Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technj

The app!

the Vien FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Provision of Service Level Agreements in
Human-Enhanced Service-Oriented
Computing Environments

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Roman Khazankin
Registration Number 0927683

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

(Prof. Dr. Schahram Dustdar) (Prof. Dr. Frank Leymann,
University of Stuttgart)

Wien, 20.06.2012
(Roman Khazankin)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Acknowledgements

First of all, | am very grateful to Prof. Schahram Dustdartfer opportunity to be a part of the
Distributed Systems Group (DSG) and to carry out my PhD esidinder his supervision. He
greatly supported me during all phases of my research, aighlybappreciate his assistance in
determining my research goals, and his encouragement suipgrthem. | am convinced that
this mentoring played a key role in realization of my potaitl would also like to thank Prof.
Frank Leymann from the University of Stuttgart for being nxaminer.

| am thankful to the Vienna Science and Technology Fund (WWaiRthe financial support
during my studies (project ICT08-032).

Another source of motivation and inspiration were my caless, who helped me to keep an
optimistic attitude throughout my time at DSG, to get rid ofubits regarding my work, and to
substantially improve it. In particular, | would like to thiaChristian Inzinger, Lukasz Juszczyk,
Vitaliy Liptchinsky, Michael Maurer, Emmanuel Mulo, HacalPsaier, Benjamin Satzger, Daniel
Schall, Florian Skopik, Martin Treiber, and Martin Vaskcdd a great time working with you
all!

Back in school days, my life was strongly influenced by sdvpemple. Some of them
might have been a reason my life became the way it is, andequbstly, the reason this thesis
exists. | specifically would like to acknowledge Albert Efimd/italiy Kharkin, and Rustem
Zhenodarov who taught me IT-related things and inspiredar@@htinue developing myself in
this area. Also, | would like to thank Marina Filtser, the bEaglish teacher | ever knew.

Most importantly, | am very grateful to my family. | want toahk my parents Veniamin and
Ludmila who have constantly supported me over my entiredlifd created many conditions for
my success; | am infinitely thankful to my precious wife Alaifor her patience, understanding,
and love. It is you who reminds me every day why life is wondg/ind inspires me to achieve
more.

Roman Khazankin
June, 2012
Vienna, Austria

Abstract

Deploying Service-Oriented Architecture (SOA) in ent&ps has become mainstream, as it
provides business agility benefits. Today’s technologiksvato integrate human labour to-
gether with software services into service-oriented aechires therefore achieving smooth au-
tomation of business processes in such mixed systems. Howempanies are continuously
trying to optimize expenses associated with human labciis fEsults into scarcity of available
resources and switching to more flexible paradigms of ermpéoyt such as crowdsourcing. At
the same time there is need to sustain the competitiveneisspogving the quality of provided
services and assuring Service Level Agreements (SLAS). edery the inherent uncertainty
of crowdsourcing environments and the impact of human fadtwrease risks and complicate
service level management. Although there is a solid amofirksearch on SLA-based opti-
mization, and techniques for prevention of SLA violationsSOA, however, it does not take
into account the specific features of human-provided andasourced services.

This thesis addresses the problems by identifying spediitral mechanisms and using
adaptive techniques that can appropriately react to umggpesvents and dynamically recon-
figure certain processes characteristics or resourceswvdstigates SLA provision in crowd-
sourcing environments and adaptable techniques for SL&r@execution of business process
dependent on human-provided services. It presents, ectinies, methods, and algorithms for
SLA negotiation and fulfillment, and cost-based optimi@atin such environments.

Contents

l1__Introduction 1
[1.1 _Problem Statement oo 2
[L.2_Contributiods 3
[1.3 Evaluation Approach o v v v 5
1.4 Published Papers oo oo 6

vi

CHAPTER

Introduction

The ever-growing information technologies industry isifins the demand for system integra-
tion, and service-oriented approach for integration ha®ime ubiquitous. Service composi-
tions are again provided as services, thus enriching theurner’s choice and giving him/her
alternatives regarding the trade-off between cost, guaimplicity, and trust, while allowing
the provider to benefit from the added value. Deploying Ser@driented Architecture (SOA)
in enterprises is considered mainstream, as it providemdss agility benefits [30]. From
business-to-business and business-to-consumer peavsgediffering services online has long
ago become not a feature, but a business model.

Service providers can give certain guarantees for theiricgs in form of Service Level
Agreements (SLAs). From a business process managemepepgve, such guarantees can
deliver significant additional value for services, as thap strengthen the certainty and pre-
dictability in process planning and design, and allow thescmners to use the provided services
in more critical business processés([1, 2, 26]. To fulfillegiguarantees, a service provider
should negotiate an agreement which is feasible in the famsepand so that already established
agreements are not endangered. Then, the provider needsuedhe agreement during its
period of validity. All that should take into account ungémg resources and systems to make
sure that there are enough resources to fulfill the agreeamehthe system is compliant with it.
Moreover, the activated resources should be balanced irydonainimize the expenses while
fulfilling negotiated SLAs.

While enterprises seek to automate all sorts of their frot lzack office operations to cut
costs and eliminate human factors, humans inevitably reemmkey elements of many business
processes. There is a plethora of activities that are hardpimduce with technology. Work
concerned with creativity, management, or social comnaiiaio, performed by a machine in a
real business process is still hardly imaginable. Evercladivities, such as image recognition
or categorization, as well as those requiring specificskdlich as text translation or usability
testing, are difficult to fulfill with software only.

Integration of human labour into service-oriented archtitees was investigated both in re-
search([76] and in industry [4, 24]. The developed framewdrkwever mainly provide capa-

1

bilities of interfacing with people in SOA. They allow to comunicate with the workforce via
standardized interfaces like Web Services and enable esarimtegration of human-provided
services into processes expressed with a standardizedssregecution languade [43].

1.1 Problem Statement

While trying to optimize expenses associated with humanugbcompanies have to improve
the quality of provided services in order to stay competitiHowever, the resulting scarcity
of resources increases the impact of human factors, fledidsieand, and unexpected situations
on the running processes, as they become harder to escélaee issues become even more
critical when the services dependent on human resources3iads bound:

e Unexpected situations, such as when service failures paduen demand gets higher
than anticipated, or when unplanned structural changepemam a process, can obvi-
ously affect the fulfillment of SLAs. In context of human wdatlcan result in temporary
situations when there are simply not enough human resotwcsgstain the workload.
From the SLA perspective, it means that response time amdighput guarantees for
particular customers might be violated.

e Flexible demand poses a dilemma for management: eitheuffieisnt workforce should
be kept and thus periodically be idle, or it can be reducetith®n peak loads would re-
sult into performance bottlenecks. For certain types dlapflexible demand can be met
by using recently emerged paradigms of employment - intenma external crowdsourc-
ing [18,33]. Crowdsourcing allows to outsource tasks to adefined network of peo-
ple via a crowdsourcing platform maintained either withie enterprise (internal crowd-
sourcing) or by a third party (external crowdsourcing). Heer, current crowdsourcing
solutions do not provide guarantees regarding task pringeme. A customer can offer
higher payments for tasks, which can of course shorten theepsing time, but, never-
theless, no exact guarantees are given to him/her, andat idear which reward should
be given to actually have the task done in time. Also, taskgssing quality in external
crowdsourcing is not trivial to control, anyonecan register in the platform. Although
some platforms provide the possibility to put qualificatrequirements on tasks, there are
no mechanisms that are able to ensure that a task is goingorobessed with this quality
before the certain deadline.

e Human factors can never be eliminated completely due to timean nature, however,
proper software tools can reduce the risk associated witmthCertain Service Level
Objectives (SLOs), such as security and privacy conceras,be directly affected by
both underlying information systems and people that manemefigure, and work with
these systems. Therefore, to ensure the level of the prbderices, workers need to be
equipped with special tools that allow to analyze proceflsgsng inside the company,
align them with feasible SLAs, and prevent the misuse of dataived from consumers.

On the one hand, many studies have been devoted to ensurikg \Bling various mech-
anisms, such as modification or re-composition of businessegs, replacement of services,

2

or re-configuration of service platforms and computatioeaburces, i.e., load balancing [91].
While these methods are applicable for software servicaisdaie mainly constrained by hard-
ware resources, they do not take into account the specifigrésaof human-provided and crowd-
sourced services. On the other hand, a solid amount of ckséas been done in the field of
workforce optimization which focuses on how to efficientliga the demand with the work-
force size and scheduling [21,/28]. While the addressedi@mbare relevant, there is no clear
way of applying the results of this research to SOAs, as thessded problems are usually strict
and devoted to very particular industry cases.

Currently available technologies and approaches areftreneot sufficient for creating solid
human-enhanced service-oriented systems that allow toatdhe guaranteed level of service.
This thesis focuses on the these shortcomings and aimsdtveebe following generalized
problems:

e How can we influence business processes that comprise hproaided or crowdsourced
services in a way that allows us to keep them compliant tdbésiteed SLAS?

e From the service provider’s point of view, how can we efietyi estimate feasible Service
Level Objectives for crowdsourced and human-providedices?

e How can we improve the quality and level of such services?

The thesis considers these problems in different conteliesevhuman work can be regarded
as a key property. The next section describes those areasaih d

1.2 Contributions

With the focus on service-oriented systems that compriseamdprovided services, the main
contributions of the thesis are to investigates fine-graimm| mechanisms, architectures, and
effective algorithms, that allow to negotiate feasible Slidased on available resources and
current processes states, perform dynamic SLA-basedatitaqs to ensure the fulfillment of
agreements, improve overall Quality of Service (QoS), aulice costs of process execution
while adhering to SLAs. Specifically, the following areas aonsidered:

e Adaptive request prioritization in process engines

Humans naturally work at lower speeds than software-basedcss. If such “low-
throughput” services are part of concurrent process, tleran which process instances
get the response from them can significantly impact processugion times. If the sys-
tem gets temporarily overloaded or some processes aredat®dinexpected delays, the
SLAs might be violated due to the shortage of human resoureesvever, the control
over the ordering of service requests can reduce penaltg®eent violations at all. This
can be achieved by transferring the priority from less toermitical processes. In this
context, the work comprises the following contributions:

— A conceptual architecture that enables the support for mjmae-prioritization of
requests by business process engines.

— A prioritizing algorithm that minimizes penalties based established SLAs and
execution states of running processes at runtime.

— An evaluation of the performance and comparison with theveotional First-In-
First-Out request processing.

e SLA-driven provision of crowdsourcing services

Current crowdsourcing providers do not provide guarantegarding task processing
time therefore prohibiting the use of SLAs for crowdsoursedvices. This is mainly be-
cause their architecture follows a market-like operatioaic where a platform announces
received tasks at the web-portal and then workers choosa@the assorted mass of task
that they like to process. The selection is thus motivatethbypersonal preferences of
workers, and is not influenced by any additional mechanishwsaddress these issues,
the platform architecture can be altered so that the workersassigned to tasks the
platform In this case workers register at the platform, provide rimf@tion about their
skills and availability, and expect the platform to allagdsks to them accordingly. This
approach provides fine-grain control over assignmentsnaaias it possible to establish
SLAs. However, this requires to resolve such issues as taiicies in availability of
human resources, diversity of workers in terms of theidskdnd prediction of platform
capacity. This work investigates this approach and cartesitthe following corresponding
contributions:

— A conceptual platform architecturscheduled crowdsourcinghat support SLA-
based task processing.

— Algorithms for estimating feasible level objectives, SLégotiation, and SLA-based
task assignment in a scheduled crowdsourcing platform.

— Analysis of the overall service level improvement in schHeducrowdsourcing by
comparison the with different task assignment approaches.

