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Abstract

Performance of the tunnel boring machine (TBM) and its prediction by di�erent meth-

ods has been a hot issue since the �rst TBM was developed. For the sake of safe and

sound transport, improvement of hydro-power, mining, for civil and many other tunneling

projects, TBMs are quite frequently used. TBM parameters and rock mass properties,

which heavily in�uence machine performance, should be known or estimated before TBM-

type is chosen and start of excavation. By applying linear regression analysis, Fuzzy logic

tools and a special MATLAB code on actual �eld data collected from seven TBM driven

tunnels (Hie�au expansion tunnel, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve

and Varzo tunnel), an attempt was made to provide prediction of rock mass class, rock

fracture class, penetration rate and advance rate. For detailed analysis of TBM perfor-

mance, machine parameters (thrust, machine rpm, torque, power etc.), machine types

and speci�cation, rock mass properties (UCS, discontinuity in rock mass, RMC, RFC,

RMR, etc.) were analyzed by 3-D surface plotting using the statistical software R. Corre-

lations between machine parameters and rock mass properties, which e�ectively in�uence

prediction models, are presented as well.

In the Hie�au expansion tunnel advance rate linearly decreases with increase of thrust

due to high dependence of machine advance rate upon rock strength. For the Hie�au

expansion tunnel three types of data (TBM, rock mass and seismic data, e.g., amplitude,

pseudo velocity, etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces.

No appreciable correlation between seismic data (amplitude and pseudo velocity), rock

mass properties and machine parameters could be found. Tool wear as a function of TBM

operational parameters was analyzed, it revealed that tool wear is minimum when applied

thrust is moderate and that tool wear is high when thrust is too low or too high. An

empirical linear model for advance rate was predicted with a high accuracy. On the other

hand, in the Hemerwald tunnel thrust and advance rate have the same correlation as in the

Hie�au. A signi�cant correlation between machine parameters and rock mass properties

was found. An empirical linear equation with great accuracy was achieved to predict

advance rate as a function of di�erent rock mass properties and machine parameters.

After analyzing the data from seven tunnel sites, based on rock strength, fracture

class, behavior of thrust versus advance rate, seven case histories have been divided into

two major groups. Group one consists of Hie�au, Hemerwald, Maen and Pieve tunnel.
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Rock mass strata mainly comprise of Limestone, Schistose-Gneiss, Micaschists and Meta-

granite. For group one rock strength ranges from 162-226 MPa, which contains high

strength rocks. In this group advance rate decreases linearly with increase of thrust. This

is due to very high strength, presence of less joints and very low fracture class. For high

strength rocks a prediction model for advance rate may be used with slight variations

from case to case. On the other hand, group two comprises Queen water tunnel, Vereina

and Varzo tunnel. Rock mass strata mainly consists of Micaschists and Gneiss. Rock

strength varies between 55-162 MPa, which is low to medium strength rocks. In group

two advance rate linearly increases with increase of TBM thrust. The reason is low rock

strength, presence of medium to high frequency of joints and a high rock fracture class.

For the low strength rocks, another advance rate prediction model is suggested.
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Kurzfassung

Die Vorhersage der Vortriebsleistung von TBMs ist eine wichtige Fragestellung seit dem

Beginn des Einsatzes von TBMs für den kontinuierlichen Vortrieb. Der Einsatz von

Tunnelbohrmaschinen gewinnt aufgrund seiner E�zienz gegenüber dem konventionellen

Vortrieb auch zunehmend an Bedeutung. Die Maschinendaten und die geotechnischen

Gebirgsparameter haben einen signi�kanten Ein�uss auf die Vortriebsleistung und sollten

daher bereits bei der Wahl der TBM, d.h. vor Baubeginn, abgeschätzt werden.

Mit Hilfe der Methode der linearen Regression, der Fuzzy Logic und eines speziell en-

twickelten Matlab-Programms wurden die gesammelten Daten von sieben Tunnelbohrpro-

jekten (Hie�au, etc.) analysiert und eine Vorhersage der Gebirgszerlegung, der Vor-

triebsrate sowie der Pentrationsrate versucht. Mit Hilfe der Statitiksoftware �R� wurde

eine detaillierte statistische Analyse und eine Gegenüberstellung der Maschinenparam-

eter (Anpresskraft, Umdrehung, Drehmoment, etc.) und der Gebirgsparameter (einax-

iale Druckfestigkeit, des Zerlegungsgrads des Gebirges, etc.) durchgeführt. Es wurden

Zusammenhänge zwischen den Maschinendaten und den Gebirgsparametern die für ein

Vorhersagemodell entscheidend sind abgeleitet.

Beim Erweiterungsstollen Hie�au sinkt die Vortriebsrate mit Zunahme des Anpress-

drucks infolge der hohen Anhängigkeit der der Vortriebsrate von der Gesteinsfestigkeit.

In Hie�au wurden drei Klassen von Daten miteinander in Beziehung gesetzt und mit

Hilfe dreidimensionaler Diagramme (Ober�ächen) analysiert: Maschinendaten, Daten zur

Beschreibung des Gebirges und seismische Daten.

Dabei wurden keine verwertbaren Zusammenhänge zwischen seismischen Daten (am-

plitude und pseudogeschwindigkeit), Maschinenparametern und Gebirgsparametern ge-

funden. Die Analyse des Verschleiÿes der Meisel, Lager und Hydraulik im Vergleich mit

den aufgezeichneten Vortriebsdaten hat gezeigt, dass der Werkzeugverschleiÿ bei einem

moderaten Anpresskraft zu einem Minimum wird und bei einem geringen- oder hohen An-

presskraft der Werkzeugverschleiÿ ein Maximum erreicht. Die Vortriebsgeschwindigkeit

wurde mit Hilfe eines linear empirischen Modells mit hoher Genauigkeit vorhergesagt.

Beim Hemerwald Tunnel wurden zwischen Vortriebsgeschwindigkeit und Anpresskraft

dieselben Korrelationen beobachtet als beim Fallbeispiel Hie�au. Die Analyse zeigt einen

signi�kanten Zusammenhang zwischen den aufgezeichneten Maschinenparametern und

den Gebirgskennwerten.
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Insgesamt wurden die Daten von sieben Tunneln in Bezug auf die Gebirgsfestigkeit,

die Gebirgszerlegung und den Zusammenhang zwischen Anpressdruck und Vortriebs-

geschwindigkeit ausgewertet. Die sieben untersuchten Fallbeispiele können in zwei Grup-

pen unterteilt werden.

Die erste Gruppe beinhaltet die Tunnel Hie�au, Hemerwald, Maen and Pieve. Die

vorherrschenden Gesteine der ersten Gruppe sind Kalksteine, Schiefer, Gneise und Granite

und ihre einaxiale Druckfestigkeit variiert zwischen 162 und 226 MPa. Bei dieser Gruppe

nimmt die Vortriebsgeschwindigkeit mit zunehmender Anpresskraft ab. Die Analyse hat

gezeigt, dass die Ursache für dieses Verhalten in der hohen Gesteinsfestigkeit und der

geringen Gebirgszerlegung zu �nden ist. Bei hoher Gesteinsfestigkeit kann das entwickelte

Vorhersagemodell für die Vortriebsgeschwindigkeit mit nur geringen Variationen von Fall

zu Fall angewendet werden.

Die zweite Gruppe beinhaltet den Queen water, den Vereina und den Varzo Tunnel.

Hier sind die vorherrschenden Gesteine Schiefer und Gneise mit einer einaxialen Druck-

festigkeit zwischen 55 und 162 MPa und hoher Gebirgszerlegung, diese Fälle repräsen-

tieren ein geringfestes bis mittelfestes Gebirge. Bei dieser Gruppe nimmt die Vortriebs-

geschwindigkeit mit zunehmender Anpresskraft zu. Bei Gesteinen mit geringer Festigkeit

muss kann das entwickelte Vorhersagemodell nicht ohne weitere Anpassungen benutzt

werden.
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Chapter 1

Introduction

Performance of the tunnel boring machine (TBM) and its prediction by di�erent meth-

ods has been a hot issue since the �rst TBM was built. For safe and sound transport,

improvement of hydro-power, mining, civil and many other tunneling projects, TBMs are

quite frequently used. There is a constant and growing demand in the mining industry for

rapid excavation to develop new ore bodies faster in order to reduce overall development

cost. TBM which has been developed in recent years, has revolutionized the tunnelling

industry by making tunnelling safer and economical for creating underground space and

opening the possibility of creating tunnels where it was not feasible before [1]. These

machines are used to excavate tunnels through a variety of di�erent rock types. They can

be used to bore through hard rock or sand or almost anything in between. These boring

machines are used as an alternative to drill and blast (D and B) methods. TBM has the

advantages of not disturbing surrounding soil or rock producing a smooth tunnel wall [2].

This signi�cantly reduces the cost of lining the tunnel, and makes them suitable to use in

built-up areas, suitable to use in heavily urbanized areas. It is is also a complete single

unit moving factory.

In this thesis, in order to set forth a more accurate and detailed control system and

estimation models for the TBM machine, analysis of machine and rock mass data from

seven tunnel sites were done. Main aim of this research work is to improve the existing

prediction models and to provide a tool-box for the TBM tunnelling industry (underwrites,

project owners, consultants, contractors, manufacturers, researchers etc.) which can be

used through all phases of a project. It consists of optimizing the TBM performance,

keeping the machine utilization maximum, lowest possible tool wear and prediction about

the rock mass class and possible e�ect of the ground water. Seismic data collected by

Geo-physic department of TU Wien was coupled with TBM and rock mass data of Hie�au

tunnel, that resulted into another outcome of prediction models for TBM before the start

of actual excavation. The correlations between machine parameters thrust, advance rate,

torque and rock parameters, uncon�ned compressive strength (UCS), rock mass class

(RMC) or rock mass rating (RMR) are found using real �eld data from many tunnel sites
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excavated by TBM.

1.1 Overview of the Dissertation

Thesis basically consists of �ve chapters. Chapter 1 includes introduction, purpose and

structure of the dissertation. In chapter 2, the tools and methods that are used for

analysis, are brie�y described with examples and graphical user interface (GUI). Chapter

3 contains basic data and history of tunnel sites from where the data was acquired, with the

help of photographs taken from relevant websites of Robbins, Herrenknecht etc. Chapter

4 comprises core work done, includes analysis and results of data taken from these sites.

Last chapter �ve includes discussions and conclusions.

1.2 History of Tunnel Boring Machines (TBMs.)

The �rst successful tunnelling shield which is normally regarded as the precursor of the

tunnel boring machine was developed by Sir Marc Isambard Brunel to excavate the

Rotherhithe tunnel under the Thames in 1825.

Figure 1.1: First tunnelling shield [1].

However, this was only the invention of the shield concept and did not involve the

construction of a complete tunnel boring machine, the digging still was done by standard

excavation methods using miners to dig under the shield and behind them brick layers
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built the lining Fig. 1.1. Although the concept was successful, eventually it was not an

easy project [1].

The �rst boring machine was Henri-Joseph Maus' Mountain Slicer. It was commis-

sioned by the King of Sardinia in 1845 to dig the Fréjus Rail Tunnel between France and

Italy through the Alps, Maus had built it in 1846 in an arms factory near Turin [3]. In

1851 Charles Wilson invented a boring machine with disc type cutters. Another machine

was built for boring the English Channel tunnel between England and France in 1865. Use

of the TBM is very old and common in underground excavations, like transport tunnels

and high pressure water tunnels for hydro power plants [4]. In the United States, the �rst

boring machine was used in 1853 during the construction of the Hoosac Tunnel which

was made of cast iron, it was known as Wilson's Patented Stone-Cutting Machine, after

inventor Charles Wilson [5]. It drilled 10 feet into the rock before breaking down. The

tunnel was eventually completed more than 20 years later by using less ambitious meth-

ods [6].One need to move on nearly 100 years when James S. Robbins built a machine to

dig through what was the most di�cult shale to excavate at that time, the Pierre Shale.

Robbins built a machine that was able to cut 160 feet in 24 hours in the shale, which was

ten times faster than any other digging speed at that time.

1.2.1 Di�erent Types of TBM

The description of the types of TBM are inferred from what type of soil is being excavated.

1.2.1.1 Gripper Machine

Essential to the functioning of Gripper TBMs are their drilling, bracing, support and

safety systems. The drilling system, i.e. the cutter-head is �tted with cutter rings (disks).

In this process the disks roll over the tunnel face, thereby loosening the native rock. The

excavated rock or chips (commonly known), is collected in muck bucket lips (openings

in the cutter-head) and discharged via hoppers onto a conveyor belt. The tunnelling

performance of a Gripper TBM depends essentially on the time required to install rock

supporting devices. Same safety measures are used as those in conventional tunnel build-

ing, rock anchors, meshes and shotcrete together with the segments characteristic of TBMs

and the steel beam supports which are particularly suitable for this purpose.

3



Figure 1.2: Gripper machine [7].

The Gripper machine enables comprehensive rock support measures to be taken even

right behind the cutter-head Fig. 1.2, in the so-called L1 work area (1), Ring erectors

(2), anchor drilling devices (3) or wire-mesh erectors (4) for example, can be provided for

installing the steel supports. Shotcrete is applied and segments are installed in backup

area.

1.2.1.2 Single Shield Machine

Figure 1.3: Single shield machine [7].
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The single shield TBM Fig. 1.3 belongs to a category of machines which are �tted with

an open shield. Tunnelling machines described as open shields are machines without a

closed system for pressure compensation at the tunnel face. In other words, no excavation

chamber has been de�ned. TBMs �tted with a shield are used on brittle rock formations

or soft rock. They have a very wide range of applications on hard rock. Protected by the

shield (1), a cylindrical tapered steel structure, the machine extends and drives forward

the tunnel practically automatically. In order to drive the tunnel forward, the single

shield TBM uses the hydraulic thrust cylinders (2) on the last segment ring (3) installed.

The cutting wheel (4) is �tted with hard rock disks, which roll across the tunnel face

cutting notches in it. These notches dislodge fairly large chips of rock. Muck bucket

lips (5), which are positioned at some distance behind the disks, carry the extracted rock

behind the cutting wheel. The excavated material is brought to the surface by conveyers

(6). In addition to many other parameters, the torque depends largely on the degree of

penetration of the disks and their contact pressure [7].

1.2.1.3 Double Shield Machine

Double shields machines are amongst the most technically sophisticated tunnel boring

machines used in tunnelling operations. Combining the Gripper principle and the instal-

lation of the segments in one perfectly coordinated process, double shields can easily be

adapted to the particular geological conditions of any tunnel route [7].

Figure 1.4: Double shield TBM [7].

This type of machine is thus ideally suited for drilling long tunnels in hard rock

where geological fault zones occur. The double shield TBM owes its name to its special

design, whose main feature Fig. 1.4 is an extendable front shield (1) in the front part of

5



the machine, which allows the cutter-head (2) to be extended. Reaction forces (torque,

axial and longitudinal forces) arising during drilling are conducted into the rock by the

extended gripper shoes (3), which are located in the middle section of the tunnel boring

machine. Since these forces have been dissipated, the lining segments (5) can be installed

during tunnelling, ensuring high tunnelling performance. This is not possible using the

conventional method. On completion of a thrust stroke, the gripper shoes are retracted

and the rear section of the machine is pushed against the front shield by the auxiliary

thrust cylinders (4). This changeover phase only lasts a few minutes and then the next

section of tunnel can be drilled. However, continuous drilling like this can be carried out

only in undisturbed sections of rock because the gripper shoes need the surrounding rock

as an anchorage. When the double shield reaches a section of rock containing fault zones,

the telescopic front shield is retracted. The entire boring machine is then driven forward

for drilling only by the auxiliary thrust cylinders (4), which are supported on the tunnel

lining (5). This type of tunnelling is referred to as "discontinuous" since in this process,

as with a conventional shield, tunnelling with the thrust cylinders is not possible until a

segment ring has been installed (Fig. 1.4).

1.2.1.4 Mix Shield Machine

This machine is used as a mix-shield where gravelly geological conditions indicate an

unstable tunnel face or mixed geological conditions.

Figure 1.5: Mix-shield TBM [7].
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At the tunnel face the soil is loosened all over by the cutting wheel (1) rotating in

the bentonite suspension. The soil then mixes with the bentonite suspension. The area

of the shield in which the cutting wheel rotates is known as the excavation chamber

(2) and is separated by the pressure bulk head (3) from the section of the shield under

atmospheric pressure Fig. 1.5. The bentonite suspension supplied by the feed line (4) is

applied in the excavation chamber via an air bubble (5) at a pressure equaling the native

soil and water pressure, thus preventing an uncontrolled penetration of the soil or a loss

of stability at the tunnel face. The support pressure in the excavation chamber is not

controlled directly by the suspension pressure but by a compressible air cushion (5). For

this reason excavation chamber behind the cutting wheel is separated from the pressure

bulk head by a so-called submerged wall (6). The area of the submerged wall and pressure

bulk head is known as the pressure or working chamber. The tunnels are normally lined

with steel reinforced lining segments (7), which are positioned under atmospheric pressure

conditions by means of erectors (8) in the area of the shield behind the pressure bulk head

and then bolted in place. Mortar is continuously forced into the remaining gap between

the lining segments outer side and the excavation diameter through injection openings in

the tail skin or openings directly in the segments (Fig. 1.5).

1.2.1.5 Slurry Machine

Slurry machine is used for soils usually of varying hardness. Excavated soil is mixed with

slurry to create positive face pressure required to sustain the excavation. This is known

as a closed machine. The system for the removal of the soil involves pumping the soil

mixed with slurry to plant located outside the tunnel that separates the slurry from the

muck allowing its recirculation [1].

Figure 1.6: Slurry machine [7].

The machine is used as a mix-shield where gravelly geological conditions indicate

7



an unstable tunnel face or mixed geological conditions. In this mode the extraction

chamber is completely �lled with suspension, while the pressure chamber (4) Fig. 1.6,

situated after the dive wall (1), the suspension is supported by the air pressure cushion

(12) and the pressure bulkhead (2). The air pressure is automatically controlled by an

air regulating equipment (10+11) to avoid blow outs and base failures at the tunnel face.

The pressure compensation between the extraction chamber (3) and the suspension in the

pressure chamber after the dive wall is implanted via the communicating pipe (5). The

supply conduit (9) delivers the suspension into the extraction chamber. The suspension

is removed by the slurry conduit (6) from the extraction chamber behind the suction

rack (13). An accumulation of sediments below the communicating pipe is avoided by an

constant �ush above the supply conduit (8) and the conveyor conduit (7) in the pressure

chamber.

1.2.1.6 Earth Pressure Balance Machine

This is a closed machine and is used usually for softer fairly cohesive soils. In this case

the positive face pressure is created by the excavated ground that is kept under pressure

in the chamber by controlled removal through the rotation of the screw conveyor. Muck

is thereafter removed by a conveyor belt or skips [1].

Figure 1.7: Earth pressure balance machine [7].

Where shield excavation is carried out in non stable soils, a loss in stability of the

tunnel face is prevented by creating a support pressure. With earth pressure balance

machine (EPBM), Fig. 1.7 the cohesive soil loosened by the cutting wheel (1) serves to

support the tunnel face, unlike other shields which are dependent on a secondary support

8



medium. Area of the shield in which the cutting wheel rotates is known as an excavation

chamber (2) and is separated from the section of the shield under atmospheric pressure

by the pressure bulk head (3). Soil is loosened by the cutters on the cutting wheel, falls

through the openings of the cutting wheel into the excavation chamber and mixes with

the plastic soil already there. Uncontrolled penetration of the soil from the tunnel face

into the excavation chamber is prevented because the force of the thrust cylinders (4) is

transmitted from the pressure bulk head onto the soil. A state of equilibrium is reached

when the soil in the excavation chamber cannot be compacted any further by the native

earth and water pressure. The excavated material is removed from the excavation chamber

by an auger conveyor (5). The amount of material removed is controlled by the speed of

the auger and the cross-section of the opening of the upper auger conveyor driver. The

auger conveyor conveys the excavated material to the �rst of a series of conveyor belts.

Excavated material is conveyed on these belts to the so-called reversible conveyor from

which the transportation gantries in the backup areas are loaded when the conveyor belt

is put into reverse. The tunnels are normally lined with steel reinforced lining segments

(7), which are positioned under atmospheric pressure conditions by means of erectors (6)

in the area of the shield behind the pressure bulkhead and then temporarily bolted in

place. Mortar is continuously forced into the remaining gap between the segments outer

side and the rock through injection openings in the tail skin or openings directly in the

segments [7].

