, false} to calculate the resulting

representation function β : D → D̃.

4. If D and D̃ are required to be a complete lattice, check whether D̃ and β are
defined so that the greatest lower bound u and the least upper bound t exists for
all subsets D̃′ ⊆ D̃. This ensures that D̃ is also a complete lattice.
For simple posets it is sufficient to verify that ∀d∈D, ∀d̃∈D̃, ∃d̃1∈D̃ : dRd̃1 ∧
(dRd̃ ⇒ d̃1 ve d̃).

5. Calculate the abstraction function α and the concretisation function γ from the
function β according to Equation 4.12 and Equation 4.13 (the lub operator t
in Equation 4.13 is also guaranteed to be defined for simple posets due to the
construction method used for R).

α(d) = β(d) (4.12)

γ(d̃) = t{d ∈ D | β(d) ve d̃} (4.13)

After the calculation of the functions α and γ we have already constructed the Galois
connection.

The representation function β in step 3) has to be defined according the structure
of the concrete and abstract domain. For example, if we want to construct a Galois

connection like 〈℘(D),v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 we can first define an auxiliary representation

function β′ : D → D̃. Then we can lift β′ to the full powerset ℘(D) as given in
Equation 4.14 to finally calculate the representation function β℘(D).

β℘(D)(D
′) = t{β′(d) | d ∈ D′} D′ ∈ ℘(D) (4.14)

Another example would be, having a concrete domain D that consists of several
components Di that will be described by corresponding components D̃i of the abstract
domain D̃. Then it is possible to construct a Galois connection for each component
and finally combine them to an overall Galois connection (see Section 4.3.11 for more
details).

72

4 Foundations 4.3 Abstract Interpretation

Galois Insertions

Having a Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉, there may exist several elements of

D̃ that map to the same element in D. To be more precise, the function γ may be not
injective, i.e. there exist elements in D̃ that are not relevant for the abstraction of D.

The framework of Galois insertion 〈D,v〉 α−−−−→�−−−−
γ

〈D̃,ve〉 is intended to rectify this

situation. A Galois insertion is a Galois connection where α is a monotone surjection
or as an equivalent requirement, γ is a monotone injection. The fact that γ is injective
is denoted by the two-headed arrow ´. A formal definition of the Galois insertion is
given in Definition 4.3.22, with an illustration of the principle shown in Figure 4.16.

Definition 4.3.22 (Galois insertion) A Galois insertion 〈D,v〉 α−−−−→�−−−−
γ

〈D̃,ve〉 be-

tween the two domains 〈D,v〉 and 〈D̃,ve〉 is defined by two monotone functions

α ∈ D 7→ D̃ and γ ∈ D̃ 7→ D iff

∀d ∈ D ∧ ∀d̃ ∈ D̃ : d̃ = α(γ(d̃)) ∧ d v γ(α(d)) (4.15)

A Galois insertion is useful to approximate over the concrete domain D, since all
elements d̃ ∈ D̃ describe different elements d ∈ D. With a Galois insertion, the con-
cretization function does not loose information, i.e., applying the abstraction function
afterwards will result to the original element in D̃.

The abstract domain D̃The concrete domain D

d̃ = α(γ(d̃))

α(d)
v˜

γ

γ(α(d))
v

d

v

α

γ

γ(d̃) α

Figure 4.16: Galois Insertion

As shown in [NNH99], having a Galois connection, it is always possible to construct
a Galois insertion by enforcing that the concretization function γ is injective. Following
the definition of the reduction operator ς : D̃ → D̃ in Proposition 4.3.23, this is basically
done by removing all the superfluous elements from D̃.

Proposition 4.3.23 Having a Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 between the

complete lattices 〈D,v,t,u,>,⊥〉 and 〈D̃,ve,te,ue, >̃, ⊥̃〉 and a reduction operator

73

4.3 Abstract Interpretation 4 Foundations

ς : D̃ → D̃ which is defined as

ς(d̃) = u{d̃′ | γ(d̃) = γ(d̃′)}

then ς[D̃] = 〈{ς(d̃) | d̃ ∈ D̃},ve〉 is a complete lattice and 〈D,v〉 α−−−−→�−−−−
γ

〈ς(D̃),ve〉 is a

Galois insertion.

Galois Isomorphism

The Galois insertion provides a framework with an efficient domain for representing the
approximated values. However, for some applications it makes sense to have an abstract
domain D̃ representing elements of the concrete domain D̃ without loosing precision.

Such a framework will be called Galois isomorphism 〈D,v〉 α−−−−��−−−−
γ

〈D̃,ve〉. Its formal

definition is given in Definition 4.3.24 and is illustrated in Figure 4.17.

Definition 4.3.24 (Galois isomorphism) A Galois isomorphism

〈D,v〉 α−−−−��−−−−
γ

〈D̃,ve〉 between the two domains 〈D,v〉 and 〈D̃,ve〉 is defined by

two monotone functions α ∈ D 7→ D̃ and γ ∈ D̃ 7→ D iff

∀d ∈ D ∧ ∀d̃ ∈ D̃ : d̃ = α(γ(d̃)) ∧ d = γ(α(d)) (4.16)

A typical application for using a Galois isomorphism framework is to apply the
formalism of abstract interpretation where larger values mean less precision, to the
category of classical data flow analysis frameworks, where smaller values represent less
precision. For more details about the principle of lattice duality of lattice theory see
Definition B.2.12 on page 187.

The abstract domain D̃The concrete domain D

γ
v v˜

d = γ(α(d)) α(d)

d̃ = α(γ(d̃))γ(d̃)

α

γ

α

Figure 4.17: Galois Isomorphism

Another application of a Galois isomorphism would be a concrete domain consist-
ing of combined subdomains where one component is directly mapped to the abstract
domain without loosing precision. An example using this method would be an abstract
interpretation based on additional program properties that have been derived by a prior
static analysis.

74

4 Foundations 4.3 Abstract Interpretation

4.3.8 The Safety of the Approximation

The term correctness introduced in Section 4.3.6 is used to specify whether an abstract
interpretation models the semantics of a program correctly. We use the term safety
when we compare two interpretations to show that the properties resulting from the
one interpretation correctly describe the properties of the other. Therefore, safety is
herewith used as a special case of correctness.

Using a Galois connection between two abstract interpretations we can say that one
is an abstraction of the other, formally described in Definition 4.3.25.

Definition 4.3.25 (〈α, γ〉-abstraction) Let 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 be a Galois con-

nection between the two abstract interpretations 〈〈D,v〉, F 〉 and 〈〈D̃,ve〉, F̃ 〉. Then

〈〈D̃,ve〉, F̃ 〉 is said to be an 〈α, γ〉-abstraction of 〈〈D,v〉, F 〉.

Having an interpretation 〈〈D,v〉, F 〉 the Galois connection framework can be used

to construct 〈〈D̃,ve〉, F̃ 〉, a safe approximation of 〈〈D,v〉, F 〉. The safety of the approx-
imation is mandatory to be able to derive valid program properties. We therefore use
the following definition to describe the safety of an approximation:

Definition 4.3.26 (Safe γ-approximation) Let 〈〈D̃,ve〉, F̃ 〉 be an 〈α, γ〉-abstraction
of 〈〈D,v〉, F 〉. 〈〈D̃,ve〉, F̃ 〉 is said to be a safe γ-approximation of 〈〈D,v〉, F 〉 iff

∀d̃ ∈ D̃ : F (γ(d̃)) v γ(F̃ (d̃))

The safety of abstract interpretations is visualised in Figure 4.18.

F̃ (d̃)

The abstract domain D̃The concrete domain D

γ

γ
F

v
d̃

F̃

Figure 4.18: The Safety of the Approximation

Replacement of Abstract Interpretations

After studying safe γ-approximations based on a Galois connection we will now see a
further motivation why it is useful to have a safe approximation of 〈〈D̃1,ve1〉, F̃1〉 by

〈〈D̃2,ve2〉, F̃2〉 based on a Galois connection 〈D̃1,ve1〉 α−−−−→←−−−−
γ

〈D̃2,ve2〉.

75

4.3 Abstract Interpretation 4 Foundations

Consider the case we already have a correctness relation R1 between the program
values d ∈ D and the program properties d̃1 ∈ D̃1, which could also be represented by
the representation function β1 : D → D̃1 (see Section 4.3.6).

Now we want to replace D̃1 by the poset D̃2. Therefore, we have to design a new
correctness relation R2 : D× D̃2 → {true, false}. Due to the Galois connection between

D̃1 and D̃2 it is natural to define R2 by

dR2 d̃2 iff dR1 (γ(d̃2))

It can be shown that R2 fullfills Property 4.7 and Property 4.8 (given on page 66)
and hence is a valid correctness relation.

Assuming that R1 was generated by the representation function β1 : D → D̃1, i.e.,
dR1 d̃1 ⇔ β1(d) ve1 d̃1, it can be shown that β2 : D → D̃2 can be calculated as

α ◦ β1 : D → D̃2 (for a formal proof refer to [NNH99]).

We can conclude that having 〈〈D̃2,ve2〉, F̃2〉 as a safe γ-approximation of

〈〈D̃1,ve1〉, F̃1〉 based on a Galois connection it becomes straight forward to safely ex-

change the abstract interpretation 〈〈D̃1,ve1〉, F̃1〉 by 〈〈D̃2,ve2〉, F̃2〉.

Combining Abstract Interpretations

As described in [Nil92], combining two abstract interpretations that represents safe ap-
proximations, their combined abstract interpretation is still safe. This is shown graphi-
cally in Figure 4.19 and proven by Theorem 4.3.27.

v˜

Abstract domain D̃The concrete domain D Abstract domain D̄

v
v

F
F̃

F̄

γ

γ

γ̃

γ γ̃

Figure 4.19: Combining Abstract Interpretations

Theorem 4.3.27 (Safety of combined abstract interpretations) Assume that

〈〈D̄,v¯〉, F̄ 〉 is a safe γ̃-approximation of 〈〈D̃,ve〉, F̃ 〉, which is in turn a safe γ-
approximation of 〈〈D,v〉, F 〉. Then 〈〈D̄,v¯〉, F̄ 〉 is a safe (γ ◦ γ̃)-approximation of
〈〈D,v〉, F 〉.

Proof: given in annex C on page 191.

76

4 Foundations 4.3 Abstract Interpretation

4.3.9 Induced Operators

To obtain a safely approximating abstract interpretation 〈〈D̃,ve〉, F̃ 〉 for a concrete
interpretation 〈〈D,v〉, F 〉, it is required to design a safe abstract transition function

F̃ : D̃ → D̃ based on a Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉.
A simple solution for a safe approximation would be to design F̃ (d̃) as ∀d̃ ∈ D̃ :

F̃ (d̃) = >̃, which provides an unusable imprecise interpretation. Therefore, the question
arises whether there could be some hints how to design a more precise interpretation.
The optimal design is in general application dependent. But it is possible to specify a
generic method to construct the most precise transition function, the so-called induced
function (defined in Definition 4.3.28).

Definition 4.3.28 (Induced function) Let 〈〈D,v〉, F 〉 be a concrete interpretation

and 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉 a Galois connection between the domains D and D̃. The by

F induced function F̃ is defined as F̃ = α ◦ F ◦ γ

The construction of the induced function F̃ is visualised in Figure 4.20.

The abstract domain D̃The concrete domain D

F̃

F

γ

α

Figure 4.20: Induced Transition Function

Based on [JN94, Gus00] we show in the following some properties of the induced
function.

Theorem 4.3.29 (The induced function is monotone) The induced function F̃ =
α ◦ F ◦ γ is monotone.

Proof: given in annex C on page 191.

Theorem 4.3.30 (The induced function is safe) The induced function F̃ = α◦F ◦γ
provides a safe approximation of the concrete function F .

Proof: given in annex C on page 191.

77

4.3 Abstract Interpretation 4 Foundations

Theorem 4.3.31 (The induced function is the most precise function on D̃)

The induced function F̃ = α ◦F ◦ γ is the most precise function on 〈D̃,ve〉 which is still

safe, i.e., satisfying α((d)) ve F̃ (α(d)).

Proof: given in annex C on page 191.

4.3.10 Termination of Abstract Interpretation

Abstract interpretation is used to calculate properties of a program with respect to
the program semantics. The program semantics describes program values that will be
obtained by program execution. It can happen that the execution of a program never
terminates for a given initial environment. Nevertheless, program analysis done by
abstract interpretation should provide program properties in finite calculation steps,
even for nonterminating program execution.

The fixpoint semantics for an abstract interpretation 〈〈D,v〉, F,⊥〉 has been defined
by the semantic transfer function given in Equation 4.1. Based on the result of applying
it to the semantic function F : D → D an element d ∈ D can be categorised into one of
the following classes:

RED(F) = {d |F (d) v d} . . . F (d) is reductive
FIX(F) = {d |F (d) = d} . . . F (d) is a fixpoint
EXT(F) = {d | d v F (d)} . . . F (d) is extensive

The fixpoint semantics is given by recursive application of F on the initial config-
uration ⊥: lfpvF (⊥). In case the height of the domain D is finite (i.e., it fullfills the
ascending and descending chain condition) it is guaranteed that the sequence (F n)n

stabilises by reaching a fixpoint.

If the height of D is infinite, approximate interpretation based on a finite domain
and/or widening/narrowing can be used to enforce termination or also to accelerate
termination. In the following, both methods are briefly described.

Approximate Interpretation based on Finite Abstract Domain

A simple and efficient way to accelerate and enforce termination on a concrete inter-
pretation 〈〈D,v〉, F 〉 is to design a safe approximation 〈〈D̃,ve〉, F̃ 〉 based on a domain

〈D̃,ve〉 of finite height.

The drawback of this simple method is the loss of precision since the calculation is
done on a coarser semantic domain.

Extrapolation Operators Widening and Narrowing

Having a domain 〈D,v〉 of infinite height, the sequence (F n)n may never stabilise. The
use of a widening operator O ∈ D×D ½ D [CC77] can help to approximate the least

78

4 Foundations 4.3 Abstract Interpretation

fixpoint lfpvF . O is an upper bound operator. The sequence (F n)n to approximate
lfpvF will be defined as:

F nO =




⊥ if n = 0
F n−1O if n > 0 ∧ F (F n−1O) v F n−1O
F n−1O OF (F n−1O) otherwise

(4.17)

The sequence (F n)n may reach a value FmO ∈ (RED(F) ∪ FIX(F)). FmO will be a
safe approximation of lfpvF . After reaching FmO we can now define a further sequence
starting from FmO to refine the precision of the result by using the narrowing operator
M∈ D×D ½ D. The sequence (F nM)n will be defined as:

F nM =

{
FmO if n = 0
F n−1M M F (F n−1M) otherwise

(4.18)

An essential part is the design of extrapolation operators O and M that provide
precise results.

A simple valid solution for O and M are the following definitions:

d1 O d2 =

{
d1 if d2 v d1

> otherwise
d1 M d2 = d1

(4.19)

In fact, the definitions given in Equation 4.19 will only achieve the worst precision
possible. To find better definitions we will first observe some properties that must hold
for O and M:

∀d1, d2 ∈ D : t{d1, d2} v (d1 O d2) v >
∀d1, d2 ∈ D : u{d1, d2} v (d1 M d2) v d1

It is interesting to note that O and M do not have to be monotone, commutative,
associative nor absorptive.

Based on [CC92b], the following methods can be used to improve the quality of O
and M:

Extrapolation Threshold: Instead of applying the extrapolation operators O and
M on each element of the sequences (F nO)n and (F nM)n, they can be used after
an extrapolation threshold of t iterations. For n ≤ t, the least upper bound t
respective greatest lower bound u is used. This could be done by simply extending
values with an iteration counter and using modified extrapolation operators:

〈d1, i〉 Ō 〈d2, i + 1〉 =




〈d1, i + 1〉 if d2 v d1

〈t{d1, d2}, i + 1〉 if d1 v d2 ∧ i ≤ t
〈d1Od2, i + 1〉 otherwise

〈d1, i〉 M̄ 〈d2, i + 1〉 =

{ 〈u{d1, d2}, i + 1〉 if i ≤ t
〈d1 M d2, i + 1〉 otherwise

(4.20)

79

4.3 Abstract Interpretation 4 Foundations

Stepwise Extrapolation: The first simple definition of O and M in Equation 4.19
maps all values on a chain i (⊥, σi

1, σ
i
2, . . . ,>) using a single unconditional rule.

An improvement could be to refine them with additional distributive limits ⊥ v
σi

L1 v . . . v σi
Ln v >:

d1 O d2 =





d1 if d2 v d1

σi
L1 elseif d2 v σi

L1
...
σi

Ln elseif d2 v σi
Ln

> otherwise

d1 M d2 =





d2 if

(
n∨

j=1

d2 v σi
Lj v d1

)
∨ (d1 = >)

d1 otherwise

(4.21)

Another method to construct the upper bound operator O is related to the construc-
tion of induced operations, described in Section 4.3.9. To enforce termination, the widen-

ing operator O : D×D → D can be build using a Galois connection 〈D,v〉 α−−−−→←−−−−
γ

〈D̃,ve〉
as follows:

d1Od2 = γ(α(d1)Oeα(d2)) (4.22)

The domain 〈D̃,ve〉 has to fulfil the ascending chain condition and Oe : D̃× D̃ → D̃ has
to be an upper bound operator.

4.3.11 Systematic Design of Galois Connections

As discussed in Section 4.3.8, the sequential combination of two abstract interpretations
that are safe approximations gives raise to a new safe abstract interpretation. This rule
is supported by the principle that the sequential combination of two Galois connections
always results into a new Galois connection (and analogous for Galois insertions and
Galois isomorphisms).

A similar rule can be found for the parallel combination of two abstract

interpretations. Assuming two Galois connections 〈D1,v1〉 α1−−−−→←−−−−
γ1

〈D̃1,ve1〉 and

〈D2,v2〉 α2−−−−→←−−−−
γ2

〈D̃2,ve2〉 it may be desired to use their combined domains 〈D1 ×D2,v〉
and 〈D̃1 × D̃2,ve〉 where:

(d1, d2) v (d′1, d
′
2) ⇔ ((d1 v1 d′1) ∧ (d2 v2 d′2))

(d̃1, d̃2) ve (d̃′1, d̃′2) ⇔ ((d̃1 v1 d̃′1) ∧ (d̃2 v2 d̃′2))

Based on these domains the independent attribute method [NNH99] can be used to
raise a new Galois connection

〈D1 ×D2,v〉 α−−−−→←−−−−
γ

〈D̃1 × D̃2,ve〉

80

4 Foundations 4.4 Chapter Summary

where:

α(d1, d2) = (α1(d1), α2(d2))

γ(d̃1, d̃2) = (γ1(d̃1), γ2(d̃2))

That this construction method indeed defines a new Galois connection can be shown by
the following calculation

α(d1, d2) ve (d̃1, d̃2) ⇔ (α1(d1), α2(d2)) ve (α1(d̃1), α2(d̃2))

⇔ (α1(d1) ve1 d̃1) ∧ (α2(d2) ve2 d̃2)

⇔ (d1, d2) v (γ1(d̃1), γ2(d̃2))

⇔ (d1, d2) v γ(d̃1, d̃2)

together with the application of Theorem 4.3.18.

Having that 〈〈D̃1,ve1〉, F̃1〉 is a safe γ1-approximation of 〈〈D1,v1〉, F1〉 and

〈〈D̃2,ve2〉, F̃2〉 is a safe γ2-approximation of 〈〈D2,v2〉, F2〉 then it follows that

〈〈D̃1 × D̃2,ve〉, F̃1 × F̃2〉 is a safe γ-approximation of 〈〈D1×D2,v〉, F1×F2〉. Therefore,
the parallel combination of two abstract interpretations that are safe approximations
gives raise to a new safe abstract interpretation.

There are similar results for parallel combination of safe approximations based on
Galois insertions or Galois isomorphisms.

4.4 Chapter Summary

The correctness of the flow facts transformation framework presented in this thesis is
based on the formalism of abstract interpretation.

This chapter presented the required theoretic foundations to construct the trans-
formation framework. First, a description of various control flow graphs was given.
Second, the meaning of semantics has been introduced to allow the formalisation of
program executions. Afterwards, abstract interpretation as a tool for performing ap-
proximated calculations was described. Beside the properties of abstract interpretation,
several methods to combine abstract interpretations were discussed. The concept of
induced function allows the calculation of a safe abstract transition function based on
a Galois connection.

81

4.4 Chapter Summary 4 Foundations

82

To ask the hard question is simple

W. H. Auden, Poems (1930)

Chapter 5

Classification of Code
Transformations

One aspect of WCET analysis is code representation, which belongs to compiler tech-
niques. The calculation of a safe bound for the WCET uses flow facts ff as described
in Section 2.3.3. This chapter discusses the impact of code optimisations performed by
the compiler to WCET analysis. In particular, it analyses whether such flow informa-
tion ff has to be transformed in parallel to certain code transformations. We divide
the described code optimisations into two basic categories - in control flow changing
and control flow preserving code transformations. For the ff transformation only the
control-flow-changing code transformations have to be considered.

We have divided the control flow changing code transformations into further cate-
gories, depending on their impact on the control flow. For example, low-level optimi-
sations only deal with merging and splitting of control flows without considering any
loop structure. Redundancy elimination removes parts of the control flow graph. Loop
reordering transformations influence only the loop control code but the iteration count
of the loop body remain unchanged. Other Loop Transformations are more radical loop
transformations that also change the iteration count of the loop body. Procedure call
transformations cause changes in the GCFG . Concrete ff transformation rules for se-
lected code transformations are described in Chapter 8, while ff transformation rules
for further code transformations can be derived in an analogous way by looking at the
concrete ff transformation rule of a similar code transformation.

5.1 Problem Statement

The following sections list typical code transformations and discuss their impact on
WCET analysis. The impact of these code transformation depends on the type of flow
facts being used. The details of code transformations are not discussed within this
thesis. More accurate information about all described transformations itself is given by
Bacon [BGS94] and Muchnik [Muc97]. Section 4.1.1 provides a definition of a control
flow graph. The global control flow graph (GCFG) to represent also function calls is

83

5.2 Optimisations within a Basic Block 5 Classification of Code Transformations

described in Section 4.1.3 on page 48.

Flow facts with less expressiveness about (in)feasible paths are easier to transform
precisely than more expressive flow facts. For the discussion of the transformations we
assume flow facts as described in Section 2.3.3. However, the discussions may be also
valid for WCET calculation methods using other types of flow facts.

5.2 Optimisations within a Basic Block

Code optimisations that only change the composition of a basic block by modifying
its sequence of statement do not change the CFP . Flow facts are directly assigned to
control flow edges of basic blocks. Code optimisations within a basic block therefore do
not require the update of any flow facts. Thus we do not describe code transformations
within basic blocks in further detail.

5.3 Optimisations Changing the Control Flow

The following describes code transformations that have a significant impact on the
possible CFP of a program. After the application of certain code optimisations the flow
facts also have to be transformed to avoid underestimation of the WCET. In general it
is not possible to derive the new flow facts by comparing the code structure between the
original and the transformed code. Adequate compiler support by providing information
about the performed code transformations resolves this lack of information.

5.3.1 Low-Level Optimisations

This section discusses several code transformations to optimise the control flow within
a procedure. They are discussed in further detail by Muchnik in [Muc97].

If Simplifications

If simplifications apply to conditional constructs where one or more of its branches are
empty. Empty branches can be a result of previous transformations like code hoisting
[Muc97]. Such empty branches are removed by if simplification.

Another class of if simplification where the compiler can check statically that a
certain branch of an conditional construct cannot be reached is handled by unreachable
code optimisation described on page 87.

Discussion: Similar to useless code elimination, if simplifications can remove poten-
tially reachable parts of the CFG . Flow facts referring to the removed part have to be
updated.

84

5 Classification of Code Transformations 5.3 Changing the Control Flow

Straightening

Straightening is a code transformation to merge two basic blocks. Having two basic
blocks A and B where A is the only predecessor of B and B is the only successor of A
then these two blocks will be merged to a new single basic block.

Discussion: Straightening causes minimal modifications to the CFG resulting in
small changes of the CFP . Any flow facts referring to the execution frequency of the
control flow edge A-B from the above example have to be distributed to the predecessor
respective the successor edges of the merged basic block.

Branch Optimisations

Branch optimisation (also called jump optimisation) is a transformation to optimise con-
secutive jump instructions. A typical example is a conditional jump to an unconditional
jump. Branch optimisation will replace the jump target of the conditional jump by the
jump target of the unconditional jump.

Discussion: Branch optimisation changes the execution frequency of basic blocks by
redirection of jumps. Any flow facts referring to such basic blocks have to be updated.

Tail Merging

Tail merging, also called cross jumping, is a code transformation to reduce code size.
Having two basic blocks where the last few instructions are identical and with an equal
single successor node, tail merging will transform this code to share the identical in-
structions. The last few instructions will be put into a new basic block.

Discussion: Tail merging changes the CFG by creating a new basic block. Flow
facts referring to control flow edges that will be changed, have to be updated correctly.

Tail Duplication

Tail duplication can be seen as the opposite transformation to tail merging. Tail duplica-
tion is a code transformation to reduce the number of branch statements by duplicating
code for two control-flow branches. Another application of tail duplication is to prepare
the construction of superblocks1 or hyperblocks2.

Discussion: Tail duplication changes the CFG by duplicating basic blocks and plac-
ing a copy to each incoming control flow edge. Flow facts referring to control flow edges
that will be changed, have to be updated correctly.

1superblock. . . a trace with only one entry node but one or more exit nodes.
2hyperblock. . . a collection of connected basic blocks with only one entry node but one or more exit

nodes.

85

5.3 Changing the Control Flow 5 Classification of Code Transformations

Conditional Moves / If Conversion

Conditional moves are copy instructions controlled by a predicate. Depending on the
value of the predicate the copy operation is performed or just ignored. Conditional move
statements require hardware support which is currently provided by several modern
processor architectures. A typical code optimisation that can create conditional moves
is if conversion.

Conditional moves can increase the performance by avoiding conditional jumps. An-
other advantage of conditional move statements is that they can be used to make the
program execution time more predictable [Pus02].

An example for if-conversion is given by Figure 5.1 and Figure 5.2. For this example
we have extended the language WHILE by a predicated copy statement of the form
dst:=(cond)src;

Listing 5.1: original code

1 i f a>b then
2 goto L1 ;
3 else
4 c :=b ;
5 goto L2 ;
6 L1 : c :=a ;
7 L2 : . . .

Listing 5.2: conditional move applied

1 t1 :=(a>b) ;
2 c :=b ;
3 c :=(t1) a ;

Discussion: Transforming code to use conditional moves causes similar changes of
the CFG than if simplification. The alternative branches if a conditional statement will
be merged into a single branch by using conditional moves. Flow facts addressing the
individual branches therefore have to be merged.

5.3.2 Partial Evaluation

Partial evaluation refers to the technique of performing parts of a computation at com-
pile time. Typical examples for partial evaluation are all standard code optimisations
based on data-flow analysis. The following transformation changes the CFP :

Function Cloning

Function cloning transforms a function call with some constants in the arguments to call
a cloned function were the parameters are replaced by the constant values. An example
for function cloning is given in Listing 5.3 and Listing 5.4.

86

5 Classification of Code Transformations 5.3 Changing the Control Flow

Listing 5.3: original code

1 function add (a , b)
2 begin
3 re turn a+b ;
4 end
5

6 c :=add (d , 2) ;

Listing 5.4: after partial evaluation

1 function add 2 (a)
2 begin
3 r e turn a+2;
4 end
5

6 c :=add 2 (d) ;

Discussion: Function cloning changes the GCFG dramatically by redirecting func-
tion calls to a new target. Flow facts related to the original function call have to be
updated.

5.3.3 Redundancy Elimination

Redundancy elimination is a transformation to improve performance by identifying re-
dundant calculations and removing them. The following will describe transformations
for redundancy elimination that change the CFG .

Unreachable Code Elimination

Unreachable code is code that will never be executed, independent of the values of
program parameters. Typical examples for unreachable code are a conditional where
the test is based on a constant value or a loop that will not perform any iteration.

Discussion: Unreachable code elimination deletes only parts of the CFG that are
not reachable. However, there may be flow facts that compare the execution frequency
of several execution paths. Such flow facts have to be updated to reflect the removal of
the unreachable part of the CFG .

Useless Code Elimination

Elimination of useless code is also called dead code elimination [Muc97]. A code is useless
if the result of its computation is never used later. Dead variables for example are a
special form of useless code. Useless code is removed by useless code elimination.

A simple example for useless code elimination is given in Listing 5.5 and Listing 5.6.

Listing 5.5: original code

1 function add (a , b)
2 begin
3 c :=a∗b ;
4 re turn a+b ;
5 end

Listing 5.6: after useless code elimi-
nation

1 function add (a , b)
2 begin
3 r e turn a+b ;
4 end

87

5.3 Changing the Control Flow 5 Classification of Code Transformations

Discussion: Useless code elimination removes code that is potentially reachable. If
useless code elimination is implemented to also remove conditional control structures,
the changes in the CFG can be dramatic. If flow facts refer to the execution frequency
of such useless code, it can be quite difficult to perform an accurate update of the
respective flow facts.