¢ Incentive-based approach for SLA-aware business processexecution on crowd-
sourcing platforms

Big companies have recognized the advantages of a flexibleeps management ap-
proach [38] where the tasks that need to be done are annquaggedin an internal
crowdsourcing platform, and executors are selected amagal employees or external
contractors viecompetition People book tasks voluntarily in competition-based crowd
sourcing, which means the only way to influence booking art@txon times of single
tasks is to either change incentives or modify other asp#ctstask, e.g., define a later
deadline. Given a process that comprises a humber of suelisonirced tasks, it is not
clear how to cope with SLAs, i.e., how to adjust the aforenometd aspects of tasks so
that the process is completed in concordance with the giuaregtees. Moreover, a com-
pany is interested in reducing overall operational cosesetfore, the parameters should
be chosen in a way to minimize the cost associated with crouwrdsg while adhering to
SLAs. The thesis provides the following contributions tali$s these problems:

— An approach for SLA-aware execution of business processdepof an internal
crowdsourcing platform.

— Algorithms for statistical learning of crowd charactddstand for cost- and SLA-
based process optimization.

— An evaluation of efficiency and performance of the approaxtdiverse processes
characteristics.

e Monitoring of data usage to negotiate and ensure privacy-fated objectives

Companies are responsible for the data obtained from sartftat are offered to cus-
tomers or partners. However, the inappropriate use of dataheppen unintentionally
due to human factors in process and software design, anéhtiegaation activities, as the
data comes to be maintained in various locations by diftgpanties. This is especially
important for privacy terms stated in an SLA. With that refpéig companies have a
problem to track the usage of private data throughout thé&rination systems and guar-
antee that it is used according to the negotiated agreeme@nis contributions for this

problem are the following:

— An architecture for tracking of private data usage throufgthbe service-oriented
enterprise system.

— Mechanisms to assess the feasible guarantees that canlumethinto an SLA re-
garding the private data.

— Mechanisms to prevent the privacy-related SLA violations.

For all of the proposed solutions, prototype implementetiovere performed and evaluated.
To facilitate evaluations, the simulated environment$ tbproduce the problems addressed by
the solutions (e.g., flexible demand, unexpected situsitiand service failures) were designed.

1.3 Evaluation Approach

The goals of the thesis are to highlight the capabilities @noge the feasibility of the proposed
novel methods and architectures, as well as to discoverltheiations and applicability in the
domain.

Due to the nature of the contributions, they cannot be testedenchmarks or some sta-
tistical data. As the proposed solutions result in a diregtdct on the behavior of software
systems, the evaluation requires feedback which desdtileesffect of deploying the solutions,
and which can only be retrieved from a real system. The etialuén real business environ-
ments would however require certain efforts and up-fromestments for developing quality
software and re-designing the corresponding systems,easatfitributions propose significant
changes in architectures of large-scale and critical BystdBecause of these reasons, we were
not able to perform experiments on real data, and the evatudtis been done through the
simulation of corresponding environments and system, sezvice-oriented systems, business
process execution engines, and crowdsourcing platforms.

Although we tried to prognosticate the meaningful paransesad to consider a wide range
of setups for simulations, the effectiveness of algoritlid@gends on particular business settings
and requirements which can still vary from the simulatetirsto certain extent. This was the
reason why we did not intend to achieve best performanceraltiner to design base solutions
which still deliver value, but can be perceived and repreduwithout a tremendous effort. In
practical use, these solutions can be extended to take dotmuat the specifics of a particular
business setup.

1.4 Published Papers

The results of this research have been published at ackdgedeinternational conferences in
the domain.
1. Predicting QoS in Scheduled Crowdsourcing.
Khazankin R., Schall D., Dustdar S.
The 24th International Conference on Advanced Informafgstems Engineering (CAISE’12),
June 13-16, 2012, Gdansk, Poland.
2. QoS-based Task Scheduling in Crowdsourcing Environments.
Khazankin R., Psaier H., Schall D., Dustdar S.
9th International Conference on Service Oriented CompgytitSOC’'11), December 5-8,
2011, Paphos, Cyprus.
3. Adaptive Request Prioritization in Dynamic Service-ormehSystems.
Khazankin R., Schall D., Dustdar S.
The 8th International Conference on Services Computing($0, July 4-9, 2011, Wash-
ington DC, USA Best student paper award.
4. PROVIDENCE: A Framework for Private Data Propagation Cahin Service-Oriented
Systems.
Khazankin R., Dustdar S.
ServiceWave 2010, December 13 - 15, 2010, Ghent, Belgium.

1.5 Structure of the Thesis

The structure of the thesis is strongly aligned with its dbations. The content is mainly split
into three parts:

1. The introductory part which gives an overview of statenefart in areas that this thesis is
concerned with. Chaptér 2 explains how the research isipsd within the domains of
service-oriented systems, SLAs, and crowdsourcing. Afsthis chapter, we define the
focus of the dissertation, and review the related reseawnk @ this field.

2. The main contribution which describes the proposed amiwes and their evaluation in
detail. The part is split into four chapters:

e Chaptef B proposes the adaptive request prioritizationoggp that enhances a busi-
ness process engine to support SLA-driven execution ofggsas that comprise
“low-throughput” services.

e Chaptef# introducescheduled crowdsourcingpncept and investigates SLA nego-
tiation and fulfillment techniques for crowdsourcing.

e Chapter b presents an incentive-based SLA-aware methoexémuting business
processes on top of an internal crowdsourcing platform.

e Chaptef.b presentBrovidence a framework for negotiating and ensuring data pri-
vacy SLA terms for large-scale service-oriented systems.

3. The conclusion part presented in Chapter 7 summarizexctiieved results, discusses the
practical applications of the work, and provides an outlémkfurther possible research
directions.

CHAPTER

State of the Art

This chapter provides an overall state of the art overviear@as related to the thesis. We show
which parts and aspects of those areas are covered by thisamdrhow is it positioned in
the domain. Although the thesis addresses a narrow set bfgong, it touches upon manifold
specific fields. Therefore, more focused discussion ofadlagsearch for each contribution is
given inRelated Worlsection of corresponding chapters.

2.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a system designiatadjration approach that aims to
improve flexibility, governance, and change managemenbfbivare systems, and also to pro-
vide a better perspective on the implemented processestfrermusiness point of view. SOA
establishes a solid high-level outlook on enterprise mfation systems while hiding not rele-
vant low-level details. It simplifies the implementationtogh-level business logic and helps
to unify process representation. This consequently malessier to map actual process imple-
mentation to business models, e.g., using Business Prbtadalling Notation (BPMN)[[58],
and thus allows to lesser the gap in understanding betweandThanagement representatives.
As a result, it helps to better understand the processesifijowia company, and improve them
more effectively.

The main principles of SOA are loose coupling, reusabityd composability[[19], that
mainly become enabled by the underlying technology. Welices are the state-of-art technol-
ogy for SOA [61]. Created and supported by W3C standardizatonsortium[84], they provide
the platform independency for SOA implementations. Themesments of web services’ tech-
nological stack are Web Service Description Language (WSBE] which enables to specify
standardized service contracts, Simple Object Acces®&b{SOAP) [69] which standardizes
the information exchange with web services, Business Bsdggecution Language (BPEL) [43]
which allows to design and execute business processes af togb services, and eXtendable
Markup Language (XML)[[44] which is used by all the other stards. Enterprise Service Bus

9

(ESB) delivers centralized control over message routirggiation, adaptation, and transforma-
tion, as well as for governance and security of the servistegy. The complementary standards
like WS-Coordination, WS-Security, WS-Policy, and othentiance the the basic specifications
and provide the additional capabilities for transacti@esurity, and policy compliance.

Although SOA is being successfully deployed in various stdas [30], there is a huge po-
tential for improvement in the field. Most important reséaohallenges in Service-Oriented
Systems among others are dynamically reconfigurable renfimhitectures, semantically en-
hanced service discovery, QoS-aware service compositdyramic and adaptive processes,
service governance, Self-* properties (configuring, adgpthealing, optimizing, protecting),
service versioning and adaptivity [62].

This thesis touches upon a number of those challenges. ikdaptuest prioritization and
incentive-based process execution deal with dynamic peeseand use runtime QoS-aware
adaptation and self-adapting management techniques aottiext of human-provided services.
Scheduled crowdsourcing enables crowdsourced servidesiteluded into QoS-aware service
compositions. The Providence framework enhances seraeergance in the context of han-
dling of confidential and privacy-sensitive data.

2.2 Service Level Agreements

A Service Level Agreement provides means to formalize thegantees regarding non-functional
properties of a service for the consumer. An SLA normallydésm of a contract and is com-
posed of a number of general terms and conditions, e.g., @atyfor the service, as well as
Service Level Objectives (SLOs) that characterize thergygarantees. SLO is usually related
to a specific metric and formally describes a way to measpaataranteed value, and a penalty
incurred in case of non-fulfillment. For example, an SLO derilability can be measured as
number of successfully served requests divided by a totalbeun of requests within a month,
claim the guaranteed value of 0.999, and, if the eventuadigsured value turns out to be lower,
waive the monthly payment for the service. Penalty fundioan be applied not only to partic-
ular SLO, but to a group of SLOs or to the whole agreement. HEreygenerally not restricted
in their form, so they can include several metrics and imgleihcomplex logic.

2.2.1 Quality of Service

The relevant metrics for provision of services are usuafgnred to as Quality of Service (QoS)
metrics, and describe performance, security, and transatitoncerns. Table 2.1 lists the most
featured QoS metrics in literature [23]59, 71].

In context of the problems addressed by the thesis, we facwsfmaction of these metrics
which is relevant to human-provided and crowdsourced sesviln such a mixed system which
relies on software components and infrastructure, as welhehuman labour, some metrics are
solely dependent on the former, while others can be stroaffeted by the latter:

e Metrics like traceability, auditability, and scalabilire suitable for auditing the service
portfolio of a company. However, they are either not relévan establishing SLAs, or
should be represented by more specific metricsdiggacity

10

Table 2.1: Quality of Service metrics

Name | Description
Performance
Scalability The ability of a service to process more requests

given period.

Robustness/flexibility

The degree to which a service handles correctly invali

incomplete or conflicting inputs.

Availability The probability of successful processing of a requ
by a service.
Reliability The ability of a service to provide the claimed fun

tionality under stated conditions for a specified per
of time. More fine-grain metrics include Mean time b
tween failure (MTBF), Mean Time to Failure (MTF
and Mean Time To Transition (MTTT).

Response time

How long does it take a service to process a reqy
Sometimes the term is used interchangeably Jéth
tency however, SOA practitioners define latency

est.

as

minimum time required to get any form of response,

therefore referring to the time spent on the wire [25].

Capacity The amount of requests that can be served by a se
in parallel.
Throughput The amount of requests that can be served over a S
ified period of time.
Accuracy The error rate produced by the service.
Transactions
Integrity The ability of a service to conform to transactior

ACID properties: Atomicity, Consistency, Isolatig
and Durability.

Security

Authentication, authorization, an
encryption

d Mechanisms that are used to secure the information

change and access to the service.

Confidentiality and accountability

The guarantees given regarding the usage of data
mitted to the service.

rvice

pec-

al

ex-

sub-

Traceability and auditability

The ability of tracking the service requests and anal
its performance.

yze

e Robustness depends on system design, i.e., how much efisrdevoted for input data
consistency checking, handling of incorrect input datal sm on. Integrity is achieved
by aligning the underlying components with transactiontammechanisms offered by
the service. Authentication, authorization, and encoyptlso represent mainly technical

cross-cutting concerns.

11

e Availability and reliability depend on both underlying tetcal infrastructure and human
resources. A failure can occur due to technical reasons,netyvork, software, and hard-
ware issues. Such problems are not dependent on the hunsarnrfeolved in provision of
service functionality. Also, a failure can be caused by gognan resource management
or unsatisfactory human work that result in poor quality &inteliness of the provided
service. These factors are covered by more specific low-haegics considered below.

e Response time, capacity, throughput, and accuracy anegbgraffected by underlying
human resources, as usually humans are diverse in thd# akil work at slower speeds
than software components. Also, human resource managemepiarticularly workforce
scheduling can significantly affect these metrics. Contfidéty and accountability can
be facilitated by special technologies for access contrdldata provenance. However, in
large enterprises, there are more prone to human factoesibed gets easier to overlook
the inappropriate use of data when it comes to be maintaimedious locations by
different parties.

