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Preface

The goal of this master’s thesis is to give a deeper insight with the help of cluster analysis
and fuzzy cluster analysis into the large data sets of the C-horizon and the O-horizon mineral
soil samples taken from a big area in a regional study in the European Arctic, and into the
large data set of the Walchen data taken from a regional study in Austria. The aim of cluster
analysis is to find groups in data, in which objects of the same group should be as similar to
each other as possible, whereas objects of different groups should be as dissimilar as possible.

By clustering a number of elements, various groups of rock types are to be recognised in the
data set of the C-horizon. Then they are to be compared with a lithological map. We have
two goals when clustering elements from the O-horizon: firstly, to localise the environmental
pollution from heavy industry and secondly, to illustrate the influence of weather (especially
in connection with the sea) on the chemical composition of the O-horizon. The distinction
of various rock types is the aim of clustering the Walchen data.

The first chapter explains the steps necessary for doing cluster analysis. The selection of
variables is of crucial importance for the clarity of the groups produced by the clustering
process. We will also see that it is necessary to standardise the data before clustering. In the
second chapter the cluster algorithms are described. In Chapter 3 a detailed description of
the data is given. The fourth chapter contains an evaluation of the quality of the clustering.
We distinguish between external, internal and relative criteria. A small selection of the
results of the clustering and their qualities is presented in Chapter 5. Additionally, further
results are to be found in Appendix A. Appendix B contains a description of the software
used. Furthermore, the written programmes are put at everybody’s disposal.
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Chapter 1

Preparations for Cluster Analysis

1.1 Introduction

Cluster analysis serves as a statistical technique for assigning a number of objects into several
groups. Objects can be characterised by more than one attribute. An example for an object
could be measurements of a soil sample with attributes iron, copper and aluminium. In this
case the object has got three dimensions. Objects in the same group (class, cluster) should
be as similar to each other as possible (homogeneity inside the class), whereas objects in
different groups should be as dissimilar as possible (dissimilarity between the classes).
The boom of cluster analysis started approximately 40 years ago as an aftereffect of increasing
computer capacity. The classification of similar objects into groups has many applications,
e.g. in archaeology, where the large number of measurements demands clusters in order
to classify newly founded fossils. Further applications can be found in social studies (e.g.
typologies of social objects as a tool to describe their behaviour), in biology (e.g. studies
on animal movements or on bird territories), in medical science (e.g. to classify diseases),
in linguistics (e.g. to define isogloss, see Filzmoser, 1993), in marketing (e.g. to separate
groups in customer bases), in bio-informatics (to predict gene functions), in city-planning
(to identify groups of houses according to their house type, value, and geographical location)
and in many other scientific disciplines.
Cluster analysis and its application in geology is the topic of many publications, e.g. Everitt
(1974), Clark (1979), Howarth (1983), Pielou (1984), Davis (1986), Jongman et al. (1987),
Rock (1988), Swan and Sandilands (1995), Legendre and Legendre (1998), McGarigal et al.
(2000).

1.2 Procedures of Cluster Analysis

This section provides an overview of the initial steps of cluster analysis. A sketch of stages
in a clustering study (Fayyad et al., 1996) is given below, although it should be noted that
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Figure 1.1: Steps of the clustering process

some studies are concerned with only a subset of the stages shown in the Figure 1.1.
Similar suggestions are given in Pirktl (1983), Gordon (1999), Jain et al. (1999), Halkidi
et al. (2001) and Bradley et al. (1999).
Cluster analysis consists of the following procedures:

• The choice of objects,

• determination of variables (see Sections 1.4, 3.2.1),

• transformation and standardisation of variables (see Section 1.7),

• determination of the distance measure (see Section 1.8),

• the choice and implementation of the clustering algorithm(s),

• evaluation of the results with the help of cluster validity measures (see Chapter 4),

• interpretation of the clustering results.

1.3 Data Format

A raw data matrix with n rows, which correspond to the objects and p columns, which
correspond to the variables, forms the starting point for cluster analysis. In our case of
the C-horizon data the raw data matrix contains for each of the 605 examined samples 89
measured concentrations of chemical elements.
If the j-th measurement of the i-th object is denoted by xij (i = 1, . . . , n; j = 1, . . . , p) this
matrix looks like

8



X =















x11 · · · x1j · · · x1p

...
. . .

...
...

xi1 · · · xij · · · xip

...
...

. . .
...

xn1 · · · xnj · · · xnp















1.4 Selection of Variables and Dimension Reduction

Some scientists have the view that a large number of underlying variables should be used,
in order not to exclude some that are possibly relevant. Gordon (1999) has shown that this
is not recommendable for some cases. Only those variables that are believed to be helpful
for grouping the data should be included in the analysis. The addition of only one or two
irrelevant variables can have dramatical consequences in finding the clusters. The inclusion
of one irrelevant variable may serve to mask or hide real clustering in the data. In that
case, we speak about masking variables. Usually, clustering, if it exists occurs only within a
relatively small unknown subset of attributes.

On the internet site http://www.fas.umontreal.ca/biol/casgrain/en/labo/ovw.html one can
find a program from Makarenkov and Legendre (2001) for optimal variable weighting based
on the idea of De Soete (1986). This program gives high weights to those attributes that
most exhibit clustering on the objects and small weights to those that do not participate in
the clustering.

An extension of this approach has been done by Friedman and Meulman (2001). They con-
sider different subsets of the attributes (variables) and compute the weight for each variable
by minimising an objective function. Afterwards, that subset is chosen which results in a
minimum over all objective functions. This approach is called COSA (Clustering Objects on
Subsets of Attributes), and a software package written in R is freely available at http://www-
stat.stanford.edu/∼jhf/COSA.html. For the underlying data of the C-horizon this method
did not lead to satisfying results.

In fact the selection of variables reduces the dimensionality of the data for clustering. Di-
mension reduction, however, can also be achieved by multivariate techniques, like Principal
Component Analysis (PCA). This approach was suggested by Everitt (1974). PCA is first
performed on the data, and then only the first few principal component scores are used as
input for cluster analysis. But for most clustering methods, one does not assume that the
data follow a normal distribution nor that there are uncorrelated variables. However, the
routine application of PCA or other factoring techniques prior to clustering is naive (see
Milligan, 1980). Clusters embedded in a high-dimensional variable space will not be prop-
erly represented by a smaller number of orthogonal components (see e.g. Yeung and Ruzzo,
2001). The transformation process may result in partial distortion of the true clustering,
may fail to find distinct clusters, or may even result in completely meaningless partitions.
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In our experience, the objective function for most clustering techniques which were used in
this diploma thesis resulted in a worse value if the clustering was performed on the significant
principal components.

1.5 Outlier Detection

Outliers in a data set can have severe influence on statistical methods. This is also true for
cluster analysis because they can negatively affect proximity measures and eliminate clus-
tering tendency. Outliers can be viewed as legitimate records having abnormal behaviour.
Statistics defines outliers as observations that do not fit the underlying probability distri-
bution. There are some interests in eliminating negative effects of outliers on the cluster
construction. Most of the research of outlier detection is not directly related to clustering.
A common method is to downweight outlying observations, where the weights are chosen
according to a robust distance measure. One can use for example the Mahalanobis distance
with robust estimations of centre and covariance (see Rousseeuw and van Zomeren, 1990).

1.6 Data Transformation

Although cluster analysis, in general, does not need normally distributed data, some clus-
tering methods assume that the data are multivariate normally distributed. Hence, a trans-
formation should be applied which turns the data distribution to approximate normal dis-
tribution.

Most of the modern textbooks on geochemistry still claim that geochemical data is close to
a log-normal distribution. This is the reason why log-transformation is widely used when
working with geochemical data. Reimann and Filzmoser (1999) have done a detailed investi-
gation for different geochemical data sets whether the elements are normally or log-normally
distributed. Using different statistical tests, it turned out that log-normal distribution could
only rarely be accepted.

A demonstration with the element Magnesium (Mg) should give a short insight about the
distribution of this element. Figures 1.2 to 1.4 show the histograms of original and log-
transformed Mg in three different media. Due to Figure 1.5 we conclude that for Mg in
C-horizon and in O-horizon the log-transformation was able to turn the distribution close to
normal distribution.

These examples should demonstrate that log-transformation is not necessarily advantageous.
At the contrary, log-transformation can even turn the data distribution further away from
normality.

There are of course other possibilities for transformation, like power transformations. A
general transformation procedure is the Box-Cox transformation (see Box and Cox, 1964).
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Figure 1.2: Log-transformation of Mg in C-horizon
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Figure 1.3: Log-transformation of Mg in O-horizon

1.7 Standardisation

It is possible that the variables show a striking difference in the amount of variability across
a data set. If this is the case, then the range of the variables must be scaled suitably in order
to guarantee a comparability.

In our data set from the C-horizon the values of Silicium lie at approximately 300.000 ppm
and the ones of Arsenic are smaller than 0.1 ppm. Figure 1.6 represents the influence of
the elements in each of the clusters. Here, influence means the value of the cluster centers,
which are drawn in the vertical direction. Furthermore, the size of the clusters is also given
in this figure (

∑nc

i=1 sizei = 1 nc . . .number of clusters). The influence of the element Si and
a bit of the element Al is dominant in every cluster because of their high values. This is
the reason why the cluster results are very similar to displays only the univariate map of Si
(see Reimann et al., 1998) with a little influence of Al. Figure 1.7 has different influences of
the elements in each of the clusters. It shows the influence of the variables in the clusters
after the standardisation. There is no doubt that this data set must be scaled before cluster
analysis can be applied.

The effect of different scaling is shown in Figure 1.8. There, the same data points are
displayed in different units, like in ppm or mg/kg. Obviously, any cluster procedure would
act like the human eye by once combining elements 1-2 and 3-4 (left) and once 1-3 and 2-4
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Figure 1.4: Log-transformation of Mg for the “Rock” data

(right).

On the other hand, many scientists (e.g. Everitt, 1974; Gordon, 1999) particularly empha-
sise that standardisation should not be made into a rule. Figure 1.9 shows data from two
standard normal distributions with centres (−2, 0)> and (2, 0)>, respectively. The clustering
of the data in Figure 1.9 with a hierarchical clustering technique shows that without stan-
dardisation of the variables, the structure of the two groups has been recognised. With the
standardisation of the data the clear structure of the data is lost (cf. Schöll, 2002).

Usually, in statistics we speak about standardisation when both centring and scaling are
applied. The question of scaling the variables is actually, from a more general point of
view, a problem of weighting. Sometimes, the researcher has reasons for assigning subjective
weights to different variables. In general, however, this process is difficult to define in practise
(see e.g. De Soete, 1986).

A more common procedure is to assign the weights in an objective manner. There are a lot
of different approaches to scale (standardise) variables:

1.7.1 (0-1)-Transformation

A quite simple standardisation method is the (0-1)-transformation which is defined as

xij ← xij −min x.j

max x.j −min x.j

(1.1)

where

x.j =











x1j

x2j

...
xnj











includes the values of the j-th variable. By this transformation each variable is mapped into
the interval [0, 1].
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Figure 1.5: Normal QQ-plots of Mg and log(Mg)

1.7.2 Z-Transformation

The most commonly used and most recommended method of converting the original mea-
surements into unitless variables with mean 0 and variance 1 is the z-transformation.
The standardised measurements are defined as

xij ← xij − xj

sj

(1.2)

where

xj =
1

n

n
∑

i=1

xij (1.3)

is the mean value of variable j for each j = 1, . . . , p and sj is the standard deviation

sj =

√

√

√

√

1

n− 1

n
∑

i=1

(xij − xj)2 . (1.4)

An alternative which is much less sensitive to outliers is to replace xj by the median of the
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j-th variable and sj by the Median Absolute Deviation (MAD) which is defined by

MAD (x.j) = 1.4826 ·med
i
|xij −med

l
(xlj)| . (1.5)

1.7.3 Other Standardisation Methods

Milligan (1996) suggests other four standardisation methods. The first suggestion for stan-
dardisation divides each value by the standard deviation

xij ← xij

sj

. (1.6)

This method produces a set of transformed variables with variances of 1, but different means
and ranges. In the second suggestion

xij ← xij

max(X)
(1.7)

each variable is mapped into the interval
[

min(X)
max(X)

, 1
]

.
The standardisation

xij ← xij

max(X)−min(X)
(1.8)

divides each value by the range of all values. With this transformation each variable is
mapped into the interval

[

0 + min(X)
max(X)−min(X)

, 1 + min(X)
max(X)−min(X)

]

. The last suggestion is
dividing each value by the sum of all values

xij ← xij
∑

i,j xij

. (1.9)
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Figure 1.6: Cluster result: Influence of the main elements of the C-horizon in the clusters
without standardisation.
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1.8 Distance Measures

The next step is to measure distances between the objects, in order to qualify their degree
of dissimilarity.
Let us denote the i-th object by xi = (xi1, . . . , xip)

T for i = 1, . . . , n. The distance between
the i-th and the j-th object, for example, can be measured with the Euclidean distance

d(i, j) =

√

√

√

√

p
∑

k=1

(xik − xjk)2 = ‖xi − xj‖2 (1.10)

or the Manhatten distance

d(i, j) =

p
∑

k=1

|xik − xjk| = ‖xi − xj‖1 (1.11)

A generalisation of both is the Minkowski distance

d(i, j) = q

√

√

√

√

p
∑

k=1

(xik − xjk)q = ‖xi − xj‖q (1.12)

where q is any real number larger than or equal to 1.

Other well-known distance measures are, for instance, the Canberra metric and the Czeka-
nowski coefficient (see Johnson and Wichern, 1998, for details). Bandemer and Näther (1992)
give an overview of 40 other measurement units for distance. A new approach for a distance
measure is the Voroni distance (see in Höppner and Klawonn, 2001).

In cluster analysis it is quite common to speak about dissimilarties rather than distances.
Basically, dissimilarities are nonnegative numbers d(i, j) which are small (close to zero) when
i and j are “near” to each other and large when i and j are very different.

The elements of the dissimilarity matrix satisfy certain minimum conditions:

1. d(i, j) ≥ 0

2. d(i, i) = 0

3. d(i, j) = d(j, i)

4. d(i, j) = d(i, h) + d(h, j)

for all i, j and h.
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Distances can in principle also be computed between the variables. This is useful if one is
interested in clustering the variables rather than the objects. A usual way to define distances
between variables is to calculate the Pearson product moment correlation

r(j, k) =

∑n

i=1(xij − xj)(xik − xk)
√

∑n

i=1(xij − xj)2
√

∑n

i=1(xik − xk)2
(1.13)

between the variables j and k. The coefficient does not depend on the choice of measurement
units and lies between −1 and 1. If there is a strong relationship between two variables the
coefficient is close to 1 or −1.
One possibility of converting this correlation coefficient to dissimilarities is to apply

d(j, k) =
(1− r(j, k))

2
. (1.14)

With this formula, variables with a high positive correlation receive a dissimilarity coefficient
close to zero, whereas variables with a strong negative correlation will be considered as very
dissimilar. In other applications one might prefer to use

d(j, k) = 1− |r(j, k))| (1.15)

in which case also variables with a strong negative correlation will be assigned a small
dissimilarity.
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Chapter 2

Methods

Clustering can be loosely defined as the process of organising objects or variables into groups
whose members are similar in some way. Cluster analysis was developed in the mid 70-ies,
see e.g. Fasulo (1999). There is a number of methods of clustering data. The most important
techniques are:

• Incomplete clustering method: e.g. reduction of the data dimension down to two or
three dimensions by applying principal component analysis. Clusters can be detected
by the viewer simply by having a look at the graphical output.

• Partitioning: every object is assigned to exactly one group.

• Overlapping cluster methods: an object can be assigned to more than one group.

• Hierarchical clustering methods: a tree of clusters is built where every cluster node
contains child clusters.

• Fuzzy clustering methods: the objects have no clear allocation into a group. Member-
ships are evaluated to specify how far the object is located from a cluster.

In the literature many other methods of clustering are described. Below an overview of the
most important methods which have not been mentioned so far and their algorithms are
given. This other clustering methods are:

• Density-based clustering algorithms: DBSCAN (Ester et al., 1996), GDBSCAN (Sander
et al., 1998), OPTICS (Ankerst et al., 1999), DBCLASD (Xu et al., 1998), DEN-
CLUDE, DBCLASD, used to detect irregular shapes.

• Grid-based clustering algorithms: DENCLUE, CLIQUE, MAFIA (Goil et al., 1999),
BANG (Schikuta and Erhart, 1997), GRIDCLUST (Schikuta, 1996), STING (Wang
et al., 1997), WaveCluster (Sheikholeslami et al., 1998), FC (Barbara and Chen, 2000) ,
which inherit the topology from the underlying attribute space and can handle outliers.
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• Co-occurrence algorithms of categorical data: ROCK (Guha et al., 2000), CURE (Guha
et al., 1998), SNN, CACTUS (Ganti et al., 1999), HMETIS (Karypis et al., 1997),
STIRR (Gibson et al., 1998), are concepts of a variable size transaction.

• Subspace clustering algorithms: CLIQUE (Aggarwal et al., 1998), ENCLUS (Cheng
et al., 1999), OPTIGRID (Hinneburg and Keim, 1999), ORCLUS (Aggarwal and Yu,
2000), PROCLUS (Aggarwal et al., 1999), FLOC (Yang et al., 2002), which are tech-
niques that are specially designed to work with high dimensional data.

• Co-clustering algorithms: OLAP, which turns attributes to numerical ones.

• Constraint-based clustering algorithms: frequently sensitive C-means, COD (Tung
et al., 2001), which are modifications of the C-means algorithm.

• Neural networks and learning algorithms: CLTree, with which points are reassigned in
order to correspond to the forecasting.

• Evolutionary algorithms: GGA, GCA (Lucasius et al., 1993), which modifies a set of
C-means systems.

• Simulated annealing clustering algorithms: SINICC (Brown and Huntley, 1991), CLASA
(Chu et al., 2001), which amounts a relocation of a point from its current cluster to a
new randomly chosen one.

• Tabu search algorithms (Al-Sultan, 1995).

• Scalable clustering algorithms: DIGNET (Thomopoulos et al., 1995), BIRCH (Zhang
et al., 1996), CLARANS (Ng and Han, 2002), which face problems of scalability in
terms of computing time and memory space.

• Particular fuzzy clustering algorithms for pattern recognition (see e.g. Baraldi and
Blonda, 1999).

Generally, there are some important characteristics which should be the basis for the choice
of the clustering algorithm. Some of these characteristics are (see e.g. Berkhin, 2002)

- type of scale of the variables

- scalability to large data sets

- ability to work with high dimensional data

- ability to find clusters of irregular shape

- handling outliers

- time complexity

- data order dependency
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Clustering

Hierarchical Partitional                                Fuzzy

agglomerativ       divisiv      c−means    PAM    CLARA     Solid       Linear     Shell

single link  average link   complete link      fuzzy−c−means   Gustafson−Kessel  Gath−Geva

Figure 2.1: Cluster algorithms which are discussed in this section

- type of the clustering technique

- reliance on prior knowledge and user defined parameters

- interpretability of results.

At the beginning of this section we mentioned different clustering techniques. In the following
the most widely used techniques will be explained in more detail. An overview over these
methods which will be treated in the following is presented in Figure 2.

2.1 Hierarchical Clustering

The result of a hierarchical clustering procedure is composed of a sequence of clustering
partitions. This sequence can visually be displayed by a clustering tree which is called
dendrogram.

2.1.1 Representation of a Hierarchical Classification

A construct which is relevant to describe a hierarchy is an n-tree. An n-tree is a set
T = {A, B, . . .} of subsets of the set of objects Ω = {1, 2, . . . , n} satisfying the following
conditions:
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(i): {i} ∈ T for all i ∈ Ω

(ii): ∅ /∈ T (∅ denotes the empty set)

(iii): Ω ∈ T

(iv): if A, B ∈ T then A ∩B ∈ {θ, A, B}

Condition (iv) ensures that the subsets are hierarchically-nested.

v1

v2

v3

w1

w2 w3

w4

n−tree, which satisfy (i) − (iv)

valued tree, which satisfy an ultrametric

i

j

k

k

j

i

Figure 2.2: Display of a n-tree and a valued tree

In the upper part of Figure 2.2 an additive n-tree is shown. In order to correspond with a
valued tree (as shown in the lower part of Figure 2.2) more conditions need to be formulated.

A valued tree associated with a height h in each hierarchical node, which satisfies the condi-
tion for nested subsets A and B always fulfills

h(A) ≤ h(B)⇔ A ⊆ B .

For each pair of objects (i, j), hij (= hji) is defined to be the height of the smallest subset
containing both the i-th and j-th object. The value of hij measures the difference between
the i-th and the j-th object in the classification, with small values of hij indicating that the
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Figure 2.3: Representation of a dendrogram with nodes and preferred direction (divisive V
or agglomerative) with space for following rearrangements: Permutation of Cluster A and
B, horizontal displacement of b, distance d between trees and the height e of a tree.

corresponding objects are perceived as similar to one another. The set of the values hij for
i, j ∈ Ω satisfies either the un-equation of an ultra-metric for a similarity measure

hij ≥ min(hik, hkj) for all i, j, k ∈ Ω (2.1)

and equivalent to the similarity measure, the un-equation for a dissimilarity measure

hij ≤ max(hik, hkj) for all i, j, k ∈ Ω . (2.2)

So a valued ultra-metric tree is a tree where each node is equidistant from some specific
node, called the root of the tree. One can examine easily that the tree in Figure 2.2 fulfils
the conditions of an ultra-metric.

This presentation of a valued tree is called a dendrogram and it looks like Figure 2.3.

