
Provision of Service Level Agreements in
Human-Enhanced Service-Oriented

Computing Environments

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Roman Khazankin
Registration Number 0927683

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

(Prof. Dr. Schahram Dustdar) (Prof. Dr. Frank Leymann,
University of Stuttgart)

Wien, 20.06.2012
(Roman Khazankin)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Acknowledgements

First of all, I am very grateful to Prof. Schahram Dustdar forthe opportunity to be a part of the
Distributed Systems Group (DSG) and to carry out my PhD studies under his supervision. He
greatly supported me during all phases of my research, and I highly appreciate his assistance in
determining my research goals, and his encouragement in pursuing them. I am convinced that
this mentoring played a key role in realization of my potential. I would also like to thank Prof.
Frank Leymann from the University of Stuttgart for being my examiner.

I am thankful to the Vienna Science and Technology Fund (WWTF) for the financial support
during my studies (project ICT08-032).

Another source of motivation and inspiration were my colleagues, who helped me to keep an
optimistic attitude throughout my time at DSG, to get rid of doubts regarding my work, and to
substantially improve it. In particular, I would like to thank Christian Inzinger, Lukasz Juszczyk,
Vitaliy Liptchinsky, Michael Maurer, Emmanuel Mulo, Harald Psaier, Benjamin Satzger, Daniel
Schall, Florian Skopik, Martin Treiber, and Martin Vasko. Ihad a great time working with you
all!

Back in school days, my life was strongly influenced by several people. Some of them
might have been a reason my life became the way it is, and, subsequently, the reason this thesis
exists. I specifically would like to acknowledge Albert Efimov, Vitaliy Kharkin, and Rustem
Zhenodarov who taught me IT-related things and inspired me to continue developing myself in
this area. Also, I would like to thank Marina Filtser, the best English teacher I ever knew.

Most importantly, I am very grateful to my family. I want to thank my parents Veniamin and
Ludmila who have constantly supported me over my entire lifeand created many conditions for
my success; I am infinitely thankful to my precious wife Albina for her patience, understanding,
and love. It is you who reminds me every day why life is wonderful, and inspires me to achieve
more.

Roman Khazankin
June, 2012

Vienna, Austria

i

Abstract

Deploying Service-Oriented Architecture (SOA) in enterprises has become mainstream, as it
provides business agility benefits. Today’s technologies allow to integrate human labour to-
gether with software services into service-oriented architectures therefore achieving smooth au-
tomation of business processes in such mixed systems. However, companies are continuously
trying to optimize expenses associated with human labour. This results into scarcity of available
resources and switching to more flexible paradigms of employment such as crowdsourcing. At
the same time there is need to sustain the competitiveness byimproving the quality of provided
services and assuring Service Level Agreements (SLAs). However, the inherent uncertainty
of crowdsourcing environments and the impact of human factors increase risks and complicate
service level management. Although there is a solid amount of research on SLA-based opti-
mization, and techniques for prevention of SLA violations in SOA, however, it does not take
into account the specific features of human-provided and crowdsourced services.

This thesis addresses the problems by identifying specific control mechanisms and using
adaptive techniques that can appropriately react to unexpected events and dynamically recon-
figure certain processes characteristics or resources. It investigates SLA provision in crowd-
sourcing environments and adaptable techniques for SLA-aware execution of business process
dependent on human-provided services. It presents, architectures, methods, and algorithms for
SLA negotiation and fulfillment, and cost-based optimization in such environments.

iii

Contents

1 Introduction 1
1.1 Problem Statement .2
1.2 Contributions . 3
1.3 Evaluation Approach .. 5
1.4 Published Papers .6
1.5 Structure of the Thesis .. . 6

2 State of the Art 9
2.1 Service-Oriented Architecture 9
2.2 Service Level Agreements .. . 10
2.3 Service Level Management .. . 12
2.4 Human-provided Services .. . 13
2.5 Crowdsourcing . 13
2.6 Workforce Optimization .. . 15

3 Adaptive Prioritization of Requests in Orchestration Engines 17
3.1 Overview . 17
3.2 Scenario . 18
3.3 Adaptation Model .19
3.4 Experiments and Discussion 23
3.5 Related Work . 27
3.6 Summary . 29

4 SLA-aware Scheduled Crowdsourcing 31
4.1 Overview . 31
4.2 Scheduled Crowdsourcing .. . 32
4.3 Worker Skills and Job Quality 34
4.4 QoS and SLA . 36
4.5 Scheduling . 37
4.6 SLA Offer Estimation .. 39
4.7 Experiments . 42
4.8 Related Work . 47
4.9 Discussion . 48

v

4.10 Summary . 49

5 Optimized Execution of Business Processes with Crowdsourcing 51
5.1 Overview . 52
5.2 Motivating Scenario .. . 53
5.3 Approach . 54
5.4 Evaluation . 60
5.5 Related Work . 64
5.6 Summary . 65

6 Private and Confidential Data Propagation Control in SOA 67
6.1 Overview . 67
6.2 Motivating Scenario .. . 68
6.3 Providence Framework .. 69
6.4 Related Work . 74
6.5 Evaluation . 75
6.6 Summary . 77

7 Conclusions and Future Research Directions 79
7.1 Future research directions 79

Bibliography 81

vi

CHAPTER 1
Introduction

The ever-growing information technologies industry intensifies the demand for system integra-
tion, and service-oriented approach for integration has become ubiquitous. Service composi-
tions are again provided as services, thus enriching the consumer’s choice and giving him/her
alternatives regarding the trade-off between cost, quality, simplicity, and trust, while allowing
the provider to benefit from the added value. Deploying Service-Oriented Architecture (SOA)
in enterprises is considered mainstream, as it provides business agility benefits [30]. From
business-to-business and business-to-consumer perspectives, offering services online has long
ago become not a feature, but a business model.

Service providers can give certain guarantees for their services in form of Service Level
Agreements (SLAs). From a business process management perspective, such guarantees can
deliver significant additional value for services, as they can strengthen the certainty and pre-
dictability in process planning and design, and allow the consumers to use the provided services
in more critical business processes [1, 2, 26]. To fulfill given guarantees, a service provider
should negotiate an agreement which is feasible in the first place, and so that already established
agreements are not endangered. Then, the provider needs to ensure the agreement during its
period of validity. All that should take into account underlying resources and systems to make
sure that there are enough resources to fulfill the agreementand the system is compliant with it.
Moreover, the activated resources should be balanced in a way to minimize the expenses while
fulfilling negotiated SLAs.

While enterprises seek to automate all sorts of their front and back office operations to cut
costs and eliminate human factors, humans inevitably remain as key elements of many business
processes. There is a plethora of activities that are hard toreproduce with technology. Work
concerned with creativity, management, or social communication, performed by a machine in a
real business process is still hardly imaginable. Even basic activities, such as image recognition
or categorization, as well as those requiring specific skills, such as text translation or usability
testing, are difficult to fulfill with software only.

Integration of human labour into service-oriented architectures was investigated both in re-
search [76] and in industry [4, 24]. The developed frameworks however mainly provide capa-

1

bilities of interfacing with people in SOA. They allow to communicate with the workforce via
standardized interfaces like Web Services and enable seamless integration of human-provided
services into processes expressed with a standardized process execution language [43].

1.1 Problem Statement

While trying to optimize expenses associated with human labour, companies have to improve
the quality of provided services in order to stay competitive. However, the resulting scarcity
of resources increases the impact of human factors, flexibledemand, and unexpected situations
on the running processes, as they become harder to escalate.These issues become even more
critical when the services dependent on human resources have SLAs bound:

• Unexpected situations, such as when service failures occur, when demand gets higher
than anticipated, or when unplanned structural changes happen in a process, can obvi-
ously affect the fulfillment of SLAs. In context of human workit can result in temporary
situations when there are simply not enough human resourcesto sustain the workload.
From the SLA perspective, it means that response time and throughput guarantees for
particular customers might be violated.

• Flexible demand poses a dilemma for management: either the sufficient workforce should
be kept and thus periodically be idle, or it can be reduced, but then peak loads would re-
sult into performance bottlenecks. For certain types of labour, flexible demand can be met
by using recently emerged paradigms of employment - internal and external crowdsourc-
ing [18, 33]. Crowdsourcing allows to outsource tasks to an undefined network of peo-
ple via a crowdsourcing platform maintained either within the enterprise (internal crowd-
sourcing) or by a third party (external crowdsourcing). However, current crowdsourcing
solutions do not provide guarantees regarding task processing time. A customer can offer
higher payments for tasks, which can of course shorten the processing time, but, never-
theless, no exact guarantees are given to him/her, and it is not clear which reward should
be given to actually have the task done in time. Also, task processing quality in external
crowdsourcing is not trivial to control, asanyonecan register in the platform. Although
some platforms provide the possibility to put qualificationrequirements on tasks, there are
no mechanisms that are able to ensure that a task is going to beprocessed with this quality
before the certain deadline.

• Human factors can never be eliminated completely due to the human nature, however,
proper software tools can reduce the risk associated with them. Certain Service Level
Objectives (SLOs), such as security and privacy concerns, can be directly affected by
both underlying information systems and people that manage, configure, and work with
these systems. Therefore, to ensure the level of the provided services, workers need to be
equipped with special tools that allow to analyze processesflowing inside the company,
align them with feasible SLAs, and prevent the misuse of datareceived from consumers.

On the one hand, many studies have been devoted to ensuring SLAs using various mech-
anisms, such as modification or re-composition of business process, replacement of services,

2

or re-configuration of service platforms and computationalresources, i.e., load balancing [91].
While these methods are applicable for software services that are mainly constrained by hard-
ware resources, they do not take into account the specific features of human-provided and crowd-
sourced services. On the other hand, a solid amount of research has been done in the field of
workforce optimization which focuses on how to efficiently align the demand with the work-
force size and scheduling [21, 28]. While the addressed problems are relevant, there is no clear
way of applying the results of this research to SOAs, as the addressed problems are usually strict
and devoted to very particular industry cases.

Currently available technologies and approaches are therefore not sufficient for creating solid
human-enhanced service-oriented systems that allow to control the guaranteed level of service.
This thesis focuses on the these shortcomings and aims to resolve the following generalized
problems:

• How can we influence business processes that comprise human-provided or crowdsourced
services in a way that allows us to keep them compliant to established SLAs?

• From the service provider’s point of view, how can we effectively estimate feasible Service
Level Objectives for crowdsourced and human-provided services?

• How can we improve the quality and level of such services?

The thesis considers these problems in different contexts where human work can be regarded
as a key property. The next section describes those areas in detail.

1.2 Contributions

With the focus on service-oriented systems that comprise human-provided services, the main
contributions of the thesis are to investigates fine-grain control mechanisms, architectures, and
effective algorithms, that allow to negotiate feasible SLAs based on available resources and
current processes states, perform dynamic SLA-based adaptations to ensure the fulfillment of
agreements, improve overall Quality of Service (QoS), and reduce costs of process execution
while adhering to SLAs. Specifically, the following areas are considered:

• Adaptive request prioritization in process engines

Humans naturally work at lower speeds than software-based services. If such “low-
throughput” services are part of concurrent process, the order in which process instances
get the response from them can significantly impact process execution times. If the sys-
tem gets temporarily overloaded or some processes are late due to unexpected delays, the
SLAs might be violated due to the shortage of human resources. However, the control
over the ordering of service requests can reduce penalties or prevent violations at all. This
can be achieved by transferring the priority from less to more critical processes. In this
context, the work comprises the following contributions:

– A conceptual architecture that enables the support for dynamic re-prioritization of
requests by business process engines.

3

– A prioritizing algorithm that minimizes penalties based onestablished SLAs and
execution states of running processes at runtime.

– An evaluation of the performance and comparison with the conventional First-In-
First-Out request processing.

• SLA-driven provision of crowdsourcing services

Current crowdsourcing providers do not provide guaranteesregarding task processing
time therefore prohibiting the use of SLAs for crowdsourcedservices. This is mainly be-
cause their architecture follows a market-like operation chain where a platform announces
received tasks at the web-portal and then workers choose among the assorted mass of task
that they like to process. The selection is thus motivated bythe personal preferences of
workers, and is not influenced by any additional mechanisms.To address these issues,
the platform architecture can be altered so that the workersare assigned to tasksby the
platform. In this case workers register at the platform, provide information about their
skills and availability, and expect the platform to allocate tasks to them accordingly. This
approach provides fine-grain control over assignments, andmakes it possible to establish
SLAs. However, this requires to resolve such issues as uncertainties in availability of
human resources, diversity of workers in terms of their skills, and prediction of platform
capacity. This work investigates this approach and constitutes the following corresponding
contributions:

– A conceptual platform architecture,scheduled crowdsourcing, that support SLA-
based task processing.

– Algorithms for estimating feasible level objectives, SLA negotiation, and SLA-based
task assignment in a scheduled crowdsourcing platform.

– Analysis of the overall service level improvement in scheduling crowdsourcing by
comparison the with different task assignment approaches.

• Incentive-based approach for SLA-aware business processes execution on crowd-
sourcing platforms

Big companies have recognized the advantages of a flexible process management ap-
proach [33] where the tasks that need to be done are announced, e.g., in an internal
crowdsourcing platform, and executors are selected among internal employees or external
contractors viacompetition. People book tasks voluntarily in competition-based crowd-
sourcing, which means the only way to influence booking and execution times of single
tasks is to either change incentives or modify other aspectsof a task, e.g., define a later
deadline. Given a process that comprises a number of such crowdsourced tasks, it is not
clear how to cope with SLAs, i.e., how to adjust the aforementioned aspects of tasks so
that the process is completed in concordance with the given guarantees. Moreover, a com-
pany is interested in reducing overall operational costs, therefore, the parameters should
be chosen in a way to minimize the cost associated with crowdsourcing while adhering to
SLAs. The thesis provides the following contributions to address these problems:

4

– An approach for SLA-aware execution of business processes on top of an internal
crowdsourcing platform.

– Algorithms for statistical learning of crowd characteristics and for cost- and SLA-
based process optimization.

– An evaluation of efficiency and performance of the approach for diverse processes
characteristics.

• Monitoring of data usage to negotiate and ensure privacy-related objectives

Companies are responsible for the data obtained from services that are offered to cus-
tomers or partners. However, the inappropriate use of data can happen unintentionally
due to human factors in process and software design, and dataintegration activities, as the
data comes to be maintained in various locations by different parties. This is especially
important for privacy terms stated in an SLA. With that respect, big companies have a
problem to track the usage of private data throughout their information systems and guar-
antee that it is used according to the negotiated agreements. Our contributions for this
problem are the following:

– An architecture for tracking of private data usage throughout the service-oriented
enterprise system.

– Mechanisms to assess the feasible guarantees that can be included into an SLA re-
garding the private data.

– Mechanisms to prevent the privacy-related SLA violations.

For all of the proposed solutions, prototype implementations were performed and evaluated.
To facilitate evaluations, the simulated environments that reproduce the problems addressed by
the solutions (e.g., flexible demand, unexpected situations, and service failures) were designed.

1.3 Evaluation Approach

The goals of the thesis are to highlight the capabilities andprove the feasibility of the proposed
novel methods and architectures, as well as to discover their limitations and applicability in the
domain.

Due to the nature of the contributions, they cannot be testedon benchmarks or some sta-
tistical data. As the proposed solutions result in a direct impact on the behavior of software
systems, the evaluation requires feedback which describesthe effect of deploying the solutions,
and which can only be retrieved from a real system. The evaluation in real business environ-
ments would however require certain efforts and up-front investments for developing quality
software and re-designing the corresponding systems, as the contributions propose significant
changes in architectures of large-scale and critical systems. Because of these reasons, we were
not able to perform experiments on real data, and the evaluation has been done through the
simulation of corresponding environments and system, i.e., service-oriented systems, business
process execution engines, and crowdsourcing platforms.

5

Although we tried to prognosticate the meaningful parameters and to consider a wide range
of setups for simulations, the effectiveness of algorithmsdepends on particular business settings
and requirements which can still vary from the simulated setting to certain extent. This was the
reason why we did not intend to achieve best performance, butrather to design base solutions
which still deliver value, but can be perceived and reproduced without a tremendous effort. In
practical use, these solutions can be extended to take into account the specifics of a particular
business setup.

1.4 Published Papers

The results of this research have been published at acknowledged international conferences in
the domain.

1. Predicting QoS in Scheduled Crowdsourcing.

Khazankin R., Schall D., Dustdar S.

The 24th International Conference on Advanced InformationSystems Engineering (CAiSE’12),
June 13-16, 2012, Gdansk, Poland.

2. QoS-based Task Scheduling in Crowdsourcing Environments.

Khazankin R., Psaier H., Schall D., Dustdar S.

9th International Conference on Service Oriented Computing (ICSOC’11), December 5-8,
2011, Paphos, Cyprus.

3. Adaptive Request Prioritization in Dynamic Service-oriented Systems.

Khazankin R., Schall D., Dustdar S.

The 8th International Conference on Services Computing (SCC’11), July 4-9, 2011, Wash-
ington DC, USA.Best student paper award.

4. PROVIDENCE: A Framework for Private Data Propagation Control in Service-Oriented
Systems.

Khazankin R., Dustdar S.

ServiceWave 2010, December 13 - 15, 2010, Ghent, Belgium.

1.5 Structure of the Thesis

The structure of the thesis is strongly aligned with its contributions. The content is mainly split
into three parts:

1. The introductory part which gives an overview of state of the art in areas that this thesis is
concerned with. Chapter 2 explains how the research is positioned within the domains of
service-oriented systems, SLAs, and crowdsourcing. Also,in this chapter, we define the
focus of the dissertation, and review the related research done in this field.

6

2. The main contribution which describes the proposed approaches and their evaluation in
detail. The part is split into four chapters:

• Chapter 3 proposes the adaptive request prioritization approach that enhances a busi-
ness process engine to support SLA-driven execution of processes that comprise
“low-throughput” services.

• Chapter 4 introducesscheduled crowdsourcingconcept and investigates SLA nego-
tiation and fulfillment techniques for crowdsourcing.

• Chapter 5 presents an incentive-based SLA-aware method forexecuting business
processes on top of an internal crowdsourcing platform.

• Chapter 6 presentsProvidence, a framework for negotiating and ensuring data pri-
vacy SLA terms for large-scale service-oriented systems.

3. The conclusion part presented in Chapter 7 summarizes theachieved results, discusses the
practical applications of the work, and provides an outlookfor further possible research
directions.

7

CHAPTER 2
State of the Art

This chapter provides an overall state of the art overview inareas related to the thesis. We show
which parts and aspects of those areas are covered by this work and how is it positioned in
the domain. Although the thesis addresses a narrow set of problems, it touches upon manifold
specific fields. Therefore, more focused discussion of related research for each contribution is
given inRelated Worksection of corresponding chapters.

2.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a system design andintegration approach that aims to
improve flexibility, governance, and change management of software systems, and also to pro-
vide a better perspective on the implemented processes fromthe business point of view. SOA
establishes a solid high-level outlook on enterprise information systems while hiding not rele-
vant low-level details. It simplifies the implementation ofhigh-level business logic and helps
to unify process representation. This consequently makes it easier to map actual process imple-
mentation to business models, e.g., using Business ProcessModelling Notation (BPMN) [58],
and thus allows to lesser the gap in understanding between ITand management representatives.
As a result, it helps to better understand the processes flowing in a company, and improve them
more effectively.

The main principles of SOA are loose coupling, reusability,and composability [19], that
mainly become enabled by the underlying technology. Web services are the state-of-art technol-
ogy for SOA [61]. Created and supported by W3C standardization consortium [84], they provide
the platform independency for SOA implementations. The main elements of web services’ tech-
nological stack are Web Service Description Language (WSDL) [45] which enables to specify
standardized service contracts, Simple Object Access Protocol (SOAP) [69] which standardizes
the information exchange with web services, Business Process Execution Language (BPEL) [43]
which allows to design and execute business processes on topof web services, and eXtendable
Markup Language (XML) [44] which is used by all the other standards. Enterprise Service Bus

9

(ESB) delivers centralized control over message routing, mediation, adaptation, and transforma-
tion, as well as for governance and security of the service system. The complementary standards
like WS-Coordination, WS-Security, WS-Policy, and othersenhance the the basic specifications
and provide the additional capabilities for transactions,security, and policy compliance.

Although SOA is being successfully deployed in various industries [30], there is a huge po-
tential for improvement in the field. Most important research challenges in Service-Oriented
Systems among others are dynamically reconfigurable runtime architectures, semantically en-
hanced service discovery, QoS-aware service compositions, dynamic and adaptive processes,
service governance, Self-* properties (configuring, adapting, healing, optimizing, protecting),
service versioning and adaptivity [62].

This thesis touches upon a number of those challenges. Adaptive request prioritization and
incentive-based process execution deal with dynamic processes and use runtime QoS-aware
adaptation and self-adapting management techniques in thecontext of human-provided services.
Scheduled crowdsourcing enables crowdsourced services tobe included into QoS-aware service
compositions. The Providence framework enhances service governance in the context of han-
dling of confidential and privacy-sensitive data.

