
Inter-Widget Communication for
Personal Learning Environments

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsingenieurwesen Informatik

eingereicht von

Bernhard Hoisl
Matrikelnummer 0252748

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: ao.Univ.-Prof. Dr. Jürgen Dorn

Wien, 3. Juni 2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Inter-Widget Communication for
Personal Learning Environments

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Engineering and Computer Science

by

Bernhard Hoisl
Registration Number 0252748

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: ao.Univ.-Prof. Dr. Jürgen Dorn

Vienna, 3. Juni 2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Bernhard Hoisl
Thaliastraße 10/2/19, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

To all whom it may concern.

Abstract

In recent time a new trend can be recognised on the Internet in general and especially
in learning environments by moving away from monolithic one-provider-fits-all to a
combinatorial mixing pieces-together approach. Mashing-up stands for the re-use, re-
combination, and re-organisation of small software artifacts of clearly defined func-
tionality (so-called widgets). Subsequently, mashed-up learning systems describe the
idea of highly customizable environments shifting substantial personalization possibil-
ities from administrators to the end-users (learners). This shift has significant impacts
on software design decisions, especially on efficient data communication strategies of
learning management systems.

This thesis presents a technical solution for an inter-widget communication in mash-
up personal learning environments, enabling the possibility of different data send and re-
ceive strategies, such as, cross-domain push/pull mechanisms, topic-oriented broadcast
messaging, or user-centered notification settings and, thus, enabling to model learner
workflows in distributed environments. It explains the technical background of the wid-
get concept and why inter-widget communication is beneficial, especially in the area of
e-learning.

The outcome of this thesis are new methods and corresponding open-source proto-
type software artifacts. A proof-of-concept pedagogical use-case of a lifelong learner
successfully applying the inter-widget communication facilities in a widget-based learn-
ing environment validates the approach.

iii

Kurzfassung

In jüngster Zeit ist ein Trend bei Internet-basierten Lernumgebungen zu Erkennen, der
eine Abkehr von monolithischen Systemen, hin zu einem kombinatorischen Ansatz er-
kennen lässt. Mashing-up steht dabei für die Wiederverwendung, mehrmalige Kombi-
nation und freie Organisation von kleinen in sich geschlossenen Softwarebausteinen
klar definierter Funktionalität (sogenannte Widgets). Mash-up Lernsysteme beschrei-
ben hochgradig anpassbare Umgebungen, die die individuelle Personalisierung weg von
den Administratoren von Lernsystemen hin zu den Endbenutzern (die Lernenden) ver-
schiebt. Diese Verschiebung hat erhebliche Auswirkungen auf Softwaredesignentschei-
dungen, vor allem im Hinblick auf effiziente Datenkommunikationsstrategien innerhalb
Internet-basierter Lernsysteme.

Diese Arbeit stellt eine technische Lösung für eine auf Widgets basierende Kommu-
nikation für personalisierte Mash-up-Lernumgebungen vor, sodass verschiedene Sende-
und Empfangsstrategien für Daten eines Lernenden realisiert werden können; zum
Beispiel: Push/Pull-Methoden für unterschiedliche Lerngegenstände, themenspezifi-
sche Nachrichten an alle Lernenden oder nutzerspezifische Benachrichtigungen. Damit
wird das Modellieren von Workflows von und zwischen Lernenden in verteilten Um-
gebungen ermöglicht. Es wird dabei der technische Hintergrund des Widget-Konzepts
erklärt und warum eine Kommunikation der Lernenden durch Widgets, insbesondere
im Bereich des E-Learnings, von Nutzen ist.

Das Ergebnis dieser Arbeit sind neue Methoden und entsprechende Open-Source-
Softwareprototypen. Ein pädagogisches Szenario eines lebenslangen Lernenden und die
darin erfolgreiche Anwendung der Widget-basierten Kommunikationsmöglichkeiten in
einer ausgesuchten Lernumgebung validieren den Ansatz.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Methodological Approach . 3
1.4 Outline of Learner’s Pedagogical Scenario 4
1.5 Surrounding Research Project . 4
1.6 Structure of the Thesis . 5

2 State of the Art 6
2.1 Overview of LTfLL . 6
2.2 Objectives of WUW . 8
2.3 Related Work . 9
2.4 Contributions to the state of the art . 10

3 Setting the Stage: Service Approach 12
3.1 Development Requirements . 12
3.2 Architectural Overview . 12
3.3 Introducing Widgets . 15
3.4 Interoperability through Web Standards 15

4 Customizing a Widget-based Server 17
4.1 Introducing Wookie . 17
4.2 Data Sharing Strategy . 18
4.3 Inter-Widget Communication Facility 21
4.4 OpenACS Widget Server . 23

5 Developing a Connector Framework 25
5.1 Introducing Elgg . 25
5.2 Instantiating a Wookie Widget in Elgg 26
5.3 A Note on the Limited Space of Widgets 28
5.4 Authentication with OpenID . 28

v

6 A supporting Widget Template 30
6.1 Wookie Widget Development . 30
6.2 Localization and Corporate Design in a Distributed Environment 33
6.3 Basic Widget Structure . 35
6.4 Handling Inter Widget-Communication 37

7 Use Case: A Lifelong Learner Scenario 41
7.1 Revisiting the Pedagogical Scenario 41
7.2 Interconnected Widgets: the Use Case Exemplified 43

8 Conclusion 52
8.1 Discussion . 52
8.2 Requirements for Adoption . 54
8.3 Future work . 55

A IWC Patch for Wookie 57

B Installing the Wookie Plug-in for Elgg 61

C Core Widget Functionalities of the Wookie Plug-in for Elgg 62

D IWC JavaScript Library 66

Bibliography 70

vi

CHAPTER 1
Introduction

1.1 Motivation
A change in perspective can be certified in recent years to technology-enhanced learning
(TEL) research and development: More and more learning applications on the web
are putting the learner center stage, not the organisation. They empower learners with
capabilities to customize and even construct their own personal learning environments
(PLEs). These PLEs typically consist of distributed web-applications and services that
support system-spanning collaborative and individual learning activities in formal as
well as informal settings.

Technologically speaking, this shift manifests in a learning web where informa-
tion is distributed across sites and activities can easily encompass the use of a greater
number of pages and services offered through web-based learning applications. Mash-
ups [8] have emerged to be the software development approach for these long-tail and
perpetual-beta niche markets. Core technologies facilitating this paradigm shift are
Ajax, JavaScript-based widget-collections, and micro-formats that help to glue together
public web application programming interfaces (APIs) in individual services [5].

A PLE is a network of people surrounding an individual with the people in this net-
work making use of artifacts and tools while they are involved in isolated or collabora-
tive activities of more or less planned (co-)construction of knowledge and information.
Individuals at the center of the PLE actively and passively modify this environment
through actions with the intention to positively influence their social, methodological,
and professional competence, i.e., changing their potentials for future action. Though
the individual tries to structure the environment, they are not fully in control to design
it, as characteristics and affordances of and relationships between the agents in the net-
work (people, tools, artifacts) are not oriented towards a common goal and according to
a joint plan.

1

Although PLEs were first conceived in opposition to virtual learning environments
(VLE) and learning management systems (LMS), today they have become rather a new
technique and research stream. Their focus is on allowing for more flexible recombina-
tion of learning tools, populating them consciously with content and in social networks,
and mixing them with elements of the rest of the personal environments surrounding and
supporting learners beyond their learning tasks so that the environment is truly owned
by the user.

Besides empowering users to more consciously co-design their environments ac-
cording to their needs, this idea is expected to bear several other advantages: it helps to
blend formal, non-formal, and informal learning, education, and work; it creates oppor-
tunities for the development of rich professional competences such as digital literacy
and media competency (see [42]); and it provides a way to cope with the distributed
nature of educational resources in a global information society.

Whereas classical LMS had been working with a portal or window metaphor, PLEs
resemble rivers, with activity flowing across the screen, moving from widget to wid-
get. Prominent projects such as iGoogle, the Apple dashboard, Microsoft’s sidebar, or
Netvibes paved the way for this user interface innovation. It is clear that this decompo-
sition of applications into use-case-sized mini-web applications is often still a challenge
for usability and further innovation. However, the advantage is that it brings along an
increased flexibility and recombinability of technology along very individual learning
and web workflows.

Technologically, this new technique is rooted in a software development tradition
called opportunistic design, which focuses on rapid application development through the
maximisation of code re-use and re-appropriation of soft- and hardware components [8].
Popularly, these approaches are also called “mash-ups”, “gluing”, or “wiring”.

PLEs now take this idea of re-use and re-appropriation onto the next level. Through
the deconstruction of learning tools into use-case-sized widgets, through the provi-
sion of plug-and-play auto-configuring middleware services, through standardized data
sources, and with the help of bootstrapping tools with high usability, end-users can be
facilitated in building up a PLE adapted to their needs.

1.2 Problem Statement
At the present time, Internet users and lifelong learners can create their personal view
on the Internet by using tools, such as, iGoogle or Netvibes and the like. These personal
environments allow their users to add and combine different information sources of the
Internet in one environment. They can do so by adding so-called widgets or gadgets—
small-scale applications—to their personal environment. According to the W3C, wid-
gets “are client-side applications that are authored using Web standards such as HTML5,
but whose content can also be embedded into Web documents” [31]. These widgets en-

2

capsulate information from particular web-services, like offering a combined RSS feed
from several blogs, a search at Wikipedia, overview over latest bookmarks form Deli-
cious, or content sharing opportunities as provided by SlideShare. In that way, users
can create a personal view of most interesting information on the Internet. Thereby,
these environments inspired research on TEL to extend functionalities to support infor-
mal learning processes. These extensions are called in the literature PLEs (see [23,27]).
A PLE which mixes and combines services from different providers is called mash-up
personal learning environment (MUPPLE; see [10, 40]). MUPPLEs initially support
non-formal learning as they require no institutional background, curriculum structure,
and are mostly free of use. One objective of using widgets to create a MUPPLE is their
high re-usability. Widgets must obey to the W3C recommendation [31] and are there-
fore designed in a standardized way. This thesis develops as a prerequisite a MUPPLE
architecture ready for integration in various (pre-existing) learning and social software
environments.

An unsolved problem of MUPPLEs is the ability to interchange information and data
between various widgets (maybe coming from different sources) [26]. So far, single
widgets have only very limited connectivity possibilities among each other. Browser
restrictions and the lack of a standardized communication interface are interfering data
exchange. Therefore, this thesis presents a technical solution for establishing inter-
widget communication (IWC) to be able to define learning workflows (see, e.g., [7,
29])1.

1.3 Methodological Approach
The research performed in this master thesis project is influenced by and follows the
design science research paradigm [11, 25]. The research will produce software artifacts
which address important pedagogical and TEL problems: building an open approach
for lifelong learners. The design evaluation will be demonstrated with proof-of-concept
software artifacts and functional as well as structural test methods. The research con-
tribution has been effectively communicated via scientific publications and open-source
availability of accompanying software artifacts. The construction and evaluation of the
design artifacts will follow accepted methods for both, TEL and software engineering
research. An iterative process for finding the optimal design of research methods and
software artifacts has been set up. Revisions of published work are, therefore, inte-
gral parts of ongoing research efforts. Furthermore, the pedagogical usefulness will be
explained according to a scenario-based use case of a lifelong learner.

1Parts of this master thesis have also been published as [2, 5, 6, 16, 17, 19, 24, 38, 39].

3

1.4 Outline of Learner’s Pedagogical Scenario
In-line with the scenario-based design methodology, the following use case—described
from the viewpoint of a lifelong learner—outlines the pedagogical scenario covered
throughout this thesis: “My name is Silvia, I have been on maternity leave for five years
by now and will start working again next month. I worked as a web developer in a
big company, but now I do not feel up-to-date anymore. Therefore, I want to refresh
my knowledge of relevant web-based development technologies, especially JavaScript.
Hence, I decide to use the widget-based learning environment (LE) offered by my com-
pany that will help me to find relevant content with its search system that connects a
huge number of relevant resources. I enter my query and various resources are returned,
such as textual materials, videos, slides, and scientific papers. Besides, a short definition
of my search term is given, as well. Furthermore, the system returns as a result of my
query also a fragment of an ontology which shows the relation between the terms of my
query and other relevant terms. All results are displayed side-by-side and are connected
with each other. When I apply an action in one result frame, the others get updated auto-
matically. In this way, I can find additional material and discover new related resources
which helps me refresh my JavaScript skills.”

1.5 Surrounding Research Project
The work carried out for and presented in this master thesis was integral part of a three
years small or medium-scale focused research project (STREP) entitled “Language
Technologies for Lifelong Learning” (LTfLL2, grant agreement no.: 212578) funded
through the European Union’s Seventh Framework Programme (FP7) for Research and
Technological Development in the Information and Communication Technologies (ICT)
theme.

Eleven beneficiaries were involved in the project:

• Open Universiteit Nederland, OUNL (coordinator; the Netherlands)

• Universiteit Utrecht, UU (The Netherlands)

• Eberhard Karls Universität Tübingen, UTU (Germany)

• Wirtschaftsuniversität Wien, WUW (Austria)

• Université Pierre-Mendès France, UPMF (France)

• Politehnica University of Bucharest – National Center for Information Technol-
ogy, PUB-NCIT (Romania)

2http://www.ltfll-project.org

4

http://www.ltfll-project.org

• Aurus Kennis- en Trainingssystemen BV, AURUS KTS (The Netherlands)

• The University of Manchester, UNIMAN (United Kingdom)

• Institute for Parallel Processing of the Bulgarian Academy of Sciences, IPP-BAS
(Bulgaria)

• BIT MEDIA E-learning solution GMBH and CO KG, BIT MEDIA (Austria)

• The Open University, OU (KMI; United Kingdom)

The surrounding project and its state of the art research approach is sketched in
Chapter 2.

1.6 Structure of the Thesis
The thesis begins with an analysis of state of the art research in Chapter 2. Therein,
the surrounding project and its research approach is summarized and it is reflected on
closely related work which serve as the starting point for the work presented in this
thesis.

In Chapter 3 the architectural overview along with the envisioned service approach
is explained. Development requirements are mentioned and the concept of widgets is
introduced.

Chapter 4 explains the development steps for customizing a widget-based server to
allow for IWC. Data sharing strategies are explained and two alternative implementa-
tions are shown.

A connector framework has to mediate between widgets served by a widget server
and the container platform (the LE). The development of a prototypical connector
framework is shown in Chapter 5.

The basic widget implementation requirements are explained in Chapter 6 . To ease
the usage of IWC facilities, a supporting widget template is provided which implements
corresponding data communication routines.

Chapter 7 extends the introductory pedagogical scenario from different viewpoints.
The IWC approach for PLEs is exemplified with a lifelong learner use case.

At last, Chapter 8 discusses the presented approach and its requirements for adop-
tion. Furthermore, possibilities for future work are shown.

The thesis is accompanied by four appendices: the IWC patch for Wookie (Ap-
pendix A), the Wookie plug-in installation guide for Elgg (Appendix B), the source-
code of the core widget functionalities of the Wookie plug-in for Elgg (Appendix C),
and the source-code of the IWC JavaScript library (Appendix D).

5

CHAPTER 2
State of the Art

2.1 Overview of LTfLL
The project summary according to the proposal’s “Annex I – Description of Work”
follows:

“The LTfLL project will create next-generation support and advice services to en-
hance individual and collaborative building of competences and knowledge creation in
educational and organizational settings. The project makes extensive use of language
technologies and cognitive models in the services.

The research activities are enveloped by activities that ensure common ground in
use cases and pedagogically sound scenarios that steer the design and development of
the services and guide the validation; a technical infrastructure for the creation and
integration of the services and a validation structure that ensures rigorous evaluation in
realistic settings, with several languages supported.

The research in the project is organized in 3 themes, each leading to particular types
of services and infrastructures:

• In theme 1 services are developed to establish the current position of the learner in
a domain. Services will offer semi-automatic analysis and comparison of learner
portfolios to the domain knowledge and continuous modeling and measurement
of conceptual development.

• In theme 2 support and feedback services are developed based on analysis of the
interactions of students—using Natural Language Processing (NLP) and Social
Network Analysis (SNA)—and textual output of students—using Latent Semantic
Analysis (LSA) with contributions from NLP.

6

• In theme 3 a knowledge sharing infrastructure is construed that allows comparison
and sharing of private knowledge to give rise to new common knowledge and
social learning. Ontologies for formal domain representation are combined with
social tagging.