This work focuses on the latter group for which human work thasstrongest impact, and
aims to facilitate service-oriented systems with more &da@mnd automated approaches for
negotiating and ensuring these properties.

2.3 Service Level Management

Service level management is continiously gaining attenfrom both business and research
communities. From the business perspective, it is consilene of the key areas of IT service
management and the best practices in this area are copgaalving [53]. The research com-
munity is directed towards more automated SLA negotiatiod ensurance, and investigates
approaches and frameworks that that aim to make serviceneugagement more autonomous,
efficient, and agile.

2.3.1 SLA negotiation

A most prominent approach for automated SLA negotiation pel&cy-based approach where
the process is driven by a negotiation policy which inclubdiggh-level goals, service level ob-
jectives, constraints (like best and worst acceptableagalar service level objectives), options,
and preferences (such as priorities and weights) [9, 184(6,A decision support system is
then used to calculate and negotiate optimal objectiveegdhased on the policy. These models
and technologies allow to customize and perform fine confrtiie SLA negotiation process on
different levels, whereas the approaches proposed inltegs aim to estimate feasible values
and offers based on the underlying resources that can seevbasis for SLA management.
The technical aspects of SLA negotiation include agreeingiegotiation phases, steps,
and logic. Also semantic problems can arise if consumer aodiger do not share a common
understanding of metrics and objectives used in SLA off@ilsese problems are resolved by
using standardized negotiation protocols and languagesiim to establish an efficient dialog

12

between consumer and providér [32], 42]. This thesis doedacols on technical details of
negotiation and approaches the SLA negotiation issueseohigfmer level.

2.3.2 SLA ensurance and violation prevention

In the first place, SLA fulfillment assumes that there are ghagsources to handle the current
and anticipated demand. The problems in this area are dtingiecapacity management and
planning [89].

However, as it was discussed in Chagter 1, a mixed servidersysannot be fully pre-
dictable due to human factors, flexible demand, or unexgastents. To overcome these issues,
a system has to spot and escalate such issues in an adapfivéasiaus adaptive mechanisms
can be used to keep a Service-Oriented System compliant As,S3uch as modification or
re-composition of business process, replacement of sz re-configuration of service plat-
forms and computational resources (i.e., load balanci@gj). [Prevention of violations can be
enhanced by collecting the knowledge about the impact dfiblesactions on the service com-
position, e.g., by using machine learning|[46]. These aggites can only be applied when
the appropriate mechanisms for adaptation are well-definédntegrated into the system’s ar-
chitecture. However, in the context of human-provided ises; such adaptation mechanisms
were not investigated, and the existing ones do not provishepcehensive means to address
the problems described in Section]1.1. This thesis aimsitigéithis gap and to identify such
mechanisms, as well as propose and evaluate algorithmsralmiteatures that can effectively
use them.

2.4 Human-provided Services

Major industry players have been working towards standardliprotocols and languages for
interfacing with people in SOA. Specifications such as W3ndnTask[[24] and BPEL4People
[4] address the lack of human interactions in service-teigbusinesses [49].

These specifications allow to put additional managementnimétion into process descrip-
tion, including task stakeholders, employee and task graagk states and priorities, time-outs
and escalation rules, etc. For a business process engatea sask looks like a regular web ser-
vice and should be handled the same way. However, the tosdsilmmn these specifications allow
advanced activities for the people assigned to tasks, sufdrnaarding, delegating, suspending
and resuming, and also provide coordination mechanismaémagers.

Such standards are undoubtedly useful and provide solittfations for creating more flex-
ible service-oriented systems with human interactionswél@r, they only provide technical
means but do not offer solutions for SLA provisioning in ssgistems, and therefore are com-
plementary to the methods and algorithms discussed in thik.w

2.5 Crowdsourcing

Crowdsourcing ian act of taking a task traditionally performed by a desiged agent (such as
an employee or a contractor) and outsourcing it by makingperocall to an undefined but large

13

group of people”[31]. The application area of crowdsourcing is very broad] ancludes use
and application of collective intelligence, mass creatin®ks, filtering and organizing of vast
information stores, use of the crowd’s collective pocketb¢crowdfunding), and so on. Recent
efforts demonstrate the successful adoption of crowdsugiat an ever-increasing rate, and the
amounts of both platforms and workers in such platforms mpe&ed to grow rapidly [18].

Crowdsourcing can take different forms. Among others, it ba contest-based (e.g., when
workers propose solutions for the problem, and only one eitlis chosen and rewarded) or
implement “crowd wisdom” approaches (when an undefined m@upeople collaborates to
solve a problem). This thesis features a specific type of dsowrcing which is used to process
independent self-contained tasks with crowd workforcexichange for rewards. Two types of
platforms can be distinguished in this context:

e External crowdsourcingrovides the ability to outsource human labour to a thirdypar
which acts as a broker and accumulates the workforce fooprifig the outsourced
tasks. A crowdsourcing provider establishes contracth witrkers and defines the in-
ternal policies and mechanisms for task assignment. Focaheumer, the process of
having a task done is therefore simplified to the form of safewservice invocation, thus
releasing him/her from workforce contractual and mainterassues. Moreover, such a
scheme allows consumers to satisfy flexible demand as thegutamit arbitrary amount
of tasks to the platform. Such an approach is good for outgagirtasks with minor
effort that, however, require human capabilities (e.@ngcription, classification, or cat-
egorization taskd [35]). Examples of such systems are Amagechanical Turk([8R2],
Crowd-Flower[[17] and ClowdCrowd [15].

¢ Internal crowdsouringhas the similar architecture at its core, but the platfordeisloyed
internally and is accessed only by company’s employees t@rmeed contractors. It al-
lows a company to utilize the skills of already employed pedp a more flexible way
by enabling workers to choose tasks they wish to performeatsof assigning them di-
rectly. On the one hand, the participants can gain more lesnog processing additional
tasks, on the other hand, it helps the company to discoveerpertise and skills of their
employees. It also allows to establish straightforwardameling mechanisms and there-
fore directly motivating people to produce more and bettsults. As the membership
of the platform is limited by internal workforce, it reducsscurity issues and allows to
crowdsource more complex, critical, and domain-specifiksebecause the workers are
motivated to guard their reputation and are experienceddmbmain.

Although crowdsourcing provides indisputable benefitsrerare several issues that prevent
it from being extensively used in everyday business praseg38]. The flexibility offered by
a platform makes it at the same time a complicated task tagiradd control the timeliness
and, for external crowdsourcing, also the quality of theenasd results. Currently, these plat-
forms maintain a market-like architecture where workegister at choose the tasks they like to
process, and there is no active influence upon assignmesta. résult, the platform is unable
to give any certain guarantees regarding the time of prowgsstask or the outcome quality a
customer can expect. The work in this thesis features batbettypes of crowdsourcing, and

14

presents approaches to enhance such platforms with agditapabilities for negotiating and
fulfilling the processing time and quality guarantees.

2.6 Workforce Optimization

Workforce optimization focuses on improving operationfficeency and managing the work-
force effectively. A huge amount of research has been dottgsriield with focus on different
industries [[21], 28]. The addressed problems include demaukling, satisfaction of the con-
straints arising from workplace regulations, line of wodnstruction, shift scheduling, days off
scheduling, consideration of social and psychologicaaff impact, and so on.

However, the considered models and algorithms requirefisignt modification when they
are to be transferred to a different application area [204, there is no clear way of applying
the results to SOA and crowdsourcing environments. Neghkss, the research in this area
can be used to improve and complement the methods we prapdsis ivork, e.g., by refining
proposed scheduling algorithms with consideration of eygs satisfaction factors. Another
example would be the usage of the prioritization approaesemted in Chaptél 3 on top of a
staff scheduling framework, so that the staff schedulimgpadhms are used to meet the overall
demand and fulfill the regulations, while request priostian is used to perform SLAs-based
fine-tuning of the service-oriented system.

15

CHAPTER

Adaptive Prioritization of Requests in
Orchestration Engines

The availability of scarce resources in a service-orierggstem demands for context-aware
selection policies that adapt based on service level agnetsn One of the open issues is to
prioritize service requests in dynamically changing eswinents where concurrent instances
of processes may compete for resources. Here we proposdimeaumonitoring approach to
observe the actual state of the system. We argue that mr#oshould be assigned to requests
based on potential violations of SLA objectives. While msdsting work in the area of quality
of service monitoring and SLA modeling focuses typically murely technical systems, we
consider service-oriented systems spanning both softbased services and human actors.

The approach presented in this chapter helps to cope wisie thieallenges by prioritizing
service requests that may cause violations of service thjettives such agsponse timand
capacitythat are associated with processes.

3.1 Overview

Service-oriented systems have become an important appred technological framework
to solve problems in distributed computing environmentali@nges in distributed service-
oriented systems include the discovery of resources andtonioig of the system’s runtime
behavior. Capturing the current state of the system is #ak@ndynamic environments where
services are discovered and invoked at runtime. Reseatbk #rea of quality of service (QoS)
modeling and monitoring (e.g., see [56]) has provided aromant building block to observe
the runtime state of a service-oriented system. Keepingcesr compliant to SLAs is crucial
in a service-oriented system. Usually, if the system isglesi properly and acts as expected
(e.g., response time and service availability), the SLAaissfied. However, both internal and
external factors can compromise the overall performandbenystem. While the strategic ac-
tions should be taken to prevent the system from enteringsirable conditions (e.g., through

17

o o
@ Request e
Analyze .
Y Information
. e
Estimate
Costs

Figure 3.1a: Comprehensive insurance claim process

8
Perform
Expertise

Make
Decision

Register
Claim

Reimburse?

replicating the components, adding resources), the ma-tidaptation can also be performed
in attempt to minimize the penalties in given situationsistdan be especially important when
multiple processes need to access shared resources inle@ingnanner. Assume a process
consisting of multiple activities, some of them enactedrypking software services and certain
activities performed by human actors. In a service-origstestem, such a scenario could be re-
alized by modeling and enacting compositions using ther®ssi Process Execution Language
(BPEL) [85], where human steps are modeled using BPEL4Remp WS-HumanTask [49,[74].
Service provided by human actors can be regarded as ‘lowghput’ services because humans
naturally work at lower speeds than software-based sexvitfehuman-based low throughput
services are part of a process, the order in which procestdbagresponse from such services
impacts the process execution times. If the system getdoaekrd or some processes are late
due to unexpected delays, the SLAs might be violated. Horvéwe control over the ordering
of service requests can reduce the penalties or prevenidlatiens at all. A specific example
of such a situation is described in Section 3.2.

To address these challenges, we propose a dynamic adappooach and heuristic prior-
itizing algorithm that analyzes the current state of theviseroriented system at run-time and
prioritizes service requests according to SLAs bound togsses in the system. We assume that
the execution state of all the processes in a service-edesystem is accessible, and that the
penalty functions of SLAs are provided. The main idea belidalgorithm is that the priority
of a service execution is given to those processes that peeted to produce the highest penal-
ties if this service is delayed for them. To illustrate oupigach, we discuss insurance claim
processes.

3.2 Scenario

To illustrate our approach, we discuss a motivating scenahiere processes are designed and
executed in the context of insurance claim handling. We labHifferent kinds of insurance
processes: the first one dealing witbamprehensivéFigure 3.1h) insurance plan and the second
with liability (Figure[3.1b) coverage.