2.2 Service Level Agreements

A Service Level Agreement provides means to formalize the guarantees regarding non-functional
properties of a service for the consumer. An SLA normally hasa form of a contract and is com-
posed of a number of general terms and conditions, e.g., payment for the service, as well as
Service Level Objectives (SLOs) that characterize the given guarantees. SLO is usually related
to a specific metric and formally describes a way to measure it, a guaranteed value, and a penalty
incurred in case of non-fulfillment. For example, an SLO foravailability can be measured as
number of successfully served requests divided by a total number of requests within a month,
claim the guaranteed value of 0.999, and, if the eventually measured value turns out to be lower,
waive the monthly payment for the service. Penalty functions can be applied not only to partic-
ular SLO, but to a group of SLOs or to the whole agreement. Theyare generally not restricted
in their form, so they can include several metrics and implement complex logic.

2.2.1 Quality of Service

The relevant metrics for provision of services are usually referred to as Quality of Service (QoS)
metrics, and describe performance, security, and transactional concerns. Table 2.1 lists the most
featured QoS metrics in literature [23,59,71].

In context of the problems addressed by the thesis, we focus on a fraction of these metrics
which is relevant to human-provided and crowdsourced services. In such a mixed system which
relies on software components and infrastructure, as well as on human labour, some metrics are
solely dependent on the former, while others can be stronglyaffected by the latter:

• Metrics like traceability, auditability, and scalabilityare suitable for auditing the service
portfolio of a company. However, they are either not relevant for establishing SLAs, or
should be represented by more specific metrics likecapacity.

10

Table 2.1: Quality of Service metrics

Name Description
Performance

Scalability The ability of a service to process more requests in a
given period.

Robustness/flexibility The degree to which a service handles correctly invalid,
incomplete or conflicting inputs.

Availability The probability of successful processing of a request
by a service.

Reliability The ability of a service to provide the claimed func-
tionality under stated conditions for a specified period
of time. More fine-grain metrics include Mean time be-
tween failure (MTBF), Mean Time to Failure (MTF),
and Mean Time To Transition (MTTT).

Response time How long does it take a service to process a request.
Sometimes the term is used interchangeably withla-
tency, however, SOA practitioners define latency as
minimum time required to get any form of response,
therefore referring to the time spent on the wire [25].

Capacity The amount of requests that can be served by a service
in parallel.

Throughput The amount of requests that can be served over a spec-
ified period of time.

Accuracy The error rate produced by the service.
Transactions

Integrity The ability of a service to conform to transactional
ACID properties: Atomicity, Consistency, Isolation
and Durability.

Security
Authentication, authorization, and
encryption

Mechanisms that are used to secure the information ex-
change and access to the service.

Confidentiality and accountability The guarantees given regarding the usage of data sub-
mitted to the service.

Traceability and auditability The ability of tracking the service requests and analyze
its performance.

• Robustness depends on system design, i.e., how much effort was devoted for input data
consistency checking, handling of incorrect input data, and so on. Integrity is achieved
by aligning the underlying components with transaction control mechanisms offered by
the service. Authentication, authorization, and encryption also represent mainly technical
cross-cutting concerns.

11

• Availability and reliability depend on both underlying technical infrastructure and human
resources. A failure can occur due to technical reasons, e.g., network, software, and hard-
ware issues. Such problems are not dependent on the human force involved in provision of
service functionality. Also, a failure can be caused by poorhuman resource management
or unsatisfactory human work that result in poor quality andtimeliness of the provided
service. These factors are covered by more specific low-level metrics considered below.

• Response time, capacity, throughput, and accuracy are strongly affected by underlying
human resources, as usually humans are diverse in their skills and work at slower speeds
than software components. Also, human resource managementand particularly workforce
scheduling can significantly affect these metrics. Confidentiality and accountability can
be facilitated by special technologies for access control and data provenance. However, in
large enterprises, there are more prone to human factors because it gets easier to overlook
the inappropriate use of data when it comes to be maintained in various locations by
different parties.

This work focuses on the latter group for which human work hasthe strongest impact, and
aims to facilitate service-oriented systems with more adaptive and automated approaches for
negotiating and ensuring these properties.

2.3 Service Level Management

Service level management is continiously gaining attention from both business and research
communities. From the business perspective, it is considered one of the key areas of IT service
management and the best practices in this area are constantly evolving [53]. The research com-
munity is directed towards more automated SLA negotiation and ensurance, and investigates
approaches and frameworks that that aim to make service level management more autonomous,
efficient, and agile.

2.3.1 SLA negotiation

A most prominent approach for automated SLA negotiation is apolicy-based approach where
the process is driven by a negotiation policy which includeshigh-level goals, service level ob-
jectives, constraints (like best and worst acceptable values for service level objectives), options,
and preferences (such as priorities and weights) [9, 13, 16,94]. A decision support system is
then used to calculate and negotiate optimal objective values based on the policy. These models
and technologies allow to customize and perform fine controlof the SLA negotiation process on
different levels, whereas the approaches proposed in this thesis aim to estimate feasible values
and offers based on the underlying resources that can serve as a basis for SLA management.

The technical aspects of SLA negotiation include agreeing on negotiation phases, steps,
and logic. Also semantic problems can arise if consumer and provider do not share a common
understanding of metrics and objectives used in SLA offers.These problems are resolved by
using standardized negotiation protocols and languages that aim to establish an efficient dialog

12

between consumer and provider [32, 42]. This thesis does notfocus on technical details of
negotiation and approaches the SLA negotiation issues on the higher level.

2.3.2 SLA ensurance and violation prevention

In the first place, SLA fulfillment assumes that there are enough resources to handle the current
and anticipated demand. The problems in this area are studied by capacity management and
planning [89].

However, as it was discussed in Chapter 1, a mixed service system cannot be fully pre-
dictable due to human factors, flexible demand, or unexpected events. To overcome these issues,
a system has to spot and escalate such issues in an adaptive way. Various adaptive mechanisms
can be used to keep a Service-Oriented System compliant to SLAs, such as modification or
re-composition of business process, replacement of services, or re-configuration of service plat-
forms and computational resources (i.e., load balancing) [91]. Prevention of violations can be
enhanced by collecting the knowledge about the impact of possible actions on the service com-
position, e.g., by using machine learning [46]. These approaches can only be applied when
the appropriate mechanisms for adaptation are well-definedand integrated into the system’s ar-
chitecture. However, in the context of human-provided services, such adaptation mechanisms
were not investigated, and the existing ones do not provide comprehensive means to address
the problems described in Section 1.1. This thesis aims to bridge this gap and to identify such
mechanisms, as well as propose and evaluate algorithms and architectures that can effectively
use them.

2.4 Human-provided Services

Major industry players have been working towards standardized protocols and languages for
interfacing with people in SOA. Specifications such as WS-HumanTask [24] and BPEL4People
[4] address the lack of human interactions in service-oriented businesses [49].

These specifications allow to put additional management information into process descrip-
tion, including task stakeholders, employee and task groups, task states and priorities, time-outs
and escalation rules, etc. For a business process engine, such a task looks like a regular web ser-
vice and should be handled the same way. However, the tools based on these specifications allow
advanced activities for the people assigned to tasks, such as forwarding, delegating, suspending
and resuming, and also provide coordination mechanisms formanagers.

Such standards are undoubtedly useful and provide solid foundations for creating more flex-
ible service-oriented systems with human interactions. However, they only provide technical
means but do not offer solutions for SLA provisioning in suchsystems, and therefore are com-
plementary to the methods and algorithms discussed in this work.

2.5 Crowdsourcing

Crowdsourcing is“an act of taking a task traditionally performed by a designated agent (such as
an employee or a contractor) and outsourcing it by making an open call to an undefined but large

13

group of people”[31]. The application area of crowdsourcing is very broad, and includes use
and application of collective intelligence, mass creativeworks, filtering and organizing of vast
information stores, use of the crowd’s collective pocketbook (crowdfunding), and so on. Recent
efforts demonstrate the successful adoption of crowdsourcing at an ever-increasing rate, and the
amounts of both platforms and workers in such platforms are expected to grow rapidly [18].

Crowdsourcing can take different forms. Among others, it can be contest-based (e.g., when
workers propose solutions for the problem, and only one of them is chosen and rewarded) or
implement “crowd wisdom” approaches (when an undefined group of people collaborates to
solve a problem). This thesis features a specific type of crowdsourcing which is used to process
independent self-contained tasks with crowd workforce in exchange for rewards. Two types of
platforms can be distinguished in this context:

• External crowdsourcingprovides the ability to outsource human labour to a third party
which acts as a broker and accumulates the workforce for performing the outsourced
tasks. A crowdsourcing provider establishes contracts with workers and defines the in-
ternal policies and mechanisms for task assignment. For theconsumer, the process of
having a task done is therefore simplified to the form of software service invocation, thus
releasing him/her from workforce contractual and maintenance issues. Moreover, such a
scheme allows consumers to satisfy flexible demand as they can submit arbitrary amount
of tasks to the platform. Such an approach is good for outsourcing tasks with minor
effort that, however, require human capabilities (e.g., transcription, classification, or cat-
egorization tasks [35]). Examples of such systems are Amazon Mechanical Turk [82],
Crowd-Flower [17] and ClowdCrowd [15].

• Internal crowdsouringhas the similar architecture at its core, but the platform isdeployed
internally and is accessed only by company’s employees or external contractors. It al-
lows a company to utilize the skills of already employed people in a more flexible way
by enabling workers to choose tasks they wish to perform, instead of assigning them di-
rectly. On the one hand, the participants can gain more bonuses by processing additional
tasks, on the other hand, it helps the company to discover newexpertise and skills of their
employees. It also allows to establish straightforward rewarding mechanisms and there-
fore directly motivating people to produce more and better results. As the membership
of the platform is limited by internal workforce, it reducessecurity issues and allows to
crowdsource more complex, critical, and domain-specific tasks because the workers are
motivated to guard their reputation and are experienced in the domain.

Although crowdsourcing provides indisputable benefits, there are several issues that prevent
it from being extensively used in everyday business processes [38]. The flexibility offered by
a platform makes it at the same time a complicated task to predict and control the timeliness
and, for external crowdsourcing, also the quality of the received results. Currently, these plat-
forms maintain a market-like architecture where workers register at choose the tasks they like to
process, and there is no active influence upon assignments. As a result, the platform is unable
to give any certain guarantees regarding the time of processing a task or the outcome quality a
customer can expect. The work in this thesis features both these types of crowdsourcing, and

14

presents approaches to enhance such platforms with additional capabilities for negotiating and
fulfilling the processing time and quality guarantees.

2.6 Workforce Optimization

Workforce optimization focuses on improving operational efficiency and managing the work-
force effectively. A huge amount of research has been done inthis field with focus on different
industries [21, 28]. The addressed problems include demandmodeling, satisfaction of the con-
straints arising from workplace regulations, line of work construction, shift scheduling, days off
scheduling, consideration of social and psychological effects impact, and so on.

However, the considered models and algorithms require significant modification when they
are to be transferred to a different application area [20], and there is no clear way of applying
the results to SOA and crowdsourcing environments. Nevertheless, the research in this area
can be used to improve and complement the methods we propose in this work, e.g., by refining
proposed scheduling algorithms with consideration of employee satisfaction factors. Another
example would be the usage of the prioritization approach presented in Chapter 3 on top of a
staff scheduling framework, so that the staff scheduling algorithms are used to meet the overall
demand and fulfill the regulations, while request prioritization is used to perform SLAs-based
fine-tuning of the service-oriented system.

15

CHAPTER 3
Adaptive Prioritization of Requests in

Orchestration Engines

The availability of scarce resources in a service-orientedsystem demands for context-aware
selection policies that adapt based on service level agreements. One of the open issues is to
prioritize service requests in dynamically changing environments where concurrent instances
of processes may compete for resources. Here we propose a runtime monitoring approach to
observe the actual state of the system. We argue that priorities should be assigned to requests
based on potential violations of SLA objectives. While mostexisting work in the area of quality
of service monitoring and SLA modeling focuses typically onpurely technical systems, we
consider service-oriented systems spanning both software-based services and human actors.

The approach presented in this chapter helps to cope with these challenges by prioritizing
service requests that may cause violations of service levelobjectives such asresponse timeand
capacitythat are associated with processes.

3.1 Overview

Service-oriented systems have become an important approach and technological framework
to solve problems in distributed computing environments. Challenges in distributed service-
oriented systems include the discovery of resources and monitoring of the system’s runtime
behavior. Capturing the current state of the system is essential in dynamic environments where
services are discovered and invoked at runtime. Research inthe area of quality of service (QoS)
modeling and monitoring (e.g., see [56]) has provided an important building block to observe
the runtime state of a service-oriented system. Keeping services compliant to SLAs is crucial
in a service-oriented system. Usually, if the system is designed properly and acts as expected
(e.g., response time and service availability), the SLA is satisfied. However, both internal and
external factors can compromise the overall performance ofthe system. While the strategic ac-
tions should be taken to prevent the system from entering undesirable conditions (e.g., through

17

Register

Claim

Analyze

Make

Decision

Perform

Expertise

Estimate

Costs

Request

Information

Reimburse?

Figure 3.1a: Comprehensive insurance claim process

replicating the components, adding resources), the run-time adaptation can also be performed
in attempt to minimize the penalties in given situations. This can be especially important when
multiple processes need to access shared resources in a singleton manner. Assume a process
consisting of multiple activities, some of them enacted by invoking software services and certain
activities performed by human actors. In a service-oriented system, such a scenario could be re-
alized by modeling and enacting compositions using the Business Process Execution Language
(BPEL) [85], where human steps are modeled using BPEL4People and WS-HumanTask [49,74].
Service provided by human actors can be regarded as ‘low throughput’ services because humans
naturally work at lower speeds than software-based services. If human-based low throughput
services are part of a process, the order in which processes get the response from such services
impacts the process execution times. If the system gets overloaded or some processes are late
due to unexpected delays, the SLAs might be violated. However, the control over the ordering
of service requests can reduce the penalties or prevent the violations at all. A specific example
of such a situation is described in Section 3.2.

To address these challenges, we propose a dynamic adaptation approach and heuristic prior-
itizing algorithm that analyzes the current state of the service-oriented system at run-time and
prioritizes service requests according to SLAs bound to processes in the system. We assume that
the execution state of all the processes in a service-oriented system is accessible, and that the
penalty functions of SLAs are provided. The main idea behindthe algorithm is that the priority
of a service execution is given to those processes that are expected to produce the highest penal-
ties if this service is delayed for them. To illustrate our approach, we discuss insurance claim
processes.

3.2 Scenario

To illustrate our approach, we discuss a motivating scenario where processes are designed and
executed in the context of insurance claim handling. We lookat different kinds of insurance
processes: the first one dealing with acomprehensive(Figure 3.1a) insurance plan and the second
with liability (Figure 3.1b) coverage.

The comprehensive plan ensures that damage (for example accidents or vandalism) is be-
ing paid by the insurance company. In certain European countries, liability is the minimum
insurance coverage everyone must have due to government regulations. As an example, if A is
responsible for the damage of B, then A’s insurance company must pay for B’s damage. Fig-

18

Register

Claim

Make

Decision

Perform

Expertise

Reimburse?

Figure 3.1b: Liability insurance claim process

ure 3.1a shows the process for the comprehensive insurance plan. People obtaining coverage
through this plan may be regular or premium customers. For premium customers, the insurance
company wants to provide better quality of service as for regular customers. For example, faster
processing of the insurance claim. The process is initiatedas soon as the customer issues an
insurance claim. The registration of the claim is performedautomatically by a software service.
In the next step the process splits into two parallel branches. Based on the issued claim, a soft-
ware service is invoked (stepEstimate Cost) to perform an automatic calculation of the expected
costs. A person from the insurance company analyzes the received claim and typically requests
further information from the customer. After both brancheshave finished, a decision is made by
a supervisor. The outcome may be to reimburse the customer ornot. In the first case, an expert
reviews the case by visiting the customer to obtain precise understanding of the damage upon
which actual calculations are made. The alternate case terminates by sending a (auto-)generated
notification to the customer.

The second process example is shown in Figure 3.1b. In contrast to the comprehensive
insurance example in Figure 3.1a, we assume in this scenariothat the person filing the claim is
not a customer of the insurance company. The process is therefore simpler because the person
filing the insurance claim only receives limited support (e.g., help desk) and also limited service-
level guarantees are given. The process is initiated in the same manner as in the comprehensive
insurance plan example. Afterwards, a decision is made based on received information. The next
steps are again equivalent to the steps (Perform Expertiseand notification) of the first process.

What these processes have in common is that they access shared resources. For example,
by invoking a service in the stepPerform Expertise. If a process invokes this service, other
processes (instances) may need to wait until free resource capacities are available. However,
this could cause violations in SLA objectives. Thus, careful scheduling of requests is needed to
satisfy customer needs.

3.3 Adaptation Model

In this section we describe the conceptual architecture of our solution, the prioritization algo-
rithm, and the remarks regarding the deployment of such a solution in a real SOA. We assume
that all services in the system are atomic (not composite), as we can decompose all such services.

19

Priorities

Orchestration engine

Services

Requests S1

S2

S3

Scheduler

proxy S1
Re-ordered

requests

QoS Monitoring

Services’ QoS

monitoring

module

Scheduler

proxy S2
Requests

Requests

Re-ordered

requests

Processes:

Processes structure, states and SLAs

SLA

SLA

Services QoS

Priorities

S1 adaptation loop S2 adaptation loop

Analyze and

Calculate

priorities

Set priorities

Continue

execution
Collect data Collect data

Analyze and

Calculate

priorities

Set priorities

Continue

execution

Control flow

Data exchange

Message exchange

Replies

Figure 3.2: The overall architecture of the approach

3.3.1 Conceptual Architecture

The architecture of the approach is depicted by Figure 3.2. Normally, when a process invokes
a service, a request message is sent to the service endpoint,so the order in which requests
are processed by a service is determined by this service’s implementation which is unaware of
processes running, SLAs, or other context information. In our approach, a scheduler proxy is
created and assigned to each service whose request priorities are being adapted. The scheduler
proxy intercepts requests to the service and reorders them according to prior defined priorities.
The scheduler is aware of the service’s QoS (through the monitoring module), so it dispatches
requests towards the service depending on the available free capacities. It ensures that the prior-
ities are obeyed. The priorities are periodically updated by an adaptation component associated
with the service. This component implements the common MAPE(Monitor, Analyze, Plan,
Execute) loop logic. As the re-ordering is performed beforethe requests are sent to a service,
the actual location of the service does not play a role, i.e.,it can be both externally or internally
provided service.

The adaptation loop consists of three phases:

1. Collection of context and monitoring information.The structure, the current execution
state, and penalty functions (from SLAs) of all currently running processes as well as
the QoS information are collected from the orchestration engine and from the monitoring
module respectively. We use a deterministic QoS model, so the capacity and response

20

Input : ServiceS, its response timeSRT

Input : Set of processesP , for each processp penalty functionLp(t)
Output : Ranked requests

1 for processp in P do
2 Rp = pending requests ofS in p
3 Re = requests ofS predicted to be made duringSRT /2 period inp
4 R = Rp ∪Re

5 Assume that replies of all requests inR are received afterSRT , predict timet of
finish for processp

6 l0 = Lp(t) ; // Default penalty

7 for requestr in R do
8 Assume that a reply ofr is received afterSRT ∗ 2 and replies of all other requests

in R are received afterSRT , predict timetr of finish forp
9 lr = Lp(tr) ; // Penalty for current request

10 dr = lr − l0 ; // Difference between default penalty and the

penalty for current request

11 Add the tuple ofr, dr, and request timek (either real or predicted) to listD
12 end
13 end
14 SortD descending bydr then ascending byk
15 ReturnD

Listing 3.1: Prioritization algorithm.

time are considered single values. We do not focus on particular approaches for QoS
monitoring which represents an extensively studied distinct research field (see, e.g., [56,
92]).

2. Calculation of request priorities.The collected data is passed to the algorithm (See Listing
3.1) which calculates priorities for forthcoming and recently made requests to the service.

3. Scheduler update.The corresponding scheduler is updated with the calculatedpriorities,
so the requests to the service can be ordered accordingly.

Iterations in the adaptation thread are performed with the period of the half of the service’s
response time. This value equals to prediction period (Listing 3.1, line 3). The value was
selected empirically. As it was evaluated in experiments, if the period was greater, the algorithm
performed poorer as sometimes service capacity was unused too long while waiting for predicted
requests, however, the lesser period did not improve the performance of the algorithm.

3.3.2 Deployment in a Service-oriented System

Although not the main focus of this work, we give a short analysis of the mapping and deploy-
ment of our conceptual architecture in real SOA environments. We assume that there is single
and accessible (in-house) orchestration engine. Our approach would also work with multiple

21

Register

Claim

Analyze

Make

Decision

Perform

Expertise

Estimate

Costs

Request

Information

Reimburse?