5.3.4 Loop Reordering Transformations

Loop reordering transformations change the order in which the iterations of a perfect
loop nest are executed. Definition 5.3.1 gives an informal definition of a perfect loop
nest. Several transformations change the CFP dramatically. Flow facts describing loop
bounds as well as infeasible paths have to be updated.

Definition 5.3.1 (Perfect Loop Nest) A loop nest is called perfect, if the body of
every loop except the innermost loop consists only of the nested loop.

The following will describe loop reordering transformations changing the control flow
and discuss their effects on the CFP .

Loop Interchange

Loop interchange exchanges the position of two loops within a loop nest, typically by
moving one of the outer loops to the innermost position. Typical applications of this
transformation are the increase of data access locality or loop-invariant expressions of
the inner loop. Another application domain is to enable vectorisation of the innermost
loop on a vector architecture. An example of the effect of performing loop interchange
is given in Listing 5.7 and Listing 5.8.

Listing 5.7: original code

1 for i :=1 ,m, 1 do
2 for j :=1 ,n , 1 do
3 a [i] := a [i] + b [i , j] ;

Listing 5.8: interchanged loop nest

1 for j :=1 ,n , 1 do
2 for i :=1 ,m, 1 do
3 a [i] := a [i] + b [i , j] ;

Discussion: Loop interchanging modifies the sequence of loop bounds within a loop
nest as well as the execution frequency of several edges within the CFG . The general
structure of the CFG remains unmodified and the execution frequency of the body of
the innermost loop remains unchanged.

Loop Blocking

Loop blocking (also called loop tiling) is typically used to improve locality of data accesses.
The locality is increased by iterating over sub-rectangles of the whole iteration space of

88

5 Classification of Code Transformations 5.3 Changing the Control Flow

a loop nest. Thus, for example, cache lines can be used more efficiently. An example of
the effect of performing loop blocking for a sub-rectangle of k1× k2 iterations is given in
Listing 5.9 and Listing 5.10.

Listing 5.9: original code

1 for i :=1 ,m, 1 do
2 for j :=1 ,n , 1 do
3 a [i , j] :=b [i , j] ;

Listing 5.10: blocked loop

1 for t i :=1 ,n , k1 do
2 for t j :=1 ,m, k2 do
3 for i := t i , min (t i+
4 k1−1 , m) , 1 do
5 for j := t j , min (t j+
6 k2−1 , n) , 1 do
7 a [i , j] :=b [i , j] ;

Discussion: Loop blocking introduces new loops and changes the loop bounds of all
involved loops. The execution frequency of the body of the innermost loop remains
unchanged but the structure of the resulting CFG changes dramatically.

5.3.5 Other Loop Transformations

The following describes loop transformations that are not limited to perfect loop nests.
These transformations also change the CFP dramatically. Flow facts describing loop
bounds as well as infeasible paths have to be updated.

Loop Unrolling

Loop unrolling is performed to reduce the overhead of a loop. Another application for
VLIW machines is to create a longer sequence of instructions inside the loop body.
When a loop is unrolled by a factor of k, the body of the loop is duplicated to create
k instances and the iteration count of the loop is decreased by the factor k. If the
iteration count of the loop is not known statically to be a multiple of k, additional code
for the remaining iteration has to be created. The principle of loop unrolling is shown
in Listing 5.11 and Listing 5.12 using an unrolling factor of two. Since the loop bound
is not defined, additional code to test for remaining iterations has been inserted.

Listing 5.11: original code

1 for i :=1 ,n , 1 do
2 a [i] := a [i]∗b [i +1] ;

Listing 5.12: loop unrolled twice

1 for i :=1 ,n , 2 do
2 a [i] := a [i]∗b [i −1] ;
3 a [i +1]:=a [i +1]∗b [i] ;
4 i f mod(n ,2)=1 and
5 n>0 then
6 a [n] := a [n]∗b [n−1] ;
7 else
8 skip

89

5.3 Changing the Control Flow 5 Classification of Code Transformations

Assume the iteration count of the loop is known as the factor n. When unrolling the
loop n times it is said the loop is completely unrolled and the loop is removed.

Discussion: Loop unrolling by a factor k may introduce a new loop for the remainder
of the iteration space with a loop bound 0 . . . k. The iteration bound of the original loop
is distributed to the unrolled loop scaled by k and the remainder. The CFG will be
changed dramatically.

Software Pipelining

Similar to hardware pipelining, software pipelining divides the execution of a loop body
into several execution stages. The transformed loop body contains the reordered initial
execution stages with ascending iteration instances. Additional prolog and epilog code
is created to handle the start and termination of the loop. Software pipelining is used to
enable instruction parallelism for VLIW architectures in case of dependencies between
execution stages.

A simple example for software pipelining including prolog and epilog is shown in
Listing 5.13 and Listing 5.14.

Listing 5.13: original code

1 for i :=1 ,n , 1 do
2 a:=a+b [i] ;
3 c [i] := a /2 ;

Listing 5.14: after software pipelin-
ing

1 a:=a+b [1] ;
2 for i :=2 ,n , 1 do
3 c [i −1]:=a /2 ;
4 a:=a+b [i] ;
5 c [n] := a /2 ;

Discussion: The iteration bound of the original loop is reduced by the number of
different iteration instances already executed in the prolog (or will be executed after-
wards in the epilog). If the involved iteration stages have more complex control flow
like if/then/else constructs, it is also necessary to update the information assigned to
such conditional control flow edges. Software piplining changes the CFG dramatically.

Perfect Pipelining

Perfect pipelining is a combination of loop unrolling and software pipelining. The con-
sequences of applying this transformation is given separately by the description of loop
unrolling and software pipelining

Loop Distribution

Loop Distribution (also called loop fission or loop splitting) is used to split a single
loop into multiple loops with each loop containing only a subset of the original loop

90

5 Classification of Code Transformations 5.3 Changing the Control Flow

body. Loop distribution can be used for example to create perfect loop nests, improve
instruction cache locality or reduce memory consumption.

An example for loop distribution is given in Listing 5.15 and Listing 5.16.

Listing 5.15: original code

1 for i :=1 ,n , 1 do
2 a:=a+b [i] ;
3 b [i] := c [i] ;

Listing 5.16: distributed loop

1 for i :=1 ,n , 1 do
2 a:=a+b [i] ;
3 for i :=1 ,n , 1 do
4 b [i] := c [i] ;

Discussion: Loop distribution creates new loops with equal iteration space. It is
required to create flow facts for these new loops. Loop distribution changes the CFG
significantly.

Loop Fusion

Loop fusion (also called loop jamming) is the inverse transformation to loop distribution.
Loop fusion can be used, for example, to reduce loop overhead or increase instruction
parallelism. The effects of performing loop fusion can be obtained from the description
of loop distribution.

Loop Unswitching

Loop unswitching can be applied when a loop contains a conditional with a loop-invariant
test condition. The loop is then replicated within each branch of the conditional to save
the overhead of the conditional branch inside the loop. Other advantages are that the
loop body is reduced and instruction level parallelism may be improved.

An example for loop unswitching is shown in Listing 5.17 and Listing 5.18.

Listing 5.17: original code

1 for i :=1 ,n , 1 do
2 a [i] := a [i]+b ;
3 i f (x>0) then
4 a [i] := a [i]+2;
5 else
6 a [i] := a [i]−2;

Listing 5.18: unswitched loop

1 i f (x>0) then
2 for i :=1 ,n , 1 do
3 a [i] := a [i]+b ;
4 a [i] := a [i]+2;
5 else
6 for i :=1 ,n , 1 do
7 a [i] := a [i]+b ;
8 a [i] := a [i]−2;

Discussion: Loop unswitching changes the CFP radically. The loop itself is repli-
cated with equal iteration spaces. Any information about (in)feasible paths to describe
the CFP has to be updated carefully.

91

5.3 Changing the Control Flow 5 Classification of Code Transformations

Loop Peeling

Loop peeling can be used to match the iteration control of adjacent loops and therefore
enabling loop fusion. Loop peeling splits a loop into multiple parts without changing the
iteration order. Therefore, this transformation can be applied to any loop.

An example for loop peeling is given in Listing 5.19 and Listing 5.20. The next step
would be to apply loop fusion over the second and third loop of Listing 5.20.

Listing 5.19: original code

1 for i :=1 ,n , 1 do
2 a [i] := a [i]+b ;
3 for i :=k , n , 1 do
4 c :=c+a [i] ;

Listing 5.20: after loop peeling

1 for i :=1 ,k−1 ,1 do
2 a [i] := a [i]+b ;
3 for i :=k , n , 1 do
4 a [i] := a [i]+b ;
5 for i :=k , n , 1 do
6 c :=c+a [i] ;

Discussion: Loop peeling creates a sequence of loops where the overall interaction
count matches the iteration count of the original loop. The CFG is changed dramatically
and information about loop iteration bounds and (in)feasible paths have to be updated.

Removing Empty Loops

Empty loops can be a result of previous code transformations. Deleting such a loop only
requires to consider later references to the induction variable of that loop.

Discussion: Removing empty loops has a serious impact on the CFG . Flow facts
about (in)feasible paths referring to control flow edges within these loops have to be
updated.

5.3.6 Procedure Call Transformations

Procedure calls are a primitive mechanism for modularisation of software. The drawback
is that a procedure call induces additional overhead to transfer program control. In
this section we describe some code transformations on procedure calls that change the
structure of the code dramatically. When WCET analysis is done at inter-procedural
level it is necessary to update involved flow facts correctly.

To model the program control flow including function calls, the CFG is extended to a
global control flow graph (GCFG). A description of the GCFG is given in Section 4.1.3
on page 48.

Procedure Inlining

Procedure inlining is a transformation that replaces a function call by the body of the

92

5 Classification of Code Transformations 5.3 Changing the Control Flow

called function. This optimisation removes the control transfer functions at the cost of
overall code size.

An example for procedure inlining is given in Listing 5.21 and Listing 5.22. The
transformed code given in Listing 5.22 does not call the function add(a,b) anymore.

Listing 5.21: original code

1 function add (a , b)
2 begin
3 re turn a+b ;
4 end
5

6 for 1 , n , 1 do
7 a [i] : = add (b [i] , c [i]) ;

Listing 5.22: after procedure inlining

1 for 1 , n , 1 do
2 a [i] : = b [i]+c [i] ;

Discussion: Procedure inlining changes the GCFG dramatically. Flow facts referring
to the removed function call have to be transformed.

Procedural Abstraction

Procedural abstraction [DEMS00] can be seen as the opposite code transformation to
procedure inlining. Procedural abstraction is typically used for code compaction on em-
bedded systems. Single-entry, single-exit code fragments are be moved into a function
to reuse this code in other code locations.

An example to show the principle of procedural abstraction is given by Listing 5.23
and Listing 5.24. In practice, procedural abstraction does not create functions that pass
and return operands as formal arguments. Instead, registers are simply used as global
variables. Register renaming and additional copy statements may be necessary to match
code fractions.

Listing 5.23: original code

1 tmp1 = (a + b)∗2 ;
2 e = tmp1 + 5 ;
3 . . .
4 tmp2 = (c + d)∗2 ;
5 f = tmp2 + 5 ;

Listing 5.24: after procedural ab-
straction

1 function f n abs (u , v)
2 begin
3 tmp = (u + v)∗2 ;
4 r e turn tmp + 5;
5 end
6

7 e = fn abs (a , b) ;
8 . . .
9 f = fn abs (c , d) ;

93

5.4 Control Flow Preserving Optimisations 5 Classification of Code Transformations

Discussion: Procedural abstraction changes the GCFG dramatically. Flow facts re-
ferring to code that has been moved into the created function have to be transformed.

Function Memoization

Function memoization can be used for procedures free of side effects, i.e., procedures
that change the state of a program only over their specified output interfaces. Function
memoization is a code transformation that caches the result of previous function calls
to avoid the overhead of calculating the same result more than once.

An example for function memoization is given in Listing 5.25 and Listing 5.26. List-
ing 5.25 shows a simple function call. The transformed code given in Listing 5.26 has
additional code to cache the result of a function call.

Listing 5.25: original code

1 a := f (i) ;

Listing 5.26: after function memoiza-
tion

1 var b i s cached [n] ;
2 var b cache [n] ;
3

4 i f b i s cached [i] 6=1 then
5 b cache [b] := f (i) ;
6 b cache [b] :=1 ;
7 else
8 skip
9 a := b cache (i) ;

Discussion: Function memoization changes the structure of the GCFG significantly.
Flow facts that refer to the execution frequency of the cached procedure have to be up-
dated safely. To enable precise update of such flow facts it is required to have knowledge
about the distribution of the values of the function arguments.

5.4 Control Flow Preserving Optimisations

Code transformations which do not change the CFG are not subject to any flow fact
update. Such transformations only modify particular statements but do not directly
change the structure of basic blocks. Typical operations are the move, duplication,
deletion of single statements.

However, the application of such control flow preserving optimisations can enable
further optimisations that may change the CFG . As a simple example, after moving all
statements out of a block, the block may be removed from the CFG .

For a deeper understanding about which transformations are critical for the CFP
calculation, the following list will show typical code transformations that do not change

94

5 Classification of Code Transformations 5.4 Control Flow Preserving Optimisations

the CFG of the code. All these transformations do not require to update flow facts
describing the CFP . Further literature describing these transformations in more detail
has been collected by Bacon [BGS94]. Muchnik explains most of these transformations
in detail [Muc97].

5.4.1 Partial Evaluation

Partial evaluation refers to the technique of performing parts of a computation at compile
time. Typical examples for partial evaluation are all standard code optimisations based
on data-flow analysis. The following transformations do not change the CFP :

• Constant Propagation

• Constant Folding

• Copy Propagation

• Statement Substitution

• Algebraic Simplification

• Reassociation

5.4.2 Memory Access Transformations

Memory access transformations are used to optimise memory accesses by considering
system configurations like memory page organisation and cache architectures. The fol-
lowing memory access transformations do not change the CFP :

• Memory Alignment

• Array Padding

• Code Co-location

• Displacement Minimisation

• Array Contraction

• Scalar Replacement

5.4.3 Redundancy Elimination

The following redundancy elimination transformations do not change the CFP :

• Dead Variable Elimination

95

5.4 Control Flow Preserving Optimisations 5 Classification of Code Transformations

• Common Subexpression Elimination

• Partial-Redundancy Elimination

• Short-Circuiting

• Code Hoisting

5.4.4 Loop Reordering Transformations

Loop reordering transformations change the order in which the iterations of a perfect
loop nest are executed. The following loop reordering transformations do not change
the iteration frequency within the CFP :

• Loop Skewing

• Loop Reversal

5.4.5 Other Loop Transformations

The following loop transformations do not change the CFP :

• Strength Reduction of Induction Variable Expressions

• Induction Variable Elimination

• Loop-invariant Code Motion

• Loop Normalisation

5.4.6 Procedure Call Transformations

Procedure call transformations work on the GCFG . The following transformations do
not change the CFP :

• Leaf Procedure Optimisation

• Cross-call Register Allocation

• Parameter Promotion

• Frame Collapsing

• Tail Recursion Elimination

96

5 Classification of Code Transformations 5.5 Chapter Summary

5.4.7 Other Transformations

Here we discuss transformations that are not covered by the above categories. The
following transformations do not change the CFP :

• Strength Reductions

• Machine Idioms and Instruction Combining

5.5 Chapter Summary

Code optimisations performed by the compiler can change the control flow of a program
dramatically. This is a challenging problem for WCET analysis since meta-information
about the control flow is desired to be provided at source code level. It is the topic of
this thesis to provide a mapping of this meta-information (flow facts) from the source
code level to object code that can handle code optimisations.

This chapter gave an overview of typical code optimisations performed by a compiler.
For each optimisation its impact on the control flow and the required update of flow facts
was discussed. Various code transformations were listed which require compiler support
to transform the flow facts precisely to reflect the control flow changes. Examples
for that are several loop transformations. Code transformations that only change the
composition of basic blocks without changing the control flow itself do not need an
update of flow facts.

97

5.5 Chapter Summary 5 Classification of Code Transformations

98

There is one thing stronger than all the armies in the world;
and this is an idea whose time has come.

Anonymous, Nation (15. April 1943)

Chapter 6

Timing Analysis of Optimised Code

This chapter describes an abstract flow facts transformation framework to handle code
transformations performed by an optimising compiler. This abstract transformation
framework is used in the next chapter to construct a safe and precise concrete flow facts
transformation framework.

6.1 The Context of Code Transformations within

WCET Analysis

There exist various techniques to transform code or meta information. Especially re-
search in the domain of compiler technology has produced many of them. In this thesis
we present a transformation technique to correctly transform flow facts describing the
possible CFP of the program in parallel to code transformations performed by the com-
piler. One may ask whether it is necessary to develop a new transformation scheme from
scratch. The most effective way would be to adopt an existing scheme for the specific
requirement. However, in this section we give a short impression why the transformation
of flow facts is quite specific.

A well known application domain for transforming meta information is symbolic
debugging [JGS98] (see also Section 3.5.2). A requirement for symbolic debugging is to
be able to find an appropriate object code breakpoint suitable for the desired breakpoint
in the source code. At the breakpoint it should be possible to report the values of
variables according to the semantics of the source language. The code location problem
in symbolic debugging requires a two-way mapping between the source code and the
object code. This mapping is denoted by mapi in Figure 6.1. The mapping mapi for
symbolic debugging is a different meta information of a quite different nature than the
mapping of program code to its possible CFP . In case of code transformations done
by the compiler there are different problems to be solved. However, the code location
mapping for symbolic debugging can be also used to propagate the result of the WCET
calculation back to the source code.

To calculate the WCET of a program P it is generally necessary to have a mapping

99

6.1 The Context of Code Transformations 6 Timing Analysis of Optimised Code

������������������
���
������
���
������
���
������
��� ������

���

������
���

	�	
�

������

WCET
Analysis

assembly
code

ffobj−→ CFPffobj
(Pc)

mapc

map2

. . . transformation of code

. . . transformation of code mapping

. . . transformation of flow facts

code gen.

optimisation

IC1
ff1−→ CFPff 1

(IC1)

IC2
ff2−→ CFPff 2

(IC2)

parsing

map1

code
source ffa−→ CFPffa (Psrc)

Figure 6.1: The Context of ff Transformations

between the program and its CFP . This mapping is done by the flow facts ff described
in Section 2.3.3 which provides together with the program code P a safe upper closure
CFPff (P) for CFPopt(P). As shown in Figure 6.1, the flow facts to describe the CFP
are denoted by ffi . The extraction of flow facts (see Figure 2.2.3) itself by parsing ffa

annotations and analysing the structure and semantics of the code is not the scope of
this thesis. During the transformation from intermediate code IC1 to IC2 the compiler
can perform drastic changes of the code structure.

This work addresses the safe and precise parallel update of the flow facts from ff1 to
ff2 so that the resulting CFP2 (IC2) is still a safe upper closure for CFPopt(IC2) of the
transformed program IC2. Finally, the generated ffobj together with the assembly code
forms the basis for calculating the WCET. The concrete execution scenario calculation
method to get a safe upper bound for the real WCET is not part of this thesis. However,
Section 2.3.2 gives a short introduction of the WCET calculation method based on the
implicit path enumeration technique (IPET). The mechanism to update the flow facts
has to fulfil the following requirements:

• it must be hardware-independent to use the approach for any hardware platform
(this is no challenge, as the type of flow facts we support is hardware-independent
itself).

• it must provide a flow-facts interface applicable to manual code annotations as
well as automatic flow facts extraction tools (this is achieved by supporting flow
facts for IPET-based WCET calculation).

• it must support any compiler optimisation (this is achieved by developing basic
update functions that can be grouped to support more complex code transforma-
tions).

100

6 Timing Analysis of Optimised Code 6.2 Dependable Flow Facts Transformation

• the flow facts update rules must be safe (this is achieved by developing a formalism
to induce safe (correct) flow facts update rules).

• the flow facts update rules should be precise (this is achieved by designing basic
operations allowing flexible modifications of flow facts).

• the integration of the flow facts transformation into a compiler should be possible
with reasonable implementation effort (this is achieved by the modular construc-
tion of update rules).

6.2 Dependable Flow Facts Transformation

Our transformation method uses abstract interpretation to induce the correct flow facts
transformation function. Abstract interpretation is a formalism supporting the sys-
tematic construction of a safe and correct interpretation, based on a given concrete
interpretation [CC77]. The basic principles of abstract interpretation are described in
Section 4.3. The resulting properties of having a Galois connection between the concrete
and the abstract domain are described in Section 4.3.7.

6.2.1 The Correctness of the Transformation

P ∈ P represents the program to be transformed by the transformation function Ft1 :
P→ P. To enable the calculation of a WCET bound for P , additional flow facts ff ∈ F
are assigned to P . The flow facts F form a domain 〈F,v2〉 where v2 is defined as
ff1 v2 ff2 ⇔ (ff2 is a less restrictive subset of ff1). The exact definition of v2 depends
on the concrete type of supported flow facts. Intuitively spoken, for each element f2 ∈ ff2

there exists an element f1 ∈ ff1 where f2 is less restrictive than f1.

To describe the correct transformation F, P and F are grouped together to form the
domain 〈D,v〉 with D : P×F, having a combined transformation function Ft = Ft1×Ft2.
The relation v is defined as

∀〈P1,ff1 〉, 〈P2,ff2 〉 ∈ D : 〈P1,ff1 〉 v 〈P2,ff2 〉 ⇔ (P1 = P2) ∧ (ff1 v2 ff2)

It remains to construct a correct F transformation function Ft2 : F→ F to complete the
definition of Ft : D → D.

The correctness of the transformation is proven by showing observational equivalence
[CC02]: an abstraction function αo is used to extract the relevant properties for correct-
ness. An example prepared for our needs is given in Figure 6.2 for the transformation of
flow facts in parallel to the code transformation. As already mentioned, the calculation
of flow facts cannot be complete. Therefore, certain flow facts ffa are given manually by
the user (denoted by the operation a). Further flow information ffimpl is extracted by
semantic code analysis denoted by the operation Fs. The resulting flow information is
denoted ff = ffa ∪ ffimpl . Finally, the operation

Ft = Ft1×Ft2

101

6.2 Dependable Flow Facts Transformation 6 Timing Analysis of Optimised Code

αoαoαo αo

αo(〈Ps, ε〉) = αo(〈Ps,ffa〉) = αo(〈Pi,ff 〉) = αo(〈Pt,ff t〉)

〈Pt,ff t〉Fs Ft

S[[〈Ps, ε〉]]
〈Ps, ε〉 a 〈Ps,ffa〉 = a[[Ps]]

S[[〈Ps,ffa〉]]
〈Pi,ff 〉

S[[〈Pi,ff 〉]] S[[〈Pt,ff t〉]]

Figure 6.2: Observational Correctness of Transformation

represents the code optimisation performed by the compiler and the flow facts transfor-
mation performed in parallel. The correctness condition shown in Figure 6.2 requires
that the observational abstraction αo has an unchanged semantics S[[〈P ,ff 〉]] for both
code annotation and transformation (Definition 6.2.1).

Pi is the program which has been annotated with flow facts. Pi is transformed by
the compiler to Pt. ff has to be transformed to fft in parallel with the transformation
of Pi to Pt. Conventional WCET analysis tools will use Pt and fft as input to calculate
the WCET.

Definition 6.2.1 (Extended Program Semantics S[[〈P ,ff 〉]]) represents the seman-
tics of program P under consideration of the flow facts ff . The CFP described by ff for a
program P is denoted as CFPff (P). S[[〈P ,ff 〉]] is the standard program semantics S[[P]]
with the additional constraint that the possible CFPopt(P) of P is a subset of CFPff (P).
If the CFPopt(P) of P is not a subset of CFPff (P) then the extended program 〈P ,ff 〉 is
invalid.

Definition 6.2.2 (Observational Correctness of F : P×F→ P×F) A transforma-
tion F : P×F → P×F is defined to be correct for a given input tuple 〈P ,ff 〉 ∈ P×F,
iff the standard program semantics S[[P]] is not changed by the transformation F and
〈P ,ff 〉 as well as F (〈P ,ff 〉) are valid programs with respect to their extended program
semantics (Definition 6.2.1).
A formal definition of observational correctness for F is:

〈P2,ff2 〉 = F (〈P ,ff 〉) ∧ CFPopt(P) ⊆ CFPff (P) ∧
S[[P]] = S[[P2]] ∧ CFPopt(P2) ⊆ CFPff2 (P2)

To conclude, the correctness of the example given in Figure 6.2 requires that the
observational correctness (Definition 6.2.2) holds for the transformations a, Fs, and Ft.
The transformation Ft2 : F → F has to be defined correctly so that the observational
correctness of Ft = Ft1 × Ft2 is guaranteed.

102

6 Timing Analysis of Optimised Code 6.2 Dependable Flow Facts Transformation

αs γs αs γs αs γs αs γs

F̃sã F̃t

C[[〈P̃t, ff̃ t〉]]

≡ ≡≡

ā F̄tF̄s

〈P̃s, ε̃〉 〈P̃ , ff̃ 〉 〈P̃t, ff̃ t〉
C[[〈P̃ , ff̃ 〉]]C[[〈P̃s, ff̃a〉]]C[[〈P̃s, ε̃〉]]

S[[〈P̄s, ε〉]]
〈P̄s, ε〉 〈P̄s,ffa〉 = a[[P̄s]]

S[[〈P̄s,ffa〉]]
〈P̄ ,ff 〉

S[[〈P̄ ,ff 〉]] S[[〈P̄t,ff t〉]]
〈P̄t,ff t〉

〈P̃s, ff̃a〉

Figure 6.3: Transformation of Flow Facts

6.2.2 Transformation of Flow Facts

Based on the code annotation and transformation shown in Figure 6.2 we perform an
abstract interpretation with CFP abstraction to correctly transform the flow facts in
parallel to the code transformation Ft1. The extraction of flow facts ffimpl from the
source code is not topic of our work. Work like [Gus00] is tackling this problem.

The concept of our method based on the theory of abstract interpretation to con-
struct a correct ff transformation function Ft2 : F→ F is shown in Figure 6.3. The flow
facts ff describe a closure for the possible CFP of a program P . An abstract interpre-
tation that operates on the structure of a program P is appropriate to induce a correct
update function of the flow facts. The meaning of S[[〈P̄ ,ff 〉]] and C[[〈P̃ , ff̃ 〉]] is explained
after the construction of the concrete and abstract domains.

Construction of Concrete and Abstract Domains

The abstract interpretation operating on the program structure requires to abstract
from the concrete program transformation. The abstraction can be done independently
for the P and F attributes. We therefore use the independent attribute method described
in Section 4.3.11 on page 80 to construct a Galois connection out of two separate Galois
connections.

The construction of the Galois connection for the flow facts is trivial. Since the
flow facts are already at a representation level that describes the control flow of a pro-
gram, their abstraction can be constructed by a Galois isomorphism (see Section 4.3.7):

〈〈F,v2〉, α≡, γ≡, 〈F̃,ve2〉〉. The advantage of a Galois isomorphism compared to a Galois
connection is that data are converted between abstract and concrete domain without
loss of information.

The construction of the Galois connection to abstract the program representation P
requires more considerations. The five steps described in Section 4.3.7 to construct a
Galois connection are:

1. Construction of a concrete domain 〈P̄,v¯
1〉: It is intended to use a program ab-

straction based on the structure of a program P ∈ P. The program structure
will contain information like control-flow and loop scopes. Constructing an ap-

103

6.2 Dependable Flow Facts Transformation 6 Timing Analysis of Optimised Code

propriate partial order for a simple concrete domain like 〈P,v1〉 is not possible
because the concretisation from a code structure cannot be mapped to a single
program P ∈ F due to information loss by the abstraction. The solution is to lift
the programs P ∈ P to sets of programs P̄ ∈ P̄ with P̄ : ℘(P) and the additional
restriction that all programs P ∈ P̄ have the same code structure, denoted by
∀P1∈P̄1,∀P2∈P̄2 : (P̄1 = P̄2) → (struct(P1) = struct(P2)).
The partial order 〈P̄,v¯

1〉 can be now defined as:

∀P̄1, P̄2 ∈ P̄ : P̄1 v¯
1 P̄2 ⇔ P̄1 ⊆ P̄2

2. Construction of the corresponding abstract domain 〈P̃,ve1〉: The abstract program

domain 〈P̃,ve1〉 is designed to represent the unique code structure of a program

set P̄ ∈ P̄ which is calculated by the function struct : P→ P̃. The domain 〈P̃,ve1〉
is a “flat poset”: ∀P̃1, P̃2∈P̃ : P̃1 ve1 P̃2 ⇔ P̃1 = P̃2.

3. Correctness relation Rs: The correctness relation Rs : P̄ × P̃ → {true, false} is

defined as P̄RsP̃ ⇔ (∀P∈P̄ : struct(P) ve1 P̃). Since each P ∈ P̄ has the same

program structure struct(P), the resulting representation function βs : P̄ → P̃ is
calculated as follows: ∀P̄∈P̄ : (P∈P̄) ⇒ (βs(P̄) = struct(P)).

4. Check for the existence of a best approximation: Because the domain 〈P̃,ve1〉 is
designed as a “flat poset” (there exists a unique abstract property that represents

a concrete property), it directly follows that ∀P̄∈P̄, ∀P̃∈P̃, ∃P̃1∈P̃ : P̄RsP̃1 ∧
(P̄RsP̃ ⇒ P̃1 ve P̃).

