Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitat Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approvedierigifal versioniof this thesisiis/available at the main library of
the Vienna University offFechiblogy: (httpi/www.ub.tuwien.ac.at/englweb/).

m royornicurygooivyie

Doctoral Thesis

PREDICTION OF TUNNEL BORING MACHINE PERFORMANCE USING
MACHINE AND ROCK MASS DATA

Submitted in satisfaction of the requirements for the degree of Doctor of Science in Civil
Engineering of the Vienna University of Technology, Faculty of Civil Engineering

Dissertation

VORHERSAGE DER LEISTUNG VON TUNNELBOHRMASCHINEN
MITTELS MASCHINENDATEN UND GEBIRGSPARAMETERN

Ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften
eingereicht an der Technischen Universitat Wien, Fakultat fiir Bauingenieurwesen
von

Ghulam Dastgir, M.S.
Matrikelnummer 0827994
Karlsplatz 13/220-1, A-1040 Wien

Gutachter: O.Univ.Prof. Dr. Ewald Tentschert
E203-Institut fiir Geotechnik, Forschungsbereichingenieurgeologie
Karlsplatz 13/220-1, A-1040 Wien

Gutachter: O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl|
E234 - Institut fiir interdisziplindres Bauprozessmanagement
Karlsplatz 13/234-2, A-1040 Wien

Wien, May 2012


https://tiss.tuwien.ac.at/adressbuch/adressbuch/orgeinheit/1615

Dedication

Dedicated to my late parents.



Acknowledgment

In the name of Allah, the Most Gracious and the Most Merciful, all praises to Allah
for the strengths and His blessings in completing this research work. My first and most
earnest acknowledgment must go to my first supervisor Prof. Dipl. -Ing. Dr. techn.
Rainer Poisel. I cannot forget his very kind response when I was looking for my PhD
supervisor. His support, both technical and moral, gave me the courage to complete
my higher studies at the Institute of Geotechnical (Department of Engineering Geology)
at the Vienna University of Technology (TU Wien). Having difficulty in appropriate
words selection for him I can only say that he has been instrumental in ensuring my
academic, professional, and moral well being ever since. I would like to express my
profound gratitude to my supervisor Prof. Dipl. -Ing. Dr. techn. Ewald Tenschert
whose overwhelming help, support and guidance were present throughout my studies. I
would like to express my gratitude to honorable O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans
Georg Jodl, Institute of Interdisciplinary Construction Process Management of the Vienna
University of Technology for his second opinion on my thesis. I am greatly indebted to
Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Kolbitsch for his support. The author also pays
his thanks to Ao.Univ.Prof. Mag. Dr. Andreas Rohatsch and Assistant Prof. Dipl.-Ing.
Dr.techn Alexander Preh, for the provision of technical and software support whenever
it was needed during full length of research work. I cannot forget the valuable scientific
discussion with Kurt am Tinkhof and Prof. Dr. Rudolf Heuer. T am also deeply grateful to
our secretary Christine Cerny and Dipl.-Ing. Victor Navas-Basantes, who remained very
helpful and kind throughout my stay here in this institute. I am grateful for the financial
support for three years that I have received during my doctoral studies from the Austrian
Society for Geo-mechanics (OGG) and Higher Education Commission (HEC) of Pakistan
for funding my research for last year. I personally honor Prof. Dr. Atta-ur-Rahman, the
former Chairman of Higher Education Commission (HEC), for his valuable contributions
for the higher education in Pakistan. Last, but far from least, I want to express my
deep appreciations for my wife Dr. Qurat ul Ain who managed her PhD work in parallel
with the fulfillment of all the responsibilities of our kids and home in an excellent way. I
have no words to express my feelings for the contribution from my chubby daughter Sijjal

Fatima and lovely son Alyaan Ali for making me smile whenever I fed up.

i



Abstract

Performance of the tunnel boring machine (TBM) and its prediction by different meth-
ods has been a hot issue since the first TBM was developed. For the sake of safe and
sound transport, improvement of hydro-power, mining, for civil and many other tunneling
projects, TBMs are quite frequently used. TBM parameters and rock mass properties,
which heavily influence machine performance, should be known or estimated before TBM-
type is chosen and start of excavation. By applying linear regression analysis, Fuzzy logic
tools and a special MATLAB code on actual field data collected from seven TBM driven
tunnels (Hieflau expansion tunnel, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve
and Varzo tunnel), an attempt was made to provide prediction of rock mass class, rock
fracture class, penetration rate and advance rate. For detailed analysis of TBM perfor-
mance, machine parameters (thrust, machine rpm, torque, power etc.), machine types
and specification, rock mass properties (UCS, discontinuity in rock mass, RMC, RFC,
RMR, etc.) were analyzed by 3-D surface plotting using the statistical software R. Corre-
lations between machine parameters and rock mass properties, which effectively influence
prediction models, are presented as well.

In the Hieflau expansion tunnel advance rate linearly decreases with increase of thrust
due to high dependence of machine advance rate upon rock strength. For the Hieflau
expansion tunnel three types of data (TBM, rock mass and seismic data, e.g., amplitude,
pseudo velocity, etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces.
No appreciable correlation between seismic data (amplitude and pseudo velocity), rock
mass properties and machine parameters could be found. Tool wear as a function of TBM
operational parameters was analyzed, it revealed that tool wear is minimum when applied
thrust is moderate and that tool wear is high when thrust is too low or too high. An
empirical linear model for advance rate was predicted with a high accuracy. On the other
hand, in the Hemerwald tunnel thrust and advance rate have the same correlation as in the
Hieflau. A significant correlation between machine parameters and rock mass properties
was found. An empirical linear equation with great accuracy was achieved to predict
advance rate as a function of different rock mass properties and machine parameters.

After analyzing the data from seven tunnel sites, based on rock strength, fracture
class, behavior of thrust versus advance rate, seven case histories have been divided into

two major groups. Group one consists of Hieflau, Hemerwald, Maen and Pieve tunnel.
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Rock mass strata mainly comprise of Limestone, Schistose-Gneiss, Micaschists and Meta-
granite. For group one rock strength ranges from 162-226 MPa, which contains high
strength rocks. In this group advance rate decreases linearly with increase of thrust. This
is due to very high strength, presence of less joints and very low fracture class. For high
strength rocks a prediction model for advance rate may be used with slight variations
from case to case. On the other hand, group two comprises Queen water tunnel, Vereina
and Varzo tunnel. Rock mass strata mainly consists of Micaschists and Gneiss. Rock
strength varies between 55-162 MPa, which is low to medium strength rocks. In group
two advance rate linearly increases with increase of TBM thrust. The reason is low rock
strength, presence of medium to high frequency of joints and a high rock fracture class.

For the low strength rocks, another advance rate prediction model is suggested.
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Kurzfassung

Die Vorhersage der Vortriebsleistung von TBMs ist eine wichtige Fragestellung seit dem
Beginn des Einsatzes von TBMs fiir den kontinuierlichen Vortrieb. Der Einsatz von
Tunnelbohrmaschinen gewinnt aufgrund seiner Effizienz gegeniiber dem konventionellen
Vortrieb auch zunehmend an Bedeutung. Die Maschinendaten und die geotechnischen
Gebirgsparameter haben einen signifikanten Einfluss auf die Vortriebsleistung und sollten
daher bereits bei der Wahl der TBM, d.h. vor Baubeginn, abgeschitzt werden.

Mit Hilfe der Methode der linearen Regression, der Fuzzy Logic und eines speziell en-
twickelten Matlab-Programms wurden die gesammelten Daten von sieben Tunnelbohrpro-
jekten (Hieflau, etc.) analysiert und eine Vorhersage der Gebirgszerlegung, der Vor-
triebsrate sowie der Pentrationsrate versucht. Mit Hilfe der Statitiksoftware ,R* wurde
eine detaillierte statistische Analyse und eine Gegeniiberstellung der Maschinenparam-
eter (Anpresskraft, Umdrehung, Drehmoment, etc.) und der Gebirgsparameter (einax-
iale Druckfestigkeit, des Zerlegungsgrads des Gebirges, etc.) durchgefithrt. Es wurden
Zusammenhénge zwischen den Maschinendaten und den Gebirgsparametern die fiir ein
Vorhersagemodell entscheidend sind abgeleitet.

Beim Erweiterungsstollen Hieflau sinkt die Vortriebsrate mit Zunahme des Anpress-
drucks infolge der hohen Anhéangigkeit der der Vortriebsrate von der Gesteinsfestigkeit.
In Hieflau wurden drei Klassen von Daten miteinander in Beziehung gesetzt und mit
Hilfe dreidimensionaler Diagramme (Oberflachen) analysiert: Maschinendaten, Daten zur
Beschreibung des Gebirges und seismische Daten.

Dabei wurden keine verwertbaren Zusammenhénge zwischen seismischen Daten (am-
plitude und pseudogeschwindigkeit), Maschinenparametern und Gebirgsparametern ge-
funden. Die Analyse des Verschleiftes der Meisel, Lager und Hydraulik im Vergleich mit
den aufgezeichneten Vortriebsdaten hat gezeigt, dass der Werkzeugverschleifs bei einem
moderaten Anpresskraft zu einem Minimum wird und bei einem geringen- oder hohen An-
presskraft der Werkzeugverschleif ein Maximum erreicht. Die Vortriebsgeschwindigkeit
wurde mit Hilfe eines linear empirischen Modells mit hoher Genauigkeit vorhergesagt.

Beim Hemerwald Tunnel wurden zwischen Vortriebsgeschwindigkeit und Anpresskraft
dieselben Korrelationen beobachtet als beim Fallbeispiel Hieflau. Die Analyse zeigt einen
signifikanten Zusammenhang zwischen den aufgezeichneten Maschinenparametern und

den Gebirgskennwerten.



Insgesamt wurden die Daten von sieben Tunneln in Bezug auf die Gebirgsfestigkeit,
die Gebirgszerlegung und den Zusammenhang zwischen Anpressdruck und Vortriebs-
geschwindigkeit ausgewertet. Die sieben untersuchten Fallbeispiele konnen in zwei Grup-
pen unterteilt werden.

Die erste Gruppe beinhaltet die Tunnel Hieflau, Hemerwald, Maen and Pieve. Die
vorherrschenden Gesteine der ersten Gruppe sind Kalksteine, Schiefer, Gneise und Granite
und ihre einaxiale Druckfestigkeit variiert zwischen 162 und 226 MPa. Bei dieser Gruppe
nimmt die Vortriebsgeschwindigkeit mit zunehmender Anpresskraft ab. Die Analyse hat
gezeigt, dass die Ursache fiir dieses Verhalten in der hohen Gesteinsfestigkeit und der
geringen Gebirgszerlegung zu finden ist. Bei hoher Gesteinsfestigkeit kann das entwickelte
Vorhersagemodell fiir die Vortriebsgeschwindigkeit mit nur geringen Variationen von Fall
zu Fall angewendet werden.

Die zweite Gruppe beinhaltet den Queen water, den Vereina und den Varzo Tunnel.
Hier sind die vorherrschenden Gesteine Schiefer und Gneise mit einer einaxialen Druck-
festigkeit zwischen 55 und 162 MPa und hoher Gebirgszerlegung, diese Fille reprasen-
tieren ein geringfestes bis mittelfestes Gebirge. Bei dieser Gruppe nimmt die Vortriebs-
geschwindigkeit mit zunehmender Anpresskraft zu. Bei Gesteinen mit geringer Festigkeit
muss kann das entwickelte Vorhersagemodell nicht ohne weitere Anpassungen benutzt

werden.
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Chapter 1
Introduction

Performance of the tunnel boring machine (TBM) and its prediction by different meth-
ods has been a hot issue since the first TBM was built. For safe and sound transport,
improvement of hydro-power, mining, civil and many other tunneling projects, TBMs are
quite frequently used. There is a constant and growing demand in the mining industry for
rapid excavation to develop new ore bodies faster in order to reduce overall development
cost. TBM which has been developed in recent years, has revolutionized the tunnelling
industry by making tunnelling safer and economical for creating underground space and
opening the possibility of creating tunnels where it was not feasible before [I]. These
machines are used to excavate tunnels through a variety of different rock types. They can
be used to bore through hard rock or sand or almost anything in between. These boring
machines are used as an alternative to drill and blast (D and B) methods. TBM has the
advantages of not disturbing surrounding soil or rock producing a smooth tunnel wall [2].
This significantly reduces the cost of lining the tunnel, and makes them suitable to use in
built-up areas, suitable to use in heavily urbanized areas. It is is also a complete single
unit moving factory.

In this thesis, in order to set forth a more accurate and detailed control system and
estimation models for the TBM machine, analysis of machine and rock mass data from
seven tunnel sites were done. Main aim of this research work is to improve the existing
prediction models and to provide a tool-box for the TBM tunnelling industry (underwrites,
project owners, consultants, contractors, manufacturers, researchers etc.) which can be
used through all phases of a project. It consists of optimizing the TBM performance,
keeping the machine utilization maximum, lowest possible tool wear and prediction about
the rock mass class and possible effect of the ground water. Seismic data collected by
Geo-physic department of TU Wien was coupled with TBM and rock mass data of Hieflau
tunnel, that resulted into another outcome of prediction models for TBM before the start
of actual excavation. The correlations between machine parameters thrust, advance rate,
torque and rock parameters, unconfined compressive strength (UCS), rock mass class

(RMC) or rock mass rating (RMR) are found using real field data from many tunnel sites



excavated by TBM.

1.1 Overview of the Dissertation

Thesis basically consists of five chapters. Chapter 1 includes introduction, purpose and
structure of the dissertation. In chapter 2, the tools and methods that are used for
analysis, are briefly described with examples and graphical user interface (GUI). Chapter
3 contains basic data and history of tunnel sites from where the data was acquired, with the
help of photographs taken from relevant websites of Robbins, Herrenknecht etc. Chapter
4 comprises core work done, includes analysis and results of data taken from these sites.

Last chapter five includes discussions and conclusions.

1.2 History of Tunnel Boring Machines (TBMs.)

The first successful tunnelling shield which is normally regarded as the precursor of the
tunnel boring machine was developed by Sir Marc Isambard Brunel to excavate the
Rotherhithe tunnel under the Thames in 1825.

Figure 1.1: First tunnelling shield [IJ.

However, this was only the invention of the shield concept and did not involve the
construction of a complete tunnel boring machine, the digging still was done by standard

excavation methods using miners to dig under the shield and behind them brick layers



built the lining Fig. 1.1. Although the concept was successful, eventually it was not an
easy project [I].

The first boring machine was Henri-Joseph Maus’ Mountain Slicer. It was commis-
sioned by the King of Sardinia in 1845 to dig the Fréjus Rail Tunnel between France and
Italy through the Alps, Maus had built it in 1846 in an arms factory near Turin [3]. In
1851 Charles Wilson invented a boring machine with disc type cutters. Another machine
was built for boring the English Channel tunnel between England and France in 1865. Use
of the TBM is very old and common in underground excavations, like transport tunnels
and high pressure water tunnels for hydro power plants [4]. In the United States, the first
boring machine was used in 1853 during the construction of the Hoosac Tunnel which
was made of cast iron, it was known as Wilson’s Patented Stone-Cutting Machine, after
inventor Charles Wilson [5]. It drilled 10 feet into the rock before breaking down. The
tunnel was eventually completed more than 20 years later by using less ambitious meth-
ods [6].One need to move on nearly 100 years when James S. Robbins built a machine to
dig through what was the most difficult shale to excavate at that time, the Pierre Shale.
Robbins built a machine that was able to cut 160 feet in 24 hours in the shale, which was

ten times faster than any other digging speed at that time.

1.2.1 Different Types of TBM

The description of the types of TBM are inferred from what type of soil is being excavated.

1.2.1.1 Gripper Machine

Essential to the functioning of Gripper TBMs are their drilling, bracing, support and
safety systems. The drilling system, i.e. the cutter-head is fitted with cutter rings (disks).
In this process the disks roll over the tunnel face, thereby loosening the native rock. The
excavated rock or chips (commonly known), is collected in muck bucket lips (openings
in the cutter-head) and discharged via hoppers onto a conveyor belt. The tunnelling
performance of a Gripper TBM depends essentially on the time required to install rock
supporting devices. Same safety measures are used as those in conventional tunnel build-
ing, rock anchors, meshes and shotcrete together with the segments characteristic of TBMs

and the steel beam supports which are particularly suitable for this purpose.



Figure 1.2: Gripper machine [7].

The Gripper machine enables comprehensive rock support measures to be taken even
right behind the cutter-head Fig. 1.2, in the so-called L1 work area (1), Ring erectors
(2), anchor drilling devices (3) or wire-mesh erectors (4) for example, can be provided for

installing the steel supports. Shotcrete is applied and segments are installed in backup

area.

1.2.1.2 Single Shield Machine

Figure 1.3: Single shield machine [7].



The single shield TBM Fig. 1.3 belongs to a category of machines which are fitted with
an open shield. Tunnelling machines described as open shields are machines without a
closed system for pressure compensation at the tunnel face. In other words, no excavation
chamber has been defined. TBMs fitted with a shield are used on brittle rock formations
or soft rock. They have a very wide range of applications on hard rock. Protected by the
shield (1), a cylindrical tapered steel structure, the machine extends and drives forward
the tunnel practically automatically. In order to drive the tunnel forward, the single
shield TBM uses the hydraulic thrust cylinders (2) on the last segment ring (3) installed.
The cutting wheel (4) is fitted with hard rock disks, which roll across the tunnel face
cutting notches in it. These notches dislodge fairly large chips of rock. Muck bucket
lips (5), which are positioned at some distance behind the disks, carry the extracted rock
behind the cutting wheel. The excavated material is brought to the surface by conveyers
(6). In addition to many other parameters, the torque depends largely on the degree of

penetration of the disks and their contact pressure [7].

1.2.1.3 Double Shield Machine

Double shields machines are amongst the most technically sophisticated tunnel boring
machines used in tunnelling operations. Combining the Gripper principle and the instal-
lation of the segments in one perfectly coordinated process, double shields can easily be

adapted to the particular geological conditions of any tunnel route [7].

Figure 1.4: Double shield TBM [7].

This type of machine is thus ideally suited for drilling long tunnels in hard rock
where geological fault zones occur. The double shield TBM owes its name to its special
design, whose main feature Fig. is an extendable front shield (1) in the front part of

3



the machine, which allows the cutter-head (2) to be extended. Reaction forces (torque,
axial and longitudinal forces) arising during drilling are conducted into the rock by the
extended gripper shoes (3), which are located in the middle section of the tunnel boring
machine. Since these forces have been dissipated, the lining segments (5) can be installed
during tunnelling, ensuring high tunnelling performance. This is not possible using the
conventional method. On completion of a thrust stroke, the gripper shoes are retracted
and the rear section of the machine is pushed against the front shield by the auxiliary
thrust cylinders (4). This changeover phase only lasts a few minutes and then the next
section of tunnel can be drilled. However, continuous drilling like this can be carried out
only in undisturbed sections of rock because the gripper shoes need the surrounding rock
as an anchorage. When the double shield reaches a section of rock containing fault zones,
the telescopic front shield is retracted. The entire boring machine is then driven forward
for drilling only by the auxiliary thrust cylinders (4), which are supported on the tunnel
lining (5). This type of tunnelling is referred to as "discontinuous" since in this process,
as with a conventional shield, tunnelling with the thrust cylinders is not possible until a

segment ring has been installed (Fig. |1.4)).

1.2.1.4 Mix Shield Machine

This machine is used as a mix-shield where gravelly geological conditions indicate an

unstable tunnel face or mixed geological conditions.

Figure 1.5: Mix-shield TBM [7].



At the tunnel face the soil is loosened all over by the cutting wheel (1) rotating in
the bentonite suspension. The soil then mixes with the bentonite suspension. The area
of the shield in which the cutting wheel rotates is known as the excavation chamber
(2) and is separated by the pressure bulk head (3) from the section of the shield under
atmospheric pressure Fig. E The bentonite suspension supplied by the feed line (4) is
applied in the excavation chamber via an air bubble (5) at a pressure equaling the native
soil and water pressure, thus preventing an uncontrolled penetration of the soil or a loss
of stability at the tunnel face. The support pressure in the excavation chamber is not
controlled directly by the suspension pressure but by a compressible air cushion (5). For
this reason excavation chamber behind the cutting wheel is separated from the pressure
bulk head by a so-called submerged wall (6). The area of the submerged wall and pressure
bulk head is known as the pressure or working chamber. The tunnels are normally lined
with steel reinforced lining segments (7), which are positioned under atmospheric pressure
conditions by means of erectors (8) in the area of the shield behind the pressure bulk head
and then bolted in place. Mortar is continuously forced into the remaining gap between
the lining segments outer side and the excavation diameter through injection openings in

the tail skin or openings directly in the segments (Fig. [1.5)).

1.2.1.5 Slurry Machine

Slurry machine is used for soils usually of varying hardness. Excavated soil is mixed with
slurry to create positive face pressure required to sustain the excavation. This is known
as a closed machine. The system for the removal of the soil involves pumping the soil
mixed with slurry to plant located outside the tunnel that separates the slurry from the

muck allowing its recirculation [IJ.

Figure 1.6: Slurry machine [7].

The machine is used as a mix-shield where gravelly geological conditions indicate
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an unstable tunnel face or mixed geological conditions. In this mode the extraction
chamber is completely filled with suspension, while the pressure chamber (4) Fig. [1.6]
situated after the dive wall (1), the suspension is supported by the air pressure cushion
(12) and the pressure bulkhead (2). The air pressure is automatically controlled by an
air regulating equipment (10+11) to avoid blow outs and base failures at the tunnel face.
The pressure compensation between the extraction chamber (3) and the suspension in the
pressure chamber after the dive wall is implanted via the communicating pipe (5). The
supply conduit (9) delivers the suspension into the extraction chamber. The suspension
is removed by the slurry conduit (6) from the extraction chamber behind the suction
rack (13). An accumulation of sediments below the communicating pipe is avoided by an
constant flush above the supply conduit (8) and the conveyor conduit (7) in the pressure

chamber.

1.2.1.6 Earth Pressure Balance Machine

This is a closed machine and is used usually for softer fairly cohesive soils. In this case
the positive face pressure is created by the excavated ground that is kept under pressure
in the chamber by controlled removal through the rotation of the screw conveyor. Muck

is thereafter removed by a conveyor belt or skips [1].

Figure 1.7: Earth pressure balance machine [7].

Where shield excavation is carried out in non stable soils, a loss in stability of the
tunnel face is prevented by creating a support pressure. With earth pressure balance
machine (EPBM), Fig. the cohesive soil loosened by the cutting wheel (1) serves to

support the tunnel face, unlike other shields which are dependent on a secondary support



medium. Area of the shield in which the cutting wheel rotates is known as an excavation
chamber (2) and is separated from the section of the shield under atmospheric pressure
by the pressure bulk head (3). Soil is loosened by the cutters on the cutting wheel, falls
through the openings of the cutting wheel into the excavation chamber and mixes with
the plastic soil already there. Uncontrolled penetration of the soil from the tunnel face
into the excavation chamber is prevented because the force of the thrust cylinders (4) is
transmitted from the pressure bulk head onto the soil. A state of equilibrium is reached
when the soil in the excavation chamber cannot be compacted any further by the native
earth and water pressure. The excavated material is removed from the excavation chamber
by an auger conveyor (5). The amount of material removed is controlled by the speed of
the auger and the cross-section of the opening of the upper auger conveyor driver. The
auger conveyor conveys the excavated material to the first of a series of conveyor belts.
Excavated material is conveyed on these belts to the so-called reversible conveyor from
which the transportation gantries in the backup areas are loaded when the conveyor belt
is put into reverse. The tunnels are normally lined with steel reinforced lining segments
(7), which are positioned under atmospheric pressure conditions by means of erectors (6)
in the area of the shield behind the pressure bulkhead and then temporarily bolted in
place. Mortar is continuously forced into the remaining gap between the segments outer
side and the rock through injection openings in the tail skin or openings directly in the

segments [7].

1.2.1.7 Auger Boring Machine (ABM)

Figure 1.8: Auger boring machine [§].

An Auger Boring Machine (ABM) Fig. 1.8 is used to bore horizontally through soil or
rock with a cutting head and auger. Majority of ABMs are used to install pipe casing
under railroads, highways, airport runways, creeks or any area of ground that cannot be
open cut or disturbed in any way. Initially the ABM is set up in the starting pit on

a predetermined length of track. A backing plate, usually steel or reinforced concrete



block, is installed in the wall opposite of the boring to withstand the thrust exerted by
the boring machine. The machine bores through the earth with a cutting head and the
jacking force is provided by the hydraulic thrust. The pipe casing and auger sections are
added as the machine advances. Soil is removed from the auger through the casing to a

door located on the side of the machine [§].

1.3 The New Austrian Tunnelling Method (NATM)

The New Austrian Tunnelling methods (NATM) were developed between 1957 and 1965
in Austria [9]. It was given its name in Salzburg in 1962 to distinguish it from old Austrian
tunneling approach. The main contributors to the development of NATM were Ladislaus
V. Rabcewicz, Leopold Miiller and Franz Pacher. The main idea is to use the geological
stress of the surrounding rock mass to stabilize the tunnel itself. The NATM was originally
applied for tunnels in rock in the1970s, however, this tunnelling method was carried out
more and more also in soft rock with low overburden and in urban areas. Because of
the outstanding importance of the shotcrete (sprayed concrete) for the application of this
method the denotation "Sprayed Concrete Lining Method" or simply "Shotcrete Method"

is mainly used in Germany [10].

1.4 TBM Tool Wear

Tool (TBM cutter) wear is another important factor which play rigorous role in machine
utilization and tunnelling cost. Effort was made to get a correlation between thrust and
cutter wear and advance rate of TBM and to minimize the tool wear. Data from many
TBM driven tunnels were gathered and analyzed for above mentioned goals. This part
of research showed that tool wear was least when TBM diameter is high and machine is
operated at moderate thrust. Only Hieflau data has been analysed for tool wear analysis,

as no other data for tool wear from any other site have been available.

1.5 Methods/Tools Used for Investigation

Fuzzy logic, Origin 8.1, Microsoft excel, Kaleida graphs, statistical software “R”, Math-
Lab, and a commercially available software packages IBM SPSS19 were used to analyse
actual field data, collected from five tunnel sites. Full details and description of these

tools or methods is presented in chapter 3.
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1.6 Previous Work

Lot of work is already done regarding TBM performance. Here few specific research works

are presented, which are closely related to this research work.

1.6.1 Samuel 1984

This paper shows the results of 2 tests conducted for boreabilty, one in vesicular basalt
and other in non-vesicular basalt. The results and analysis of the paper shows that, the
geological defects will produce varying effects depending on the size of cutter used and
the penetration of disc cutter. This effect of penetration is particularly great in highly
porous and highly faulted rock. Since a higher penetration by the cutter would be able
to take more advantage of the structural weakness, than if the penetration is less than
the typical dimension of the holes or faults in the rock. Higher advance rate could be
achieved by using a higher head speed for boring, provided that the condition of the disc
cutters does not deteriorate. Consequently, all other things being equal, it would appear
to be better to operate the machine at moderate propel pressure so as to achieve higher

advance rate [11].

1.6.2 Gehring 2009

The paper states that, with same machine, tool and rock parameters the penetration
can be assumed to be directly proportional to the specific excavated volume over most
of the range of application. This value is mainly used for practical reasons and is itself
inversely proportional to the tool wear. The correlation between effective thrust force and
penetration is found to be approximately linear for a certain machine assuming comparable
rock conditions. This linearity does not show below a critical penetration and above a
certain maximum penetration. This maximum penetration is defined by the shape of the
cutting edge of the discs and the state of cutter wear and can be approximately in a
range between 11 to 15 mm/rev. Larger diameters permit higher head speed and higher
advance rate. Also the life time of cutters was found to increase with diameter Fig. [1.10]

Gehring K. also introduced a formula for TBM excavation, given below [12]:

20

VS—'rpm = Vsm

[m? /cutter] (1.1)

where:
Vs_rpm specific excavated volume at a certain cutter head speed |[m?/cutter];
Vs specific excavated volume at nominal cutter head speed |[m?/cutter];

Rp_; actual cutter head speed [min~!].
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Figure 1.9: Thrust versus penetration [12].