Register

Claim

Analyze

Make

Decision

Perform

Expertise

Estimate

Costs

Request

Information

Reimburse?

Instance 1

Current execution time 3.1 sec

Instance 2

Current execution time 0.3 sec

Figure 3.3: An example of process states

deployed orchestration engines in the environment. However, for simplicity of discussions, we
assume only a single engine. In order to enable the deployment of the proposed architecture,
the orchestration engine should be extended to supply the adaptation loops with process state
information. Many SOAs have moved towards a bus-oriented messaging backbone. An enter-
prise service bus (ESB) should be configured to support scheduler proxies. We expect these
extensions to be implemented as plugins for corresponding SOA components, however, such an
implementation fully depends on the underlying technologies and software being used.

3.3.3 Prioritization Algorithm

The prioritization algorithm is outlined in Listing 3.1. The algorithm predicts forthcoming calls
of the service and prioritizes the corresponding requests together with the pending requests ac-
cording to the penalty difference which appears if the receiving of request’s reply is delayed.
The algorithm uses predictions which are performed straightforwardly, adding together response
times of the services to be called according to the process structure. As for flows and conditions,
the time of the most delayed branch is selected. The algorithm covers the main types of process
constructs:sequence, flow andcondition.

22

// Process instance 1:
1 Instance 1 has no pending calls of DMS, however, as the IRS is expected to respond in

0.05 sec (as its response time is 0.1 sec), then the callc1 to DMS is predicted in 0.05
Section

2 Default process finish time is calculated:3.1 + 0.05 + 0.2 + 0.5 = 3.85 sec
3 Default penalty is calculated:LS(3.85, 3, 10) = 0
4 c1 is assumed to respond in0.2 ∗ 2 = 0.4 sec, Process finish time is calculated:
3.1 + 0.05 + 0.4 + 0.5 = 4.05 sec

5 The penalty for delayedc1 is calculated:LS(4.05, 3, 10) = 10
6 The penalty difference forc1 is calculated:dc1 = 10− 0 = 10
7 < c1, 10, 0.05 > is added toD
//
// Process instance 2:

8 Instance 2 has a pending DMS callc2. No other DMS calls are predicted.
9 Default process finish time is calculated:0.3 + 0.05 + 0.2 + 0.5 = 1.05 sec

10 Default penalty is calculated:LS(1.05, 3, 10) = 0
11 c2 is assumed to respond in0.2 ∗ 2 = 0.4 sec, Process finish time is calculated:

0.3 + 0.05 + 0.4 + 0.5 = 1.25 sec
12 The penalty for delayedc2 is calculated:LS(1.25, 3, 10) = 0
13 The penalty difference forc2 is calculated:dc2 = 0− 0 = 0
14 < c2, 0,−0.01 > is added toD

Listing 3.2: Algorithm steps for the example.

3.3.4 Illustrative Example

To illustrate the work of the algorithm, the algorithm stepsfor two instances of comprehensive
insurance claim scenario process are described. Let the services have the same QoS as in ex-
perimental setting (See Section 3.4) and let both process instances have SLA penalty functions
LS(t,3,10). Let the processes have the states as depicted in Figure 3.3. Instance 1 was delayed
for some reason. The Information request service (IRS) was called 0.05 sec ago there, so the
process is waiting for its response; the Cost estimation service has already returned the response.
In instance 2 the Decision making service (DMS) was called 0.01 sec ago. Given that DMS’s
request priorities are being adapted, the analysis step of its adaptation loop’s next iteration would
perform as shown in Listing 3.2. Finally, whenD is sorted, the priority ofc1 is considered higher
than the priority ofc2.

3.4 Experiments and Discussion

We implemented an orchestration engine simulator which mimics the QoS characteristics of
services and the execution of processes. It simulates the temporal behavior of the system and
supports main basic process elements:sequence, flow, andcondition(executes with given prob-
ability). To demonstrate the advantages of our approach, wesimulated unexpected overloads

23

and delays in a service-oriented system under various circumstances. We scaled the realistic
response times of the services for simulation from days to seconds. So the half of a simulated
second corresponds to half of a day in real setting.

3.4.1 Setup

In our setup, several process types are repeatedly instantiated in the system according to the
frequencyF (t), as shown in Figure 3.4.

F(t), number of instantiated processes,

per second, approx.

time
T0

T’

T0/20

Figure 3.4: Experiment model

The type of instantiated process is chosen randomly (all types are considered equiprobable).
The approximate number of instantiated processes per second is increased fromF0 to F ′ for
a periodT ′ in the middle of the overall process instantiation timespanT0. The unexpected
additional load is thus simulated. The inaccuracy of response time is simulated as well: the
actual response time of a service is calculated asRT + RT ∗ k ∗ R whereRT - expected
response time,k - inaccuracy factor,R - normally distributed random value.

We apply this system behavior for 6 series of experiments (E1-E6) based on the motivating
scenario (Section 3.2). The experiments are described in Table 3.2. The processes typesT1 and
T2 correspond to comprehensive insurance claim and motor vehicle liability insurance claim
processes. The QoS values used for services simulation are presented in Table 3.1 (the set of
services maps to the steps of motivating scenario processes). All experiments use response time
inaccuracy factor of0.3. The conditions in both processes are assumed to be true in 70% of
cases. In E5 and E6, the analysis service happens to be delayed by 0.5 sec in 10% of cases.

In our simulation, capacity indicates the number of simultaneous requests that can be served
by a service. As penalty functions, we used stagedLS and constantLC functions (see Figure
3.5).

24

Table 3.1: Values of service quality metrics in experiments

Name Response time[sec] Capacity
Analysis service 0.15 5
Expertise service 0.50 5
Decision making service 0.20 5
Information request service 0.10 10
Estimation service 0.10 100
Registration service 0.01 100

LS(t, t0, p) =

{

0 if t < t0
(trunc(t)− t0) ∗ p if t >= t0

(3.1)

LC(t, t0, p) =

{

0 if t < t0
p if t >= t0

(3.2)

time

p

t0+1

LS

2p

3p

t0+2 t0+30

(a) Staged.

time

p

t0

LC

0
(b) Constant.

Figure 3.5: Penalty functions

Each experiment was performed 2 times: first time with no adaptation with requests served
in First-In-First-Out manner, and the second time with the adaptation enabled. Penalties were
measured for each process. As the simulation involves various random factors (process instantia-
tion, process type selection, error and unexpected delay injection, conditions), we made sure that
such experiments get the same values returned by random generators. The results of experiments
are depicted in figures 3.6-3.8.

3.4.2 Discussion

All experiments demonstrate a considerable reduction of penalties of 30-80%. In the following
we show pairs of figures: the left figure showing SLA penaltiesby varyingF’ and the right figure
by varyingT’ .

25

Table 3.2: Experiments performed

Name Process types: penalty functions T’ F’
E1

T1 : LS(t,3,10) only
5 19 - 26

E2 3 - 10 20
E3

T1 : LS(t,3,10), T2 :LC(t,8,20)
5 22 - 29

E4 3 - 9 25
E5 T1 : LS(t,3,10), T1 :LS(t,3,15),

T1 : LS(t,3,20), T2 :LC(t,8,20)
6 19 - 26

E6 3 - 9 22

19 20 21 22 23 24 25 26
0

500

1000

1500

2000

2500

3000

F’

P
en

al
ty

without adaptation
with adaptation

(a) E1

3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

T’

P
en

al
ty

without adaptation
with adaptation

(b) E2

Figure 3.6: One process type, without delays

22 22 23 24 25 25 26 27 28 29
0

500

1000

1500

2000

2500

F’

P
en

al
ty

without adaptation
with adaptation

(a) E3

3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

T’

P
en

al
ty

without adaptation
with adaptation

(b) E4

Figure 3.7: Two process types, without delays

In experiments E1 and E2 (see Figure 3.6) the absolute difference between penalties is rel-
atively constant which is explained by the similarity of executed processes: only one process

26

19 20 21 22 23 24 25 26
0

1000

2000

3000

4000

5000

6000

F’

P
en

al
ty

without adaptation
with adaptation

(a) E5

3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

T’

P
en

al
ty

without adaptation
with adaptation

(b) E6

Figure 3.8: Four process types, with delays

type is instantiated, no difference among instances in formof service delays, the only difference
is the variety of response times resulted by the inaccuracy factor. Thus, these experiments give
very limited freedom for re-prioritization. Still, the adaptation reduces penalty considerably.

In experiments E3-E6 (see Figure 3.7 and Figure 3.8) the reduction is greater than in E1-E2
because of the possibility to postpone the service calls in T2 processes at no expense (t0 = 8 for
LC).

This is revealed mostly in E3 and E4 as approximately half of the processes were of type T2.
In E5 and E6 the reduction is lesser than in E3 and E4, because only quarter of processes were
of type T2. In contrast to E1-E2, the absolute difference between penalties in E3-E6 grows with
the load increment, as the process pool contains various types of processes which causes the
dissimilarity of re-prioritization impact, and, thus, increases the algorithm’s efficiency. The non-
monotonicity of penalty growth in E3-E6 is caused by the random factors in process generation
and instantiation mechanism. To summarize these observations, the performed experiments
clearly show the advantage of using adaptation for prioritizing requests in case of unexpected
overload or response delays.

Of course, the are limits for applying the adaptation. Theselimits are reached when the time
needed to perform an analysis iteration of the orchestration engine state becomes comparable
with the response times of the services whose request priorities are being adapted. For example,
in the experiment with largeF ′ shown in Figure 3.9, the method becomes inefficient onF ′ >
190 (the maximal size of the process pool is about 600 processes). However, this limit would
scale together with response times of the services, and willbe hard to reach in a real setting.

3.5 Related Work

Our approach is aiming at minimizing SLA penalties via prioritizing the requests and assigning
the available service capacity. Such an objective constitutes a scheduling problem. Among the
variants of this problem, the resource-constrained multi-project scheduling problem (RCMPSP)

27

100 110 120 130 140 150 160 170 180 190 200 220 230 240
0

1

2

3

4

5

6

7
x 10

4

F’

P
en

al
ty

without adaptation
with adaptation

Figure 3.9: Large values

[29] is the most conformable to ours. However, those studiesdo not address the service-oriented
architecture, and, thereby, related concepts such as SLA orQoS.

A priority scheduling method for process engines is proposed in [81]. It analyzes the ex-
ecution status in the process engine and dynamically assigns the priorities to service requests
alike to our approach. Instead of penalty functions, it considers utility functions. However, this
work assumes that services support prioritized execution of requests with eitherHigh or Low
priority. Such an assumption has two strong disadvantages:firstly, it severely reduces the scope
of application, as services do not support prioritized execution in general, and, secondly, even if
a service distinguishes between requests with high and low priorities, it would still not be able
to distinguish between requests with the same priority which is crucial in case of multiple con-
current requests and low service throughput. Unlike it, ourapproach uses essentially different
prioritization algorithm and request scheduling (via proxy schedulers), so it does not have these
disadvantages.

SLA violation and prevention in service compositions through adaptation is addressed by
various researchers. For example, [47] proposes a general adaptation framework for monitoring
and preventing SLA violations by performing various actions upon the service composition, like
changing the service bindings or composition structure. Incontrast to it, our approach does not
address the composition changes, but request prioritization among different compositions.

Various escalation mechanisms to avoid breaking the workflow deadlines are discussed
in [83]. The prioritization of tasks or cases which is highlyrelated by implication, is briefly
discussed. However, the paper does not consider SLAs and penalties, and no rationale regarding
the actual implementation of the method is given.

Trade-offs between costs and profits of various service composition adaptations are dis-
cussed in [48]. The adaptation proposed by us does not imply any costs besides the performance
overhead used for the analysis.

28

The approaches like [22,64] use dynamic binding to improve the QoS of process instances,
whereas our approach does not assume the existence of several service endpoints.

3.6 Summary

The problem of reducing and preventing SLA penalties in the context of unexpected system
overload or service response delays is considered in this chapter. The architecture for request
scheduling in service-oriented systems and the request prioritization algorithm are proposed. A
realistic motivating scenario was taken as a basis for evaluation. The proposed solution was
evaluated for the scenario implemented in an orchestrationengine simulator. The results of
evaluation demonstrate the considerable (30-80%) penaltyreduction, thus, showing the clear
advantage of the approach.

Generally, this approach has no special requirements for SOA system, so it has no obstacles
to be applied in practice. It can be extended to allow different services to share the resources,
so, for example, if one human is assigned to perform different tasks represented by different
services, the system will be aware that the call of one service would impact the QoS of another.

29

CHAPTER 4
SLA-aware Scheduled Crowdsourcing

Externalcrowdsourcing has emerged as a new paradigm for outsourcingsimple for humans yet
hard to automate tasks to an undefined network of people, providing thus scaleability and flex-
ibility for customers. However, crowdsourcing platforms do not provide guarantees for their
services, such as expected quality of the result or the time of processing. Such guarantees are
advantageous from the perspective of Business Process Management, as they can strengthen
the predictability in process planning and design. In this chapter, we present an alternative
crowdsourcing platform architecture, where the workers are assigned to tasks by the platform
according to their availability and skills. We provide scheduling and prediction algorithms that
allow to provide and fulfill SLAs for the consumers of a crowdsourcing platform. The proposed
architecture and algorithms address specific to crowdsourcing problems, such as lack of full
control of the workers and their membership, their limited predictable availability, and a ten-
dency of workers to over-/underestimate their skills. We evaluate the approach in a simulated
crowdsouring environment.

4.1 Overview

Enterprises seek to automate all sorts of their front and back office operations to cut costs and
eliminate human factors. However, humans inevitably remain as key elements of many business
processes. It is not only creative, management, and communication activities that are hard to re-
produce with technology. Other tasks that require basic human skills, such as image recognition
or categorization, as well as specific skills, such as text translation or usability testing, are also
difficult to fulfill with software only.

Crowdsourcing allows companies to outsource such tasks to an undefined network of people
using an on-line platform maintained by the other party. It offers great scaleability, as consumers
do not need to dedicate any internal resources and can submitarbitrary amount of tasks to the
platform, therefore providing human intelligence capabilities on-demand. Such platforms usu-
ally have a market-like operation chain where the tasks received from customers are announced

31

at the portal and the workers choose among the assorted mass of tasks those they like to pro-
cess. Examples of such systems include Amazon Mechanical Turk [82], Crowd-Flower [17] and
ClowdCrowd [15].

Although the aforementioned systems have achieved certainsuccess, we argue that purely
market-like architecture lacks some features that could realize more potential of crowdsourcing
platforms. As in a market-like system the job assignments are initiated by the workers them-
selves, it is hardly possible for the system to have an activeinfluence upon assignments. As
a result, the platform is unable to give any certain guarantees for the consumers, neither about
the time of processing a task nor about the outcome quality they can expect [38]. From a Busi-
ness Process Management (BPM) perspective, such guarantees can provide an additional value
for crowdsourcing services. First, it can strengthen the certainty and predictability in process
planning and design. Second, if such guarantees are given inform of SLAs, it allows to use
crowdsourcing in QoS-sensitive business processes [1,2,26].

To address these issues, the platform architecture can be altered so that the workers are as-
signed to tasksby the platform. In this case workers register at the platform, provide information
about their skills and availability, and expect the platform to allocate tasks to them accordingly.
The platform thus schedules submitted tasks based on these and other factors such as skill re-
quirements provided by consumers, service level agreements with consumers, and monetary re-
wards. We refer to this model asscheduled crowdsourcing. While providing the same flexibility
for consumers, scheduled crowdsourcing comprises a numberof advantages:

• Quality. Skills of the workers are manifold. The tasks submitted to the platform are also
diverse in their requirements. One can assume that the more the worker is suitable for a
task, the better the expected outcome quality is. We refer tothis indicator assuitability.
Hence, by considering the worker-task suitability, it is possible to improve the overall
results by assigning tasks to most suitable workers.

• Deadlines. In market-like platforms task completion times span from several to thou-
sands of hours [35]. As in scheduled crowdsourcing the assignments are controlled by the
platform, tasks can be scheduled according to specified deadlines.

• Predictions and SLAs.Considering the short-term information about workers’ availabil-
ity on the one hand and tasks in progress on the other hand, theplatform can predict the
available workforce and, thus, estimate what can be offeredor guaranteed to a consumer
who wants to submit a particular task.

4.2 Scheduled Crowdsourcing

This section describes scheduled crowdsourcing architecture. Alike to market-like approach,
scheduled crowdsourcing implies that a crowdsourcing platform receives tasks from consumers
and distributes these tasks for execution to the crowd. However, in contrast to market-like archi-
tecture, tasks are assigned to workers by the platform, and the assignment is based on negotiated
SLAs. We assume that a task comprises manifold similar jobs that can be independently as-
signed to individual crowd workers. When a job is done, the result is returned to the consumer,

32

The

crowdConsumer(s)

Task, skill requirements

Tasks

Result

Feedback

The crowdsourcing platform

Worker profiles

updated according to

received feedback

SLAs

Assigmnent

based on SLAs

and profiles

SLA

Figure 4.1: Scheduled crowdsourcing

which is invited to provide a quality feedback on this result. The overall architecture is shown
in Figure 4.1.

Before a consumer submits a task, an SLA for this task is negotiated. It includes tempo-
ral, quality, and monetary objectives. The platform considers the availability of workers, and
already submitted tasks to offer feasible guarantees. QoS metrics and negotiation procedure are
presented in detail in Section 4.4.

Workers specify their minimal wage per time duration, and consumers specify payments
for tasks. Jobs of a task are thus assigned only to workers, whose minimal wage is less or
equal to the payment. Therefore, the more the customer is willing to pay, the more workers
will be considered for assignment, and, as it is sensibly to assume, more suitable workers can
be found. As for workers, setting the minimal wage is also a trade-off: lower values would
result in more assignments, while higher values would provide the worker with higher-priced
jobs, however, the assignment frequency in this case will highly depend on worker’s skills due
to greater competition.

Active jobs are assigned to workers according to worker-task suitability, negotiated SLAs,
and short-term availability information provided by workers. If an assignment is refused by a
worker despite his claim for availability, various penaltysanctions can be imposed to this worker.
After all jobs of a task are done, the task is considered done.The factual QoS indicators are then
compared to those specified in the SLA. If any objectives wereviolated, the provider might incur
penalties towards the consumer. The assignment mechanism is presented in Section 4.5.

The suitability is calculated as a match between required skills for the task and the skills of a
worker. Skills of workers are maintained in their profiles. Initially, skill information is provided
by the workers themselves. However, the profile of a worker can be modified by the platform if
the expected quality (suitability) differs from the real quality that was reported by the consumer
as a feedback. The maintenance of workers’ skills is performed in the platform by analyzing the
feedback and trying to keep the skills in the profile aligned with the real skills of the worker.
Skill maintenance is considered in detail in the next section.

33

4.3 Worker Skills and Job Quality

Skills of the workers are manifold. The tasks submitted to the platform are also diverse in their
requirements. The platform thus needs to possess this knowledge to maximize the overall quality
by assigning the most suitable workers to the task on hand. Also, the Service Level Agreements
need to include quantitative measures regarding the quality of work.

We assume that for each worker-task pair a suitability measure can be calculated. Suitability
is represented by a single real value in[0, 1] (0 - not suitable at all, 1 - perfectly suitable) which
summarizes the expectations regarding the quality of the result if the worker is assigned for a
job of the task. Such notions as worker skills and skill requirements need to be formalized in a
way that allows to calculate the suitability as a match between requirements and skills.

This generic approach allows to decouple the technique, which is used to calculate the suit-
ability, from scheduling and prediction algorithms. Suitability can be thereby calculated using
an arbitrary technique, which can even vary from one task to another. Therefore, the architecture
is compatible with various skill and suitability assessment approaches, such as in [75] or [39].

In addition, the platform supports a feedback mechanism which allows consumers to report
the quality of an assignment’s outcome. If the quality of theoutcome reported by a consumer
differs from the calculated suitability, then the corresponding underlying characteristics of the
worker should be revised, so the suitability is calculated correctly next time.

To demonstrate the approach and support the experiments, wepropose a specific skill man-
agement model and a feedback processing algorithm.

4.3.1 Skills and Suitability

The model distinguishes a fixed set of skills. Each worker hasa skill profile, where each skill is
described by a real numbers ∈ [0, 1] that defines it quantitatively (0 - lack of skill, 1 - perfect).

Each submitted task has the required skills specified. Each required skill is also represented
as a real numberr ∈ [0, 1]. If r = 0 then the quality does not depend on this skill. Ifr > 0 then
the best outcome quality is expected in case if the corresponding worker’s skills is s >= r. If
s < r then the expected quality is affected in the inverse proportion to r − s. The quality is
again represented as a real numberq ∈ [0, 1]. The suitability of a worker for a task is equal to
the expected outcome quality. The exact matching formula isshown below.