5. Calculation of the abstraction function αs and the concretisation function γs: The
abstraction function αs : P̄ → P̃ is calculated as follows: ∀P̄∈P̄ : αs(P̄) =

βs(P̄). The concretisation function γs : P̃ → P̄ calculates the set of all programs

that match the given program structure: γs(P̃) = t{P̄ ∈ P̄ | β(P̄) ve1 P̃}. It is

important to note that γs(P̃) cannot be calculated in practice, since it results in

a set of infinite programs. However, the calculation of γs(P̃) is not required as we
use abstract co-interpretation (see Definition 6.2.3 on page 106) to induce F̄t2.

It is interesting to note that the above defined Galois connection 〈〈P̄,v¯
1〉, αs, γs, 〈P̃,ve1〉〉

also forms a Galois insertion (see Section 4.3.7).

The Galois insertion 〈〈P̄,v¯
1〉, αs, γs, 〈P̃,ve1〉〉 and the Galois isomorphism

〈〈F,v2〉, α≡, γ≡, 〈F̃,ve2〉〉 are combined using the independent attribute method (Sec-

tion 4.3.11) to construct the new Galois insertion 〈〈P̄×F,v¯〉, αs×α≡, γs× ≡, 〈P̃×F̃,ve〉〉.
The Semantics of the Concrete and Abstract Domains

In Figure 6.3, the semantics of the concrete domain 〈P̄×F,v¯〉 and the abstract

domain 〈P̃×F̃,ve〉 are denoted by S[[〈P̄ ,ff 〉]] and C[[〈P̃ , ff̃ 〉]].

104

6 Timing Analysis of Optimised Code 6.2 Dependable Flow Facts Transformation

S[[〈P̄ ,ff 〉]] represents the extended program semantics (Definition 6.2.1) for all pro-
grams P ∈ P̄ . Since we use a special interpretation – which we call abstract co-
transformation – we do not need to calculate the concretisation function γs : P̃→ P̄. As
a consequence, the program set P̄ of 〈P̄ ,ff 〉 constains only a single program which has
to be valid in terms of the extended program semantics.

The abstract semantics C[[〈P̃ , ff̃ 〉]] describes CFPff (P), a closure for the possible
control flow paths CFPopt(P) during the execution of a program P ∈ P̄ . The code

structure information of 〈P̃ , ff̃ 〉 may contain for example the control-flow graph (CFG)
and information about loop scopes.

Construction of a Safe Approximation to Calculate Ft

Based on the concrete domain 〈P̄,v¯
1〉 and the program transformation function

Ft1 : P→ P we construct an interpretation 〈〈P̄,v¯
1〉, F̄t1〉 using the following transition

function:

∀P̄ ∈ P̄ : F̄t1(P̄) = {Ft1(P) | (P∈P̄) ∧ defined(Ft1(P))}
The constraint defined(Ft1(P)) is required since Ft1 is not a total function over all
programs P of the set P̄ of programs with the same code structure. The use of defined()
is only necessary for formal completeness since we never use the concretisation function
γs for the calculation of Ft.

The concrete interpretation 〈〈P̄×F,v¯〉, F̄t〉 of the concrete transformation of pro-
grams with attached flow facts has the following transition function F̄t : P̄×F→ P̄×F:

F̄t = F̄t1×Ft2

To calculate Ft2 we construct 〈〈P̃×F̃,ve〉, F̃t〉 with the transition function F̃t : P̃×F̃ →
P̃×F̃:

F̃t = F̃t1×F̃t2

as a safe γs×γ≡ − approximation of 〈〈P̄×F,v¯〉, F̄t〉. The construction of a sound oper-

ation F̃t is done by fulfilling Equation 6.1. F̃t1 is the abstraction of F̄t1 by transforming
a program’s code structure.

∀〈P̃ , ff̃ 〉 ∈ P̃×F̃ : F̄t1(γs(P̃)) v1 γs(F̃t1(P̃)) ∧ Ft2(γ≡(ff̃)) v2 γ≡(F̃t2(ff̃)) (6.1)

The flow facts transformation function F̃t2 can be directly calculated from F̃t1. F̃t1

describes the structural program transformation including semantic information about
the transformation describing the update of the program’s control flow. An example
for such a control-flow update information is the information known by the compiler
for the update of the iteration bound of the modified loop when performing the code
transformation loop unrolling (as described in Section 5.3.5). The information about

the structural program transformation of F̃t1 is sufficient to describe the transformation
of the flow facts done by F̃t2.

105

6.3 Flow Facts for WCET Calculation 6 Timing Analysis of Optimised Code

Definition 6.2.3 (Abstract co-interpretation)
Assumptions:

- 〈〈D1,v1〉, α1, γ1, 〈D̃1,ve1〉〉 and 〈〈D2,v2〉, α2, γ2, 〈D̃2,ve2〉〉 are two Ga-
lois connections with independent attributes and the Galois connection
〈〈D1×D2,v〉, α1×α2, γ1×γ2, 〈D̃1×D̃2,ve〉〉 has been constructed based on the
independent attribute method (see Section 4.3.11).

- 〈〈D̃1,ve1〉, F̃1〉 is a safe γ1 − approximation of 〈〈D1,v1〉, F1〉 and

〈〈D̃1×D̃2,ve〉, F̃1×F̃2〉 is a safe γ1×γ2 − approximation of 〈〈D1×D2,v〉, F1×F2〉.
A definition of a function F̃2 that can be implied from the transformation performed by
F̃1 is denoted as F̃2 = impl(F̃2/F̃1). If the implied function F̃2 = impl(F̃2/F̃1) fulfils the
following condition

∀〈d̃1, d̃2〉∈D̃1×D̃2 : F2(γ2(d̃2)) v2 γ2(F̃2(d̃2))

then 〈〈D1×D2,v〉, F1×γ2◦impl(F̃2/F̃1)◦α2〉 is a safe approximation of
〈〈D1×D2,v〉, F1×F2〉.
The approximation 〈〈D1×D2,v〉, F1×γ2◦impl(F̃2/F̃1)◦α2〉 is called an abstract
co-interpretation.

Since 〈〈F,v2〉, α≡, γ≡, 〈F̃,ve2〉〉 is a Galois isomorphism (i.e., ff = γ≡(α≡(ff)) and

ff̃ = α≡(γ≡(ff))) we can use abstract co-interpretation (as defined in Definition 6.2.3) to

construct 〈〈P̄×F,v¯〉, F̄t1×γ≡◦impl(F̃t2/F̃t1)◦α≡〉 as an approximation of 〈〈P̄×F,v¯〉, F̄t〉.
This approximation is safe, because Equation 6.2 follows from the definition of the
abstract co-interpretation. Further, as 〈〈F,v2〉, α≡, γ≡, 〈F̃,ve2〉〉 is a Galois isomorphism
it follows that even Equation 6.3 holds and therefore, it follows that this approximation
is also precise: Ft2 = γ≡ ◦ impl(F̃t2/F̃t1) ◦ α≡.

∀〈P̄ ,ff 〉 ∈ P̄×F : 〈F̄t1(P̄), Ft2(ff)〉 v 〈F̄t1(P̄), γ≡(F̃t2(α≡(ff)))〉 (6.2)

∀〈P̄ ,ff 〉 ∈ P̄×F : 〈F̄t1(P̄), Ft2(ff)〉 = 〈F̄t1(P̄), γ≡(F̃t2(α≡(ff)))〉 (6.3)

In this subsection we have described the theory to construct a correct flow facts
transformation function Ft2 : F → F. The transformations that have to be performed
by Ft2 are discussed in the following subsection.

6.3 Flow Facts for WCET Calculation

Flow facts ff are hints describing constraints on the possible control flow paths (CFP).
Possible sources for ff are syntax and semantics of the program code or additional
annotations (ffa).

Our WCET calculation is based on the implicit path enumeration technique (IPET),
see Section 2.3.2. This calculation method transforms the structure of a program into a

106

6 Timing Analysis of Optimised Code 6.3 Flow Facts for WCET Calculation

set of flow constraints and allows to incorporate arbitrary flow facts describing iteration
counts. Other methods, like tree-based [CP00, PK89] or path-based [HAM+99] WCET
calculation, are in contrast limited to certain classes of structured flow facts.

The power of the IPET-based WCET calculation can be fully exploited by describing
ff with

• markers,

• restrictions, and

• loop bounds.

This flow information to express (in)feasible paths is described in more detail in Sec-
tion 2.3.3. A sample code demonstrating the usage of these code annotations is given
in Figure 6.4. The code is written in wcetC, a language derived from ANSI C with
grammar extensions to express ffa inside the source code [Kir02]. Each loop is assigned
with a lower and upper iteration bound. The safe modelling of certain code transforma-
tions requires both the lower and the upper iteration bound. This is true for best-case
execution time (BCET) calculation as well as WCET calculation. Markers are used to
label execution paths of the code. The restrictions are used to set the execution counts
of several markers in relation to each other. In a restriction, numeric factors without
a marker represent execution counts relative to the execution count of the surrounding
scope. Restrictions have to be valid under all considered possible execution scenarios,
e.g., using specific knowledge about the possible input data of a program can result in
restrictions that describe the possible CFP more precisely.

In the sample code of Figure 6.4 we used the implicit semantic information of the code
to specify two restrictions for the lower and upper execution bound of the conditional
branch labelled by marker m2. For tight WCET results it is necessary to specify both
upper and lower bounds since we do not know which branch will contribute more to the
execution time. The analogous argument is valid for the calculation of the BCET.

6.3.1 Required Transformation of Flow Facts

As described in Section 6.2.2, the update of ff̃ is induced by the CFP transformations
done by F̃t1. In the following we assume the flow facts ff̃ to be a tuple 〈Ξ, Γ, `〉 where
Ξ is the set marker bindings, Γ the set of restrictions, and ` are the set of loop frames.
Loop frames ` contain explicit information about loops, for example iteration bounds.

Typical compiler optimisations consist of a program analysis phase and a result-
ing program transformation phase which can be performed interleaved. By using the
abstracted program transformation function F̃t1 it will be obvious that different code op-
timisations fall into the same class of abstract CFP transformations. This fact simplifies
the design of a transformation function F̃t2 that is complete and correct.

Analysing the actions performed by F̃t1, we can identify the following operations
performed at instruction level:

107

6.3 Flow Facts for WCET Calculation 6 Timing Analysis of Optimised Code

scope
{

for (i=0,i<=m,i++)
range 4...10 iterations

{
marker m1;
if (i%2 == 0)
{

marker m2;
arr[i] = d;

}
else

arr[i] = i;
}
/* min. exec. count of m2 */
restriction m1 <= 2*m2;

/* max. exec. count of m2 */
restriction 2*m2 <= m1+1;

}
Figure 6.4: Sample Code, annotated with Flow Facts

• insert • move • copy
• delete • replace

Changing only the statements within a single basic block does not require to update Ξ,
Γ or `. But it becomes more complex when F̃t1 also includes structural changes of the
CFP . Facing the operations of F̃t1 at single instruction level does not allow to induce
precise operations to be performed by F̃t2. Depending on the context of the operation
done by F̃t1 it could be required to

• duplicate involved m ∈ Ξ and r ∈ Γ,

• duplicate involved m ∈ Ξ and update r ∈ Γ by the sum of original and new
markers,

• duplicate involved m ∈ Ξ and create new restrictions using the old and new
markers,

• update the multiplication factor of certain terms in r ∈ Γ,

• delete involved m ∈ Ξ and maybe also r ∈ Γ, or

• no update of m ∈ Ξ or r ∈ Γ required.

The transformations done by F̃t1 can also address more drastic CFP updates modifying
loop bounds or loop scopes (information about loop nesting). In this case, in addition
to the update of Ξ and Γ, it can be required to

108

6 Timing Analysis of Optimised Code 6.3 Flow Facts for WCET Calculation

• copy l ∈ ` when duplicating a loop,

• delete l ∈ ` when deleting a loop,

• modify l ∈ ` of the involved loop, or

• modify l ∈ ` of involved loops and create new m ∈ Ξ and r ∈ Γ to express
dependencies between the iteration space of involved loops.

Without the knowledge of the overall structure update of P̃ it is not possible to decide
which of the above ff̃ updates would be required to maintain semantic correctness of
the flow facts. As a consequence, we have to group these atomic operations done by F̃t1

into operations of coarser granularity and use the semantic context of the operations
done by F̃t1 to induce the ff̃ update.

The challenge for designing the ff̃ update function is that there are numerous dif-
ferent code optimisations and each compiler may even handle them slightly different.
To overcome this infeasible complexity, we systematically abstract the impact of each
code optimisation to the changes of the CFP . As a result we get generic CFP update
patterns for which we can induce the required ff̃ update:

• split execution paths: A branch in block bx in the CFP which leads to a block
by is changed leading to another block bz. An example for this transformation
pattern are jump optimisations.

Transformation: After setting the branch target in bx to bz, the execution count
of by is decreased by the branching count of bx. All restrictions using markers of
the original path of by have to be updated with an additional marker assigned to
the branching edge of bx.

• merge execution paths: The branches of a conditional block are merged to-
gether. A typical example for such a transformation pattern is the introduction
of conditional moves.

Transformation: The execution count of the merged edge can be used as an upper
bound for each of the conditional branches to update involved restrictions.

• delete execution paths: One or more blocks of code are deleted. Typical
examples for such a transformation pattern are dead code, unreachable code or
common subexpression elimination.

Transformation: For all markers in the blocks to be deleted we have to update in
a safe way all restrictions that use them. In the case we do not know anything
about the execution count of the blocks to be deleted, a safe approximation has to
be used. For example, if it is known at compile time that the code is unreachable
(unreachable code can also be produced by prior code optimisations), the trans-
formation is precise by just removing in all restrictions globally the terms using
markers that are defined inside the blocks to be deleted.

109

6.4 Chapter Summary 6 Timing Analysis of Optimised Code

Possible structural changes on the CFP involving iterations (i.e., cyclic subgraphs
of the CFG) are:

• split iteration space of loop: The loop body gets to be executed outside
the original loop. Examples of this are loop unrolling, loop peeling.

Transformation: The original loop and any potentially new created loop have to
get an updated loop bound. Additionally, a restriction for limiting the execution
count of the original loop and the copies to the original loop bound is emitted.

• changing loop scope of code: Blocks are moved from a certain loop scope
to another loop scope. Examples of this are loop unswitching, loop-invariant code
motion.

Transformation: The restriction multiplication factor for all markers within the
blocks have to be updated by the iteration bound of the new loop scope.

• change of iteration count: The control code of a loop is updated to perform
a new number of iterations. Examples of this are loop interchange, loop coalescing
or loop vectorisation.

Transformation: The loop bound of the loop has to be updated. If the overall
iteration count of the loop body is also changed, then all restrictions using markers
from within the loop body have to be corrected. The iteration of the body may
not be changed if this transformation pattern is performed on nested loops.

Using these abstractions, it is possible to define universal ff̃ update functions. F̃t2

has to compose simple ff̃ updates to perform the induced operations. Using these generic
patterns simplifies the correctness proof of the induced function F̃t2 in relation to the
abstract interpretation of the code transformation.

6.4 Chapter Summary

For correct and precise static WCET analysis, code transformations performed by an
optimising compiler make it necessary to update flow facts given at source code level.

In this chapter we constructed an abstract framework to transform flow facts cor-
rectly and precisely in parallel to code transformations. This framework is based on
the theory of abstract interpretation. The term correctness was defined by means of an
observational correctness condition. Using this formalism it is possible to construct a
correct flow facts transformation in a modular way, even for such generic and complex
flow facts as described in Section 2.3.3.

110

Where is the life we have lost in living?
Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

T. S. Eliot, The Rock (1934)

Chapter 7

Handling Flow Facts during Code
Optimisation

The previous chapter describes design rules to construct a safe ff transformation frame-
work. This chapter defines the fundamental sets of data tuples and operations that
are necessary to build such a framework. The described operations can be combined
to describe the correct ff update for even complex code optimisations performed by a
compiler.

7.1 Data Tuples to Handle Flow Information

The representation of ff̃ has to be simple but powerful enough to support correct ff̃
updates during code optimisation. As described in Section 6.2.2, the construction of the
ff̃ transformation function F̃t2 is directly induced from the CFP update function F̃t1 by
using the semantic code information required to allow the safe application of F̃t1.

Listing 7.1: example code including loop and conditional

1 for i :=1 ,n , 1 do
2 i f even (i)=1 then
3 a [i] := a [i]+1;
4 else
5 skip

In this section we describe concrete data tuples for P̃ and ff̃ to be used by the
update function F̃t = F̃t1×F̃t1. To demonstrate the application of these data structures
we use the small sample code given in Listing 7.1. This code contains a loop and a
simple conditional statement. For the loop it is assumed that semantic code analysis
has found the iteration bound to be [3 . . . 7]. The function even(n) 7→ {0, 1} returns 1
iff the argument n is a multiple of 2. The corresponding CFG for the code is given in
Figure 7.1.

111

7.1 Data Tuples to Handle Flow Information 7 Handling Flow Facts

C

N

A

B

D

P

Figure 7.1: Syntactic Structure

7.1.1 The Abstract Program Representation

The program P is transformed by function Ft1. The abstraction F̃t1 of Ft1 works on
the abstract program representation P̃ . To describe the operation of F̃t1 in more de-
tail we present a data tuple representation for P̃ . These data tuples are called CFPS
(CFP structure) and are described in Table 7.1. These data tuples are suitable for the

processing by the function F̃t1. CFPS represents the CFP of P that can be derived
from the syntactic structure of the program P together with loop scope information. P̃
alone without ff̃ is simply the control flow graph (CFG) of P extended with loop scope
information LoopScope. The CFG of P is represented by the structure StatConn.
The CFG nodes P of StatConn refer to single basic blocks in P . Each control flow
edge of StatConn is labelled with a flow type FType. The values “seq” and “bra”
of FType are used to indicate sequential or branching control flow. Alternatively, the
edges can be labelled by a numeric index Num to support generic CFGs. The loop
scope information LoopScope is required for correct ff updates. LoopScope is a tree
structure that represents the nesting levels of loops. A unique identifier Lid is assigned
to each loop scope.

It is important to note that P̃ does not have to be calculated explicitely since in
most compiler architectures it is implicitely represented by P . Only the loop scopes
may be an additional set of data tuples that has to be maintained.

Example: To give an example for the application of these data tuples, the program
code given in Listing 7.1 is used. Its corresponding CFG is shown in Figure 7.1. The
syntactic structure StatConn contains the following data:

℘(StatConn) = { 〈P,A, seq〉, 〈A,B, seq〉, 〈A,N, bra〉,
〈B, C, seq〉, 〈B, D, bra〉, 〈C, D, seq〉,

〈D, A, bra〉 }

112

7 Handling Flow Facts 7.1 Data Tuples to Handle Flow Information

CFPS: ℘(StatConn)×℘(LoopScope)

StatConn: P×P×FType
FType: Num ∪ {seq, bra}
LoopScope: Lid×Lid×P×P
P: . . . reference to basic block
Lid: . . . identifier for loop scope

Table 7.1: Data Tuples of CFP (P̃)

The additional information about loop scopes is given by the data tuples LoopScope
(the identifier of the surrounding loop scope is written as “ ”):

℘(LoopScope) = { 〈 , L1, A, D〉 }

The data tuples CFPS contains only information that can be directly extracted from the
program code. StatConn can be constructed while parsing the code. LoopScope can
be constructed from the syntactic code structure or otherwise calculated by domination
relations.

7.1.2 Representation of Flow Facts

The CFP of a program P is described by the syntactic structure P̃ of P together with
the flow facts ff̃ . We define sets of data tuples for ff̃ that store all the information to
support a correct update of ff̃ by the induced function F̃t2. These data tuples for ff̃ are
given in Table 7.2.

FF (which represents ff̃) consists of a set of marker bindings for control-flow edges
(MB), a set of restrictions (Restr) and a set of additional loop information (FFLF).
The set of restrictions is the same for calculating the WCET and the BCET. Information
like the loop bounds given in FFLF could be expressed directly by restrictions but is
treated separately to have more semantic information available when modelling the ff
transformations. The explicit transformation of loop bounds allows improved precision
of the transformed ff in case of certain code optimisations. Loop bounds are later
translated into a set of marker bindings and restrictions.

The structural changes resulting from several code optimisations make it necessary
to keep the loop bounds as explicit values. As already mentioned, we maintain an upper
and a lower loop bound value. For the final calculation of the WCET only the upper
loop bound and for the BCET calculation only the lower loop bound is required. But
for the safe ff update in case of certain loop transformations (e.g., loop unrolling), the
lower and the upper iteration bound of loops are required for both calculations. A loop
has also assigned two markers to express the execution frequency of entering the loop
and executing the loop body.

The data tuple set FF described above is flexible enough to allow a safe update of
ff̃ during transformations of the program P .

113

7.1 Data Tuples to Handle Flow Information 7 Handling Flow Facts

FF: ℘(MB)×℘(Restr)×℘(FFLF)

MB: Marker×StatConn
Restr: ℘(Term)×Rel×℘(Term)
Term: Num×Marker
Rel: {=,<,≤}
FFLF: Lid×Bound×LoopMarker
Bound: Num×Num
LoopMarker: Marker×Marker
Marker: . . . reference to a marker name

Table 7.2: Data Tuples of Flow Facts (ff̃)

Example: To give an example for the application of these data tuples, the program
code given in Listing 7.1 is used. Using the CFG from Figure 7.1, the following marker
bindings are used for modelling the flow facts:

℘(MB) = { 〈M2, 〈P, A, seq〉〉, 〈M3, 〈B,C, seq〉〉,
〈M4, 〈B,D, bra〉〉, 〈M5, 〈A,B, seq〉〉 }

Analysing the code, it is possible to derive additional information about (in)feasible
control flow paths. Using the notation described in Section 2.3.2, the following linear
constraints can be derived: 2 ·BC[s] ≤ AB[s] and 2 ·BD[s] ≤ AB[s]+PA[s]. The data
tuple set Restr contains the following constraints:

℘(Restr) = { 〈{〈2,M3〉}, ≤, {〈1,M5〉}〉,
〈{〈2,M4〉}, ≤, {〈1,M5〉, 〈1,M2〉}〉 }

The loop scope information together with the loop iteration bound of [3 . . . 7] is modelled
by the data tuples FFLF:

℘(FFLF) = { 〈L1, 〈3, 7〉, 〈M0,M1〉〉 }
The data tuple set FF described above contains the additional ff required to calculate
the possible CFP of the code. The markers 〈M0,M1〉 are special markers assigned to
the loop scope L1. M0 refers to the iteration count of the loop entry in L1 and M1

refers to the iteration count of the loop body in L1. The markers 〈M0,M1〉 are used to
express iteration bounds for the loop scope L1. Further, these references 〈M0,M1〉 to
the iteration count of loop scope L1 allows to create additional constraints – beside the
loop bounds – that restrict the iteration count of a loop scope.

7.1.3 Transformation of Flow Facts

After the definition of the set of data tuples for ff̃ we now mention the required ff̃
transformations. The update of ff̃ is induced by the CFP transformations done by F̃t1.
We use the data symbols ff̃ = 〈Ξ, Γ, `〉 ∈ FF where Ξ is the set of marker bindings, Γ
the set of restrictions, and ` is the set of loop frames.

114

7 Handling Flow Facts 7.1 Data Tuples to Handle Flow Information

Typical compiler optimisations consist of a program analysis phase and a resulting
program transformation phase which can also be performed interleaved. By using the
abstract program transformation function F̃t1 it becomes obvious that different code op-
timisations fall into the same class of abstract CFP transformations. This fact simplifies
the design of a transformation function F̃t2 that is both complete and correct.

P

A

N

P

N

Figure 7.2: Deleting a Basic Block

Code transformations at the instruction level do not require an update of Ξ, Γ or `.
Only transformations that change the data tuples of CFP have to be considered. To
demonstrate the required ff̃ transformation, we use the simple example in Figure 7.2
where a basic block with only one successor and predecessor node is deleted. This
operation requires the following CFP update done by F̃t1:

StatConn′ = (StatConn / (〈P, A, seq〉 ∪ 〈A,N, seq〉)) ∪ 〈P,N, seq〉

By mNiNj[t] we denote the reference “name” for the marker 〈name, 〈Ni, Nj, t〉〉 ∈
MB. For t ∈ FType with index “s” we denote a sequential and with “b” a branch-
ing control flow type. Using this notation, the above code transformation induces the
following ff̃ update performed by F̃t2:

MB′ = MB / (mPA[s] ∪mAN [s]) ∪mPN [s]

∀t1 ∈ Term : ((∃〈t1, r, t2〉 ∈ Restr) ∧ (t1 = 〈n,mPA[s]〉)) −→
(Restr′ = (Restr/t1) ∪ 〈n,mPN [s]〉)

∀t1 ∈ Term : ((∃〈t1, r, t2〉 ∈ Restr) ∧ (t1 = 〈n,mAN [s]〉)) −→
(Restr′ = (Restr/t1) ∪ 〈n,mPN [s]〉)

∀t2 ∈ Term : ((∃〈t1, r, t2〉 ∈ Restr) ∧ (t2 = 〈n,mPA[s]〉)) −→
(Restr′ = (Restr/t2) ∪ 〈n,mPN [s]〉)

∀t2 ∈ Term : ((∃〈t1, r, t2〉 ∈ Restr) ∧ (t2 = 〈n,mAN [s]〉)) −→
(Restr′ = (Restr/t2) ∪ 〈n,mPN [s]〉)

As one can see, even formalising such a simple CFP and ff̃ update leads to a quite
long result. Therefore, we developed a compact generic transformation description based
on graph transformations.

115

7.2 Developing a Transformation Framework 7 Handling Flow Facts

IndTrans: 〈Opt,TransCFPS,TransFF〉
TransCFPS: ℘(StatConn) −→ ℘(StatConn)
TransFF: TransMB×TransRestr×TransFFLF
TransMB: MB −→ ℘(MB)
TransRestr: Term −→ ℘(Term)
TransFFLF: FFLF −→ ℘(FFLF)
Opt: . . . identification of optimisation type

Table 7.3: Framework for Induced Flow Fact Update

7.2 Developing a Transformation Framework

For the specification of the induced ff̃ updates we have developed a graph transformation
framework. Graph transformation frameworks for specification purposes are described
in [AEH+99] and for hierarchic graphs in [DHP02].

To describe generic code transformations we had to develop our own framework that
supports graph hierarchies with “boundary-crossing” edges [DHP02]. The basic compo-
nents of the transformation framework IndTrans = 〈Opt,TransCFPS,TransFF〉
are given in Table 7.3. Opt is simply a symbolic reference to label each code transfor-
mation. TransCFPS represents the CFP update done by F̃t1. The ff update is done
by TransFF. TransFF is the induced ff by considering the semantic information of
the code transformation. In the following, each of these basic components of IndTrans
is described.

7.2.1 Specification of CFP Transformation

The specification TransCFPS of the performed CFP transformation is given by a
graph representation supporting hierarchic transformations. Its modules are shown in
Figure 7.3.

The specification of a basic block Xi with arbitrary predecessor or successor edges
that are not modified during the transformation is shown with the symbols of Figure 7.3a
and Figure 7.3c. If these edges have to be modified, we can also specify a generic name
for the predecessor nodes Pi and the successor nodes Ni (Figure 7.3b and Figure 7.3d).
A node having arbitrary predecessor and successor nodes is shown by Figure 7.3e. The
number of such arbitrary edges is not specified and may even be zero. A single edge
between two involved nodes is shown in Figure 7.3f. It is important to note that each
node has only these edges explicitely described by single or arbitrary edges.

The specification of hierarchies by composed blocks is given in Figure 7.3g. Such
blocks can consist of an arbitrary subgraph of composed or basic blocks. Composed
blocks use the same notation for arbitrary edges as basic blocks (Figure 7.3h).

A loop scope with loop identifier Lx and lower/upper iteration bound is given in
Figure 7.3i. The direct nesting of such loop scopes is shown in Figure 7.3j. Arbitrary
nesting levels of loop scopes are denoted by the symbol given in Figure 7.3k. The

116

7 Handling Flow Facts 7.2 Developing a Transformation Framework

Xi

Xi

Ni

Pi

Xi

Xi

Pi

Xi

Ni

Xi

X1:X2

Y1:Y2Ly

Lx j) nested loop scopesj) nested loop scopes

Xi
Ni

edge

Pi h) composed block
with named
edges

a) basic block with unnamed
predecessor edges

c) basic block with unnamed
successor edges

e) general basic block with
named edges

g) composed block of
basic blocks

b) basic block with
named predecessor

i) loop scope with
lower bound X1 and
upper bound X2

X1:X2Lx

with arbitrary
k) nested loop scopes

nesting level n

X1:X2Lx

Ly,n

Y1,n:Y2,n. . .

edges

d) basic block with
named successor
edges

f) single control flow

Figure 7.3: CFG Representation Symbols

individual nested loop scopes Ly,i are marked by an additional index i with 1 ≤ i ≤ n.
For example, if we have a loop scope Ly,n with loop nesting level n relative to a loop
scope Lx then there exists a chain {Ly,i|1 ≤ i ≤ n− 1} of loop nestings between them.
The iteration count of the body of loop Ly,n is therefore a multiple within the interval
[
∏n

i=1 Y1,i . . .
∏n

i=1 Y2,i] of the iteration bound of the body of loop Lx. These arbitrary
loop nesting levels are used to graphically describe code transformations that work on
loops with arbitrary nesting levels without modifying the nested loops between them.

a) control flow edge that is not subject to ff updates or
structural changes.

b) control flow edge that is subject to a change of its
possible iteration count range or is created/deleted
by the code transformation with ff assigned to it.
The first case requires at least the update of involved
restrictions and the second case the update of marker
bindings to reflect the new CFG structure.

c) control flow edge that is created by the code trans-
formation and has currently no ff assigned to it.