1.6.3 Gong et al 2006

Results showed that a critical point exists in the penetration curves. The penetration per
revolution increases rapidly with increasing thrust per cutter when it is higher than the
critical value. When the thrust is greater than the critical value, the muck becomes well-
graded. The muck shape analysis results also showed with the increase of the thrust, the
chip shape changes from flat to elongated and flat. Boreabilty index at the critical point
of penetration of 1 mm/rev, defined as the specific rock mass boreabilty index is proposed
to evaluate rock mass boreabilty. It decreases with increasing thrust per cutter. This is
due to a change in the efficiency of the cutting action at the cutter head. Borg (1988) and
Bruland (1998) found that a critical thrust must be applied to overcome the rocks inherent
resistance against breaking. Below this critical thrust value almost no penetration rate
can be achieved and above this value the penetration rate increases rapidly with the
increase of thrust force. Therefore, the previously defined boreabilty index calculated by
the TBM performance data can not accurately represent the rock mass boreabilty. Only
when the thrust force remains same, the calculated boreabilty index can demonstrate
the different rock mass conditions. It was concluded that with the increase of the thrust
force per cutter, the penetration per revolution increases Fig. For example, the
rock strength of granite in 705 penetration test is 172.9 M Pa and its specific rock mass
boreabilty index is 208 kN/cutter /mm/rev, while the rock strength of granite-gneiss in
Buchi’s test is close to 250 M Pa and its specific rock mass boreabilty index is only 120.67
kN /cutter /mm/rev (Biichi, 2004). The specific rock mass boreabilty index remains a
constant in the same rock mass condition if the same TBM is used, and does not change

at different operating thrust forces. With increasing torque and thrust per cutter, the
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penetration per revolution increases. The correlation between the thrust per cutter and

the penetration also shows that there exists a critical value in the correlation curve [13].
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Figure 1.10: Thrust versus penetration [I3].

1.6.4 Balci 2009

A case study in Kozyatagi-Kadikoy metro tunnel, Turkey. This paper presents determi-
nation of some design parameters and performance prediction of a TBM carried out using

full-scale rock cutting tests.
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Figure 1.11: Relationship between thrust and penetration [14].

Contrary to the basic rock cutting mechanics and rock cutting tests realized in the
laboratory on intact rock, the field thrust and rolling force do not show any increase or
relationships with penetration in the field. This is mainly due to the highly fractured
characteristic of the rock formation excavated. Thrust force for a specific penetration

is higher in the field than in the laboratory test results, probably due to high frictional
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forces between shield and highly fractured or almost loose rock formation accumulated
in front of the cutter-head. This causes an increase in torque, power and specific energy
requirements compared to the laboratory test results. In most cases, small size of the
muck causes specific energy to increase. This is well explained by Fig. coarseness
index values obtained by sieve analysis of the muck from the laboratory experiments and
the field.

1.6.5 Ribacchi et al 2004

This paper analyzed the influence of rock mass quality on the performance of TBM in
a high strength and low fracture density rock. An increase in penetration with thrust is
observed in specific tests carried out on the same face or under the same rock conditions,
sometimes with a well defined knee for a critical value of the thrust. However the values
determined during normal machine operation often show a reverse correlation (Grandori
et al., 1995). This behavior is possibly due to the fact that the machine operator tries
to improve the low penetration rate in very hard rock by pushing the thrust near or
above the recommended level, whereas he reduces the thrust when the penetration rate
Vp is considered to be acceptable [I5]. The data obtained for the Varzo tunnel do not
show a marked relationship between applied thrust and penetration rate, if the data
corresponding to the learning phase are excluded, only a slight increase in the thrust at

decreasing penetration rates is observed.
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Figure 1.12: Thrust versus advance rate [15].

This hypothesis is supported by the penetration data for a tunnel in granitic rock
analyzed by Mogana et al. (1998), it was found that spacing accounted for about 26% of
the total variance of the penetration rate (a much lower value than in the Varzo tunnel),
whereas the inclusion of various other rock mass characteristics (e.g. compressive strength,
joint quality) brought the coefficient of correlation R* to 0.53 and 0.62 respectively for the

penetration rate and the scaled penetration rate. The influence of thrust on penetration
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does not emerge clearly from the excavation data. When boreabilty indexes including
thrust are adopted, such as V (in which the penetration rate is scaled with respect to
the thrust per cutter), correlations with the quality indexes of the rock mass show only a
slight improvement. As in other rocks masses characterized by low machinability, a weak
negative correlation between thrust and penetration rate was found for the Varzo tunnel.
This behavior may be determined by the operator’s conduct who tries to push the thrust
to the limit of admissible values, or even beyond, when the penetration rate is deemed to

be unsatisfactory.

1.6.6 Cardu 2009

In this study, an analysis has been carried out on about 587 m of a service tunnel,
excavated by a TBM in a flysch formation. Some relationships have been highlighted
between the excavation specific energy, net advance rate, thrust on the cutter-head and
the rock mass rating. TBM performance predictive law has been also applied verifying
a scarce gap between the predicted and actual values of the net advance rate Fig. 1.13.
Resulted relationship between excavation specific energy and RMR can help the choice of
the TBM for a specific tunnel or the estimation of the net advance rate using a specific

machine.
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Figure 1.13: Applied thrust versus net advance rate [16].

1.6.7 Poisel et al 1999

The investigations showed that it is possible to assess rock mass class (RMC) evaluating
machine data. By this it would be possible to establish an overall rule base accounting for
the complete complex system. Poisel R. et al. suggested Fuzzy rule base for prediction of
rock mass class (RMC) and apply it to different rock mass data from Schwarzach, Vereina

and Evinos tunnels Fig. 1.14.
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Figure 1.14: Rock mass class predicted by Fuzzy logic [17].

At the moment there is no investigations available how to evaluate water and structure
orientation best [17].

1.6.8 M. Berti et al 2002

A lot of analysis on three tunnels (Maen, Pieve and Varzo in Italian Alps) data, including
histogram plot, 2-D correlations between rock mass rating (RMR), thrust, penetration
rate, Q-value, utilization coefficient and UCS Fig. 1.15. A reliable estimation of excava-
tion rates is needed for time planning, cost control and choice of excavation method in
order to make tunnel boring economic in comparison with the classical drill and blasting

method. As a consequence, great efforts have been made to correlate TBM performance
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with rock mass and machine parameters, either through empirical approach or physically
based theories.
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Figure 1.15: RMR versus rock mass quality [1§].

1.6.9 Saffet Yagiz 2007

Data from the tunnel excavated in predominantly fractured igneous and metamorphic rock

were used to achieve TBM performance predictive equation as a function of engineering

rock properties. TBM performance requires the estimation of penetration rate (ROP),

the ratio of excavated distance to the operating time during continuous excavation phase
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Figure 1.16: ROP versus PSI and UCS [19].

and advance rate (AR), the ratio of both mined and supported actual distance to

the total time Fig. 1.16. In fact, most of the predictive models are concerned with the
estimation of ROP [19].
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Chapter 2

Methods/Tools Description

2.1 Methods/Tools Used for Investigation

2.1.1 Kaleida Graph

Kaleida graph works just like Excel, but there are more option and applications for curve
fitting, 3-D plotting, linear regression and statistical modeling. Kaleida needs not any
extra code or subroutine, it works with import and export of data from and to the excel
file. In this software there are so many options for curve fitting and also it can perform

matrix operations. Now, let’s create a plot using the example data.
e Choose Gallery > Linear > Scatter.

This will display the Variable Selection dialog. Notice that the name of the data file and

its column titles are displayed in this dialog.

e Select Time as the X variable and Test 1 as the Y variable by clicking the appropriate

buttouns.

e Click New Plot to create a Scatter plot.
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Figure 2.1: Kaleida GUI and scattered plot.

Figure 2.1a shows what your Variable Selection dialog should look like at this point and
Fig. 2.1b shows an output scattered plot and polynomial curve fit.

The X variable you selected is the independent variable and the Y variable is the
dependent variable. By default, the X variable is plotted on the horizontal axis and the Y
variable is plotted on the vertical axis. The title of the plot is taken from the name of the
data window. The X and Y axis titles are taken from the column titles of the variables
being plotted. The Y wvariable title is also used in the legend. Now that the graph has
been created, it can be modified very easily. For example, let’s change how the data is
represented on the plot. You will use the Plot Style dialog to change the marker type,
size, and color.

e Triple-click the marker displayed in the legend (or choose Plot > Plot Style).

e Select a different marker to represent the variable on the plot. The markers are
displayed on the left side of the dialog. The first six markers in the left column are
transparent; all of the others are opaque.

e Change the value in the Marker Size field to 18 and select a different color from the
color palette.

e Click OK and the plot will be redrawn to reflect the changes that have been made.
Now we will use the Identify tool ( ) from the toolbox to display the coordinates of the
data.

e Select the Identify tool by either clicking it or pressing I on your keyboard.

e Once the tool is selected, click one of the data points. The X and Y coordinates are

displayed in the upper-left corner of the plot window [20].

e Reselect Linear from the Curve Fit menu. A Curve Fit Selections dialog appears

with a drop-down arrow under View.
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e Click the drop-down arrow and choose Copy Curve Fit to Data Window from the

pop-up menu.

e Click OK to return to the plot window.

2.1.2 Fuzzy Logic Tools

Fuzzy logic tools are used to evaluate the machine data (thrust, torque, power, machine
velocity and advance rate), which was collected during the tunnel excavation process and
is used to predict the behavior of surrounding rock and interaction between rock mass

properties and machine parameters (Fig. [2.2)).

J FIS Editor: vt3D full surface Q@@

File Edit vView

X >

Thrust

Meters,per paY /

><>< RMC

wt3D full surface

(mamdani)

Power onsumption
FIS Name: 3D full surface FIS Type: mamdani
And method min 7 Current Variable
Or method max v e Thrust
T ey
Implication min -7 s :
Range [300 1005]
Aggregation max IS
Defuzzification | G Help Ciose
Updating Membership Function Editor

Figure 2.2: Fuzzy logic tools [21].

Fuzzy logic tools Fig. are used to predict the rock mass classification (RMC), keep-
ing the machine parameters (thrust, advance rate and machine power) as input variables
and RMC as output variables. In between the input and output variables, a rule base
Fig. [2.4] was developed that govern the process of prediction. This rule base consists of
membership functions with "AND’, ’OR’ rules and range of the variables. The output is
in the form of 3-D surface Fig. having two or three input and one output variable.
However if one or more variables like rock strength, are uncertain in input, then output

is definitely uncertain.
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2.1.3 Math-Lab Code

For a comprehensive and flexible model prediction for rate of penetration (ROP) and rock
mass class (RMC) and rock fracture class (RFC), a sub-routine program in Math-Lab has
been developed that reads the data from excel file and grade it into sub-classes (low, mid-
dle, high etc) and then according to pre-defined rule base, perform a specific action using
IF-THEN rules to all input machine parameters and gives a output variable (RMC). Also
output variable is plotted in 3-D surface against the three input variables. This process
was repeated by replacing the input variables by seismic parameters (amplitude pseudo
velocity etc) instead of TBM parameters. It is far better than Fuzzy logic prediction
model, as out put is in numeric form unlike the 3-D surface in Fuzzy. Moreover it has
a capacity to perform analysis for input and output variables more than one. This code
takes excel data as input, check each element of each row one by one, decide its group (low,
medium, high) i.e where to put it according to a predefined rule-base. When position of
each element in a single row is decided, then according to “IF-THEN” rule (already set)
for all three or four input variables, value of out-put variable is decided. In this way every
element in the data is taken into account and it gives rise to a corresponding out-put. All
out-put values are printed /displayed in last column. Code can also be modified to print
2-D charts and 3-D surfaces. Code is flexible to receive unlimited amount of data entries,

no restriction on number of input and even out put variables.

2.1.4 Statistical Software “R”

Many 3-D surfaces were generated using “R”. For better comparison and analysis of differ-
ent variables 3-D surface generated by “R” are very helpful to see the behavior of rock and

machine parameters. To produce the 3-D surfaces and other graphs, a R-code (Algorithm
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2.1), written by Peter Filzmoser (TU Wien) has been used. This code uses R-syntax
‘scatter plot’ for 3-Dsurface and dm.smooth, grid and axis for line plot functions. Code
takes data from excel file saved in “comma separated version” (CSV), and perform nec-
essary action on input data as per code instruction and plot a 3-D surface and line plots

for different variables.

2.1.4.1 R and Statics

Many people use R as a statistics system. Basically it is an environment within which
many classical and modern statistical techniques have been implemented. A few of these
are built into the base R environment, but many are supplied as packages. Most classical
statistics and much of the latest methodology is available for use with R, but users may
need to be prepared to do a little work to find it. R will give copious output from a
regression or discriminant analysis, this will give minimal output and store the results in
a fit object for subsequent interrogation by further R functions [22]. R can perform some
regression analysis, variance, generalized linear modeling and curve fitting. But its not
as simple as excel or other mathematical tools, user has to write code for every single
order to perform. R provides an interlocking suite of facilities that make fitting statistical

models very simple [23].

2.1.4.2 Graphical Procedures

Graphical presentation of results in 3-D surfaces were plotted by using a subroutine code.

Code is listed below as algorithm 2.1.

Algorithm 2.1 Algorithm for R software.

7 PF, 25.4.2012

# Daten einlesen:

MGG <- read.csv("G:/Vereina tunnell /VereinadR1.csv" dec="," sep=";")
attach(MGG)

library(Remdr)

scatter3d(RMC, Penetration mph, RFC,
sphere.size=1,threshold=0.01,point.col="orange",

fit=c("smooth"), df.smooth=15bg="white", axis.scales=TRUE, grid=TRUE,
ellipsoid=FALSE surface.col="blue" residuals=0.1)

Graphical facilities are an important and extremely versatile component of the R
environment. It is possible to use the facilities to display a wide variety of statistical
graphs and also to build entirely new types of graphs. Here “R” is used for scattered 3-D
graphs, written by Peter Filzmoser, Department of Statistics and Probability Theory TU
Wien 2,11
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2.1.5 Statistical Modeling with “SPSS19”

Commercial software packages SPSS are very helpful to plot frequency distribution with
R? values, linear and quadratic correlations between rock and machine (TBM) parame-
ter, regression coefficients and finally a statistical model to predict ROP, RMR and RMC
values. Comparison of all these models with other model obtained from Fuzzy logic, Math-
Lab code, and “R” have been performed in the second last chapter . Linear regression
analysis estimates the coefficients of a linear equation, involving one or more independent
variables, that best predict the value of the dependent variable. SPSS is useful for situa-
tions in which one want to predict the presence or absence of a characteristic or outcome
based on values of a set of predictor variables. It is similar to a linear regression model
but is suited to models where the dependent variable is dichotomous. Logistic regression
coefficients can be used to estimate odd ratios for each of the independent variables in
the model [24].

2.1.5.1 Data

The dependent and independent variables should be quantitative. Categorical variables
such as religion, major field of study, or region of residence, need to be recoded to binary

(dummy) variables or other types of contrast variables.

2.1.5.2 Assumptions

For each value of the independent variable, the distribution of the dependent variable
must be normal. The variance of the distribution of the dependent variable should be
constant for all values of the independent variable. The relationship between the depen-
dent variable and each independent variable should be linear, and all observations should
be independent. The significance levels have to be less than 0.05 for the parameter to be

statistically significant [24].

2.1.5.3 Procedure

To open the Linear Regression dialog box, from the menus choose— Analyze— Regression— Linear.
Select more than one variable for the Independent (s) list, if you want to obtain a multiple

linear regression [24]. You can specify more than one list, or “block” of variables, using

the Next and Previous buttons to display the different lists. Up to nine blocks can be
specified Figs. 2.6-2.7.

24



8 urew regresion

2l Linear Regression

& Thrust(kN/mm) [Thr.
& DPW (m) [DPWm]

& Alpha angle (degree... i

¥ UCS (Mpa.) [UCSMp... -
f BTS (Mpa.) [BTSMpa] Block 1 of 1

dependant(s):

& RockFractureClass
& Measured ROP [Me
& log Alpha [Log_Alpha]

& Predicted Value [Pre

Ca;

Method: |[Enter

Selection Variable:

se Labels:

i)

Dependent

& UCS (Mpa.) [UCSHp
& BTS (Mpa) [BTSMpa]
& Thrustknimm) [Thr.
& DPW (m) [DPWm]
&7 Apha angle (degree.
& RockFractureClass
& log.Alpha [Log_Alpha]
& Predicted Value [Pre.

- & Measured ROP [easuredR,

Block 1 of 1

Independent(s):

Plol

& UCS (Mpa.) [UCSMpa]
& BTS (Mpa.) [BTSMpal
& ThrustikN/mm) [ThrustkNmm]

Method. :jEnler

Selection Variable:

WLS Weight
—

E3

Case Labels:
WLS Weight
(o) (o) oo o) e

(a) Linear model for regression.

(b) Linear variable input

Figure 2.6: Linear regression method description.

Variables EnteredRemoved®

Model Summary

Variahles WVariahles Adjusted R Std. Error of
Model Entered Remaoved ethodd model R R Sguare Sguare the Estimate
1 log.?, UCS Enter 1 7118 A05 485 25646
(Mpa.), Thrust -
(kM) a. Predictors: {(Constant), log.?, UCS {Mpa.), Thrustikhimm)
a. All requested variables entered.
h. Dependent Variable: Measured ROP
ANOVA®
Sum of
madel Squares df Mean Square F Sig.
1 Regression 98458 3 3.286 459 963 .ooo3
Residual 4 668 147 066
Total 19.527 150
a. Predictors: {Constanty, log.?, UCSE (Mpa.), Thrustikhimm)
h. Dependent Wariable: Measured ROP
Coefficients
Standardized
Unstandardized Coefiicients Coeficients
Model =] Std. Error Beta t Sin.
1 (Constant) T80 75 4.509 oo
UGS iMpa.) -.003 001 -.1498 -2.654 .oog
ThrustikMimim) fuk)l .on3 727 9.713 .ooo
lon.? 428 064 .391 6.727 .ooo

a. Dependent Yariahle: Measured ROP

Figure 2.7: SPSS model coefficients.

2.1.5.4 Awutomatic Linear Modeling

In this section detailed method for performing automatic linear modeling is described
Figs. 2.8-2.11. Assumptions are same as for "Linear Regression Modeling”. But variable
input and brief case history and method used for analysis is described . Total of five

tunnel sites are taken into account and data analysis that is carried out is separated from

already done work.
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Figure 2.8: Automatic linear modeling.

Model Summary Model Building Summary Target: Measured ROP
Step
Target Measured ROFP
1 2 3 4
Aummale [t Eeepansion; On Information Criterion 365885 -402639 -449.863 -458.701
Model Selection Method Forward Stepwise ThrLGikNim e ,/ ,/ ./ ./
Information Criterion -458 701 Log_Alpha. transformed \/ ( (
The information criterion is used to compare to S
models. Models with smaller information criterion DPWm transformed ‘/ ‘/
values fit better. -
Accuracy e e - /
— Better pa_transforme

— 4 4% The model huilding method is Forward Stepwise using the Information Criterion.
: A checkmark means the effect is in the model at this step.

I T T T
0.00% 235.00% 50.00% 735.00% 100.00%

Figure 2.9: Model summary.

Procedure for automatic linear modeling is very simple. Select input variables and
output variable as target to be predict. Go to model options and set model procedure as
step-forward and check out model output save option. Then press the run button, model
summary, model effects, coefficients are displaced on output file. model summary shows
the method of model selection e.g step-forward, target variable and accuracy of the model.

Using coefficients, a linear prediction model can be formulated as shown in Eq. 2.1.
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ThrustkMmm_ & Effects Target: Measured ROP
Effects Target: Measured ROP \
Source Sum of Squares df Mean Square F Sig. Log_Alpha_ &
—

Corrected Model b 12770 4 3.192  E8.981 .000 -

e MeasuredRCOP
Residual 6.757 146 0.046 BRm

&

Corrected Total 15637 150

UCSMpa_... &

Figure 2.10: Effects of input parameters.

Target: Measured ROP Coefficient

Coefficients

Intercept o Estimate

P ositive

Megative

RSN 69\
Log_Alpha_.
MeasuredROP
&
DPWm_ &

ucsMpa_... &

Coefficients Target: Measured ROP

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. —Importance
Lower Upper

Intercept 1.022 0.160  6.376 .000 0.705 1.339
ThrustkNmm_transformed 0.029 0.003 10.787 000 0.024 0034 0312
Log_Alpha_transformed 0.475 0.080  7.968 .000 0.357 0593 0.250
DPWm_transformed -0.217 0.028 -7.869 000 -0.272 -0.163 0.249
UCSMpa_transformed -0.003 0001 -3.318 .001 -0.005 -0.001 0.189

Figure 2.11: Table of coefficients.

Finally predicted values obtained from Eq. 2.1 can be plotted in the form of scattered

and line plot as shown in Figs. 2.12 and 2.13 respectively.

ROP(m/h) = 1.022 + 0.029T hrust + 0.475Log(c) — 0.217DPW — 0.003UC'S

(2.1)

6.0000
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Predicted Value

20000

0000+

RZ Linear = 0.928

T T
0000 2.0000

4.0000 £.0000
Adv.Rate[m/hr]

T
8.0000

T
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Figure 2.12: Scattered plot between actual and SPSS predicted value.
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Figure 2.13: SPSS predicted AR line plot.

2.1.6 Partial and Bi-variate Correlations

In Bi-variate correlations, the relationship between two variables is measured. The degree

of relationship table (how closely they are related) could be either positive or negative.

Correlations

Ay Rate
ThrustM.Pa] | Power [kw] [rmihi]
ThrustMPa]  Pearson Gorrelation 1 1z 740 |
Sig. (2-tailed) 0oo 0oo
N 4021 4013 4021
Power [k Pearson Correlation -1 1 537
Sig. (2-tailed) 000 000
I 4013 4013 4013
Adv.Rate[mihr]  Pearson Correlation - 740" g3z 1
Sig. (2-tailed) 000 000
I 4021 40173 4021

= Correlation is significant at the 0.01 level (2-tailed).

Pearson correlation coefficient shows linear interdependence between two parameters,

Table 2.1: Bi-variant correlation.
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when frequency distributions of both interlinked variables are normal. The maximum
number could be either 4+1 (positive) or —1 (negative). This number is the correlation
coefficient. A zero correlation indicates no relationship and value close to +1 shows strong
positive correlation [25].The Bi-variate correlations procedure computes Pearson’s corre-
lation coefficient, Spearman’s rho, and Kendall’s tau-b with their significance levels Fig.
2.14. Correlations measure how variables or rank orders are related. Before calculating a
correlation coefficient, screen your data for outliers and evidence of a linear relationship.
Pearson’s correlation coefficient is a measure of linear association. Two variables can be
perfectly related, but if the relationship is not linear, Pearson’s correlation coefficient is
not an appropriate statistic for measuring their association. Spearman’s and Kendall’s
correlation coefficients indicate degree of linear relationship between two variables, when

frequency distributions of both interlinked variables are not perfect linear.

Correlations
Adv.Rate
ThrustMPa] [mehi]
kKendall's tau_h Thrust[MP3] Correlation Coefficient 1.000 -.510“_
Sig. (2-tailed) .oon
M 4189 4188
Adv.Ratelmihy]  Correlation Coefiicient -5107 1.000
Sig. (2-tailed) .0oa
M 4188 4188
Spearman's tho ThrustMPa] Correlation Coefficient 1.000 -B9a”
Sig. (2-tailed) .ooo
M 4189 4188
Adv.Rate[mihr]  Correlation Coefficient -6927 1.000
Sig. (2-tailed) .oon
M 4188 4188

= Carrelation is significant atthe 0.07 level (2-tailad).

Figure 2.14: Spearman’s and Kendall’s correlation coefficients.

Partial correlation measures the degree of relationship between two random variables,
with the effect of a set of controlling random variables removed. In fact, the first-order
partial correlation is nothing else than a difference between a correlation and the product
of the removable correlations divided by the product of the coefficients of alienation of the
removable correlations. The Partial correlations procedure computes partial correlation
coefficients that describe the linear relationship between two variables while controlling
for the effects of one or more additional variables [25]. Pearson correlation coefficients
are referred to the data, that is normally distributed and if the data sets are randomly

distributed then, Spearman and Kendall correlation coefficients are determined.
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Chapter 3

Case Descriptions

3.1 Hieflau Power Plant (Expansion Tunnel)

Figure 3.1: Hieflau expansion tunnel layout [26].

The Hieflau, 63 MW diversion HPP (hydro power plant), located along the river Enns in
Styria, enhanced the power supply in a first stage about 50 years ago by construction of a
reservoir (Wag storage) for daily storage. The next stage of the enhancement project Fig.
B.T] started in 2005 by carrying out a feasibility study, followed by site investigations and
elaboration of an upgraded scheme. Environmental aspects play an important role due

to the vicinity to the Gesduse National Park and some particular ecological requirements
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had to be especially considered in the upgraded scheme [26]. The Hieflau power plant
expansion includes an increase in discharge water volume from 60 m?/sec. to 90 m?®/sec.
The planned changes will increase the standard capacity of the power plant, which began
operation in 1955, by approximately 70 GWh/year. In addition to the necessary adap-
tation and renovation of the inlet and outlet structures, the newly built motive water
tunnel will be the centerpiece of the expansion [27]. Technical data of the Hieflau TBM
is displayed in table 3.1.

] 1 \ Excavation Diameter \ 6.18 m ‘
2 | Disc cutters, back loading 17 in
3 | Number of cutting discs 43
4 | Max. recommended average cutter load 267 EN
5 | Max. cutter-head thrust 11.481 kN
6 | Max. power rating per main drive unit 180 kW
7 | Number of main drive units 8
8 | Cutter-head drive 1440 kW
9 | Cutter-head speed 0-8 rpm
10 | Max. Torque at speed range 3440 kNm at the rate of 0-4 rpm
11 | Torque at max. power rating (max. speed) | 1720 at the rate of 8 rpm
12 | Breakout torque (0-5 Hz, max. 60 s) 4470 kENm
13 | Max. Hydraulic system pressure 345 bar
14 | Stroke of main thrust cylinder 1.320 mm
15 | Primary voltage 16KV
16 | Secondary voltage 660, 400, 110 V/
17 | Frequency (power supply) 50/60 Hz
18 | TBM conveyor belt width 762 mm
19 | Max. conveyor speed 3m/s
20 | Machine weight 500 t

Table 3.1: Technical data of the Hieflau TBM.

The new motive water tunnel has an interior diameter of 5.6 m. In the continuously-
driven sections, lining was done with reinforced concrete tubbing where cyclical driving

is used, the lining are cast-in-place concrete shell [27].

3.1.1 Description of the Hieflau Project

Head-race tunnel for the Hieflau hydro-power station.
Hard rock double shield:TBM , RobbinsDS — T BM — Model194 — 272 — 2
No. of disc cutters: 43
Tunnel length: 4918m
Drill and blast excavation X-section: 34.0 — 42.0m?2, Length: 810 m

TECHNICAL DATA  Average advance rate: 27.5m/day
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Best advance rate: 52.3m/day

Lining: Parallel-System mono-shell segment (w = 20cm)

3.1.2 Hieflau Headrace Tunnel Geology

The project area lies in the eastern part of the limestone Gesduseberge Alps south of the
Enns valley, which is partially narrowed as a gorge. The stratification of the rock shows
a typical triadic limestone alpine sequence of strata, with Ramsau dolomite over Raibler
beds and saddle-stone Dolomite down to large stretches of the predominant saddle-stone
limestone Fig. 3.2. The alignment of the second tunnel runs parallel and in a distance of
not more than 30 m to the existing one. Most information about the geological conditions

along this route is derived from the mapping of the first pressure tunnel.
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Figure 3.2: Geology of Hieflau headrace tunnel [26].

Additionally some site investigations were carried out to gain a well mapped basis
about the geology of the new headrace tunnel [28]. The large part of the TBM tunnel is
excavated in good rock conditions, predominantly Limestone and Dolomite. In Limestone
some small fault zones and some local karstic cavities with diameters up to 0.5 m are

predicted.

e t

(a) Hieflau expansion tunnel [29]. (b) Segmental lining system [26].