Let WSi - worker skills,RSi - required skills of a task,i = 1, N,N− number of skills.
Then the suitability of the worker to the task is calculated as

S = 1−
∑

i∈M

Max((RSi −WSi)/RSi, 0)

|M |

M : k ∈ M ⇔ k ∈ N,RSk > 0

Thus, the more skills of a worker are proportionally closer to the required skills of a task,
the more the worker is suitable to the task. If the worker’s skill is equal or greater than the
corresponding required skill, then this skill suits perfectly.

34

4.3.2 Feedback processing

At the beginning of her/his membership at the crowdsourcingplatform a user registers with a
profile representing the skills. Usually this information is not very accurate because users tend
to over-/underestimate their skills. Hence at runtime, a monitoring module must run on-line
and manage the profiles by updating the provided information. The task processing results and
the expected quality outcome must be used as a reference for the real skills of a worker. The
quality expectations on the tasks result are often detailedin the task description. At the AMT, for
example, the result feedback contains usually only a task accept or reject. At our platform, with
an agreement requiring the customer to give a feedback on thequality, the feedback contains
crucial information for the algorithm presented in Listing4.1 that can be used to update the
skills of the reported worker profiles.

Input : QF quality feedback of the provider,QE quality expected by the provider
Input : worker processing worker andtaskSkills required task skills

1 workerSkills = worker.getSkills();
2 if QE > ϑq then /* high quality result */

/* compare with latest history entry, update and continue on

better QF */

3 entry = setHistory(QF, taskSkills);
4 for skill s ∈ workerSkills do
5 reqSkill = getTaskSkills(s);
6 diff = |s− reqSkill| × αw;
7 if s > reqSkill then
8 workerSkills.set(s+ diff);
9 else

10 workerSkills.set(s− diff);
11 end
12 end
13 Return;
14 end

/* low quality result */

15 wprofile = setOfProfiles.get(worker) ; /* set of registered profiles */

16 diff = QF/QE ; /* difference between the qualities */

17 for skill s ∈ workerSkills do
/* skill == 1 perfect knowledge */

18 if skill × diff <= 1 thenworkerSkills.set(s × diff);
19 end

Listing 4.1: Profile monitoring.

As the scheduler requires skill knowledge, the profile update is twofold. If the worker only
provided a low quality the update depends on the difference (Lines 15-19). If the quality is above
a certain thresholdϑq and is better than a previous then we consider the required skills close to

35

Table 4.1: Agreement terms

Name Description
Task characteristics

Submission time The time the task is going to be submitted
Number of jobs Number of jobs the task comprises
Job duration The amount of time a worker needs to spend on one job
Skill requirements Skills that are required to perform a job
Payment Monetary reward for a job per time period

Service Level Objectives
Deadline The time until all the jobs must be finished
Quality Expected average quality of a job output. The average suitability of

assigned workers for the task must be higher or equal to this value.
Minimal quality Optional. Minimal quality of a job output. The suitability in each

assignment must be higher or equal to this value.

the workers own (Line 3-13). Hence, the difference between the required and the worker’s own
skills (weighed by the factorαw) influence the worker’s skill update.

4.4 QoS and SLA

A crowdsourcing service essentially receives a task from a consumer and returns outputs for all
contained jobs after they have been processes by crowd workers. Metrics in Table 4.1 character-
ize the task and the Quality of Service, and together form a Service Level Agreement.

The outlined metrics are applicable for a particular service invocation. On the one hand, ser-
vice calls vary in terms of amounts of jobs and skill requirements therefore requiring different
crowd capacities, on the other hand, the amount of availableworkers changes with time. There-
fore, feasible guarantees can substantially vary for each service call and need to be considered
individually, which requires such metrics assubmission timeanddeadline.

It is possible to extend the model with more standard servicequality performance metrics
such asthroughputor response time, and to make an agreement for a series of service invoca-
tions. In this case, to support such an extension, a number ofagreements each for one service
invocation from these series, needs to be established. Other QoS metrics such asreliability or
availability can be inherited from the underlying technical architecture of the platform.

Before a consumer submits a task, an SLA for this task is negotiated. At first, the consumer
provides the characteristics of the task. Secondly, the platform estimates possible options re-
garding the Service Level Objectives considering the status of the crowd and other active tasks
or scheduled tasks. After that, the consumer decides, whichoption is the most suitable, and,
finally, the agreement is established. If the offered options are not satisfying, the consumer can
restart the negotiation procedure with different task characteristics (e.g., with differentPayment
or Minimal qualityparameters). The platform takes the agreement into consideration when ne-
gotiating other agreements and scheduling the tasks. If theconsumer doesn’t have the actual task

36

Consumer CS Platform

E
s
tim

a
tio
n

Task

Subm. time: 1 Apr 12:00

Job duration: 1 hour

Amount of jobs: 100

Skill 1: 0.2

Skill 3: 0.7

Reward: 0.50

Offers

Deadline: 1 Apr 15:00 Quality: 0.3

Deadline: 1 Apr 20:00 Quality: 0.4

...

Deadline: 8 Apr 12:00 Quality: 0.8

Agreement

Deadline: 1 Apr 20:00 Quality: 0.4

D
e
c
is
io
n

W
o
rk
lo
a
d

re
s
e
rv
a
tio
n

Figure 4.2: SLA negotiation

contents at the moment, but is certain to provide it in the near future and knows the parameters
of the task, then the SLA can be negotiated in advance of the actual submission by setting the
submission timeaccordingly. Figure 4.2 depicts the process of negotiatingthe SLA.

The most important ingredient of negotiation process is theestimation step which is consid-
ered in detail in Section 4.6.

4.5 Scheduling

Given tasks with negotiated SLAs and the information about worker skills and availability, the
platform has to schedule the assignments. On the one hand, ithas to fulfill the promises nego-
tiated with consumers, on the other hand, the objective of scheduling is to maximize the overall
quality. Estimation and scheduling components can not be decoupled, as one of them should
support another: either scheduling should adapt to given estimates, or the estimation should be
done according to the logic of scheduling. In a real system, even a hybrid approach can be
applied. In our work, however, we choose the scheduling component to be the primary one, be-
cause it is more simple in approach and allows to evaluate theoverall capabilities of scheduled
crowdsourcing architecture regarding the quality it can produce.

The scheduling component of our framework therefore ignores the average quality objective
of an SLA and makes it a responsibility of the prediction component to estimate a feasible value
which can be then satisfied in the scheduling process. The considered algorithms thus only try to
maximize the overall quality while fulfilling task deadlines. We assume that missing a deadline

37

cannot be justified by any quality gain, thus, meeting a deadline is the first-priority objective,
and the quality maximization is the second-priority objective.

Input : currentT ime current time
Input : tasks active tasks
Input : workers crowd workers

1 for task ∈ tasks in the order of ascendingtask.deadline do
2 stepsToDeadline = (task.deadline − currentT ime+1) / task.duration - 1 ;
3 if stepsToDeadline > 0 then
4 if (task.deadline − currentT ime+ 1) % task.duration) > 0 then
5 toTake = 0 ;
6 else
7 toTake = Trunc(task.numberOfJobsToDo/stepsToDeadline) ;
8 end
9 else

10 toTake = task.numberOfJobsToDo ;
11 end
12 while toTake > 0 AND some workers are still availabledo
13 Assign a job oftask to most suitable available worker among those whose

minimal wage is less or equal totask’s payment and whose suitability is more or
equal to minimal quality for the task ;

14 toTake = toTake− 1 ;
15 end
16 end

Listing 4.2: Greedy scheduling algorithm.

Listing 4.2 describes a base scheduling algorithm which is used in our platform. The idea
behind the algorithm is that the best quality is achieved when a task is assigned to most suitable
workers. The quality is higher when a task is performed by a smaller number of best workers,
but this number should not be too small, so the task can be finished until the deadline. This
number is calculated intoTake for each active task.

For simplicity, a deterministic time model is used in algorithms and simulator, so the time is
discreet and is represented by sequential equally long timeperiods. A time period can represent,
e.g., 10 minutes or an hour.

Tasks for which SLAs were negotiated first are assigned in thefirst place, which ensures
that the resources counted during the SLA estimation are notused for other tasks. This rule
implicitly realizes the workload reservation.

As it can be noticed, worker availability data is only used tocheck whether a job with a
certain duration can be assigned to a worker. However, this data is used more extensively in the
estimation of feasible SLA offers.

In an attempt to improve the algorithm’s efficiency, we trieda number of heuristic exten-
sions:

38

• Based on reported short-time worker availability, assign less jobs at a given time to wait for
more suitable workers to become available (while avoiding possible crowd “overloads”)

• Assign more jobs at a given time if the suitability of additional workers is almost as good
as the suitability of best workers.

• Having toTake numbers calculated, optimize the worker-task assignmentsfor each time
period using an optimization framework.

However, as shown in Sect. 4.7, such extensions do not give a substantial improvement.
We believe that the reason of such a weak improvement is the size of the crowd: if a worker
cannot be assigned to a due task, in most of the cases a good enough replacement for the worker
can be found. The refinement of the algorithm can be done according to the particular crowd
characteristics that can be estimated only when the system is used by real users in the commercial
operation.

4.6 SLA Offer Estimation

SLAs provide an additional value for services. However, when an SLA is negotiated with a
customer, the platform has to make sure that this SLA is feasible and will not endanger other
agreements.

If too many jobs are scheduled to the same period, there couldbe not enough available
workers to withstand the workload, so some deadlines will bemissed. The platform thus should
determine theearliest deadlinewhich the customer could set up for the his/her task in such a
way so the timely execution of other tasks is not endangered.

Different outcome quality can be expected from different workers. If a close deadline it set,
then more workers must be involved, and, consequently, the average result quality will be lower
than in the late deadline case, where the smaller amount of best workers would do all the jobs.
Therefore, there is a trade-off between the task deadline and the resulting average quality of the
task. Estimating and explicitly presenting such a trade-off to the consumer clarifies what s/he
can expect when submitting a task. To achieve this, the platform needs to predictquality by
deadlineefficiently for multiple deadlines.

As was discussed in the previous section, the platform is grounded upon the scheduling
component. Therefore, the estimation procedure is bound tothe scheduling algorithm. The
estimation thus can be performed by simulating the scheduling process using the statistical data
about workers’ behaviour and availability, and considering earlier submitted or negotiated tasks.
Then it is possible to predict which and how many workers might be available for the task which
is being negotiated. This approach is implemented in our platform and considered in detail
below.

Firstly, the platform estimates the realistic simulation parameters.
Worker’s availability. Although it is impossible to predict whether a particular worker is

available at particular time, the approximate availability of each worker can be predicted from
the history and the reported short-time availability. In our implementation, the availability of
each worker is generated randomly for the simulated period based on his/her recent schedule.

39

Job duration accuracy. The time that a worker needs to finish a job can differ from the
specified job duration. The reasons can be an inaccurate estimation of the job duration from the
consumer, the slow speed of the worker, or the difficulty of the particular job. We discuss this
issue further in Section 4.9. The accuracy for already submitted tasks can be estimated based on
prior assignments of these tasks. We estimate the overall job accuracy in our simulation.

Suitability. As mentioned in Section 4.2, worker-task suitability is calculated by the plat-
form and can be modified with time. If a task of a kind is submitted to the platform for the
first time, the suitability can be calculated imprecisely. However, the following task submissions
of this kind (with the same skill requirements) will use refined values. We discuss this issue
further in Section 4.9. In any case, the simulation can only make use of the latest calculated
suitability values and assume the quality of a job equal to the suitability of the performer and the
corresponding task.

Secondly, given currently submitted tasks and the parameters (see Table 4.1) of the task at
hand, the platform simulates the scheduling process and estimates feasibleearliest deadlineand
quality by deadlinefor this task.

The simulation period starts with the current state of the real platform. The size of the period
can be either fixed (e.g., predictions for up to 5 days) or depend on the quality increment (e.g.,
if by prolonging the deadline by 1 day the expected quality isincreased by less than 0.05, then
stop the prediction). Durations of jobs are simulated according to the estimated accuracy.

At each step, the submitted (or pre-submitted) tasks are assigned to workers using the greedy
scheduling algorithm (see Listing 4.2). After conducting the assignment, the prediction algo-
rithm is executed for the current step (see Listing 4.3): workers, that are available and were not
assigned by the scheduling algorithm, are examined as candidates for the negotiated tasknTask.
This is performed each job duration period ofnTask using so-called array of average suitability
of best workers (avgSuit). Thekth element of this array represents an approximated suitabil-
ity value of thekth most suitable worker for all prior simulation steps. Thiselement contains
the summed suitability and the amount of workers that were considered at this position, so the
average value can be calculated on each step. The algorithm thus adds thesuitability value and
increments theamountfor each element that corresponds to an unassigned worker (lines 3-10 of
Listing 4.3).

After that, if the total amount of available workers at previous steps exceeds the amount of
jobs innTask with certain excess, the prediction of quality is calculated for the current step.
The algorithm assumes that the best available workers wouldbe evenly assigned for the task
(true for the greedy scheduling algorithm) and, usingavgSuit array, it estimates the expected
quality produces by most suitable available workers for allprevious steps usingavgSuit array
(lines 11-21 of Listing 4.3). It is assumed that a worker is late with the job with probability of
0.5 (this assumption holds if the job duration is set accurately). Eventually, the average quality
which represents the prediction forquality by deadlinefor the current step, as if it was the
deadline, is calculated. Theearliest deadlineis the step where it was first estimated that the
number of available workers at previous steps exceeds the amount of jobs.

As the scheduling algorithm prioritizes tasks by submit time, no “collisions” are expected:
on the one hand, the prediction doesn’t take already reserved resources into account, on the other
hand, if the task is submitted, the assessed resources will not be assumed available for the tasks

40

Input : timecurrent time
Input : nTask negotiated task
Input : avgSuit the array of average suitability of best workers
Input : ttlAvWorkers total number of available workers
Input : ∆ excess ratio (0.8 used)

1 if (time− nTask.callT ime) % nTask.jobDuration == 0 AND
(time > nTask.callT ime) then

2 i = 0 ;
3 for worker ∈ workers in the order of descending suitabilitydo
4 if worker is available, fulfills minimal quality, and his/her minimalwage is less

or equal tonTask’s paymentthen
5 avgSuit[i].suitability+ = suitability ofworker ;
6 avgSuit[i].amount ++ ;
7 i++ ;
8 ttlAvWorkers++ ;
9 end

10 end
11 if ttlAvWorkers ∗ 0.5 ∗∆ > nTask.numberOfJobs then
12 toTake = nTask.numberOfJobs ;
13 i = 0 ;
14 q = 0 ;
15 while toTake > 0 do
16 take = Max(1, f loor(Min(avgSuit[i].amount ∗ 0.5, toTake))) ;
17 toTake− = take ;
18 q+ = avgSuit[i].suitability ∗ take ;
19 i++ ;
20 end
21 Return {time,q/nTask.numberOfJobs} ;
22 end
23 end

Listing 4.3: Prediction algorithm.

41

submitted afterwards. Therefore, when an agreement is established, the workload reservation is
performed seamlessly.

4.7 Experiments

In this section we demonstrate the efficiency of scheduled crowdsourcing. To evaluate our plat-
form and algorithms, we set up a simulated environment that comprises a crowd which perform
tasks and consumers who submit tasks and provide feedback. Simulation of a real crowdsourcing
environment is challenging due to the lack of comprehensivestatistical data in this area. We tried
our best to prognosticate the meaningful simulation parameters based on available data [34, 35]
and common sense.

In the experiments we evaluated the efficiency and performance of algorithms for task
scheduling, worker skills updating, and SLA estimation. Wefirst provide a description of the
overall setup, and then explain the types of experiments andshow the corresponding results.

4.7.1 Experiment Setup

In our experiments we use a set of 10 skills for describing worker skills and task skill require-
ments.

Customers.The customers submit tasks to the platform and provide the feedback on com-
pleted jobs. Tasks are submitted randomly while ensuring the average crowd workload and
avoiding overloads.

Each task comprises skill requirements, number of jobs, anda deadline. During each time
period of the simulation, if theTask Limithas not been reached yet, a new task is submitted
to the system withTask Concentrationprobability. The job duration is calculated asMin(1 +
abs(φ/2 ∗ σ), σ+1), whereφ is a normally distributed random value with mean 0 and standard
deviation 1. The deadline is assigned randomly according toSteps To Deadlineparameter. The
number of jobs is calculated so that the crowd workload is near equally distributed among the
tasks, and the average workload remains close toIntended Schedule Density. The parameters
and their values are described in Table 4.2.

Skill requirements are generated so that each skill with approximately equal probability
either equals 0 which means that this skill is not required for the task, or is in(0, 1] range. The
random values for the(0, 1] range are normally distributed (mean = 0.4, variance = 0.3).

The feedback that a consumer provides for a job is generated using the real skills of the
worker which were assigned for this job. In contrast to the estimated skills, these real skills are
unknown to the platform and are only used to simulate the realoutcome quality (by calculating
the suitability with these skills). This quality is thus reported as the feedback.

Crowd workers. The workers are assigned for jobs and return the result of jobprocessing.
Each worker has the claimed skills that s/he initially reports to the platform, and the real skills.
The real skills are generated randomly with normal distribution with 0 mean and variance of0.3.
Then, the reported skills are initiated as real skills with injected error (normally distributed with
mean value equal to the real skill and variance of 0.2). Suitability of crowd workers for some
randomly selected tasks is depicted in Figure 4.3.

42

Table 4.2: Task generation parameters

Name Description Value(s)
Tasks Limit The total number of submitted tasks 200
Job Duration Sigma(σ) Describes the deviation and the maximum for job

durations
20

Steps To Deadline Average maximum number of jobs of a task that
a single worker can finish until the deadline.

50

Task Concentration The probability of new task submission for each
time period.

0.35

Intended Schedule DensityTarget assignment ratio for each time period. 0.2 - 0.7
(step 0.1)

Figure 4.3: Suitability of the crowd for a random set of tasks

43

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

Schedule Density

Q
u
a
lit
y

market-like

greedy

heuristic

(a) Various schedulers.

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1.0

Schedule Density

Q
u
a
lit
y

no feedback

regular

real skill aware

(b) Skill update efficiency.

Figure 4.4: Task scheduling

The crowd size in experiments was 1000 workers. This size is big enough to enclose the
diversity of workers, but still allows for fast simulation.We tried to use 10000 instead, but the
results did not change substantially. Workers can be unavailable at certain periods. In our exper-
iments we use aWorkers Unavailabilityparameter which indicates the mean ratio of unavailable
workers for each period of time (values used:0.2 − 0.6, step 0.1). The busy periods are gen-
erated randomly, but have a continuous form which reproduces human behavior. The amount
of time that takes a worker to finish the job is theJob Durationwith injected variations. In our
experiments we used a value of 30%, which means that a job can be executed for0.7 − 1.3 of
job duration. This reflects the random nature of the real world.

4.7.2 Task scheduling

Various schedulers.To demonstrate the advantage of skill-based assignment, a scheduler which
mimics a market-like platform was compared with the greedy scheduler and the heuristically-
enhanced greedy scheduler (See Sect. 4.5). In market-like scheduling, the assignment followed
the logic that randomly chosen workers were picking the mostsuitable for them active tasks.
The results are shown in Figure 4.4a. In tests with high schedule density (about 0.8 or more),
market-like assignment performed better than in tests withlow density, because workers had
more tasks to choose from. However, about 15% of task deadlines were violated in these tests,
because workers aimed to fulfill their own preferences rather than the goals of the system. For
the rest of the tests, the average quality was 1.5 times better for skill-based scheduling in the
large. This clearly shows the benefit of skill-based scheduling. The heuristics did not improve
the greedy algorithm substantially, and for some tests evenimpaired it.

Skill update efficiency. To demonstrate the efficiency of skill update mechanism, we com-
pared the regular simulation which implements the logic described in Sect. 4.3.2 (“regular”
series) to upper and lower bounds. The series named “no feedback” represents the lower bound
and only the initial information on the profiles is used for scheduling. An upper bound to the
algorithm is shown by the series of “real skill-aware”. In this case the exact skills of a worker

44

are known to the system. The improvement of the skill update mechanism over the lower bound
is evident and keeps performing better at any scheduling density. In the experiments of Figure
4.4b the improvement over no feedback remains between 10-15%. As Section 4.3 explains,
the reason why it never reaches real skill awareness is twofold. First, the scheduling strategy
need some input right from start when only few feedback is available. Second, the feedback
is a single value that describes the performance depending on ten different skills. Also, a skill
value greater than required calculates the quality with thelowest value required. Even if there
was enough data an accurate calculation would not be feasible in all cases. Thus, we decided to
stick to a simpler quicker update algorithm that provides almost constant quality improvement
and, after all, supports quality negotiation with a considerable and steady lower bound to make
agreements.