Figure 7.4: Special Highlighting for Single Control Flow Edges of the CFG

The structural description of code transformations by the graphical notation given
in Figure 7.3 is only used to reflect the syntactic CFG changes. Additional semantic
information about the possible execution frequency changes of control flow edges is given
implicitely by the type of the performed code optimisation. This semantic information
is available by the compiler and will be used to induce the ff update function F̃t2. To

117

7.2 Developing a Transformation Framework 7 Handling Flow Facts

support the development of F̃t2 we defined a notation to specify different types of control
flow edges involved in the described code transformation. The different types of control
flow edges and their meanings are summarised in Figure 7.4.

7.2.2 Specification of Induced ff Transformation

In the following we describe the three components of the ff update TransFF =
TransMB × TransRestr × TransFFLF.

Update of Marker Bindings

The induced update of marker bindings is given by a transition sequence of the following
form:

mNiNj[t]
M−→ {mNkNl[t1], mNmNn[t2], . . .}

The semantics is to remove the marker binding mNiNj[t] and instead create the marker
bindings {mNkNl[t1], mNmNn[t2], . . .}. If the marker binding mNiNj[t] does not exist,
such a transition has no effect. If we want to delete the marker binding, we write

mNiNj[t]
M−→ ∅

Specifying more than one transition with the same marker binding on the left has
the same meaning as using one transition with a merged list of the right sides. All
transitions are applied simultaneously.

Possible Optimisation for Implementation: if a target marker binding mNiNj[t]
from a marker binding transition does not occur in any restriction term after applying
the restriction transition set of the current code transformation, then this marker binding

can be deleted by using the transition mNiNj[t]
M−→ ∅.

Handling Composed Blocks: The predicate Mi(B) addresses the marker bindings
for a composed block B. We can move the marker bindings from B to a new composed
block C or just delete them. Moving the marker bindings from B to C does only work
if both blocks have the same syntactical structure (e.g., a duplicated loop body after
loop unrolling), because they will be attached to the equivalent position as they were in
the original block. The transition of marker bindings from the composed block B to C
is therefore written as:

Mi(B)
M−→ Mi(C)

Handling Loop Markers: The two special markers assigned to each loop scope
are referenced by special predicates. LME(Lx) refers to the marker that labels the
execution frequency of the entry of loop Lx and analogously LMB(Lx) refers to the
marker for the body of loop Lx. The transition of a marker binding from entry of loop
Lx to entry of loop Ly is therefore written as:

LME(Lx)
M−→ LME(Ly)

118

7 Handling Flow Facts 7.2 Developing a Transformation Framework

Update of Restrictions

The specification of TransRestr resembles the syntax of TransMB:

〈n0 ·mNiNj[t]〉 R−→ {〈n1 ·mNkNl[t1]〉, 〈n2 ·mNmNn[t2]〉, . . .}

The semantics of this transition is to replace the term 〈n · mNiNj[t]〉 in the left and
right side of all restrictions by the list of terms {〈n1 ·mNkNl[t1]〉, 〈n2 ·mNmNn[t2]〉, . . .}.
If the term 〈n0 ·mNiNj[t]〉 does not occur in any restriction, such a transition has no
effect.

If there is more than one transition with the same term on the left side, the se-
mantics is to create copies of the restriction so that all term updates are visible. This
semantics differs from the semantics of TransMB. Again, all transitions are applied
simultaneously. If we want to delete a restriction term, we write

〈n ·mNiNj[t]〉 R−→ ∅

If any of the two term sets of a restriction is empty, it is implicitely replaced by the
constant “0”.

Scaling Restriction Terms by an Interval: If the scaling value of a restriction
term transition is a single value, it can be directly applied to a restriction term by only
changing its multiplication value.

For some code transformations it could be the case that the relative change of the
iteration count cannot be bound by a single value. Instead, it is expressed by an interval
giving the lower and upper bound for the relative change. For example, when moving a
block out of a loop scope and the lower and upper iteration bound of the involved loop
are not equal, the relative change of the iteration count becomes an interval.

The resulting transition has the following form:

〈n0 ·mNiNj[t]〉 R−→ {〈[n11 . . . n12] ·mNkNl[t1]〉, 〈[n21 . . . n22] ·mNmNn[t2]〉, . . .}

The semantics of this transition depends on the type of relation used by the restriction
and the position of the term inside the restriction. If the relation of the restriction is
“<” or “≤” then for each interval from the left side of the transition we use the lower
bound of the interval in the new term and analogous the upper interval bound for the
right side. If the restriction where the term 〈n ·mNiNj[t]〉 occurs uses the relation “=”
then we have to replace the whole restriction by two restrictions having an “≤” relation
to consider both the lower and the upper interval bound.

To give an example, for the transition 〈n0 ·mNiNj[t]〉 R−→ {〈[n11 . . . n12]·mNkNl[t1]〉}
the formal update of restrictions that contain marker bindings from the left side of the
transition is as follows:

119

7.2 Developing a Transformation Framework 7 Handling Flow Facts

∀Rel ∈ {≤, <} :

〈TL1 ∪ {〈n0,mNiNj[t]〉}, Rel, TL2〉 −→ 〈TL1 ∪ {〈n11,mNkNl[t1]〉}, Rel, TL2〉
〈TL1, Rel, TL2 ∪ {〈n0,mNiNj[t]〉}〉 −→ 〈TL1, Rel, TL2 ∪ {〈n12,mNkNl[t1]〉}〉

∀Rel ∈ {=} :

〈TL1 ∪ {〈n0,mNiNj[t]〉}, Rel, TL2〉 −→ 〈TL1 ∪ {〈n11,mNkNl[t1]〉}, ≤, TL2〉,
〈TL2, ≤, TL1 ∪ {〈n12,mNkNl[t1]〉}〉

〈TL1, Rel, TL2 ∪ {〈n0,mNiNj[t]〉}〉 −→ 〈TL2 ∪ {〈n11,mNkNl[t1]〉}, ≤, TL1〉,
〈TL1, ≤, TL2 ∪ {〈n12,mNkNl[t1]〉}〉

This transition rule makes the involved restrictions less effective but still safe. The
generalisation of this operation to the generic form of the transition given above is
straightforward by using the whole term list from the right side of the transition with
the lower respective upper bound of their scaling interval.

It is important to note that the above transition rule is designed for normalised
restrictions. A restriction is normalised if the multiplication value n of each term
〈n ·mNiNj[t]〉 is positive. If this is not the case the restriction has to be normalised
before applying the rule. This normalisation is done by moving the term from the cur-
rent to the other term list and multiplying the multiplication value of the term by −1
to make it positive.

Handling Loop Markers: The predicates LME(Lx) and LMB(Lx) refer to the
two special markers of a loop scope Lx. For example, the update of a term using the
body marker of loop Lx is written as:

〈n0 · LMB(Lx)〉 R−→ 〈n1 · LMB(Lx)〉

Handling Composed Blocks: The predicate Mi(B) represents all terms in restric-
tions referring to a marker binding in a composed block B. We can replace all terms
using markers from block B by other terms using corresponding markers from block C
or just delete them.

Replacing the terms using marker bindings in B with terms using marker bindings in
C only works if both blocks have the same syntactical structure (e.g., a duplicated loop
body after loop unrolling) because this transition also requires that the marker binding
itself can be moved from B to C. The transition of restriction terms using marker
bindings from the composed block B to terms using corresponding marker bindings in
C is therefore written as:

〈n0 ·Mi(B)〉 R−→ 〈n1 ·Mi(C)〉

Update of Flow Facts for Loops

A loop frame is denoted as Lx〈l, u〉. Lx is the loop identifier and 〈l, u〉 (l ≤ u) is the
interval for the iteration bound of this loop.

120

7 Handling Flow Facts 7.3 Properties of the Transformation Framework

The induced update of loop flow facts is given by a transition sequence of the fol-
lowing form:

Lx〈l0, u0〉 L−→ {Ly〈l1, u1〉, Lz〈l2, u2〉, . . .}
The semantics is to remove the old loop information Lx〈l0, u0〉 and instead create the
new loop information {Ly〈l1, u1〉, Lz〈l2, u2〉, . . .}.

If no loop information with the key Lx exists, such a transition has no effect. If the
loop information has simply to be deleted, we write:

Lx〈l0, u0〉 L−→ ∅

If a new loop Lx having iteration bounds 〈l, u〉 is introduced (created) without mod-
ifying any existing loop, it is written as:

∅ L−→ Lx〈l, u〉

7.2.3 Grouping ff Transitions for a Single Code Optimisation

The basic operations defined above are used to compose the ff update function
TransFF = TransMB × TransRestr × TransFFLF. Simple code transforma-
tions require only a few of these basic operations to correctly update the ff . Code opti-
misations with more complex code transformations require longer transition sequences.

All transitions belonging to the ff update of a certain code optimisation have to be
executed together. The compiler has to generate the ff transition sequences and group
them for each code optimisation.

If the ff transition sequences are not grouped for each optimisation and executed
simultaneously for each optimisation, the result would be a wrong ff update. To give an
example, assume that the following two restriction term transitions belong to the same
code optimisation:

〈n ·mAB[s]〉 R−→ 〈n·k ·mBC[s]〉
〈n ·mBC[s]〉 R−→ 〈n ·mBC[s] + n ·mCD[s]〉

Executing these two transitions in sequence yields an illegal scaling of the restriction
terms.

7.3 Properties of the Transformation Framework

This section shows the completeness and further properties of the presented ff update
framework TransFF.

121

7.3 Properties of the Transformation Framework 7 Handling Flow Facts

7.3.1 The Completeness of the Approach

After the definition of this transformation framework there is the question whether a
correct ff transformation can be induced for every type of code transformation.

In this section we show that it is always possible to find a correct ff transformation.
This method is quite simple and does not consider the semantic information known
by the compiler about the performed code transformation. Therefore, depending on
the structure of the transformed code, the resulting ff transformation function may be
not very accurate, but still safe. At this point it is also important to remember that
the simplest safe ff transformation function is to throw away all information about
(in)feasible paths and transform only loop bound information. However, we show a way
to induce a more accurate ff transformation function.

For showing the completeness of the ff transformation framework we have to dis-
tinguish between two types of ff . The first one is flow facts for loops (lower and upper
iteration bounds) and the second one is additional information about (in)feasible paths.
We do not have to show the completeness for the update of flow facts for loops, because
the loop bound transformation is always given directly by the type of performed code
transformation. For example, when we perform loop unrolling with an unrolling factor
k, then we have to use this information (the unrolling factor k) to update the iteration
bound of the loop. As another example, for loop duplication we can directly take the
loop bound from the original loop and assign it to the copied loop. What we have to
show is that there is also a way to transform the information about infeasible paths. In
our framework, the information about infeasible paths is represented by the restriction
terms. Therefore, we have to show the existence of a safe restriction term transformation
function TransRestr which is described in Section 7.2.2.

First, we have to introduce several formal definitions that are required to show the
completeness of the transformation framework regarding coverage of code transforma-
tions. To show this, we represent the program to be transformed as a control flow graph
G = 〈N, E, S, s, t〉 where N is the set of nodes and E : N×N×S is the set of different
control flow edges. S is the set of control flow types which are used to select a specific
control flow edge between two nodes. s denotes a unique start node and t a unique exit
node of the program. Referring to the data tuples defined in Table 7.1, we can represent
the basic blocks P by the set of nodes N and the control flow edges StatConn by the
set E.

Based on the control flow graph G = 〈N, E, S, s, t〉 for the whole program, we use a
so-called modification graph GM that represents the subgraph of G that is affected by a
given code transformation. The definition of GM is given in Definition 7.3.1.

Definition 7.3.1 (Modification graph GM) A modification graph GM is a subgraph
of a given control flow graph G = 〈N,E, S, s, t〉 which represents the part of G that will
be affected by a given code transformation. GM is defined as

GM = 〈NM , EM , NP , EP , NN , EN〉
where NM ∈ N and EM ∈ E are the nodes and edges that are changed by the given code

122

7 Handling Flow Facts 7.3 Properties of the Transformation Framework

transformations. EP ∈ E is the set of input edges into GM that link the subgraph GM

with the rest of the graph G. The start nodes of all these input edges are collected in
NP . EN ∈ E is the set of output edges from GM that link the subgraph GM with the rest
of the graph G. The end nodes of all these output edges are collected in NN . Based on
NM and EM the modification graph GM can be formally defined as:

EP = {e | e = 〈n, n′, t〉 ∧ (n /∈ NM) ∧ (n′ ∈ NM)}
NP = {n | 〈n, n′, t〉 ∈ EP}
EN = {e | e = 〈n′, n, t〉 ∧ (n′ ∈ NM) ∧ (n /∈ NM)}
NN = {n | 〈n′, n, t〉 ∈ EN}

Definition 7.3.2 (Domain of loop scopes 〈L,v,u,⊥〉) The set of loop scopes can be
partially ordered regarding their nesting hierarchy. We define L0 as the initial loop scope
for the whole program, respective function. The function {L0, . . . , L} = nesting(L) is
used to calculate the set of all surrounding loop scopes for a given loop scope L. Based
on the above assumptions, the domain 〈L,v,u,⊥〉 is defined as a semi-lattice as follows:

∀L1, L2 ∈ L : L1 v L2 ⇐⇒ nesting(L1) ⊆ nesting(L2)

∀L1, L2 ∈ L : u(L1, L2) = Lx ⇐⇒ (Lx v L1) ∧ (Lx v L2) ∧
(∀Ly ∈ L : ((Ly v L1) ∧ (Ly v L2) ∧ (Lx v Ly))

→ (Lx = Ly))

All control flow information about infeasible paths in our ff transformation frame-
work is attached only to control flow edges. To perform an adequate scaling of restriction
terms in case that flow facts are mapped from one control flow edge to another one within
a different loop nesting level, it is required to define the loop scope of a control flow
edge.

First, we denote by L = scope(n) the loop scope of each node n ∈ N . The loop scope
of scope(n) for each node n is derived from the data tuple specification LoopScope
given in Table 7.1. To calculate the loop nesting difference between two edges, we need
a definition of a loop scope function L = scope(e) for every edge e ∈ E. To specify the
loop scope calculation function scope(e) also for edges we use the domain 〈L,v,u,⊥〉
over loop scopes as described in Definition 7.3.2. Based on this domain, the loop scope
calculation function scope(e) for edges e = 〈n1, n2, t〉 can be defined as

scope(〈n1, n2, t〉) = u(scope(n1), scope(n2))

To calculate the required scaling of restriction terms in case that flow facts are
mapped from one control flow edge to another, we have to calculate their common and
their different set of surrounding loop scopes. These sets are calculated by the functions
defined in Definition 7.3.3 and Definition 7.3.4.

Definition 7.3.3 (Common surrounding loop scopes: CS (e1, e2)) The common
subset of the surrounding loop scopes of two control flow edges e1 and e2 is calculated by
the function CS (e1, e2), which is defined as follows:

∀e1, e2 ∈ E : CS (e1, e2) = {L | (L v scope(e1)) ∧ (L v scope(e2))}

123

7.3 Properties of the Transformation Framework 7 Handling Flow Facts

Definition 7.3.4 (Unique surrounding loop scopes: US (e1, e2)) The unique sur-
rounding loop scopes of an control flow edge e1 compared to another control flow edge e2

is calculated by the function US (e1, e2), which is defined as follows:

∀e1, e2 ∈ E : US (e1, e2) = {L | (L v scope(e1)) ∧ (L /∈ CS (e1, e2))}

Further, we assume that the lower iteration bound of a loop scope L is given by
LLB(L) and the upper iteration bound is given by ULB(L). Based on the above
definitions and the modification graph GM = 〈NM , EM , NP , EP , NN , EN〉 we define the
simple safe restriction-term-transformation function TransRestrsimple as follows:

〈n ·mNiNj[t]〉

R−→

〈∑〈Nx,Ny,t′〉∈EP

([
0 . . .

Q
La∈US(〈Ni,Nj,t〉,〈Nx,Ny,t′〉)

ULB(La)Q
Lb∈US(〈Nx,Ny,t′〉,〈Ni,Nj,t〉)

LLB(Lb)

]
·mNxNy[t

′]

)
〉 (7.1)

The restriction term transition given in Equation 7.1 is safe since it maps the iteration
count of every control flow edge e ∈ EM of the modification graph GM to the iteration
counts of all input edges EP of GM with proper scaling by multiplication factors resulting
from different loop scopes of the edge e and each of the edges EP . The scaling vector
starting with zero has to be applied since the exact correlation between the execution
counts of the edges EP and the edge e is not considered.

In this section we have shown a simple way to transform ff without considering the
implicit control flow information known by the compiler about a given code transforma-
tion. This transformation can be applied to every code transformation, but the resulting
accuracy may be poor since the information represented by ff can be blurred depending
on the type of code transformation.

7.3.2 Refinement of the Transformations

The previous section has shown that it is possible to map all flow information about
infeasible paths to the border of the modification graph. It is important to note that
this method does not exploit control flow information known by the compiler about
the given type of code transformation. In this section we present a stepwise refinement
towards an accurate ff transformation for all types of code transformation.

Refinement by Control-Flow Analysis; The simple transformation shown in Sec-
tion 7.3.1 is used to show how the transformation of information about infeasible
paths can be done automatically without using additional control flow information
of the applied code transformation.

124

7 Handling Flow Facts 7.3 Properties of the Transformation Framework

An obvious refinement is to map a restriction term from the current control-
flow edge only to those input edges of the modification graph from which this
control flow edge is reachable. Standard backward control-flow analysis can be
used to test this reachability. However, as this refinement still does not consider
semantic information of the applied code transformation, the obtained accuracy
of the transformed flow information can still be poor depending on the structure
of the code.

Modelling Simple Transformations; The next refinement is to exploit semantic in-
formation of the applied code transformation. Two simple control flow modifica-
tion patterns are described to demonstrate the application of semantic information
known by the compiler about the concrete type of code transformation.

• Changing the iteration bound of a surrounding loop scope: As
already discussed in Section 7.3.1, the required update of flow facts for loops
(e.g., the upper and upper iteration bound of a loop) can be alway extracted
from the semantics of the applied code transformation.

However, if the iteration count of a loop is changed, it is also required to
update the control flow edges within this loop. The semantic control flow
information known by the compiler is the relative change of the iteration
count of the loop. Using this information, the loop flow facts FFLF can be
scaled by this value.

A

B

A

Y1:Y2

B

X1:X2L1 L1

Figure 7.5: Changing the Iteration Bound of a Surrounding Loop Scope

The lower and upper iteration bound from both, the old and new loop flow
facts FFLF can be used to update the information about infeasible path from
edges within the loop. The code transformation shown in Figure 7.5 changes
the iteration bound of the loop from X1 : X2 to Y1 : Y2. In the general case,
it can happen that the resulting relative change of the loop execution count
is not a constant value. In this case, it is required to scale the restriction
term for the control flow edge mAB[s] by a vector that safely approximates
the execution count change of this edge:

〈n ·mAB[s]〉 R−→ 〈
[
n·X1

Y2

. . . n·X2

Y1

]
·mAB[s]〉

In the other case, if the semantics of the applied code transformation guar-
antees that the iteration-bound change of the surrounding loop is given by

125

7.3 Properties of the Transformation Framework 7 Handling Flow Facts

a constant value, then the induced flow facts update can be performed pre-
cisely. Assuming that the new execution count is k times higher than the old
one, then the following precise transformation can be used instead:

〈n ·mAB[s]〉 R−→ 〈n·k ·mAB[s]〉

Similar rules can be applied in case of introducing or deleting surrounding
loops of an control flow edge.

• Merging or splitting the control flow:

The transformation given in Figure 7.6 can be applied in two directions. The
first is to merge/delete a control flow (a) and the second is to split a control
flow (b). We will discuss in the following both types of transformations:

A

D

A

D

b)
C B C

a)

Figure 7.6: Merging/Deleting (a) or Splitting of Control Flow Paths (b)

a) Merging/deleting a control flow; For the transformation a) in Fig-
ure 7.6, the structural change alone does not describe the performed
code transformation. Additional information about the semantics of the
applied code transformation is required to transform the flow facts accu-
rately.
The first possibility is that the control flow edges mAC[s] and mAB[b]
have been merged together. In this case, the resulting flow facts transi-
tion rules becomes (with analogous transitions for mCD[s] and mBD[s]):

mAB[b]
M−→ mAC[s]

〈n ·mAC[s]〉 R−→ 〈[0 . . . n] ·mAC[s]〉
〈n ·mAB[b]〉 R−→ 〈[0 . . . n] ·mAC[s]〉

The second possibility is that it is statically known that the branch B
will be never taken. The branch with B can be simply deleted and the
other branch remains unchanged. In this case, the resulting flow facts
transition rules becomes (with analogous transitions for mCD[s] and
mBD[s]):

126

7 Handling Flow Facts 7.3 Properties of the Transformation Framework

mAB[b]
M−→ ∅

〈n ·mAB[b]〉 R−→ ∅
b) Splitting a control flow; The splitting of control flow can be handled

easily with the presented ff transformation framework. It only requires
to replace a restriction term for the original control flow edge by a set
of restriction terms. For the transformation pattern b) in Figure 7.6 the
following ff transition rules are induced (with analogous transitions for
mCD[s] and mBD[s]):

mAC[s]
M−→ mAC[s], mAB[b]

〈n ·mAC[s]〉 R−→ 〈n ·mAC[s] + n ·mAB[b]〉

These two examples have shown how it is possible to precisely model simple mod-
ification patterns. One important aspect was the use of semantic information
known by the compiler about the code transformation to construct more accurate
transition rules.

Generic Distribution of Control-Flow Information; In the previous refinement
of the ff transformation we have shown how to model simple code modification
patterns. Here we finally explain why this ff transformation framework is powerful
enough to accurately handle every type of code transformation.

The key operation to describe the update of information about infeasible paths is

the transition
R−→. Its general syntax is

〈n0 ·mNiNj[t]〉 R−→ {〈n1 ·mNkNl[t1]〉, 〈n2 ·mNmNn[t2]〉, . . .}
By this operation it is possible to distribute information about the control flow of a
specific control flow edge to an arbitrary set of control flow edges, each edge scaled
by an individual scaling factor. With the above form it is possible to model each
code transformation where the relative execution frequency change of all control
flow edges can be expressed by a constant value.

By using intervals as scaling values,
R−→ can be also used to model the ff update

for the transformation of code with fuzzy execution counts. Examples for code
with fuzzy execution counts are all conditional constructs like variable loops or
conditional statements. For the construction of safe and accurate ff transitions in
case of fuzzy execution counts of control flow edges, the following extended format

of
R−→ is used:

〈n0 ·mNiNj[t]〉 R−→ {〈[n11 . . . n12] ·mNkNl[t1]〉, 〈[n21 . . . n22] ·mNmNn[t2]〉, . . .}

The transition
R−→ is powerful enough to model arbitrary control flow transforma-

tions of the code. The interesting question is how it is possible to get information

127

7.3 Properties of the Transformation Framework 7 Handling Flow Facts

about which control flow transformation is performed. As already described, this
information is available to the compiler. The following two types of semantic
information about the code transformation can be distinguished:

• Information about the structure of the code. For several optimisations a
certain structure is required to ensure the correct application of a given code
transformation.

• Semantic information about the concrete code transformation. The struc-
tural update that is visible after the transformation is finished does not
always allow to reason about the exact control flow modification that has
been performed. This additional information is determined by the type of
performed code transformation.

The flexible applicability of the restriction term transition
R−→ together with the

knowledge of semantic information about the applied code transformation allows
to handle arbitrary code transformations.

Concrete examples for the exploitation of semantic information about a given code
transformation are given in Chapter 8.

7.3.3 Modelling Basic Operations of F̃t2

An abstract description of a ff transformation framework is given in Section 6.3.1. The
following basic operations to update ff at instruction level are listed there:

• insert • move • copy
• delete • replace

These operations are listed there in order to describe what type of ff updates can
be induced from the abstract program transformation function F̃t1.

The concrete ff update function TransFF = TransMB × TransRestr ×
TransFFLF has been developed to efficiently handle the type of ff supported by
our transformation framework. As a consequence, the granularity of TransFF is at a
different level than the above basic ff update operations. The transitions of TransFF
can perform several basic operations simultaneous. Further, depending on the context
of a transition they may represent a different type of basic operation to update ff .

The following examples will demonstrate how these basic operations are modelled
by the concrete ff transition rules of TransFF:

insert: An example for the insert operation is the creation of new restrictions. A marker

binding transition like mNiNj[t1]
M−→ {mNiNj[t1], mNkNl[t2]} can be seen as a

combination of a copy and an insert operation.

move: Flow facts can be simply moved from a control-flow edge mNiNj[t1] to another

control-flow edge mNkNl[t2] by using the transitions mNiNj[t1]
M−→ mNkNl[t2]

and 〈n0 ·mNiNj[t1]〉 R−→ 〈n0 ·mNkNl[t2]〉.

128

7 Handling Flow Facts 7.4 Chapter Summary

copy: A typical example for the copy operation is the duplication of loop iteration

bounds by using the transition Lx〈l0, u0〉 L−→ {Lx〈l0, u0〉, Ly〈l0, u0〉}.

delete: Transitions like mNiNj[t]
M−→ ∅, 〈n ·mNiNj[t]〉 R−→ ∅, or Lx〈l0, u0〉 M−→ ∅ are

used to delete certain flow facts.

replace: An example for the replace operation is a transition of a form like 〈n0 ·
mNiNj[t]〉 R−→ 〈n1 · mNiNj[t]〉 or 〈n0 · mNiNj[t]〉 R−→ 〈[n1 . . . n2] · mNiNj[t]〉.
The semantics of such transitions is to reflect a change in the execution count of
the control-flow edge mNiNj[t].

More advanced ff updates that are composed of several basic operations can be
modelled by a sequence of TransFF transitions.

7.4 Chapter Summary

To describe the correct and precise ff update in case of code optimisations it is necessary
to specify an adequate representation for ff and define operations to transform the ff .

Within this chapter, two sets of data tuples have been defined; one to describe all im-
portant information for the abstract program representation and another one to describe
related ff to limit the possible CFP of the program. It was shown that the use of quan-
tified logic formulas is not an adequate formalism to describe the induced ff updates.
Even for simple code transformations they result in a long list of formulas. Therefore,
we developed a ff transformation framework with more powerful ff update operations.
To obviously show the code transformations caused by code optimisations, we developed
a special graph transformation framework. With this graph transformation framework,
the abstract program transformation F̃t1 can be specified graphically. This represen-
tation simplifies the development of the correct ff update function by considering the
control flow information known by the compiler for a concrete code transformation. ff
update functions were developed that can be directly used to model the induced F̃t2

from the graphical description of the code transformation.

129

7.4 Chapter Summary 7 Handling Flow Facts

130

It is a capital mistake to theorise
before you have all the evidence.

It biases the judgement.

Sir Arthur C. Doyle, Study in Scarlet (1888)

Chapter 8

Developing Concrete
Transformation Rules

In this chapter we describe the construction of concrete flow facts update rule for a given
code transformation. These update rules use the flow facts transformation framework
defined in Chapter 7. The semantic information known by the compiler about a code
transformation is used to design precise flow facts update rules that are safe in the sense
of the formal requirements described in Chapter 6.

8.1 General Considerations

The flow facts transformation rules described in this chapter are complete in the sense
that they describe the update of flow facts attached to any modified control flow edge
of the CFG . However, it is important to note that in practice only a few control flow
edges will have flow facts attached to it. This reduces the flow facts transformation
effort significantly.

For the calculation of iteration frequencies involving loop scopes we use the loop
bound reference Xδ (defined in Definition 8.1.1) to mark potential variable iteration
counts.