1.2.1.7 Auger Boring Machine (ABM)

Figure 1.8: Auger boring machine [8].

An Auger Boring Machine (ABM) Fig. 1.8 is used to bore horizontally through soil or

rock with a cutting head and auger. Majority of ABMs are used to install pipe casing

under railroads, highways, airport runways, creeks or any area of ground that cannot be

open cut or disturbed in any way. Initially the ABM is set up in the starting pit on

a predetermined length of track. A backing plate, usually steel or reinforced concrete
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block, is installed in the wall opposite of the boring to withstand the thrust exerted by

the boring machine. The machine bores through the earth with a cutting head and the

jacking force is provided by the hydraulic thrust. The pipe casing and auger sections are

added as the machine advances. Soil is removed from the auger through the casing to a

door located on the side of the machine [8].

1.3 The New Austrian Tunnelling Method (NATM)

The New Austrian Tunnelling methods (NATM) were developed between 1957 and 1965

in Austria [9]. It was given its name in Salzburg in 1962 to distinguish it from old Austrian

tunneling approach. The main contributors to the development of NATM were Ladislaus

V. Rabcewicz, Leopold Müller and Franz Pacher. The main idea is to use the geological

stress of the surrounding rock mass to stabilize the tunnel itself. The NATM was originally

applied for tunnels in rock in the1970s, however, this tunnelling method was carried out

more and more also in soft rock with low overburden and in urban areas. Because of

the outstanding importance of the shotcrete (sprayed concrete) for the application of this

method the denotation "Sprayed Concrete Lining Method" or simply "Shotcrete Method"

is mainly used in Germany [10].

1.4 TBM Tool Wear

Tool (TBM cutter) wear is another important factor which play rigorous role in machine

utilization and tunnelling cost. E�ort was made to get a correlation between thrust and

cutter wear and advance rate of TBM and to minimize the tool wear. Data from many

TBM driven tunnels were gathered and analyzed for above mentioned goals. This part

of research showed that tool wear was least when TBM diameter is high and machine is

operated at moderate thrust. Only Hie�au data has been analysed for tool wear analysis,

as no other data for tool wear from any other site have been available.

1.5 Methods/Tools Used for Investigation

Fuzzy logic, Origin 8.1, Microsoft excel, Kaleida graphs, statistical software �R�, Math-

Lab, and a commercially available software packages IBM SPSS19 were used to analyse

actual �eld data, collected from �ve tunnel sites. Full details and description of these

tools or methods is presented in chapter 3.
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1.6 Previous Work

Lot of work is already done regarding TBM performance. Here few speci�c research works

are presented, which are closely related to this research work.

1.6.1 Samuel 1984

This paper shows the results of 2 tests conducted for boreabilty, one in vesicular basalt

and other in non-vesicular basalt. The results and analysis of the paper shows that, the

geological defects will produce varying e�ects depending on the size of cutter used and

the penetration of disc cutter. This e�ect of penetration is particularly great in highly

porous and highly faulted rock. Since a higher penetration by the cutter would be able

to take more advantage of the structural weakness, than if the penetration is less than

the typical dimension of the holes or faults in the rock. Higher advance rate could be

achieved by using a higher head speed for boring, provided that the condition of the disc

cutters does not deteriorate. Consequently, all other things being equal, it would appear

to be better to operate the machine at moderate propel pressure so as to achieve higher

advance rate [11].

1.6.2 Gehring 2009

The paper states that, with same machine, tool and rock parameters the penetration

can be assumed to be directly proportional to the speci�c excavated volume over most

of the range of application. This value is mainly used for practical reasons and is itself

inversely proportional to the tool wear. The correlation between e�ective thrust force and

penetration is found to be approximately linear for a certain machine assuming comparable

rock conditions. This linearity does not show below a critical penetration and above a

certain maximum penetration. This maximum penetration is de�ned by the shape of the

cutting edge of the discs and the state of cutter wear and can be approximately in a

range between 11 to 15 mm/rev. Larger diameters permit higher head speed and higher

advance rate. Also the life time of cutters was found to increase with diameter Fig. 1.10.

Gehring K. also introduced a formula for TBM excavation, given below [12]:

VS−rpm = VS.
50

DB.RB−i
[m3/cutter] (1.1)

where:

VS−rpm speci�c excavated volume at a certain cutter head speed [m3/cutter];

VS speci�c excavated volume at nominal cutter head speed [m3/cutter];

RB−i actual cutter head speed [min−1].
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Figure 1.9: Thrust versus penetration [12].

1.6.3 Gong et al 2006

Results showed that a critical point exists in the penetration curves. The penetration per

revolution increases rapidly with increasing thrust per cutter when it is higher than the

critical value. When the thrust is greater than the critical value, the muck becomes well-

graded. The muck shape analysis results also showed with the increase of the thrust, the

chip shape changes from �at to elongated and �at. Boreabilty index at the critical point

of penetration of 1 mm/rev, de�ned as the speci�c rock mass boreabilty index is proposed

to evaluate rock mass boreabilty. It decreases with increasing thrust per cutter. This is

due to a change in the e�ciency of the cutting action at the cutter head. Borg (1988) and

Bruland (1998) found that a critical thrust must be applied to overcome the rocks inherent

resistance against breaking. Below this critical thrust value almost no penetration rate

can be achieved and above this value the penetration rate increases rapidly with the

increase of thrust force. Therefore, the previously de�ned boreabilty index calculated by

the TBM performance data can not accurately represent the rock mass boreabilty. Only

when the thrust force remains same, the calculated boreabilty index can demonstrate

the di�erent rock mass conditions. It was concluded that with the increase of the thrust

force per cutter, the penetration per revolution increases Fig. 1.10. For example, the

rock strength of granite in T05 penetration test is 172.9 MPa and its speci�c rock mass

boreabilty index is 208 kN/cutter/mm/rev, while the rock strength of granite-gneiss in

Buchi's test is close to 250MPa and its speci�c rock mass boreabilty index is only 120.67

kN/cutter/mm/rev (Büchi, 2004). The speci�c rock mass boreabilty index remains a

constant in the same rock mass condition if the same TBM is used, and does not change

at di�erent operating thrust forces. With increasing torque and thrust per cutter, the
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penetration per revolution increases. The correlation between the thrust per cutter and

the penetration also shows that there exists a critical value in the correlation curve [13].

Figure 1.10: Thrust versus penetration [13].

1.6.4 Balci 2009

A case study in Kozyatagi-Kadikoy metro tunnel, Turkey. This paper presents determi-

nation of some design parameters and performance prediction of a TBM carried out using

full-scale rock cutting tests.

Figure 1.11: Relationship between thrust and penetration [14].

Contrary to the basic rock cutting mechanics and rock cutting tests realized in the

laboratory on intact rock, the �eld thrust and rolling force do not show any increase or

relationships with penetration in the �eld. This is mainly due to the highly fractured

characteristic of the rock formation excavated. Thrust force for a speci�c penetration

is higher in the �eld than in the laboratory test results, probably due to high frictional
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forces between shield and highly fractured or almost loose rock formation accumulated

in front of the cutter-head. This causes an increase in torque, power and speci�c energy

requirements compared to the laboratory test results. In most cases, small size of the

muck causes speci�c energy to increase. This is well explained by Fig. 1.11 coarseness

index values obtained by sieve analysis of the muck from the laboratory experiments and

the �eld.

1.6.5 Ribacchi et al 2004

This paper analyzed the in�uence of rock mass quality on the performance of TBM in

a high strength and low fracture density rock. An increase in penetration with thrust is

observed in speci�c tests carried out on the same face or under the same rock conditions,

sometimes with a well de�ned knee for a critical value of the thrust. However the values

determined during normal machine operation often show a reverse correlation (Grandori

et al., 1995). This behavior is possibly due to the fact that the machine operator tries

to improve the low penetration rate in very hard rock by pushing the thrust near or

above the recommended level, whereas he reduces the thrust when the penetration rate

V p is considered to be acceptable [15]. The data obtained for the Varzo tunnel do not

show a marked relationship between applied thrust and penetration rate, if the data

corresponding to the learning phase are excluded, only a slight increase in the thrust at

decreasing penetration rates is observed.

Figure 1.12: Thrust versus advance rate [15].

This hypothesis is supported by the penetration data for a tunnel in granitic rock

analyzed by Mogana et al. (1998), it was found that spacing accounted for about 26% of

the total variance of the penetration rate (a much lower value than in the Varzo tunnel),

whereas the inclusion of various other rock mass characteristics (e.g. compressive strength,

joint quality) brought the coe�cient of correlation R2 to 0.53 and 0.62 respectively for the

penetration rate and the scaled penetration rate. The in�uence of thrust on penetration
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does not emerge clearly from the excavation data. When boreabilty indexes including

thrust are adopted, such as V (in which the penetration rate is scaled with respect to

the thrust per cutter), correlations with the quality indexes of the rock mass show only a

slight improvement. As in other rocks masses characterized by low machinability, a weak

negative correlation between thrust and penetration rate was found for the Varzo tunnel.

This behavior may be determined by the operator's conduct who tries to push the thrust

to the limit of admissible values, or even beyond, when the penetration rate is deemed to

be unsatisfactory.

1.6.6 Cardu 2009

In this study, an analysis has been carried out on about 587 m of a service tunnel,

excavated by a TBM in a �ysch formation. Some relationships have been highlighted

between the excavation speci�c energy, net advance rate, thrust on the cutter-head and

the rock mass rating. TBM performance predictive law has been also applied verifying

a scarce gap between the predicted and actual values of the net advance rate Fig. 1.13.

Resulted relationship between excavation speci�c energy and RMR can help the choice of

the TBM for a speci�c tunnel or the estimation of the net advance rate using a speci�c

machine.

(a) Speci�c energy versus AR. (b) Thrust versus AR.

Figure 1.13: Applied thrust versus net advance rate [16].

1.6.7 Poisel et al 1999

The investigations showed that it is possible to assess rock mass class (RMC) evaluating

machine data. By this it would be possible to establish an overall rule base accounting for

the complete complex system. Poisel R. et al. suggested Fuzzy rule base for prediction of

rock mass class (RMC) and apply it to di�erent rock mass data from Schwarzach, Vereina

and Evinos tunnels Fig. 1.14.
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Figure 1.14: Rock mass class predicted by Fuzzy logic [17].

At the moment there is no investigations available how to evaluate water and structure

orientation best [17].

1.6.8 M. Berti et al 2002

A lot of analysis on three tunnels (Maen, Pieve and Varzo in Italian Alps) data, including

histogram plot, 2-D correlations between rock mass rating (RMR), thrust, penetration

rate, Q-value, utilization coe�cient and UCS Fig. 1.15. A reliable estimation of excava-

tion rates is needed for time planning, cost control and choice of excavation method in

order to make tunnel boring economic in comparison with the classical drill and blasting

method. As a consequence, great e�orts have been made to correlate TBM performance
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with rock mass and machine parameters, either through empirical approach or physically

based theories.

Figure 1.15: RMR versus rock mass quality [18].

1.6.9 Sa�et Yagiz 2007

Data from the tunnel excavated in predominantly fractured igneous and metamorphic rock

were used to achieve TBM performance predictive equation as a function of engineering

rock properties. TBM performance requires the estimation of penetration rate (ROP),

the ratio of excavated distance to the operating time during continuous excavation phase

(a) UCS versus ROP. (b) PSI versus ROP.

Figure 1.16: ROP versus PSI and UCS [19].

and advance rate (AR), the ratio of both mined and supported actual distance to

the total time Fig. 1.16. In fact, most of the predictive models are concerned with the

estimation of ROP [19].
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Chapter 2

Methods/Tools Description

2.1 Methods/Tools Used for Investigation

2.1.1 Kaleida Graph

Kaleida graph works just like Excel, but there are more option and applications for curve

�tting, 3-D plotting, linear regression and statistical modeling. Kaleida needs not any

extra code or subroutine, it works with import and export of data from and to the excel

�le. In this software there are so many options for curve �tting and also it can perform

matrix operations. Now, let's create a plot using the example data.

� Choose Gallery > Linear > Scatter.

This will display the Variable Selection dialog. Notice that the name of the data �le and

its column titles are displayed in this dialog.

� Select Time as the X variable and Test 1 as the Y variable by clicking the appropriate

buttons.

� Click New Plot to create a Scatter plot.
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(a) Graphical user interface for
Kaleida.

(b) Kaleida graph scattered plot.

Figure 2.1: Kaleida GUI and scattered plot.

Figure 2.1a shows what your Variable Selection dialog should look like at this point and

Fig. 2.1b shows an output scattered plot and polynomial curve �t.

The X variable you selected is the independent variable and the Y variable is the

dependent variable. By default, the X variable is plotted on the horizontal axis and the Y

variable is plotted on the vertical axis. The title of the plot is taken from the name of the

data window. The X and Y axis titles are taken from the column titles of the variables

being plotted. The Y variable title is also used in the legend. Now that the graph has

been created, it can be modi�ed very easily. For example, let's change how the data is

represented on the plot. You will use the Plot Style dialog to change the marker type,

size, and color.

� Triple-click the marker displayed in the legend (or choose Plot > Plot Style).

� Select a di�erent marker to represent the variable on the plot. The markers are

displayed on the left side of the dialog. The �rst six markers in the left column are

transparent; all of the others are opaque.

� Change the value in the Marker Size �eld to 18 and select a di�erent color from the

color palette.

� Click OK and the plot will be redrawn to re�ect the changes that have been made.

Now we will use the Identify tool ( ) from the toolbox to display the coordinates of the

data.

� Select the Identify tool by either clicking it or pressing I on your keyboard.

� Once the tool is selected, click one of the data points. The X and Y coordinates are

displayed in the upper-left corner of the plot window [20].

� Reselect Linear from the Curve Fit menu. A Curve Fit Selections dialog appears

with a drop-down arrow under View.
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� Click the drop-down arrow and choose Copy Curve Fit to Data Window from the

pop-up menu.

� Click OK to return to the plot window.

2.1.2 Fuzzy Logic Tools

Fuzzy logic tools are used to evaluate the machine data (thrust, torque, power, machine

velocity and advance rate), which was collected during the tunnel excavation process and

is used to predict the behavior of surrounding rock and interaction between rock mass

properties and machine parameters (Fig. 2.2).

Figure 2.2: Fuzzy logic tools [21].

Fuzzy logic tools Fig. 2.3 are used to predict the rock mass classi�cation (RMC), keep-

ing the machine parameters (thrust, advance rate and machine power) as input variables

and RMC as output variables. In between the input and output variables, a rule base

Fig. 2.4 was developed that govern the process of prediction. This rule base consists of

membership functions with 'AND', 'OR' rules and range of the variables. The output is

in the form of 3-D surface Fig. 2.5 having two or three input and one output variable.

However if one or more variables like rock strength, are uncertain in input, then output

is de�nitely uncertain.
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Figure 2.3: Fuzzy logic tools.

Figure 2.4: Fuzzy rule base.
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Figure 2.5: Fuzzy 3-D surface.

2.1.3 Math-Lab Code

For a comprehensive and �exible model prediction for rate of penetration (ROP) and rock

mass class (RMC) and rock fracture class (RFC), a sub-routine program in Math-Lab has

been developed that reads the data from excel �le and grade it into sub-classes (low, mid-

dle, high etc) and then according to pre-de�ned rule base, perform a speci�c action using

IF-THEN rules to all input machine parameters and gives a output variable (RMC). Also

output variable is plotted in 3-D surface against the three input variables. This process

was repeated by replacing the input variables by seismic parameters (amplitude pseudo

velocity etc) instead of TBM parameters. It is far better than Fuzzy logic prediction

model, as out put is in numeric form unlike the 3-D surface in Fuzzy. Moreover it has

a capacity to perform analysis for input and output variables more than one. This code

takes excel data as input, check each element of each row one by one, decide its group (low,

medium, high) i.e where to put it according to a prede�ned rule-base. When position of

each element in a single row is decided, then according to �IF-THEN� rule (already set)

for all three or four input variables, value of out-put variable is decided. In this way every

element in the data is taken into account and it gives rise to a corresponding out-put. All

out-put values are printed/displayed in last column. Code can also be modi�ed to print

2-D charts and 3-D surfaces. Code is �exible to receive unlimited amount of data entries,

no restriction on number of input and even out put variables.

2.1.4 Statistical Software �R�

Many 3-D surfaces were generated using �R�. For better comparison and analysis of di�er-

ent variables 3-D surface generated by �R� are very helpful to see the behavior of rock and

machine parameters. To produce the 3-D surfaces and other graphs, a R-code (Algorithm
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2.1), written by Peter Filzmoser (TU Wien) has been used. This code uses R-syntax

'scatter plot' for 3-Dsurface and dm.smooth, grid and axis for line plot functions. Code

takes data from excel �le saved in �comma separated version� (CSV), and perform nec-

essary action on input data as per code instruction and plot a 3-D surface and line plots

for di�erent variables.

2.1.4.1 R and Statics

Many people use R as a statistics system. Basically it is an environment within which

many classical and modern statistical techniques have been implemented. A few of these

are built into the base R environment, but many are supplied as packages. Most classical

statistics and much of the latest methodology is available for use with R, but users may

need to be prepared to do a little work to �nd it. R will give copious output from a

regression or discriminant analysis, this will give minimal output and store the results in

a �t object for subsequent interrogation by further R functions [22]. R can perform some

regression analysis, variance, generalized linear modeling and curve �tting. But its not

as simple as excel or other mathematical tools, user has to write code for every single

order to perform. R provides an interlocking suite of facilities that make �tting statistical

models very simple [23].

2.1.4.2 Graphical Procedures

Graphical presentation of results in 3-D surfaces were plotted by using a subroutine code.

Code is listed below as algorithm 2.1.

Algorithm 2.1 Algorithm for R software.
# PF, 25.4.2012
# Daten einlesen:
MGG <- read.csv("G:/Vereina tunnel1/Vereina4R1.csv",dec=",",sep=";")
attach(MGG)
library(Rcmdr)
scatter3d(RMC, Penetration_mph, RFC,
sphere.size=1,threshold=0.01,point.col="orange",
�t=c("smooth"), df.smooth=15,bg="white", axis.scales=TRUE, grid=TRUE,
ellipsoid=FALSE,surface.col="blue",residuals=0.1)

Graphical facilities are an important and extremely versatile component of the R

environment. It is possible to use the facilities to display a wide variety of statistical

graphs and also to build entirely new types of graphs. Here �R� is used for scattered 3-D

graphs, written by Peter Filzmoser, Department of Statistics and Probability Theory TU

Wien 2.1.
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2.1.5 Statistical Modeling with �SPSS19�

Commercial software packages SPSS are very helpful to plot frequency distribution with

R2 values, linear and quadratic correlations between rock and machine (TBM) parame-

ter, regression coe�cients and �nally a statistical model to predict ROP, RMR and RMC

values. Comparison of all these models with other model obtained from Fuzzy logic, Math-

Lab code, and �R� have been performed in the second last chapter . Linear regression

analysis estimates the coe�cients of a linear equation, involving one or more independent

variables, that best predict the value of the dependent variable. SPSS is useful for situa-

tions in which one want to predict the presence or absence of a characteristic or outcome

based on values of a set of predictor variables. It is similar to a linear regression model

but is suited to models where the dependent variable is dichotomous. Logistic regression

coe�cients can be used to estimate odd ratios for each of the independent variables in

the model [24].

2.1.5.1 Data

The dependent and independent variables should be quantitative. Categorical variables

such as religion, major �eld of study, or region of residence, need to be recoded to binary

(dummy) variables or other types of contrast variables.

2.1.5.2 Assumptions

For each value of the independent variable, the distribution of the dependent variable

must be normal. The variance of the distribution of the dependent variable should be

constant for all values of the independent variable. The relationship between the depen-

dent variable and each independent variable should be linear, and all observations should

be independent. The signi�cance levels have to be less than 0.05 for the parameter to be

statistically signi�cant [24].

2.1.5.3 Procedure

To open the Linear Regression dialog box, from the menus choose�Analyze�Regression�Linear.

Select more than one variable for the Independent (s) list, if you want to obtain a multiple

linear regression [24]. You can specify more than one list, or �block� of variables, using

the Next and Previous buttons to display the di�erent lists. Up to nine blocks can be

speci�ed Figs. 2.6-2.7.
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(a) Linear model for regression. (b) Linear variable input

Figure 2.6: Linear regression method description.