The services are expected to result in improved appreciation of learner requirements,
leading to better recommendations on study plans and resources. Progress monitoring
based on learning activities, rather than on formal assessments, will improve recommen-
dations for further competence building and improved co-construction of knowledge in
social and informal learning.”

The LTfLL project develops a set of innovative loosely coupled tools that intend
to improve the understanding and analysis of students’ textual artifacts using language
technologies. The LTfLL tools and services are built around specific pedagogic prob-
lem statements that relate to contemporary approaches in technology-enhanced teaching
and learning. In response to these problem statements, solutions are designed and proto-
typically implemented, that provide semi-automated assistance to users, helping them to
address different areas of their work. In this pursuit, language technologies like LSA and
NLP are extensively explored and implemented. All tools are tested and piloted with
stakeholders and end-users in a rigorous three cycle validation and feedback process.
The project develops a number of applications, comprised of interconnected widgets,
encompassing the areas of learner positioning, concept coverage, dialogue analysis and
summarizing assistance, as well as formal and informal resource discovery. Further-
more, the project produces a number of detailed scenarios for language technologies
as well as templates and methodologies for verifying and validating conceptual designs
and software solutions with stakeholders and end-users. Through this method, the tools
benefit learning and teaching in the following ways:

• Addressing real educational needs (e.g., qualitative/quantitative learning analyt-
ics).

• Supporting the learning process and specific text-oriented learning activities (e.g.,
chat, reflection, essay).

• Easing known learner/tutor struggles in TEL and mass-education.

• Portable to any LE that is open to widgets (e.g., Moodle, iGoogle, Elgg, Black-
board).

• Flexible to pick and mix to suit learner/tutor needs: use only the widgets you
need.

• Interoperability of tools allows threading in support of more elaborate pedagogic
patterns.

7

• Enhanced understanding of the usefulness of language technologies in learning
analytics.

• Algorithm and pattern recognition for text linguistic analysis of learner artifacts
and interactions.

Learning is seen in LTfLL as a combination of individual and social processes. Feed-
back from the LTfLL tools is of advisory nature in order to support tutors (and indepen-
dent learners) in their respective tasks and to allow targeted intervention. By using the
LTfLL applications a tutor can spend less time on repetitive supervising and assessing
of students, which leaves more time for personal attendance.

Being a research project, tools are of prototypical proof-of-concept nature to demon-
strate that language technologies can bring added value and benefit to teaching and
learning. Further research and development after the project has been planned and is
expected to happen. Other tangible outcomes include a common semantic framework
to auto-enhance formal ontologies with folksonomy data, and the development of IWC.
Improved algorithms and a specialist annotation tool are further results of our work.
Academic results are published as research papers in corresponding journals and con-
ferences.

2.2 Objectives of WUW
The work of WUW (Wirtschaftsuniversität Wien) forms the backbone of the project to
guide and support the research and development (infrastructure workpackage, WP2).
The main tasks of WP2 are to guide and facilitate the technical aspects, i.e. the devel-
opment process of the language technology WPs and to assure the integration of the
resulting services into the PLE so they can be used in the validation. The first task is
related to the requirement to develop the various language services in the most efficient
way. This means that utilities and resources that are shared (designed and developed,
or selected) are made available at one central place. The second task assures that a
learning infrastructure is set-up to include the services and that the services developed
will comply with a standardized way to be able to add them to any services-based en-
vironment and to assure the further sustainability of the services. The decision which
infrastructure to use will be based on a combination of technical criteria and validation
site requirements. The results of this WP will be iteratively refined in line with the
cycles specified.

Regarding the e-learning infrastructure, WUW will be responsible for the set-up,
maintenance, technical validation, and documentation of the e-learning infrastructure.
The first task of WP2 will be to coordinate the selection and set-up and if required the
adaptation of the basic e-learning infrastructure and to document inline with this the
technical guidelines for the services to enable their integration. Subsequent, WP2 will

8

take care of the adaptation, integration and the technical validation of the result of the
integration of the services as they become available through the other WPs.

The integration activities deal with the requirements and educational perspective of
each of the services resulting from the language activities, their integration in a learning
environment, their usage and validation through which the further development and
adaptation of the services can be directed. The main outcomes are the following:

1. Creating a common ground by defining and describing a set of use-cases.

2. To define the educational perspective of the services, a scenario-based design
methodology is defined. The methodology specifies how the pre-pilots (show-
cases) and services should be developed in the project. A set of showcases is
defined for the language activities.

3. To enable and prepare the services for their integration, a concept, guidelines and
the basic set-up of the infrastructure is developed that allows for an efficient and
effective integration of existing tools by differentiating system components to be
integrated along three layers (data, services, and widgets) and by targeting mash-
ups as the integration technique of choice to glue together these components.

4. To enable access to generic NLP utilities and resources, a service-oriented, web-
based framework is implemented and documented. Resources, including lexi-
cons, corpora, and grammars, are surveyed and made available.

5. The overall validation approach, validation criteria and its relationship to the
adopted scenario-based design approach is defined and described. Pre-pilot
(showcase) validations are planned and their validation started.

The work presented in this thesis adds research contributions related to items number
3 and 4.

2.3 Related Work
In the PALETTE project1 an approach has been proposed, based on a model called 3A.
The three As stand for actors, activities and assets. An actor is producing an asset being
within an activity. An actor is a person, a software agent or any other intelligent object.
An asset is a document or a collection of documents or items: discussion thread, wiki
page, image album, and the like. An activity describes a formalization of a common
objective to be achieved by a group of actors: representation of a tangible or abstract
space. The structure is similar to a graph: nodes (AAA, so called entities) are connected
with several directed or undirected links with a specific type and weight [1].

1http://palette.ercim.org

9

http://palette.ercim.org

A different approach has been developed in the context of the iCamp project2. At
the core of this approach stands LE design which manifests in a learner interactions
scripting language (LISL) and a prototypical implementation. LISL gives end-users
the possibility to directly manipulate the composition of their PLE. A simple learner
interaction model has been deduced to describe the physical and social environment of
learners. The activities an actor is engaged in are composed of actions that include tools,
artifacts (objects), and other actors. A learning situation is represented by an activity
that consists of actions that refers to objects and requires tools. With the help of LISL,
learners manipulate actions, artifacts, and tools. Each action is bound to an artifact and
at least one tool and produces one tangible or intangible outcome [40].

Furthermore, there are different techniques for sharing data between clients and
servers in general—which are out of the scope of this thesis—and for widgets espe-
cially. Related work encompass the myWiWall portal of the PALETTE project which
has taken a first step in making IWC possible and combine it with drag-and-drop facil-
ities [26]. The portal makes use of client-side JavaScript functionalities embedded in
the widget host container. However, this approach is lacking the possibility to tailoring
cross-widget communication to a user-defined audience, for example, all widgets of one
user or all users that have one particular widget enabled.

Google proposed a Gadget-to-Gadget communication framework [7] where a pub-
lisher widget needs to name in the manifest XML file any subscriber widget that is
interested in receiving status updates. This approach is very limited and not easily ex-
tensible if other widgets should receive updates as well.

Other approaches are dependent on the W3C HTML5 working draft, defining an
API for cross-document messaging [29]. Firstly, the draft specification is described
more generally and not tailored specifically to IWC and, secondly, HTML5 is still no
web standard and not fully reliable at the moment. Furthermore, these specifications
do not focus on a user-tailored IWC and are lacking possibilities for modeling learner
workflows. In this thesis, such a user-tailored IWC is presented that enables different
communication styles between widgets owned by certain user groups, such as, teachers
and their students, thus, enabling basic service orchestration.

2.4 Contributions to the state of the art
In this thesis it is reported on the IWC strategy to be able to link functionalities of
individual tools and across different tools (threading approach) with a dedicated client-
server model. On the server side, a corresponding widget engine is used; for the client
side, a JavaScript library is built, which is integrated in a widget template. By instru-
menting these software artifacts, IWC especially targeted towards usage scenarios for
PLEs can be established. These learner-oriented scenarios focus on communication

2http://www.icamp.eu

10

http://www.icamp.eu

strategies currently not covered through former approaches and not being feasible with
standard technologies (see, e.g., Section 2.3). The focused IWC includes data send and
receive strategies, such as, cross-domain push/pull mechanisms, topic-oriented broad-
cast messaging, or user-centered notification settings which cannot be realized with
current technologies and are not discussed in state of the art research publications.

The IWC approach presented here is tested in different scenarios (one educational
use-case is exemplarily presented in Chapter 7). A demonstrator platform for the tools
and for validation is chosen, though widgets and their IWC can be deployed and used
within every web-based LE. Although, for ever host LE, a dedicated connector frame-
work has to be implemented to interface with the widget-connecting plugin. In addition,
a second widget engine and connector framework for another platform is implemented
to show transferability of the presented approach across different technologies.

A side outcome of these developments is the application of a single-sign-on method
for widgets and its integration into the showcase platform. Therefore, the OpenID stan-
dard is utilized for authenticating a user against an identity provier. Here, the contribu-
tion is a method of passing the user identity through from the container to the widget,
thus, allowing any associated widget to authenticate with the OpenID identity server.
Given that users trust their LE provider, the authentication can be accepted automati-
cally for all widgets, once a user is logged in on the identity server.

11

CHAPTER 3
Setting the Stage: Service Approach

3.1 Development Requirements
The approach targets a loosely-coupled widget-based integration of web-services. Cer-
tain technological decisions obviously follow therefrom, for example, the front-end pre-
sented to the learner should be rendered via a web-browser and the communication be-
tween the different layers should be done via HTTP.

Designing widgets viewable in a web-browser is ideally done with pure client-side
run-able components, such as, HTML, CSS, and AJAX (but Flash or other technologies
for designing rich-Internet-applications should not be neglected). Widgets are integrated
into PLEs by using a container, ensuring the ability to plug-in and to communicate be-
tween widgets. Style sheet definitions (CSS) offer possibilities to configure the widgets
to expose a common look and feel. Web-services are called over standardized network
protocols (HTTP) with distributed software architectures (RESTful services). Data ex-
change between provided web-services is done using structured message formats like
XML or JSON.

For integrating the services and to test their interaction possibilities, it is necessary
to have a PLE platform for showcasing the developed software artifacts. Furthermore,
a widget-engine needs to serve the developed widgets and these widgets need to be
interfaced with the LE.

3.2 Architectural Overview
As for this thesis, different kinds of software artifacts with the help of multiple and
varying technologies are developed. The integration approach chosen must allow for
combining these artifacts with a high degree of individual freedom in software system

12

design choices. Consequently, the MUPPLE approach [40] has been selected as the
integration strategy. This allows to plugin loosely-coupled software artifacts in an inte-
grative environment, thus, generating a set of customizable services. On the one hand,
the advantage of this approach from the learner’s point of view is that heterogeneous
software systems are plugged into a single environment: they can be arranged indi-
vidually but can feel and look like one coherent software system. On the other hand,
benefits for the software developer and system administrator are—beside those already
mentioned above—that a modularized system like this can easily be plugged into dif-
ferent platforms with less effort, making it highly interoperable and reusable. Providing
services with standardized interfaces brings the question of an integration strategy to a
higher level, eclipsing technological decisions on programming languages or database
management systems.

As can be seen in Figure 3.1, the system design is following a classical three-tier
server-client architecture with its data, application, and presentation tiers. Furthermore,
the architectural design makes use of an additional middleware layer connecting the
application logic and the graphical user interface (GUI). For the integration of the het-
erogeneous services, a widget based approach was chosen. Web widgets are “client-side
applications that are authored using Web standards [. . .], but whose content can also be
embedded into Web documents” [31]. This means that we do not care what happens in
the other layers, as long as data is delivered from the application tier in a standardized
way and can be displayed using widgets as front-ends. In a next step, these widgets can
be integrated in nearly every web-based LE1.

Figure 3.1: Four-tiered architectural approach.

1Generally, embedding widgets is not limited to the web, but can be done in desktop applications, as
well. Nevertheless, in this thesis focus is set only on widgets being deployed on the web.

13

A simplified but illustrative example of this approach for integrating services into an
existing platform can be seen in Figure 3.1. Two widgets are plugged into an existing
LE where learners can use them. The widget container relies on two web-services (B
and C) for generating results, which are then displayed to the learner by the widgets.
Service B fetches data from a second Service A which itself is fed by data from Source
A. Service C fetches data from another external source, giving back data to the Widget
B. The results of both widgets A and B are rendered visible for the learners in their LEs.

This simple example can be extended: more than two widgets can be integrated
in a chosen platform, communication methods and messages can be standardized, and
web-service interfaces have to be defined as well as made public, for instance, through
a directory service (specified via, e.g., the WSDL [28]). One advantage is immediately
apparent when looking at Figure 3.1: all layers are loosely coupled, which means they
are connected over a network and modularized in their own working scope. Widget
integration in existing platforms is state-of-the-art in achieving PLEs. With the archi-
tectural design, a possible spatial distribution of software development contributions is
taken into account. Software artifacts are not seen as static and stand-alone programs,
but as interactive services offering specific problem solving mechanisms to other ser-
vices. Different technological applications can, therefore, interact and can be build on
top of other developed services—thereby gaining greater power.

The biggest architectural difference compared to traditional monolithic learning sys-
tems is that all components providing functionality are completely detached from the
underlying software system. This having the advantage of being a very flexible solution
and is a benefit in case of software reusability.

By decoupling software components and providing well-defined interfaces, high
reusability and standardization can be guaranteed. At the data layer any database man-
agement system can be used as well as any data storage method and query language. In
this approach the application logic relies solely on web-services. The services interface,
on the one hand, with the data sink, on the other hand, provide input to the widget-based
middleware. The widgets act most prominently as well-defined and encapsulated GUIs
with a possibility to be used in various environments. This is due to the fact of their
standardization in terms of deployment, structure, and behavior. In this thesis an ap-
proach for embedding widgets in a LE is shown, thus generating a very flexible PLE
with mashed-up content and services retrieved from the interacting widgets. As these
widgets are solely based on web-standards (like (X)HTML, CSS, JavaScript etc.) their
look and feel can be easily adjusted according to the corresponding host environment.
Furthermore, by providing a JavaScript library for inter-widget-communication (IWC)
it is possible to deploy basic workflows for a single user and a group of users—even for
widgets served by one widget engine and integrated in different host environments.

14

3.3 Introducing Widgets
Widgets are small applications that are embedded in a framework or widget engine.
There are two possibilities provided: Widgets that are able to communicate directly
with the server and are interactive or widgets that get their information periodically and
are not interactive. To stay as flexible and as open-ended as possible the output is a
standardized data format (like XML). In this way, information remains independent of
any tool or widget. Furthermore, this offers the possibility to use output of one widget
as input for other applications.

Most of the time, widgets are tools or some kind of help or service applications.
Widgets first arose in operating systems, such as, Apple’s dashboard widgets. Parallel
to this development was the appearance of web widgets, mainly to serve as a container
for information from any external source. In the world of web 2.0, widgets are often
used to embed photos or videos, as with Flickr or YouTube.

Widgets are mostly written in HTML and JavaScript. A widget engine is needed
to host a widget in an environment. There are a lot of such environments already; the
natural choice being another webpage, an approach that, for example, iGoogle follows.
But even modern operating systems support widgets natively, for example, Microsoft
Window Vista and Apple’s Mac OS X. On the Internet there are certain platforms that
provide this functionality such as iGoogle, Facebook, Netvibes, Pageflakes, and others.

On the Internet, widgets serve mostly as visual interfaces to web-services in a service
oriented architecture (SOA). A widget consists of a client-side programming logic and a
visualization layer to view information given by a web-service. The web-service on the
server only provides an API to the widget to access data or other programming logic.
The web-services contain no commands to visualize any data; most of the time they
only return XML data (or the like) back to the widgets.

At the moment the different types of widgets require specific widget engines. Thus,
a Google widget is not deployable in Netvibes and vice versa. This is a disadvantage
that the W3C consortium wants to overcome by a collection of specifications in order
to achieve a common widget standard and guarantee the interoperability among the
different widget engines.

3.4 Interoperability through Web Standards
The main challenge is to create interoperability along two lines of work: interoperabil-
ity of the learning tools (as interconnected services) and interoperability of the learning
tools for their integration in LEs. Interoperability is a property that emerges, when dis-
tinctive information systems (subsystems) cooperatively exchange data in such a way
that they facilitate the successful accomplishment of an overarching task [41]. The pur-
pose of this sought interoperability is manifold: it is to allow for integration of hetero-

15

geneous services; it is to allow for their flexible recombination to serve the fulfillment
of learning tasks; it is to pave the way for commercial and non-commercial uptake.

