
Engineering Fracture Mechanics 271 (2022) 108591

A
0
(

A
o
w
S
I

A

K
M
C
W
O

1

f
c
o
v

h
R

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

hybrid multi-phase field model to describe cohesive failure in
rthotropic materials, assessed by modeling failure mechanisms in
ood

ebastian Pech ∗, Markus Lukacevic, Josef Füssl
nstitute for Mechanics of Materials and Structures, TU Wien, Karlsplatz 13, 1040 Vienna, Austria

R T I C L E I N F O

eywords:
ulti-phase field model
ohesive fracture
ood
rthotropic materials

A B S T R A C T

Fracture mechanics is crucial for many fields of engineering applications, as precisely predicting
failure of structures and parts is required for efficient designs. The simulation of failure
processes is, both from a mechanical and a numerical point of view, challenging, especially for
inhomogeneous materials, where the microstructure influences crack initiation and propagation
and might lead to very complex crack patterns. The phase field method for fracture is a
promising approach to encounter such materials, since it is able to describe complex fracture
phenomena like crack kinking, branching and coalescence. Moreover, it is a largely mesh
independent approach, given that the mesh is homogeneous in the area of the crack. However,
the original formulation of the phase field method is limited to isotropic materials and does
not account for preferable fracture planes defined through the material’s microstructure. In
this work, the method is expanded to take orthotropic constitutive behavior and preferable
directions of crack propagation into account. We show that by using a stress-based split
and multiple phase field variables with preferable fracture planes, in combination with a
hybrid phase field approach, a general framework can be found for simulating anisotropic,
inhomogeneous materials. The stress-based split is based on fictitious crack faces and is, herein,
expanded to support anisotropic materials. Furthermore, a novel hybrid approach is used, where
the degradation of the sound material is performed based on a smooth traction free crack
boundary condition, which proves to be the main driving factor for recovering commonly
observed crack patterns. This is shown by means of a detailed analysis of two examples: a
wooden single edge notched plate and a wood board with a single knot and complex fiber
directions. In both cases, the proposed novel hybrid phase field approach is able to realistically
reproduce complex failure modes.

. Introduction

The use of fracture mechanical modeling approaches is crucial in areas of applied engineering. Being able to describe
ailure processes of structures and components realistically and allows for their optimization with regard to design and material
onsumption, while ensuring high reliability standards. Simulation of failure processes has been the topic of numerous publications
ver the recent decades and is, due the complexity of possible material failure mechanisms, still an area that is being researched
ery intensively.
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The foundation of most studies on brittle fracture processes is the work of Griffith and Taylor [1], which describes fracture in
erms of a critical fracture energy release rate required for crack propagation. Based on Griffith’s work, Irwin [2] introduced the
o-called stress intensity factors to characterize stress fields around the crack tip, depending on geometry and load. While those
inear elastic fracture mechanics theories can be applied to describe crack propagation of existing cracks, effects like crack kinking,
ranching, coalescence, initiation and cohesive behavior are not covered. With the broad establishment of finite element methods
or problems related to continuum mechanics, also new methods for simulating fracture processes emerged: Approaches based on
emeshing and usage of special crack tip elements [3,4], the node split method [5], cohesive elements and cohesive zones models
6,7] and XFEM [8]. Those methods allow overcoming some previously mentioned limitations of theories rooted in Griffiths’s work,
owever, each approach comes with its own weaknesses.

One of the most recent and promising method is the so-called phase field method for fracture. This method was initially proposed
y Francfort and Marigo [9] and is also rooted in Griffith’s theory of brittle fracture, however, formulated by a variational approach,
hrough which the total energy of the system is minimized. The main advantage is that no predefined crack paths are needed and
ranching as well as coalescence of cracks is naturally included in this approach. However, finding a solution to the proposed
ramework turned out to be very difficult. Therefore, in Bourdin et al. [10,11] a regularization method was developed that allows
he minimization problem to be solved numerically efficient. By introduction of an auxiliary field 𝑑(𝑥) ∈ [0, 1] – the so-called crack

phase field – the crack discontinuity is modeled by including a smooth transition zone from intact (𝑑 = 0) to cracked (𝑑 = 1) solid.
The width of this transition zone is controlled by a regularization or length scale parameter. As this parameter approaches zero (i.e.,
recovering the discontinuous transition from solid to crack), the solution gamma-converges to Griffith’s theory.

By expressing cracks in form of a field variable, the mentioned complex fracture phenomena like kinking, branching and
coalescence, naturally arise from the defining system of differential equations. Thus, the phase field method theoretically allows
crack topologies of arbitrary complexity, only limited by the mesh size and mesh structure. This motivates usage of the phase field
method for materials with a complex micro- or macrostructure, like concrete, fiber-reinforced composites, polycrystalline structures
and wood. In those materials, the micro- and macrostructure strongly affects both the elastic behavior, in the sense of having
anisotropic constitutive relationships, and the crack topology, by introduction of favorable fracture planes due to ‘‘weak’’ principal
material directions.

1.1. Fracture phenomena of wood

For wood, this results in crack topologies driven by both the direction of least resistance, orthogonal to the wood fiber direction,
and the maximum principal stress [12]. This causes the often observed zig-zag pattern, where cracks jump from one growth layer to
another, representing a combination of Mode-I, Mode-II and Mode-III failure modes. In this way, material specific microstructural
features might influence the fracture behavior and crack propagation during and after crack formation in complex materials. In
wood, crack growth is mainly triggered by defects in the cell wall material at a microscopic level. This induces the often observed
decrease in macroscopic stiffness, evidently visible in load–deflection plots, i.e., the nonlinear behavior before reaching the peak
load. Close to the actual peak load the microscopic cracks localize and the actual macroscopic crack and fracture process zone forms.
Failure processes in wood after crack initiation, like cohesive behavior, where studied by Vasic et al. [13] and are also observable
in the experimental study of Dourado et al. [14]. Their research concluded with identifying so-called fiber bridging as the main
cause of toughening effects at the crack tip.

1.2. The phase field method for anisotropic materials

The phase field models proposed by Amor et al. [15], Miehe et al. [16] contain the assumptions of isotropic constitutive behavior
and ideal-brittle fracture. However, in recent years, some approaches to allow for consideration of anisotropic behavior were
published: Bleyer and Alessi [17] proposed a method that introduces additional phase field degrees of freedom (DOFs), which
are uncoupled in the geometrical terms of the phase field equation and thus allow for different fracture energy release rates and
length scale parameters. The actual coupling is introduced on a constitutive level. A different approach for anisotropic fracture is
pursued by Hakim and Karma [18], Clayton and Knap [19], Teichtmeister et al. [20]. Preferable fracture directions are introduced
through a second-order tensor — the so-called structural tensor. This tensor scales the gradient of the crack phase field and imposes
an orientation on the geometrical terms of the phase field equation. To allow for multiple favorable fracture planes, which are e.g.,
found in polycrystalline structures, Nguyen et al. [21] combined the multi-phase field model and the structural tensor. In their
work, multiple phase variables are linked to their own second-order structural tensor that invalidates crack growth in a particular
direction. Effectively, by suppressing one direction, multiple favorable fracture planes, defined by the material’s microstructure,
can be considered. Multiple fracture planes are also considered by Zhang et al. [22], where instead of using multiple phase field
variables, the gradient of the phase field is scaled depending on the phase field crack’s normal direction. The extensions of the phase
field method mentioned above can also predict crack growth in composite materials. However, the fracture description in composite
materials is challenging as it involves the fracture of the matrix and the constituents, their interaction, and interface failure. Bui and
Hu [23], Wu et al. [24] give a comprehensive overview of currently pursued approaches. On the macroscopic scale Dhas et al. [25]
proposed a model for considering delamination limited to single fracture mechanics failure modes. Further developments target
simulation on the micro- or mesoscale by explicitly modeling the matrix and the constituents. Msekh et al. [26,27] show phase
field implementations for nanocomposite materials. Failure of fiber reinforced composite lamina is considered by Espadas-Escalante
et al. [28]. Zhang et al. [29,30], Roy et al. [31] focus on the special treatment of fiber–matrix debonding, matrix cracking and
the interaction of those failure modes. A multi-phase field model considering separate phase fields for the matrix and the inclusion
2

phase is proposed by Singh and Pal [32].
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Fig. 1. (a) sharp and (b) diffuse representation of a crack topology. Within the diffuse representation, the sharp crack 𝛤 in the body 𝛺 is approximated using
multiple diffuse crack fields, which depend on the crack phase fields 𝒅.

