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Abstract

With decreasing size of magnetic nanostructures thermal effects become increasingly

important. Prominent examples are magnetization noise in magnetic sensor elements and the

thermal stability of MRAM (Magnetic Random Access Memory) cells or magnetic storage

media. In this work we apply both stochastic time integration and path finding techniques in

the framework of the finite element method, in order to simulate thermal effects in magnetic

nanostructures. Thus, it is possible to take into account complex geometries and realistic ele-

ment shapes. Both methods are complementary. The stochastic time integration is restricted

to simulation times of about 10 ns. As a consequence the calculation of barrier crossing by

stochastic time integration is limited to small energy barriers. The transition rate for large bar-

riers can be estimated from the barrier height which can be calculated from the minimum

energy path. In addition to the energy barrier, the elastic band method provides a global view

of the energy landscape such as local minima and saddle points along the path. The magneti-

zation processes as computed from the stochastic time integration method and the minimum

energy path are compared for transitions between different ground states in magnetic nano-

elements.

Studying reversal modes in small softmagnetic elements such as MRAM, complex pro-

cesses were found even at sizes where homogeneous reversal was expected. As a consequence

the corresponding energy barrier is lower than when estimated with simpler models. For thin

permalloy squares a 8-fold like in-plane configurational anisotropy was observed at a certain

size, a feature overlooked in previous studies. In granular patterned media the thermal rever-

sal mode and the height of the energy barrier strongly depend on the intergranular exchange

strength. Similarly, the energy barrier as function of the interlayer exchange is calculated for

antiferromagnetically coupled media. For optimum exchange, the energy barrier can be

increased by 15% as compared to conventional recording media without an increase of the

coercivity. In softmagnetic nanodots a novel reversal mode involving Bloch-point structures

was investigated. The observed switching fields agree well with experimental data. For small

elements we compared the two> methods and obtained good agreement of the predicted

results. The calculated saddle points obtained with the nudged elastic band method indeed

represent the transition state found with Langevin dynamics.



Kurzfassung

Mit abnehmender Größe von magnetischen Elementen werden thermische Effekte immer

wichtiger. Beispiele sind magnetisches Rauschen in magnetischen Sensor-Elementen und die

thermische Stabilität von magnetischen Speichermedien. In dieser Arbeit wenden wir stocha-

stische Zeitintegration und Wegesuchetechniken im Rahmen der Finite-Element-Methode an,

um thermische Effekte in magnetischen Strukturen zu studieren. So ist es möglich, kompli-

zierte Geometrien und realistische Elementformen in Betracht zu ziehen. Die beiden Metho-

den ergänzenen einander. Die stochastische Zeitintegration ist auf Simulationszeiten von

ungefähr 10 ns eingeschränkt. Daher ist die Berechnung von Energiebarrieren durch stocha-

stische Zeitintegration auf kleine Barrieren begrenzt. Die Übergangsrate für große Energie-

barrieren kann mit der Höhe der Energiebarriere abgeschätzt werden, die aus dem minimalen

Energieweg berechnet werden kann. Zusätzlich zu den Energiebarrieren gibt die elastische

Bandmethode eine globalere Ansicht von der Energielandschaft und liefert die lokalen

Minima und Sattelpunkte entlang dem minimalen Energieweg. Die Magnetisierungsprozesse,

die mittels der stochastischen Zeitintegrationsmethode und dem minimalen Energieweg

berechnet wurden, werden für Übergänge zwischen unterschiedlichen Grundzuständen in

magnetischen Nanoelementen verglichen. In kleinen weichmagnetischen Elementen wurden

komplizierte Ummagnetisierungsmoden gefunden, obwohl bei kleinen Abmessungen Umma-

gnetisierung durch homogene Rotation erwartet wird. Durch inhomogene Ummagnetisie-

rung sind die realen Energiebarrieren niedriger als die Barrieren, die mit einfachen Modellen

für die Ummagnetisierung abgeschätzt werden. Für ein dünnes NiFe Plättchen wurde bei

bestimmten Abmessungen eine 8-fache Anisotropie in der Ebene beobachtet. Diese Eigen-

schaft wurde in den vorhergehenden Studien bisher nicht gefunden. In nanostrukturierten

Speichermedien hängt der thermische Ummagnetisierungspfad und die Höhe der Energie-

barriere stark von der Stärke der intergranularen Austauschkopplung ab. Die Energiebarriere

als Funktion der Zwischenschichtkopplung wurde auch für antiferromagnetisch gekoppelte

Speichermedien berechnet. Durch die antiferromagnetische Kopplung kann bei optimaler

Stärke für die Zwischenschichtkopplung eine um 15% höhere Energiebarriere erreicht wer-

den als bei konventionellen Speichermedien mit gleicher Koerzitivfeldstärke. In weichmagne-

tischen Nanodots wurde ein Ummagnetisierungsmodus, der Blochpunkt Strukturen mit

einbezieht, untersucht. Für kleine Elemente konnte eine gute Übereinstimmung der Resultate

der stochastischen Zeitintegration und der elastischen Bandmethode erzielt werden.
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INTRODUCTION S

1 INTRODUCTION

To introduce the scope of this thesis, the impact of thermal activation on magnetic data

storage and theoretical methods to estimate the lifetime of stored data are reviewed. The

basic concepts of new magnetic storage devices are explained. Both novel hard disc media

and magnetic random access memories are discussed with respect to the superparamagnetic

limit. Two complementary methods to treat thermal activation quantitatively are introduced.

Finally, the outline of the thesis is given.

1.1 High density magnetic recording and the superparamagnetic limit

Every year the number of bits that are crammed onto each square inch of a commercial

hard disk almost doubles (see Fig. 1.1). Fortunately this growth rate cannot continue forever

because of physical limits. The limit in the case of hard disc drives is given by an effect called

superparamagnetism. It denotes the phenomenon that the magnetic regions on the disk can-

not retain their magnetic orientation (=the data) over the lifetime of the product when they

become too small. Novel storage media can push this limit some steps further away. This

work introduces new methods to estimate the lifetime of bits in these recently developed

recording systems.

Figure 1.1 Evolution of the areal density (source IBM). Every year the density
almost doubles. Current record achieved is 130 GBit /in2.
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The data layer in conventional magnetic hard drives consists of a thin granular magnetic

film. The grains in this film are exchange decoupled thus each grain behaves like an indepen-

dent single domain magnet. Each grain has two possible directions along which it can be mag-

netized. In order to store one bit of information, a rectangular region in the layer is

magnetized by the recording head into one of its two directions. To guarantee the readability

of the signal this region typically consists of at least 300 magnetic grains of the layer (see Fig.

1.2). In order to increase the areal density of the magnetic layer the size of the magnetic grains

has to decrease which is impressively demonstrated in figure 1.2. Here the magnetic data lay-

ers of two hard discs are compared in a Transmission Electron Microscope (TEM). We com-

pared a hard disc from the year 1988 with a newer one from the year 2000. In 12 years the

areal density increased by a factor of about 1000 while the average grain size at same time

drastically decreased. When the grains become too small these grains can switch from one

equilibrium state to the opposite state because of thermal agitations. The signal becomes too

weak and the data will be lost if the number of grains switched by thermal activation is too

high.

20 MB (1988) 10GB (2000)

Sabine Höflngcr, TEM brightfield, Institut für Festkörperphysik. TU-Wien. 2003

Figure 1.2 Comparison of two commercial hard disks. The bottom figures show
TEM top views of the magnetic data kyer in bright field mode. The storage
density has increased by a factor of 1000 in 12 years. As seen from the pictures this
required a drastic decrease of the average grain size [61].
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Considering the effect of superparamagnetism Charap [21] predicted in 1997 an area! den-

sity of 40 Gbits/in as the upper bound. A new technology overcame this limit. In May 2001

IBM first shipped in the Travelstar laptop hard disk drives with antdferromagnetically-coupled

(AFC) media. The current world record of 130 Gbits/in2 was achieved by Read-Rite at the

end of April 2002. (130 Gbits/in2 = 20.15 Gbits/cm2 = 2.52 GBytes/cm2). This new level of

storage density translates to 82 hours of DVD-quality video on a single disc.

1.2 Future storage media

Figure 1.3 Future magnetic recording media.

There are several novel candidates to increase the thermal stability of the data. Fig. 1.3

shows some of the possibilities. Thermal stability is also important for the designing of mag-

netic random access memory (MRAM) elements. The idea here is to replace the conventional

DRAM in a computer with a magnetic RAM. The advantage is low power consumption and

non volatile storage with a high data rate comparable to the current DRAM technology.

Another advantage is the robustness of the storage against radiation which makes it very

interesting for applications in space.
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1.2.1 Longitudinal media

In common hard disk drives the information is stored in the magnetization state of a fer-

romagnetic granular film. A granular film is a composition of grains, that are regions with the

same crystal structure favoring the magnetization to align parallel to one axis, called easy axes.

Usually neighboring grains have the same crystal structure but the easy axes are different. In

modern hard disk drives the grain size diameter is less than 10 nm. In longitudinal recording

the easy axes are randomly oriented in the plane of the film. One bit is represented by the

magnetization state of about 50 neighboring grains. Because of the in-plane anisotropy in lon-

gitudinal recording the magnetization is parallel to the film plane. Small grains are required

because the minimum bit length, below which neighboring transitions become indistinguish-

able, is determined by the transition width which in turn depends on the grain size of the film.

Usually the grains are weakly exchange coupled to each other. For too strongly exchange cou-

pled grains the magnetization in neighboring grains aligns parallel, effectively larger grains are

formed. Thus, magnetic interaction increases the effective grain size. As a consequence larger

bit lengths would be required. On the other hand completely decoupled grains are thermally

unstable because the thermal stability decreases with decreasing grain volume. Thus, an

important task in longitudinal recording is to find the optimal exchange coupling strength

between grains.

In addition, the thermal stability is decreased by the strong demagnetizing field that

opposes the magnetization. At low recording density, when the bit length is much larger than

the film thickness the demagnetizing field is small. However, at high densities where the bit

length becomes smaller than the film thickness the magnetic charges inherent to longitudinal

recording are pushed together and high demagnetizing fields occur.

1.2.2 Perpendicular media

The idea of perpendicular recording is to represent bits with magnetization directions per-

pendicular to the film plane. As argued above a perpendicular orientation of the magnetiza-

tion reduces the demagnetizing field in the high density limit. Thus, opposite bits act as

domains that reduce the stray field. To achieve a perpendicularly magnetized configuration

textured films with easy axes perpendicular to the film plane are used.

Another advantage of the aligned grains in perpendicular recording is a narrow switching

field distribution. In conventional longitudinal media the grains are oriented randomly. Since
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the switching field depends on the angle between the easy axis and the external field, some

grains may not switch, leading to a broadening of the transition between the bits.

1.2.3 Antiferromagnetically coupled media

A breakthrough to decrease the demagnetizing field in longitudinal recording was achieved

by antiferromagnetically coupled media (AFC). In contrast to common media where one fer-

romagnetic film stores the information, AFC media consist of two ferromagnetic films which

are antiferromagnetically coupled. The opposite direction of the two films is achieved by an

ultra-thin ruthenium layer which may be better known as "pixie dust". The opposite orienta-

tion of the films decreases the demagnetizing field which makes the entire multilayer structure

appear much thinner than it actually is. However the thermal stability is proportional to the

sum of the two layer thicknesses. Thus, concerning thermal stability the system appears to be

thick.

1.2.4 High anisotropy media and self assembled particle arrays

Another possibility to increase the thermal stability is the use of high anisotropy materials.

Thermal stability is proportional to the grain volume times the anisotropy. However, the

strength of the field produced by the write head is limited which in turn imposes a limit on

the media coercivity. One possibility to overcome the writing problem is to employ tempera-

ture assisted methods. A laser beam heats up the region where the bit is intended to be writ-

ten. The anisotropy decreases with temperature which makes it possible to write it with fields

of common write heads. Promising candidates for high anisotropy media are rare earth mate-

rials such as NdFeB, CosSm, or FePt. For example the anisotropy of CosSm is about 20 times

larger than that of pure Co that is a typical hard disk material. Cocßm offers thermally stable

grain diameters down to 2.8 nm.

A new fascinating approach are the so called self assembled particles, discovered by S. Sun

et al. [104]. Chemical synthesis routes were applied to prepare FePt monodisperse particles.

These monodisperse magnetic nanoparticles self assemble into a three dimensional array. The

particle size that can be varied from 3-10 nm and the high crystalline anisotropy make self

assembled FePt nanoparticles attractive for storage in the Tb/in2 regime. Today various tech-

niques exist to create self assembled particles.
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1.2.5 Patterned media

Patterned media have long been proposed as a possible candidate for high density record-

ing up to the Tbit/in2 regime. It consists of a periodic array of discrete magnetic elements.

Each element is exchange isolated from other elements but the grains within one element are

strongly exchange coupled, thus more behaving like one large grain. The elements are suffi-
*

ciently small so that the magnetization state is a single domain state. The two possible direc-

tions imposed by the crystalline anisotropy (usually perpendicular to the film plane) are

interpreted as the binary 1 or 0. Since the superparamagnetic limit applies to the whole single

bit, not to each of the many grains as in a conventional continuous multigrain bit, the volume

and switching energy for the single-element bit in the patterned media are much larger than

that of a single grain in conventional continuous media. This allows to scale down the size of

the patterned elements without loss of thermal stability. Another advantage of patterned

media is that transition noise between bits is eliminated because the bits are well separated by

a non magnetic phase. The problem with patterned media is that, until now, there are no

cheap and mass-production-compatible manufacturing methods. To compete in the magnetic

storage market the net production cost of the hard disk needs to be preferably less than

1 US $[106,107] per disk! Currently existing techniques are far above this value and a break-

through in the production technique will be needed to decrease the costs.

1.2.6 Magnetic RAM

You hit the power button on your television and it instantly comes to life. But do the same

thing with your computer and you have to wait a few minutes while it goes through its boot-

up sequence. Why can't we have a computer that turns on as instantly as a television or radio?

Several companies are promising to launch a new technology in the next few years that will

eliminate the boot-up process. Magnetic random access memory (MRAM) [30] has the poten-

tial to store more data, access that data faster and use less power than current memory tech-

nologies. In order to guarantee the high speed data access there are no moving parts in the

MRAM storage. Instead the data is accessed trough a grid of current lines, where each cross-

ing point carries one bit of data (one MRAM cell) and can be addressed individually.

The basic storage element of an MRAM cell is a small ferromagnetic thin film element.

The element has two distinct magnetization configurations with the magnetization pointing in

two opposite direction. The magnetization can be switched by a current line placed next the
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the ferromagnetic cell (see Figure 1.4). For the read process the giant magneto resistance

effect is used. One MRAM element usually consists of two magnetic layers with different

coercivity that are separated by a non-magnetic or insulating interlayer. Depending on the

angle of the magnetization between the two ferromagnetic layers the resistivity of the tri-layer

changes. That effect called giant magneto resistance (GMR) was discovered in 1988 [9]. It did

not solely drastically improve the performance of MRAMs but it is also used to increase the

sensitivity in read heads of hard disc drives. In MRAM elements the magnetization of the

hard magnetic layer represents the data bit. The data is written by a magnetic field that is

applied by a current through a conductor line adjacent to the element. The field is strong

enough that the hard magnetic element can be magnetized in the field direction. An opposite

current changes the magnetization of the element. The magnetization direction of the soft

magnetic film can be changed by a smaller current, that does not change the magnetization

state of the hard magnetic film. The soft magnetic element is used to probe the state of the

hard magnetic element. Depending on the state of the hard magnetic film and the imposed

direction of the soft magnetic film the resistivity changes. MRAM elements are arranged in a

rectangular array and are connected with conductor lines, allowing individual elements to be

selected. The advantage of MRAM elements over common semiconductor-based dynamic

random access memories (DRAMs) are low energy consumption and high storage densities.

Furthermore MRAM elements are non-volatile storage devices so they retain information

when the computer is switched off. To optimize the switching speed of MRAM elements a

profound knowledge of the reversal process is important Micromagnetic simulations are a

suitable tool to resolve in homogeneities during reversal that significantly influence the

switching time. Further applications of magnetic nano-elements are sensors, magneto-elec-

tronics devices and magnetic logic gates [27,81].
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Ferromagnetic film

Write wire
Magnetic field, H

••iMHMMMMMHMMMlMäHMMMMMMMnMMMMI^^

H

•"' 'write

MJohnion, IEEE Spectrum. February 2000, 33-40.
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Figure 1.4 In a magnetic random access memory element the magnetization can
occupy two stable states. This is used in data storage to write a bit either with a
"0" or a "1". To switch between the states energy is needed (field has to be
applied) which is reflected by the hysteresis.

1.3 Thermal effects

As outlined in the previous section thermal effects become increasingly important when

the size of magnetic nanostructures becomes smaller and smaller. Prominent examples are

the thermal stability of magnetic MRAM (Magnetic Random Access Memory) cells [88] and

magnetic storage media [115] as shown in the previous section. Thermal effects also play a

role on shorter time scales. An example is magnetization noise in magnetic sensor elements

[99,13,119]. Magnetic sensors require a high sensitivity so that small magnetic fields can be

detected. Thus, thermal fluctuations which will lead to thermal noise should be suppressed.

The free layer of a multilayer sensor element is soft magnetic and may have a size well below

one micrometer. Thermally induced magnetization processes may cause local or global mag-

netization rotations which cause the magnetization noise. With decreasing lateral extension of

the elements thermal fluctuations become more pronounced. Magnetic RAM storage ele-

ments require a low and well defined switching field which in practice is limited by the current

through the write line in an array of MRAM cells. On the other hand the shape or the induced

anisotropy should guarantee a life time of a stored bit of about 10 years. Again the energy bar-

rier for thermally induced magnetization reversal decreases with increasing size of the storage

elements. The corresponding time scales differ by several orders of magnitude: Thermal noise
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arises on a time scale of a few nanoseconds; thermally induced switching of the magnetization

over energy barriers extends over seconds to years. Random thermal fluctuations of the mag-

netization are the underlying physical process which causes both thermal noise and spontane-

ous switching.

A micromagnetic system will be close to a local minimum of the total magnetic Gibbs' free

energy. Thermal fluctuations of the magnetization cause the magnetization to wander around

this minimum. Occasionally the system will reach a region next to a saddle point. The system

may cross the energy barrier and move into the basin of attraction of a different energy mini-

mum. This process can be described by the Neel-Brown theory [78,16]. The relaxation time,

is the inverse of probability per unit time for crossing the barrier EB. The attempt frequency,

f0, depends on material parameters, like anisotropy, particle shape, and damping [15]. Its

value, which ranges from f0 = 10 Hz to fg = 1012 Hz, sets the time scale for thermally

assisted magnetization reversal. Figure 1.5 shows demonstrates the crossing over an energy

barrier for a MRAM cell. Thermal fluctuations drives the micromagnetic system from the sta-

ble region A to another stable region B in the energy landscape. The path with the smallest

energy barrier is chosen since the population probability decreases exponentially with the

energy of the system. To calculate the crossing point with the lowest energy one needs to find

the relevant saddle points between the two stable regions. The example in Fig. 1.5 shows that

the thermal switching between A and B passes a saddle point where the magnetization is in a

two domain state.

The theoretical treatment of thermally induced magnetization processes starts from the

stochastic Landau-Lifshitz-Gilbert equation and the corresponding Fokker-Planck equation

[16]. The energy barrier can be calculated for coherent rotation in single domain particles and

the formation of reversed domains in thin ferromagnetic wires. The attempt frequency can be

estimated by solving the Fokker-Planck equation numerically or analytically [16,18,15,45,23].

Alternatively, the stochastic Landau-Lifshitz-Gilbert equation can be solved numerically for

short time scales and small systems [48,117,18,91,92]. Recently, numerical solutions of the

stochastic Landau-Lifshitz Gilbert equation were reported for extended micromagnetic sys-

tems [119,92]. Zhu [119] analyzed the magnetization noise in submicron sized sensor ele-

ments based on the numerical solution of the stochastic Landau-Lifshitz-Gilbert equation.

The time integration of the stochastic Landau-Lifshitz-Gilbert equation is restricted to short

times and is thus a proper tool to analyze magnetization noise. The calculation of long term
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saddle point

data bit = „!'

AE,

data bit = „0'

Figure 1.5 Thermal switching of the magnetization: fluctuations drive the magnetic
system from the stable region A to another stable region ß in the energy landscape.
The path with the smallest energy barrier is chosen since transition frequency
decreases exponentially [18] with the height of the energy barrier. To determine the
crossing point with the lowest energy the separating saddle points between the two
regions needs to be calculated. An example for two stable regions are the stable states
in an MRAM (data bit „1" or „0"). Switching between „0" and „I" passes a saddle
point where the magnetization is in a two domain state. The color code corresponds to
the net-in-plane magnetization direction (red..."down", blue..."up").

thermal effects needs a detailed characterization of the energy landscape along the most

probable path which is taken by the system to cross the energy barrier (see figure 1.5). The

calculation of the energy barrier basically requires the calculation of the relevant saddle point.

Berkov [11] calculated the transition path of interacting single domain particles by minimizing

the action along the path. He showed that a direct minimization of the action may also give

paths through local maxima which have to be excluded. Ren [37] proposed the "string

method", a slightly modified version of the elastic band method [56], to calculate a minimum

energy path in micromagnetic systems. Starting from an initial guess for the path which con-
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nects two local minima of the system, a highly probable path is found by moving the points

along the path according to an algorithm which resembles tensioning an elastic band across a

mountain. Variants of elastic band methods are commonly used to calculate transition rates in

chemical physics [57,75,83]. Once the energy barrier is calculated the Neel-Brown theory can

be used to calculate the transition probability for the energy barrier crossing.

1.4 Outline of the thesis

In this work we apply both stochastic time integration and path finding techniques in the

framework of the finite element method, in order to simulate thermal effects in magnetic

nanostructures. Thus, it is possible to take into account complex geometries and realistic ele-

ment shapes. Both methods are complementary. The stochastic time integration is restricted

to simulation times of about 10 ns. As a consequence the calculation of barrier crossing by

stochastic time integration is limited to small energy barriers. The transition rate for large bar-

riers can be estimated from the barrier height which can be calculated from the minimum

energy path. In addition to the energy barrier, the elastic band method provides a global view

of the energy landscape such as local minima and saddle points along the path.