4.7.3 Prediction Accuracy

To explore the potentiality of prediction, we implemented and tested the algorithm in our simula-
tor. The prediction mechanism operated completely separately from the simulated environment.
The parameters of the prediction’s simulator such as availability of workers and job duration
accuracy, are estimated or generated based on the simulatedenvironment’s prior activity only.
Also, the duration of individual assignments differs if those happen to take place in both simu-
lators.

First, we made the predictions for 50 tasks in the middle of simulation for 500 time periods.
It better reflects a real crowdsourcing environment, as there are both tasks being in progress
and new tasks being submitted. Then, we checked each prediction by varying the deadlines of
corresponding tasks and running the simulation in the identical setting. The resulting accuracy
is depicted in Figure 4.5. From the total of 2041 experiment,in 98% the deviation was less than
0.1, in 85% of experiment - less than 0.05. The average deviation was approximately 0.025.
Evidently, the prediction is less accurate for early deadlines, and more accurate for late dealines.

The results indicate that the algorithm can be successfullyapplied for negotiating the agree-
ments. Moreover, the guaranteed values can be calculated depending on deadline remoteness.
For example, the guarantee can be given as the predicted quality reduced by 0.2 in case of early
deadlines, and reduced by 0.1 in case of late deadlines.

4.7.4 Performance

The performance of scheduling and skill updating in a high workload test (10000 workers and
1000 tasks) was good enough for a period size of one minute. Thus, the performance is not a
concern, since the real period size is likely to be bigger (e.g., 10 - 60 minutes).

We ran the prediction in the same setting while varying the size of the crowd from 1000 to
10000. The prediction overhead is depicted in Figure 4.6. System parameters were Intel Core
2 Quad 2.40 GhZ with 6 GB of RAM (the algorithm is not parallelized so only one core was
actually used).

The results show that the approach can be used in a near real-time setting. The overhead
of several seconds would not play a huge role when negotiating the agreement and is therefore
acceptable.

45

-0.2 -0.1 0 0.1 0.2 0.3

2.5

5

7.5

10

12.5

Difference between predicted and real quality

P
e
rc
e
n
ta
g
e
 o
f
e
x
p
e
ri
m
e
n
ts

(a) Early deadlines (< 10 job durations)

-0.1 -0.05 0 0.05 0.1 0.15

30

25

20

15

10

5

Difference between predicted and real quality

P
e
rc
e
n
ta
g
e
 o
f
e
x
p
e
ri
m
e
n
ts

(b) Late deadlines (> 10 job durations)

Figure 4.5: Prediction accuracy. Histograms describe the amount of experiments (in percentage
of the total number of experiments performed) that producedone or another accuracy. Subfigure
(a) corresponds to experiments in which the deadline was setto be less than 10 job durations of
the task, SLA of which is being negotiated; Subfigure (b) corresponds to experiments in which
the deadline was set to be more than 10 job durations.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

Crowd size

P
re
d
ic
ti
o
n
 o
v
e
rh
e
a
d
 i
n
 s
e
c
o
n
d
s

Figure 4.6: Prediction performance

46

4.8 Related Work

In this work we position crowdsourcing in a service-oriented business setting by providing au-
tomation. In crowdsourcing environments, people offer their skills and capabilities in a service-
oriented manner. Major industry players have been working towards standardized protocols and
languages for interfacing with people in SOA. Specifications such as WS-HumanTask [24] and
BPEL4People [4] have been defined to address the lack of humaninteractions in service-oriented
businesses [49]. These standards, however, have been designed to model interactions in closed
enterprise environments where people have predefined, mostly static, roles and responsibilities.
Here we address the service-oriented integration of human capabilities situated in a much more
dynamic environment where the availability of people is under constant flux and change [11].

AMT offers access to a large number of crowd workers. With their notion of HITs that can
be created using a Web service-based interface they are closely related to our aim of mediating
the capabilities of crowds to service-oriented business environments. Despite the fact that AMT
offers HITs on various topics [35], the major challenges areto find on request skilled workers
that are able to provide high quality results for a particular topic (e.g., see [3]), to avoid spam-
ming, and to recognize low-performers. To the best of our knowledge, these problems are still
not faced by AMT. In this work we focus on those issues.

Another shortcoming of most existing real platforms is the lack of different and compre-
hensiveskill information. Most platforms have a simple measure to prevent workers (inAMT,
a threshold of task success rate can be defined) from claimingtasks. In [77], the automated
calculation of expertise profiles and skills based on interactions in collaborative networks was
discussed.

In [39], a quality management approach for crowdsourcing environments is presented. Un-
like our profile management, this work doesn’t support multiple skills, but concentrates on a
single correctness dimension. On the other hand, if there isa specific need for such a quality
management technique, the profile management can thus be replaced with it by correllating the
correctness and suitability, as this module is decoupled from the rest of the platform as men-
tioned in Section 4.2.

Scheduling is a well-known subject in computer science. Thenovel contribution in this
work is to consider multidimensional assignment and allocation of tasks. A thorough analysis
and investigation in the area of multidimensional optimal auctions and the design of optimal
scoring rules has been done by [12]. In [63] iterative multi-attribute procurement auctions are
introduced while focusing on mechanism design issues and onsolving the multi-attribute allo-
cation problem. Focusing on task-based adaptation, [79] near-optimal resource allocations and
reallocations of human tasks were presented. Staff scheduling related to closed systems was
discussed in [10,20]. However, unlike in closed enterprisesystems, crucial scheduling informa-
tion, i.e., the current user load or precise working hours are usually not directly provided by the
crowd. Instead, the scheduling relevant information must be gathered by monitoring. The work
in [41] details the challenges for collaborative workforcein crowdsourcing where activities are
coordinated, workforce contributions are not wasted, and results are guaranteed.

Although the idea of QoS-enchanced crowdsourcing was discussed before [40], to the best
of our knowledge, no work was devoted to deadline- and quality-centric predictions and guaran-

47

tees in crowdsourcing. In [70], semi-automatic assignmentmechanism was proposed. This work
assumes that SLAs are established with the workers, and Community Brokers are hold responsi-
ble for assignments in various crowd segments. However, no SLAs with crowdsourcing service
consumers are considered. Advanced market-based crowdsourcing platform which takes the
suitability of workers to tasks into account was proposed in[75]. For a given task, it organizes
an auction among only the most suitable workers to increase the overall quality and motivate
workers to improve their skills. Again, this model doesn’t provide predicting capabilities and
doesn’t support SLAs.

The considered scheduling problem is based on worker-task suitability, task deadlines, and
workers availability with the objective of maximizing the job quality does not correspond to any
of well-known scheduling problems [66]. The problem can be formulated as unrelated machines
in parallel with deadlines, but the optimization objectiveis different from objectives related to
processing time which are commonly studied in the domain. Staff scheduling [10] designs
workers’ schedules which should fulfill certain requirements and cover the tasks that need to
be done in a given planning horizon. Crowdsourcing’s idea isthe opposite: the workers define
their schedule by themselves, and the platform assigns available workers to tasks in progress
dynamically.

4.9 Discussion

In this section we discuss some disputable aspects of our approach.
The operation of the platform is influenced by several subjective characteristics provided by

consumers, such as skill requirements, job duration, or feedback. However, it is of consumer’s
interest to specify them accurately. For example, if s/he underestimates job duration, then some
deadlines might be broken or the resulting quality can be lower than agreed. This situation can
be spotted by the platform as the majority of workers would dothe jobs longer than expected.
Then, the input data from the consumer can be considered misleading, and the agreement can be
denounced. If the consumer overestimates the job duration,then agreements are not endangered
as most of workers would be faster than expected, however, this would produce underestimated
predictions.

The same can be applied for other characteristics: if the platform spots that the majority of
assignments do not correspond to expectations - then they were probably specified inaccurately.
Moreover, the guarantees are given according to the platform’s sight, so the agreement can
include the condition that the platform cannot be responsible for the outcome quality if the input
data was inaccurate, and the consumer is responsible for theaccuracy of his/her input. The
consumer, on the other hand, can rely on the prior experienceor submit some sample tasks to
adjust these parameters.

Crowdsourcing presumes a substantial amount of registeredworkers, and the scheduled
crowdsourcing puts even more restrictions on what the workers can do and when. The fea-
sibility of real-world deployment of such a platform can thus be questioned. Some contrary
arguments, however, are that about 20% of AMT workers consider AMT their primary income,
and about 20% of AMT workers complete more than 200 jobs per week [34]. Considering, that
AMT claims that more than 500 000 workers are registered in the platform, one can conclude

48

that there is significant amount of people who are willing to perform jobs at the regular basis.
Moreover, the payments for jobs in scheduled crowdsorcing can be bigger due to the added
value of SLAs. Finally, the scheduling mechanism can be upgraded to take account of workers’
preferences, while keeping the assignments compliant to established agreements.

4.10 Summary

In this chapter we presented a skill-aware crowdsourcing platform model which allows to pro-
vide crowdsourcing services with SLAs and to control the task performance quality, and a pre-
diction technique for negotiating feasible agreements. Incontrast to existing crowdsourcing
platforms such as AMT, which follow a task market-oriented approach, our platform model is
based on services computing concepts. Such a model is typically applied in enterprise workflow
systems using, for example, the WS-HumanTask specificationto design human interactions in
service-oriented systems. However, WS-HumanTask and related specifications lack the notion
of human SLAs and task quality. In our approach, negotiated SLAs and monitoring help to as-
sign task requests to suitable workers. Thus, our platform ensures quality guarantees by selecting
skilled workers. We introduced the proof-of-concept implementation with particular algorithms
for task scheduling and worker profile management. The applicability of the platform design
was proved in a simulated environment. The experimental results shows the clear advantage of
skill-based scheduling in crowdsourcing, as the average quality is certainly better in the large
comparing to the case when the workers choose tasks by themselves. The skill monitoring and
updating mechanism improves the overall quality by 10-15%.

The potentiality of the prediction technique is evaluated thorough experiments which show
that such an environment is predictive in spite of its inherent uncertainty. The proposed base
algorithm can be considered rather precise (average quality deviation 0.025), and, therefore, can
be applied for negotiating the agreements. The experimentsshow that the prediction accuracy
depends on deadline remoteness, the guaranteed values therefore can be adjusted accordingly.
These results show that crowdsourcing platforms can be organized to provide quality guarantees
for the consumers. They can strengthen the certainty and predictability in process planning
and design, and enable Service Level Agreements with customers. From a Business Process
Management perspective, such guarantees provide an additional value, thus promoting more
advantageous crowdsourcing services.

49

CHAPTER 5
Optimized Execution of Business

Processes with Crowdsourcing

The crowdsourcing approach presented in Chapter 4 is applicable for simple tasks that can be
generally finished in small amount of time and don’t require the worker to know the context of
the task, corporate standards, conventions or practices. Crowdsourcing of complex tasks how-
ever requires workers to be affiliated with the consumer to certain extent. Firstly, because of se-
curity reasons, as the worker who gets the task might need to have an insight into the company’s
processes and to have an access to company’s data (e.g., development of features for software
components requires the partial knowledge of the systems and infrastructures deployed in the
company). Secondly, because such tasks are more costly and more critical for business, and
therefore require certain confidence in possible candidates. Due to these reasons, crowdsourc-
ing of such tasks cannot provide the similar scalability potential compared to crowdsourcing of
simple tasks, and makes it unrealistic to perform direct assignments alike to the approach pre-
sented in Chapter 4. It still however can deliver more flexibility and allow to reduce costs via
competition.

In this chapter we propose a framework for adaptive execution of business processes on top
of an internal crowdsourcing platform. Based on historical data gatheredby the platform we
mine the booking behavior of people based on the nature and incentive of the crowdsourced
tasks. Using the learned behavior model we derive an incentive management approach based on
mathematical optimization that executes business processes in a cost-optimal way considering
their deadlines. We evaluate our approach through simulations to prove the feasibility and ef-
fectiveness. The experiments verify our assumptions regarding the necessary ingredients of the
approach and show the advantage of taking the booking behavior into account compared to the
case when it is partially of fully neglected.

51

5.1 Overview

Crowdsourcing has the potential to give companies flexible access to a talent pool of almost
unlimited size. In fact, according to an internal strategy document that leaked out in early 2012,
IBM plans to employ a radically new business model [80]. It involves to let the company run
by a small number of core workers. A dedicated Web-based platform is used to attract special-
ists and to create a virtual “cloud” of contributors. Similar to cloud computing where computing
power is provided on demand, IBM’s people cloud would allow to leverage a flexible on-demand
workforce. Today’s crowdsourcing systems are still relatively simple and only suitable for non-
critical, atomic tasks requiring minor efforts. In particular, Amazon offers a task-based crowd-
sourcing marketplace called Amazon Mechanical Turk (AMT) [5]. Requesters are invited to
issue human-intelligence tasks (HITs) requiring a certainqualification to the AMT. The regis-
tered customers post mostly tasks with minor effort that, however, require human capabilities
(e.g., transcription, classification, or categorization tasks [35]).

We foresee that in the future companies will increasingly use crowdsourcing to address a
flexible workforce. However, it is still an open issue how to carry out business processes lever-
aging crowdsourcing. In case if a crowdsourcing platform provides guarantees (see Chapter 4)
regarding QoS, then it is possible to use QoS-based optimization (see, e.g., [73]) to fulfill the
process-level guarantees while minimizing costs. However, as discussed above, providing such
guarantees for particular tasks within an internal enterprise crowdsourcing platform is not real-
istic. Nevertheless, if there are enough historical information about the prior assignments, it is
possible to estimate the needed parameters for the published tasks to fulfill process-level guar-
antees. The main problem is, however, that people book tasksvoluntarily in such competition-
based crowdsourcing, which means the only way to influence booking and execution times of
single tasks is to either change incentives or modify other aspects of a task, e.g., define a later
deadline.

The contribution of this chapter is an enterprise crowdsourcing approach that executes busi-
ness processes on top of a crowdsourcing platform. For each single task in the business process
we reason about the optimal values for incentive and time allotted when crowdsourcing them.
The goal is to carry out the business process with minimal investments before the deadline. Dur-
ing execution of the business process we constantly monitorthe progress and adjust these values
for tasks that have not been booked by a worker yet. Our approach for calculating optimal values
is based on mining historical data about task executions, e.g., which influence higher rewards
have on the booking time, analyzing the current status of thebusiness process, and quadratic
programming, which is a mathematical optimization formulation that can be solved efficiently.
We evaluate our approach through simulations for differentprocess sizes and structures. The
experiments show the effectiveness of the approach and demonstrate its adaptivity to the poorly
predictable crowdsourcing environment. We prove that booking time is one of the key features
for optimizing process execution in context of crowdsourcing, and that taking it into account can
reduce the deadline misses up to 14%.

52

Type Description Ready to start Effort Time Allotted Reward
JavaScript Click here now 21h 5d $2,090 Book
UI Design Click here 2012-04-01 14:00 12h 7d $810 Book
.NET Click here 2012-04-03 10:00 3h 14d $110 Book
...

Figure 5.1: Schematic UI for the enterprise-internal crowdsourcing platform of a large software
company

5.2 Motivating Scenario

We consider a scenario of a large software company that plansto deploy an enterprise crowd-
sourcing platform for software development tasks. Figure 5.1 schematically shows how tasks
are presented to the employees. Each task is described by a type and a textual description. The
third column gives an estimate when the employee will be ableto start working on the task.
Since a task may require input from other tasks the actual start date and time can deviate from
the announced one. Effort provides information about the time effort necessary to finish the
task. Time allotted defines the time frame in which the task issupposed to be processed. It starts
when the task is ready to start or when the task is booked, whatever is later. The reward tells the
employee how much he will get for successfully processing the task on time. Instead of money,
rewards could also consist of more abstract reward points. When an employee books a task s/he
is responsible for delivering the results within the allotted time. Tasks can be booked before they
are ready to start. As long as tasks are not booked the system may modify allotted time and re-
ward. The crowdsourcing platform generates and stores log information for each processed task,
as illustrated in Figure 5.2. We assume that at least information regarding the task type, time
effort, time allotted, the reward for which the employee actually booked the task, and the time
it took from publishing to booking is stored for each task processed via the platform. Usually
paying much for a task would reduce its booking time; also, having a high allotted time should
make tasks more attractive compared to tasks with a tight deadline.

Crowdsourcing
Platform Logs

| Type | Effort | Time Allotted | Reward | Booking Time |

--

| .Net | 24h | 14d | $520 | 1d |

| .Net | 12h | 4d | $325 | 5h |

| .Net | 36h | 5d | $570 | 6d |

| .Net | 36h | 5d | $850 | 5h |

| UI Design | 12h | 8d | $405 | 3h |

| ... | ... | ... | ... | ... |

Figure 5.2: The crowdsourcing platform maintains a database containing information related to
the processing of each task

However, the software company has problems to map its business workflows to the crowd-
sourcing platform. Figure 5.3 shows a workflow describing a business process the company
wants to execute. The aim is to integrate a new plugin into an existing software product. The
plugin consists of two features that together make up the functionality of the plugin. Each fea-

53

Implementation

Test Cases

Testing

Implementation

Test Cases

Testing

Integration /

Deployment

Integration Test

Case

Testing

Testing

Testring

Feature 1

Feature 2 2012-05-03

18:00

Figure 5.3: An exemplary business workflow describing the development of a new plugin for a
software product. The plugin consists of two features that need to be developed, integrated, and
deployed into the software product. Each implementation step is followed by testing. There is a
deadline for the completion of the whole plugin.

ture consists of three tasks, the actual implementation andthe writing of test cases, which can be
done in parallel, and the testing of the implementation using the test cases. After both features
have been implemented and tested, an integration and deployment step is necessary to ensure
proper installation into the software product. Three different testing tasks are to ensure the high
quality of the plugin; all three are based on the integrationtest case.

The introduced business process is simple yet helps to understand the challenges addressed
by this work. The question is how to crowdsource the tasks of the workflow using the crowd-
sourcing platform, i.e., how to set the values for the crowdsourced tasks. Type, description, and
estimated effort of each single task typically are already available; the approximate ready-to-
start times can be computed by the crowdsourcing platform once it has scheduled all predecessor
tasks. This is relatively straightforward yet not trivial since it involves the computation is based
on constant monitoring and recalculations to cover deviations from the schedule, e.g., delayed or
early finished tasks. However, there is no obvious solution at all for how to determine the values
for time allotted and reward. Time allotted should be assigned in a way to ensure the adherence
to the deadline. Rewards should consider the usual “market prices” of the respective tasks, but
also sometimes be increased to strengthen the competition among employees and ensure that
tasks critical to the success of the workflow are timely booked. Also, in case the allotted time is
short to process the task, then this should be reflected in thereward.

5.3 Approach

The goal of our solution is to ensure the timely execution of business processes that contain
crowdsourced tasks while minimizing the expenses associated with crowdsourcing rewards. We
assume that the crowdsourcing platform allows to specify allotted time and reward for each task
(as described in Section 5.2). The expenses can be reduced bysetting lower rewards for tasks,
however, if the reward is too small, a task might stay not booked for too long, if booked at all.

54

Such situations can significantly affect the execution of the process, and become a reason of
missed deadlines. The allotted time also affects expenses:it is less likely that an employee de-
cides to take an urgent task for a regular reward. Hence, there can be more employees interested
in a non-urgent task at a lower reward, because some of them might have less experience in
this type of tasks, and would like to improve, but need more time allotted. Obviously, the time
allotted also directly influences the process completion time. The main idea of our approach is
to find a most beneficial trade-off between rewards, allottedtimes, and expected booking times
for crowdsourced tasks in the process.

Specifically, we address the following questions:
How to estimate booking time? The time it takes someone to book a task after it is an-

nounced in the platform, or thebooking time, can be influenced by various factors. However,
we are convinced, that it is driven mostly by the strength of the competition among employees.
Therefore, tasks, whose time allotted and reward combination satisfies demands of more people,
are generally booked earlier, and vice-versa. Undoubtedly, even if an employee is satisfied with
the time allotted and the reward offered, s/he can still refuse to book a task, because of being too
busy, not interested in this particular type of tasks, or just not being in the mood. Nevertheless,
if the crowd is large enough, the trend should remain. Our approach is to determine this trend
using platform logs (see Section 5.2).

How to optimize allotted times and rewards? The optimization should consider the de-
pendency between booking times, rewards, allotted times, and the structure of the process. Also,
it can happen that something goes not as expected (e.g., a worker delays a critical task, or com-
pletes it significantly earlier), so either it becomes necessary to get some tasks done faster to
cope with a deadline or an opportunity to cut more costs emerges. The optimization therefore
should perform adaptively, and consider the process state as well.

When tasks should be published in the crowdsourcing platform? If a task is booked by
an employee, then the platform undertakes a commitment and can’t demand the employee to
perform faster or change the reward for this task any more. However, as mentioned above, an
adaptive behavior can be advantageous, and it can be more beneficial to publish tasks later. But
this should not be done too late and be aligned with the process execution state. Our approach
is to publish a task when the sum of its optimized booking and allotted times, and expected
execution time of subsequent activities in the process is almost as long as the time left before
deadline. In Section 5.4 we experimentally prove that such an approach produces optimal results.