1.3. Cohesive behavior in the phase field method

Already the original publication [10], covering the numerical implementation of the model from Francfort and Marigo [9],
discusses the role of the length scale parameter. This was further elaborated by Amor et al. [15]. Initially, the length scale parameter
was seen as a purely numerical value in the context of the regularization scheme. However, considering it a material parameter
is not far-fetched due to the similarities of the phase field method with gradient damage approaches. With this parameter tending
towards zero, the solution gamma-converges to Griffith’s theory, describing ideal brittle failure. By increasing this parameter, more
complex softening behavior can be described, and ductile effects of quasi-brittle material failure can be implemented An alternative
approach is proposed by Wu [33] in the form of the so-called unified phase field method, where the phase field’s characteristic
functions are tuned to a cohesive zone model with a predefined traction separation constitutive relation. In their work, the length
scale parameter is regarded as a numerical value that should be chosen as small as possible, as long as it is sufficiently resolved by
the spatial discretization [34]. The ductile behavior can be controlled by including the material’s tensile strength in the formulation.
This is an advantage in comparison to other phase field models, as the length scale parameter is not linked to material properties
and can be chosen following the model’s discretization [35]. Cervera et al. [36], Wu et al. [37] show that the unified phase field
theory yields almost identical results as the XFEM approach for quasi-brittle simulations while having the advantage of being able
to properly model complex crack paths, crack kinking and crack branching.

1.4. Scope of this work

In this paper, a cohesive phase field implementation is presented based on the above-mentioned unified model from Wu
[33]. Furthermore, the outlined methods for considering anisotropic behavior are evaluated and their possible combinations and
limitations are discussed. Based on the work of Hu et al. [38], a novel hybrid approach [39], employing a crack boundary condition
for the degradation part of the phase field equation, is formulated.

The paper is organized as follows: Section 2 provides the theoretical background and introduces methods and concepts from
recent literature. Additionally, a generalization of the stress split from Steinke and Kaliske [40] for anisotropic materials is given
and the hybrid approach, utilizing a crack boundary condition, is described. In Section 3 the introduced phase field models are
evaluated using two numerical examples with different levels of complexity. First, a simple single edge notch plate with a predefined
material direction is looked at. The simulation results serve as a basis for the discussion of the hybrid approach described in this
work. Secondly, a more complex realistic model of a wooden board with a single knot is simulated to show the effects of spatially
varying principal material directions, resulting from different wood fiber orientations. The paper closes with a short summary of the
introduced concepts for applying the phase field model to orthotropic materials showing different complex damage mechanisms,
and gives a brief outlook and concluding remarks.

2. Fundamentals and methods

2.1. Fundamentals

To verify the various methods able to take anisotropic and quasi-brittle behavior into account, the unified phase field model
from Wu and Nguyen [41] is generalized to include 𝑛 different phase field variables [17] and a second-order structural tensor 𝑨𝑖
[20,21], where 𝑖 denotes the 𝑖th phase field. Excluding body forces and surface tractions, the regularized form of the total energy

of the system, defined on the domain 𝛺 (see Fig. 1), thus reads:

𝛱(𝒖,𝒅) = ∫𝛺

[

𝜓+(𝒖,𝒅) + 𝜓−(𝒖)
]

𝑑𝛺 +
𝑛
∑

𝑖
𝐺𝑐,𝑖 ∫𝛺

𝛾𝑖(𝑑𝑖)𝑑𝛺, (1)

where 𝒖 is the displacement field, 𝒅 the phase field of dimensionality 𝑛, 𝐺𝑐,𝑖 the critical energy release rate of phase field 𝑖 and 𝛾𝑖 is
the regularized crack surface density functional that approximates the sharp crack surface. As the driving force for crack propagation
is energy based, a criterion is needed for preventing fracture under pure compressive stress states modes. Thus, the strain energy
3
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density is separated into 𝜓+(𝒖,𝒅) which contributes to fracture and 𝜓−(𝒖) which does not. Only 𝜓+ depends on the crack phase
field 𝒅, in such a way that the so-called degradation function 𝜔(𝑑𝑖), which damages the solid 𝛺, degrades the strain energy density.

ithin the unified phase field theory, the crack surface density functional is defined as

𝛾𝑖(𝑑𝑖) =
1
𝑐0,𝑖

[

1
𝑙𝑖
𝛼(𝑑𝑖) + 𝑙𝑖∇𝑑𝑖 ⋅𝑨𝑖 ⋅ ∇𝑑𝑖

]

with 𝑐0,𝑖 = 4∫

1

0

√

𝛼(𝜁 )𝑑𝜁. (2)

As outlined in Kuhn et al. [42], Pham et al. [43], the function 𝛼(𝑑𝑖) defines the local part of the dissipated fracture energy and
etermines the ultimate crack phase field. It satisfies the properties 𝛼(𝑑 = 0) = 0 and 𝛼(𝑑 = 1) = 1 [41]. In order to recover the
ctual surface measure of the crack set for 𝑙𝑖 → 0, the normalization constant 𝑐0,𝑖 is needed. 𝑨𝑖 is the so-called structural tensor,

which scales the gradient of the crack phase field to define preferable or invalid crack propagation directions. In a multi-phase field
setting, the definition

𝑨𝑖 = 𝑰 + 𝛽𝑖
(

𝑰 − 𝒂𝑖 ⊗ 𝒂𝑖
)

(3)

rom Nguyen et al. [21] can be used, which allows assigning material directions 𝒂𝑖 and penalty factors 𝛽𝑖 for penalizing planes not
rthogonal to the material directions for each phase field variable 𝑑𝑖. For 𝛽𝑖 = 0, the standard isotropic formulation of the crack
urface density functional is recovered. For increasing values of 𝛽𝑖, the crack surface energy decreases along the material direction
𝑖, whereas the plane orthogonal to 𝒂𝑖 remains unaffected. This introduces an anisotropy and invalidates crack propagation along
he material direction.

The two functions that mainly influence the fracture process are the degradation function 𝜔(𝑑𝑖) and 𝛼(𝑑𝑖). As described by Bleyer
nd Alessi [17], while multiple phase field variables are geometrically uncoupled (e.g., 𝛼(𝑑𝑖) is defined for each DOF), they are
oupled in the constitutive relation (e.g., 𝜓+(𝒖,𝒅) is defined for all DOFs). A general expression for those two functions is given by
u [44], in the following way

𝛼𝑖(𝑑𝑖) = 𝜉𝑑𝑖 + (1 − 𝜉)𝑑2𝑖 ∀𝑑𝑖 ∈ [0, 1] 𝜉 ∈ [0, 2] and (4)

𝜔𝑖(𝑑𝑖) =
(1 − 𝑑𝑖)𝑝

(1 − 𝑑𝑖)𝑝 +𝑄(𝑑𝑖)
𝑝 ≥ 2 (5)

𝑄𝑖(𝑑𝑖) = 𝑎1,𝑖𝑑𝑖 + 𝑎1,𝑖𝑎2,𝑖𝑑2𝑖 + 𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖𝑑
3
𝑖 , (6)

where 𝑎1,𝑖, 𝑎2,𝑖 and 𝑎3,𝑖 are coefficients that can be calibrated to model a certain cohesive behavior related to the 𝑖th phase field.
The general expression for the local part of the dissipated fracture energy resembles the well-known monotonous model. Eq. (4)

can be specialized for the two commonly used models 𝛼(𝑑𝑖) = 𝑑𝑖 for 𝜉 = 1 (AT-1) and 𝛼(𝑑𝑖) = 𝑑2𝑖 for 𝜉 = 0 (AT-2) [45].
As outlined in Miehe et al. [16], the degradation function must satisfy 𝜔(𝑑𝑖 = 0) = 1 and 𝜔(𝑑𝑖 = 1) = 0. Furthermore, as

he first derivative of the degradation function with respect to the phase field variable controls the amount of energetic driving
orce, 𝜔′(𝑑𝑖 = 1) = 0 is needed, in order to eliminate this elastic driving term once full damage is reached [16,42]. This ultimately
tops further crack growth in regions characterized by 𝑑𝑖 = 1. Steinke and Kaliske [40] discuss the additional soft requirement of
(𝑑𝑖 = 0) ≠ 0, which, if not satisfied, as well leads to the elimination of the elastic driving term. For 𝑑𝑖 = 0, i.e., the undamaged state,
rack growth is hindered, and no phase field evolution can take place. Therefore, such a model requires additional treatment in
orm of a numerical perturbation of the initial state, such that the energetic driving forces become unequal to zero. One commonly
sed definition is 𝜔(𝑑𝑖) = (1 − 𝑑𝑖)2 [46]. The general expression in Eq. (5) contains this simple case for 𝑝 = 2, 𝑎1 = 2, 𝑎2 = −1∕2 and
3 = 0.