Figure 3.3: The Hieflau hydro power project, TBM and lining segments.
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Doppelschild - TBM Robbins 194-272-2, ©@6,18m

Tagesbericht Data Logger Import

Datum 10/19/2008
Bericht Nr. 188
1 2 3 4 5 & 7 8 3
OBA
E 2 E % - : TEMm . . F'erl}ies gE
= = 58 | §2 2%, £2% =52 EB5 |3z | EE
L5 (S S OEG i PRE | £ & - -
[tt.mm.jii] | [hh:=s:mm] [rm] [Rpm] [kNmr] [kN] [mimémin] [mmiL] (] kW]
10/15/2008 0 35.95 6.91 1,802 10,340 114 17 32402 0
0| 333506 725 1,259 8,199 53 7 U1 0
] 3355.89 749 1,875 10,670 120 18 4 696 ]
0 3319.94 0.58 73 330 6 1 0.000 0
10/19/2008 08:00:00 3,319.94 7.29 1,699 9,450 0.000
10/19/20038 08:00:10 3,319.95 7.30 1,699 9,350 72.00 10 0.000
10/18/2008 08:00:20 3,319.96 7.20 1,724 5,620 60.00 ] 0.000
1041572008 08:00:30 3,319.57 7.32 1,187 8,800 48.00 7 0.000
1041572008 08:00:40 3,319.97 727 1,763 5,350 66.00 9 0.000
10/19/2003 08:00:50 3,319.98 7.30 1,452 2,910 42.00 ] 0.000
10/19/2008 08:01:00 3,319.99 7.28 1,578 9130 42.00 7 0.000
10/19/20038 08:01:10 3,320.00 7.3 1,258 8,690 42.00 ] 0.000
10/18/2008 08:01:20 3,320.01 7.3 1,342 8250 84.00 11 0.000
1041572008 08:01:30 3,320.02 7.30 1,385 8,360 54.00 7 0.000
1041572008 08:01:40 3,320.03 7.28 1,458 2,800 36.00 5 0.000
10/19/2003 08:01:50 3,320.04 7.31 1,393 8,030 43.00 7 0.000
10/19/2008 08:02:00 3,320.04 7.32 1,264 2,030 65.00 9 0.000
10/19/20038 08:02:10 3,320.05 7.26 1,600 8,580 42.00 7 0.000
10/18/2008 08:02:20 3,320.06 6.89 1,772 5,450 65.00 10 0.000
1041572008 08:02:30 3,320.07 7.34 882 7,260 36.00 5 0.000
1041572008 08:02:40 3,320.08 7.30 937 7,150 42.00 6 0.000
10/19/2003 08:02:50 3,320.09 7.30 269 6,930 30.00 4 0.000
10/19/2008 08:03:00 3,320.10 7.27 1,359 8,250 42.00 6 0.000
10/19/20038 08:03:10 3,320.10 7.28 1,458 2,800 65.00 9 0.000
10/18/2008 08:03:20 3,320.11 7.30 1,170 7,920 24.00 3 0.014
1041572008 08:03:30 3,32012 7.32 1,320 8,140 66.00 5 0.021
1041572008 08:03:40 3,320.13 7.31 1,458 2,800 60.00 ] 0014
10/19/2003 08:03:50 3,320.14 7.31 1,531 2,910 60.00 g 0.014
10/19/2008 08:04:00 3,320.15 7.32 1,548 9,020 65.00 9 0.014
10/19/20038 08:04:10 3,320.16 7.29 1,651 9,240 54.00 7 0.021
10/18/2008 08:04:21 332017 7.32 1,608 5,620 60.00 ] 0.014
1041572008 08:04:31 332017 7.29 1,604 5,350 54.00 7 0014
1041572008 0&:04:41 3,320.18 7.29 1,581 5630 72.00 10 0.021
10/19/2003 08:04:51 3,320.1% 7.29 1,501 9,570 54.00 7 0.014

Table 3.2: Hieflau TBM data logger [27].

The challenge of the TBM-drive is the crossing of a 40 m wide section in soft ground
conditions (Hartelsgraben). Within this zone loose rock boulders Fig. 3.3, bedded in
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a matrix of fine materials such as sand and clay were observed. In view to the hydro-
geological condition water in flow of 2 [ /s were predicted in the related section. TBM data
were recorded automatically in the form of excel sheet at the time of excavation as listed
in table 3.2. In this thesis data from Prof. Dr. Rainer Poisel in excel format is received.
It is stated here clearly that a Master Thesis by Viktoria Ostermann is written on this

Hieflau power project. Already work done by Ostermann includes:

e Correlations between all TBM parameters and Rock parameters e.g. Thrust vs
Advance Rate, Thrust vs Rock Fracture Class (RFC) etc.

e Box plots for all parameters
e Determination coefficients
e Scatter diagram

e 3-D analysis, for machine velocity, torque, thrust, power, advance rate and degree
of disintegration (RFC)

e Statistical analysis using software “R”

But, Ostermann had written in her thesis abstract that “ No significant relationship
between the TBM data and the different rock types could be determined”. In this dis-
sertation extended analysis by using Fuzzy logic, Math-Lab code and a commercially
available software SPSS19 is done. Good results are obtained that will be presented in

coming chapter.

3.2 Queens Water Tunnel

New York City Tunnel no. 3 is Fig. [3.4 one of the most complex and intricate engineering
projects in the world. Constructed by the New York City Department of Environmental
Protection (DEP), the tunnel will eventually span 60 miles and is expected to be complete
by 2020. The total cost of the project was expected to be about US $6 billions [30]. The
size and length of the tunnel, its sophisticated control system, the placement of its valves
in special chambers and the depth of excavation, represent state-of-the-art technology.
While city tunnel no. 3 will not replace city tunnels no. 1 and no. 2, it will enhance and
improve the adequacy and dependability of the water supply system and improve service
and pressure to outlying areas of the city. It will also allow the DEP to shut down, inspect
and repair city tunnels nos. 1 and 2 for the first time since they were activated in 1917
and 1936 respectively [30].The Queens Water Tunnel 3, stage 2 is intended to improve
fresh water distribution throughout the City of New York, USA. The tunnel being about

7.5 km long and 7 m in diameter was excavated beneath Brooklyn and Queens at an
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average depth of 200 m below the sea level in West-Central Queens County with using
a high power TBM. Construction of stage 2, is greatly accelerated by a mechanical rock

excavation technology [31].
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Figure 3.4: Queen water tunnel [32].

A tunnel boring machine (TBM), which has been lowered in sections and assembled
at the bottom of the shaft, will chip off sections of bedrock through the continuous rota-
tion of a series of steel cutting tools (cutters) mounted on a large-diameter, full-circular,
welded steel cutter head. The machine body of a TBM, which can be as long as 50 feet,
is mounted behind the cutter head. It contains the drive motors and other electrical,
mechanical and hydraulic equipment that provide the necessary thrust and torque that is
transmitted to the cutters through the cutter head. The TBM, also known as “The Mole”,
replaces the conventional drilling and blasting methods used during the construction of
Stage 1. Tt is expected that the improved technology will allow tunnel workers to excavate
at an average of 50 feet/day at a diameter of 23 feet more than twice the rate previ-

ously in water tunnel construction through drilling and blasting methods [33]. Another
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important advantage to using the TBM is it bores into the rock, there is less damage at

the point of excavation and no noise at the surface to disturb surrounding communities.

| 1 | TBM diameter | 7.06 m (23 ft 2 in) |
2 | Diameter range 6.50 m to 8.50 m
3 | Cutter size 482.6 mm (19 in)
4 | TBM model Robbins 235 — 282 H P (High Performance)
5 | TBM type Open
6 | Max. Cutter load capacity | 311 kN
7 | Number of cutters 50
8 | Cutter-head Thrust 15,550 kN
9 | Cutter-head power 3150 kW (4220 hp)
10 | Cutter-head Torque 3624 kNm
11 | Cutter-head Speed 8.3 rpm
12 | TBM weight 610 metric tons

Table 3.3: Specification of TBM for Queens water tunnel [34].

Underground fabrication of the high performance, open type hard rock TBM diam-
eter of 23’ commenced by September 1996, after a year of on-site utility and equipment

installation. Specifications of TBM for Queens water tunnel are listed in table 3.3.

Figure 3.5: TBM for Queens water tunnel [31], [33].

The TBM, which had been shipped from Chesterfield, England in June 1996 and
delivered in 28 truckloads of assemblies and parts, was designed and engineered by the
Robbins-Atlas-Copco Company. Since the inception of mining northeastward from the
Maspeth (Shaft 19B) in late October 1996 and completion in October 1999, five miles
of tunnel have been excavated, producing a 23" — 2”- wide, sub horizontal fresh bore
hole through this deeply eroded crystalline portion of the Appalachian mountain chain
[33]. Geological condition can be quantified as frequency and orientation of discontinuity

in rock mass as well as main regional/global geological structures such as faults and
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shear zones encountered in the field. Further, intact rock properties including strength
and brittleness should also be considered for performance analysis in mechanical tunnels.
Charles Merguerian, “Brittle Faults of the Queens Tunnel Complex, NYC Water Tunnel
7 and Saffet Yagiz, “Utilizing rock mass properties for predicting TBM performance in
hard rock condition”, have done a lot of work on the data of the Fig. Specially
Yagiz 2007 draw frequency distribution graph for unconfined compressive strength (UCS),
punch slope index (PSI), a angle, distance between plane of weakness (DPW) and rate
of penetration (ROP), along with this, he plotted 2-D correlation of ROP with all rock
properties. Moreover Yagiz formulated a empirical model for ROP and compare it with
measured ROP values [33]. In this thesis data from Saffet Yagiz 2007 research paper is
taken and analyzed for prediction of ROP using all rock properties . Moreover a statistical
model for ROP and rock fracture class (RFC) was developed and compared with Hieflau,

Vereina, Hemerwald and the Ttalian Alps tunnel data.

3.3 Vereina Tunnel

The Vereina tunnel (Fig. 3.6) is 19050 m long with an overburden amounting up to as
much as 1500 m. The tunnel is essentially single track. In the middle and at both ends
approx. 2 km long twin track and triple track sections allow trains to pass each other.
The drive was carried out by drill and blast in the twin and triple track sections with
cross sections from 70 — 85 m? resp 135 m? and in the single track section at the south
side (with a cross section of 39 — 42 m?) and by TBM in the single track section at the
north side (cross section of 46 m?) (Fig. 3.7). Two-thirds of the entire length of the
tunnel are located in the Silvretta crystalline, an old crystalline complex which was minor
affected by the alpine folding and which mainly comprises gneiss and amphibolites the
latter being extremely hard and tough rocks. All these formations are bedded horizontally

or sub-horizontally, like the sedimentary formations lying underneath.
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Figure 3.6: Vereina tunnel east portal [35].

The Vereina tunnel was designed and built with a monocoque shotcrete lining, which
was applied for the first time in this manner in a open TBM (Figs. 3.7-3.8) . At the
time of the construction of the Vereina tunnel (1993 — 1999) considerable developments
had been made since the time of the construction of the Furka Base Tunnel yielding steel
arches, epoxi-resin glass fiber reinforced rock-bolts and wet mix sprayed concrete, thus
resulting in remarkable higher qualities (like 60 N/mm? unconfined compressive strength
for sprayed concrete after 28 days) end extended durability. The temperatures were again
fairly low with 28°C' at the maximum. Technical data for this TBM is listed in table 3.4
and statistical analysis done by Viktoria Ostermann, Fuzzy logic rock mass classification
(RMC) by Poisel et al. The author received Vereina tunnel data as excel format from
Prof. Dr. Rainer Poisel and tried to analyzed all data using Excel, Origin Pro 8, Kaleida
graph, Math-Lab tools like Fuzzy logic and Math-Lab code. Moreover statistical modeling
was carried out using software packages “IBM — SPSS19”.

Tunnel Support and
Final Lining as
Monocoque Shotcrete
Lining

5.95

Structural Gauge

Excavation Cross Section
46 m?2

1.69

Drainage Canal

Invert Segment

\ 7.64

Figure 3.7: Vereina tunnel X-section [36].
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Figure 3.8: Geological longitudinal X-section of Vereina tunnel [36].

1 | TBM diameter | 7.64m |
2 | Number of cutter 51

3 | Diameter of cutter 191 m
4 | Maximum individual cutter load | 311 kN
5 | Cutter-head operating thrust 17.105 kN
6

7

8

9

Maximum Operating Thrust 22.934 EN
Maximum Hydraulic Pressure 345 bar
Number of Drive motors 10
Power/Drive Motor 300kW

10 | Total Cutter-head Power 3000 kW

11 | Cutter-head Speed 0—4.63 rpm

12 | Number of Thrust Cylinders 4

13 | Primary Voltage 10,000 V

14 | Secondary Voltage 690/380 V

15 | Conveyor Belt Capacity 1, 1007}?—:

Table 3.4: Vereina TBM technical data.

Hemerwald Tunnel

Hemerwald tunnel (Fig. 3.9) is 4720 m long pressure tunnel excavated by Tiroler Water
Power Company. Leading from a highly situated (1900 m) side valley to the Penstock
leading to the Inn valley at sea level 645 m. Maximum overburden was 1250 m. It was
built by using Robbins Series 120 TBM. Technical data of the Hemerwald tunnel TBM

are listed in table 3.5.
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Figure 3.9: Hemerwald tunnel TBM [courtesy, Ewald Tentschert].

‘ 1 ‘ TBM diameter ‘ 3.90 m
2 Cutter-head Cutter-Disc 14"
3 No. of cutters 32cutters, 2.68 cutters/m?
4 Installed Power 4 x 125 HP= 500 HP
5 Power Supply 6000 Volts
6 RPM 5.6 rpm Constant
7 Maximum peak out put 595 hp
8 Normal Operating power 452 hp
9 Maximum Thrust of the TBM 421.4 EN
10 | Maximum Power Consumption of the TBM 339.63 kW

Table 3.5: Technical data of Hemerwald tunnel TBM.

Rock mass data:  Muscovite granite gneiss: 47.11%
Schist gneiss: 47.38%
Micaschists: 4.53
Granodiorite: 0.98%
Rock mass class (RMC) data
I.69.1%
IT.21%
11 . 3.2%
IV . 2.16%
V. 1.55%
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VIII. — — —
2500 Fenster Hemerwald Wasserschiofl
- 1g.5300m
- SPEICHER \
~  LANGENTAL d
0 g0 : TR /,',';/_ /,, ,,,‘,,, S IR~
Z A ST A _/,,,/,’”f/,/,/,,“,-/,/W,W .,,,‘,«,,,_M
: DRUCKSTDLLEN L=4680m
— 4% B39m 3% I
mit
vorgespannte Betonauskleidung 1g.4280m l/)éihef-
mit Folie 400m
standiest I gebrdch standfest [ gebrach Schiefergneis

Glimmerschiefer
Muskowitgranitgneis

Granodioritgneis

Betonring

Sicherungsspritzbeton

Figure 3.10: Geological profile and X-section of Hemerwald tunnel [?].

Geological profile and cross section view of the Hemerwald tunnel is displayed in Fig.
3.10. Data from this tunnel is received in the form of hard copy from Prof. Ewald
Tentschert as shown in Figs. 3.11 and 3.12. No previous work is available online on the
Hemerwald tunnel. Excel sheets from hard copy and logging data graphs were prepared
and analyzed for 2-D and 3-D surface analysis in this thesis. Finally statistical models were
established for RMC and advance rate using a statistical software SPSS19. Then separate

excel data files were prepared for different types of rocks and analysed for Hemerwald
tunnel.
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Figure 3.11: Original data file.
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3.5 Tunnels in the Italian Alps (Maen, Pieve and Varzo
Tunnel)

Three tunnels (Maen, Pieve and Varzo) for hydraulic purposes were excavated by tunnel-
boring-machines in mostly hard metamorphic rocks in Northern Italy (Fig. . A total
of 14 km of tunnel was surveyed almost continually, yielding over 700 sets of data featuring
rock mass characteristics and TBM performance. Technical data for these three tunnel is
listed in table. 3.6. The empirical relations between rock mass rating and penetration rate
clearly show that TBM performance reaches a maximum in the rock mass rating (RMR)
range 40 — 70 while slower penetration is experienced in both too bad and too good
rock masses . However different rocks gives different penetrations for the same RMR, the
use of Bieniawski’s classification for predictive purpose is only possible provided one uses
a normalized RMR index with reference to the basic factors affecting TBM tunneling.
Comparison of actual penetrations with those predicted by the Innaurato and Barton

models shows poor agreement.

‘ Description ‘ Maen ‘ Pieve ‘ Varzo
Total tunnel length (m) 1750 9600 6600
Tot. excavation time (days) 413 809 468
Surveyed section length(m) 1750 6400 5800
Excavation diameter (m) 4.20 4.05 4.05
Tunnel slope (°) 24 — 35 ~ 0 ~0
TBM model Wirth 340/420 E | Robbins1111-234-3 | Robbins 1214-240/1
TBM type Open Double Shield Double Shield
Number of cutters 36 27 27
Cutter spacing (mm) 66 75 75
Cutter diameter (in) 17 17 17
Maximum Thrust (kN) 7920 4602 8827
Boring stroke (m) 1.5 0.63 0.63
Cutter-head curvature Domed Flat Flat
Cutter-head RPM 5.5 —11 11.3 45-89

Table 3.6: Description of three tunnels and TBM technical data.
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Figure 3.13: Maen-Pieve-Varzo layout [37].
M. Berti et al 2002, have done already a lot of analysis on these three tunnel data,

including histogram plot, 2-D correlations between rock mass rating (RMR), thrust, pen-

etration rate, Q-value, utilization coefficient and UCS. They also establish an empirical
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correlation between penetration rate and RMR and then compared it with all available
models. They conclude that penetration rate strongly dependent on rock type and quality
of rock mass. In this research work data for these three tunnels from M. Berti by email
is received and analyzed for all machine and rock parameters. A Fuzzy logic model and
a Math-Lab code was written to predict the advance rate and RMR. Comparison of the
results with existing data from Hieflau, Hemerwald, Vereina and Queens tunnel sites is
done. Moreover, a statistical model is established for RMC, RMR and penetration rate

using a commercially available software SPSS-19.
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Chapter 4

TBM Data Analysis

4.1 Hieflau

4.1.1 Hieflau Seismic Data

Seismic data for a section (Tunnel meters 137-2794) of Hieflau tunnel were recorded by

Werner Chatwal et al. (TU Wien). TBM cutter-head was used as primary signal source.

\ _&'.\'_r Reflexion from the

Figure 4.1: Seismic data recording procedure [38§].

The signal is recorded directly on the machine disc cutters (for example: at the main

cavity of the cutting head). This very interesting development is tunnel seismic while
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drilling (TSWD), which has been derived from other seismic techniques using the seismic
waves generated by the cutting head as a signal. The quasi-continuous signal generated by
the cutting head in operation can be transformed to a normal seismogram by the use of a
pilot signal measured directly at the source (cutting head). This technique can be adapted
to the exploration ahead of a tunnel face. Conventional seismic traces are extracted from
the recordings by the use of a pilot signal recorded near the cutting head of the TBM. The
bandwidth of the seismic signals is > 200 Hz, a high signal to noise ratio is achieved, and
excellent conventional seismic traces are extracted. Method layout is described in Fig. 4.1.
“Amplitude of ersteinsatz” is amplitude of the direct wave transmitted by source (TBM
cutter-head), where as “amplitude of reflexion” is amplitude of reflected wave, transmitted
from source and recorded after reflected from discontinuity. “Pseudo velocity” is a fake or
false velocity of the seismic waves in the rock mass, which ranges from 2900 m/s to 5300
m/s for Hieflau tunnel [38]. Pseudo velocity mainly depends upon rock mass density and

rock strength, more dense rock rock propagate more pseudo velocity.

4.1.2 Data Analysis with Excel

Hieflau tunnel data were coupled with seismic data recorded ahead of tunnel face during
the excavation of the tunnel. Different correlations have been plotted between thrust and

amplitude of reflexion, amplitude of ersteinsatz and pseudo velocity.
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Figure 4.2: Chainage versus thrust, torque and AR.

Figure 4.2 shows trend of different variables along with chainage, it is clear that

thrust and torque values are linearly decreasing with chainage, while advance rate is
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linearly increased. Figs. 4.3(a,b) shows trend of AR against thrust and UCS respectively,
UCS values are predicted after assuming a normal frequency distribution of UCS. Linear

decreasing of advance rate in both cases, shows that AR is entirely dependent upon rock
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Figure 4.3: 2-D graphs for TM, thrust, AR and torque.

In Fig. 4.4 thrust is plotted against amplitude of reflexion and ersteinsatz. Amplitude
of ersteinsatz is almost independent of thrust, while amplitude of reflexion values are low
at high thrust. Both trend lines show a maximum data point frequency at maximum

thrust frequency.
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Thrust versus Amplitude of Reflexion and Amplitude of Ersteinsatz
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Figure 4.4: Thrust versus amplitude of ersteinsatz and reflexion.

4.1.3 3-D Data Analysis with “R”

Figures 4.5(a,b) shows variation of AR versus thrust at low and high torque. At high
torque, AR is linear to thrust, while at low thrust the relation is entirely complex like
a sinusoidal wave, which reflect the effect of torque on chip formation and advance rate.

This shows the reason behind the phenomenon of application of high torque motors in
TBM.

(a) Thrust versus AR at high torque. (b) Thrust versus AR at low torque.

Figure 4.5: 3-D surfaces.
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As at low torque, tool wear is maximum and TBM cannot achieve more AR only
with applying more thrust. That is why high torque motors are used in TBM. Figures
4.6(a,b) show thrust versus AR at low and high amplitude of reflexion. Again at high
amplitude values, the AR is linearly increasing with thrust contrary to low amplitude of
reflexion. Reason may be as more torque produces more amplitude of reflexion and at

high amplitude of reflexion, more advance rate is observed.

AR

1
7000 2000 10

2

(a) Thrust versus AR at high pseudo velocity. (b) Thrust versus AR at low pseudo velocity.

AR

(¢) Amplitude of reflexion versus AR at high (d) Amplitude of reflexion versus AR at low
thrust. thrust.

Figure 4.7: 3-D surfaces.

Figures 4.6(c,d) shows variation of AR with respect to amplitude of erestizeit at low
and high thrust. In both cases, at high and low thrust, AR curve has a depression at
maximum value of amplitude of reflexion, which shows here a region of very challenging
rock properties that creates a hindrance for TBM to get more AR with more thrust.
Figures 4.6(e,f) shows AR versus thrust at low and high amplitude of erestizeit that
revealed AR in both cases increases up to a maximum value of 4.5 m/hr then decrease

with the same rate as it increased. But here we see that decline for AR, even increasing
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thrust is started where the amplitude is max. This shows a major influence of AR upon
rock strength.

Figures 4.7(a,b) shows AR and thrust dependency upon each other at low and high
pseudo velocity. It is clear from the surface plot that in both cases trend is same, showing
that AR and thrust behaviour is independent of pseudo velocity. Fig. 4.7(c,d) shows AR
versus amplitude of reflex at low and high thrust. It is obvious that AR decreases when
there is more amplitude of reflex. Amplitude of reflexion is more when rock strength is

high, therefore in high strength rock, at same TBM thrust values, AR reduces.

4.1.4 Tools/Cutter Wear

Disc cutter wear in mechanized tunneling has a strong influence on cost and performance
in hard rock tunnelling and soil mechanics. Cutter wear is affected by several parameters.
Cutter consumption estimates are most effective if based on most recent experiences and
recent experimental data related to rock properties. These estimates are highly influenced
by advance rates, rock strengths, and types of cutters immersed in abrasive ground. Data

from the Hieflau pressure tunnel were analyzed for cutter wear.
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Figure 4.8: Thrust versus tool wear.

Figure 4.8 shows cutters per chainage (cutter consumption or tool ware) against av-
erage thrust. It is clear that cutter consumption is decreased with increase of average
thrust. This may be due to low thrust values, magnitude of thrust is insufficient for chip

formation and energy transferred to rock is too low and dissipated as heat.
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Chainage Vs Tools Wear
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Figure 4.9: Chainage versus tool wear.
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Figure 4.10: Tool wear.

Figures 4.9 and 4.10 shows different parameters changing with TM. It is clear from
these figures that maximum number of cutter change appeared at TM-7719 and one of the
two peaks for cutter wear plus chipping is also lying on the same TM. More cutter wear
and chipping is responsible for more cutter changes. Total rolled distance is minimum at
maximum excavated length, reason may be due to specific damage and location of cutter
numbers 34-35.

4.1.5 Statistical Modeling with SPSS-19

Statistical software SPSS-19 was used to analyze statistically the Hieflau data. Data is

divided into three classes.
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1. Machine + Rock Mass + Seismic data

2. Machine +Rock Mass data

3. Machine + Seismic data

Here analysis was carried out separately for each data class and results were compared

in last section.

’ Relation of Property with AR \ Empirical Equation \ Corr. Coeff. R? ‘
AR vs Thrust AR =5.9875 — 0.3617T hrust | 0.419
AR vs UCS AR = 4.579 — 0.0067UCS 0.1102
AR vs Torque AR = 3.35 — 7% 10°Torque 0.0702
AR vs Amp_Reflex AR = 2.76 + 4.086 Amplrefie | 0.0039
AR vs Amp_Erst AR = 2.957 — 0.0957TAmplgrest | 0.0008
AR vs Pseudo_ Vel AR = 3.592 — 0.0001 Pseuy ¢ 0.0264

Table 4.1: Rock mass plus machine and seismic data versus AR.

Table 4.1 lists linear relationship and coefficient of correlation R? for linear curve
fitting. From above table it is clear that only thrust and advance rate have a good linear
correlation with R? = 0.419. All other parameters are more or less are linearly correlated

with AR but with very poor correlation.

4.1.5.1 Frequency Distribution of Parameters

Here the frequency distribution of all input and output variables are given to visualize
their importance and eligibility as an input parameter for the multidimensional analysis

and prediction models.
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Figure 4.11: Histograms of TBM data 1.
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Figure 4.12: Histograms of TBM data 2.

Figures 4.11 - 4.14 shows frequency distributions of machine variables and seismic data.
Here in Figs. 4.11(a,b) we see that a perfect normal distribution in thrust and advance
rate, whereas torque and TBM speed data is skewed left and skewed right respectively.
Figures 4.13 and 4.14 shows seismic data frequency distribution, here only amplitude of
erestizeit has a perfect normal frequency distribution, where as all other seismic data is
scattered, except Fig. 4.12b where except one point, remaining frequency distribution is

perfect normal.
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Figure 4.13: Histograms of seismic data 1.
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Figure 4.14: Histogram of seismic data 2.

4.1.5.2 Prediction Model Summary and Coefficients

Tables 4.2(a,b) shows model summaries for mix data (TBM+Seismic+Rock mass data)
and TBM-Rock mass data. In mix data, AR prediction model has an accuracy of 50.7%,
where for the TBM-Rock mass data accuracy is 48%. In both cases forward stepwise
method is used and AR is target value in both cases. Tables 4.3 (a,b) shows predic-
tor importance and number of input parameters used for the prediction model. In mix
data AR model, five input parameters are used, that include all machine, rock mass and
seismic data properties and thrust is most important parameter that strongly affect the
model output. Torque is least import parameter here and can be neglected in the model

calculations.
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Model Summary

Target Adv.Rate[m/hr]

Automatic Data Preparation On

Model Selection Method Forward Stepwise

Information Criterion -5 064,407

The information criterion is used to compare to
models. Models with smaller infarmation criterion
values fit hetter.

Worse Eetter

Accuracy 50.7%

| T T T
0.00% 25.00% 50.00% 75.00% 100.00%

(a) TBM, rock mass and seismic data.

Model Summary

Target Adv.Rate[m/hr]

Automatic Data Preparation On

Model Selection Method Forward Stepwise

Information Criterion -4 843 854

The information criterion is used to compare to
models. Models with smaller infarmation criterion
values fit hetter.

Worse Better

Accuracy 48.0%

[ T T T
0.00% 25.00% 50.00% 75.00% 100.00%

(b) TBM and rock mass data.

Relation of Property with AR | Empirical Equation Corr. Coeff. R

AR vs Thrust AR =-0.3617Thrust + 5.9875 0.647
AR vs Machine Torque AR = 7x10°Torque + 3.35 0.265
AR vs UCS AR =0.0067UCS+ 4.579 0.332
AR VS Amp. gepex AR = (0.04.086 Amp,. g + 2.76 0.062
AR vs Amp. o AR = 0.0957Amp,,. +0.2.957 0.028
AR vs Pseudo vy AR 0 0.0001 Pseudo,,; + 3.592 0.163

(c) Linear relation between output and input parameters.

Table 4.2: Model summaries.