Definition 8.1.1 (Loop bound reference Xδ) Assume, the iteration bound of a loop
is described by the lower and upper bounds X1 and X2, i.e., all iteration counts of this
loop are within the interval [X1, . . . , X2]. To simplify the comparison of iteration bounds,
Xδ is denoted as a generic reference to the iteration bound [X1, . . . , X2].
For example, mAB[s] = Xδ ·mAB[b] denotes that the execution frequency of the control
flow edge mAB[s] is within the following range:

mAB[s] = Xδ ·mAB[b] ⇔ X1 ·mAB[b] ≤ mAB[s] ≤ X2 ·mAB[b]

Using Xδ within a binary relation has the following meaning:

mAB[s] ≤ Xδ ·mAB[b] ⇔ mAB[s] ≤ X2 ·mAB[b]

Xδ ·mAB[b] ≤ mAB[s] ⇔ X1 ·mAB[b] ≤ mAB[s]

131

8.2 Low-Level Optimisations 8 Developing Concrete Transformation Rules

The construction of the flow facts transformation rules using the semantic infor-
mation from a code transformation about iteration bounds is shown by two concrete
examples. The relatively simple example by the if simplification given in Section 8.2.1
is intended to demonstrate basic concepts. A more sophisticated example is given by
loop blocking in Section 8.3.1. This example shows the available semantic information
about iteration bounds of a code optimisation in detail. This example for loop blocking
also discusses the importance of choosing the right mapping of flow facts attached to
control flow edges to obtain a precise transformation of the flow facts. For the other
code optimisations only the final transformation rules are provided. These examples
give an impression about how such flow facts transformation rules can be constructed
for other code optimisations.

8.2 Low-Level Optimisations

This section describes the induced ff transformation function F̃t2 for low-level code
optimisations. Such optimisations are typically simple but due to our expressive flow
facts it is required to perform the update of several flow facts.

8.2.1 If Simplification

If simplification is applied to a conditional statement where it is known a priori which
one of the possible branches will be always taken. In this case, the test code can be
removed and the other conditional branches can be removed from the CFG . An example
for the abstract code transformation TransCFPS code transformation in case of if
simplification is given in Figure 8.1.

D

Pi

A

D

Pi

B

B C

Figure 8.1: Example for If Simplification (else-branch from A never taken)

In addition to the structural CFG changes performed due to the code transformation
the compiler has implicit knowledge about the relative iteration bounds before and after

132

8 Developing Concrete Transformation Rules 8.2 Low-Level Optimisations

CFG edge rel. bound CFG edge rel. bound
mAB[s] 1 mBD[s] 1
mAC[b] 0 mCD[s] 0

Table 8.1: Implicit Control Flow Information on Original CFG

the transformation. The flow information known from the original code is given in
Table 8.1. Using this flow information, the following safe ff update can be induced:

mPiA
M−→ mPiB

mAB[s]
M−→ mBD[s]

mAC[b]
M−→ ∅

mCD[s]
M−→ ∅

〈n ·mPiA〉 R−→ 〈n ·mPiB〉
〈n ·mAB[s]〉 R−→ 〈n ·mBD[s]〉
〈n ·mAC[b]〉 R−→ ∅
〈n ·mCD[s]〉 R−→ ∅

These flow facts update rules are precise in the sense that no relevant ff are lost or
weakened. The only ff update is to change existing control flow restrictions and update
marker bindings.

8.2.2 Code Elimination

When updating flow facts for removing code it makes a difference whether this code is
unreachable or not. The flow facts modification is simpler in case of deleting unreachable
code because the knowledge about the absolute iteration bound (always zero) allows to
safely remove the involved marker binding.

Delete Useless Basic Block

Useless code is potentially reachable code. Removing useless code therefore requires to
map flow facts attached to a removed control flow edge to another control flow edge.

The resulting abstract code transformation TransCFPS for deleting a useless basic
block is shown in Figure 8.2. The node A is to be deleted. As in this example the relative
iteration bound for all control flow edges is the same, the induced ff update rules are:

133

8.2 Low-Level Optimisations 8 Developing Concrete Transformation Rules

N

P

N

A

P

Figure 8.2: CFG Transformation on Deleting Useless Basic Block

mPA[s]
M−→ mPN [s]

mAN [s]
M−→ mPN [s]

〈n ·mPA[s]〉 R−→ 〈n ·mPN [s]〉
〈n ·mAN [s]〉 R−→ 〈n ·mPN [s]〉

These flow facts update rules are precise in the sense that no relevant ff are lost or
weakened. The only ff update is to change existing control flow restrictions and update
marker bindings.

Delete Unreachable Basic Block

Due to the CFG structure or information obtained from dataflow analysis the compiler
may be able to classify a code as unreachable. Deleting such unreachable code is a
simple code transformation. Also the update of flow facts becomes trivial because the
absolute iteration bound is known to be zero.

N

P

N

A

P

Figure 8.3: CFG Transformation on Deleting Unreachable Basic Block

The resulting abstract code transformation TransCFPS for deleting an unreach-
able basic block is shown in Figure 8.3. Safe ff transformation rules for deleting this
unreachable basic block are induced as:

134

8 Developing Concrete Transformation Rules 8.2 Low-Level Optimisations

mPA[s]
M−→ ∅

mAN [s]
M−→ ∅

〈n ·mPA[s]〉 R−→ ∅
〈n ·mAN [s]〉 R−→ ∅

These flow facts update rules are precise in the sense that no relevant ff are lost or
weakened. The only ff update is to change existing control flow restrictions and update
marker bindings.

8.2.3 Branch Optimisation

Branch optimisations are code transformations to avoid sequences of jumps under certain
conditions. For example, a sequence of a conditional and an unconditional jump can
be transformed to skip the unconditional jump. However, for the purpose of flow facts
update it is not important which combination of jumps is optimised. The resulting
abstract code transformation TransCFPS for the generic form of branch optimisation
is given in Figure 8.4. This transformation scheme assumes a generic CFG with a
conditional node B having m successor nodes.

B

A

B

A

Cm

t1 tmt2

. . .C1 C2 Cm

t1 tmt2

. . .C1 C2

Figure 8.4: CFG Transformation on Branch Optimisation

The additional control flow information known by the compiler is that the individual
iteration frequency of the nodes A, C1, . . . , Cm will not change. Only the iteration
frequency bound of node A has to be subtracted from node B. Using this information,
the following safe ff update rules can be induced:

135

8.2 Low-Level Optimisations 8 Developing Concrete Transformation Rules

mBC1[t1]
M−→ mBC1[t1], mAC1[t1]

...
...

...

mBCm[tm]
M−→ mBCm[tm], mACm[tm]

mAB[b]
M−→ mAC1[t1], mAC2[t2], . . . , mACm[tm]

〈n ·mBC1[t1]〉 R−→ 〈n ·mBC1[t1]− n ·mAC1[t1]〉
〈n ·mBC2[t2]〉 R−→ 〈n ·mBC2[t2]− n ·mAC2[t2]〉

...
...

...

〈n ·mBCm[tm]〉 R−→ 〈n ·mBCm[tm]− n ·mACm[tm]〉
〈n ·mAB[b]〉 R−→ 〈n ·mAC1[t1] + n ·mAC2[t2] + . . . + n ·mACm[tm]〉

These flow facts update rules are precise in the sense that no relevant ff are lost or
weakened. The only ff update is to change existing control flow restrictions and update
marker bindings.

8.2.4 Conditional Moves

Conditional move statements are used to convert control flow into data flow. This im-
proves the performance of modern processors with relatively long pipelines where a stall
due to a conditional jump can reduce performance significantly. A code transformation
called if-conversion is used to convert jumping code into a sequential code based on
predicated execution. Conditional moves are therefore only a special form of predicated
execution.

The resulting abstract code transformation TransCFPS for introducing a condi-
tional move is shown in Figure 8.5.

A

D

A

D

CC B

Figure 8.5: CFG Transformation to Insert Conditional Moves

The additional control flow information known by the compiler is that the sum of the
iteration bounds of the two alternative branches in the original code exactly matches the

136

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

execution count of the single branch in the transformed code. Using this information,
the following safe ff update can be induced:

mAB[b]
M−→ mAC[s]

mBD[s]
M−→ mCD[s]

〈n ·mAC[s]〉 R−→ 〈[0 . . . n] ·mAC[s]〉
〈n ·mAB[b]〉 R−→ 〈[0 . . . n] ·mAC[s]〉
〈n ·mCD[s]〉 R−→ 〈[0 . . . n] ·mCD[s]〉
〈n ·mBD[s]〉 R−→ 〈[0 . . . n] ·mCD[s]〉

The only ff update is to change existing control flow restrictions and update marker
bindings. It is important to note that these flow facts update rules are not precise in
the sense that no relevant ff are lost or weakened. The reason is that the execution
frequency of each of the two alternative branches cannot be matched exactly to the
iteration bounds of a combination of control flow edges from the transformed code. The
consequence is that the scaling factor for several restriction terms becomes a vector. It
is explained in Section 7.2.2 that transitions with a vector as scaling value introduce
pessimism.

8.3 Loop Optimisations

Precise and safe flow facts are very important for code fractions embedded into loops.
Considering infeasible paths will be an impreciseness that is multiplied due to multiple
executions of this code. Therefore it is very important to provide safe and precise ff
transformation rules for loop optimisations.

8.3.1 Loop Blocking

Loop blocking is used as a detailed case study to explain the construction of safe ff up-
date rules for loop optimisations. Loop blocking itself is a technique primarily designed
to increase the locality of data accesses. Computer systems with data caches will benefit
from this code transformation.

The resulting abstract code transformation TransCFPS for an example of the
application of loop blocking is given by Figure 8.6. The original program consists of two
nested loops. Loop blocking is applied by blocking the outer loop by a factor of k1 and
the inner loop by a factor of k2.

To construct a precise and safe flow facts transformation function for this complex
code transformation, the known information about the relative iteration bounds has
to be considered. The iteration bounds relative to the loop scope L1 for the original

137

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

D

Pi

F

G

E

H

I

N

Pi

A

E

N

1:k2Y1:Y2

B

C

D

X1:X2

L2

L1

A

B

C

L3

L4

L1

L2

l
Y1
k2

m
:
l

Y2
k2

m

1:k1

l
X1
k1

m
:
l

X2
k1

m

Figure 8.6: CFG Transformation on Loop Blocking

CFG edge rel. bound CFG edge rel. bound
mPiA 1 mAN [b] 1

mAB[s] Xδ mBE[b] Xδ

mEA[b] Xδ mBC[s] Xδ · Yδ

mCD[s] Xδ · Yδ mDB[b] Xδ · Yδ

Table 8.2: Implicit Control Flow Information on Original CFG

CFG are given in Table 8.2. The iteration bounds relative to the loop scope L3 for the
transformed CFG are given in Table 8.3.

Based on the information about the relative iteration bounds of the CFG before
and after the transformation, the first step is to decide how to map each marker bind-
ing of the original CFG . The calculation of the restriction term transitions is based
on the transition of marker bindings. The calculation of safe and precise restriction
term transitions is relatively straight-forward, as it is induced over the relative iteration

138

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

CFG edge rel. bound CFG edge rel. bound

mPiF 1 mFN [b] 1

mFG[s]
⌈

Xδ

k1

⌉
mGI[b]

⌈
Xδ

k1

⌉

mIF [b]
⌈

Xδ

k1

⌉
mGA[s]

⌈
Xδ

k1

⌉
·
⌈

Yδ

k2

⌉

mAH[b]
⌈

Xδ

k1

⌉
·
⌈

Yδ

k2

⌉
mHG[b]

⌈
Xδ

k1

⌉
·
⌈

Yδ

k2

⌉

mAB[s] Xδ ·
⌈

Yδ

k2

⌉
mBE[b] Xδ ·

⌈
Yδ

k2

⌉

mEA[b] Xδ ·
⌈

Yδ

k2

⌉
mBC[s] Xδ · Yδ

mCD[s] Xδ · Yδ mDB[b] Xδ · Yδ

Table 8.3: Implicit Control Flow Information on Transformed CFG

bounds. The more critical phase for the overall precision is the design of the transitions
for marker bindings.

For example, the marker binding mAB[s] (relative bound Xδ) from the original CFG

can be assigned either to mAB[s] (relative bound Xδ ·
⌈

Yδ

k2

⌉
) or mFG[s] (relative bound⌈

Xδ

k1

⌉
) of the transformed CFG . In the following, we discuss for both possibilities the

impact to the precision of the ff update.

Attempt 1, mapping mAB[s] to mAB[s]: The desired restriction term transforma-

tion will be of the form 〈n · mAB[s]src〉 R−→ 〈 ~N · mAB[s]dst〉. Using the known
semantic information given in Table 8.2 and Table 8.3 it follows

mAB[s]src

mAB[s]dst

=
Xδ

Xδ ·
⌈

Yδ

k2

⌉

which can be transformed to

mAB[s]src =
1⌈
Yδ

k2

⌉ ·mAB[s]dst

As the function g(a) = 1l
a

k2

m is an inverse monotonic function (a1 < a2 ⇒ g(a2) <

g(a1)) it follows that ~N =

[
n 1l

Y2
k2

m . . . n 1l
Y1
k2

m].

Discussion: The scaling value (~N/n) in the transition of the restriction term is
a vector having a length that depends on the loop bound Yδ of the original inner
loop. In case that Yδ can be also zero it can be required to delete the involved
restriction as it is not possible to scale by an unbounded value. But more critical

139

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

is the induced impreciseness by the possible variability of ~N . For a minimum
allowed loop bound Y1 ≥ 1 it follows that ~N ≤ 1. As the maximum loop bound
Y2 is approximately indirect proportional to the upper bound for ~N it follows that
the mapping of the control flow edge mAB[s]src to mAB[s]dst is a still safe but
not favourable choice.

Attempt 2, mapping mAB[s] to mFG[s]: The desired restriction term transforma-

tion will be of the form 〈n · mAB[s]src〉 R−→ 〈 ~N · mFG[s]dst〉. Using the known
semantic information given in Table 8.2 and Table 8.3 it follows

mAB[s]src

mFG[s]dst

=
Xδ⌈
Xδ

k1

⌉

which can be transformed into

mAB[s]src =
Xδ⌈
Xδ

k1

⌉ ·mFG[s]dst

The function g(Xδ) = Xδl
Xδ
k1

m is not monotonic but it can be bounded if the value

range X1 ≤ Xδ ≤ X2 of the argument Xδ is known. Since Xδ is an integer value it

follows that
⌈

Xδ

k1

⌉
≤ Xδ+k1−1

k1
and furthermore Xδ

Xδ+k1−1

k1

≤ Xδl
Xδ
k1

m where Xδ·k1

Xδ+k1−1
is a

monotonic function under the constraint ((Xδ + k1) > 1). This constraint can be
assumed to be fulfilled because for this code optimisation in the described shape
it holds that k1 ≥ 2. Therefore, X1·k1

X1+k1−1
is a safe lower bound for the function

g(Xδ). To calculate an upper bound for g(Xδ) we start with Xδ

k1
≤

⌈
Xδ

k1

⌉
and get

Xδl
Xδ
k1

m ≤ k1. As a result, it follows that a safe calculation of ~N is

~N =

[
n

X1 · k1

X1 + k1 − 1
. . . n · k1

]

Discussion: The scaling value (~N/n) in the transition of the restriction term is
a vector having a length that depends on the loop bound Xδ of the original outer
loop. Depending on the value of X1 the minimum value of ~N is determined by the

relation
(
n ≤ n X1·k1

X1+k1−1
≤ n · k1

)
.

The above discussions show that mapping mAB[s] to mFG[s] is better than mapping
to mAB[s] since in the first case the length of the loop bound interval Xδ has less
influence than the length of the loop bound interval Yδ in the second case. A useful
mapping for all possible marker bindings of the original CFG is given in Table 8.4.

The construction of transitions for restriction terms using loop markers is analogous
to that for markers directly attached to a control flow edge of the CFG . The marker
should be replaced by another marker from the transformed CFG that has an equal

140

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

Original CFG Transformed CFG

CFG edge rel. bound CFG edge rel. bound

mPiA 1 mPiF 1

mAN [b] 1 mFN [b] 1

mAB[s] Xδ mFG[s]
⌈

Xδ

k1

⌉

mBE[b] Xδ mGI[b]
⌈

Xδ

k1

⌉

mEA[b] Xδ mIF [b]
⌈

Xδ

k1

⌉

Table 8.4: Transformation of Iteration Counts by Loop Blocking

iteration bound. In this case, no scaling is required and therefore the transformation
of the restriction term causes no loss of ff precision. For loop blocking, the restriction
term 〈n · LME(L1)〉 is transformed to 〈n · LME(L3)〉 without any scaling operation.
The restriction term 〈n · LMB(L2)〉 can be kept without any modification. The trans-
formation of the restriction terms 〈n · LMB(L1)〉 and 〈n · LME(L2)〉 cannot be done
without a loss in ff precision, because for the involved markers there is no control flow
edge in the transformed CFG with a similar iteration bound. Therefore, 〈n ·LMB(L1)〉
and 〈n · LME(L2)〉 have to be transformed in such a way that the scaling interval is
minimised.

Using all this information and strategies, the following safe ff update can be induced:

mPiA
M−→ mPiF

mAB[s]
M−→ mFG[s]

mBE[b]
M−→ mGI[b]

mEA[b]
M−→ mIF [b]

mAN [b]
M−→ mFN [b]

L1〈X1, X2〉 L−→ L1〈1, k1〉, L3〈
⌈

X1

k1

⌉
,

⌈
X2

k1

⌉
〉

L2〈Y1, Y2〉 L−→ L2〈1, k2〉, L4〈
⌈

Y1

k2

⌉
,

⌈
Y2

k2

⌉
〉

141

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

〈n · LME(L1)〉 R−→ 〈n · LME(L3)〉
〈n · LMB(L1)〉 R−→ 〈

[
n

X1 · k1

X1 + k1 − 1
. . . n · k1

]
· LMB(L3)〉

〈n · LME(L2)〉 R−→ 〈
[
n

X1 · k1

X1 + k1 − 1
. . . n · k1

]
· LME(L4)〉

〈n ·mPiA〉 R−→ 〈n ·mPiF 〉
〈n ·mAN [b]〉 R−→ 〈n ·mFN [b]〉
〈n ·mAB[s]〉 R−→ 〈

[
n

X1 · k1

X1 + k1 − 1
. . . n · k1

]
·mFG[s]〉

〈n ·mBE[b]〉 R−→ 〈
[
n

X1 · k1

X1 + k1 − 1
. . . n · k1

]
·mGI[b]〉

〈n ·mEA[b]〉 R−→ 〈
[
n

X1 · k1

X1 + k1 − 1
. . . n · k1

]
·mIF [b]〉

The above rules will be used to update existing ff correctly when loop blocking is
performed. However, for loop blocking it is also necessary to create new flow informa-
tion to describe the iteration bound of nested loops more precisely. The following two
restrictions have to be added to keep the absolute iteration bound for the body of the
innermost loop precise:

〈1 · LMB(L2) ≤ X2·Y2 · LME(L3)〉
〈X1·Y1 · LME(L3) ≤ 1 · LMB(L2)〉

To conclude, loop blocking requires to change existing control flow restrictions,
marker bindings and loop flow facts. It is also required to create new control flow
restrictions. It is important to note that these flow facts update rules are not precise
in the sense that no relevant ff are lost or weakened. The reason is that the execution
frequency of the involved loops is not known as a constant value. The consequence is
that the scaling factor for several restriction terms becomes a vector. It is explained in
Section 7.2.2 that transitions with a vector as scaling value introduce pessimism. If the
iteration count of the involved loops is known by the compiler to be constant, the ff
update rules can be designed without any loss in precision.

8.3.2 Loop Inversion

Loop inversion is a standard code transformation to move the exit test from the top of
the loop to the bottom. Using the notions from ANSI C, loop inversion converts a while
loop into do/while loop.

142

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

N

P

C

A

B

D

A

C

P

L1

B

N

X1:X2L1
X1:X2

Figure 8.7: CFG Transformation on Loop Inversion

The resulting abstract code transformation TransCFPS for loop inversion is shown
in Figure 8.7. Safe ff transformation rules for loop inversion are induced as:

mPA[s]
M−→ mPD[s]

mAN [b]
M−→ mCN [s], mDN [b]

mCA[b]
M−→ mCA[b], mCN [s]

〈n ·mPA[s]〉 R−→ 〈n ·mPD[s]〉
〈n ·mAN [b]〉 R−→ 〈n ·mCN [s] + n ·mDN [b]〉
〈n ·mCA[b]〉 R−→ 〈n ·mCA[b] + n ·mCN [s]〉

These flow facts update rules are precise in the sense that no relevant ff are lost or
weakened. The only ff update is to change existing control flow restrictions and update
marker bindings.

8.3.3 Loop Interchange

The application of this ff transformation framework is demonstrated by performing the
code transformation of loop interchange. The resulting abstract code transformation
TransCFPS is given in Figure 8.8.

The additional control flow information known by the compiler is that the iteration
bounds of the loops are getting exchanged. Using this information, the following safe ff
update can be induced:

143

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

N

P

N

P

Y1:Y2

A

B

C

D

E

L2

L1

A

B

C

D

E

L1

L2Y1:Y2

X1:X2

X1:X2

Figure 8.8: CFG Transformation on Loop Interchange

L1〈X1, X2〉 L−→ L1〈Y1, Y2〉
L2〈Y1, Y2〉 L−→ L2〈X1, X2〉

〈n · LMB(L1)〉 R−→ 〈
[
n

Y1

X2

. . . n
Y2

X1

]
· LMB(L1)〉

〈n · LME(L2)〉 R−→ 〈
[
n

Y1

X2

. . . n
Y2

X1

]
· LME(L2)〉

〈n ·mAB[s]〉 R−→ 〈
[
n

Y1

X2

. . . n
Y2

X1

]
·mAB[s]〉

〈n ·mDE[s]〉 R−→ 〈
[
n

Y1

X2

. . . n
Y2

X1

]
·mDE[s]〉

〈n ·mDB[b]〉 R−→ 〈
[
n

Y2(X1 − 1)

X1(Y2 − 1)
. . . n

Y1(X2 − 1)

X2(Y1 − 1)

]
·mDB[b]〉

〈n ·mEA[b]〉 R−→ 〈
[
n

Y1 − 1

X2 − 1
. . . n

Y2 − 1

X1 − 1

]
·mEA[b]〉

The TransRestr update for certain restriction terms is calculated with a fraction
where the lower part of the fraction could probably become zero. The consequence
in such a case is that we have to delete the involved restriction as it is numerically
not possible to scale by an unbounded value. Since every restriction only reduces the
possible CFP , removing a restriction is always a safe operation.

To conclude, loop interchange requires to change existing control flow restrictions,
marker bindings and loop flow facts. It is important to note that these flow facts update

144

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

rules are not precise in the sense that no relevant ff are lost or weakened. The reason
is that the execution frequency of the involved loops is not known as a constant value.
The consequence is that the scaling factor for several restriction terms in TransRestr
becomes a vector. It is explained in Section 7.2.2 that transitions with a vector as scaling
value introduce pessimism. If the iteration count of the involved loops is known to the
compiler to be constant, the TransRestr update rules can be designed without any
loss of precision.

8.3.4 Loop Unrolling

This section describes the ff transformation for loop unrolling with an unroll factor of
k. If the iteration bound N of the loop is constant and a multiple of k then the loop can
be unrolled without keeping a copy of the rolled loop. Otherwise it is required to keep
a copy of the rolled loop where the remaining loop iterations are executed that cannot
be executed by the rolled loop. In the following, both variants are described. The first
variant is described for a do/while loop and the second for a while loop.

Loop Unrolling without Copy of Rolled Loop

Performing loop unrolling without copy of rolled loop requires that the iteration bound
N of the loop is known by the compiler to be constant. Furthermore, N must be a
multiple of k.

C

B

N

A

A

B1

Bk

C

l
X1
k

m
:
j

X2
k

k

N

X1:X2L1

L1

Figure 8.9: CFG Transformation on Loop Unrolling

The resulting abstract code transformation TransCFPS for loop unrolling is shown
in Figure 8.9. The safe ff transformation rules for loop unrolling are induced as:

145

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

mAB[s]
M−→ mAB1[s]

Mi(B)
M−→ Mi(B1), Mi(B2), . . . ,Mi(Bk)

mBC[s]
M−→ mBkC[s]

L1〈X1, X2〉 L−→ L1〈
⌈

X1

k

⌉
:

⌊
X2

k

⌋
〉

〈n · LMB(L1)〉 R−→ 〈n·k · LMB(L1)〉
〈n ·mAB[s]〉 R−→ 〈n·k ·mAB1[s]〉
〈n ·Mi(B)〉 R−→ 〈n ·Mi(B1) + . . . + n ·Mi(Bk)〉
〈n ·mBC[s]〉 R−→ 〈n·k ·mBkC[s]〉

〈n ·mCA[b]〉 R−→ 〈
[
n

X1 − 1⌈
X1

k

⌉− 1
. . . n

X2 − 1⌊
X2

k

⌋− 1

]
·mCA[b]〉

The restriction term transition for 〈n ·mCA[b]〉 uses a vector as a scaling value. This
will introduce inaccuracy, depending on the length of this scaling vector. As described
above, the iteration bound of the loop is known by the compiler to be constant. If the
flow information models the loop bound with the same accuracy, all ff transformation
rules will be precise. The only ff update is to change existing control flow restrictions,
marker bindings, and loop flow facts.

It is interesting to note that a vector as scaling value will only occur when unrolling
a while loop (having the exit test in the loop header). As shown below for loop unrolling
with keeping a copy of the rolled loop, a vector as scaling value does not occur for a
do/while loop structure.

Loop Unrolling with Copy of Rolled Loop

If the iteration bound of a loop is not known to be a constant, a copy of the rolled loop
has to be kept when unrolling the loop.

The resulting abstract code transformation TransCFPS for loop unrolling with
keeping a copy of the rolled loop is shown in Figure 8.10.

Using the implicitly known control flow information for this code transformation,
safe ff transformation rules for loop inversion are induced as:

mAB[s]
M−→ mAB1[s], mDBk+1[s]

mAN [b]
M−→ mAD[b]

Mi(B)
M−→ Mi(B1), Mi(B2), . . . ,Mi(Bk), Mi(Bk+1)

mBC[s]
M−→ mBkC[s], mBk+1E[s]

mCA[b]
M−→ mCA[b], mED[b]

146

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

N

C

A

B

A

B1

Bk

C

N

D

E

Bk+1

X1:X2L1

L1

L2

j
X1
k

k
:
j

X2
k

k

0:(k−1)

Figure 8.10: CFG Transformation on Loop Unrolling with Copy of Rolled
Loop

L1〈X1, X2〉 L−→ L1〈
⌊

X1

k

⌋
,

⌊
X2

k

⌋
〉, L2〈0,(k−1)〉

〈n · LMB(L1)〉 R−→ 〈n·k · LMB(L1) + n · LMB(L2)〉
〈n ·mAB[s]〉 R−→ 〈n·k ·mAB1[s] + n ·mDBk+1[s]〉
〈n ·mAN [b]〉 R−→ 〈n ·mAD[b]〉
〈n ·Mi(B)〉 R−→ 〈n ·Mi(B1) + . . . + n ·Mi(Bk) + n ·Mi(Bk+1)〉
〈n ·mBC[s]〉 R−→ 〈n·k ·mBkC[s] + n ·mBk+1E[s]〉
〈n ·mCA[b]〉 R−→ 〈n·k ·mCA[b] + n ·mED[b]〉

The above rules will be used to update existing ff correctly when loop blocking is
performed. However, for loop unrolling with keeping a copy of the rolled loop it is also
necessary to create new flow information to describe the iteration bound of nested loops
more precisely. The following two restrictions have to be added to keep the overall
iteration bound for both loops precise:

147

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

〈k · LMB(L1) + 1 · LMB(L2) ≤ X2 · LME(L1)〉
〈X1 · LME(L1) ≤ k · LMB(L1) + 1 · LMB(L2)〉

Loop unrolling with keeping a copy of the rolled loop requires to change existing
control flow restrictions, marker bindings and loop flow facts. These flow facts update
rules are precise in the sense that no relevant ff are lost or weakened.

8.3.5 Software Pipelining

Software pipelining is a loop transformation that changes the execution instance within
a loop iteration. The resulting abstract code transformation TransCFPS for software
pipelining by splitting the loop iteration into g stages is given by Figure 8.11.

B

E

N

Pi

D

B

Pi

A

N

C

X1:X2L1

C

A
L1 (X1−g+1):(X2−g+1)

Figure 8.11: CFG Transformation on Software Pipelining

The additional control flow information known by the compiler is that the loop bound
is reduced by the value g and that the execution count of the epilog and prolog created
for the loop together with the loop itself have the original iteration bound. Using this
information, the following safe ff update can be induced:

148

8 Developing Concrete Transformation Rules 8.3 Loop Optimisations

mPiA
M−→ mPiD

mAB[s]
M−→ mAB[s], mDA[s]

mBC[s]
M−→ mBC[s], mDA[s]

mCA[b]
M−→ mCA[b], mDA[s]

LMB(L1)
M−→ LMB(L1), mDA[s]

mCN [s]
M−→ mEN [s]

L1〈X1, X2〉 L−→ L1〈(X1−g+1), (X2−g+1)〉
〈n · LMB(L1)〉 R−→ 〈n · LMB(L1) + (g−1) ·mDA[s]〉
〈n ·mAB[s]〉 R−→ 〈n ·mAB[s] + (g−1) ·mDA[s]〉
〈n ·mBC[s]〉 R−→ 〈n ·mBC[s] + (g−1) ·mDA[s]〉
〈n ·mCA[b]〉 R−→ 〈n ·mCA[b] + (g−1) ·mDA[s]〉
〈n ·mCN [s]〉 R−→ 〈n ·mEN [s]〉
〈n ·mPiA[s]〉 R−→ 〈n ·mPiD[s]〉

Software pipelining requires to change existing control flow restrictions, marker bind-
ings and loop flow facts. These flow facts update rules are precise in the sense that no
relevant ff are lost or weakened.