The comprehensive plan ensures that damage (for examptieator vandalism) is be-
ing paid by the insurance company. In certain European desntliability is the minimum
insurance coverage everyone must have due to governmemdtiogs. As an example, if A is
responsible for the damage of B, then As insurance compaust pay for B's damage. Fig-

18

Perform
Expertise

B &
@ Register Make
Claim Decision

Figure 3.1b: Liability insurance claim process

Reimburse?

ure[3.18 shows the process for the comprehensive insurdaace People obtaining coverage
through this plan may be regular or premium customers. Femjm customers, the insurance
company wants to provide better quality of service as foull@gcustomers. For example, faster
processing of the insurance claim. The process is initiakedoon as the customer issues an
insurance claim. The registration of the claim is perforragtbmatically by a software service.
In the next step the process splits into two parallel brascBased on the issued claim, a soft-
ware service is invoked (stdgstimate Co3tto perform an automatic calculation of the expected
costs. A person from the insurance company analyzes thizedogaim and typically requests
further information from the customer. After both branchase finished, a decision is made by
a supervisor. The outcome may be to reimburse the custonmetom the first case, an expert
reviews the case by visiting the customer to obtain precdserstanding of the damage upon
which actual calculations are made. The alternate casédraims by sending a (auto-)generated
notification to the customer.

The second process example is shown in Figurel 3.1b. In critvahe comprehensive
insurance example in Figure_3l1a, we assume in this scetatithe person filing the claim is
not a customer of the insurance company. The process is thersifopler because the person
filing the insurance claim only receives limited supporg)(ehelp desk) and also limited service-
level guarantees are given. The process is initiated inahsnanner as in the comprehensive
insurance plan example. Afterwards, a decision is madadm@asesceived information. The next
steps are again equivalent to the stdperform Expertiseand notification) of the first process.

What these processes have in common is that they access shaoeirces. For example,
by invoking a service in the steerform Expertise If a process invokes this service, other
processes (instances) may need to wait until free resoapacities are available. However,
this could cause violations in SLA objectives. Thus, cdrefiheduling of requests is needed to
satisfy customer needs.

3.3 Adaptation Model

In this section we describe the conceptual architectureuofsolution, the prioritization algo-
rithm, and the remarks regarding the deployment of suchwisnolin a real SOA. We assume
that all services in the system are atomic (not composisa),eacan decompose all such services.

19

S1 adaptation loop

S2 adaptation loop

Analyze and Analyze and
Calculate Set priorities —— Calculate Set priorites —
priorities priorities
| I B
Continue Continue
Collect data execution Collect data execution
T ? Services’ QoS
T T Services QoS P monlltjorllng
Processes structure, states and SLAs module
I
‘ —Prioritiesi Priorities QoS Monitoring
Orchestration engine Sehedul A
cheduler Re-ordered
— —p | I, W -
Processes: Requests proxy S1 requests | | :
4 1
| | '
o Scheduler Re-ordered H
Reqt P proxy S2 requests | | 2
| | H
SLA Requests’ : :: S3 *‘S
% H H H R Bttt E T L Replies»-----------------------I\----7I--------:
SLA Control flow —— Services

Data exchange —»
Message exchange —» ----P>

Figure 3.2: The overall architecture of the approach

3.3.1 Conceptual Architecture

The architecture of the approach is depicted by Figure 3@mhlly, when a process invokes
a service, a request message is sent to the service endgoittie order in which requests
are processed by a service is determined by this servicgkimentation which is unaware of
processes running, SLAs, or other context information. Unapproach, a scheduler proxy is
created and assigned to each service whose request paait: being adapted. The scheduler
proxy intercepts requests to the service and reorders tieeording to prior defined priorities.
The scheduler is aware of the service's QoS (through the tovimg module), so it dispatches
requests towards the service depending on the availaldefgacities. It ensures that the prior-
ities are obeyed. The priorities are periodically updatgdr adaptation component associated
with the service. This component implements the common MAMEBNitor, Analyze, Plan,
Execute) loop logic. As the re-ordering is performed betbeerequests are sent to a service,
the actual location of the service does not play a role,it.egn be both externally or internally
provided service.

The adaptation loop consists of three phases:

1. Collection of context and monitoring informatiori.he structure, the current execution
state, and penalty functions (from SLAS) of all currentiyhwming processes as well as
the QoS information are collected from the orchestratiogirenand from the monitoring
module respectively. We use a deterministic QoS model, sa#pacity and response

20

Input : ServicesS, its response tim&rr
Input : Set of processeB, for each procesg penalty functionZ, ()
Output: Ranked requests
1 for process in P do
2 R, = pending requests ¢ in p
3 R, =requests ob predicted to be made durin§r/2 period inp
4 R=R,UR.
5 Assume that replies of all requestsiinare received aftefr, predict timet of
finish for proces®
6 lo=Ly(t);!! Default penalty
7 for requestr in R do
Assume that a reply of is received afte6rr * 2 and replies of all other requests
in R are received afte$zr, predict timet,. of finish forp
9 l.=Ly(t,);/! Penalty for current request
10 d-=1.-—1y;!l Difference between default penalty and the
penalty for current request
11 Add the tuple ofr, d,., and request timg (either real or predicted) to ligb
12 end
13 end
14 Sort D descending by, then ascending by
15 ReturnD

Listing 3.1: Prioritization algorithm.

time are considered single values. We do not focus on plati@pproaches for QoS
monitoring which represents an extensively studied distiasearch field (see, e.d., [56,
92]).

2. Calculation of request prioritiesThe collected data is passed to the algorithm (See Listing
[3.3) which calculates priorities for forthcoming and rettemade requests to the service.

3. Scheduler updateThe corresponding scheduler is updated with the calculatiedities,
so the requests to the service can be ordered accordingly.

Iterations in the adaptation thread are performed with #v@g of the half of the service’s
response time. This value equals to prediction period ifigg8.1, line 3). The value was
selected empirically. As it was evaluated in experimeffithe period was greater, the algorithm
performed poorer as sometimes service capacity was unoséohig while waiting for predicted
requests, however, the lesser period did not improve tHenpeance of the algorithm.

3.3.2 Deployment in a Service-oriented System

Although not the main focus of this work, we give a short asalyf the mapping and deploy-
ment of our conceptual architecture in real SOA environmeklite assume that there is single
and accessible (in-house) orchestration engine. Our appraould also work with multiple

21

& 3
Analvze Reques Perform
Y Informat @ Expertise
Make
Decision

Register
Claim

Estimate
Costs

Reimburse?

Instance 1
Current execution time 3.1 sec

& R t(%
eques
ATEINS Information
&
Make
G Decision

Estimate
Costs

Perform
Expertise

Register
Claim

Reimburse?

Instance 2
Current execution time 0.3 sec

Figure 3.3: An example of process states

deployed orchestration engines in the environment. Howéwesimplicity of discussions, we
assume only a single engine. In order to enable the depldyaiehe proposed architecture,
the orchestration engine should be extended to supply thetaiibn loops with process state
information. Many SOAs have moved towards a bus-orientedsaging backbone. An enter-
prise service bus (ESB) should be configured to support sidregroxies. We expect these
extensions to be implemented as plugins for correspond®d é&mponents, however, such an
implementation fully depends on the underlying techn@sgind software being used.

3.3.3 Perioritization Algorithm

The prioritization algorithm is outlined in Listirlg 3.1. €talgorithm predicts forthcoming calls
of the service and prioritizes the corresponding requesgsther with the pending requests ac-
cording to the penalty difference which appears if the réagiof request’s reply is delayed.
The algorithm uses predictions which are performed sttioghardly, adding together response
times of the services to be called according to the processtste. As for flows and conditions,
the time of the most delayed branch is selected. The algorithvers the main types of process
constructssequencgflow andcondition

22

/!l Process instance 1:

1 Instance 1 has no pending calls of DMS, however, as the IR®isoted to respond in
0.05 sec (as its response time is 0.1 sec), then the;,calDMS is predicted in 0.05
Section

2 Default process finish time is calculatetll + 0.05 + 0.2 4+ 0.5 = 3.85 sec

3 Default penalty is calculated:.s(3.85,3,10) = 0

4 ¢ is assumed to respond r2 * 2 = 0.4 sec, Process finish time is calculated:
3.140.05+4+0.44 0.5 =4.05 sec

5 The penalty for delayed, is calculated:Ls(4.05,3,10) = 10

6 The penalty difference far, is calculatedd,, = 10 — 0 = 10

7 < ¢1,10,0.05 > is added taD
11
/1 Process instance 2:

8 Instance 2 has a pending DMS call No other DMS calls are predicted.

9 Default process finish time is calculatedd3 + 0.05 + 0.2 4+ 0.5 = 1.05 sec

10 Default penalty is calculated.g(1.05,3,10) =0

11 ¢y is assumed to respond (2 « 2 = 0.4 sec, Process finish time is calculated:
0.34+0.054+0.44 0.5 =1.25 sec

12 The penalty for delayed, is calculated:Lg(1.25,3,10) =0

13 The penalty difference far, is calculatedd,, =0 — 0 =0

14 < ¢9,0,—0.01 > is added taD

Listing 3.2: Algorithm steps for the example.

3.3.4 lllustrative Example

To illustrate the work of the algorithm, the algorithm stépistwo instances of comprehensive
insurance claim scenario process are described. Let thizeghave the same QoS as in ex-
perimental setting (See Section]3.4) and let both procesarioes have SLA penalty functions
Ls(t,3,10). Let the processes have the states as depicteduneB3.8. Instance 1 was delayed
for some reason. The Information request service (IRS) valilescc0.05 sec ago there, so the
process is waiting for its response; the Cost estimatioricgehas already returned the response.
In instance 2 the Decision making service (DMS) was call€d 8ec ago. Given that DMS’s
request priorities are being adapted, the analysis stép aflaptation loop’s next iteration would
perform as shown in Listirig 3.2. Finally, whéhis sorted, the priority of; is considered higher
than the priority ofc,.

3.4 Experiments and Discussion

We implemented an orchestration engine simulator whichiosirthe QoS characteristics of
services and the execution of processes. It simulates thgoi@l behavior of the system and
supports main basic process elemestjuenceflow, andcondition(executes with given prob-

ability). To demonstrate the advantages of our approachsimalated unexpected overloads

23

and delays in a service-oriented system under variousrstances. We scaled the realistic
response times of the services for simulation from days ¢ors#s. So the half of a simulated
second corresponds to half of a day in real setting.

3.4.1 Setup

In our setup, several process types are repeatedly ireohtin the system according to the
frequencyF'(t), as shown in Figure 3.4.

F(t), number of instantiated processes,
per second, approx.

A
: p time
0 Tol2 To
&
T!

Figure 3.4: Experiment model

The type of instantiated process is chosen randomly (adisygre considered equiprobable).
The approximate number of instantiated processes per @esancreased fronf;, to F”’ for
a periodT” in the middle of the overall process instantiation timesffgn The unexpected
additional load is thus simulated. The inaccuracy of respdime is simulated as well: the
actual response time of a service is calculated?®d@s+ RT * k * R where RT - expected
response time - inaccuracy factorR - normally distributed random value.

We apply this system behavior for 6 series of experimentsEg&jlbased on the motivating
scenario (Section 3.2). The experiments are describedhile[Ba2. The processes typE$ and
T2 correspond to comprehensive insurance claim and motocleel@bility insurance claim
processes. The QoS values used for services simulatiorreserpied in Table 3.1 (the set of
services maps to the steps of motivating scenario progegsiéexperiments use response time
inaccuracy factor 00.3. The conditions in both processes are assumed to be truenof0
cases. In E5 and EB6, the analysis service happens to be dddaye5 sec in 10% of cases.

In our simulation, capacity indicates the number of simnétzus requests that can be served
by a service. As penalty functions, we used stafigdand constani. functions (see Figure

3.5).

24

Table 3.1: Values of service quality metrics in experiments

Name Response timdsec] | Capacity
Analysis service 0.15 5
Expertise service 0.50 5
Decision making service 0.20 5
Information request service 0.10 10
Estimation service 0.10 100
Registration service 0.01 100
N 0 if t <tg
Ls(t:to,p) = { (trunc(t) —to) xp ift >=tg
. 0 if t <to
Ls A Lc A
] I —_—
2 —
1 1 P ;
P — |

: L
0 tot1 to+t2 to+3 time 0 t()
(a) Staged. (b) Constant.