Figure 2.7: SPSS model coe�cients.

2.1.5.4 Automatic Linear Modeling

In this section detailed method for performing automatic linear modeling is described

Figs. 2.8-2.11. Assumptions are same as for �Linear Regression Modeling�. But variable

input and brief case history and method used for analysis is described . Total of �ve

tunnel sites are taken into account and data analysis that is carried out is separated from

already done work.
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Figure 2.8: Automatic linear modeling.

Figure 2.9: Model summary.

Procedure for automatic linear modeling is very simple. Select input variables and

output variable as target to be predict. Go to model options and set model procedure as

step-forward and check out model output save option. Then press the run button, model

summary, model e�ects, coe�cients are displaced on output �le. model summary shows

the method of model selection e.g step-forward, target variable and accuracy of the model.

Using coe�cients, a linear prediction model can be formulated as shown in Eq. 2.1.

26



Figure 2.10: E�ects of input parameters.

Figure 2.11: Table of coe�cients.

Finally predicted values obtained from Eq. 2.1 can be plotted in the form of scattered

and line plot as shown in Figs. 2.12 and 2.13 respectively.

ROP (m/h) = 1.022 + 0.029Thrust+ 0.475Log(α)− 0.217DPW − 0.003UCS (2.1)

Figure 2.12: Scattered plot between actual and SPSS predicted value.
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Figure 2.13: SPSS predicted AR line plot.

2.1.6 Partial and Bi-variate Correlations

In Bi-variate correlations, the relationship between two variables is measured. The degree

of relationship table 2.1 (how closely they are related) could be either positive or negative.

Table 2.1: Bi-variant correlation.

Pearson correlation coe�cient shows linear interdependence between two parameters,
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when frequency distributions of both interlinked variables are normal. The maximum

number could be either +1 (positive) or −1 (negative). This number is the correlation

coe�cient. A zero correlation indicates no relationship and value close to +1 shows strong

positive correlation [25].The Bi-variate correlations procedure computes Pearson's corre-

lation coe�cient, Spearman's rho, and Kendall's tau-b with their signi�cance levels Fig.

2.14. Correlations measure how variables or rank orders are related. Before calculating a

correlation coe�cient, screen your data for outliers and evidence of a linear relationship.

Pearson's correlation coe�cient is a measure of linear association. Two variables can be

perfectly related, but if the relationship is not linear, Pearson's correlation coe�cient is

not an appropriate statistic for measuring their association. Spearman's and Kendall's

correlation coe�cients indicate degree of linear relationship between two variables, when

frequency distributions of both interlinked variables are not perfect linear.

Figure 2.14: Spearman's and Kendall's correlation coe�cients.

Partial correlation measures the degree of relationship between two random variables,

with the e�ect of a set of controlling random variables removed. In fact, the �rst-order

partial correlation is nothing else than a di�erence between a correlation and the product

of the removable correlations divided by the product of the coe�cients of alienation of the

removable correlations. The Partial correlations procedure computes partial correlation

coe�cients that describe the linear relationship between two variables while controlling

for the e�ects of one or more additional variables [25]. Pearson correlation coe�cients

are referred to the data, that is normally distributed and if the data sets are randomly

distributed then, Spearman and Kendall correlation coe�cients are determined.
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Chapter 3

Case Descriptions

3.1 Hie�au Power Plant (Expansion Tunnel)

Figure 3.1: Hie�au expansion tunnel layout [26].

The Hie�au, 63 MW diversion HPP (hydro power plant), located along the river Enns in

Styria, enhanced the power supply in a �rst stage about 50 years ago by construction of a

reservoir (Wag storage) for daily storage. The next stage of the enhancement project Fig.

3.1 started in 2005 by carrying out a feasibility study, followed by site investigations and

elaboration of an upgraded scheme. Environmental aspects play an important role due

to the vicinity to the Gesäuse National Park and some particular ecological requirements
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had to be especially considered in the upgraded scheme [26]. The Hie�au power plant

expansion includes an increase in discharge water volume from 60 m3/sec. to 90 m³/sec.

The planned changes will increase the standard capacity of the power plant, which began

operation in 1955, by approximately 70 GWh/year. In addition to the necessary adap-

tation and renovation of the inlet and outlet structures, the newly built motive water

tunnel will be the centerpiece of the expansion [27]. Technical data of the Hie�au TBM

is displayed in table 3.1.

1 Excavation Diameter 6.18 m

2 Disc cutters, back loading 17 in
3 Number of cutting discs 43
4 Max. recommended average cutter load 267 kN
5 Max. cutter-head thrust 11.481 kN
6 Max. power rating per main drive unit 180 kW
7 Number of main drive units 8
8 Cutter-head drive 1440 kW
9 Cutter-head speed 0�8 rpm
10 Max. Torque at speed range 3440 kNm at the rate of 0�4 rpm
11 Torque at max. power rating (max. speed) 1720 at the rate of 8 rpm
12 Breakout torque (0�5 Hz, max. 60 s) 4470 kNm
13 Max. Hydraulic system pressure 345 bar
14 Stroke of main thrust cylinder 1.320 mm
15 Primary voltage 16kV
16 Secondary voltage 660, 400, 110 V
17 Frequency (power supply) 50/60 Hz
18 TBM conveyor belt width 762 mm
19 Max. conveyor speed 3m/s
20 Machine weight 500 t

Table 3.1: Technical data of the Hie�au TBM.

The new motive water tunnel has an interior diameter of 5.6 m. In the continuously-

driven sections, lining was done with reinforced concrete tubbing where cyclical driving

is used, the lining are cast-in-place concrete shell [27].

3.1.1 Description of the Hie�au Project

Head-race tunnel for the Hie�au hydro-power station.

Hard rock double shield:TBM , RobbinsDS − TBM −Model194− 272− 2

No. of disc cutters: 43

Tunnel length: 4918m

Drill and blast excavation X-section: 34.0− 42.0m², Length: 810 m

TECHNICAL DATA Average advance rate: 27.5m/day
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Best advance rate: 52.3m/day

Lining: Parallel-System mono-shell segment (w = 20cm)

3.1.2 Hie�au Headrace Tunnel Geology

The project area lies in the eastern part of the limestone Gesäuseberge Alps south of the

Enns valley, which is partially narrowed as a gorge. The strati�cation of the rock shows

a typical triadic limestone alpine sequence of strata, with Ramsau dolomite over Raibler

beds and saddle-stone Dolomite down to large stretches of the predominant saddle-stone

limestone Fig. 3.2. The alignment of the second tunnel runs parallel and in a distance of

not more than 30 m to the existing one. Most information about the geological conditions

along this route is derived from the mapping of the �rst pressure tunnel.

Figure 3.2: Geology of Hie�au headrace tunnel [26].

Additionally some site investigations were carried out to gain a well mapped basis

about the geology of the new headrace tunnel [28]. The large part of the TBM tunnel is

excavated in good rock conditions, predominantly Limestone and Dolomite. In Limestone

some small fault zones and some local karstic cavities with diameters up to 0.5 m are

predicted.

(a) Hie�au expansion tunnel [29]. (b) Segmental lining system [26].

Figure 3.3: The Hie�au hydro power project, TBM and lining segments.
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Table 3.2: Hie�au TBM data logger [27].

The challenge of the TBM-drive is the crossing of a 40 m wide section in soft ground

conditions (Hartelsgraben). Within this zone loose rock boulders Fig. 3.3, bedded in
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a matrix of �ne materials such as sand and clay were observed. In view to the hydro-

geological condition water in �ow of 2 l/s were predicted in the related section.TBM data

were recorded automatically in the form of excel sheet at the time of excavation as listed

in table 3.2. In this thesis data from Prof. Dr. Rainer Poisel in excel format is received.

It is stated here clearly that a Master Thesis by Viktoria Ostermann is written on this

Hie�au power project. Already work done by Ostermann includes:

� Correlations between all TBM parameters and Rock parameters e.g. Thrust vs

Advance Rate, Thrust vs Rock Fracture Class (RFC) etc.

� Box plots for all parameters

� Determination coe�cients

� Scatter diagram

� 3-D analysis, for machine velocity, torque, thrust, power, advance rate and degree

of disintegration (RFC)

� Statistical analysis using software �R�

But, Ostermann had written in her thesis abstract that � No signi�cant relationship

between the TBM data and the di�erent rock types could be determined�. In this dis-

sertation extended analysis by using Fuzzy logic, Math-Lab code and a commercially

available software SPSS19 is done. Good results are obtained that will be presented in

coming chapter.

3.2 Queens Water Tunnel

New York City Tunnel no. 3 is Fig. 3.4 one of the most complex and intricate engineering

projects in the world. Constructed by the New York City Department of Environmental

Protection (DEP), the tunnel will eventually span 60 miles and is expected to be complete

by 2020. The total cost of the project was expected to be about US $6 billions [30]. The

size and length of the tunnel, its sophisticated control system, the placement of its valves

in special chambers and the depth of excavation, represent state-of-the-art technology.

While city tunnel no. 3 will not replace city tunnels no. 1 and no. 2, it will enhance and

improve the adequacy and dependability of the water supply system and improve service

and pressure to outlying areas of the city. It will also allow the DEP to shut down, inspect

and repair city tunnels nos. 1 and 2 for the �rst time since they were activated in 1917

and 1936 respectively [30].The Queens Water Tunnel 3, stage 2 is intended to improve

fresh water distribution throughout the City of New York, USA. The tunnel being about

7.5 km long and 7 m in diameter was excavated beneath Brooklyn and Queens at an
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average depth of 200 m below the sea level in West-Central Queens County with using

a high power TBM. Construction of stage 2, is greatly accelerated by a mechanical rock

excavation technology [31].

Figure 3.4: Queen water tunnel [32].

A tunnel boring machine (TBM), which has been lowered in sections and assembled

at the bottom of the shaft, will chip o� sections of bedrock through the continuous rota-

tion of a series of steel cutting tools (cutters) mounted on a large-diameter, full-circular,

welded steel cutter head. The machine body of a TBM, which can be as long as 50 feet,

is mounted behind the cutter head. It contains the drive motors and other electrical,

mechanical and hydraulic equipment that provide the necessary thrust and torque that is

transmitted to the cutters through the cutter head. The TBM, also known as �The Mole�,

replaces the conventional drilling and blasting methods used during the construction of

Stage 1. It is expected that the improved technology will allow tunnel workers to excavate

at an average of 50 feet/day at a diameter of 23 feet more than twice the rate previ-

ously in water tunnel construction through drilling and blasting methods [33]. Another
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important advantage to using the TBM is it bores into the rock, there is less damage at

the point of excavation and no noise at the surface to disturb surrounding communities.

1 TBM diameter 7.06 m (23 ft 2 in)

2 Diameter range 6.50 m to 8.50 m
3 Cutter size 482.6 mm (19 in)
4 TBM model Robbins 235− 282 HP (High Performance)
5 TBM type Open
6 Max. Cutter load capacity 311 kN
7 Number of cutters 50
8 Cutter-head Thrust 15, 550 kN
9 Cutter-head power 3150 kW (4220 hp)
10 Cutter-head Torque 3624 kNm
11 Cutter-head Speed 8.3 rpm
12 TBM weight 610 metric tons

Table 3.3: Speci�cation of TBM for Queens water tunnel [34].

Underground fabrication of the high performance, open type hard rock TBM diam-

eter of 23′ commenced by September 1996, after a year of on-site utility and equipment

installation. Speci�cations of TBM for Queens water tunnel are listed in table 3.3.

Figure 3.5: TBM for Queens water tunnel [31], [33].

The TBM, which had been shipped from Chester�eld, England in June 1996 and

delivered in 28 truckloads of assemblies and parts, was designed and engineered by the

Robbins-Atlas-Copco Company. Since the inception of mining northeastward from the

Maspeth (Shaft 19B) in late October 1996 and completion in October 1999, �ve miles

of tunnel have been excavated, producing a 23′ − 2′′- wide, sub horizontal fresh bore

hole through this deeply eroded crystalline portion of the Appalachian mountain chain

[33]. Geological condition can be quanti�ed as frequency and orientation of discontinuity

in rock mass as well as main regional/global geological structures such as faults and
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shear zones encountered in the �eld. Further, intact rock properties including strength

and brittleness should also be considered for performance analysis in mechanical tunnels.

Charles Merguerian, �Brittle Faults of the Queens Tunnel Complex, NYC Water Tunnel

� and Sa�et Yagiz, �Utilizing rock mass properties for predicting TBM performance in

hard rock condition�, have done a lot of work on the data of the Fig. 3.5. Specially

Yagiz 2007 draw frequency distribution graph for uncon�ned compressive strength (UCS),

punch slope index (PSI), α angle, distance between plane of weakness (DPW) and rate

of penetration (ROP), along with this, he plotted 2-D correlation of ROP with all rock

properties. Moreover Yagiz formulated a empirical model for ROP and compare it with

measured ROP values [33]. In this thesis data from Sa�et Yagiz 2007 research paper is

taken and analyzed for prediction of ROP using all rock properties . Moreover a statistical

model for ROP and rock fracture class (RFC) was developed and compared with Hie�au,

Vereina, Hemerwald and the Italian Alps tunnel data.

3.3 Vereina Tunnel

The Vereina tunnel (Fig. 3.6) is 19050 m long with an overburden amounting up to as

much as 1500 m. The tunnel is essentially single track. In the middle and at both ends

approx. 2 km long twin track and triple track sections allow trains to pass each other.

The drive was carried out by drill and blast in the twin and triple track sections with

cross sections from 70 − 85 m2 resp 135 m2 and in the single track section at the south

side (with a cross section of 39 − 42 m2) and by TBM in the single track section at the

north side (cross section of 46 m2) (Fig. 3.7). Two-thirds of the entire length of the

tunnel are located in the Silvretta crystalline, an old crystalline complex which was minor

a�ected by the alpine folding and which mainly comprises gneiss and amphibolites the

latter being extremely hard and tough rocks. All these formations are bedded horizontally

or sub-horizontally, like the sedimentary formations lying underneath.
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Figure 3.6: Vereina tunnel east portal [35].

The Vereina tunnel was designed and built with a monocoque shotcrete lining, which

was applied for the �rst time in this manner in a open TBM (Figs. 3.7-3.8) . At the

time of the construction of the Vereina tunnel (1993 − 1999) considerable developments

had been made since the time of the construction of the Furka Base Tunnel yielding steel

arches, epoxi-resin glass �ber reinforced rock-bolts and wet mix sprayed concrete, thus

resulting in remarkable higher qualities (like 60 N/mm2 uncon�ned compressive strength

for sprayed concrete after 28 days) end extended durability. The temperatures were again

fairly low with 28°C at the maximum. Technical data for this TBM is listed in table 3.4

and statistical analysis done by Viktoria Ostermann, Fuzzy logic rock mass classi�cation

(RMC) by Poisel et al. The author received Vereina tunnel data as excel format from

Prof. Dr. Rainer Poisel and tried to analyzed all data using Excel, Origin Pro 8, Kaleida

graph, Math-Lab tools like Fuzzy logic and Math-Lab code. Moreover statistical modeling

was carried out using software packages �IBM − SPSS19�.

Figure 3.7: Vereina tunnel X-section [36].
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Figure 3.8: Geological longitudinal X-section of Vereina tunnel [36].

1 TBM diameter 7.64 m

2 Number of cutter 51
3 Diameter of cutter 191 m
4 Maximum individual cutter load 311 kN
5 Cutter-head operating thrust 17.105 kN
6 Maximum Operating Thrust 22.934 kN
7 Maximum Hydraulic Pressure 345 bar
8 Number of Drive motors 10
9 Power/Drive Motor 300kW
10 Total Cutter-head Power 3000 kW
11 Cutter-head Speed 0− 4.63 rpm
12 Number of Thrust Cylinders 4
13 Primary Voltage 10, 000 V
14 Secondary Voltage 690/380 V
15 Conveyor Belt Capacity 1, 100m3

hr

Table 3.4: Vereina TBM technical data.

3.4 Hemerwald Tunnel

Hemerwald tunnel (Fig. 3.9) is 4720 m long pressure tunnel excavated by Tiroler Water

Power Company. Leading from a highly situated (1900 m) side valley to the Penstock

leading to the Inn valley at sea level 645 m. Maximum overburden was 1250 m. It was

built by using Robbins Series 120 TBM. Technical data of the Hemerwald tunnel TBM

are listed in table 3.5.
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Figure 3.9: Hemerwald tunnel TBM [courtesy, Ewald Tentschert].

1 TBM diameter 3.90 m

2 Cutter-head Cutter-Disc 14′′

3 No. of cutters 32cutters, 2.68 cutters/m2

4 Installed Power 4× 125 HP= 500 HP
5 Power Supply 6000 V olts
6 RPM 5.6 rpm Constant
7 Maximum peak out put 595 hp
8 Normal Operating power 452 hp
9 Maximum Thrust of the TBM 421.4 kN
10 Maximum Power Consumption of the TBM 339.63 kW

Table 3.5: Technical data of Hemerwald tunnel TBM.

Rock mass data: Muscovite granite gneiss: 47.11%

Schist gneiss: 47.38%

Micaschists: 4.53

Granodiorite: 0.98%

Rock mass class (RMC) data

I . 69.1%

II . 21%

III . 3.2%

IV . 2.16%

V . 1.55%
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VI . 2.34%

VII . 0.15%

VIII. −−−

Figure 3.10: Geological pro�le and X-section of Hemerwald tunnel [?].

Geological pro�le and cross section view of the Hemerwald tunnel is displayed in Fig.

3.10. Data from this tunnel is received in the form of hard copy from Prof. Ewald

Tentschert as shown in Figs. 3.11 and 3.12. No previous work is available online on the

Hemerwald tunnel. Excel sheets from hard copy and logging data graphs were prepared

and analyzed for 2-D and 3-D surface analysis in this thesis. Finally statistical models were

established for RMC and advance rate using a statistical software SPSS19. Then separate

excel data �les were prepared for di�erent types of rocks and analysed for Hemerwald

tunnel.
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Figure 3.11: Original data �le.
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Figure 3.12: Tunnel log map.
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3.5 Tunnels in the Italian Alps (Maen, Pieve and Varzo

Tunnel)

Three tunnels (Maen, Pieve and Varzo) for hydraulic purposes were excavated by tunnel-

boring-machines in mostly hard metamorphic rocks in Northern Italy (Fig. 3.13). A total

of 14 km of tunnel was surveyed almost continually, yielding over 700 sets of data featuring

rock mass characteristics and TBM performance. Technical data for these three tunnel is

listed in table. 3.6. The empirical relations between rock mass rating and penetration rate

clearly show that TBM performance reaches a maximum in the rock mass rating (RMR)

range 40 → 70 while slower penetration is experienced in both too bad and too good

rock masses . However di�erent rocks gives di�erent penetrations for the same RMR, the

use of Bieniawski's classi�cation for predictive purpose is only possible provided one uses

a normalized RMR index with reference to the basic factors a�ecting TBM tunneling.

Comparison of actual penetrations with those predicted by the Innaurato and Barton

models shows poor agreement.

Description Maen Pieve Varzo

Total tunnel length (m) 1750 9600 6600
Tot. excavation time (days) 413 809 468
Surveyed section length(m) 1750 6400 5800
Excavation diameter (m) 4.20 4.05 4.05

Tunnel slope (º) 24− 35 ≈ 0 ≈ 0
TBM model Wirth 340/420 E Robbins1111-234-3 Robbins 1214-240/1
TBM type Open Double Shield Double Shield

Number of cutters 36 27 27
Cutter spacing (mm) 66 75 75
Cutter diameter (in) 17 17 17

Maximum Thrust (kN) 7920 4602 8827
Boring stroke (m) 1.5 0.63 0.63

Cutter-head curvature Domed Flat Flat
Cutter-head RPM 5.5− 11 11.3 4.5− 8.9

Table 3.6: Description of three tunnels and TBM technical data.
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Figure 3.13: Maen-Pieve-Varzo layout [37].

M. Berti et al 2002, have done already a lot of analysis on these three tunnel data,

including histogram plot, 2-D correlations between rock mass rating (RMR), thrust, pen-

etration rate, Q-value, utilization coe�cient and UCS. They also establish an empirical
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correlation between penetration rate and RMR and then compared it with all available

models. They conclude that penetration rate strongly dependent on rock type and quality

of rock mass. In this research work data for these three tunnels from M. Berti by email

is received and analyzed for all machine and rock parameters. A Fuzzy logic model and

a Math-Lab code was written to predict the advance rate and RMR. Comparison of the

results with existing data from Hie�au, Hemerwald, Vereina and Queens tunnel sites is

done. Moreover, a statistical model is established for RMC, RMR and penetration rate

using a commercially available software SPSS-19.
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Chapter 4

TBM Data Analysis

4.1 Hie�au

4.1.1 Hie�au Seismic Data

Seismic data for a section (Tunnel meters 137-2794) of Hie�au tunnel were recorded by

Werner Chatwal et al. (TU Wien). TBM cutter-head was used as primary signal source.