The remaining part left to be specified from Eq. (1) is the strain energy density split. In order to properly discuss the various
inds of methods to approach this separation, at first, two commonly applied methods for dealing with coupled equations within
he variation framework are discussed.

.2. Isotropic, anisotropic and hybrid formulation

As described by Ambati et al. [39], there are two basic formulations originating from the regularized variational framework
10,11], the isotropic formulation and the anisotropic formulation [16,46].1 The isotropic formulation does not contain the additive
ecomposition of the strain energy density and, thus, gives a linear relation in 𝒖, reading

𝝈(𝒖,𝒅) = 𝜕𝜓(𝒖,𝒅)
𝜕𝜺

. (7)

The anisotropic formulation

𝝈(𝒖,𝒅) = 𝜕𝜓+(𝒖,𝒅) + 𝜓−(𝒖)
𝜕𝜺

, (8)

however, contains the split and is thus non-linear in 𝒖. This property simplifies the solution process when the so-called staggered
approach is used (see Section 2.4), as the deformation subproblem can be treated as an uncoupled linear problem.

1 The terms isotropic and anisotropic are not to be interpreted in terms of the local material behavior, but they refer to the decomposition of the strain
4
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One obvious downside of the isotropic formulation is that every deformation state is degraded equally, thus unphysical behavior
ike interpenetration of crack faces or crack growth under pure compressive stress states can occur. Each effect is related to a different
spect of the evolution equations. Crack growth is rooted in the energetic driving force and interpenetration of crack faces in the
onstitutive relation. The so-called hybrid formulation [39] combines the advantages of both formulations, i.e., the linear behavior
f the isotropic formulation and the physical, more appropriate, modeling of the anisotropic one. This is achieved by using the
onstitutive relation from Eq. (7) with the additional constraint that for all 𝒖 with 𝜓+ smaller than 𝜓− (i.e., the passive energy parts
utweighs the crack driving one), the material is treated as undamaged, i.e., 𝑑𝑖 = 0. For the energetic driving force, the anisotropic
ormulation is used, leading to the proper crack propagation behavior. As shown in Ambati et al. [39], the hybrid formulation
anages to produce results qualitatively and quantitatively similar to the anisotropic formulation, with a computation effort close

o the isotropic formulation.

.3. Fracture contributing and passive parts

The energy split into a part that drives and is affected by fracture and into a part that is neither affected by nor drives fracture is
ne key ingredient of the phase field formulation for ensuring a realistic fracture behavior. As outlined in Section 2.2, by ignoring
his split, i.e., using the isotropic formulation, effects like interpenetration of crack faces or crack growth under pure compressive
tress states can occur. This unphysical behavior can be eliminated by properly splitting the energy, such that the energetic driving
orce and also the damaged part in the constitutive relation is only related to the contributing part 𝜓+.

Besides this physical motivation, there is also a simple conceptional one: The additive decomposition 𝜓 = 𝜓+ + 𝜓−, must retain
ts validity. In van Dijk et al. [47], this is very well explained based on the two common methods for splitting the strain energy
ensity: the spectral decomposition by Miehe et al. [16] and the volumetric–deviatoric decomposition by Amor et al. [15]. Starting
ith the well-known formulation of the strain energy density, the fundamental idea is to separate stresses and strains into strictly

racture-contributing and passive parts. Hence, the strain energy density reads

𝜓 = 1
2
(𝝈+ + 𝝈−) ∶ (𝜺+ + 𝜺−) (9)

= 1
2
(𝝈+ ∶ 𝜺+
⏟⏞⏟⏞⏟

𝜓+

+𝝈+ ∶ 𝜺− + 𝝈− ∶ 𝜺+ + 𝝈− ∶ 𝜺−
⏟⏞⏟⏞⏟

𝜓−

). (10)

So, for the additive decomposition to hold, the terms 𝝈+ ∶ 𝜺− and 𝝈− ∶ 𝜺+, consisting of contributing and passive parts, must vanish.
However, for non-isotropic materials, those parts are non-zero, thus the spectral and the volumetric–deviatoric decomposition cannot
be applied.

The phase field formulation consists of two essential parts, one being the formulation of the energetic driving force and the
other being the actual constitutive behavior. On those two parts, the above described decomposition has a very different impact.
Regarding the first part, Miehe et al. [48] introduced the concept of a dimensionless crack driving function, which is a generalization
of the history function [16] and allows replacing the energetic driving force by an arbitrary failure function, like a maximum
stress, a maximum strain or a Tsai–Wu [49] criterion. While this opens the phase field formulation to a variety of materials, the
restrictions on the constitutive relation remain. However, the current literature finally provides three approaches of a valid strain
energy decomposition for non-isotropic materials:

• A proper split for anisotropic materials [47], based on generalizations of decomposition from Miehe et al. [16] and Amor et al.
[15], which is not yet validated,

• a stress-based split [38,40] that is based on a different formulation of Eq. (9) and
• the hybrid approach described in Section 2.2.

The hybrid approach is a simple method to circumvent the validity of the split, as for the constitutive part no split is required.
In a sense, the hybrid approach represents a generalized framework for applying arbitrary crack driving functions, as long as an
additional constraint ensures that crack faces cannot interpenetrate. The additional constraint formulation from Ambati et al. [39],
where for 𝜓− > 𝜓+ contact of the crack faces is assumed, however, might not be suitable for any crack driving function, thus,
requiring an alternative formulation of this constraint, suited for ensuring a physical, sound fracture behavior.

A stress-based split represents an alternative approach for separating the strain energy density into a contributing and a passive
part. The method, as described by Steinke and Kaliske [40], is based on the idea that only stresses are additively decomposed. So
Eq. (9) changes to

𝜓 = 1
2
(𝝈+ + 𝝈−) ∶ 𝜺 = 1

2
(𝝈+ ∶ 𝜺
⏟⏟⏟
𝜓+

+ 𝝈− ∶ 𝜺
⏟⏟⏟
𝜓−

). (11)

Obviously, this approach is applicable to any constitutive behavior, as there are no terms consisting of both contributing and passive
parts. Nevertheless, Steinke and Kaliske [40] specialized the model for isotropic materials, as some observations on the inherent
properties of the deformations in presence of a crack, discussed below, require changes in the initial formulation of 𝝈+.

The stress based split is performed in a local crack coordinate system, as shown in Fig. 2. This coordinate system, related to
a fictitious crack surface defined by the crack normal vector 𝑟 and the two in-plane vectors 𝑠 and 𝑡, allows identification of crack
5
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Fig. 2. Crack coordinate system of a fictitious crack surface, required to identify Mode-I, Mode-II and Mode-III crack driving forces.

driving forces for Mode-I, Mode-II and Mode-III fracture. By representing the stress tensor in the crack coordinate system, the crack
driving and passive stresses can be identified:

𝝈+ = ⟨𝜎𝑟𝑟⟩+ (𝒓⊗ 𝒓)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Mode-I

+𝝈𝑟𝑡 + 𝝈𝑡𝑟
⏟⏞⏟⏞⏟

Mode-II

+𝝈𝑟𝑠 + 𝝈𝑠𝑟
⏟⏞⏞⏟⏞⏞⏟

Mode-III

and (12)

𝝈− = ⟨𝜎𝑟𝑟⟩− (𝒓⊗ 𝒓) + 𝝈𝑡𝑡 + 𝝈𝑠𝑠 + 𝝈𝑡𝑠 + 𝝈𝑠𝑡, (13)

where 𝝈𝑖𝑗 = 𝜎𝑖𝑗 (𝒊⊗𝒋) and 𝜎𝑖𝑗 = 𝝈 ∶ (𝒊⊗𝒋), which are the contributions to the stress tensor and the stress related to the 𝑖 and 𝑗 direction
from the crack coordinate system, respectively. Further, Macaulay’s notation is used as ⟨∙⟩+ = (∙+|∙|)∕2 and ⟨∙⟩− = (∙−|∙|)∕2. Zhang et al.
[50] follow a similar decomposition approach which allows specifying the fracture energy release rate for each fracture mechanics
failure mode. In their work a fiber reinforced composite is considered. The energy is divided by a stress-based decomposition into
fiber and matrix dominant damage, where, for the latter, additionally Mode-I and Mode-II fracture is considered. In comparison to
the model used in this work, the crack coordinate system is fixed to the local fiber coordinate system, so the effect of different crack
face orientations on the crack driving forces cannot be captured.