Therefore, the principles of the design approach is to build a light-weight, easy to
handle, multifunctional architecture focused on interoperability of services and their
re-use. Hence, the primary goal is to build a scalable solution for independent deploy-
ments of software components with standardized interfaces. In-line with these require-
ments it was chosen to develop web-services communicating in a RESTful way. REST
(Representational State Transfer) is based on and makes use of native methods of the
HTTP protocol (e.g., GET, POST, DELETE etc.). Data exchange between provided
web-services and the presentation layer is done using structured message formats like
XML or JavaScript Object Notation (JSON).

To ensure transferability—i.e., to ensure that the developed software will run on all
major systems—minimum requirements on software and hardware components have to
be defined. As the developed learning tools are rendered using a web-browser, some
generic guidelines can be defined. By optimizing user interfaces for Microsoft Internet
Explorer, Mozilla Firefox, and Google Chrome, typically a range of clearly over 90% of
all Internet users is covered [35]. Furthermore, nearly all users have JavaScript enabled
[37]. If web-based software is designed for a screen resolution of 1024x768 pixels and
higher over 99% of the users are covered [34]. Regarding operating systems, over 84%
of the users are working on a Microsoft Windows system [36]. The XHTML and CSS
standards can be validated using W3C validators [32, 33]. The tools need to be able to
cooperatively exchange data in order to support the successful accomplishment of the
envisioned use case.

16

CHAPTER 4
Customizing a Widget-based Server

4.1 Introducing Wookie
Wookie [46] is a widget engine that implements the W3C widget recommendation [31].
It is designed to provide widget run-time functionality to a wide range of applications.
Web applications that integrate widgets are called widget containers. Widget containers
take care of support activities like user management, access rights, content management
and so on, while the Wookie engine supplies the functionality to add widgets to the mix.

Wookie was chosen for several reasons: it is standard compliant with the W3C wid-
get recommendation, has a large educational community, was developed by former EU
project TenCompetence, is open-source, is an Apache Incubator project, and has plugins
available for different LEs.

When a widget is created, direct interactions are done only with the widget engine,
and not the container—the container may sometimes set preferences a widget may use
(like the user’s name to be displayed in a widget), but for the most part the services
offered by the widget engine are called. Developing a widget for Wookie means that it
can be delivered in a range of web platforms including software like Wordpress1, Elgg2,
Moodle3, and so on. Wookie enables widgets to be used in these applications through
the use of plugins. This means there is some code that is native to the web application’s
framework that can talk to Wookie and request widgets [43].

1http://wordpress.org
2http://elgg.org
3http://moodle.org

17

http://wordpress.org
http://elgg.org
http://moodle.org

4.2 Data Sharing Strategy
The context of sharing data between widgets is a crucial one because it is targeted not
only on a side-by-side widget integration, but also on the possibility to model basic
workflows. Therefore, widgets must have the ability to share data between certain con-
texts and must also be able to trigger and listen to events invoked by different widgets.
The Wookie engine uses Comet style4 to send events and share data according to a sib-
ling rule. This means that the state is shared between widgets which have (a) the same
GUID (i.e., same type of widget), (b) the same API key (i.e., originating from the same
system or application), and (c) the same shared data key. This is perfectly fine if, for
example, it is targeted to implement a chat widget where different users can interact
with each other using the same type of widget in the same application. But as further
data sharing mechanisms need to be achieved, either the Wookie engine functionalities
need to be extended or alternative communication techniques have to be utilized.

Different communication strategies (HTML 5 postMessage API, AJAX over service
back-end, session/cookie based etc.) are investigated—every method has its advantages
and disadvantages. After weighing the pros and cons, it is decided that it would be
best to add needed functionalities to the Wookie engine, instead of using other external
techniques. This method has the advantage that Wookie is further developed with func-
tions where requirements for IWC have already arisen from the community some time
ago. As the code changes needed for implementing the functionality in Wookie seems
manageable, it is thought that this solution is also the most cost effective. Furthermore,
it is a good idea to have all widget based functionality provided by only one software
package.

In the scope of the provided services, data need to be shared mostly between differ-
ent widgets of a single user. This means—by heading towards the option to adapt the
Wookie source code—that a different sibling rule has to be implemented. Therefore,
Wookie’s data sharing policy has to be modified so that data sharing is restricted only
to (a) the same API key, (b) the same shared data key, and (c) the same user ID (or user
session). This implies replacing the restriction of the same GUID with the same user
ID (or user session). Therefore, the Wookie REST calls has to be adapted to transmit
the Elgg user ID as shareddatakey instead of Elgg’s GUID of dashboard widget
instances.

Wookie implements some additional features, which are extensions of the W3C
widgets specification [31] and not supported in the same way by other widget engines.
For IWC, Wookie’s shared data API is of special interest. Its methods allow not
only for storing and accessing data throughout various instances of a widget, but
also to invoke specific events after a shared variable is set (like updating a widget or
displaying different contents and the like). The methods sharedDataForKey(),

4Basically, a long-held HTTP request that allows a web-server to push data to a browser [3].

18

setSharedDataForKey() and appendSharedDataForKey() are of
paramount importance. As these are asynchronous, a callback handler must be
provided.

An explanation of attributes, methods, and events provided by Wookie for working
with shared data follows:

• Widget.instanceid_key(): The read-only identifier generated by the
widget engine for a widget instance.

• Widget.sharedDataForKey(key, cb): Returns the value of shared data
for key, or undefined if there is no match. When completed, invokes function cb
with the return value.

• Widget.setSharedDataForKey(key, val, cb): Sets the value of
shared data for key to val, overriding any existing value. If there is no match,
creates a new shared data entry for key with val. When completed, invokes cb
with the return value.

• Widget.appendSharedDataForKey(key, val, cb): Appends the
value of shared data for key with val. If there is no matching key, creates a new
shared data entry for key and sets it to val. When completed, invokes cb with
the return value.

• Widget.onSharedUpdate: Called when a shared data entry is updated with
the shared data key affected.

The communication flow and update mechanisms are based on the Direct Web Re-
moting (DWR) engine. DWR allows for the interaction of Java code on the server (in
the case of Wookie: managing data storage and distribution procedures) and JavaScript
code executed within the browser. The necessary JavaScript sources are generated au-
tomatically, as well as the marshaling of data. Normally, the update notice on shared
data is sent to the client as a response to the next HTTP request (piggyback); nonethe-
less, DWR provides reverse AJAX functionality (push) to publish updates to definable
groups of clients rapidly in order to ensure an effective update mechanism. Wookie is
taking advantage of the DWR feature reverse AJAX by using the polling method (the
browser sends a request to the server in regular and frequent intervals to check if there
are some updates) for pushing data from the server to browsers.

Revision number 1.023.765 retrieved from Wookie’s SVN repository was used to
implement the modifications. In the widget manifest file, the push-feature has to be
switched on, which can be done by inserting the following line in the config.xml:
<feature name=”comet” required=”true”/>.

The communication flow and JavaScript functions to implement the use of shared
data among different widgets as well as event notifications are displayed in Figure 4.1.

19

The init() function is called on load and retrieves at first the shared data key for the
specific widget instance, which has been defined previously during the widget initializa-
tion request. This key is necessary to detect update notifications intended for a specific
widget instance. The callback function initSharedKey() is called with the key as
parameter—it simply sets it to the globally available variable sharedKey.

Figure 4.1: Code example of using the shared data interface [17].

Next, instanceID—thus, a unique widget instance identifier—is retrieved and set
using the Widget.instanceid_key function. Finally, the update handler is regis-
tered. Widget.onSharedUpdate() is a function called from the server via remote
execution when performing a shared update notification. In this case, the function is
assigned the value of handleSharedUpdate, with the shared data key as parameter.
Hence, if on a shared update, the update key is identical to the instance’s shared data
key, the corresponding if-clause in function handleSharedUpdate() returns true.

Widget.sharedDataForKey() then retrieves the shared data value for the key
msg. At last, the callback handler refreshPage is invoked doing something like
refreshing the page or updating its content (not displayed here). The Widget object (as
well as helper functions for browser type and version detection) is provided by Wookie
through a JavaScript wrapper file called wookie-wrapper.js.

If we assume to have two widgets that need to talk to each other, an exemplary
workflow can be seen in Figure 4.2. There, Alice initiates the shared update by setting
a new value to the shared variable msg. As in this example, both Alice and Bob are
listening for shared updates, also both widgets are retrieving the newly set variable
from Wookie. In the end, Wookie serves the variable to both clients and a call-back
handler (refreshPage()) is invoked. In both cases, it updates the page with the
data retrieved. Of course, it is also possible that just one or more than two widgets

20

are listening to shared updates and filtering the variables that are supposed to trigger
an event. Events are defined on a per-widget basis. That means, on a shared update,
different behaviors of various widgets can be realized.

Figure 4.2: Workflow example using the shared data interface [17].

4.3 Inter-Widget Communication Facility
Wookie does not support IWC by default. Communication is limited to inter-instance
data sharing. This means, data can only be shared between one specific widget instan-
tiated by users of one widget container, but not, for example, between two or more
widgets of one user or between different widgets of different users. To go beyond the
current Wookie approach, the Wookie engine had to be customized by extending and
adding additional IWC possibilities to overcome the current user restrictions.

A prototype for IWC facilities where developed within Wookie, but with the dis-
advantage of creating a branch specifically targeted on data sharing purposes and not
in-line with the development trunk. Therefore, no benefits could be retrieved from new
improvements, such as new functionalities or bug fixes committed from the commu-
nity. This duplication was eliminated by integrating IWC specific functionalities in the
head revision of the Wookie development version once again taking into account for-
mer implementations and improving them significantly. The outcome is a more generic
approach of data sharing strategies.

21

By learning from the first approach (the prototype), the code could be simplified
while making it target a wider range of scenarios. The main application—aiming at
notifying all widgets in one user space—has not changed, but other strategies can be
applied, as well. Therefore, a Wookie administrator is now able to couple widgets by
defining matching parameters. All widgets having these variables in common are treated
as belonging together, therefore, share data and are notified of updates.

In the file widgetserver.properties an administrator has to state all
coupling IWC variables. Currently implemented are the following parameters:
sharedDataKey, apiKey, idKey, and userId. With a few lines of code it is no
problem to add new coupling parameters to the existing ones. Any combination can be
used for binding widgets together:

• sharedDataKey: The key generated by an application representing a specific
context (e.g., a page, post, section, group, user or other identified context).

• apiKey: The key issued to a particular application.

• idKey: An identifier representing a single widget instance.

• userId: An identifier (typically a hash rather than a real user ID) issued by an
application representing the current viewer of the widget instance.

The purpose of our use case scenario in Chapter 7 fits a coupling of apiKey with
userId. Therefore, data sharing is restricted to widgets of one user (userId) in
one specific application (apiKey). The apiKey is specific to the Elgg installation
and the userId represents a user’s unique ID in Elgg (as defined through the Elgg
plugin, [14]). Hence, all widgets belonging to a logged-in user in Elgg share data and
receive notifications. Another broader linkage strategy could be to just use the apiKey
and letting all widgets of one application share their data. If someone would like to
completely avoid sharing data, the coupling parameter has to include the IdKey. As it
identifies a single widget instance, no other widget will match this criterion.

The workflow of the IWC implementation is to firstly find out all widget instances
matching the coupling statements. Then, shared data is duplicated and distributed to all
instances found, combined with a notification about the updates. Therefore, modifica-
tion and extension is limited to setter methods of data sharing functionalities together
with notification behaviors, but could leave data fetching procedures of widget instances
basically as they are.

A patch was provided for Wookie (see also Appendix A) and four test widgets us-
ing the newly development IWC functionalities (see [47]). The first two test widgets
simply store and retrieve strings inserted by a user and display them. The other two
widgets use the widget template implementing the IWC widget library for storing and
fetching shared data using JSON (described in detail in Section 6.4). Therefore, the

22

developments are getting tested not only within this thesis project, but also by a wider
community of interested people. The patch with its test cases is currently under review
and it is expected that it is going to be integrated in the development version of Wookie,
soon. Unfortunately, there have been some delays as a first official release of Wookie
is planned at the moment and integration of new functionalities is generally postponed
after the release. In the meantime, the modified Wookie Server capable of IWC can be
obtained from [15].

4.4 OpenACS Widget Server
To test interoperability of services, and especially widgets, a prototype Widget server
has been developed being able to partially replace Wookie. Therefore, core functional-
ities of Wookie were implemented in the Open Architecture Community System (Ope-
nACS5) using eXtended Object Tcl (XOTcl6) as a scripting language. OpenACS is
an open-source web application framework running on AOLserver7 which is used with
PostgreSQL8 as its database management system. The OpenACS package (named xotcl-
widgets) implementing all functionality can be obtained from [4].

The OpenACS implementation features both, a server able to deliver widgets and a
connector framework serving as a plugin for OpenACS itself. The implementation is
based on these three OpenACS packages: xotcl-core, xowiki, and xowf. Furthermore,
Wookie was used as an example and conformance to its implementation was established
(especially the REST API) as much as possible. However, just a prototype was devel-
oped integrating only core functionalities of Wookie. A widget upload workflow was
defined for being able to deploy widgets on the server. Once available, all existing wid-
gets can be viewed in a gallery type of style. An XML representation is provided as
used, for example, by plugins to select a widget for instantiation. Therefore, a list of
widgets can be generated which can be displayed, for instance, with the Elgg plugin in
the same way as with Wookie (REST API calls are identical). Instantiation of a spe-
cific widget is also done with the same API calls as with Wookie, therefore, the Elgg
plugin can be used without any changes. Basic support for IWC is provided by handler
functions communicating with parts of the DWR library, re-implementation of inter-
nal Wookie specific methods (e.g., setSharedDataForKey() etc.), and interface
implementations (e.g., Google Wave API).

Furthermore, the package defines also some test cases for the connector framework
and IWC. Beside tests for the integration and display of widgets in OpenACS, data
sharing can be tested according to the same shared_data_key (specified at widget

5http://openacs.org
6http://www.xotcl.org
7http://www.aolserver.com
8http://www.postgresql.org

23

http://openacs.org
http://www.xotcl.org
http://www.aolserver.com
http://www.postgresql.org

instantiation) or the same wiki_page_id (specified by OpenACS) or combinations
thereof.

24

CHAPTER 5
Developing a Connector Framework

5.1 Introducing Elgg
It was chosen to use Elgg as a showcasing platform to integrate developed widgets.
The platform decision is not a particularly critical one as it is very easy to plug the
widgets into other platforms at any stage in their development. The decision was made
because Elgg was originally developed from an educational context perspective, has
a large supporting community, is open-source, and has an existing Wookie plugin the
developments are based upon. The choice of Elgg is also supported by other factors. As
the focus of this thesis lies on software development for supporting lifelong learners,
the underlying platform has to handle user management, access control, community
networking and so on. Elgg offers a wide range of modules capable of these issues and
is easily extendable.

As an identified starting point, a Wookie plugin for Elgg exists, but is outdated.
Both, the Wookie engine and Elgg were further developed and the plugin interface did
not match the new architecture. Therefore, the plugin has been updated based on the
existing one by taking the newest Moodle plugin as a template [45] (which was by that
time the most evolved). The plugin was designed to work with the newest versions of
Elgg and the Wookie engine (in version 0.8). A first release of the plugin [12] was
reviewed by professionals and resulted in two updated versions 2.1 [13] and 2.2 [14],
respectively. In the meantime further developments were done and a new version is
currently being prepared for another release. Evolvements of the plugin are reported in
this thesis. Furthermore, the plugin installation instructions can be found in Appendix
B.

As Figure 5.1 shows, the plugin allows for a fluent integration of widgets in Elgg.
A drop-down menu was implemented that enables users to choose among all available
widgets provided from the Wookie engine. The height and width of the widget to be dis-

25

played can be specified by the user, as well. If the dimensions are set, the values override
the default manifest file definitions of the widget’s configuration file (config.xml).
Access to the widget can be restricted to logged in users only, to specific groups, or
just to friends. In addition, the widget can be declared private (only visible to users
themselves) or public (visible to everyone).

Figure 5.1: Snapshot of a (random) selection of widgets integrated in Elgg.

With the help of an additional plugin [22], multiple tabs allow to arrange selections
of widgets into separate pages. In Figure 5.1, the tabs are visible at the top: Dashboard
and Testpage. New tabs can be created by the user; arrangements can be changed by
dropping widgets or adding new ones from the widget directory.