Figure 4.1: Seismic data recording procedure [38].

The signal is recorded directly on the machine disc cutters (for example: at the main

cavity of the cutting head). This very interesting development is tunnel seismic while
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drilling (TSWD), which has been derived from other seismic techniques using the seismic

waves generated by the cutting head as a signal. The quasi-continuous signal generated by

the cutting head in operation can be transformed to a normal seismogram by the use of a

pilot signal measured directly at the source (cutting head). This technique can be adapted

to the exploration ahead of a tunnel face. Conventional seismic traces are extracted from

the recordings by the use of a pilot signal recorded near the cutting head of the TBM. The

bandwidth of the seismic signals is > 200 Hz, a high signal to noise ratio is achieved, and

excellent conventional seismic traces are extracted. Method layout is described in Fig. 4.1.

�Amplitude of ersteinsatz� is amplitude of the direct wave transmitted by source (TBM

cutter-head), where as �amplitude of re�exion� is amplitude of re�ected wave, transmitted

from source and recorded after re�ected from discontinuity. �Pseudo velocity� is a fake or

false velocity of the seismic waves in the rock mass, which ranges from 2900 m/s to 5300

m/s for Hie�au tunnel [38]. Pseudo velocity mainly depends upon rock mass density and

rock strength, more dense rock rock propagate more pseudo velocity.

4.1.2 Data Analysis with Excel

Hie�au tunnel data were coupled with seismic data recorded ahead of tunnel face during

the excavation of the tunnel. Di�erent correlations have been plotted between thrust and

amplitude of re�exion, amplitude of ersteinsatz and pseudo velocity.

Figure 4.2: Chainage versus thrust, torque and AR.

Figure 4.2 shows trend of di�erent variables along with chainage, it is clear that

thrust and torque values are linearly decreasing with chainage, while advance rate is
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linearly increased. Figs. 4.3(a,b) shows trend of AR against thrust and UCS respectively,

UCS values are predicted after assuming a normal frequency distribution of UCS. Linear

decreasing of advance rate in both cases, shows that AR is entirely dependent upon rock

strength.

(a) Thrust versus AR.

(b) UCS versus AR.

Figure 4.3: 2-D graphs for TM, thrust, AR and torque.

In Fig. 4.4 thrust is plotted against amplitude of re�exion and ersteinsatz. Amplitude

of ersteinsatz is almost independent of thrust, while amplitude of re�exion values are low

at high thrust. Both trend lines show a maximum data point frequency at maximum

thrust frequency.
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Figure 4.4: Thrust versus amplitude of ersteinsatz and re�exion.

4.1.3 3-D Data Analysis with �R�

Figures 4.5(a,b) shows variation of AR versus thrust at low and high torque. At high

torque, AR is linear to thrust, while at low thrust the relation is entirely complex like

a sinusoidal wave, which re�ect the e�ect of torque on chip formation and advance rate.

This shows the reason behind the phenomenon of application of high torque motors in

TBM.

(a) Thrust versus AR at high torque. (b) Thrust versus AR at low torque.

Figure 4.5: 3-D surfaces.
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(a) Thrust versus AR at high amplitude of
re�exion.

(b) Thrust versus AR at low Amplitude of re-
�exion.

(c) Amplitude of ersteinsatz versus AR at high
thrust.

(d) Amplitude of ersteinsatz versus AR at low
thrust.

(e) Thrust versus AR at high amplitude of
ersteinsatz.

(f) Thrust versus AR at low amplitude of er-
steinsatz.

Figure 4.6: 3-D surfaces.
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As at low torque, tool wear is maximum and TBM cannot achieve more AR only

with applying more thrust. That is why high torque motors are used in TBM. Figures

4.6(a,b) show thrust versus AR at low and high amplitude of re�exion. Again at high

amplitude values, the AR is linearly increasing with thrust contrary to low amplitude of

re�exion. Reason may be as more torque produces more amplitude of re�exion and at

high amplitude of re�exion, more advance rate is observed.

(a) Thrust versus AR at high pseudo velocity. (b) Thrust versus AR at low pseudo velocity.

(c) Amplitude of re�exion versus AR at high
thrust.

(d) Amplitude of re�exion versus AR at low
thrust.

Figure 4.7: 3-D surfaces.

Figures 4.6(c,d) shows variation of AR with respect to amplitude of erestizeit at low

and high thrust. In both cases, at high and low thrust, AR curve has a depression at

maximum value of amplitude of re�exion, which shows here a region of very challenging

rock properties that creates a hindrance for TBM to get more AR with more thrust.

Figures 4.6(e,f) shows AR versus thrust at low and high amplitude of erestizeit that

revealed AR in both cases increases up to a maximum value of 4.5 m/hr then decrease

with the same rate as it increased. But here we see that decline for AR, even increasing
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thrust is started where the amplitude is max. This shows a major in�uence of AR upon

rock strength.

Figures 4.7(a,b) shows AR and thrust dependency upon each other at low and high

pseudo velocity. It is clear from the surface plot that in both cases trend is same, showing

that AR and thrust behaviour is independent of pseudo velocity. Fig. 4.7(c,d) shows AR

versus amplitude of re�ex at low and high thrust. It is obvious that AR decreases when

there is more amplitude of re�ex. Amplitude of re�exion is more when rock strength is

high, therefore in high strength rock, at same TBM thrust values, AR reduces.

4.1.4 Tools/Cutter Wear

Disc cutter wear in mechanized tunneling has a strong in�uence on cost and performance

in hard rock tunnelling and soil mechanics. Cutter wear is a�ected by several parameters.

Cutter consumption estimates are most e�ective if based on most recent experiences and

recent experimental data related to rock properties. These estimates are highly in�uenced

by advance rates, rock strengths, and types of cutters immersed in abrasive ground. Data

from the Hie�au pressure tunnel were analyzed for cutter wear.

Figure 4.8: Thrust versus tool wear.

Figure 4.8 shows cutters per chainage (cutter consumption or tool ware) against av-

erage thrust. It is clear that cutter consumption is decreased with increase of average

thrust. This may be due to low thrust values, magnitude of thrust is insu�cient for chip

formation and energy transferred to rock is too low and dissipated as heat.
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Figure 4.9: Chainage versus tool wear.

Figure 4.10: Tool wear.

Figures 4.9 and 4.10 shows di�erent parameters changing with TM. It is clear from

these �gures that maximum number of cutter change appeared at TM-7719 and one of the

two peaks for cutter wear plus chipping is also lying on the same TM. More cutter wear

and chipping is responsible for more cutter changes. Total rolled distance is minimum at

maximum excavated length, reason may be due to speci�c damage and location of cutter

numbers 34-35.

4.1.5 Statistical Modeling with SPSS-19

Statistical software SPSS-19 was used to analyze statistically the Hie�au data. Data is

divided into three classes.
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1. Machine + Rock Mass + Seismic data

2. Machine +Rock Mass data

3. Machine + Seismic data

Here analysis was carried out separately for each data class and results were compared

in last section.

Relation of Property with AR Empirical Equation Corr. Coe�.R2

AR vs Thrust AR = 5.9875− 0.3617Thrust 0.419
AR vs UCS AR = 4.579− 0.0067UCS 0.1102
AR vs Torque AR = 3.35− 7 ∗ 105Torque 0.0702
AR vs Amp_Re�ex AR = 2.76 + 4.086AmplReflex 0.0039
AR vs Amp_Erst AR = 2.957− 0.0957AmplErest 0.0008
AR vs Pseudo_Vel AR = 3.592− 0.0001PseuV el 0.0264

Table 4.1: Rock mass plus machine and seismic data versus AR.

Table 4.1 lists linear relationship and coe�cient of correlation R2 for linear curve

�tting. From above table it is clear that only thrust and advance rate have a good linear

correlation with R2 = 0.419. All other parameters are more or less are linearly correlated

with AR but with very poor correlation.

4.1.5.1 Frequency Distribution of Parameters

Here the frequency distribution of all input and output variables are given to visualize

their importance and eligibility as an input parameter for the multidimensional analysis

and prediction models.

(a) Histogram for thrust. (b) Histogram for AR.

Figure 4.11: Histograms of TBM data 1.
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(a) Histogram for torque. (b) Histogram for RPM.

Figure 4.12: Histograms of TBM data 2.

Figures 4.11 - 4.14 shows frequency distributions of machine variables and seismic data.

Here in Figs. 4.11(a,b) we see that a perfect normal distribution in thrust and advance

rate, whereas torque and TBM speed data is skewed left and skewed right respectively.

Figures 4.13 and 4.14 shows seismic data frequency distribution, here only amplitude of

erestizeit has a perfect normal frequency distribution, where as all other seismic data is

scattered, except Fig. 4.12b where except one point, remaining frequency distribution is

perfect normal.

(a) Histogram for amplitude of re�exion. (b) Histogram for amplitude of ersteinsatz.

Figure 4.13: Histograms of seismic data 1.
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(a) Histogram for pseudo velocity. (b) Histogram for di�erence of amplitudes.

Figure 4.14: Histogram of seismic data 2.

4.1.5.2 Prediction Model Summary and Coe�cients

Tables 4.2(a,b) shows model summaries for mix data (TBM+Seismic+Rock mass data)

and TBM-Rock mass data. In mix data, AR prediction model has an accuracy of 50.7%,

where for the TBM-Rock mass data accuracy is 48%. In both cases forward stepwise

method is used and AR is target value in both cases. Tables 4.3 (a,b) shows predic-

tor importance and number of input parameters used for the prediction model. In mix

data AR model, �ve input parameters are used, that include all machine, rock mass and

seismic data properties and thrust is most important parameter that strongly a�ect the

model output. Torque is least import parameter here and can be neglected in the model

calculations.
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(a) TBM, rock mass and seismic data. (b) TBM and rock mass data.

(c) Linear relation between output and input parameters.

Table 4.2: Model summaries.

Table 4.3 indicates that only machine parameters are used to predict AR, where again

thrust is most important and torque is least important parameters but torque cannot

be neglected here as number of in put parameters are too small. Table 4.2c shows linear

relationship between all input parameters and target variable (AR). Using these equations,

SPSS-19 software has predicted the target variable with a reasonably good accuracy.
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(a) E�ects for TBM, rock mass and seismic data.

(b) E�ects for TBM and rock mass data.

Table 4.3: Model e�ects.
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(a) Coe�cients for TBM, rock mass and seismic data.

(b) TBM and rock mass data.

Table 4.4: Model e�ects.

From table 4.4(a,b) coe�cients for the AR prediction models are collected to form em-

pirical linear models. Eq. 4.1 shows AR prediction model for TBM+Rock Mass+Seismic

(Mix data), with a R2 = 0.507 and Eq. 4.2 shows the same models for TBM and rock

mass data, with a R2 = 0.48 . This indicates that with increasing input parameters

prediction improves.

AR(m/h) = 4.51− 0.293Thrust+ 0.396rpm− 23.49Ampref − 0.001Torq − 0.001Psedvel

(4.1)

AR(m/h) = 2.996− 0.292Thrust+ 0.365RPM − 0.001Torque (4.2)
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(a) AR model for TBM, rock mass and seismic
data.

(b) AR model for TBM and rock mass data.

Figure 4.15: AR regression models.

Prediction models scattered plots with R2 = 0.48 and R2 = 0.48 respectively Figs.

4.15(a,b), shows reasonably good accuracy. Figure 4.16 shows comparison between actual

and predicted values of AR and a curve �t to the predicted values. Actual and predicted

values are in good match and predicted values of AR almost 90% conside with actual

ones.

Figure 4.16: AR model comparison.
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4.1.5.3 Partial and Bi-Variant Correlation

Machine and seismic data variables are analysed for partial and bi-variant correlation

using SPSS-19.

(a) TBM data.

(b) Seismic data.

Table 4.5: Partial correlation coe�cients.
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Partial correlation measures the degree of relationship between two random variables,

with the e�ect of a set of controlling random variables removed [39]. The Partial corre-

lations procedure computes partial correlation coe�cients that describe the linear rela-

tionship between two variables while controlling for the e�ects of one or more additional

variables. Correlations are measures of linear association. Two variables can be perfectly

related, but if the relationship is not linear, a correlation coe�cient is not a proper statis-

tic to measure their association. In bi-variate correlations, the relationship between two

variables is measured. The degree of relationship (how closely they are related) could

be either positive or negative. The maximum number could be either +1 (positive) or

−1 (negative). This number is the correlation coe�cient. A zero correlation indicates

no relationship and value close to +1 shows strong positive correlation [25]. Table 4.5a

shows that, there is a good correlation between thrust and advance rate (R2 = −0.647),
and between machine speed and AR (R2 = 0.443). Negative correlation of (R2 = −0.647)
between thrust and AR also verify the graph between them as shown in Fig. 4.1b. Table

4.5b shows correlation between AR and seismic data variables. It is clear from the table

that the is no signi�cant correlation between seismic data and AR.

Table 4.6 shows almost same results as shown in partial correlation between thrust

and machine parameters. Table 4.7 shows a Bi-Variant correlation between thrust and

seismic parameters, pseudo velocity have a partial correlation coe�cient of (R2 = −0.001),
amplitude erestizeit (R2 = −0.039) and amplitude re�exion have a correlation of (R2 =

0.181) only. These �gures shows that, there is no signi�cant partial correlation between

thrust and rock mass seismic properties and there is no signi�cant correlation between

seismic data and AR.

Table 4.6: Bi-variant correlation coe�cients.
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Table 4.7: Bi-variant correlation coe�cients.

4.1.6 Conclusions

Worth mentioning of the drive is the successful passage of the challenging section at the

Hartelsgraben as well as the crossing under the existing access gallery. The old tunnel

was identi�ed as a clear bottleneck in the headwaters system. Hard rock double shield

TBM, Robbins DS-TBM-Model 194 − 272 − 2, was used to excavate the second tunnel

4819 m in length and interior diameter of 6.18 m, parallel to existing tunnel [26]. After

detailed analysis of the data from Hie�au tunnel, it is concluded that, advance rate is

inversely proportional to thrust and UCS, main reason for this is dependence of AR on

rock strength. There is a good correlation between thrust and advance rate, and between

machine speed and AR . There is no signi�cant correlation between thrust and seismic

parameters, between AR and seismic parameters. At low torque and low and high thrust,

tool wear is maximum, TBM cannot achieve maximum AR only with increasing thrust.

This is also included that moderate thrust values gives rise to maximum tool and cutter

life. At maximum value of amplitude of re�exion, a depression in AR value is found,

that shows rock brittleness and hardness as key parameters in TBM performance. After

multidimensional analysis, advance rate linear regression prediction model formulated

with the help of SPSS19 software, shows a good signi�cance of the model. Also machine

parameters have more in�uence on the model as compare to seismic data. Rock mass

data are also normally distributed and useful for regression analysis, that is clearly used

in analysis.
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4.2 Queens Water Tunnel

Intensive studies have been carried out for estimating the TBM performance mostly based

on intact rock properties to predict the TBM performance in jointed and faulted rock

conditions. In this chapter TBM performance was more precisely related with machine

and rock mass parameters. 2-D analysis was made using excel and Kaleida graphs. 3-D

analysis was carried out by a statistical software �R�. Rock fractured class (RFC) was

predicted using a Math-Lab code and by statistical modeling using a commercial software

SPSS.

4.2.1 2-D Analysis, Rate of Penetration (ROP)

ROP was plotted against thrust of the machine Fig. 4.17a, it shows ROP increases with

increase of thrust with a R2 = 0.33. ROP have similar behaviour with UCS as in case

of thrust (Fig. 4.17b). When we plot UCS vs thrust, it is clear from the graph that,

again thrust has constant value with respect to UCS at low values, but at high values of

UCS > 170 MPa, it drastically increases. The reason may be that up to a certain value

of UCS cutters of the machine have low wear and good performance.

Figures 4.17(a,b) show AR trend against thrust and UCS, both trend are linear with

respect to AR. Same trends are replicated in Figs. 4.18(a,b) for thrust versus UCS and

rock fracture class versus AR. Both graph shows that thrust and UCS are closely related

and their in�uence on advance rate is similar.
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(a) Thrust versus AR.

(b) UCS versus AR.

Figure 4.17: Thrust and UCS versus AR.
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(a) Thrust versus AR.

(b) RFC versus AR.

Figure 4.18: 2-D plots.

Figure 4.19a shows Brazilian Tensile Strength (BTS) versus AR, a linear increase in AR

is observed with BTS with R2 = 0.01. In Fig. 4.19b thrust, AR, BTS, distance between

Planes of Weakness (DPW) and α angle (alpha angle is the angle between tunnel axis

and the planes of weakness) are plotted against tunnel meters. AR and BTS are almost

constant throughout the length of chainage, while thrust goes down with some deviation
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and α angle and DPW are randomly distributed. From these 2-D graphs (Figs. 4.17-

4.18), it can be concluded that AR and UCS can be predicted through linear regression

modeling.

(a) BTS versus AR.

(b) TM versus thrust, AR, BTS, DPW and alpha angle.

Figure 4.19: 2-D plots.

4.2.2 3-D Analysis, Rate of Penetration (ROP)

A statistical software �R� was used to understand e�ects of UCS and BTS on advance

rate with respect to machine thrust. These 3-D surfaces clearly describe the variation

and dependence of one variable upon other, while third variable is kept constant at low
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or high value.

(a) Thrust versus AR at high UCS. (b) Thrust versus AR at low UCS.

Figure 4.20: 3-D surfaces.

Figures 4.20(a,b) show AR variation with thrust at low and high UCS. At low UCS,

AR increases linearly with thrust up to a certain limit, then goes down, while at low

UCS, AR have a linear increase throughout the tunnel length. Figs. 4.21(a,b) show

dependence of AR on UCS at high and low thrust. Interestingly, at high thrust values,

ROP is decreasing linearly with UCS, then got a peak value of 2.5 m/hr at about 200

MPa and then tends to zero. At very low values of thrust, AR decreases linearly with

UCS, clearly verifying the role of rock strength in machine advance.

(a) UCS versus AR at high thrust. (b) UCS versus AR at low thrust.

Figure 4.21: 3-D surfaces.
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(a) BTS versus AR at high thrust. (b) BTS versus AR at low thrust.

Figure 4.22: 3-D surfaces.

Figures 4.22(a,b) shows BTS relation with AR at high and low thrust. At high thrust,

AR trend increases like a sinusoidal wave while on the other hand, AR remains constant

with increase of BTS, at low thrust values. BTS have no in�uence on AR and thrust

relation, as shown in Figs. 4.23(a,b).

(a) Thrust versus AR at high BTS. (b) UCS versus AR at low thrust.

Figure 4.23: 3-D surfaces.

4.2.3 Statistical Modeling

SPSS-19 was used to model empirical equations for ROP and other parameters. After

multidimensional analysis, di�erent models are predicted using available data. Normal
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frequency analysis, linear regression modeling and bi-variant correlation are formulated,

plotted and compared with actual data.

4.2.3.1 Frequency Distribution of Di�erent Parameters

(a) UCS. (b) BTS.

Figure 4.24: Histograms for UCS and BTS.

(a) Thrust. (b) ROP.

Figure 4.25: Histograms thrust and ROP.

Figures 4.24-4.26 show histograms of di�erent variables. BTS and measured ROP has a

good normal frequency distribution. While other parameters like thrust and UCS are left
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skewed, DPW and alpha angle are randomly distributed.

(a) Alpha angle. (b) DPW.

Figure 4.26: Histograms for alpha angle and DPW.

4.2.3.2 ROP Regression Analysis

Commercial software packages (IBM SPSS-19) for standard statistical analysis were used

for stepwise, multiple variable regression analysis and statistical modeling using known

parameters to model an unknown parameter. In order to obtain this model, multidimen-

sional regression analysis were carried out for rock properties and machine parameters.

E�ect of each parameter separately on rate of penetration (ROP) was analyzed. Separate

equation was developed for each rock parameter against the ROP, to see the weight and

importance of that parameter in overall model. R2 values (linear and quadratic equations)

of each equation were evaluated and compared for weight and importance of that variable.