There are several different formats in which dendrograms are presented (see e.g. Gordon,
1996). A selection is shown in Figure 2.4. The most common formats are those shown in
(a) and (b), or versions of them rotated by 90 degrees or 180 degrees.
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(a) (b)

(c) (d)
1   2   3   4    5   6   7   8  

1   2   3   4    5   6   7   8  

1   2   3   4    5   6   7   8  

1   2   3   4    5   6   7   8  

Figure 2.4: Four formats for representing the same hierarchical classification

2.1.2 Algorithms to Generate a Hierarchical Classification

There exists a variety of different algorithms for obtaining a hierarchical classification. Day
(1996) proposed that all hierarchical classification algorithms, if carefully implemented, ex-
hibit O(n2) time complexity. Due to space limitations we will restrict to some procedures
which lead to a dendrogram. We will further restrict to agglomerative techniques which start
with single object clusters and enlarge the cluster step by step. The reverse procedure which
starts with one cluster containing all objects and splits the group(s) step by step, is called
divisive algorithm.

2.1.3 Agglomerative Algorithms

At the beginning, each object forms an own class, leading to n different clusters. At each step
of the algorithm, the number of clusters is reduced by one, where the most similar classes
are combined. The “similarity” of the combined pair can be measured, and a “height” is
associated with this newly-formed class. At the end of the process there is only one single
cluster left.

If classes Ci and Cj are combined, a general scheme of evaluating the dissimilarity between
Ci ∪ Cj and some other class Ck, given by Lance and Williams (1966), is defined as:

d(Ci ∪ Cj, Ck) = αid(Ci, Ck) + αjd(Cj, Ck) + βd(Ci, Cj) + γ|d(Ci, Ck)− d(Cj, Ck)| (2.3)
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Table 2.1 presents the most commonly used parameters. The methods for three of these
choices of the parameters will be discussed below in detail.

In the first step of the algorithm, the cluster Ci consists only of object i and cluster Cj only
of object j. The distances d(Ci, Cj) for single element classes can be selected according to
Section 1.8.

Table 2.1: Hierarchical clustering strategies

Clustering criterion αi, αj β γ

Single linkage 1
2

0 −1
2

Complete linkage 1
2

0 1
2

Average linkage 1
2

0 0
Centroid ni

ni+nj

ninj

(ni+nj)2
0

Ward ni+nk

ni+nj+nk

−nk

ni+nj+nk
0

nl is the number of objects in class Cl (l = i, j, k)

Single Linkage

In the first step, the two closest objects are combined. Hence, the combined objects generate
a new group. Equation 2.3 is used with the coefficients for single linkage (Table 2.1), and
this formula can be simplified to

d(Ci ∪ Cj, Ck) = min{d(Ci, Ck), d(Cj, Ck)} . (2.4)

Single linkage dendrograms tend to be very unbalanced in the sense that big classes are
quickly combined. This procedure tends to produce many small groups and few big groups.
Single linkage is suitable to detect outliers.

Complete Linkage

Complete linkage clustering proceeds in much the same manner as single linkage clusterings,
with one important exception: Not the smallest distances are considered but the biggest
ones. So the equation looks like

d(Ci ∪ Cj, Ck) = max{d(Ci, Ck), d(Cj, Ck)} . (2.5)

The complete linkage algorithm tends to produce a balanced dendrogram.
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Average Linkage

The average linkage criteria were designed to take a middle road between single linkage and
complete linkage and by far surpasses them in the sensitivity with respect to single objects.
This method treats the distance between two clusters as the average distance between all
pairs of items where one member of a pair belongs to each cluster. If z(ij) denotes an object
from Ci ∪ Cj, and zk an object from Ck, than the average distance can be expressed as

d(Ci ∪ Cj, Ck) =

∑

(ij)

∑

k d(z(ij), zk)

n(ij)nk

(2.6)

where n(ij) is the number of objects in Ci ∪ Cj.

2.2 Partitioning

First a number of clusters nc has to be determined into which the data-set is to be divided
and which satisfies the requirements of a partition:

Each group must contain at least one object.
Each object must belong to exactly one group.

Choosing an appropriate number nc is often impossible and therefore partitioning is done
with different choices of nc and the “best” result is taken.

2.2.1 C-means Method

Given n objects, characterised by p variables, we like to partition them into nc clusters
{C1, C2, . . . , Cnk} such that cluster Ck has n(k) members and each object is in one cluster.
The mean vector (centre, prototype), vi, of a cluster Ci is defined as the centroid of the
cluster

vi =
1

n(i)

n(i)
∑

l=1

x
(i)
l (2.7)

where n(i) is the number of objects in Ci and x
(i)
l is the l-th object belonging to cluster Ci.

Here, we also need to determine the number of clusters of the output partition. Starting
from a given initial locations of the nc cluster centroids, the algorithm uses the data points
to iteratively relocate the centroids and reallocate points to the closest centroid. The process
is composed of these steps:

1. Select an initial partition with nc clusters.

2. Assign each object to the closest cluster centre.

26



3. Recompute the cluster centres using the current cluster memberships.

4. Go to step 2 until the cluster memberships and thus cluster centroids do not change
beyond a specified bound.

C-means clustering optimises the objective function

J(X, V, U) =

nc
∑

i=1

n
∑

j=1

uijd
2(xj, vi) (2.8)

where X = {x1, . . . , xn} . . . data set
V = {v1, . . . , vnc

} . . . cluster centres (prototypes)
U = [(uij)] . . .matrix with the membership coefficients uij for objects xj to a cluster Ci

d . . . Euclidean distance between the objects and the cluster centres.
n . . . number of objects
nc . . . number of clusters

The C-means algorithm can be implemented as follows. Fix nc, 2 ≤ nc < n, and choose the
termination tolerance δ > 0, e.g., between 0.01 and 0.001. Initialise U (0) (e.g. randomly).

REPEAT for r = 1, 2, . . .

1. Calculate the centres vi of the clusters

v
(r)
i =

∑n

j=1 u
(r−1)
ij · xj

∑n

j=1 u
(r−1)
ij

, 1 ≤ i ≤ nc (2.9)

2. Update U (r): Reallocate cluster memberships

u
(r)
ij =

{

1 if d(xj, v
(r)
i ) = min1≤l≤nc

d(xj, v
(r)
l )

0 otherwise

UNTIL ‖U (r) − U (r−1)‖ < δ .

2.2.2 CLARA (Clustering Large Applications)

The program CLARA was developed by Kaufman and Rousseeuw (1990) for clustering large
data sets.
The C-means algorithm attempts to minimise the average squared distance, yielding so-
called centroids. A more robust method is to minimise the average distance, which is called
the medoid of it’s cluster. This method of partitioning around medoids (PAM) is called the
C-medoid technique (Kaufman and Rousseeuw, 1990).
The difference between the PAM and CLARA algorithms is that the latter one is based upon
sampling. Only a small portion of the real data is chosen as a representative of the data and
medoids are chosen from this sample using PAM. The idea is that if the sample is selected
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in a fairly random manner, then it correctly represents the whole data set and therefore, the
representative objects (medoids) chosen, will be similar as if chosen from the whole data set.
Having drawn and clustered five samples, the one for which the lowest average distance was
obtained is selected.

2.3 Fuzzy Clustering

In the process of probabilistic fuzzy-clustering the data is assigned to the clusters with a
probability between 0 and 1. A membership of 0.7, however, does not mean that the object
was assigned to the cluster with a probability of 70%. Instead, the membership degree is to
be interpreted in the sense of fuzzy-logic.
A fuzzy set is defined by the function µ : U → [0, 1]. A value of µ(u1) = 1, u1 ∈ U , means
that the element u1 is fully in accordance with the concept described by the fuzzy set, while
a value µ(u2) = 0, u2 ∈ U , means that the element u2 is not in accordance with the concept
described by the fuzzy set.

The aim of cluster analysis is to assign objects to classes. However, there are many appli-
cations in which the assignment of an object to only one cluster has not much use. This
problem becomes clear in the data set presented in Figure 2.5. The object right in the
middle can be assigned neither to the left nor the right cluster. If this object was clearly
assigned to a cluster the information that the two clusters are symmetric would be lost.
Another disadvantage of a clear assignment is that the information how typical the object
is represented by the clusters would also be lost. Sometimes this information, however, may
be of some interest.
One possibility to model fluent transitions between clusters and to consider them in the
cluster analysis is the application of gradual memberships. To every object xj a membership
degree uij ∈ [0, 1] is assigned for every cluster Ci. A membership degree of 1 means that the
object fully belongs to a cluster. However, a membership degree of 0 means that the object
does not at all belong a cluster.
The object lying in the middle of Figure 2.5 can be assigned to both of the clusters shown.
Thus the membership degree should be equal for every of these two clusters.

In fuzzy cluster analysis this concept of describing memberships is applied. The values of
the memberships can be visualised by various shades of grey. This assignment of the data
in memberships and its visualisation corresponds to human intuition.

The idea of fuzzy clustering originated in the hard C-means algorithm founded by Rus-
pini (1969), and the fuzzy C-means algorithm was developed by Dunn (1974). The most
commonly used fuzzy clustering algorithm is the fuzzy C-means algorithm of Bezdek (1981).
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Figure 2.5: Butterfly data set with two clusters

2.3.1 Objective Functions

The objective function used by Dunn (1974) is defined as

J(X, U, V ) =

nc
∑

i=1

n
∑

j=1

uij · d2(vi, xj) . (2.10)

Bezdek (1981) generalised this fuzzy objective function by introducing the weighting expo-
nent m, which is called the fuzzifier;

J(X, U, V ) =
nc

∑

i=1

n
∑

j=1

um
ij · d2(vi, xj) . (2.11)

A common choice for the fuzzifier is m = 2. If the value m increases, the memberships get
smaller.

A robust objective function is based on modifying the objective function (2.10) and looks
like

RJ(X, U, V ) =

nc
∑

i=1

n
∑

j=1

uij · d2(vi, xj) + η

nc
∑

j=1

n
∑

i=1

(1− uij)d
2(vi, xj) , 0 < η < 1 . (2.12)
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If uij is close to 1, then the last term is zero. The smaller uij becomes, the bigger is the
influence of the last term on the equation (2.12) which is to be minimised. Hence, low values
of uij are “punished”. For this reason this equation is not so sensitive in terms of outliers.

Tai-Ning and Sheng-De (2002) propose another robust objective function:

RFJ(X, U, V ) =
nc

∑

i=1

n
∑

j=1

uij · d2(vi, xj) +
nc

∑

j=1

n
∑

i=1

f(uij)
mηi (2.13)

where f(uij) is the fuzzy complement of uij, which may be interpreted as the degree to which
xj does not belong to the j-th data cluster and ηi is a constant. One choice of f(uij)

m is e.g.
m = 1 and

f(uij) = 1 + uij · log(uij)− uij (2.14)

2.3.2 Fuzzy Cluster Algorithm

Fuzzy analysis works without a clear allocation of the data to classes or clusters. Instead
it defines for each object degrees of memberships to its clusters. There is a big number of
different fuzzy cluster algorithms. Basically these algorithms are divided in three classes.
Solid fuzzy cluster algorithms are methods for recognising full clusters. The most commonly
used are the fuzzy C-means algorithm, the Gustafson-Kessel algorithm and the Gath-Geva
algorithm. Linear fuzzy cluster algorithms are recently developed methods for recognising
lines. The most famous one is the fuzzy C-variates algorithm (FCV) proposed by Bezdek
(1981). Shell fuzzy cluster algorithms are also recently developed methods for recognising
circular, elliptical and parabolic shapes (see e.g. in Höppner et al., 1996).

2.3.3 Fuzzy C-means Algorithm

The input to the FCM (fuzzy C-means) algorithm consists of the data objects. The FCM
algorithm calculates the prototypes of the clusters and membership degrees for each object
to the clusters.

The FCM algorithm can detect spherical (ball-shaped) clusters which are of nearly the
same size. Each cluster is represented by its prototype. The FCM algorithm minimises the
objective function (2.10) under the restrictions

nc
∑

i=1

uij = 1 ∀j ∈ {1, . . . , n} (2.15)

uij ≥ 0 ∀i ∈ {1, . . . , nc}, ∀j ∈ {1, . . . , n} (2.16)

The updated prototypes are given by

vi =

∑n

j=1 um
ijxj

∑n

j=1 um
ij

. (2.17)

30



By minimising the objective function (2.10) with respect to the restrictions (2.15) and (2.16),
the calculation of the memberships looks like (Bezdek, 1981):

uij =



















1

Pnc
k=1

(

d2(vi,xj)

d2(vk,xj)

) 1
m−1

, if Ij = ∅,

0, if Ij 6= ∅ and i /∈ Ij,
x, x ∈ [0, 1], so that

∑

i∈Ij
uij = 1, if Ij 6= ∅ and i ∈ Ij,

(2.18)

where Ij =
{

i|1 ≤ i ≤ nc, d
2(vi, xj) = 0

}

.
If Ij = 0 then xj is not a prototype and the value of uij must be newly calculated. If
Ij 6= ∅ and i ∈ Ij then the object xj is a prototype. (2.18) show that the calculation of the
memberships is based only of the distance of the data to the prototypes.

Procedure of the FCM algorithm

• Given a data set X = {x1, x2, . . . , xn}

• Choose the cluster size nc, 2 ≤ nc < n. Each cluster is defined by its prototype vi. Set
the iteration number to 0.

• Choose m > 1, m ∈ �

• Choose a threshold for convergence and a maximum number of iterations.

• Initialise the cluster prototypes and the memberships.

• REPEAT

- Increase the number of iterations by 1

- Calculate the cluster prototypes vi, i ∈ {1, . . . , nc} due to (2.17).

- Calculate the memberships uij due to (2.18).

• UNTIL the change of the cluster prototypes or the change of the membership co-
efficients is smaller than the threshold for convergence or the maximum number of
iterations.

2.3.4 Gustafson-Kessel Algorithm

The Gustafson-Kessel (GK) algorithm (Gustafson and Kessel, 1979) is able to detect elliptical
shaped clusters. This algorithm replaces the (squared) Euclidean distance by the (squared)
Mahalanobis distance

d2(vj, xi) = (xj − vi)
T Ai(xj − vi) . (2.19)
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The prototype centres are defined by (2.17) and Ai is a norm matrix given by

Ai = p
√

det(Si)S
−1
i (2.20)

where Si is the fuzzy covariance matrix

Si =

∑n

j=1 um
ij (xj − vi)(xj − vi)

T

∑n

j=1 um
ij

(2.21)

and p is the number of variables.

The centre vi describes the position of the cluster and the covariance matrix Si describes the
shape of the cluster.
The GK algorithm is computationally more expensive than the FCM algorithm, because the
covariance matrix of each cluster must be inverted.

2.3.5 Gath-Geva Algorithm

The algorithm of Gath and Geva (1989), also called the Gaussian mixture decomposition
algorithm, is an extension of the Gustafson-Kessel algorithm, which also deals with size and
density of the cluster. The Gath-Geva (GG) algorithm assumes that the features come from
a mixture of nc Gaussian normal distributions.
The a priori probability of a feature belonging to a normal distribution (cluster) can be
interpreted as an additional cluster size parameter.
We introduce the prior probability Pi for the belongingness of a object to the cluster (default
value is 1

nc
).

The algorithm uses the objective function (2.11) together with the distance

d2(vj, xi) =

√

det(Si)

Pi

exp

(

1

2
(xj − vi)

T Ai(xj − vi)

)

. (2.22)

The prototype centres are defined by the membership-weighted mean of feature vectors
(2.17), the norm matrices by

Ai = S−1
i (2.23)

where Si is the fuzzy covariance matrix (2.21). The prior probability is given by

Pi =

∑n

j=1 um
ij

∑n

j=1

∑nc

t=1 um
tj

. (2.24)

The GG program of Höppner et al. (1996) takes the objects xj as an input and yields the
prototype size, a priori probability Pi, prototype centres vi, covariance matrix Si, norm
matrix, squared distances and memberships. The fuzzy hyper-volume is used to set the
global validity measure.
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Due to the exponential function in (2.22) the distance value increases very quickly. Often,
this causes numerical overflows and the GG algorithm returns NaN (not a number) values,
especially in the presence of outliers.

2.4 Initialisation

Cluster algorithms which use an iterative procedure to find a (locally) optimal solution
are sensitive to initial starting values. Either one initialises cluster centres directly or the
membership matrix.

2.4.1 Centre Initialisation

A very appealing method to generate medoids (or centroids) comes from the mathematical
area of combinatorial optimisation and is called simulated annealing (SA). It is a powerful
tool for solving scheduling problems (search for a local optimum) like the travelling salesman
problem. Originally, SA was developed in the steel industry and was adapted for the area of
combinatorial mathematics by Johnson et al. (1989). This algorithm initialises the medoids
(see e.g. Chu et al., 2002), and it works as follows:

1. Select randomly nc (number of clusters) medoids which form an initial state S.

2. Choose an initial start temperature T = T0 (see e.g. Johnson et al., 1989).

3. Randomly choose another state S ′ and calculate the difference ∆d = d(S ′) − d(S).
Here d measures the average distance between all objects and the medoids. If ∆d < 0
replace the state S by S ′. Otherwise replace S by S ′ if e

−∆d
T > γ, where γ is a random

value generated uniformly on the interval [0, 1], and go to step 4.

4. If S has not been changed for a larger number of iterations, or if a fixed number of
permutations is reached, go to step 5; otherwise go to step 3.

5. Terminate the program and return the selected medoids if the temperature T is be-
low some predefined freezing temperature Tf or the total number of permutations is
reached; otherwise lower the temperature T and go to step 3.

Another approach can be done by using genetic algorithms (see e.g. in Lee and Antonsson,
2000). The idea is as follows: Create individuals initially and evaluate these individuals.
Create child derivatives with crossover (e.g. with partially matched crossover) and evaluate
these new individuals. Transform these individuals with a “fitness function” and select a
pair of individuals with the help of e.g. the stochastic universal sampling method or the
roulette wheel method (see e.g. Whitley, 1994). Now, restart the algorithm and create new
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individuals from the selected individuals with crossover until a maximum number of “gen-
erations” is reached.

These two methods were not only developed for initialising, but are also used as cluster
algorithms (algorithm: CLASA for SA, Chu et al. (2001), and e.g. GCA, Lucasius et al.
(1993), for genetic cluster algorithms).

In the fuzzy clustering program of Höppner (2000) there are three different ways to initialise
the clusters:

• Use nc points uniformly distributed along the “diagonal” of the space containing X
(default).

• Use the first distinct points in the data set X.

• Use nc points randomly drawn from the space containing X.

Other approaches can be found in Bradley and Fayyad (1998).

2.4.2 Membership Initialisation

The default initialisation of the fuzzy clustering program of Höppner (2000) assigns con-
secutive objects to the same cluster. For one-dimensional, ordered data it makes sense for
some clustering algorithms to assume that the first n

nc
objects belong to the first cluster, the

second n
nc

features to the second, etc.
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Chapter 3

Data

3.1 Geology of the Kola Data

The Central Kola Expedition (CKE) in Russia, the Geological Survey of Finland (GTK)
and the Geological Survey of Norway (NGU) cooperated from 1991 to 1998 to produce an
ecogeochemical atlas (Reimann et al., 1998) of the central Barents Region, an area of 188.000
km2.

Figure 3.1 shows a map at the investigated project area and the first project area (pilot
project) in the region around Kirkenes and Zapoljarnij on an area of more than 12.000 km2.

An overview of this project can be found on the web site http://www.ngu.no/Kola. The
average sampling density is 1/300 km2 (1/100 km2 near the pollution sources and 1/400−500
km2 in background areas, see Figure 3.2) and the samples collected at each location consist
of terrestrial moss, humus, topsoil and podzol profiles. The typical podzol profile consists of
5 main layers, the O-, E-, B-, BC, C-horizon.

In this master’s thesis the C-horizon and O-horizon of the podzol samples are examined.
The chemical composition of the O-horizon is represented by the humus sample (0-3 cm
under the surface). The O-layer is usually brown in colour, loose and rich in plant roots
and can accumulate large amounts of airborne heavy-metal input; it acts as a natural trap
for heavy metals. In this layer we expect to find many deposits caused by the heavy metal
industry marked in Figure 3.3. Mining and the mineral industry, in general, are the major
fields of industrial activity. The area around Nikel, Zapoljarnij and Monchegorsk is one of
the regions most polluted by SO2 and heavy metals. Unfortunately, the local population is
economically dependent on the heavy metal industry. So the ore and nickel industries are
not expected to be shut down. Especially Russia does not - in opposition to Norway - obtain
most of its energy from hydroelectric power plants. Therefore it needs this mineral industry.

Austria has an emission of SO2 of 57 tones per year (according to the environment data bank
of the Austrian Federal Economic Chamber) while the emission of SO2 in Nikel (see Table
3.1; data from Reimann et al., 1998) is more than twice as high. Even the Netherlands have
a lower emission of SO2 than Nikel.
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Figure 3.1: Project area of the Kola project with the major towns and the industrial centres.

Geology has the biggest influence on the C-horizon which is the deepest horizon (approx.
30 cm under the surface) and therefore least spoilt by industrial pollution. For this reason
the clusters should display clear regional distinctions, and similarities with the lithological
map, which is illustrated in Figure 3.4. Further explanations on the lithological map can be
found in Reimann and Filzmoser (1999) and Reimann et al. (1998).

C-horizon samples which were taken at 605 sites and subquently analysed by a number
of different techniques for more than 50 elements, displayed a result of 89 variables. For
cluster analysis it is not advisable to use all variables. A better strategy is to reduce the
dimensionality by selecting elements (see Section 1.4).
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Figure 3.2: Sample sites and numbers for the regional mapping part

3.2 Data

A clustering of the data without a prior selection of variables can lead to results which are
difficult to interpret and may serve to mask or hide real clustering in data (see Section 1.4).
For this reason special care was given to the selection of the elements for clustering.

The selection of the elements of the O-horizon for clustering was carried out in two steps.
For the first step it was crucial to know that the elements As, Co, Cu, Ni, and V are
mainly responsible for the pollution and that the elements Ca, Fe, Mg, Na and Sr are good
indicators for the sea spray (see the univariate maps of the elements in Reimann et al., 1998
and the geochemical characteristics of the elements in Reimann et al., 1998 or Reimann,
1998). In the second step elements were experimentally exchanged, added or ignored in
order to reach a better structure of the clusters. The elements for the clustering of the C-
horizon are predominantly the main elements, the trace elements and the mafic rocks. Some
experiments were also carried out by mixing the main elements with the trace elements
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Table 3.1: Emissions (in tonnes per year) of the major pollutants

Location SO2 Co Cu Ni V2O2

Monchegorsk 97.715 81.5 934 1619 60
Nikel 129.160 5.2 82 136 13
Zapoljarnij 69.208 5.4 81 161 21
SUM 296.083 92.1 1097 1916 94

(mixed elements). Also further selections of elements were taken (see Section 5.2 and Figure
5.12). Altogether eight different groups of elements were thoroughly examined.