Section 2 introduces the basics of micromagnetic simulations at zero and finite tempera-

ture: A short introduction to the finite element method is given in section 3. Section 4 gives a

detailed description of the method for finding minimum energy paths and saddle points in

micromagnetics. Section 5 compares the reversal process in a perpendicular granular film,

patterned media, and a single magnetic island. The effect of the intergrain exchange on the

energy barrier is investigated. Section 6 deals with a novel reversal mode of vortex cores in

permalloy disks using both quasistatic dynamics and the nudged elastic band method. The

reversal involves the creation and displacement of a Bloch point singularity. Section 7 investi-

gates configurational anisotropy in softmagnetic nanoelements. In section 8 the nudged elas-

tic band method is applied to calculate optimal paths for the thermal switching in AFC media.

In section 9 thermal reversal modes of the free layer in an elliptical MRAM cell are calculated.

Finally, in section 10 we compare transition rates in Langevin simulations with results

obtained from the nudged elastic band method for the thermal switching of small permalloy

squares.
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2 MICROMAGNETICS AT FINITE TEMPERATURE

Two complementary methods for the simulation of thermally activated
magnetization processes are introduced: A path finding method based on
the nudged elastic band method and a novel semi-implicit stochastic time
integration scheme. As an example the transition probability between sta-
ble equilibrium states in magnetic sensor elements is calculated.

2.1 Rare but important events

An important problem in condensed matter physics and theoretical chemistry is the

understanding of transition processes. In chemistry one is interested in reaction rates and dif-

fusion processes. In micromagnetics we are interested in thermally activated switching events

of submicron-sized magnetic elements. In magnetic storage applications these thermal

switching events determine the long term stability of the stored information. The main diffi-

culty in the computation of transition processes is caused by the disparity of the time scales.

Let us consider a simple gradient system

•%•

•§ = -VV(x) (2.1)

V(x) is the potential energy of the system. Without the presence of noise, the system

would simply move towards the closest energy minimum of the potential. In the presence of

noise however, the system can evolve away from the minimum and the whole configuration

space can be explored by this type of stochastic dynamics.

If the thermal energy kBT is comparable to the energy barrier AJB that separates two local

energy minima, direct simulations of the escape over the energy barrier using Langevin equa-

tion^) are possible [90]. Unfortunately, this is no longer the case when kBT« AE (either

high energy barriers or low temperature limit) which is the case for most of the interesting

problems. The time to escape from the energy minimum grows exponentially with the barrier

height, the escape time is inversely proportional to the probability to escape from a local min-

imum of a barrier with barrier height AE

escape (2-2)
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Now two different time scales are involved. For a very long period the system stays in the

vicinity of the energy minimum. And from time to time the system can overcome the energy

barrier and switch to another minimum. These events occur very seldom and are therefore

called "rare events". We are interested to calculate the probability of such "rare events" to

occur.

An example where such events are crucial are magnetic storage media. Here data bits are

stored in small magnetic elements where the magnetization can only occupy two stable states

(energy minima). It is desired that spontaneous switching events between these states occur as

seldom as possible, since they lead to the loss of stored data. The desired time scale for the

stability is in the range of years and decades. On the other side the duration of the switching

event itself takes only a few nanoseconds. The dynamics proceeds by long waiting periods

around the local minima followed by sudden jumps from one state to another. In the simula-

tion of the dynamics of the system most of the computation time is spent in resolving unim-

portant fluctuations around the minima. We would have to wait a for very long time to

observe the interesting but rare switching events. This is what is meant with the "disparity of

time scales". Various methods have been developed to speed up the computation and to over-

come this problem [120,113].

When kBT « AE the task simplifies because it is sufficient to find the lowest saddle point

between the two energy minima. The height of the saddle point will then give the relevant

energy barrier. The probability can then be calculated using the Arrhenius-Neel formula

(2'3)

/is the transition frequency and/j is the attempt frequency of the equation. The problem

of finding the saddle point cannot be solved analytically except for simple situations. The rea-

son is that at a saddle point neither a maximum nor a minimum should be achieved. The solu-

tion can only be found by solving the equation dE/d*, = 0 and inspecting the Hessian matrix

which leads to non-linear equations in the general case. We lack general methods for solving

such systems. Instead we will use a path method which sources for highly probable paths

between energy minima in high dimensional energy landscapes. Various methods exists to cal-

culate such paths. We use the so called Nudged Elastic Band method (NEB) [56]. Starting

from an initial guess for the path which connects two local minima of the system, a highly

probable path is found by moving the points along the path according to an algorithm which
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resembles tensioning an elastic band across a mountain. Using such a method we do not only

obtain the saddle point(s) between energy minima, but also get a more global view of the

energy landscape.

2.2 Micromagnetic basics

The micromagnetic description of a micromagnetic system starts from the total magnetic

Gibbs' free energy [18,17]

(2.4)

E is the sum of the four underlying magnetic energy terms: the exchange energy, the

anisotropy energy, the stray field energy, and the Zeeman energy; u denotes the unit vector

parallel to the magnetization, A is the exchange constant, K^ is the uniaxial magnetocrystalline

anisotropy constant, a is the unit vector along the easy axis, and /s is the spontaneous mag-

netic polarization. Fig. 2.1 explains the four basic energy contributions of equation (2.4). The

integral (2.4) is over the total volume of the magnetic particles.

parallel spins

easy directions

(external field j

• '̂
v

.—f magneto

> domains

Figure 2.1 The four basic energy contributions of the total Gibb's free energy of a
magnetic system. The exchange energy tries to align the spins parallel. Thus, it
competes with the magnetostatic energy where closure domains are favorable.
Additionally there can be a presence of a magnetocrystalline anisotropy which defines
easy directions (low energy directions) of the magnetization. When a field is applied
the zeeman energy part favors the alignment into the direction of the applied field.
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Exchange energy

The exchange energy tries to align the magnetic spins parallel. This term is responsible for

the arise of ferromagnetism and can be derived from quantum mechanics.

Magnetostatic energy

The exchange energy competes with the magnetostatic energy and breaks up large into

smaller magnetic domains, since magnetic flux closure configurations are energetically favor-

able.

Anisotropy energy

Depending on the material there is a contribution of a magnetocrystalline anisotropy

which defines easy directions (low energy directions) of the magnetization.

Zeeman energy

When a field is applied the Zeeman energy part favors the alignment of the magnetization

into the direction of the applied field.

On micro- and nanometer scale the strength of energy contributions are of about same

order. The competition between them is the reason for the large complexity and the numer-

ous phenomena observed in magnets at these sizes.

In a stationary state the magnetic system occupies a local minimum of (2.4). Owing to

thermal activation the system may overcome an energy barrier and spontaneously move

towards a different local minimum of the energy.

2.3 Dynamics

At zero temperature the magnetization dynamics is described by the Gilbert equation of

motion [51],

(2.5)

where/is the magnetic polarization vector, Heff is the effective field, and/s is the sponta-

neous polarization./is assumed to be a continuous function of space. To obtain the general
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dvform -f- = f ( t , y ) f o r an ordinary differential equation (ODE), we transform equation (2.5)

into the mathematically equivalent Landau-Lifshitz-Gilbert (LLG) equation

<Wxl'*)- (2-6)

with the gyromagnetic ratio

IT) = 2, 210175 xlO5-^-, (2.7)
/\s

and the phenomenological Gilbert damping constant a. The first term on the right hand

side of equation 2.6 describes the precessional motion of the magnetization in presence of a

magnetic field, here the effective field ffeff If taking this term only, the magnetic polarization

/would move undamped on a cone around Heff with a precession frequency jHeff. No

energy would be dissipated, and the magnetic system would stay on an equipotential line in

the corresponding energy landscape (2.4). The second term on the right hand side of (2.6) is

the phenomenologically introduced dissipative term proportional to the generalized velocity

dj/dt . This damping term drives the magnetic polarization J towards the direction of the

effective field. Equilibrium is reached when /and Heff are parallel. The magnetic system has

then dissipated its energy and reached a local energy minimum of (2.4). The strength of the

damping term is determined by the damping constant OC. In magnetic recording media typical

values for a are 0.02 [64]. This describes a relatively weakly damped system, and a dynamic

treatment is important. Taking oc=l describes the high damping limit of (2.6). Here similar

results are obtained when comparing energy minimization methods with the results obtained

by integrating the equation of motion (2.6).

The simulation of the time evolution of the magnetization requires to calculate the effec-

tive field, Hef£ defined by the negative variational derivative of E. We use the finite element

method to evaluate the total energy E of the magnetic system. The direction cosines of the

magnetization, «k, are interpolated by piecewise linear functions on a tetrahedral finite ele-

ment mesh. In order to calculate the magnetic stray field, tty we use a hybrid finite element /

boundary element method [44]. The effective field on the nodes of the finite element mesh

may be approximated using a box scheme
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^ (2 g)

where m is the magnetic moment associated with node /of the finite element mesh. More

details about the finite element method are given in section 3.

2.4 Stochastic dynamics

The previous sections showed the finite element treatment of micromagnetic dynamics for

the zero temperature limit. Powerful time integration methods can be applied since we are

dealing with an ordinary differential equation. To introduce temperature into the dynamic

equations a randomly fluctuating field is added to the total effective field. Equation (2.5) then

transforms into

(2.9)

We can transform (2.9) into the mathematical equivalent stochastic Landau-Lifshitz-Gil-

bert (LLG) equation. The stochastic Landau-Lifshitz equation is a system of 3N Langevin

equations with multiplicative noise [48]

(2.10)

(2.11)

(2.12)

where the indices ij,k run over the three space directions, and the index / = 1,.. .,N runs

over the number of nodes. The drift term, A-, is the right hand side of the deterministic Lan-

dau-Lifshitz-Gilbert equation, a is the Gilbert damping constant and y is the gyromagnetic

ratio. H^ is the random thermal field. The thermal field is assumed to be a Gaussian random

process with the following statistical properties:
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The average of the thermal field, taken over different realizations, vanishes in each direc-

tion ; in space. The thermal field is uncorrelated in time and space. The strength of the ther-

mal fluctuations follows from the fluctuation-dissipation theorem [48]:

D = —r
Ivl// 1Y1 I
/ Ir^O I fr\ -\ A\I (2.14)

Numerically the equations (2.10) to (2.12) are solved using a semi-implicit time integration

method [35]. The time is divided into a lattice of discrete points /n. The Langevin equation is

solved in the time interval tn to ̂ .j with the initial condition u' = ul, (tn). The right hand side

of (2.10) is evaluated at the midpoint tn = (tn + tn+l )/2 = tn+At/2. The update of the direc-

tion cosines is given by

* * """' '"""' "" *'* (2-15)

with the noise integral

(2.16)

The magnetization direction at the midpoint of the time interval is

«/ = (u\ (tn ) + «,' (fn+1 ))/ 2 = „f (f„ ) + AM / 2 s (2 17)

assuming linearization of «,- within the time interval. The midpoint value, ~; , is given

implicitly by the equations (2.15) and (2.17) which is solved by functional iteration. Numerical

tests show that about five iterations are sufficient to gain the required accuracy of 10" . From

the midpoint value the magnetization at the time t„+i is calculated from (2.17) and then nor-

malized:

u ' = ü / ü (21g)
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2.5 The path method

The previous section showed the numerical method for the simulation of thermal effects

on short time scales. However transition events over large energy barriers (> 50 kBT) as in

magnetic recording media occur on very long time scales (e.g. decades). It is clear that such

events cannot be simulated directly by stochastic time integration methods. To simulate such

events we directly search for the most probable path through the energy landscape for such

an event. A common feature of path finding methods is the discrete representation of the

path connecting the initial state of the system with its final state. First we construct a

sequence of magnetic states from the initial magnetization state, M^, to the final magnetiza-

tion state, M®. An optimization algorithm is then applied until at any point along the path

the gradient of the energy is only pointing along the path. This path is called minimum energy

path which means that the energy is stationary for any degree of freedom perpendicular to

the path. The minimum energy path typically represents the path with the greatest statistical

weight. From this path statistical quantities as the transition rate for the thermally induced

magnetization reversal can be estimated.

Various other methods exist which can calculate either the saddle points (transition state)

or the entire minimum energy path for the thermally activated barrier crossing. Most of these

methods come from chemical physics and condensed matter physics where thermally acti-

vated barrier crossing is of great interest for the calculation of reaction rates. A nice overview

methods for finding saddle points and minimum energy paths in high dimensional systems is

given in [58].

Henkelman and Jonsson proposed the nudged elastic band method to calculate minimum

energy paths [56]. We represent a path by a sequence of images. An initial path is assumed

which connects the initial magnetization state M® = M' ' with the final magnetization state

M^' = M^'. The index k runs from 1 to m. The path is optimal, if for any image M^ ' the

gradient of the energy is only pointing along the path or in other words the component of the

energy gradient normal to the path, D, is zero. If t denotes the unit tangent vector along the

path, a minimum energy path has the following property

= VE(M(t)) - [V£(M(t)) • t] t = 0, for k = l,...,m (2.19)
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The optimal path can be found using an iterative scheme. In each iteration step the images

move towards lower energy in a direction perpendicular to the path. So the image M^ ' is

moved into the direction, —D' '. Figure 2.2 shows the calculation of Dk. In order to keep an

equal distance between successive images a spring force may be introduced [56]. A more

detailed description of the method and the implementation in our simulation package is given

in section 4.

Figure 2.2 Schematic representation of the path, with shows how-D^ in equation (2.19)
is calculated. A number of images is chosen to discretize the path connecting the two
states A and B.

2.6 Comparison of the methods

Figure 2.3 compares the transition between two stable minimum energy configurations of

a 150 x 100 x 5 nm thin film element [34] calculated with stochastic time integration and the

elastic band method. In the top figure sequence the minimum energy path is shown for the

reversal between two S-states. The bottom figure sequence shows the dynamic thermal

switching between a C-state and a S-state. With both methods we obtain the same transition

state.
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Figure 2.3 Thermal switching between the S-state and the C-state in NiFe
platelets. The element size is 50 x 100 x 5 nm3. Top: Magnetization states at 300K
in a NiFe platelet at zero applied field. Bottom, left: Magnetization configurations
along the minimum energy path: S-state, saddle point (not shown), C-state, saddle
point, inverted S-state. Bottom right, right: Energy along the minimum energy
path.
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3 FINITE ELEMENT METHOD

This section gives a short introduction to the finite element method which
is used to discretize the micromagnetic equations. Both for the time inte-
gration of the stochastic LLG equation, and for the nudged elastic band
method the numerical treatment starts with the discretization of the total
Gibbs' free energy of the magnetic system. The effective field and the gra-
dient of the energy are derived as the functional derivative of the total
energy.

In order to be able to perform numerical calculations and simulations with a computer we

first have to formulate the problem in a way that the computer can understand. Our region of

interest, the magnetic region, must be expressed as a finite number of evaluation points in

space, where each point has a corresponding region surrounding it. The regions are con-

structed in a way so that there is no overlap between them. The solution of the equations can

be evaluated numerically on each of these points. Two ways of discretizing the regions can be

used: The finite differences method simply uses a homogeneous mesh of rectangular prisms.

More complex element types are used in the finite element method. In our simulation pack-

age we use tetrahedral finite elements. Surfaces are meshed with triangles.

The advantage of the finite differences method is, that it gives a simpler formulation of the

discretized equations than the finite element method. In addition a fast and powerful algo-

rithm, FFT (Fast Fourier Transformation), can be applied to solve the time consuming evalu-

ation of the demagnetizing field. The advantage of the finite element method however is the

great flexibility in the modeling of the magnets (see figure 3.1). Complex shapes and granular

materials can be modeled. The mesh size can be adapted where needed and kept coarse in less

important regions. In many cases this gives a drastic speed up as compared with a homoge-

neous mesh. An example are circular soft magnetic dots where the mesh size has to be fine

only at the position of the magnetic vortex core.
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Figure 3.1 Using finite elements to discretize the magnetic region gives great
flexibility in the modeling. Complex shapes and granular materials can be modeled.
Moreover the mesh size can be adapted where needed, and can also be changed
during the simulation itself.

The mesh can also be changed during the simulation itself. During the motion of a domain

wall through a magnetic wire, the mesh is adapted while the simulation proceeds. The mesh is

fine at the position of the wall and coarse in the rest of the magnet. This gives the impression

that a region with fine mesh size moves together with the domain wall („moving mesh").

We use the finite element method to simulate thermal effects both on short and long time

scales with the two methods as introduced in section 2. For both methods the numerical

treatment starts with the discretization of the total Gibbs' free energy E (see equation (2.4)).

The magnetic polarization J(x) is expanded with piecewise linear basis functions (p,-(*). For

one component of / we can write

(3.1)

i = l

Japp(x) is the finite element approximation of the k - th component of the magnetic

polarization. The coefficient ui denotes the /fe-th component of the normalized spontaneous
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polarization ( «,- < 1) on the node point /. The number of unknowns ( u f ) is three times the

number of node points of the finite element mesh.

To perform the time integration, we have to calculate the effective field on every node

point of the finite element mesh. However we cannot directly use the analytic formula for the

effective field, which follows from the negative functional derivative of the total Gibbs'

energy (2.4) as,

5£, _ 2A 2_

Here A is the exchange constant, Kj is the magnetocrystalline anisotropy constant, a is the

unit vector parallel to the anisotropy axis, ffs is the magnetostatic stray field, and ffest is the

external applied field. The first term on the right side of equation (3.2) is the exchange field.

Its calculation needs the second derivative of the magnetic polarization. Numerically the sec-

ond derivatives cannot be calculated directly using linear basis functions. In addition, the cal-

culation of the stray field which follows from the gradient of a scalar potential is crucial. With

linear basis functions the gradient of the potential, which is proportional to the stray field, is

only defined within an element but not on the node points. To overcome this problem we

start from the total Gibbs' energy for a ferromagnetic particle [18]

Z, = \et(J)dV = \

n n

y, z
l

(V«,) Kl[l-(ua^]--JsuHs-JsuHext

The exchange energy, the anisotropy energy, the strayfield energy and the Zeeman energy

contribute to the total energy [18]. The second term is the simple uniaxial anisotropy energy.

It would be no problem to replace it with any other form of anisotropy energy. We neglect the

contributions to the total energy which arise from the conversion of the true microscopic

exchange and dipole interactions to the continuum form as well as intrinsic surface anisot-

ropy [18].

The total energy is an integral over the particle volume. For the magnetic polarization J

the expansion according to (3.1) is used. The /fe-th component of the effective field on node i

is approximated using the box scheme [49],



FINITE ELEMENT METHOD 32

Figure 3.2: The volume Vj surrounding the node /' shown in a 2 dimensional example.

(3-4>

where m^ denotes the magnetic moment on the node point /'. It follows from the integral

m. = J/,(jf)dV. (3.5)

v,

V; is the surrounding volume (figure 3.2) of the node /, such that

j = V and Vt n Vj = 0 for i #j. (3.6)

Usually, in a single phase magnetic material the spontaneous polarization, J9 is constant in

space. However, the spontaneous polarization is a function of space and is discontinuous at

grain boundaries if a magnet with different magnetic phases is modeled. In our model the

nodes of the finite elements are located at grain boundaries. Regions with different values of

the spontaneous polarization surround these points. Thus, we assume an average magnetic

moment for these nodes as given by (3.5).

3.1 Calculation of the stray field

The most time consuming part in the calculation of the effective field is the long range

magnetostatic interaction which is described by the stray field Hs, The stray field Hs is

obtained from a boundary value problem,
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VJS
AM = — - and Hs = -V« (3.7)

M-o

To apply the boundary condition u = 0 at infinity, a hybrid finite element boundary ele-

ment method [43] is used. No finite elements are needed outside the magnetic particle to

solve the boundary value problem (3.7). This is the advantage of the hybrid FE/BE method.

For the solution of equation (3.7) with the hybrid FE/BE method one Poisson equation with

Neumann boundary conditions and one Laplace equation with Dirichlet boundary conditions

have to be solved. To obtain the boundary conditions a matrix vector product has to be per-

formed. We split the total magnetic potential u into two parts, u = u} + u2. The potential M,

solves the Poisson equation (3.7) inside the magnetic particles with Neumann boundary con-

ditions at the surface of the magnets and it is zero outside the magnets. The potential u2

solves the Laplace equation everywhere in space and shows a jump at the surfaces of the mag-

nets. Thus, «2 is the potential of a dipole sheet at the surfaces of the magnet. After discretiza-

tion the integral operator may be expressed as a matrix vector product

H2 = Bul (3.8)

The storage requirement for the matrix B is the bottleneck of the method since B is a fully

populated Ns X Ns matrix. Nj- is the number of boundary nodes. Especially for thin films the

method loses efficiency since most of the nodes are located at the boundary. To overcome

this problem two novel boundary methods were developed. For details see the thesis of

H. Forster [41].

3.2 Mesh size dependency of the strayfield calculation in thin elements

The mesh size which has to be used in a particular problem is determined by the charac-

teristic lengths [3], the Bloch parameter

(3-9)

and the exchange length
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(3.10)

The mesh size must be smaller than the smallest of these values.

In some cases this is not sufficient. Care has to be taken when simulating thin platelets.

Here it is important to adapt the mesh near the edges when the magnetization is in-plane. As

an example Fig. 3.4 shows the mesh size dependency of the magnetostatic energy calculation

for a 75x75x5 nm permalloy platelet. The element was magnetized uniformly in-plane. We

compare the magnetostatic self-energy for three meshes with the exact theoretical value [1]

(see Fig. 3.3). The results are shown in table 1 and figure 3.4.
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Figure 3.3 Calcuktion of the volume averaged demagnetizing factor for a uniformly
magnetized prism (along the 2-axis here). The magnetostatic self-energy then writes
E = 27iDzAf? = 1/20^/n,, [1].

To calculate the magnetic strayfield we use the FE / BE method [44]. When a scalar

potential is used, the numerical solution always underestimates [2] the true magnetostatic self-

energy: the higher the energy, the more accurate is the numerical result. When the body is

magnetized in-plane, the magnetic field becomes inhomogeneous only near the edges. Thus, a

fine discretization along the thickness is needed in order to resolve the field correctly in this
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region. Since contributions from this region to the total magnetostatic self-energy dominate

for in-plane magnetized thin bodies (with a very small demagnetizing factor), their errors

strongly change the value of the energy.

mesh si%e

A) 5 nm

B) 2.5 nm

Q
1.7 nm near edges
5 nm in the rest

theory (Fig. 3.3)

magnetostatic
self-energy density

(kj/m3)

24.89

27.83

28.53

29.18

magnetostatic
self-energy density
(difference to the
theoretical value)

-17%

-5%

-2%

exact

Table 1 Mesh size dependency of the numerical calculation of the
magnetostatic self-energy for a uniformly in-plane magnetized

75x75x5 nm permalloy element (see Figs. 3.4 and 3.3).