Model summary is shown in table 4.9, that elaborates model accuracy of 64.4%.
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Table 4.8: Table of rock properties versus ROP.

Table 4.9: AR model summary.
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(a) Parameters e�ects.

(b) Coe�cient table for AR model.

Table 4.10: E�ects and parameters of AR model.

After multidimensional analysis of the rock properties and machine parameters, dif-

ferent equations were developed and presented in table. 4.8. Finally a model for ROP

was developed, using coe�cient matrix (table 4.10b) as shown below in Eq. 4.3;

ROP (m/h) = 1.022 + 0.029Thrust+ 0.475Log(α)− 0.217DPW − 0.003UCS (4.3)

74



Figure 4.27: Predicted ROP model scattered plot.

Figure 4.27 displays scattered plot of predicted ROP and actual ROP, with R2 = 0.654.

Comparison between actual and SPSS ROP as a line plot is shown in Fig. 4.28. A

reasonably good coincident showing the prediction power of SPSS model is observed.

Figure 4.28: AR model comparison.
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4.2.3.3 Rock Fractured Class (RFC)

After repeating same procedure as for ROP a model for RFC was formulated and shown

in eq. 5.2. Model accuracy here is 57% and DPW is most important parameter among

model predictors and ROP has the minimum in�uence on model prediction.

(a) RFC model summary. (b) E�ects of parameters.

Table 4.11: RFC model summary and e�ects.

Table 4.12: RFC model coe�cients.

RFC = 3.754−1.022DPW−0.109BTS−0.146ROP−0.001UCS−0.031Log(α)−0.001Thrust
(4.4)
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Figure 4.29: Predicted RFC model.

Figure 4.30: Comparison of RFC.

Scattered and line plot comparison of predicted and actual values Figs. 4.29 and 4.30

show medium accuracy of the model.

4.2.3.4 Partial and Bi-Variant Correlations

Correlation measures the degree of relationship between two random variables, while the

e�ect of a set of controlling random variables is removed. In fact, the �rst-order partial
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correlation is a di�erence between a correlation and the product of the removable correla-

tions divided by the product of the coe�cients of alienation of the removable correlations

[39]. The correlations procedure computes partial correlation coe�cients that describe

the linear relationship between two variables while controlling for the e�ects of one or

more additional variables. Correlations are measures of linear association. Two variables

can be perfectly related, but if the relationship is not linear, a correlation coe�cient is not

a proper statistic to measure their association. In Bi-variate correlations, the relation-

ship between two variables is measured. The degree of relationship (how closely they are

related) could be either positive or negative. The maximum number could be either +1

(positive) or −1 (negative). This number is the correlation coe�cient. A zero correlation

indicates no relationship and value close to +1 shows strong positive correlation [25].

Table 4.13: Bi-variant correlation.

Table 4.13 shows Bi-Variant correlation between machine and rock variables. It is

clear from the table that, there is a good correlation between thrust and UCS (R2 =

0.629) and between thrust and AR (R2 = 0.577). Similarly a fair value of correlation

(R2 = 0.254) exist between UCS and ROP. The best correlation is found between, DPW

and RFC (R2 = 0.751). Overall values in tables shows that, in Queens water tunnel data,

a reasonable correlation is found between machine and rock mass data.

4.2.4 Conclusions

When rock mass have high UCS and low brittleness (BTS), then, obtained AR is relatively

lower than expected. Maximum AR are observed as the alpha angle ranges from 50− 65
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degrees. As DPW ranges from about 20 − 40 cm, the obtained AR is also rather high.

UCS plays a major rule in TBM performance, at low UCS, AR has linear correlation with

thrust, whereas at high USC, thrust make a curvi-linear correlation with AR. Advance

rate (AR) prediction model has accuracy of 64.4% and AR linear regression model when

plotted against the actual AR values gives a signi�cant correlation (R2 = 0.655). Similarly

a linear regression model for rock fracture class (RFC) was formulated and give accuracy

of 57% and comparison of predicted and actual RFC values give R2 = 0.588. Only one

rock property i.e UCS is in good correlation with machine thrust (R2 = 0.629). Moreover

machine thrust and AR have a positive linear correlation of R2 = 0.577. Geological con-

dition and rock mass characterization in the �eld should be investigated before selecting

the TBM, since the machine speci�cation including thrust, cutter-head power and both

diameter and number of disc have in�uence on the ROP [33]. Hence geology and rock

properties including orientation, condition and frequency of discontinuities together with

rock strength and brittleness, provide the major control on the penetrability of tunnel

boring machine.

4.3 Vereina tunnel

Vereina tunnel data consists of tunnel meters, thrust, torque, advance rate, petrography,

fracture class, geological classes and tool wear. Data were segregated into di�erent seg-

ments suitable for Microsoft excel, Fuzzy logic, statistical software �R�, Math-Lab code

and IBM SPSS19. Rock fracture class (RFC) is sum of 5 − 6 rock geological param-

eters e.g fracture frequency, fracture spacing, orientation etc. Petrography deals with

the systematic description of rocks. The term is sometimes loosely used as synonymous

with "petrology", which, being the broad science of rocks, is concerned not only with

precise description but also with understanding the origin (petrogenesis), modi�cation

(metamorphism), and ultimate decay of rocks [40], [41].

4.3.1 Data Analysis by Microsoft Excel

Rock mass and TBM data are plotted against tunnel meters to see the variation and trend

of individual parameter as chainage proceed ahead. It is clear from Fig. 4.31 that thrust

and advance rate (AR) vary almost in the same pattern from 2000-TM to 5000-TM ,

then from 5000-TM to 10000-TM the relation is inverse i.e low ROP at relatively high

thrust. From 10, 000 − TM to end of 12, 000 − TM , very low ROP is observed at high

thrust, which may be due to relatively high rock strength and due to learning e�ect of

the machine driver, who tried to push more thrust to achieve more ROP without knowing

the e�ects of other parameters.
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Figure 4.31: TM versus ROP, RMC, RFC and torque.

(a) Thrust versus PR. (b) Thrust versus torque.

Figure 4.32: Thrust versus PR and torque.

Figure 4.32 shows relations between thrust and penetration and moment. Relation

between thrust and ROP is very complicated. To illustrate it, a linear trend line is drawn

by curve �t having R2 = 0.018. Thrust and moment of machine also have same linear

trend with R2 = 0.38. It is clear from Figs. 4.33(a,b) that penetration is decreased with

increase of all, RMC, RFC and petrography. On the other hand penetration increases

with high values of torque. Figs. 4.34(a,b) clearly shows that RFC and RMC are inversely

proportional to thrust, i.e. highly fractured rock can be easily excavated by TBM even
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at moderate thrust.

(a) PR versus torque and petrography.

(b) PR versus RMC and RFC

Figure 4.33: Penetration versus RMC, RFC, torque and petrography.
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(a) Thrust versus PR.

(b) Thrust versus Torque.

Figure 4.34: Thrust versus RMC and RFC.

4.3.2 Data Analysis and RMC Prediction by Fuzzy Logic Tools

For Fuzzy logic an input data �le was prepared after �ltering the data. Input data consists

of three major parameters i.e. tunnel meters per day, cutter thrust and torque (power

consumption), which acts as Fuzzy logic inputs and from these input rule base converts
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them into a single output as rock mass class (RMC). An I/O subroutine for reading data

from excels to Mat-Lab and then for plotting the results is written. This sub-routine can

read data from any excel �le how large it may be and can plot the data in required domain.

Another I/O (input-output) routine is written, which perform Fuzzy logic operation (rule

base) by taking three inputs and plot the output result as RMC. Then 3 − D surfaces

were plotted for thrust, power and RMC for both data �les.

Figure 4.35 shows a rule base table for Vereina tunnel. Rule base was compiled after a

detailed study of relations between rock and machine parameters. After detailed analysis

of data, the rule base is formed. But still here too much room for improvement in rule

base is available by incorporating more variables like presence of water, overburden etc.

as input variables, in rule base decision box.

Figure 4.35: Fuzzy rule-base for Vereina tunnel data.

4.3.2.1 Tunnel Section from 3000-TM to 4000-TM

When we compare the results of RMC, calculated from Fuzzy logic with actual RMC,

they are in good coincidence, i.e. the trend is same, except at three points (at 4313 m,

4634.7m and 4881.3m). When we see the 3 − D surface generated by Fuzzy tools (Fig.

4.36), at medium thrust and power consumption RMC is high value. This may be due to

moderate strength rock (4 < RMC < 6). TBM is more e�cient and penetration is more

at medium thrust and power consumption.
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Algorithm 4.1 I/O subroutine for Vereina.

Input/output subroutine for Vereina Tunnel 4000m-5000m 

a=newfis('Vereina Tunnel'); 
a=addvar(a,'input','Thrust of the Cutter',[500 1350]);  
a=addmf(a,'input',1,'small','trapmf',[425 700 750 900]); 
a=addmf(a,'input',1,'middle','trimf',[750 925 1137]); 
a=addmf(a,'input',1,'great','gaussmf',[925 1137 1250 1400]); 
a=addvar(a,'input','Boring Meters per Day',[10 34]); 
a=addmf(a,'input',2,'few','trapmf',[1 9 11 18]); 
a=addmf(a,'input',2,'middle','trimf',[15 22.5 30]); 
a=addmf(a,'input',2,'many','trapmf',[25 33 35 42]); 
a=addvar(a,'input','Power Consumption',[70 4600]); 
a=addmf(a,'input',3,'low','trapmf',[60 100 720 1200]); 
a=addmf(a,'input',3,'middle','trimf',[1200 2335 3467]); 
a=addmf(a,'input',3,'high','trapmf',[2335 3467 4500 4600]); 
a=addvar(a,'output','RMC',[1 7]); 
a=addmf(a,'output',1,'I','trapmf',[-1 0 1.2 2]); 
a=addmf(a,'output',1,'II','trimf',[1 2 3]); 
a=addmf(a,'output',1,'III','trimf',[2 3 4]); 
a=addmf(a,'output',1,'IV','trimf',[3 4 5]); 
a=addmf(a,'output',1,'V','trimf',[4 5 6]); 
a=addmf(a,'output',1,'VI','trapmf',[5 5.8 8 8]); 
ruleList=[ ... 
1 1 1 5 1 1 
2 1 1 6 1 1 
3 1 1 6 1 1 
1 1 2 4 1 1 
1 1 3 3 1 1 
2 1 2 5 1 1 
2 1 3 4 1 1 
3 1 2 5 1 1 
3 1 3 3 1 1 
1 2 1 4 1 1 
2 2 1 5 1 1 
3 2 1 5 1 1 
1 2 2 4 1 1 
2 2 2 4 1 1 
3 2 2 4 1 1 
1 2 3 3 1 1 
2 2 3 3 1 1 
3 2 3 3 1 1 
1 3 1 4 1 1 
2 3 1 4 1 1 
3 3 1 4 1 1 
1 3 2 4 1 1 
2 3 2 3 1 1 
3 3 2 3 1 1 
1 3 3 3 1 1 
2 3 3 2 1 1 
3 3 3 3 1 1]; 
a=addrule(a,ruleList); gensurf(a) 
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Figure 4.36: Fuzzy 3-D surface.

It is clear from the 3-D surface (Fig. 4.36) that high values of RMC correspond to

moderate values of thrust and machine power. This clearly shows the e�ect of rock mass

strength upon TBM performance and advance rate. Fig. 4.37 displays a comparison

between actual and Fuzzy logic RMC. It is clear from the �gure that, there is a good

correlation and match between actual and Fuzzy values, hence this tool give a reasonably

good prediction.

Figure 4.37: Comparison of actual and Fuzzy RMC.
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4.3.2.2 Section Tunnel Meters 9, 000 m to 10, 000 m

Tunnel section from 9, 000 to 10, 000 TM shows entirely di�erent behavior as compared

to section 3, 000 to 4, 000 TM. Thrust versus penetration has an inverse proportionality.

This may be due to a high strength of rock. Moreover due to low rock fracture value

here chip formation was di�cult. More tool wear resulted low advance rate even on high

thrust values. Machine thrust plotted against RMC, shows inverse proportionality, that

means more thrust needed for strong and fractured rock. Thrust and torque are directly

related in a linear correlation.

(a) Thrust versus PR and torque. (b) Thrust versus torque.

Figure 4.38: Thrust versus penetration, RMC, torque 9000-10000 TM.

This section was also analyzed by Fuzzy logic. Separate subroutine was written as

for previous section after formulating the Fuzzy rule base. 3-D surface was generated for

three parameters i.e thrust, RMC and power consumption of the TBM. 3-D surface (Fig.

4.39) shows more advance rate at low RMC and at medium and high values of thrust.

Penetration is too low at low values of thrust and RMC.
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Figure 4.39: 3-D surface by Fuzzy logic.

-

Figure 4.40: Comparison of RMC.

RMC from Fuzzy logic and the actual are compared. Figure 4.40 shows both actual and

predicted RMC follow the same trend but di�er from each other. They have coincidence

only on few points (at 9097m, 9463 m, 9542m and 9590 m). It can be extracted from the

data results that Fuzzy logic can give good results if we take into account more parameters

and re-formulate the rule base.
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4.3.3 3-D Analysis with �R�

Statistical software �R� was used to draw a 3-D surfaces for di�erent variables, which

show the correlation and dependence of these variables on each other. Di�erent views of

these surfaces are shown to illustrate the interdependence of di�erent parameters on each

other.

(a) Thrust versus ROP at high torque. (b) Thrust versus ROP at low torque.

(c) Thrust versus ROP at high RFC. (d) Thrust versus ROP at low RFC.

Figure 4.41: Thrust versus ROP at low and high torque.

From Figs. 4.41(a-d) it is clear that penetration is inversely proportional to thrust

at high values of torque and same at low torque values, at low RFC advance rate is

almost constant. At low RFC, penetration is maximum at medium thrust, showing the

e�ect of rock fracture class upon TBM performance. Where as in Figs. 4.42(a,b,c,d),

penetration when plotted against thrust at high and low RMC, shows at high rock mass

class, ROP is again maximum at moderate thrust, while at low RMC, penetration looks
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almost independent of RMC. At both high and low petrography, penetration is maximum

at moderate thrust values. It can be concluded that TBM e�ciency in terms of penetration

and tool wear, is max when machine applied thrust values are of medium range. Overall

RFC and torque has a little e�ect on ROP and thrust relation.

(a) Thrust versus ROP at high RMC. (b) Thrust versus ROP at low RMC.

(c) Thrust versus ROP at high petrography. (d) Thrust versus ROP at low RFC.

Figure 4.42: Thrust versus ROP at high and low RMC.

4.3.4 Statistical Modeling with IBM SPSS 19

After multidimensional analysis, di�erent models are predicted using available data. Nor-

mal frequency analysis shows the following results. Penetration and rock fractured classi-

�cation show a good normal distribution with very low standard deviation, on the other

hand torque and RFC don't follow any normal distribution. Model selection method was
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�forward stepwise� and default combining method was �mean� at 95% con�dence level.

(a) Thrust. (b) Torque.

Figure 4.43: Histograms for thrust and torque.

(a) Penetration. (b) RMC.

Figure 4.44: Histograms for ROP and RMC.

Figures 4.43 and 4.44 shows frequency distribution of di�erent variables. Only single

variable penetration rate (ROP) has a perfect normal frequency distribution with (sd =

0.659). Torque and RFC data is left skewed. RMC is also showing a normal distribution

with some exceptions.
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4.3.4.1 Penetration Rate Prediction Model

Penetration rate (PR) is always a major parameter while discussing the optimization

or performance of a TBM. After multidimensional analysis, PR was predicted by SPSS

linear regression analysis. Model summary, e�ects and coe�cients of the input variables

are shown in tables 4.14-4.16 respectively.

(a) PR model summary. (b) RFC Histogram

Table 4.14: Model summary and coe�cients.

Table 4.15: PR model e�ects.

There were �ve predictors used to establish a model for ROP table. 4.15. Torque

and thrust have more in�uence on model forming and RFC have a least e�ect to model.

Similarly in step forward process torque was the �rst and most important parameter to

involve in iteration process and RFC is last and least important parameter.
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(a) Model coe�cients.

(b) Table of linear equations between input and target variable.

Table 4.16: Table of PR model coe�cients and linear equations.

Table 4.16 shows a model coe�cients. Standard deviation of predicted value ROP is

(R2 = 0.658) and (R = 0.811). After using all of these variables, coe�cients, residuals

and linear equations from table 4.16b, the ROP model was predicted, that is shown below

in eq. 4.5;

ROP (m/h) = 1.388− 0.001Thrust+ 0.52(m/day)− 0.202RMC − 0.028RFC (4.5)
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(a) Scattered plot for PR model. (b) Line plot for PR model.

Figure 4.45: Prediction model plot.

The model obtained is plotted and compared in Figs. 4.45(a, b) respectively, predicted

values are plotted versus actual ROP. A good correlation between the two values is found

with R = 0.52. and a good coincidence is found between actual and predicted ROP.

4.3.4.2 Prediction Models for RMC and RFC

Rock mass class was also predicted by Fuzzy logic. Here for the counter check and com-

parison, RMC is analysed and an empirical prediction model with SPSS19 is formulated.

(a) RMC. (b) RFC.

Table 4.17: Model summary.
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(a) RMC. (b) RFC.

Table 4.18: Model e�ects.

Rock fractured class (RFC) was also an important parameters to analyse. First of all

RFC value was calculated by adding di�erent numbers available in data. Then an empir-

ical prediction model for RFC was formulated. Table 4.17(a,b) shows model summary for

RMC and RFC linear regression models. RMC model shows a higher accuracy as compare

to RFC model. Both prediction model are based upon �step forward� calculation meth-

ods. Table 4.18 shows e�ects of predictors (input variables) upon output variables (RMC

and RFC). For RMC linear regression model, thrust plays the most important role, while

in the RFC model, petrography is the most important input variable. Five predictors in

RMC and four predictors in RFC are used to formulate linear regression model.
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(a) RMC.

(b) RFC.

Table 4.19: Model coe�cients.

From these coe�cients (table 4.19), following linear regression models for RMC and

RFC are formulated and shown in Eqs. 4.6 and 4.7 respectively. Resultant output from

these models are plotted and shown in Figs. 4.46(a,b). It is clear from the plot that RMC

model (R2 = 0.773) is more accurate than RFC model (R2 = 0.616).

RMC = 5.012− 0.002Thrust+ 0.536Petrography − 0.001Torque− 0.05RFC (4.6)

RFC = 6.346− 0.003Thrust+ 2.11Petrography − 0.206ROP + 0.308RMC (4.7)
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(a) RMC scattered plot. (b) RFC scattered plot.

Figure 4.46: RMC and RFC models scattered plots.

Figure 4.47: Comparison of RMC.
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Figure 4.48: Comparison between actual and predicted RFC.

Figures 4.47 and 4.48 shows a comparison between actual (�eld) RMC, Fuzzy logic

predicted and SPSS predicted RMC values. In the case of RMC (Fig. 4.47) SPSS gives a

reasonably good prediction, except for few values at the start of tunnel chainage, most of

the predicted values coincides with �eld RMC values. However RFC predicted values at

start of chainage, at the end section of tunnel length, SPSS predicted values contradict

with �eld RFC values.
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4.3.4.3 Correlation and Correlation Coe�cient

Table 4.20: Pearson correlation coe�cient table.

Table 4.20 shows correlation coe�cient between di�erent variables. First row of the table

shows correlation between thrust (t) and all other parameters, like AR (m/hr), torque

(kNm), Petrography, RMC and RFC. It is clear from the table that thrust have a good

correlation with all above mentioned parameters except the penetration rate. Moreover,

machine parameters are strongly correlated with rock mass properties, e.g thrust-RMC

correlation coe�cient is R2 = 0.690, thrust-RFC correlation coe�cient is R2 = 0.594 and

the value for thrust-petrography is R2 = 0.424. Penetration (m/hr) has greater in�uence

from torque and RMC rather than thrust.

4.3.5 Conclusions

Deep tunnels have their speci�c problems in regard to geo-technical and rock mechanics.

The Vereina tunnel is 19.05 km long with an overburden of 1500 m which mainly com-

prises gneiss and amphibolites the latter being extremely hard and tough rocks. All these

formations are bedded horizontally or sub-horizontally, like the sedimentary formations

lying underneath and tunnel was excavated by an open TBM. Due to the high water

pressures deep tunnels are normally drained tunnels, it is neither technically feasible nor

economically reasonable to try to seal o� entirely deep tunnels [33]. So for TBM perfor-

mance prediction, all rock mass properties like rock strength, RFC, RMC, water pressure

and overburden must be kept in calculations, for the calculation for machine advance rate.