3.2.1 C-horizon

The eight characteristic groups are:

1. Main elements extracted from the XRF (X-ray fluorescence) method (Al, Ca, Fe, K,
Mg, Mn, Na, P, Si, Ti)

2. Main elements without Si and Ti

3. A selection of the main elements (Al, Ca, K, Mn, Si, Ti)

4. Trace elements (As, Ba, Co, Cr, Cu, La, Ni, Pb, Rb, Sc, Sr, Th, V, Y, Zn)

5. Trace elements without As

6. A selection of the trace elements (As, Ba, Co, Cr, Cu, La, Pb, Rb, Th, Zn)

7. Mixed data (As, Ba, Ca, Co, Cr, Cu, Eu INAA (INAA: analysed by instrumental
neutron activation analysis), Fe, K,La, Mg, Mn, Na, Ni, P, Pb, Rb, Sc, Sr, Th, V, Y,
Zn)

8. Mafic rocks (Co, Cr, Cu, Fe INAA, Mg, Mn, Ni, Sc, Ti, V)

Tables 3.2 - 3.5 show the statistical summary of the examined groups. The remaining groups
which are not shown in tables in an explicit way are part-groups of the four groups shown
in Tables 3.2 - 3.5.
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Table 3.2: Group1: Statistical summary1 of the main elements from C-horizon
Element Unit DL %<DL min max mean med stddev mad
Al XRF2 wt.-% 0.03 0 2.92 12.08 7.34 7.38 0.969 0.667
Ca XRF wt.% 0.005 0 0.03 6.76 2.133 2.17 0.899 0.801
Fe XRF wt.-% 0.02 0 0.59 12.35 3.605 3.43 1.4 1.342
K XRF wt.-% 0.004 0 0.36 5.24 1.558 1.41 0.593 0.482
Mg XRF wt.-% 0.02 0 0.12 7.32 1.271 1.15 0.677 0.526
Mn XRF wt.-% 0.008 0 0.015 0.356 0.059 0.054 0.031 0.022
Na XRF wt.-% 0.01 0 0.08 4.87 2.26 2.45 0.678 0.504
P XRF wt.-% 0.004 0 0.004 0.589 0.045 0.039 0.032 0.019
Si XRF wt.-% 0.23 0 17.05 40.27 31.461 31.74 2.579 2.216
Ti XRF wt.-% 0.003 0 0.053 1.9 0.362 0.347 0.16 0.151

1DL: detection limit, < DL: percentage of samples below the detection limit, minimum,
maximum, mean, median, standard deviation and median absolute deviation.
2 XRF: analysed by X-ray fluorescence.

Table 3.3: Group4: Statistical summary of the trace elements from C-horizon
Element Unit DL %<DL min max mean med stddev mad

As mg/kg 0.1 1.7 <0.1 30.7 1.25 0.5 2.349 0.445
Ba mg/kg 0.5 0 4.7 1300 60.15 43.5 74.33 28.91
Co mg/kg 0.2 0 1.2 44.3 8.22 7 5.029 3.706
Cr mg/kg 0.5 0 2.2 471 36.16 28.35 35.09 16.23
Cu mg/kg 0.5 0 2 149 21.96 16.2 18.44 10.82
La mg/kg 0.5 0 3.5 203 17.94 12.8 20.96 6.449
Ni mg/kg 1 0 1.2 228 23.41 18.65 21.09 11.56
Pb mg/kg 0.2 0 0.3 45.3 2.748 1.6 3.326 0.741
Rb mg/kg 15 6.3 <15 270 60 54 33.55 26.68
Sc mg/kg 0.1 0.2 <0.1 15.4 2.816 2.3 1.809 1.186
Sr mg/kg 0.5 0 1.6 1040 25.34 7.7 98.23 3.781

Th INAA1 mg/kg 0.2 0 1 54 7.164 5.8 4.953 3.41
V mg/kg 0.5 0 4.5 183 34.99 30.9 19.65 15.72
Y mg/kg 0.5 0 0.9 169 6.366 4.4 10.97 2.372
Zn mg/kg 0.5 0 3.7 348 27.40 20.9 24.17 12.45

1INAA: analysed by instrumental neutron activation analysis
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Table 3.4: Group7: Statistical summary of the mixed elements from C-horizon
Element Unit DL %<DL min max mean med stddev mad

As mg/kg 0.1 1.7 <0.1 30.7 1.25 0.5 2.349 0.445
Ba mg/kg 0.5 0 4.7 1300 60.15 43.5 74.33 28.91
Ca mg/kg 3 0 110 41700 2279 1905 2383 1075
Co mg/kg 0.2 0 1.2 44.3 8.22 7 5.029 3.706
Cr mg/kg 0.5 0 2.2 471 36.16 28.35 35.09 16.23
Cu mg/kg 0.5 0 2 149 21.96 16.2 18.44 10.82

Eu INAA mg/kg 0.2 0 0.3 14.3 1.239 1.05 1.006 0.371
Fe mg/kg 10 0 3310 79200 17236 14700 10189 7154
K mg/kg 200 0.5 <200 11000 1478 1100 1295 741
La mg/kg 0.5 0 3.5 203 17.94 12.8 20.96 6.449
Mg mg/kg 5 0 370 70500 4741 3720 4815 2002
Mn mg/kg 0.5 0 33.8 2140 185 128.5 180 65.83
Na mg/kg 15 0 20 19400 338 140 1368 88.96
Ni mg/kg 1 0 1.2 228 23.41 18.65 21.09 11.56
P mg/kg 7 0 59 7170 446 393 368 185
Pb mg/kg 0.2 0 0.3 45.3 2.748 1.6 3.326 0.741
Rb mg/kg 15 6.3 <15 270 60 54 33.55 26.68
Sc mg/kg 0.1 0.2 <0.1 15.4 2.816 2.3 1.809 1.186
Sr mg/kg 0.5 0 1.6 1040 25.34 7.7 98.23 3.781
Th mg/kg 3 6.1 <3 66 8 6 6.160 3.709
V mg/kg 0.5 0 4.5 183 34.99 30.9 19.65 15.72
Y mg/kg 0.5 0 0.9 169 6.366 4.4 10.97 2.372
Zn mg/kg 0.5 0 3.7 348 27.40 20.9 24.17 12.45

Table 3.5: Group8: Statistical summary of the mafic rock elements from C-horizon
Element Unit DL %<DL min max mean med stddev mad

Co mg/kg 0.2 0 1.2 44.3 8.22 7 5.029 3.706
Cr mg/kg 0.5 0 2.2 471 36.16 28.35 35.09 16.23
Cu mg/kg 0.5 0 2 149 21.96 16.2 18.44 10.82

Fe INAA mg/kg 100 0 6800 119000 37800 35750 14552 14455
Mg mg/kg 5 0 370 70500 4741 3720 4815 2002
Mn mg/kg 0.5 0 33.8 2140 185 128.5 180 65.83
Ni mg/kg 1 0 1.2 228 23.41 18.65 21.09 11.56
Sc mg/kg 0.1 0.2 <0.1 15.4 2.816 2.3 1.809 1.186
Ti mg/kg 0.5 0 48.8 5730 895 807 515 405
V mg/kg 0.5 0 4.5 183 34.99 30.9 19.65 15.72
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Figure 3.3: Map of human activities
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Figure 3.4: Lithological map of the investigated area
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Table 3.6: Statistical summary of the mainly used elements of the O-horizon
Element Unit DL %<DL min max mean med stddev mad

As mg/kg 0.05 0 0.364 43.5 1.6 1.16 0.23 0.46
Ca mg/kg 5 0 460 25400 3120.3 2960 35.09 785.78
Co mg/kg 0.03 0 0.21 96 3.12 1.57 18.44 1.11
Cu mg/kg 0.01 0 2.69 4080 43.69 9.69 14552 5.14
Fe mg/kg 10 0 430 44800 2878.39 1970 4815 1245.38
Mg mg/kg 10 0 240 5830 905.43 750 180 296.52
Mn mg/kg 1 0 11.1 5470 199.42 126 21.09 108.23
Na mg/kg 10 3.4 5 2350 87.67 60 1.809 29.65
Ni mg/kg 0.3 0 1.5 2880 50.98 9.18 515 7.74
Pb mg/kg 0.04 0 4.07 1110 24.12 18.8 19.65 7.41
Sr mg/kg 0.2 0 6.09 1430 40.87 28.8 515 13.64
V mg/kg 0.02 0 1.08 48.9 6.36 4.86 19.65 2.39

3.2.2 O-horizon

A big number of various combinations was experimentally examined in order to make the
interpretation of the results as unambiguous as possible. The statistical summary of the
elements mainly used is given in Table 3.6.

3.3 Geology of the Walchen Data

In the Walchen region south of the town Öblarn in Styria, Austria, extensive zones of ore
can be found. They mainly consist of iron as well as copper pyrities, galenite, zinc blende,
magnetic pyrities, argentiferous ore, arsenic pyrities, antimonit, pyrargirit and gundmundit.
The massiveness of the deposits amounts to several metres in some points. The tunnels
(galeries) are located between 1100 m and 1550 m over the sea level and the processing plants
and smelting furnaces are located on the floor of the Walchen rift about 980 metres over the
sea level. The rich deposit was mined, and the ore was dressed and smelted over centuries
- for the extraction of copper, lead, silver, gold, sulphur and vitriol. In those days the
economical basis of Öblarn was mining. In the Walchen rift there are also significant marble
deposits. Quarrying them was stopped only a few decades ago. For further information visit
the internet site http://www.argis.at/argis neu/walchen.html. Recent scientific examinations
and papers are treated as a preparation for later conservation of this modern industrial
monuments and as a help in creating a display for the Öblarner copper trail (see e.g. the
internet site http://www.argis.at/argis neu/walchen.html).

The samples were taken from a forest stretching over an area of 90 km2. Altogether 773
soil samples were gathered. The density of the soil samples was eight samples per square
kilometre.

With the following selection of elements the various rock types should fall into different
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Table 3.7: Statistical summary of the used elements of the Walchen data
Element Unit min max mean med stddev mad

Na wt.-% 0.15 5.59 1.58 1.5 0.52 0.44
K wt.-% 0.08 9.9 2.69 2.8 0.86 0.62
Ca wt.-% 0 18.9 0.58 0.14 1.79 0.12
Mg wt.-% 0.03 11 1.43 1.19 1.09 0.50
Al wt.-% 0.81 16 10.03 10.15 1.69 1.26
Fe wt.-% 0.4 13 6.52 6.4 1.83 1.48
Si wt.-% 1.1 32.1 21.52 21.75 3.15 2.44
P wt.-% 0 0.52 0.1 0.09 0.059 0.04

Table 3.8: Statistical summary of the main elements of the Rock data
Element Unit min max mean med stddev mad

SiO2 wt.-% 0.29 90.06 60.73 61.66 12.09 11.12
AlO3 wt.-% 0.09 21.12 14.15 14.89 3.2 2.21
Fe2O3 wt.-% 0.06 18.8 5.69 5.48 3.29 3.53
TiO2 wt.-% 0.006 4.12 0.70 0.65 4.49 0.34
MgO wt.-% 0.03 16.49 3.17 2.77 2.45 2.67
CaO wt.-% 0.11 56.04 5.77 4.04 6.61 3.61
Na2O wt.-% 0.05 8.92 2.91 2.84 1.42 1.53
K2O wt.-% 0.02 7.17 2.43 2.23 1.59 1.53
MnO wt.-% 0.002 0.58 0.09 0.08 0.06 0.04
P2O5 wt.-% 0.005 0.85 0.14 0.13 0.098 0.06

clusters: Na, Mg, Cr, Co, Ni AAS (AAS: analysed by atom absorption spectralphotometrics),
Ba INAA, Cu, Sr. The statistical summary of the elements used is given in Table 3.6.

3.4 Rock Data

The Rock data consist of 500 rock samples coming from an area around Trondheim, Norway.
It can be assumed that this data set shows a good cluster structure. This assumption will
be confirmed in Chapter 6. For this reason we used this data set with the elements Al2O3,
Fe2O3, TiO2, MgO, CaO, Na2O, K2O, MnO, P2O5, LOI comparing particular validity
measures.
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Chapter 4

Validity Measures

4.1 Introduction

The procedure of evaluating the results of a clustering algorithm is known under the term
cluster validity.
Clustering is an unsupervised process since there are no predefined classes and no examples
which show what kind of relations should be regarded as valid among the data. As a conse-
quence, the clustering output of the data set requires some sort of evaluation.
The focus of this chapter is to give an overview over the methodology of drawing inferences
about the number of clusters in a data set, of improving the accuracies of an arbitrary clus-
tering algorithm and of evaluating cluster results.

There are some problems to be looked at:

• Applying more than one algorithm results in varying classification. Which allocation
is the best?

• Which cluster size is correct?

• To each structure of the data a special algorithm can be applied. Which structure is
characteristic for the data and which algorithm is the optimal choice for these data?

These problems require a clustering validation.
The following examples should provide a deeper insight.

In Figure 4.1 it becomes obvious that the assignment into four groups is incorrect. If we
applied various validity criteria this would produce very bad results for this classification. If
the clustering is examined on the basis of a criterion which considers only the density of a
cluster, “good” results will be produced by this validity measure. If, however, the clustering
is examined on the basis of a criterion aiming at a separation of the clustered objects, “bad”
results will be produced for this classification.
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Figure 4.1: Data xclara from R; incorrect cluster size

However, there are very different kinds of validity criteria, which are strongly aligned after
the intended purpose. Which validity criteria actually are suitable can not be answered in a
general way. This depends on the existing data and on the taste of the viewer.

A test data set consisting of two groups of different size should display various problems of
the applied algorithms. With the help of the algorithms PAM and AGNES (Kaufman and
Rousseeuw, 1990) this data set was correctly divided into one cluster with four data points
and one cluster with 25 data points (see Figure 4.2). Figure 4.3 illustrates the problem of
cluster-splitting with the C-means (kmeans) algorithm. The algorithm FANNY of Kaufman
and Rousseeuw (1990) does not work with this kind of constructed data set in a satisfactory
manner. Figure 4.5 shows that the FCM algorithm classifies the objects correctly, however,
it ignores the different sizes of the clusters. The different lines explained in the legend refer to
the membership coefficients. We can see that with the help of the Malahanobis distance the
GK algorithm paid attention to the different sizes of the clusters, producing, however, two
wrong prototypes (see Figure 4.6). The GG algorithm does achieve the right classification,
but the memberships for the objects are almost identical in cluster 1 and 2 (see Figure
4.7. This algorithm, in apportion to the FCM algorithm, puts the prototypes exactly in the
middle of these two clusters.
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Figure 4.2: Correct classification, found with AGNES and PAM
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Figure 4.3: Incorrect classification, found with kmeans
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Figure 4.4: Incorrect classification, found with FANNY
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Figure 4.5: Correct classification, found with the FCM algorithm
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Figure 4.6: Incorrect classification of the GK algorithm
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Figure 4.7: Correct classification, found with the GG algorithm
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Generally speaking there are three approaches in determining cluster validity.
The term “validation of a clustering procedure” is known under the name external criteria,
which measures how well the clustering results match some prior knowledge about the data.
It is assumed that this information is not, in general, computable from the data set. They are
not used to estimate the number of clusters, they are used to compare different partitions.
Internal criteria evaluate the results of a clustering algorithm to estimate the number of
clusters and they are computed from the same observations that are used to create a partition.

The third approach is the relative criteria, and the basic idea is the evaluation of a clustering
structure by comparing it to other clustering schemes.
Important literature on these validity indices are e.g. Andenberg (1973); Bezdek and Pal
(1998); Dom (2001); Jain et al. (1999); Milligan (1996); Fridlyand (2001); Fraley and Raftery
(1998); Halkidi and Vazirgiannis (2001a,b); Halkidi et al. (2001).

Internal criteria raise the question why not using the objective function to evaluate the
clustering? The answer is that we only use the objective function when we know exactly
what is desired in a particular application and when there is a feasible algorithm for finding
the optimal cluster size. The objective function (e.g. in case of C-means) cannot provide a
prediction of the optimal cluster size, since with increasing number of clusters naturally the
distance of the data to the prototypes becomes smaller.

4.2 External Criteria

In this approach of the external criteria validity measures the basic idea is to test whether
the points of the data set are randomly structured (hypothesis H0) or not. If the points
of the data set are randomly structured, cluster analysis does not produce “good” results.
Statistical tests, like Monte Carlo techniques, are needed to test this hypothesis. We can
evaluate the clustering structure C, by comparing it to an independent partition of the data
P built according to our intuition about the clustering structure of the data set.

The Monte Carlo Process:
The first phase involves the generation of a special data set. This data set may include alter-
native variance/covariance matrices, controlling the number of clusters, the spacing between
clusters, the data dimension, the relative cluster size, or the introduction of error into the
data.
The second phase involves analysing the generated data with selected clustering methods.
The primary of the third phase is to compare the true cluster structure in the generated
data with the partition which was produced by the clustering procedure.

Consider C = {C1, . . . , Cnc
} to be a clustering structure of a data set X and P is a de-

fined partition of the data. For a couple of two different points it provides the following
possibilities:
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S D
S a b
D c d

Table 4.1: Table for paired comparsion between partitions

1. SS: both points belong to Ci and Pi

2. SD: both points belong to Ci and different groups of P

3. DS: both points belong to Pi and different cluster of C

4. DD: both points belong to different clusters of C and to different groups of Pi

These possibilities can be shown in a general form of a 2× 2 table (Table 4.1) in which all
combinations of these data units are classified.

Thus a, b, c and d are the numbers of SS, SD, DS and DD pairs respectivitly, and
a + b + c + d = L.
Now we can define the following indices to measure the degree of similarity between C and P .

4.2.1 Rand, Jaccard, Folkes and Mallows, and the Hubert Indices

In terms of the entities in Table 4.1, Rand’s measure of similarity between partitions is
defined as

R =
a + d

L
. (4.1)

A similar index is the Jaccard Coefficient

J =
a

a + b + c
. (4.2)

These two indices take values between 0 and 1.
Other indices are the Folkes and Mallows index

FM =
a

√

(a + b)(a + c)
(4.3)

and the Hubert’s Γ statistic

Γ =
1

M

n−1
∑

i=1

n
∑

j=i+1

xijyij (4.4)

where M = n(n−1)/2, n is the number of points in the data set and xij and yij are elements
of the matrices P and C that we want to compare.
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In the case of these four indices a high value indicates a great similarity between C and P .
The normalised Γ statistic is defined as

Γ̂ =
1

M

∑n−1
i=1

∑n

j=i+1(xij − µx)(yij − µy)

σxσy

(4.5)

µx, µy, σx and σy are the means and standard deviations of P and C. All these statistics
have right tailed probability density functions under the random hypothesis. However, the
calculation of the probability density function of these indices is difficult. A solution to this
problem is to use Monte Carlo techniques. The procedure is as follows:

FOR i = 1 to r
Generate a data set Xi with the same dimension as X.
Assign each vector of Xi according to the partition P .
Run the same algorithm used to produce structure C, for each Xi, and let Ci the resulting
structure.
Compute q(Ci), the value of the defined index q for P and Ci.
END FOR
Reject the hypothesis H0 if q’s value for our data set is greater than (1− ρ) · r of qi’s values,
of the respective synthetic data sets Xi, where ρ is the significant level.

Example:
Assume a given data set, X, containing 100 three-dimensional points. The points of X form
four clusters of 25 points each. Each cluster is generated by a normal distribution. The
covariance matrices of these distributions are all equal. We independently group data set X
in four groups according to the partition P for which the first 25 points belong to the first
group P1, the next 25 belong to the second group P2, etc. We run the C-means clustering
algorithm for nc = 4 clusters and we assume that C is the resulting clustering structure. We
compute the values of the indices for the clustering C and the partition P and get the values
of the indices of R, J , FM and Γ. Next we generate 100 data sets Xi, i = 1, . . . , 100, and
each one of them consists of 100 random points using the uniform distribution. According
to the partition P defined earlier for each Xi we assign the first 25 of its points to P1 and
the second, third and fourth groups of 25 points to P2, P3 and P4 respectively. Then we run
C-means i-times, one time for each Xi, so as to define the respective clustering structures
of the data sets, denoted by Ci. For each of them we compute the values of the indices Ri,
Ji, FMi and Γi, i = 1, . . . , 100. We set the significance level ρ = 0.05 and we compare these
values to the R, J , FM and Γ values corresponding to X. We accept or reject the null
hypothesis whether (1−ρ) · r = (1−0.05) ·100 = 95 values of Ri, Ji, FMi and Γi are greater
or smaller than the corresponding values of R, J , FM and Γ.

4.3 Internal Criteria

Internal criteria are cluster validity measures which evaluate the clustering result of an al-
gorithm by using only quantities and features inherent in the data set.
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We can define

Bnc
=

nc
∑

i=1

‖vi − v‖2 (4.6)

where ‖ · ‖ denotes the Euclidean norm and where

v =
1

nc

nc
∑

i=1

vi (4.7)

and

Wnc
=

nc
∑

i=1

∑

j∈Ci

‖xj − vi‖2 (4.8)

to be the matrices of between and within the nc-clusters sum of squares and crossproducts.
Another approach is the pooled within sum of squares and can be found in (Tibshirani et al.,
2000).
These statistics measure the dispersion of the data points in a cluster and between the clus-
ters, respectively. Now the following indices can be defined:

4.3.1 Calinski-Harabasz and Hartigan’s Indices

Calinski and Harabasz:

CH =
Bnc

/(nc − 1)

Wnc
/(n− nc)

(4.9)

where n is the number of data points and nc is the number of clusters.
Hartigan:

H = log
Bnc

Wnc

(4.10)

The minimum value for these two indices is taken as the proposed number of clusters.