At this point, the decomposition is still applicable to any constitutive law, however, it can lead to physically inconsistent results,
as in the fully damaged state the essential crack boundary conditions – no positive normal stress perpendicular to the crack and
no shear stresses along a frictionless crack surface [51] – are not recovered for certain strain states. This unphysical behavior can
easily be shown by picturing a state of pure crack normal strain (i.e., 𝜀𝑟𝑟 > 0 and all other strain components equal to zero). As a
generalization of the isotropic model from Steinke and Kaliske [40], following a linear elastic constitutive law, such a strain state
would result in non-zero stress components:

𝜎𝑟𝑟 = 𝐶𝑟𝑟𝑟𝑟𝜀𝑟𝑟 and (14)

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑟𝑟𝜀𝑟𝑟. (15)

A fully developed crack state, however, should be stress-free due to this very strain state, as the two crack surfaces should be able
to move freely along the crack’s normal vector. Additionally, the stresses related to Poisson’s effect (Eq. (15)), must be considered
in the fracture contributing stresses 𝝈+, by expressing them in terms of the crack normal stresses from Eqs. (14) and (15) as

𝜎𝑖𝑗 =
𝐶𝑖𝑗𝑟𝑟
𝐶𝑟𝑟𝑟𝑟

𝜎𝑟𝑟, (16)

which leads to the following formulation of the crack contributing and passive stresses:

𝝈+ = ⟨𝜎𝑟𝑟⟩+ (𝒓⊗ 𝒓) + 𝝈𝑟𝑡 + 𝝈𝑡𝑟 + 𝝈𝑟𝑠 + 𝝈𝑠𝑟 +
⟨𝜎𝑟𝑟⟩+
𝐶𝑟𝑟𝑟𝑟

[

𝐶𝑠𝑠𝑟𝑟(𝒔⊗ 𝒔)

+ 𝐶𝑡𝑡𝑟𝑟(𝒕⊗ 𝒕) + 𝐶𝑟𝑡𝑟𝑟(𝒓⊗ 𝒕) + 𝐶𝑟𝑠𝑟𝑟(𝒓⊗ 𝒔) + 𝐶𝑡𝑟𝑟𝑟(𝒕⊗ 𝒓) + 𝐶𝑠𝑟𝑟𝑟(𝒔⊗ 𝒓)

+ 𝐶𝑡𝑠𝑟𝑟(𝒕⊗ 𝒔) + 𝐶𝑠𝑡𝑟𝑟(𝒔⊗ 𝒕)
]

(17)

𝝈− = ⟨𝜎𝑟𝑟⟩− (𝒓⊗ 𝒓) + 𝝈𝑡𝑡 + 𝝈𝑠𝑠 + 𝝈𝑡𝑠 + 𝝈𝑠𝑡 −
⟨𝜎𝑟𝑟⟩+
𝐶𝑟𝑟𝑟𝑟

[

𝐶𝑠𝑠𝑟𝑟(𝒔⊗ 𝒔)

+ 𝐶𝑡𝑡𝑟𝑟(𝒕⊗ 𝒕) + 𝐶𝑟𝑡𝑟𝑟(𝒓⊗ 𝒕) + 𝐶𝑟𝑠𝑟𝑟(𝒓⊗ 𝒔) + 𝐶𝑡𝑟𝑟𝑟(𝒕⊗ 𝒓) + 𝐶𝑠𝑟𝑟𝑟(𝒔⊗ 𝒓)

+ 𝐶𝑡𝑠𝑟𝑟(𝒕⊗ 𝒔) + 𝐶𝑠𝑡𝑟𝑟(𝒔⊗ 𝒕)
]

(18)

Eq. (17) is based on Eq. (12), which contains crack driving stresses identified using classic fracture mechanics failure modes.
n addition, Eq. (17) also considers the stresses related to Poisson’s effect, which must vanish for a fully developed phase field.
aving this formulation for 𝝈+ allows finding 𝝈− from 𝝈 = 𝝈+ + 𝝈−. It can be shown that this generalized formulation of the stress

plit contains the isotropic formulation proposed by Steinke and Kaliske [40]. In the isotropic case, only the entries 𝐶𝑟𝑟𝑟𝑟 = 𝜆 + 2𝜇,
𝑠𝑠𝑟𝑟 = 𝐶𝑡𝑡𝑟𝑟 = 𝜆, required for the additional decomposed stresses, are non-zero, leading to the expression

𝝈+ = ⟨𝜎𝑟𝑟⟩ (𝒓⊗ 𝒓) + 𝝈𝑟𝑡 + 𝝈𝑟𝑠 + 𝝈𝑡𝑟 + 𝝈𝑡𝑠 +
𝜆

⟨𝜎𝑟𝑟⟩ (𝒔⊗ 𝒔 + 𝒕⊗ 𝒕), (19)
6

+ 𝜆 + 2𝜇 +
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where 𝜆 and 𝜇 are the two Lamé constants. This expression matches the one from Steinke and Kaliske [40].

2.3.1. A novel hybrid approach based on a crack boundary condition
Referring to the key requirement defined in Strobl and Seelig [51] that in a fully damaged state, tensile crack normal stresses

and shear stresses along a frictionless crack surface should be zero, Hu et al. [38] developed a stress-based decomposition approach
based on a smooth traction-free crack boundary condition. This approach is similar to the stress-based split by Steinke and Kaliske
[40], however, instead of considering degradation from the perspective of crack driving stresses in Mode-I, Mode-II and Mode-III,
they view degradation as a contact problem. With 𝒓 as the crack face’s normal vector, this results in the following decomposition
of the stress tensor:

𝝈+ = ⟨𝜎𝑟𝑟⟩+ (𝒓⊗ 𝒓)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

tensile normal stress

+𝝈 − 𝜎𝑟𝑟(𝒓⊗ 𝒓)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
tangential stress

(20)

𝝈− = ⟨𝜎𝑟𝑟⟩− (𝒓⊗ 𝒓)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

compressive normal stress

(21)

The main difference compared to Eqs. (17) and (18) is in the treatment of tangential components, which in the case of the crack
boundary condition always result in an energetic driving force. This results in an unrealistic overestimation of the driving strain
energy density (e.g., 𝝈𝑡𝑡 and 𝝈𝑠𝑠 are considered crack driving). Therefore, Hu et al. [38] highlight that this decomposition approach
should not be used for crack initiation and crack propagation, but should only serve as a boundary condition, which is activated
after the phase field variable reaches a certain threshold.

An alternative approach for dealing with the problem of having unphysical crack driving forces is utilizing the properties of the
hybrid approach (Section 2.2). As discussed in Section 2.3, this method allows arbitrary combinations of energetic driving forces and
definitions of the constitutive behavior, given that the solver is based on the staggered approach (see Section 2.4). Commonly, the
isotropic formulation from Eq. (7) is used for defining the constitutive behavior, which, however, requires an additional constraint
for preventing interpenetration of crack faces. In order to circumvent this additional constraint, we therefore propose using

𝝈+ = ⟨𝜎𝑟𝑟⟩+ (𝒓⊗ 𝒓) + 𝝈𝑟𝑡 + 𝝈𝑡𝑟 + 𝝈𝑟𝑠 + 𝝈𝑠𝑟 + 𝝈𝑡𝑡 + 𝝈𝑠𝑠 + 𝝈𝑡𝑠 + 𝝈𝑠𝑡 and (22)

𝝈− = ⟨𝜎𝑟𝑟⟩− (𝒓⊗ 𝒓), (23)

which matches the formulation from Hu et al. [38], for defining the constitutive behavior, where only 𝝈+ is degraded. The crack
driving part of the coupled system remains based on the orthotropic stress split derived in Section 2.3. This additionally bypasses the
need for considering the crack boundary condition only after the phase field variable reaches a certain threshold, as the driving parts
are now rooted in the classic fracture mechanic failure modes. To conclude, we propose using a stress-based decomposition, where
crack driving stresses are identified by fracture mechanics failure modes (Eqs. (17) and (18)), in a hybrid-approach, combined with
a degradation function, where stresses are degraded, such that the resulting constitutive behavior matches the one of a traction-free
crack surface (Eqs. (22) and (23)). This allows physical, sound estimation of crack driving forces for orthotropic materials and proper
modeling of crack faces.