-17 % -5% -2%

Figure 3.4 Mesh size dependency of the magnetostatic energy calculation. A
75x75x5 nm permalloy platelet was magnetized uniformly in-plane along the z-axis.
Three meshes are compared: A) uniform 5 nm mesh B) uniform 2.5 nm mesh C) mesh
adapted to 1.7 nm near edges and 5 nm in the center. Mesh C has the highest accuracy
in the strayfield calculation. The percentage values give the error in the magnetostatic
energy.
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3.3 Time integration

We use the CVODE package [24,25] for solving both the LLG equation and for the differ-

ential equation defined by the nudged elastic band method (4.3). The relative performance of

the Adams method, the BDF method and the BDF method with preconditioning changes

depending on the microstructure, material parameters, and the finite element mesh. The

Adams method seems to be attractive because of the low cost per time step. In contrast to the

one-step methods (e.g. Runge-Kutta) multistep methods make use of the past values of the

solution. At each time step a nonlinear system of equations has to be solved. The Adams

method solves the nonlinear system with functional iteration and thus requires only the evalu-

ation of the right hand side of (2.6). However, if the problem is stiff the convergence of the

functional iterations is slow. For a stiff problem it is advisable to use an implicit method such

as BDF. The nonlinear system is solved using a Newton method. Normally only a few New-

ton steps are required. Within CVODE the linear system for each Newton-step is solved

either with a direct solver or with a Krylov subspace method. Krylov subspace methods have

been explored in micromagnetics by Tsiantos et al. [110,111]. The solution is approximated

iteratively by a linear combination of the basis vectors of the Krylov subspace. At each itera-

tion step one orthonormal basis vector is added which increases the subspace dimension by

one. If the Krylov subspace dimension is equal to the number of unknowns the exact solution

is found. For practical applications a very good approximation is obtained for a Krylov sub-

space dimension much smaller than the number of unknowns. The default value for the max-

imum Krylov subspace dimension in CVODE is 5. An additional parameter in the CVODE

package is the maximum order of the time integration method. We obtained good results with

a maximum order, gMmax = 2.

For details on the finite element micromagnetics as implemented in our simulation pack-

age see [102,103].
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4 THE NUDGED ELASTIC BAND METHOD

In this section a method for finding saddle points and minimum energy
paths is introduced and the implementation in a finite element micromag-
netics package explained. The method is based on the elastic band
method which is successfully being used in chemistry for the calculation
of reaction rates. The theory is explained starting from simple test cases as
for example a 2D energy landscape. The method was found to be robust
and fast for both simple test problems as well as for large systems such as
patterned granular media.

4.1 Introduction

The thermal stability of magnetic media and magnetic storage elements becomes impor-

tant with decreasing size of the magnetic structures [96]. The calculation of the thermal stabil-

ity requires the estimation of transition rates between stable equilibrium states of the magnet.

The calculation of transition rates needs a detailed characterization of the energy landscape

along the most probable path which is taken by the system from its initial state to a final state.

The energy landscapes of micromagnetic systems drastically depends on the microstructure

of the magnet and may contain many local minima. Using the finite element method it is pos-

sible to represent complex geometries and grain structures. The combination of the finite ele-

ment method and an algorithm for finding the minimum energy path provides a tool to

calculate the energy barriers in large scale micromagnetic systems.

Berkov [11,12] calculated the transition path of interacting single domain particles by min-

imizing the action along the path. He showed that a direct minimization of the action may

also give paths through local maxima which have to be excluded. In theoretical chemistry,

path integral Monte Carlo methods are applied to calculate the rate of transitions in chemical

reactions of diffusion events [31]. The Monte Carlo method is used to sample the most prob-

able transition paths. Another family of methods for the calculation of transition paths is the

elastic band method proposed by Henkelman and Jonsson [56]. Starting from an initial guess

for the path which connects two local minima of the system, a highly probable path is found

by moving the points along the path according to an algorithm which resembles tensioning an

elastic band across a mountain. A common feature of all methods is the discrete representa-

tion of the path connecting the initial state of the system with its final state.
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In micromagnetics we represent the magnetic states of a system by a set of magnetic

moments. This corresponds to the magnetization at the nodes of the finite element mesh,

which is used to model the geometry and grain structure of the magnet. A sequence of mag-

netic states can be constructed in such a way as to form a discrete representation of a path

from the initial magnetization state M; to the final magnetization state Mf. The most simple

case of the initial path is just a straight line interpolation in the configuration space between

M; and Mf. For the configuration space we use polar coordinates of dimension 2N, where N

is the number of magnetization vectors (nodes). An optimization algorithm is then applied

until at any point along the path the gradient of the energy is only pointing along the path.

This path is called minimum energy path (MEP) and means that the energy is stationary for

any degree of freedom perpendicular to the path.

The method thus does not just give the saddle point, but also gives a more global view of

the energy landscape, for example, if more local minima and saddle points are found along

the minimum energy path. The minimum energy path typically represents the path with the

greatest statistical weight. From this path statistical quantities as for example rate constants

for the thermally induced magnetization reversal can be calculated. In magnetic recording

applications the knowledge of rate constants is crucial since they determine thermal stability

of the recorded data.

We use the finite element method to calculate E for complex magnetic systems. The direc-

tion components of the magnetic polarization, u/^ are interpolated by piecewise linear func-

tions on a tetrahedral grid. The integral in (2.4) breaks into a sum of integrals over tetrahedral

elements. In order to evaluate the stray field, Hy we use a hybrid finite element / boundary

element method [43]. Using the finite element method it is possible to represent irregularly

shaped grains and boundary phases.

4.2 Equivalent ordinary differential equation

Henkelman and Jonsson proposed the nudged elastic band method to calculate minimum

energy paths [56]. We follow this approach to evaluate transition paths in micromagnetics. An

initial path is assumed which connects the initial magnetization state M; = Mj with the final

magnetization state Mf = M„. A path is represented by a sequence of n images, M^, where the

index k runs from 1 to n. The path is optimal, if for any image M^ the gradient of the energy
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is only pointing along the path. Therefore the images of the optimal path have the following

properly

) X t = 0 for k = 1, ». (4.1)

Here t denotes the unit tangent vector along the path.

The optimal path can be found using an iterative scheme. In each iteration step the images

are moved in a direction parallel to the negative gradient of the energy and normal to the cur-

rent path. So M^ is moved in a direction parallel to

D = -{ V£(Mfc) - (VE(Mk) • t}t} . (4.2)

To keep an equal distance between successive images, Henkelman and Jonsson [56] intro-

duce a spring force in addition to D (see section 4.3). E and co-workers apply a reparametri-

zation after a few iterations to ensure equal distance between the images [38,83]. We obtained

good results without the spring force, using a variable order, variable time step method to

relax the initial path towards a minimum energy path. Details on using the spring force are

given in section 4.3. We represent the path finding scheme with a system of ordinary differen-

tial equations

=- = D(Mk) for k = 2, n-1. (4.3)

We solve (4.3) numerically (see section 4.3), using the software package CVODE [25]. In

this package we can choose between the implicit BDF (backward differentiation scheme)

scheme and the explicit Adams scheme. The time in (4.3) is introduced for numerical conve-

nience and has no physical meaning. It turned out to be important for the efficiency of the

time integration to rescale the right hand side of (4.3). We divide the right hand side by the

average volume assigned to one finite element node.

n/iv/i \ v rwn/f N/T/ i/ total mesh volume ,. ,ND(Mk) -> D(Mk)/Vaverage Vaverage = numberofmeshnodes (4-4)

This ensures that the magnitude of D always keeps the same order of magnitude and

becomes independent of the mesh.
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We use polar coordinates to represent the magnetization configuration of an image, Mk.

The dimension of the configuration space is 2N, where N is the number of nodes of the finite

element mesh. This gives a total number of variables of 2N X (n - 2) in equation (4.3), as the

initial and the final magnetization state do not move. The direction D is calculated in the con-

dt

•H•

• CVODE:
- Implicit ODE solver
- variable time step
- variable order

N number of points in path
Dim (DJ .... dimension of coordinate space

= 2»number of FEM nodes

Figure 4.1 Schematic view of the right hand side of equation 4.3 with the total number of
unknowns. The equation is solved implicit by a BDF (backward differentiation) scheme
using the differential equation solver package CVODE [25].

figuration space. In order to calculate the gradient of the energy in polar coordinates, we use

the following equations [100]:

,
(4.5)

2i . 89. (4.6)

where / runs over all nodes of the finite element mesh. This transforms the energy gradi-

ent from cartesian coordinates to polar coordinates. Care has to be taken, calculating the local

tangent at an image k. The single use of either a forward difference approximation, backward

difference approximation, or a central difference approximation develops kinks in the path

[56]. The kinks prevent the string from converging to the minimum energy path. The optimal

choice of the appropriate difference approximation depends on the energy difference

between successive magnetization states. In a first approach we use forward differences
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climbing up a hill, backward differences going down a hill, and central differences at energy

maxima and minima:

(4.7)

t= ifE(Mk_l)>E(Mk)>E(Mk+l), (4.8)

ML . - -ML

1). (4.9)

This prevents the formation of kinks. A detailed analysis on this topic and the motivation

for this choice of the tangent can be found in the work of Henkelman and Jonsson [56]. In

short it is motivated by another method for the calculation of the MEP if the saddle point is

already known. Starting from the saddle point the system is displaced by some small incre-

ment and the energy minimized, keeping the distance from the saddle point fixed. This gives

one more point of the MEP. Then the system is displaced again starting from this new state

and the energy is minimized while keeping the distance to the previous state fixed. By repeat-

ing this procedure we obtain the MEP and at some point we end in a local minimum of the

system. But important is, that the MEP can be found by starting at the saddle point and fol-

low forces lines down the energy landscape. The other way around does not work. If follow-

ing forces lines up the hill starting from an energy minimum, it will mostly not pass the saddle

point but somewhere else. This motivates the choice for the tangent to be determined by the

higher energy neighboring image (see equations (4.7)-(4.9)). However in some cases numeri-

cal problems with the time integration occurred in certain situations. These problems get

eliminated by using the slightly modified "smooth" version of these equations [56]. We still

use forward differences climbing up a hill and backward differences going down a hill:

< = M*+l-M* and T; = M / t-M,_1 (4.10)

T,. = < ifE(Mk_{)<E(Mk)<Et(Mk+l), (4.11)

T,. = T; itE(Mk_i)>E(Mk)>E(Mk+i) (4.12)
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But instead of using central differences at maxima and minima we use a formulation which

smoothly switches from (4.11) to (4.12):

T; =

Ef+
and

or (4.13)

where

= max(\Ei+ ,-£,], |E,_ ,-
(4.14)

In the end the tangent still needs to be normalized. This formulation differs only at the

extrema (see (4.13)) along the MEP from the simpler formulation in equations (4.7)-(4.9). At

the extrema the formulas contains weight factors. This weighted formulation serves to

smoothly switch between the two possible tangents T+ and T_. Otherwise there is an abrupt

change in the tangent as one image becomes higher in the energy than another and this was

the reason for the numerical problems that sometimes occurred with the simpler formulation.

4.3 Spring force and definition of a length

In the first calculations no spring forces were used. Here the images tend to move towards

the endpoints and local minima of the path giving low resolution near saddle points and high

resolution near energy minima. This problem is known as "sliding-down" [58] and can be

solved by introducing spring forces between the images which make them stay equally spaced.

First a definition of the "length" (norm) is needed that will be used to calculate the distances

between the images. In a first approach we just used the conventional L2-norm in the config-

uration space (polar coordinates) since we need this norm for the geometrical vector opera-

tions and normalization of the local tangent (equations (4.7)-(4.9)) anyway. However there is

some unphysical distance when two images have the same azimuth angle of 0, 7l, 27C etc. and

different polar angles. According to the L2-norm in polar coordinates these points are sepa-
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rated. However, all these points represent the same magnetization state in cartesian coordi-

nates. This problem is solved by an improved way for the calculation of the distance:

where

cct = acos\
& I

m.

N

N

k= 1

N...number of FEM nodes (4.15)

(4.16)

is the angle between the spin mi+ion the finite element node k in image A/i+1 and the

spin ntf on the node k in the image M-v V% is the volume (see figure 3.2) which corre-

sponds to the spin on the node k such that

= V and Vi n Vy. = 0 for (4.17)

Here V is the total volume of the finite element mesh. The weighting by the volume V^

which corresponds to the node k of the finite element mesh serves to make the length defini-

tion independent of the number of finite elements used but also independent of the way how

a particular magnet is meshed (e.g. adapted mesh). We obtained good results with this defini-

tion of the length. For a columnar CoCr grain (see section 4.9.3) now the total length of the

initial path becomes exactly 71, independent on how we mesh the particle. But note that the

conventional L -norm in polar coordinates is still needed for all geometrical operations in the

nudged elastic band (NEB) method (normalization of the tangent, calculation of the normal

component of the gradient).

Using the norm definition in equation 4.15 we define the spring force on the image /' as

T.
F\ = k( \\Mt + ! - A/.|| - ||M. - M. _ , I) r-f: /^...spring constant (4.18)
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Note that here only the component of the spring force parallel to the path is taken. At the

same time only the normal (perpendicular) component of the true force (energy gradient) is

used in D. This force projection is what is referred as "nudging". Without this projection of

the forces the "corner-cutting" problem would have occurred. With the introduction of the

spring force the total force becomes:

F, = F*-V£(M,.) =F* + D (4.19)

Here D is defined in (4.2).

One problem is the choice of the strength of the spring constant k. The optimal value for

k depends on the number of images used, on the number of finite elements and on the size of

the model. It is difficult to give a general rule for the value of the spring constant. It should be

strong enough to prevent images to fall down into the energy minima, but not to strong as to

dominate by orders of magnitude in equation (4.19). However it is usually not very critical and

can be varied over several orders of magnitude without losing speed with the time integration

CVODE. It depends on the accuracy of the solution that we want to obtain with the time

integration. The accuracy of the solution is an input parameter of the CVODE package. If 5

digits of accuracy is chosen, then a difference of 5 orders of magnitude in the forces has the

consequence that the smaller force is in the order of the rounding errors of the larger force.

Thus, the weaker force gets completely suppressed and wrong results will be obtained.

4.4 Choosing the initial path

At first an initial path must be chosen. There is variety of ways to do this. In most cases we

found that the path which is just the linear interpolation between two images (two stable

states of the system) gives good results. Another way is to start from a path that is obtained

from a hysteresis calculation. One can also generate one completely random image. Then an

initial path can be generated using the two stable states and this random state in between.

4.5 Criterion for stopping

One must also define when the simulation is to be stopped, that means a parameter which

defines how accurate the MEP is. In a first approach we used the maximum value of the force
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acting on the nodes. A better stopping criterion comes directly from the time integration

scheme. The simulations stops when

max, J A \*tol. (4.20)

tol is the variable stopping parameter. The maximum change of a component of the solu-

tion vector (all images) in one step of the time integration must drop below this value. Care

must be taken when choosing the value for stopping. An example where this is critical is

shown in Fig. 4.2. The minimum energy path was calculated for the thermal reversal between

two S-states in a 100 • 100 • 5 nm permalloy platelet. Fig. 4.2 shows the energy along the

path as the optimization proceeds. It seems like if the red curve minimum energy path and

equilibrium has been reached. If we chose a stricter stopping criterion (smaller tot) the optimi-

zation continues until the correct minimum energy path (green curve) is reached.

One way of testing if really an minimum energy path was calculated is to perform Lan-

gevin dynamic simulations starting from the prior calculated saddle point. If it is really a sad-

dle point we should access both sides of the saddles ending in either one of the valleys, when

the simulations repeated several times.
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MIMIMUM ENERGY PATH

70x50x5 nm permalloy platelett
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Figure 4.2 Energy along the path during the nudged elastic band simulation of the
thermal reversal between two S-states in a 100 • 100 • 5 nm permalloy platelet. Care
has to be taken when interpreting the results. It seems like the red curve (passing S2)
has reached equilibrium. But if the stopping criterion for the simulation is strict, the
optimization continues until the correct minimum energy path (green curve, passing
"3") is reached.
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4.6 Time integration

To solve (4.3) we use the backward differentiation scheme (BDF). This worked well for all

applied problems and was found to be quite fast and robust against the introduction of spring

forces. Compared to the explicit Adams method, the BDF method is about 10-50 times faster

which is shown in figure 4.3. We compared it for the energy barrier computation of an ellipti-

cal MRAM element meshed with an adapted finite element mesh with 18 000 elements (6600

nodes).

0.5 1
integration time [ns]

1.5

Figure 4.3 Comparison of the CPU time for the calculation of a minimum
energy path of an elliptical MRAM (1000 • 400 • 4 nm3). The backward
differentiation scheme (BDF) is more than one order of magnitude faster as
compared to the explicit Adams scheme.

In dynamic simulations it is important to keep a good accuracy during the integration since

errors can result in different solutions after a certain time of integration. In the elastic band

method this is less important since only the solution ("minimum energy path") that we obtain

at the end counts and not how we get there. The time integration is only needed to get to this

"end point". So the way to go there is not of much interest except that it should be one which

minimizes the spent CPU time. This means that we drive the integration at the limit of

numerical stability in order to maximize the computation speed. If desired we can still restart

a calculation with an increased accuracy starting from the path obtained with less accuracy.

As an alternative to the time integration of (4.3) one could reformulate the problem and

use a constrained energy minimization method. The minimizing functional is then simply the

sum of the energies of all images along the path:
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JV-1

F(Ml,M2,...,MN) = ££C|.M,(^,-) (4.21)

i = 2

and the constraint is the equal spacing of the images:

|M,.+ 1-M,| = lAf.-Jf,..,! for f e {2...N-1} (4.22)

A simpler method than the constrained minimization would be to add all spring energies

to the functional and minimize this total without the need of a constraint:

N-l N-i

F(Ml,M2,...,MN) = ^ECibbs(Mi)+ 2;|(||M.+ 1-M,| + |M,-M,._1|)
2(4.23)

i = 2 i = 2

Both approaches could lead to a further speed up as compared to the time integration. In

the framework of this thesis we did not test these ideas, thus they should be treated as a sug-

gestion for improvement but without a guarantee for success.

4.7 Spline interpolation

To increase the accuracy of the saddle point estimation we interpolate between the images

of the obtained MEP. In addition to the energy of the images, the force along the band pro-

vides important information and is incorporated into the interpolation. By including the

force, the presence of intermediate local energy minima can often be extracted from bands

with very few images. The interpolation can be done with piecewise cubic polynomials for

each segment [Af ,-jlf ,- + , ] . The four parameters needed for the polynomial are chosen to

ensure continuity in energy and force (tangential component of the energy gradient) at both

ends. With the polynomial as /(*) = a,*3 + btx
2 + ctx + d-t the four parameters are obtained from

the four equations

/ ( * | ) = £,. and f ( x \ ) = El+l (4.24)
\lVlj U « i + l

IM*)-""* &\nJmF" (4'25)

The parameters then become
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2(Et-El+l)

R R

= E

(4.26)

(4.27)

(4.28)

(4.29)

Here x denotes the arclength, Ei and Ei+1 the energy, and F;- and ~Fi+1 the forces along the

path (=tangential component of the energy gradient). R is the distance
R ~ X\TL, -X\JL* I between the two images. A nice overview about interpolation of curves

with an interactive interface is found in [80]. We demonstrate the interpolation with two

3000
interpolation

• discrete MEP

1 he powerful interpolation reveals
two local minima since we did not
start from the energy minima for
initial and final state in this calcula-

arclength

Figure 4.4 Discrete minimum energy path with 50 images and the interpolated path
according to equations (4.26)-(4.29). The example shows the minimum energy path for a
70*70*21 nm patterned element with 49 grains. The initial and final-images were not
completely equilibrated here. Thus, these images were not yet located in the energy
minima. Therefor the interpolated curve predicts the local minima between the first and
the second image, and the last and last but one image.

examples. In the first example we calculate the minimum energy path for a granular patterned

element. In order to test the interpolation we choose the initial and final state to be close to

the energy minimum, but not exactly in the minimum. The powerful interpolation method

reveals the presence of two local minima very close to the initial and final state (see figure

4.4). These minima are also obtained when just the number of images is increased to 150. In a

second example we calculate the minimum energy path for the reversal of a vortex core in a
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small softmagnetic disc. An external field just below the switching field was applied in the

opposite direction of the vortex core orientation. In this case the final state where the vortex

is reversed has much lower energy (see figure 4.5). The energy barrier is small since the field

strength is close to the zero temperature switching field. As result the image resolution is very

low at the region of interest, the saddle point Here the interpolation increases the accuracy of

the saddle point energy (figure 4.5). Without interpolation the energy barrier would have been

strongly underestimated here.

Initial (high energy) state

5 10
arclength

15

- r interpolation
MEP

arclength

Final (low energy) state

Figure 4.5 The interpolation is important when the resolution of the images is low at
the location of the saddle. Without interpolation the saddle point and the energy
barrier would have been underestimated here. The example here shows the MEP for
the reversal of the vortex core in a softmagnetic disk. The initial and final state have
different energies since an external field was applied. In the final state the vortex core
is reversed and points in the field direction. The energy is thus lower. For details on
Bloch points see section 6.

4.8 Climbing image NEB method

As an alternative to the interpolation we also implemented the climbing image algorithm

(CINEB) [57] into our code. This requires only a small modification and guarantees a rigor-

ous convergence towards the saddle point. After some iterations of the regular NEB method,

the images which 'are local maxima are identified. The force on these images is then given by
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D = ~{VE(Mk) - 2(VE(Mk) • t ) t } (4.30)

This means that we keep the normal component of the energy gradient but invert the tan-

gential component. In addition these images don't get affected by the spring forces. Qualita-

tively, the images now move up the energy landscape along the nudged elastic band. The task

of the other images is only to define that one degree of freedom along which the energy max-

imization is performed. Using this method it is possible to decrease the number of images but

still maintain a rigid convergence towards the saddle point(s). In simple cases good results are

obtained even with as few as 5 images.

The results obtained with the CINEB method agree very well with the results from the

interpolation. As an example we calculate the energy barrier for the reversal of a vortex core

in a small softmagnetic disc. In figure 4.5 the third image now moves exactly to the top (local

maximum) of the interpolated red curve when the CINEB method is switched on.

4.9 Examples

4.9.1 Interacting single domain particles

In order to test our path finding method we start with a simple test case. We study two

single domain particles with saturation polarization Jy uniaxial anisotropy (K{) and identical

volumes (V}. The line connecting the particles is parallel to the uniaxial anisotropy direction.