5.2 Instantiating a Wookie Widget in Elgg
The developed Elgg plugin for widget integration uses the Wookie REST API. The
API provides functionalities such as requesting a new widget instance, getting a list of
available widgets, adding participants to a widget instance, setting properties, working

26

with shared data, etc. To date, only the core functionalities have been implemented in
the Elgg plugin (see also Appendix C). As an example, we show a request statement for
a new widget instance as it is done by the function getWidget() in the plugin’s file
functions.php (see Listing 5.1).

1 http://augur.wu.ac.at:8888/wookie/WidgetServiceServlet?
2 requestid=getwidget&
3 api_key=56eFLpcT7UhhK075QjbkxVF5ZDY.eq.&
4 servicetype=&
5 widgetid=http://augur.wu.ac.at/widgets/conspect&
6 userid=163&
7 shareddatakey=wp5

Listing 5.1: Request a new widget instance.

Before the plugin is capable of invoking such a request, the URL to the Wookie
engine as well as the API key must be set through the administrator web-interface of
Elgg. The API key is a unique key identifying an individual web application and must
be requested from the Wookie engine by using its administration interface. As most
parameters of the above REST request are self-explanatory, only some background in-
formation not visible on first sight is provided here:

• servicetype: Widgets are divided in service types each serving a different
purpose. This parameter is important only where it does not matter which indi-
vidual widget should be displayed as long as it is of the defined service type, e.g.,
chat.

• widgetid: If no servicetype is defined, the unique URI of the widget (global
unique identifier, GUID) must be provided instead.

• userid: An identifier (e.g., a user ID) issued by an application, representing
the current viewer of the widget instance. In the case of Elgg, the global variable
$vars stores application-specific values (like user ID) and is passed through to
the plugin.

• shareddatakey: The key generated by an application representing a specific
context. By default, different widgets are not able to share state information due
to privacy concerns. Widgets having the same shareddatakey (along with
some other parameters) can share data that is stored in the database of the Wookie
engine (details are discussed in later sections).

By invoking this request, Wookie will return an XML answer (see Listing 5.2) con-
sisting of the URL of the widget instance, the title of the widget, the default height and
width, and optionally a can maximize flag according to the widget’s manifest file. This
information is used by the plugin to display the widget in Elgg. For further information
on wookie’s REST API it is referred to [44].

27

1 <widgetdata>
2 <url>
3 http://augur.wu.ac.at:8888/wookie/wservices/augur.wu.ac.at/

widgets/conspect/index.html?idkey=U6Eyjg.pl.sJeAoUKszCitC.pl.4
fPd5w.eq.&proxy=http://augur.wu.ac.at:8888/wookie/proxy&st=2%3
A2%3Ahttp%253A%252F%252Faugur.wu.ac.at%252Fwidgets%252
Fconspect%3Awookie%3A%252Fwookie%252Fwservices%252Faugur.wu.ac
.at%252Fwidgets%252Fconspect%252Findex.html%3A0%3AU6Eyjg.pl.
sJeOaUSkzCitC.pl.4fPd5w.eq.

4 </url>
5 <identifier>U6Eyjg.pl.sJeOaUSkzCitC.pl.4fPd5w.eq.</identifier>
6 <title>Conspect</title>
7 <height>480</height>
8 <width>640</width>
9 </widgetdata>

Listing 5.2: XML answer for instantiating a widget.

5.3 A Note on the Limited Space of Widgets
As already mentioned, the connector framework allows widgets served by the Wookie
engine to be displayed in Elgg. As widgets are designed for small applications placed
side-by-side, their display dimensions are usually quite small. By looking at Figure 5.1,
one can see that especially horizontal space is limited. Of course, it depends on how
much widgets and on how much columns a user wants to display, but generally widgets’
GUIs have to be carefully designed.

To solve the problem of space limitations, a functionality is provided which allows
for uncoupling widgets from the dashboard and enlarging them (even to full screen).
This is made possible by integrating the Highslide JS JavaScript thumbnail and media
viewer (see [20]) into the connector framework. Therefore, a small icon is placed in the
general header of dashboard widgets, next to the edit and minimize buttons. Clicking on
it uncouples the widget from the dashboard and displays it in an overlay window. This
can be done with an unlimited number of widgets. The uncoupled widget is resizable
and draggable. Navigation between widgets in a dashboard can be done through the
next and previous arrows or by using left and right keys.

5.4 Authentication with OpenID
Digital traces left in learning obviously touch upon data of a very sensitive nature about
the individual. To provide adequate protection of this desired privacy the use of OpenID1

1http://openid.net

28

for authentication and access control using capability-based credentials for authoriza-
tion are investigated. The main advantage of OpenID, thereby, is that it provides pos-
sibilities for anonymity. Individuals are not restricted in their choice of an identity
provider and they retain control of what they want to expose in their digital profile.

When logging onto a system using an OpenID, the system contacts the identity
provider to generate a shared secret. Then, the user is redirected to the identity provider
to validate the request (log onto the identity provider, grant access using the shared
secret). Given that everything went fine and the user validated the login request, the
user then enters the system—authenticated with her/his OpenID.

The Wookie plugin for Elgg described in this chapter supports basic OpenID authen-
tication. Elgg does not support OpenID logins out-of-the-box, but a plugin exists pro-
viding these functionalities (see [21]). The implementation passes through the OpenID
from the Elgg environment to the Wookie container and further on to the widget. This
means that the authentication mechanism is not part of the Wookie engine core function-
ality, but in the hands of the widget itself. This method was much more cost effective
compared to implementing the whole OpenID authentication technique in Wookie, but
it has the trade-off that every widget has to integrate OpenID functionality on its own.
But many open-source libraries for nearly every programming language exist.

Since the OpenID protocol does not force the identity provider to release any private
information, such as, the email address, the OpenID identifier itself is the only remnant
stored within Elgg. This identifier is stored as an Elgg metadata entity in the database
and is read from the plugin by using the global Elgg variable vars. This has the
benefit that the OpenID plugin remains untouched and only the Wookie plugin had to
be modified. Subsequently, the Wookie plugin hands over the OpenID as a parameter
openid_identifier in the widget calling URL. Since the widget page is HTML,
a JavaScript regular expression is used to parse the URL for the openID parameter
so that it can be handed over to the widget which is taking care of the authentication
process.

29

CHAPTER 6
A supporting Widget Template

6.1 Wookie Widget Development
Generally, widgets are designed to work without executing server-side code directly,
but by calling web-services using AJAX. This approach has many advantages, however,
software developers need to have some design rules in mind while creating widgets and
services.

As previously mentioned, widgets consist of web standard technologies: HTML,
JavaScript functions, CSS, and can embed images. Furthermore, a widget must follow
a particular file structure:

• The widget manifest file (config.xml), which describes the widget.

• An HTML start page, typically index.html.

• One or more JavaScript files that implement the widget’s functionality.

• One or more style sheets (CSS) that control the appearance of the widget.

• An icon for the widget.

• A thumbnail image for the widget.

• Additional media assets, such as images.

Widgets can also support internationalization by organizing these files into localized
folders (ISO two-letter language code). Each localized folder can contain files that
override the defaults when the widget is deployed in a particular location.

30

By using JavaScript as an interaction scripting language, Wookie offers built-in
functions to handle preferences, shared data, event notifications, and calls to external
web-services. Therefore, it is possible to:

• Store and retrieve users’ preferences, or any other settings unique to the widget.

• Maintain data shared among all instances of a widget in a common context, for
example, a chat log and buddy list for a chat widget.

• Send events between widgets in the same context, for example, if a user sets their
location in one widget on their profile page, the widget can send a message to
other widgets on the same page.

• Handle calls to external web-services and feeds through a proxy service. This is
important, as otherwise a widget cannot communicate with other services as this
poses a security risk.

For all of these services, a widget can make use of the shared Widget object that
Wookie makes available via injected JavaScript code. This means that by uploading a
widget to the Wookie engine it adds lines to the HTML files loading JavaScript libraries
providing these functionalities.

For working with external web-services and APIs, a widget needs to implement
an AJAX request and needs to handle the response, and to do so without breaching the
security restrictions of the user’s browser. Wookie handles the latter aspect by providing
a built-in proxy service that allows the calling of services through the same Wookie
server that is serving the widget, avoiding Same Origin Policy Violation errors (see [30]).
Any servers a widget needs to call must be listed in Wookie’s whitelist (entered through
the Wookie administration interface). To invoke an external service from a widget,
a proxy URL needs to be constructed by calling Widget.proxify(url) which
returns a proxified version of a URL.

To simplify the development process, many JavaScript frameworks and libraries
exist (like jQuery1, Prototype2, Dojo Toolkit3, MooTools4, Yahoo! UI Library5 etc.).
Therefore, handling AJAX calls is convenient and easy to maintain.

Before a widget can be deployed on a Wookie server, it needs a manifest file that
describes the widget and provides some configuration details that the engine can use
when it renders the widget in a container application. The manifest file must be called
config.xml, must be located at the root of the widget’s file structure, and must con-
form to the W3C Widget Packaging and XML Configuration specification (see [31]).

1http://jquery.com
2http://prototypejs.org
3http://dojotoolkit.org
4http://mootools.net
5http://developer.yahoo.com/yui

31

http://jquery.com
http://prototypejs.org
http://dojotoolkit.org
http://mootools.net
http://developer.yahoo.com/yui

Different language versions of the manifest file can also be provided in localized fold-
ers, as described earlier. The key things to consider for the manifest file are:

• It must have a root element called <widget> with attributes for the height and
width of the widget. This is important, as many containers will display the widget
based on this information.

• It must have a <name> and preferably also a <description>.

• If an icon should be provided for a widget, an <icon> element with a src
attribute must be set to the filename of the widget’s icon.

• The <content> element with the src attribute should be set to the filename of
the start file; this will default to index.html, but it does not hurt to make this
explicit.

• If the widget uses external services, <access network=”true”/> must be
included.

• Optionally, an <author> element can be provided as well as a <license>
element containing copyright information.

There are many other settings which can be stated in the widget manifest file—for
more details it is referred to the previously mentioned W3C specification [31].

Widgets must be packaged as ZIP archives that contain all files that make up the
widget. It must be ensured that the files are in the root folder of the archive and not
nested inside a subfolder; otherwise, the Wookie server would throw an error. Once an
archive is created, it can be uploaded to the Wookie server by using the management
interface. When the widget has been uploaded, a service type must be allocated and any
services required need to be added to the proxy whitelist.

If a widget needs event notifications, it is mandatory to include the following line
in the manifest file: <feature name=”comet” required=”true”/>. Event
notifications are useful when locking/unlocking widgets or dealing with shared data.
If some users are not allowed to make any changes to a widget, it can be locked
(Widget.lock()) and, of course, unlocked again (Widget.unlock()). The
shared data API is Wookie’s internal interface for storing and accessing data that can be
shared among all instances of a widget that share a common context (e.g., for handling
collaborative and social functionality).

In principle there are three methods with which shared data can be (1) set, (2) ap-
pended, and (3) retrieved:

1. Widget.setSharedDataForKey(key, value)

32

2. Widget.appendSharedDataForKey(key, value)

3. Widget.sharedDataForKey(key, callback)

Setting and retrieving data is done asynchronously. In the case of getting data, the
method specified as callback is invoked after data fetching has been finished. Whenever
a shared data value is set or appended, widgets receive an event notifying them of the
changes. A widget can handle notifications by setting a function as the event handler, for
example: Widget.onSharedUpdate = handleSharedUpdate. This sets the
handleSharedUpdate method to be invoked whenever there is an event notifying
the widget that a shared data value has been updated.

If the need arises for generating an instance-specific shared data key, method
Widget.instanceid_key returns a unique identifier for the widget instance.

Authentication mechanisms are provided by using OpenID in conjunction with the
Wookie plugin for Elgg. For authenticating, the functionality of Wookie needed to be
extended because at this point, ticket-based access granting is not supported in version
0.8 of the Wookie engine (but will be in version 1.0). Further details on OpenID authen-
tication are provided in Section 5.46.

6.2 Localization and Corporate Design in a Distributed
Environment

The widgets created for this project should share the same appearance so that their
origins are easily recognized. Therefore, a strategy for realizing a common look and
feel across the developed widgets is proposed. When putting widgets into a container
platform like Elgg, the user chooses whether to include one widget or several. The
user will also put in some widgets that are not related to the project, but are useful in
a learning context. Therefore, it is important that, for instance, a logo is displayed in
the widget. This has two drawbacks: (1) the visual impression of the container can be
overwhelmed by repeated elements and (2) the already quite limited size for the actual
content is further reduced. Another important part of the widget is the title of it and an
easy way to find help. Widgets developed for this thesis project are not self-explanatory
so this is quite crucial for the user experience.

To help creating similar widgets and to provide useful functionalities, a template
system was created (and is publicly available at [18]). The parts of the widget that are
common to all widgets are stored in a template directory to separate this design part
(along with common functions) from the rest of the individual code. A JavaScript li-
brary was created that generates the necessary parts of the user interface, so that the

6For additional information regarding the development of widgets, it is referred to the Wookie Widget
Developer’s Guide [43].

33

basic HTML of the original widget is not cluttered with design parts. Apart from de-
sign decisions, IWC methods are provided through the widget template, as well. These
developments are reported in Section 6.4.

The template shown in Listing 6.1 already contains everything to be a widget—
but it will only display the text place your content here. The widget developer needs
to replace line 25 with custom HTML. The JavaScript code should be placed into the
corresponding files, so that the HTML is not cluttered with programming logic.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http
://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta http-equiv="PRAGMA" content="NO-CACHE"/>
5 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"

/>
6 <title>YOUR_WIDGET_TITLE</title>
7 <script type="text/javascript" src="strings.js"></script>
8 <script type="text/javascript" src="ltfll-design/common.js"></

script>
9 <script type="text/javascript" src="ltfll-design/style.js"></

script>
10 <script type="text/javascript" src="lib/iwc.js"></script>
11 <script type="text/javascript" src="lib/non-wookie.js"></script>
12 <script type="text/javascript" src="lib/status.js"></script>
13 <script type="text/javascript" src="lib/jquery-1.4.3.min.js"></

script>
14 <script type="text/javascript" src="lib/json2-min.js"></script>
15 <script type="text/javascript" src="scripts/config.js"></script>
16 <script type="text/javascript" src="scripts/iwc-callbacks.js"></

script>
17 <script type="text/javascript" src="scripts/index.js"></script>
18 <link rel="stylesheet" href="ltfll-design/style.css" type="text/

css"/>
19 <link rel="stylesheet" href="style/common.css" type="text/css"/>
20 <link rel="stylesheet" href="style/index.css" type="text/css"/>
21 </head>
22 <body onload="init()">
23 <div id="header"></div>
24 <div id="content">
25 place your content here
26 </div>
27 <div id="footer"></div>
28 </body>
29 </html>

Listing 6.1: Index file of the widget template.

Widgets can easily be localized by placing files in language-specific folders. The
widget container will deliver a localized file depending on the browser’s language

34

settings—the widget developer does not need to care about that. To make the applica-
tion easily translatable, it is necessary to put all strings into a single resource file. Text
displayed to the user must not be mixed with the widget code. String concatenation
must not be used because the word order in different languages might be different. The
best possible way is to use place holders for values to be filled in. Therefore, several
JavaScript functions were created to extract the string resources from the resource files
and to replace the placeholders with actual values.

The strings in the default language should be placed in the file strings.js,
which is located in the root directory of the widget. After the template initialization,
strings.js contains only the minimal information that is needed for the widget. In
the example Listing 6.2, two strings are defined: an application title and the name of the
help link to be displayed in the widget.

1 Strings = {
2 ApplicationTitle: "place your widget title here",
3 HelpLink: "Help"
4 };

Listing 6.2: Localization-based strings in a widget.

With this method it is possible to separate the generated HTML code from the vari-
ables to support localization. In the following example in Listing 6.3, the HTML code is
placed in index.js—because the code does not contain text presented to a user (then
it should be placed in the file strings.js). The GetString() function expects
two parameters: the string that contains the placeholders and an object with proper-
ties for each placeholder. The returned string (in the variable html) would contain the
replaced values.

1 var htmlTableRow = "
2 <tr>
3 <td class=word>${Word}</td>
4 <td class=count>${Count}</td>
5 <td><div class=bar style=\"width:${Width}px\"></div></td>
6 </tr>";
7 var html = Tools.GetString(
8 this.htmlTableRow,
9 {Word: word.word, Count: word.count, Width: width});

Listing 6.3: Example for using localization functions.