We thus map the described functionality to components and propose a framework for a
deadline-driven reward optimization for processes containing crowdsourced tasks (See Fig-
ure 5.4). The estimator collects the statistical data from the platform logs and estimates the
functional dependency for each type of task➀. The optimization component retrieves structure
and state of processes➂, booking state of already published tasks➃, functional dependencies
➁, and determines optimal values for booking time, reward, and time allotted. These values are
further used by publishing component which announces tasksat the platform at appropriate time
and updates them if needed.

Subsections below provide a detailed description of the corresponding components of the
framework. Estimation should be performed for all task types before rewards can be optimized.
After some time, it can be re-executed to conform to the crowd’s changing characteristics. The

55

Optimizer

minimize

f(x) = ½ xT Qx + cT x
subject to

Ax ≤ b
Ex = d

Crowdsourcing Platform

Crowdsourcing Platform Logs

Publisher

Estimator

!

"
#

$

%
&

Business Process Engine

Figure 5.4: The architecture of the framework

optimization and publishing components are activated periodically thus realizing the adaptive
behaviour.

5.3.1 Estimation component

As described in Section 5.2, each log entry corresponds to a processed task and includes task
type, weight (e.g., in hours of effort), allotted time, booking time, and reward. Let us reference to
these values asT,w, t, bt, r. The estimation for each task type is done independently. Therefore,
for a particular type of task, an entry can be represented as< w, t, bt, r >.

Assuming that reward and time allotted linearly depend on the weight, and booking time
depends on the combination of reward and time allotted, we can consider a mappingbt′ =
f(t′, r′) which is populated with log entries as follows:t′ = t/w; r′ = r/w; bt′ = bt, which
reflects tasks with weight 1.

Further, we need to estimate a functionub(t, r) which is an upper bound for mappingf
at each(t, r). Even with a weak competition, a task can be booked fast due toa coincidence.
Therefore, for stable prediction in the context of deadlinefulfillment, we are interested in the

56

maximumtime that it takes a task with specified reward and time allotted to get booked. The
particular methods for upper bound estimation can vary according to the real setup.

Finally, using the discovered upper bound, we need to approximate the functiong(t, bt) that
reflects the reward that need to be set for a specified time allotted and expected booking time.
This function will be used in an objective function for optimization. The dataset for approxi-
matingg is obtained as a set of tuples< ri, ti, ub(ti, ri) > for each(ri, ti) that are defined in
mappingbt. We argue thatg should be approximated with a 2nd degree polynomial, because (i)
polynomial-based optimization is well studied [51], (ii) many optimization frameworks support
quadratic programming [57] , and (iii) the 2nd degree is a good trade-off between optimization
complexity and fitting accuracy for the problem. In our experiments, the difference in accu-
racy between 2nd and 5th degree polynomial approximation was less than 5%, whereas it was
more than 20% between 1st and 2nd degree. The estimation should also determine minimum
and maximum values for all arguments. The approximated function should therefore have the
following form:

g(t, bt) = a1 ∗ t
2 + a2 ∗ t ∗ bt+ a3 ∗ bt

2 + a4 ∗ bt+ a5

An example of an approximated function is illustrated in Section 5.4.

5.3.2 Optimization component

The goal of the optimization is to fulfill process deadline, while trying to minimize the offered
rewards. Therefore, based on the state and structure of the process and estimated dependencies,
we formulate a quadratic programming problem. The constraints ensure that the process can be
finished before the deadline considering all the booking andallotted times, and the optimization
objective is the sum of the rewards that will be paid for taskscontained in the process.

We formally represent a process as a directed acyclic graph,where nodes represent tasks
and edges represent control flow. The graph has 2 special nodes that represent the beginning
and the end of the process, namelyin andout. Thus, for each node in the graph, there exists a
path fromin to out which contains this node. A task can be started when all its incoming edges
are adjacent to already finished tasks. Besides crowdsourced tasks, a process can contain simple
activities, whose execution times are regarded as constants. For simplicity,in andout nodes can
be considered dummy, i.e., simple activities with execution time 0. Such representation is more
general than, e.g. combination offlow andsequenceactivities in BPEL. In this work we do not
consider constructs such as conditions or loops for the sakeof simplicity, although the approach
can be extended to support such elements.

Each task has a property that indicates its status, which canbe eitherunavailable,
published, ready, started or finished. The process engine can thus launch only
the tasks that areready. Tasks are marked aspublished when published in the crowd-
sourcing platform, and change their status toready when booked. For each not yet booked
crowdsourced task, decision variables for allotted time and for booking time are included for
optimization. The variables are restricted using the minimum and maximum values provided
by the estimation component. Two categories of constraintsare included into the optimization
model:

57

1. Constraints covering all the processing and allotted times throughout all possible process
execution paths from the current state. The combination of these constraints ensures that
the slowest branch will complete before the deadline.

2. Constraints covering booking time forunavailable andpublished tasks and all
possible subsequent process execution paths. These constraints ensure that booking times
will not endanger the deadline fulfillment.

If a task is already booked or represents a simple activity, then its execution time is fixed. If
it has been already started, then its completion time can be estimated for current situation. In
both of these cases, the execution time is regarded as a constant from the perspective of the
optimization. The exact algorithm for building the constraints is described in Algorithm 5.1.

An example of the algorithm’s functionality is shown in Figure 5.5. A simple activity has
already started and has been processed for five time units, asillustrated by the time line. Since
the expected processing time for the activity is 20 time units, the optimizer assumes that the
activity finishes in 15 time units. Since there is only one started activity, the optimizer adds two
constraints of first category because there exist two paths from this this activity toout activity.
As all the other tasks are either unavailable or published, the constraints of the second category
should be created for them. Therefore, two constraints for booking timet2 are generated, cov-
ering both successor paths. For botht3 andt4, only one constraint is generated for each single
path toout.

The optimization objective is composed as a sum of rewards using the scaled values of
estimated dependency functions:

min
∑

s∈S

(gtypes(ts/ws, bts) ∗ ws)

whereS - all tasks in the process,gtypes - dependency function for the type of tasks, ts, bts -
decision variables,ws - weight of tasks.

If the optimization problem turns out to be infeasible, the optimizer should try to extended
the deadline and try again, until a feasible solution is found. This will ensure that even if the
deadline cannot be met, then the best possible solution willbe provided.

deadline

100

Simple

Task

5 15

Time

Line

t
2
 bt

2

t
3
 bt

3

t
4
 bt

4

15 + t2 + t3 < 100
15 + t2 + t4 < 100

bt2 + t2 + t3 < 100
bt2 + t2 + t4 < 100
bt3 + t3 < 100
bt4 + t4 < 100

Figure 5.5: Example for the generation of optimization constraints for the quadratic program-
ming problem formulation

58

input : timeToDeadline, processGraph
call : createConstraints([], processGraph.outNode)

createConstraints(list path, task t) {
add t to the beginning ofpath;
foreach (incoming edgee of t) {

get adjacent nodet ’ which is source ofe;
if (status of t ’ is not finished) createConstraints(path, t ’);

}
if (there were no incoming edges with adjacent notfinished nodes)

addConstraint(path, 1st type); else
addConstraint(path, 2nd type);

removet from path;
}

addTermsToExpression(list path, constraint expressionexpr) {
foreach (t in path)
if (status of t is unavailable or published)

add decision variable for allotted time oft to expr; else
add expected execution time left fort as a constant toexpr;

}

addConstraint(list path, constraint typecType) {
t = first task in path;
if (cType is "2nd type" and status oft is not either unavailable or published) return ;
create constraint expressionexpr;
if (t is unavailable) add decision variable for booking time oft to expr;
if (t is published) add predicted time fort to be booked as constant toexpr;
addTermsToExpression(path, expr);
add optimization constraint [expr < timeToDeadline];

}

Listing 5.1: Algorithm for creating optimization constraints

5.3.3 Publishing component

A task is published in the platform when the sum of its expected booking time, allotted time,
and expected execution time of subsequent activities in theprocess is almost as current time to
deadline. In other words, the time to deadline when it shouldbe published can be determined by
(i) finding the longest path from the task node toout node in the process graph, where weights
of edges are set to the determined optimal values for time allotted of their source nodes, and
(ii) adding the booking time of the task to this value. A task can also be updated after being
published if it has not been booked yet.

In practice, the time to deadline value which is provided to optimization and publishing
components can be lower than the real value in order to keep a small fraction of time reserved
for handling unexpected events.

59

5.4 Evaluation

As we mention in Section 5.5, best to our knowledge there are no similar approaches. Therefore,
we were not able to make a comparative evaluation. Because the distinguishing feature of our
approach is consideration of competition in crowdsourcingand booking time, we compare the
effectiveness of the optimization with cases when booking time is partially of fully neglected.
We also empirically prove the optimal choice of task publishing time, and evaluate the overall
performance overhead of the optimization component.

To evaluate our approach, we examined a prototype implementation of the framework in
a simulated environment. We used MATLAB surface fitting for functional approximation, and
GUROBI [60] framework for solving the quadratic optimization problem. We used discrete time
model, so time was measured in arbitrary integer units.

5.4.1 Simulation setup

Workers. The size of the simulated crowd size was assumed to be 1000 workers. Platform logs
were generated assuming that, generally, at any point only 5% of them are willing to use the
crowdsourcing platform (at varios times those can be different workers). For every task type,
each worker was assigned two values: the least time allottedthat s/he needs to finish a task of
this type with weight 1, and the minimum acceptable reward. These values were generated using
the normal distribution. Then, for a random sampling of timeallotted and reward pairs, 200 log
entries were created. To pick a sensible booking time for a log entry, the competition value
was calculated as a number of workers from the crowd, whose least time allotted and minimum
acceptable reward were less than the log entry had. Then, assuming that only 5% of the potential
competitors would actually compete for the task, the booking time estimation was guided by the
probability that at least one of competing workers books thetask before timen, assuming that
the time of booking the task by one worker follows the normal distribution. The actual value
was determined by stepwise increasingn and comparing a uniformly distributed random value
with this probability. Once it happens that the random valueis less than the probability,n is
the booking time. Such a method covered coincidental fast bookings while generally exhibiting
the trend associated with competition. This method was alsoused to simulate actual booking
while performing experiments, i.e., the crowd simulator was not informed about the booking
time chosen.

Tasks. Three types of crowdsourced tasks were simulated. Each taskwas described by
average reward and allotted time, booking time by one worker, and corresponding deviations.
The types of tasks and their generation parameters (left) aswell as the estimated dependen-
cies between booking time, allotted time, and reward for tasks of Type 1 (right) are shown in
Figure 5.6.

Processes.The simulator randomly generated processes with differentsizes. We simulated
small processes (5-10 tasks) and big processes (10-30 tasks), including all types of crowdsourced
tasks and simple activities. We believe that bigger numbersare not realistic in a real setup,
because usually business logic is clustered into concise compositions that are then managed on
a higher level. Weights for tasks were selected randomly from the range [0.5,5].

60

Property
Type 1 Type 2 Type 3

Avg Dev Avg Dev Avg Dev
Reward 100 15 50 7 80 10
Time allotted 20 3 15 3 13 2
Booking time for
one worker

30 9 20 8.5 15 5

Figure 5.6: Task generation parameters are shown in the table on the left. The figure on the right
illustrates the estimated quadratic polynomial that describes the dependencies between booking
time, allotted time, and rewards for tasks of Type 1.

5.4.2 Experiments

We ran the prototype in different simulation settings by randomizing process structures, and by
emulating the inaccuracy of task execution and booking times (the results from different random
generation seeds were averaged). The actual execution timefor tasks was set using normal
distribution with deviations of 0.1 and 0.2 of the supposed execution time. We considered both
cases when the deadline could and could not be adhered thus exploring how different parameters
of the approach impact both critical and not critical situations. We compare the results based
on average reward, total time penalty (time penalty is a delay of a process with regard to the
deadline for cases where deadline was missed), and number ofmissed deadlines produces, as
these indicators fully reflect the goal of the approach.

Publishing time. In our solution a task is published when the difference between the time
left before deadline and the sum of the task’s allotted time,and expected execution time of sub-
sequent activities in the process (let us refer to this valueasbooking buffer) is equal to its decided
booking time. In order to prove that this is the optimal choice, we performed experiments where
tasks were published at earlier and later times. The resultsare shown in Figure 5.7a. We used
booking buffer values equal to 0.2,0.5,1,2,3,4,5,6 multiplied by the task’s decided booking time,
and, finally, we tested the case when the tasks were publishedin the platform immediately after
a process was started (OnStartmark in the figure).

It can be clearly seen that booking buffer equal to the expected (decided) booking time
produces the optimal results. When it is lesser than this value, the tasks are not booked in time,
so the optimizer has to compensate that by putting higher awards, and, regardless of that, more
deadlines are missed because of these delays. When booking buffer is greater than the decided
booking time, then there is less room for maneuvering to handle uncertainty in execution and
booking times, because tasks become booked earlier and their parameters cannot be changed any
more. It results into more missed deadlines and bigger penalties. This behaviour then gradually

61

changes in an opposite way, which can be explained by the factthat the real booking time can be
longer than the estimated one, and therefore the impact of this inaccuracy is reduced for bigger
values of booking buffer. However, the number of missed deadlines remains at least 25% greater
than in the ultimate case when all the tasks are published when process is started, and rewards
and time penalties in this case are almost the same.

0 1 2 3 4 5 6 OnStart
0.8

1

1.2

1.4

1.6

1.8

2

How much in advance tasks are published
(the assumed booking time multiplied by the value on this axis)

P
ro

p
o
rt

io
n
a
l
v
a
lu

e
 o

f
a
 c

o
rr

e
s
p
o
n
d
in

g
 m

e
a
s
u
re

Reward

Penalty time

Number of missed deadlines

(a) Publishing time

0 20,000 40,000 60,000
0

5

10

15

20

25

30

35

40

Number of constraints

O
p
ti
m

iz
a
ti
o
n
 o

v
e
rh

e
a
d
 i
n
 s

e
c
o
n
d
s

(b) Performance overhead

Figure 5.7: Figure (a) shows the effect when the booking buffer is varied and tasks are published
not as suggested by our approach (1 on the X axis). Figure (b) shows the dependency of the
performance overhead on the number of constraints in the optimization problem for one run.

Booking time. Consideration of booking time is a key feature in our approach. To analyze
the effectiveness of this feature, we compare the full-featured optimization to the case where
booking time constraints (Second type of constraints, see Section 5.3) are completely removed
from the optimization problem (tasks are still published atthe appropriate time according to the
expected booking time which inferred from the decided rewards and allotted times), and to the
case where average booking time is chosen for each task. The results for small and big processes
are shown in Figures 5.8a and 5.8b respectively, depicting the same indicators as in the previous
set of experiments.

As the results show, choosing an average booking time alwaysresults in approximately 13%
more expenses for all process sizes, and produces more or almost as much penalties and deadline
misses as the full-featured optimization does. This happens because some task do not need to
be booked fast, and the full-featured optimization would pick less competitive and therefore less
expensive values for rewards.

Disabled booking time constraints do not affect the indicators for big processes. This can
be explained by the fact that there is almost always enough time for booking the tasks in long
processes. Only first tasks of the process can be delayed, butit does not affect the overall perfor-
mance. Also, booking times are always chosen to be maximal inthis case because they are not
constrained and it reduces the paid rewards. However, for smaller processes, the consideration

62

of booking time is crucial, as it can stronger affect the relatively short process execution time.
The unconstrained case produces 14% more deadline misses and penalties.

One can argue that the full-featured optimization should perform at least with the same
performance as two other approaches. In perfect conditionsthis assertion would hold. However,
on the one hand, the booking time is estimated as anupper bound, therefore, the booking can
often take less time than predicted. On the other hand, when the competition is too low, it
can have the opposite effect: a task, which is assumed to be booked and executed earlier and
costs more, can be eventually delayed more than a task which costs less and was expected to be
booked later. Therefore, estimating realistic booking times is one of the key requirements of this
approach. The accuracy of booking time in our experiments was 92%, which resulted in at most
2% of more missed deadlines and penalties.

Reward Time penalty Missed deadlines
0.7

0.8

0.9

1

1.1

1.2

P
ro

p
o
rt

io
n
a
l
v
a
lu

e
 o

f
a
 c

o
rr

e
s
p
o
n
d
in

g
 m

e
a
s
u
re Full−featured optimization

Optimization with average booking time

Optimization without booking time constraints

(a) Small processes (5-10 tasks)

Reward Time penalty Missed deadlines
0.7

0.8

0.9

1

1.1

1.2

P
ro

p
o
rt

io
n
a
l
v
a
lu

e
 o

f
a
 c

o
rr

e
s
p
o
n
d
in

g
 m

e
a
s
u
re Full−featured optimization

Optimization with average booking time

Optimization without booking time constraints

(b) Big processes (10-30 tasks)

Figure 5.8: Effect of neglecting the booking time in optimization

Performance overhead.The overhead of optimization depends on the number of variables
and the number of constraints. However, the number of variables for our problem is proportional
to the number of tasks involved, which was less than 30, and the variance within this limit did
not affect the overhead. However, the number of constraintsis proportional to the total amount
of all possible paths that go throughin andout activities (See Section 5.3), and this number
depends on the process structure and scales from 1 to tens of thousands. Figure 5.7b depicts the
overhead dependency on the number of constraints for one optimization run1.

For small processes (up to 10 tasks), the worst case is when there is a sequence of 5 con-
structs each with 2 activities in parallel, the number constraints is less than25 ∗ 2 = 64, which
implies that an optimization run for a small process always takes less than 0.01 second. For big-
ger processes, the worst case is215∗2 = 65535, so an optimization run can take up to 35 seconds
in this case. In both cases, the overhead is acceptable for performing periodical adaptations in
processes with human tasks which can span from several minutes to hours or days.

1Hardware used: Intel Core 2 Quad 2.40 GhZ with 6 GB of RAM

63

5.4.3 Discussion

The results clearly show that booking time should be considered when publishing tasks to
achieve the best adaptable behavior, because the best results are achieved when the booking
buffer equals to the estimated expected booking time. Booking time constraints for optimization
are however not always favourable. They should not be used for bigger processes (more than 10
tasks in out setting), but become important for smaller processes. Such smaller processes can
emerge in, e.g., agile software development environments,where work is organized into short
cycles with small sets of tasks.

5.5 Related Work

Major industry players have been working towards standardized protocols and languages for
interfacing with people in a service oriented way, which maybe used as technical foundation
for implementing our ideas in real businesses. Specifications such as WS-HumanTask [24] and
BPEL4People [4] have been defined to address the lack of humaninteractions in service-oriented
businesses [49]. Although some prospective features for dynamic resource management were
outlined for these standards [74], however, they have been designed to model interactions in
closed enterprise environments where people have predefined, mostly static, roles and responsi-
bilities.

The area of QoS-aware composition of Web services has many similarities to the topics
addressed in this work. Web service compositions create value added services by composing
existing ones. Here the question arises which services to chose for participation in a compos-
ite service, given that there are many available Web services providing equivalent functionality.
Liangzhao Zeng et al. [93] propose a QoS-aware middleware for selecting Web services that
maximize user satisfaction modeled as utility functions. They define multiple quality criteria,
i.e., execution price, execution duration, reputation, successful execution rate, and availability.
The authors propose service selection based on local optimization and global selection, consid-
ering aforementioned quality criteria. In the local optimization case service selection is done for
each task individually, while the global planning also considers the interrelations between ser-
vices. Integer Programming is used to solve the global planning problem. Canfora et al. [8] argue
that genetic algorithms, while being slower than integer programming, represent an alternative,
more scalable option. Another work [73] focuses on the optimization of large-scale QoS-aware
compositions at runtime based on QoS specification based on constraint hierarchies. Multiple
well-known metaheuristic optimization approaches are applied to solve the optimization prob-
lems. The major difference between Web service compositionand crowdsourcing of business
processes is that Web services which are to execute a functionality can be directly chosen while
humans in the crowd are self-determined and act autonomously.

The recent trend towardscollective intelligenceand crowdsourcing can be observed by look-
ing at the success of various Web-based platforms that have attracted a huge number of users.
Well known representatives of crowdsourcing platforms include Yahoo! Answers [88] (YA) and
the aforementioned AMT [5]. The difference between these platforms lies in how the labor of
the crowd is used. YA, for instance, is mainly based on interactions between members. Ques-

64

tions are asked and answered by humans, thereby lacking the ability to automatically control
the execution of tasks. In contrast, AMT offers access to thelargest number of crowdsourcing
workers. With their notion of HITs that can be created using aWeb service-based interface they
are closely related to our aim of mediating the capabilitiesof crowds to service-oriented business
environments. According to one of the latest analysis of AMT[35], HIT topics include, first of
all, transcription, classification, and categorizations tasks for documents and images. Further-
more, there is also tasks for collecting data, image tagging, and feedback or advice on different
subjects.