But unfortunately here in Vereina tunnel data analysis, no data was available regarding
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presence of water and e�ect of overburden. Moreover underground temperature increases

rigorously with depth.

Linear relation between thrust and penetration shows a little increase in penetration

with thrust, but when we plot a 3-D surface, to see the e�ect of third variable, it is clearly

observed that penetration is only maximum, when TBM thrust has moderate values. This

is valid for both high and low RFC, RMC and petrography values. Fuzzy logic is another

tool here, that was applied for prediction of penetration and RMC and shows acceptable

results. RMC, RFC and penetration rate were also predicted by using SPSS19 software

packages and give very e�cient and accurate result for RMC prediction model R2 = 0.773.

Last part of analysis consists of correlation between machine and rock mass parameters.

Here in Vereina tunnel data, a very good linear correlation between TBM parameters and

rock mass properties (thrust-RMC, R = 0.831) is observed. Correlation between between

thrust and torque R = 0.78 is found. But there is no signi�cant correlation between

thrust and penetration R = 0.364.

4.4 Hemerwald Tunnel

4.4.1 Preparation for Excel Data Sheets

Hemerwald tunnel data was received as print form (hard copy) of bore logging table as

shown in Fig. 4.49. Excel sheets were generated by picking each data point manually.

Figure 4.49: Original data sample pdf. �le.

First of all data for rock mass were analyzed for thrust, advance rate (AR), degree

of disintegration (DoD), rock mass class (RMC) and excavation velocity. Then data
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were segregated for all three rock types (Muscovite-Granite-Gneiss, Micaschists, Schistose-

Gneis) and same analysis were done as for rock mass.

4.4.2 Rock Mass Data

4.4.2.1 2-D Data Analysis with Microsoft Excel

Here data analysis for rock mass are shown, all rock properties and machine parameters

plotted versus tunnel meters (TM).

Figure 4.50: TM versus thrust, RMC, excavation velocity, disintegration.

Fig. 4.50 shows variation of di�erent variables along the tunnel meter. Thrust and ex-

cavation velocity have almost similar variation. Rock mass class (RMC) and degree of dis-

integration varies quite similarly along the tunnel length. Variation of thrust and advance

rate is shown in Figs. 4.51(a,b), that display AR, RMC, machine velocity against thrust

variation. Only RMC have an inverse proportion to thrust, all other have a quadratic

relation with thrust. TBM rpm and AR entirely coincide with each other. But at low

values of RMC, a high thrust is observed which shows low RMC rock needs more ma-

chine thrust for the same AR . This may be due to low values of disintegration machine

cutter-head is unable to form chip formation at low thrust.
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(a) Thrust versus AR.

(b) Thrust versus AR, power, velocity and RMC.

Figure 4.51: Thrust versus AR power, velocity and RMC (Rock mass).

4.4.2.2 3-D Analysis with �R�

Statistical software �R� is very useful for plotting 3-D surfaces for di�erent parameters to

see the variation of three variables simultaneously.

101



(a) Thrust versus AR at high RMC. (b) Thrust versus AR at low RMC.

(c) Thrust versus AR at high machine velocity. (d) Thrust versus AR at low machine veloc-
ity.

Figure 4.52: 3-D surfaces for thrust, AR, power and RMC (Rock mass).

AR is inversely proportional to thrust at low RMC Figs. 4.52(a,b), while it has a

sinusoidal trend with thrust at high values of RMC showing that in poor to medium

rock advance rate increase with increase of thrust but when RMC is very low or in other

words rock strength is very high, advance rate decreases with increase of thrust values.

Reason may be due to low RMC, very strong rock, AR doesn't depends upon thrust above

a critical value necessary for chip formation, whereas at high RMC values, AR linearly

increases with thrust up-to a speci�c point, beyond which increase in AR is not possible

by simple increase of thrust. Figures 4.52(c,d) shows AR variation against thrust at low

and high machine velocity. Machine velocity doesn't play any role for AR, as in both

cases (i.e. at high and low machine velocity), AR is inversely proportional to thrust.
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(a) Thrust versus AR at high machine power. (b) Thrust versus AR at low machine power.

Figure 4.53: 3-D surfaces thrust versus AR (Rock mass).

(a) Thrust versus RMC at high AR. (b) Thrust versus RMC at low AR.

Figure 4.54: 3-D surfaces thrust versus AR (Rock mass).

Figures 4.53(a,b) shows AR against thrust at high and low machine power. Here again

AR and thrust have quadratic relation with each other, both on high and low machine

power. Whereas Figs. 4.54(a,b) shows variation of thrust and RMC, at low and high AR.

It is clear from the 3-D surface that at high AR, more thrust is required at lower values

of RMC, on the other hand low thrust needed at high RMC and vise versa, This trend is

sinusoidal.
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4.4.2.3 Prediction Model With Fuzzy Logic

A Mat-Lab code was written to predict the RMC values taking, thrust, advance rate (AR)

and machine power into account as input variables and RMC as output variable. Rule

base is formulated for the Math-Lab code after keeping in view all trends and behaviors

of all parameters versus RMC.

Figure 4.55: 3-D surface by Fuzzy logic.

Plot between actual and Fuzzy RMC shows R2 = 0.39, fair correlation between actual

and Fuzzy RMC. Fuzzy RMC has a little bit higher values than actual. But improvement

can be made by re-formulating the rule base and taking more rock mass properties like

presence of water, overburden etc. into account.
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(a) Scattered plot Fuzzy versus actual RMC.

(b) Fuzzy versus actual RMC.

Figure 4.56: Fuzzy versus actual RMC.
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4.4.2.4 Statistical Modeling with SPSS

For rock mass data, SPSS19 modeling was carried out and histograms for all machine

parameters and rock mass properties were generated. After multidimensional analysis, a

linear prediction equation (model) was formulated for rock mass data.

(a) Thrust. (b) Machine power. (c) Machine excavation velocity.

Figure 4.57: Histograms for thrust, power and excavation velocity.

(a) AR. (b) RMC. (c) RFC.

Figure 4.58: Histograms for AR, RMC and RFC.

Figures 4.57-4.58 show that, thrust and excavation velocity have normal frequency

distributions, AR have very good normal distributions, and RMC have a left skewed

frequency distribution. According to SPSS regression analysis assumptions, AR, RMC

and RFC ful�ll the required condition for regression modeling.
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(a) Model summary and e�ects.

(b) Model coe�cients.

(c) Table of linear equations between input and out variables.

Table 4.21: AR model summary, e�ects and coe�cients.

Using linear equations (table 4.21c) and coe�cients matrix (table 4.21b), prediction

of AR model with the help of SPSS-19 linear regression modeling, a formula for predicted

advance rate was achieved. Model has very high accuracy of 92.8% and excavation velocity

was the most important parameter among the predictors.
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(a) AR model plot.

(b) Comparison actual and SPSS AR.

Figure 4.59: Actual and SPSS AR comparison.

From the coe�cient matrix obtained from table 4.21, following prediction model was
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formulated and shown in Eq. 4.8.

AR(m/hr) = 0.331 + 0.849Excv.V el − 0.003Thrust+ 0.004Power − 0.009RMC (4.8)

Prediction model (R2 = 0.928) for AR is plotted in Fig. 4.59a as scattered plot and Fig.

4.59b shows the comparison between actual and SPSS advance rate as a line plot, where

95% predicted values coincide with actual values.

4.4.2.5 Correlation and Correlation Coe�cient

Table 4.22 shows Pearson correlation between machine parameters and rock mass proper-

ties. Machine parameters have a good correlation with rock mass properties e.g thrust and

AR (R2 = 0.745) and thrust and excavation velocity (R2 = 0.740). This shows a strong

correlation between machine and rock mass parameters. Table 4.23 shows Spearman and

Kendall correlation coe�cients. Again thrust is strongly correlated with excavation veloc-

ity and AR with correlation coe�cient of R2 = 0.786 and R2 = 0.799 respectively. These

result also show that the data is not perfectly normally distributed. Otherwise Pearson

correlation coe�cient should not be less than Kendall correlation coe�cient.

Table 4.22: Correlation coe�cients for rock mass.
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Table 4.23: Spearman and Kendall correlation coe�cients.

4.4.3 Muskowit-Granite-Gneis

4.4.3.1 2-D Data Analysis with Microsoft Excel

Figure 4.60 shows a plot between thrust and advance rate, AR is inversely proportional

to thrust. This may be due to TBM driver who tried to push more thrust to achieve more

AR, but due to rock strength of Muskovite-Granite-Gneis and low degree of disintegration

(DoD), AR is decreasing with more thrust applied.
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Figure 4.60: Thrust versus AR.

Figure 4.61 shows variation of all parameters along tunnel length, AR and degree of

disintegration (DoD) are increasing along tunnel length while thrust drops along TM.

Figure 4.61: Thrust versus AR.
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4.4.3.2 3-D Data Analysis With �R�

(a) Thrust versus AR at high DoD. (b) Thrust versus AR at low DoD.

(c) DoD versus AR at low thrust. (d) DoD versus AR at high thrust.

Figure 4.62: 3-D surfaces for Muskovite-Granite-Gneis.

Statistical software �R� was used to plot 3-D surfaces for thrust, advance rate (AR) and

degree of disintegration (DoD). Figures 4.62(a,b) shows thrust versus AR at high and low

DoD respectively. Both graph shows almost similar behaviour, i.e linear increase in AR

with increase of thrust. Figures 4.62(c,d) shows DoD versus AR at low and high thrust

respectively. At low thrust AR is almost independent of DoD, while at high thrust values

the advance rate increases at start and then its level to a constant value, showing that no

further thrust can enhance the AR.

4.4.3.3 Statistical Modeling With SPSS19

Figures 4.63(a-d) shows frequency distributions for thrust, DoD, AR and RMC. Advance

rate and DoD data are normally distributed, while thrust data is right skewed and RMC

left skewed. Frequency distribution (histograms) for DoD and AR show that, SPSS pre-

diction modeling can be performed on these set of data.
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(a) Thrust. (b) DoD.

(c) AR. (d) RMC.

Figure 4.63: Histograms for thrust, DoD, AR and RMC.

Table 4.24: Predictor e�ects for AR model.
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Table 4.25: Coe�cients matrix for AR model.

After multidimensional analysis, di�erent models are predicted using available data.

Normal frequency analysis shows that penetration, thrust and DoD are in good normal

distribution with very low standard deviation and RMC does not follow any normal dis-

tribution. Model selection method was �forward stepwise� and default combining method

�mean� at 95% con�dence level was used. From coe�cients matrix (table 4.25) using

coe�cients from input variables and intercept, following linear prediction model can be

formulated:

AR(m/hr) = 37.771 + 0.796DoD − 0.052Thrust− 1.258RMC (4.9)

Only the advance rate frequency is normally distributed, so SPSS regression analysis

model were applied to these data sets, out put result is plotted and shown in Fig. 4.64

with R2 = 0.148.

Figure 4.64: AR model for Muscovite-Granite-Gneiss.
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4.4.3.4 Correlation and Correlation Coe�cients

Table 4.26: Pearson correlation coe�cients for Muscovite-Granite-Gneiss.

Table 4.27: Spearman's correlation coe�cients Muscovite-Granite-Gneiss.
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Table 4.26 shows Pearson correlation coe�cients for di�erent machine and rock param-

eters. There is no signi�cant correlation between machine parameters and rock mass

properties. Even rock mass properties are not well correlated with themselves. In table

4.27, Spearman and Kendall's correlations are shown. Thrust and advance rate are rea-

sonably good correlated (R2 = 0.498), other all parameters shows correlation less than

R2 = 0.40.

4.4.4 Mica-Schist

4.4.4.1 Data Analysis with Excel

Figure 4.65a displays variation of thrust AR and DoD along tunnel length, thrust required

for excavation is reducing while tunnel meters goes forward, whereas advance rate and

DoD increase along with tunnel meters. Thrust and advance rate, linear curve �t with

R2 = 0.39 shows that AR is going to decreased with increasing thrust, which is due to

involvement of other factors like DoD and rock strength.
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(a) TM versus thrust, AR and DoD.

(b) Thrust versus AR.

Figure 4.65: TM and thrust versus AR and DoD.
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Table 4.28: Pearson correlation for Micaschists.

Tables 4.28-4.29 shows di�erent correlations between machine parameters and rock

mass properties. In table 4.28 Pearson correlations are shown, thrust and DoD have a

negative correlation (R2 = −0.623), whereas thrust and AR, are positively correlated

(R2 = 0.828).

Table 4.29: Spearman's correlation coe�cients for Micaschists.

On the other hand in table 4.29 Spearman's and Kendall's correlations are shown.
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There is no signi�cant correlation between machine and rock mass properties found, except

only between thrust and DoD (R2 = 0.476) a good correlation found.

4.4.4.2 Fuzzy Logic RMC Prediction Model

Figure 4.66: Comparison of RMC for Micaschists.

Figure 4.66 shows a comparison between actual and Fuzzy logic RMC, overall a good

correlation between actual and Fuzzy RMC is seen. In �rst portion of TM and at the last

part of tunnel meters, Fuzzy logic doesn't match well with actual results, but from TM

3500 to 400 almost a good matching of RMC is observed.

4.4.4.3 3-D Analysis with �R�

In Figs. 4.67(a-d) there are 3-D surfaces plotted for more detailed analysis of three

variables dependency upon each other. Figures. 4.67(a,b) shows thrust versus AR at low

and high DoD, it is clear from �gure that both plots at low and high values of DoD are

mirror image of each other, and showing constant values of AR at low thrust and a steep

increase in AR at medium and high thrust force. Figures 4.67(c,d) shows AR variation

with DoD at low and high thrust, AR varies sinusoidal with DoD both at low and high

thrust.
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(a) Thrust versus AR at high DoD. (b) Thrust versus AR at low DoD.

(c) DoD versus AR at high thrust. (d) DoD versus AR at low thrust.

Figure 4.67: 3-D surfaces for Micaschists.

4.4.5 Schistose-Gneis

4.4.5.1 Data Analysis with Excel

Figure 4.68a shows relation between thrust, AR and DoD. Advance rate is linearly in-

creasing with thrust with the same rate as DoD decreases. From this graph it is clear

that more thrust is needed to achieve high advance rate provided that degree of disinte-

gration is very low. In other words rock type, strength and DoD play a key role for TBM

performance. In Fig. 4.68b shows variation of DoD, AR and thrust along with chainage.

DoD is increasing with tunnel length whereas thrust and AR is slightly on lower side with

chainage.
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(a) Thrust versus AR and DoD.

(b) TM versus thrust, AR and DoD.

Figure 4.68: Thrust versus AR and DoD.
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4.4.5.2 Fuzzy RMC Model

Figure 4.69: Fuzzy versus actual RMC.

Fuzzy prediction model for RMC (R2 = 0.39) using machine and rock mass data of

Schistos-Gneis rock is formulated and plotted Fig. 4.69, it seems not a fairly good model.

4.4.5.3 3-D Surface Plot and Analysis With �R�

Figures 4.70(a-d) show 3-D surfaces for di�erent variables in Schistose-Gneis rock, which

revealed that higher DoD values AR is directly proportional to thrust, quadratic relation

is found at high values of DoD, which shows that at stronger rock, the behaviour of TBM

excavation is not as simple as in week rock i.e. more thrust more advance rate is not

a rule of thumb. But there involve many factors for chip formation, rock breakage and

cushioning e�ect and TBM cutter wear, that play important role in machine's overall

performance.
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(a) TM versus thrust at low DoD. (b) TM versus thrust at high DoD.

(c) Thrust versus AR at low DoD. (d) Thrust versus AR at high DoD.

Figure 4.70: Schistose-Gneiss 3-D surface plots.
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4.4.6 Mica-schist+Schistose-Gneis

4.4.6.1 Data Analysis with Excel

(a) TM versus thrust, AR and DoD.

(b) Thrust versus AR and DoD.

Figure 4.71: 2-D plots with Excel.
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Figures 4.71(a,b) shows a linear plots for Mica-Schist+Schistose-Gneis rock. In Fig. 4.71a

variation of all parameters along with chainage is shown, while in Fig. 4.71b variation of

thrust against AR and DoD is plotted. It is clear from the �gure that thrust is independent

of DoD, whereas AR increases linearly with thrust.

(a) Thrust versus AR at high DoD values. (b) Thrust versus AR at low DoD values.

Figure 4.72: 3-D surface plots.

Figures 4.72(a,b) shows variation of AR with thrust at low and high values of DO D.

both graphs are almost mirror image of each other. At start AR is constant with increase

of thrust up to a medium thrust values, but at very high thrust AR increase drastically.

4.4.7 Conclusions

Hemerwald hydro tunnel was excavated by Robbins Series 120, φ = 3.90 m started in

1977, in Kühtai area of Tirol, Austria. For rock mass data (all rocks), trend of thrust,

excavation velocity and degree of disjointing varies almost in same way when plotted

against tunnel meters. Advance rate increases quadratically with thrust, having a peak

of 6 m/hr at 250 kg/cm2, and then decreases rapidly. RMC and DoD have a major role

in machine performance. Fuzzy logic generated 3-D surfaces for rock mass data, also

show a maximum ROP at moderate thrust values and medium RMC. Linear regression

model for advance rate shows a very accurate estimation model (R2 = 0.928) and there

was a signi�cant correlation between machine parameters and rock mass properties e.g.

thrust-AR correlation (R2 = −0.745).
For Muskowit-Granite-Gneis data, no correlation between machine parameters and

rock properties was found. ROP decreases sharply with increase of thrust, showing adverse

e�ect of rock behaviour against application of more thrust than required. In Micaschists

rock, same behaviour of thrust and ROP is seen, but a signi�cant correlation between

thrust and DoD is observed. Moreover a good Fuzzy logic prediction model is obtained

for RMC, that shows a credible results. Same analysis, when performed on Schistos-Gneis,
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ROP is linearly increases with thrust. Reason behind this trend is clear, when we plot a

3-D surface between thrust, ROP and DoD, shown in this section, ROP directly increases

with thrust as DoD here have a moderate values throughout the section. When data for

rock mass were analysed and plotted for di�erent correlations, it is observed that, thrust

and advance rate correlation follow a second degree polynomial. Maximum advance rate

is observed at medium thrust rate values. Both extremes of thrust values i.e too low and

too high thrust results in a very low advance rate. On the other hand, when data for

separated individual rocks were analysed and plotted, it revealed that, advance rate is

always directly proportional to thrust. This may be due to presence of favorable degree

of disintegration in these section of tunnel.

4.5 Tunnels (Maen, Pieve and Varzo) in the Italian

Alps

Data for TBM performance analysis have been obtained from three tunnels excavated

in hard metamorphic rocks for hydraulic purposes in northern Italy. Three tunnels are

located in the northwestern Alps (Italy) and consists of one inclined tunnel for the instal-

lation of a penstock (Maen) and two horizontal diversion tunnels (Pieve and Varzo). A

total of 14 km of tunnel was surveyed almost continually, yielding over 700 sets of data

featuring rock mass characteristics and TBM performance. The empirical relations be-

tween rock mass rating and penetration rate clearly show that TBM performance reaches

a maximum in the rock mass rating (RMR) range 40�70 while slower penetration is expe-

rienced in both too bad and too good rock masses. However, di�erent rocks gives di�erent

penetrations for the same RMR and use of the Bieniawski's classi�cation for predictive

purpose is only possible provided one uses a normalized RMR index with reference to the

basic factors a�ecting TBM tunneling [37].

4.5.1 Maen Tunnel

These rock units consist of meta-ophiolites (Serpentinite, Metagabbro, Metabasite, Chlo-

rite Schist and Talc Schist) and meta-sediments (Calc Schist and Silicate marble) be-

longing to the Zermatt-Saas Zone of the Pennidic Domain [37]. The parent rocks were

carbonate pelagic sequences and ma�c crystalline rocks that underwent high-pressure

low-temperature metamorphism during the early phases of the alpine orogenesis. Schists

and serpentinite show a foliated texture while metagabbro and metabasite are generally

weakly foliated. The attitude of rock units is more or less uniform throughout the tunnel,

at N220�2701E/35�451 (dip direction/dip), so that the longitudinal axis of the inclined

tunnel (plunging direction N1281E) is almost normal to the schistosity [42, 43].
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4.5.1.1 Data Analysis by Excel

Data from Maen tunnel was analysed and di�erent parameters were compared by Excel.