4.3.2 The Average Silhouette Width

Another approach from Kaufman and Rousseeuw (1990) is the Average Silhouette Width.
They suggest selecting the number of clusters nc which gives the largest average silhouette
width. Silhouette plots visualise the quality of the clustering for every object separately with
a horizontal bar which is determined by the silhouette value si of the object. The calculation
of the silhouette value proceeds as follows: First, the average dissimilarity ai of an object i
to the other members of the same class Ck is given by

ai =
1

|Ck| − 1

∑

i,j∈Ck,j 6=i

d(i, j) . (4.11)
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Now consider any cluster Cl 6= Ck and define the average dissimilarity di,C of object i to Cl

di,C =
1

|Cl|
∑

j∈Cl

d(i, j) . (4.12)

The cluster Cl for which this average linkage distance di,C attains a minimum bi is called the
neighbour of object i.
Finally, the silhouette value is defined as

si =
bi − ai

max(ai, bi)
. (4.13)

The values of si lies in the interval [−1, 1]. If the value of si is close to −1, then there is
a bad classification of object i. si close to 0 indicates that the object s lies between two
clusters. A value of si close to 1 means that object i is well classified.

Silhouette width
−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of  clara(x = scale(log(main.elements)), k = 7)

Average silhouette width :  0.15

Figure 4.8: Graphical output for the clustering of the main elements of the C-horizon with
CLARA into seven clusters.

The silhouettes for nc = 7 clusters (produced with CLARA) of the main elements of the
C-horizon are given in Figure 4.8. Only cluster 5 and 6 have a reasonable silhouette width.
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However, the average silhouette width can be computed for all possible numbers of clusters.
The resulting value is called silhouette coefficient. Its maximum can be used for determin-
ing an approximate number of clusters. Experience with the silhouette coefficient has led
Kaufman and Rousseeuw (1990) to a rather subjective interpretation, which is summarised
in Table 4.2.

Table 4.2: Subjective interpretation of the silhouette coefficient, defined as the maximal
average silhouette width for the entire data set.

Silhouette Coefficient Proposed Interpretation

0.71− 1.00 A strong structure has been found.
0.51− 0.70 A reasonable structure has been found.
0.26− 0.50 The structure is weak and could be artificial.
≤ 0.25 No substantial structure has been found.

4.3.3 Validity Indices for Hierarchical Clustering

Internal cluster criteria for hierarchical clustering can be described as follows.
The cophenetic similarity cij, introduced by Legendre and Legendre (1998), of two objects i
and j is defined as the similarity level at which objects i and j become members of the same
cluster during the course of clustering.
We may define a statistical index to measure the degree of similarity between the cophenetic
matrix Pc with the elements cij, i.e. Pc = [(cij)] and the dissimilarity matrix P = [(dij)].

This index is called cophenetic correlation coefficient and is defined as:

CPCC =
1
M

∑n−1
i=1

∑n

j=i+1 dijcij − µpµc

[(

1
M

∑n−1
i=1

∑n

j=i+1 d2
ij − µ2

p

)(

1
M

∑n−1
i=1

∑n

j=i+1 c2
ij − µ2

c

)]
1
2

(4.14)

where M = n(n − 1)/2 and n is the number of points in the dataset and µp and µc are the
means of matrices P and Pc respectively. The value of CPCC lies between −1 and 1, if a
value is close to 0 it is an indication of a significant similarity between the two indices.

Another approach is the agglomerative coefficient and accordingly the banner plot. A hier-
archy of clusters can be represented with a dendrogram or with a banner plot proposed by
Kaufman and Rousseeuw (1990), p. 211.

The overall width of the banner is very important because it gives an idea of the amount
of structure that has been found by the algorithm. When the data possess a clear cluster
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Figure 4.9: Banner of the variables of the main elements of the C-horizon

structure, the between-cluster dissimilarities will become much larger than the within-cluster
dissimilarities, and as a consequence the black lines in the banner will become longer. For
each object i, we look at the line containing its label and measure its lenght l(i) on the
0−1 scale above or below the banner. The banner plots distances at which observations and
clusters are merged. The observations are listed in the order found by the AGNES algorithm,
and the numbers in the height vector are represented as bars between the observations.

The agglomerative coefficient of the data set is then defined as

AC =
1

n

n
∑

i=1

(1− l(i)) . (4.15)

The agglomerative coefficient lie in [0, 1] and it is simply the average width of the banner.
In Figure (4.9), AC = 0.73, which refer a strong clustering structure. The agglomerative
coefficient tends to grow with the number of objects. Therefore it should only be used to
compare data sets with similar numbers of objects.

4.4 Relative Criteria

The major difference to external and internal validity criteria is, that statistical tests are
not involved. There are two main approaches to find the best number of clusters. The first
one investigates the data set for numbers of clusters within a certain range [cmin, cmax]. The
minimum and the maximum values have to be defined in advance by the user.
For each partition obtained the validity is measured by a global validity measure. The
partition with the best value becomes the optimal partition. However it can not be said that
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this partition is the best partition. Some of these criteria evaluate only the allocation of the
data to the clusters. Other criteria evaluate the form of the cluster or how well the clusters
are separated. It is only the best partition concerning the used validity measure.

The second approach starts with a high number of clusters and performs operations like
merging of similar clusters or deleting tiny clusters to approach the final partition with an
optimal number of clusters. For these operations, local validity measures are used.

number of clusters

error measure

1             2             3             4             5             6             7

optimal number
of clusters

Figure 4.10: Plot of an error measure versus the number of clusters

Figure 4.10 nach Figure shows a typical plot of the error measure for a clustering procedure
versus the number of clusters nc employed: The error measure decreases monotonically as
the number of clusters decreases, but from some nc on the decrease flattens markedly. This
location of a knee indicates the optimal number of clusters.

4.4.1 Indices for Non-Overlapping Partitions

In this section the validity indices suitable for non-overlapping partitions (crisp clustering)
are discussed.

Davies Bouldin Index

This index is defined as follows:

DB =
1

nc

nc
∑

i=1

max
j=1,...,nc,j 6=i

dij (4.16)

where

dij =
ai + aj

d(i, j)
(4.17)

nc is the number of clusters, ai and aj are defined in (4.11) and d(vi, vj) is the distance
of the cluster centres vi and vj, and d(i, j) is the distance between object i and object j.
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This distance is small if cluster i and cluster j are well separated and each of the clusters is
compact.

Dunn’s Index

The index of Dunn is a very popular cluster validity index, which aims at the identification
of compact and well separated clusters.
Let dmin(Ci, Cj) = minx∈Ci,y∈Cj

d(x, y) denote the single linkage between two elements from
different clusters Ci and Cj, and dmax(Ck) = maxx,y∈Ck

d(x, y) the largest distance of two
objects from the same cluster. Then the Dunn index is given by

D = min
1≤i≤nc

{

min
1≤j≤nc,j 6=i

{ dmin(Ci, Cj)

max1≤k≤nc
dmax(Ck)

}}

. (4.18)

nc is the number of clusters.

Modified Hubert Γ Statistic

The definition of the modified Hubert Γ statistic is given by the equation

Γ =
1

M

n−1
∑

i=1

n
∑

j=i+1

d(i, j) ·Q(i, j) (4.19)

where n is the number of objects in the data set, d(i, j) is the (i, j)-th element of the
dissimilarity matrix of the data set, and Q is an n×n matrix whose (i, j)-th element Q(i, j)
is equal to the distance between the representative points vi and vj of the clusters where the
objects xi and xj belong. A high value of Γ indicates the existence of compact clusters. In
practice one should see in the plot of Γ versus cluster number a significant knee, which is an
indicator of the correct cluster size.

RMSSTD and RS indices

Other indices, also based on the approach of looking for a knee, are the RMSSTD (root-
mean-square standard deviations) index and the RS (R-squared) index (see e.g. in Salazar
et al., 2002).

The RMSSTD index is defined by

RMSSTD =

√

Wnc

n− nc

(4.20)

where Wnc
is defined in (4.8), and nc is the number of clusters.
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Validity Index Name Variables Criterion
Davis Bouldin Index DB (X, C) minimise
Dunn’s Index D (X, C) maximise
Modified Hubert Statistic Γ (X, C, v) look for knees
Root-Mean-Square stand. dev. RMSSTD (X, C, v) look for knees
R-Squared RS (X, C, v) look for knees
SD Index SD (X, C, v) look for knees
Inter-cluster Density ID (X, C, v) minimise

Table 4.3: Seven crisp cluster validity indices

Inter-Cluster Density

The Inter-Cluster Density (ID) evaluates the average density in the region among clusters
in relation to the density of the clusters and is defined as

ID =
1

nc(nc − 1)

nc
∑

i=1

(

nc
∑

j=1,i6=j

density(uij)

max{density(vi), density(vj)}
)

(4.21)

where vi, vj are the centres of clusters Ci, Cj and uij is the middle point of the line segment
defined by the cluster centres vi and vj. The term density(u) is defined as

density(u) =

n(ij)
∑

l=1

f(xl, u) (4.22)

where n(ij) is the number of tuples that belong to the cluster ci and cj. It represents the
number of points in the neighbourhood of u. The neighbourhood of a data point, u, is
defined to be a hyper-sphere with center u and radius the average standard deviation of the
cluster. The function f(x, u) is defined as

f(x, u) =

{

0, if d(x, u) > the average standard deviation of the clusters
1, otherwise

A point belongs to the neighbourhood of u if its distance from u is smaller than the average
standard deviation of clusters.

In Table 4.3 we can see seven crisp cluster validity indices with the necessary input (variables:
X . . . data set, C . . . cluster result and v . . . cluster centres) and criteria for the optimal cluster
size.

4.4.2 Global Validity Measures for Fuzzy Clustering

In contrast to the previous sections we focus on the memberships now. To perform fuzzy
clustering with global validity measures we need

59



• an initialisation algorithm for every number of clusters within the allowed range in
order to initialise the prototype,

• a fuzzy clustering algorithm,

• an algorithm that calculates one or more global validity measures for the final partition,

• an algorithm which selects the best partition (with respect to the validity measure)
from the results.

We can search for an appropriate value of nc in points where a significant local change (knee)
in value of the index occurs. This may be an indication for the optimal cluster size.

Partition Coefficient

The partition coefficient (Bezdek, 1981) is a very simple validity criterion, which is based
on the idea that, with a good classification, the data can be assigned clearly to the clusters.
The membership degrees should be close to 1 or close to 0.
The partition coefficient is defined as

PC(U) = − 1

n

nc
∑

i=1

n
∑

j=1

u2
ij . (4.23)

The optimal choice of nc is given by

min
nc

PC(U) (4.24)

where the range of the PC values lie in the interval [−1,− 1
nc

]. Figure 4.11 shows the partition
coefficient in relation to the number of clusters of the main elements from the C-horizon. The
data have been log-transformed and standardised, and were clustered with the Gustafson-
Kessel algorithm.

Partition Entropy

Similar to the partition coefficient, the partition entropy (Bezdek, 1981) is only using mem-
berships of the data to the clusters.
The partition entropy is defined as

PE(U) = − 1

n

nc
∑

i=1

n
∑

j=1

uij ln(uij) (4.25)

The values of PE are in the interval [0, ln(nc)]. The partition entropy is to be minimised.
The graphical output of the partition entropy is similar to Figure 4.11 and is shown in Figure
4.12.
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Figure 4.11: Partition coefficients of the main elements from the C-horizon clustered with
the Gustafson-Kessel algorithm.

Compactness and Separation

This validity measure, published by Xie and Beni (1991), becomes minimal for compact, well-
separated clusters. The distance of the data to the clusters is compared with the distance
between the clusters.
The measure is defined as

S(U, X) =

∑nc

i=1

∑n

j=1 u2
ij · d2(xj, vi)

n ·min
{

d2(vi, vj)|i, j ∈ {1, . . . , nc}, i 6= j
} . (4.26)

The numerator term represents the homogeneity of the data in a cluster, and therefore it
should be as small as possible. The denominator evaluates the heterogeneity of the data from
different clusters. With this validity measure a small value indicates a good classification.
Figure 4.13 shows a knee at a number of four clusters. This is an indication for the optimal
cluster size.

Fukuyama Sugeno Index

The Fukuyama-Sugeno index (Fukuyama and Sugeno, 1989) is defined as

FS(U, X) =
nc

∑

i=1

n
∑

j=1

um
ij

(

d2(xj, vi)− d2(vi, v)
)

(4.27)

where v is the mean vector of X.
The fist term in the brackets measures the compactness of the cluster. The second term
measures the distance between the cluster prototypes. Small values for FS imply compact
and well separated clusters.
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Figure 4.12: Partition entropy of the main elements from the C-horizon clustered with the
Gustafson-Kessel algorithm.

Hyper-volume and Partition Density

The fuzzy hyper-volume (Gath and Geva, 1989) becomes minimal for small clusters and is
defined as

FHV (U) =

nc
∑

i=1

√

det(Si) (4.28)

where Si is given by (2.21) . The fuzzy hyper-volume applied to the clustering result of the
log-transformed and standardised main elements from the C-horizon is shown in Figure 4.14.

Let Xi ⊃ X denote a subset of the data set with a distance less than 1 to the prototype vi

of cluster Ci, that is,

Xi = {xj ∈ X|(xj − vi)
T A−1

i (xj − vi) < 1} , (4.29)

with Ai defined by (2.20). The sum of all membership degrees of elements in Xi to cluster
Ci is denoted by ui. This value provides an estimation on the density of the region near the
cluster centre occupied by data objects. Thus the average partition density is defined as

APD(U) =
1

nc

nc
∑

i=1

ui√
Ai

(4.30)

and the partition density as

PD(U) =

∑nc

i=1 ui

FHV (U)
. (4.31)

The partition density measures the density of the complete partition whereas the average
partition density measures the cluster density. Both indices (all from Gath and Geva, 1989)
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Figure 4.13: Compactness and separation of the main elements of the C-horizon clustered
with the Gustafson-Kessel algorithm.

need to be maximised for a good partition (Höppner, 2000, stores their negative values).
The average partition density in Figure 4.15 and the partition density in Figure 4.16 show
that two clusters are enough to produce a “good” clustering result.

Contractive Properties of FCM

This measure provides an upper bound for the norm of the derivative of the FCM iteration
mapping, which can be used to decide whether an FCM solution is a contractive fixed point
and thus a minimum of (2.11). If the norm drops below 1, the fixed point is contractive and
represents a local minimum for sure. For details see Höppner (2000). In Figure 4.17 one can
not appropriate determine the optimal number of clusters.
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Figure 4.14: Fuzzy hyper-volume of the main elements from the C-horizon clustered with
the Gustafson-Kessel algorithm.
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Figure 4.15: Average partition density of the main elements from the C-horizon clustered
with the Gustafson-Kessel algorithm.
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Figure 4.16: Partition density of the main elements from the C-horizon clustered with the
Gustafson-Kessel algorithm.

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

va
lid

ity
 m

ea
su

re

no. of prototypes

Figure 4.17: Contractive index of the main elements from the C-horizon clustered with the
FCM algorithm.
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4.4.3 Local Validity Measures for Fuzzy Clustering

To perform clustering with local validity measures, the following algorithms are needed.

• an initialisation algorithm,

• a fuzzy clustering algorithm,

• an algorithm that calculates local validity measure for each cluster in order to classify
them,

• an algorithm that modifies the set of clusters according to local validity measures.

Local validity measures are used to decide cluster properties like tiny, good, and compat-
ible. A tiny cluster has only a small number of features compared to other clusters. A good
cluster has small distances to the assigned features and almost hard memberships. And two
clusters are compatible if they approximate the same model in the data and it is possible to
approximate the union of assigned features with a single instead of two clusters.
In order to approach an optimal number of clusters, tiny cluster will be deleted and com-
patible clusters are merged. To reduce the complexity of the data set it can be helpful to
extract a well-separated cluster and redo the fuzzy clustering without the extracted data.

Tiny clusters are often characterised by

n
∑

j=1

um
ij < Ctiny (4.32)

where m is the fuzzyfier.

If this sum drops below a certain threshold Ctiny, the cluster is considered to be tiny and
marked for deletion.

There are many other local validity measures. In most cases these measures are used to
detect lines and circles (shell-clustering).
But in the geochemical data sets of the C-horizon and O-horizon there are no clear line or
circle structures. Lines and circle structures appear mainly in pattern recognition.
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Chapter 5

Results

The O-horizon and the C-horizon of the Kola data and the Walchen data were analysed
with the help of the algorithms of hierarchical clustering, the CLARA algorithm of Kaufman
and Rousseeuw (1990) and the fuzzy cluster algorithm of Höppner (2000). Kaufman and
Rousseeuw (1990) developed the FANNY algorithm for the use in fuzzy clustering. This
algorithm, applied to standardised large data sets, constantly gives same-sized memberships
of the objects to all clusters. Modifications of the Fortran programme (e.g. raising the limit
of the number of iterations) did not solve the problem.

With the algorithms applied and with various selection of elements for the clustering, hun-
dreds of results were produced. Some of the most important ones are presented and described
in this thesis.

The number of clusters can be defined with the help of validity measures when doing fuzzy
clustering. Some of the values of the validity measures are shown in tables and are analysed.

5.1 O-horizon

In the humus samples (O-horizon; 0-3 cm under the surface) the effects of environmental
pollution and weather conditions should be discernible. In the western half of the Kola
Peninsula, in north-western Russia the pollution of the environment is enourmous. Nickel
mining, roasting and smelting lasting over a period of more than 60 years have brought
about severe damage to the ecosystems in the surroundings of the three major industrial sites
Nikel (nickel smelting), Zapoljarnij (nickel mining and roasting) and Monchegorsk (nickel
smelting). Further emission sources in the area include iron-ore mines and mills, a large
open-cast apatite mine and processing plant, several coal-fired power plants, an aluminum
smelter and the cities and harbours of Murmansk and Severomorsk. In contrast, large parts
of the Kola Peninsula and the neighbouring regions of Finland and Norway represent some of
Europe’s most pristine wilderness areas. This contrast, provided that the choice of elements
is appropriate, should become very clear with the help of cluster analysis.

The choice of elements is of crucial importance here. Elements which are not suitable for
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discerning environmental pollution, bring undesired influences (e.g. from weather conditions)
into the clustering. It is therefore very difficult to separate and interpret these various kinds
of influences in the clustering result. Masking variables, i.e. variables which show no or
another group stucture, can also make an interpretation of the results impossible.

The chemical elements Co, Cu, and Ni are typical elements reflecting pollution. The selection
of these elements and application of the algorithm CLARA with 4 clusters leads to the result
presented in Figure 5.1. Objects (samples) belonging to particular cluster are in black. Since
the interpretation of the resulting clusters is also of interest, we additionally present Figure
5.2, which shows the mean values of the elements in the four clusters. The dashed line has
no meaning, but it is helpful when comparing different results. The most serious pollution
(highest values of Co, Cu, Ni) is visible in 5.2 for cluster 4. Figure 5.1 shows that cluster
4 consists of samples around Nikel, Zapoljarnij and Monchegorsk. Cluster 3 shows strong
pollution in the form of a ring surrounding cluster 4. The difference between East and West
(the western area is lightly polluted, the eastern area is strongly polluted) is discernable in
cluster 2. The influence of Co, Cu and Ni, shown in Figure 5.2, on cluster 2 is very low.
Cluster 1 shows samples without cluster 3 and 4. In Figure 5.2 also the cluster size is printed,
which is the fraction of samples in the cluster on all samples.

O−horizon: Co, Cu, Ni; cluster 1 O−horizon: Co, Cu, Ni; cluster 2

O−horizon: Co, Cu, Ni; cluster 3 O−horizon: Co, Cu, Ni; cluster 4

Figure 5.1: Elements Co, Cu, Ni from the O-horizon clustered with CLARA

A more detailed insight is provided by increasing the number of clusters to 8. In Figure
5.3 five levels of pollution can be recognised. Cluster 7 shows the strongest pollution in
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Figure 5.2: Influence of the elements Co, Cu, Ni from the O-horizon clustered with CLARA

the region of Nikel, Zapoljarnij and Monchegorsk. Cluster 8, 4, 2 and 1 show decreasing
pollution in the form of a ring around cluster 7. In all other clusters the difference between
East and West is visible.

It will be of interest now to compare the previous results with fuzzy clustering. We apply the
GK algorithm for six clusters. The resulting memberships coefficients include a lot of new
information: In the previous analysis each object was clearly assigned to one cluster (0/1
memberships), whereas now we receive memberships of each object to all clusters. These
coefficients can be visualised by using a grey scale: the higher the membership coefficient of
a sample in a cluster, the darker the point in the map. Figure 5.5 shows the resulting maps,
each map represents one cluster. The East-West difference is also visible in Figure 5.5 in
clusters 1 and 3. The pollution can be seen in cluster 6 and the outer ring of the pollution
is visible in cluster 4.

The clustering of the elements As, Co, Cu, Ni and V with the help of CLARA is shown in
Figure 5.6. In cluster 3, 5 and 6 the pollution is again clearly visible. However, the difference
between East and West is not visible anymore. Due to the larger number of elements the
interpretation of the results has become more difficult.

In Figure 5.7 the results are presented in a different way. The first illustration shows the
result of CLARA with two clusters, the black cluster consisting of 448 data points and the
red one consisting of 169 data points. In each of the following four illustrations the number
of clusters has been raised by one. This way of presenting the results is not as clear as the
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O−horizon: Co, Cu, Ni; cluster 1 O−horizon: Co, Cu, Ni; cluster 2 O−horizon: Co, Cu, Ni; cluster 3

O−horizon: Co, Cu, Ni; cluster 4 O−horizon: Co, Cu, Ni; cluster 5 O−horizon: Co, Cu, Ni; cluster 6

O−horizon: Co, Cu, Ni; cluster 7 O−horizon: Co, Cu, Ni; cluster 8

Figure 5.3: Elements Co, Cu, Ni from the O-horizon clustered with CLARA

former plots, but it gives information on how the clusters split and change when its number
is raised.
The pollution of the red cluster from the first illustration disperses into smaller segments
in the following illustrations, while the black points from illustration no. 1 disperse in a
seemingly arbitrary manner into unseparated clusters.