8.3.6 Loop Unswitching

Loop unswitching is applied to a loop including a conditional statement where it is
known by the compiler that the branch taken by the conditional statement will not
change over loop iteration.

The resulting abstract code transformation TransCFPS for loop unswitching is
given by Figure 8.11. The additional control flow information known by the compiler
is that the iteration bound for the new loops is the same as the original loop and the
iteration count of a block within the original loop is equal to the sum of corresponding
blocks in the two loops of the transformed code. Using this information, the following
safe ff update can be induced:

149

8.3 Loop Optimisations 8 Developing Concrete Transformation Rules

N

C

F

B

D E
D

N

Pi

A

Pi

C

X1:X2

X1:X2L2X1:X2L1

K

E

L

I J

G H

L1

Figure 8.12: CFG Transformation on Loop Unswitching

mPiA
M−→ mPiC

Mi(B)
M−→ Mi(I), Mi(J)

mAB[s]
M−→ mID[s], mJE[s]

mBC[s]
M−→ mID[s], mJE[s]

mCD[s]
M−→ mID[s]

mCE[b]
M−→ mJE[s]

mDF [s]
M−→ mID[s]

mEF [s]
M−→ mJE[s]

mFA[b]
M−→ mKG[b], mLH[b]

mFN [s]
M−→ mKN [s], mLN [s]

150

8 Developing Concrete Transformation Rules 8.4 Chapter Summary

L1〈X1, X2〉 L−→ L1〈X1, X2〉, L2〈X1, X2〉
〈n · LME(L1)〉 R−→ 〈n · LME(L1) + n · LME(L2)〉
〈n · LMB(L1)〉 R−→ 〈n · LMB(L1) + n · LMB(L2)〉

〈n ·mPiA〉 R−→ 〈n ·mPiC〉
〈n ·Mi(B)〉 R−→ 〈n ·Mi(I) + n ·Mi(J)〉
〈n ·mAB[s]〉 R−→ 〈n ·mID[s] + n ·mJE[s]〉
〈n ·mBC[s]〉 R−→ 〈n ·mID[s] + n ·mJE[s]〉
〈n ·mCD[s]〉 R−→ 〈n ·mID[s]〉
〈n ·mCE[b]〉 R−→ 〈n ·mJE[s]〉
〈n ·mDF [s]〉 R−→ 〈n ·mID[s]〉
〈n ·mEF [s]〉 R−→ 〈n ·mJE[s]〉
〈n ·mFA[b]〉 R−→ 〈n ·mKG[b] + n ·mLH[b]〉
〈n ·mFN [s]〉 R−→ 〈n ·mKN [s] + n ·mLN [s]〉

Analysing the above transitions for marker bindings one can see that markers are
mapped to a certain control flow edge among all of them with the same iteration bound.
This shows a useful optimisation technique to reduce the number of marker bindings.
The result will be a speedup on ff transformations of further code optimisations.

Loop unswitching requires to change existing control flow restrictions, marker bind-
ings and loop flow facts. These flow facts update rules are precise in the sense that no
relevant ff are lost or weakened.

As explained in more detail in Section 8.3.1, the suitable design of transitions for
marker bindings is important to avoid unnecessary loss in precision. For loop unswitch-
ing, if we had mapped the edge mCD[s] to the structural similar edge mCG[s] in the
transformed code, the resulting transition rule would introduce a loss in precision:

〈n ·mCD[s]〉 R−→ 〈[n ·X1 . . . n ·X2] ·mCG[s]〉

8.4 Chapter Summary

The transition rules of the ff transformation framework TransFF = TransMB ×
TransRestr × TransFFLF are used to describe a ff update function F̃t2 for a
certain code transformation performed by the compiler.

In this chapter we presented the method to analyse and use the flow information given
implicitely by the type of code optimisation to induce a correct and precise ff update

151

8.4 Chapter Summary 8 Developing Concrete Transformation Rules

function by constructing a sequence of transition rules. Examples for ff transition
rules have been given for several types of code transformations, including low-level
optimisations and loop optimisations. It has been shown that the design of suitable
marker binding transitions are an important step to avoid unnecessary pessimism in
the induced ff transition rule. The number of ff transitions for a code transformation
depends on the complexity of the involved CFG . A concrete ff transition rule only
has to be considered in practice if flow facts exist, which are attached to the referenced
control flow edge.

152

It is a good morning exercise for a research scientist
to discard a pet hypothesis every day before breakfast.

It keeps him young.

Konrad Lorenz, Das sogenannte Böse (1963)

Chapter 9

Assessment of the Approach

Chapter 7 presented the concept to develop safe and precise flow facts transformation
rules by using the framework presented in Chapter 8. This chapter presents a theoretical
as well as a practical assessment of this flow facts transformation framework.

9.1 Properties of the Flow Facts Transformation

Framework

This section summarises properties of the presented ff transformation framework and
discusses quality aspects regarding precision of ff transformation rules.

9.1.1 Flow Information described by Flow Facts

Flow facts are used to guide the WCET analysis tool to calculate the possible CFP
of a program. The WCET calculation method we use is based on the implicit path
enumeration technique (IPET) (described in Section 2.3). The advantage of IPET is
that it allows to consider global flow facts. More information about the flow facts we
use to calculate the CFP is given in Section 2.3.3.

To understand the limitations behind the ff transformation framework it is necessary
to examine, what kind of information can be described by these flow facts and what is
impossible to describe with them. The IPET based WCET calculation method calcu-
lates the execution frequency for each control flow edge of the program based on a set
of constraints. Some of these constraints are derived from the syntactic structure of the
code, the other are derived from the semantics or knowledge about the possible input
parameters. The markers, restrictions, and loop bounds are used to express constraints
regarding the relative execution frequency of different control flow edges. Considering
all these constraints on the relative execution frequencies results in constraints for the
absolute execution frequency of each control flow edge of the program.

In general, flow facts are only hints about the possible CFP . They cannot exactly

153

9.1 Properties of the Flow Facts Transformation Framework 9 Assessment

describe an execution trace as the concrete control flow path of an execution trace
typically depends on the input data. This does not mean any impreciseness since we are
interested in the longest execution trace which can be found using IPET. However, the
approximation is caused by the fact that these flow facts only describe bounds for the
execution frequency of each control flow edge. They cannot be used to specify the exact
execution sequence order of several control flow edges. This makes no difference for
simple processor architectures without performance enhancing features like pipelines or
caches. But for exactly modelling pipelines or caches the execution order of instructions
becomes significant.

This type of approximation becomes also important when we consider possible ff
update rules in case of code optimisations.

9.1.2 The Meaning of Precision within this Context

As described above, the flow facts used for the WCET calculation are an approxima-
tion of the possible CFP . This is important to consider for defining the precision of
the developed ff transformation framework. We can identify two different aspects of
precision:

• inherent precision limitations due to the fact that flow facts are orthogonal infor-
mation to the program semantics. For example, on loop interchanging the possible
iteration bounds for both loops are given as interval, which makes it impossible
to describe the change of the relative execution frequency for certain control flow
edges.

• precision limitations due to the fact that the ff transformation rule does not
describe the required ff update precisely. One possible reason for this would
be that the framework is not able to perform the required ff update precisely.
The other case would be that the concrete ff transformation rule for a certain
code optimisation does not fully exploit the possibilities of the ff transformation
framework.

This categorisation of precision is important to evaluate the quality of the ff trans-
formation framework.

9.1.3 The Effect of Code Transformations

The operations of the induced ff transformation function F̃t2 are performed by sets of
transition rules as described in Section 7.2.

In case of code transformation, the induced ff transition function may scale the
numeric values of restriction terms or loop bounds according to the following scheme:

〈n0 ·mNiNj[t]〉 R−→ {〈n1 ·mNkNl[t1]〉, 〈n2 ·mNmNn[t2]〉, . . .}

154

9 Assessment 9.1 Properties of the Flow Facts Transformation Framework

The above form of a restriction term transition is precise in the sense that it is scaled
only by fixed numeric values. The following transition shows an imprecise update of ff :

〈n0 ·mNiNj[t]〉 R−→ {〈[n11 . . . n12] ·mNkNl[t1]〉, 〈[n21 . . . n22] ·mNmNn[t2]〉, . . .}
As long as this transition was calculated by correctly using the implicit control

flow information of the performed code transformation as described in Chapter 8, the
resulting loss of precision is inherent because of the orthogonality between flow facts
and program semantics.

When describing the impact of loop optimisations it also may be necessary to create
new restrictions. This is the case when a transformed control flow edge is surrounded
by at least two loops scaled by a vector, or when a control flow has been duplicated to
at least two different loops generated from an original loop by “nonlinear” scalings.

9.1.4 Resulting Precision for Code Transformations

In Chapter 8 we presented ff transition rules for several code optimisations. As shown in
several examples, by using the transformation framework, the development of concrete
transition rules becomes quite simple. For several code optimisations (e.g., conditional
moves, loop blocking, loop interchange, loop unrolling) the precision of the flow facts is
weakened by using vectors as scaling factors for ff transitions. As discussed above, this
loss of precision for the flow facts is not a limitation of the transformation framework, it is
the result of inherent precision limitations due to the fact that flow facts are orthogonal
information to the program semantics. For optimisations like loop blocking or loop
unrolling it is also necessary to create new restrictions to reflect the original loop bounds.

Within the given examples, there were no precision limitations caused by weaknesses
in the transformation framefork itself. The advantage of this ff transformation frame-
work is that it consists of transition rules with small granularity which can directly be
used for simple code transformations but also grouped together to form a ff transforma-
tion rule for more complex optimisations. As discussed in Chapter 8, to obtain precise
ff transformations, it is important to select appropriate mappings for marker bindings.

The precision of the developed ff transformation framework is based on the following
contributions regarding the state of the art in flow facts transformation:

• Control flow edges are first class entities (in contrast to the framework presented by
Engblom in [Eng97, EEA98]). Considering control flow edges as first class entities
for the ff transformation framework allows the design of flexible ff transition rules.
For low-level code optimisations, these transition rules can be used locally without
being bothered by the global structure of the flow information. If more complex
code transformations are required, they can be constructed by composing multiple
ff transitions (grouping them together).

• Loop iteration bounds Xδ are treated as flow information separated from con-
ventional restrictions. They are converted on the fly into two markers and one

155

9.2 Experiments 9 Assessment

restriction for each loop when generating and solving the IPET constraints. On
the other hand, each loop has to have two loop markers assigned from the begin-
ning. Therefore, it is possible to mix them with conventional marker bindings in
restrictions.

• The framework contains transitions to generally address and transform the flow
information of a composed block without knowing the internal structure of such
a block. This allows, for example, to transform all flow facts attached to the loop
body in a precise way in case of loop unrolling (with keeping a copy of the rolled
loop).

• Flow information attached to a certain control flow edge can be distributed to any
set of control flow edges. A typical application for this is loop unrolling where
the execution of the loop body is distributed to two loops. But this mechanism
also allows the precise handling of more simple code optimisations such as branch
optimisation.

• A graphical representation to describe the structural changes caused by a code
transformation was developed. Using this graphical representation facilitates the
extraction of the implicit flow information given by the type of code optimisation.
It also allows us to control the existence of generic control flow edges within the
subgraph involved in the code transformation.

• A potential cause for imprecision is the incomplete specification of ff transfor-
mation rules. However, completeness can be achieved easily by specifying a ff
tansition for each control flow edge of the original CFG involved in the code
transformation.

• All the induced ff transformations are composed of simple ff transition rules. This
facilitates the integration of such rules into a compiler and the extension to support
further code optimisations. To support a new code optimisation it is necessary to
analyse its code and insert a few number of ff transition rules at the appropriate
place. It is not required to implement a specific ff transformation rule for each
new code optimisation.

9.2 Experiments

In this section we examine our approach by experiments. One motivation is to show
that the flow facts transformation presented in this thesis allows us to calculate safe and
precise bounds for the WCET. This is done by comparing the result of the analysis with
real measurements on the target hardware. The other motivation is to keep in mind
that the performance improvement of code by using code optimisations is important
for high hardware utilisation. To take advantage of these performance improvements
in the domain of hard real-time systems, it is necessary to support code optimisations
performed by the compiler within the WCET analysis framework. First results for

156

9 Assessment 9.2 Experiments

a prototype implementation of the WCET analysis framework developed within the
SETTA project1 [SBV+02] are presented in this section.

9.2.1 The Target Hardware

The target hardware for all the experiments is the C167 16-bit microcontroller from
Infineon [INF00]. The C167 processor uses a relatively simple four-stage pipeline and
a jump cache mechanism that can cache one conditional jump instruction. This jump
cache can speed up the execution of innermost loops. The timing analysis of the C167
includes additional complexities due to the programmable timing of external memory
accesses. For our experiments we used a fixed timing setting, as given by the ACT
setting in Table 9.1.

9.2.2 The Analysis Framework

The prototype implementation of the WCET analysis framework is based on a previous
implementation [Kir00] that was missing a systematic support for code optimisations
performed by the compiler. A structural overview of our WCET analysis framework is
shown in Figure 9.1. This framework allows us to perform WCET analysis for programs
written in wcetC. wcetC is a programming language derived from ANSI C allowing
programmers to annotate the code by flow information [Kir02].

Compiler

wcetC
source code

Assembler/
Disassembler

WCET Analyis
 Tool

Annot.
Assembly

code

doc

WCET

Figure 9.1: Structure of the WCET Analysis Framework

The compiler we modified to handle flow facts is based on a port of the GNU C
compiler GCC 2.7.2 done by the company HighTec2 to support the C167 processor. This
relatively old compiler was selected because it is the only one available as source code
that supports the C167. The concepts of the WCET calculation method implemented
for our WCET analysis tool are described in [KP00]. They are based on the IPET
approach developed by Puschner et al.[PS97]. The generic structure of WCET analysis

1IST research project “Systems Engineering for Time-Triggered Architectures (SETTA)” under
contract IST-10043.

2http://www.hightec-rt.com/

157

http://www.hightec-rt.com/

9.2 Experiments 9 Assessment

Variable Value Description
EXEC LOCATION EXT mem location of program

code
READ LOCATION EXT possible mem. locations

for reading data
WRITE LOCATION EXT possible mem. locations

for writing data
BTYP b 10 special function registers,
MCTC b 1110 used to set the ACT
MTTC b 1 (address latch enable cycle
ALECTL b 0 time); current value is 3
MODEL JUMP CACHE true control flag, whether to

model the jump cache
USE DELTA JUMP CACHE false (not implemented yet)

Table 9.1: Configuration Settings for the Static WCET Analysis Tool

tools are given in Figure 1.1, which are described in Section 2.2.1. A central component
of the analysis tool is the exec-time modelling. The development of an accurate exec-
time model for the C167 processor was performed within the SETTA project. It has
been shown, that due to lack of precise documentation, it requires much additional effort
to develop an accurate exec-time model. The data given in the hardware manual were
not sufficient [AKP01].

The hardware configuration of the WCET analysis tool is given in Table 9.1.

9.2.3 The Test Setup for Measurements

To compare the results from the static WCET analysis tools with real execution times,
we performed measurements on a real hardware platform.

Figure 9.2: Test Environment for Runtime Measurements [AHP99]

The test setup used for the measurements was initially developed by Atanassov in
order to refine the exec-time model of the C167 [AKP01]. A structural overview of the

158

9 Assessment 9.2 Experiments

Program Description Properties
Bubble Sort Sorts an array with 25 ele-

ments in the range [0, 124].
Contains a triangular loop
nest with a significant num-
ber of infeasible paths.

Discrepancy Code from the domain of
railroad control. It detects
discrepancies in the separate
channels of a redundant sys-
tem. It has 512 input param-
eters. 384 variables of them
are in the range [0, 255] and
112 variables are in the range
[0, 4095].

Interleaving of two nested
loops with several condi-
tional statements.

JPEG Integer implementation of
the forward DCT (discrete
cosine transform).

Two sequential loops with
relatively large bodies.

MatMul Performs the multiplication
of two 10×10 integer ma-
trices with elements in the
range [0, 4095].

Three nested loops; without
infeasible paths.

Integer This code was generated au-
tomatically out of a Mat-
lab/Simulink model. It de-
tects discrepancies in two
channels of a redundant sys-
tem.

Straight-line structure in the
source code, but a sequence
of conditional statements in
the assembly code.

Table 9.2: Description of the Test Programs used for the Experiments

test setup is shown in Figure 9.2. The test method used a genetic algorithm to generate
input data which promises to guide the tested task into longer execution paths than the
ones in the preceding test runs. By using a timer as measurement device, this setup
allows the user to measure execution times with the precision of a single clock tick. A
more detailed description of the test setup can be found in [AHP99].

9.2.4 Example Programs

To perform the experiments we have chosen five sample programs, namely Bubble Sort,
Discrepancy3, JPEG4, MatMul, and Integer5. A short description about the application
domain and the code structure of these programs is given in Table 9.2.

3provided by the WCET research team at Daimler-Chrysler.
4taken from the benchmark suite of the Real-Time Research Group at the Seoul National University,

available at http://www.c-lab.de/data/downloads/wcet/SNU.tgz.
5provided by the company DeComSys.

159

http://www.c-lab.de/data/downloads/wcet/SNU.tgz

9.2 Experiments 9 Assessment

Optimisation Level Compiler Switches
opt1 -c -g -O0 -m7 -mcompact -mregparm -wcet

opt2 -c -g -O3 -m7 -mcompact -mregparm -wcet

opt3 -c -g -O3 -funroll-loops -m7 -mcompact

-mregparm -wcet

Table 9.3: Compiler Switches for the different Optimisation Levels

Program without Optimisation with Optimisation
Bubble Sort opt1 opt2
Discrepancy opt1 opt3
JPEG opt1 opt2
MatMul opt1 opt3
Integer opt1 opt2

Table 9.4: Tested Optimisation Levels to compare Effect of Code Optimisa-
tions

The test code for the sample programs was generated by the compiler with various
optimisation levels. The compiler flags to control the optimisation level of the compiler
are abbreviated by the names given in Table 9.3. An exception is the compiler flag
-wcet, which does not control the optimisation level. It is used to force the compiler
into the mode to perform static WCET analysis of the code.

During the experiments we used two different optimisation levels to compare the
effect of code optimisations done by the compiler for each test. The two different opti-
misation settings are denoted in the following subsection as “without optimisation” and
“with optimisation”. The assignment of this informal names to the concrete optimisa-
tion settings of the compiler is given in Table 9.4.

9.2.5 Performed Experiments

Representation of the Experiments

The results of the experiments are shown in tables with six columns. The first column,
named Method denotes the two static analyses and the reference measurement. The
first static analysis result, named static,basic, was done for code annotated with loop
iteration bounds only. The second static analysis result, named static,flow, was done for
code that was annotated with additional information about infeasible paths. The next
four columns show the calculated/measured execution times (cycles) and the relative
overestimation (+%) compared to the measurement for two different optimisation levels.
The last column, named improvement -% shows the relative execution time reduction
of the code by using code optimisations.

160

9 Assessment 9.2 Experiments

Code optimisations
Method unoptimised optimised improvement

cycles +% cycles +% -%
static,basic 198 741 91.08 57 816 89.65 70.91
static,flow 104 625 0.59 30 492 0.02 70.86
measurement 104 007 – 30 486 – 70.69

Table 9.5: Measured and Calculated WCET Results (in cycles) for Bubble
Sort, With and Without Code Optimisations

Code optimisations
Method unoptimised optimised improvement

cycles +% cycles +% -%
static,basic 99 326 0.85 29 869 0.00 69.93
static,flow 99 326 0.85 29 869 0.00 69.93
measurement 98 493 – 29 869 – 69.67

Table 9.6: Measured and Calculated WCET Results (in cycles) for Discrep-
ancy, With and Without Code Optimisations

Measurement Results

The program Bubble Sort shows how important it is to have further flow information
than just loop bounds. The results for the experiments with Bubble Sort are summarised
in Table 9.5. One result also shown by the experiments with other programs is that
the relative execution time improvement when using code optimisations is similar for
the static analysis methods and the reference measurement. This similarity gives the
evidence that the control flow has been modelled accurately for performing WCET
analysis. This result is also affirmed by the direct comparison of the calculated execution
time with the measurement. While the overestimation for static,basic is more than 90
percent, it becomes less than one percent when additional flow facts about infeasible
paths are applied.

The experiments with the programs Discrepancy, JPEG, and MatMul show similar
results. For these programs the results for static,basic and static,flow are the same, as
these programs do not show infeasible paths by program code analysis only. Again,
the overall overestimation by the static WCET analysis compared to the reference mea-
surement is always less than one percent. The difference between measurement and
static analysis is a combination of both, the underestimation by the measurement and
the overestimation by the static analysis. But as the difference is so small (less than
one percent), it demonstrates that the WCET analysis tool uses an accurate exec-time
model and a precise control flow analysis. The numeric results for these programs are
given in Table 9.6, Table 9.7, and Table 9.8.

The experiments with the program Integer have been performed to show also results
for simple straight-line code where no flow facts are required to perform static WCET

161

9.2 Experiments 9 Assessment

Code optimisations
Method unoptimised optimised improvement

cycles +% cycles +% -%
static,basic 29 367 0.15 10 031 0.00 65.84
static,flow 29 367 0.15 10 031 0.00 65.84
measurement 29 324 – 10 031 – 65.79

Table 9.7: Measured and Calculated WCET Results (in cycles) for JPEG,
With and Without Code Optimisations

Code optimisations
Method unoptimised optimised improvement

cycles +% cycles +% -%
static,basic 359 925 0.07 75 915 0.04 78.91
static,flow 359 925 0.07 75 915 0.04 78.91
measurement 359 679 – 75 887 – 78.90

Table 9.8: Measured and Calculated WCET Results (in cycles) for MatMul,
With and Without Code Optimisations

Code optimisations
Method unoptimised optimised improvement

cycles +% cycles +% -%
static,basic 648 3.02 589 0.86 9.10
static,flow 648 3.02 589 0.86 9.10
measurement 629 – 584 – 7.15

Table 9.9: Measured and Calculated WCET Results (in cycles) for Integer,
With and Without Code Optimisations

analysis. It is also interesting to note that the compiler generated conditional data-
driven control flow out of straight-line source code. Therefore, information about the
possible values of input parameter could be used to generate more accurate results.
Within our experiments we did not consider restrictions about the possible values of
input parameters. The results for Integer are given in Table 9.9. Compared to the other
sample programs with more complex control flow, this simple code structure yields to
a higher execution time difference between measurement and static analysis. But this
difference is still only 3 percent.

To summarise, the experiments showed a quite small difference between static WCET
analysis and runtime measurements for different optimisation levels. From this small
difference we know that the overestimation of the WCET analysis tool is the same or
even smaller. Also for programs with infeasible and enabled code optimisations it was
possible to calculate the WCET with an overestimation of less than one percent. The
common performance improvement when using code optimisations with the concrete
compiler was about 65%. Modern compilers with more powerful code optimisations may

162

9 Assessment 9.3 Implementation Experience

show even more improvement. Therefore, the support of timing analysis of optimised
code is an important cost factor in mass production.

9.3 Implementation Experience

The transformation of the ff is performed by the function TransFF. For each of its
components TransFF = TransMB × TransRestr × TransFFLF a separate ff
update function was implemented. Additionally, a function to create new restrictions
was implemented. For each code optimisation, the locations of the compiler source code
performing the code transformation is instrumented by these ff update functions.

As the compiler used for the prototype implementation does not support most of
the more complex code transformations, we implemented a simplified version of the ff
transformation framework. A typical code optimisation for which we had to use the full
ff transformation framework was loop unrolling.

The CFG represents the syntactic description of the possible program control flow.
The transformation function for this syntactic program description is TransCFPS.
Some compilers explicitly maintain the CFG during code optimisations. In this case
it is not necessary to implement TransCFPS as this is already integrated into the
compiler.

For the chosen compiler, the CFG is not automatically updated during code trans-
formations. Instead, the CFG is calculated dynamically for certain code optimisations.
This requires to implement an additional handling for the update of the CFG . As an
observation, the integration of the ff transformations into a compiler becomes simple,
if the compiler itself maintains a CFG through all code transformations.

9.4 Chapter Summary

This chapter presented a theoretical and also a practical assessment of the flow-facts
transformation framework.

The theoretical analysis discussed the precision of the flow-facts transformation rules
developed in Chapter 8. The precision of the involved flow facts is weakenend if a ff
transition uses a vector as a scaling value. This is the case with some control flow edges
of certain ff transformation rules. However, these inherent precision limitations are
due to the fact that flow facts are orthogonal information to the program semantics.
The ff transformation framework itself has been shown to be flexible enough to avoid
additional loss of precision.

The practical assessment was performed by comparing the results of a WCET anal-
ysis framework with that obtained by measurements on a real hardware platform. It
was shown that the overall accuracy of the WCET analysis framework is very precise,
even in case of code optimisations performed by the compiler.

163

9.4 Chapter Summary 9 Assessment

164

Life is the art of drawing sufficient conclusions
from insufficient premises

Samuel Butler, Notebooks (1912)

Chapter 10

Conclusion

This work presented a novel approach to support worst-case execution time (WCET)
analysis for optimised code. The challenges are code optimisations that dramatically
change the control-flow structure of the program. As discussed within this thesis, WCET
analysis techniques rely on the provision of additional control flow information (so called
flow facts) to describe the program behaviour, and, in turn, to calculate a safe bound
for the WCET. To ease the manual program annotation or semantic code analysis, it is
necessary to provide these flow facts at the source code level. On the other hand, the
calculation of a tight WCET bound has to consider any performed code optimisations
and the interaction with the properties of the target hardware. To combine both aspects,
it is required to transform the flow facts in parallel to code transformations. Existing
flow facts transformation techniques were only capable to support simple flow facts (e.g.,
without support for the specification of infeasible paths) and the number of supported
code optimisations was quite limited.

To improve this situation, we designed a flow facts transformation framework that
is able to support any code transformation performed by an optimising compiler. The
supported type of flow facts are expressive enough to fully support the advantages of
IPET-based WCET calculation. Furthermore, the resulting flow-facts transformation
rules are safe and precise.

10.1 Definition of the Role of Flow Facts for WCET

Analysis

Before we started with the development of a flow-facts transformation framework we had
to define the role of flow facts within the overall process of WCET analysis. First of all,
we divided the WCET analysis process into independent problem categories. During this
investigation we encountered problems with the existing terminology. Therefore, prior to
the development of the transformation framework, a profound definition of independent
problem categories was essential. We identified the following three orthogonal aspects
of WCET analysis:

165

10.2 Development of the Flow Facts Transformation Framework 10 Conclusion

Flow facts handling: Due to undecidability, the calculation of the WCET in general
requires the user to annotate the code with additional flow facts. Depending on
capabilities in flow facts handling the flow facts have to be specified at different
abstraction levels. Generally, the closer the properties of the flow facts are to the
concrete semantics of the code, the more computation complexity is required to
extract the flow facts. There are also differences in the quality of flow facts. In
the simplest case, they must be sufficient to calculate iteration bounds for loops.
More advanced flow facts allow the calculation of different types of (in)feasible
paths.

Exec-time modelling: The WCET of a code is hardware-dependent. Thus, the
WCET analysis tool has to model the behaviour of the target hardware, for ex-
ample, basic instruction times, caches or pipelines. Exec-time modelling provides
a description of the execution time for a given instruction sequence.

Representation level: The representation level where a program is coded and where
WCET analysis is performed is often not the same. Programming languages like
C or even more abstract development tools like Matlab/Simulink are state of the
art in software development. It is convenient for the developer to annotate the code
with flow facts, required to perform WCET analysis, at the same level where the
program is developed. On the other side, for maximum precision, the calculation
of the WCET has to be performed at object code level. Thus, mechanisms are
necessary to transform the flow facts to the representation level where WCET
analysis is performed.

The relevant aspect for the application of our approach is the management of repre-
sentation levels within a WCET analysis framework. Our framework allows to transform
flow facts precisely from the coding level to the analysis level in parallel to code trans-
formations.

In general, most WCET analysis frameworks with different program representation
levels for the development and the analysis of a program benefit from our approach.
Based on these three aspects we developed a generic and implementation independent
WCET analysis framework.

10.2 Development of the Flow Facts Transformation

Framework

First of all, we developed a formal transformation framework that guarantees the cor-
rectness of the transformations. The basic idea was to abstract the semantic of code
transformations to their impact on the control-flow of the code. Based on that we iden-
tified the implicit control flow semantic of code optimisations known by the compiler.
We developed a set of basic flow fact transitions expressive enough to deal with generic
control-flow changes. We showed the completeness of this approach, i.e., that the flow

166

10 Conclusion 10.3 Assessment of the Flow Facts Transformation Framework

facts can be updated for every valid code transformation performed by an optimising
compiler. Furthermore, it was described how the generic restriction term transition
function can be used to perform accurate update of flow facts about (in)feasible paths.