6.3 Basic Widget Structure
The widget structure available at [18] provides a template for both, a common design
and a JavaScript library for IWC (see also Appendix D). To build interconnected widgets
the guidelines described in this section must be followed.

35

Explanation of the directory structure:

• /help/
Help pages (if there are any) should go here.

• /images/
Images should be put here.

• /legal/
Any legal texts as well as copyright statements should be put here.

• /lib/
Any general JavaScript libraries are inserted here.

• /ltfll-design/
Common project design specific CSS, JavaScript files, and images reside here.

• /scripts/
Any widget-specific JavaScript functions are put here.

• /style/
Widget specific CSS are located here.

In order to build a widget, some widget specific files must be configured:

• /config.xml
This is the main file describing a widget (name, author(s), widget ID etc.). The
polling feature line should be removed if IWC will not be used because otherwise
useless traffic is generated.

• /index.html
The HTML start page which needs to be customized (e.g., HTML widget title and
the actual content which should be displayed in the widget).

• /strings.js
The widget title should be put in here to be displayed as a headline in the widget
and the name of the help link (if one should be provided)—see also Section 6.2.

• /scripts/index.js
The generic logo of the widget in the upper right corner, the help link, and the
footer (and, therefore, status messages) can be shown or hidden by setting the
following three variables to be either true or false: showLogo, showHelp,
showFooter.

• /help/index.html
If the visibility of a help link is enabled, the help page(s) are created here.

36

6.4 Handling Inter Widget-Communication
Basically, for setting up IWC there are two data format options: JSON or key/value
pairs. It is recommended to use JSON, but for some circumstances key/value pairs
might be better suited. All IWC specific JSON methods end with JSON (e.g.,
IWCsetVarJSON()). It is not possible to mix up JSON and non-JSON methods
because this will result in data loss and erroneous behavior.

To ease the usage of IWC, a JavaScript library has been developed which provides
methods to handle JSON and non-JSON data sharing capabilities (see Appendix D). For
setting up a widget to work with the IWC library, it has to be configured as follows:

• /config.xml
If a widget wants to receive updates on shared data, the polling feature line has to
be included. If the widget just wants to set shared data, but does not want to get
notified about updates happening to data, then the the line needs to be removed in
order to optimize the communication (otherwise it will generate useless traffic).

• /scribts/index.js
By calling IWCinit() it has to be specified if JSON or non-JSON should be
used as data format and if already existent shared data should be initialized at
widget onload. Recommended setting: IWCinit(’JSON’, true).

• /scripts/config.js
It has to be decided, if IWC related status messages in the footer of the widget
should be displayed. In accordance, IWCstatusMessages has to be set to be
either true or false. Furthermore, dependent on the choice of the IWC data format
the following has to be specified:

– JSON
The variable IWCnameSpace needs to be set to the namespace the correp-
sonding widget belongs to.

– non-JSON
The variable IWCsharedData lists all IWC variables the widget should
be notified about updates.

• /scripts/iwc-callbacks.js
The callback functions which are invoked when fetching IWC updates need to
be named here. They need to be written exactly as the IWC variables the widget
wants to listen to, but with IWC in the beginning (e.g., to get notified about updates
for IWC variable keyword, IWCkeyword() needs to be inserted here).

37

Above it is described how IWC variable updates get retrieved and a widget gets
notified. Moreover, there are two further functionalities: setting and deleting shared
data. Again, it has to be distinguish between JSON and non-JSON data formats:

• JSON

– IWCsetVarJSON(ns, name, value)
Sets a new attribute with name and value in the defined namespace ns.

– IWCdelVarJSON(name)
Deletes the attribute named name (can only be done for the namespace the
widget belongs to).

• non-JSON

– IWCsetVar(name, data)
Sets a new variable name with value data. As with the non-JSON data
format, IWC variables do not belong to a namespace, therefore, arbitrary
can be set.

– IWCdelVar(name)
Deletes variable name. As with the non-JSON data format, IWC variables
do not belong to a namespace, thus, arbitrary can be deleted.

All fetched IWC variables are locally stored in the array IWCdata[name] and
can be addressed accordingly. Furthermore, with the function setStatus(status)
(and setStatusFade(status), respectively) IWC specific status messages
are set and displayed in the footer of a widget—but only if both showFooter in
/scripts/index.js and IWCstatusMessages in /scripts/config.js
are set to be true. If individual status messages need to be set, these functions should
be used. But showFooter in /scripts/index.js must be set true, otherwise
no footer and, therefore, no status messages will be displayed. For deleting status
messages, the function delStatus() needs to be called. If the status message should
automatically fade after a couple of seconds the method setStatusFade(status)
provides this functionality.

If the widget is configured as described above, it will receive updates on IWC vari-
ables it listens to. If, by any means, a widget wants to retrieve an IWC variable which
it does not listen to—because the polling feature may have been disabled—it can be
achieved in the following way:

• JSON: All IWC variables for the namespace a widget belongs to are retrieved
automatically (because it is stored as one JSON object) and they can be addressed
using IWCdata[name]. If polling is disabled and the widget needs to retrieve

38

all IWC variables for a namespace, the method IWCgetVarJSON() must be
called. This makes no sense when polling is enabled, because a widget with
polling enabled listens on all updates happening in its namespace. Therefore,
stored values in IWCdata[name] are up-to-date anytime.

• non-JSON: The method IWCgetVar(name) needs to be invoked in order to
fetch an IWC variable a widget does not listen to. Once retrieved, the variable is
also stored in IWCdata[name]. If an IWC callback function is defined for the
variable, it will be invoked, as well.

Hence, with IWC, shared data can be set and updates can be retrieved. If there is
an update for a variable a widget listens to, the corresponding IWC callback function
is invoked doing something with the newly received data. For the JSON method, it is
enough that the callback functions are named as described above. For the non-JSON
method, all IWC variables a widget wants to listen to have to be explicitly defined
(in /scripts/config.js, as described before). This is to minimize communica-
tion traffic for the non-JSON method because it is useless to receive updates for IWC
variables a widget does not need. Every update on an IWC variable triggers a new
request, therefore, it is recommended to only fetch the ones needed. By using JSON,
all attributes set in a namespace are retrieved and the ones having a callback function
are invoked. Network traffic is no problem here because a widget listens only to one
namespace which is represented as one IWC variable consisting of a JSON object.

Furthermore, by utilizing the non-JSON method, variable names have to be unique.
Therefore, it is recommended to use absolute namespaces, e.g., in the form ns::variable.
All variables in the whole scope of IWC can be set, retrieved, and deleted. Therefore,
extra caution is advisable.

With the JSON method, variables belong to a namespace and, therefore, can be
uniquely identified. A widget belongs to exactly one namespace and listens on updates
only on that namespace. This means, shared data can only be retrieved (and deleted) for
the namespace the widget belongs to. The only exception of interfering with another
namespace is the setting of shared data. If a widget of one namespace wants to com-
municate with another widget of a second namespace, it can set a new IWC variable in
the scope of the second namespace. Therefore, the widget in the second namespace gets
notified. If, for example, widget A::1 (i.e., widget 1 in namespace A) wants to talk to
widget B::1, widget A::1 is allowed to set a new variable, e.g., B::searchterm. Hence,
if widget B::1 is listening on updates for this variable, it gets notified and can do some-
thing with the newly received data. This behavior acts as a data protection mechanism
that one widget does not interfere with another, unless the two have negotiated how they
want to do it.

Moreover, by using the template, a widget recognizes if it is served by a Wookie
server or not. If the widget is deployed outside of the Wookie container or runs as a

39

stand-alone version, Wookie specific dummy objects are created and IWC methods are
overloaded. Therefore, widgets can be used elsewhere without any code change. For
example, a widget can be served by the OpenACS widget server described in Section
4.4. Wookie specific functionality is then disabled by default. But it is no problem to
adapt the widget, for instance, to a potentially different API of another widget server.

40

CHAPTER 7
Use Case: A Lifelong Learner Scenario

7.1 Revisiting the Pedagogical Scenario
The pedagogical scenario targets a lifelong learner. Learners are free to choose if they
want to use the PLE on their own or in a combination with a tutor. Either way the
PLE is maintained by a learning provider. In this scenario, the learning provider is a
company offering an internal continuing education service for its employees. In addition
to the learner’s view on the system described in Section 1.4, below the other views of
participating entities are presented.

Tutor’s View
When I start preparing my teaching course, I log into my PLE, by using the username
and password that match my tutor’s profile. I have to prepare a course on web develop-
ment technologies for an internal training. First, I will use the suggested search methods
to find out whether there are available materials on the subject of the course. If I do not
find any available information with regard to such a course, my next step will be using
the ontology-based search. The result is a visualization of the parts of the ontology in-
cluding the sub-concepts related to the search terms. My next step is marking up the
relevant sub-concepts and searching for corresponding materials. The system returns a
list of learning objects. After browsing through the learning objects, I discover that the
materials are sufficient for the course. I choose the most suitable ones for my purpose
and store them on my harddrive for later usage. Furthermore, I compile a glossary and
present a list of keywords for the topic for each learning object that has been selected
for the course. Both are based on the concepts from the domain ontology. It is a semi-
automatic process. I will make not only all learning objects, but also the glossary and
keywords available to my students in order to help them find additional material [9].

41

IT Staff’s View
It is my responsibility to ensure the proper functioning of the PLE system and its IWC
functionality and to provide help for tutors and learners willing to use the new system.
Besides the wizards I have prepared some tutorials that are profile dependent and, thus,
aim at different user groups (tutors or students). Of course, I anticipate that in the future
I will be addressed on different matters concerning the use of the system. Apart form
this I have to make sure that the relevant software parts are accessible at any time and
the system is stable [9].

System’s View
After having been installed on a server, I have access to a number of resources, such
as domain ontologies, learning objects, etc. I have modules that can manage these
resources, can search in them, etc. When a learner/tutor uses me for the creation of
a new course the two main activities in their work are: search for available materials
and storage of learning objects. The search starts with a formulation of a query. This
query has the form of a list of words similar to the query used in other full text search
systems. The learner/tutor can either write the query directly in the search box or select
appropriate concepts from the domain ontology which is loaded from the repository.
Both functionalities are connected through the IWC API. After I receive the query,
I process it in several steps. First, I recognize which concepts are mentioned in the
query. Then, I consult the ontology for some related concepts in order to make the
query complete. Then I search in the linked document repositories for the relevant
resources. When I receive the list of appropriate resources, I order this list with respect
to my judgment how well they match the original query. Then I show the list to the
learner/tutor. She/He can browse over the list and open the corresponding resource. As
the resource will be external to me (for example, a PDF document or a web page), I call
an appropriate external program to open the resource for the learner/tutor. In this way I
can present to the learner/tutor relevant learning objects for her/his query [9].

Company’s View
With the every increasing speed of new technologies emerging, the requirements for
our employees have changed. We have to provide more continuing education for each
individual person. To optimize the required amount of time for the training, we use the
new PLE system. With this system we can provide internal trainings at low costs [9].

42

7.2 Interconnected Widgets: the Use Case Exemplified
This section explains the developed system by example. Therefore, we make use of
the pedagogical scenario and describe the functionalities of the implemented system by
showing a selection of screenshots. In our use case, we employ Elgg (see Section 5.1)
as widget container software. But as the widgets’ functionalities are independent from
the container, any other widget-supporting container software can be used to integrate
our PLE use case1.

As the PLE and its IWC functionalities build on web-technologies, it can be ac-
cessed via any web-browser. In our use case, Silvia has to log into the system by open-
ing her preferred web-browser and navigating to the front website of the PLE system
(see Figure 7.1). Two login possibilities exist: she can either enter her system-specific
credentials or provide her OpenID (see Section 5.4) from a selection of OpenID ser-
vice providers (Figure 7.1 shows an example OpenID). Internally, OpenID logins are
mapped to system-specific credentials at the first successful login.

Figure 7.1: Login screen of the PLE.

To distinguish between different roles of a user, an own group exists for each role.
Tutors can invite other users to join, for instance, the tutors group (invitation only). With
the acceptance to join a group, the specific user inherits all privileges from the group

1It is also possible to use various widget containers interacting and communicating in one scenario.

43

settings, for example, to be able to add restricted widgets to one’s own dashboard or to
join closed discussions only visible to a certain group etc.

Silvia logs into the system for the very first time. After a successful login, she
sees an empty dashboard (Figure 7.2) without any widgets on it. There exists also the
possibility that a tutor can provide an initial set of widgets to a user. This is beneficial,
to help the user getting accustomed to the—probably new—system or if certain widgets
should always be displayed. But this is not the case for Silvia (see Figure 7.2) and,
thus, she has to add widgets on her own depending on her individual learning goals.
Therefore, Silvia clicks on Edit page, which will load the dashboard editing website
displayed in Figure 7.3.

Figure 7.2: Empty dashboard at first login.

By creating a new dashboard, Silvia has to enter a name and an access-level for
it (Figure 7.3). A dashboard can be visible only to oneself (private), to friends, to all
logged in users, for the whole public, or for specific groups (e.g., tutors). In our use case,
Elgg provides Silvia with a three column dashboard (configurable). To add widgets to
the dashboard she has to drag and drop one or more wookie widgets to the corresponding
left, middle, or right dashboard columns. Silvia is completely free in constructing her
PLE and can add as many widgets, in any place, and in any order she would like her
widgets to appear.

44

Figure 7.3: Adding individual widgets to one’s own dashboard.

Figure 7.4 shows the combination of widgets Silvia has chosen for her PLE. The
widget combination consists of:

• Search widget: A free text search widget, wherein Silvia can enter a number of
relevant search terms.

• Definition widget: According to the term entered as query in the search widget, a
snippet of a Wikipedia definition is given here. By clicking on the Read more. . .
link Silvia is redirected to the corresponding Wikipedia article.

• Graph visualization widget: Besides the full text search widget, Silvia can nav-
igate through an existing information-technology-based ontology to search for
relevant as well as connected concepts.

• Videos widget: This widget searches for relevant videos found on the video shar-
ing website YouTube. By clicking on a link, Silvia is redirected to the correspond-
ing YouTube video.

• Slides widget: This widget displays a number of found presentations uploaded to
the slide hosting service SlideShare. Again, by clicking on a displayed link, Silvia
navigates to the corresponding SlideShare presentation.

45

• Scientific papers widget: The scientific papers widget displays a list of relevant
research papers socially bookmarked on BibSonomy. The link takes Silvia to the
corresponding BibSonomy entry.

Figure 7.4: An example combination of widgets.

In our use case, Silvia—a lifelong learner—wants to refresh her knowledge of web-
based development technologies, especially JavaScript. Therefore, she queries her PLE

46

for the term JavaScript by entering it as a term in the full text search widget. After sub-
mitting her query, the other widgets in her PLE get updated automatically (through the
IWC API) and display the results. As output she gets a definition of the term together
with interesting videos, presentations, and scientific research papers. Furthermore, in
the graph visualization widget, she sees other relevant concepts retrieved from the on-
tology. If she clicks on a concept, the visualization is updated with the clicked concept
centered, surrounded by further important and connected concepts. Simultaneously, the
clicked concept is submitted as a new search query and all the other widgets in her PLE
are automatically updated and display the results (because of the IWC). With her PLE,
Silvia can easily find not only specific learning resources, but also other related and
relevant learning materials.

The strength of a PLE is its high ability to be customized for each individual user.
Therefore, the arrangement of widgets can be adjusted as well as each particular widget.
Figure 7.5 shows the display possibilities implemented in the connector framework for
Elgg (see Chapter 5). When a widget is placed on the dashboard, Silvia can adjust it
according to her needs. If a widget should be replaced by another one, this can be done
by selecting the appropriate widget from the drop-down list. Furthermore, access to a
widget can be granted only to the user itself (private), to friends, to logged in users, to
the general public, or to specific groups. These settings can be saved for each individual
widget, hence, constructing one’s own PLE.

Figure 7.5: Configuring a widget.

47

Besides being able to rearrange and customize the displayed widgets on Silvia’s
dashboard, further options can be set. Figure 7.6 shows the functionality of minimizing
widgets. Every widget has in its header a minus sign when it is expanded, and a plus sign
when it is minimized. Clicking on a minus sign hides the widget until the user clicks
on the plus sign again. Figure 7.6 shows two minimized widgets (videos and slides).
With this option, Silvia can temporary hide uninteresting widgets to be displayed again
at a later stage without losing any widget-specific configuration options (as shown, for
instance, in Figure 7.5).