Figure 3.5: Penalty functions

3.4.2 Discussion

(3.1)

(3.2)

Each experiment was performed 2 times: first time with no tdam with requests served
in First-In-First-Out manner, and the second time with ttlepdation enabled. Penalties were
measured for each process. As the simulation involveswsrandom factors (process instantia-
tion, process type selection, error and unexpected dejlestion, conditions), we made sure that
such experiments get the same values returned by randomagse The results of experiments
are depicted in figurds 3[6-3.8.

All experiments demonstrate a considerable reduction oélties of 30-80%. In the following
we show pairs of figures: the left figure showing SLA penaltigsaryingF’ and the right figure
by varyingT’.

25

Table 3.2: Experiments performed

Name | Process types: penalty functions T F
El _ 5(19-26
£5 T1: Lg(t,3,10) only 3710 0
E3 _ _ 5| 22-29
£ 111 Ls(t3,10), T2:L(t,8,20) 39 e
E5 | T1: Lg(t,3,10), T1:Lg(t,3,15), 6|19-26
E6 | T1: Lg(t,3,20), T2 :L(t,8,20) 3-9 22
3000 2500

—=— without adaptation
—o— with adaptation

—&— without adaptation
—o— with adaptation

2500¢ 2000
2000¢
> > 1500
2 1500} §
O] [5)
e & 1000
1000}
500(500
19 20 21 2‘2 2‘3 2;1 2‘5 26 3 10
-
(@) E1 (b) E2
Figure 3.6: One process type, without delays
2500 3000

Penalty

—&— without adaptation
—o— with adaptation

20001

1500

10001

500

22 22 23 24 25 25 26 27 28 29
-

(@) E3

—&— without adaptation
—o— with adaptation

2500

2000

1500

Penalty

1000

500

(b) E4

Figure 3.7: Two process types, without delays

In experiments E1 and E2 (see Figlre] 3.6) the absolute elifter between penalties is rel-
atively constant which is explained by the similarity of exted processes: only one process

26

6000 5000
—&— without adaptation —&— without adaptation
—o— with adaptation | —o— with adaptation h
40001

5000

4000
3000

30001

Penalty
Penalty

20001
20001

1000} 1000}

19 20 21 22 23 24 25 26 3
£

(a) E5 (b) E6

Figure 3.8: Four process types, with delays

type is instantiated, no difference among instances in fafraervice delays, the only difference
is the variety of response times resulted by the inaccuractpf. Thus, these experiments give
very limited freedom for re-prioritization. Still, the ga@tion reduces penalty considerably.

In experiments E3-E6 (see Figlire]3.7 and Figuré 3.8) thectieaiuis greater than in E1-E2
because of the possibility to postpone the service callRiprbcesses at no expensg £ 8 for
L¢).

This is revealed mostly in E3 and E4 as approximately halfiefdrocesses were of type T2.
In E5 and EG6 the reduction is lesser than in E3 and E4, becaugeoarter of processes were
of type T2. In contrast to E1-E2, the absolute differencevbet penalties in E3-E6 grows with
the load increment, as the process pool contains variowes tgp processes which causes the
dissimilarity of re-prioritization impact, and, thus, reases the algorithm'’s efficiency. The non-
monotonicity of penalty growth in E3-E6 is caused by the mndactors in process generation
and instantiation mechanism. To summarize these obsemgatthe performed experiments
clearly show the advantage of using adaptation for prionigj requests in case of unexpected
overload or response delays.

Of course, the are limits for applying the adaptation. THiesiés are reached when the time
needed to perform an analysis iteration of the orchestratitgine state becomes comparable
with the response times of the services whose requestt@fdre being adapted. For example,
in the experiment with largé” shown in Figuré_3]9, the method becomes inefficienttn>
190 (the maximal size of the process pool is about 600 processtsyever, this limit would
scale together with response times of the services, and&hiard to reach in a real setting.

3.5 Related Work

Our approach is aiming at minimizing SLA penalties via gtiping the requests and assigning
the available service capacity. Such an objective comssita scheduling problem. Among the
variants of this problem, the resource-constrained nputiject scheduling problem (RCMPSP)

27

x 10"

—8— without adaptation
—&— with adaptation

H i i i i i i i i i i
100 110 120 130 140 150 160 170 180 190 200 220 230 240
=

Figure 3.9: Large values

[29] is the most conformable to ours. However, those studiiesot address the service-oriented
architecture, and, thereby, related concepts such as SQLSr

A priority scheduling method for process engines is progdael81]. It analyzes the ex-
ecution status in the process engine and dynamically as$ignpriorities to service requests
alike to our approach. Instead of penalty functions, it abers utility functions. However, this
work assumes that services support prioritized executfaeauests with eitheHigh or Low
priority. Such an assumption has two strong disadvantdgetly, it severely reduces the scope
of application, as services do not support prioritized axea in general, and, secondly, even if
a service distinguishes between requests with high and tawites, it would still not be able
to distinguish between requests with the same priority twisacrucial in case of multiple con-
current requests and low service throughput. Unlike it, approach uses essentially different
prioritization algorithm and request scheduling (via prexhedulers), so it does not have these
disadvantages.

SLA violation and prevention in service compositions thglowadaptation is addressed by
various researchers. For example,[47] proposes a gemaplagion framework for monitoring
and preventing SLA violations by performing various acti@pon the service composition, like
changing the service bindings or composition structurecolmrast to it, our approach does not
address the composition changes, but request priordizatinong different compositions.

Various escalation mechanisms to avoid breaking the wavkfleadlines are discussed
in [83]. The prioritization of tasks or cases which is highgtated by implication, is briefly
discussed. However, the paper does not consider SLAs amdtipsnand no rationale regarding
the actual implementation of the method is given.

Trade-offs between costs and profits of various service ositipn adaptations are dis-
cussed in[[48]. The adaptation proposed by us does not imglgasts besides the performance
overhead used for the analysis.

28

The approaches liké [22,64] use dynamic binding to imprbxeeQoS of process instances,
whereas our approach does not assume the existence ofl seveiee endpoints.

3.6 Summary

The problem of reducing and preventing SLA penalties in thietext of unexpected system
overload or service response delays is considered in tligteh The architecture for request
scheduling in service-oriented systems and the requesitipation algorithm are proposed. A
realistic motivating scenario was taken as a basis for atial. The proposed solution was
evaluated for the scenario implemented in an orchestraiine simulator. The results of
evaluation demonstrate the considerable (30-80%) penadiyction, thus, showing the clear
advantage of the approach.

Generally, this approach has no special requirements fér §Stem, so it has no obstacles
to be applied in practice. It can be extended to allow diffeservices to share the resources,
so, for example, if one human is assigned to perform diffetasks represented by different
services, the system will be aware that the call of one semiguld impact the QoS of another.

29

CHAPTER

SLA-aware Scheduled Crowdsourcing

Externalcrowdsourcing has emerged as a new paradigm for outsowimgle for humans yet
hard to automate tasks to an undefined network of peopleidimgvthus scaleability and flex-
ibility for customers. However, crowdsourcing platforms kot provide guarantees for their
services, such as expected quality of the result or the tihpeazessing. Such guarantees are
advantageous from the perspective of Business Processgelaeat, as they can strengthen
the predictability in process planning and design. In thiapter, we present an alternative
crowdsourcing platform architecture, where the workeesassigned to tasks by the platform
according to their availability and skills. We provide sdhiing and prediction algorithms that
allow to provide and fulfill SLAs for the consumers of a crowdecing platform. The proposed
architecture and algorithms address specific to crowdswungroblems, such as lack of full
control of the workers and their membership, their limiteddictable availability, and a ten-
dency of workers to over-/underestimate their skills. Waleate the approach in a simulated
crowdsouring environment.

4.1 Overview

Enterprises seek to automate all sorts of their front an#t b#ee operations to cut costs and
eliminate human factors. However, humans inevitably reraaikey elements of many business
processes. Itis not only creative, management, and conaationh activities that are hard to re-
produce with technology. Other tasks that require basicamuskills, such as image recognition
or categorization, as well as specific skills, such as taxtdation or usability testing, are also
difficult to fulfill with software only.

Crowdsourcing allows companies to outsource such tasks tindefined network of people
using an on-line platform maintained by the other partyffirs great scaleability, as consumers
do not need to dedicate any internal resources and can salmiitary amount of tasks to the
platform, therefore providing human intelligence capiébg on-demand. Such platforms usu-
ally have a market-like operation chain where the tasksveddrom customers are announced

31

at the portal and the workers choose among the assorted mtssk® those they like to pro-
cess. Examples of such systems include Amazon Mechanida[d2], Crowd-Flower[[17] and
ClowdCrowd [15].

Although the aforementioned systems have achieved cestaicess, we argue that purely
market-like architecture lacks some features that cowdtizeemore potential of crowdsourcing
platforms. As in a market-like system the job assignmendsirdtiated by the workers them-
selves, it is hardly possible for the system to have an aatifieence upon assignments. As
a result, the platform is unable to give any certain guaemfer the consumers, neither about
the time of processing a task nor about the outcome quality ¢an expect [38]. From a Busi-
ness Process Management (BPM) perspective, such guara@eg@rovide an additional value
for crowdsourcing services. First, it can strengthen théagdy and predictability in process
planning and design. Second, if such guarantees are giveEmnmof SLAs, it allows to use
crowdsourcing in QoS-sensitive business processes [@].2, 2

To address these issues, the platform architecture candvedako that the workers are as-
signed to taskby the platform In this case workers register at the platform, providerimiation
about their skills and availability, and expect the platido allocate tasks to them accordingly.
The platform thus schedules submitted tasks based on thesettaer factors such as skill re-
quirements provided by consumers, service level agreemétit consumers, and monetary re-
wards. We refer to this model asheduled crowdsourcingVhile providing the same flexibility
for consumers, scheduled crowdsourcing comprises a nuofilagivantages:

e Quality. Skills of the workers are manifold. The tasks submitted ®gtatform are also
diverse in their requirements. One can assume that the meredrker is suitable for a
task, the better the expected outcome quality is. We reférisandicator asuitability.
Hence, by considering the worker-task suitability, it issgible to improve the overall
results by assigning tasks to most suitable workers.

e Deadlines. In market-like platforms task completion times span fromesal to thou-
sands of hours [35]. As in scheduled crowdsourcing the asmgts are controlled by the
platform, tasks can be scheduled according to specifiedidead

e Predictions and SLAs.Considering the short-term information about workers'ilal-
ity on the one hand and tasks in progress on the other hang|atierm can predict the
available workforce and, thus, estimate what can be offeregliaranteed to a consumer
who wants to submit a particular task.

4.2 Scheduled Crowdsourcing

This section describes scheduled crowdsourcing archiectAlike to market-like approach,
scheduled crowdsourcing implies that a crowdsourcingquiait receives tasks from consumers
and distributes these tasks for execution to the crowd. Mewyé contrast to market-like archi-
tecture, tasks are assigned to workers by the platform,tenddsignment is based on negotiated
SLAs. We assume that a task comprises manifold similar johsdan be independently as-
signed to individual crowd workers. When a job is done, theiltds returned to the consumer,

32

\ The crowdsourcing platform
<[SLAf————~ > v @

Assigmnent

based on SLAs @
,,,,,,, - e
and profiles

Task, skill requirements \

-l A

The
Consumer(s) Result A crowd
Feedback——») 2

Worker profiles
SLAs updated according to
received feedback

mineiny

Figure 4.1: Scheduled crowdsourcing

which is invited to provide a quality feedback on this resilhe overall architecture is shown
in Figure[4.1.