While this work focuses on how to take a workflow and optimallyconvert the subtasks into
crowdsourcing tasks, there is also research about how to mapcrowdsourcing tasks to suitable
workers. A possibility is to use auctioning mechanisms for implementing such a mapping [75].
All workers that meet the minimum requirements for a particular are invited to submit a bid to
an auction created for assigning the task. The winning bid isdetermined by a combination of
the workers suitability for the task and the bid’s price. Forimproved reliability and training of
workers a single task may be crowdsourced multiple times.

5.6 Summary

This chapter presented an approach for deadline-driven adaptive execution of business processes
on top of an internal competition-based crowdsourcing platform. The main feature that distin-
guishes our approach from other workflow and process optimization methods is consideration
of time that it takes a crowd to book a task. We proposed a method for estimating the functional
dependency of booking time by using statistical data, presented an algorithm for constructing an
optimization problem, and empirically determined the optimal task publishing technique.

The results show that our model is effective for adapting theproperties of tasks in a crowd-
sourcing platform to adhere to process deadlines and to minimize the rewards. We discovered
that booking time should be considered when publishing tasks to achieve the best adaptable be-
havior, and that taking booking time into account in optimization can reduce the deadline misses
up to 14%. The approach can also be used to predict feasibility and expenses for a specified
deadline by running a simulation like ours, therefore allowing to explicitly observe the tradeoff
between processing time and associated costs.

65

CHAPTER 6
Private and Confidential Data

Propagation Control in SOA

Law regulations, corporate standards, and desire for customer satisfaction require enterprises
to provide certain guarantees for the data obtained from services that are offered to customers
or partners. As data integration proliferates, private or confidential information can be spread
across the system extensively. Striving for protection of possessed sensitive information, enter-
prises thus need comprehensive means to control such propagation. In this chapter we propose
a private data propagation control framework (Providence), which aims to give a comprehensive
view on private or confidential data usage throughout the system and to facilitate decision mak-
ing regarding the appropriate security-related SLOs for offered services and internal policies for
this data.

6.1 Overview

The proliferation of data integration intensifies the propagation of data throughout the enterprise,
since the result of one activity can serve as a source for another. The more sources are involved,
the easier it is to overlook the inappropriate use of data, asit comes to be maintained in various
locations by different parties. Indeed, proliferation of resource virtualization and cloud comput-
ing requires even more delicate consideration of privacy concerns [65, 90]. Thus, striving for
protection of possessed sensitive information, enterprises need comprehensive means of control
over its propagation.

We address the problem in the general case of SOA where actualimplementation of services
is inaccessible and their functionality is unrestricted. This implies, for example, that data might
be stored by one service and retrieved or transferred later by another service, so this fact can’t
be established by workflow analysis. To our best knowledge, there are no solutions to date that
address this problem.

67

This chapter presents thePrivateData Propagation Control Framework (Providence). Mon-
itoring the message exchange, it employs content inspection that is successfully applied in Data
Loss Prevention (DLP) solutions1. The framework detects and logs private data disclosures that
happen in the SOA environment. The log is then used to give a comprehensive view on private
data usage throughout the SOA and to facilitate privacy-related decision making. The rationale
behind the framework is to have a practically-applicable solution that requires as few integration
efforts as possible.

6.2 Motivating Scenario

[86] outlines the scenario with harmful inappropriate use of private data, where Alice, who has
a child with a severe chronic illness, buys a book about the disease from online book store. Later
she applies for a job and gets rejected because the employer somehow received the information
about her purchase and flagged her as high risk for expensive family health costs.

Below we show how the aforementioned scenario can take placedue to inappropriate control
over the private data in manifold data integration activities in SOAs.

Consider an enterprise Things’n’Books, which runs severalbusinesses including online book
trading. It has complex infrastructure with various departments, each responsible for a particular
business. Things’n’Books also has a delivery department handling all delivery needs of a com-
pany and a joint human resources department. To achieve interoperability between departments,
Things’n’Books employs SOA based on Web services.

When the client orders books on-line, the order details are put into orders database exposed
as a data service (OrderService). Once the payment is received, a delivery workflow, imple-
mented in BPEL, is initiated. It takes care of order preparation and eventually calls the Web
service exposed by the delivery department (DeliveryService) which takes delivery items and
the recipient contact data on input.

Figure 6.1: Private data propagation scenario

The delivery department, in time, besides using the received data to perform delivery, stores
this data for both accounting reasons and further usage in delivery routes analysis and optimiza-
tion through the instrumentality of an enterprise mashupM. The human resources department
also uses an enterprise mashup platform and benefits from partial re-use of mashupM. Also, it
outsources some duties to an independent HR company, and a representative of that company,
Eve, works in Things’n’Books’s office.

1http://www.cio.com/article/498166/Best_Data_Loss_Prevention_Tools

68

http://www.cio.com/article/498166/Best_Data_Loss_Prevention_Tools

Thus, if Alice purchases a book from Things’n’Books’s, Eve has an opportunity to access
this information via the mashupM having no access to its origin source, the online orders
database. The propagation chain is illustrated on Figure 6.1.

6.3 Providence Framework

In this section we introduce the Providence framework. We show the architecture of the frame-
work, give formal specifications for control paradigms and replaceable components, specify
implementation remarks, and outline limitations of the framework.

6.3.1 Architecture

We start from specifying required adoptions in SOA, then we describe each component of the
framework. The design of the framework is illustrated in Figure 6.2. The framework demands
two adoptions to be performed in SOA infrastructure, requiring it to:

1. Submit private data entries to the registrator service ofthe framework, whenever such
entries appear in the system (e.g., when private data is entered manually, received from a
partner organization, or submitted to a service in SOA).

2. Intercept messages exchanged in the integration and submit them together with the context
information to the monitor service of the framework for inspection (e.g., SOAP messages
that travel on Enterprise Service Bus). Context information enables the framework to
distinguish between different integration activities. Examples of context elements are
shown in Table 6.1.

Figure 6.2: The Providence framework

69

Table 6.1: Examples of context elements

Level Context element

Network
Requestor host
Responding endpoint

Application
Consuming application’s identifier
Requestor’s credentials from responder’s perspective
Requestor’s credentials in requestor application, e.g. inmashup platform

Process Corresponding process identifier, e.g. in business processengine

Table 6.2: Examples of primitive types

Type Value Possible detectable forms
Name John Johnson John Johnson, J. Johnson, JOHNSON J
Date 02.01.2010 02/01/10, 1 Feb 10
Amount 50000 50 000, 50.000

Registrator Service. Private data entries are submitted to the Registrator Service in form
of disclosures. Each disclosure contains typified pieces of private data,primitives, and a logi-
cal rule, whose variables correspond to those primitives. Also, each disclosure has a type. For
example, a disclosure of private information about a 50000$bank loan issued to John John-
son who lives at 1040 Paulanergasse 2 can be specified as primitives p1 of typeName which
has value “John Johnson”, p2 of typeAddresswhich has value “1040 Paulanergasse
2”, and p3 of type Amountwhich has value50000, with rule (p1 or p2) and p3 and type
“PersonalLoan”. It means that if the message exchange contains the amount together with
either address or name, possibly in the different form (e.g., “J. Johnson”), then the dis-
closure occurs. The type of primitive indicates how its formcan vary. When a disclosure is
submitted, primitives are separated from rule and group identifier, so only the mapping is kept.
The rule and group identifier are stored to Disclosure Specification Repository, the primitives
are registered at the Content Inspection Engine.

Monitoring Service. The monitoring service receives messages exchanged in datainte-
gration processes and corresponding context information.The messages are forwarded to the
Content Inspection Engine that detects previously registered primitives in messages’ content. If
any primitives are detected, the corresponding disclosures are retrieved from Disclosure Specifi-
cations Repository and their rules are checked against detected primitives. Occurred disclosures
are logged together with the context.

Content Inspection Engine. The Content Inspection Engine is responsible for detecting
primitives in the messages content. It receives primitivesfrom Registration Service and con-
tent for inspection from the Monitoring Service. The type ofa primitive defines the possible
transformations of its data value. Examples of such types are shown in Table 6.2. There are
various content inspection techniques and algorithms [52,78] whose explanation and evaluation
is beyond the scope of this thesis.

70

Management Module.This is the core component of the framework. Using the information
from disclosure occurrences log, this module provides means to control private data propagation
to the privacy officer. She can (i) assign privacy promises tocontexts according to real data
usage practices in those contexts, (ii) assign privacy policies to disclosure types, and, based on
actual disclosure occurrences log and assigned policies, (iii) get answers to following types of
questions:

1. Which privacy policy violations happened?

2. Which disclosures happen in specified context?

3. In which contexts disclosure of specified type happens?

4. What promise is enough for specified context to keep compliant with current private data
usage practices?

5. How is the private data of specified type actually used?

6. How was the particular piece of private information used?

7. What if we want to set another policy for private data or context, what violations will it
produce for the current environment?

The explanation of corresponding answers is given in the next section.

6.3.2 Formal Specifications

The framework is not coupled to a particular policy and context specification. Nevertheless,
the framework’s logic heavily relies on these components. Therefore, we specify formal re-
quirements for these components and formally explain the logic of the management module as
follows:

Policy. We assume that both private data policies and context promises are expressed in the
same form. The policy specification should reflect both requirements (policies) and promises
for data usage. It can encapsulate allowed usage purposes, receiving parties, and required obli-
gations. The implementation must provide a means to check whether data treatment under one
policy satisfies another policy (promise) and to calculate the intersection and union of policies.

Formally, letP - set of all possible policies. There must be defined relationsatisfies onP
which we mark as↽, so thatp1 ↽ p2; p1, p2 ∈ P indicates that data treatment under policyp1
satisfies policyp2.

Further, there must be defined union operator∪ : P × P → P that associates two policies
with a policy that is satisfied by either of them:∀p1, p2 ∈ P p1 ↽ (p1 ∪ p2), p2 ↽ (p1 ∪ p2).

Finally, there must be defined intersection operator∩ : P × P → P that associates two
policies with a policy that satisfies both of them:∀p1, p2 ∈ P (p1 ∩ p2) ↽ p1, (p1 ∩ p2) ↽ p2.

Context. Context specification should distinguish activities that happen in SOAs in a way
that it is possible to assign feasible privacy promises to those activities. The implementation
must provide a means to check whether one context is a subcontext of another. Occurrence of a

71

disclosure in some context implies its occurrence in all contexts, of which the given context is a
subcontext.

Formally, letC - set of all possible contexts. There must be defined relation⊆ onC, so that
c1 ⊆ c2; c1, c2 ∈ C indicates thatc1 is a subcontext ofc2.

Configuration. The privacy officer manages context promises and private data policies.
Formally, we can consider that for a given point in time thereis configuration, which contains
these mappings. As policy or promise might be unassigned, weintroduce unassigned policyΩ,
and extendP toP ′ = P ∪{Ω}. The rationale of unassigned policy is passivity in computations,
thus we refine↽,∩,∪ for P ′ as follows:

Ω ↽ Ω,Ω ∩Ω = Ω,Ω ∪ Ω = Ω;

∀p ∈ P ⇒ Ω ↽ p, p ↽ Ω;

∀p ∈ P ⇒ Ω ∩ p = p, p ∩Ω = p;

∀p ∈ P ⇒ Ω ∪ p = p, p ∪Ω = p.

Configuration is a tuple (Promise, Policy), wherePromise : C → P ′, Policy : T → P ′,
whereT is a set of all disclosure types.Promise maps contexts to privacy promises assigned,
Policy maps disclosure types to privacy polices assigned. For any context, its promise must
always satisfy a promise of any its subcontext:∀c, c′ ∈ C : c′ ⊆ c ⇒ Promise(c) ↽
Promise(c′).

Management Actions Logic.Based on the current configuration and a part of the log (e.g.,
log for last month), management module enables the privacy officer to get answers on question
templates.

Formally, letL = {〈ci, di〉} : ci ∈ C, di ∈ D, 1 ≤ i ≤ N - disclosure occurrences log,
whereD is a set of all registered disclosures,N is number of log records,di is a disclosure
andci is a context that corresponds to log entryi. Let Type(d), d ∈ D indicate the type of
disclosured. Now, given current configurationΛ = (Promise, Policy), for any part of log
L′ ⊂ L answers can be given as specified in Table 6.3:

6.3.3 Implementation

The prototype of Providence framework was designed and implemented considering separation
of concerns. The core components implement the principal logic using unified interfaces to
replaceable components that are responsible for content inspection and privacy policies storing.
Replaceable components were implemented in an elementary way to demonstrate functionality
of the framework. The prototype’s work is demonstrated in the screencast2. The evaluation of
results is given in Section 6.5.

The success of the framework will depend on the selection of particular adoption points and
replaceable components. The context elements should be chosen in a way that (i) disclosures
that occur during the same data integration activity share as much contexts as possible, and (ii)
disclosures that occur during different activities share as few contexts as possible.

2http://www.infosys.tuwien.ac.at/prototype/Providence/

72

http://www.infosys.tuwien.ac.at/prototype/Providence/

Table 6.3: Privacy-related questions and answers

Question Answer
1. Which privacy policy violations happened? 〈c, d〉 ∈ L′ :

Promise(c) 6↽ Policy(Type(d))

2. Which disclosures happen in contextc d : c′ ⊆ c, 〈c′, d〉 ∈ L′

3. In which contexts disclosure of typeT hap-
pens?

c : Type(d) = T, 〈c, d〉 ∈ L′

4. What promisep is enough for contextc to
keep compliant with current private data uses?

p =
⋂

c′⊆c,〈c′,d〉∈L′

Policy(Type(d))

5. What policyp reflects the actual usage of
private data in disclosures of typeT?

p =
⋃

Type(d)=T,〈c,d〉∈L′

Promise(c)

6. What policyp reflects the actual usage of
private data in disclosured?

p =
⋃

〈c,d〉∈L′

Promise(c)

7. If we want to change the configuration,
what violations will the new configurationΛ′

produce?

(1.) for configurationΛ′.

6.3.4 Limitations

Several limitations of the framework can be foreseen:

• Context elements must be accessible by message submitting adoption point. However, it
is a technical matter.

• Content inspection might give false negatives for complex data integration patterns. False
positives might occur as well. The balance between false positives, false negatives, and the
detection rate in general will always depend on particular information systems, business
specifics, IT architecture and inspection engine settings.Therefore, to estimate these rates,
it is necessary to test the approach in real business environments. However, fine-tuned
DLP tools provide 80-90% accuracy and almost no false positives in commercial product
tests3.

• It is impossible to obtain the data for inspection from encrypted messages. However, the
adoption points can be selected in such a way, that data will be sent to inspection before
encoding. As the monitoring service does not forward the data any further and is supposed
to be deployed in-house, this should not raise any security issues.

• Content inspection of internally exchanged messages brings computational overhead in
the system. However, submitted messages can be analyzed asynchronously using dedi-
cated resources, neither interrupting nor slowing down business processes. We thus regard
the framework’s performance as a secondary concern.

3http://www.cio.com/article/498166/Best_Data_Loss_Prevention_Tools

73

http://www.cio.com/article/498166/Best_Data_Loss_Prevention_Tools

• The privacy officer will need to obtain actual context privacy promises. However, it is
inevitable due to assumption of inaccessibility of serviceimplementations. Moreover,
given the solution that is able to conclude about actual treatment of data by a service
(e.g., using source code analysis), it can be coupled with the framework, thus automating
context promises assignment.

6.4 Related Work

To the best of our knowledge, none of current research fully addresses the issue of private data
propagation control within the organization SOAs.

Works like [6,37,54] eventually come to rule-based access restriction to private data. How-
ever, none of these solutions can control the usage of private dataafter it gets released from the
guarded resource.

Approaches like [14,27,50] address the issue only within bounds of processes or workflows,
whereas integration techniques go beyond this paradigm. For instance, services can call each
other independently of the workflow engine, or they can storeprivate data, so it can be later
picked up by other processes.

[87] proposes a framework for building privacy-conscious composite Web services which
confronts service consumer’s privacy preferences with component services’ policies. This frame-
work does not address scenarios where private data is firstlystored by a component service and
then retrieved outside of the composite service’s scope, whereas such scenarios are inevitable
for data integration.

[72] proposes to record and store logs of private data usage together with this data through-
out its lifespan. It requires services, which consume private data, to record all actions performed
with this data to the log, and return this log together with the response. Such logs can then be
analyzed to conclude about appropriate use of data. Unlike our framework, this approach inter-
feres with the business logic of services, requiring them toreport performed actions. Therewith,
it does not consider cases, when private data is stored by oneservice and then retrieved and used
by another.

[55] proposes to encrypt the messages that are exchanged between enterprises, so that a
request to the trusted authority must be performed to decrypt them. Using this technique, trusted
authority can check privacy promises of enterprises and control the access to the private data.
This technique neither applies to private data control within the enterprise, nor addresses the
usage of data once access to it was granted.

[68] provides tool support for solving a number of problems in data usage control. How-
ever, the authors rely on their own model of a distributed system [67] which assumes that each
concerned peer has a secure data store that possesses all theprivate data available to this peer,
and that the peer routes this data through the usage control mechanisms whenever the data leaves
this store. Such assumption makes the work inapplicable forSOAs in the general case.

[7] addresses similar problems of private data misuses. Theauthors build their work upon
the Private Data Use Flow expressed as a state machine. However, they give neither instructions
nor any explanations of how to build this state machine in an automated fashion having a live
system. Unlike it, our approach was designed to work in real SOAs.

74

Data Loss Prevention solutions are different to our approach in a way that they protect the
system from casual leakages of private data from end users, whereas our approach aimed to
detect systematic inappropriate uses of data which ensue from SOA complexity.

6.5 Evaluation

To evaluate our work, we emulated (created and deployed) theSOA environment and business
logic form the scenario in Section 6.2. Genesis 2 testbed [36] has been used for emulation.
By using its service interceptors we were able to monitor thedata exchange and deliver the
disclosures to the prototype for inspection. Besides elements and logic outlined in Section 6.2,
the testing environment included printery department which executes private orders and employs
the delivery department for shipping. After performing thebusiness logics simulation, we tested
the management module’s functionality to proof the concept.

The business logic was executed as enumerated below. Figure6.3 depicts the testing envi-
ronment and log records inserted during the emulation.

1. Two online book orders are made, thus twoBooksPurchasedisclosures are registered in
the framework.

2. PlaceOrderoperation ofOrderServiceis called for each purchase, disclosures are de-
tected, and log records 0,1 are generated.

3. For each purchase orchestration engine retrieves details viaGetOrderoperation ofOrder-
Service(log records 2,4) and later submits it toDeliver operation ofDeliveryService(log
records 3,5).

4. Delivery department usesMashupServiceto run the mashup, which featuresBooksPur-
chasedisclosures (log records 6,7).

5. HR department accesses private information viaOrderService(log record 8),Delivery-
Service(log records 9,10), andMashupService(log records 11,12)

6. Printery department composes private printery order, thus aPrinteryOrder disclosure is
registered in the framework.

7. The order details are submitted to theDeliveroperation ofDeliveryServicethus generating
log record 13.

8. Delivery department runs the mashup which now involves printery order (log record 14).

Disclosure type policies and context promises of the testing environment are shown in Fig-
ure 6.4. Data fromBooksPurchasedisclosures is allowed to be used for system administration
and research and development;PrinteryOrder’s policy is not assigned. Data submitted toOr-
chestrationHostwithin bounds ofOrderProcessis known to be used for system administration
and individual analysis. Data propagated toDeliveryServiceHostis known to be used for his-
torical preservation. If data is sent toMashupHostand remote login isDeliveryWorker, then

75

Figure 6.3: Testing environment

Figure 6.4: Privacy policies and promises in testing environment

it is used for research and development. Data propagated toHRDepartmentHostor retrieved
by MashupHostwith remote loginHRWorkeris known to be exchanged with third party for
undefined purposes.

Table 6.4 shows the output of the framework’s management module for violation detection.
Having discovered such violations, privacy officer can decide to strengthen context promise
(e.g., as in case of orchestration engine, log records 2,4),loose private data policy (e.g., as in
case of delivery service, log records 3,5) or assume administrative measures to prevent similar
access to private data (e.g., in case of HR worker, log records 8,9,10,11,12).

The management module is able to give answers on question templates from Section 6.3.2,
such as itemizing disclosure types that take place in a context (e.g.,BooksPurchase,PrinteryOrder
for the contextdestinationHost = DeliveryServiceHost), itemizing the contexts,
in which disclosure of particular type happens (e.g.,PrinteryOrder takes place in two
contexts, see Figure 6.5), or inferring the actual policy for particular disclosure type (e.g.,
Self=[historical, develop] for PrinteryOrder).

Thus, the framework explicitly detects any disclosures that happen during the data integra-

76

Table 6.4: Detected violations

Figure 6.5: Contexts where PrinteryOrder disclosure takesplace

tion and helps to prevent the inappropriate access to the data even after it is propagated through-
out the system.