Table 4.3 indicates that only machine parameters are used to predict AR, where again

thrust is most important and torque is least important parameters but torque cannot

be neglected here as number of in put parameters are too small. Table 4.2¢ shows linear

relationship between all input parameters and target variable (AR). Using these equations,

SPSS-19 software has predicted the target variable with a reasonably good accuracy.
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Effects

Target: Adv.Rate[m/hr]

Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model ¥ 1,283.890 5 256.778 B61.706 .000
ThrustMPa_transformed 479251 1 479.251 1 60B8.290 .000 0.249
speedRpm_transformed 125274 1 125274 420399 .000 0.198
amplitude_reflexionen_ 48322 1 4832 162161 | 000 0.186
Paeuda_Geschwindigkeit_ 34563 1 34583 116.056 000 0.184
torquekNm_transformed 24 548 1 24,548 §2.380 .000 0.183
Residual 1246.185 4,182 0.298
Corrected Total 2 530.075 4 187

(a) Effects for TBM, rock mass and seismic data.

Effects Target: Adv.Rate[m/hr]

Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model W 1,215.244 3 405.081 1,289.034 .000
ThrustMPa_transformed 480353 1 480.353 1528.561 .000 0.395
speedRpm_transformed 111.715 1 1M1.715 355.496 .0oa 0.314
torquekNm_transformed 12.818 1 12.818 40.788 .0oa 0.292
Residual 1,314.830 4,184 0.314
Corrected Total 2530075 4187

(b) Effects for TBM and rock mass data.

Table 4.3: Model effects.
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Coefficients Target: Adv.Rate[m/hr]

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 4 508 0228 19.783 .000 4.061 4.955
ThrustMPa_transformed -0.293 0.007 -40.103 000 -0.307 -0.278 0.249
speedRpm_transformed 0.396 0.019 20504 .0oo 0.358 0.434 0.198
il W= izl 23493 1845 12734 000 27110 -19.876 0.186
transformed ' ' ' : ' ' '
Pseudo_Geschwindigkeit -7
L] gkeit_ -0.000 0.000 -10.773 .000 -0.000 -0.000 0.184
torquekNm_transformed -0.000 0.000 9076 .0oo -0.000 -0.000 0.183

(a) Coefficients for TBM, rock mass and seismic data.

Coefficients Target: Adv.Rate[m/hr]

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 2.986 0168 17.793 .000 2 BET 3315
ThrustMPa_transformed -0.252 0.007 -39.087 .000 -0.306 0377 0.395
speedRpm_transformed 0.365 0.019  18.855 .0oa 0.327 0.403 0.314
torquekNm_transformed -0.000 0.000  -B.387 .0oa -0.000 -0.000 0.292

(b) TBM and rock mass data.

Table 4.4: Model effects.

From table 4.4(a,b) coefficients for the AR prediction models are collected to form em-
pirical linear models. Eq. 4.1 shows AR prediction model for TBM+Rock Mass—+Seismic
(Mix data), with a R? = 0.507 and Eq. 4.2 shows the same models for TBM and rock
mass data, with a R? = 0.48 . This indicates that with increasing input parameters

prediction improves.

AR(m/h) = 4.51 — 0.293T hrust 4+ 0.396rpm — 23.49Amp,.; — 0.001T0orq — 0.001Psed
(4.1)

AR(m/h) = 2.996 — 0.292T hrust + 0.365RPM — 0.001T orque (4.2)
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(a) AR model for TBM, rock mass and seismic  (b) AR model for TBM and rock mass data.
data.

Figure 4.15: AR regression models.

Prediction models scattered plots with R? = 0.48 and R? = 0.48 respectively Figs.
4.15(a,b), shows reasonably good accuracy. Figure 4.16 shows comparison between actual
and predicted values of AR and a curve fit to the predicted values. Actual and predicted
values are in good match and predicted values of AR almost 90% conside with actual

ones.
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Figure 4.16: AR model comparison.
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4.1.5.3 Partial and Bi-Variant Correlation

Machine and seismic data variables are analysed for partial and bi-variant correlation
using SPSS-19.

Correlations
Ay Fate
Control Yariahles ThrustMPa] | torgue [kNm] | speed [Rpm] [mihr]
-none-? Thrust[MPa] Correlation 1.000 304 =427 -.647
Significance {2-tailed) | . .oon .ooo .ooo
df 0 4163 4187 4186
tarque [kim] Caorrelation 304 1.000 -.152 -.268
Significance (2-tailed) .ooo | .0oo .0oo
df 4163 0 4163 4163
speed [Rpm] Caorrelation - 427 - 162 1.000 443
Significance (2-tailed) .oan oo | .ooo
df 4187 4163 0 4188
Adv.Ratelmi/hl  Correlation - 647 - 268 443 1.000
Significance {2-tailed) .oon .oon .ooo
df 4186 4163 4186 0
Adv.Rate[mir]  ThrustMPa] Caorrelation 1.000 A77 -.208
Significance (2-tailed) | . .ooa .0oo
df 0 4162 4185
torgue [kkm] Caorrelation ATT 1.000 -.038
Significance (2-tailed) oao | 014
df 4162 0 41562
speed [Rpm] Correlation - 206 -.03g 1.000
Significance {2-tailed) .oon 014
df 4184 4162 0
a. Cells contain zera-order (Peargan) correlations.
(a) TBM data.
Correlations
Pseudo_
Amplitude_ Geschwindigh Amplitude_ Adv Rate
Control Variahles reflexionen eit Ersteinsatz [rruhir]
-none-2 Amplitude_reflexionen Carrelation 1.000 -.A08 -.383 0585
Significance (2-tailed) | . .0on .0on .00s
df 0 1827 1824 2537
Pseudo_Geschwindigkeit  Correlation -.5058 1.000 23 -163
Significance (2-tailed) .ooo | . .ooo .ooo
df 1827 0 1824 1827
Amplitude_Ersteinsatz Caorrelation -.353 291 1.000 -.0z28
Significance (2-tailed) .oon oo . riric)
df 1824 1824 0 1824
Adv Rate[mihr] Carrelation 0585 -163 -.0z2a 1.000
Significance {2-tailed) .oos .oon 229 .
df 2537 1827 1824 0
Adv Rate[mshr]  Amplitude_reflexionen Correlation 1.000 -.504 -.3582
Significance (2-tailed) | . .ooo .ooo
df 0 1826 1823
Pseudo_Geschwindigkeit  Correlation -.504 1.000 290
Significance (2-tailed) oo . .oon
df 1826 0 1823
Amplitude_Ersteinsatz Correlation -.352 2490 1.000
Significance {2-tailed) .oon oo .
df 1823 1823 0

a. Cells contain zero-order (Pearson) correlations.

(b) Seismic data.

Table 4.5: Partial correlation coefficients.
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Partial correlation measures the degree of relationship between two random variables,
with the effect of a set of controlling random variables removed [39]. The Partial corre-
lations procedure computes partial correlation coefficients that describe the linear rela-
tionship between two variables while controlling for the effects of one or more additional
variables. Correlations are measures of linear association. Two variables can be perfectly
related, but if the relationship is not linear, a correlation coefficient is not a proper statis-
tic to measure their association. In bi-variate correlations, the relationship between two
variables is measured. The degree of relationship (how closely they are related) could
be either positive or negative. The maximum number could be either +1 (positive) or
—1 (negative). This number is the correlation coefficient. A zero correlation indicates
no relationship and value close to +1 shows strong positive correlation [25]. Table 4.5a
shows that, there is a good correlation between thrust and advance rate (R? = —0.647),
and between machine speed and AR (R? = 0.443). Negative correlation of (R? = —0.647)
between thrust and AR also verify the graph between them as shown in Fig. 4.1b. Table
4.5b shows correlation between AR and seismic data variables. It is clear from the table
that the is no significant correlation between seismic data and AR.

Table 4.6 shows almost same results as shown in partial correlation between thrust
and machine parameters. Table 4.7 shows a Bi-Variant correlation between thrust and
seismic parameters, pseudo velocity have a partial correlation coefficient of (R* = —0.001),
amplitude erestizeit (R? = —0.039) and amplitude reflexion have a correlation of (R* =
0.181) only. These figures shows that, there is no significant partial correlation between
thrust and rock mass seismic properties and there is no significant correlation between

seismic data and AR.

Correlations
Adv.Rate
ThrustMFa] [rmifhie] torgque [kMm] | speed [Rpm]
ThrustiMPal  Pearson Carrelation 1 _GAT 304 477 |
Sig. (2-tailed) .00 .00 .0on
M 41849 4188 4165 4189
Adv Rate[mih]  Pearson Correlation N Tha 1 - 268 4437
Sig. (2-tailed) .00 .00 .0on
M 4188 4188 4165 4188
targue [kMm] Pearson Correlation 3047 - 268 1 -1527
Sig. (2-tailed) .00 .00 .0on
M 4165 4165 4165 4165
speed [Rpm] Pearson Correlation - 427 4437 -182" 1
Sig. (2-tailed) .00 .00 .00
M 41849 4188 4165 4189

= Correlation is significant at the 0.01 level (2-tailed).

Table 4.6: Bi-variant correlation coefficients.
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Correlations

Pzeuda_

Amplitude_ Gaschwindigh Amplitude_

Thrust{MPa] reflexionen ait Ersteinsat
ThrustMPa] Pearsan Correlation 1 B -0 033
Big. (2-tailed) oo 80 a3
M 4139 7539 1829 1826

Armplitude_reflexionen Pearson Correlation -181 1 - A0 - 353
Sig. (2-tailad) a0 a0 a0
M 7539 7539 1829 1826

Pseudo_tGeschwindigkeit  Pearson Correlation -0 -5087 1 a7
Sig. (2-tailed) 280 oo oo
M 1829 1829 1829 1826

Amplitude_Ersteinsatz Pearsan Correlation 033 -383" 291 1

Big. (2-tailed) a3 oo oo

M 1826 1826 1826 1826

. Correlation is significant at the 0.07 level (2-tailed).

Table 4.7: Bi-variant correlation coefficients.

4.1.6 Conclusions

Worth mentioning of the drive is the successful passage of the challenging section at the
Hartelsgraben as well as the crossing under the existing access gallery. The old tunnel
was identified as a clear bottleneck in the headwaters system. Hard rock double shield
TBM, Robbins DS-TBM-Model 194 — 272 — 2, was used to excavate the second tunnel
4819 m in length and interior diameter of 6.18 m, parallel to existing tunnel [26]. After
detailed analysis of the data from Hieflau tunnel, it is concluded that, advance rate is
inversely proportional to thrust and UCS, main reason for this is dependence of AR on
rock strength. There is a good correlation between thrust and advance rate, and between
machine speed and AR . There is no significant correlation between thrust and seismic
parameters, between AR and seismic parameters. At low torque and low and high thrust,
tool wear is maximum, TBM cannot achieve maximum AR only with increasing thrust.
This is also included that moderate thrust values gives rise to maximum tool and cutter
life. At maximum value of amplitude of reflexion, a depression in AR value is found,
that shows rock brittleness and hardness as key parameters in TBM performance. After
multidimensional analysis, advance rate linear regression prediction model formulated
with the help of SPSS19 software, shows a good significance of the model. Also machine
parameters have more influence on the model as compare to seismic data. Rock mass
data are also normally distributed and useful for regression analysis, that is clearly used

in analysis.
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4.2 Queens Water Tunnel

Intensive studies have been carried out for estimating the TBM performance mostly based
on intact rock properties to predict the TBM performance in jointed and faulted rock
conditions. In this chapter TBM performance was more precisely related with machine
and rock mass parameters. 2-D analysis was made using excel and Kaleida graphs. 3-D
analysis was carried out by a statistical software “R”. Rock fractured class (RFC) was

predicted using a Math-Lab code and by statistical modeling using a commercial software
SPSS.

4.2.1 2-D Analysis, Rate of Penetration (ROP)

ROP was plotted against thrust of the machine Fig. 4.17a, it shows ROP increases with
increase of thrust with a R? = 0.33. ROP have similar behaviour with UCS as in case
of thrust (Fig. 4.17b). When we plot UCS vs thrust, it is clear from the graph that,
again thrust has constant value with respect to UCS at low values, but at high values of
UCS > 170 M Pa, it drastically increases. The reason may be that up to a certain value
of UCS cutters of the machine have low wear and good performance.

Figures 4.17(a,b) show AR trend against thrust and UCS, both trend are linear with
respect to AR. Same trends are replicated in Figs. 4.18(a,b) for thrust versus UCS and
rock fracture class versus AR. Both graph shows that thrust and UCS are closely related

and their influence on advance rate is similar.
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Thrust versus Advance Rate
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(b) UCS versus AR.

Figure 4.17: Thrust and UCS versus AR.
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Figure 4.18: 2-D plots.

Figure 4.19a shows Brazilian Tensile Strength (BTS) versus AR, a linear increase in AR
is observed with BTS with R? = 0.01. In Fig. 4.19b thrust, AR, BTS, distance between
Planes of Weakness (DPW) and a angle (alpha angle is the angle between tunnel axis
and the planes of weakness) are plotted against tunnel meters. AR and BTS are almost

constant throughout the length of chainage, while thrust goes down with some deviation
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and « angle and DPW are randomly distributed. From these 2-D graphs (Figs. 4.17-
4.18), it can be concluded that AR and UCS can be predicted through linear regression

modeling.
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(b) TM versus thrust, AR, BTS, DPW and alpha angle.

Figure 4.19: 2-D plots.

4.2.2 3-D Analysis, Rate of Penetration (ROP)

A statistical software “R” was used to understand effects of UCS and BTS on advance
rate with respect to machine thrust. These 3-D surfaces clearly describe the variation

and dependence of one variable upon other, while third variable is kept constant at low
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or high value.
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(a) Thrust versus AR at high UCS. (b) Thrust versus AR at low UCS.

Figure 4.20: 3-D surfaces.

Figures 4.20(a,b) show AR variation with thrust at low and high UCS. At low UCS,
AR increases linearly with thrust up to a certain limit, then goes down, while at low
UCS, AR have a linear increase throughout the tunnel length. Figs. 4.21(a,b) show
dependence of AR on UCS at high and low thrust. Interestingly, at high thrust values,
ROP is decreasing linearly with UCS, then got a peak value of 2.5 m/hr at about 200
M Pa and then tends to zero. At very low values of thrust, AR decreases linearly with

UCS, clearly verifying the role of rock strength in machine advance.

(a) UCS versus AR at high thrust. (b) UCS versus AR at low thrust.

Figure 4.21: 3-D surfaces.
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Thrust

60

(a) BTS versus AR at high thrust. (b) BTS versus AR at low thrust.

Figure 4.22: 3-D surfaces.

Figures 4.22(a,b) shows BTS relation with AR at high and low thrust. At high thrust,
AR trend increases like a sinusoidal wave while on the other hand, AR remains constant
with increase of BTS, at low thrust values. BTS have no influence on AR and thrust

relation, as shown in Figs. 4.23(a,b).

ROP

(a) Thrust versus AR at high BTS. (b) UCS versus AR at low thrust.

Figure 4.23: 3-D surfaces.

4.2.3 Statistical Modeling

SPSS-19 was used to model empirical equations for ROP and other parameters. After

multidimensional analysis, different models are predicted using available data. Normal
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frequency analysis, linear regression modeling and bi-variant correlation are formulated,

plotted and compared with actual data.

4.2.3.1 Frequency Distribution of Different Parameters
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Figure 4.24: Histograms for UCS and BTS.
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Figure 4.25: Histograms thrust and ROP.

Figures 4.24-4.26 show histograms of different variables. BTS and measured ROP has a
good normal frequency distribution. While other parameters like thrust and UCS are left
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skewed, DPW and alpha angle are randomly distributed.
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Figure 4.26: Histograms for alpha angle and DPW.

4.2.3.2 ROP Regression Analysis

Commercial software packages (IBM SPSS-19) for standard statistical analysis were used
for stepwise, multiple variable regression analysis and statistical modeling using known
parameters to model an unknown parameter. In order to obtain this model, multidimen-
sional regression analysis were carried out for rock properties and machine parameters.
Effect of each parameter separately on rate of penetration (ROP) was analyzed. Separate
equation was developed for each rock parameter against the ROP, to see the weight and
importance of that parameter in overall model. R? values (linear and quadratic equations)
of each equation were evaluated and compared for weight and importance of that variable.

Model summary is shown in table 4.9, that elaborates model accuracy of 64.4%.
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Relation of Property with AR | Empirical Equation Corr. Coeff. R

AR vs Thrust AR =0.0246Thrust +1.195 0.577
AR vs BTS AR =0.0428BTS+ 1.637 0.13
AR vs UCS AR =0.0041UCS + 1.426 0.24
AR vs Log(a) AR =-0.5790? +2.7840.-1.639 0.485
AR vs DPW AR =-0.837DPW +2.73 0.468

Table 4.8: Table of rock properties versus ROP.

Model Summary

Target Measured ROF

Automatic Data Preparation Cn

Model Selection Method Forward Stepwise

Information Criterion -458 701

The information criterion is used to compare to
models. Models with smaller information criterion
values fit better.

Worse Better

Accuracy 54.4%

| | | |
0.00% 25.00% a0.00% 75.00% 100.00%

Table 4.9: AR model summary.
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Effects Target: Measured ROP

Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model W 12.770 4 3192 68.981 .000
ThrustkNmm_transformed 5.385 1 5385 116.362 .000 0.312
Log_Alpha_transformed 2938 1 2938 B3.493 .000 0.250
DPWm_transformed 2.865 1 2865 61916 .000 0.249
UCSMpa_transformed 0.510 1 0510 11.010 .001 0.189
Residual B.757 146 0.046

Corrected Total 19.527 180

(a) Parameters effects.

Coefficients Target: Measured ROP

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 1.022 0.160 6.376 .000 0.705 1.339
ThrustkNmm_transformed 0.029 0.003 10.787 .000 0.024 0.034 0.312
Log_Alpha_transformed 0.475 0.060 7.968 .000 0.357 0.593 0.250
DPWm_transformed 0.217 0028  -7.869 .000 0.272 -0.163 0.249
UCSMpa_transformed -0.003 0001 -3.318 .001 -0.005 -0.001 0.189

(b) Coefficient table for AR model.

Table 4.10: Effects and parameters of AR model.

After multidimensional analysis of the rock properties and machine parameters, dif-
ferent equations were developed and presented in table. 4.8. Finally a model for ROP

was developed, using coefficient matrix (table 4.10b) as shown below in Eq. 4.3;

ROP(m/h) = 1.022 + 0.029T hrust + 0.475Log(a) — 0.217DPW — 0.003UCS  (4.3)
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Figure 4.27: Predicted ROP model scattered plot.

Figure 4.27 displays scattered plot of predicted ROP and actual ROP, with R? = 0.654.
Comparison between actual and SPSS ROP as a line plot is shown in Fig. 4.28. A

reasonably good coincident showing the prediction power of SPSS model is observed.
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Figure 4.28: AR model comparison.
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4.2.3.3 Rock Fractured Class (RFC)

After repeating same procedure as for ROP a model for RFC was formulated and shown
in eq. 5.2. Model accuracy here is 57% and DPW is most important parameter among

model predictors and ROP has the minimum influence on model prediction.

Model Summary Effects Target: RockFractureClass
Source Sum of Squares df Mean Square F Sig. Importance
Target RockFractureClass Corrected Model ¥ 59.865 3 5978 34249 000
, i DPWm_transformed 44.563 1 44563 152.968 | 000 0.290
Automatic Data Preparation On
BTSMpa_transformed 1.156 1 1156 3967 048 0.145
Model Selection Method Mane (Al Predictors Entered) MeasuredROP_transformed 0.144 1 0144 0483 484 0.142
i . _ UCSMpa_transformed 0.077 1 0077 0265 608 0.141
Information Criterion -178.615
Log_Alpha_transformed 0.009 1 0.008 0.030 B64 0141
The information criterion is used to compare to models.
Models with smaller information criterion values fit hetter. ThrustkNmm_transformed 0005 [ 0005 0016 898 0.141
Worse ' Better
Accuracy Residual 41951 144 0.291
7 a7.1% Ci d Total 101.816 150
0.00% 25.00% 50.00% 75.00% 100.00% DUECeota
(a) RFC model summary. (b) Effects of parameters.

Table 4.11: RFC model summary and effects.

Coefficients Target: RockFractureClass

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 3.754 0.623 6.024 000 2.522 4.986
DPWm_transformed -1.022 0.083 -12.368 000 -1.186 -0.859 0.290
BTSMpa_transformed -0.109 0055  -1.992 048 0.217 -0.001 0.145
MeasuredROP_transformed -0.146 0208 0702 484 -0.557 0.265 0.142
UCSMpa_transformed -0.001 0003 0515 608 -0.007 0.004 0.141
Log_Alpha_transformed -0.031 0179 D472 864 -0.385 0.324 0.141
ThrustkNmm_transformed -0.001 0.009 0128 898 0.019 0.017 0.141

Table 4.12: RFC model coefficients.

RFC = 3.754—1.022DPW —0.109BT S—0.146 ROP—0.001UC'S—0.031 Log(a')—0.001T hrust
(4.4)
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Figure 4.29: Predicted RFC model.
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Figure 4.30: Comparison of RFC.

Scattered and line plot comparison of predicted and actual values Figs. 4.29 and 4.30

show medium accuracy of the model.

4.2.3.4 Partial and Bi-Variant Correlations

Correlation measures the degree of relationship between two random variables, while the

effect of a set of controlling random variables is removed. In fact, the first-order partial
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correlation is a difference between a correlation and the product of the removable correla-
tions divided by the product of the coefficients of alienation of the removable correlations
[39]. The correlations procedure computes partial correlation coefficients that describe
the linear relationship between two variables while controlling for the effects of one or
more additional variables. Correlations are measures of linear association. Two variables
can be perfectly related, but if the relationship is not linear, a correlation coefficient is not
a proper statistic to measure their association. In Bi-variate correlations, the relation-
ship between two variables is measured. The degree of relationship (how closely they are
related) could be either positive or negative. The maximum number could be either +1
(positive) or —1 (negative). This number is the correlation coefficient. A zero correlation

indicates no relationship and value close to +1 shows strong positive correlation [25].

Correlations
Thrust Alpha angle RockFracture Measured
UCE (Mpa.) | BTS (Mpa.) (ki) DY () (degrees) Class ROP
UCE (Mpa) Fearson Caorrelation 1 281” Bz -116 -.089 -.002 2547
Sig. (2-tailed) oo oo 157 280 985 02
N 151 1461 1461 151 151 151 151
BTS (Mpa.) Fearson Correlation 2817 1 A -114 Rkl -.037 103
Sig. (2-tailed) oo 138 B0 764 655 207
N 151 151 151 151 151 151 151
Thrustikhmm) Pearsan Carrelation 29 121 1 - 183 197 NEE &7
Sig. (2-tailed) oo 1348 61 m7 G52 non
N 151 151 151 1561 1561 1561 1561
DPW (rn) Fearson Caorrelation -116 -118 -153 1 026 -7E1T - 469
Sig. (2-tailed) 1567 B0 061 749 non non
N 151 1461 1461 151 151 151 151
Alpha angle (degrees)  Pearson Carrelation - 089 nzs -197 026 1 -037 213
Sig. (2-tailed) 280 764 17 749 655 009
N 151 151 151 151 151 151 151
RaockFractureClass Pearsan Carrelation -o02 -.037 037 -raT -037 1 2807
Sig. (2-tailed) ags R4S Ba2 non G55 i)
N 151 151 151 1561 1561 1561 1561
Measured ROP Fearson Caorrelation 2547 103 7T - 469 213 280" 1
Sig. (2-tailed) o0z 207 oo non 009 Qilif|
N 151 1461 1461 151 151 151 151

** Correlation is significant at the 0.01 level {2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 4.13: Bi-variant correlation.

Table 4.13 shows Bi-Variant correlation between machine and rock variables. It is
clear from the table that, there is a good correlation between thrust and UCS (R? =
0.629) and between thrust and AR (R? = 0.577). Similarly a fair value of correlation
(R?* = 0.254) exist between UCS and ROP. The best correlation is found between, DPW
and RFC (R? = 0.751). Overall values in tables shows that, in Queens water tunnel data,

a reasonable correlation is found between machine and rock mass data.

4.2.4 Conclusions

When rock mass have high UCS and low brittleness (BTS), then, obtained AR is relatively

lower than expected. Maximum AR are observed as the alpha angle ranges from 50 — 65
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degrees. As DPW ranges from about 20 — 40 c¢m, the obtained AR is also rather high.
UCS plays a major rule in TBM performance, at low UCS, AR has linear correlation with
thrust, whereas at high USC, thrust make a curvi-linear correlation with AR. Advance
rate (AR) prediction model has accuracy of 64.4% and AR linear regression model when
plotted against the actual AR values gives a significant correlation (R? = 0.655). Similarly
a linear regression model for rock fracture class (RFC) was formulated and give accuracy
of 57% and comparison of predicted and actual RFC values give R? = 0.588. Only one
rock property i.e UCS is in good correlation with machine thrust (R? = 0.629). Moreover
machine thrust and AR have a positive linear correlation of R? = 0.577. Geological con-
dition and rock mass characterization in the field should be investigated before selecting
the TBM, since the machine specification including thrust, cutter-head power and both
diameter and number of disc have influence on the ROP [33]. Hence geology and rock
properties including orientation, condition and frequency of discontinuities together with
rock strength and brittleness, provide the major control on the penetrability of tunnel

boring machine.

4.3 Vereina tunnel

Vereina tunnel data consists of tunnel meters, thrust, torque, advance rate, petrography,
fracture class, geological classes and tool wear. Data were segregated into different seg-
ments suitable for Microsoft excel, Fuzzy logic, statistical software “R”, Math-Lab code
and IBM SPSS19. Rock fracture class (RFC) is sum of 5 — 6 rock geological param-
eters e.g fracture frequency, fracture spacing, orientation etc. Petrography deals with
the systematic description of rocks. The term is sometimes loosely used as synonymous
with "petrology", which, being the broad science of rocks, is concerned not only with
precise description but also with understanding the origin (petrogenesis), modification

(metamorphism), and ultimate decay of rocks [40], [41].

4.3.1 Data Analysis by Microsoft Excel

Rock mass and TBM data are plotted against tunnel meters to see the variation and trend
of individual parameter as chainage proceed ahead. It is clear from Fig. 4.31 that thrust
and advance rate (AR) vary almost in the same pattern from 2000-7'M to 5000-T'M,
then from 5000-7'M to 10000-T'M the relation is inverse i.e low ROP at relatively high
thrust. From 10,000 — T'M to end of 12,000 — T'M, very low ROP is observed at high
thrust, which may be due to relatively high rock strength and due to learning effect of
the machine driver, who tried to push more thrust to achieve more ROP without knowing

the effects of other parameters.
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TUNNEL METER VS THRUST-MOMENT-RFC-ROP
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Figure 4.31: TM versus ROP, RMC, RFC and torque.
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Figure 4.32: Thrust versus PR and torque.

Figure 4.32 shows relations between thrust and penetration and moment. Relation
between thrust and ROP is very complicated. To illustrate it, a linear trend line is drawn
by curve fit having R? = 0.018. Thrust and moment of machine also have same linear
trend with R? = 0.38. It is clear from Figs. 4.33(a,b) that penetration is decreased with
increase of all, RMC, RFC and petrography. On the other hand penetration increases
with high values of torque. Figs. 4.34(a,b) clearly shows that RFC and RMC are inversely
proportional to thrust, i.e. highly fractured rock can be easily excavated by TBM even
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at moderate thrust.
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Figure 4.33: Penetration versus RMC, RFC, torque and petrography.
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Figure 4.34: Thrust versus RMC and RFC.

4.3.2 Data Analysis and RMC Prediction by Fuzzy Logic Tools

For Fuzzy logic an input data file was prepared after filtering the data. Input data consists
of three major parameters i.e. tunnel meters per day, cutter thrust and torque (power

consumption), which acts as Fuzzy logic inputs and from these input rule base converts
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them into a single output as rock mass class (RMC). An I/O subroutine for reading data
from excels to Mat-Lab and then for plotting the results is written. This sub-routine can
read data from any excel file how large it may be and can plot the data in required domain.
Another I/O (input-output) routine is written, which perform Fuzzy logic operation (rule
base) by taking three inputs and plot the output result as RMC. Then 3 — D surfaces
were plotted for thrust, power and RMC for both data files.

Figure 4.35 shows a rule base table for Vereina tunnel. Rule base was compiled after a
detailed study of relations between rock and machine parameters. After detailed analysis
of data, the rule base is formed. But still here too much room for improvement in rule
base is available by incorporating more variables like presence of water, overburden etc.

as input variables, in rule base decision box.