Before a consumer submits a task, an SLA for this task is redgdt It includes tempo-
ral, quality, and monetary objectives. The platform coessdthe availability of workers, and
already submitted tasks to offer feasible guarantees. QetBasand negotiation procedure are
presented in detail in Section #.4.

Workers specify their minimal wage per time duration, andstoners specify payments
for tasks. Jobs of a task are thus assigned only to workeresevminimal wage is less or
equal to the payment. Therefore, the more the customer Imgviio pay, the more workers
will be considered for assignment, and, as it is sensiblyssume, more suitable workers can
be found. As for workers, setting the minimal wage is alsoaddroff. lower values would
result in more assignments, while higher values would pi®the worker with higher-priced
jobs, however, the assignment frequency in this case vghlizidepend on worker's skills due
to greater competition.

Active jobs are assigned to workers according to workek-tastability, negotiated SLAS,
and short-term availability information provided by worge If an assignment is refused by a
worker despite his claim for availability, various penalgnctions can be imposed to this worker.
After all jobs of a task are done, the task is considered ddhe factual QoS indicators are then
compared to those specified in the SLA. If any objectives wialated, the provider might incur
penalties towards the consumer. The assignment mechasmsresented in Sectign 4.5.

The suitability is calculated as a match between requiréls $&r the task and the skills of a
worker. Skills of workers are maintained in their profilesitiblly, skill information is provided
by the workers themselves. However, the profile of a workarlmamodified by the platform if
the expected quality (suitability) differs from the reakdjty that was reported by the consumer
as a feedback. The maintenance of workers’ skills is perarin the platform by analyzing the
feedback and trying to keep the skills in the profile aligndthuwhe real skills of the worker.
Skill maintenance is considered in detail in the next sactio

33

4.3 Worker Skills and Job Quality

Skills of the workers are manifold. The tasks submitted pfatform are also diverse in their
requirements. The platform thus needs to possess this kdgelto maximize the overall quality
by assigning the most suitable workers to the task on hargb, Ahe Service Level Agreements
need to include quantitative measures regarding the gudlivork.

We assume that for each worker-task pair a suitability nmeasan be calculated. Suitability
is represented by a single real valug(inl] (O - not suitable at all, 1 - perfectly suitable) which
summarizes the expectations regarding the quality of theltrd the worker is assigned for a
job of the task. Such notions as worker skills and skill regmients need to be formalized in a
way that allows to calculate the suitability as a match betwequirements and skills.

This generic approach allows to decouple the techniquestwikiused to calculate the suit-
ability, from scheduling and prediction algorithms. Shilidy can be thereby calculated using
an arbitrary technique, which can even vary from one taskatreer. Therefore, the architecture
is compatible with various skill and suitability assesstagyproaches, such as in [75] or [39].

In addition, the platform supports a feedback mechanisnthviilows consumers to report
the quality of an assignment’s outcome. If the quality of thticome reported by a consumer
differs from the calculated suitability, then the corresging underlying characteristics of the
worker should be revised, so the suitability is calculatedtectly next time.

To demonstrate the approach and support the experimenimopese a specific skill man-
agement model and a feedback processing algorithm.

4.3.1 Skills and Suitability

The model distinguishes a fixed set of skills. Each workerahglsll profile, where each skill is
described by a real numbere [0, 1] that defines it quantitatively (O - lack of skill, 1 - perfect)
Each submitted task has the required skills specified. Eezmlined skill is also represented
as a real number € [0, 1]. If » = 0 then the quality does not depend on this skill- i 0 then
the best outcome quality is expected in case if the correfipgrworker’s skills is s >= r. If
s < r then the expected quality is affected in the inverse pragoro » — s. The quality is
again represented as a real numbet [0, 1]. The suitability of a worker for a task is equal to
the expected outcome quality. The exact matching formwadsvn below.
Let WS, - worker skills, RS; - required skills of a task; = 1, N, N— number of skills.
Then the suitability of the worker to the task is calculated a

§=1-% Maz((RS; — WS;)/RS;,0)

Y M

M:keM&skeN,RS, >0

Thus, the more skills of a worker are proportionally clogsethte required skills of a task,
the more the worker is suitable to the task. If the worker# &k equal or greater than the
corresponding required skill, then this skill suits petffgec

34

4.3.2 Feedback processing

At the beginning of her/his membership at the crowdsourgitagform a user registers with a
profile representing the skills. Usually this informati@niot very accurate because users tend
to over-/underestimate their skills. Hence at runtime, anitodng module must run on-line
and manage the profiles by updating the provided informafidre task processing results and
the expected quality outcome must be used as a referenclecfoeal skills of a worker. The
quality expectations on the tasks result are often detaildte task description. Atthe AMT, for
example, the result feedback contains usually only a tasipaor reject. At our platform, with
an agreement requiring the customer to give a feedback oquality, the feedback contains
crucial information for the algorithm presented in Listiddl that can be used to update the
skills of the reported worker profiles.

Input : QF quality feedback of the providef) E quality expected by the provider
Input : worker processing worker anthskSkills required task skills
workerSkills = worker.get Skills();
if QF > Y, then/ high quality result */
[+ conpare with latest history entry, update and continue on
better QF */
entry = setHistory(QF, taskSkills);
for skill s € workerSkills do
reqSkill = getTaskSkills(s);
dif f = |s — reqSkill] X au;
if s > reqSkill then
‘ workerSkills.set(s + dif f);
else
10 ‘ workerSkills.set(s — dif f);
11 end
12 end
13 Return;
14 end
/+* low quality result */
15 wprofile = setO f Profiles.get(worker) ;/* set of registered profiles =/
16 dif f=QF/QFE ;/* difference between the qualities */
17 for skill s € workerSkills do
[+ skill == 1 perfect know edge * |
18 if skill x dif f <= 1thenworkerSkills.set(s x dif f);
19 end

N

© 0O N O O b~ W

Listing 4.1: Profile monitoring.

As the scheduler requires skill knowledge, the profile updatwofold. If the worker only
provided a low quality the update depends on the differebiree$ 15-19). If the quality is above
a certain threshold, and is better than a previous then we consider the requiittsl close to

35

Table 4.1: Agreement terms

Name

Description

Task characteristics
Submission time | The time the task is going to be submitted
Number of jobs | Number of jobs the task comprises

Job duration The amount of time a worker needs to spend on one job
Skill requirementg Skills that are required to perform a job
Payment Monetary reward for a job per time period
Service Level Objectives
Deadline The time until all the jobs must be finished
Quality Expected average quality of a job output. The average slitiyadf

assigned workers for the task must be higher or equal to &higeyv
Minimal quality | Optional. Minimal quality of a job output. The suitability ieach
assignment must be higher or equal to this value.

the workers own (Line 3-13). Hence, the difference betwaenr¢quired and the worker’'s own
skills (weighed by the factat,,) influence the worker’s skill update.

4.4 QoS and SLA

A crowdsourcing service essentially receives a task fromrsemer and returns outputs for all
contained jobs after they have been processes by crowd mgoidetrics in Tabl€ 4]1 character-
ize the task and the Quality of Service, and together formrai&eLevel Agreement.

The outlined metrics are applicable for a particular seriwocation. On the one hand, ser-
vice calls vary in terms of amounts of jobs and skill requiesits therefore requiring different
crowd capacities, on the other hand, the amount of availabl&ers changes with time. There-
fore, feasible guarantees can substantially vary for eaohicg call and need to be considered
individually, which requires such metrics ssbmission timanddeadline

It is possible to extend the model with more standard sempdity performance metrics
such aghroughputor response timeand to make an agreement for a series of service invoca-
tions. In this case, to support such an extension, a humbagreements each for one service
invocation from these series, needs to be established.r Qih® metrics such agliability or
availability can be inherited from the underlying technical architextfrthe platform.

Before a consumer submits a task, an SLA for this task is retgdt At first, the consumer
provides the characteristics of the task. Secondly, th#gpia estimates possible options re-
garding the Service Level Objectives considering the stafuiihe crowd and other active tasks
or scheduled tasks. After that, the consumer decides, wdptbn is the most suitable, and,
finally, the agreement is established. If the offered ogtiare not satisfying, the consumer can
restart the negotiation procedure with different task abtaristics (e.g., with differe®ayment
or Minimal quality parameters). The platform takes the agreement into caasicle when ne-
gotiating other agreements and scheduling the tasks. tidhsumer doesn’'t have the actual task

36

Consumer CS Platform

! Task ~arm

: Subm. time: 1 Apr 12:00

I Job duration: 1 hour m

| Amount of jobs: 100 a

I Skill 1: 0.2 3

| Skill 3: 0.7 L

-)

: Reward: 0.50 S

! Offers
___________________ B

Deadline: 1 Apr 15:00 Quality: 0.3
Deadline: 1 Apr 20:00 Quality: 0.4

Deadline: 8 Apr 12:00 Quality: 0.8

uolisIoaQ

Agreement

Deadline: 1 Apr 20:00 Quality: 0.4

uoneAIasal
PEOJYIOM

Figure 4.2: SLA negotiation

contents at the moment, but is certain to provide it in the h¢iare and knows the parameters
of the task, then the SLA can be negotiated in advance of thlasubmission by setting the
submission timaccordingly. Figuré_4]2 depicts the process of negotiatiegSLA.

The most important ingredient of negotiation process ieftgnation step which is consid-
ered in detail in Section 4.6.

4.5 Scheduling

Given tasks with negotiated SLAs and the information aboortker skills and availability, the
platform has to schedule the assignments. On the one hamak tb fulfill the promises nego-
tiated with consumers, on the other hand, the objectivettéduling is to maximize the overall
quality. Estimation and scheduling components can not beuf#ed, as one of them should
support another: either scheduling should adapt to givémates, or the estimation should be
done according to the logic of scheduling. In a real systerane hybrid approach can be
applied. In our work, however, we choose the scheduling corapt to be the primary one, be-
cause it is more simple in approach and allows to evaluatevbrll capabilities of scheduled
crowdsourcing architecture regarding the quality it caodpice.

The scheduling component of our framework therefore igntiie average quality objective
of an SLA and makes it a responsibility of the prediction comgnt to estimate a feasible value
which can be then satisfied in the scheduling process. Thadamed algorithms thus only try to
maximize the overall quality while fulfilling task deadlineWe assume that missing a deadline

37

cannot be justified by any quality gain, thus, meeting a deads the first-priority objective,
and the quality maximization is the second-priority objext

Input : currentT'ime current time
Input : tasks active tasks
Input : workers crowd workers

1 for task € tasks in the order of ascendingusk.deadline do

2 stepsToDeadline = (task.deadline — currentTime+1) | task.duration - 1 ;

3 if stepsToDeadline > 0 then

4 if (task.deadline — currentTime + 1) % task.duration) > 0 then

5 ‘ toT'ake =0 ;

6 else

7 | toTake = Trunc(task.numberO f JobsToDo/stepsToDeadline) ;

8 end

9 else

10 ‘ toTake = task.numberO f JobsToDo ;

11 end

12 while toTake > 0 AND some workers are still availabtio

13 Assign a job oftask to most suitable available worker among those whose

minimal wage is less or equal task’s payment and whose suitability is more or
equal to minimal quality for the task ;

14 toTake = toTake — 1 ;

15 end

16 end

Listing 4.2: Greedy scheduling algorithm.

Listing[4.2 describes a base scheduling algorithm whictsexiun our platform. The idea
behind the algorithm is that the best quality is achievedmdntask is assigned to most suitable
workers. The quality is higher when a task is performed by allemnumber of best workers,
but this number should not be too small, so the task can béndidisintil the deadline. This
number is calculated itvTake for each active task.

For simplicity, a deterministic time model is used in algfums and simulator, so the time is
discreet and is represented by sequential equally longg@rieds. A time period can represent,
e.g., 10 minutes or an hour.

Tasks for which SLAs were negotiated first are assigned irfiteeplace, which ensures
that the resources counted during the SLA estimation araused for other tasks. This rule
implicitly realizes the workload reservation.