2.3.2. Application of the stress split in a multi-phase field theory
In highly orthotropic materials, fracture is driven based on two principles [12]:

• Cracks following the direction of least resistance, defined by the microstructure of the material.
• Cracks opening perpendicular to the largest principal stress, thus, leading to a maximum reduction of the total energy.

For wood this results in the often observed zig-zag pattern (Fig. 3), where cracks follow the path of maximum total energy reduction,
until reaching a growth ring. At the growth ring, which is essentially a weak interface, the crack direction changes to the direction
of least resistance, which for wood is always parallel to its fiber direction. So cracks are likely to follow the material’s structure,
i.e., for wood the longitudinal, radial or tangential direction.

The fundamental part of the stress-based decomposition is the definition of the crack coordinate system. Due to the material
characteristics and often observed crack pattern of wood, instead of considering an arbitrary crack face orientation, the identification
of three crack coordinate systems defined by 𝒓𝑖, 𝒔𝑖 and 𝒕𝑖 (see Fig. 2) is plausible, where 𝒓1 is the longitudinal, 𝒓2 the radial and 𝒓3
the tangential direction. This results in three different crack driving energy terms, where according to the principle of maximum
dissipation, the failure mode with the highest energy release determines the main cause of failure.

In order to consider the very different fracture toughness and strength of each of the possible types of cracks (longitudinal, radial,
tangential), each material axis is related to only a single phase field variable. This is similar to approaches taken for crystalline
materials for considering the influence of cleavage planes [21]. The fracture energy release rate and the strength related to each
phase field variable is considered in a mixed-mode manner. However, by selectively excluding certain failure modes in the mixed-
mode formulation in Eqs. (17) and (18), it can easily be adapted. The proper choice of the respective material parameters and the
internal length depends on the combination of failure modes. With the multi-phase field description, only the phase field variable
related to driving failure mode is activated for degradation. In comparison to other multi-phase field models, e.g., Bleyer and Alessi
7

[17] and Nguyen et al. [21], this approach results in no coupling of the phase field variables in the constitutive relation, as a single
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Fig. 3. Typical crack pattern observed for wood. A crack switches from following the direction of least resistance along the fiber, to the direction of maximum
total energy reduction perpendicular to the largest principal stress. It changes its orientation again, when it hits the next growth ring. [12].

phase field variable is already sufficient to describe the state of a fully developed crack. Thus, the strain energy terms 𝜓+(𝒖,𝒅) and
𝜓−(𝒖,𝒅) in Eq. (1), are replaced by

𝜓+
𝑖 (𝒖,𝒅) = 𝜔𝑖(𝑑𝑖)𝜓+

𝑖 (𝒖) and 𝜓−
𝑖 (𝒖) = 𝜓𝑖(𝒖) − 𝜓+

𝑖 (𝒖), (24)

respectively, where 𝑖 is the index of the defining failure mode and 𝜓+
𝑖 is defined according to Eq. (11). From a numerical point of

view, having no coupling between the phase field DOFs is favorable. However, choosing one driving failure mechanism introduces a
strong non-linearity, as the strain energy density function depends on 𝑖, for which the total energy is not a continuous function. This
makes solving the problem very difficult, if not impossible. Therefore, instead of evaluating strong non-linearities (e.g., Heaviside
functions or the Macaulay brackets) based on the current state variables, they are computed using the deformation and phase field
values of the last converged increment. Given that the increments are sufficiently small, this vastly improves the convergence rate,
while leading to similar results. Our tests showed no significant influence on the obtained solutions, except that the algorithm is
more robust.

2.4. Solver

Solving the posed minimization problem is a challenging task, because of the regularized functionals being non-convex in the
state variables [15]. Additionally, irreversibility constraints are necessary to ensure the thermodynamical consistency and fully
dissipative nature of crack growth. In this work, the well established staggered approach is applied, solving the displacement field
at a constant crack phase field and the crack phase field at a constant displacement field [52].

The algorithmic scheme applied in this work is outlined in the flowchart in Fig. 4. Similar to what was proposed by Amor et al.
[15], the following criteria are used as a convergence measure for the subproblems in iteration 𝑛 and increment 𝑘,

∑

𝑖∈DOFs

|�̂�𝑘𝑛+1,𝑖 − �̂�𝑘𝑛,𝑖|

|�̂�𝑘𝑛+1,𝑖|
≤ 𝜖𝑑

∑

𝑖∈DOFs

|�̂�𝑘𝑛+1,𝑖 − �̂�𝑘𝑛,𝑖|

|�̂�𝑘𝑛+1,𝑖|
≤ 𝜖𝑢 with 𝜖𝑢 < 𝜖𝑑 . (25)

Here, ∙̂ refers to the discretized representation of the continuous field ∙. Additionally, the L2-norm of the crack phase field’s residual
�̂�𝑘

�̂�,𝑛+1 must be smaller than or equal to 𝜖𝑅,𝑑 . Convergence of the overall problem is assured by requiring convergence of the
deformation problem and the phase field problem. If the set of state variables resulting from the last phase field step (�̂�𝑘𝑛+1 and
�̂�𝑘𝑛) result in a converged state for the deformation problem, the newly obtained deformation state �̂�𝑘𝑛+1 is ignored (as the phase field
subproblem converged for �̂�𝑘𝑛) and �̂�𝑘𝑛+1 and �̂�𝑘𝑛 are accepted as a solution. The whole algorithm uses an adaptive time increment
stepping scheme, such that a better performance can be achieved by having larger increments in less critical regions (e.g., linear
elastic regime) and smaller increments in critical ones (e.g., close to peak load).

As mentioned above, to ensure thermodynamical consistency, an irreversibility constraint on the phase field variable is required.
Additionally, it is also necessary to ensure the bound constraint 𝑑(𝑥) ∈ [0, 1]. De Lorenzis and Gerasimov [53] give a quite
comprehensive overview of current approaches. In this work, constraints are applied on the global level using the active set reduced
space method [54]. Essentially Dirichlet-type boundary conditions are prescribed on a subset of �̂�. The method is both qualitatively
and quantitatively similar to the primal–dual active set method from Heister et al. [55] (for a comparison see Appendix).

A set is said to be ‘‘active’’ when the inequality constraint is violated. In [54] a box constraint solver is discussed, identifying
two sets, a lower bound active set 𝜙 and an upper bound active set 𝜓 . The problem is, subsequently, solved on the inactive set

(�̂�𝑘𝑛+1) =  ⧵
(

𝜙(�̂�
𝑘
𝑛+1) ∪𝜓 (�̂�

𝑘
𝑛+1)

)

, (26)

where  is the set of all crack phase field DOFs. The DOF values on the active set are fixed to the boundary values using hard
8

Dirichlet-type boundary conditions. Applying this method would allow considering alternative degradation functions for which
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Fig. 4. Staggered solution process for a single load increment. Convergence is assured by imposing a limit on the size of the state variable’s increment.
Additionally, the residual of the phase field subproblem must lie below a threshold. The convergence of the overall problem is given by checking whether the
last change in the crack phase field only resulted in a converged state in the displacement field.

𝜔′(𝑑𝑖 = 1) ≠ 0, however, in this work no functions of this kind are used. The active sets are computed as follows2:

𝜙(�̂�
𝑘
𝑛+1) =

{

𝑖 ∈ |
(

�̂�𝑘𝑛+1
)

𝑖
≤
(

�̂�𝑘−1
)

𝑖
and (�̂�𝑘

�̂�,𝑛+1)𝑖 > 0
}

(27)

𝜓 (�̂�
𝑘
𝑛+1) =

{

𝑖 ∈ |
(

�̂�𝑘𝑛+1
)

𝑖
≥ 1 and (�̂�𝑘

�̂�,𝑛+1)𝑖 < 0
}

, (28)

here the lower bound is the element-wise restriction that the current state variable must be larger than or equal to the state
ariable from the last converged increment, i.e., 𝑘−1. These methods also affects the convergence conditions from above, such that
he L2-norm of the residual is only computed on the inactive set. To conclude, we propose using the staggered approach, as it is
ore robust than the monolithic one, in combination with the active set reduce spaced method, which allows assuring irreversibility
ithout requiring additional terms like penalty functions in the phase field formulation.