1o Iy I Il Il i Il I i
I
X .
gl w W Y A Y v Iy I "
o =
o
=S gy | I v s % I I
ShALL RIDDLE HIGH Skall  MIDDLE HIzH ShALL MICDLE HIzH
THRUST THRUST THRUST
FEW MIDDLE MANY

METERS PER DAY

Figure 4.35: Fuzzy rule-base for Vereina tunnel data.

4.3.2.1 Tunnel Section from 3000-7'M to 4000-T' M

When we compare the results of RMC, calculated from Fuzzy logic with actual RMC,
they are in good coincidence, i.e. the trend is same, except at three points (at 4313 m,
4634.7m and 4881.3m). When we see the 3 — D surface generated by Fuzzy tools (Fig.
4.36), at medium thrust and power consumption RMC is high value. This may be due to
moderate strength rock (4 < RMC < 6). TBM is more efficient and penetration is more

at medium thrust and power consumption.
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Algorithm 4.1 I/O subroutine for Vereina.

Input/output subroutine for Vereina Tunnel 4000m-5000m

a=newfis ('Vereina Tunnel');
a=addvar (a, "input', '"Thrust of the Cutter', [500 1350]);
a=addmf (a, "input',1l, "small', 'trapmf', [425 700 750 9007]);
a=addmf (a, "input',1, 'middle', 'trimf', [750 925 11371]);
a=addmf (a, "input',1l, "great', 'gaussmf', [925 1137 1250 1400]);
a=addvar (a, "input', 'Boring Meters per Day', [10 34]);
a=addmf (a, "input',2, 'few', 'trapmf', [1 9 11 18]);
a=addmf (a, "input',2, 'middle', "trimf', [15 22.5 30]);
a=addmf (a, "input',2, 'many', 'trapmf', [25 33 35 42]);
a=addvar (a, "input', 'Power Consumption', [70 4600]);
a=addmf (a, "input',3, '"low', "trapmf', [60 100 720 1200]);
a=addmf (a, "input',3, 'middle', 'trimf', [1200 2335 34671]);
a=addmf (a, "input',3, '"high', "trapmf', [2335 3467 4500 4600]);
a=addvar (a, "output', '"RMC"', [1 7]);
a=addnf (a, 'output',1,'I"', 'trapmf', [-1 0 1
a=addmf (a, 'output',1,'II", "trimf', [1 2 3]
a=addmf (a, 'output',1,"'III", "trimf', [2 3 4
]
)

-~

a=addmf (a, 'output',1,'IV', "trimf', [3 4 5
a=addmf (a, 'output',1,'V"', "trimf', [4 5 6]
a=addmf (a, 'output',1,'VIl', "trapmf', [5 5.8 8 8]);
rulelList=]
11151
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N WWWHD BB D WWWSs B DGO WO 0w oo

PR R RRRPRRPRRRRRRPRPRPRRRERRRRRRERRRRE
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1
331171;
addrule (a, rulelist); gensurf (a)
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Figure 4.36: Fuzzy 3-D surface.

It is clear from the 3-D surface (Fig. 4.36) that high values of RMC correspond to
moderate values of thrust and machine power. This clearly shows the effect of rock mass
strength upon TBM performance and advance rate. Fig. 4.37 displays a comparison
between actual and Fuzzy logic RMC. It is clear from the figure that, there is a good
correlation and match between actual and Fuzzy values, hence this tool give a reasonably

good prediction.

Actual RMC vs Fuzzy RMC 3000-4000TM
W

——Actual RMC —=—Fuzzy RMC

2300 3100 3300 3500 3700 3200 4100

Tunnel Meters (TM)

Figure 4.37: Comparison of actual and Fuzzy RMC.
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4.3.2.2 Section Tunnel Meters 9,000 m to 10,000 m

Tunnel section from 9,000 to 10,000 TM shows entirely different behavior as compared
to section 3,000 to 4,000 TM. Thrust versus penetration has an inverse proportionality.
This may be due to a high strength of rock. Moreover due to low rock fracture value
here chip formation was difficult. More tool wear resulted low advance rate even on high
thrust values. Machine thrust plotted against RMC', shows inverse proportionality, that
means more thrust needed for strong and fractured rock. Thrust and torque are directly

related in a linear correlation.

Thrust vs Penetration Thrust vs RMC

y =-0.5525x + 3327.5
R*=0.02

‘ . s . v . s
3000 - - g ¥ O
L . s |y =-0.0009x+4.5396
. ; R?2=0.0204
= Moment _— o \\
. .
s

RMC

- Penetration

y =1.025x - 199.09
R?=0.6482

Thrust Force (t)
Thrust (t)

(a) Thrust versus PR and torque. (b) Thrust versus torque.

Figure 4.38: Thrust versus penetration, RMC, torque 9000-10000 TM.

This section was also analyzed by Fuzzy logic. Separate subroutine was written as
for previous section after formulating the Fuzzy rule base. 3-D surface was generated for
three parameters i.e thrust, RMC and power consumption of the TBM. 3-D surface (Fig.
4.39) shows more advance rate at low RMC and at medium and high values of thrust.

Penetration is too low at low values of thrust and RMC.
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Figure 4.40: Comparison of RMC.

RMC from Fuzzy logic and the actual are compared. Figure 4.40 shows both actual and
predicted RMC follow the same trend but differ from each other. They have coincidence
only on few points (at 9097m, 9463 m, 9542m and 9590 m). It can be extracted from the
data results that Fuzzy logic can give good results if we take into account more parameters

and re-formulate the rule base.
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4.3.3 3-D Analysis with “R”

Statistical software “R” was used to draw a 3-D surfaces for different variables, which
show the correlation and dependence of these variables on each other. Different views of
these surfaces are shown to illustrate the interdependence of different parameters on each
other.

Penetration_mph

Penetration_mph

Moment_KNm

G000 20

(a) Thrust versus ROP at high torque. (b) Thrust versus ROP at low torque.

Penetration_mph

Penctration_mph

RFC
30001
20 5

(¢) Thrust versus ROP at high RFC. (d) Thrust versus ROP at low RFC.

Figure 4.41: Thrust versus ROP at low and high torque.

From Figs. 4.41(a-d) it is clear that penetration is inversely proportional to thrust
at high values of torque and same at low torque values, at low RFC advance rate is
almost constant. At low RFC, penetration is maximum at medium thrust, showing the
effect of rock fracture class upon TBM performance. Where as in Figs. 4.42(a,b,c,d),
penetration when plotted against thrust at high and low RMC, shows at high rock mass

class, ROP is again maximum at moderate thrust, while at low RMC, penetration looks
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almost independent of RMC. At both high and low petrography, penetration is maximum
at moderate thrust values. It can be concluded that TBM efficiency in terms of penetration
and tool wear, is max when machine applied thrust values are of medium range. Overall
RFC and torque has a little effect on ROP and thrust relation.

Penetration_mph

Penetration_mph

300 041
7 2

(a) Thrust versus ROP at high RMC. (b) Thrust versus ROP at low RMC.

Penetration_mph

Penetration_mph

3pp 01
4 1

(¢) Thrust versus ROP at high petrography. (d) Thrust versus ROP at low RFC.

Figure 4.42: Thrust versus ROP at high and low RMC.

4.3.4 Statistical Modeling with IBM SPSS 19

After multidimensional analysis, different models are predicted using available data. Nor-
mal frequency analysis shows the following results. Penetration and rock fractured classi-
fication show a good normal distribution with very low standard deviation, on the other

hand torque and RFC don’t follow any normal distribution. Model selection method was
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“forward stepwise” and default combining method was “mean” at 95% confidence level.
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Figure 4.43: Histograms for thrust and torque.
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Figure 4.44: Histograms for ROP and RMC.

Figures 4.43 and 4.44 shows frequency distribution of different variables. Only single
variable penetration rate (ROP) has a perfect normal frequency distribution with (sd =
0.659). Torque and RFC data is left skewed. RMC is also showing a normal distribution

with some exceptions.
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4.3.4.1 Penetration Rate Prediction Model

Penetration rate (PR) is always a major parameter while discussing the optimization
or performance of a TBM. After multidimensional analysis, PR was predicted by SPSS
linear regression analysis. Model summary, effects and coefficients of the input variables

are shown in tables 4.14-4.16 respectively.

Model Summary

1204
Target Penetration [m/h]
100 Mean = 9.16
Automatic Data Preparation Cn | ﬁ‘i"s'%?’" L
. . 807
Model Selection Method Forward Stepwise - —
5 a
=
Information Criterion -666.810 @ 50 -
n
The information criterion is used to compare to
models. Models with smaller information criterion 401
values fit better. Z
Worse Better 7
Accuracy 26.8%
[ T T T v SID 75 1D‘D 125 15ID 1?‘5
0.00% 25.00% 50.00% 732.00% 100.00%
RFC
(a) PR model summary. (b) RFC Histogram

Table 4.14: Model summary and coefficients.

Effects Target: Penetration [m/h]

Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model W £9.295 5 13.858 43782 .0oo
MomentKNm_transformed 51.974 1 51.974 164.193 .000 0.233
Thrustt_transformed 26.307 1 26.307  B3.108 .0oo 0.208
RMC_transformed 7.905 1 7.805 24972 .0oo 0.180
mday_transformed 4.489 1 4.489 14180 .000 0.186
RFC_transformed 1.865 1 1.885 5.904 015 0.184
Residual 183.278 578 0317

Corrected Total 252573 584

Table 4.15: PR model effects.

There were five predictors used to establish a model for ROP table. 4.15. Torque
and thrust have more influence on model forming and RFC have a least effect to model.
Similarly in step forward process torque was the first and most important parameter to

involve in iteration process and RFC is last and least important parameter.
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Coefficients Target: Penetration [m/h]

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 1.388 0864 1.606 109 -0.309 3.086
MomentKNm_transformed 0.000 0ooo 12814 000 0.000 0.000 0.233
Thrustt_transformed -0.001 0000 9116 .0oo -0.001 -0.001 0.208
RMC_transformed -0.202 0040 -4997 000 -0.281 -0.122 0.180
mday_transformed 0.520 0138 3766 000 0.249 0792 0.186
RFC_transformed -0.028 0oz 2430 015 -0.082 -0.005 0.184

Relation of Property with
ROP

ROP vs Thrust

ROP vs RMC

ROP vs RFC

ROP vs (meters/day)

(b) Table of linear equations between input and target variable.

Table 4.16: Table of PR model coefficients and linear equations.

Table 4.16 shows a model coefficients. Standard deviation of predicted value ROP is
(R? = 0.658) and (R = 0.811). After using all of these variables, coefficients, residuals
and linear equations from table 4.16b, the ROP model was predicted, that is shown below

in eq. 4.5;

ROP(m/h) = 1.388 — 0.001T hrust + 0.52(m/day) — 0.202RMC — 0.028 RF'C

(a) Model coefficients.

Empirical Equation Corr. Coeff. R

ROP =0.0003Thrust +2.15

ROP = 0.297RMC+ 5.193

ROP =-0.865RFC+ 11.29

ROP=0.159 +5.68
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Actual & predicted PR Comparison
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Figure 4.45: Prediction model plot.

The model obtained is plotted and compared in Figs. 4.45(a, b) respectively, predicted
values are plotted versus actual ROP. A good correlation between the two values is found

with R = 0.52. and a good coincidence is found between actual and predicted ROP.

4.3.4.2 Prediction Models for RMC and RFC

Rock mass class was also predicted by Fuzzy logic. Here for the counter check and com-

parison, RMC is analysed and an empirical prediction model with SPSS19 is formulated.

Model Summary
Model Summary

Target BMC Target RFC

Automatic Data Preparation On Automatic Data Preparation (n

Model Selection Method Forward Stepwise Model Selection Method Forward Stepwise

. o Information Criterion 759,501
Information Criterion -784.350
. . Lo The information criterion is used to compare to
The information criterion is used to compare to models. Models with smaller information criterion
models. Models with smaller information criterion values fit better
values fit better. Wi ) Bett
Worse Better orse =t
Accuracy [ 77 29 Accuracy 61.3%
I T T T
[ T T T
0.00% 25 00% 50.00% 7500%  100.00% 0.00% 25.00% s0.00% 75.00%  100.00%
(a) RMC. (b) RFC.

Table 4.17: Model summary.
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Effects Target: RMC

Rock fractured class (RFC) was also an important parameters to analyse. First of all
RFC value was calculated by adding different numbers available in data. Then an empir-
ical prediction model for RFC was formulated. Table 4.17(a,b) shows model summary for
RMC and RFC linear regression models. RMC model shows a higher accuracy as compare
to RFC model. Both prediction model are based upon "step forward” calculation meth-
ods. Table 4.18 shows effects of predictors (input variables) upon output variables (RMC
and RFC). For RMC linear regression model, thrust plays the most important role, while

in the RFC model, petrography is the most important input variable. Five predictors in

Table 4.18: Model effects.

RMC and four predictors in RFC are used to formulate linear regression model.
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Effects Target: RFC

Source Sum of Squares  df  Mean Square  F Sig. Importance — Sum of Squares_ df _ Mean Square_F Sig. lmportance
Corrected Model ¥ 511.889 5 102378 395397 000

Corrected Model ¥ 3379349 4 B44.837 232651 000
Thrustt_transformed 101126 1 101,126 390.564 000 0.274

P, he_transformed 756.883 1 756.869 208.432 000 0.292
Petrographe_transformed 40.971 1 40.971 188.234 .000 0.209

Thrustt_transformed 584.058 1 584.058 160.838 .00 0.275
MomentKNm_transformed 12,601 1 12801 48.281 .000 0.178

RMC_transformed 22035 1 22035 6.068 014 0217
RFC_transformed 5.374 1 5374 20.754 .000 0.170

Penetrationmh_transformed 10.011 1 10.011 2.757 097 0.216
Penetrationmh_transformed 5.220 1 5220  20.160 000 0.170
Residual 149917 579 0259 Residual 2,106.182 580 3631
Corrected Total 661.606 584 Corrected Total 5485532 584

(a) RMC. (b) RFC.




Coefficients Target: RMC

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper
Intercept 5.012 0216 23.151 .000 4.587 5.437
Thrustt_transformed -0.002 0.000 -19.763 .000 -0.002 -0.002 0.274
Petrographe_transformed 0.536 0.043 12573 .000 0.452 0.620 0.209
MomentKNm_transformed 0.000 0.000 6.945 .000 0.000 0.000 0.178
RFC_transformed 0.050 0.0M 4 556 .000 0.029 0.072 0.170
Penetrationmh_transformed -0.167 0.037  -4.490 .0oa -0.240 -0.094 0.170
(a) RMC.
Coefficients Target: RFC

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper
Intercept 6.346 0.768 8.051 000 4.798 7.694
Petrographe_transformed 2109 0146 14437 .000 1.822 2.396 0.292
Thrustt_transformed -0.003 0.000 -12.682 000 -0.004 -0.003 0.275
RMC_transformed 0.308 0.125 2.463 014 0.062 0.554 0.217
Penetrationmh_transformed -0.206 0124 -1660 097 -0.451 0.038 0.216
(b) RFC.

Table 4.19: Model coefficients.

From these coefficients (table 4.19), following linear regression models for RMC and
RFC are formulated and shown in Eqs. 4.6 and 4.7 respectively. Resultant output from
these models are plotted and shown in Figs. 4.46(a,b). It is clear from the plot that RMC
model (R? = (.773) is more accurate than RFC model (R* = 0.616).

RMC = 5.012 — 0.002T hrust + 0.536 Petrography — 0.001Torque — 0.06RFC  (4.6)

RFC = 6.346 — 0.003T hrust + 2.11 Petrography — 0.206 ROP + 0.308RMC  (4.7)
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(a) RMC scattered plot. (b) RFC scattered plot.

Figure 4.46: RMC and RFC models scattered plots.
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Figure 4.47: Comparison of RMC.
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Comparision between actual & SPSS RFC
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Figure 4.48: Comparison between actual and predicted RFC.

Figures 4.47 and 4.48 shows a comparison between actual (field) RMC, Fuzzy logic
predicted and SPSS predicted RMC values. In the case of RMC (Fig. 4.47) SPSS gives a
reasonably good prediction, except for few values at the start of tunnel chainage, most of
the predicted values coincides with field RMC values. However RFC predicted values at
start of chainage, at the end section of tunnel length, SPSS predicted values contradict
with field RFC values.
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4.3.4.3 Correlation and Correlation Coefficient

Correlations
Fenetration

Thrustfy | MomentkKMm] miday [rmih] RFC RMC Fetrographe
Thrust it Pearson Correlation 1 Bz 3547 REES - 5047 - BE0T - 4247
Sig. (2-tailed) non oo o1 oo oon oon
M 585 585 585 585 585 201 585
hament[khrr] Pearson Correlation Bz 1 2337 398" -z 3297 1097
Sig. (2-tailed) Rilili] oo oo ana o0 .09
M 585 585 585 585 585 201 585
miday Fearsan Carrelation 64" 233 1 2447 ong -7 - 1147
Sig. (2-tailed) non non oo 834 o0z 06
M 585 585 585 585 585 201 585
Penetration [mih]  Pearson Correlation REED e 2447 1 R SIETT AT
Sig. (2-tailed) i) non oo oo oon oon
M 585 585 585 585 585 201 585
RFC Pearson Correlation -.5047 BT 009 -186" 1 7237 70
Sig. (2-tailed) Rilili] Rilili] 834 oo o0 Rilili]
M 585 585 585 585 585 201 585
RMC Fearsan Carrelation - G0 -39 -7 - 287" FES 1 TBS
Sig. (2-tailed) non non o0z oo oo oon
M 201 201 201 201 201 201 m
Petrographe Pearson Correlation - 4247 -A08 -A147 AT o1 RS 1

Sig. (2-tailed) non 009 006 oo oo oon
M 585 585 585 585 585 201 586

** Correlation is significant atthe 0.01 level {2-tailed).

Table 4.20: Pearson correlation coefficient table.

Table 4.20 shows correlation coefficient between different variables. First row of the table
shows correlation between thrust (¢) and all other parameters, like AR (m/hr), torque
(kNm), Petrography, RMC and RFC. It is clear from the table that thrust have a good
correlation with all above mentioned parameters except the penetration rate. Moreover,
machine parameters are strongly correlated with rock mass properties, e.g thrust-RMC
correlation coefficient is R? = 0.690, thrust-RFC correlation coefficient is R? = 0.594 and
the value for thrust-petrography is R* = 0.424. Penetration (m/hr) has greater influence
from torque and RMC rather than thrust.

4.3.5 Conclusions

Deep tunnels have their specific problems in regard to geo-technical and rock mechanics.
The Vereina tunnel is 19.05 km long with an overburden of 1500 m which mainly com-
prises gneiss and amphibolites the latter being extremely hard and tough rocks. All these
formations are bedded horizontally or sub-horizontally, like the sedimentary formations
lying underneath and tunnel was excavated by an open TBM. Due to the high water
pressures deep tunnels are normally drained tunnels, it is neither technically feasible nor
economically reasonable to try to seal off entirely deep tunnels [33]. So for TBM perfor-
mance prediction, all rock mass properties like rock strength, RFC, RMC, water pressure
and overburden must be kept in calculations, for the calculation for machine advance rate.

But unfortunately here in Vereina tunnel data analysis, no data was available regarding
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presence of water and effect of overburden. Moreover underground temperature increases
rigorously with depth.

Linear relation between thrust and penetration shows a little increase in penetration
with thrust, but when we plot a 3-D surface, to see the effect of third variable, it is clearly
observed that penetration is only maximum, when TBM thrust has moderate values. This
is valid for both high and low RFC, RMC and petrography values. Fuzzy logic is another
tool here, that was applied for prediction of penetration and RMC and shows acceptable
results. RMC, RFC and penetration rate were also predicted by using SPSS19 software
packages and give very efficient and accurate result for RMC prediction model R? = 0.773.
Last part of analysis consists of correlation between machine and rock mass parameters.
Here in Vereina tunnel data, a very good linear correlation between TBM parameters and
rock mass properties (thrust-RMC, R = 0.831) is observed. Correlation between between
thrust and torque R = 0.78 is found. But there is no significant correlation between
thrust and penetration R = 0.364.

4.4 Hemerwald Tunnel

4.4.1 Preparation for Excel Data Sheets

Hemerwald tunnel data was received as print form (hard copy) of bore logging table as

shown in Fig. 4.49. Excel sheets were generated by picking each data point manually.

RUSBRUCH [1IT ROBBINS- M 4:500

amLLerRnsE @ 3, 70

S8 Llimin Konsdanl

3doo 3ol50 24lc0 34 So
DATUM z.5. 78 &.5.78 | 5578, &.5 ',
| o Rl
STHRTION g 8 g
: SCHIEFERGIES M GLIMMERSCHIEFERLAL
GESTEIN
;z-r, 7,,,,,__5 E “ﬂg ‘gj g : gnnai 7. P-m. : iEmE F— ;ﬁ; e ===
VORTRIER [ 45,40 2940 34,80 49 10
NETTOBOHRZEIT (Std) 16,87 | G 2.5 104z
(Husl_n\srug/emz) % 77.53 75,04 58,14 7758
vo.tar;?.rsn.sessscw;w{xEﬂ 2.7 2,48 2..7& Z 97
Vof?p?f: ’}‘ﬁjﬁdoowi Jofont) 445,45 405, 63 441,77 295, 2F
L.Ef-STUNG.SHUF NAHME 335,55 334,20 336,46 338, 08
MEI.SEL. WECHSEL i
FELS - | SPRITZBETON | y ; 7 s { : :
™ T

sicues - | NAGELUNG fl i B i RIRH B i A
UNG STHHLEINBRL i @
ANMERKUNG |

Figure 4.49: Original data sample pdf. file.

First of all data for rock mass were analyzed for thrust, advance rate (AR), degree

of disintegration (DoD), rock mass class (RMC) and excavation velocity. Then data
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were segregated for all three rock types (Muscovite-Granite-Gneiss, Micaschists, Schistose-

Gneis) and same analysis were done as for rock mass.

4.4.2 Rock Mass Data
4.4.2.1 2-D Data Analysis with Microsoft Excel

Here data analysis for rock mass are shown, all rock properties and machine parameters

plotted versus tunnel meters (TM).

e Thrust[kg/cm2]
400 35
=R

== Disintigration
n Excvation vellft/hr]
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Figure 4.50: TM versus thrust, RMC, excavation velocity, disintegration.

Fig. 4.50 shows variation of different variables along the tunnel meter. Thrust and ex-
cavation velocity have almost similar variation. Rock mass class (RMC) and degree of dis-
integration varies quite similarly along the tunnel length. Variation of thrust and advance
rate is shown in Figs. 4.51(a,b), that display AR, RMC, machine velocity against thrust
variation. Only RMC have an inverse proportion to thrust, all other have a quadratic
relation with thrust. TBM rpm and AR entirely coincide with each other. But at low
values of RMC, a high thrust is observed which shows low RMC rock needs more ma-
chine thrust for the same AR . This may be due to low values of disintegration machine

cutter-head is unable to form chip formation at low thrust.
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(b) Thrust versus AR, power, velocity and RMC.

Figure 4.51: Thrust versus AR power, velocity and RMC (Rock mass).

4.4.2.2 3-D Analysis with “R”

Statistical software “R” is very useful for plotting 3-D surfaces for different parameters to

see the variation of three variables simultaneously.
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(a) Thrust versus AR at high RMC. (b) Thrust versus AR at low RMC.
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(c) Thrust versus AR at high machine velocity. (d) Thrust versus AR at low machine veloc-

ity.

Figure 4.52: 3-D surfaces for thrust, AR, power and RMC (Rock mass).

AR is inversely proportional to thrust at low RMC Figs. 4.52(a,b), while it has a
sinusoidal trend with thrust at high values of RMC showing that in poor to medium
rock advance rate increase with increase of thrust but when RMC is very low or in other
words rock strength is very high, advance rate decreases with increase of thrust values.
Reason may be due to low RMC, very strong rock, AR doesn’t depends upon thrust above
a critical value necessary for chip formation, whereas at high RMC values, AR linearly
increases with thrust up-to a specific point, beyond which increase in AR is not possible
by simple increase of thrust. Figures 4.52(c,d) shows AR variation against thrust at low
and high machine velocity. Machine velocity doesn’t play any role for AR, as in both

cases (i.e. at high and low machine velocity), AR is inversely proportional to thrust.
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(a) Thrust versus AR at high machine power. (b) Thrust versus AR at low machine power.

Figure 4.53: 3-D surfaces thrust versus AR (Rock mass).
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Figure 4.54: 3-D surfaces thrust versus AR (Rock mass).

Figures 4.53(a,b) shows AR against thrust at high and low machine power. Here again
AR and thrust have quadratic relation with each other, both on high and low machine
power. Whereas Figs. 4.54(a,b) shows variation of thrust and RMC, at low and high AR.
It is clear from the 3-D surface that at high AR, more thrust is required at lower values
of RMC, on the other hand low thrust needed at high RMC and vise versa, This trend is

sinusoidal.
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4.4.2.3 Prediction Model With Fuzzy Logic

A Mat-Lab code was written to predict the RMC values taking, thrust, advance rate (AR)
and machine power into account as input variables and RMC as output variable. Rule
base is formulated for the Math-Lab code after keeping in view all trends and behaviors

of all parameters versus RMC.

Boring Maters par Day

Thrust of the Cutter

Figure 4.55: 3-D surface by Fuzzy logic.

Plot between actual and Fuzzy RMC shows R? = (.39, fair correlation between actual
and Fuzzy RMC. Fuzzy RMC has a little bit higher values than actual. But improvement
can be made by re-formulating the rule base and taking more rock mass properties like

presence of water, overburden etc. into account.
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(b) Fuzzy versus actual RMC.

Figure 4.56: Fuzzy versus actual RMC.
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4.4.2.4 Statistical Modeling with SPSS

For rock mass data, SPSS19 modeling was carried out and histograms for all machine
parameters and rock mass properties were generated. After multidimensional analysis, a

linear prediction equation (model) was formulated for rock mass data.
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Figure 4.57: Histograms for thrust, power and excavation velocity.
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Figure 4.58: Histograms for AR, RMC and RFC.

Figures 4.57-4.58 show that, thrust and excavation velocity have normal frequency
distributions, AR have very good normal distributions, and RMC have a left skewed
frequency distribution. According to SPSS regression analysis assumptions, AR, RMC

and RFC fulfill the required condition for regression modeling.

106



Model Summary Effects Target: Adv.Rate[mlhr]

Target Ady. Rate[mih] Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model ¥ 6.273.335 4 1568.330  12,980.375 .000
Automatic Data Preparation On
Excv.\fthr_transformed 1.216.635 1 1216.695 10,070.026 .000 0.529
Model Selection Method Maone (All Predictors Entered)
Thrustkgem2_transformed 34.959 1 34,958 289.337 .00o 0.162
Information Criterion -8 ,493.069
- . Powerkw_transformed 22653 1 22 653 187.485 000 0.158
The information criterion is used to compare to models B
Models with smaller information criterion values fit better.
RMC_transformed 0.153 1 0.153 1.270 260 0.151
Worse Accuracy Better
I | o e wear Ame 0
[ T T 1 1
0.00% 2500%  S000%  75.00%  100.00% Corrected Total 6 756,562 4020

(a) Model summary and effects.

Coefficients Target: Adv.Rate[mihr]

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 0.331 0.092 3.5596 .000 0.151 0512
Excw.\ithr_transformed 0.849 0.008 100.350 .000 0832 0.865 0.529
Thrustkgcm?2_transformed -0.003 0.000 -17.010 .0oo -0.003 -0.003 0.162
Powerkw_transformed 0.004 0.000 13.683 .0oo 0.003 0.004 0.158
RMC_transformed -0.009 0.oos  -1.127 260 -0.026 0.007 0.151

(b) Model coefficients.

Relation of Property with AR | Empirical Equation Corr. Coeff. R
AR vs Thrust AR = -0.017Thrust+8.889 0.744

AR vs Machine RPM AR =446 RPM + 17.658 0.80

AR vs RMC AR = 0.165RMC + 2.695 0.135

AR vs Machine Power AR = 0.025Power + 4.937 0.53

AR vs RI'C AR =0.013RFC + 0.787 0.60

(c) Table of linear equations between input and out variables.

Table 4.21: AR model summary, effects and coefficients.