The distance between the particles is R. In polar coordinates the magnetization of this two

particle system is described by four angles (d^ipjß^z)- Although there are four independent

variables only cases where the magnetizations of the two particles are in the same plane

describe equilibrium states. It is therefore sufficient to study cases where only dj and 02varv-

The total energy then becomes [22]

E/(K{V) = sin2Ql + sin2Q2 + kint[sinQlsinQ2-2cosQlcosQ2] (4.31)

2 3
k-mt = JsV/(2[iQR K) reduced interaction constant (4-32)
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-3 -2
V

-3 .•

Figure 1: (A) Contour plot with initial path (crosses) and minimum energy path
(boxes). (B) energy surface with initial path (black) and minimum energy path
(white) for a system of two interacting magnetic particles. k-tnt=0.2

Thus, VE can be calculated analytically in this case. With this reduction to two dimen-

sions the energy landscape with paths can be plotted which helps us to verify our method and

results. Figure 1 shows one possible case of the energy landscape where no external field is

applied. In the initial state the magnetization of both particles is parallel ("up up"). We then

connect the initial state with the final state ("down down") with a straight line. This initial

path describes the coherent rotation of the magnetizations where the two magnetic moments

rotate from the initial state to the final state in opposite direction (asymmetric fanning «50 j =

— <502). The energy landscape with the initial path and the minimum energy path are shown in

figure 1. The initial path (black line) moves over the top of the hill. Applying the algorithm

described in section 2 we obtain a minimum energy path as given by the white line in figure 1.

In the minimum energy path one particle starts rotating. The system passes the first saddle

point and reaches a local minimum. The moments are antiparallel. Then the second particle

rotates. The system crosses a second saddle point and ends in the final state where the mag-

netic moments are parallel. It becomes obvious from the energy landscape that there is a sec-

ond possible minimum energy path which can be reached from the same initial path. Both

paths describe the same process. The particles start to switch in the opposite order in the two

paths. Figure 4.6 shows the energy as a function of the arclength of the initial path and the

minimum energy path. During the solution of equation (4.3), the path relaxes to the minimum
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energy path. The path becomes longer and the maximum develops into two saddle points and

a local minimum in between.

Testing more complex problems with the 2D energy landscape, we found that the tangent

estimate is crucial for the convergence of the method [56] and has to be evaluated as

described in section 4.2.

#—* initial path
Q-B minimum energy path

position in path [a.u.]

Figure 4.6 Energy along the initial path and the minimum energy path for a system
of two interacting magnetic moments.

4.9.2 Small quadratic magnet

As another simple problem, we study a small quadratic thin magnet of CoCr which has

high uniaxial anisotropy (Kj = 0.3MJ/m ,Ja = 0.5 T, A - 10 pj/m). The particle size is 5 nm

x 5 nm x 1 nm and is meshed with a finite element grid with 16 nodes. The particle lies in the

yz-plane (see figure 2). The dimension of the configuration space is 32 and a visualization of

the energy landscape is no more possible. The magnetocrystalline anisotropy axis, a, is paral-

lel to one long edge. In the initial state the magnetization is parallel to the easy axis and there-

fore in a local minimum. In the final state the magnetization has opposite direction to the

initial state and is also in a local minimum. For testing our method we assume an initial path in

which the magnetization rotates coherently out of the plane. In the minimum energy path the

magnetization still rotates coherently since the particle is small and thus behaves like a single
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domain particle. However, the rotation now takes place in-plane since here the magnetostatic

contribution to the total energy is lowest (see figure 2).

*—* minimum energy path
G-Q initial path

initial path = out of plane rotation

X*
Si

f inal path = in-p lane rotation

10 20 30 40 50
position in path [a.u.]

Figure 2 Energy along the initial path and minimum energy path with illustration of
the magnetization along the paths. The particle has a size of 5x5x1 nm3 and high
uniaxial anisotropy parallel to the edge. In the minimum energy path the
magnetization reverses by rotation in-plane since this lowers the magnetostatic energy.
(S;....energy barrier of initial path, Sf.....energy barrier of minimum energy path =
saddle point.)

4.9.3 Elongated magnetic grain

A more complicated problem is one elongated magnetic particle with uniaxial magneto-

crystalline anisotropy parallel to the long axis. This model represents one magnetic grain in a

perpendicular recording medium such as CoCr [101]. The grain diameter is 13 nm. As before

we start with a straight line in polar coordinates for the initial path. The angle of the magneti-

zation and the long axis of the particle increases by a constant step from one image to the

next. This path represents the coherent rotation of the magnetization from the initial to the

final state (see figure 4.7).
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Ini t ia l Path

M i n i m u m Energy Path

Figure 4.7 Magnetization states along the initial path and the minimum energy path for an
elongated CoCr particle with the easy parallel to the long axis. Grey: magnetization up;
black: magnetization down.

It was found that above a certain critical length, /c, of the particle the minimum energy

path changes from coherent rotation to nucleation followed by domain wall motion until the

whole magnetization is reversed (see figure 4.7). This can also be understood by an analytical

estimate. In the following F denotes the area of the basal plane of the elongated grain. The

domain wall energy is Ewall = ^FAjAKl while the energy for coherent rotation is Erot = Ktv.

Now if the particle length is increased only K increases while Fremains constant. Thus, there

will be a critical length where Ea>aU < Ent and the nucleation and expansion of a domain wall

becomes energetically favorable. With A = 10 pj/m and K. = 300 kj/m3 the critical length

becomes lcril = *< ' =19 nm. lex denotes the length of the particle. This agrees very well
Kllex1'

with the numerical results. Figure 4.8 shows the maximum exchange energy and the effective

volume for the thermal reversal of an elongated CoCr particle as a function of the column
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length. The diameter is 13 nm. Above a size of 20 nm the reversal mode becomes inhomoge-

neous. Below 20 nm the maximum exchange energy is almost zero. Here the particle reverses

by coherent rotation. Above 40 nm the particle is large enough to form a full domain wall.

Increasing the length further does not change the maximum exchange energy any more. Once

the wall is formed it only moves through the particle. The same is true for the energy barrier,

here expressed as an effective switching volume. Above 40 nm the effective volume Veff satu-

rates. It is therefore clear that an further increase of the column length of the grains does not

increase the thermal stability in perpendicular recording material.

-7500

-5000,

- 2500

80°40
column length (nm)

60

Figure 4.8 Maximum exchange energy and effective volume for the thermal reversal
of an elongated CoCr particle as a function of the column length. The diameter is 13
nm. Above a si2e of 20 nm the reversal mode becomes inhomogeneous. Above
~50 nm column length, the size is large enough to form a full domain wall. The
maximum exchange energy saturates as function of the length and takes the value of
a domain wall exchange energy.

Figure 4.7 shows images along the initial path and the minimum energy path for a particle

with a length / > /c. Clearly, the algorithm detects the minimum energy path, which is given by

the nucleation of a reversed domain at one end of the particle. The wall moves through the

particle and the reversed domain expands. A nucleation of reversed domains at both ends will

require twice the wall energy, Ewaji, and this is no minimum energy path. Figure 4.9 shows the

energy as a function of the arclength along the initial path and the minimum energy path. The
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energy increases as the reversed domain is formed and remains constant during the motion of

the domain wall.

*—* minimum energy path
O-O initial path

100 200 300
position in path [a.u.]

Figure 4.9 Energy along the initial path and the minimum energy path for an elongated
CoCr particle with the easy axis parallel to the long axis. In the minimum energy path the
magnetization reverses by nucleation followed by domain wall motion.

Hermann Forster and coworkers investigated this problem in detail [41], focusing on

"Energy barriers and effective thermal reversal volume in columnar grains" [42]. For particles

larger than the exchange length these barriers represent non-uniform paths between the two

approximately uniform equilibrium states. Both the zero field energy barrier and the intrinsic

switching field were determined over a wide range of particle exchange and magnetocrystal-

line anisotropy parameters. Besides the above mentioned path which involves a Bloch type

domain wall motion, also vortex nucleations can occur when the anisotropy is smaller (figure

4.10). Using the form of the energy barrier for a uniformly reversing particle an effective

reversal volume was determined. This volume decreased with both increasing anisotropy and

decreasing exchange. A simple model [42] semi-quantitatively explained these effects corre-

sponding to reversal by end nucleation of a cubic region and a domain wall.
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Figure 4.10 [41] Minimum energy path for an elongated particle with zero
anisotropy. A=10 pj/m, Js=0.5 T. The reversal starts with the nucleation of a
vortex on one end. red: magnetization up, blue: magnetization down. The diameter
of the particle is ~13 nm, the height is 70 nm.

4.9.4 Patterned granular media

Patterned media [84] show great potential for future ultra-high density magnetic recording.

In patterned media, each discrete element is exchange isolated from other elements, but

inside each element polycrystalline grains are strongly exchange-coupled, behaving more like

a larger single magnetic grain.

We apply the path method to one island of such patterned media. The edge length is

70 nm, the grain diameter is about 10 nm and the film thickness is 2 nm. The island consists

of 49 grains. The grains are in direct contact and perfectly exchange coupled. The easy axes of

the grains are perpendicular to the film plane with a random deviation of the direction from

the plane normal within a cone of about 8° for each grain.
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Figure 4.11 Magnetization states along the initial path and the minimum energy path
for an island of a patterned CoCrPt media with granular structure. The easy axis is
perpendicular to the plane. The color code corresponds to the z-component of the
magnetization, bkck: M2= 1, grey: M2= -1

Again we start with the coherent rotation for the initial path. The minimum energy path is

shown in figure 4.11. The reversal starts with a nucleation in one corner. The domain expands

and the length of the domain wall increases. At the first saddle the length of the domain wall

reaches a maximum. A minimum state is also found where about half of the magnetization is

reversed. This two domain state has a straight (short) domain wall (see figure 4.11) which

reduces the total wall energy. In addition, the two domain state is magnetostatically favorable.

Therefore the two-domain state is a local energy minimum. Figure 4.12 shows the energy as a

function of the arclength along the initial and the minimum energy path. The energy barrier

for crossing the second saddle from the local minimum (two domain state) is about 200 /feBT,

for T = 300 K. Thus, the intermediate two domain state is quite stable.

The high energy barriers between the initial and the final state are due to the perfect cou-

pling between the grains. As the grains cannot reverse independently, the energy barrier is

much larger than K^ V, where V is the average grain volume. Further investigations of the
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effect of the intergrain exchange constant on the minimum energy path showed that a reduc-

tion of the intergrain exchange constant reduces the energy barrier. Below a certain critical

value the reversal mode changes from a collective mode to a reversal mode where the grains

reverse individually or in smaller clusters. This leads to a loss in the total energy barrier. For

more details see section 5.

8000
Initial path = coherent rotation
minimum energy path

5 10 15
Position in Path [a.u.]

20

Figure 4.12 Energy along the initial path and the minimum energy path for a
element of a patterned CoCrPt media with granular structure. The easy axis is
perpendicular to the plane.

4.10 A comment

One problem is also the interpretation of the minimum energy path. Imagine a path con-

necting two equivalent minima with a metastable state in between but where the two saddle

points have different height. An example is a system of two antiferromagnetically coupled

grains where the grains have different volumes. The minimum energy path is shown in Fig.

4.13. The magnetization reverses in two steps, passing two energy barriers. Since the problem

is symmetric (both minima have same energy when no external field are present) we can think

of both processes: A) coming from the right side in Fig. 4.13. and crossing the larger barrier

first or B) coming from the left side in Fig. 4.13. and first cross the smaller barrier. However,

for the statistical quantities as transition rates between the minima only the larger energy bar-

rier is important due to the exponential dependence of the transition rate on the energy bar-

rier height Thus, both processes should give the same transition rate.

The minimum energy path represents a highly probable way trough the energy landscape

for thermally assisted magnetization reversal. Thermal fluctuations can drive the system to
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higher energies. However once the barrier is passed thermal activation is no more needed to

proceed in the motion, and indeed the downhill parts are mainly dominated by precessional

motion. Thus, it is not sure if the metastable state must be visited if we come from the higher

barrier since the system actually has enough energy to directly overcome the second barrier

by precessional motion thus avoiding to fall into the closest minimum as it would if the

motion would follow the steepest descent. However in the case of high damping we also

expect to fall down to the closest minimum and thus to visit the metastable state.

One can think of a paraglider. First he has to walk up to the mounting. The walking corre-

sponds to the thermally driven climbing uphill in the micromagnetic energy landscape. At the

mountain top the flight starts. Starting from a high point he can fly over mountains and val-

leys which have smaller height than the starting point (saddle point). This flying part of the

journey corresponds to the precessional part of the motion downhill.

(T 10 20 30 TO
path coordinate (point nr.)

Figure 4.13 Energy along the optimal path for two antiferromagnetically
coupled grains. The intergrain exchange coupling ]—0.2 mj/m2 (J* Area ~ 4.8
kBT). The magnetization reverses in two steps, passing two energy barriers. The
material properties are shown in Fig. 8.1
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5 REVERSAL MODES AND ENERGY BARRIERS IN

DISCRETE RECORDING MEDIA WITH PERPENDICULAR

ANISOTROPY

Discrete media show great potential for future ultra-high density magnetic
recording. A hybrid finite element / boundary element method is used to
compare the magnetization reversal process in a perpendicular granular
film, patterned media, and a single magnetic island. The results show that
the influence of magnetostatic interactions on the switching field is com-
parable with the spread of the nucleation field due to the dispersion of the
magnetic easy axes. For CoCrPt this value is about 75 kA/m. Further, we
use the nudged elastic band method to calculate energy barriers as func-
tion of the intergranular coupling strength. Below a critical coupling
strength the magnetization reversal process changes from single large
island reversal to the individual switching of separated grains.

5.1 Introduction

The term discrete media is used to refer to media that consist of arrays of discrete, for

example ion-beam patterned magnetic elements [84], each of which can store one bit of data.

Ideally, the storage density is then equal to the surface density of the elements. In patterned

media, each discrete element is exchange isolated from other elements, but inside each ele-

ment polycrystalline grains are strongly exchange-coupled, behaving more like a larger single

magnetic grain. Nevertheless the micromagnetic simulations show that a single island reverses

incoherently by the expansion of a small reversed nucleus. For the calculation of the magneto-

static interactions between the islands a novel hierarchical method is applied. We compare the

hysteresis behavior of a single island, a continuous film and patterned media. In addition we

analyze the effect of the magnetostatic interactions on the coercive fields and calculate the

dynamic coercivity as a function of the Gilbert damping constant a. In the last section we use

a more complex model to introduce grain boundaries between the grains allowing a variation

of the intergranular exchange coupling strength. We compare switching fields for different

coupling strengths. Using the nudged elastic band method we also calculate the energy barri-

ers as function of the intergranular coupling strength.
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5.2 Discrete ("patterned") media for perpendicular recording

The currently used thin film magnetic recording media consist of small, single-domain

magnetic grains, which are exchange isolated from each other. For an acceptable media signal-

to-noise ratio, each recording bit must contain a minimum number of grains. Grain diameters

in the range of 7 nm to 20 nm and several tens to several hundreds of magnetic grains in each

written bit are currently used (see figure 1.2). To increase the storage density further, the mul-

tigrain bits and therefore each grain in each bit must be scaled down to smaller sizes. How-

ever, if the grain size becomes too small, the magnetization state cannot be retained against

thermal decay due to the small energy barrier height. The magnetization will switch easily,

leading to loss of recorded data.

Patterned media [116,53] have long been one of the most promising approaches towards

breaking through the boundary of conventional continuous thin film media. In the simplest

scheme, the magnetic elements could have only a single axis of magnetization. The direction

of magnetization is interpreted as a binary 1 or 0. Ideally, the storage density is then equal to

the surface density of the elements. In patterned media, each discrete element is exchange iso-

lated from other elements, but inside each element polycrystalline grains are strongly

exchange-coupled, behaving more like a larger single magnetic grain. The single-domain mag-

netic element can be made of polycristalline materials as well as single crystal or amorphous

materials. Because the superparamagnetic limit applies to the whole single island, not to each

of the many grains as in a conventional continuous multigrain bit, the volume and switching

energy for the single-element bit in the patterned media are much larger than that of a single

grain in conventional continuous media, allowing significant reduction in bit size. The mini-

mum volume of the discrete element bit is still determined by the superparamagnetic limit,

and could be as small as a few nm in diameter, depending on the magnetic properties of the

material. This gives an areal density as high as tens of Tbit/in . Another advantage of pat-

terned media is that the SNR for the read head is increased due to the elimination of the ran-

dom N1'2 noise associated with acceptable number of decoupled grains within each

continuous multigrain bit and elimination of the noise associated with irregular or zigzag tran-

sitions that cause noise in continuous thin film media.

Another advantage is that the constraints on the writing and reading process itself are

greatly reduced [73]. Due to the single domain nature of every dot, the writing of such a bit is

an all-or-nothing event and the head does not have to be positioned exactly above the bit. To
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achieve a single domain like behavior the intergranular exchange between the grains in the

island has to be increased. The grains then do not behave like an ensemble of decoupled

grains but more like a large single grain only.

However there is a big disadvantage of patterned media. In order to make it into the mag-

netic recording market the net production cost of the disk media needs to be preferably less

than US $ 1 [107] per disc! Currently existing techniques to produce patterned media are far

above this value and a breakthrough in the production technique will be needed to decrease

the costs.

Figure 5.1 AFM and MFM images of square island arrays in granular CoCrPt
recording media with a perpendicular magnetic anisotropy after magnetizing
in a 1200 Oe field. The island periods are/) = 248 nm (left) and/» = 100 nm
(right). [74]

For scientific use and demonstration applications, a possible patterning scheme removes

magnetic material from existing media using a focused ion beam (FIB) [74]. Figure 5.1 shows

AFM and MFM images of discrete magnetic islands produced by focused ion beam. The ion

beam cuts 20 nm wide and 6 nm deep trenches into the ~20 nm thick CoyoCr^Pt^ film

forming square arrays of magnetically isolated islands with periods in the range of 50 nm to

500 nm. The irradiation does not remove all the material but makes the magnetic material

non magnetic (see figure 5.2). A 50 nm periodicity would represent a storage density of about
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250 GBit/in . The islands have a granular structure with cylindrical grains with a typical diam-

eter of 10 nm and a height comparable to the film thickness. The easy axis is perpendicular to

the film plane with a random deviation of the easy axis from the plane normal within a cone

of about 8°-10°.
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Figure 5.2 Patterning by ion irradiation. The irradiation does not remove all
the material but makes the magnetic material non magnetic. The figure [6]
shows a hysteresis loop for a material that was irradiated by an ion beam as a
function of the irradiation dosis.

The patterned films were ac-demagnetized. A perpendicular field was decreased from

20 kOe to 100 Oe in 1% field steps with reversal of the field at each step. It was found that

below a bit size of ~100 nm only single domain magnetization is observed (see figure 5.1

images on the right) while patterns with larger islands could support more than one domain

(see figure 5.1 images on the left). Patterns with a periodicity of about 70 nm were of similar

size to domains in unpatterned regions. Due to the absence of exchange coupling between

the islands the magnetization after de-demagnetization tends to form a "frustrated checker-

board" distribution of "up" and "down" oriented magnetization states due to the strayfield

coupling. Without strayfield effects a random distribution would be expected.
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5.3 Finite element model of discrete media with granular structure

Based on the experimental work by IBM [84,85] we start with a continuous CoCrPt film

(uniaxial anisotropy Kj = 0.3 MJ/m3, exchange constants! = 10 pj/m, magnetic polarization

/_, = 0.5 T) consisting of 625 columnar grains, which are obtained from a Voronoi tessellation

[95]. The grain diameter is 10 nm and the film thickness is 21 nm. The easy axis is perpendic-

ular to the film plane with a random deviation from the plane normal within a cone of about

8-10° for each grain. We assume full exchange coupling between the grains. In a second step,

we take out elements in a grid pattern, to obtain an array of individual islands. The island size

is 70 nm with a gap of 20 nm (Fig. 5.3). The total size of our model is 250*250*21 nm. The

model was meshed with 160000 finite elements.

Figure 5.3 Islands of discrete media at an external perpendicular field of
870 kA/m. bright: Magnetization down; dark: Magnetization up.

The large number of nodes of the finite element mesh located at the surface of this model

leads to capacity problems for the storage of the corresponding boundary matrix (see section

3). A tree algorithm [10] is applied in order to avoid this problem and to speed up the calcula-

tion of the magnetic strayfield.

5.4 Tree-algorithm

The dynamic response of a magnetic particle to an applied field follows from the LLG

equation (2.6). The effective field is obtained from the variational derivative of the total Gibbs
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free energy. For the calculation of the strayfield, Hslr field, a novel numerical method is used.

The stray field is obtained from a boundary value problem,

V - J
Aw = - - and H = -V«

(5.1)

A hybrid finite element / boundary element method [43] is used to treat the magnetostatic

interactions between the islands and to apply the boundary condition u=0 at infinity. The

advantage of this method is that no finite elements are needed outside of the magnetic parti-

cle. For the solution of (5.1) we split u into two parts, u = u^+u^ The potential »; is 0 outside

of the magnetic particles and the solution of the Poisson equation with the boundary condi-

tion dul/dn = J - n / n 0 . Then the potential »^ is solution of the Laplace equation with the bound-

ary condition [67]

(5.2)

Here Fy is the surface of the magnetic particles and Q is the solid angle. The direct evalua-

tion of (5.2) requires a matrix vector product with a fully populated Ns X Ns matrix. Espe-

cially for thin films as in the case of patterned media, the number of surface nodes Ns can get

very high, since most nodes are located at the boundaries. The following method is more effi-

cient The first term of the right hand side of equation (5.2) is the potential of a dipole sheet

with the dipole density u^n. [67]. Therefore the surface integral over the surface F can be

approximated by a sum over dipoles. The sum can be effectively evaluated using a tree code

[10]. The potential »2at node k is

"2' = ?/(Pi) (5.3)

NA is the number of surface triangles. Each surface triangle A^ has an assigned dipole p;

equal to the integral of the dipole density, «;n, over the triangle /. Since the dipole field

decreases rapidly with the distance, dipoles far away from the node k are grouped together

forming one larger dipole. This method reduces the computational effort from O(N$ ) to

O(NS AgN^j. The second term on the right hand side of (5.2) is local and thus of order O(NS).

Further details on numerical methods for speeding up the calculation of the magnetic stray

field can be found in [41].
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5.5 Hysteresis

The subsequent calculation of equilibrium states solving the Gilbert equation of motion

provides the demagnetization curve (Fig. 5.4). In this quasistatic calculation a damping con-

stant (X=l was used. Figure 5.3 shows a stable configuration at an applied field of-870 kA/m.

The individual islands switch at different values of the external field. In contrast, the continu-

ous exchange coupled film shows a single switching field (Fig. 5.4). In the continuous film,

the magnetization starts to reverse near the center of one edge, forming a bubble like domain

(Fig. 5.5 and 5.7). The domain expands leading to the reversal of the entire film. In a single

island the reversed domain is formed near one corner. The local demagnetizing field and the

misorientation of the grains determine the nucleation field. The continuous film has a larger

demagnetizing field and thus shows a lower switching field as compared to the single island.