The entire code is implemented in Julia [56]. For automatically deriving the element stiffness matrices and residual vectors from
he energy formulation, the ForwardDiff-Package [57] is used. Pardiso 6.0 [58–60] is employed as the sparse linear solver.

. Results and discussion

In the following Section, the stress split described in Section 2.3 is assessed based on two different models: A simple notched plate
Fig. 5) with varying fiber orientation and a more complex example of a wooden board including a knot (Fig. 12). As the envisioned
se of the phase field model described in this work is the application to complex three-dimensional geometries, three-dimensional
inear tetrahedral elements are used. Since the hybrid approach strongly alters the phase field formulation, it can be expected
o provide different crack topologies, compared to the variationally consistent formulation (i.e., the anisotropic formulation from
ection 2.2).

For all examples, the material stiffness tensor is defined as 𝐶LLLL = 9000.016, 𝐶LLRR = 269.384, 𝐶LLTT = 175.104, 𝐶RRRR =
480.096, 𝐶RRTT = 118.528, 𝐶TTTT = 270.6, 𝐶RTRT = 32, 𝐶LRLR = 552, 𝐶LTLT = 552, all in MPa. This resembles the elastic properties of
so-called clear wood, describing wood areas without defects and knots. Following [61], to the knot in the wooden board example,
a stiffness tensor reduced by a factor of 0.5, compared to the clear wood stiffness tensor, is assigned. This reduction takes cracks
perpendicular to the grain direction, often observed in knots, into account. The elastic properties are defined in a local cylindrical
coordinate system, as is commonly used for describing wood. 𝒂1 defines the longitudinal (L) direction, 𝒂2 the radial (R) direction
and 𝒂3 the tangential (T) direction.

In order to account for the cohesive behavior of wood, the coefficients 𝑎1,𝑖, 𝑎2,𝑖 and 𝑎3,𝑖 in Eq. (6) are tuned to match a linear
softening law. Based on the analytical solution of a one-dimensional bar problem, Wu [44] gives the following definitions:

𝑎1,𝑖 =
4
𝜋
𝑙𝑐ℎ,𝑖
𝑙𝑖
, 𝑎2,𝑖 = −1

2
and 𝑎3,𝑖 = 0, (29)

for 𝜉 = 2 and 𝑝 = 2, in Eqs. (4) and (5), respectively. 𝑙𝑐ℎ,𝑖 defines Irwin’s characteristic length, given as 𝑙𝑐ℎ,𝑖 = 𝐸0,𝑖𝐺𝑐,𝑖∕𝑓2𝑡,𝑖, for the 𝑖th
phase field, and 𝑙𝑖 is the length scale parameter for the 𝑖th phase field, which is chosen to be larger than the effective element size
𝑙eff (third root of the average volume of the finite elements in region of the expected phase field crack).

2 In their work, Yang et al. [54] compare the current DOF’s value with the one from the last converged state by equality. Given that they apply a special
perator that cuts off values lower than the lower bound and larger than the upper bound, comparing by lower than or larger than, respectively, leads to the
9

ame result. We use those operators instead, to make the comparison to the primal–dual active set algorithm from Heister et al. [55] more clear.
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Fig. 5. Geometry of the single edge notched plate. In plane, the plate is fixed in all directions at the bottom edge and only out of plane across the entire back
surface. The load is applied in form of a prescribed vertical deformation along the upper edge. The fiber direction 𝒂1 is changed by setting the fiber angle
relative to the horizontal direction. All measurements are in mm.

Table 1
Defining parameters for the single edge notch plate problem.
𝑑𝑖 𝛽𝑖a 𝐺𝑐,𝑖b 𝑓𝑡,𝑖c 𝑙𝑖∕𝑙eff

𝑑1 5.0 0.05 50.0 4.0
𝑑2 5.0 0.1 14.42 4.0
𝑑3 5.0 0.1 7.21 4.0

aStructural tensor scale in Eq. (3).
bin Nmm∕𝑚𝑚2.
cin MPa.

.1. Single edge notched plate

The notched plate’s geometry is depicted in Fig. 5. In plane, it is supported at the bottom edge and out of plane on the entire
ack surface. The load is applied in form of a prescribed vertical deformation along the upper edge. For considering the orthotropic
ehavior, the fiber direction (𝒂1) is changed by setting the fiber angle relative to the horizontal direction, e.g., 0◦ meaning 𝒂1 points

into the 𝑥-direction and 90◦ meaning 𝒂1 points into the 𝑦-direction. The remaining axes are defined such that the tangential direction
(𝒂3) always points into the 𝑧-direction. The parameters controlling the phase field problem are given in Table 1.

In order to reduce the computational effort of such problems, often, the mesh density is increased in regions of a priori known
crack paths. As changing the fiber angle is expected to also change the resulting crack topology, the crack paths cannot precisely be
known in advance. Therefore, all models are consistently meshed with the same effective element size over the entire specimen’s
geometry. This greatly reduces the influence of the mesh structure on the resulting crack paths. Initially, seven different element
sizes, ranging from a very coarse mesh with 2018 nodes to a very fine one with 144825 nodes, are tested. The finest mesh results
from a characteristic element size of 0.005, a value which is also used in other publications, e.g., by Hu et al. [38].

The results of this mesh study are shown in Fig. 6. For both the hybrid and the consistent approach, the total external energy,
normalized to the maximum value of the external energy for the specific model and the studied fiber angle, is plotted over the number
of nodes. For all five material directions, with increasing number of nodes, the total external energy shows clear convergence against
a value that can already be captured well by the two finest meshes (6 and 7). This is also reflected in the phase field developments
in Fig. 6(c), where there is no qualitative difference in the crack topology between mesh 6 and 7, however, a significant change in
the failure mode in meshes 1 to 5. Therefore, only mesh number 7 was used, for the further simulations. Nevertheless, it should
be pointed out that also mesh number 6, though quite coarse compared to common mesh sizes used in literature, could already be
used, which would allow a major reduction of the computational effort. The simulations of the most refined meshes with 868950
DOFs were carried out using 2 AMD EPYC 7402. On average, solutions were found after 60 h (wall time). The speedup through
parallelization is significant and recent work shows that further improvement is possible through semi-implicit methods [62] and
10

BFGS iteration schemes [63]. Both vastly reduce the number of required iterations.
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Fig. 6. Results of the mesh study (total external energy) for seven different meshes with increasing mesh density, for 5 different fiber angles and for both the
consistent and the hybrid approach. Additionally, the crack topology for a fiber angle of 72◦ for the hybrid approach is depicted for each of the meshes.

The generally low mesh sensitivity, as also pointed out by Yang et al. [64], is related to the usage of the unified phase field
theory from Wu [44], as the regularization parameter is actually considered in the phase field formulation for calibration of the
coefficients 𝑎1,𝑖, 𝑎2,𝑖 and 𝑎3,𝑖 in Eq. (29), which compensates the size effect resulting from a larger crack phase field.

As already pointed out, a main question of this work is to evaluate whether the proposed model is capable of considering effects
resulting from the material structure appropriately. With respect to wood, it is of particular interest, whether the commonly observed
zig-zag failure pattern (as shown in Fig. 3), arising from cracks that jump between growth layers, can be modeled. In order to show
this effect, various fiber angles ranging from 0◦ to 90◦ are investigated. Fig. 7 shows the transition of failure modes, obtained with
the hybrid approach, for selected characteristic fiber angles in this range, where the mesh and the load are identical. In Fig. 7,
qualitatively similar crack topologies are summarized in a graphic to improve comparability.