Using linear equations (table 4.21c) and coefficients matrix (table 4.21b), prediction
of AR model with the help of SPSS-19 linear regression modeling, a formula for predicted
advance rate was achieved. Model has very high accuracy of 92.8% and excavation velocity

was the most important parameter among the predictors.
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RZ Linear = 0.928 R
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(a) AR model plot.
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(b) Comparison actual and SPSS AR.

Figure 4.59: Actual and SPSS AR comparison.

From the coefficient matrix obtained from table 4.21, following prediction model was
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formulated and shown in Eq. 4.8.

AR(m/hr) = 0.331 + 0.849Fxcv.y¢ — 0.003T hrust + 0.004 Power — 0.009RMC  (4.8)

Prediction model (R?* = 0.928) for AR is plotted in Fig. 4.59a as scattered plot and Fig.
4.59b shows the comparison between actual and SPSS advance rate as a line plot, where

95% predicted values coincide with actual values.

4.4.2.5 Correlation and Correlation Coeflicient

Table 4.22 shows Pearson correlation between machine parameters and rock mass proper-
ties. Machine parameters have a good correlation with rock mass properties e.g thrust and
AR (R? = (0.745) and thrust and excavation velocity (R? = 0.740). This shows a strong
correlation between machine and rock mass parameters. Table 4.23 shows Spearman and
Kendall correlation coefficients. Again thrust is strongly correlated with excavation veloc-
ity and AR with correlation coefficient of R? = 0.786 and R? = (0.799 respectively. These
result also show that the data is not perfectly normally distributed. Otherwise Pearson

correlation coefficient should not be less than Kendall correlation coefficient.

Correlations
Thrust Adv Rate
RMiZ Excy W[ihi] [kafermz] Power [kw] [rshir]
RMC Pearson Carrelatian 1 a8 ~ 360 -200 135" |
Sig. (2-tailed) .00o .00o 000 000
M 4020 4018 4018 4012 4020
Escv \[ftrhir] Pearson Correlation 1447 1 -740” 117 9597
Sig. (2-tailed) .0oo .0oo .oon .oon
M 4018 4019 4019 4013 4019
Thrust [kicm2]  Pearson Correlation - 369 7407 1 -1127 - 74587
Sig. (2-tailed) 000 .00o 000 000
M 4018 4019 4019 4013 4019
Power [k Pearson Correlation -2007 A117 -1127 1 g3
Sig. (2-tailed) 000 .00o .00o 000
M 4012 4013 4013 4013 4013
AdvRatelmie]  Pearson Correlation A35 a59™ -7457 g3 1
Sig. (2-tailed) .0oo .0oo .0oo .oon
M 4020 4019 4019 4013 4021

= Correlation is significant atthe 0.01 level (2-tailed).

Table 4.22: Correlation coeflicients for rock mass.

109



Correlations

Thrust Adv.Fate
RMC Excv ihr] [kofcm 2] FPower [kw] [réhir]

Kendall'stau_b  RMC Correlation Coeflicient 1.000 086" S5 -7 0ez”

Sig. (2-tailed) oo oo oo oo

M 4020 4018 4018 4012 4020

Excy Vftthr] Carrelation Coeficient n8E" 1.000 -2 4287 Elva

Sig. (2-tailed) oo 0o ana ana

M 4018 4014 4014 4013 4019

Thrust [kgfern2]  Carrelation Coefficient 218" -2 1.000 -193" N

Sig. (2-tailed) non oo oo oo

M 4018 4018 4018 4013 4019

Power [kw] Correlation Coeflicient 27 425" -183" 1.000 4307

Sig. (2-tailed) non oo oo oo

M 4012 4013 4013 4013 4013

Adv.Rate[mih]  Caorrelation Coefficient naz” a6z” -f35 4307 1.000
Sig. (2-tailed) oo 0o 0o ana

M 4020 4014 4014 4013 4021

Speatman's tho  RMC Correlation Coeficient 1.000 408" -7 - 158" A7

Sig. (2-tailed) oo oo oo oo

M 4020 4018 4018 4012 4020

Excy.v[fthr] Correlation Coeflicient 09" 1.000 - TRE IR ER

Sig. (2-tailed) non oo oo oo

M 4018 4013 4013 4013 4013

Thrust [kgferm2]  Correlation Coeficient | - 2707 - TRE 1.000 -ar” -7a9”

Sig. (2-tailed) oo 0o ana ana

M 4018 4014 4014 4013 4019

Pawer [k Correlation Coeficient | - 1587 BB -7 1.000 5817

Sig. (2-tailed) non oo oo oo

M 4012 4013 4013 4013 4013

Adv.Rate[min]  Correlation Coeficient Rk 871" - rag” 5817 1.000
Sig. (2-tailed) non oo oo oo

M 4020 4013 4013 4013 4021

** Correlation is significant atthe 0.01 level (2-tailed).

Table 4.23: Spearman and Kendall correlation coefficients.

4.4.3 Muskowit-Granite-Gneis

4.4.3.1 2-D Data Analysis with Microsoft Excel

Figure 4.60 shows a plot between thrust and advance rate, AR is inversely proportional
to thrust. This may be due to TBM driver who tried to push more thrust to achieve more

AR, but due to rock strength of Muskovite-Granite-Gneis and low degree of disintegration

(DoD), AR is decreasing with more thrust applied.
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Figure 4.61 shows variation of all parameters along tunnel length, AR and degree of

disintegration (DoD) are increasing along tunnel length while thrust drops along TM.

Thrust vs Adv.Rate(MuskoviteGranitGneis)
4
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Figure 4.60: Thrust versus AR.
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Figure 4.61: Thrust versus AR.
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4.4.3.2 3-D Data Analysis With “R”

/

30 4

(a) Thrust versus AR at high DoD. (b) Thrust versus AR at low DoD.

Degree_of_Disintigration 4

300

f0 4

(c) DoD versus AR at low thrust. (d) DoD versus AR at high thrust.

Figure 4.62: 3-D surfaces for Muskovite-Granite-Gneis.

Statistical software “R” was used to plot 3-D surfaces for thrust, advance rate (AR) and
degree of disintegration (DoD). Figures 4.62(a,b) shows thrust versus AR at high and low
DoD respectively. Both graph shows almost similar behaviour, i.e linear increase in AR
with increase of thrust. Figures 4.62(c,d) shows DoD versus AR at low and high thrust
respectively. At low thrust AR is almost independent of DoD, while at high thrust values
the advance rate increases at start and then its level to a constant value, showing that no
further thrust can enhance the AR.

4.4.3.3 Statistical Modeling With SPSS19

Figures 4.63(a-d) shows frequency distributions for thrust, DoD, AR and RMC. Advance
rate and DoD data are normally distributed, while thrust data is right skewed and RMC
left skewed. Frequency distribution (histograms) for DoD and AR show that, SPSS pre-

diction modeling can be performed on these set of data.
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Figure 4.63: Histograms for thrust, DoD, AR and RMC.
Effects Target: Adv.Rate
Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model ¥ 749.239 2 374.619 4.686 013
DegreeofDisintigration - - -
transformed - 379.068 1 379.068 4742 034 0.511
Thrustkgecm2_transformed 179 467 1 179 467 2.245 140 0.483
Residual 4 316.663 54 79.938
Corrected Total 5 065.902 E6

Table 4.24: Predictor effects for AR model.
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Coefficients Target: Adv.Rate

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 36771 16.636 2211 031 3.407 70136
DegreeofDisintigration - - -
i il ol - 0796 0349 2277 027 0.095 1.497 0.349
Thrustkgem2_transformed -0.052 0038  -1.367 178 0128 0.024 0329
ActualRMC_transformed -1.268 1.383 0.910 367 -4.031 1.516 0.323

Table 4.25: Coefficients matrix for AR model.

After multidimensional analysis, different models are predicted using available data.
Normal frequency analysis shows that penetration, thrust and DoD are in good normal
distribution with very low standard deviation and RMC does not follow any normal dis-
tribution. Model selection method was “forward stepwise” and default combining method
“mean” at 95% confidence level was used. From coefficients matrix (table 4.25) using
coefficients from input variables and intercept, following linear prediction model can be

formulated:

AR(m/hr) = 37.771 + 0.796 DoD — 0.052T hrust — 1.258 RMC (4.9)

Only the advance rate frequency is normally distributed, so SPSS regression analysis
model were applied to these data sets, out put result is plotted and shown in Fig. 4.64
with R? = 0.148.

35.000-]

30.0007]

R? Linear = 0.148

25.000]

20.000-]

Predicted Value

15.000]

10.000

T 1 1 I 1 1
000 10.000 20.000 30,000 40.000 50.000
Adv.Rate

Figure 4.64: AR model for Muscovite-Granite-Gneiss.
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4.4.3.4 Correlation and Correlation Coefficients

Correlations
Thrust Degree of
[kocmz] Disintigration | Adv.Rate | Actual RMC
Thrustlkagrcm2) Pearsan Correlation 1 -.254 =270 071
Sig. (2-tailed) 057 043 589
M a7 a7 ar ar
Degree of Disintigration  Pearson Carrelation -.2484 1 365 039
Sig. (2-tailed) 057 o0& TTE
M a7 a7 ar ar
#dv Rate Pearsan Corralation 270 368" 1 -095
Sig. (2-tailed) 043 .0os 482
M 87 87 a7 57
Actual RMC Pearson Correlation 071 .039 -.095 1
Sig. (2-tailed) 589 TTE 482
M a7 a7 ar ar

* Correlation is significant atthe 0.05 level (2-tailed).
= Coarrelation is significant atthe 0.01 level (2-tailed).

Table 4.26: Pearson correlation coefficients for Muscovite-Granite-Gneiss.

Correlations
Thrust Degree of
[kawcm2] Disintigration | Adv Rate | Actual EMC
kendall'stau_ b Thrust[keicm2) Correlation Coefficient 1.000 -17E -3ty 007
Sig. (2-tailed) 074 .0oo 949
i a7 a7 a7 a7
Degree of Disintigration  Correlation Coefficient -ATE 1.000 247 086
Sig. (2-tailed) 074 010 438
i a7 a7 a7 a7
Adv.Rate Correlation Coefficient 379 247 1.000 -.005
Sig. (2-tailed) .0oo 010 962
&l a7 a7 ar ar
Actual RMC Correlation Coeflicient .oar 086 -.005 1.000
Sig. (2-tailed) 949 438 962
i a7 a7 a7 a7
Spearman's rho  Thrust{kalomZ] Caorrelation Coefficient 1.000 -.2432 - 488" 014
Sig. (2-tailed) 059 oon 016
i a7 a7 a7 a7
Degree of Disintigration  Correlation Coefficient =242 1.000 347 106
Sig. (2-tailed) 069 .oog 432
&l a7 a7 ar ar
Adv Rate Caorrelation Coefficient -.498" 347 1.000 -0z
Sig. (2-tailed) .000 008 986
i a7 a7 a7 a7
Actual R Correlation Coefficient 014 106 -.00z 1.000
Sig. (2-tailed) a16 437 56
i a7 a7 a7 a7

** Carrelation is significant at the 0.01 level {2-tailed).
* Correlation is significant atthe 0.0 level (2-tailed).

Table 4.27: Spearman’s correlation coefficients Muscovite-Granite-Gneiss.
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Table 4.26 shows Pearson correlation coefficients for different machine and rock param-
eters. There is no significant correlation between machine parameters and rock mass
properties. FEven rock mass properties are not well correlated with themselves. In table
4.27, Spearman and Kendall’s correlations are shown. Thrust and advance rate are rea-

sonably good correlated (R?* = 0.498), other all parameters shows correlation less than
R? = 0.40.

4.4.4 Mica-Schist
4.4.4.1 Data Analysis with Excel

Figure 4.65a displays variation of thrust AR and DoD along tunnel length, thrust required
for excavation is reducing while tunnel meters goes forward, whereas advance rate and
DoD increase along with tunnel meters. Thrust and advance rate, linear curve fit with
R? = 0.39 shows that AR is going to decreased with increasing thrust, which is due to

involvement of other factors like DoD and rock strength.
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Figure 4.65: TM and thrust versus AR and DoD.
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Correlations

Degree of Adv-Rate
Thrusti-Fa] | Disintigration [miihi]

Thrustt-Fa) Fearson Caorrelation 1 - 623 043

Sig. (2-tailed) 0m 828

M 32 24 28
Degree of Disintigration  Pearson Correlation - B23” 1 440

Sig. (2-tailed) 0m RIKH

M 24 34 24
Adv-Rate[mirhr] Fearson Correlation 043 440 1

Sig. (2-tailed) 828 0

i 28 24 31

= Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.045 level (2-tailed).

Table 4.28: Pearson correlation for Micaschists.

Tables 4.28-4.29 shows different correlations between machine parameters and rock

mass properties. In table 4.28 Pearson correlations are shown, thrust and DoD have a

negative correlation (R? =

—0.623), whereas thrust and AR, are positively correlated

(R? = 0.828).
Correlations
Cegree of Adv-Fate
Thrusti-Fa] Cizintigratian [tk

kendall's tau_h Thrusti-Fa] Correlation Coefficient 1.000 -3T5 021
Sig. (2-tailed) 013 =y
N 3z 24 23
Cegree of Disintigration  Correlation Coefficient -3T5 1.000 234
Sig. (2-tailed) 013 124
N 24 35 24
Adv-Rate[mihr] Correlation Coefficient 021 234 1.000

Sig. (2-tailed) =y 124
N 23 24 31
Spearman'srtho  Thrusti-Fa) Correlation Coefficient 1.000 - 475 067
Sig. (2-tailed) 019 736
N 3z 24 23
Cegree of Disintigration  Correlation Coefficient - 475 1.000 325
Sig. (2-tailed) 019 A
N 24 35 24
Adv-Rate[mihr] Correlation Coefficient 067 325 1.000

Sig. (2-tailed) 736 A
N 23 24 31

* Correlation is significant at the 0.05 level (2-tailed).

Table 4.29: Spearman’s correlation coefficients for Micaschists.

On the other hand in table 4.29 Spearman’s and Kendall’s correlations are shown.
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There is no significant correlation between machine and rock mass properties found, except
only between thrust and DoD (R?* = 0.476) a good correlation found.

4.4.4.2 Fuzzy Logic RMC Prediction Model

Actual Vs Fuzzy RMC ------ MicaScist ------- Hemerwal Tunne

s Actual RMC

= Fuzzy RMC

| | |
| | I\
| I |
LA

il

RMC

1641 1654 2068 2466 2522 2572 3377 3421 3436 3521 3536 3601 3618 3628 3636 3630 3643 3646 4081 4107 4115 4204 4313 4317 4514 4528

Tunnel Meters

Figure 4.66: Comparison of RMC for Micaschists.

Figure 4.66 shows a comparison between actual and Fuzzy logic RMC, overall a good
correlation between actual and Fuzzy RMC is seen. In first portion of TM and at the last
part of tunnel meters, Fuzzy logic doesn’t match well with actual results, but from TM
3500 to 400 almost a good matching of RMC is observed.

4.4.4.3 3-D Analysis with “R”

In Figs. 4.67(a-d) there are 3-D surfaces plotted for more detailed analysis of three
variables dependency upon each other. Figures. 4.67(a,b) shows thrust versus AR at low
and high DoD, it is clear from figure that both plots at low and high values of DoD are
mirror image of each other, and showing constant values of AR at low thrust and a steep
increase in AR at medium and high thrust force. Figures 4.67(c,d) shows AR variation
with DoD at low and high thrust, AR varies sinusoidal with DoD both at low and high
thrust.
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Figure 4.67: 3-D surfaces for Micaschists.

4.4.5 Schistose-Gneis
4.4.5.1 Data Analysis with Excel

Figure 4.68a shows relation between thrust, AR and DoD. Advance rate is linearly in-
creasing with thrust with the same rate as DoD decreases. From this graph it is clear
that more thrust is needed to achieve high advance rate provided that degree of disinte-
gration is very low. In other words rock type, strength and DoD play a key role for TBM
performance. In Fig. 4.68b shows variation of DoD, AR and thrust along with chainage.
DoD is increasing with tunnel length whereas thrust and AR is slightly on lower side with

chainage.
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Figure 4.68: Thrust versus AR and DoD.
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4.4.5.2 Fuzzy RMC Model

Scatterd Plot, Fuzzy Vs Actual RMC

y=0.576x+1.1674
R?=0.3878

| —

0 1 2 3 4 5 6 7 8

Figure 4.69: Fuzzy versus actual RMC.

Fuzzy prediction model for RMC (R? = 0.39) using machine and rock mass data of
Schistos-Gneis rock is formulated and plotted Fig. 4.69, it seems not a fairly good model.

4.4.5.3 3-D Surface Plot and Analysis With “R”

Figures 4.70(a-d) show 3-D surfaces for different variables in Schistose-Gneis rock, which
revealed that higher DoD values AR is directly proportional to thrust, quadratic relation
is found at high values of DoD, which shows that at stronger rock, the behaviour of TBM
excavation is not as simple as in week rock i.e. more thrust more advance rate is not
a rule of thumb. But there involve many factors for chip formation, rock breakage and
cushioning effect and TBM cutter wear, that play important role in machine’s overall

performance.
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Figure 4.70: Schistose-Gneiss 3-D surface plots.
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4.4.6

4.4.6.1

Mica-schist+Schistose-Gneis

Data Analysis with Excel

TM vs Thrust_DoD_AR (Micaschist+Schistosegneis)
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Figure 4.71: 2-D plots with Excel.
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Figures 4.71(a,b) shows a linear plots for Mica-Schist+Schistose-Gneis rock. In Fig. 4.71a
variation of all parameters along with chainage is shown, while in Fig. 4.71b variation of
thrust against AR and DoD is plotted. It is clear from the figure that thrust is independent

of DoD, whereas AR increases linearly with thrust.

ar 10

(a) Thrust versus AR at high DoD values. (b) Thrust versus AR at low DoD values.

Figure 4.72: 3-D surface plots.

Figures 4.72(a,b) shows variation of AR with thrust at low and high values of DO D.
both graphs are almost mirror image of each other. At start AR is constant with increase

of thrust up to a medium thrust values, but at very high thrust AR increase drastically.

4.4.7 Conclusions

Hemerwald hydro tunnel was excavated by Robbins Series 120, ¢ = 3.90 m started in
1977, in Kiihtai area of Tirol, Austria. For rock mass data (all rocks), trend of thrust,
excavation velocity and degree of disjointing varies almost in same way when plotted
against tunnel meters. Advance rate increases quadratically with thrust, having a peak
of 6 m/hr at 250 kg/cm?, and then decreases rapidly. RMC and DoD have a major role
in machine performance. Fuzzy logic generated 3-D surfaces for rock mass data, also
show a maximum ROP at moderate thrust values and medium RMC. Linear regression
model for advance rate shows a very accurate estimation model (R? = 0.928) and there
was a significant correlation between machine parameters and rock mass properties e.g.
thrust-AR correlation (R? = —0.745).

For Muskowit-Granite-Gneis data, no correlation between machine parameters and
rock properties was found. ROP decreases sharply with increase of thrust, showing adverse
effect of rock behaviour against application of more thrust than required. In Micaschists
rock, same behaviour of thrust and ROP is seen, but a significant correlation between
thrust and DoD is observed. Moreover a good Fuzzy logic prediction model is obtained

for RMC, that shows a credible results. Same analysis, when performed on Schistos-Gneis,
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ROP is linearly increases with thrust. Reason behind this trend is clear, when we plot a
3-D surface between thrust, ROP and DoD, shown in this section, ROP directly increases
with thrust as DoD here have a moderate values throughout the section. When data for
rock mass were analysed and plotted for different correlations, it is observed that, thrust
and advance rate correlation follow a second degree polynomial. Maximum advance rate
is observed at medium thrust rate values. Both extremes of thrust values i.e too low and
too high thrust results in a very low advance rate. On the other hand, when data for
separated individual rocks were analysed and plotted, it revealed that, advance rate is
always directly proportional to thrust. This may be due to presence of favorable degree

of disintegration in these section of tunnel.

4.5 Tunnels (Maen, Pieve and Varzo) in the Italian
Alps

Data for TBM performance analysis have been obtained from three tunnels excavated
in hard metamorphic rocks for hydraulic purposes in northern Italy. Three tunnels are
located in the northwestern Alps (Italy) and consists of one inclined tunnel for the instal-
lation of a penstock (Maen) and two horizontal diversion tunnels (Pieve and Varzo). A
total of 14 km of tunnel was surveyed almost continually, yielding over 700 sets of data
featuring rock mass characteristics and TBM performance. The empirical relations be-
tween rock mass rating and penetration rate clearly show that TBM performance reaches
a maximum in the rock mass rating (RMR) range 4070 while slower penetration is expe-
rienced in both too bad and too good rock masses. However, different rocks gives different
penetrations for the same RMR and use of the Bieniawski’s classification for predictive
purpose is only possible provided one uses a normalized RMR index with reference to the

basic factors affecting TBM tunneling [37].

4.5.1 Maen Tunnel

These rock units consist of meta-ophiolites (Serpentinite, Metagabbro, Metabasite, Chlo-
rite Schist and Talc Schist) and meta-sediments (Calc Schist and Silicate marble) be-
longing to the Zermatt-Saas Zone of the Pennidic Domain [37]. The parent rocks were
carbonate pelagic sequences and mafic crystalline rocks that underwent high-pressure
low-temperature metamorphism during the early phases of the alpine orogenesis. Schists
and serpentinite show a foliated texture while metagabbro and metabasite are generally
weakly foliated. The attitude of rock units is more or less uniform throughout the tunnel,
at N220-2701F/35-451 (dip direction/dip), so that the longitudinal axis of the inclined
tunnel (plunging direction N1281F)) is almost normal to the schistosity [42, [43].
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4.5.1.1 Data Analysis by Excel

Data from Maen tunnel was analysed and different parameters were compared by Excel.
When thrust is plotted against advance rate and penetration rate, it gives interesting
results. Performance prediction of TBM requires the estimation of both penetration rate
(PR) and advance rate (AR). Penetration rate is defined as the distance excavated divided
by the operating time during a continuous excavation phase, while advance rate is the ac-
tual distance mined and supported divided by the total time and it includes downtime for
TBM maintenance, machine breakdown, and tunnel failure [42]. In Maen tunnel advance
rate increases linearly with thrust but it is inversely proportional to penetration rate.
Figure 4.73 shows that there is drastic difference between penetration rate and advance
rate, which ultimately revealed that high downtime, machine breakdown and maintenance
time for the TBM is present, that shows very low utilization factor of TBM. RMR and
Bieniawski RMR (BRMR) Fig. 4.74 have almost same trend i.e linearly increasing with

a small step difference.
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Figure 4.73: Thrust versus AR and PR.
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Thrust vs RMR
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Figure 4.74: Thrust versus RMR.
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Figure 4.75: AR versus thrust and RMR.

In Fig. 4.75 advance rate increases linearly with same rate both against thrust and
RMR, from this relation it is obvious that thrust and RMR are also directly proportional
to each other. RMR versus AR plot shows that there is more penetration in weak rock, i.e

poor and medium rocks are favorable for TBM when there is very low degree of disjointing.
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Figure 4.77: AR versus thrust and RMR.

Figure 4.76 displays UCS and Q value plot against advance rate. UCS have almost
similar behaviour as RMR and Fig. 4.76b displayed that there is no influence of Q value
upon AR and a constant horizontal line is observed. At low Q-values frequency of points
is almost 90%, that shows in this tunnel area, rock strata posses medium and low Q-
values. In Fig. 4.77 different parameters shows their influence upon AR. Q-value and
UCS have a totally mirror image behaviour against AR, that shows, medium values of
AR are observed at high UCS and low Q-values. But there are other factors too, that

effect the behaviour of these parameters.

4.5.1.2 Data Analysis With Fuzzy Logic

Rule base for this tunnel was established and by giving three input parameters, AR was
predicted and compared with actual AR. Rule base for Maen tunnel is shown below in
table. 4.30.
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Rule Base for Fuzzy Logic (Maen Tunnel)

HIGH

@
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SE|l I 1] m Il [} Il ] 1]
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% \" v v Vi v v v \") v
SMall  MIDDLE HizH SMall  MIDDLE HIGH Swall  MIDOLE HizH
THRUST THRUST THRUST
FEW MIDDLE MANY

METERS PER DAY

Table 4.30: Fuzzy rule base for Maen tunnel.
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Figure 4.78: Fuzzy versus actual RMC plot.

Figures 4.78 and 4.79 show comparison between actual, Fuzzy logic and SPSS RMC.
In Fig. 4.78 Fuzzy and actual RMC is compared, and it rarely matches each other that
shows poor accuracy of the Fuzzy model. Comparison between SPSS and actual RMC,
shows almost 90% predicted values coincides with corresponding actual values, showing

a very good prediction model by SPSS.
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—+—SPSSRMC

—e— Actual RMC
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Figure 4.79: Fuzzy versus SPSS RMC.

4.5.1.3 Data Analysis by Statistical Software “R”

Statistical software R has been used to plot 3-D surfaces and to see different sides of the
picture. 3-D surface also shows the intensity of the data points at specific location and
helps to visualize the effect of three different parameters on each other in a broader way.
Here only two views were captured and shown with respect to high and low values of third

variable, when the remaining two variables were compared.

AR_mph
AR_mph

|

o Pt

8000 Thrust vs AR at low RMR Lo 100

n

Figure 4.80: Thrust versus AR at low and high RMR.

Figure 4.80 shows at lower values of RMR, AR is uniform with respect to thrust, but

at high values of RMR, trend is quadratic and maximum AR is obtained at moderate
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values of thrust. Reason may be that a very good rock (with medium rock strength) and

average disintegration, is easy to chip formation for the TBM.

AR_mph

foon  BoOD
100 RMR vs AR at low Thrust 1000 10 Thrust_ke "0 RMR vs AR at high Thrust

Figure 4.81: RMR versus AR at low and high thrust.

In Fig. 4.81, 3-D surface is plotted for RMR versus AR at low and high machine thrust.
At low thrust advance rate increase linearly with RMR, but at high values of machine
thrust again a quadratic behaviour is found. It revealed that like UCS, RMR also plays
an important role in machine advance. Medium to moderate rock strength is always good
for the TBM to get a better advance rate, even at medium machine thrust. Figure 4.82
displays effect of UCS, which shows maximum advance rate at medium strength of rock.
Reason may be that at low thrust, chip formation is not possible when thrust is below
the critical value necessary for chip formation, at high values of UCS.

AR_mph

UCS vs AR at high Thrust UCS vs AR at low Thrust

Figure 4.82: Thrust versus AR at the rate of UCS.

4.5.1.4 Statistical Modeling with SPSS 19

IBM SPSS19 was used for statistical analysis of the data taken from Maen tunnel. In

order to obtain a penetration prediction model, multidimensional regression analysis were
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carried out for rock properties and machine parameters. Effect of each parameter was
separately discussed on rate of penetration (ROP). Separate equation was developed for
each rock parameter against the ROP, to see the weight and importance of that parameter

in overall model.
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Figure 4.83: Histograms for Maen tunnel 1.

Histograms in Fig. 4.83 shows that there is normal distribution and very low stan-
dard deviation in thrust frequency distribution. But in UCS, frequency distribution, it
is skewed right and shows a step function as its step values are repeating at specific in-
terval. Frequency distribution of Q-value and RMC are skewed left and are not normally
distributed. In Fig. 4.84 frequency distribution of four parameters is shown, penetration
rate (PR) has a perfect normal distribution with a standard deviation SD = 0.7. Where
as AR, RMR have also a good normal distribution. Frequency distribution of BRMR is
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skewed right and shows some discrepancy as compare with RMR.
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Figure 4.84: Histograms for Maen tunnel 2.

Advance Rate (AR) Prediction Model: Table 4.31 shows a model summary for
Maen tunnel advance rate model with an accuracy of 37.8% and its a “forward stepwise
model”. There were seven predicted i.e Q-value, Thrust, RMC, UCS, PR and RMR and
one target variable i.e advance rate (AR) were used. Q-value shows most importance in

the model where as RMC has least importance.
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Model Summary

Target AR (m/h)

Automatic Data Preparation Cn

Model Selection Method Mone (All Predictors Entered)

Information Criterion -936.105

The information criterion 1s used to compare to models.
Models with smaller information criterion values fit better.

Worse 'ﬂ.'ccuracy Better

37.8%

| | | |
0.00% 25.00% 50.00% 75.00% 100.00%

Table 4.31: AR model summary.