The granular film and the granular single island switch at a single switching field. The demag-

netization curve of the patterned media shows steps at the switching fields of the individual

islands. The spread of the coercive fields is AHC =144 kA/m. In a reference calculation with-

out demagnetizing field the spread in the switching field of the individual island is smaller

(AHC = 84 kA/m). The fields are about 230 kA/m higher than in a calculation with magneto-

static effects. This result suggests that the magnetostatic interactions increase the spread of

the switching field.
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Figure 5.4 Calculated demagneti2ation curves for the granular film, patterned
media, and a single island.
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Figure 5.5 Magnetization states during the reversal of a 250 nm squared island with
625 grains. The reversal starts with formations of bubbles in the center regions
where the magnetic stray field is strongest. OC=1.

For large island size the reversal preferably starts with a nucleus of reversed magnetization

near the center of the island while for smaller models the nucleation process starts at free

edges or free corners. The numerical results qualitatively agree with experimental data (see

figures 5.6 and 5.7).
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Figure 5.6 Experimentally measured remanent curves for a film and patterned
film for different island sizes. The coercivity is reduced for the islands,
however the nucleation field increased. [6] and [85].

Figure 5.7 MFM images [6] for an array of 230 nm large islands. Bubble domains
occur.



REVERSAL MODES AND ENERGY BARRIERS IN PATTERNED MEDIA 71

5.6 Dipolar interactions

To study the effect of the dipolar interactions, we considered an array of exchange decou-

pled islands, where each island represents one bit of data (Fig. 5.8). In order to reduce the

computational effort, we simplify the model, focusing on the influence of dipolar interactions

on the reversal process of a single island. We create an array of 121 islands. The "middle

island" is the one of interest. It has granular structure consisting of 49 grains and is meshed

with a fine grid of 5 nm finite element size. This is fine enough to resolve domain walls for

the material parameters of CoCrPt.

/n

zt-
-1.0 !

Figure 5.8 Bit pattern and finite element mesh of and array of discrete media. The
magnetization is randomly set to "up" (red) or "down" (blue) representing the
magnetization state of a hard disk with stored data. The island in the dotted region
represents the region interest. For this island a granular structure and a fine FEM
mesh is used.
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The middle bit is surrounded by 120 additional islands. The only task of these islands is to

produce the magnetic field. The external field is applied only in the region of the "middle

island" which represents a very simple model of writing one bit on patterned media. Since the

magnetization of the neighbor islands is kept homogeneous and unchanged during the simu-

lation a coarser finite element grid can be used for the surrounding islands. With increasing

distance to the "middle island" the size of the finite elements is increased, since their influ-

ence on the "middle island" position decreases rapidly with the distance.

The magnetization state of Figure 5.8 represents the bit pattern of a hard disk with written

data. The written data (information) is assumed to look like a random magnetization pattern.

For the average of many bits the total magnetization should be zero. The hysteresis was calcu-

lated for several bit patterns (different data stored) in order to study the dispersion of the

coercivity owing to long-range magnetostatic interactions. The "worst case" is shown in Fig-

ure 5.9A where all neighbors are magnetized in the same direction as the middle bit leading to

a demagnetizing field which favors the reversal of the middle bit. Therefore, the lowest coer-

civity is obtained while the "best case" (all neighbors are magnetized in opposite direction as

the middle bit, see Figure 5.9F) has the highest Hc due to the stabilizing demagnetization

field. In between, the more general cases with random magnetization states are found (B, D).

For data storage applications a small dispersion of Hc is desired. This will enable the opti-

mization of the write head and the switching time. The above investigations show that dipolar

interactions cause a maximum spread of Hc of 75 kA/m. This value is comparable to the dis-

persion of Hc caused by the misorientation of grains.
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Figure 5.9 Magnetizations states and coercivity in patterned media. A) all
neighbors "up" B) random C) isolated island without neighbors D) random F)
all neighbors "down"

5.7 Writing speed

Beside the effort of reaching higher and higher areal densities, another crucial point for

magnetic recording applications is a fast writing speed in order to guarantee high data rates.

To study the writing time of a single bit, an external field is applied perpendicular to the film

plane which is increased linearly in time with different speeds (field "sweep rate"). Now Hc

depends on the speed of change of the external field [9].

Calculations were made for low damping (a = 0.02) and for high damping (a = 1). Figure

5.10 shows the calculated dynamical coercivity of the patterned media. Hc depends on both

the damping constant CC and the sweep rate of the external field. Hc increases with increasing
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sweep rate of the external field. Thus, a higher field has to be applied for writing at higher

speed. This effect itself also depends on a, and is stronger for smaller damping constants

(Figure 5.10). For a very low sweeping rate of the external field, Hc approaches the limit

obtained in a static hysteresis curve for both values of the damping constant (a = 1 and

a = 0.02). The static limit does not depend on the damping constant a.

4000-

5000 10000 15000 20000 25000
sweep rate "AH/At" (kA irons'1)

Figure 5.10 Coercivity as a function of the field sweep rate for two different
values of the damping constant OC.

5.8 Multi domain structures

In order to study the formation and the stability of multi-domain states of the islands a

local external field was applied covering only a certain amount of the area of one single island.

This experiment will test whether a two-domain state is stable. For an island size of 70 nm a

two domain state has a higher total energy due to the domain wall energy than the state with

homogeneous magnetization parallel to the easy axes. The two domain state also represents a

local energy minimum. The magnetization can stay in the metastable state after the field pulse
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is turned off. Shifting the domain wall to the left or right leads to a higher strayfield energy.

An energy barrier has to be overcome to achieve the single domain state (see Fig. 5.16).
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Figure 5.11 Time evolution of the magnetization in a single island for different
area coverage of the field pulse (dashed line). For 1 ns an external field was
applied with a strength of 1.1 Hc (switching field).

The results are shown in Fig. 5.11. If the external field covers 25%-50% of the island's area

the final magnetization configuration is me metastable state after the field pulse has been

switched off. Below 25% coverage the magnetization stays homogeneous also during the field

pulse. This indicates, that the field covering this small area cannot create reversed domains.

Above 60% coverage of the whole island reverses its magnetization.
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5.9 Energy barriers as a function of the intergranular coupling

5.9.1 Two coupled single domain grains

Figure 5.12 Model of two exchange coupled spins as a simplified description of two
small magnetic grains separated by a grain boundary.

Using the saddle search algorithm we are able to study the effect of coupling strength of

the grain boundaries on the energy barrier. We start by illustrating the problem on a system of

two single domain particles with perpendicular uniaxial anisotropy which are exchange cou-

pled. The system is fully described by four angles. In an approximation we fix the rotation

plane of the two spins and the magnetization of one spin along its easy axis. Only one of the

spins can rotate and the problem can be described with one angle in this rough approxima-

tion. For weak coupling the system has to pass two energy barriers visiting a metastable state

in between where the two spins are antiparallel. This metastable state disappears above a crit-

ical coupling value and the reversal is a single barrier crossing mode. In this simple model we

first write down the total energy as

f\

= Einterface + EaniSotropy = - ™" COS® + K • V • sin d (5.4)

Here / is the exchange constant in J/m and Area is the total grain boundary area. To cal-

culate if a local energy minimum is present we differentiate by ft and set the expression to 0

which gives

Q ( J • Ared\
* = aco\-^v\ ^

For J-Area>4KV the relation has no solution. Above this critical coupling strength
Jcritical = 4KV/Area the local minimum disappears.
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A full model needs four angles to describe the system however it reduces to two angles

since both spins stay in the same plane due to symmetry arguments [22]. The energy then

becomes:

E = - - 02) (5.6)

Now the situation is already more complex since we need to find the saddle point(s) in a

2D energy landscape. First we need to find all points (fl,, o2) where V£ = 0, here

30,

30-,

(5.7)

In a second step we need to find which of the solutions are saddle points. For this we cal-

culate the determinant of the Hessian

del

2
3 E
30, 02

30202

= 0 saddle

> 0 minima

< 0 maxima

(5.8)

Points where (5.8) is zero are saddle points. Depending on the ratio ofJ/K more than one

saddle point can exists, allowing more than one reversal mode. This is true when the coupling

energy / is of about the same strength as the anisotropy energy K. For very strong coupling

only one saddle point will "survive". A detailed theoretical work which deals with such a 2D

system can be found in [22]. A recent work [114] on thermally induced switching of two cou-

pled magnetic grains also includes simple subgrain discretization

For systems with many dimensions as for example our finite element micromagnetic mod-

els equation (5.7) gives a system of non linear equations. Also the calculation of the Hessian in

(5.8) becomes very time consuming since the effort grows quadratically with the degrees of

freedom. Thus, as an alternative to the procedure described above we use the nudged elastic

band method (section 4) to calculate the saddle points between local energy minima.
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5.9.2 Grain boundaries in patterned media

70 nm

70 nm

Figure 5.13 Island of patterned media showing grain structure (49 grains) and
finite element mesh (18300 elements, 5560 nodes). The grains are separated
by 1 nm grain boundaries. The exchange coupling between the grains can be
varied. The film thickness is 21 nm and the average grain size diameter 9 nm.

We investigate the dependence of the energy barrier on the strength of the intergrain cou-

pling. A model of 49 irregularly shaped grains was constructed (figure 5.13). The grains are

separated by a nonmagnetic grain boundary of 1 nm thickness. We vary the coupling strength

/ between the grains from 0 up to 5 mj/m . The average grain volume in the model is

9 • 9 • 21 nm3 and the total coupling area A to all neighbors 4 - 9 - 2 1 nm. We can now

express the coupling strength as a ratio of the maximum possible exchange energy due to

intergrain coupling versus the anisotropy energy KVof one grain:

h =
A-J
K-V

(5.9)

K is the magnetocrystalline anisotropy constant and V the volume of the grain. For

K=300 kj/m3 and/=0.1 mj/m2 this gives h=15%. This gives a better understanding of the

observed effects as a function of the coupling. For h > 1 the coupling is strong compared to

the anisotropy energy and the grains will reverse more like one large grain. For weaker cou-
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pling the exchange is too weak to induce a collective reversal of the grains. The grains will

reverse individually. Other coupling strengths expressed in KVare found in table 2

/[mj/m2]

0.01

0.1

0.5

1

5

A[%]

1,5 %

15%

74%

148 %

741 %

Table 2 Some values of the exchange coupling expressed in
terms of the uniaxial anisotropy energy of one grain.

Snapshots of the magnetization states during the reversal in a quasistatic hysteresis are

shown in figure 5.14. For weak coupling, the grains reverse individually. For strong coupling,

the reversal again starts with the nucleation of a reversed domain near the edge and its expan-

sion.

Fig. 5.15 shows demagnetization curves in a quasi static calculation for different intergrain

exchange coupling. For/ > 0.5 mj/m the demagnetization curve becomes squared. Below

this value the island switches in steps and the resulting Hc is higher than at stronger exchange.

However the nucleation field increases with increasing coupling strength. In [5] experiments

were performed on Co patterned elements. Single island hysteresis measurements show the

squared characteristic of the demagnetization curve as described above.
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Figure 5.14 Reversal modes during a hysteresis loop as function of the
intergrain exchange coupling. The field was applied perpendicular to the film
plane. The easy axis distribution (up to 8° disturbed from the film normal) was
same for all cases. The first image shows the nucleation start. A damping
constant CC = 1 was used.
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Figure 5.15 Demagnetization curves in a quasistatic calculation for different
intergrain exchange coupling. For / > 0.5 mj/m2 the demagnetization curve
becomes squared. Below this value the island switches in more steps and the
resulting Hc is higher than at strong exchange. The nucleation field however
increases with increasing coupling strength.

In a next step we calculated the energy barrier for a 70 nm island as function of the inter-

grain coupling strength. The grain boundary thickness was 1 nm. Fig. 5.16 compares the min-
f\ O

imum energy paths for zero intergrain exchange (/ = 0 mj/m ) and strong (/=5 mj/m )

coupling strength. For zero intergrain exchange, the grains in the island all switch individually.

The thermal stability is determined by the thermal stability of the individual grains. At strong

coupling the grains behave like one large grain. The resulting energy barrier is much higher

than at weak coupling. The reversal starts with nucleation on one corner and the expansion of

the reversed domain. Note that also a metastable state is present where the magnetization is

in a two domain state. The total energy barrier is much higher than at weak coupling. This

allows a further downscale of the island size without running into problems of thermal stabil-

ity.
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Figure 5.16 Comparison of the minimum energy paths for zero intergrain
exchange (A=0) and strong (h — 740%) intergrain coupling. Intergrain exchange
has a strong effect on the total energy barrier of the system.

5.10 Dependence of the energy barrier on the island size

In the following we assume perfectly coupled grains. The energy barrier was calculated as

a function of the island size and the results were compared with a simple analytical estimate.

Fig. 5.16 shows that the thermal reversal of the patterned island basically involves the creation

of a two domains. Due to the high magnetocrystalline anisotropy, the height of the energy
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barrier is mainly determined by the domain wall energy of the two domain state. In the fol-

lowing analytical estimation we neglect the contribution from the magnetostatic interaction.

The energy barrier height is then equal to the domain wall energy

El = Area-4K{ . (5.10)

Here Area is the total domain wall area. Below a critical si2e, this energy will be higher than

the energy barrier for coherent rotation which is

E2 = Volume • K^ , (5.11)

where Volume is the island volume. For an island with lateral extension /and thickness t, we

have Area = /-/and Volume - lit. If we set E^ = E2>
 we obtain the critical size for coherent

rotation

Note that the result is independent of the height of the island, and is equal to 4 times the

Bloch parameter SQ. If the island size is smaller than 480 we expect uniform rotation. With A

= 10 pj/m, KI= 300 kj/m , and t-2\ nm the critical island size becomes ~23 nm.

The numerical calculation of the minimum energy path shows that there is a continuous

transformation between the inhomogeneous reversal and the uniform rotation mode as the

size decreases. Thus, non-uniform reversal modes were found even for an island size of 20

nm. Fig. 5.17 shows the size dependency of the energy barrier. The energy barrier is given in

units of KV. This is equal to an effective switching volume, Veff, divided by the total volume

(E^/KV= Veff/V). For all island sizes the analytical model overestimates the energy barrier

height. The strongest deviation is found when the island size is near the calculated critical

size. At 20 nm island size, the calculated energy barrier is 10% smaller than in the uniform

rotation model (Figs. 5.17 and Fig. 5.18). The reversal mode is still inhomogeneous which is

seen in Fig. 5.18.
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Figure 5.17 Energy barrier in units of KV as a function of the island size for
squared islands. The analytical model always overestimates the energy barrier as
compared to the micromagnetic energy barrier computation. Moreover it can be
seen in Fig. 5.18 that the reversal mode is inhomogeneous even in the regime
(< 23 nm) where uniform rotation is expected. The height of the islands was 21
nm, iq = 300 kj/m3, ,4 = 10 pj/m.
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Figure 5.18 Energy along the minimum energy path (red) for the thermal
reversal of a 20 nm island. The black curve shows the energy along the path for
the uniform rotation mode. The micromagnetic NEB computation gives a 10%
lower energy barrier than the uniform rotation model. The top sequence images
show that the reversal mode in the minimum energy path is inhomogeneous
even though uniform rotation would be expected at this island size. The height
of the islands was 21 nm, Kt - 300 kj/m3, A = 10 pj/m.
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6 VORTEX CORE REVERSAL BY BLOCK POINTS

Thin permalloy disks support a vortex configuration. We study how
micromagnetic calculations can be applied to processes that involve a sin-
gularity of the magnetization field, namely the Bloch point. The reversal
of the core of the vortex under an field applied perpendicularly to the disk
plane is investigated. We apply two different procedures to evaluate
switching fields and processes: direct micromagnetic time-dependent cal-
culation, and the evaluation of the energy barrier that separates the two
orientations of the vortex core in the configuration space, using the
nudged elastic band method. Both methods show the occurrence of
Bloch points during reversal. The numerical results are compared with
recent experiments.

6.1 Introduction

In 1965, Ernst Feldtkeller first considered the consequences of the hypothesis of continu-

ity of magnetic structures [40]. He showed that in certain situations, non-continuous configu-

rations have to exist. The basic such configuration is the so-called Bloch point (BP). It is

defined by the following property: For any closed surface (i.e. sphere-like) surrounding of the

point, the magnetization vectors on this surface cover exactly once the surface of the unit

sphere. Topological arguments have been used to show that the BP is the only stable singular-

ity in a ferromagnet [71] when one considers all the continuous transformations. Thus, a BP

cannot appear alone within a continuous structure: either it is created in a pair, or it comes in

by the boundary of the sample.

The modeling of this singular structure is, however, not fully satisfactory. Indeed, the defi-

nition of the BP implies that the modulus of the magnetization must vanish at the BP center,

so that micromagnetics does not apply in this region. Indeed, micromagnetics is derived from

atomistic models under the assumption of a continuous magnetization distribution, slowly

varying on atomistic scale [18]. Considering a sphere surrounding the BP and sufficiently far

from it so as to apply micromagnetic theory, Feldtkeller [40] showed that the leading energy

density is the exchange energy. This term is smallest when the magnetization direction at a

given point is the unit vector from the BP to the point considered. A rotation of all moments

by the same amount does not change the exchange energy. In this case the exchange energy

density becomes
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dEA = (2A/r2)r2drsinQdQd<p (6.1)

with r, 0 and 9 being the spherical coordinates, and A the exchange constant. Although

the exchange energy density diverges at the origin, the integrated energy within a sphere of

radius R is finite

EA(R) = 87iA/? (6.2)

Döring then showed that the next important term is the demagnetizing energy.

Only crude estimates exist for the energy of the core of a BP, where the magnetization falls

to zero. Reinhardt [82] computed classically the exchange energy around a BP, using a Heisen-

berg formulation (such a formulation does not rely on the assumptions of a continuous and

slowly varying magnetization distribution). He found that the atomiclike computation gave a

lower energy than the continuous calculation. The difference is

^discrete = -^«0A(ro) (6-3)

with a function A depending slightly on the exact location TQ of the BP within the lattice.

For a cubic lattice Reinhardt computed A ~ 13. Therefore, as already stated by Hubert [63],

the core corrections can be estimated to be much smaller than the micromagnetic contribu-

tion, as soon as the extension of the BP micromagnetic structure is large compared to atomic

distances. This justifies micromagnetics calculations with BP cores.

We consider a disk-shaped permalloy sample, of such size so as to develop a vortex struc-

ture. Using to different methods, micromagnetic dynamics and the nudged elastic band

method, we study the reversal of the vortex core under a field applied perpendicular to the

disk plane. This reversal involves the creation and motion of BPs while the core reverses. The

complete work with detailed investigations of theBloch point at rest in the middle of the core

of the vortex, and the comparison of the evolution of the calculation results under decreasing

mesh size to analytical results can be found in [108].

The situation corresponds to recent experiments by Okuno et al. [79], in which the vortex

core orientation is observed by MFM in remanent state. An array of permalloy disks is sub-

jected to an applied field for a macroscopic duration (l min. typically), and a subsequent

image allows to count the number of cores that have switched. A switching field distribution
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is measured, for series of disk diameters at a fixed thickness of 50 nm. An example of MFM

images of an array of permalloy disks is shown in Fig. 6.1.

1 jjm

Figure 6.1 MFM images [97] of an ensemble of 50 nm thick permalloy dots with
diameters varying from 0.1 to 1 (lm after applying an external field of 1.5 T along an in-
plane direction (A) and parallel to the plane normal (B). The dark and bright points in
the center are showing the position of the vortex core. Both types of the vortex core
orientations are present (dark and bright) in the left image.

In a recent work arrays of squared permalloy elements which support vortex configura-

tions were studied with MFM [47]. Both the vortex rotation sense and the vortex core orien-

tation can be clearly seen (Fig. 6.2). These two can be addressed independent of each other.

This gives 4 possible magnetization states and one could think of a 4-bit recording as a possi-

ble application.



VORTEX CORE REVERSAL BY BLOCH POINTS 89

Figure 6.2 MFM images [47] of permalloy squares. Magnetization rotation sense and
the vortex core orientation can be seen as independent degrees of freedom. This
results in 4 possible magnetization states.

6.2 Finite element model

The finite element method turned out to be a powerful tool in this particular problem

using adapted meshes, as the vortex core only extends over a small part of the sample. For the

calculation we used a 50 nm thick permalloy disk with the diameter of 200 nm, with a varia-

tion of the mesh size close to the disk symmetry axis. The central zone, of diameter 20 nm,

was meshed with an average mesh size ^/between the nodes (d= 1,2,3 and 4 nm). In the mid-

dle region, a ring with the radius from 10 to 20 nm, the mesh size increases from d for the

radius of 10 nm up to 4 nm at radius 20 nm. In the outer ring (radius from 20 to 100 nm) the

mesh size increases from 4 nm to 10 nm. The mesh size along the thickness was constant.

This is achieved with the following strategy using the mesher "MSC Patran" [124]:

Create a disk with radius Rl (4 quarter disks)

a) create a line of length Rl
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b) create a quarter circle (create->surface->revolve)

c) copy this quarter (shifted)

d) create a solid with this two surfaces (create solid, method = 2 surfaces)

e) delete the "points", "lines" and "surface" objects
f) copy the solid to get the other 3 quarters (with transform object)

• Create a ring from Rl to R2 (also 4 quarters rings)

• Create a ring from R2 to R3 (also 4 quarters rings)

• We have now 3 cylindrical surfaces which are meshed with surface meshes. Mesh sizes were dam at the cyl-
inder surface (actually 4 quarters) with r=Rl, 4 nm at the cylinder surface with r=R2 and with 10 nm at the
one with r=R3 (=radius of the disk). See also Fig. 6.3 step 6.

• Now mesh the inner region with the average mesh size d, the ring between Rl and R2 with 4 nm and the
outer ring with 10 nm.

• Delete the surface mesh and equivalence with about 0.05 tolerance.

• Now optimize, create surface elements, verify and export the file, finished!

• Note: Methods where the mesh is created using mesh seeds along edges or on surfaces of the dot does not
work. Here the mesh size varies along the thickness of the dot

The above procedure is illustrated in Fig. 6.3.