The clustering of the elements Ca, Fe, Mg, Na and Sr should make the influence of the sea
visible in Figure 5.8. Cluster 3 shows the strongest influence of the sea, with Mg and Na
having the strongest influence here (see Figure 5.9). In cluster 6 the influence of Ca, Mg, Na
and Sr is strong, and it illustrates the second belt of the sea spray. Cluster 1, 4 and 7 show
a distinction between the area influenced by sea spray and the interior. Cluster 9 is roughly
similar to the univariate map of the high radiotoxic Strontium.

The clustering of the elements Co, Cu, Mn, Na, Ni, Pb and Sr in Figure 5.10 is not so easy
to interpret. The sea spray is clearly visible in cluster 2, with Na and Sr having the strongest
impact (see Figure 5.11). In cluster 1 one can still see the influence of the sea, while cluster
4 makes not only the influence of the sea visible but it also mirrors the pollution by Co and
Cu. In cluster 3 the differences between East and West and between the area influenced by
the sea and the interior can not be clearly discerned anymore, and it is difficult to say which
of the two factors (sea spray or pollution) has the bigger influence. Cluster 5 approximately
mirrors the univariate map of Manganese with Na, for example, having very little influence.
Therefore this cluster can be interpreted as a counterpart to sea spray (distinction of sea
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Figure 5.4: Influence of the elements Co, Cu, Ni from the O-horizon clustered with CLARA

spray - interior). Cluster 6 shows a strong lead pollution in certain points. Cluster 7 is the
cluster which is more or less left over when all samples which showed an influence of sea
spray or pollution have been crossed out. In cluster 8 the distinction between sea spray and
the interior is again visible. The pollution becomes clear in cluster 9 and 10 with cluster
9 mainly showing the pollution by Strontium and with cluster 10 showing the pollution by
Co, Cu and Ni. Cluster 11 and 12 are very difficult to interpret, since both the sea spray
and the pollution have their impact here.
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O−horizon: Co,Cu,Ni − gk cluster 1 O−horizon: Co,Cu,Ni − gk cluster 2 O−horizon: Co,Cu,Ni − gk cluster 3

O−horizon: Co,Cu,Ni − gk cluster 4 O−horizon: Co,Cu,Ni − gk cluster 5 O−horizon: Co,Cu,Ni − gk cluster 6

Figure 5.5: Elements Co, Cu, Ni from the O-horizon clustered with the GK algorithm

O−horizon: As, Co, Cu, Ni, V; cluster 1 O−horizon: As, Co, Cu, Ni, V; cluster 2 O−horizon: As, Co, Cu, Ni, V; cluster 3

O−horizon: As, Co, Cu, Ni, V; cluster 4 O−horizon: As, Co, Cu, Ni, V; cluster 5 O−horizon: As, Co, Cu, Ni, V; cluster 6

Figure 5.6: Elements As, Co, Cu, Ni, V from the O-horizon clustered with CLARA
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Figure 5.7: Elements As, Co, Cu, Ni, V from the O-horizon clustered with CLARA
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Figure 5.8: Elements Ca, Fe, Mg, Na, Sr from the O-horizon clustered with CLARA
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Figure 5.10: Elements Co, Cu, Mn, Na, Ni, Pb, Sr from the O-horizon clustered with CLARA
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clustered with CLARA

75



5.2 C-horizon

The samples of the C-horizon were taken from a layer 30 cm under the surface. Therefore
environmental influence should be small. After having clustered some of the elements from
the C-horizon the types of rock should be visible. Figure 3.4 shows a separation into groups
of rocks. The clustering should not only contribute to clarity by putting together the infor-
mation at several univariate maps, but it should raise the question if the clustering mirrors
the lithological map or not.
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Figure 5.12: Clustering of elements from the C-horizon with AGNES

The variable cluster produced with the help of hierarchical clustering is presented in Figure
5.12. It shows the similarities of the elements in each of four selections of elements (main
elements, trace elements, mixed elements and mafic rock elements). In the hierarchical
clustering produced by AGNES and the average method, one can detect from the xrf data
(main elements of the C-horizon) both the outliers Si and Ti and define Al-Fe, Ca-Na, K-Mg
and Mn-P as very similar elements in the sense of this clustering. Later we will see that, if
we cluster the data of the main elements without these outliers, we can reach better results.
If one element of each of the similar pairs is crossed out and clustered with Si and Ti the
results will be even better.

Figure 5.13 is the result of fuzzy clustering produced with the Gustafson-Kessel algorithm.
The memberships to cluster 1 visualised in the first illustration clearly show the sedimentary
rocks and the supracrustal complexes in the North together with the alkalines in the East.
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Figure 5.13: Main elements of the C-horizon clustered with the Gustafson-Kessel algorithm

The elements K and Ti have the biggest influence in this cluster (see Figure 5.14). The
alkaline intrusions and the sediments should differ from each other, but geochemically they
are very similar (in the clustering of the main elements without Si and Ti the alkaline
intrusions disintegrate into two clusters). Cluster 2 shows a clear regional demarcation. The
granulite belt is clearly visible in cluster 3. Basically, more clusters can be produced by the
FCM and the GK algorithm by putting together similar elements. Eight different clusters
can be produced from the elements Al, Ca, K, Mn, Si and Ti with the help of the FCM
algorithm, and they are shown in Figure 5.15. Cluster 3 shows group no. 1 and no. 4 of the
lithological map in Figure 3.4. The geology 31 (granulite belt) and the geologies 9 and 10
(sedimentaries) fall into one cluster. Cluster 8 shows a typical half-ring made by the geology
7 (granite) near Nikel and Zapoljarnij and geology 1 (felsic gneiss) in the West.

The clustering of the data into six clusters with the help of the algorithm CLARA is shown
in Figure 5.16. In cluster 2 geology 1 in the south and geology 4 in the North-East form
one group. One can observe this kind of constellation again and again. Cluster 3 mainly
contains geology 52 (see lithological map in Figure 3.4. Cluster 4 shows the typical half-ring
consisting of geology 7 (compare Reimann et al., 2000) and the alkaline intrusions of geology
82 south-east of Olenogorsk. In cluster 5 the geologies 31, 9 and 10 fall once again into one
group. The elements potassium and silicon (see Figure 5.17) are of prime importance for
cluster 6. Most of geology 7 (granite) is reflected here. Cluster 1 contains the points which
are not to be found in any of the other clusters.
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Figure 5.14: Influence of the main elements of the C-horizon clustered with the Gustafson-
Kessel algorithm

Clustering of the elements Al, Ca, K, Mn, Si and Ti (variable selection of the main elements)
produces clusters which are easier to discern (see Figure 5.18) than the ones with the main
elements in Figure 5.16. Cluster 2 and cluster 4 swell into bigger groups. Unexpectedly,
cluster 6 shows several lineal rock formations together with a peculiar line underneath of the
Varanger Peninsula which contradicts the lithological map in which no lineal arrangement
of geology 7 is visible.

When clustering the first seven principal components (see Section 1.4) of the trace elements
(Figure 5.20) with the help of CLARA the geologies 9 and 10 are visible in cluster 4. Cluster
5 shows geology 82 and 7 in the East. Cluster 5 consists all in all of geology 7, while the
peculiar line underneath of the Varanger Peninsula, which is not visible in the lithological
map, is visible in this cluster.

Figure 5.21 shows the result of the clustering of the selected mixed elements with the help
of CLARA. In cluster 1 La and P are most influential (see Figure 5.22). Cluster 2 generally
shows geology 7 with the elements Rb, Ca, P and Th having the largest influence in this
cluster. In cluster 3 Ca has the largest influence. For this reason this cluster is very similar
to the univariate map of Ca. In Cluster 4 nearly all elements have a very large influence.
This cluster shows the alkaline intrusions in the East with the sediments in the North-
West. Geology 51 in the South is also visible in this cluster. Cluster 5 gives a very good
visualisation of the granulite belt (geology 31) together with geology 9 in the North. It is
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main_varsel − fcm cluster 7 main_varsel − fcm cluster 8

Figure 5.15: Selection of the main elements of the C-horizon clustered with the FCM algo-
rithm

interesting to note that the geology 9 on the Rhybachi Peninsula together with the geology
9 on the Varanger Peninsula is not visible. Geology 9 on the Rhybachi Peninsula is to be
found in cluster 4. The elements Ca, P and Rb have the largest influence in cluster 6.

In Figure 5.23 cluster 6 displays an interesting division between the sediments in the North.
Here geology 9 forms a clear group without geology 10. Cluster 4 basically shows geology
52.

The fuzzy clustering of the trace elements and the mixed elements produces similar groups.
The alkaline intrusions in the East fall into one cluster when the GK algorithm is applied.
Furthermore, a half-ring formed by geology 7 near Nikel and Zapoljarnij which is always
visible when the FCM algorithm is applied. Generally speaking, clustering the trace elements
and the mixed elements is more difficult to interpret than the main elements.
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Figure 5.16: Main elements of the C-horizon clustered with CLARA
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Figure 5.17: Influence of the main elements of the C-horizon clustered with CLARA
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C−H: main el. sel.; cl. 1 C−H: main el. sel.; cl. 2 C−H: main el. sel.; cl. 3

C−H: main el. sel.; cl. 4 C−H: main el. sel.; cl. 5 C−H: main el. sel.; cl. 6

Figure 5.18: Selection of the main elements of the C-horizon clustered with CLARA
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Figure 5.19: Influence of the selected main elements of the C-horizon clustered with CLARA
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C−h.: trace el. var. sel. w. PCA; cl. 1 C−h.: trace el. var. sel. w. PCA; cl. 2 C−h.: trace el. var. sel. w. PCA; cl. 3

C−h.: trace el. var. sel. w. PCA; cl. 4 C−h.: trace el. var. sel. w. PCA; cl. 5 C−h.: trace el. var. sel. w. PCA; cl. 6

Figure 5.20: First seven principal components of the selection of the variables of the trace
elements of the C-horizon clustered with CLARA

C−h.: mixed el. var. sel.; cl. 1 C−h.: mixed el. var. sel.; cl. 2 C−h.: mixed el. var. sel.; cl. 3

C−h.: mixed el. var. sel.; cl. 4 C−h.: mixed el. var. sel.; cl. 5 C−h.: mixed el. var. sel.; cl. 6

Figure 5.21: Selection of the mixed elements of the C-horizon clustered with CLARA
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Figure 5.22: Influence of the selected mixed elements of the C-horizon clustered with CLARA

C−horiz.: mafic rocks; cl. 1 C−horiz.: mafic rocks; cl. 2 C−horiz.: mafic rocks; cl. 3

C−horiz.: mafic rocks; cl. 4 C−horiz.: mafic rocks; cl. 5 C−horiz.: mafic rocks; cl. 6

Figure 5.23: Mafic rock elements of the C-horizon clustered with CLARA
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5.3 Walchen Data

walch − 2 cluster

cl1− 2 : bla: 310 ,r: 462 ,g: 0 ,blu: 0 ,cyan: 0 ,mag: 0 ,y: 0

walch − 3 cluster

cl1− 3 : bla: 275 ,r: 399 ,g: 98 ,blu: 0 ,cyan: 0 ,mag: 0 ,y: 0

walch − 4 cluster

cl1− 4 : bla: 104 ,r: 345 ,g: 241 ,blu: 82 ,cyan: 0 ,mag: 0 ,y: 0

walch − 5 cluster

cl1− 5 : bla: 136 ,r: 188 ,g: 208 ,blu: 81 ,cyan: 159 ,mag: 0 ,y: 0

walch − 6 cluster

cl1− 6 : bla: 164 ,r: 184 ,g: 188 ,blu: 47 ,cyan: 81 ,mag: 108 ,y: 0

walch − 7 cluster

cl1− 7 : bla: 164 ,r: 184 ,g: 188 ,blu: 47 ,cyan: 81 ,mag: 100 ,y: 8

Figure 5.24: Walchen data clustered with PAM

Figure 5.24 shows the Walchen data clustered with the help of the PAM algorithm. The
number of clusters was varied from 2 to 7, the resulting pictures are printed in two rows in
Figure 5.24, and referred to in the text as pictures no. 1 to 6. In the red cluster (cluster
2) in picture no. 1 many elements have high influence (see Figure 5.25). This red cluster
falls apart in picture no. 2. The green cluster (cluster 3) in picture no. 2 shows very clearly
the green rocks. This cluster consists of the ore deposits in the centre of the map and of
the green rocks in the West and in the North. The geologist cannot say exactly where the
demarcation line between the Ennstaler phyllites in the North and the Wölzer mica schist
in the centre and in the South lies. This distinction is just more or less visible in the North
of the green cluster in the middle of the map. The green cluster of picture no. 2 is almost
completely visible in picture no. 3 as a blue cluster. The black-marked samples of cluster
1 have the smallest average element concentrations. The adjoining red cluster (cluster 2)
has also quite low concentrations in general. In picture no. 4 the blue points (cluster 4)
stand for a big influence, the red ones (cluster 2) for a medium influence and the black ones
(cluster 1) together with the magenta-coloured (cluster 5) samples stand for a small influence
(5.26). At the same time the influence of the elements in the black cluster and in the cluster
coloured in magenta is of a contrary character. This means that in the black cluster the
influence of Co, Cu, Mg and Ni almost completely disappears while Ba, Cr, Na and Sr still
display an influence, and in the magenta-coloured cluster there is clearly opposite relation
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Figure 5.25: Walchen data clustered with PAM; influence of the elements
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Figure 5.26: Walchen data clustered with PAM; influence of the elements

in the influence of these elements. In picture no. 5 and 6 the ore deposits in the centre are
visible together with the green rocks in the West (this time marked in magenta colour). In
Figure 5.24 one could also see that the green rocks, especially the ore deposits in the centre
together with the green rocks in the West form a very homogeneous cluster, because this
cluster did not really fall apart even after raising the number of clusters.

Figure 5.28 presents the results after application of the algorithm CLARA. The number
of clusters was fixed with 7, and the results are almost the same as before (Figure 5.24).
Cluster 1, 2, 6 and especially cluster 4 have low average concentrations of the elements (see
Figure 5.29). In cluster 2 and 4 one may see the distinction between the Ennstaler phylittes
and the Wölzer mica schist. Cluster 4 shows again the green rocks, and cluster 7 shows rich
magnesium deposits.

In Figure 5.30 and 5.31 we can once again compare the results of the fuzzy clustering with
the help of the FCM algorithm and the GK algorithm. By doing clustering with the FCM
algorithm four individuals clusters could be created. However, with the GK algorithm only
three clusters could be created. The green rocks are more visible when the clustering was
done with the GK algorithm than with the FCM algorithm (see Figure 5.30 picture no. 3
and Figure 5.31 picture no. 4). The samples, however, which are little influenced by the
elements are more clearly visible when they were clustered with the FCM algorithm (see
Figure 5.30 picture no. 1 and 3).
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Figure 5.27: Walchen data clustered with PAM; influence of the elements

Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 1 Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 2 Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 3

Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 4 Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 5 Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 6

Ba_inaa,Co,Cr,Cu,Mg,Na,Ni_aas,Sr; cl. 7

Figure 5.28: Walchen data clustered with CLARA
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Figure 5.29: Walchen data clustered with CLARA; influence of the elements

walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − fcm cluster 1 walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − fcm cluster 2

walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − fcm cluster 3 walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − fcm cluster 4

Figure 5.30: Walchen data clustered with the FCM algorithm
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walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − gk cluster 1 walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − gk cluster 2

walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr − gk cluster 3

Figure 5.31: Walchen data clustered with the GK algorithm

88



5.4 Results of the Validity Measures for Fuzzy Clus-

tering

The following charts should give more information about the distribution of the data. The
quality criteria described in Section 4.4.2 also provide further information concerning the
question which of the selections of the elements lead to the best cluster quality, which of the
algorithms (FCM, GK or GG) is the best one for each of the clustering groups of elements
and which number of clusters is optimal.

The values of the various validity measures were evaluated by the fuzzy clustering package
of Höppner (2000) for a certain number of clusters and for the assignment of the objects
with several algorithms. This particular number of clusters was defined in the following way:
Beginning with the assignment of the objects into two clusters, the number of clusters was
increasing until a significant rise in one or more validity measures for these and for the next
numbers of clusters was discernible. This significant rise (knee) is an indicator for the optimal
number of clusters. nopt

c was defined with the help of the pick tool with (v1, v2, . . . , v6)
T being

the values of the voting vectors (see Appendix B 2.2). n
(2)
c is the second best choice for the

number of clusters when the pick tool is applied. The number of clusters on the chart in
bold print stands for the best choice in the number of clusters according to the criteria
recommended in literature (see Chapter 4). If, for a particular problem, only the density of
the cluster is of some importance then the viewer should look for a jump with the indizes
APD and PD only.

In this thesis when doing fuzzy clustering some experiments were made with different fuzzi-
fiers (see Section 2.3.1). Table 5.2 should show that a rise of the fuzzifiers results in a decline
in quality of the clustering for all values (compare Table 5.1 with Table 5.2). The validity
measures for the clustering of the main elements from the C-horizon with the GK algorithm
(Table 5.3) at the number of two clusters behave in a similar way as with a clustering with
the FCM algorithm (Table 5.1). The first jump occurs no sooner than at nc = 5 when
clustering with the FCM algorithm, while in Table 5.3 it is already visible at nc = 3 for the
validity measure separation. This means that when the main elements from the C-horizon
are clustered with the FCM algorithm the optimal number of clusters is reached at nc = 5.
Furthermore, we can read in Table 5.1 that, because of the validity measures PC, S, APD
and PD, the division in four clusters is better than the division into three clusters.

Table 5.4 also tells us that the optimal number of clusters for the main elements from the
C-horizon clustered with the GG algorithm definitely lies at 5. nc = 6 provides values for
PE, S, CI and FHV significantly higher than the values at nc = 5.

In Table 5.5 only the separation index(s) gives a hint that the trace elements are more
suitable for clustering than the main elements. Here it is difficult to say what is the optimal
number of clusters. On the one hand a small jump is visible at nc = 3 and a second at
nc = 4 (both for separation), on the other hand the first big jump occurs at nc = 5 (also for
separation). With all the other validity measures no significant jumps are visible at all.
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Table 5.6 shows that the trace elements of the C-horizon clustered with the GK algorithm
clearly provide worse values than with the FCM algorithm (Table 5.5).

When comparing Tables 5.7, 5.5 and 5.1 we can see that the mixed elements of the C-
horizon are less suitable for clustering (all values of the validity measures lie above the ones
of the trace elements and the main elements). The optimal number of clusters for the mixed
elements clustered with the FCM algorithm should lie at either nc = 3 or nc = 5.

By comparing Table 5.8 with Table 5.7 we can see that here the FCM algorithm is more
suitable than the GK algorithm. When the mixed elements are clustered with the GK
algorithm the optimal number of clusters lies at 2. Already at nc = 3 no useful results are
produced.

When comparing Table 5.9 with Table 5.1 we can see that the selection of variables of the
main elements contributed to an improvement of the clustering result. While the values for
PC, PE, S and CI are almost identical until nc = 5, the values for APD and PD are much
better at the selection of variables, the optimal number of clusters lies at either nc = 22 or
nc = 24 with a selection of variables.

The optimal number of clusters lies at three for the elements of the C-horizon clustered with
the GK algorithm (see Table 5.3), with the clustering of the selected main elements, however,
it lies at seven (see Table 5.10). This again confirms the assumption that the selection of
variables provides better results than the ones without prior selection.

When comparing the validity measures for all remaining compositions of the elements (main
elements without Si and Ti, selection of the trace elements, selection of the mixed elements
and various compositions of the C-horizon) clustered with all algorithms (FCM, GK and
GG), we can see that the selection of the variables produces the best results just followed by
a selection of variables which are no outliers. The FCM algorithm is mostly to be prefered
to all the other algorithms.