Effects Target: AR (m/h)
Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model W 10.178 7 1.454  29.602 .000
PRmh_transformed 3.827 1 3827 V7918 .000 0.170
ThrustkN_transformed 0674 1 0674 13728 .000 0.143
Q_transformed 0.228 1 0.228 4.649 .032 0.139
UCS_transformed 0.066 1 0.066 1.351 245 0.137
RMC_transformed 0.046 1 0.046 0.932 335 0.137
BRMR_transformed 0.007 1 0.007 0.135 J14 0.137
RMR_transformed 0.003 1 0.003 0.059 .B0B 0.137
Residual 15.816 322 0.049
Corrected Total 25995 329

Table 4.32: AR model effects.

Table 4.32 shows importance of the predictors, here for this AR model, thrust and PR
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are most important input variables and RMC is least important. On the other hand table
4.33 shows the list of coefficients, which are used to formulate a linear regression model
shown in Eq. 4.10.

Coefficients Target: AR (m/h)

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept -0.195 0.362  -0.540 590 -0.906 0.516
PRmh_transformed 0.182 0.021 8.827 .000 0.142 0.223 0.170
ThrustkN_transformed 0.000 0.000 3.705 .000 0.000 0.000 0.143
Q_transformed -0.001 0000 -2.156 032 -0.001 -0.000 0.139
UCS_transformed 0.000 0.000 1.162 245 -0.000 0.001 0137
RMC_transformed -0.039 0.040  -0.965 335 -0.118 0.040 0137
BRMR_transformed 0.002 0.005 0.367 J14 -0.008 0.012 0137
RMR_transformed 0.001 0.005 0.243 .B0B -0.009 0.012 0137

Table 4.33: AR model coefficients.

The model can be written in the form of a linear equation as in Eq. 4.10

AR(m/hr) = —0.148—-0.002Q _y41ue +0.001T hrust+0.010 RM R—0.001UC'S —0.011RM C

(4.10)
By applying this model on the data available from Maen tunnel, following predicted values
are obtained and the plot between actual AR and predicted values is shown in Fig. 4.85
(R =0.62).
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Figure 4.85: AR linear regression model.

Penetration Rate (PR) Prediction Model: Penetration rate (PR) model summary
(Table 4.34) shows that model has an accuracy of 40.8%.

Model Summary

Target PR (m/h)

Automatic Data Preparation On

Model Selection Method Mone (All Predictors Entered)

Information Criterion -395 50

The infarmation criterion is used to compare to models.
Moadels with smaller information criterion values fit better.

Worse Accuracy Better

40.8%

| I I I
0.00% 25.00% 50.00% 732.00% 100.00%

Table 4.34: Model summary for PR.
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Q-values and UCS plays important role in model prediction. Using coefficients from

table 4.36, a linear regression model for PR is formulated and shown in Eq. 4.11.

Effects Target: PR (mih)
Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model W GB8.716 7 9.817  33.386 .000
ARmh_transformed 23.079 1 23.079  78.491 .000 0.165
Q_transformed 10.321 1 10.321 35102 .000 0.147
UCS_transformed 9.786 1 9.786 33.283 .000 0.146
ThrustkN_transformed 4.169 1 4169  14.180 .000 0.139
RMR_transformed 2323 1 2.323 7.901 .005 0.136
RMC_transformed 0.752 1 0.782 2.556 A1 0.134
BRMR_transformed 0.284 1 0.284 0.967 326 0.133
Residual 94 678 322 0.294
Corrected Total 163.395 329

Table 4.35: Predictors effects for PR model.

Coefficients  Target: PR (m/h)

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 0.929 0.684 1.051 .294 -0.809 2.668
ARmh_transformed 1.084 0122 8.860 .000 0.843 1.325 0.165
Q_transformed -0.005 0.001 5525 .000 -0.007 -0.003 0.147
UCS_transformed -0.004 0.001 5769 .000 -0.006 -0.003 0.146
ThrustkN_transformed -0.000 0.000  -3.766 .000 -0.000 -0.000 0.139
RMR_transformed 0.037 0.013 2.8M .005 0.o0m 0.063 0.136
RMC_transformed 0157 0.098 1.599 A1 -0.036 0.351 0.134
BRMR_transformed -0.012 0012 0983 326 -0.036 0.012 0.133

Table 4.36: Predictors coefficients for PR model.
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PR(m/hr) = 0.9294+1.084R—0.005Q _41e—0.004U C'S—0.157TRM C—0.037 RM R—0.001 T hrust
(4.11)

Predicted Value

5

I 1 I I
0 10 20 30 4.0 a0

PR (mih)

Figure 4.86: PR regression model .

Rock Mass Class (RMC) Prediction Model Prediction model for RMC is also
obtained by multidimensional analysis. thrust, UCS, Q-value and penetration rate were
used as predictors. RMR was excluded as UCS values were calculated from RMR by an
excel formula. Model has a good accuracy (66.4%), model summary, predictors effects and
coefficients are shown in tables 4.37-4.39 respectively. Q-values and UCS play important

role in model prediction and PR was least important.

139



Model Summary

Target RMC

Automatic Data Preparation Cn

Model Selection Method Mone (All Predictors Entered)

Information Criterion -119.980

The information criterion is used to compare to models.
Models with smaller information criterion values fit better.

Waorse Accuracy Eetter

G6.4%

[ I [ I
0.00% 25.00% a0.00% 75.00% 100.00%

Table 4.37: Model summary for RMC.

Effects Target: RMC

Source Sum of Squares df Mean Square F Sig. Importance
Corrected Model ¥ 447 246 5 89.445 131.112 000
Q_transformed 116.559 1 116.599  170.907 000 0.260
UCS_transformed 39.729 1 39.729 58234 000 0.201
ThrustkN_transformed 15,692 1 15592 22854 000 0.183
ARmh_transformed 14.033 1 14.033 20568 000 0.181
PRmbh_transformed 5377 1 5377 7.881 005 0.175
Residual 221.045 324 0.682

Corrected Total B68.291 329

Table 4.38: RMC model effects.
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Coefficients Target: RMC

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 6215 0290 21.421 000 5644 6.786

Q_transformed 0.012 0001 -13.073 000 -0.014 -0.010 0.260
UCS_transformed -0.008 0.001 -7.631 000 -0.010 -0.006 0.201
ThrustkN_transformed -0.000 0.000  -4.781 000 -0.000 -0.000 0.183
ARmh_transformed -0.913 0.201 -1 535 000 -1.308 -0.517 0.181
PRmh_transformed -0.234 0083  -2.807 005 -0.359 -0.070 0.175

Table 4.39: RMC model coeflicients.

RMC linear regression model with a reasonable accuracy (R? = 0.669), formulated

from above predictors, coefficients and analysis, is given in Eq. 4.12

4

Predicted Value

o4 B

O CREIENG L

RZ Linear=0.669

RMC

Figure 4.87: RMC linear regression model.

RMC =5.645 - 0.011Q — 0.007UC'S — 1.202AR — 0.0001T hrust
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RMC regression model values are plotted against the actual RMC and shown in Fig. 4.87.

4.5.1.5 Correlation and Correlation Coefficients

Correlations
BRMR Q Thrust (kM) | PR {m/h) ucs AR (mih) RMC
BRMR Pearson Correlation 1 529 B3 -7 Tl ET -us7
Sig. (2-tailed) .onn .oon .00z .oon .oon .oon
M 330 330 330 330 330 330 330
Q Pearson Correlation 529 1 a04™ - 30" 08" -5 | -4BsT
Sig. (2-tailed) .onn .oon .oon .oon 7B .oon
M 330 330 330 330 330 330 330
Thrust (kM) Pearson Correlation EEEN .304™ 1 -239 A998 EEl - 5847
Sig. (2-tailed) .onn .onn .oon .oon .oon .oon
M 330 330 330 330 330 330 330
PR (m/h) Pearson Correlation RFr -3g0" -239 1 -3 ant REIN
Sig. (2-tailed) ooz .onn .oon .oon .oon 017
M 330 330 330 330 330 330 330
ucs Pearson Correlation &an™ 308" A998 -3 1 237 -E247
Sig. (2-tailed) .onn .onn .oon .oon .oon .oon
M 330 330 330 330 330 330 330
AR (mih) Pearson Correlation 3BYT -015 EEl ant 237 1 -3s0"
Sig. (2-tailed) .onn 786 .oon .oon .oon .oon
M 330 330 330 330 330 330 330
RMC Pearson Correlation -8s7 - ARE - 5847 REIN -E247 -3s0" 1
Sig. (2-tailed) .onn .onn .oon 017 .oon .oon
M 330 330 330 330 330 330 330

=+ Correlation iz significant at the 0.01 level (2-tailed).
* Carrelation is significant at the 0.0 level {2-tailed).

Table 4.40: Pearson correlation coefficients for Maen tunnel.

Table 4.40 shows good correlation between TBM parameters and rock mass properties,
thrust-RMR (R? = 0.633), UCS-thrust-RMC (R? = 0.589). Moreover rock mass prop-
erties are strongly correlated e.g. RMR-RMC (R? = 0.957), shows a strong linear de-
pendence of TBM parameters upon rock mass properties and also among themselves too.
On the other hand table 4.41 shows Spearman’s and Kendall’s correlation coefficients. It
is clear from the table that there is no significant correlation between machine and rock
properties, although rock properties are very well inter-correlated (e.g. RMR-Q-Value
R?* =0.94).
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Correlations

ERMR Q Thrust (kM) | PR {rmih) ucs AR (mih) RMC

kendall's tau_b  BRMR Correlation Coefficient 1.000 8147 vl -190” 445" REL 852"

Sig. (2-tailed) . oo il 000 il ] oo

M 330 330 330 330 330 330 330

Q Carrelation Coefficient a4 1.000 3437 -TE M7 4B -8z

Sig. (2-tailed) oo | . il 000 .ooo ilili] oo

N 330 330 330 330 330 330 330

Thrust (kM) Correlation Coefficient 92" 3437 1.000 - 4497 A1 BT

Sig. (2-tailed) .ono oo | . 000 il ] oo

M 330 330 330 330 330 330 330

PR (rrity Correlation Coefficient [ -1907 -1re” -21e 1.000 - 366 2437 REES

Sig. (2-tailed) .ono oo ooo | . il ] a1

M 330 330 330 330 330 330 330

[0 Carrelation Coefficient 4457 M7 4497 - 366 1.000 138" -4

Sig. (2-tailed) .ono oo il oon | . oot oo

N 330 330 330 330 330 330 330

AR {rmih) Carrelation Coefficient 406 4T 917 2437 REL 1000 [ 237

Sig. (2-tailed) .ono oo il 000 a0t | . oo

M 330 330 330 330 330 330 330

RMC Correlation Coeficient | -8527 —a1z” - 3g4” RECE 418" BET 1.000
Sig. (2-tailed) .ono oo il 001 il ooo | .

M 330 330 330 330 330 330 330

Spearman'stho BRMR Carrelation Coefficient 1.000 9477 5487 -ar” AR5 28R 943"

Sig. (2-tailed) . oo il 000 .ooo ilili] oo

N 330 330 330 330 330 330 330

o Carrelation Coefficient 9427 1.000 4977 - 265 5407 2237 -1y

Sig. (2-tailed) oo | . il 000 il ] oo

M 330 330 330 330 330 330 330

Thrust (kM) Correlation Coefficient 5487 497" 1.000 -318" 5817 2817 -.488"

Sig. (2-tailed) .ono oo | . 000 il ] oo

M 330 330 330 330 330 330 330

PR {rmih) Carrelation Coeficient | -2717 - 265 B 1.000 - 495" ETh REF

Sig. (2-tailed) .ono oo ooo | . .ooo ilili] oo

N 330 330 330 330 330 330 330

ucs Carrelation Coefficient 5BS 5407 A -405" 1.000 87 - 4a0”

Sig. (2-tailed) .ono oo il ooo | . oo oo

M 330 330 330 330 330 330 330

AR (rihy Correlation Coefficient 286 2237 2817 359 87" 1000 | 3117

Sig. (2-tailed) .ono oo il 000 a0t | . oo

M 330 330 330 330 330 330 330

RMC Carrelation Coeficient | -9437 -a19” - 498" 197" - 4907 -3 1.000
Sig. (2-tailed) .ono oo il 000 .ooo ooo | .

N 330 330 330 330 330 330 330

**_ Correlation is significant atthe 0.01 level {2-tailed).

Table 4.41: Spearman correlation coefficients for Maen tunnel.

4.5.2 Pieve Vergonate Tunnel

Most area of the Pieve Vergonte tunnel is located in the Sesia-Lanzo zone of the Aus-
troalpine domain [44, [45]. Excavated rocks consists of two metamorphic complexes made
up of gneiss and micaschists separated by a metadiorite intrusive body with minor masses
of metaquartzdiorite and metagabbro. The geological structure is complicated by multi-
ple folding associated with shear zones and brittle fault zones, but the general attitude
of rock units forms a monocline dipping at N140-1801£/30-601 (dip direction/ dip), so
that the longitudinal axis of the tunnel (direction N070-050F) is mainly parallel to the
schistosity.
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4.5.2.1

Figure 4.88a shows a simple 2-D plot between thrust and RMC and RMR. In first trend
line between thrust and BRMR, its a linear relation and quite simple, reveals that more
thrust is required for a rock mass having low RMR. Trend between thrust and RMR
shows that low thrust is required for harder rock (Having less RMR). This might be due
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(b) Thrust versus AR and PR.

Figure 4.88: Thrust versus RMR, RMC, AR and PR.
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to that RMR was originally formulated for civil engineering problems and calculations,
Bieniawski formulated RMR known as BRMR in 1973 and he reformulate them in 1989
specially for mining purposes. Figure 4.88b shows a relationship between thrust, advance
rate and penetration rate, both AR and PR are going to decrease with increase of thrust,
but with a different rate.
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(b) PR versus thrust, RMR and RMC.

Figure 4.89: AR and PR versus RMC and RMR.

In Fig. 4.89a advance rate is plotted against thrust, RMC and RMR. Thrust and RMC
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shows almost no effect on AR, but AR is decreasing with increasing RMR. Simply it is
revealed that advance rate is low in harder rocks. Figure 4.89b show the same parameters
trend against penetration rate. Slightly more penetration rate is observed at high RMC
values, reason is that in more stable rock having more standup time PR is more. Whereas
PR is inversely proportional to both thrust and RMR. This is the combined effect of many
unknown and hidden parameters due to which increasing thrust resulted in low advance

rate. High RMR gives low penetration, which is quite normal.

4.5.2.2 Fuzzy Logic Prediction Model
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(a) Comparison of Fuzzy logic, SPSS and actual RMC.
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(b) Comparison between Fuzzy logic and actual RMC.

Figure 4.90: Actual versus Fuzzy RMC comparison.
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Figure 4.90a shows a three value comparison between, actual, Fuzzy and SPSS RMC. Here
we see that Fuzzy RMC, comparatively better coincide with actual RMC as compare to
corresponding values of SPSS predicted RMC. In Fig. 4.90b Fuzzy and actual RMC is

compared separately. Again a reasonably good agreement is observed here.

Fuzzy Vs Actual RMC Pieve Tunnel Pieve_Fuzzy vs SPSS RMC

y=0.7091x +0.4625
R?=0.4779

y=0.574x+0.8224
R?=0.4588

(a) Fuzzy versus Actual RMC. (b) Fuzzy versus SPSS RMC.

Figure 4.91: Actual versus Fuzzy and SPSS RMC.

4.5.2.3 3-D Analysis with “R”

Statistical software “R” was used to analyze different variables for the Pieve tunnel.

AR_mph

UCS VS AR @ LOW THRUST
SSQ

2000 /.

an 100 Thrust_kN" 7000 UGS V$ AR @ HIGH THRUST !

(a) UCS versus AR at low thrust. (b) UCS versus AR at high thrust.

Figure 4.92: USC versus AR at low and high thrust.

Figure 4.92 shows a 3-D surface for thrust, AR and UCS. In Fig. 4.92a variation of
AR against UCS at low thrust is shown. At low thrust we see no variation of AR against
USC till UC'S = 150M Pa. that shows a turning point, after that a slight increase in
AR with high values of UCS is observed. On the other hand in Fig. 4.92b, variation of
AR with UCS at high thrust values, shows a mirror image of Fig. 4.92a, after a critical
value of UC'S = 150M Pa, AR decreasing sharply. This trend shows that UCS plays an

important role in thrust-AR relation.
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AR_mph

0.03 -39
2000 Thrust vs AR@ High RMR 7000

(a) Thrust versus AR at high RMR. (b) Thrust versus AR at low RMR.

AR_mph

Thrustvs AR @ Low UCS

EE)

—_— 20

7000 00 0.03

(c¢) Thrust versus AR at high UCS. (d) Thrust versus AR at low UCS.

Figure 4.93: Thrust versus AR.

Figures 4.93(a-d) shows a behaviour of advance rate w.r.t thrust at low and high values
of RMR and UCS. Tt can be seen from Fig. 4.93a, AR increases curvi-linear with thrust
and then stabilize at very high values of thrust. This relation shows, for a very good rock,
thrust beyond a moderate value is not advisable to get more advance rate. Figure 4.93b
show a direct linear proportional between AR and thrust at low RMR. Figures 4.93(c,d)
shows thrust and advance rate relation at high and low UCS values. Again after a certain
value of thrust, AR drastically reduces even at high thrust,that shows UCS is a critical

parameter in TBM performance and advance rate.

4.5.2.4 Statistical Modeling with SPSS (Pieve)

First of all histograms of all parameters were drawn and shown in Figs. 4.94 and 4.95.
Frequency distribution of advance rate and penetration rate are normally distributed with
a standard deviation SD = —0.324 and SD = —0.676 respectively. The rest of frequency
distributions of thrust, BRMR and RMR are right skewed and that of UCS is left skewed.
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Figure 4.94: Histograms for Pieve tunnel.
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Figure 4.95: Histograms for Pieve tunnel.

Different models parameters and models summaries are shown in table 4.42 and 4.43.

Models accuracy for AR and PR is reasonably good i.e 38.6% and 55.1% respectively.

Model Summary

Target

AR (mih)

Automatic Data Preparation On

Model Selection Method

Forward Stepwise

Information Criterion

-820.167

The information criterion is
models, Models with small
values fit better.

used to compare to
ler information critsrion

Worse Better
— accuscy | 3o
I T T T 1

0.00% 25.00% S0.00% 75.00% 100.00%

Coefficients Target: AR (mih)

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 0.547 0.377 1.452 148 -0.194 1.288
PRmh_transformed 0.290 0.027 10.556 0oo 0.236 0.344 0.308
ThrustkN_transformed 0.000 0.000 3736 0oo 0.000 0.000 0.235
BRMR_transformed -0.010 0.004 -2.830 0os 0.017 -0.003 0.230
RMC_transformed -0.084 0.040 2116 035 -0.162 -0.006 0.228

Table 4.42: AR linear regression model summary for Pieve tunnel.
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Model Summary Coefficients Target: PR (m/h)

95% Confidence Interval

Target PR (m/h) Model Term Coefficient ¥ Std.Error t Sig. ———— Importance
Lower Upper

Automatic Data Preparation On Intercept 4.207 0297  14.164 .000 3622 4791
Model Selection Method  Forward Stepwise | | ARmh_transformed 0.945 0087 10.885 .000 0.774 1.116 0.380
Information Criterion -472.4068 || RMR_transformed 0.021 0.003 -7.287 000 -0.026 0.015 0.321
The information criterion is used to compare to
madels. Models with smaller infarmation criterion | ThrustkN_transformed -0.000 0.000 5452 .ooo -0.000 -0.000 0.299
values fit better
Worse Better

e | s

I T T T 1
0.00% 25.00% 50.00% 75.00% 100.00%

Table 4.43: PR linear regression model summary for Pieve tunnel.

From these tables of parameters and target variable, following AR and PR models
equation are deducted and shown in egs. 4.13 and 4.14. AR prediction model have four

parameters, whereas PR prediction model have only three parameters.

AR(m/hr) = 0.547 + 0.290PR — 0.0001T hrust — 0.010RM R — 0.084RMC  (4.13)

PR(m/hr) = 4.207 + 0.945AR — 0.021RM R — 0.00017T hrust (4.14)

Model plot having a R? = 0.394 — R = 0.628 and R? = 0.555 — R = 0.745 respec-
tively are shown in Fig. 4.96 below.

R? Linear = 0.394

R? Linear = 0.555

1.250+

1.000

750

Predicted Value
Predicted Value

5007

2507

.DIDU .5‘00 1.0‘00 1.5‘00 Z.DIUU ] 1.0 2ID 30 40
AR (mih) PR (mih)
(a) AR model for Pieve tunnel. (b) PR model for Pieve tunnel.

Figure 4.96: Linear regression model plot for AR and PR.
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4.5.2.5 Correlation and Correlation Coefficient

Correlations
ERMR RMR Thrust (kM) | PR imif) | AR (mih) RMC
ERMR Pearson Correlation 1 AE1T 4337 -A7aT - 386 SE1E
Sig. (2-tailed) .oon .onn .onn .oon .onn
M a0 a0 a0 a0 a0 a0
RMR Pearson Correlation AE1T 1 419 -a7en - 34E eV
Sig. (2-tailed) .oon .onn .onn .oon .onn
M a0 a0 a0 a0 a0 a0
Thrust (kM]  Pearson Correlation 433 A9 1 - 411" -056 -3
Sig. (2-tailed) .oon .oon .onn 330 .onn
M a0 a0 a0 a0 a0 a0
PR (m/h) Pearson Correlation -A7T -a7e - 411" 1 BOE 08"
Sig. (2-tailed) .oon .oon .onn .oon .onn
M a0 a0 a0 a0 a0 a0
AR (m/h) Pearson Correlation - 386 - 34E -.056 96 1 286
Sig. (2-tailed) .oon .oon 330 .onn .onn
M a0 a0 a0 a0 a0 a0
RMC Pearson Correlation -ma -a32 -3 08" 286 1
Sig. (2-tailed) .oon .oon .onn .onn .oon
M a0 a0 a0 a0 a0 a0

= Carrelation is significant at the 0,01 level (2-tailed).

Table 4.44: Pearson correlation for Pieve tunnel.

Pearson and Spearman correlation coefficients are shown in tables 4.44 and 4.45 recep-
tively. In Pearson correlation, we found no correlation between thrust and advance rate.
But machine parameter thrust have a fairly good correlation with rock properties like
RMR and RMC (Avg.R? = 0.4). On the other hand table 4.45 shows Spearman and
Kendall’s correlation coefficients. Here we found no correlation neither between machine
parameters and rock mass properties nor between the rock mass properties themselves.
This shows that data of Pieve tunnel is randomly distributed and no fix correlation exist

between any two parameters, except the RMC and RMR.
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Correlations

ERMR RMR | Thrust kM) | PR (mihy | AR mih) RMC

kendall'stau_b  BRMR Correlation Goeficient 1.000 EEl 2647 -4z 302" - TEE

Sig. (2-tailed) il .ono Qilil] il Qilil]

M 301 301 301 301 301 301

RMR Correlation Coeflicient CECl 1.000 2637 -.409" -7 -.a08”

Sig. (2-tailed) il .ono Qi il il

N 301 301 301 301 301 301

Thrust (kM) Correlation Coefficient 2647 2637 1.000 - 2607 -on - 266

Sig. (2-tailed) Qilil] il Qilil] sz Qilil]

M 301 201 301 301 201 301

PR (rity Correlation Goeficient | -.4217 -409” 2607 1.000 447" 4017

Sig. (2-tailed) Qilil] il .ono il Qilil]

M 301 301 301 301 301 301

AR (mih) Caorrelation Coeficient | -.3027 -7 =100 4477 1.000 2647

Sig. (2-tailed) il il 012 Qi il

N 301 301 301 301 301 301

RMC Correlation Coeficient | - 765 -m0e” - 266 4017 2647 1.000
Sig. (2-tailed) Qilil] il .ono Qilil] il

M 301 201 301 301 201 301

Spearman's tho  BRMR Correlation Goeficient 1.000 45" kL -583 -a4z21” -877

Sig. (2-tailed) il .ono Qilil] il Qilil]

M 301 301 301 301 301 301

RMR Correlation Coeflicient 945" 1.000 are” -A7T -3 9227

Sig. (2-tailed) il .ono Qi il il

N 301 301 301 301 301 301

Thrust (kM) Correlation Coefficient EL El 1.000 -are” -147 338"

Sig. (2-tailed) Qilil] il Qilil] m3 Qilil]

M 301 201 301 301 201 301

PR (rity Correlation Goeficient | -.5837 -572" -arg” 1.000 GOE 5007

Sig. (2-tailed) Qilil] il .ono il Qilil]

M 301 301 301 301 301 301

AR (mih) Correlation Coeficient | - 4217 -3 - 147 GO 1.000 an”

Sig. (2-tailed) il il 013 Qi il

N 301 301 301 301 301 301

RMC Correlation Coeficient | -8777 -427” 338" a007 X 1.000
Sig. (2-tailed) Qilil] il .ono Qilil] il

M 301 201 301 301 201 301

** Caorrelation is significant atthe 0.01 level {2-tailed).
* Correlation is significant at the 0.05 level {2-tailed).

Table 4.45: Spearman correlation table for Pieve tunnel.

4.5.3 Varzo Tunnel

The Varzo tunnel is excavated entirely in the Antigorio Gneiss formation, a massive or
weakly foliated rock generated by high-grade metamorphism of granite and Granodiorite
rocks [46]. Metaaplite and metabasite dikes locally traverse the tunnel axis, but the
area may be considered essentially homogeneous. The geological structure is a monocline
gently dipping (10 —20°) in a southerly direction, slightly complicated by folds and minor
fault zones related to the Sempione- Centovalli fault, a major tectonic structure located 2
km to the south [47]. In general, the schistosity follows the attitude of the overall structure

and, is therefore, mainly parallel to the longitudinal axis of the tunnel (plunging direction

NOSOE-NOT0E) [37].
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4.5.3.1 2-D Data Analysis with Excel

Penetration Rate vs Thrust,RMR and RMC

120 8000

. ¢ . + R2=0.0607
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(b) Thrust versus AR and PR.

Figure 4.97: Varzo tunnel 2-D plots.

Figure 4.97 show different plots between thrust vs AR, PR and RMC. In Fig. 4.97a
variation of penetration rate is plotted against thrust, RMR, RMC, that shows increase

in PR with increase of thrust and RMR. Penetration rate slightly decrease with increase of
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RMC, reason is that with increase of rock hardness, its difficult to perform chip formation.
But actual reason can be find only when we plot a 3-D surface between PR, thrust and
RMC (given in next section). Figure 4.97b shows variation of AP and PR with thrust,

and both penetration rate and advance rate are linearly increasing with thrust.

RMC verus Advance Rate and Penetration Rate
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(a) RMC versus AR and PR.

RMR Versus Advance Rate and Penetration Rate
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(b) RMR versus AR and PR.

Figure 4.98: Varzo tunnel 2-D plots.
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In Fig. 4.98a RMC is plotted against PR and AR, both decreasing with RMC, reason
is same at described in Figs. 4.97a and 4.98b describes variation between RMR and
PR-AR, that shows an increase in both AR and PR.This is entirely opposite to RMC

behaviour, reason here again will be found when a 3-D surface will be plotted between
thrust, RMR and AR-PR.

4.5.3.2 RMC Prediction Model by Fuzzy Logic Varzo Tunnel

Fuzzy Vs Actual RMC

y=0.799x + 0.1297
R?=0.7834

0 1 2 3 4 5 6 7

(a) Fuzzy versus actual RMC.

Comparision of Fuzzy & Actual RMC

i
WAL UL LA

0

== Actual RMC

—=—Fuzzy RMC

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
Chainage (TM)

(b) Fuzzy versus actual RMC.

Figure 4.99: Fuzzy versus actual RMC.

Fuzzy logic is largely used to predict different variations in mining, civil and almost all

other engineering problems. Here for this data a Mat-Lab subroutine was written and
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applied to predict future RMC, keeping the previous rock and machine (TBM) data in
input parameters. Figure 4.99b shows comparison between actual and Fuzzy logic RMC.
A good coincidence between the two values is found, showing good Fuzzy logic power
to predict/forecast unknown rock mass properties. Figure 4.100 shows a three value
comparison between actual, Fuzzy and SPSS RMC. It is clear from the figure that Fuzzy

RMC is more closer to the actual as compare to SPSS corresponding values.