When thrust is plotted against advance rate and penetration rate, it gives interesting

results. Performance prediction of TBM requires the estimation of both penetration rate

(PR) and advance rate (AR). Penetration rate is de�ned as the distance excavated divided

by the operating time during a continuous excavation phase, while advance rate is the ac-

tual distance mined and supported divided by the total time and it includes downtime for

TBM maintenance, machine breakdown, and tunnel failure [42]. In Maen tunnel advance

rate increases linearly with thrust but it is inversely proportional to penetration rate.

Figure 4.73 shows that there is drastic di�erence between penetration rate and advance

rate, which ultimately revealed that high downtime, machine breakdown and maintenance

time for the TBM is present, that shows very low utilization factor of TBM. RMR and

Bieniawski RMR (BRMR) Fig. 4.74 have almost same trend i.e linearly increasing with

a small step di�erence.

Figure 4.73: Thrust versus AR and PR.
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Figure 4.74: Thrust versus RMR.

Figure 4.75: AR versus thrust and RMR.

In Fig. 4.75 advance rate increases linearly with same rate both against thrust and

RMR, from this relation it is obvious that thrust and RMR are also directly proportional

to each other. RMR versus AR plot shows that there is more penetration in weak rock, i.e

poor and medium rocks are favorable for TBM when there is very low degree of disjointing.
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Figure 4.76: UCS and Q-value versus AR.

Figure 4.77: AR versus thrust and RMR.

Figure 4.76 displays UCS and Q value plot against advance rate. UCS have almost

similar behaviour as RMR and Fig. 4.76b displayed that there is no in�uence of Q value

upon AR and a constant horizontal line is observed. At low Q-values frequency of points

is almost 90%, that shows in this tunnel area, rock strata posses medium and low Q-

values. In Fig. 4.77 di�erent parameters shows their in�uence upon AR. Q-value and

UCS have a totally mirror image behaviour against AR, that shows, medium values of

AR are observed at high UCS and low Q-values. But there are other factors too, that

e�ect the behaviour of these parameters.

4.5.1.2 Data Analysis With Fuzzy Logic

Rule base for this tunnel was established and by giving three input parameters, AR was

predicted and compared with actual AR. Rule base for Maen tunnel is shown below in

table. 4.30.
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Table 4.30: Fuzzy rule base for Maen tunnel.

Figure 4.78: Fuzzy versus actual RMC plot.

Figures 4.78 and 4.79 show comparison between actual, Fuzzy logic and SPSS RMC.

In Fig. 4.78 Fuzzy and actual RMC is compared, and it rarely matches each other that

shows poor accuracy of the Fuzzy model. Comparison between SPSS and actual RMC,

shows almost 90% predicted values coincides with corresponding actual values, showing

a very good prediction model by SPSS.
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Figure 4.79: Fuzzy versus SPSS RMC.

4.5.1.3 Data Analysis by Statistical Software �R�

Statistical software R has been used to plot 3-D surfaces and to see di�erent sides of the

picture. 3-D surface also shows the intensity of the data points at speci�c location and

helps to visualize the e�ect of three di�erent parameters on each other in a broader way.

Here only two views were captured and shown with respect to high and low values of third

variable, when the remaining two variables were compared.

Figure 4.80: Thrust versus AR at low and high RMR.

Figure 4.80 shows at lower values of RMR, AR is uniform with respect to thrust, but

at high values of RMR, trend is quadratic and maximum AR is obtained at moderate
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values of thrust. Reason may be that a very good rock (with medium rock strength) and

average disintegration, is easy to chip formation for the TBM.

Figure 4.81: RMR versus AR at low and high thrust.

In Fig. 4.81, 3-D surface is plotted for RMR versus AR at low and high machine thrust.

At low thrust advance rate increase linearly with RMR, but at high values of machine

thrust again a quadratic behaviour is found. It revealed that like UCS, RMR also plays

an important role in machine advance. Medium to moderate rock strength is always good

for the TBM to get a better advance rate, even at medium machine thrust. Figure 4.82

displays e�ect of UCS, which shows maximum advance rate at medium strength of rock.

Reason may be that at low thrust, chip formation is not possible when thrust is below

the critical value necessary for chip formation, at high values of UCS.

Figure 4.82: Thrust versus AR at the rate of UCS.

4.5.1.4 Statistical Modeling with SPSS 19

IBM SPSS19 was used for statistical analysis of the data taken from Maen tunnel. In

order to obtain a penetration prediction model, multidimensional regression analysis were
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carried out for rock properties and machine parameters. E�ect of each parameter was

separately discussed on rate of penetration (ROP). Separate equation was developed for

each rock parameter against the ROP, to see the weight and importance of that parameter

in overall model.

(a) Thrust. (b) Q-Value.

(c) UCS. (d) RMC.

Figure 4.83: Histograms for Maen tunnel 1.

Histograms in Fig. 4.83 shows that there is normal distribution and very low stan-

dard deviation in thrust frequency distribution. But in UCS, frequency distribution, it

is skewed right and shows a step function as its step values are repeating at speci�c in-

terval. Frequency distribution of Q-value and RMC are skewed left and are not normally

distributed. In Fig. 4.84 frequency distribution of four parameters is shown, penetration

rate (PR) has a perfect normal distribution with a standard deviation SD = 0.7. Where

as AR, RMR have also a good normal distribution. Frequency distribution of BRMR is
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skewed right and shows some discrepancy as compare with RMR.

(a) AR. (b) PR.

(c) BRMR. (d) RMR.

Figure 4.84: Histograms for Maen tunnel 2.

Advance Rate (AR) Prediction Model: Table 4.31 shows a model summary for

Maen tunnel advance rate model with an accuracy of 37.8% and its a �forward stepwise

model�. There were seven predicted i.e Q-value, Thrust, RMC, UCS, PR and RMR and

one target variable i.e advance rate (AR) were used. Q-value shows most importance in

the model where as RMC has least importance.
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Table 4.31: AR model summary.

Table 4.32: AR model e�ects.

Table 4.32 shows importance of the predictors, here for this AR model, thrust and PR
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are most important input variables and RMC is least important. On the other hand table

4.33 shows the list of coe�cients, which are used to formulate a linear regression model

shown in Eq. 4.10.

Table 4.33: AR model coe�cients.

The model can be written in the form of a linear equation as in Eq. 4.10

AR(m/hr) = −0.148−0.002Q−value+0.001Thrust+0.010RMR−0.001UCS−0.011RMC

(4.10)

By applying this model on the data available from Maen tunnel, following predicted values

are obtained and the plot between actual AR and predicted values is shown in Fig. 4.85

(R = 0.62).
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Figure 4.85: AR linear regression model.

Penetration Rate (PR) Prediction Model: Penetration rate (PR) model summary

(Table 4.34) shows that model has an accuracy of 40.8%.

Table 4.34: Model summary for PR.
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Q-values and UCS plays important role in model prediction. Using coe�cients from

table 4.36, a linear regression model for PR is formulated and shown in Eq. 4.11.

Table 4.35: Predictors e�ects for PR model.

Table 4.36: Predictors coe�cients for PR model.
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PR(m/hr) = 0.929+1.08AR−0.005Q−value−0.004UCS−0.157RMC−0.037RMR−0.001Thrust
(4.11)

Figure 4.86: PR regression model .

Rock Mass Class (RMC) Prediction Model Prediction model for RMC is also

obtained by multidimensional analysis. thrust, UCS, Q-value and penetration rate were

used as predictors. RMR was excluded as UCS values were calculated from RMR by an

excel formula. Model has a good accuracy (66.4%), model summary, predictors e�ects and

coe�cients are shown in tables 4.37-4.39 respectively. Q-values and UCS play important

role in model prediction and PR was least important.
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Table 4.37: Model summary for RMC.

Table 4.38: RMC model e�ects.
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Table 4.39: RMC model coe�cients.

RMC linear regression model with a reasonable accuracy (R2 = 0.669), formulated

from above predictors, coe�cients and analysis, is given in Eq. 4.12

Figure 4.87: RMC linear regression model.

RMC = 5.645− 0.011Q− 0.007UCS − 1.202AR− 0.0001Thrust (4.12)
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RMC regression model values are plotted against the actual RMC and shown in Fig. 4.87.

4.5.1.5 Correlation and Correlation Coe�cients

Table 4.40: Pearson correlation coe�cients for Maen tunnel.

Table 4.40 shows good correlation between TBM parameters and rock mass properties,

thrust-RMR (R2 = 0.633), UCS-thrust-RMC (R2 = 0.589). Moreover rock mass prop-

erties are strongly correlated e.g. RMR-RMC (R2 = 0.957), shows a strong linear de-

pendence of TBM parameters upon rock mass properties and also among themselves too.

On the other hand table 4.41 shows Spearman's and Kendall's correlation coe�cients. It

is clear from the table that there is no signi�cant correlation between machine and rock

properties, although rock properties are very well inter-correlated (e.g. RMR-Q-Value

R2 = 0.94).
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Table 4.41: Spearman correlation coe�cients for Maen tunnel.

4.5.2 Pieve Vergonate Tunnel

Most area of the Pieve Vergonte tunnel is located in the Sesia-Lanzo zone of the Aus-

troalpine domain [44, 45]. Excavated rocks consists of two metamorphic complexes made

up of gneiss and micaschists separated by a metadiorite intrusive body with minor masses

of metaquartzdiorite and metagabbro. The geological structure is complicated by multi-

ple folding associated with shear zones and brittle fault zones, but the general attitude

of rock units forms a monocline dipping at N140�1801E/30�601 (dip direction/ dip), so

that the longitudinal axis of the tunnel (direction N070�050E) is mainly parallel to the

schistosity.
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4.5.2.1 2-D Analysis by Excel

(a) Thrust versus RMR and RMC.

(b) Thrust versus AR and PR.

Figure 4.88: Thrust versus RMR, RMC, AR and PR.

Figure 4.88a shows a simple 2-D plot between thrust and RMC and RMR. In �rst trend

line between thrust and BRMR, its a linear relation and quite simple, reveals that more

thrust is required for a rock mass having low RMR. Trend between thrust and RMR

shows that low thrust is required for harder rock (Having less RMR). This might be due
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to that RMR was originally formulated for civil engineering problems and calculations,

Bieniawski formulated RMR known as BRMR in 1973 and he reformulate them in 1989

specially for mining purposes. Figure 4.88b shows a relationship between thrust, advance

rate and penetration rate, both AR and PR are going to decrease with increase of thrust,

but with a di�erent rate.

(a) AR versus thrust, RMR and RMC.

(b) PR versus thrust, RMR and RMC.

Figure 4.89: AR and PR versus RMC and RMR.

In Fig. 4.89a advance rate is plotted against thrust, RMC and RMR. Thrust and RMC
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shows almost no e�ect on AR, but AR is decreasing with increasing RMR. Simply it is

revealed that advance rate is low in harder rocks. Figure 4.89b show the same parameters

trend against penetration rate. Slightly more penetration rate is observed at high RMC

values, reason is that in more stable rock having more standup time PR is more. Whereas

PR is inversely proportional to both thrust and RMR. This is the combined e�ect of many

unknown and hidden parameters due to which increasing thrust resulted in low advance

rate. High RMR gives low penetration, which is quite normal.

4.5.2.2 Fuzzy Logic Prediction Model

(a) Comparison of Fuzzy logic, SPSS and actual RMC.

(b) Comparison between Fuzzy logic and actual RMC.

Figure 4.90: Actual versus Fuzzy RMC comparison.
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Figure 4.90a shows a three value comparison between, actual, Fuzzy and SPSS RMC. Here

we see that Fuzzy RMC, comparatively better coincide with actual RMC as compare to

corresponding values of SPSS predicted RMC. In Fig. 4.90b Fuzzy and actual RMC is

compared separately. Again a reasonably good agreement is observed here.

(a) Fuzzy versus Actual RMC. (b) Fuzzy versus SPSS RMC.

Figure 4.91: Actual versus Fuzzy and SPSS RMC.

4.5.2.3 3-D Analysis with �R�

Statistical software �R� was used to analyze di�erent variables for the Pieve tunnel.

(a) UCS versus AR at low thrust. (b) UCS versus AR at high thrust.

Figure 4.92: USC versus AR at low and high thrust.

Figure 4.92 shows a 3-D surface for thrust, AR and UCS. In Fig. 4.92a variation of

AR against UCS at low thrust is shown. At low thrust we see no variation of AR against

USC till UCS = 150MPa. that shows a turning point, after that a slight increase in

AR with high values of UCS is observed. On the other hand in Fig. 4.92b, variation of

AR with UCS at high thrust values, shows a mirror image of Fig. 4.92a, after a critical

value of UCS = 150MPa, AR decreasing sharply. This trend shows that UCS plays an

important role in thrust-AR relation.
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(a) Thrust versus AR at high RMR. (b) Thrust versus AR at low RMR.

(c) Thrust versus AR at high UCS. (d) Thrust versus AR at low UCS.

Figure 4.93: Thrust versus AR.

Figures 4.93(a-d) shows a behaviour of advance rate w.r.t thrust at low and high values

of RMR and UCS. It can be seen from Fig. 4.93a, AR increases curvi-linear with thrust

and then stabilize at very high values of thrust. This relation shows, for a very good rock,

thrust beyond a moderate value is not advisable to get more advance rate. Figure 4.93b

show a direct linear proportional between AR and thrust at low RMR. Figures 4.93(c,d)

shows thrust and advance rate relation at high and low UCS values. Again after a certain

value of thrust, AR drastically reduces even at high thrust,that shows UCS is a critical

parameter in TBM performance and advance rate.

4.5.2.4 Statistical Modeling with SPSS (Pieve)

First of all histograms of all parameters were drawn and shown in Figs. 4.94 and 4.95.

Frequency distribution of advance rate and penetration rate are normally distributed with

a standard deviation SD = −0.324 and SD = −0.676 respectively. The rest of frequency
distributions of thrust, BRMR and RMR are right skewed and that of UCS is left skewed.
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(a) Histogram for thrust. (b) Histogram for UCS. (c) Histogram for AR.

Figure 4.94: Histograms for Pieve tunnel.

(a) Histogram for PR. (b) Histogram for BRMR. (c) Histogram for RMR.

Figure 4.95: Histograms for Pieve tunnel.

Di�erent models parameters and models summaries are shown in table 4.42 and 4.43.

Models accuracy for AR and PR is reasonably good i.e 38.6% and 55.1% respectively.

Table 4.42: AR linear regression model summary for Pieve tunnel.
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Table 4.43: PR linear regression model summary for Pieve tunnel.

From these tables of parameters and target variable, following AR and PR models

equation are deducted and shown in eqs. 4.13 and 4.14. AR prediction model have four

parameters, whereas PR prediction model have only three parameters.

AR(m/hr) = 0.547 + 0.290PR− 0.0001Thrust− 0.010RMR− 0.084RMC (4.13)

PR(m/hr) = 4.207 + 0.945AR− 0.021RMR− 0.0001Thrust (4.14)

Model plot having a R2 = 0.394 −→ R = 0.628 and R2 = 0.555 −→ R = 0.745 respec-

tively are shown in Fig. 4.96 below.

(a) AR model for Pieve tunnel. (b) PR model for Pieve tunnel.

Figure 4.96: Linear regression model plot for AR and PR.
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4.5.2.5 Correlation and Correlation Coe�cient

Table 4.44: Pearson correlation for Pieve tunnel.

Pearson and Spearman correlation coe�cients are shown in tables 4.44 and 4.45 recep-

tively. In Pearson correlation, we found no correlation between thrust and advance rate.

But machine parameter thrust have a fairly good correlation with rock properties like

RMR and RMC (Avg.R2 = 0.4). On the other hand table 4.45 shows Spearman and

Kendall's correlation coe�cients. Here we found no correlation neither between machine

parameters and rock mass properties nor between the rock mass properties themselves.

This shows that data of Pieve tunnel is randomly distributed and no �x correlation exist

between any two parameters, except the RMC and RMR.
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Table 4.45: Spearman correlation table for Pieve tunnel.

4.5.3 Varzo Tunnel

The Varzo tunnel is excavated entirely in the Antigorio Gneiss formation, a massive or

weakly foliated rock generated by high-grade metamorphism of granite and Granodiorite

rocks [46]. Metaaplite and metabasite dikes locally traverse the tunnel axis, but the

area may be considered essentially homogeneous. The geological structure is a monocline

gently dipping (10−20o) in a southerly direction, slightly complicated by folds and minor

fault zones related to the Sempione- Centovalli fault, a major tectonic structure located 2

km to the south [47]. In general, the schistosity follows the attitude of the overall structure

and, is therefore, mainly parallel to the longitudinal axis of the tunnel (plunging direction

N080E�N070E) [37].

152



4.5.3.1 2-D Data Analysis with Excel

(a) PR versus thrust, RMR and RMC.

(b) Thrust versus AR and PR.

Figure 4.97: Varzo tunnel 2-D plots.

Figure 4.97 show di�erent plots between thrust vs AR, PR and RMC. In Fig. 4.97a

variation of penetration rate is plotted against thrust, RMR, RMC, that shows increase

in PR with increase of thrust and RMR. Penetration rate slightly decrease with increase of
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RMC, reason is that with increase of rock hardness, its di�cult to perform chip formation.

But actual reason can be �nd only when we plot a 3-D surface between PR, thrust and

RMC (given in next section). Figure 4.97b shows variation of AP and PR with thrust,

and both penetration rate and advance rate are linearly increasing with thrust.

(a) RMC versus AR and PR.

(b) RMR versus AR and PR.

Figure 4.98: Varzo tunnel 2-D plots.
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In Fig. 4.98a RMC is plotted against PR and AR, both decreasing with RMC, reason

is same at described in Figs. 4.97a and 4.98b describes variation between RMR and

PR-AR, that shows an increase in both AR and PR.This is entirely opposite to RMC

behaviour, reason here again will be found when a 3-D surface will be plotted between

thrust, RMR and AR-PR.

4.5.3.2 RMC Prediction Model by Fuzzy Logic Varzo Tunnel

(a) Fuzzy versus actual RMC.

(b) Fuzzy versus actual RMC.

Figure 4.99: Fuzzy versus actual RMC.

Fuzzy logic is largely used to predict di�erent variations in mining, civil and almost all

other engineering problems. Here for this data a Mat-Lab subroutine was written and
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applied to predict future RMC, keeping the previous rock and machine (TBM) data in

input parameters. Figure 4.99b shows comparison between actual and Fuzzy logic RMC.

A good coincidence between the two values is found, showing good Fuzzy logic power

to predict/forecast unknown rock mass properties. Figure 4.100 shows a three value

comparison between actual, Fuzzy and SPSS RMC. It is clear from the �gure that Fuzzy

RMC is more closer to the actual as compare to SPSS corresponding values.

Figure 4.100: Comparison of RMC for Varzo tunnel.

4.5.3.3 3-D Analysis with �R�

Statistical software �R� was used to analyze di�erent variables for the Pieve tunnel. 3-D

surfaces were plotted both for penetration rate (PR) and advance rate (AR) to see what

factors are involved in machine dead time and what is the e�ect of utilization factor of

the TBM. 3-D surfaces plotted by �R� clearly elaborate variation and in�uence of one

variable upon other, keeping third variable constant.
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(a) Thrust versus PR at high RMC. (b) Thrust versus PR at low RMC.

Figure 4.101: 3-D surfaces penetration rate.

(a) UCS versus PR at high thrust. (b) UCS versus PR at low thrust.

Figure 4.102: 3-D surfaces for Varzo tunnel.

Figure 4.101 shows a 3-D pictures of variations of penetration rate (PR) with thrust

and UCS at high and low values of RMC and thrust respectively. In Fig. 4.101a PR

varies linearly with thrust at high values of RMC. On the other hand same trend in

Fig. 4.101b is plotted at low RMC, that shows a curvi-linear trend. Reason from this

trend may be that a low values of RMC, PR cannot be increased by increasing simply

the thrust. But at high values of RMC, when there is good rock, machine e�ciency can

be enhanced by applying more thrust than an average value required for chip formation.

Figures 4.102(a,b) shows surfaces between UCS vs PR at high and low thrust. We see
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that there is no e�ect of thrust values on PR, i.e same trend at both high and low thrust.

(a) Thrust versus AR at high RMC. (b) Thrust versus AR at low RMC.

Figure 4.103: 3-D surfaces AR.