As it can be noticed, worker availability data is only usectkeck whether a job with a
certain duration can be assigned to a worker. However, #iisid used more extensively in the
estimation of feasible SLA offers.

In an attempt to improve the algorithm’s efficiency, we treeshumber of heuristic exten-
sions:

38

e Based on reported short-time worker availability, assigs jobs at a given time to wait for
more suitable workers to become available (while avoidiogsfble crowd “overloads”)

e Assign more jobs at a given time if the suitability of addiiéd workers is almost as good
as the suitability of best workers.

e HavingtoTake numbers calculated, optimize the worker-task assignnfentsach time
period using an optimization framework.

However, as shown in Seckt._4.7, such extensions do not givbstastial improvement.
We believe that the reason of such a weak improvement is #eeadithe crowd: if a worker
cannot be assigned to a due task, in most of the cases a goaghemplacement for the worker
can be found. The refinement of the algorithm can be done dicgpto the particular crowd
characteristics that can be estimated only when the systased by real users in the commercial
operation.

4.6 SLA Offer Estimation

SLAs provide an additional value for services. However, wha SLA is negotiated with a
customer, the platform has to make sure that this SLA is iié&sind will not endanger other
agreements.

If too many jobs are scheduled to the same period, there dmaildot enough available
workers to withstand the workload, so some deadlines withissed. The platform thus should
determine thesarliest deadlinewvhich the customer could set up for the his/her task in such a
way so the timely execution of other tasks is not endangered.

Different outcome quality can be expected from differentkess. If a close deadline it set,
then more workers must be involved, and, consequently,wbage result quality will be lower
than in the late deadline case, where the smaller amountsvfAdmkers would do all the jobs.
Therefore, there is a trade-off between the task deadlidgrenresulting average quality of the
task. Estimating and explicitly presenting such a traddepthe consumer clarifies what s/he
can expect when submitting a task. To achieve this, thegohatiheeds to predicquality by
deadlineefficiently for multiple deadlines.

As was discussed in the previous section, the platform isrgted upon the scheduling
component. Therefore, the estimation procedure is bourtieascheduling algorithm. The
estimation thus can be performed by simulating the scheglgifocess using the statistical data
about workers’ behaviour and availability, and considgearlier submitted or negotiated tasks.
Then it is possible to predict which and how many workers riighavailable for the task which
is being negotiated. This approach is implemented in oufgrsla and considered in detalil
below.

Firstly, the platform estimates the realistic simulati@gmeters.

Worker's availability. Although it is impossible to predict whether a particularrier is
available at particular time, the approximate availapitift each worker can be predicted from
the history and the reported short-time availability. Irr Guplementation, the availability of
each worker is generated randomly for the simulated peréedb on his/her recent schedule.

39

Job duration accuracy. The time that a worker needs to finish a job can differ from the
specified job duration. The reasons can be an inaccurateatistn of the job duration from the
consumer, the slow speed of the worker, or the difficulty ef plarticular job. We discuss this
issue further in Sectidn 4.9. The accuracy for already stibchtasks can be estimated based on
prior assignments of these tasks. We estimate the ovebadigouracy in our simulation.

Suitability. As mentioned in Section 4.2, worker-task suitability iscoddted by the plat-
form and can be modified with time. If a task of a kind is subeditto the platform for the
first time, the suitability can be calculated impreciselpwéver, the following task submissions
of this kind (with the same skill requirements) will use refinvalues. We discuss this issue
further in Sectiori 4]9. In any case, the simulation can ondkenuse of the latest calculated
suitability values and assume the quality of a job equalédastiitability of the performer and the
corresponding task.

Secondly, given currently submitted tasks and the paramétee Tablg 411) of the task at
hand, the platform simulates the scheduling process aimdast feasiblearliest deadlineand
quality by deadlindor this task.

The simulation period starts with the current state of tla¢ piatform. The size of the period
can be either fixed (e.qg., predictions for up to 5 days) or dégmn the quality increment (e.g.,
if by prolonging the deadline by 1 day the expected qualityniseased by less than 0.05, then
stop the prediction). Durations of jobs are simulated atiogrto the estimated accuracy.

At each step, the submitted (or pre-submitted) tasks aigreesbto workers using the greedy
scheduling algorithm (see Listing 4.2). After conductihg assignment, the prediction algo-
rithm is executed for the current step (see Lisfing 4.3):kews, that are available and were not
assigned by the scheduling algorithm, are examined asaatedifor the negotiated tasKask.
This is performed each job duration periochdfask using so-called array of average suitability
of best workersdvgSui t). Thekth element of this array represents an approximated shiitabi
ity value of thekth most suitable worker for all prior simulation steps. Thisment contains
the summed suitability and the amount of workers that wersidered at this position, so the
average value can be calculated on each step. The algofitisratids theuitability value and
increments thamountfor each element that corresponds to an unassigned woirkes 3-10 of
Listing[4.3).

After that, if the total amount of available workers at pms steps exceeds the amount of
jobs innTask with certain excess, the prediction of quality is calculater the current step.
The algorithm assumes that the best available workers wolldvenly assigned for the task
(true for the greedy scheduling algorithm) and, usaingSui t array, it estimates the expected
quality produces by most suitable available workers fopadlvious steps usingvgSui t array
(lines 11-21 of Listing 4.13). It is assumed that a worker te laith the job with probability of
0.5 (this assumption holds if the job duration is set accurytdiventually, the average quality
which represents the prediction fquality by deadlinefor the current step, as if it was the
deadline, is calculated. Thearliest deadlines the step where it was first estimated that the
number of available workers at previous steps exceeds tbaramof jobs.

As the scheduling algorithm prioritizes tasks by submitetimo “collisions” are expected:
on the one hand, the prediction doesn’t take already resees®urces into account, on the other
hand, if the task is submitted, the assessed resourcesowvtlenassumed available for the tasks

40

Input
Input
Input
Input
Input

: timecurrent time

: nT'ask negotiated task

: avgSwit the array of average suitability of best workers
. ttl AvW orkers total number of available workers

: A excess ratio (0.8 used)

1 if (time — nTask.callTime) % nTask.jobDuration == 0 AND
(time > nTask.callTime) then

A W N

© 0 N o o

11
12
13
14
15
16
17
18
19
20
21
22
23

end

1=0;
for worker € workers in the order of descending suitabilitio

if worker is available, fulfills minimal quality, and his/her minimahge is less
or equal tonT'ask’s paymenthen

avgSuit[i].suitability+ = suitability of worker ;

avgSuit[i].amount + + ;

v+ -+

ttlAvWorkers + + ;
end

end
if ttlAvWorkers 0.5« A > nTask.numberO f Jobs then

toTake = nTask.numberO fJobs ;
1=0;
q=0;
while toTake > 0 do
take = Max (1, floor(Min(avgSuit[i].amount % 0.5, toTake))) ;
toTake— = take :
q+ = avgSuit[i].suitability take ;
it
end
Return fime,q/nTask.numberO f Jobs} ;

end

Listing 4.3: Prediction algorithm.

41

submitted afterwards. Therefore, when an agreement ibliséted, the workload reservation is
performed seamlessly.

4.7 Experiments

In this section we demonstrate the efficiency of scheduleddasourcing. To evaluate our plat-
form and algorithms, we set up a simulated environment thiatprises a crowd which perform
tasks and consumers who submit tasks and provide feedbmeilaBon of a real crowdsourcing
environment is challenging due to the lack of compreherstiztistical data in this area. We tried
our best to prognosticate the meaningful simulation pataradased on available datal[34, 35]
and common sense.

In the experiments we evaluated the efficiency and perfocmarf algorithms for task
scheduling, worker skills updating, and SLA estimation. fik&t provide a description of the
overall setup, and then explain the types of experimentshad the corresponding results.

4.7.1 Experiment Setup

In our experiments we use a set of 10 skills for describingkeoskills and task skill require-
ments.

Customers. The customers submit tasks to the platform and provide thabieck on com-
pleted jobs. Tasks are submitted randomly while ensurirgatherage crowd workload and
avoiding overloads.

Each task comprises skill requirements, number of jobs,aaddadline. During each time
period of the simulation, if th@ask Limithas not been reached yet, a new task is submitted
to the system witfTask Concentratioprobability. The job duration is calculated asin (1 +
abs(¢/2x o), 0 + 1), whereg is a normally distributed random value with mean 0 and stahda
deviation 1. The deadline is assigned randomly accordirgiéps To Deadlinparameter. The
number of jobs is calculated so that the crowd workload is eegaally distributed among the
tasks, and the average workload remains clodatended Schedule Densityrhe parameters
and their values are described in Tabld 4.2.

Skill requirements are generated so that each skill withr@pmately equal probability
either equals 0 which means that this skill is not requiredte task, or is in0, 1] range. The
random values for thé), 1] range are normally distributed (mean = 0.4, variance = 0.3).

The feedback that a consumer provides for a job is generalied the real skills of the
worker which were assigned for this job. In contrast to therested skills, these real skills are
unknown to the platform and are only used to simulate theaetlome quality (by calculating
the suitability with these skills). This quality is thus meted as the feedback.

Crowd workers. The workers are assigned for jobs and return the result gbjobessing.
Each worker has the claimed skills that s/he initially répdo the platform, and the real skills.
The real skills are generated randomly with normal distrdsuwith 0 mean and variance 6f3.
Then, the reported skills are initiated as real skills witjected error (normally distributed with
mean value equal to the real skill and variance of 0.2). Siliyof crowd workers for some
randomly selected tasks is depicted in Fidure 4.3.

42

Table 4.2: Task generation parameters

Name Description Value(s)
Tasks Limit The total number of submitted tasks 200
Job Duration Sigmédo) Describes the deviation and the maximum for joBO

durations

Steps To Deadline

a single worker can finish until the deadline.

Average maximum number of jobs of a task thab0

Task Concentration

The probability of new task submission for eac
time period.

10.35

Intended Schedule DensityTarget assignment ratio for each time period.

0.2-0.7
(step 0.1)

Number of workers

250
200
150
100 |

50 |

0.2 0.3 0.4

0.5 0.6

07 0.8 0.9
Suitability

Figure 4.3: Suitability of the crowd for a random set of tasks

43

0.9 T : 1.0 :
o o o market-like o no feedback
8 ° O greedy < regular
o ® 5 heuristic o real skill aware
sl g Q@ 8 , 0.9+ . i
8 &) 0 DD o -
[}
% a 0.8} oS
2 0 Qogn =y 0y
© 0.7] Ia]
E © e < o I ; 5o,
0.7r O ey Ty
Oy O
o o 5 o Vo 00 o
O 6, o o] OOO o0 o 5 Q QQQ
B o oO 06. e} 0000 oo
& . o
[e]
o o 0% o oo ©
O. i i i 0 i i i
8. 0.4 0.6 0.8 8 0.4 0.6 0.8 1

Schedule Density

Schedule Density

(a) Various schedulers. (b) Skill update efficiency.

Figure 4.4: Task scheduling

The crowd size in experiments was 1000 workers. This sizégieibough to enclose the
diversity of workers, but still allows for fast simulatiohVe tried to use 10000 instead, but the
results did not change substantially. Workers can be ulzdlaiat certain periods. In our exper-
iments we use ®Workers Unavailabilityparameter which indicates the mean ratio of unavailable
workers for each period of time (values us@&® — 0.6, step 0.1). The busy periods are gen-
erated randomly, but have a continuous form which reprcglicenan behavior. The amount
of time that takes a worker to finish the job is thab Durationwith injected variations. In our
experiments we used a value of 30%, which means that a jobeardruted fof.7 — 1.3 of
job duration. This reflects the random nature of the realdvorl

4.7.2 Task scheduling

Various schedulers.To demonstrate the advantage of skill-based assignmectiedsler which
mimics a market-like platform was compared with the greetheduler and the heuristically-
enhanced greedy scheduler (See Sect. 4.5). In marketeliledsling, the assignment followed
the logic that randomly chosen workers were picking the nsagtble for them active tasks.
The results are shown in Figure 4.4a. In tests with high sdeedensity (about 0.8 or more),
market-like assignment performed better than in tests leithdensity, because workers had
more tasks to choose from. However, about 15% of task dessdlirere violated in these tests,
because workers aimed to fulfill their own preferences ratten the goals of the system. For
the rest of the tests, the average quality was 1.5 timesrlettekill-based scheduling in the
large. This clearly shows the benefit of skill-based schiadulThe heuristics did not improve
the greedy algorithm substantially, and for some tests avpaired it.