The results clearly show that at a certain fiber angle, the failure mode switches from a crack driven by stresses perpendicular to
the fiber (𝑑2) to a crack driven by stresses in fiber direction (𝑑1). The first and foremost observation from those results is that by
using the proposed hybrid approach, it is actually possible to recover the zig-zag fracture pattern, even if a completely homogeneous
mesh and material definition is used. The main influencing factors are the structural tensor, which forces the geometric phase field
evolution to stay on planes perpendicular to the crack normal direction, and considering the driving stresses on the fictitious crack
face for each likely crack orientation. This will further be elaborated at the end of this section, where the influence of the hybrid
approach on the appearance of this pattern is discussed.

Comparing Figs. 7 (a) and (c) it becomes obvious that phase field 𝑑2 (green) has a stronger tendency to follow the prescribed
fiber orientation than phase field 𝑑1 (red). This result suggests that even without explicitly defining a weak interface in-between
fibers, cracks perpendicular to the 𝒂2-direction (Fig. 5) are influenced by an effect that has a similar impact as a weak interface.
Nevertheless, the cracks do not exactly follow the fiber direction and the stronger the incline is, the stronger the tendency away from
this fracture plane. Theoretically, by increasing the structural tensor scale, one could increase the affinity to this plane, however,
closer to the edge of the plate, mixed fracture modes, for example for the 72◦ and the 80◦ model, cause a rather strong deviation.

For the fiber angles shown in Fig. 7(a) and (c), the results of the hybrid approach and the consistent approach agree. The main
difference appeared for the 72◦ case shown in Fig. 7(b). In case of the consistent approach, no interaction occurred, meaning that
the zig-zag pattern could not be reproduced (see the final state of the phase field in Fig. 8). The hybrid and the consistent approach
differ in how the solid material is degraded, which influences the stress distribution and, thus, the crack driving forces.

To take a close look at these differences, a state prior to the fully developed phase field is compared in Fig. 8. Of primary
interest are the stress components which only contribute to the development of one phase field, either 𝑑 or 𝑑 , which for this quasi
11
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Fig. 7. Transition of failure modes with increasing fiber incline. Similar failure mechanisms are plotted above each other, i.e., (a) shows three different
simulations. (a) shows only phase field 𝑑2, i.e., a crack that propagates along the fiber, (b) shows the interaction of phase field 𝑑1 and 𝑑2, i.e., cracks that
propagates along and perpendicular to the fiber (c) shows only phase field 𝑑1, i.e., a crack that propagates perpendicular to the fiber.

Fig. 8. Comparison of the hybrid and the consistent approach for two states, one prior to the fully developed phase field and one for the fully developed field.
The figure shows the main difference in the Mode-I stresses for phase field 𝑑1 (𝝈𝐿𝐿) which leads to the zig-zag pattern for a 72◦ fiber incline in case of the
hybrid approach. Stresses are given in MPa.

two-dimensional example are the Mode-I stresses, i.e., 𝝈𝐿𝐿 for 𝑑1 and 𝝈𝑅𝑅 for 𝑑2. As 𝝈𝑅𝑅 is degraded in both approaches, the main
difference is in 𝝈𝐿𝐿. Looking at the stress plot in Fig. 8, there is actually a notable difference between the hybrid and the consistent
approach. In the consistent approach the longitudinal stresses are not degraded, thus peaking at the geometrical crack tip from
the single edge notched plate. For the hybrid approach, with the longitudinal stresses being fully degraded, the stress peak moves
with the diffuse phase field crack tip, causing a stress state at this location, which favors the evolution of phase field 𝑑1. This is an
important finding, because it clearly shows that the usage of the hybrid approach is required in order to recover a zig-zag pattern.

3.2. Comparison of the hybrid approach and the consistent approach

While Fig. 8 gives a strong argument in favor of the hybrid approach, it is still of interest, which of the two approaches is closer
to modeling an actual discrete crack. Therefore, results of both methods are compared with the resulting stress distribution and
deformation of a model with a discretely modeled predefined crack. The two different approaches, including a crack with a kink of
60◦, are shown in Fig. 9. To properly compare the two cases, a discrete crack is modeled, and the same crack is modeled by solving
the phase field problem for a Dirichlet-type boundary condition, prescribing 𝑑2 = 1 on the same region. Both cracks follow the fiber
incline of 60◦. Subsequently, a linear elastic simulation for the model with the discrete crack and a simulation of the deformation
12
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Fig. 9. Two different approaches to compare a phase field crack with a geometrically modeled, discrete crack. The phase field crack is computed by prescribing
the Dirichlet-type boundary condition 𝑑2 = 1 on the same region as the discrete crack is defined.

Fig. 10. Comparison of the deformation of the outer edges of a model with a discrete crack and two phase field models, using the hybrid approach and the
consistent approach.

problem considering the phase field distribution from Fig. 9, using the hybrid and the consistent approach, was conducted. For all
three models the vertical deformation at the top edge is set to 𝑢y = 0.1.

First, the deformation state of the three models is compared. The results are shown in Fig. 10, where only the outer edges of
each of the notched plates are depicted. Clearly, as the hybrid approach degrades all elastic components, it resembles the solution
of the discrete crack model very well. In contrast, in the case of the consistent approach, the remaining stresses related to phase
field 𝑑1 result in a quite large deviation from the discrete crack solution.

Fig. 11 shows a comparison of stress distributions for the – essentially two-dimensional – notched plate. As expected, the main
differences between the three models occur for stress components related to the longitudinal direction (𝝈𝐿𝐿 and 𝝈𝐿𝑅), as those are
not fully degraded in the consistent approach. Fig. 11, region 1⃝ shows that while the specimen is cracked at the given location, there
are still stresses transferred through the crack. Neither the hybrid approach, nor the model with the discrete crack show longitudinal
stresses in this region. Furthermore, this behavior also affects regions away from the crack, e.g., in region 2⃝. The influence on the
remaining stress components is marginal, as 𝝈𝑅𝑅 and 𝝈𝐿𝑅 are fully degraded in both cases. Nevertheless, in region 3⃝, the consistent
approach shows a peak in shear stresses at the kink which is considerably smaller at the other two models.

Given the similarities of the stress distributions and deformation states, and the hybrid approach’s ability to reproduce the zig-zag
failure patter found in wood, the results give clear support for using the hybrid approach over the consistent one, when modeling
complex material failure.
13
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Fig. 11. Comparison of three stress distributions between the consistent approach and the hybrid approach using a predefined phase field distribution and a
discrete crack model. 1⃝ shows that longitudinal stresses are still transferred through the crack when using the consistent approach and 2⃝ shows that this does
not only affect the region of the crack but also regions further away. 3⃝ shows a peak in shear stresses at the kink, when using the consistent approach. Stresses
are given in MPa.

3.3. Wooden board with a knot

Fig. 12 shows the geometry of the wooden board with a single knot. The board is supported both at the top and the right face.
The load is applied in form of a prescribed deformation along the bottom left edge. In order to control crack initiation, the board
has a 10mm notch through the specimen.

The fiber orientation 𝒂1 (longitudinal), 𝒂2 (radial), 𝒂3 (tangential), is computed for each individual integration point and defines
the local material directions. In this work, the model from Lukacevic et al. [61] is used, where a knot is represented by a rotationally
symmetric cone and wood fibers are streamlines flowing around an obstacle, which is the knot. Consequently, the fiber orientation
in the LT-plane can be computed using the so-called Rankine oval, which describes the fluid flow around an elliptical object.
Additionally, as fibers are situated on so-called growth surfaces, which motivate the cylindrical coordinate system commonly used to
describe the elastic properties of wood, the third dimension of the fiber direction vector, the so-called dive angle, can be computed
by restricting it to be orthogonal to the LT-plane. Fig. 12 also shows a rendering of the fiber course. The texture is generated based
on the previously computed fiber directions on a 0.10 mm grid in the mid-plane of the board.

Similar to the notched plate from Section 3.1, the mesh size is homogeneous in the left part of the specimen, where the crack
will open. Restricting phase field evolution just to the left part reduces the number of DOFs and keeping the mesh homogeneous
reduces the influence of the mesh structure on the crack paths. The characteristic length of the elements in the phase field activated
region is set to 0.75 mm. Relative to the volume of this region, this matches the mesh density of notched plate model number 6 in
Fig. 6, which is in good agreement with the results from an even smaller characteristic length. The resulting total number of DOFs
14
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Fig. 12. Geometry of the wooden board with a single knot. The fiber orientation 𝒂1 (longitudinal), 𝒂2 (radial), 𝒂3 (tangential) is prescribed in each integration
point and is rendered in the mid-plane of the board. A notch is placed in order to control crack initiation. The board is loaded at the bottom left edge by
prescribing the deformation. All measurements are in mm.