Figure 7.6: Minimizing widgets.

Another user-interface-specific customization option is the possibility to uncouple
selected widgets from the dashboard (Figure 7.7). By clicking on the window icon
displayed on the rightmost of every widget header, the specific widget gets uncoupled
from Silvia’s dashboard. This means, the widget is completely customizable in its size
and position. It can be resized from tiny to fullscreen and moved to any place in the
browser’s window. There is no limitation on the number of decoupled widgets. Silvia
can arrange decoupled widgets by herself. As can be seen from Figure 7.7, decoupled
widgets are displayed in front of dashboard widgets and can overlay them. If a widget
is uncoupled from the dashboard, the widget-instance on the dashboard gets grayed out
and does not respond to user inputs (it is deactivated). Decoupled widgets act the same
as dashboard widgets. If any user interaction is invoked in any widget, all other widgets

48

are updated—no matter if they are on the dashboard or decoupled from it (because of
the IWC API). Therefore, dashboard and decoupled widgets are fully interoperable and
can be used in combination without any limitations.

Figure 7.7: Decouple widgets from the dashboard.

In Elgg, Silvia can add as many dashboards as she likes, thus, constructing a variety
of widget combinations in her PLE. As mentioned before, widgets can be rearranged
freely. Figure 7.8 shows how to transfer a widget from the right to the middle column
of Silvia’s dashboard by using drag and drop. In order to add widgets, Silvia must
drag a new wookie widget from the widget gallery and drop it into the corresponding
dashboard column. There is no technical limitation on the number of widgets displayed.
Silvia is free in constructing her PLE, but experience shows that four to seven widgets
are in most cases sufficient for a user to accomplish a task and do not overstress a user’s
perception.

As discussed in the former paragraph, Silvia is free in the arrangement of widgets
displayed on her dashboards. From the initial widget combination shown in Figure 7.4,
she decides to require only a fraction of widgets (Figure 7.9). Therefore, she can either
construct a new dashboard and add widgets to it or rearrange an existing one (as shown
in Figure 7.8). Silvia decides that she only needs three widgets: the ontology graph
visualization widget, the videos widget, and the scientific papers widget. She drags
these three widgets onto her dashboard and customizes their appearance accordingly

49

Figure 7.8: Rearrange and add widgets to the dashboard.

(Figure 7.9). Now she can navigate through the concepts with the graph visualization
and gets relevant videos and research papers displayed on the left side of her dashboard.
Of course, she can again modify the widgets or their arrangement at any time. Therefore,
she is able to adjust her PLE to reflect her changing learning goals and IWC works for
all possible usage scenarios.

50

Figure 7.9: A new widget arrangement.

51

CHAPTER 8
Conclusion

8.1 Discussion
In this thesis, a concrete IWC prototype for a novel approach of developing MUPPLEs
has been presented. A four-tier layered and loosely-coupled system was explained gain-
ing power from its high flexibility: on the one hand, for learners and tutors by rearrang-
ing and recombining components and, on the other hand, for developers by reusing
software artifacts. Further benefits consist of a high scalability of the proposed solution
in conjunction with the possibility to independently deploy software components and
being able to integrate them in a single or in multiple container applications.

Widgets are a novel way of designing MUPPLEs. With the increasing amount of
widgets the need for communication among them arise. In this thesis, a new communi-
cation method was proposed which should overcome current restrictions in IWC tech-
niques. The approach focus on user-tailored IWC. That means, communication is ex-
plicitly controlled through the widget engine and configured to meet users’ needs. This
is achieved by monitoring data flow of widgets to enable data sharing between widgets
of one user or by widgets that belong to a group of users. The software artifacts were
explicitly designed to work with the Wookie widget engine, although in principle the
communication method could be implemented in any other widget server, as well. This
was prototypically validated by also implementing a basic widget engine and connector
framework in OpenACS. This work tries to bridge the gap between a highly individual
MUPPLE approach and the possibilities for orchestrating services through IWC. It is
believed that IWC will contribute to more personalized LEs, which are tailored to the
functionalities users really require for their personal learning goals.

Mashing-up small encapsulated software artifacts means each of them must have
self-contained functionalities. As this approach has many advantages over traditional
architectures of LEs, it limits itself through the increasing difficulty of software arti-

52

facts involved. It is easier to specifically develop software runable exclusively on one
platform than to claim that one solution will work for any environment. Therefore, soft-
ware developers have to carefully think before developing MUPPLEs if the benefits of
reusability and interoperability outperforms the lock-in effect on one environment.

As in this approach, widgets, services, and data storage facilities can be distributed
across a heterogeneous set of web applications and servers, advantages emerge over
traditional systems:

• Services can be hosted in one place or on multiple servers.

• The output can be displayed in widgets embedded in a frontend or in any stan-
dalone solution.

• Data can be stored in a central database or can be distributed.

• Simple data exchange between components can be realized through interfaces
(e.g., IWC).

• Complex data exchange is encapsulated in services.

These benefits manifest in high reusability, interoperability, and transferability of the
various software components developed within the approach presented in this thesis.

The distributed architectural decision taken ensures the scalability of the proposed
approach. PLEs, web-services, databases, and computational algorithms can be dis-
tributed on separate physical machines allowing for balance loading and optimal re-
sponse times. The customizable system proposed in this thesis can easily be used in a
wide range of LEs. It only has to be assured that one service can take the output from
another as its input—this is ensured by the definition of connection standards (e.g., an
XML definition).

However, trade-offs of technological and architectural decisions are, for example, an
overhead in communication messages and their size. This is acceptable because of the
generated surplus in interoperability and reuse, and the preferred loosely-coupled design
of the services. Calling services over networks also have the disadvantages of message
delays (i.e., latency) and connection problems. These have to be kept in mind when
orchestrating different services into a workflow. As the Internet of today is a reliable
infrastructure this is not a major problem, but network error handling routines have to
be considered. Therefore, web-service results have to be displayed asynchronously.

By using widgets, it is possible to develop software artifacts independent from the
underlying platform, but the depth of widgets arrangement is limited to the functionality
of the host LE. As the current widget container is insufficient in considering authoriza-
tion mechanisms, the platform’s own authentication mechanisms together with third-
party services are used. The evidence collection of a learner is technically a mediation

53

service (created by linking different services together), with the drawback of a poorer
level of performance in comparison to aggregated data.

Widgets are designed to provide use-case sized functionality within the boundaries
of a restricted space on screen. In case of desktop computers, this typically means
that the available screen space is restricted horizontally or vertically by a two or three
column lay-out. A widget’s user interface has to accommodate these restrictions. For
some use-cases, this may not be sufficient and a fullscreen option must be provided (as
by the Elgg connector framework) or the widget has to be deconstructed into several
smaller ones.

Utilizing (usage) data from different sources carries with it the risk of running into
privacy issues. Learners have to be assured that their private data are only used as in-
tended and are not—in any form—accessible by third parties. Furthermore, a learner
has to have as much control as possible over the amount of information visible to others.
Therefore, privacy policies must be enforced explaining exactly what information the
service will collect and how it might be used. It has also to be assured that, by externaliz-
ing information to the public domain, no inference can be drawn to the individual (unless
a learner is intending otherwise). Authentication is ensured by password-protected lo-
gins, while challenge-based access control handles authorization issues. Finally, learn-
ers need to have the option to delete their private data at any time and unsubscribe from
the community.

8.2 Requirements for Adoption
Despite the advantages described in former sections some open questions remain. One
of it being the issue of authenticating web-services. An initial OpenID based authentica-
tion system was developed (see Section 5.4). After having successfully granted access
to Elgg, the OpenID identifier is passed to the widget which itself must take care of
the authentication process. This solution has the benefit of being relatively simple to
implement, but the disadvantage that every widget has to integrate OpenID functionali-
ties on its own. Hence, a token based authorization approach implemented centrally in
Wookie and available to all widgets should be investigated. Therefore, a time limited
hash value has to be generated at logging-in to the container application. Web-services
will then only be accessed by calling them with the specific token and checking against
the Wookie REST API for validity. Access levels should be modeled for authorization
purposes. In the case of Elgg, for example, being member of a certain group will be
equivalent of having a certain access level, thus, being able to access certain resources.

Stating to have a solution for heterogeneous systems communicating with each other
has the challenge of introducing interfaces. Service A needs to know how to call service
B and what to expect from it and vice versa. Therefore, APIs have to be well-defined
and documentation has to be written and consistently updated.

54

Another challenge is that the proposed approach is optimized for reusability. This
means plugging-in any widget in any LE should work out-of-the-box. It is kind of
obvious that in practice such a perfect solution is hard to achieve. Although any widget
will work with any widget engine following the W3C recommendations and with any
widget container having a plug-in for a widget engine. A program’s application logic
should not need specific adaptations (or only minor once) but the IWC strategy and the
look and feel of the GUI will need adjustments to match the style of the integrating
container application. Efforts can significantly be minimized by using style definitions.

Currently, Wookie is in a development-state. A first official release will be made
once it has been assured that the developments presented here are integrated in the
release. An official release will significantly improve impact and uptake.

An enjoyable user experience is of utmost importance. An intuitive usage of the
services explained in this thesis is essential. In general, embedded instructional or self-
instructional support mechanisms must be integrated. Guidelines should be provided to
answer frequently asked questions, to avoid mistakes, and to support users in learning
the use of the software while they are experiencing it.

8.3 Future work
Future planned developments for the end-users (learners/tutors) in terms of the connec-
tor framework are an alternative view of choosing widgets not only by a drop-down list
but also by a widget gallery displaying the widgets’ names as well as an icon and a short
description (the Wookie interface already exists). As the view displayed in Figure 5.1
is a good way for the role of a tutor to select widgets, a learner most probably will not
change a widget in a certain context. A tutor has to decide for which exercise which
widget is appropriate and the learner may change only the appearance of the specific
widget.

Further developments regarding the connector framework’s internal logic and its
technical aspects will also be done by implementing the full set of functionalities the
Wookie engine provides via its RESTful interface. Another extension would be in-
tegrating widgets from different Wookie engines. This would mean restructuring the
internal plugin logic to handle URLs of different Wookie engines on a per widget basis.

Workflows between widgets could be improved by allowing the possibility of mod-
eling dependencies. Also different event types could be introduced in order to allow for
“unplanned” communication. Tracking of user, system, and message flows could also
be envisaged. In order to remain W3C widget standard compliant, dependencies need
to be modeled as features. For error handling and conflict resolution, this will require
parse extensions and further modifications, both, in the connector framework and in the
runtime environment.

Moreover, development work will also head in the direction of optimizing the IWC

55

methods between the Wookie server and the client widgets and to ease service orches-
tration by providing a workflow modeling library. As an example, the current imple-
mentation allows only to set the IWC policy for the whole Wookie engine. Currently, it
is worked on developing a per widget-based communication policy so that the user can
explicitly specify which information should be shared with others. Further improve-
ments will target the notification system, as well, so that users, for example, are notified
if an administrator switches from one shared data policy to another.

56

APPENDIX A
IWC Patch for Wookie

Listing A.1 shows the IWC patch for Wookie (available at [47]) against revision
1.023.765 to provide methods for coupling widgets.

1 Index: widgetserver.properties
2 ===
3 --- widgetserver.properties (revision 1023765)
4 +++ widgetserver.properties (working copy)
5 @@ -52,4 +52,7 @@
6 widget.persistence.manager.user=@REPOSITORY_USER@
7 widget.persistence.manager.password=@REPOSITORY_PASSWORD@
8 widget.persistence.manager.rootpath=@REPOSITORY_ROOTPATH@
9 -widget.persistence.manager.workspace=@REPOSITORY_WORKSPACE@

10 \ No newline at end of file
11 +widget.persistence.manager.workspace=@REPOSITORY_WORKSPACE@
12 +###
13 +# Coupling widgets (Inter-Widget Communication)
14 +#widget.iwc.coupling = apiKey, sharedDataKey
15 Index: org/apache/wookie/ajaxmodel/impl/WidgetAPIImpl.java
16 ===
17 --- org/apache/wookie/ajaxmodel/impl/WidgetAPIImpl.java (revision 1023765)
18 +++ org/apache/wookie/ajaxmodel/impl/WidgetAPIImpl.java (working copy)
19 @@ -21,6 +21,7 @@
20
21 import javax.servlet.http.HttpServletRequest;
22
23 +import org.apache.commons.configuration.Configuration;
24 import org.apache.log4j.Logger;
25 import org.apache.wookie.Messages;
26 import org.apache.wookie.ajaxmodel.IWidgetAPI;
27 @@ -164,13 +165,30 @@
28 public String setSharedDataForKey(String id_key, String key, String value)

{
29 HttpServletRequest request = WebContextFactory.get().

getHttpServletRequest();
30 Messages localizedMessages = LocaleHandler.localizeMessages(request);
31 - IPersistenceManager persistenceManager = PersistenceManagerFactory.

getPersistenceManager();

57

32 - IWidgetInstance widgetInstance = persistenceManager.
findWidgetInstanceByIdKey(id_key);

33 +
34 + IPersistenceManager persistenceManager = PersistenceManagerFactory.

getPersistenceManager();
35 + IWidgetInstance widgetInstance = persistenceManager.

findWidgetInstanceByIdKey(id_key);
36 +
37 if(widgetInstance == null) return localizedMessages.getString("

WidgetAPIImpl.0");
38 if(widgetInstance.isLocked()) return localizedMessages.getString("

WidgetAPIImpl.2");
39 - //
40 - PropertiesController.updateSharedDataEntry(widgetInstance, key, value,

false);
41 - Notifier.notifySiblings(widgetInstance);
42 +
43 + Map<String, Object> couplingWidgetAttributes =

getCouplingWidgetAttributes(widgetInstance, request);
44 +
45 + if (!couplingWidgetAttributes.isEmpty()) {
46 + IWidgetInstance[] couplingWidgetInstances = persistenceManager.

findByValues(IWidgetInstance.class, couplingWidgetAttributes);
47 +
48 + for (IWidgetInstance instance : couplingWidgetInstances) {
49 + if(instance == null) return localizedMessages.getString("

WidgetAPIImpl.0");
50 + if(instance.isLocked()) return localizedMessages.getString("

WidgetAPIImpl.2");
51 +
52 + PropertiesController.updateSharedDataEntry(instance, key, value,

false);
53 + Notifier.notifySiblings(instance);
54 + }
55 + } else {
56 + PropertiesController.updateSharedDataEntry(widgetInstance, key, value,

false);
57 + Notifier.notifySiblings(widgetInstance);
58 + }
59 +
60 return "okay"; //$NON-NLS-1$
61 }
62
63 @@ -181,16 +199,58 @@
64 public String appendSharedDataForKey(String id_key, String key, String

value) {
65 HttpServletRequest request = WebContextFactory.get().

getHttpServletRequest();
66 Messages localizedMessages = LocaleHandler.localizeMessages(request);
67 - IPersistenceManager persistenceManager = PersistenceManagerFactory.

getPersistenceManager();
68 - IWidgetInstance widgetInstance = persistenceManager.

findWidgetInstanceByIdKey(id_key);
69 +
70 + IPersistenceManager persistenceManager = PersistenceManagerFactory.

getPersistenceManager();
71 + IWidgetInstance widgetInstance = persistenceManager.

findWidgetInstanceByIdKey(id_key);

58

72 +
73 if(widgetInstance == null) return localizedMessages.getString("

WidgetAPIImpl.0");
74 if(widgetInstance.isLocked()) return localizedMessages.getString("

WidgetAPIImpl.2");
75 - //
76 - PropertiesController.updateSharedDataEntry(widgetInstance, key, value,

true);
77 - Notifier.notifySiblings(widgetInstance);
78 +
79 + Map<String, Object> couplingWidgetAttributes =

getCouplingWidgetAttributes(widgetInstance, request);
80 +
81 + if (!couplingWidgetAttributes.isEmpty()) {
82 + IWidgetInstance[] couplingWidgetInstances = persistenceManager.

findByValues(IWidgetInstance.class, couplingWidgetAttributes);
83 +
84 + for (IWidgetInstance instance : couplingWidgetInstances) {
85 + if(instance == null) return localizedMessages.getString("

WidgetAPIImpl.0");
86 + if(instance.isLocked()) return localizedMessages.getString("