Figure 6.3. Construction of a graded mesh for the investigation of magnetic vortex
structures. Concentric cylinders are meshed with different mesh size. This procedure
guarantees a mesh where the mesh size does not vary across the thickness of the disk
(see Fig. 6.4).
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Fig 6.4 shows such a cut for a mesh with d = 2. The figure shows that the extension of a

Bloch point structure is smaller than 20 nm and that the adapted mesh is fine where it is

needed. A large mesh size in the outer regions is allowed since the processes occur in the cen-

tral region. The vortex and BPs stay along the rotation axis of the disk during the reversal

processes when the field is applied perpendicular to the film plane. The core mesh size was

varied from 1 to 4 nm in order to investigate the mesh size dependency on the calculated

energy barriers and switching fields.

Figure 6.4 A) Perspective view of the mesh used for the barrier calculations. The cut was
made trough one of the node planes used to generate the mesh. The finest mesh size is 2
nm in the central region (d=20 nm). Note that the extension of the vortex core is about
20 nm. The color code corresponds to the z-magnetization. Red: Magnetization up; Blue:
Magnetization down; Green: Magnetization in-plane. The magnetization state has a bloch
point in the center. The mesh is fine in the region where the magnetization is
inhomogeneous.

6.3 Dynamic calculations

The switching of the vortex core under an applied field perpendicular to the film plane

was investigated by quasistatic calculations: The field is increased by small steps. At each field

value the Landau-Lifshitz Gilbert equation is integrated until equilibrium is reached. For the

sake of completeness also dynamic calculations were performed where the field was increased



VORTEX CORE REVERSAL BY BLOCH POINTS 92

linearly from 0 T to l T in a time of about 5-10 ns. A realistic value for the damping constant

a = 0.01 was adopted. The reversal mode found in the dynamic calculations was the same as

in the quasistatic calculations, involving the creation and motion of a BP. In all calculations we

used a permalloy disk with 200 nm in diameter and 50 nm thickness.

Fig. 6.5 shows a computed magnetization curve for a core mesh size of 2 nm. A linear

slope is seen followed by saturation. On this curve the reversal of the core is seen as a small

step since the volume of the vortex core is small compared to the rest of the sample at this

size. In Fig. 6.5 this step is marked with a circle. The reversal of the core is seen more clearly

when plotting the exchange energy versus the applied field (Fig. 6.6). The vortex core com-

presses under the action of an opposing field and the exchange energy increases. At 540 mT

the vortex is so compressed, that the exchange energy density becomes higher than the

exchange energy density around a BP. A BP can be created and the core switches by displace-

ment of the BP across the thickness. After the core has switched the exchange energy is

smaller since the reversed vortex core is decompressed (see magnetization states in Fig. 6.6).

The results are in good agreement with the experimental results by Okuno [79] et al. For a

disk diameter of 400 nm and a thickness of 50 nm, mean core switching fields of 380 mT to

450 mT were found.

1

0.8
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The vortex cote switches
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H [T]

extL J

Figure 6.5 Magnetization curve for a permalloy disk (diameter = 200 nm,
thickness = 50 nm) with a core mesh size of 2 nm. The field was applied opposite to
the vortex core orientation. A linear slope is seen followed by saturation. On the curve
the reversal of the core is seen as a small step since the volume of the vortex core is
small compared to the rest of the sample at this size. This step is marked with a circle.
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Figure 6.6 Quasistatic calculation of vortex core switching. A field is applied
opposite to the vortex core orientation. The vortex core compresses with increasing
field. At Hext =540 mT the exchange energy density exceeds the exchange energy
density of a BP structure. As a result the vortex core switches by insertion and
motion of a BP. The disk diameter was 200 nm, thickness = 50 nm. The
magnetization states during vortex core switching are shown as perspective cuts
across the thickness through the center of the disk. In Fig. 6.4 the reversal is marked
with a circle.

For the sake of completeness also dynamic calculations were performed where the field

was increased linearly to l T in a time of about 4 ns. In these calculations a realistic value for

the damping constant (X = 0.01 was used in order to involve the dynamic precessional effects
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correctly. The reversal mode found in the dynamic calculations were same as in the quasistatic

calculations, involving the creation and motion of a BP. Fig. 6.7 compares a quasistatic with a

dynamic calculation for a permalloy disk with 200 nm diameter and 50 nm thickness. The

magnetization state has a vortex core in the center of the disk. The field was applied opposite

to the vortex core orientation. In the quasistatic calculation equilibrium is reached at each

field step using a damping constant OL — 1 (this speeds up the calculation). In the dynamic cal-

culation the field increases linearly from 0 T to l T in a time of 4 ns. Thus, for the black curve

the x-axis is also the physical time (Hext = l T corresponds to t = 4 ns).

In both calculations the vortex core switches by insertion followed by displacement of a

BP. However slightly higher switching fields are obtained with the dynamic calculation. This is

explained by the rate at which the external field increases. With decreasing rate, also the rever-

sal fields of the core decreases towards the results of the quasistatic calculation.

_ 20

0.2 0.4 0.6 0.8
H mext L J

Figure 6.7 Comparison of a quasistatic with a dynamic calculation for a permalloy disk
(200 nm diameter, 50 nm thickness) with a vortex core. The exchange energy during
vortex core switching is plotted as a function of the external field. The core mesh size
was 2 nm. The field was applied opposite to the vortex core orientation. In the
quasistatic calculation equilibrium is reached at each field step, a = 1 was used. In the
dynamic calculation the field increases linearly from 0 to l T in a time of 4 n and. (X =
0.01 was used. Thus, for the black curve the x-axis is also die physical time (Hext = l T
corresponds to t = 4 ns).
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6.4 Direct computation of the energy barrier

We apply the nudged elastic band method in order to determine the relevant saddle points

for the reversal of the vortex core. For the discretization of the path we typically use 25 points

(images). When a field is applied the two stable magnetization states are possible which corre-

spond to local minima of the energy. The saddle point moves closer to the initial (non

switched state) and more than 25 points may be needed to achieve the desired resolution and

accuracy at the saddle point position. The situation is shown in Fig. 4.5. Using the "climbing

image" algorithm (see section 4.8) an improved resolution is obtained also with fewer images.

The image with the highest energy moves along the path upwards trying to maximize the

energy. Thus, it "floats" up exactly to the saddle point and eliminates the error which results

from the discrete representation of the path. For the calculation of energy barriers at zero

field one can also use only 3 images to speed up the computation. It may sound strange to use

3 points to discretize the path since the first and last state do not move. This means that only

the middle image is optimized. From calculations with larger meshes we know that the saddle

point is a state where the BP is exactly in the middle of the disk. Thus, the saddle point has

the same distance in the configuration space to both the initial and the final state. Using 3

images only, the spring force keeps the central image equally spaced to both the starting and

the final configuration. This means, that with 3 images an energy minimization is performed,

however with the additional constraint that the configuration must stay in a hyperplane of the

configuration space. This plane is normal to the straight line in the configuration space con-

necting the initial with the final state and is positioned in the middle of this line. All images in

this hyperplane have the same distance to the initial and final state. Using this strategy we

were able to compute the zero field saddle point with a mesh size of 1 nm in the center.
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Figure 6.8 Minimum energy paths for the reversal of a vortex core in a permalloy disk
(50 nm thickness, 200 nm diameter) at different external fields. The field is applied
opposite to the initial vortex core orientation. The displayed plane shows a cut through
the disk center. 25 images were used to discretize the path. The number of arrows does
not correspond to the number of mesh points. The sequence on the left hand side
shows the MEP for zero applied field. Note the compressed non-reversed vortex when
a field is applied (sequence on the right). In both reversal paths a BP appears on the
surface and moves through the vortex core. See Fig. 6.11 for the energy along these
paths.
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Figure 6.9 Calculated minimum energy paths for the reversal of the vortex core
in zero applied field. The use of a finer mesh in the central zone (the mesh size,
d, is indicated in the legend) leads to a higher barrier. Samples have a diameter
of 200 nm and a thickness of 50 nm.

Figure 6.8 shows two magnetization states of two computed minimum energy paths. The

left hand side sequence shows the path at zero applied field while 400 mT was applied (in the

opposite direction of the initial vortex core direction) in the right hand side sequence. Note

the compressed non-reversed vortex when a field is applied. In both reversal paths a BP

appears on the surface and moves through the vortex core. Since the problem is symmetric, it

is completely arbitrary on which of the surfaces (top or bottom) the BP appears. Indeed we

obtained both paths. In order to avoid confusion we always show paths where the BP comes

from the top.

In some cases minimum energy paths are obtained which involve the creation of two BPs,

one on each of the two surfaces (Fig. 6.10). The two BPs move into the core and annihilate in

the center. However this minimum energy path gives a much higher energy barrier than the

minimum energy path where just one BP is created. Thus, it is important to repeat the calcu-
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lation with different initial guesses. Depending on the initial guess then either the one or the

other of these two paths will be obtained.

Figure 6.9 shows the energy along the computed paths (energy vs. arc-length), at zero field

and for different mesh sizes d in the central zone. The number of configurations along the

path was 25. The initial configurations (vortices with the same rotation sense, but with oppo-

site core magnetizations) were equilibrated first under the field that was applied. Then, the

initial path was constructed by linear interpolation of all magnetization vectors. It means that

the initial intermediate state is a 2D vortex (all vectors in the disk plane), with no core. The
1 0

barrier energy for the initial paths is very high, ~6.2 10" J. The converged paths have much

lower energy barrier. When no field is applied, the saddle point (top of barrier along the path)

is a configuration with a BP sitting in the middle of the sample (see Fig. 6.8 and Fig. 6.12).

When a field is applied, the saddle point is still a configuration with a BP. However the posi-

tion is now not more in the middle of the sample, but shifted towards one of the surfaces

(Fig. 6.12).

Figure 6.10 Minimum energy path for the reversal of a vortex core in a permalloy disk
(50 nm thickness, 200 nm diameter) in zero external field. The displayed plane shows a
cut through the disk center. The number of arrows does not correspond to the number
of mesh points. The reversal path involves the creation of two BPs. The resulting energy
barrier is thus higher than in a minimum energy path with a single BP.

In a next step an external field was applied. The Zeeman energy increases the energy of

the antiparallel state, and decreases the energy of the parallel state. The energy barrier for the

escape out of the metastable state decreases with increasing field. In order to emphasize this

last feature, the energies during vortex core switching are plotted in Fig. 6.11 where the refer-

ence energy (zero energy) is that of the metastable state. The corresponding saddle point con-

figurations are shown in Fig. 6.12. They all display one Bloch point. Its vertical position shifts

from the center (B = 0) towards one surface. The surface can be either the top or bottom

one, depending on how the path calculation breaks the symmetry, and indeed both situations

were obtained. The BP shift can be understood by looking again at Fig. 6.11, thinking that the
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horizontal axis now represents the vertical position of the BP. In a rough estimate the average

magnetization in the field direction depends linearly on the BP position. The corresponding

Zeeman energy adds a linear contribution to the total energy profiles. As a consequence the

position of the maximum shifts linearly with the strength of the field towards either the one

or the other surface (depending on the sign of the BP). When the barrier becomes close to

zero, the barrier top state has a BP which is very close to the surface. The field at which the

barrier reaches zero is the switching field of the vortex core.

It is now instructive to plot the calculated barriers versus the applied field (Fig. 6.13). The

variation of the barrier with the field is of the form c (HS-H)", where Hs has the meaning of a

switching field. It can be obtained from an extrapolation of the curve in Fig. 6.13 to zero bar-

rier. A good fit is obtained for n = 2. There is no justification of this law at present for general

magnetization reversal processes, although similar forms are often used, sometimes with a

different power than 2. Refining the mesh leads to an increase of the barriers, and thus to an

increase of the extrapolated switching field Hs. Switching can be considered to occur in a rea-

sonable time as soon as the barrier is below 10" J (~25 kßTamb)- The switching field derived

from extrapolation of the energy barriers to zero is similar to the switching field obtained

from the quasistatic simulation of vortex core switching.
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Figure 6.11 Calculated minimum energy paths for the reversal of the
vortex core, for fields applied antiparallel to the core magneteation
(induction values are indicated in T). The reference energy is that of the
metastable state. The mesh in the central region is 2 nm. Sample
dimension are same as in Fig. 6.9
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Figure 6.12 View (cut across the thickness) of the saddle point states under an
applied field corresponding to Fig. 6.11. The image size is 100*50 nm, the field is
oriented upwards and the shading relates to the z-component of the magnetization
unit vector (initial core magnetization is down (dark)). The core mesh size is 2 nm.
Note the progressive magnetization rotation outside the core as the field increases,
and the displacement of the BP saddle point position towards the film surface.
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Figure 6.13 Plot of the energy barrier height versus the applied field, for two
different core mesh sizes. The barrier decreases under the applied field roughly as a
second order polynomial. The extrapolation to zero barrier height from the 4
height field points gives a switching field of HoHs

 = 490 mT (3 nm) and 660 mT (2
nm). The shaded region corresponds to a barrier height below a thermal threshold
(25 kBT at room temperature). Mesh refinement increases the calculated barriers
and switching fields as seen before.

Aharoni's concern was: "you cannot let the computer decide when to jump" [4] when

computing switching fields with numerical methods. Using the path method we visualize the

energy barrier and can define the switching event as the field where the energy barrier has

become smaller than a certain threshold value (see figure 6.13). This is justified since thermal

fluctuations will drive the magnetization over the energy barrier within a certain relaxation

time T. Depending on the time scale of measurement and the temperature at which experi-

ments are performed, the threshold value for the energy barrier is obtained using the Neel-

Brown theory

rf = (6.4)

The energy barrier decreases with increasing opposing field. Thus, the threshold value for

the energy barrier will give the switching field at non-zero temperature. At room temperature
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we obtain the following threshold values of the energy barrier. The table gives the threshold

values of the energy that defines the finite temperature switching field for three different

measuring times, T = ~o - 1 ns~ we get

lkBT, f~Ws9 -1

-l
ISkgT, f~99s~

20kBT, f ~2s~l

The measurements by Okuno et al. [79] were performed on a time scale of minutes. An

energy barrier of 20 kBT can be overcome with about 99% probability in the time of one

minute. This allows a threshold for the energy barrier of at least 20 kBT.

6.5 Mesh size dependency

The calculated switching fields depend on the mesh size in the vortex core region. With

decreasing mesh size the exchange energy increases. As a result the obtained energy barriers

also increase with decreasing mesh size. An example for the energy barrier as function of the

mesh size in zero applied field is shown in Fig. 6.14 (B). The increase of the switching field

with decreasing mesh size observed in the quasistatic calculations corresponds to the increase

of the energy barrier with decreasing mesh size calculated with the nudged elastic band

method. Since the energy barriers increased also the obtained switching field increases with

decreasing mesh size (Fig. 6.14 (B)). The obtained switching fields are in the order of magni-

tude of the experimental values if a reasonable mesh size is used. The extrapolation to zero

mesh size at room temperature predicts fields that are larger than the experimental values.

Thus, the BP insertion is probably assisted by defects in the samples.
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Figure 6.14 Effect of the mesh refinement on (A) the computed reversal fields by a
quasistatic calculation and (B) the energy barrier at zero field. The disk diameter was
200 nm, thickness = 50 nm, permalloy parameters were used.
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7 CONFIGURATIONAL AND SHAPE ANISOTROPY IN

PERMALLOY PLATELETS

The nudged elastic band method is used to calculate minimum energy
paths, global minima, metastable states and, most importantly, saddle
points between energy minima of permalloy platelets. Configurational
anisotropy effects in thin permalloy elements, e.g. 5 nm thick squares, are
studied. For squares with the size of 15-200 nm the ground states are so
called "leaf" states with the average magnetization along one of the diago-
nals. However a second state ("buckle") becomes stable with the average
magnetization along one edge at sizes larger than ~80 nm. The superposi-
tion of the 4 easy axes leads to a combination of 4- and 8-fold anisotropy.
At ~200 nm size both states have about the same energy so that the over-
all picture becomes that of an effective 8-fold in-plane configurational
anisotropy. Good agreement is obtained when comparing the minimum
energy paths, which represent the paths for thermally assisted switching,
with the trajectories obtained from Langevin dynamics.

7.1 Introduction

Magnetic nanoelements form a strongly growing field with very promising future applica-

tions in magnetic storage devices such as MRAMs and sensor applications. While it is

straightforward to calculate energy minima which represent stable magnetization configura-

tions by minimizing the energy a much more demanding task is to compute the intermediate

saddle point configurations between minimum energy configurations. The nudged elastic

band method yields both local energy minima and saddle points. This gives us the energy bar-

rier which determines how stable such a state remains against thermal fluctuations. In this

chapter we focus on magnetic elements which have no in-plane shape anisotropy but only

configurational anisotropy. Detailed experimental and theoretical work on configurational

anisotropy has been performed by Cowburn [28]. Schabes and Bertram [89] investigated

remanent states of small magnetic particles and possible reversal mechanisms.

To calculate minimum energy paths we use the nudged elastic band method. The detailed

description of the method is found in section 4. Depending on the system more than one

MEP can exist between two energy minima. Especially for larger sample sizes this can be the

case. The MEP with the lowest energy barrier will then be preferred, which results from the

exponential dependence on the energy barrier in the Neel-Brown equation [18]. For soft mag-
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netic materials the only important energy contributions considered here are the exchange

energy and the Zeeman energy. In a (meta)stable state the magnetic system occupies a local

minimum of E - Eexchang,, + EZeeman.

7.2 Configurational anisotropy

Cowburn [28] performed experimental and theoretical work on thin soft magnetic ele-

ments as for example squares, triangles and pentagons. The geometries have a special prop-

erty: They have no in-plane shape anisotropy and show only a so called configurational

anisotropy. To explain what is meant with configurational anisotropy see figure 7.1. In elon-

gated particles (rectangular thin prisms) the magnetostatic energy is lower when uniformly

magnetized along the long axis than when magnetized along the short axis. This can be

explained easily by just assuming perfectly uniform magnetization. In this case there are only

magnetic surface charges and no volume charges. When magnetized along the long axes the

distance between opposite charges is larger than in an element magnetized along the short

axis. Thus, the energy of the sample that is magnetized along the long axis is lower than the

energy of the sample magnetized along the short axis. For a squared platelet the situation is

more complex. When assuming perfectly uniform magnetization the energy becomes inde-

pendent of the direction of the in-plane magnetization (see figure 7.1). However small devia-

tions from the uniformly magnetized state can lower the energy. The particle is small enough

to be in a single domain state. However the non uniform demagnetizing field in turn causes a

non uniform magnetization configuration. The "uniform magnetization" is replaced by

"near-uniform magnetization". This unexpected complexity in the near single-domain regime

was first pointed out by Schabes [89], and experimentally demonstrated for thin film elements

by Cowburn [28,29]. For a square of 100 nm size and 5 nm thickness the so called "leaf

states" are found to have the smallest energy with the average magnetization along the diago-

nals (see figure 7.1). In experiments [28] this effect is seen as an "effective anisotropy" which

depends on the direction of the in-plane magnetization. This is shown in the left picture of

figure 7.1. Due to the leaf state, the diagonals now behave like easy axes (blue regions) while

directions along the edges are hard axes (yellow regions). In order to know how stable such

minima are, we have to calculate the separating energy barriers between the minima. This

means that we need to calculate the saddle points between the local energy minima.
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Figure 7.1 Configurational anisotropy in thin softmagnetic elements. In the single
domain regime, the competition between exchange energy and magnetostatic energy
requires that the uniform magnetization state changes to so called "near-uniform"
magnetization. An example is the so called leaf state in thin squares. Experimentally
[28] this effect is seen as an effective in-plane anisotropy which depends on the
configuration of the magnetization.

7.3 Results

Configurational anisotropy effects in thin magnetic nanoelements are investigated. Qua-

dratic and triangular elements have no in-plane shape anisotropy: If uniformly magnetized the

energy of the system does not depend on the magnetization direction. However there is a so

called Configurational anisotropy [28,29] which results from deviations of the magnetization

from the homogeneous state. Starting from an initial guess we calculate minimum energy

paths (MEPs) of the system. For the initial guess of the path we start by simply rotating the

homogeneous magnetization state in-plane by 180° for squares and 120° for triangles. As an
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alternative initial guess we rotate the magnetization by 180° in the plane perpendicular to the

film which then typically results in a minimum energy path involving vortex motion. How-

ever, for squares this path has a much higher energy barrier for all sizes studied here (<

200 nm).

It is not necessary to calculate the equilibrium states (energy minima) in advance. As an

illustration figure 7.2 shows this initial path and the MEP after optimization for a triangular

element of 100 nm edge size and 5 nm thickness. The perfectly homogeneous state (=initial

path) has a constant energy for all points along the path independent of the direction of the

magnetization. After the optimization scheme we obtain the MEP which does not only reveal

the equilibrium states already known [28] but also the saddle points between the minima (fig-

ure 7.2).
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Figure 7.2 Initial path (circles) and optimal path (triangles) for a 100 nm triangular
permalloy element of 5 nm thickness (number of mesh points N=5290). Minima and
saddle points are labeled (M) and (S), respectively, and shown at the bottom of the
figure. Note that the evolution from one state to the next proceeds by 90° rotation of
the moments in the vicinity of one corner.

Fig. 7.3 shows an example for a minimum energy path calculation with the initial guess for

a 100*100*5 nm3 square. The two energy minima are the leaf states. As an initial guess we just

rotate the uniform magnetization between these two states. As explained above, the energy

does not depend on the direction of the magnetization as long as the magnetization is per-

fectly uniform. The red curve in figure 7.3 shows that the energy is constant along the initial

path. After optimization we obtain the MEP. The energy along the MEP is shown in the black
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curve in figure 7.3. The uniformly magnetized state along with the magnetization parallel to

the edge would be a rough estimate for the saddle point. However, the calculated saddle

points have lower energy than the homogeneous state. Thus, the energy barrier would have

been strongly overestimated by a factor of about 2 when simply taking the energy barrier as

the difference between the energy of the uniform state and the energy of the minimum instead of the

difference between the saddle point energy and the energy of the minimum. As a second result we

see that also a metastable C-state is occurs. A more detailed discussion on squared elements

follows below.
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Figure 7.3 The initial guess (top 3 magnetization configurations and red curve) and the
resulting minimum energy path (bottom 5 magnetization configurations and black energy
curve). It is important to note that also the saddle point energies are below the energy of
the perfectly uniform state. Thus, the energy barrier would have been strongly
overestimated (43 kBT instead of 19 kBT) if calculated just as the difference between the
energy of the uniform state and the energy of the leaf state (energy minimum). This shows
the importance of a rigorous saddle point computation.

7.3.1 Quadratic elements

Quadratic permalloy platelets of 5 nm thickness were studied using an average mesh size

of 2.5 nm. Four equilibrium states were found depending on the edge length. The possible
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states (flower, leaf, buckle and vortex state) are shown in figure 7.4. The "leaf" state is called

so because of the way that it blows out in the center and then nips together at the ends, like a

plant leaf. Below a size of about 14 nm only the flower state is stable. The separating saddle

points between the flower states were found to be leaf states. Above this critical size the situ-

ation reverses: The leaf states become stable while the flower states become saddle points.