Table 2
Defining parameters for the wooden board with a single knot.
𝑑𝑖 𝛽𝑖a 𝐺𝑐,𝑖b 𝑓𝑡,𝑖c 𝑙𝑖∕𝑙eff

𝑑1 2.0 2.0 80.0 2.0
𝑑2 4.0 0.8 5.0 2.0
𝑑3 2.0 0.1 3.6 2.0

aStructural tensor scale in Eq. (3).
bin Nmm∕𝑚𝑚2.
cin MPa.

is 976,200. As outlined in Section 3.2, the hybrid approach is required for properly modeling fracture processes of wood. Therefore,
for simulation of this more complex example, only the hybrid approach is used. The parameters controlling the phase field problem
are given in Table 2.

Fig. 13 shows the resulting crack path when the specimen is almost fully cracked. Phase field 𝑑2 is visualized using three-
dimensional contour lines ranging from 𝑑2 = 0.0 to 𝑑2 = 1.0 in increments of 0.1. The fiber direction is depicted by plotting 𝒂1 on a
uniformly spatially distributed subset of integration points. Obviously, the varying fiber directions influence the orientation of the
crack face. Fig. 14 shows the evolution of the phase field variable 𝑑2. The crack initially starts with a slight decline and changes
its orientation in the vicinity of the knot, where the fibers become parallel to the knot’s surface. When reaching the knot, the crack
kinks and follows the weak interface. It stops propagating close to the lower edge of the board, as the compressive Mode-I stresses
in this region do not result in crack driving forces, due to the additive decomposition of the strain energy density term.

Fig. 14 shows the load–deflection plot of the simulation, measured at the lower left edge of the board. The horizontal axis is
split into two differently scaled parts, as the change in the reaction force from 0mm to 3mm is quite large compared to the change
from 10mm to 30mm. Past the initial opening of the crack, the load–deflection plot shows a cohesive behavior during further crack
propagation. The softening effect can be controlled by properly setting 𝑓𝑡,𝑖 and 𝐺𝑐,𝑖 in Eq. (29). The reaction force is heavily reduced
while the crack propagates along the fiber towards the knot. With the crack further progressing, tensile and compressive stresses,
similar to the bending stresses at the clamped end of a cantilever beam, concentrate at the lower left edge of the knot. This shift
in the stress distribution results in a less stiff response of the system, therefore, larger deformations are required for further crack
growth along the weak interface between the clear wood area and the knot.

The simulation of a more complex model considering a realistic fiber course showed that the discussed phase field model is
capable of considering the effects resulting from fiber deviations and that sudden changes in the crack face orientation, e.g., the
kink when the crack reaches the knot, can be modeled. Furthermore, using the unified phase field theory, adapted to a linear
softening law, allows for a cohesive behavior during crack propagation.

4. Conclusion and outlook

The present work addresses the formulation of a phase field model for orthotropic non-brittle materials, able to reproduce
multiple, very different failure mechanisms. In order to extend the phase field method for fracture to support cohesive behavior, the
so-called unified phase field theory is applied and tuned to a linear softening law, resembling a cohesive zones model. Subsequently,
15
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Fig. 13. Fully cracked wooden board. The fiber orientation vector 𝒂1 is plotted on a uniformly spatially distributed subset of the integration points. The crack
mostly follows the fiber direction, starting horizontally, tilts and subsequently propagates along the interface region between the clear wood area and the knot.

Fig. 14. Load–deflection plot measured at the lower left edge of the board. Additionally, the evolution of the phase field variable 𝑑2 is shown for multiple
locations along the path.

a stress-based split for anisotropic materials is derived, which is based on considering Mode-I, Mode-II and Mode-III crack driving
stresses on a fictitious crack plane. The plane’s orientations are defined accordingly to material specific fracture planes, in this case
for wood: a crack plane perpendicular to the longitudinal, the radial and the tangential direction. The orientation in which crack
growth results in the largest energy dissipation is the driving failure mechanism.

This formulation is coupled in form of a hybrid approach, by separating the energetic driving force term and the actual
degradation of the solid. In this novel hybrid approach, a smooth traction-free crack boundary condition is used, which incorporates
a contact constraint and, thus, does not require an additional constraint for preventing interpenetration of crack faces. This concept is
then put into a multi-phase field model, which allows defining a different fracture behavior for each phase field variable individually.
Therefore, very different failure mechanisms can be modeled and described realistically. In order to consider the effect of the
material’s structure on the crack paths, a second-order tensor is added to the crack density function, which scales the phase field’s
gradient on the plane perpendicular to the associated crack orientation vector. Hence, preferable planes for crack propagation can
be defined, e.g., a crack perpendicular to the radial direction is likely to propagate along the fiber direction (longitudinal) and less
likely to propagate in the radial direction, due to the weak interface between the fibers and the matrix.

The outlined method is tested using two numerical examples of different complexity, both being wooden specimens. By means
of the model of a single edge notched plate, it is shown that changing the fiber orientation leads to different crack topologies, where
cracks travel along the fiber when the load direction is in an obtuse angle relative to the fiber direction. At a certain fiber incline,
as expected, the crack kinks and jumps to the next fictitious growth layer, rupturing the fibers in between. At a sharp angle, the
failure mode changes to a crack perpendicular to the fiber orientation. The simulations showed that such common phenomena of
wood (e.g., the zig-zag pattern) cannot be recovered when a variationally consistent approach is used, thus motivating the use of
the hybrid approach with a smooth traction free crack boundary condition. Subsequently, a more complex example of a wooden
16
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follows the curvature of the wood fibers and also allows for sudden changes in the crack face orientation, e.g., in the vicinity of the
knot where the crack kinks. Furthermore, the influence of the cohesive behavior during crack propagation can be observed.

This allows the conclusion that the phase field method can be used to model wood failure, as crack phenomena like the zig-zag
attern can be modeled, complex crack topologies can be depicted and cohesive behavior can be considered. An apparent limitation
f this work lies in the formulation of the energetic driving force, which, while allowing the definition of a different fracture
haracteristic on the level of each phase field variable, allows no distinction between Mode-I, Mode-II and Mode-III. Thus, always
ixed mode failure is assumed. As this study’s focus is on the implementation of a phase field model for wood and investigation of

ommonly found crack patterns, future research on validating the model with experimental data is needed. Furthermore, examining
ore complex examples like wooden boards with multiple knots is of interest.
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Appendix. Comparison of the active set reduced space method and the primal–dual active set method

The only difference between the active set reduced space method from [54], and the primal–dual active set method from Heister
et al. [55], is in the selection of the active and the inactive set. Generally speaking, whether a phase field DOF is in the active or
the inactive set, is determined by two aspects, the current value of the phase field and the current value of the residual. Adaption to
the notation used in this work and rearranging the parts in the primal–dual active set formulation, leads to the following definition
of the primal–dual active set:

(�̂�𝑘𝑛+1) =
{

𝑖 ∈ |𝑐𝐁𝑖𝑖
(

�̂�𝑘−1 − �̂�𝑘𝑛+1
)

𝑖
+ (�̂�𝑘

�̂�,𝑛+1)𝑖 > 0
}

, (30)

where 𝑐 is a constant larger than 0 and 𝐁𝑖𝑖 is the entry of the 𝑖th DOF in the diagonal mass matrix 𝐁. Given that both 𝑐 and the mass
are strictly larger than 0, their product is as well. Comparing the two approaches from Eqs. (27) and (30) leads to the following
observations:

• If both
(

�̂�𝑘−1 − �̂�𝑘𝑛+1
)

𝑖
and (�̂�𝑘

�̂�,𝑛+1)𝑖 are larger than 0, the 𝑖th DOF is in both formulations considered to be active.

• If both
(

�̂�𝑘−1 − �̂�𝑘𝑛+1
)

𝑖
and (�̂�𝑘

�̂�,𝑛+1)𝑖 are smaller than 0, the 𝑖th DOF is in both formulations considered to be inactive.

• If the sign of the two terms is different, the 𝑖th DOF is inactive in the method from Yang et al. [54], however, in the method
from Heister et al. [55] it depends on the choice of the constant 𝑐, which is not further elaborated in their work.
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