The resulting ff transitions rules are accurate, since it is possible to distribute ff
about infeasible paths from one control flow edge to any number of other control flow
edges. The advantage of this concept is that the impact on the control flow of quite
complex code optimisations can be described by simply grouping together a set of basic
flow fact transitions. The semantics of the grouping operation is that the involved flow
facts transitions are executed simultaneously. To summarise, the following list gives the
basic functions developed for the flow facts transformation framework. These functions
can be grouped together to update the flow facts in case of arbitrary complex code
transformations:

Update of marker bindings (
M−→): Markers are attached to control flow edges to

give them a label. With this function it is possible to distribute a marker binding
from a control flow edge to any other control-flow edges.

Update of restrictions (
R−→): Restrictions are constraints to limit the possible con-

trol flow of a program. With this function it is possible to distribute each term of
a restriction to any set of control-flow edges.

Update of Loop Flow Facts (
L−→): This function can create, modify, or delete iter-

ation bounds for loops.

Creation of restrictions: For certain code transformations it is possible to increase
the accuracy of the transformed flow facts by introducing new constraints.

Grouping of transition functions: The above described flow facts transition func-
tions are applied in parallel for each code transformation. Therefore, a function is
required to group these transition functions.

Based on these basic flow facts transitions we developed a method to systematically
construct a safe and precise flow facts transformation rule for any code transformation
performed by the compiler. We designed a hierarchical graph transformation framework
that makes the development of these flow facts transformation rules more intuitive. Sev-
eral examples for flow facts transformation rules demonstrated the use of this graphically
supported development method.

10.3 Assessment of the Flow Facts Transformation

Framework

The quality of the presented approach to transform flow facts precisely in parallel to code
optimisations was assessed analytically and also practically. The analytical assessment
showed that the only impreciseness introduced by the given flow facts transformations

167

10.4 Outlook 10 Conclusion

are inherent precision limitations due to the fact that flow facts are information that
is orthogonal to the program semantics. A simplified version of this framework was
integrated into the GNU compiler GCC. Based on this implementation we performed
experiments to compare the result of the static WCET analysis with real measurements
on the target hardware. The experiments showed that the deviation of the obtained
results for analysis and measurements was at most 3 percent and typically less than one
percent, even when code optimisations were activated. These experiments gave an idea
of the advantages of supporting a precise transformation of flow facts in case of code
optimisations.

10.4 Outlook

The current implementation is a simplified version of the proposed framework. It would
be of interest to demonstrate the potential of this concept by integrating it into a
compiler that is capable of performing more complex code optimisations than the GNU
compiler GCC 2.7.2 does.

The application context for our flow facts transformation framework described within
this thesis was the support of code optimisations in a static WCET analysis framework.
As with the current trend in processor development it will be increasingly difficult to
analyse the behaviour of a given piece of code for a modern processor. Therefore, it would
be interesting to consider the application of our flow facts transformation framework for
hybrid WCET measurement methods.

For the future we plan to cooperate with compiler vendors to integrate our approach
into industrial-strength compilers.

168

Bibliography

[AEH+99] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske,
D. Plump, A. Schrr, and G. Taentzer. Graph Transformation for Specifi-
cation and Programming. Science of Computer Programming, 34(1):1–54,
April 1999.

[AFMW96] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm.
Cache behavior prediction by abstract interpretation. In Static Analysis
Symposium (SAS), LNCS 1145, pages 52–66. Springer, 1996.

[AHP99] Pavel Atanassov, Stefan Haberl, and Peter Puschner. Heuristic worst-case
execution time analysis. In Proc. 10th European Workshop on Dependable
Computing, pages 109–114. Austrian Computer Society (OCG), May 1999.

[AKP01] Pavel Atanassov, Raimund Kirner, and Peter Puschner. Using real hardware
to create an accurate timing model for execution-time analysis. In Inter-
national Workshop on Real-Time Embedded Systems RTES (in conjunction
with 22nd IEEE RTSS 2001), London, UK, Dec. 2001.

[Alt96a] Peter Altenbernd. On the false problem in hard real-time programs. In Proc.
8th Euromicro Workshop on Real Time Systems, pages 102–107, L’Aquila,
Italy, Jun. 1996.

[Alt96b] Peter Altenbernd. Timing Analysis, Scheduling, and Allocation of Peri-
odic Hard Real-Time Tasks. PhD thesis, Department of Mathematics and
Computer Science, University of Paderborn, Germany, Oct. 1996.

[Alt97] Peter Altenbernd. CHaRy: The C-LAB Hard Real-Time System to Support
Mechatronical Design. In Proc. IEEE International Conference and Work-
shop on Engineering of Computer Based Systems (ECBS), pages 271–278,
Monterey, 1997.

[Ame88] Prasanna Amerasinghe. An Extended C Compiler for Timing Analysis of
Real-Time Software. Documentation, Dept. of Computer Science, Univer-
sity of Texas, 1988.

[AMW95] Martin Alt, Florian Martin, and Reinhard Wilhelm. Generating analyzers
with PAG. Technical Report A10/95, Universität des Saarlandes, Germany,
December 1995.

169

BIBLIOGRAPHY

[AMWH94] Robert D. Arnold, Frank Mueller, David Whalley, and Marion Har-
mon. Bounding Worst-Case Instruction Cache Performance. In Proc. 15th
Real-Time Systems Symposium (RTSS), pages 172–181, Brookline, Mas-
sachusetts, Dec. 1994.

[AP01] Pavel Atanassov and Peter Puschner. Impact of dram refresh on the execu-
tion time of real-time tasks. In International Workshop on Application of
Reliable Computing and Communication (WARCC), Dec. 2001.

[ASU97] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, June 1997. ISBN 0-201-10088-6.

[ATG96] Ali-Reza Adl-Tabatabai and Thomas Gross. Source-level debugging of
scalar optimized code. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 33–43, 1996.

[BBW00] Guillem Bernat, Alan Burns, and Andy Wellings. Portable Worst-Case
Execution Time Analysis using Java Byte Code. In Proc. 6th International
EUROMICRO conference on Real-Time Systems, Stockholm, June 2000.

[BCP02] Guillem Bernat, Antoine Colin, and Stefan M. Petters. Wcet analysis of
probabilistic hard real-time systems. In Proc. 23rd Real-Time Systems Sym-
posium, Austin, Texas, USA, Dec. 2002.

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formations for high-performance computing. ACM Computing Surveys,
26(4):345–420, 1994.

[BJ66] Corrado Boehm and Giuseppe Jacopini. Flow diagrams, turing machines
and languages with only two formation rules. CACM, 9(5):366–371, 1966.

[Bli94] Johann Blieberger. Discrete loops and worst case performance. Computer
Languages, 20(3):193–212, 1994.

[Bli02] Johann Blieberger. Data-flow frameworks for worst-case execution time
analysis. Real-Time Systems, 22:183–227, 2002.

[Bör95] Hans Börjesson. Incorporating worst-case execution time in a commeri-
cal compiler. Docs msc thesis 95/69, Department of Computer Systems,
Uppsala University, Sweden, Dec. 1995.

[Bru81] Arie De Bruin. Goto statements: semantics and deduction systems. Acta
Informatica, 15:385–424, 1981.

[BS96] Ervin Rohou Francóis Bodin, , and André Seznec. Salto: System for
assembly-language transformation and optimization. In Proc. 6th Work-
shop on Compilers for Parallel Computers, Dec. 1996.

170

[Bur72] R. E. Burkhard. Methoden der ganzzahligen Optimierung. Springer-Verlag,
1972.

[CBW94] Roderick Chapman, Alan Burns, and Andy Wellings. Integrated program
proof and worst-case timing analysis of spark ada. In Proc. ACM Workshop
on Language, Compiler and Tool Support for Real-time Systems, pages K1–
K11, Jun. 1994.

[CBW96] Roderick Chapman, Alan Burns, and Andy Wellings. Combining static
worst-case timing analysis and program proof. Real-Time Systems,
11(2):145–171, 1996.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, California, 1977. ACM Press, New York, NY.

[CC92a] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, Aug. 1992.

[CC92b] Patrick Cousot and Radhia Cousot. Comparing the galois connection and
widening/narrowing approaches to abstract interpretation. In Proc. 4th
International Symposium on Programming Language Implementation and
Logic Programming (PLILP’92), invited paper, Leuven, Belgium, Aug. 1992.

[CC02] Patrick Cousot and Radhia Cousot. Systematic design of program transfor-
mation frameworks by abstract interpretation. In Conference Record of the
Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 178–190, Portland, Oregon, Jan. 2002.
ACM Press, New York.

[Che87] Moyer Chen. A Timing Analysis Language - (TAL). Dept. of Computer
Science, University of Texas, Austin, TX, USA, 1987. Programmer’s Man-
ual.

[Cop94] Max Copperman. Debugging optimized code without being misled. ACM
Transactions on Programming Languages and Systems, 16(3):387–427, May
1994.

[Cou01] Patrick Cousot. Abstract interpretation based formal methods and future
challenges. Informatics, 10 Years Back - 10 Years Ahead, pages 138–156,
2001. Lecture Notes in Computer Science 2000.

[Cou02] Patrick Cousot. Constructive design of a hiertarchy of semantics of a tran-
sition system by abstract interpretation. Theoretical Computer Science,
277(1-2):47–103, 2002.

171

BIBLIOGRAPHY

[CP00] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a
processor with branch prediction. Real-Time Systems, 18(2):249–274, May
2000.

[CP01] Antoine Colin and Isabelle Puaut. A modular and retargetable framework
for tree-based wcet analysis. In Proc. 13th Euromicro Conference on Real-
Time Systems, pages 37–44, Delft, Netherland, Jun. 2001. Technical Uni-
versity of Delft.

[DEMS00] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter.
Compiler techniques for code compaction. ACM Transactions on Program-
ming Languages and Systems, 22(2):378–415, March 2000.

[DHP02] Frank Drewes, Berthold Hoffmann, and Detlef Plump. Hierarchical Graph
Transformation. Journal of Computer and System Sciences, 64:249–283,
2002. Short version in Proc. FOSSACS 2000, LNCS 1784.

[EE99] Jakob Engblom and Andreas Ermedahl. Pipeline timing analysis using a
trace-driven simulator. In Proc. 6th International Conference on Real-Time
Computing Systems and Applications, Hong Kong, Dec. 1999.

[EE00] Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-
case execution time analysis. In Proc. 21st IEEE Real-Time Systems Sym-
posium (RTSS), Orlando, Florida, USA, Dec. 2000.

[EEA98] Jakob Engblom, Andreas Ermedahl, and Peter Altenbernd. Facilitating
Worst-Case Execution Time Analysis for Optimized Code. In Proc. 10th
Euromicro Real-Time Workshop, Berlin, Germany, Jun. 1998.

[EJ02] Jakob Engblom and Bengt Jonsson. Processor pipelines and their proper-
ties for static wcet analysis. In Proc. 2nd Embedded Software Conference,
Grenoble, France, Oct. 2002. LNCS 2491, Springer Verlag.

[Eng97] Jakob Engblom. Worst-case execution time analysis for optimized code.
Master’s thesis, Uppsala University, Uppsala, Sweden, September 1997.

[Eng02] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden,
2002.

[Exl99] Martin Exler. Propagierung von Pfadinformation für die Analyse von Pro-
grammlaufzeiten. Master’s thesis, Technische Universität Wien, Vienna,
Dec. 1999.

[Feh89] Elfriede Fehr. Semantik von Programmiersprachen. Springer, 1989. ISBN:
3-540-15163-X.

[Fen91] Norman Fenton, editor. Software Metrics, A Rigorous Approach. Chapman
and Hall, first edition, 1991.

172

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Mar-
tin, Michael Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wil-
helm. Reliable and precise wcet determination for a real-life processor. In
Proc. of the 1st International Workshop on Embedded Software (EMSOFT
2001), pages 469–485, Tahoe City, CA, USA, Oct. 2001.

[GE98] Jan Gustafsson and Andreas Ermedahl. Automatic derivation of path and
loop annotations in object-oriented real-time programs. Parallel and Dis-
tributed Computing Practices, 1(2), Jun. 1998.

[Gus00] Jan Gustafsson. Analysing Execution-Time of Object-Oriented Programs
Using Abstract Interpretation. PhD thesis, Uppsala University, Uppsala,
Sweden, May 2000.

[Gus02] Jan Gustafsson. A prototype tool for flow analysis of object-oriented pro-
grams. In Proc. 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, Crystal City, VA, USA, Apr. 2002.

[HAM+99] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David Whalley,
and Marion G. Harmon. Bounding Pipeline and Instruction Cache Perfor-
mance. IEEE Transactions on Computers, 48(1), Jan. 1999.

[Haw01] Stephen Hawking. The Universe in a Nutshell. Hoffmann und Campe, Nov.
2001. ISBN: 3-553-80202-X.

[Hea99] Christopher A. Healy. Automatic Utilization of Constraints for Timing
Analysis. PhD thesis, Florida State University, July 1999.

[Hen82] John Hennessy. Symbolic debugging of optimized code. ACM Transactions
on Programming Languages and Systems, 4(3):323–344, 1982.

[HL99] Jung-Chang Huang and Tau Leng. Generalized Loop Unrolling: a Method
for Program Speed-Up. In Proc. IEEE Symposium on Application-Specific
System and Software Engineering Technology (ASSET99), pages 244–248,
Mar. 1999.

[HN96] David Harel and Amnon Naamad. The STATEMATE Semantics of Stat-
echarts. ACM Transactions on Software Engineering and Methodology
(TOSEM), 5(4), October 1996.

[HSR+00] Christoper A. Healy, Mikael Sjödin, Viresh Rustagi, David Whalley, and
Robert van Engelen. Supporting timing analysis by automatic bounding of
loop iterations. Real-Time Systems, pages 121–148, May 2000.

[HSW98] Christopher A. Healy, Mikael Sjödin, and David B. Whalley. Bounding
Loop Iterations for Timing Analysis. In Proc. IEEE Real-Time Technology
and Aplications Symposium, pages 12–21, Jun. 1998.

173

BIBLIOGRAPHY

[HW99] Christopher A. Healy and David B. Whalley. Tighter timing predictions
by automatic detection and exploitation of value-dependent constraints.
In Proc. Real-Time Technology and Applications Symposium, pages 79–88.
IEEE, Jun. 1999.

[INF00] C167CR Derivatives. 16-Bit Single-Chip Microcontroller. User’s Manual.
Version 3.0. Infineon Technologies AG, Feb. 2000.

[Jar00] Clara I. Jaramillo. Source Level Debugging Techniques and Tools for Opti-
mized Code. PhD thesis, University of Pittsburgh, Pittsburgh, Pennsylva-
nia, USA, 2000.

[JGS98] Clara I. Jaramillo, Rajiv Gupta, and Mary L. Soffa. Capturing the Effects
of Code Improving Transformations. In Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT’98), pages 118–
123, Paris, France, Oct. 1998.

[JN94] Neil D. Jones and Flemming Nielson. Abstract interpretation: A semantics-
based tool for program analysis. Technical report, University of Copen-
hagen and Computer Science Department, Aarhus University, Denmark,
Jun. 1994.

[Jun90] Dieter Jungnickel, editor. Graphen, Netzwerke und Algorithmen. Wis-
senschaftsverlag, second edition, 1990.

[KFG+93] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G. Pospischil, P. Puschner,
J. Reisinger, R. Schlatterbeck, W. Schütz, A. Vrchoticky, and R. Zainlinger.
Real-Time System Development: The Programming Model of MARS. In
Proc. of the International Symposium on Autonomous Decentralized Sys-
tems, pages 290–299, 1993.

[KHR+96] Lo Ko, Christopher A. Healy, Emily Ratliff, Robert D. Arnold, David Whal-
ley, and Marion Harmon. Supporting the specification and analysis of timing
constraints. In Proc. IEEE Real-Time Technology and Applicatons Sympo-
sium, pages 170–178, Brookline, Massachusetts, Jun. 1996. IEEE press.

[Kir00] Raimund Kirner. Integration of Static Runtime Analysis and Program Com-
pilation. Master’s thesis, Technische Universität Wien, Vienna, Austria,
May 2000.

[Kir02] Raimund Kirner. The Programming Language wcetC. Technical report,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2002.

[KLFP02] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter Puschner.
Fully automatic worst-case execution time analysis for matlab/simulink
models. In Proc. 14th Euromicro Conference on Real-Time Systems, pages
31–40, Vienna, Austria, Jun. 2002. Vienna University of Technology, IEEE.

174

[KP00] Raimund Kirner and Peter Puschner. Consideration of Optimizing Com-
pilers in the Context of WCET Analysis. In Informatiktage 2000, Fach-
wissenschaftlicher Informatik-Kongreß, pages 123–126, Bad Schussenried,
Germany, Oct. 2000. GI Gesellschaft für Informatik e.V.

[KP01] Raimund Kirner and Peter Puschner. Transformation of Path Information
for WCET Analysis during Compilation. In Proc. 13th IEEE Euromicro
Conference on Real-Time Systems, pages 29–36, Delft, The Netherlands,
Jun. 2001. Technical University of Delft.

[KS86] Eugene Klingerman and Alexander D. Stoyenko. Real-Time Euclid: A
Language for Reliable Real-Time Systems. IEEE Transactions on Software
Engineering, 12(9):941–989, Sep. 1986.

[LBJ+95] Sung-Soo Lim, Young H. Bae, Gyu T. Jang, Byung-Do Rhee, Sang L. Min,
Chang Y. Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong-
Sang Kim. An accurate worst case timing analysis for RISC processors.
Software Engineering, 21(7):593–604, 1995.

[Lew85] Art Lew. Computer Science: A Mathematical Introduction. Prentice Hall,
1985.

[LHKM98] Sung-Soo Lim, Jun H. Han, Jihong Kim, and Sang L. Min. A worst case
timing analysis technique for multiple-issue machines. In Proc. 19th Real-
Time Systems Symposium (RTSS), Dec. 1998.

[LKM98] Sung-Soo Lim, Jihong Kim, and Sang L. Min. A worst case timing analysis
technique for optimized programs. In Proc. 5th International Conference on
Real-Time Computing Systems and Applications (RTCSA), pages 151–157,
Hiroshima, Japan, Oct. 1998.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In Proc. 32nd ACM/IEEE
Design Automation Conference, pages 456–461, Jun. 1995.

[LMW95a] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient Microar-
chitecture Modeling and Path Analysis for Real-Time Software. In Proc.
IEEE Real-Time Systems Symposium, pages 298–307, Dec. 1995.

[LMW95b] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance Esti-
mation of Embedded Software with Instruction Cache Modeling. In Proc.
IEEE/ACM International Conference on Computer-Aided Design, pages
380–387, Nov. 1995.

[LMW96] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache modeling
for real-time software: Beyond direct mapped instruction caches. In Proc.
17th Real-Time Systems Symposium, pages 254–263. IEEE, Dec. 1996.

175

BIBLIOGRAPHY

[LS98] Thomas Lundqvist and Per Stenström. Integrating path and timing anal-
ysis using instruction-level simulation techniques. In Proc. ACM SIG-
PLAN Workshop on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES), pages 1–15, Jun. 1998.

[LS99a] Thomas Lundqvist and Per Stenström. An integrated path and timing anal-
ysis method based on cycle-level symbolic execution. Real-Time Systems,
17(2/3):183–207, Nov. 1999.

[LS99b] Thomas Lundqvist and Per Stenström. Timing analysis in dynamically
scheduled mircoprocessors. In Proc. 20th IEEE Real-Time Systems Sympo-
sium (RTSS), pages 12–21, Dec. 1999.

[Lun02] Thomas Lundqvist. A WCET Analysis Method for Pipelined Microproces-
sors with Cache Memories. PhD thesis, Dept. of Computer Engineering,
Chalmers University of Technology, Sweden, Jun. 2002.

[MACT89] Aloysius K. Mok, Prasanna Amerasinghe, Moyer Chen, and Kamtorn Tan-
tisirivat. Evaluating Tight Execution Time Bounds of Programs by Anno-
tations. In Proc. 6th IEEE Worksop on Real-Time Operating Systems and
Software, pages 74–80, Pittsburgh, PA, USA, May 1989.

[Man74] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[Miz02] Yoshihiro Mizoguchi. Shortest path length calculation using graph trans-
formation. In Proc. 6th Joint Conference on Imformation Science (JCIS),
pages 358–361, North Carolina, 2002. AIM.

[MM92] Thomas J. Marlowe and Stephen P. Masticola. Safe optimization for hard
real-time programming. In Proc. 2nd International Conference on Systems
Integration (ICSI), pages 436–445. IEEE, 1992.

[MR01] Tulika Mitra and Abhik Roychoudhury. A framework to model branch
prediction for wcet analysis. Technical Report 11-01, National University
of Singapore (NUS), Nov. 2001.

[MRL02] Tulika Mitra, Abhik Roychoudhury, and Xiafeng Li. Timing analysis of
embedded software for speculative processors. In Proc. 15th ACM Interna-
tional Symposium on System Synthesis, pages 126–131, 2002.

[Muc97] Steven S. Muchnick. Advanced Compiler Design & Implementation. Morgan
Kaufmann Publishers, Inc., 1997. ISBN 1-55860-320-4.

[Mue97] Frank Mueller. Generalizing Timing Predictions to Set-Associative Caches.
In Workshop on Real-Time Systems, pages 64–71, Jun. 1997.

[Mue00] Frank Mueller. Timing analysis for instruction caches. Real-Time Systems
Journal, 18(2/3):209–239, May 2000.

176

[Nau92] Peter Naur. Computing: A Human Activity – Selected Writings From 1951
To 1990. ACM Press/Addison-Wesley, New York, 1992. ISBN: 0-201-58069-
1.

[Nil92] Ulf Nilsson. Abstract Interpretations and Abstract Machines: Contributions
to a Methodology for the Implementation of Logic Programs. PhD thesis,
Department of Computer and Information Science, University of Linköping,
Sweden, 1992.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999. ISBN: 3-540-65410-0.

[Par93] Chang Y. Park. Predicting Program Execution Times by Analyzing Static
and Dynamic Program Paths. Real-Time Systems, 5(1):31–62, 1993.

[PB02] Peter Puschner and Alan Burns. Writing Temporally Predictable Code.
In Proc. 7th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pages 85–91, Jan. 2002.

[Pet00] Stefan M. Petters. Bounding the execution of real-time tasks on modern
processors. In Proc. 7th IEEE International Conference on Real-Time Com-
puting Systems and Applications, pages 12–14, Cheju Island, South Korea,
Dec. 2000.

[Pet02] Stefan M. Petters. Worst Case Execution Time Estimation for Advanced
Processor Architectures. PhD thesis, Institute for Real-Time Computer
Systems, Technische Universit München, Germany, Sep. 2002.

[PF99] Stefan M. Petters and Georg Färber. Making worst case execution time
analysis for hard real-time tasks on state of the art processors feasible. In
Proc. 6th Int. Conf. on Real-Time Computing Systems and Applications
(RTCSA’99), Hongkong, ROC, Dec. 1999. IEEE Computer Society Press.

[PK89] Peter Puschner and Christian Koza. Calculating the Maximum Execution
Time of Real-Time Programs. The Journal of Real-Time Systems, 1:159–
176, 1989.

[PS91] Chang Y. Park and Alan C. Shaw. Experiments with a Program Timing
Tool based on a Source-Level Timing Schema. Computer, 24(5):48–57, May
1991.

[PS97] Peter Puschner and Anton V. Schedl. Computing Maximum Task Execution
Times – A Graph-Based Approach. The Journal of Real-Time Systems,
13:67–91, 1997.

[Pus88] Peter Puschner. Ermittlung der maximalen Abarbeitungszeit von Program-
men. Master’s thesis, Technische Universität Wien, Vienna, Sep. 1988.

177

BIBLIOGRAPHY

[Pus02] Peter Puschner. Transforming execution-time boundable code into tem-
porally predictable code. In Bernd Kleinjohann, K.H. (Kane) Kim, Lisa
Kleinjohann, and Achim Rettberg, editors, Design and Analysis of Dis-
tributed Embedded Systems, pages 163–172. Kluwer Academic Publishers,
2002. IFIP 17th World Computer Congress - TC10 Stream on Distributed
and Parallel Embedded Systems (DIPES 2002).

[Pus03] Peter Puschner. Algorithms for Dependable Hard Real-Time Systems. In
Proc. 8th IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems, Jan. 2003.

[SA00] Friedhelm Stappert and Peter Altenbernd. Complete worst-case execution
time analysis of straight-line hard real-time programs. Journal of Systems
Architecture, 46(4):339–355, 2000.

[SBV+02] C. Scheidler, S. Boutin, U. Virnich, J. Rennhack, G. Grnsteidl, M. Pisecky,
R. Lang, R. Kirner, and Y. Papadopoulos. Systems Engineering von zeit-
gesteuerten Systemen - die SETTA Methodik. In VDI/VDE GMA Fach-
tagung, Steuerung und Regelung von Fahrzeugen und Motoren - AutoReg
2002, pages 663–676, Mannheim, Germany, Apr. 2002.

[SF99] Jörn Schneider and Christian Ferdinand. Pipeline behavior prediction for
superscalar processors by abstract interpretation. In Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), pages 35–44,
1999.

[Sha89] Alan C. Shaw. Reasoning about time in higher level language software.
IEEE Transactions on Software Engineering, 15(7):875–889, Jul. 1989.

[SP81] Micha Sharir and Amir Pnueli. Program Flow Analysis: Theory and Ap-
plication, chapter 7, Two approaches to interprocedural data flow analysis,
pages 189–233. Prentice Hall, 1981.

[Vrc92] Alexander Vrchoticky. Modula/R Language Definition. Technical report,
Technische Universität Wien, Department of Realtime Systems, Vienna,
Austria, Mar. 1992.

[Vrc94a] Alexander Vrchoticky. Compilation Support for Fine-Grained Execution
Time Analysis. In Proc. ACM SIGPLAN Workshop on Language, Compiler
and Tool Support for Real-Time Systems, Orlando FL, Jun. 1994.

[Vrc94b] Alexander Vrchoticky. The Basis for Static Execution Time Prediction.
PhD thesis, Technische Universität Wien, Vienna, Austria, Apr. 1994.

[Wir71] Niklaus Wirth. The Programming Language Pascal. Acta Informatica,
1:35–63, Jun. 1971.

178

[Wis94a] Roland Wismüller. Debugging of globally optimized programs using data
flow analysis. In Proc. ACM/SIGPLAN Conference Programming Language
Design and Implementation (PLDI’94), Orlando, FL, USA, Jun. 1994.

[Wis94b] Roland Wismüller. Quellsprachorientiertes Debugging von optimierten Pro-
grammen. PhD thesis, Fakultät für Informatik der Technischen Universität
München, München, Germany, Oct. 1994.

[WMH+97] Randall T. White, Frank Mueller, Christopher A. Healy, David B. Whalley,
and Marion G. Harmon. Timing analysis for data caches and set-associative
caches. In Proc. Real-Time Technology and Applications Symposium, pages
192–202, Jun. 1997.

[WMH+99] Randall T. White, Frank Mueller, Christopher Healy, David Whalley, and
Marion G. Harmon. Timing analysis for data and wrap-around fill caches.
Real-Time Systems, 17(2/3):209–233, Nov. 1999.

[YMTS96] Mohamed F. Younis, Thomas J. Marlowe, Grace Tsai, and Alexander D.
Stoyenko. Toward compiler optimization of distributed real-time processes.
In Proc. 2nd International Conference on Engineering of Complex Computer
Systems, pages 35–42. IEEE, 1996.

179

BIBLIOGRAPHY

180

Appendix A

Definition of WHILE

The language WHILE is a simple programming language, designed to demonstrate con-
cepts and algorithms. It is an extension of the language WHILE presented in [Feh89].
On the one hand, WHILE is used in Section 4.2 to demonstrate the meaning of program
semantics. On the other hand, WHILE is used in Chapter 5 to describe code transfor-
mations performed by optimising compilers. To describe code optimisations compactly,
WHILE has has been equipped with a special loop statement and constructs for low-
level control flow.

A.1 The Syntax of WHILE

The construction of syntactic correct WHILE programs is described in a BNF-like
notation. The grammar is divided into the following nine categories:

1. the set Num of numerals, generated by the nonterminal Num

2. the set Bool of boolean values, generated by the nonterminal Bool

3. the set Var of variable names, generated by the nonterminal Var

4. the set Aop of operators (Aexp×Aexp)→Aexp, generated by the nonterminal
Aop

5. the set Bop of operators (Aexp×Aexp)→Bexp, generated by the nonterminal
Bop

6. the set Aexp of arithmetic expression, generated by the nonterminal Aexp

7. the set Bexp of boolean expression, generated by the nonterminal Bexp

8. the set Stmt of statements, generated by the nonterminal Stmt

9. the set Prog of programs, generated by the nonterminal Prog

181

A.1 The Syntax of WHILE

A.1.1 Grammar Definition

The BNF-like grammar rules are given in the following. A speciality of WHILE is that
keywords to specify block delimiters are often omitted to support writing compact code.
Instead, grouping of statements is done only by indenting statements.