6 -

Comparison of Fuzzy, SPSS &Actual RMC

6

==—SPSSRMC

‘ ==—Fuzzy RMC

Il Actual RMC

|
[N I |
i et i
S it AR RN

T J ¥
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Chainage(TM)

j—

Figure 4.100: Comparison of RMC for Varzo tunnel.

4.5.3.3 3-D Analysis with “R”

Statistical software “R” was used to analyze different variables for the Pieve tunnel. 3-D
surfaces were plotted both for penetration rate (PR) and advance rate (AR) to see what
factors are involved in machine dead time and what is the effect of utilization factor of
the TBM. 3-D surfaces plotted by “R” clearly elaborate variation and influence of one

variable upon other, keeping third variable constant.
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Thrust vs PR @ Low RMC (Varzo)

Thrust vs PR @ High RMC (Varzo)

(a) Thrust versus PR at high RMC. (b) Thrust versus PR at low RMC.

Figure 4.101: 3-D surfaces penetration rate.
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(a) UCS versus PR at high thrust. (b) UCS versus PR at low thrust.

Figure 4.102: 3-D surfaces for Varzo tunnel.

Figure 4.101 shows a 3-D pictures of variations of penetration rate (PR) with thrust
and UCS at high and low values of RMC and thrust respectively. In Fig. 4.101a PR
varies linearly with thrust at high values of RMC. On the other hand same trend in
Fig. 4.101b is plotted at low RMC, that shows a curvi-linear trend. Reason from this
trend may be that a low values of RMC, PR cannot be increased by increasing simply
the thrust. But at high values of RMC, when there is good rock, machine efficiency can
be enhanced by applying more thrust than an average value required for chip formation.
Figures 4.102(a,b) shows surfaces between UCS vs PR at high and low thrust. We see
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that there is no effect of thrust values on PR, i.e same trend at both high and low thrust.

AR_mph

AR_mph
Thrust vs AR @ Low RMC (Varzo)

Thrust vs AR @ High RMC (Varzo)

(a) Thrust versus AR at high RMC. (b) Thrust versus AR at low RMC.

Figure 4.103: 3-D surfaces AR.
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(a) Thrust versus AR at high RMR. (b) Thrust versus AR at low RMR.

Figure 4.104: 3-D Surfaces generated by R software.

Figures 4.103 and 4.104 shows four 3-D surfaces, that are between thrust and AR at
high and low values of RMC and RMR respectively. In figure. 4.103(a,b) shows thrust-
AR relation at high and low RMC, it is clear from figure. that there is no effect of RMC
on thrust-AR trend. Figures 4.104(a,b) shows thrust-AR trend at low and high values of
RMR. Again thrust-AR trend is same at both for good and poor rock.
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4.5.3.4 Statistical Modeling with SPSS, Varzo Tunnel

SPSS statistical software was used to analyze Varzo tunnel data. Figures 4.105 and 4.106
shows frequency distribution of different variables. Figures 4.105(a-c) shows frequency
distribution of BRMR, RMR and thrust. All distributions are right skewed and with
SD > 10. But in Figs. 4.106(a-c), frequency distribution of advance rate (AR) is normal
with SD = 0.337, while others of RMC and PR are left skewed and having more standard

deviation.

[ =Zatiii=iiNNEN

£ £ 100 2 W E] B 100 @ 0000000 3000000 40000000 50000000 GO000000 70000000 G000
BRMR RMR Thrust (kN)

(a) BRMR. (b) RMR. (c) Thrust.

Figure 4.105: Histograms for Varzo tunnel.
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(a) RMC. (b) AR. (c) PR.

Figure 4.106: Histogram Varzo tunnel.
Table 4.46(a,b) show the model summary for AR and PR models with accuracy of

49.7% and 32.7% respectively. RMR plays most important role in model prediction for
AR and PR, where as RMC was the least important input parameter.
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Model Summary

Model Summary

Target AR

{mih)

Target PR (m/h)

Automatic Data Preparation On

Automatic Data Preparation On

Model Selection Method

MNaone (All Predictors Enterad)

Model Selection Method

Information Criterion

None (All Predictors Entered)

-281.759 Information Criterion

The information criterion is used to compare to models.
Models with smaller information criterion values fit hetter.

-110.828

The information criterion is used to compare to models.
Models with smaller information criterion values fit hetter.

Worse Better Worse Better
Accuracy 49.7% _ Accuracy 327%
0.00% 2500%  S000%  7500%  100.00% 0.00% 2500%  5000%  7500%  100.00%
(a) AR model summary. (b) PR model summary.
Table 4.46: Model summary.
Coefficients Target: PR (m/h)

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper
Intercept 0.638 1.602 0.399 691 -2.541 3.818
ARmbh_transformed 1.136 0.209 5439 .000 0721 1.550 0239
RMR_transformed -0.059 0oz21 -2783 .006 -0.101 -0.017 0197
ThrustkN_transformed 0.000 0.000 2.102 .038 0.000 0.000 0.191
BRMR_transformed 0.043 0.022 1.945 055 -0.001 0.088 0.190
RMC_transformed -0.064 0174 -0.369 713 -0.411 0.282 0.183
(a) PR model coefficients.
Coefficients Target: AR (m/h)

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper

Intercept 0.566 0685 0.826 A1 -0.795 1.926
PRmh_transformed 0.209 0.038 5439 .000 0.133 0.285 0.240
BRMR_transformed -0.019 o010 -2.027 046 -0.038 -0.000 0192
ThrustkN_transformed 0.000 0.000 1.967 052 -0.000 0.000 0192
RMR_transformed 0.013 0.009 1.433 155 -0.005 0.032 0.188
RMC_transformed -0.100 0074 -1.351 180 -0.247 0.047 0.188

(b) AR model coefficients.

Table 4.47: Varzo AR and PR linear model coefficients.
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Coefficients Target: RMC

95% Confidence Interval
Model Term Coefficient ¥ Std.Error t Sig. Importance
Lower Upper
Intercept 8.533 0658  12.968 000 7.227 9.839
ThrustkN_transformed -0.001 0.000 8720 000 -0.001 -0.001 0.448
PRmh_transformed 0.508 0.161 3.1589 002 0.189 0.827 0.278
ARmbh_transformed 1127 0384  -2.933 004 -1.890 -0.364 0.274

Table 4.48: RMC model coefficients.

From tables 4.46 - 4.48, the coefficients leads towards the AR, PR and RMC Linear
regression Model Eq. 4.15, 4.16 and 4.17 shown below.

AR(m/hr) = 0.566 — 0.209PR — 0.019BRM R — 0.0001Thrust — 0.010RMC  (4.15)

PR(m/hr) = 0.638 + 1.36 AR — 0.059RM R — 0.0001T hrust — 0.064RMC  (4.16)

RMC = 8533 — 0.001Thrust + 0.508PR — 1.127TAR (4.17)

Advance rate and penetration rate models are plotted in Fig. 4.107(a,b) and RMC model
and comparison are plotted in Fig. 4.108. AR model has a R = 0.723, where the PR
model has a R = 0.60 and RMC model has R = 0.788.

1.200- 3.0

R? Linear = 0.522
R? Linear = 0.361

1.000-
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(a) AR linear model. (b) PR linear model.

Figure 4.107: AR linear regression model plot for Varzo tunnel.
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& Fuzzy vs SPSS RMC

R? Linear = 0.621 5

V= 0.6595x+1.0775
R*=0.5248

4 . . . .

Predicted Value

T T T T T T
1 2 3 4 5 6

RMC o 1 2 3 i ; .

(a) RMC scattered plot. (b) Fuzzy versus SPSS RMC.

Figure 4.108: RMC linear regression model Varzo tunnel.

4.5.3.5 Bi-variant Correlations and Correlation Coeflicient

Correlations
ERMR RMR Thrust (kM) | PR imif) | AR (mih) RMC
ERMR Pearson Correlation 1 885" B0 058 A9 - aEg
Sig. (2-tailed) .oon .onn BES .oon .onn
M 102 102 102 102 102 102
RMR Pearson Correlation 885" 1 BT .03z &0 -97E
Sig. (2-tailed) .oon .onn 741 .oon .onn
M 102 102 102 102 102 102
Thrust (kM]  Pearson Correlation TEDT TET 1 246 EBE - T4E
Sig. (2-tailed) .oon .oon 013 .oon .onn
M 102 102 102 102 102 102
PR (m/h) Pearson Correlation 058 .03z 246 1 ABE - 0E2
Sig. (2-tailed) s 741 013 .oon 534
M 102 102 102 102 102 102
AR (m/h) Pearson Correlation A9 &0 EBE 486 1 - A2E
Sig. (2-tailed) .oon .oon .onn .onn .onn
M 102 102 102 102 102 102
RMC Pearson Correlation TN -u7E - T4E - 0E2 -A25 1
Sig. (2-tailed) .oon .oon .onn 534 .oon
M 102 102 102 102 102 102

= Carrelation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.049 level (2-tailed).

Table 4.49: Pearson correlation for Varzo tunnel.

Table 4.49 shows Pearson correlation between all machine and rock mass parameters. In
the table at line no. 3 we see correlation between thrust and all rock mass parameters,
thrust have a very good correlation with, RMR, RMC and AR. On the other hand RMC
has a good correlation with AR (R? = —0.525), which shows that AR strongly depends
upon machine parameters and rock mass properties. RMC and RMR has a Bi-Variant
correlation of R? = —0.98 which shows that we can use RMR and RMC alternatively,

wherever we need it.
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In table 4.50 Spearman’s and Kendall’s correlations. Table shows that machine and
rock mass have a little bit better Spearman’s rho correlations as compare to Kendall’s
tau_ b corresponding values. Here one thing is clear that, machine (TBM) data is linearly
correlated with rock mass data. Otherwise table. 4.49 would have better corresponding

correlations. Advance rate can be better predicted by using Pearson or Spearman’s rho

correlations.
Correlations
ERMR RMR | Thrustikn) | PRimih) | AR (mih) RMC
Kendall'stau_bh  BRMR Carrelation Coefficient 1.000 aeg” a1 -043 a0 -BeE
Sig. (2-tailed) ) oo oo 524 oo oo
M 102 102 102 102 102 102
RMR Carrelation Coefiicient aag” 1.000 533 - 051 ETT -ar7
Siy. (2-tailed) oo | . .o 450 .aon ]
M 102 102 102 102 102 102
Theust (kM) Correlation Coefiicient AT 5337 1.000 079 365 - 5BE
Sig. (2-tailed) ana aog | . 240 .aoa a0
M 102 102 102 102 102 102
PR {mih) Carrelation Coefficient -043 -.051 07 1.000 a9 07
Sig. (2-tailed) 424 450 240 | oo 820
M 102 102 102 102 102 102
AR (it Correlation Coefficient L 3007 365 397" 1.000 -3e1
Siy. (2-tailed) ] .aon .o aoa | . ]
M 102 102 102 102 102 102
RMC Carrelation Coeficient | - 888" -arT - BEE 017 | -as” 1.000
Sig. (2-tailed) ana .aoa oo az aog | .
M 102 102 102 102 102 102
Spearman'stha  BRMR Carrelation Coefficient 1.000 arn 02" -027 468 043"
Sig. (2-tailed) ) oo oo 780 oo oo
M 102 102 102 102 102 102
RMR Carrelation Coefiicient arn” 1.000 70 -040 4857 -aag"
Siy. (2-tailed) oo | . .o 692 .aon ]
M 102 102 102 102 102 102
Theust (kM) Correlation Coefiicient Foz 0 1.000 119 5407 -T4T
Sig. (2-tailed) ana aog | . 232 .aoa a0
M 102 102 102 102 102 102
PR {mih) Carrelation Coefficient -nz27 -.040 14 1.000 LTV -.001
Sig. (2-tailed) 788 692 232 | oo 891
M 102 102 102 102 102 102
AR (it Correlation Coefficient ABET 485" A40 E 1.000 -505"
Siy. (2-tailed) ] .aon .o aoa | . ]
M 102 102 102 102 102 102
RMC Carrelation Coefficient | - 9437 - a5E" ST -.0n1 -A05 1.000
Sig. (2-tailed) ana .aoa oo aa1 aog | .
M 102 102 102 102 102 102

** Correlation is significant at the 0.01 level (2-tailed).

Table 4.50: Spearman’s correlations for Varzo tunnel.

4.5.4 Conclusions

Analysis for Maen tunnel data shows that, there is drastic difference between trends and
behaviour of penetration rate and advance rate. This ultimately shows high downtime,

machine breakdown and maintenance time for the TBM, which indicates very low utiliza-
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tion factor of TBM (Fig. 4.73). More over machine performance is strongly dependent
upon rock mass strength. RMC values were predicted by Fuzzy and SPSS both, shows a
week prediction model by Fuzzy and an accurate and efficient prediction model by SPSS.
Advance rate (AR) and penetration rate (PR) prediction models were also formulated
with a reasonably good accuracy.

Pieve tunnel data shows inverse relation between penetration rate and thrust. SPSS 19
gives a very accurate PR linear regression model (R? = 0.555). In Varzo tunnel data, AR
and thrust have linear correlation, and RMR plays a major role in machine performance.
SPSS19 gives here a good prediction model for AR, PR and RMC. Moreover in all three
tunnel sites, a significant positive correlation is found between machine parameters and

rock mass properties.
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Chapter 5

Discussion and Conclusions

5.1 Comparison Between Case Histories

After analyzing the data from seven tunnel sites, based on rock strength, fracture class and
behaviour of thrust versus advance rate (AR), seven case histories have been divided into
two major groups. Group one consists of Hieflau, Hemerwald, Maen and Pieve tunnels.
Rock mass strata mainly comprises Limestone, Schistos-Gneis, Micaschists and Meta-
granite. For group one rock strength (UCS) of intact rocks ranges from 162 — 226 M Pa,
that contains high strength rocks. In this group AR decreases linearly with increase of
thrust (Figs. 4.3a, 4.51a, 4.73 and 4.88b). Reason for this trend is very clear from data
analysis, that is due to very high strength, presence of less joints and very low fracture
class. So it is concluded that for high strength rocks following prediction model for AR

may be used with slight variation from case to case.

AR(m/hr) = 0.33 4+ 0.849RPM — 0.003T hrust + 0.004 Power — 0.000RMC  (5.1)

If seismic data is available, then model can be reformulated as:

AR(mph) = 4.51-0.29Thr+0.396rpm—23.49Amp,.;—0.001 Pse,.—0.00170rq—0.008 RM C'
(5.2)
On other hand group two comprises Queens water tunnel (QWT), Vereina and Varzo
tunnels. Rock mass strata mainly consists of Micaschists and Gneiss. Rock strength
(UCS) of intact rocks, varies between 55 — 162 M Pa, that is low to medium strength
rocks. Rock strata is highly fractured. In group two AR linearly increases with increase
of TBM thrust (Figs. 4.17a, 4.32a and 4.97b). Reason is low rock strength and presence
of medium to high frequency of joints and a high rock fracture class. For the low strength

rocks, following AR prediction model is suggested.
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AR(m/hr) = 0.566 — 0.0001Thrust — 0.019RM R — 0.010RMC (5.3)

If data for rock fracture class and rock joints is available then model can be modified as:

AR(m/hr) = 1.022 4+ 0.029T hrust + 0.475Log(a) — 0.217DPW — 0.003USC  (5.4)

5.2 Discussion

Machine (TBM) data and rock mass data were analyzed using Microsoft excel, Origin
pro 8.1, statistical software R and IBM SPSS19, Kaleida Graph and Fuzzy logic tools in
Mat-Lab. In 2-D analysis for Hieflau tunnel data, interesting trend between thrust and
advance rate is found. AR decreases with increase of thrust (Fig. 4.3a). This result is
verified by finding the correlation between these two parameters (R* = —0.647). Same
trend is repeated in case of UCS and AR, illustrating the reason behind this divergent
relation. After detailed 3-D analysis of the data from Hieflau tunnel, it is concluded that,
advance rate is inversely proportional to thrust and UCS at high torque, when we analyse
the same relation at low torque, the trend reverses. This is due to the limestone rock mass
having a moderate strength and a medium degree of fracture, low torque cannot produce
chip formation required for a good advance. Additionally in Hieflau expansion tunnel,
seismic data was available (recorded by Geo-physicist TU-Wien), was also coupled and
analysed with machine and rock mass data. Machine thrust and amplitude of erestizeit
when plotted against each other, maximum amplitudes was found at the thrust values
ranging from 8000 to 10,000 kN. There is no significant correlation between thrust and
seismic parameters, between AR and seismic parameters. At maximum value of amplitude
of reflexion, a depression in AR value is found, that shows rock brittleness and hardness
are key parameters in TBM performance. At low torque and too low and too high thrust,
tool wear is maximum, TBM cannot achieve maximum AR only by applying more thrust.
However when data for cutter wear for Hieflau tunnel is analyzed, it is obvious that cutter
wear can be economized and cutter life can be maximized when TBM thrust is kept at
a moderate value of 7900 to 8100 kN, but at the same time maximum number of cutter
changes are found at that thrust range. After multidimensional analysis, advance rate
linear regression prediction models for mix data, TBM data and TBM-seismic data,
were formulated with the help of SPSS19 software, which shows a good significance of the
model. Other reason for this trend between thrust and AR, may be the learning effect
of the TBM operator’s conduct who tries to push the thrust to the limit of admissible
values, or even beyond, when the penetration rate is deemed to be unsatisfactory [48].

Queens water tunnel, New York’s city tunnel No. 3 is one of the most complex and
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intricate engineering projects in the world [31]. Real field data for TBM and rock mass
is analysed by different ways using different software. 2-D data analysis shows that AR
linearly increases with, thrust, UCS, BTS and RFC. Even more AR is observed at high
values of UCS. This ambiguity is clarified when AR, UCS and thrust are plotted all
together in a 3-D surface (Figs. 4.21ab). Here it is clear that due to low values of
UCS, AR linearly increased with thrust, but when rock strength is more than a critical
value (200 M Pa), AR decreased with applying further thrust.Whereas the rock mass have
high UCS and low brittleness (BTS) then obtained AR is relatively lower than expected.
Maximum AR are observed as the alpha angle ranges from 50 — 65 degrees. As DPW
ranges from about 20—40 c¢m, the obtained AR is also rather high. UCS plays a major rule
in TBM performance, at low UCS, a linear correlation of AR with thrust, whereas at high
USC thrust make a curvi-linear correlation with AR (Fig. 4.21). Advance rate (AR) and
RFC models has accuracy of 64.4% and 57.1% respectively. AR linear regression model
when plotted against the actual AR values gives a significant correlation (R* = 0.655).
Similarly a linear regression model for rock fracture class (RFC) was formulated and give
accuracy of 57% and comparison of predicted and actual RFC values give R? = 0.588.
Only one rock property i.e UCS is in good correlation with machine thrust (R? = 0.629).
Moreover machine thrust and AR have a positive linear correlation of R? = 0.577.

Vereina tunnel is a 19 km long traffic tunnel. Vereina is a tunnel in hard rocks having
a high overburden, excavated with open TBM [36]. At high RMC, lowest values of thrust
and momentum (Fig. 4.31) shows that rock strength is key parameters for machine
performance, where low AR is observed against highest RMC value. Linear relation
between thrust and penetration shows a little increase in penetration with thrust. But
when we plot a 3-D surface, to see the effect of third variable, it is clearly observed that
penetration is only maximum, when machine thrust is in the range of medium values. This
result /conclusion is valid for both high and low RFC, RMC and petrography values. Fuzzy
logic gives a reasonably good results for RMC prediction. RMC, RFC and ROP, were
also predicted by using SPSS19 software packages, shows a very efficient and accurate
result for RMC prediction model (R? = 0.773). Penetration rate and RFC prediction
model shows a medium to low accuracy in their predicted models respectively. Last part
of analysis consists of correlation between machine and rock mass parameters. Here in
Vereina tunnel data, we observed a very good linear correlation between TBM parameters
and rock mass properties (thrust-RMC, R=0.831). Correlation between between thrust
and torque (R= 0.78) is found. But there is no significant correlation between thrust and
penetration (R=0.364).

Hemerwald is another hydro-power project expansion tunnel excavated by Robbins
series 120-TBM by Tiroler water power company [49]. Data was received as hard copy,
that was converted into excel files for rock mass data and then segregated in different

rocks data. Most of the tunnel strata consists of Granite Gneiss, Muscovite, Micaschists
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and Schistos-Gneis gneiss, tunnel was under a high overburden and 69% of the rock mass
belong to RMC-1. Lowest values of thrust and excavation velocity is found at T'M = 3640,
where the maximum value of RMC is observed. Rock mass class (RMC) looks to be
independent of degree of disintegration (DoD). Advance rate increases quadratically with
thrust, having a peak of 6 m/hr at 250 kg/cm?, and then decreases rapidly. RMC have a
major role in machine performance (Figs. 4.52(a,b)), as obvious from the 3-D surface, up
to a critical UCS=40 M Pa, advance rate increase and then sharply fall down even with
high thrust applied. Fuzzy logic generated 3-D surface for rock mass data, also shows
a maximum ROP at moderate thrust values and medium RMC. Frequency distribution
of actual field data shows, thrust, RFC and ROP data is normally distributed and fulfill
the condition for SSS19 prediction models. Linear regression model for advance rate
shows a very accurate estimation model (R* = 0.928 — R = 0.963) and there was a
significant correlation between machine parameters and rock mass properties e.g. thrust-
AR correlation (R* = —0.745). On the other hand, rock mass data was segregated
into separate rock sections, Muskowite-Granite-Gneis, Micaschists and Schistos-Gneis. In
Muskowit-Granite-Gneis, there founds to be no correlation between machine parameters
and rock properties. ROP decreases sharply with increase of thrust, showing adverse
effect of rock behaviour against application of more thrust than required. In Mica-Schist
rock, same behaviour of thrust and ROP is seen, but here a significant behaviour between
thrust and DoD is observed. Moreover a good Fuzzy logic prediction model is obtained for
RMC, that shows a credible results. Same analysis, when performed on Schistos-Gneis,
ROP is linearly increases with thrust. Reason behind this trend is clear, when we plot
a 3-D surface between thrust, ROP and DoD, that shows in this section, ROP directly
increases with thrust as DoD here have a moderate values throughout the section. At very
high value of thrust, the low advance rate in Hemerwald tunnel, may be due to learning
effect of TBM driver [48].

The three tunnels (Maen, Pieve and Varzo) are located in the northwestern Italian
alps and consists of one inclined tunnel for the installation of a penstock (Maen) and two
horizontal diversion tunnels (Pieve and Varzo). A total of 14 km of tunnel was surveyed
almost continually, yielding over 700 sets of data featuring rock mass characteristics and
TBM performance [37]. Performance prediction of TBM requires the estimation of both
penetration rate (PR) and advance rate (AR). Analysis for Maen tunnel data shows that,
there is drastic difference between trends and behaviour of penetration rate and advance
rate, which ultimately shows high downtime, machine breakdown and maintenance time
for the TBM, that shows very low utilization factor of TBM (Fig. 4.73). Moreover
machine performance shows a strong dependence upon rock mass strength. RMC values
were predicted by Fuzzy and SPSS both, shown a week prediction model by Fuzzy and
an accurate and efficient prediction model by SPSS. Advance rate (AR) and penetration

rate (PR) prediction models were also formulated with a reasonably good accuracy. Pieve
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tunnel data shows inverse relation between penetration rate and thrust. SPSS-19 gives a
very accurate PR linear regression model (R? = 0.55). Pieve tunnel rocks consist of two
metamorphic complexes made up of gneiss and micaschists separated by a metadiorite
intrusive body with minor masses of metaquartzdiorite and metagabbro [37]. Both AR
and PR have inverse linear correlation with thrust and PR decreasing with increase of
USC and RMR. At medium UCS both AR and PR shows a turning point in machine
performance (Figs. 4.92(a,b), showing that rock mass strength plays an important role
in machine efficiency. Data from Pieve tunnel shows a good normal distribution and
fulfill conditions for SPSS19 prediction modeling. RMC model predicted by Fuzzy logic
shows a poor accuracy, while SPSS19 predict a good RMC model for Maen tunnel. AR
and PR predicted model by SPSS-19 also shows a good empirical formulas. In Varzo
tunnel data, AR and thrust have linear correlation, and RMR plays a major role in
machine performance. SPSS-19 gives here a good prediction model for AR, PR and
RMC. Moreover in all three tunnel sites, a significant positive correlation is found between
machine parameters and rock mass properties. In general the penetration rate increases
with decreasing rock mass quality until RMR values of about 50 — 70. The performance
below that ranges reflect bad boreabilty in adverse rock mass due to mucking problem
and face instability [50]. On the contrary, low PR recorded in very good rock masses
RMR >80—90 depend upon high strength of intact rock. Correlation between thrust and
advance rate highly depends upon the strength (UCS) of the rock. TBM performance
reaches a maximum in the RMR 40 — 70(UC'S = 100M Pa), while slower penetration is

experienced in both too good and too bad rock masses.

5.3 Conclusions

Geological conditions and rock mass characterizations in the field should be investigated
before selecting the TBM, since the machine specification including thrust, cutter-head
power and both diameter and number of disc cutters heavily influence the ROP. Hence
geology and the best estimation of unknown rock mass properties, including orientation,
condition and frequency of discontinuities together with rock strength and brittleness
provide the major control on the penetrability of tunnel boring machine. These factors
should be known before the start of excavation with a good accuracy. Due to high water
pressures deep tunnels are normally drained tunnels, it is neither technically feasible nor
economically reasonable to try to seal off entirely deep tunnels. So for TBM performance
prediction, all rock mass properties like rock strength, RFC, RMC, water pressure and
overburden must be the part of input parameters and predictors, for the calculation for
machine advance rate. But unfortunately here in all available tunnels data analysis,
no data was available regarding presence of water and effect of overburden. Moreover

underground temperature increases rigorously with depth, so in deep tunnel temperature
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and hydraulic pressure should be a part and parcel of the influential variables. In Hieflau,
assuming rock strength to follow Gausion’s distribution, UCS versus AR plot revealed
that rock strength is major consequential parameter for TBM performance. Moreover
this behavior is possibly due to the fact that machine operator tries to improve the low
penetration rate in very hard rock by pushing the thrust near or above the recommended
level, whereas he reduces the thrust when the penetration rate (ROP) is considered to be
acceptable. In Hieflau tunnel, trends resembles with that of Hemerwald tunnel data.
Empirical relations between rock mass rating and penetration rate clearly show that
TBM performance reaches a maximum in the rock mass rating (RMR) range 40 — 70 while
slower penetration is experienced in both too bad and too good rock masses [37]. Different
rocks give different penetrations for the same RMR, the use of Bieniawski classification
for predictive purpose is only possible provided one uses a normalized RMR index with
reference to the basic factors affecting TBM tunneling [2]. In Hemerwald tunnel AR has a
quadratic correlation with thrust, above 24.56 MPa advance rate rapidly decreases. The
simplest explanation for this divergent phenomenon is that at low thrust, the cutter action
for the chip formation is different than at higher thrust. Perhaps this is the critical thrust
above which more consistent chip formation occurs. Disc cutter performance depends
upon the cutter head being totally engaged with the rock. Hence it revealed that, cor-
relation between thrust and advance rate highly depends upon the strength, orientation
and type of rock. Energy transferred and energy dissipation into the rock by the cutter
head is a localized and time dependent phenomenon. Experience and skill of the TBM
operator plays a major role in tunnel excavation efficiency. TBM performance predictive
law has been also applied verifying a scarce gap between the predicted and actual values
of the net advance rate, hence predicted models by SPSS-19, for RMC, RMR and AR are

comparable to many empirical models available in literature.
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List of Abbreviations and Notations

ABM: Auger boring machine

Ample,se: Amplitude of ersteinsatz (amplitude of first arival) of seismic wave
Ampl,ciee: Amplitude of reflexion of seismic wave
AR: Advance rate

BRMR: Bieniawski rock mass rating

BTS: Brazilian tensile strength

DEP: Department of environmental protection
DoD: Degree of disintegration

DPW: Distance between plane of weakness
EPBM: Earth pressure balance machine

HPP: Hydro power plant

MPa: Megapascal

NATM: The new Austrian tunneling methods
Pseu,; :Pseudo velocity

QWT: Queens water tunnel

RFC: Rock fracture class
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RMC: Rock mass classification

RMR: Rock mass rating

ROP: Rate of penetration

PR: Penetration rate

TBM: Tunnel boring machine

TM: tunnel meters

TSWD: Tunnel seismic while drilling

UCS: Uniaxial compressive strength

a : Angle between tunnel axis and plane of weakness
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