The evaluation of the clustering of the raw data provides the lowest validity measures. The
clustering of the standardised data provides lower validity measures than the ones coming
from the clustering of the transformed and standardised data. It is interesting to see that
the O-horizon is less suitable for clustering than the C-horizon. By comparing Table 5.1,
Table 5.11, Table 5.13 and Table 5.14 we can work out the following hierarchy of the best
cluster structure in the data:

1. Rock data

2. Walchen data

3. C-horizon

4. O-horizon
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Table 5.1: Global validity measures for main elements of C-horizon with FCM
nc PC PE S CI FHV APD PD

2 −0.625291 0.556759 0.658435 3.20757 2 -7.28671 -7.28671
3 −0.443408 0.931866 1.57331 6.33103 3 -7.61955 -7.61955
4 −0.370977 1.16595 0.682314 8.14834 4 -9.41773 -9.41773
5 −0.308632 1.36905 0.908516 10.0283 5 -6.93104 -6.93104
6 −0.260384 1.5465 12.7239 12.145 6 -5.43258 -5.43258
7 −0.225863 1.69646 4.21551 13.9575 7 -3.06478 -3.06478
8 −0.200061 1.82627 376.086 15.648 8 -8.323 -8.323
9 −0.178654 1.94465 2183.92 17.2646 9 -2.63137 -2.63137
10 −0.161882 2.04707 2964.68 18.7191 10 -2.89289 -2.89289
11 −0.148564 2.14036 3071.92 20.0811 11 -8.32674 -8.32674
12 −0.137768 2.22421 28859.7 21.3045 12 -7.41043 -7.41043
13 −0.128505 2.29995 1801.28 22.5114 13 -2.39404 -2.39404
14 −0.122 2.36723 43929.9 23.5091 14 -8.51139 -8.51139
15 −0.116038 2.42882 15391.4 24.4044 15 -7.91491 -7.91491
16 −0.10976 2.49192 504299 25.4464 16 -7.8168 -7.8168
17 −0.10456 2.54837 844975 26.411 17 -3.80348 -3.80348
18 −0.0993869 2.60545 1.01702e+07 27.4419 18 -8.17271 -8.17271
19 −0.0946139 2.66068 1.26215e+07 28.4576 19 -8.26481 -8.26481
20 −0.0906569 2.71009 368685 29.3868 20 -3.66314 -3.66314

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (4) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (4) 0.4 0.5 1.0 0 0 0 0
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Table 5.2: Global validity measures for main elements of C-horizon with FCM, fuzzifier=2.5
nc PC PE S CI FHV APD PD

2 -0.55 0.63 0.94 3.42 2 -3.98 -3.98
3 -0.37 1.03 4.87 6.38 3 -9.30 -9.30
4 -0.28 1.32 18.64 8.74 4 -6.99 -6.99
5 -0.22 1.54 3250.52 10.67 5 -5.88 -5.88
6 -0.18 1.72 11462.6 12.40 6 -3.67 -3.67
7 -0.16 1.88 3.2296e+06 13.95 7 -4.27 -4.27
8 -0.14 2.01 2.47749e+09 15.31 8 -3.46 -3.46
9 -0.12 2.13 7.52823e+13 16.57 9 -2.33 -2.33
10 -0.11 2.23 1.2427e+07 17.85 10 -3.12 -3.12
11 -0.10 2.33 1.09513e+08 18.96 11 -2.41 -2.41
12 -0.09 2.41 7.55707e+11 19.97 12 -1.98 -1.98
13 -0.08 2.49 8.33847e+09 20.99 13 -1.62 -1.62
14 -0.08 2.57 1.96001e+07 22.03 14 -1.99 -1.99
15 -0.07 2.64 3.87314e+09 22.90 15 -1.58 -1.58

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (3) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (3) 0.4 0.5 1.0 0 0 0 0
2 (3) 1.0 0.5 1.0 0 0 0.7 0.7
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Table 5.3: Global validity measures for main elements of C-horizon with GK
nc PC PE S CI FHV APD PD

2 -0.63 0.54 1.13 3.59 0.03 -78855.3 -6801.68
3 -0.43 0.93 1.53 6.90 0.09 -265.63 -10.20
4 -0.33 1.21 362044 9.19 0.07 -581.79 -43.32
5 -0.27 1.42 5.78554e+07 11.28 0.07 -678.22 -51.46
6 -0.22 1.60 109221 13.14 0.07 -526.86 -58.35
7 -0.19 1.75 227225 14.87 0.07 -487.75 -60.77
8 -0.17 1.88 1.9238e+12 16.21 0.05 -0 -0
9 -0.16 1.98 1.69398e+08 17.31 0.03 449.65 -130.75
10 error error error error error error

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (3) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (3) 0.4 0.5 1.0 0 0 0 0

Table 5.4: Global validity measures for main elements of C-horizon with GG
nc PC PE S CI FHV APD PD

2 -0.96 0.05 1.60 0.20 0.124627 -0 -0
3 -0.93 0.11 2.64 0.39 0.242817 -0 -0
4 -0.95 0.07 5.52 0.45 0.315184 -0 -0
5 -0.94 0.09 1.10 0.36 0.0341557 -0 -0
6 -0.85 0.23 1e+20 10.98 3.77 -0 -0
7 -0.84 0.29 1e+20 12.11 0.74 -0 -0
8 -0.88 0.19 1e+20 5.94 0.02 -0 -0
9 nan -0 1e+20 nan 0.02 -0 -0
10 -0.92 0.14 1e+20 12.37 0.08 -0 -0
11 -0.90 0.21 1e+20 21.57 32.02 -0 -0
12 nan 6-0 nan nan 0.05 -0 -0

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (5) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (5) 0.4 0.5 1.0 0 0 0 0
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Table 5.5: Global validity measures for trace elements of C-horizon with FCM
nc PC PE S CI FHV APD PD

2 -0.62 0.56 0.55 3.25 2 -0 -0
3 -0.44 0.93 0.92 6.38 3 -1.74 -1.74
4 -0.33 1.21 3.16 9.23 4 -1.60 -1.60
5 -0.27 1.43 24.95 11.62 5 -0.74 -0.74
6 -0.22 1.62 535.52 13.72 6 -1.37 -1.37
7 -0.19 1.77 6313.52 15.60 7 -0.65 -0.65
8 -0.17 1.90 6564.73 17.32 8 -0.59 -0.59
9 -0.15 2.02 194223 18.91 9 -0.53 -0.53
10 -0.13 2.12 2.58152e+08 20.32 10 -0 -0
11 -0.12 2.22 84369.3 21.72 11 -0 -0
12 -0.11 2.31 263935 23.04 12 -0 -0
13 -0.10 2.38 1.77698e+06 24.25 13 -0 -0
14 -0.09 2.46 738259 25.43 14 -0 -0
15 -0.09 2.53 8.31085e+08 26.56 15 -0 -0

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (3) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (3) 0.4 0.5 1.0 0 0 0 0

Table 5.6: Global validity measures for trace elements of C-horizon with GK
nc PC PE S CI FHV APD PD

2 -0.50 0.68 15.05 5.45 0.0009 -4469.98 -3343.9
3 -0.34 1.08 421498 8.86 0.0013 -3367.24 -2362.26
4 -0.26 1.36 8.88467e+06 11.49 0.0016 -1760.65 -1269.84
5 -0.20 1.58 1.87547e+08 13.70 0.0018 -1466.74 -1134.41
6 -0.17 1.76 5.68983e+09 15.63 0.0020 -1259.69 -1063.17
7 -0.15 1.92 1.53592e+12 17.35 0.0020 -1113.38 -1025.13
8 -0.13 2.05 9.16642e+12 18.92 0.0021 -1014.49 -997.48
9 -0.11 2.16 2.19962e+10 20.36 0.0022 -966.90 -956.35
10 -0.10 2.26 1.39993e+13 21.68 0.0023 -993.56 -932.86
11 -0.09 2.36 2.0691e+12 22.94 0.0024 -1202.81 -891.53
12 -0.09 2.44 1.85501e+14 24.13 0.0025 -2238.58 -843.48
13 -0.08 2.51 3.52548e+15 24.93 0.0024 -4250.18 -904.97
14 -0.08 2.58 1.0385e+13 26.01 0.0025 -13823.6 -846.56
15 -0.07 2.65 6.54847e+12 27.08 0.0027 -51796.5 -787.99

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (3) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (3) 0.4 0.5 1.0 0 0 0 0
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Table 5.7: Global validity measures for mixed elements from the C-horizon clustered with
FCM

nc PC PE S CI FHV APD PD

2 -0.60 0.58 0.67 3.56 2 -0 -0
3 -0.42 0.96 1.52 6.94 3 -0 -0
4 -0.31 1.25018 6.62 9.80 4 -0.87 -0.87
5 -0.25 1.46986 15.32 12.14 5 -0.84 -0.84
6 -0.21 1.65022 1624.37 14.23 6 -0.79 -0.79
7 -0.18 1.80451 47874.8 616.11 7 -0.72 -0.72

nopt
c (n

(2)
c ) v1 v2 v3 v4 v5 v6 v7

2 (3) 0.4 0.5 1.0 0 0.8 0.7 0.7
2 (3) 0.4 0.5 1.0 0 0 0.7 0.7

Table 5.8: Global validity measures for mixed elements from the C-horizon clustered with
GK

nc PC PE S CI FHV APD PD

2 -0.51 0.67 9.12 5.34 1.96465e-06 -1.80048e+06 -553941
3 -0.35 1.07 2.33616e+06 8.57 2.52548e-06 -1.46248e+06 -434753
4 -0.26 1.35 4.31129e+08 11.02 1.99042e-06 -1.20128e+06 -553116
5 -0.21 1.56 2.26419e+10 13.10 1.3105e-06 -1.03687e+06 -839980
6 -0.18 1.74 5.66829e+13 14.98 1.09156e-06 -1.01246e+06 -1.00628e+06
7 -0.16 1.89 4.50536e+12 16.73 1.18359e-06 -1.45539e+06 -924940
8 -0.14 2.02 3.64997e+13 18.37 1.37893e-06 -4.56412e+06 -791026
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Table 5.9: Global validity measures for the selected main elements from the C-horizon clus-
tered with the FCM algorithm

nc PC PE S CI FHV APD PD

2 -0.62 0.55 0.70 3.20 2 -33.17 -33.17
3 -0.46 0.90 0.87 5.75 3 -25.76 -25.76
4 -0.40 1.11 0.52 7.11 4 -20.34 -20.34
5 -0.35 1.28 0.82 8.54 5 -14.64 -14.64
6 -0.31 1.44 0.84 9.88 6 -14.94 -14.94
7 -0.27 1.58 0.75 11.49 7 -14.69 -14.69
8 -0.25 1.70 0.77 13.04 8 -12.72 -12.72
9 -0.23 1.80 0.71 13.88 9 -13.49 -13.49
10 -0.23 1.85 0.95 13.87 10 -14.91 -14.91
11 -0.21 1.93 1.04 15.05 11 -12.35 -12.35
12 -0.20 2.01 1.73 16.21 12 -11.42 -11.42
13 -0.18 2.09 1.84 17.17 13 -11.08 -11.08
14 -0.17 2.16 10.25 18.34 14 -9.93 -9.93
15 -0.17 2.21 1.97 18.61 15 -9.18 -9.18
16 -0.16 2.27 2.51 19.50 16 -8.66 -8.66
17 -0.15 2.33 2.51 19.99 17 -8.24 -8.24
18 -0.15 2.38 2.45 20.69 18 -8.16 -8.16
19 -0.14 2.43 6.19 21.73 19 -7.89 -7.89
20 -0.14 2.48 6.85 22.48 20 -7.62 -7.62
21 -0.14 2.51 2.15 22.61 21 -7.96 -7.96
22 -0.13 2.56 1.50 22.7741 22 -7.76 -7.76
23 -0.13 2.60 2.75 23.78 23 -7.25 -7.25
24 -0.12 2.65 426.38 25.3092 24 -6.50 -6.50
25 -0.12 2.68 8.18 25.026 25 -6.36 -6.36
26 -0.12 2.72 11584.1 26.30 26 -5.92 -5.92
27 -0.12 2.74 1.45132e+09 26.43 27 -6.18 -6.18

Table 5.10: Global validity measures for the selected main elements from the C-horizon
clustered with the GK algorithm

nc PC PE S CI FHV APD PD

2 -0.66 0.50 1.03 3.05 0.27 -3085.16 -1217.33
3 -0.47 0.88 0.99 5.97 0.28 -288.94 -131.67
4 -0.35 1.16 1.85 8.79 0.34 -227.43 -106.69
5 -0.30 1.36 1.94 10.20 0.34 -146.63 -72.17
6 -0.26 1.52 1.49 11.78 0.35 -201.62 -97.28
7 -0.23 1.67 3.21 13.34 0.36 -217.859 -120.83
8 -0.20 1.80 6.33 14.82 0.38 -204.44 -114.43
9 -0.18 1.91 1095.04 16.20 0.38 -220.92 -134.71
10 -0.17 2.01 17112.3 17.45 0.41 -187.20 -113.08
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Table 5.11: Global validity measures for the mainly used elements (Al, Ca, Co, Cu, Fe, Mg,
Mn, Na, Ni, Pb, Sr and V) without transformation of the O-horizon clustered with the FCM
algorithm

nc PC PE S CI FHV APD PD

2 -0.689628 0.480512 0.461393 2.63413 2 -6.43919 -6.43919
3 -0.497024 0.842514 1.35836 5.22751 3 -3.66717 -3.66717
4 -0.438102 1.05702 0.721534 6.36334 5 -0 -0
5 -0.361849 1.25762 7.52899 8.59393 6 -0 -0
6 -0.302143 1.44557 12.3877 11.0047 7 -0 -0
7 -0.265428 1.58695 16.347 12.6643 8 -0 -0
8 -0.239615 1.70797 142152 14.2676 9 -0 -0
9 -0.224048 1.80411 1101.77 15.0455 10 -0 -0
10 -0.227732 1.81158 1684.54 14.9039 11 -0.972882 -0.972882
11 -0.207604 1.91525 3.79849e+07 16.4712 12 -0.971263 -0.971263

Table 5.12: Global validity measures for the mainly used elements (Al, Ca, Co, Cu, Fe, Mg,
Mn, Na, Ni, Pb, Sr and V) of the O-horizon clustered with the FCM algorithm

nc PC PE S CI FHV APD PD

2 -0.555828 0.634794 1.81014 4.60454 2 -13.289 -13.289
3 -0.389091 1.01062 5.73387 7.6676 3 -10.5828 -10.5828
4 -0.307881 1.26886 26254.3 9.88433 4 -7.16118 -7.16118
5 -0.257045 1.4705 666.565 11.859 5 -5.63721 -5.63721
6 -0.221073 1.63893 118041 13.7423 6 -4.76453 -4.76453

Table 5.13: Global validity measures for the Walchen data custered with the FCM algorithm
nc PC PE S CI FHV APD PD

2 -0.6165 0.566507 0.842476 3.38704 2 -27.943 -27.943
3 -0.438113 0.938461 1.55702 6.38227 3 -16.8219 -16.8219
4 -0.338542 1.20869 2.13142 8.98192 4 -6.80781 -6.80781
5 -0.322285 1.32393 2.23021 9.55637 5 -3.03532 -3.03532
6 -0.27333 1.49672 2.74455 11.4891 6 -17.65 -17.65
7 -0.23371 1.65614 5.00656 13.4781 7 -12.8642 -12.8642
8 -0.202959 1.79778 3.27163e+06 15.4103 8 -11.0676 -11.0676
9 -0.179598 1.92303 15692.4 17.1245 9 -9.15687 -9.15687
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Table 5.14: Global validity measures for the main elements of the Rock data clustered with
the FCM algorithm

nc PC PE S CI FHV APD PD

2 -0.689628 0.480512 0.461393 2.63413 2 -6.43919 -6.43919
3 -0.497024 0.842514 1.35836 5.22751 3 -3.66717 -3.66717
4 -0.497497 0.870652 0.966742 5.33836 4 -0 -0
5 -0.438102 1.05702 0.721534 6.36334 5 -0 -0
6 -0.361849 1.25762 7.52899 8.59393 6 -0 -0
7 -0.302143 1.44557 12.3877 11.0047 7 -0 -0
8 -0.265428 1.58695 16.347 12.6643 8 -0 -0
9 -0.239615 1.70797 142152 14.2676 9 -0 -0
10 -0.224048 1.80411 1101.77 15.0455 10 -0 -0
11 -0.227732 1.81158 1684.54 14.9039 11 -0.972882 -0.972882
12 -0.207604 1.91525 3.79849e+07 16.4712 12 -0.971263 -0.971263
13 -0.190252 2.01216 3.014e+08 18.0242 13 -1.93486 -1.93486
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Table 5.15: Silhouette Coefficients for the C-horizon; non-standardised data1

nc m.el m.el.woSiTi m.el.varsel tr.el tr.el.woAs tr.el.varsel mix.el. mix.el.varsel

2 0.39 0.39 0.43 0.38 0.38 0.39 0.37 0.44
3 0.17 0.17 0.38 0.47 0.47 0.41 0.35 0.32
4 0.25 0.25 0.28 0.16 0.16 0.26 0.36 0.36
5 0.33 0.33 0.22 0.11 0.27 0.26 0.36 0.47
6 0.27 0.27 0.30 0.24 0.16 0.24 0.41 0.46
7 0.20 0.20 0.26 0.17 0.17 0.15 0.44 0.47

1m.el: main elements, m.el.woSiTi: main elements without Si and Ti, m.el.varsel: selec-
tion of the main elements, tr.el: trace elements, tr.el.woAs: trace elements without As,
tr.el.varsel: selection of the trace elements, mix.el.: mixed elements, mix.el.varsel: selection
of the mixed elements

Table 5.16: Silhouette Coefficients for the C-horizon; log-transformed and standardised data

nc m.el m.el.woSiTi m.el.varsel tr.el tr.el.woAs tr.el.varsel mix.el. mix.el.varsel

2 0.24 0.23 0.30 0.23 0.32 0.28 0.23 0.26
3 0.25 0.30 0.27 0.14 0.21 0.23 0.19 0.15
4 0.11 0.23 0.18 0.17 0.19 0.11 0.21 0.15
5 0.23 0.21 0.17 0.17 0.15 0.17 0.22 0.11
6 0.15 0.23 0.19 0.14 0.18 0.17 0.22 0.17
7 0.15 0.14 0.20 0.15 0.18 0.16 0.14 0.14

5.5 Results for the Silhouette Coefficient

The silhouette coefficients were calculated for the interval of two till seven clusters and are
shown in Tables 5.5 to 5.5. As expected the non-standardised data have higher silhouette
coefficients than the standardised data. However, in this case clustering is only done with
variables which have a large scale, variables with small range have no contribution. In Table
5.5 we can see that according to Table 4.3.2 for the main elements of the C-horizon no
substantial stucture can be found in this data for any number of clusters. In Tables 5.5 and
5.5 very few values show a weak structure. The only reason why the values for standO and
nc = 2 of 0.78 in Table 5.5 can be achieved lies in the fact that there are only two objects
in one cluster. Basically, the O-horizon data only shows a better clustering structure when
they are not logarithmised (see Table 5.5). According to Table 4.3.2 these data show weak
or even no clustering structure and therefore we can expect no good clustering results.
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Table 5.17: Silhouette Coefficients for the O-horizon, Walchen data and Rock data; stan-
dardised data1

nc standO standlogO standW standlogW standRock standlogRock
2 0.78 0.17 0.39 0.27 0.30 0.35
3 0.24 0.09 0.17 0.16 0.26 0.27
4 0.21 0.19 0.15 0.13 0.23 0.22
5 0.16 0.16 0.20 0.18 0.30 0.25
6 0.20 0.14 0.16 0.18 0.21 0.22
7 0.14 0.15 0.14 0.16 0.22 0.21

1standO: standardised data from the O-horizon, standlogO: log-transformed and standard-
ised data from the O-horizon, standW: standardised Walchen data, . . . , standlogRock: log-
transformed and standardised Rock data
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Chapter 6

Summary

In Chapter 1 the proof was given that the (underlying) geochemical data must be standard-
ised before clustering.

In Chapter 2 many clustering methods were mentioned. Unfortunately, only a handful of
cluster algorithms are included in the statistics package R. Especially for fuzzy clustering
there is only the algorithm FANNY, which did not produce useful results. For this reason
the algorithms of Höppner (2000) for fuzzy clustering of the data were applied in this work.
It would have been useful to integrate these algorithms (written in C++) into R in order to
escape the tiresome data set import/export between R and the programmes of Höppner.

New kinds of cluster algorithm should also be integrated into R. These new algorithms could
be applied to the existing data and its results could be evaluated with the help of suitable
validity measures. With the help of these suitable validity measures the algorithms could be
compared in order to find the best one for the underlying data.

Höppner follows very simple rules initialising the prototypes/memberships. With newer
approaches presented, for example, in Chapter 2 the danger of getting bad results by a bad
initialisation could be minimised.

In spite of having the worst results with regard to the validity measures the O-horizon (with
an appropriate selection of the elements) and the Walchen data basically provided results
which were easiest to interpret. The trace elements of the C-horizon, the mixed elements
of the C-horizon as well as various choices of these did not show good cluster stuctures and
their results were difficult to interpret, while the main elements did display relatively clear
structures.

The results of the clustering of the existing data showed that the selection of the elements
is very important for the clustering. The clustering of the variables can be helpful.
Clustering of the O-horizon provided a clear indication of the pollution around Nikel, Za-
poljarnij and Monchegorsk also the sea spray was clearly visible.
Various kinds of rock formations were made visible by clustering the C-horizon. The distinc-
tion between the Ennstaler phyllites and the Wölzer mica schist as well as the localisation
of the ore deposits were revealed by the clustering of the Walchen data.

101



The hierarchical clustering routine AGNES and the partitioning clustering routines PAM and
CLARA made it possible to reveal most of the structures. The plots created with the help
of fuzzy clustering have the advantage of providing more information by the memberships
to the clusters. In most cases, however, they were not able to recognise so many different
clusters as PAM or CLARA did. The FCM algorithm is able to recognise more structures
than the GK algorithm. However, the clusters which were shown with the help of the GK
algorithm displays clearer structures. The GG algorithm and the COSA algorithm were not
suitable for clustering of the existing data.

Many validity measures were presented in this thesis. However, for the purpose of the
evaluation of results and algorithms the statstics package R includes a very insufficient choice
of validity measures. Nevertheless numerous evidences were given and numerous assumptions
were confirmed by applying the existing algorithms of R and by using the validity measures
included in Höppner’s programme. These validity measures can be of some help in the
search for the optimal number of clusters. One should also be careful when evaluating the
various groups of elements with the help of validity measures. It can happen that results
of the clustering of the selected elements are impossible to interpret. It is more useful to
choose the elements from a geochemical point of view, paying little attention to the validity
measures, in order to make the results as easy to interpret as possible.

The implementation in the package R of all validity measures which were presented in Chapter
4 would be very helpful. With these validity measures one could make more statements about
the structure of the existing data, the validity of the gained results and about the validity
of the various algorithms.

The groups produced with the help of cluster analysis can serve as the input group(s) for
the multivariate method Discriminant Analysis (DA). With the help of the popular methods
k-th Nearest Neighbour Classification, Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) or with the combination of these two (RDA - Regularized Dis-
criminant Analysis) or with an extension of LDA (Logistic and Log-linear Discrimination and
Reduced Linear Discriminant Analysis) or with modern methods (like for example MDA -
Mixture Discriminant Analysis, FDA - Flexible Discriminant Analysis, EDDA - Eigenvalue
Decomposition Discriminant Analysis, DANN - Discriminant Adaptive Nearest Neighbour
and many others) the memberships of objects which have not been assigned in the input
group(s) can be classified. The best method for spatial data is PDA - Penalized Discrim-
inant Analysis (Hastie et al., 1995). For large data sets applications of Neural Network to
Discriminant Analysis are most suitable. Especially the groups which show the pollution
around Nikel, Monchegorsk and Zapoljarnij as well as the various clusters which show the
rock types of the C-horizon are most suitable for being the input groups for DA.
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Appendix A

Software

A.1 R

R is an integrated system of software facilities for data manipulation, calculation and graph-
ical display. It is an environment were many classical and modern statistical techniques
have been implemented. Some of these are built into the base R environment, but many
are supplied as packages. There are about 8 packages supplied with R (standard packages)
and many more are available through the CRAN family at the internet site http://cran.r-
project.org. R can be regarded as an implementation of the S language which was developed
at Bell Laboratories in the 1980s and forms the basic of the S-PLUS system. For R, the basic
references are Becker et al. (1988), Venables and Smith (2002), Verzani (2002) and Ripley
(2002). At most R installations, help is available in HTML format by running

> help.start()

R can be used interactively, but it is also possible to write own functions in the R language.
The recall and editing capabilities under UNIX are highly customisable. The author prefers
to work with R with the help of the Emacs text editor which provides more general support
mechanisms (via ESS, Emacs Speaks Statistics; see Rossini et al., 2001).