Increasing the size further, above 70 nm the buckle state appears as a metastable state. The

saddle points evolve from flower states into more complex configurations (figure 7.7).

i ik kl 1i ii i
l-L

Figure 7.4 A) Flower, B) leaf, C) buckle and D) vortex state in a quadratic permalloy
platelet.
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Figure 7.5 Total magnetic Gibbs free energy for a 5 nm thick quadratic platelet as a
function of the element size for the 4 different states (leaf-, buckle-, homogeneous-state
and saddle point).
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Figure 7.6 Energy barriers as a function of the element size for a 5 nm thick quadratic
platelet. Ebl is the energy barrier of the leaf state, Eb2 is the energy barrier of the buckle
state.

Figure 7.5 shows that all states involved have lower energies than the homogeneous state.

Fig. 7.5 also shows that the energy of the buckle state increases at a slightly lower rate than the

energy of the leaf state with increasing element size. Thus, the energy barrier (buckle->leaf)

increases with a higher slope than the energy barrier (leaf->buckle). Energy parity is obtained

at ~ 150 nm element width. From the MEPs we calculate the energy barriers (Fig. 7.6).

Figure 7.7 shows the energy along the MEP for a lateral size of 200 nm. The equilibrium

directions for the net average magnetization are located at 0°, 90°, 180° and at 270° for the

buckle state and 45°, 135°, 225° and 315° for the leaf state. At 200 nm the energy barriers for

the escape from the leaf state and from the buckle state are virtually identical. The overall pic-

ture thus becomes that of an 8 fold anisotropy (see Fig. 7.7) a feature overlooked in the previ-

ous studies [28].
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Figure 7.7 Energy along the optimal path with the characteristic magnetization states
(minima and saddle points) for a 200 • 200 • 5 nm square permalloy element
showing the energy dependence versus the in-plane net magnetization direction. The
bold solid curve corresponds to the formula.

Energy (q>)

Figure 7.8 The results obtained with the NEB (see figure 7.7) can be used to
simplify the model from a full finite element model to a macrospin model with a
energy function that depends on the direction of the net in-plane magnetization.
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Once the MEP is computed we know the energy as function of the net in-plane magneti-

zation direction. With this information we can simplify the model as demonstrated in figure

7.8. Instead of a full finite element model a macrospin model with an energy function that

depends on the direction of the net in-plane magnetization can be used. An application is the

study of switching processes in the dynamic regime [77,8] using this simplified macrospin

model.

As mentioned before the method always gives the MEP which is closest to the initial path.

Starting with an initial path which is in-plane of the film we obtain a MEP which has the net

magnetization in-plane. However if we start with the initial path in the plane perpendicular to

the film we also obtain a path involving vortex motion with a vortex state as metastable state.

Above sizes of 200 nm the energy of the vortex state becomes comparable with the energy of

the buckle state. However the energy barrier to access the vortex state from the buckle state

was found to be about 4 times higher than the energy barrier to access the leaf state from the

buckle states. Therefore the "in-plane-MEP" is still preferred. It is possible (but not investi-

gated in this work) that the "vortex-MEP" can become the path with the smallest barrier at

sizes larger than 200 nm.

7.4 Thermal switching

As an application we compare the path method with Langevin simulations (see figure 7.9)

for a 90 • 90 • 4.5 nm square. First we calculate the minimum energy path between two leaf

states. The graph shows the energy along this path. The energy is normalized to the energy of

the leaf state and expressed in terms of kBT for a temperature of 450 K. Two barriers have to

be overcome and a metastable C-state is visited in between. The configurations along this

path are shown in the top sequence in figure 7.9: The initial leaf state, the first saddle, the

metastable C-state, the second saddle, and the final leaf state. But does this path really repre-

sent the path that will be taken during a thermally induced switching event? We perform a

thermal waiting time experiment using Langevin dynamics. We start with a leaf state and wait

for a spontaneous thermal switching event to occur. The bottom sequence in figure 7.9 shows

such a switching event. The in-plane angle of the magnetization is plotted versus the time.

The magnetization precesses around the ground state (leaf at 45°). At some point the oscilla-

tions get large enough and the magnetization switches to another leaf state. Comparing the
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The waiting time to escape from the C-state is much smaller than the switching time

between the leaf states. This becomes clear by looking at the energy barriers (see fig. 7.9): The

energy barrier AEi is much smaller than the energy barrier AE2. To demonstrate this differ-

ence in waiting times we perform a second Langevin simulation at much smaller temperature

and we start in the metastable C-state (see figure 7.10).

T = 70 K
— T = 80K

4 6
time (ns)

Figure 7.10 Thermal switching from a metastable C-state (9=0°) to the leaf-ground
state for a 90 • 90 • 4.5 nm permalloy square at T = 70 and 80 K. The figure
shows the direction of the net in-plane magnetization as function of the time. At T
= 70 K the energy barrier is higher than for 80 K and no switching (escape) is
observed within 10 ns. At T = 80 K the magnetization switches and then stays near
the ground state (leaf, 9=45°) since the temperature is too small to induce an
escape from this state within the time scale studied here (10 ns).

The energy barrier to escape from the C-state at T=80 K is 5 kg T and 5.7 kg T for

T = 70 K, while the energy barrier to escape from the leaf state is 34 kBT at T = 80 K.

According to the Neel-Brown equation for the transition rates in the case of high energy bar-

riers (EB » 1 kBT)

\
Barrier}
k TKB1 J

(7.1)



CONFIGURATIONAL AND SHAPE ANISOTROPY IN PERMALLOY PLATELETS 112

magnetization states we see that the trajectory calculated by Langevin dynamics indeed passes

the saddle points and the C-state as predicted with the nudged elastic band method.

To point out: The first path (top sequence in Fig. 7.9) was found just from geometrical

aspects of the energy landscape using the nudged elastic band method, while for the second

path (bottom sequence in Fig. 7.9) the stochastic differential equation of motion was inte-

grated at a finite temperature. The advantage of the path method is that is generally applicable

also to large scale systems with high energy barriers while the Langevin waiting time experi-

ment is limited to small problems with small barriers and short time scales (some nanosec-

onds).
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Figure 7.9 Comparison of the results obtained with the nudged elastic band method
(top sequence) with a trajectory calculated by Langevin simulation (bottom sequence).
Shown are magnetization states along the minimum energy path and the energy along
this path. The energy barrier AEj is much smaller than the energy barrier AE2. Thus,
the waiting time to escape from the C-state is much smaller than the switching time
between the leaf states. The magnetization states obtained with Langevin dynamics are
in good agreement with the results obtained with the nudged elastic band method.
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the transition frequency becomes/= 0.6 ns"1 when assuming a prefactor^ = 100 ns"1 for

T = 80 K and E%=5 kBT To escape from the leaf state a much higher energy barrier has to be

overcome (34 kBT). For T = 80 K this gives a transition frequency/= 17 • 10 ns" = 472

hour" . The switching events would occur at the time scale of hours. The probability to

observe such an event at the timescale of 10 ns is therefore very small and the magnetization

stays near the ground state (leaf) after this state has been reached by switching from the C-

state. At T = 70 K the transition frequencies are only half of the values at 80 K. In the simu-

lation shown in Fig. 7.10 we do not observe an escape from the C-state in this case. For more

quantitative analysis of this problem many repetitions of the simulation for different tempera-

tures would be needed. Statistical quantities as the prefactor^, can then be calculated by aver-

aging over the values in the sampled simulations. A more detailed study on this topic is

presented in chapter 10.
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8 THERMALLY INDUCED MAGNETIZATION REVERSAL IN

AFC MEDIA.

The nudged elastic band method is applied to calculate optimal paths for
the thermal switching in AFC media. Energy barriers and transition
rates can be estimated from the saddle points and the energy minima
along the minimum energy path. We investigate the dependence of the
energy barrier on the strength of the antiferromagnetic coupling and
study the reversal in the data bit transition region. Below a coupling
strength of 1.1 mj/m2 a two step reversal occurs as the system passes a
metastable state. Above a coupling strength of 1.1 mj/m this metasta-
ble state disappears. The energy barrier is constant for a coupling
strength greater than 1.5 mj/m .

8.1 Introduction

AFC media is a prominent candidate where thermal stability is increased by a stabilizing

layer [52,66]. As described in the previous sections the calculation of thermal stability requires

a detailed characterization of the energy landscape. To obtain the transition states one needs

to calculate saddle points between stable states (energy minima). While it is straightforward to

calculate energy minima a much more demanding task is to find the saddle points between

the minima. Even for low dimensional models e.g. a macrospin model for AFC media where

two spins are exchange coupled this calculation [87] is quite complex although it has just 4

degrees of freedom. We use the nudged elastic band method to calculate saddle points and

energy barriers. We start with one irregularly shaped AFC grain (figure 8.1 B) discretized with

about 800 nodes. In a next step the energy barrier for a grain in the data bit transition region

was calculated in a model with 25 irregularly shaped AFC grains (figure 8.1 A) with a tetrahe-

dral mesh of ~ 5000 nodes.
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magnetic layer 1
(9 nm CoCr)

nonmagnetic
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(0.8 nm Ru)

magnetic layer 2
(4 nm CoCr)

Figure 8.1 A) 25 AFC grains with random anisotropy axes in-plane. B) The interface
area of the enlarged AFC grain is 96.15 nm . Vj and V2 are the volumes of the top
and bottom layer grains. (Vj = 865 nm , V2 = 385 nm ). The figure shows the
surface triangles of the finite element mesh used in the calculations.

8.2 Results

Fig. 8.1 shows the model used in our calculations. The recording layer and the stabilizing

layer are separated by a thin nonmagnetic Ru-spacer of about 0.8 nm thickness which couples
A

the two layers antiferromagnetically. For an interface area of 96.15 nm and a coupling

strength up to 5 mj/m this gives energies up to 48 kBT. The magnetic material is assumed to

have uniaxially magnetocrystalline anisotropy with the easy axes oriented in the film plane.

The magnetic films are grown epitaxial, therefore the bottom and top layer have the same

easy axis orientations. However the magnetic materials can be different in the bottom and top

layer. In this work we use the same material properties for both layers.
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Figure 8.2 Energy along the optimal path for an exchange couplingj=0.2 mj/m
(J*Area ~ 4.8 kBT). The magnetization reverses by a two step process passing
two energy barriers. Energy barriers and magnetization states are indicated in the
figure.

We start by investigating the dependence of the energy barrier on the interface coupling

strength for an isolated irregularly shaped AFC grain as shown in figure 8.1 B. As a basic set

of parameters we choose the following values: ^tulk = 10 PJ/m>/sl = 7s2 = 0-375 T and K,̂

= K^ - 2.3 x 10 J/m . For the top grain this gives a uniaxial anisotropy energy of about 50

kBT For weak coupling (J < 1.1 mj/m ) a two step reversal occurs. First one layer reverses

and the system remains in a metastable state where both grains are parallel until the second

layer switches. The two step reversal mode is shown in figure 8.2. The energy barrier increases

linearly with the coupling strength reaching 1.41 K^V\ at about 1 mj/m . K^ is the uniaxial

anisotropy and V^ and K2 are the volumes of the two subunits (see figure 8.1 B). Above a

critical coupling strength of 1.1 mj/m the metastable state disappears (see figure 8.3). Above

this critical value the interface coupling energy exceeds the energy for uniform rotation of the

smaller grain. For thinner bottom layers a smaller coupling strength is sufficient to reach this
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critical point. The energy barrier still increases with the coupling strength reaching 1.45

at J ~ 2 mj/m2. Above this value saturation is reached (figure 8.3).

single barrier
region

two step
reversal

_L
2 3 4

J (mJ/m )

Figure 8.3 Energy barrier as a function of the interface coupling strength for one isolated
AFC grain. The point indicates the critical coupling strength which separates the two- and
the one-step reversal mode. V^ and V2

 are me volumes of the top and bottom layer
grains. (K^ = 230 kj/m3, 1/j = 865 nm3, V2 = 385 nm3)

For high quality recording media a high energy barrier alone is not sufficient. This could

be achieved by simply increasing the anisotropy in conventional media. The second important

quality factor is the writeability of the media since the recording head has a limited writing

field. The desired media should have a low switching field but keep a high energy barrier. In a

second step we calculate the switching fields using standard dynamic micromagnetics [103].

The reversing field is applied in-plane under an angle of 21° [86] to the easy axis of the grain.

The results are shown in figure 8.4. We compare the switching field Hc of conventional media

with AFC media as a function of the corresponding energy barrier. In the case of conven-

tional media (using the top layer grain only in our AFC model) we increased the energy bar-

rier by varying (increasing) the anisotropy constant K^ (starting from 230 kj/m3). In AFC

media the energy barrier is increased by varying (increasing) the interface coupling strength

but keeping the anisotropy (K,, = 230 kj/m3) constant. The dashed line shows that the energy

barrier of AFC media can be increased by 15% as compared to conventional media without

increasing the switching field Hc. This best gain corresponds exactly to the interface coupling

strength in the AFC media at which the reversal mode changes from two step to one step
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reversal (see figure 8.3 and 8.4). Here the interface coupling energy is about 110% of the

anisotropy energy of the bottom layer. The situation is further illustrated in fig. 8.6 where the

ratio of the energy barrier and the switching is plotted as a function of the interlayer coupling

strength.

1.2
213
0

ÖJQ
C
a

C/5

— conventional media
— AFC media

1 1.2 ~ 1.
Energy barrier (K V

topgrairr

-15 % gain in the energy
barrier at the same writing field

-> J ~ 1 mJ / m2

Figure 8.4 Switching field as a function of the energy barrier. Compared are
conventional media with AFC media. The reversing field is applied 21° [86] to
the easy axis. From the horizontal line we see that the energy barrier of the
AFC media is 15% higher than the one of conventional media at the same
switching (writing) field.

The method also allows the calculation of more complex models. We constructed a model

of 25 irregularly shaped AFC grains. The average grain diameter was 9 nm and with 0.9 nm

thick non magnetic grain boundaries in between. The top and bottom layer had equal param-

eters as in the example of the single grain. The energy barrier was calculated for a grain in the

data bit transition region as shown in figure 8.5. Although the model is complex and the

dimension of the discretization space high the method gives the proper saddle point and cor-

responding energy barrier in a reasonable computing time (1/2 day, when meshed with 5 000

nodes) on a single processor desktop computer. The calculated energy barriers differ only



THERMALLY INDUCED MAGNETIZATION REVERSAL IN AFC MEDIA. 120

slightly from the energy barrier of the isolated grain and are about 3% smaller. This is

explained by the demagnetizing field in the transition region (figure 8.5).
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<D

00.95
ö

0.9

Figure 8.5 Comparison of the energy barrier for the thermal reversal of an AFC
grain. When located in the transition region (right) of a data bit, the barrier is 3%
smaller than for a completely isolated grain (left).

In a last step we compared our results that we obtained with a micromagnetic model using

sub-grain discretization with a simpler model where each grain is assumed to be single

domain (macrospin model). Fig. 8.7 shows a snapshot of the magnetization during the ther-

mal reversal for a coupling strength of 1 mj/m . The top grain shows a slight deviation of the

magnetization from the perfectly uniform state. Thus, some part of the total energy can be

stored in the bulk exchange energy (5% here). This means that it is important to use subgrain

discretized models in order to obtain a high accuracy estimate of the energy barrier. The sim-

plified macrospin model overestimates the energy barrier by some percent. Note that due to

the exponential nature of the Neel-Brown equation for the calculation of transition rates,

small errors in the energy barrier can already give significant deviations in the calculated tran-

sition rates.
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Figure 8.6 Ratio of the energy barrier and the coercive field as function of the
interface coupling strength. For conventional media this would be a horizontal
line. This means that the barrier increases at the same rate as the switching field.
In AFC media there is a trade-off. The maximum in the curve gives the optimal
working point for AFC media. At this point we have a high energy barrier but at
the same time a low switching field.

Full FEM-model -» up to 5 % of
the energy can be stored In the
bulk exchange energy.

Macrospin model (2 coupled spins)
overestimates the energy barrier.

Figure 8.7 Snapshot of the magnetization during the thermal reversal for a coupling
strength of 1 mJ/m . The top grain shows a slight deviation of the magnetization
from the perfectly uniform state. Thus, some part of the total energy can be stored
in the bulk exchange energy (5% here). The color code maps the in-plane
magnetization direction along the easy axis.
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9 ENERGY BARRIERS IN MAGNETIC RANDOM ACCESS

MEMORY ELEMENTS

Minimum energy paths and energy barriers are calculated for the free data
layer in elliptical magnetic random access memory elements using the
nudged elastic band method. The reversal mode in the minimum energy
path depends on the strength of the external field. With increasing easy
axis field the reversal mode becomes more inhomogeneous than at lower
fields. Even at small sizes inhomogeneous modes are found.

9.1 Introduction

The energy barrier between stable configurations determines the probability of a thermal

switching event. In MRAM elements the energy barrier is determined by the shape of the ele-

ment ("shape anisotropy") and the induced crystalline anisotropy. This should guarantee a

lifetime of a stored bit of about 10 years. We calculate energy barriers for elliptical MRAM

elements using the nudged elastic band method (NEB) [56]. This method finds minimum

energy paths in high dimensional energy landscapes and is a rigorous way to compute the sad-

dle point(s) between local energy minima.

Previous studies [72] on thermal effects in MRAMs are based on Langevin dynamics. A

field near the switching field must be applied in order to decrease the energy barrier and to

observe thermal switching of the magnetization. Using the nudged elastic band method we

can calculate energy barriers also for zero applied external field.

9.2 Model of the free data layer

Our models of the free layer of the MRAM cell are based on an experimental work [88],

which studies the thermal reversal of elliptical NiFeCo MRAM elements. We calculated mini-

mum energy paths (MEP) as a function of the external in-plane field which is smaller than the

zero temperature switching field. Material parameters of NiFeCo [65] were used (/,.=1.068 T,

A-\Q pj/m, K-510 J/rrr) with the easy axis along the long axis of the element. We varied the

size of the elements starting with an element of 1120 x 400 nm size and decreasing the size
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down to 62.5 x 25 nm . Aspect ratio (2:5) and thickness (4 nm) were kept constant. Fig. 9.1

shows a top view of the model with three possible paths for a 1120 nm element.

Figure 9.1 Three minimum energy paths for the thermal reversal of a 4 nm thin
NiFeCo MRAM element are found between the two stable magnetization states. An
opposing field is applied along the easy axis (= long axis of the cell). In paths 1 and 2
the magnetization stays in-pkne crossing a single barrier. In path 3 a two step reversal
mode is found passing a metastable state (vortex in the center). For an applied field in
the range 0-15 Oe path 3 has the lowest barrier. From 15-80 Oe path 1 has the lowest
barrier and above 80 Oe path 2 has the lowest barrier (see figure 9.2). The zero
temperature switching field in a quasistatic calculation is 94 Oe.



ENERGY BARRIERS IN MAGNETIC RANDOM ACCESS MEMORY ELEMENTS 124

9.3 Reversal modes at 1.12 Jim size

By varying the field strength along the easy-axis three minimum energy paths are found

(Fig. 9.1) for a particle size of 1.12 |J.m. Two of them show a single energy barrier where the

magnetization reverses by inhomogeneous rotation in the film plane (path 1 and path 2 in Fig.

9.1). The third mode is a two-step reversal which has a metastable state where a vortex is in

the center of the element (path 3 in Fig. 9.1).

A dynamic hysteresis calculation (integration of the Landau-Lifshitz Gilbert equation

using a Gilbert damping constant of OC = 1) [103] gives a zero temperature switching field of

94 Oe. The underlying reversal mode during the switching driven by an external easy-axis

field larger than 94 Oe is similar to the mode of path 2 in Fig. 9.1. This is in agreement with

the following observation: At a field strength of H < 15 Oe the mode path 3 has the lowest

barrier while for H > 15 Oe the mode of path 1 becomes favorable. Above 80 Oe we are

already close to the zero temperature switching field and the mode of path 2 becomes the

mode with the smallest energy barrier. Fig. 9.2 shows the energy barriers of the tree paths as a

function of the applied field.

path 1
G-€)path2

pathS

0 20 40 60 80
external field [Oe]

Figure 9.2 Energy barrier as a function of the easy-axis field strength for 1.12 |im
particle size (figure 9.1). The underlying thermal reversal mode (paths) depend on
the strength of the external field. In Paths 1 and 2 the magnetization stays in-pkne
crossing a single barrier. In path 3 a two step reversal mode is found passing a
metastable state (vortex in the center).
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9.4 Variation of the particle size

Fig. 9.3A and 9.3B show the size dependence of the energy barrier when an easy-axis field

is applied. The extrapolation to the zero barrier height (Fig. 9.3A) gives a switching field that

agrees with the value obtained in the dynamic calculation of the switching fields (Fig. 9.4A).

At zero external field the energy barrier depends almost linearly on the square root of the area

of the top surface of the element (Fig. 9.3B).

A
1120nm
125 nm

A-A 62.5 nm

0 150 300 450 600
external field [Oe]

B

0 150 300 450 600
sqrt (area) [nm]

Figure 9.3 A) Energy barrier as a function of the easy-axis field strength for
different particle size. The extrapolation to zero barrier height gives the
switching field. B) Energy barrier at zero external field as a function of the
particle size (given as the square root of the surface area). Thickness (4 nm) and
aspect ratio (2:5) are fixed as in figure 9.1 The energy barrier depends close to
linearly on the square root of the area of the MRAM element.

9.5 Stability of half selected cells

Fig. 9.4 shows that the lowest switching fields are obtained when applying the field in-

plane at about 45° to the easy axis (see Fig. 9.4). At 1.12 (im size of the long axis this corre-

sponds to a hard axis and easy axis field of 43 Oe (both a 43 Oe easy axis field and a 43 Oe

hard axis field are applied to obtain the 45° in-plane field). To ensure thermal stability the
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magnetization must stay stable when applying either a hard- of or an easy-axis field of this

strength. At an easy-axis field of 43 Oe the energy barrier is 75 kB300K (Fig. 9.3) which is

high enough to ensure stability in the range of decades.

For hard-axis fields the situation was found to be less critical. Fig 9.5 compares the energy

barrier dependence of half selected cells on the external field for a particle size of 125 nm.

The lowest switching field (Fig. 9.4) is obtained with a superposition of a 148 Oe hard-axis

field and 148 Oe easy-axis field. The energy barrier is about 140 kB300K for a hard axis field

of 148 Oe and 80 kB300K for an easy axis field of 148 Oe (see Fig. 9.5). Also note that the

thermal stability is more critical when the field is applied opposite to the easy axis than when

applied perpendicular to it.