WidgetAPIImpl.2");
87 +
88 + PropertiesController.updateSharedDataEntry(instance, key, value,

true);
89 + Notifier.notifySiblings(instance);
90 + }
91 + } else {
92 + PropertiesController.updateSharedDataEntry(widgetInstance, key, value,

true);
93 + Notifier.notifySiblings(widgetInstance);
94 + }
95 +
96 return "okay"; //$NON-NLS-1$
97 }
98
99 + /*

100 + * (non-Javadoc)
101 + * @see org.apache.wookie.ajaxmodel.IWidgetAPI#

getCouplingWidgetAttributes(java.lang.Object, java.lang.Object)
102 + */
103 + public Map<String, Object> getCouplingWidgetAttributes(IWidgetInstance

widgetInstance, HttpServletRequest request) {
104 + Configuration properties = (Configuration) request.getSession().

getServletContext().getAttribute("properties");
105 + String[] couplingAttributes = properties.getStringArray("widget.iwc.

coupling");
106 +
107 + Map<String, Object> couplingWidgetAttributes = new HashMap<String,

Object>();
108 + for (String attribute : couplingAttributes) {
109 + if (attribute.equals("sharedDataKey")) {
110 + couplingWidgetAttributes.put(attribute, widgetInstance.

getSharedDataKey());
111 + } else if (attribute.equals("apiKey")) {
112 + couplingWidgetAttributes.put(attribute, widgetInstance.getApiKey());
113 + } else if (attribute.equals("idKey")) {
114 + couplingWidgetAttributes.put(attribute, widgetInstance.getIdKey());

59

115 + } else if (attribute.equals("userId")) {
116 + couplingWidgetAttributes.put(attribute, widgetInstance.getUserId());
117 + }
118 + // add more criteria if needed
119 + }
120 +
121 + return couplingWidgetAttributes;
122 + }
123 +
124 /*
125 * (non-Javadoc)
126 * @see org.apache.wookie.ajaxmodel.IWidgetAPI#lock(java.lang.String)
127 @@ -306,4 +366,4 @@
128 return ""; //$NON-NLS-1$
129 }
130
131 -}
132 \ No newline at end of file
133 +}
134 Index: org/apache/wookie/ajaxmodel/IWidgetAPI.java
135 ===
136 --- org/apache/wookie/ajaxmodel/IWidgetAPI.java (revision 1023765)
137 +++ org/apache/wookie/ajaxmodel/IWidgetAPI.java (working copy)
138 @@ -17,9 +17,11 @@
139 import java.util.Map;
140 import java.util.List;
141
142 +import javax.servlet.http.HttpServletRequest;
143 +
144 import org.apache.wookie.beans.IPreference;
145 +import org.apache.wookie.beans.IWidgetInstance;
146
147 -
148 /**
149 * Definition of the widget API.
150 * @author Paul Sharples
151 @@ -161,5 +163,15 @@
152 * @return
153 */
154 public String userPropertyForKey(String id_key, String key);
155 +
156 + /**
157 + * Returns a map containing widget coupling attributes which
158 + * can be used to find matching widget instances. Set of
159 + * attributes must be specified in widgetserver.properties.
160 + * @param widgetInstance - coupling widgets are searched based on this

widget instance
161 + * @param request - HTTP request object
162 + * @return - a map containing attributes and their values
163 + */
164 + public Map<String, Object> getCouplingWidgetAttributes(IWidgetInstance

widgetInstance, HttpServletRequest request);
165
166 }

Listing A.1: IWC patch for Wookie.

60

APPENDIX B
Installing the Wookie Plug-in for Elgg

These are the installation instructions for the Wookie connector framework for Elgg
(available at [14]). For the plugin to work, it is assumed that Elgg and the Wookie
engine are configured and running. Then, follow these steps:

• Download the plugin and place it in the folder [elggDir]/mod/.

• Enable the plugin via the tool administration panel in Elgg.

• In the tool administration panel, configure the plugin by setting the URL to the
Wookie engine (e.g., http://augur.wu.ac.at:8080/wookie/) and in-
sert the API key obtained from the Wookie engine (each individual web applica-
tion needs its own API key which can be generated from Wookie’s administration
interface).

• Now you should be able to add Wookie widgets to your dashboard. This can be
done by choosing the features you want to add to your page by dragging them
from the widget gallery to any of the three widget areas of your dashboard and
position them where you would like them to appear.

61

http://augur.wu.ac.at:8080/wookie/

APPENDIX C
Core Widget Functionalities of the

Wookie Plug-in for Elgg

Listing C.1 shows the core widget-related methods of the Wookie connector framework
for Elgg (available at [14]).

1 <?php
2
3 require_once(’wookie_xml.php’);
4
5 class elggWookieWidget {
6
7 ## widget instance
8 private $widget;
9

10 ## servicetype
11 private $type;
12
13 ## elgg user variables
14 private $userID = ’’;
15 private $username = ’’;
16 private $name = ’’;
17 private $src;
18
19 ## global vars
20 private $vars;
21
22
23 function __construct($vars) {
24 $this->vars = $vars;
25
26 ## url to wookie engine (as set in tool administration)
27 $this->vars[’entity’]->wookie_url = get_plugin_setting(’wookie_url’, ’

wookie’);
28 if ($this->vars[’entity’]->wookie_url && strrchr($this->vars[’entity’]->

wookie_url, ’/’) != ’/’) {
29 $this->vars[’entity’]->wookie_url .= ’/’;

62

30 }
31
32 ## the requested api key (as set in tool administration)
33 $this->vars[’entity’]->wookie_api_key = get_plugin_setting(’

wookie_api_key’, ’wookie’);
34
35 $user = $_SESSION[’user’];
36 if (!is_null($user)){
37 $this->userID = $user->getGUID();
38 if (!is_null($this->userID)){
39 $this->username = get_user($this->userID)->username;
40 $this->name = get_user($this->userID)->name;
41 $this->src = get_user($this->userID)->getIcon();
42 }
43 }
44
45 ## instantiate widget
46 $this->widget = $this->getWidget();
47
48 ## add openid identifier to widget url
49 if ($vars[’user’]->alias && $this->widget[’widgetdata’][’url’]) {
50 $this->widget[’widgetdata’][’url’] .= ’&openid_identifier=’ . $vars[’

user’]->alias;
51 }
52
53 $this->addParticipant();
54
55 $this->setPersonalProperty(’username’, urlencode($this->username));
56 $this->setPersonalProperty(’name’, urlencode($this->name));
57
58 ## need to do access check here
59 if (page_owner() == $this->userID){
60 $this->setPersonalProperty(’moderator’, ’true’);
61 }
62 }
63
64
65 ## parameters: url, title, height, width, maximize
66 public function getWidgetParameter($param) {
67 $vars_param = "wookie_widget_$param";
68
69 if ($this->vars[’entity’]->$vars_param) {
70 return $this->vars[’entity’]->$vars_param;
71 }
72
73 return $this->widget[’widgetdata’][$param];
74 }
75
76
77 public function getWidget() {
78 $request = $this->vars[’entity’]->wookie_url;
79 $request.= ’WidgetServiceServlet?’;
80 $request.= ’requestid=getwidget’;
81 $request.= ’&api_key=’.$this->vars[’entity’]->wookie_api_key;
82 $request.= ’&servicetype=’.$this->type;
83 $request.= ’&widgetid=’.$this->vars[’entity’]->wookie_widget_guid;
84 $request.= ’&userid=’.$this->userID;
85 $request.= ’&shareddatakey=’.$this->userID;

63

86
87 $response = file_get_contents($request);
88
89 return XML_unserialize($response);
90 }
91
92
93 public function setPersonalProperty($name, $value) {
94 $request = $this->vars[’entity’]->wookie_url;
95 $request.= ’WidgetServiceServlet?’;
96 $request.= ’requestid=setpersonalproperty’;
97 $request.= ’&api_key=’.$this->vars[’entity’]->wookie_api_key;
98 $request.= ’&servicetype=’.$this->type;
99 $request.= ’&widgetid=’.$this->vars[’entity’]->wookie_widget_guid;

100 $request.= ’&userid=’.$this->userID;
101 $request.= ’&shareddatakey=’.$this->userID;
102 $request.= ’&propertyname=’.$name;
103 $request.= ’&propertyvalue=’.$value;
104
105 return file_get_contents($request);
106 }
107
108
109 public function addParticipant() {
110 $request = $this->vars[’entity’]->wookie_url;
111 $request.= ’WidgetServiceServlet?’;
112 $request.= ’requestid=addparticipant’;
113 $request.= ’&api_key=’.$this->vars[’entity’]->wookie_api_key;
114 $request.= ’&servicetype=’.$this->type;
115 $request.= ’&widgetid=’.$this->vars[’entity’]->wookie_widget_guid;
116 $request.= ’&userid=’.$this->userID;
117 $request.= ’&shareddatakey=’.$this->userID;
118 $request.= ’&participant_id=’.$this->userID;
119 $request.= ’&participant_display_name=’.$this->username;
120 $request.= ’&participant_thumbnail_url=’.$this->src;
121
122 return file_get_contents($request);
123 }
124
125
126 ## adapted from the moodle plugin
127 function showGallery() {
128 $widgets = $this->getWidgets();
129
130 $gallery = ’Select widget: <select name="params[wookie_widget_guid]">’;
131 $gallery .= ’<option value="">[No widget selected]</option>’;
132
133 foreach ($widgets as $widget){
134 unset($selected);
135 if ($this->vars[’entity’]->wookie_widget_guid == $widget->id) {
136 $selected = " selected";
137 }
138 $gallery .= "<option value=’$widget->id’" . $selected . ">$widget->

title</option>";
139 }
140
141 $gallery .= ’</select>
’;
142

64

143 return $gallery;
144 }
145
146
147 function getWidgets() {
148 $request = $this->vars[’entity’]->wookie_url;
149 $request.= ’advertise?all=true’;
150 $response = file_get_contents($request);
151 $xml = XML_unserialize($response);
152 $widgets = array();
153
154 foreach ($xml[’widgets’][’widget’] as $data){
155 ## if there’s an identifier, coin a new widget
156 if ($data[’identifier’] != ’’){
157 $widget = new Widget();
158 $widget->id = $data[’identifier’];
159 } else {
160 $widget->title = $data[’title’];
161 $widget->description = $data[’description’];
162 $widget->icon = $data[’icon’];
163 $widget->category = $data[’category’];
164 $widget->author = $data[’author’];
165 $widgets[] = $widget;
166 }
167 }
168
169 sort($widgets);
170
171 return $widgets;
172 }
173 }
174
175
176 class Widget {
177 public $title;
178 public $id;
179 public $description;
180 public $icon;
181 public $category;
182 public $author;
183 }
184
185 ?>

Listing C.1: Core widget methods of the connector framework.

65

APPENDIX D
IWC JavaScript Library

Listing D.1 shows the main methods of the IWC JavaScript library provided in the
widget template available at [18].

1 IWCsharedKey = null;
2 IWCdata = new Array();
3
4
5 //###
6 //IWC init method
7 //###
8
9 function IWCinit(format, initSharedData) {

10 Widget.preferenceForKey("sharedDataKey",
11 function (key) {
12 //setting shared data key
13 IWCsharedKey = key;
14
15 //initial retrieval of already set variables
16 if (initSharedData) {
17 if (format == "JSON") {
18 IWChandleSharedUpdateJSON(key);
19 } else {
20 IWChandleSharedUpdate(key);
21 }
22 }
23 }
24);
25
26 //bind corresponding method to shared data updates (dependent on data

format used)
27 if (format == "JSON") {
28 Widget.onSharedUpdate = IWChandleSharedUpdateJSON;
29 } else {
30 Widget.onSharedUpdate = IWChandleSharedUpdate;
31 }
32
33 if (IWCstatusMessages) setStatusFade(’IWC configured ...’);

66

34 }
35
36
37 //###
38 //JSON specific methods
39 //###
40
41 function IWCsetVarJSON(ns, name, value) {
42 if (IWCstatusMessages) setStatusFade(’sending data ...’);
43 Widget.sharedDataForKey(
44 ns,
45 function (data) {
46 //if shared data exist for this namespace
47 if (data != "No matching key found" && data != "") {
48 obj = JSON.parse(data);
49 //if the new value is different from the already set one
50 if (obj[name] != value) {
51 //only store shared data locally if it belongs to the same

namespace as this widget
52 if (ns == IWCnameSpace) {
53 IWCdata[name] = value;
54 }
55 obj[name] = value;
56 data = JSON.stringify(obj);
57 Widget.setSharedDataForKey(ns, data);
58 }
59 } else {
60 //only store shared data locally if it belongs to the same namespace

as this widget
61 if (ns == IWCnameSpace) {
62 IWCdata[name] = value;
63 }
64 //if no shared data exist for this namespace, begin a new entry
65 data = ’{"’ + name + ’":"’ + value + ’"}’;
66 Widget.setSharedDataForKey(ns, data);
67 }
68 }
69);
70 }
71
72 function IWCdelVarJSON(name) {
73 if (IWCstatusMessages) setStatusFade(’deleting data ...’);
74 Widget.sharedDataForKey(
75 IWCnameSpace,
76 function(data) {
77 //only delete shared data which is already set
78 if (data != "No matching key found" && data != "") {
79 delete IWCdata[name];
80 obj = JSON.parse(data);
81 delete obj[name];
82 data = JSON.stringify(obj);
83 Widget.setSharedDataForKey(IWCnameSpace, data);
84 }
85 }
86);
87 }
88
89 function IWCgetVarJSON() {

67

90 Widget.sharedDataForKey(
91 IWCnameSpace,
92 function(data) {
93 //only do something when actual data was received
94 if (data != "No matching key found" && data != "") {
95 obj = JSON.parse(data);
96 //loop over all attributes of retrieved object
97 for (var name in obj) {
98 //only do something if new retrieved value is different from

already set one
99 if (IWCdata[name] != obj[name]) {

100 if (IWCstatusMessages) setStatusFade(’retrieving data ...’);
101 //store the newly retrieved value (for next time comparison)
102 IWCdata[name] = obj[name];
103 //callIWC callback function if existent
104 if (eval("typeof " + "IWC" + name) == "function") {
105 //call correpsonding IWC function and pass value
106 eval("IWC" + name + "(’" + obj[name] + "’)");
107 break;
108 }
109 }
110 }
111 }
112 }
113);
114 }
115
116 function IWChandleSharedUpdateJSON(key) {
117 //check if api key of instantiated widget is the same as the api key

retrieved on a shared update
118 if (key == IWCsharedKey) {
119 IWCgetVarJSON();
120 }
121 }
122
123
124 //###
125 //methods for key:val pairs (non-JSON option)
126 //###
127
128 function IWCsetVar(name, data) {
129 if (IWCstatusMessages) setStatusFade(’sending data ...’);
130 IWCdata[name] = data;
131 Widget.setSharedDataForKey(name, escape(data));
132 }
133
134 function IWCdelVar(name) {
135 if (IWCstatusMessages) setStatusFade(’deleting data ...’);
136 delete IWCdata[name];
137 //setting a variable null or "null" deletes it
138 Widget.setSharedDataForKey(name, null);
139 }
140
141 function IWCgetVar(name) {
142 Widget.sharedDataForKey(
143 name,
144 function(data) {
145 data = unescape(data);

68

146 //if retrieved data is different from already set one and
147 //actual data was received
148 if (IWCdata[name] != data && data != "No matching key found") {
149 if (IWCstatusMessages) setStatusFade(’retrieving data ...’);
150 //store the data for next time comparison
151 IWCdata[name] = data;
152 //if corrsponding IWC callback function exists
153 if (eval("typeof " + "IWC" + name) == "function") {
154 //call IWC callback function and pass data
155 eval("IWC" + name + "(’" + data + "’)");
156 }
157 }
158 }
159);
160 }
161
162 function IWChandleSharedUpdate(key) {
163 if (key == IWCsharedKey) {
164 //to minimize traffic we define for every widget the shared data updates

it should listen to
165 //here: loop over the array and call data fetching method
166 for (var i = 0; i < IWCsharedData.length; i++) {
167 IWCgetVar(IWCsharedData[i]);
168 }
169 }
170 }

Listing D.1: IWC JavaScript library.

69

Bibliography

[1] Evgeny Bogdanov, Christophe Salzmann, Sandy El Helou, and Denis Gillet. So-
cial Software Modeling and Mashup based on Actors, Activities and Assets. In
Fridolin Wild, Marco Kalz, and Matthias Palmér, editors, Proceedings of the First
International Workshop on Mash-Up Personal Learning Environments, Maas-
tricht, The Netherlands, 2008.