Num ² numeral

Bool ² true | false
Var ² identifier

Fn ² identifier

Aop ² + | − | ∗ | /

Bop ² = | < | > | ≤ | ≥ | 6=
Aexp ² Num | Var | Var[LAexp] | Aexp1 Aop Aexp2

| (Aexp) | Fn (LAexp) | read
Bexp ² Bool | not Bexp | Aexp1 Bop Aexp2 | (Bexp)

Decl ² Var | Var[LNum]

LNum ² Num | LNum1 , Num

LAexp ² Aexp | LAexp1 , Aexp

LDecl ² Decl | LDecl1 , Decl

Stmt ² skip

| var LDecl

| Var := Aexp

| Stmt1 ; Stmt2

| begin Stmt end

| if Bexp then Stmt1 else Stmt2

| while Bexp do Stmt

| for Var := Aexp1 , Aexp2 , Aexp3 do Stmt

| output Aexp

| output Bexp

| identifier :

| goto identifier

| return Aexp

Function ² function Fn (LDecl) begin Stmt end

Prog ² Function Prog1 | begin Stmt end

182

A Definition of WHILE

Preceding Rules

The given grammar rules itself will result into ambiguous derivations of certain con-
structs. It is therefore required to have additional precedence rules among certain
grammar components:

• if and while have precedence over ;

• precedence of operators is defined by their common mathematic priority

A.2 Comments on the Semantics

The semantics for all constructs of WHILE that are derived from the language WHILE
is described (in)formally in [Feh89]. The extensions in WHILE to support functions
or low-level control flow are similar to constructs in the programming language Pascal
[Wir71]. The for loop of WHILE allows a compact description of a loop induction
variable. For example, the following statement in WHILE

for I:=a, b, c do output a[I];

has the same meaning as the source code given in Listing A.1 based on a while loop.

Listing A.1: transformation of a for loop into a while loop

1 var I ;
2 I :=a ;
3 while I ≤ b do
4 output a [I] ;
5 I := I+c ;

183

A.2 Comments on the Semantics

184

Appendix B

Foundations in Lattice Theory

B.1 Properties of Functions

Definition B.1.1 (Relation) A relation R on the set A to a set B is a subset of the
Cartesian product A×B. The relation R has the domain A and the range B. A relation
R ⊆ A×A on the set A is called reflexive, iff ∀a ∈ A : aRa. A relation R ⊆ A×A
is called antisymmetric, iff ∀a1, a2 ∈ A : (a1Ra2 ∧ a2Ra1) =⇒ (a1 = a2). A relation
R ⊆ A×A is called transitive, iff ∀a1, a2, a3 ∈ A : (a1Ra2 ∧ a2Ra3) =⇒ (a1Ra3). A
function f : A → B implies a relation Rf ⊆ A×B.

Definition B.1.2 (Reductive) A function f : A → A on a domain 〈A,vA〉 is called
reductive at a ∈ A iff f(a) v a.

Definition B.1.3 (Extensive) A function f : A → A on a domain 〈A,vA〉 is called
extensive at a ∈ A iff a v f(a).

Definition B.1.4 (Monotonic function) A function f : A → B from a domain
〈A,vA〉 to another domain 〈B,vB〉 is monotonic (also called isotone or order-preserving
function) iff it preserves the partial order: ∀a1, a2∈A :

(
a1 vA a2

)
=⇒ (

f(a1) vB f(a2)
)

Definition B.1.5 (Absorptive) A function f : A × A → A on a domain 〈A,vA〉 is
called absorptive iff ∀a ∈ A : f(a, a) = a.

Definition B.1.6 (Isotone function) see monotonic function.

Definition B.1.7 (Continuous function) A function f : A → B from a domain
〈A,vA〉 to another domain 〈B,vB〉 is continuous iff it preserves the least upper bounds

of chains: ∀A′ ⊆chain A : f(
⊔A

A′) =
⊔B{f(a)|a ∈ A′}

A continuous function is also monotonic.

185

B.2 Sets and Algebraic Structures

Definition B.1.8 (Additive function) A function f : A → B from a domain 〈A,vA〉
to another domain 〈B,vB〉 is additive (also called join morphism or distributive func-
tion) iff it preserves all least upper bounds:

∀A′ ⊆ A :
(
∃a|a =

⊔A

A′
)

=⇒
(
f(a) =

⊔B{f(a)|a ∈ A′}
)

An additive function is also continuous.

Definition B.1.9 (Multiplicative function) A function f : A → B from a domain
〈A,vA〉 to another domain 〈B,vB〉 is multiplicative (also called meet morphism) iff it

preserves all greatest lower bounds: ∀A′ ⊆ A : (∃a|a = ⊔AA′) =⇒ (f(a) = ⊔B{f(a)|a ∈
A′})

Definition B.1.10 (Partial function) A relation f : A → B from set A to set B is
called a partial function iff for every a∈A there is at most one b∈B such that 〈a, b〉∈f :
∀a∈A ∧ ∀b1, b2∈B : (〈a, b1〉∈f ∧ 〈a, b2〉∈f) → (b1 = b2)

Definition B.1.11 (Total function) A relation f : A → B from set A to set B is
called a total function iff f is a partial function and there is exactly one b∈B for all
a∈A such that 〈a, b〉∈f :
∀a∈A ∧ ∃b1∈B ∧ ∀b2∈B : 〈a, b1〉∈f ∧ (〈a, b2〉∈f → (b1 = b2))

Definition B.1.12 (Fixpoint) A value x ∈ A is called a fixpoint for a function f :
A → A iff x = f(x).

B.2 Sets and Algebraic Structures

Definition B.2.1 (poset, Partial ordered set) For a relation v on a set D the tuple
〈D,v〉 is called a partially ordered set (poset), iff v is a partial order on D (v is a
partial order, iff it is reflexive, antisymmetric and transitive). A poset 〈D,v〉 can be
also expressed by po〈D,v〉.

Definition B.2.2 (Lower/Upper bound) An element d ∈ D of a poset 〈D,v〉 is
called a lower bound of D′ ⊆ D iff ∀d′ ∈ D′ : d v d′. d is called an upper bound of D′

iff ∀d′ ∈ D′ : d′ v d.

Definition B.2.3 (Greatest lower (glb)/Least upper (lub) bound) An element
d ∈ D of a poset 〈D,v〉 is a greatest lower bound (glb) of D′ ⊆ D (written as d = uD′)
iff d is a lower bound of D′ and (d′ v d) for all lower bounds d′ of D′.
An element d ∈ D is a least upper bound (lub) of D′ ⊆ D (written as d = tD′) iff d is
an upper bound of D′ and (d vD d′) for all upper bounds d′ of D′.

Definition B.2.4 (Semi-lattice) A poset 〈D,v〉 is called a join-semi-lattice 〈D,v
,t,>〉 iff for all finite subsets D′ ⊆ D the lub tD′ exists in D. > denotes tD. Anal-
ogous, a poset 〈D,v〉 is called a meet-semi-lattice 〈D,v,u,⊥〉 iff for all finite subsets
D′ ⊆ D the glb uD′ exists in D. ⊥ denotes uD.

186

B Foundations in Lattice Theory

Definition B.2.5 (Total order) A poset 〈D,v〉 is called a total order iff ∀d1, d2 ∈
D : (d1 v d2) ∨ (d2 v d1).

Definition B.2.6 (Chain) A chain in a partially ordered set 〈D,v〉 is a sequence (dn)n

of elements indexed by the natural numbers such that for all n ≤ m it follows dn v dm.
Every chain is also a total order.

Definition B.2.7 (Ascending and descending chain condition) A poset has finite
height iff all chains are finite. It has finite height h iff all chains have at most h + 1
elements and there exists at least one chain with exactly h + 1 elements.

A poset satisfies the ascending chain condition iff all ascending chains eventually sta-
bilise. Similarly, it fullfills the descending chain condition iff all descending chains
eventually stabilise. A poset has finite height iff it satisfies both the ascending and
descending chain conditions.

Definition B.2.8 (cpo; Chain complete poset) A poset 〈D,v〉 is called a chain
complete poset iff for all D′ ⊆ D the glb uD′ exists in D and for all ascending chains
D′′ ⊆ D the lub tD′′ exists in D. Every cpo is also a meet-semi-lattice.

Definition B.2.9 (Lattice) A poset 〈D,v〉 is called a lattice 〈D,v,t,u,>,⊥〉 iff
for all finite subsets D′ ⊆ D the glb uD′1 and lub tD′ exists in D. ⊥ denotes uD

and > denotes tD. For all d1, d2, d3 ∈ D of a lattice D it holds: t{d1,u{d2, d3}} =
u{t{d1, d2},t{d1, d3}} and u{d1,t{d2, d3}} = t{u{d1, d2},u{d1, d3}}. Every lattice
is also a chain complete poset.

Definition B.2.10 (Complete lattice) A lattice 〈D,v,t,u,>,⊥〉 is called a com-
plete lattice iff the glb uD′ and lub tD′ exists in D also for infinite subsets D′ ⊆ D.
Every finite lattice is also a complete lattice.

Definition B.2.11 (Moore family) A Moore family is a subset D′ ⊆ D of
a complete lattice 〈D,v,t,u,>,⊥〉 that is closed under greatest lower bounds:
∀D′′ ⊆ D′ : uD′′ ∈ D′.

Definition B.2.12 (Dual partial order) For every poset 〈D,v〉 we can obtain a dual
partial ordering 〈Dd,vd〉 which is defined as d1 vd d2 ⇔ d2 v d1. The dualism can be
defined for any concept of partial order. E.g., the dual order of a lattice 〈D,v,t,u,>,⊥〉
is the dual lattice 〈D,vd,td,ud,>d,⊥d〉 which is defined as

∀d1, d2 ∈ D : d1 vd d2 ⇔ d2 v d1

∀D′ ⊆ D : tdD′ ⇔ uD′

∀D′ ⊆ D : udD′ ⇔ tD′

⊥d ⇔ >
>d ⇔ ⊥

1in the literature some authors drop the requirement for greatest lower bounds

187

B.2 Sets and Algebraic Structures

188

Appendix C

Mathematical Proofs

This chapter contains various mathematical proofs to clarify theoretical foundations of
this thesis. Most of them are taken from other sources to assist the interested reader.

Proof 4.3.9 from page 61 (extracted from [Cou02],p.8)

The above result is known for the cartesian product ℘(D+)×℘(Dω) with componen-

twise ordering v+ × vω. Since 〈℘(D+) × ℘(Dω), v+ × vω〉 α−−−−��−−−−
γ

〈℘(D∞),v∞〉 with

α(〈X, Y 〉) = X ∪Y and γ(X) = 〈X+, Xω〉 is a Galois isomorphism. As {D+, Dω} is as-
sumed to be a partition of D∞, it follows that {D+, Dω} is isomorph to 〈℘(D+)×℘(Dω).

Proof 4.3.14 from page 67 (extracted from [NNH99],p.215)

To prove (i), Equation 4.7 follows directly by the transitivity of ve. Equation 4.8

immediately follows since when β(d) is a lower bound for D̃′ we get β(d) ve (ueD̃′).
Finally, we obtain β from Rβ by βRβ

= u{d̃ | dRβ d̃} = u{d̃ | β(d) v d̃} = β(d).

To prove (ii), from (dR d̃) it follows that (βR(d) ve d̃) and hence (dRβR d̃). On the other

side, from (dRβR d̃) we get (βR(d) ve d̃). By writing D̃′ = {d̃ | dR d̃} it is clear that

Equation 4.8 gives (dR (uD̃′)) which amounts to (dR βR(d)). And then by Equation 4.7

we get the desired (dR d̃).

Proof 4.3.15 from page 68 (extracted from [NNH99],p.218)

We shall prove d̃1RF F̃ (d̃1) ⇔ βF (d̃1) ve F̃ (d̃1). Thus, we calculate:

βF (d̃1) ve F̃ (d̃1) ⇔ ∀d1 : t{β2(d2) | β1(d1) ve d̃1 ∧ d2 = F (d1)} ve F̃ (d̃1)

⇔ ∀d1, d2 : β1(d1) ve d̃1 ∧ d2 = F (d1) ⇒ β2(d2) ve F̃ (d̃1)

⇔ ∀d1, d2 : d1R1 d̃1 ∧ d2 = F (d1) ⇒ d2R2 F̃ (d̃1)

⇔ d̃1RF F̃ (d̃1)

Proof 4.3.18 from page 71 (extracted from [NNH99],p.234)

189

First, showing that a Galois connection is an adjunction: We assume α(d) ve d̃

(from Equation 4.11) and since γ is monotone we get γ(α(d)) veγ(d̃); using the relation

d v γ(α(d)) of Equation 4.10 we get d v γ(α(d)) v γ(d̃) that is d v γ(d̃). The proof in

the other way (i.e. (d v γ(d̃)) ⇒ (α(d) ve d̃)) is analogous.

Second, showing that an adjunction is a Galois connection: From Equation 4.11 we get
(d v γ(d̃)) ⇒ (α(d) ve d̃), assuming that d = γ(d̃) it follows (γ(d̃) v γ(d̃)) ⇒ (α(γ(d̃)) ve
d̃) which equals to (α(γ(d̃)) ve d̃). Analogous, starting with (α(d) ve d̃) ⇒ (d v γ(d̃))

and assuming that d̃ = α(d) it results (d v γ(α(d))). It remains to show that α and
γ are monotone. For α, supposing that d1 v d2 and using the already proven relation
d v γ(α(d)) we get d1 v d2 v γ(α(d2)); using (d v γ(d̃)) ⇒ (α(d) ve d̃) it follows

α(d1) ve α(d2). Starting with d̃1 ve d̃2 and α(γ(d̃)) ve d̃ the monotony proof for γ is
similar.

Proof 4.3.19 from page 71 (extracted from [NNH99],p.237)

To show (i) we first show that γ is determined by α. Since (D
α−−−−→←−−−−
γ

D̃) is an adjunc-

tion (Theorem 4.3.18), we get γ(d̃) = t{d | d v γ(d̃)} = t{d |α(d) ve d̃}. This shows

that α uniquely determines γ: if both 〈D,v〉 α−−−−→←−−−−
γ1

〈D̃,ve〉 and 〈D,v〉 α−−−−→←−−−−
γ2

〈D̃,ve〉
are Galois connections, then γ1(d̃) = t{d |α(d) ve d̃} = γ2(d̃) for all d̃ ∈ D̃ and hence

γ1 = γ2. Similarly, we show that γ uniquely determines α by using α(d) = u{d̃ |α(d) ve
d̃} = u{d̃ | d v γ(d̃)}.
To show (ii) we consider D′ ⊆ D and with use of Theorem 4.3.18 we calculate

α(tD′) ve d̃ ⇔ tD′ v γ(d̃)

⇔ ∀d ∈ D′ : d v γ(d̃)

⇔ ∀d ∈ D′ : α(d) ve d̃
⇔ t{α(d) | d ∈ D′} ve d̃

and it follows that α(tD′) = t{α(d) | d ∈ D′}.
The proof that γ(uD̃′) = u{γ(d̃) | d̃ ∈ D̃′} is analogous.

Proof 4.3.20 from page 71 (extracted from [NNH99],p.238)

Using the claim for α we define γ by γ(d̃) = t{d′ |α(d′) ve d̃}.
Then we get α(d) ve d̃ ⇒ d ∈ {d′ |α(d′) ve d̃} ⇒ d v γ(d̃) where the last implication

follows from the definition of γ. For the other direction we first observe that d v γ(d̃) ⇒
α(d) veα(γ(d̃)) because α is completely additive and hence monotone. Furthermore, we
have

α(γ(d̃)) = α(t{d′ |α(d′) ve d̃})
= t{α(d′) |α(d′) ve d̃}
ve d̃

190

C Mathematical Proofs

and therefore d v γ(d̃) ⇒ α(d) ve d̃. If follows that (D
α−−−−→←−−−−
γ

D̃) is an adjunction and

hence a Galois connection (Theorem 4.3.18).

The proof of the claim for γ is analogous.

Proof 4.3.21 from page 71 (extracted from [NNH99],p.238)

It is λx.x v γ ◦ α and since α is monotone we get α ve α ◦ (γ ◦ α). Similarly, it
follows from α ◦ γ v λy.y that (α ◦ γ) ◦ α veα. Thus we get α ◦ γ ◦ α = α. The proof
for γ ◦ α ◦ γ = γ is analogous.

Proof 4.3.27 from page 76 (extracted from [Gus00],p.80)

From Definition 4.3.26 we get

∀d̃ ∈ D̃ : F (γ(d̃)) v γ(F̃ (d̃)) (C.1)

∀d̄ ∈ D̄ : F̃ (γ̃(d̄)) ve γ̃(F̄ (d̄)) (C.2)

By substituting d̃ with γ̃(d̄) in Property C.1 it becomes

∀d̄ ∈ D̄ : F (γ(γ̃(d̄))) veγ(F̃ (γ̃(d̄)))

Using the monotonicity of γ together with Property C.2 we get the result:

∀d̄ ∈ D̄ : F (γ(γ̃(d̄))) veγ(γ̃(F̄ (d̄)))

Proof 4.3.29 from page 77 (extracted from [Gus00],p.82)

α, γ, F are per definition monotone functions. Since ◦ preserves monotonicity, also
F̃ is monotone.

Proof 4.3.30 from page 77

Starting with the expression γ(F̃ (α(d))) and Definition 4.3.28 we get γ(F̃ (α(d))) =
γ(α(F (γ(α(d))))). From the properties of the Galois connection and the monotonicity of

F̃ it follows F (d) v γ(α(F (γ(α(d))))). Therefore, F̃ is safe according to Definition 4.3.26
(safe γ-approximation).

Proof 4.3.31 from page 78 (based on [JN94],p.27)

Assume having a function f̃ : D̃ → D̃ fullfilling ∀d ∈ D : α(F (d)) v f̃(α(d)). Then

it holds for all d̃ ∈ D̃:

F̃ (d̃) = (def. of induced function)

α(F (γ(d̃))) ve (from safe def. of f̃)

f̃(α(γ(d̃))) ve (from 〈α, γ〉) -abstraction and f̃ monotone)

f̃(d̃)

Therefore, the induced function F̃ gives at least the same precision than any other safe
function f̃ .

191

192

List of Publications

[1] Jan Gustafsson, Björn Lisper, Raimund Kirner, and Peter Puschner. Input-
Dependency Analysis for Hard Real-Time Software. In Proc. 9th IEEE Inter-
national Workshop on Object-Oriented Real-time Dependable Systems (WORDS
2003F), Capri Island, Italy, October 2003.

[2] Raimund Kirner and Peter Puschner. Discussion of Misconceptions about WCET
Analysis. In Proc. 3rd Euromicro International Workshop on WCET Analysis,
Porto, Portugal, July 2003.

[3] Raimund Kirner and Peter Puschner. A Simple and Effective Fully Automatic
Worst-Case Execution Time Analysis for Model-Based Application Development.
In Proc. 1st Workshop on Intelligent Solutions in Embedded Systems, Vienna, Aus-
tria, June 2003.

[4] Peter Puschner and Raimund Kirner. Avoiding Timing Problems in Real-Time
Software. In Proc. IEEE Computer Society’s Workshop on Software Technologies
for Future Embedded Systems, May 2003.

[5] Raimund Kirner and Peter Puschner. Timing Analysis of Optimised Code. In
Proc. 8th IEEE International Workshop on Object-oriented Real-time Dependable
Systems (WORDS 2003), Guadalajara, Mexico, January 2003.

[6] Raimund Kirner. Enforcing Composability for Ubiquitous Computing Systems. In
Proc. 7th Cabernet Radicals Workshop, Bertinoro, Italy, October 2002.

[7] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter Puschner. Fully Auto-
matic Worst-Case Execution Time Analysis for Matlab/Simulink Models. In Proc.
14th Euromicro Conference on Real-Time Systems, pages 31–40, Vienna, Austria,
Jun. 2002. Vienna University of Technology, IEEE.

[8] Wilfried Elmenreich, Lukas Schneider, and Raimund Kirner. A Robust Certainty
Grid Algorithm for Robotic Vision. In Proc. 6th International Conference on In-
telligent Engineering Systems (INES’02), Opatija, Croatia, May 2002. IEEE.

[9] C. Scheidler, S. Boutin, U. Virnich, J. Rennhack, G. Grnsteidl, M. Pisecky, R. Lang,
R. Kirner, and Y. Papadopoulos. Systems Engineering von zeitgesteuerten Sys-
temen - die SETTA Methodik. In VDI/VDE GMA Fachtagung, Steuerung und

193

LIST OF PUBLICATIONS

Regelung von Fahrzeugen und Motoren - AutoReg 2002, pages 663–676, Mannheim,
Germany, Apr. 2002.

[10] Raimund Kirner, Roland Lang, and Peter Puschner. WCET Analysis for Systems
Modelled in Matlab/Simulink. In Proc. 22nd IEEE Real-Time Systems Symposium,
Work in Progress Session, pages 33–36, London, UK, Dec. 2001. University of York,
Department of Computer Science, Report YCS 337 (2001).

[11] Pavel Atanassov, Raimund Kirner, and Peter Puschner. Using Real Hardware to
Create an Accurate Timing Model for Execution-Time Analysis. In International
Workshop on Real-Time Embedded Systems RTES (in conjunction with 22nd IEEE
RTSS 2001), London, UK, Dec. 2001.

[12] Raimund Kirner and Peter Puschner. Transformation of Path Information for
WCET Analysis during Compilation. In Proc. 13th IEEE Euromicro Conference
on Real-Time Systems, pages 29–36, Delft, The Netherlands, Jun. 2001. Technical
University of Delft.

[13] Raimund Kirner, Roland Lang, Peter Puschner, and Christopher Temple. Integrat-
ing WCET Analysis into a Matlab/Simulink Simulation Model. In Proc. 16th IFAC
Workshop on Distributed Computer Control Systems, Sydney, Australia, Nov. 2000.
School of Computer Science and Engineering, UNSW.

[14] Raimund Kirner and Peter Puschner. Consideration of Optimizing Compilers in
the Context of WCET Analysis. In Informatiktage 2000, Fachwissenschaftlicher
Informatik-Kongreß, pages 123–126, Bad Schussenried, Germany, Oct. 2000. GI
Gesellschaft für Informatik e.V.

[15] Raimund Kirner and Peter Puschner. Supporting Control-Flow-Dependent Execu-
tion Times on WCET Calculation. In Deutschsprachige WCET-Tagung, Paderborn,
Germany, Oct. 2000. C-Lab.

194

Curriculum Vitae

Raimund Kirner

September 29th 1972 Born in Neunkirchen, Lower Austria (Austria)

September 1979 – Elementary School in
June 1983 Edlitz

September 1983 – Secondary School in
June 1987 Edlitz

September 1987 – Engineering School for
June 1992 communications engineering in Mödling

July 1992 – Military Service in
February 1993 Wiener Neustadt

April 1993 – HF measurement engineer at the
September 1996 Austrian Research Center Seibersdorf

October 1996 – Studies of Computer Science at the
May 2000 Vienna University of Technology

March 1997 – HF measurement engineer at the
December 1998 Austrian Research Center Seibersdorf

May 2000 Master’s Degree in Computer Science
(with distinction)

October 1998 – Measurement and software technician at the
June 2000 C&P DI Suschnig GmbH, Klagenfurth

May 2000 – Research assistant at the
June 2000 Vienna University of Technology

since July 2000 Research/Teaching assistant at the
Vienna University of Technology

since October 2000 PhD Studies of Computer Science at the
Vienna University of Technology

195

LIST OF PUBLICATIONS

196

Errata

The following list shows errata that has been corrected since the release of the original
thesis in Mai 2003:

Page Line Reads Correction
59 21 semantics Sτ

S = τ ~∞: semantics Sτ
P = τ ~∞:

92 2 control of adjacent control of adjacent loops

106 10 F̃2 = impl eF2
(F̃1) F̃2 = impl(F̃2/F̃1)

107 28 in Section 6.3.1 in Section 6.2.2

116 17 done by F̃t1 done by F̃t1

116 35 for arbitrary nodes for arbitrary edges
117 3 {Ly, i|1 ≤ i ≤ n− 1} {Ly,i|1 ≤ i ≤ n− 1}
122 30 e a unique t a unique
123 7 (〈n, n′, t〉 ∈ EP) ∧ (n /∈ NM) 〈n, n′, t〉 ∈ EP

123 9 (〈n′, n, t〉 ∈ EP) ∧ (n /∈ NM) 〈n′, n, t〉 ∈ EN

125 26 〈
[

X1

Y2
. . . X2

Y1

]
·mAB[s]〉 〈

[
n·X1

Y2
. . . n·X2

Y1

]
·mAB[s]〉

126 4 〈k ·mAB[s]〉 〈n·k ·mAB[s]〉
126 30 given in Figure 7.5 given in Figure 7.6
140 22 Yδ of the original inner Xδ of the original outer

142 3 〈
[
n 1l

Y2
k2

m . . . n 1l
Y1
k2

m] · LME(L2)〉 〈
[
n X1·k1

X1+k1−1
. . . n · k1

]
·

LME(L4)〉
142 14,15 ·LME(L4) ·LME(L3)
147 Fig. 8.10 (edge 〈A,B, seq〉 and 〈B, C, seq〉 became bold)
148 Fig. 8.11 (X1−g):(X2−g) (X1−g+1):(X2−g+1)
149 7 (X1−g), (X2−g) (X1−g+1), (X2−g+1)
149 8-11 + g ·mDA[s] + (g−1) ·mDA[s]

197

	Introduction
	Motivation and Contributions of the Thesis
	Structure of the Thesis

	Worst-Case Execution Time Analysis
	Introduction to WCET Analysis
	Hardware Characteristics
	Measurement vs. Static WCET Analysis
	Static WCET Analysis
	Calculating the WCET
	Measurement of WCET
	Visualisation of WCET Results
	The Current State of the Art

	The Process of Static WCET Analysis
	A Generic WCET Analysis Framework
	Formal Definitions
	Extraction of Flow Facts
	Compilation
	Transformation of Flow Facts
	Exec-Time Modelling
	Calculation of Execution Scenarios

	Static WCET Analysis Using IPET
	Integer Linear Programming
	Timing Analysis based on IPET
	Flow Information

	Chapter Summary

	Related Work
	Extraction of Flow Facts
	Manual Code Annotations
	Semantic Code Analysis Techniques

	Transformation of Flow Facts
	Exec-Time Modelling
	Calculation of Execution Scenarios
	Other Related Work
	Code Optimisation for Real-Time Software
	Source-Level Debugging of Optimised Code

	Chapter Summary

	Foundations
	Program Flow Representation
	Control Flow Graph
	Call Graph
	Global Control Flow Graph

	Semantics
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics

	Abstract Interpretation
	Definition of the Abstract Interpretation
	Basic Principles of Abstract Interpretation
	Domain of the Interpretation
	Fixpoint Semantics for Abstract Interpretation
	Approximate Abstract Interpretation
	Correctness of Abstract Interpretation
	Galois Connection
	The Safety of the Approximation
	Induced Operators
	Termination of Abstract Interpretation
	Systematic Design of Galois Connections

	Chapter Summary

	Classification of Code Transformations
	Problem Statement
	Optimisations within a Basic Block
	Changing the Control Flow
	Low-Level Optimisations
	Partial Evaluation
	Redundancy Elimination
	Loop Reordering Transformations
	Other Loop Transformations
	Procedure Call Transformations

	Control Flow Preserving Optimisations
	Partial Evaluation
	Memory Access Transformations
	Redundancy Elimination
	Loop Reordering Transformations
	Other Loop Transformations
	Procedure Call Transformations
	Other Transformations

	Chapter Summary

	Timing Analysis of Optimised Code
	The Context of Code Transformations
	Dependable Flow Facts Transformation
	The Correctness of the Transformation
	Transformation of Flow Facts

	Flow Facts for WCET Calculation
	Required Transformation of Flow Facts

	Chapter Summary

	Handling Flow Facts
	Data Tuples to Handle Flow Information
	The Abstract Program Representation
	Representation of Flow Facts
	Transformation of Flow Facts

	Developing a Transformation Framework
	Specification of CFP Transformation
	Specification of Induced ff Transformation
	Grouping ff Transitions for a Single Code Optimisation

	Properties of the Transformation Framework
	The Completeness of the Approach
	Refinement of the Transformations
	Modelling Basic Operations of F"0365Ft2

	Chapter Summary

	Developing Concrete Transformation Rules
	General Considerations
	Low-Level Optimisations
	If Simplification
	Code Elimination
	Branch Optimisation
	Conditional Moves

	Loop Optimisations
	Loop Blocking
	Loop Inversion
	Loop Interchange
	Loop Unrolling
	Software Pipelining
	Loop Unswitching

	Chapter Summary

	Assessment
	Properties of the Flow Facts Transformation Framework
	Flow Information described by Flow Facts
	The Meaning of Precision within this Context
	The Effect of Code Transformations
	Resulting Precision for Code Transformations

	Experiments
	The Target Hardware
	The Analysis Framework
	The Test Setup for Measurements
	Example Programs
	Performed Experiments

	Implementation Experience
	Chapter Summary

	Conclusion
	Definition of the Role of Flow Facts for WCET Analysis
	Development of the Flow Facts Transformation Framework
	Assessment of the Flow Facts Transformation Framework
	Outlook

	Bibliography
	Definition of WHILE
	The Syntax of WHILE
	Grammar Definition

	Comments on the Semantics

	Foundations in Lattice Theory
	Properties of Functions
	Sets and Algebraic Structures

	Mathematical Proofs
	List of Publications
	Curriculum Vitae
	Errata