A.2 Programs

A.2.1 QQ-plots

qqplots <- function(){

hist((gestein[,12]),xlab="",main="Histogram of Mg, rock data",

cex=3,cex.axis=3,cex.main=3,cex.sub=2,cex.lab=2.5)
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qqnorm(c2mm[,105],cex.main=2,cex.axis=2,main="Mg, C-horizon",xlab="",ylab="")

qqline(c2mm[,105])

A.2.2 CLARA

"clara1" <-

function (k,x,y)

{

# clara is fully described in chapter 3 of Kaufman and Rousseeuw (1990)

# Return from clara: sample, medoids, clustering, objective, clusinfo, diss,

# silinfo, call, data

library(cluster)

# k ... number of clusters

# x ... 1 for main elements

# ... 2 for trace elements

# ... 3 for mixed data

# ... 4 for mafic rock

# ... 5 for main elements without Si and Ti

# ... 6 for trace elements without As

# ... 7 for main elements variable selection

# ... 8 for walchen data, or trace elements variable selection

# ... 9 for mixed data variable selection

# y ... 0 without PCA

# ... 1 PCA before clustering

if(k<14){r1_3;r2_4}

if(k<10){r1_3;r2_3}

if(k<8){r1_2;r2_3}

if(k<5){r1_2;r2_2}

if(k<3){r1_1;r2_2}

library(cluster)

# import walchen data, for (x==8)

#w_scan("~/Reimann/walchen.txt",what="")

#w1_matrix(as.numeric(a,ncol=30,byrow=T))

#w2_matrix(w1,ncol=30,byrow=T)

104



#colnames(w2)_scan("/nfshome1/dipdis/e9656209/Reimann/walchen.var", what="")

#w3_w2[,2:30]

if(y==0){

if(x==1){data_c2mm[,101:110];name_"main elements"}

if(x==2){data_c2mm[,c(8,12,24,27,30,42,58,63,66,70,79,85,90,92,94)];

name_"trace elements"}

if(x==3){data_c2mm[,c(6,12,18,24,27,31,33,40,42,48,50,54,58,61,63,66,70,

79,85,90,92,94)];name_"mixed-data"}

if(x==4){data_c2mm[,c(24,27,30,34,48,50,58,70,87,90)];name_"mafic rock"}

if(x==5){data_c2mm[,101:109];name_"xrf wo Si,Ti"}

if(x==6){data_c2mm[,c(12,24,27,30,42,58,63,66,70,79,85,90,92,94)];

name_"trace el. wo As"}

#if(x==8){data_w3[,c(1,4,10,11,12,15,22,24)]}

if(x==7){data_c2mm[,c(101,102,104,106,109,110)];

name_"main el. var.selection"}

if(x==8){data_c2mm[,c(8,12,24,27,30,42,63,66,85,94)];name_"trace el select."}

if(x==9){data_c2mm[,c(6,12,18,24,27,31,42,48,50,58,61,63,66,85,94)];

name_"mixed-data sel."}

}

if(y==1){

if(x==1){data_scale(log(c2mm[,101:110]))

pc_princomp(data)

data_pc$scores[,1:6]

name_"main el. with pca"}

if(x==2){data_scale(log(c2mm[,c(8,12,24,27,30,42,58,63,66,70,79,85,

90,92,94)]));

pc_princomp(data)

data_pc$scores[,1:5]

name_"trace el. with pca"}

if(x==3){data_scale(log(c2mm[,c(6,12,18,24,27,31,33,40,42,48,50,54,

58,61,63,66,70,79,85,90,92,94)]));

pc_princomp(data)

data_pc$scores[,1:7]

name_"mixed data with pca"}

if(x==4){data_scale(log(c2mm[,c(24,27,30,34,48,50,58,70,87,90)]));

pc_princomp(data)

data_pc$scores[,1:4]

name_"mafic rock with pca"}

if(x==5){data_scale(log(c2mm[,101:109]));

pc_princomp(data)
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data_pc$scores[,1:4]

name_"ma.el. wo. Si,Ti, pca"}

if(x==6){data_scale(log(c2mm[,c(12,24,27,30,42,58,63,66,70,79,85,

90,92,94)]));name_"tr.el. wo As w. pca"

pc_princomp(data)

data_pc$scores[,1:5]}

if(x==7){data_scale(log(c2mm[,c(101,102,104,106,109,110)]));

name_"m.el. sel. pca"

pc_princomp(data)

data_pc$scores[,1:3]}

if(x==8){data_scale(log(c2mm[,c(8,12,24,27,30,42,63,66,85,94)]));

name_"tr.el sel. pca"

pc_princomp(data)

data_pc$scores[,1:7]}

if(x==9){data_scale(log(c2mm[,c(6,12,18,24,27,31,42,48,50,58,61,

63,66,85,94)]));name_"mix-data sel. pca"

pc_princomp(data)

data_pc$scores[,1:5]}

}

t3_0;t4_0;t5_0;t6_0;t7_0;m_0

par(mfrow=c(r1,r2),pty="s",xaxt="n",yaxt="n")

for(i in 2:k){

if(y==0){

a_clara(scale(log(data)),i)}

if(y==1){a_clara(data,i)}

plot(c2mm[,2:3],col=0,mar=c(3,2,2,1),xlab="",ylab="")

for(j in 1:i){

points(c2mm[a$clust==j,2:3],pch=15,col=j)}

m_a$clust==1

t_0

for(jj in 1:606){if(m[jj]==TRUE){t_t+1}}

m_a$clust==2

t2_0

for(jj in 1:606){if(m[jj]==TRUE){t2_t2+1}}

# for(r in 2:(k-1)){if(i>r){m_a$clust==(r+1)

# for(jj in 1:606){if(m[jj]==TRUE){t[r+1]_t[r+1]+1}}}}

if(i>2){m_a$clust==3

t3_0

for(jj in 1:606){if(m[jj]==TRUE){t3_t3+1}}}
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if(i>3){m_a$clust==4

t4_0

for(jj in 1:606){if(m[jj]==TRUE){t4_t4+1}}}

if(i>4){m_a$clust==5

t5_0

for(jj in 1:606){if(m[jj]==TRUE){t5_t5+1}}}

if(i>5){m_a$clust==6

t6_0

for(jj in 1:606){if(m[jj]==TRUE){t6_t6+1}}}

if(i>6){m_a$clust==7

t7_0

for(jj in 1:606){if(m[jj]==TRUE){t7_t7+1}}}

# How many points are in the clusters.

title(paste(name,"-",i,"cluster"),sub=paste("cl1-",i,":","bla:",t,",r:",

t2,",g:",t3,",blu:",t4,",cyan:",t5,",mag:",t6,",y:",t7),

col.sub="slateblue2")

}

}

o2mmclara <- function(k){

# clara for O-horizon data

library(cluster)

# read the data

o_scan("/nfshome1/dipdis/e9656209/Reimann/o2mm.txt",what="")

o1_matrix(as.numeric(o,ncol=43,byrow=T))

o2_matrix(o1,ncol=43,byrow=T)

colnames(o2)_scan("/nfshome1/dipdis/e9656209/Reimann/o2mm.var", what="")

data_scale(log(o2[,c(6,13,15,24,36)]));name_"O-horizon; As, Co, Cu, Ni, V"

# identify the shape of par

if(k<13){r1_3;r2_4}

if(k<10){r1_3;r2_3}

if(k<7){r1_2;r2_3}

if(k<5){r1_2;r2_2}

if(k<3){r1_1;r2_2}
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par(mfrow=c(r1,r2))

t3_0;t4_0;t5_0;t6_0;t7_0;m_0

for(i in 2:k){

a_clara(data,i)

plot(o2[,2:3],col=0,mar=c(3,2,2,1),xlab="",ylab="")

for(j in 1:i){

points(o2[a$clust==j,2:3],pch=15,col=j)}

m_a$clust==1

t_0

for(jj in 1:617){if(m[jj]==TRUE){t_t+1}}

m_a$clust==2

t2_0

for(jj in 1:617){if(m[jj]==TRUE){t2_t2+1}}

# for(r in 2:(k-1)){if(i>r){m_a$clust==(r+1)

# for(jj in 1:606){if(m[jj]==TRUE){t[r+1]_t[r+1]+1}}}}

if(i>2){m_a$clust==3

t3_0

for(jj in 1:617){if(m[jj]==TRUE){t3_t3+1}}}

if(i>3){m_a$clust==4

t4_0

for(jj in 1:617){if(m[jj]==TRUE){t4_t4+1}}}

if(i>4){m_a$clust==5

t5_0

for(jj in 1:617){if(m[jj]==TRUE){t5_t5+1}}}

if(i>5){m_a$clust==6

t6_0

for(jj in 1:617){if(m[jj]==TRUE){t6_t6+1}}}

if(i>6){m_a$clust==7

t7_0
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for(jj in 1:617){if(m[jj]==TRUE){t7_t7+1}}}

# How many points are in the clusters.

title(paste(name,"-",i,"cluster"),sub=paste("cl1-",i,":","bla:",t,",

r:",t2,",g:",t3,",blu:",t4,",cyan:",t5,",mag:",t6,",y:",t7),

col.sub="slateblue2")

}

}

claraspiel <- function(k,x,y){

# Each cluster is plotted in a single picture

# k ... Clusteranzahl

# x ... 1 for main elements (xrf-data)

# ... 2 for trace elements

# ... 3 for mixed data

# ... 4 for mafic rock

# ... 5 for main elements without Si and Ti

# ... 6 for trace elements without As

# ... 7 for main elements variable selection

# ... 8 for trace elements variable selection

# ... 9 for mixed data variable selection

# y ... 0 for C-horizon

# ... 1 for C-horizon PCA

# ... 2 for O-horizon

# ... 3 for walchen data

# identify the shape of par

if(k<13){r1_3;r2_4}

if(k<10){r1_3;r2_3}

if(k<7){r1_2;r2_3}

if(k<5){r1_2;r2_2}

if(k<3){r1_1;r2_2}

if(y==0){

if(x==1){data_scale(log(c2mm[,101:110]));name_"xrf_data"}

if(x==2){data_scale(log(c2mm[,c(8,12,24,27,30,42,58,63,66,
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70,79,85,90,92,94)]));name_"trace elements"}

if(x==3){data_scale(log(c2mm[,c(6,12,18,24,27,31,33,40,42,

48,50,54,58,61,63,66,70,79,85,90,92,94)]));name_"mixed data"}

if(x==4){data_scale(log(c2mm[,c(24,27,30,34,48,50,58,70,87,90)]));

name_"mafic rock"}

if(x==5){data_scale(log(c2mm[,101:109]));name_"xrf wo Si,Ti"}

if(x==6){data_scale(log(c2mm[,c(12,24,27,30,42,58,63,66,70,79,85,90,

92,94)]));name_"trace el. wo As"}

if(x==7){data_scale(log(c2mm[,c(101,102,104,106,109,110)]));

name_"main el. var.selection"}

if(x==8){data_scale(log(c2mm[,c(8,12,24,27,30,42,63,66,85,94)]));

name_"trace el select."}

if(x==9){data_scale(log(c2mm[,c(6,12,18,24,27,31,42,48,50,58,61,63,

66,85,94)]));name_"mixed-data sel."}

}

if(y==1){

if(x==1){data_scale(log(c2mm[,101:110]))

pc_princomp(data)

data_pc$scores[,1:6]

name_"main el. with pca"}

if(x==2){data_scale(log(c2mm[,c(8,12,24,27,30,42,58,63,66,70,79,85,90,

92,94)]));

pc_princomp(data)

data_pc$scores[,1:5]

name_"trace el. with pca"}

if(x==3){data_scale(log(c2mm[,c(6,12,18,24,27,31,33,40,42,48,50,54,58,

61,63,66,70,79,85,90,92,94)]));

pc_princomp(data)

data_pc$scores[,1:7]

name_"mixed data with pca"}

if(x==4){data_scale(log(c2mm[,c(24,27,30,34,48,50,58,70,87,90)]));

pc_princomp(data)

data_pc$scores[,1:4]

name_"mafic rock with pca"}

if(x==5){data_scale(log(c2mm[,101:109]));

pc_princomp(data)

data_pc$scores[,1:4]

name_"ma.el. wo. Si,Ti, pca"}

if(x==6){data_scale(log(c2mm[,c(12,24,27,30,42,58,63,66,70,79,85,90,

92,94)]));name_"tr.el. woAs w pca"

pc_princomp(data)
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data_pc$scores[,1:5]}

if(x==7){data_scale(log(c2mm[,c(101,102,104,106,109,110)]));

name_"m.el. sel. pca"

pc_princomp(data)

data_pc$scores[,1:3]}

if(x==8){data_scale(log(c2mm[,c(8,12,24,27,30,42,63,66,85,94)]));

name_"tr.el sel. pca"

pc_princomp(data)

data_pc$scores[,1:7]}

if(x==9){data_scale(log(c2mm[,c(6,12,18,24,27,31,42,48,50,58,61,63,66,

85,94)]));name_"mix-data selection w pca"

pc_princomp(data)

data_pc$scores[,1:5]}

}

if(y==2){

if(x==1){

o_scan("/nfshome1/dipdis/e9656209/Reimann/o2mm.txt",what="")

o1_matrix(as.numeric(o,ncol=43,byrow=T))

o2_matrix(o1,ncol=43,byrow=T)

colnames(o2)_scan("/nfshome1/dipdis/e9656209/Reimann/o2mm.var", what="")

data_scale(log(o2[,c(6,13,15,24,36)]));name_"main elements"}

}

if(y==3){

if(x==1){

w_scan("~/Reimann/WAL.DAT",what="")

w1_matrix(as.numeric(w,ncol=30,byrow=T))

w2_matrix(w1,ncol=30,byrow=T)

#colnames(w2)_scan("/nfshome1/dipdis/e9656209/Reimann/walchen.var",

# what="")

w3_w2[,2:30]

ko_scan("~/Reimann/walchen_koord",what="")

k1_matrix(as.numeric(ko,ncol=9,byrow=T))

k2_matrix(k1,ncol=9,byrow=T)

koord_k2[,2:3]

w_cbind(koord,w3)

vnames_scan("/nfshome1/dipdis/e9656209/Reimann/walchen.var", what="")

colnames(w)_vnames[2:32]
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name_"walch"

# Data for clustering

data_scale(log(w[,c(3,6,12,13,15,17,24,26)]))}

}

d_colnames(data)

par(mfrow=c(r1,r2),pty="s",xaxt="n",yaxt="n",mar=c(3,2,2,1))

a_clara(((data)),k)

if(y==0 | y==1){

for(i in 1:k){

plot(c2mm[,2:3],col=gray(0.95),mar=c(3,2,2,1),xlab="",ylab="",pch=15)

points(c2mm[a$clust==i,2:3],pch=15,col=4)}

}

if(y==2){

for(i in 1:k){

plot(o2[,2:3],col=gray(0.95),mar=c(3,2,2,1),xlab="",ylab="",pch=15)

title(paste("O-horizon: As, Co, Cu, Ni, V; cluster",i))

points(o2[a$clust==i,2:3],pch=15,col=4)}

}

if(y==3){

for(i in 1:k){

plot(w[,1:2],col=gray(0.95),mar=c(3,2,2,1),xlab="",ylab="",pch=15)

points(w[a$clust==i,1:2],pch=15,col=4)}

}

}

# Read in the data as in claraspiel

# clustering

a_clara(((data)),k)
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# read the center

cent_matrix(a$med,ncol=k,byrow=T)

# names of the variables

rnam_colnames(data)

for(j in 1:p){

rnam[j]_substring(rnam[j],1,2)

}

rownames(cent)_rnam

ma_max(abs(cent))

# create the plot

par(mfrow=c(1,1),cex=1,cex.axis=1,cex.lab=1.5,xaxt="s",yaxt="s")

plot(cent[,1],type="n",xlim=range(0,1),ylim=range(-ma-0.3,ma+0.3),

xlab="",ylab="")

segments(0, 0, 1, 0)

segments(0, 0.5, 1, 0.5, lty = 2)

segments(0, -0.5, 1, -0.5, lty = 2)

title(paste(name,";",k,"cluster with Clara"))

bb <- c(0,1)

bb1 <- bb/k

ba <- seq(from = bb1[1], by = bb1[2])

ba1 <- ba[2]/20

ba2 <- c(0,ba1)

segments(0,-ma,0,ma)

for(i in 1:(k+1)){

segments(ba[i],-ma,ba[i],ma)}

# create weights

weight_0

for(i in 1:k){

weight[i]_a$clusinfo[i,1]

}
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sumweight_sum(as.numeric(weight))

# text

for(j in 1:k){

text(seq(from=ba[j]+ba[2]/p,to=ba[j+1]-ba[2]/p,

by=(ba[j+1]-ba[j]-2*ba[2]/p)/(p-1)), cent[,j], rownames(cent),

col="blue",cex=1.5)

text(ba[j]+ba[2]/2,ma+0.3,paste("Cluster ",j,sep=""),col="red",cex=1.5)

text(ba[j]+ba[2]/2,ma+0.1,paste("size= ",

substring(as.numeric(weight[j])/sumweight,1,4),sep=""),

col=5,cex=1.4)}

}

The sequence seq(from=ba[j]+ba[2]/p,to=ba[j+1]-ba[2]/p,

by=(ba[j+1]-ba[j]-2*ba[2]/p)/(p-1)) is achieved by:

ba[1]                                           ba[2]                                           ba[3]                                           ba[4]

ba[1] + ba[2]/p

ba[2] − ba[2]/p

0

In order to arrange the elements in a constant distance from each other for the first clustering
(see e.g. the final result in Figure 5.2) the sequence starts from ba[1] + ba[2]/p and ends
at ba[2] - ba[2]/p. From this we can yield the increment for the horizontal arrangement
of the elements for each cluster:

by =
ba[j + 1]− ba[j] − 2.ba[2]

p

p− 1
(A.1)

A.2.3 Agnes

"agnesplot" <-

function ()

{
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# Computes agglomerative hierarchical clustering of the dataset.

# which.plots = 2 for a dendrogramm.

library(cluster)

par(mfrow=c(2,2))

# Data: Main elements from the C-horizon

b_agnes(scale(log(t(c2mm[,101:110]))),method="average")

plot(b,which.plots = 2,main="xrf")

# Data: Trace elements from the C-horizon

b_agnes(scale(log(t(c2mm[,c(8,12,24,27,30,42,58,63,66,70,79,85,90,92,94)]))),

method="average")

plot(b,which.plots = 2,main="trace elements")

# Data: Mixed elements from the C-horizon

b_agnes(scale(log(t(c2mm[,c(6,12,18,24,27,31,33,40,42,48,50,54,58,61,63,66,

70,79,85,90,92,94)]))),method="average")

plot(b,which.plots = 2,main="mixed data")

# Data: Mafic rocks from the C-horizon

b_agnes(scale(log(t(c2mm[,c(24,27,30,34,48,50,58,70,87,90)]))),

method="average")

plot(b,which.plots = 2,main="mafic rocks")

# Data: Oxide from Rock Data

b_agnes(scale(log((gestein[1:170,8:17]))),method="average")

plot(b,which.plots = 2,main="trace elements")

}

A.3 Hoeppners Fuzzy Clustering Program

This package was written in C++ by Höppner (2000). The programs in this package are free
software and they can be modified under the terms of the General Public Licence (GNU).
The package contains some initialization algorithm, the fuzzy C-means algorithm, the Gustaf-
son-Kessel algorithm, the Gath-Geva algorithm, some algorithms for calculating validity
measures and some tools for visualisation.
The Data Description Language (DDL) is used to exchange information between different
programs by means of ASCII files. It is used to define data and their relationships to other
data. The DDL language was chosen because it provides a simple mechanism to share data
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analysis software with others. One can write own extensions in a different programming
language and add these extensions only by sticking to the DDL format. On the web-site
www.fuzzy-clustering.de operated by Höppner (2000), the package can be downloaded. In-
stall the package for Unix in a subdirectory fc-X.Y.Z. Type the command gunzip to unzip

the package. With the commands ./configure and make the package will be installed.
For displaying data you can use the gnuplot program from Williams and Kelley (1998) or
OpenGl (see e.g. Fullagar, 1994; Glaeser and Stachel, 1999). For gnuplot use the gsv tool,
otherwise the xsv tool for visualising data.

A.3.1 Data Set Import

To export data from R to the fuzzy-clustering package from Höppner only the data observed
in a file must be stored. Once the data are inside the DDL-stream, subsets can not be
selected.
To store e.g. the main elements of the C-horizon saved in the R-object (c2mm[,101:110]) in
a file one should use the command

write.table(c2mm[,101:110], file = "~/ .../fc-X.Y.Z/data/xrfdata.dat", quote

= F, row.names = F, col.names = F)

The file xrfdata.dat contains only numbers.

Having done this, convert the data into the DDL format. Put in the directory .../fc-X.Y.Z/src

the command

ddlimport ../data/xrfdata.dat > ../data/xrfdata.ddl

Now the data are prepared for the fuzzy clustering package.