6.6 Summary

This chapter discussed the challenges of ensuring security-related SLOs and controlling the
propagation of sensitive data in SOAs. We introduced the Providence framework which is able
to give a comprehensive view of private data usage throughout the enterprise and to facilitate
privacy-related decision making. It can be used to infer thefeasible guarantees for consumers
of the corresponding services, and reduces the impact of human factors, as it is able detect
inappropriate uses of data initiated by actors who disregard the data usage policies. It also
helps to detect particular reasons of violations by maintaining the detailed context information,
and facilitates service change management by providing means for “what-if” analysis. All the
considered limitations regarding the adoption of the framework in SOA are mostly technical and
do not prevent it from being implemented and deployed in a real system.

77

CHAPTER 7
Conclusions and Future Research

Directions

This thesis has introduced models, algorithms, and architectures for SLA provision in service-
oriented environments with the focus on integrated human labour and human factors that can
affect the performance in such systems. Proposed approaches enable the adaptive behaviour in
service-oriented systems to cope with SLAs under unstable conditions such as flexible and unan-
ticipated demand, unexpected failures, and poorly predictable human behaviour in open systems.
The considered cases includes both internal provision of services within a company, and provi-
sion of services to partners or consumers. The thesis discussed provider’s and consumer’s per-
spectives on these problems, and proposed the enhancementsfor state-of-art technologies such
as business process orchestration engines and crowdsourcing platforms.

The evaluation has been done through simulation of corresponding systems and compo-
nents. All the experiments in the thesis indicated strong potentiality of the proposed approaches.
Although the proposed enhancements require certain software engineering and organizational
effort, no insurmountable obstacles are foreseen for them to be applied in practice. This thesis
can therefore serve as a reference for implementing these ideas in industry.

7.1 Future research directions

The work in this thesis allows to make a step forward towards autonomous SLA provisioning,
seamless integration of human labour into automated processes, minimization of human factor
impact and associated risks and overheads, and achievementof high reliability in mixed systems.
There is, however, a potential for enhancement of presentedmethods. The following specific
directions can be highlighted:

• The proposed methods can be complemented with work from the area of workforce op-
timization to take into account satisfaction factors and consideration of social and psy-
chological effects impact. For example, scheduled crowdsourcing can aim to assign jobs

79

of the same type to a particular worker for some period, so it gets easier for him/her to
concentrate, but to change the task type once in a while, so his/her activity can be less
tedious and monotonous.

• The quality of externally provided crowdsourcing servicescan be further improved by
designing more agile control mechanisms that allow to bringtogether suitable workers and
requesters with guaranteed minimized temporal overhead. Having enough participants,
such systems can enablenear real-timecrowdsourcing which could open entirely new
possibilities for this market. From the perspective of workers, these platforms can be
improved by taking into account personal and professional preferences and supply the
workers with tasks in more personalized and convenient manner.

• Internal crowdsourcing has a high potential for flexible organization of work inside the
company. To improve the adaptation capabilities of such systems, standardized policies
for assignment cancellation and re-negotiation should be developed, and the dependency
of competition among workers on task parameters should be studied in more detail. These
improvements would allow to create more sophisticated optimization and control mecha-
nisms on top of such platforms, which in turn could be better tailored to business require-
ments.

• Privacy and security-related objectives depend not only onthe underlying infrastructure
of the provided service, but on the entire system. Therefore, all parts of the system that
can access the data of that service, should be aware of the policies applied. While the
presented approach allows for detection of such violations, it does not prevent them. This
can be achieved by enhancing system design tools (e.g., tools for application and data
integration and business process design) with SLA control mechanisms at design time.

80

Bibliography

[1] C. Adams. Managing crowdsourcing assignments.Cutter IT Journal, 24(6):6–11, 2011.

[2] Carl Adams and I. Ramos. The past, present and future of social networking and outsourc-
ing: impact on theory and practice. InUK Academy for Information Systems Conference
Proceedings 2010: Information Systems: past, present and looking to the future, 2010.

[3] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad Mishne.
Finding high-quality content in social media. InWSDM ’08, pages 183–194. ACM, 2008.

[4] A. Agrawal et al. WS-BPEL Extension for People (BPEL4People)., 2007.

[5] Amazon Mechnical Turk. http://www.mturk.com. Accessed: 20.06.2012.

[6] Paul Ashley, Satoshi Hada, Günter Karjoth, and MatthiasSchunter. E-p3p privacy policies
and privacy authorization. In Sushil Jajodia and Pierangela Samarati, editors,WPES, pages
103–109. ACM, 2002.

[7] S. Benbernou, H. Meziane, and M. Hacid. Run-time monitoring for privacy-agreement
compliance. In Bernd Kraemer, Kwei-Jay Lin, and Priya Narasimhan, editors,Service-
Oriented Computing – ICSOC 2007, volume 4749 ofLNCS, pages 353–364. Springer
Berlin / Heidelberg, 2010.

[8] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An
approach for qos-aware service composition based on genetic algorithms. InProceed-
ings of the 2005 conference on Genetic and evolutionary computation, GECCO ’05, pages
1069–1075, New York, NY, USA, 2005. ACM.

[9] Cinzia Cappiello, Marco Comuzzi, and Pierluigi Plebani. On automated generation of web
service level agreements. InProceedings of the 19th international conference on Advanced
information systems engineering, CAiSE’07, pages 264–278, Berlin, Heidelberg, 2007.
Springer-Verlag.

[10] Alberto Caprara, Michele Monaci, and Paolo Toth. Models and algorithms for a staff
scheduling problem.Math. Program., 98(1-3):445–476, 2003.

[11] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social
dynamics.Reviews of Modern Physics, 81(2):591–646, May 2009.

81

[12] Y.K. Che. Design competition through multidimensional auctions.The RAND Journal of
Economics, 24(4):668–680, 1993.

[13] Jen-Hsiang Chen, R. Anane, Kuo-Ming Chao, and N. Godwin. Architecture of an agent-
based negotiation mechanism. InDistributed Computing Systems Workshops, 2002. Pro-
ceedings. 22nd International Conference on, pages 379 – 384, 2002.

[14] W.K. Cheung and Y. Gil. Towards privacy aware data analysis workflows for e-science. In
AAAI Workshop on Semantic e-Science 2007, pages 22–26, Menlo Park, CA, USA, 2007.
AAAI Press.

[15] CloudCrowd. https://www.cloudcrowd.com/. Accessed: 20.06.2012.

[16] Marco Comuzzi and Barbara Pernici. A framework for qos-based web service contracting.
ACM Trans. Web, 3(3):10:1–10:52, July 2009.

[17] Crowdflower. http://crowdflower.com/. Accessed: 20.06.2012.

[18] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing systems on the
world-wide web.Commun. ACM, 54:86–96, April 2011.

[19] Thomas Erl.SOA Principles of Service Design (The Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

[20] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A
review of applications, methods and models.European Journal of Operational Research,
153(1):3 – 27, 2004. Timetabling and Rostering.

[21] A.T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier. An annotated bibliogra-
phy of personnel scheduling and rostering.Annals of Operations Research, 127:21–144,
2004. 10.1023/B:ANOR.0000019087.46656.e2.

[22] M. Ferber, S. Hunold, and T. Rauber. Load balancing concurrent bpel processes by dy-
namic selection of web service endpoints. InParallel Processing Workshops, 2009. ICPPW
’09. International Conference on, pages 290–297, 2009.

[23] QoS for Web Services: Requirements and Possible Approaches. http://www.w3c.or.kr/kr-
office/tr/2003/ws-qos/. Accessed: 20.06.2012.

[24] Mark Ford et al. Web Services Human Task (WS-HumanTask), Version 1.0., 2007.

[25] Martin Fowler.Patterns of Enterprise Application Architecture. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[26] Ganna Frankova, Magali Séguran, Florian Gilcher, SlimTrabelsi, Jörg Dörflinger, and
Marco Aiello. Deriving business processes with service level agreements from early re-
quirements.Journal of Systems and Software, 84(8):1351–1363, 2011.

82

[27] Y. Gil and C. Fritz. Reasoning about the appropriate useof private data through computa-
tional workflows. InSpring Symposium on Intelligent Privacy Management. AAAI Press,
2010.

[28] Ignacio Grossmann. Enterprise-wide optimization: A new frontier in process systems
engineering.AIChE Journal, 51(7):1846–1857, 2005.

[29] Sönke Hartmann and Dirk Briskorn. A survey of variants and extensions of the resource-
constrained project scheduling problem.European Journal of Operational Research,
207(1):1–14, 2010.

[30] Mamoun Hirzalla, Peter Bahrs, Jane Cleland-Huang, Craig Miller, and Rob High. A pre-
dictive business agility model for service oriented architectures. In Gerti Kappel, Za-
karia Maamar, and Hamid Motahari-Nezhad, editors,Service-Oriented Computing, vol-
ume 7084 ofLecture Notes in Computer Science, pages 653–660. Springer Berlin / Hei-
delberg, 2011.

[31] J. Howe.Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business.
Crown Business, 2008.

[32] P.C.K. Hung, Haifei Li, and Jun-Jang Jeng. Ws-negotiation: an overview of research
issues. InSystem Sciences, 2004. Proceedings of the 37th Annual Hawaii International
Conference on, page 10, jan. 2004.

[33] Crowdsourcing in IBM. http://personneltoday.com/articles/article.aspx?liarticleid=55343.
Accessed: 20.06.2012.

[34] P. Ipeirotis. Demographics of mechanical turk.New York University, Tech. Rep, 2010.

[35] Panagiotis G. Ipeirotis. Analyzing the Amazon Mechanical Turk Marketplace. SSRN
eLibrary, 17(2):16–21, 2010.

[36] Lukasz Juszczyk and Schahram Dustdar. Script-based generation of dynamic testbeds for
soa. InICWS, pages 195–202. IEEE Computer Society, 2010.

[37] Guenter Karjoth, Matthias Schunter, and Michael Waidner. Privacy-enabled services for
enterprises. InDEXA Workshops, pages 483–487. IEEE Computer Society, 2002.

[38] Ehud Karnin, Eugene Walach, and Tal Drory. Crowdsourcing in the document processing
practice. In Florian Daniel and Federico Facca, editors,Current Trends in Web Engineer-
ing, volume 6385 ofLecture Notes in Computer Science, pages 408–411. Springer Berlin /
Heidelberg, 2010.

[39] Robert Kern, Hans Thies, and Gerhard Satzger. Statistical quality control for human-based
electronic services. In Paul Maglio, Mathias Weske, Jian Yang, and Marcelo Fantinato,
editors,Service-Oriented Computing, volume 6470 ofLecture Notes in Computer Science,
pages 243–257. Springer Berlin / Heidelberg, 2010.

83

[40] Robert Kern, Christian Zirpins, and Sudhir Agarwal. Managing quality of human-based es-
ervices. In George Feuerlicht and Winfried Lamersdorf, editors, ICSOC 2008 Workshops,
volume 5472 ofLecture Notes in Computer Science, pages 304–309. Springer Berlin /
Heidelberg, 2009.

[41] Gioacchino La Vecchia and Antonio Cisternino. Collaborative Workforce, Business Pro-
cess Crowdsourcing as an Alternative of BPO. InCurrent Trends in Web Eng., volume
6385, pages 425–430, 2010.

[42] D. Davide Lamanna, James Skene, and Wolfgang Emmerich.Slang: A language for defin-
ing service level agreements.Future Trends of Distributed Computing Systems, IEEE In-
ternational Workshop, 0:100, 2003.

[43] Business Process Execution Language. Accessed: 20.06.2012.

[44] Extensible Markup Language. http://www.w3.org/tr/xml/. Accessed: 20.06.2012.

[45] Web Services Description Language. http://www.w3.org/tr/wsdl. Accessed: 20.06.2012.

[46] P. Leitner. On Preventing Violations of Service Level Agreements in Composed Services
Using Self-Adaptation. PhD thesis, Vienna University of Technology, 2011.

[47] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.Monitoring, prediction and pre-
vention of sla violations in composite services. InWeb Services (ICWS), 2010 IEEE Inter-
national Conference on, pages 369–376, 2010.

[48] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-based optimization of
service compositions. Technical report, Vienna University of Technology, 2011.

[49] Frank Leymann. Workflow-based coordination and cooperation in a service world. In
CoopIS, volume 4275. Springer Berlin Heidelberg, 2006.

[50] Yin Li, Hye-Young Paik, and Jun Chen. Privacy inspection and monitoring framework for
automated business processes. InWeb Information Systems Engineering, pages 603–612.
Springer, 2007.

[51] Zhening LI. Polynomial Optimization Problems, Approximation Algorithms and Applica-
tions. PhD thesis, The Chinese University of Hong Kong, 2011.

[52] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, and Tsern-Huei Lee. Using string matching
for deep packet inspection.IEEE Computer, 41(4):23–28, 2008.

[53] ITSM IT Service Management. http://www.itsm.info/itsm.htm. Accessed: 20.06.2012.

[54] Marco Mont, Siani Pearson, and Robert Thyne. A systematic approach to privacy en-
forcement and policy compliance checking in enterprises. In Trust and Privacy in Digital
Business, pages 91–102. Springer Berlin / Heidelberg, 2006.

84

[55] Marco Casassa Mont, Siani Pearson, and Pete Bramhall. Towards accountable manage-
ment of identity and privacy: Sticky policies and enforceable tracing services. InDEXA
Workshops, pages 377–382. IEEE Computer Society, 2003.

[56] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive monitoring and
service adaptation for ws-bpel. InProceeding of the 17th international conference on
World Wide Web, WWW ’08, pages 815–824, New York, NY, USA, 2008. ACM.

[57] Jorge Nocedal and Stephen Wright.Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, 2nd edition, 2006.

[58] Business Process Modeling Notation. http://www.bpmn.org/. Accessed: 20.06.2012.

[59] Liam O’Brien, Paulo Merson, and Len Bass. Quality attributes for service-oriented ar-
chitectures. InProceedings of the International Workshop on Systems Development in
SOA Environments, SDSOA ’07, pages 3–, Washington, DC, USA, 2007. IEEE Computer
Society.

[60] Gurobi Optimization. Gurobi optimizer reference manual, 2012.

[61] Michael P Papazoglou.Web Services: Principles and Technology. Prentice Hall, 2008.

[62] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing:
State of the art and research challenges.Computer, 40(11):38 –45, nov. 2007.

[63] D.C. Parkes and J. Kalagnanam. Models for iterative multiattribute procurement auctions.
Management Science, 51(3):435–451, 2005.

[64] C. Patel, K. Supekar, and Y. Lee. A QoS oriented framework for adaptive management
of web service based workflows. InDatabase and Expert Systems Applications, pages
826–835. Springer, 2003.

[65] Siani Pearson. Taking account of privacy when designing cloud computing services. In
Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, pages 44–52. IEEE Computer Society, 2009.

[66] M. Pinedo.Scheduling: theory, algorithms, and systems. Springer Verlag, 2008.

[67] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms for usage
control. InProceedings of the 2008 ACM Symposium on Information, Computer and Com-
munications Security, pages 240–244, New York, NY, USA, 2008. ACM.

[68] Alexander Pretschner, Judith Ruesch, Christian Schaefer, and Thomas Walter. Formal
analyses of usage control policies. InARES, pages 98–105. IEEE Computer Society, 2009.

[69] Simple Object Access Protocol. http://www.w3.org/tr/soap/. Accessed: 20.06.2012.

85

[70] H. Psaier, F. Skopik, D. Schall, and S. Dustdar. Resource and agreement management
in dynamic crowdcomputing environments. InEnterprise Distributed Object Computing
Conference (EDOC), 2011 15th IEEE International, pages 193–202, Sep 2011.

[71] Shuping Ran. A model for web services discovery with qos. SIGecom Exch., 4(1):1–10,
March 2003.

[72] C. Ringelstein and S. Staab. Dialog: A distributed model for capturing provenance and
auditing information.International Journal of Web Services Research, 7(2):1–20, 2010.

[73] Florian Rosenberg, Max Benjamin Müller, Philipp Leitner, Anton Michlmayr, Athman
Bouguettaya, and Schahram Dustdar. Metaheuristic Optimization of Large-Scale QoS-
aware Service Compositions. InProceedings of the 2010 IEEE International Confer-
ence on Services Computing (SCC’10), pages 97–104, Washington, DC, USA, 2010. IEEE
Computer Society.

[74] Nick Russell and W.M.P. Van Der Aalst. Work distribution and resource management
in bpel4people: Capabilities and opportunities. InProceedings of the 20th international
conference on Advanced Information Systems Engineering, CAiSE ’08, pages 94–108,
Berlin, Heidelberg, 2008. Springer-Verlag.

[75] Benjamin Satzger, Harald Psaier, Daniel Schall, and Schahram Dustdar. Stimulating skill
evolution in market-based crowdsourcing. In Stefanie Rinderle-Ma, Farouk Toumani, and
Karsten Wolf, editors,Business Process Management, volume 6896 ofLecture Notes in
Computer Science, pages 66–82. Springer Berlin / Heidelberg, 2011.

[76] D. Schall.Human Interactions in Mixed Systems - Architecture, Protocols, and Algorithms.
PhD thesis, Vienna University of Technology, 2009.

[77] Daniel Schall and Schahram Dustdar. Dynamic context-sensitive pagerank for expertise
mining. InSocInfo ’10, pages 160–175. Springer-Verlag, 2010.

[78] I. Sourdis. Designs & Algorithms for Packet and Content Inspection.PhD thesis, Delft
University of Technology, 2007.

[79] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. Task-based adaptation for
ubiquitous computing.IEEE Transactions on Systems, Man, and Cybernetics, 36(3):328
–340, May 2006.

[80] Spiegel Online (In German). http://www.spiegel.de/wirtschaft/unternehmen/
0,1518,813388,00.html. Accessed: 20.06.2012.

[81] QiMing Tian, Li Li, Ling Jin, and XinXin Bai. A novel dynamic priority scheduling
algorithm of process engine in soa.Web Services, IEEE International Conference on,
pages 711–718, 2009.

[82] Amazon Mechanical Turk. http://www.mturk.com/. Accessed: 20.06.2012.

86

[83] W.M.P. Van Der Aalst, M. Rosemann, and M. Dumas. Deadline-based escalation in
process-aware information systems.Decision Support Systems, 43(2):492–511, 2007.

[84] The World Wide Web Consortium (W3C). http://www.w3.org/. Accessed: 20.06.2012.

[85] Web Services Business Process Execution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, April 2007.

[86] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James Hendler,
and Gerald Jay Sussman. Information accountability.Commun. ACM, 51(6):82–87, 2008.

[87] W. Xu, V. N. Venkatakrishnan, R. Sekar, and I. V. Ramakrishnan. A framework for building
privacy-conscious composite web services. In4th IEEE International Conference on Web
Services (Application Services and Industry Track)(ICWS), 2006.

[88] Yahoo! Answers. http://answers.yahoo.com/. Accessed: 20.06.2012.

[89] R.T. Yu-Lee.Essentials of Capacity Management. Essentials Series. Wiley, 2002.

[90] N. Yuhanna, M. Gilpin, L. Hogan, and A. Sahalie. Information fabric: Enterprise data
virtualization. White Paper, Forrester Research Inc, 2006.

[91] Chrysostomos Zeginis and Dimitris Plexousakis. Web service adaptation: State of the art
and research challenges.Cycle, 2:1–66, 2010.

[92] L. Zeng, H. Lei, and H. Chang. Monitoring the QoS for Web services. Service-Oriented
Computing–ICSOC 2007, pages 132–144, 2010.

[93] Liangzhao Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J.Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition.Software Engineering, IEEE Trans-
actions on, 30(5):311–327, may 2004.

[94] F. Zulkernine, P. Martin, C. Craddock, and K. Wilson. A policy-based middleware for web
services sla negotiation. InWeb Services, 2009. ICWS 2009. IEEE International Confer-
ence on, pages 1043 –1050, 2009.

87

	Introduction
	Problem Statement
	Contributions
	Evaluation Approach
	Published Papers
	Structure of the Thesis

	State of the Art
	Service-Oriented Architecture
	Service Level Agreements
	Service Level Management
	Human-provided Services
	Crowdsourcing
	Workforce Optimization

	Adaptive Prioritization of Requests in Orchestration Engines
	Overview
	Scenario
	Adaptation Model
	Experiments and Discussion
	Related Work
	Summary

	SLA-aware Scheduled Crowdsourcing
	Overview
	Scheduled Crowdsourcing
	Worker Skills and Job Quality
	QoS and SLA
	Scheduling
	SLA Offer Estimation
	Experiments
	Related Work
	Discussion
	Summary

	Optimized Execution of Business Processes with Crowdsourcing
	Overview
	Motivating Scenario
	Approach
	Evaluation
	Related Work
	Summary

	Private and Confidential Data Propagation Control in SOA
	Overview
	Motivating Scenario
	Providence Framework
	Related Work
	Evaluation
	Summary

	Conclusions and Future Research Directions
	Future research directions

	Bibliography