[2] Gaston Burek, Dale Gerdemann, Stefan Trausan-Matu, Traian Rebedea, Math-
ieu Loiseau, Philippe Dessus, Benoit Lemaire, Fridolin Wild, Debra Haley, Lu-
cas Anastasiou, Bernhard Hoisl, Thomas Markus, Eline Westerhout, and Paola
Monachesi. D2.5 LTfLL Roadmap. Available at: http://dspace.ou.nl/
handle/1820/3293, 2011. Last accessed: 2012-05-22.

[3] Dave Crane and Phil McCarthy. Comet and Reverse Ajax: The Next-Generation
Ajax 2.0. Apress, Berkely, USA, 2008.

[4] Neophytos Demetriou and Bernhard Hoisl. OpenACS-based XOTcl Widget
Server and Connector Framework. Available at: http://ltfll.svn.
sourceforge.net/viewvc/ltfll/Wp2/xotcl-widgets/, 2010.
Last accessed: 2012-05-22.

[5] Reinhard Dietl, Bernhard Hoisl, Fridolin Wild, Berit Richter, Markus Essl, and
Gerhard Doppler. D2.1 Services Approach & Overview General Tools and
Resources. Available at: http://dspace.ou.nl/handle/1820/1707,
2008. Last accessed: 2012-05-22.

[6] Reinhard Dietl, Fridolin Wild, Bernhard Hoisl, Robert Koblischke, Berit Richter,
Paola Monachesi, Kiril Simov, Traian Rebedea, Sonia Mandin, and Virginie
Zampa. D2.2 Existing Services – Integrated. Available at: http://dspace.
ou.nl/handle/1820/2041, 2009. Last accessed: 2012-05-22.

[7] Google. Gadget-to-Gadget Communication (Deprecated). Available at: http://
code.google.com/apis/gadgets/docs/pubsub.html, 2012. Last
accessed: 2012-05-22.

70

http://dspace.ou.nl/handle/1820/3293
http://dspace.ou.nl/handle/1820/3293
http://ltfll.svn.sourceforge.net/viewvc/ltfll/Wp2/xotcl-widgets/
http://ltfll.svn.sourceforge.net/viewvc/ltfll/Wp2/xotcl-widgets/
http://dspace.ou.nl/handle/1820/1707
http://dspace.ou.nl/handle/1820/2041
http://dspace.ou.nl/handle/1820/2041
http://code.google.com/apis/gadgets/docs/pubsub.html
http://code.google.com/apis/gadgets/docs/pubsub.html

[8] Björn Hartmann, Scott Doorley, and Scott Klemmer. Hacking, Mashing, Gluing:
Understanding Opportunistic Design. Pervasive Computing, IEEE, 7(3):46–54,
2008.

[9] Jan Hensgens, Ellen Rusman, Jan van Bruggen, Gillian Armitt, Petya Osenova,
and Kiril Simov. D3.2 Designing the LTfLL Services: Guidelines, Scenarios
and Commonalities. Available at: http://dspace.ou.nl/handle/1820/
2038, 2009. Last accessed: 2012-05-22.

[10] Henry Hermans and Steven Verjans. Developing a Sustainable, Student centred
VLE: the OUNL Case. In Proceedings of the 23rd ICDE World Conference on
Open Learning and Distance Education including the 2009 EADTU Annual Con-
ference, June, 7-10, Maastricht, The Netherlands, 2009.

[11] Alan Hevner, Salvatore March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[12] Bernhard Hoisl. Elgg Community – Wookie Widgets 2.0. Available
at: http://community.elgg.org/pg/plugins/release/322307/
developer/hoisl/wookie-widgets-20, 2009. Last accessed: 2012-05-
22.

[13] Bernhard Hoisl. Elgg Community – Wookie Widgets 2.1. Available
at: http://community.elgg.org/pg/plugins/release/323321/
developer/hoisl/wookie-widgets-21, 2009. Last accessed: 2012-05-
22.

[14] Bernhard Hoisl. Elgg Community – Wookie Widgets 2.2. Available
at: http://community.elgg.org/pg/plugins/release/420305/
developer/hoisl/wookie-widgets-21, 2009. Last accessed: 2012-05-
22.

[15] Bernhard Hoisl. Wookie IWC Server. Available at: http://ltfll.svn.
sourceforge.net/viewvc/ltfll/Wp2/wookie-iwc/, 2010. Last ac-
cessed: 2012-05-22.

[16] Bernhard Hoisl. A Mash-up Architecture for Learning Environments and Knowl-
edge Management Systems. In Ronald Maier, editor, Proceedings of the 6th Con-
ference on Professional Knowledge Management (WM 2011), pages 33–37, Inns-
bruck, Austria, 2011.

[17] Bernhard Hoisl, Hendrik Drachsler, and Christoph Waglechner. User-tailored
Inter-Widget Communication – Extending the Shared Data Interface for the
Apache Wookie Engine. In Proceedings of the 13th International Conference

71

http://dspace.ou.nl/handle/1820/2038
http://dspace.ou.nl/handle/1820/2038
http://community.elgg.org/pg/plugins/release/322307/developer/hoisl/wookie-widgets-20
http://community.elgg.org/pg/plugins/release/322307/developer/hoisl/wookie-widgets-20
http://community.elgg.org/pg/plugins/release/323321/developer/hoisl/wookie-widgets-21
http://community.elgg.org/pg/plugins/release/323321/developer/hoisl/wookie-widgets-21
http://community.elgg.org/pg/plugins/release/420305/developer/hoisl/wookie-widgets-21
http://community.elgg.org/pg/plugins/release/420305/developer/hoisl/wookie-widgets-21
http://ltfll.svn.sourceforge.net/viewvc/ltfll/Wp2/wookie-iwc/
http://ltfll.svn.sourceforge.net/viewvc/ltfll/Wp2/wookie-iwc/

on Interactive Computer Aided Learning (ICL2010), pages 1123–1131, Kassel,
Germany, 2010. Kassel University Press.

[18] Bernhard Hoisl, Markus Essl, and Helmut Kometter. LTfLL Widget Tem-
plate. Available at: http://ltfll.svn.sourceforge.net/viewvc/
ltfll/Wp2/widgets/_template/src/, 2010. Last accessed: 2012-05-
22.

[19] Bernhard Hoisl, Debra Haley, Fridolin Wild, Lucas Anastasiou, Katja Buelow,
Robert Koblischke, Gaston Burek, Mathieu Loiseau, Thomas Markus, Traian
Rebedea, Hendrik Drachsler, Helmut Kometter, Eline Westerhout, and Vlad Posea.
Building a Personal Learning Environment with Language-Technology-based
Widgets: Services v2 – Integrated Thread. Available at: http://dspace.
ou.nl/handle/1820/3076, 2010. Last accessed: 2012-05-22.

[20] Torstein Honsi. Highslide JS – JavaScript Thumbnail and Media Viewer. Available
at: http://highslide.com, 2012. Last accessed: 2012-05-22.

[21] Kevin Jardine. Elgg Community – OpenID Client. Available at:
http://community.elgg.org/pg/plugins/project/433999/
developer/kevin/openid-client, 2010. Last accessed: 2012-05-22.

[22] Sam Kanan. Elgg Community – Tabbed dashboard and/or profile. Available
at: http://community.elgg.org/pg/plugins/release/61851/
developer/sammykanan/tabbed-dashboard-andor-profile,
2010. Last accessed: 2012-05-22.

[23] Oleg Liber and Mark Johnson. Special Issue on Personal Learning Environments.
In Interactive Learning Environments, volume 16. John Wiley & Sons, Ltd, 2008.

[24] LTfLL Consortium. LTfLL Consortium’s Approach to Integration – Additional
Report. Available at: http://dspace.ou.nl/handle/1820/2040,
2009. Last accessed: 2012-05-22.

[25] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. A De-
sign Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3):45–77, 2007.

[26] Stéphane Sire, Micaël Paquier, Alain Vagner, and Jérôme Bogaerts. A Messaging
API for Inter-Widgets Communication. In Proceedings of the 18th International
Conference on World Wide Web, Madrid, Spain, April 23, pages 1115–1116. ACM
New York, NY, USA, 2009.

72

http://ltfll.svn.sourceforge.net/viewvc/ltfll/Wp2/widgets/_template/src/
http://ltfll.svn.sourceforge.net/viewvc/ltfll/Wp2/widgets/_template/src/
http://dspace.ou.nl/handle/1820/3076
http://dspace.ou.nl/handle/1820/3076
http://highslide.com
http://community.elgg.org/pg/plugins/project/433999/developer/kevin/openid-client
http://community.elgg.org/pg/plugins/project/433999/developer/kevin/openid-client
http://community.elgg.org/pg/plugins/release/61851/developer/sammykanan/tabbed-dashboard-andor-profile
http://community.elgg.org/pg/plugins/release/61851/developer/sammykanan/tabbed-dashboard-andor-profile
http://dspace.ou.nl/handle/1820/2040

[27] Behnam Taraghi, Martin Ebner, and Sandra Schaffert. Personal Learning Environ-
ments for Higher Education: A Mashup Based Widget Concept. In Proceedings of
the 2nd Workshop on Mash-Up Personal Learning Environments (MUPPLE’09),
Nice, France, 2009.

[28] W3C. Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language – W3C Recommendation 26 June 2007. Available at: http://www.
w3.org/TR/wsdl20/, 2007. Last accessed: 2012-05-22.

[29] W3C. HTML 5: A Vocabulary and Associated APIs for HTML and XHTML
– W3C Working Draft 12 February 2009. Available at: http://www.
w3.org/TR/2009/WD-html5-20090212/comms.html, 2009. Last ac-
cessed: 2012-05-22.

[30] W3C. XMLHttpRequest – W3C Candidate Recommendation 3 August 2010.
Available at: http://www.w3.org/TR/XMLHttpRequest/, 2010. Last
accessed: 2012-05-22.

[31] W3C. Widget Packaging and XML Configuration – W3C Recommendation 27
September 2011. Available at: http://www.w3.org/TR/widgets/, 2011.
Last accessed: 2012-05-22.

[32] W3C. CSS Validation Service. Available at: http://jigsaw.w3.org/
css-validator/, 2012. Last accessed: 2012-05-22.

[33] W3C. Markup Validation Service. Available at: http://validator.w3.
org, 2012. Last accessed: 2012-05-22.

[34] W3Schools. Browser Display Statistics. Available at: http://www.
w3schools.com/browsers/browsers_display.asp, 2012. Last ac-
cessed: 2012-05-22.

[35] W3Schools. Browser Statistics. Available at: http://www.w3schools.
com/browsers/browsers_stats.asp, 2012. Last accessed: 2012-05-22.

[36] W3Schools. OS Platform Statistics. Available at: http://www.w3schools.
com/browsers/browsers_os.asp, 2012. Last accessed: 2012-05-22.

[37] WebKnow.com. Javascript Enabled Statistics. Available at: http://www.
webknow.com/scripts-enabled-statistics.asp, 2012. Last ac-
cessed: 2012-05-22.

[38] Fridolin Wild, Katja Buelow, Bernhard Hoisl, Robert Koblischke, Markus Essl,
Traian Rebedea, Vlad Posea, Thomas Markus, Eline Westerhout, Sonia Mandin,

73

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2009/WD-html5-20090212/comms.html
http://www.w3.org/TR/2009/WD-html5-20090212/comms.html
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/widgets/
http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/
http://validator.w3.org
http://validator.w3.org
http://www.w3schools.com/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_os.asp
http://www.w3schools.com/browsers/browsers_os.asp
http://www.webknow.com/scripts-enabled-statistics.asp
http://www.webknow.com/scripts-enabled-statistics.asp

Hendrik Drachsler, Gaston Burek, Hristo Kostov, and Alex Simov. D2.3 Ser-
vices v1 Integrated. Available at: http://dspace.ou.nl/handle/1820/
2345, 2010. Last accessed: 2012-05-22.

[39] Fridolin Wild, Bernhard Hoisl, and Gaston Burek. Positioning for Conceptual
Development using Latent Semantic Analysis. In Roberto Basili and Marco Pen-
nacchiotti, editors, Proceedings of the EACL 2009 Workshop on GEMS: Geomet-
rical Models of Natural Language Semantics, pages 41–48, Athens, Greece, 2009.
Association for Computational Linguistics.

[40] Fridolin Wild, Felix Mödritscher, and Steinn Sigurdarson. Designing for Change:
Mash-Up Personal Learning Environments. eLearning Papers, 2008.

[41] Fridolin Wild and Stefan Sobernig. Interoperability Framework Draft
for the Distributed Open Virtual Learning Environment. Available at:
http://www.icamp.eu/wp-content/uploads/2007/05/d31_
__icamp___interoperability-framework-draft.pdf, 2006. Last
accessed: 2012-05-22.

[42] Joanna Wild, Fridolin Wild, Marco Kalz, Margit Hofer, and Marcus Specht. The
MUPPLE Competence Continuum. In Proceedings of the 2nd Workshop on Mash-
Up Personal Learning Environments (EC-TEL 2009), pages 80 – 88, Nice, France,
2009.

[43] Scott Wilson. Wookie – Widget Developer’s Guide. Available at:
https://svn.apache.org/repos/asf/incubator/wookie/
trunk/docs/legacy/widget_dev_guide_09.doc, 2009. Last
accessed: 2012-05-22.

[44] Scott Wilson and Ross Gardler. Wookie API Reference. Available at: http:
//incubator.apache.org/wookie/docs/api.html, 2012. Last ac-
cessed: 2012-05-22.

[45] Scott Wilson and Kris Popat. Moodle Modules and Plugins – Block: Wookie.
Available at: http://moodle.org/mod/data/view.php?rid=3319,
2010. Last accessed: 2012-05-22.

[46] Scott Wilson, Kris Popat, and Ross Gardler. Welcome to Apache Wookie (Incu-
bating). Available at: http://incubator.apache.org/wookie/, 2012.
Last accessed: 2012-05-22.

[47] Scott Wilson, Ivan Zuzak, Bernhard Hoisl, and Ross Gardler. [#WOOKIE-
133] Implement Inter-Widget Messaging. Available at: https://issues.

74

http://dspace.ou.nl/handle/1820/2345
http://dspace.ou.nl/handle/1820/2345
http://www.icamp.eu/wp-content/uploads/2007/05/d31___icamp___interoperability-framework-draft.pdf
http://www.icamp.eu/wp-content/uploads/2007/05/d31___icamp___interoperability-framework-draft.pdf
https://svn.apache.org/repos/asf/incubator/wookie/trunk/docs/legacy/widget_dev_guide_09.doc
https://svn.apache.org/repos/asf/incubator/wookie/trunk/docs/legacy/widget_dev_guide_09.doc
http://incubator.apache.org/wookie/docs/api.html
http://incubator.apache.org/wookie/docs/api.html
http://moodle.org/mod/data/view.php?rid=3319
http://incubator.apache.org/wookie/
https://issues.apache.org/jira/browse/WOOKIE-133
https://issues.apache.org/jira/browse/WOOKIE-133

apache.org/jira/browse/WOOKIE-133, 2010. Last accessed: 2012-05-
22.

75

https://issues.apache.org/jira/browse/WOOKIE-133
https://issues.apache.org/jira/browse/WOOKIE-133

	Introduction
	Motivation
	Problem Statement
	Methodological Approach
	Outline of Learner's Pedagogical Scenario
	Surrounding Research Project
	Structure of the Thesis
	State of the Art
	Overview of LTfLL
	Objectives of WUW
	Related Work
	Contributions to the state of the art
	Setting the Stage: Service Approach
	Development Requirements
	Architectural Overview
	Introducing Widgets
	Interoperability through Web Standards
	Customizing a Widget-based Server
	Introducing Wookie
	Data Sharing Strategy
	Inter-Widget Communication Facility
	OpenACS Widget Server
	Developing a Connector Framework
	Introducing Elgg
	Instantiating a Wookie Widget in Elgg
	A Note on the Limited Space of Widgets
	Authentication with OpenID
	A supporting Widget Template
	Wookie Widget Development
	Localization and Corporate Design in a Distributed Environment
	Basic Widget Structure
	Handling Inter Widget-Communication
	Use Case: A Lifelong Learner Scenario
	Revisiting the Pedagogical Scenario
	Interconnected Widgets: the Use Case Exemplified

	Conclusion
	Discussion
	Requirements for Adoption
	Future work

	IWC Patch for Wookie

	Installing the Wookie Plug-in for Elgg

	Core Widget Functionalities of the Wookie Plug-in for Elgg

	IWC JavaScript Library
	Bibliography