(a) Thrust versus AR at high RMR. (b) Thrust versus AR at low RMR.

Figure 4.104: 3-D Surfaces generated by R software.

Figures 4.103 and 4.104 shows four 3-D surfaces, that are between thrust and AR at

high and low values of RMC and RMR respectively. In �gure. 4.103(a,b) shows thrust-

AR relation at high and low RMC, it is clear from �gure. that there is no e�ect of RMC

on thrust-AR trend. Figures 4.104(a,b) shows thrust-AR trend at low and high values of

RMR. Again thrust-AR trend is same at both for good and poor rock.
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4.5.3.4 Statistical Modeling with SPSS, Varzo Tunnel

SPSS statistical software was used to analyze Varzo tunnel data. Figures 4.105 and 4.106

shows frequency distribution of di�erent variables. Figures 4.105(a-c) shows frequency

distribution of BRMR, RMR and thrust. All distributions are right skewed and with

SD > 10. But in Figs. 4.106(a-c), frequency distribution of advance rate (AR) is normal

with SD = 0.337, while others of RMC and PR are left skewed and having more standard

deviation.

(a) BRMR. (b) RMR. (c) Thrust.

Figure 4.105: Histograms for Varzo tunnel.

(a) RMC. (b) AR. (c) PR.

Figure 4.106: Histogram Varzo tunnel.

Table 4.46(a,b) show the model summary for AR and PR models with accuracy of

49.7% and 32.7% respectively. RMR plays most important role in model prediction for

AR and PR, where as RMC was the least important input parameter.
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(a) AR model summary. (b) PR model summary.

Table 4.46: Model summary.

(a) PR model coe�cients.

(b) AR model coe�cients.

Table 4.47: Varzo AR and PR linear model coe�cients.

160



Table 4.48: RMC model coe�cients.

From tables 4.46 - 4.48, the coe�cients leads towards the AR, PR and RMC Linear

regression Model Eq. 4.15, 4.16 and 4.17 shown below.

AR(m/hr) = 0.566− 0.209PR− 0.019BRMR− 0.0001Thrust− 0.010RMC (4.15)

PR(m/hr) = 0.638 + 1.36AR− 0.059RMR− 0.0001Thrust− 0.064RMC (4.16)

RMC = 8.533− 0.001Thrust+ 0.508PR− 1.127AR (4.17)

Advance rate and penetration rate models are plotted in Fig. 4.107(a,b) and RMC model

and comparison are plotted in Fig. 4.108. AR model has a R = 0.723, where the PR

model has a R = 0.60 and RMC model has R = 0.788.

(a) AR linear model. (b) PR linear model.

Figure 4.107: AR linear regression model plot for Varzo tunnel.
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(a) RMC scattered plot. (b) Fuzzy versus SPSS RMC.

Figure 4.108: RMC linear regression model Varzo tunnel.

4.5.3.5 Bi-variant Correlations and Correlation Coe�cient

Table 4.49: Pearson correlation for Varzo tunnel.

Table 4.49 shows Pearson correlation between all machine and rock mass parameters. In

the table at line no. 3 we see correlation between thrust and all rock mass parameters,

thrust have a very good correlation with, RMR, RMC and AR. On the other hand RMC

has a good correlation with AR (R2 = −0.525), which shows that AR strongly depends

upon machine parameters and rock mass properties. RMC and RMR has a Bi-Variant

correlation of R2 = −0.98 which shows that we can use RMR and RMC alternatively,

wherever we need it.
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In table 4.50 Spearman's and Kendall's correlations. Table shows that machine and

rock mass have a little bit better Spearman's rho correlations as compare to Kendall's

tau_b corresponding values. Here one thing is clear that, machine (TBM) data is linearly

correlated with rock mass data. Otherwise table. 4.49 would have better corresponding

correlations. Advance rate can be better predicted by using Pearson or Spearman's rho

correlations.

Table 4.50: Spearman's correlations for Varzo tunnel.

4.5.4 Conclusions

Analysis for Maen tunnel data shows that, there is drastic di�erence between trends and

behaviour of penetration rate and advance rate. This ultimately shows high downtime,

machine breakdown and maintenance time for the TBM, which indicates very low utiliza-
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tion factor of TBM (Fig. 4.73). More over machine performance is strongly dependent

upon rock mass strength. RMC values were predicted by Fuzzy and SPSS both, shows a

week prediction model by Fuzzy and an accurate and e�cient prediction model by SPSS.

Advance rate (AR) and penetration rate (PR) prediction models were also formulated

with a reasonably good accuracy.

Pieve tunnel data shows inverse relation between penetration rate and thrust. SPSS 19

gives a very accurate PR linear regression model (R2 = 0.555). In Varzo tunnel data, AR

and thrust have linear correlation, and RMR plays a major role in machine performance.

SPSS19 gives here a good prediction model for AR, PR and RMC. Moreover in all three

tunnel sites, a signi�cant positive correlation is found between machine parameters and

rock mass properties.
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Chapter 5

Discussion and Conclusions

5.1 Comparison Between Case Histories

After analyzing the data from seven tunnel sites, based on rock strength, fracture class and

behaviour of thrust versus advance rate (AR), seven case histories have been divided into

two major groups. Group one consists of Hie�au, Hemerwald, Maen and Pieve tunnels.

Rock mass strata mainly comprises Limestone, Schistos-Gneis, Micaschists and Meta-

granite. For group one rock strength (UCS) of intact rocks ranges from 162− 226 MPa,

that contains high strength rocks. In this group AR decreases linearly with increase of

thrust (Figs. 4.3a, 4.51a, 4.73 and 4.88b). Reason for this trend is very clear from data

analysis, that is due to very high strength, presence of less joints and very low fracture

class. So it is concluded that for high strength rocks following prediction model for AR

may be used with slight variation from case to case.

AR(m/hr) = 0.33 + 0.849RPM − 0.003Thrust+ 0.004Power − 0.009RMC (5.1)

If seismic data is available, then model can be reformulated as:

AR(mph) = 4.51−0.29Thr+0.396rpm−23.49Ampref−0.001Pseve−0.001Torq−0.008RMC

(5.2)

On other hand group two comprises Queens water tunnel (QWT), Vereina and Varzo

tunnels. Rock mass strata mainly consists of Micaschists and Gneiss. Rock strength

(UCS) of intact rocks, varies between 55 − 162 MPa, that is low to medium strength

rocks. Rock strata is highly fractured. In group two AR linearly increases with increase

of TBM thrust (Figs. 4.17a, 4.32a and 4.97b). Reason is low rock strength and presence

of medium to high frequency of joints and a high rock fracture class. For the low strength

rocks, following AR prediction model is suggested.
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AR(m/hr) = 0.566− 0.0001Thrust− 0.019RMR− 0.010RMC (5.3)

If data for rock fracture class and rock joints is available then model can be modi�ed as:

AR(m/hr) = 1.022 + 0.029Thrust+ 0.475Log(α)− 0.217DPW − 0.003USC (5.4)

5.2 Discussion

Machine (TBM) data and rock mass data were analyzed using Microsoft excel, Origin

pro 8.1, statistical software R and IBM SPSS19, Kaleida Graph and Fuzzy logic tools in

Mat-Lab. In 2-D analysis for Hie�au tunnel data, interesting trend between thrust and

advance rate is found. AR decreases with increase of thrust (Fig. 4.3a). This result is

veri�ed by �nding the correlation between these two parameters (R2 = −0.647). Same

trend is repeated in case of UCS and AR, illustrating the reason behind this divergent

relation. After detailed 3-D analysis of the data from Hie�au tunnel, it is concluded that,

advance rate is inversely proportional to thrust and UCS at high torque, when we analyse

the same relation at low torque, the trend reverses. This is due to the limestone rock mass

having a moderate strength and a medium degree of fracture, low torque cannot produce

chip formation required for a good advance. Additionally in Hie�au expansion tunnel,

seismic data was available (recorded by Geo-physicist TU-Wien), was also coupled and

analysed with machine and rock mass data. Machine thrust and amplitude of erestizeit

when plotted against each other, maximum amplitudes was found at the thrust values

ranging from 8000 to 10, 000 kN . There is no signi�cant correlation between thrust and

seismic parameters, between AR and seismic parameters. At maximum value of amplitude

of re�exion, a depression in AR value is found, that shows rock brittleness and hardness

are key parameters in TBM performance. At low torque and too low and too high thrust,

tool wear is maximum, TBM cannot achieve maximum AR only by applying more thrust.

However when data for cutter wear for Hie�au tunnel is analyzed, it is obvious that cutter

wear can be economized and cutter life can be maximized when TBM thrust is kept at

a moderate value of 7900 to 8100 kN , but at the same time maximum number of cutter

changes are found at that thrust range. After multidimensional analysis, advance rate

linear regression prediction models for mix data, TBM data and TBM+seismic data,

were formulated with the help of SPSS19 software, which shows a good signi�cance of the

model. Other reason for this trend between thrust and AR, may be the learning e�ect

of the TBM operator's conduct who tries to push the thrust to the limit of admissible

values, or even beyond, when the penetration rate is deemed to be unsatisfactory [48].

Queens water tunnel, New York's city tunnel No. 3 is one of the most complex and
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intricate engineering projects in the world [31]. Real �eld data for TBM and rock mass

is analysed by di�erent ways using di�erent software. 2-D data analysis shows that AR

linearly increases with, thrust, UCS, BTS and RFC. Even more AR is observed at high

values of UCS. This ambiguity is clari�ed when AR, UCS and thrust are plotted all

together in a 3-D surface (Figs. 4.21a,b). Here it is clear that due to low values of

UCS, AR linearly increased with thrust, but when rock strength is more than a critical

value (200MPa), AR decreased with applying further thrust.Whereas the rock mass have

high UCS and low brittleness (BTS) then obtained AR is relatively lower than expected.

Maximum AR are observed as the alpha angle ranges from 50 − 65 degrees. As DPW

ranges from about 20−40 cm, the obtained AR is also rather high. UCS plays a major rule

in TBM performance, at low UCS, a linear correlation of AR with thrust, whereas at high

USC thrust make a curvi-linear correlation with AR (Fig. 4.21). Advance rate (AR) and

RFC models has accuracy of 64.4% and 57.1% respectively. AR linear regression model

when plotted against the actual AR values gives a signi�cant correlation (R2 = 0.655).

Similarly a linear regression model for rock fracture class (RFC) was formulated and give

accuracy of 57% and comparison of predicted and actual RFC values give R2 = 0.588.

Only one rock property i.e UCS is in good correlation with machine thrust (R2 = 0.629).

Moreover machine thrust and AR have a positive linear correlation of R2 = 0.577.

Vereina tunnel is a 19 km long tra�c tunnel. Vereina is a tunnel in hard rocks having

a high overburden, excavated with open TBM [36]. At high RMC, lowest values of thrust

and momentum (Fig. 4.31) shows that rock strength is key parameters for machine

performance, where low AR is observed against highest RMC value. Linear relation

between thrust and penetration shows a little increase in penetration with thrust. But

when we plot a 3-D surface, to see the e�ect of third variable, it is clearly observed that

penetration is only maximum, when machine thrust is in the range of medium values. This

result/conclusion is valid for both high and low RFC, RMC and petrography values. Fuzzy

logic gives a reasonably good results for RMC prediction. RMC, RFC and ROP, were

also predicted by using SPSS19 software packages, shows a very e�cient and accurate

result for RMC prediction model (R2 = 0.773). Penetration rate and RFC prediction

model shows a medium to low accuracy in their predicted models respectively. Last part

of analysis consists of correlation between machine and rock mass parameters. Here in

Vereina tunnel data, we observed a very good linear correlation between TBM parameters

and rock mass properties (thrust-RMC, R=0.831). Correlation between between thrust

and torque (R= 0.78) is found. But there is no signi�cant correlation between thrust and

penetration (R=0.364).

Hemerwald is another hydro-power project expansion tunnel excavated by Robbins

series 120-TBM by Tiroler water power company [49]. Data was received as hard copy,

that was converted into excel �les for rock mass data and then segregated in di�erent

rocks data. Most of the tunnel strata consists of Granite Gneiss, Muscovite, Micaschists
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and Schistos-Gneis gneiss, tunnel was under a high overburden and 69% of the rock mass

belong to RMC-I. Lowest values of thrust and excavation velocity is found at TM = 3640,

where the maximum value of RMC is observed. Rock mass class (RMC) looks to be

independent of degree of disintegration (DoD). Advance rate increases quadratically with

thrust, having a peak of 6 m/hr at 250 kg/cm2, and then decreases rapidly. RMC have a

major role in machine performance (Figs. 4.52(a,b)), as obvious from the 3-D surface, up

to a critical UCS=40 MPa, advance rate increase and then sharply fall down even with

high thrust applied. Fuzzy logic generated 3-D surface for rock mass data, also shows

a maximum ROP at moderate thrust values and medium RMC. Frequency distribution

of actual �eld data shows, thrust, RFC and ROP data is normally distributed and ful�ll

the condition for SSS19 prediction models. Linear regression model for advance rate

shows a very accurate estimation model (R2 = 0.928 −→ R = 0.963) and there was a

signi�cant correlation between machine parameters and rock mass properties e.g. thrust-

AR correlation (R2 = −0.745). On the other hand, rock mass data was segregated

into separate rock sections, Muskowite-Granite-Gneis, Micaschists and Schistos-Gneis. In

Muskowit-Granite-Gneis, there founds to be no correlation between machine parameters

and rock properties. ROP decreases sharply with increase of thrust, showing adverse

e�ect of rock behaviour against application of more thrust than required. In Mica-Schist

rock, same behaviour of thrust and ROP is seen, but here a signi�cant behaviour between

thrust and DoD is observed. Moreover a good Fuzzy logic prediction model is obtained for

RMC, that shows a credible results. Same analysis, when performed on Schistos-Gneis,

ROP is linearly increases with thrust. Reason behind this trend is clear, when we plot

a 3-D surface between thrust, ROP and DoD, that shows in this section, ROP directly

increases with thrust as DoD here have a moderate values throughout the section. At very

high value of thrust, the low advance rate in Hemerwald tunnel, may be due to learning

e�ect of TBM driver [48].

The three tunnels (Maen, Pieve and Varzo) are located in the northwestern Italian

alps and consists of one inclined tunnel for the installation of a penstock (Maen) and two

horizontal diversion tunnels (Pieve and Varzo). A total of 14 km of tunnel was surveyed

almost continually, yielding over 700 sets of data featuring rock mass characteristics and

TBM performance [37]. Performance prediction of TBM requires the estimation of both

penetration rate (PR) and advance rate (AR). Analysis for Maen tunnel data shows that,

there is drastic di�erence between trends and behaviour of penetration rate and advance

rate, which ultimately shows high downtime, machine breakdown and maintenance time

for the TBM, that shows very low utilization factor of TBM (Fig. 4.73). Moreover

machine performance shows a strong dependence upon rock mass strength. RMC values

were predicted by Fuzzy and SPSS both, shown a week prediction model by Fuzzy and

an accurate and e�cient prediction model by SPSS. Advance rate (AR) and penetration

rate (PR) prediction models were also formulated with a reasonably good accuracy. Pieve
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tunnel data shows inverse relation between penetration rate and thrust. SPSS-19 gives a

very accurate PR linear regression model (R2 = 0.55). Pieve tunnel rocks consist of two

metamorphic complexes made up of gneiss and micaschists separated by a metadiorite

intrusive body with minor masses of metaquartzdiorite and metagabbro [37]. Both AR

and PR have inverse linear correlation with thrust and PR decreasing with increase of

USC and RMR. At medium UCS both AR and PR shows a turning point in machine

performance (Figs. 4.92(a,b), showing that rock mass strength plays an important role

in machine e�ciency. Data from Pieve tunnel shows a good normal distribution and

ful�ll conditions for SPSS19 prediction modeling. RMC model predicted by Fuzzy logic

shows a poor accuracy, while SPSS19 predict a good RMC model for Maen tunnel. AR

and PR predicted model by SPSS-19 also shows a good empirical formulas. In Varzo

tunnel data, AR and thrust have linear correlation, and RMR plays a major role in

machine performance. SPSS-19 gives here a good prediction model for AR, PR and

RMC. Moreover in all three tunnel sites, a signi�cant positive correlation is found between

machine parameters and rock mass properties. In general the penetration rate increases

with decreasing rock mass quality until RMR values of about 50− 70. The performance

below that ranges re�ect bad boreabilty in adverse rock mass due to mucking problem

and face instability [50]. On the contrary, low PR recorded in very good rock masses

RMR >80−90 depend upon high strength of intact rock. Correlation between thrust and

advance rate highly depends upon the strength (UCS) of the rock. TBM performance

reaches a maximum in the RMR 40 − 70(UCS = 100MPa), while slower penetration is

experienced in both too good and too bad rock masses.

5.3 Conclusions

Geological conditions and rock mass characterizations in the �eld should be investigated

before selecting the TBM, since the machine speci�cation including thrust, cutter-head

power and both diameter and number of disc cutters heavily in�uence the ROP. Hence

geology and the best estimation of unknown rock mass properties, including orientation,

condition and frequency of discontinuities together with rock strength and brittleness

provide the major control on the penetrability of tunnel boring machine. These factors

should be known before the start of excavation with a good accuracy. Due to high water

pressures deep tunnels are normally drained tunnels, it is neither technically feasible nor

economically reasonable to try to seal o� entirely deep tunnels. So for TBM performance

prediction, all rock mass properties like rock strength, RFC, RMC, water pressure and

overburden must be the part of input parameters and predictors, for the calculation for

machine advance rate. But unfortunately here in all available tunnels data analysis,

no data was available regarding presence of water and e�ect of overburden. Moreover

underground temperature increases rigorously with depth, so in deep tunnel temperature
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and hydraulic pressure should be a part and parcel of the in�uential variables. In Hie�au,

assuming rock strength to follow Gausion's distribution, UCS versus AR plot revealed

that rock strength is major consequential parameter for TBM performance. Moreover

this behavior is possibly due to the fact that machine operator tries to improve the low

penetration rate in very hard rock by pushing the thrust near or above the recommended

level, whereas he reduces the thrust when the penetration rate (ROP) is considered to be

acceptable. In Hie�au tunnel, trends resembles with that of Hemerwald tunnel data.

Empirical relations between rock mass rating and penetration rate clearly show that

TBM performance reaches a maximum in the rock mass rating (RMR) range 40−70 while
slower penetration is experienced in both too bad and too good rock masses [37]. Di�erent

rocks give di�erent penetrations for the same RMR, the use of Bieniawski classi�cation

for predictive purpose is only possible provided one uses a normalized RMR index with

reference to the basic factors a�ecting TBM tunneling [2]. In Hemerwald tunnel AR has a

quadratic correlation with thrust, above 24.56 MPa advance rate rapidly decreases. The

simplest explanation for this divergent phenomenon is that at low thrust, the cutter action

for the chip formation is di�erent than at higher thrust. Perhaps this is the critical thrust

above which more consistent chip formation occurs. Disc cutter performance depends

upon the cutter head being totally engaged with the rock. Hence it revealed that, cor-

relation between thrust and advance rate highly depends upon the strength, orientation

and type of rock. Energy transferred and energy dissipation into the rock by the cutter

head is a localized and time dependent phenomenon. Experience and skill of the TBM

operator plays a major role in tunnel excavation e�ciency. TBM performance predictive

law has been also applied verifying a scarce gap between the predicted and actual values

of the net advance rate, hence predicted models by SPSS-19, for RMC, RMR and AR are

comparable to many empirical models available in literature.
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List of Abbreviations and Notations

ABM: Auger boring machine

Amplerste: Amplitude of ersteinsatz (amplitude of �rst arival) of seismic wave

Amplreflex: Amplitude of re�exion of seismic wave

AR: Advance rate

BRMR: Bieniawski rock mass rating

BTS: Brazilian tensile strength

DEP: Department of environmental protection

DoD: Degree of disintegration

DPW: Distance between plane of weakness

EPBM: Earth pressure balance machine

HPP: Hydro power plant

MPa: Megapascal

NATM: The new Austrian tunneling methods

Pseuvel :Pseudo velocity

QWT: Queens water tunnel

RFC: Rock fracture class
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RMC: Rock mass classi�cation

RMR: Rock mass rating

ROP: Rate of penetration

PR: Penetration rate

TBM: Tunnel boring machine

TM: tunnel meters

TSWD: Tunnel seismic while drilling

UCS: Uniaxial compressive strength

α : Angle between tunnel axis and plane of weakness
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