A.3.2 Examples

Type all your commands in the ../fc-X.Y.Z/src directory.
The data are displayed by

gsv -q -Szero < ../data/xrfdata.ddl

-q (quiet mode) produces no ANALYSIS symbol in the DDL output and the interim output
should be zero (-Szero). Each ANALYSIS symbol in the DDL-stream represents a clustering
task or result. For each ANALYSIS symbol that has been read, the program does its job and
writes the result into the output stream.
The FCM algorithm tries to identify a fixed number of prototypes and assigns all objects
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from the data to these prototypes. Additionally the GK and the GG algorithm calculate
the covariance matrix and the norm matrix. The FCM, GK and GG algorithms need an
initialisation algorithm to set the prototypes. Try

cini -r4 < ../data/xrfdata.ddl | fcm | gsv -q

to apply the FCM algorithm with four clusters (-r4) and display the result with gsv.

Available options of the gsv tool:
-h or –list-options
-n or –analysis-name arg
-r or –cluster-range arg
-c or –constants arg
-a or –dist-shift arg
-f or –fuzzifier arg
-p or –postscript
-g or –graphics-mode arg
-i or –init-by-membership
-d or –inter-data-distance arg
-s or –interim-output arg
-x or –maximum-features arg
-q or –quiet-mode
-o or –output [arg]
-k or –select arg
-X or –select-x-axis arg
-Y or –select-y-axis arg
-Z or –select-z-axis arg
-T or –select-t-axis arg
-C or –select-c-axis arg
-A or –select-a-axis arg
-I or –select-i-axis arg
-S or –select-s-axis arg
-U or –select-dx-axis arg
-V or –select-dy-axis arg
-W or –select-dz-axis arg
-u or –substitute-features
-m or –max-iterations arg
-e or –epsilon arg
-v or –unsupervised [arg]
-w or –weight-factor arg
-t or –input-transformation arg
-R or –output-transformation arg
-D or –data-scale arg
-l or –prefer-local [arg]
-H or –sphere-hierarchy arg
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-L or –connect arg
-N or –compare-name arg
-Q or –window arg
-F or –filter arg

The graph of the membership degrees can be displayed by

cini -r4 < ../data/xrfdata.ddl | fcm | mesh | fcm -o | gsv -g3 -q -Zmemb

whereas -o outputs the memberships. To diplay a 3-d graph type -g3, for the membership
degrees use -Zmemb.
In this plot no structure can be recognised and no other options to display the data is
available. To be display the results on a map with the help of coordinates (each object is
assigned to coordinates) the results have to be exported to R.
A useful tool in this package is the pick tool. If e.g. the GG algorithm is used in an
unsupervised mode, the data set is evaluated for multiple numbers of clusters automatically
by using the pick tool. The pick tool returns only the best partition which is selected
according to a votion vector (see below). By typing

cini -r2:10 < ../data/xrfdata.ddl | gk -m100 | pick | gsv -q

the best partition out of a number of clusters from 2 to 10 can be found. The algorithm of
Gustafson-Kessel is very complex and when calculating ten clusters the algorithm can break
down, because the covariance matrix must be inverted which is computorially expensive and
moreover the inverted matrix may become singular. -m stands for maximum iteration and
it is better to demand e.g. a maximum of 100 iterations.
In the file xrfdata.ddl the voting vector can be typed in. The voting vector contains the
rating of seven cluster validity measures: the partition coefficient, the partition entropy, the
separation, the contraction index, the fuzzy hyper-volume, the average partition density and
the partition density (default 0.4, 0.5, 1.0, 0, 0.8, 0.7, 0.7).

The validity measures for each cluster can be plotted by

cini -r2:20 < ../data/xrfdata.ddl | fcm | gsv -q -Xnpro -Yvalm:2 -Tone

-Lseqc

To save results type

cini -r5 < ../data/xrfdata.ddl | gg -m1000 | save

to get the resulting file xrfdata.cini.gg.tmp .
To display the clusters on the map of the region, export the data to R. The command

ddlexport ../data/xrfdata.ddl > ../data/xrffinal.dat

deletes most of the non-numeric characters. Now the data can be read by R.
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A.3.3 Implementation in R

A.3.4 Fuzzy-programs

landplot <- function(k,x,m)

{

# k ... number of clusters

# x ... 1 for main elements

# ... 2 for trace elements

# ... 3 for mixed data

# ... 4 for mafic rock

# ... 5 for main elements without Si and Ti

# ... 6 for trace elements without As

# ... 7 for main elements variable selection

# ... 8 for O-horizon main elements

# ... 9 for Walchen data

# ...10 for trace elements variable selection

# ...11 for mixed data variable selection

# ...12 for Rock data

# m ... 1 Fuzzy C-means algorithm

# ... 2 Gustafson-Kessel algorithm

# ... 3 Gath-Geva algorithm

if(x==1){xname_"main elements"}

if(x==2){xname_"trace elements"}

if(x==3){xname_"mixed-data"}

if(x==4){xname_"mafic rock"}

if(x==5){xname_"main wo SiTi"}

if(x==6){xname_"trace el. wo As"}

if(x==7){xname_"main_varsel"}

if(x==8){xname_"O-horizon main el."}

if(x==9){xname_"walchen Na,Mg,Ba,Sr,Ni,Co,Cu,Cr"}

if(x==10){xname_"trace el. varsel"}

if(x==11){xname_"mixed-data varsel"}

if(x==12){xname_"rocks oxid"}

if(m==1){methodname_"fcm"}

if(m==2){methodname_"gk"}

if(m==3){methodname_"gg"}
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if(x==1 | x==2 | x==3 | x==4 | x==5 | x==6 | x==7 | x==10 | x==11){

a_scan("~/public_html/fc-0.3.7/data/1",what="")

a1_a[(length(a)-606*k*3+1):length(a)]

a2_matrix(as.numeric(a1[seq(from=1,by=3,to=606*k*3)]),ncol=k,byrow=T)

source("~/public_html/loadc2mm")

c2mm_loadc2mm(path="~/public_html/")

}

if(x==8){

a_scan("~/public_html/fc-0.3.7/data/1",what="")

a1_a[(length(a)-617*k*3+1):length(a)]

a2_matrix(as.numeric(a1[seq(from=1,by=3,to=617*k*3)]),ncol=k,byrow=T)

o_scan("/nfshome1/dipdis/e9656209/Reimann/o2mm.txt",what="")

o1_matrix(as.numeric(o,ncol=43,byrow=T))

o2_matrix(o1,ncol=43,byrow=T)

colnames(o2)_scan("/nfshome1/dipdis/e9656209/Reimann/o2mm.var", what="")

}

if(x==9){

# a_scan("/nfshome1/dipdis/e9656209/public.html/fc-0.3.7/data/1",what="")

a_scan("~/public_html/fc-0.3.7/data/1",what="")

a1_a[(length(a)-772*k*3+1):length(a)]

a2_matrix(as.numeric(a1[seq(from=1,by=3,to=772*k*3)]),ncol=k,byrow=T)

w_scan("~/Reimann/WAL.DAT",what="")

w1_matrix(as.numeric(w,ncol=30,byrow=T))

w2_matrix(w1,ncol=30,byrow=T)

#colnames(w2)_scan("/nfshome1/dipdis/e9656209/Reimann/walchen.var", what="")

w3_w2[,2:30]

ko_scan("~/Reimann/walchen_koord",what="")

k1_matrix(as.numeric(ko,ncol=9,byrow=T))

k2_matrix(k1,ncol=9,byrow=T)

k2[423,8]_8

k2[423,9]_0.20

koord_k2[,2:3]

w_cbind(koord,w3)

vnames_scan("/nfshome1/dipdis/e9656209/Reimann/walchen.var", what="")

colnames(w)_vnames[2:32]

}

if(x==12){
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a_scan("~/public_html/fc-0.3.7/data/1",what="")

a1_a[(length(a)-500*k*3+1):length(a)]

a2_matrix(as.numeric(a1[seq(from=1,by=3,to=500*k*3)]),ncol=k,byrow=T)

}

if(k<13){r1_3;r2_4}

if(k<9){r1_3;r2_3}

if(k<7){r1_2;r2_3}

if(k<5){r1_2;r2_2}

if(k<3){r1_1;r2_2}

par(mfrow=c(r1,r2),pty="s",xaxt="n",yaxt="n",mar=c(4,2,4,2))

if(x==1 | x==2 | x==3 | x==4 | x==5 | x==6 | x==7 | x==10 | x==11){

for(i in 1:k){

plot(c2mm[,2:3],col=0,xlab="",ylab="")

title(paste(xname,"-",methodname,"cluster",i))

for(j in 1:10){

points(c2mm[a2[,i]>2*j/(10*k),2:3],pch=15,col=gray(1-j/10))

}

}

}

if(x==8){

for(i in 1:k){

plot(o2[,2:3],col=gray(0.95),xlab="",ylab="",pch=15)

title(paste(xname,"-",methodname,"cluster",i))

for(j in 1:10){

points(o2[a2[,i]>2*j/(10*k),2:3],pch=15,col=gray(1-j/10))

}

}

}

if(x==9){

for(i in 1:k){

plot(w[,1:2],col=0,xlab="",ylab="")

title(paste(xname,"-",methodname,"cluster",i))

for(j in 1:10){

points(w[a2[,i]>2*j/(10*k),1:2],pch=15,col=gray(1-j/10))

}

}
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}

if(x==12){

for(i in 1:k){

plot(gestein[,3:4],col=gray(0.90),xlab="",ylab="")

title(paste(xname,"-",methodname,"cluster",i))

for(j in 1:10){

points(gestein[a2[,i]>2*j/(10*k),3:4],pch=15,col=gray(1-j/10))

}

}

}

}

elementplot <- function(p,k,x,m){

# p ... Anzahl der Variablen

# k ... Anzahl der Cluster

# x ... 1 for main elements

# 2 for trace elements

# 3 for mixed-data

# ... 4 for main elements without SiTi

# m ... 1 for fcm

# 2 for gk

# 3 for gg

# Calculate from R

#if(x==1){

# comline_paste("cini -r",k," < ~/public_html/fc-0.3.7/data/xrfscale.ddl |

# fcm -o | save", system(comline)

# system("~/public_html/fc-0.3.7/src/ddlexport

# ~/public_html/fc-0.3.7/data/xrfscale.dat.ci}

#if(x==2){

# comline_paste("cini -r",k," < ~/public_html/fc-0.3.7/data/speldaten.ddl |

# fcm -o | save" system(comline)

# system("~/public_html/fc-0.3.7/src/ddlexport
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# ~/public_html/fc-0.3.7/data/spel daten.dat.c}

#if(x==3){

# comline_paste("cini -r",k," < ~/public_html/fc-0.3.7/data/gem.ddl |

# fcm -o | save",sep=" system(comline)

# system("~/public_html/fc-0.3.7/src/ddlexport

# ~/public_html/fc-0.3.7/data/gem. dat.cini.fc}

# Identification of data

if(x==1){rnam_colnames(c2mm[,101:110])

xname_"main elements"}

if(x==2){rnam_colnames(c2mm[,c(8,12,24,27,30,42,58,63,66,70,79,85,90,

92,94)])

xname_"trace elements"}

if(x==3){rnam_colnames(c2mm[,c(6,12,18,24,27,31,33,40,42,48,50,54,58,

61,63,66,70,79,85,90,92,94)])

xname_"mixed-data"}

if(x==4){rnam_colnames(c2mm[,101:109])

xname_"main elements wo SiTi"}

# read the center

if(m==1){

methodname_"fcm"

a_scan("~/public_html/fc-0.3.7/data/1",what="")

a1_a[(length(a)-606*k*3+1-k*(p+2)):(length(a)-606*k*3)]

l_2:(p+1)

for (i in 1:(k-1)){

l_c(l,seq(from=l[length(l)]+3,to=l[length(l)]+(p+2),by=1))}

a2_matrix(as.numeric(a1[l]),ncol=p,byrow=T)

a3_t(a2)}

if(m==2){

methodname_"gk"

if(x==1){

a_scan("~/public_html/fc-0.3.7/data/1",what="")

a1_a[(length(a)-606*k*3-217*k):(length(a)-606*k*3)]

if(k==2){l1_c(4:13,221:230)

l_l1[1:20]}
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if(k==3){l_c(4:13,220:229,437:446)}

if(k==4){l_c(4:13,220:229,437:446,654:663)}

if(k==5){l_c(5:14,221:230,438:447,655:664,872:881)}

if(k==6){l_c(5:14,221:230,438:447,655:664,872:881,1089:1098)}

if(k==7){l_c(5:14,221:230,438:447,655:664,872:881,1089:1098,1306:1315)}

if(k==8){l_c(5:14,221:230,437:446,654:663,871:880,1088:1097,1305:1314,

1522:1531)}

if(k==9){l_c(5:14,221:230,437:446,654:663,871:880,1088:1097,1305:1314,

1522:1531,1739:1748)}

a2_matrix(as.numeric(a1[l]),ncol=10,byrow=T)

a3_t(a2)

}

if(x==2){

a_scan("~/public_html/fc-0.3.7/data/1",what="")

if(k==2){a1_a[(length(a)-606*k*3-(471)*k):(length(a)-606*k*3)]

l_c(1:15,473:487)}

if(k==5){a1_a[(length(a)-606*k*3-(472)*k):(length(a)-606*k*3)]

l_c(3:17,475:489,947:961,1419:1433,1891:1905)}

a2_matrix(as.numeric(a1[l]),ncol=15,byrow=T)

a3_t(a2)

}

if(x==3){

a_scan("~/public_html/fc-0.3.7/data/1",what="")

if(k==2){

l1_c(-0.109303, -0.0970839, -0.0192894, -0.0168877, -0.0302753,

-0.103589, -0.0157168, -0.0561102, -0.111359, -0.0203656,

-0.0866696, -0.111207, -0.0346597, 0.0206732, -0.0560672,

-0.089048, 0.00710532, -0.163117, -0.0680395, -0.00520533,

-0.105934, -0.0821927)

l2_c(0.206533, 0.199279, 0.047594, -0.010843, 0.0205994, 0.250655,

-0.00957383, 0.109933, 0.253066, -0.00306461, 0.173058, 0.270948,

0.0300528, -0.047582, 0.114262, 0.155957, -0.0687036, 0.361571,

0.153158, -0.0242494, 0.238595, 0.167816)

a3_cbind(l1,l2)}

if(k==3){

l1_c(-0.100287, -0.0921652, -0.0191033, -0.0113154, -0.0243687,

-0.101436, -0.0108485, -0.0532414, -0.107392, -0.0147357,

-0.0804162, -0.108742, -0.0279773, 0.0180938, -0.0505254,

-0.07795, 0.0113418, -0.155435, -0.0649541, -0.00263608,
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-0.101462, -0.0774677)

l2_c(-0.099746, -0.0918182, -0.0194562, -0.0108893, -0.0243246,

-0.10128, -0.0104379, -0.0528545, -0.10717, -0.0143428,

-0.0798274, -0.108905, -0.0276235, 0.0179013, -0.0499106,

-0.077121, 0.0115964, -0.155183, -0.0646909, -0.00267948,

-0.101105, -0.0768515)

l3_c(0.469283, 0.467675, 0.116906, -0.066049, 0.0128097, 0.624553,

-0.0574737, 0.258088, 0.616151, -0.0477033, 0.402842, 0.676726,

0.032928, -0.118216, 0.264318, 0.339834, -0.213534, 0.865199,

0.371532, -0.0850168, 0.581043, 0.395978)

a3_cbind(l1,l2,l3)}

}

}

# names of the variables

for(j in 1:p){

rnam[j]_substring(rnam[j],1,2)

}

rownames(a3)_rnam

ma_max(abs(a3))

# create the plot

par(mfrow=c(1,1),cex=1,cex.axis=1,cex.lab=1.5,xaxt="s",yaxt="s")

plot(a3[,1],type="n",xlim=range(0,1),ylim=range(-ma,ma),xlab="",ylab="")

segments(0, 0, 1, 0)

segments(0, 0.5, 1, 0.5, lty = 2)

segments(0, -0.5, 1, -0.5, lty = 2)

title(paste(xname,";",methodname,";",k,"cluster"))

bb <- c(0,1)

bb1 <- bb/k

ba <- seq(from = bb1[1], by = bb1[2])

ba1 <- ba[2]/20

ba2 <- c(0,ba1)

segments(0,-ma,0,ma)
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for(i in 1:(k+1)){

segments(ba[i],-ma,ba[i],ma)}

# create scaled weights

xx_0

ll_seq(from=1,to=k*(p+2),by=p+2)

for(f in 1:k){

xx[f]_a1[ll[f]]

}

sumweight_sum(as.numeric(xx))

# for(j in 1:k){

# w[j]_a1[ll[j]]/sumweight}

# text for fcm

if(m==1){

for(j in 1:k){

text(seq(from=ba[j]+ba[2]/p,to=ba[j+1]-ba[2]/p,

by=(ba[j+1]-ba[j]-ba[2]/5)/(p-x)), a3[,j], rownames(a3),

col="blue",cex=1.5)

text(ba[j]+ba[2]/2,ma,paste("Cluster ",j,sep=""),col="red",cex=1.5)

text(ba[j]+ba[2]/2,ma-0.1,paste("size= ",

substring(as.numeric(a1[ll[j]])/sumweight,1,4),sep=""),

col=5,cex=1.4)}

}

# text for method gk

if(m==2){

if(x==1 | x==2){

for(j in 1:k){

text(seq(from=ba[j]+ba[2]/p,to=ba[j+1]-ba[2]/p,

by=(ba[j+1]-ba[j]-ba[2]/5)/(p-1)), a3[,j], rownames(a3),col="blue")

text(ba[j]+ba[2]/2,ma,paste("Cluster ",j,sep=""),col="red")}

# text(ba[j]+ba[2]/2,ma-0.05,paste("weight= ",

# substring(as.numeric(a1[ll[j]])/sumweight,1,4),sep=""),col=5)

}
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if(x==3){

for(j in 1:k){

text(seq(from=ba[j]+ba[2]/p,to=ba[j+1]-ba[2]/p,

by=(ba[j+1]-ba[j]-ba[2]/5)/(p-3)), a3[,j], rownames(a3),col="blue")

text(ba[j]+ba[2]/2,ma,paste("Cluster ",j,sep=""),col="red")}

# text(ba[j]+ba[2]/2,ma-0.05,paste("weight= ",

# substring(as.numeric(a1[ll[j]])/sumweight,1,4),sep=""),col=5)

}

}

}
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F. Höppner, F Klawonn, and R. Kruse. Fuzzy- Clusteranalyse: Verfahren für die Bilderken-
nung, Klassifikation und Datenanalyse. Vieweg Verlagsgesellschaft, Braunschweig, 1996.

R.J. Howarth. Statistics and Data Analysis in Geochemical Prospecting. Elsevier Scientific
Publishing Company, Amsterdam, 1983.

A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Com-
puting Surveys, 31:264–323, 1999. http://l2r.cs.uiuc.edu/∼cogcomp/AIML/papers/
SPRING2003/jain99data.pdf.

D. Johnson, L. Aragorn, L. McGeoch, and C. Schevon. Optimization by simulated anneal-
ing: An experimental evaluation. Journal of Operations Research, 37(6):865–893, 1989.
http://www.cs.uic.edu/∼jlillis/courses/ cs594 f02/JohnsonSA.pdf.

R. Johnson and D. Wichern. Applied Multivariate Statistical Analysis. Prentice-Hall, Lon-
don, 4th edition, 1998.

R.H.G. Jongman, C.J.F. Ter Braak, and O.F.R van Tongeren. Data Analysis in Community
and Landscape Ecology. Pudoc, Wageningen, 1987.

G. Karypis, R. Aggorwal, V. Kumar, and S. Shekar. Multilevel hypergraph partition-
ing: application in vlsi domain. In ACM/IEEE Design Automation Conference, 1997.
http://www.iro.umontreal.ca/∼poirierg/cs741/karypis.pdf.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data. Wiley & Sons, New York, 1990.

G.N. Lance and W.T. Williams. A general theory of classificatory sorting strategies. hierar-
chical systems. Computer Journal, 9:373–380, 1966.

C. Lee and E. Antonsson. Dynamic partitional clustering using evolution strategies.
In 3. Asia-Pacific Conference of Simulated Evolution and Learning, Nagoya, 2000.
http://www.design.caltech.edu/Research/Publications/.

P. Legendre and L. Legendre. Numerical Ecology. Book News, Portland, 1998.

C.B. Lucasius, A.D. Dane, and G. Kateman. On k-medoid clustering of large data sets with
the aid of a genetic algorithm: background, feasibility and comparsion. Analytica Chimica
Acta, pages 647–669, 1993.

J.H. Maindonald. Using R for Data Analysis and Graphics, 2002. http://wwwmaths.anu.edu.
au/∼johnm/.

133



V. Makarenkov and P. Legendre. Optimal variable weighting for ultrametric and ad-
ditive trees and k-means partitioning: Methods and software. Journal of Classifica-
tion, 18:245–271, 2001. http://www.fas.umontreal.ca/BIOL/legendre/reprints/ Opti-
mal Variable Weighting.pdf.

K. McGarigal, S. Cushman, and S. Stafford. Multivariate Statistics for Wildlife and Ecology
Research. Springer Verlag, New York, 2000.

G.W. Milligan. An examination of the effect of six types of error perturbation on fifteen
clustering algorithms. Psychometrika, 45:325–342, 1980.

G.W. Milligan. Clustering validation: Results and implications for applied analysis. In
P. Arabie, L.J. Hubert, and G. Soete, editors, Clustering and Classification, pages 341–
375. World Scientific Publishing Co. Pte. Ltd., Singapore, 1996.

R. Ng and J. Han. Clarans: A method for clustering objects for spatial data min-
ing. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–1016, 2002.
http://www.computer.org/tkde/tk2002/k1003abs.htm.

A. Okada. A review of cluster analysis research in japan. In P. Arabie, L.J. Hubert, and
G. De Soete, editors, Clustering and Classification, pages 271–294. World Scientific Pub-
lishing Co. Pte. Ltd., Singapore, 1996.

C. O’Muircheartaigh and C. Payne. Exploring Data Structures. John Wiley & Sons, New
York, 1977.

E.C. Pielou. The Interpretation of Ecological Data: A Primer on Classification and Ordina-
tion. John Wiley and Sons, New York, 1984.

L. Pirktl. Probleme und Algorithmen der Clusteranalyse. PhD thesis, Eidgenössische Tech-
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