4>

62.5 nm
125 nm
1120nm

1500 600 700
easy-axis field [Oe]

Figure 9.4 Switching astroid obtained in a quasistatic calculation for three
different sizes of a 4 nm thin elliptical MRAM element of aspect ratio 2:5. The
given size is the length of the long axis.
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Figure 9.5 left) Array of MRAM cells with current lines. To switch the center cell a
current is applied in the two red colored current lines. The resulting field (red arrow)
is strong enough to switch the magnetization. Half selected cells feel a weaker field
(blue arrows) either parallel or perpendicular to the easy axis, right) Energy barrier as
a function of the applied field strength for the half selected cells with a size of 125
nm. The blue line corresponds to the field strength when a switching current is
applied. Applying an easy-axis field is more critical for the stability than when
applying a hard-axis field.

In the case studied above, the energy barrier (~100 kBT) would be sufficient to guarantee

the thermal stability over the lifetime of an MRAM device. In practice the situation is more

critical since the production process gives deviations in the properties of the individual

MRAM cells from their desired specifications. Variations in size, shape, magnetic properties

and roughness will result in a spread of the switching field and energy barrier distribution (fig-

ure 9.6). A larger spread in the distribution leads to a much stricter requirement on the energy

barrier. This is explained by the following two arguments:

• Due to the distribution of the switching fields, higher fields are needed in order to switch
the strongest MRAM cells.

• On the other hand also the weakest MRAM cells must stay stable at applied external fields
during time when they are half selected.
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These two arguments together result in a very strict requirement for the average energy

barrier height.

Figure 9.6 Switching field distribution. The first peak shows the switching field
distribution for half selected cells. The second peak is the switching field
distribution for unselected cells. Deviations of geometry, size, material properties
and surface roughness result in a variation of the switching field and energy barrier
distribution. [68]

9.6 Field dependence of the reversal mode

As shown above the reversal modes found in minimum energy paths depend on the field

strength and direction of the field. For the large element we found three paths as shown in

Fig. 9.1 and 9.2. Even more surprising we also see this for the smallest particle studied

(62.5 nm). One would expect that the reversal mode would be close to homogeneous rotation

at this size. Indeed, magnetization reversal by core rotation occurs in the case when no field is

applied. At stronger easy-axis fields however (above 150 Oe), the mode changes to an inho-

mogeneous reversal involving domain wall motion similar to the mode of path 1 in Fig. 9.1.

Now, the domain wall is oriented along the short axis (figure 9.7 left). Fig. 9.8 shows the

energy along the minimum energy paths for the 62.5 nm element as a function of the
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arclength. The reference energy (zero point) is the energy of the initial (non-reversed) state.

The external fields of different strength are applied parallel to the easy axis.

^ ^

Hex, = 0

200

position in path [image number]

Figure 9.7 Left: Magnetization configurations along the minimum energy paths
for the thermal reversal of a 4 nm thin NiFeCo MRAM element of 62.5 nm size.
An opposing field is applied along the easy axis (=long axis). For fields stronger
than 150 Oe there is an abrupt change of the reversal mode to the one shown
here (500 Oe). Right: Energies along the minimum energy path. The blue lines
show energies when no field is applied. The red lines are obtained at an easy axis
field of 500 Oe. The exchange energy shows that at higher fields the reversal
mode is more inhomogeneous than when no field is applied.

The change of the reversal mode is also observed in the increase of the arclength of the

path above 150 Oe. The mode has become more inhomogeneous as shown in Fig. 9.7. As a

consequence the total length of the path increased. Also note how the energy barrier

decreases with increasing field strength.

The field dependence of the reversal mode is explained as follows: at low external fields

the reversal mode is mainly determined by the competition of exchange and strayfield energy.

At higher fields the Zeeman energy gets a stronger weight and it can get of advantage to fol-

low a more inhomogeneous mode. More energy is "spent" in exchange, but therefore more

energy is gained in the Zeeman part. In total the energy barrier is smaller even though the
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mode has become more complex. This observation is shown in the plots in Fig. 9.7 on the

right. The four energy contributions along the minimum energy paths are compared for

62.5 nm particle size. We compare the minimum energy path obtained with zero external field

with the minimum energy path obtained for Hext = 500 Oe. The exchange energy is 4 times

higher at 500 Oe than at zero field since the reversal mode involves the motion of a domain

wall. The anisotropy energy only plays a minor role which means that the shape of the particle

and the external field dominates the behavior of the reversal mode and height of the energy

barrier.

For hard-axis fields the opposite behavior is observed. The reversal mode becomes more

homogeneous at stronger fields.
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Figure 9.8 Energy along the minimum energy paths for a 62.5 nm element as a
function of the arclength in the path. The energy is normalized to the energy of
the initial (non-reversed) state. Different easy axis fields are applied. The increase
of the length of the path above 200 Oe is due to a change of the reversal mode.
The mode has become more inhomogeneous which is seen in figure 9.7.
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10 COMPARISON OF LANGEVIN DYNAMICS WITH

ENERGY BARRIER COMPUTATION

Thermal transition rates between ground states in small softmagnetic ele-
ments up to a size of 90x90x4.5 nm . Two complementary methods to
study thermal effects in micromagnetics are compared. On short time
scales Langevin dynamics gives insight in the thermally activated dynam-
ics. For longer time scales the nudged elastic band method is applied. The
method calculates a highly probable thermal switching path between two
local energy minima of a micromagnetic system. For small elements both
methods can be applied. Good agreement is found between the results
obtained with the different methods.

10.1 Transition rates in squared soft magnetic elements

We study squared softmagnetic permalloy platelets. The stable states in a 50-50-5 nm

square are so called "leaf" states [28,29]. The average magnetization is aligned in-plane, and

along one of the 4 diagonals (see Fig. 10.1). A finite element mesh with an average mesh size

of 5 nm was used. The thermal fluctuations drive the magnetization to precess around the

leaf states maintaining the magnetization in-plane. From time to time switching from one leaf

state to another occurs (Fig. 10.1).

Using Langevin dynamics we first calculate the average relaxation time T for the thermally

induced switching between the leaf states. The relaxation time, T = TO exp( AE / kBT) [16,78], is

the inverse of probability per unit time for crossing the barrier AE. The attempt frequency, fo

= I/TO, depends on material parameters, like anisotropy, particle shape, and damping.

In a first step we vary the temperature from 50-200 K. The total simulation time is chosen

to sample at least 10 switching events which then give the average relaxation time T. By fitting

these curves (see Figure 10.2) with the Neel-Brown theory [16,78] we obtain the energy bar-

rier and the prefactor (attempt frequency). An energy barrier of (5.7 kB 100 K) and an

attempt frequency offo = 6-109 Hz was found for a = 0.02.
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Figure 10.1 Thermal switching between the 4 "leaf" states of a. 50 \ 50 x 5 nm
platelet (T = 120 K). The average magnetization direction is shown in polar
coordinates. Thermal fluctuations cause the magnetization to precess around the
leaf states maintaining the magnetization almost in-plane (maximum theta is only
4°). From time to time a switching from one leaf state to another occurs. The
squares schematically show the magnetization direction that correspond to a
particukr region of (p.

In a second step we vary the damping constant, Ot, at constant temperature of 200 K. Fig-

ure 10.3 shows that for values of the damping constant 0.001 < a. < Q.I the attempt fre-

quency reaches its maximum values of about fQ = 5-109 Hz. Outside this region the attempt

frequency drastically decreases. This is understood since in the limit of zero or infinite damp-

ing the transition frequency has to vanish.
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Figure 10.2 Thermally induced switching between the leaf states in a square NiFe
nanoelement (50*50*5 nm ). The relaxation time T is plotted as a function of the
temperature. Fitting the values with the Neel-Brown theory gives the energy
barrier and prefactor/0=7/T0.
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Figure 10.3 Thermally induced switching between the leaf states in a square NiFe
nanoelement (50-50-5 nm3). Dependence of the prefactor TQ in the Neel Brown law
on the damping constant a. The temperature was fixed at 200 K.
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The direct computation of the energy barrier using the nudged elastic band method gives a

barrier height of 4.8 kB 100 K which is in good agreement with the results obtained from

Langevin dynamics. The deviation of the energy barrier obtained with Langevin dynamics can

be attributed to the following effects: (1) work in the limit of low energy barriers, AE ~ kBT.

So it is not clear how to count recrossing events. Furthermore changes of the free energy with

temperature are not taken into account with the standard NEB method. (2) The prefactor is

temperature dependent [23]. (3) A limited number of calculated switching events causes poor

statistics.

When comparing the transition states with those in the smaller 50-50-5 nm3 square, we see

that in the large elements the transition states are more complex than just a simple flower-

state. For the small sample, 50-50-5 nm , the transition state (saddle point) is the flower state
•̂[29] with the net in-plane magnetization along the edges. In a larger sample, 90-90-4.5 nm ,

the situation is different. From the minimum energy path we see that also a metastable C-

state is present. However the energy barrier (AEj = 0.9 kB 450K) to escape from the C-state

is much smaller than the energy barrier to access the C-state from a leaf state (AE2 = 6.5

kB450K). As a consequence, the relaxation time to escape from the C-state into a leaf-state is

more than 3 orders of magnitude smaller than the relaxation time to access the C-state from

the leaf state. With a prefactor in the Neel-Brown equation T0 = 0.1 ns, the average waiting

time T = T0exp(A£2//ts450Af) becomes ~7.6 ns. Thus, we can expect to observe a thermal

switching event with Langevin dynamics at a temperature of 450 K. Fig. 10.4 compares such a

thermal switching event with the minimum energy path. For the minimum energy path mag-

netization states and the energy along the path are displayed. For Langevin dynamics the mag-

netization states and the time evolution of the net in-plane magnetization direction are

displayed. With Langevin dynamics we observe a thermal switching between two leaf-states.

The angle of the in-plane magnetization switches from 45° to —45°. Indeed the same saddle

points and the metastable C-state (0°) are visited as predicted with the NEB-method. We see

that the C-state is visited only for a very short time since the relaxation time

T = T0exp(A£, / kj) = 0.025 ns is very small.
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10.2 Summary

The comparison of the transition states obtained with the two different methods shows

very good agreement: The thermal switching process obtained with Langevin dynamics

agrees well with the minimum energy path obtained with the NEB-method. The advantage of

the NEB-method is the possibility to calculate transitions over large energy barriers, while

Langevin dynamics is limited to short transition times and therefore small energy barriers

only.
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Figure 10.4 Comparison of the results obtained with the nudged elastic band method
(top sequence) and with direct Langevin simulation (bottom sequence). Shown are
magnetization states along the minimum energy path and the energy along this path.
The magnetization states obtained with Langevin dynamics are in good agreement with
the results obtained with the nudged elastic band method.



OUTLOOK 136

11 OUTLOOK

Since magnetic devices become smaller and smaller, especially in magnetic recording

devices, thermal effects become crucial. Therefore the numerical simulation of thermal

effects becomes important, especially the long time thermal stability of the magnetization in

magnetic storage devices. The nudged elastic band method is a very powerful method for cal-

culating energy barriers in magnetic systems even if the dimension of unknowns in a micro-

magnetic model is as high as 50000. The comparison with Langevin dynamics of thermally

activated barrier crossing show that indeed the same transition state is chosen as predicted

with the direct energy barrier calculation.

In order to derive transition rates theoretically, the attempt frequency is required in addi-

tion to the energy barrier. The efficient calculation of the prefactor in the Neel-Brown theory

is still an open question. Several numerical methods and theories exist for the calculation of

transition rates in chemical physics [59,62]. It is not obvious whether these methods will work

efficiently for micromagnetic systems with a high number of degrees of freedom.

The knowledge of the minimum energy path and of the transition states is required to cal-

culate thermal switching rates using transition state theory. The calculation of the minimum

energy path using the nudged elastic band method is a first step towards the calculation of

transition rates in complex micromagnetic systems.
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12 APPENDIX

12.1 Demo source code for a 2D example

A C++ source code that demonstrates the path finding method is available at

http://magnet.atp.tuwien.ac.at/dittrich .

12.1.1 Analyzing the "path.log" file

Compile the source code and run the "app" with the parameters as set. The results of the

program are written to the "path.log" file. It looks like this:

» iterNr, 3
P
P
P
P
p
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

arcLenght, 4
0. OOOOOOe+00
3.1892616-01
6.3777306-01
9.5646536-01
1.2749366+00
1.5931286+00
1.9110006+00
2.2285266+00
2.5456986+00
2.8625246+00
3.1790326+00
3.4952636+00
3.8112746+00
4.1271316+00
4.4429116+00
0. OOOOOOe+00
3.1892616-01
6.3777306-01
9.5646536-01
1.2749366+00
1.5931286+00
1.9110006+00
2.2285266+00
2.5456986+00
2.8625246+00
3.1790326+00
3.4952636+00
3.8112746+00
4.1271316+00
4.4429116+00

0
-6
-3
1
6
1
1
1
1
1
6
1

-3
-6
-8.
0.

-6,
-3
1,
6.
1,
1.
1.
1.
1.
6.
1,

-3.
-6.
-8.

Energy, 5
.OOOOOOe+00
.7999776-01
.4409856-01
.4029026-01
.7617506-01
.1566096+00
.4861736+00
.5999206+00
.4760216+00
.1397046+00
.5788206-01
.2570186-01
.5223996-01
.8231496-01
.0000006-01
.0000006+00
.7999776-01
.4409856-01
.4029026-01
.7617506-01
.1566096+00
.4861736+00
.5999206+00
.4760216+00
.1397046+00
.5788206-01
.2570186-01
.5223996-01
.8231496-01
.0000006-01

0
2

thetal, 6
.OOOOOOe+00
.2439956-01

4.4879906-01
6
8
1
1
1
1
2
2
2
2
2
3
0
2
4
6
8
1
1
1
1
2
2
2
2
2
3

.7319846-01

.9759796-01

.1219976+00

.3463976+00

.5707966+00

.7951966+00

.0195956+00

.2439956+00

.4683946+00

.6927946+00

.9171936+00

.1415936+00

.0000006+00

.2451176-01

.4898356-01

.7332126-01

.9753846-01

.1216926+00

.3458716+00

.5701596+00

.7946816+00

.0193066+00

.2439496+00

.4685256+00

.6929806+00

.9173186+00

.1415936+00

0
-2
-4
-6
-9
-1
-1
-1
-1
-2
-2
-2
-2
_2
-3
0
-2
-4
-6
-9
-1
-1.
-1
-1.
-2 .
-2.

theta2, 7
.OOOOOOe+00
.2662476-01
.5313786-01
.7943336-01
.0541626-01
.1310076+00
.3561466+00
.5807966+00
.8049456+00
.0286056+00
.2518136+00
.4746296+00
.6971336+00
.9194186+00
.1415936+00
.0000006+00
.2649696-01
.5292226-01
.7926456-01
.0541666-01
.1312446+00
.3565986+00
.5813596+00
.8053876+00
.0288286+00
.2518006+00

-2.4744516+00
-2.
-2.
-3.

.6969126+00

.9192766+00

.1415936+00

springforce, 8
0.
0.
0.
0,
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
-7.
-1.
-2.
-2.
-3.
-3.
-3.
-3.
-3.
-2.
-2.
-1.
-7.
0.

.0000006+00

.0000006+00

.0000006+00

.0000006+00

.0000006+00

.0000006+00

.OOOOOOe+00

.0000006+00

.0000006+00

.0000006+00

.0000006+00

.0000006+00

.OOOOOOe+00

.OOOOOOe+00

.OOOOOOe+00

.OOOOOOe+00

.9278536-05

.5452616-04

.2192466-04

.7806926-04

.2014416-04

.4606376-04

.5457286-04

.4530096-04
1876966-04
7635526-04
2021066-04
5315156-04
8515706-05
OOOOOOe+00

abs force, 9
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
0. 0000006+00
0. OOOOOOe+00
0. 0000006+00
0. 0000006+00
0. OOOOOOe+00
0. OOOOOOe+00
0. OOOOOOe+00
1.1337966-03
1.8917406-03
1.3918266-03
3.9666666-04
2.5757466-03
4.6230216-03
5.6667526-03
4.5237216-03
2.4358446-03
3.1603706-04
1.4731896-03
1.9245796-03
1.2608596-03
0. OOOOOOe+00

DESCRIPTION

column 2 image number

column 3 the current time step (iteration number)

column 4 arclength (length of the path from the initial image to the current image)

column 5 energy of the image

column 6,7 the 2 coordinates for this simple energy landscape

column 8 the springforce acting on the image
fy

column 9 the total force acting on the image = L norm[normalgradient + springforce].
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-l

-3

-4,
2

them I

In 2D we can still visualize the path. To do this

we plot column 6 and 7. The red curve is the initial

guess for the path. The solid black curve is the path

at the end (= minimum energy path).

50 100 150
iteration number

To see the evolution of the energy of the images dur-

ing the optimization plot column 3 and 5.

200

2

1.5

0

-0.5

When plotting column 2 and 5 we see the

energy along the path during the optimization

0 5 10 15
image number

20



APPENDIX 139

2 3 4
arclength

Or you plot column 4 and 5. Here we also see

that the length of the path changes while the opti-

mization proceeds.

Length changes are also seen by plotting col-

umns 3 and 4. In this case the length increases. In

the initial guess the images were equally spaced. But

in an intermediate path of the simulation this is not

more the case. Since there is a springforce the

images become equally spaced again at the end. A

stronger springforce would have kept the equal dis-

tance all the time.

'50 100 ̂  150
iteration number

200
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0.6

0.4

a>
•S
o 0.2
00

-0.2

° total force
• only springforce

50 100 150
iteration number

200

To see the forces acting on the images you can plot column 3 and 8 or 3 and 9. We

see that in the beginning there is no springforce since the images were equally spaced

in the initial path. Here the evolution of the path is dominated by the energy landscape

(following the normal component of the gradient). But after a while the images get

non-equally spaced and the spring forces increase. At the end the total force is domi-

nated by the spring force. Here the path has reached the minimum energy path, but the

images still move along the path according to the springforce until they are equally

spaced again.

12.1.2 Changing the parameters

You can change the parameters in the "path.inp" file:

PATH_SIMULATION
15
4
1.0
0.15

number_of_pathpoints
dimension_of_space
spring_constant
euler_timestep

You can play with 3 parameters here:
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The dimension of space cannot be changed without further implementation in the code

(see below).

12.1.2.1 number of path points

Number of images used to describe the path.

12.1.2.2 dimension of space

Is set to 4 here. Why not 2? The code is implemented for the 4D case described in section

4.9.1. Four angles are needed to describe the unit vectors (only the direction of the spins can

change) of two interacting spins. However the energy landscape reduces to 2D (here the 2

theta angles) due to symmetry arguments. The two phi angles will not change in this case. For

the portability of the code we keep all 4 angels so that it can be extended to cases with many

interacting spins.

The source code can easily be extended to higher dimensions. Set the dimension according

to the number of spins that you have. For 1000 spins the dimension is 2000 and so on. The

data format and most routines are implemented to work for higher dimensions except some

of them: You need to calculate the energy and the energy gradient of your spin-system and

change the two subroutines (which are limited to this 2D case).

"void Path::Energy(Mag* M)"

"void Path::calcgradient(Mag* M)"

in the "Path.cpp" file accordingly to the higher dimensional case. The rest (tangent,

forces, springforces, integration) should work properly.
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void Path: : Energy (Mag* M)
{
/•*** special case of energy for to spins -> dimension-4 !! *«•••/

//m. . .magnetization in theta and phi

double* m-M->mag;
double k-o. 2, h-o, b-0;//3.ni527;
//k. . .dipolar exchange
//h... external field
//b. . .bond angle

M->energy- s i n ( m ( 0 ) ) *sin(m[o] ) «-sin(m(2) ) *8in(m[2] )
*2>kMsin(m[o] ) ' s in (m[2 ] ) ' coa (m[ l ] -m[3 ]>*co8(m[o]> 'co8 (m[2] ) -3 ' cos (m[o ] -b ) ' coa (m[2] -bn
»2-h- (cos ( m l O ] > - . c 0 8 (oi[2] ) ) ,

)

void Path: :calcgradient (Mag* M)
1
/***• special case of gradient for to spins -> dimension-« J! *••**/

//m. . .magnetization in theta and phi
//gradient .. .in theta and phi

double* m-M->mag;
double k-0. 2, h-0, b-0; //3 . 141527;
//k. . .dipolar exchange
//h. . .external field
//b. . .bond angle

gradient 10] - 2.0*sin{m[0] ) *cos(ra[0) )+2 .0*k* (cos (mIO] ) *8 in(mI2] )*cos(m(l] -m[3] l -s in(m[0] )*cos(m[2] ) +3 .0*s in(m[0] -b)*cos(m[2] -b) ) -2 . 0
* h * s i n ( m ( O J ) ;

gradient [1] -2. 0>k* (-Bin < m [ 0 ) > -sin (m [2] ) " B i n ( m U ) - m ( 3 J » , -

gradient 12] . 2 .0«ain(m[2] )«cos(m[2] ) «-2 .0'k« (sin (m 10] ) «cos (ml 2] )*cos(m[l] - r a ( 3 J ) -cos(m[o] )*s in(m[2] ) +3.0*cos (m[o] -b)*sin(m[2] -b) ) - 2 . 0
*h*sin(m[2] ) ;

gradient [3] -2. O'k- I s i n l m l O ] ) • s in lmlz] ] -sin (mi l ) -ra[3) ) ) ;

fordnt i-0;i<-3,- i tt) gradient [i]--gradient[i] ;

And of course you need to implement the input of the initial path and output of the final

path and add things you want into the log file. You should also change the time integration

method to increase efficiency (see below).

12.1.2.3 spring constant

Try to make it weaker and stronger. You may have to choose smaller time steps at stronger

springforce.

12.1.2.4 Euler timestep

Should be no surprise that if the timestep is too large one runs into numerical problems. If

you extend the code to higher dimensions you should use something more efficient than

Euler. Euler is used here just for demonstration and in order to keep the demo-code simple

and short. We found that the BDF method in the ODE-solver package CVODE (free C-

code) is about 100 times faster than the explicit Adams method (also available within the

CVODE package) when simulating magnetic systems discretized with finite elements. Note

that the Adams method is also faster than Euler since it makes use of past values.
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12.1.2.5 Changing the initial path

You can change the initial path in the source code. However it only works now for the spe-

cial case of two spins (4D). The routine "void Path::initQ" creates the initial path. Change this

if you want something else than the straight line initial path or if you want different initial and

final states.
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