Skill update efficiency. To demonstrate the efficiency of skill update mechanism, eva-c
pared the regular simulation which implements the logiccdbed in Sect4.3]12 (“regular”
series) to upper and lower bounds. The series named “nodektibepresents the lower bound
and only the initial information on the profiles is used foheduling. An upper bound to the
algorithm is shown by the series of “real skill-aware”. listibase the exact skills of a worker

44

are known to the system. The improvement of the skill updaehanism over the lower bound
is evident and keeps performing better at any schedulingiyern the experiments of Figure
[4.48 the improvement over no feedback remains between ¥)-1&s Sectiorl 413 explains,
the reason why it never reaches real skill awareness is tvoféirst, the scheduling strategy
need some input right from start when only few feedback islaa. Second, the feedback
is a single value that describes the performance dependitgnodifferent skills. Also, a skill
value greater than required calculates the quality withdiaest value required. Even if there
was enough data an accurate calculation would not be feasilll cases. Thus, we decided to
stick to a simpler quicker update algorithm that providesasdt constant quality improvement
and, after all, supports quality negotiation with a consatie and steady lower bound to make
agreements.

4.7.3 Prediction Accuracy

To explore the potentiality of prediction, we implemented &ested the algorithm in our simula-
tor. The prediction mechanism operated completely seglsiritom the simulated environment.
The parameters of the prediction’s simulator such as dihfjaof workers and job duration
accuracy, are estimated or generated based on the simelatednment’s prior activity only.
Also, the duration of individual assignments differs if sechappen to take place in both simu-
lators.

First, we made the predictions for 50 tasks in the middle misation for 500 time periods.
It better reflects a real crowdsourcing environment, asetlage both tasks being in progress
and new tasks being submitted. Then, we checked each poedist varying the deadlines of
corresponding tasks and running the simulation in the idainsetting. The resulting accuracy
is depicted in Figure_4l5. From the total of 2041 experimen®8% the deviation was less than
0.1, in 85% of experiment - less than 0.05. The average deniatas approximately 0.025.
Evidently, the prediction is less accurate for early dewsdj and more accurate for late dealines.

The results indicate that the algorithm can be successipibfied for negotiating the agree-
ments. Moreover, the guaranteed values can be calculapshdi@g on deadline remoteness.
For example, the guarantee can be given as the predicteitiyqealuced by 0.2 in case of early
deadlines, and reduced by 0.1 in case of late deadlines.

4.7.4 Performance

The performance of scheduling and skill updating in a highkiead test (10000 workers and
1000 tasks) was good enough for a period size of one minutas,the performance is not a
concern, since the real period size is likely to be biggey.(&0 - 60 minutes).

We ran the prediction in the same setting while varying tlae sif the crowd from 1000 to
10000. The prediction overhead is depicted in Fiduré 4.&te®y parameters were Intel Core
2 Quad 2.40 Ghz with 6 GB of RAM (the algorithm is not paralteli so only one core was
actually used).

The results show that the approach can be used in a neaimeas¢tting. The overhead
of several seconds would not play a huge role when negaistie agreement and is therefore
acceptable.

45

%) 2 30t

£ 125f 5

[]

E E 25¢

o 10f 9]

g % 20t

o) (O]

5 7.5} ‘S 151

(0] ()

(o)) (@)

& St 8 10+

C c

[0) [9]

I o

E 2.5} & 5F

-0.2 -0.1 0 0.1 0.2 0.2 -0.1 -0.05 0 0.05 0.1 0.15
Difference between predicted and real quality Difference between predicted and real quality
(a) Early deadlines< 10 job durations) (b) Late deadlines* 10 job durations)

Figure 4.5: Prediction accuracy. Histograms describe th@uat of experiments (in percentage
of the total number of experiments performed) that produsexlor another accuracy. Subfigure
(a) corresponds to experiments in which the deadline wa® ¢t less than 10 job durations of
the task, SLA of which is being negotiated; Subfigure (b) €gponds to experiments in which
the deadline was set to be more than 10 job durations.

Prediction overhead in seconds
w

0 1 1 1 1
0 2000 4000 6000 8000 10000
Crowd size

Figure 4.6: Prediction performance

46

4.8 Related Work

In this work we position crowdsourcing in a service-oriehtisiness setting by providing au-
tomation. In crowdsourcing environments, people offeirtbkills and capabilities in a service-

oriented manner. Major industry players have been worlamgtds standardized protocols and
languages for interfacing with people in SOA. Specificatisnch as WS-HumanTask [24] and
BPEL4Peopl€[4] have been defined to address the lack of himteaactions in service-oriented

businesses [49]. These standards, however, have beenelksagmodel interactions in closed
enterprise environments where people have predefined|ynstestic, roles and responsibilities.

Here we address the service-oriented integration of hurapahilities situated in a much more
dynamic environment where the availability of people isemcbnstant flux and chande [11].

AMT offers access to a large number of crowd workers. Withirthetion of HITs that can
be created using a Web service-based interface they amdycletated to our aim of mediating
the capabilities of crowds to service-oriented businesg@mments. Despite the fact that AMT
offers HITs on various topics [85], the major challengestaréind on request skilled workers
that are able to provide high quality results for a partictibgic (e.g., se€ |3]), to avoid spam-
ming, and to recognize low-performers. To the best of oumkedge, these problems are still
not faced by AMT. In this work we focus on those issues.

Another shortcoming of most existing real platforms is thekl of different and compre-
hensiveskill information Most platforms have a simple measure to prevent worker&NiT,
a threshold of task success rate can be defined) from claitasig. In[[77], the automated
calculation of expertise profiles and skills based on imt@was in collaborative networks was
discussed.

In [39], a quality management approach for crowdsourcingrenments is presented. Un-
like our profile management, this work doesn’t support midtiskills, but concentrates on a
single correctness dimension. On the other hand, if theaesisecific need for such a quality
management technique, the profile management can thuslaeaépvith it by correllating the
correctness and suitability, as this module is decouplenh fihe rest of the platform as men-
tioned in Section 412.

Scheduling is a well-known subject in computer science. fidnel contribution in this
work is to consider multidimensional assignment and atlonaof tasks. A thorough analysis
and investigation in the area of multidimensional optimatteons and the design of optimal
scoring rules has been done byl[12]. [In][63] iterative mailtitbute procurement auctions are
introduced while focusing on mechanism design issues argblming the multi-attribute allo-
cation problem. Focusing on task-based adaptation, [7&@}ogtimal resource allocations and
reallocations of human tasks were presented. Staff sdhegdrdlated to closed systems was
discussed in [10, 20]. However, unlike in closed enterpsiggems, crucial scheduling informa-
tion, i.e., the current user load or precise working houesusually not directly provided by the
crowd. Instead, the scheduling relevant information mesgdthered by monitoring. The work
in [41] details the challenges for collaborative workfoiecrowdsourcing where activities are
coordinated, workforce contributions are not wasted, @sdlts are guaranteed.

Although the idea of QoS-enchanced crowdsourcing was stieclibefore [40], to the best
of our knowledge, no work was devoted to deadline- and guedéittric predictions and guaran-

a7

tees in crowdsourcing. 10 [70], semi-automatic assignmmeathanism was proposed. This work
assumes that SLAs are established with the workers, and @aitynBrokers are hold responsi-
ble for assignments in various crowd segments. However s Svith crowdsourcing service
consumers are considered. Advanced market-based crowdspylatform which takes the
suitability of workers to tasks into account was proposeff5j. For a given task, it organizes
an auction among only the most suitable workers to increaseverall quality and motivate
workers to improve their skills. Again, this model doesrroyide predicting capabilities and
doesn'’t support SLAs.

The considered scheduling problem is based on worker-tzitkbdity, task deadlines, and
workers availability with the objective of maximizing thelj quality does not correspond to any
of well-known scheduling problemis [66]. The problem candrefulated as unrelated machines
in parallel with deadlines, but the optimization objectisaifferent from objectives related to
processing time which are commonly studied in the domairaff Stheduling [[10] designs
workers’ schedules which should fulfill certain requirertseand cover the tasks that need to
be done in a given planning horizon. Crowdsourcing’s ideaésopposite: the workers define
their schedule by themselves, and the platform assigns&ableiworkers to tasks in progress
dynamically.

4.9 Discussion

In this section we discuss some disputable aspects of ouoaqip

The operation of the platform is influenced by several subjecharacteristics provided by
consumers, such as skill requirements, job duration, aitfaek. However, it is of consumer’s
interest to specify them accurately. For example, if s/faeuestimates job duration, then some
deadlines might be broken or the resulting quality can bestalvan agreed. This situation can
be spotted by the platform as the majority of workers wouldhdojobs longer than expected.
Then, the input data from the consumer can be consideredadislg, and the agreement can be
denounced. If the consumer overestimates the job durdtien,agreements are not endangered
as most of workers would be faster than expected, howevsmibuld produce underestimated
predictions.

The same can be applied for other characteristics: if thifopta spots that the majority of
assignments do not correspond to expectations - then theypwebably specified inaccurately.
Moreover, the guarantees are given according to the pfadosight, so the agreement can
include the condition that the platform cannot be respdaddr the outcome quality if the input
data was inaccurate, and the consumer is responsible factweacy of his/her input. The
consumer, on the other hand, can rely on the prior experiensebmit some sample tasks to
adjust these parameters.

Crowdsourcing presumes a substantial amount of registemelers, and the scheduled
crowdsourcing puts even more restrictions on what the wsrkan do and when. The fea-
sibility of real-world deployment of such a platform can shibe questioned. Some contrary
arguments, however, are that about 20% of AMT workers cengid/T their primary income,
and about 20% of AMT workers complete more than 200 jobs peky@4]. Considering, that
AMT claims that more than 500 000 workers are registered énpllatform, one can conclude

48

that there is significant amount of people who are willing éofprm jobs at the regular basis.
Moreover, the payments for jobs in scheduled crowdsorceng ke bigger due to the added
value of SLAs. Finally, the scheduling mechanism can beagbent to take account of workers’
preferences, while keeping the assignments compliantableshed agreements.

4.10 Summary

In this chapter we presented a skill-aware crowdsourciatfgrin model which allows to pro-
vide crowdsourcing services with SLAs and to control th& @erformance quality, and a pre-
diction technique for negotiating feasible agreements.cdntrast to existing crowdsourcing
platforms such as AMT, which follow a task market-orientggb@ach, our platform model is
based on services computing concepts. Such a model is typpplied in enterprise workflow
systems using, for example, the WS-HumanTask specificatiatesign human interactions in
service-oriented systems. However, WS-HumanTask antedetpecifications lack the notion
of human SLAs and task quality. In our approach, negotiatleissand monitoring help to as-
sign task requests to suitable workers. Thus, our platfersnes quality guarantees by selecting
skilled workers. We introduced the proof-of-concept inmpéatation with particular algorithms
for task scheduling and worker profile management. The egdpility of the platform design
was proved in a simulated environment. The experimentalteeshows the clear advantage of
skill-based scheduling in crowdsourcing, as the averagditgus certainly better in the large
comparing to the case when the workers choose tasks by themsdhe skill monitoring and
updating mechanism improves the overall quality by 10-15%.

The potentiality of the prediction technique is evaluateatdugh experiments which show
that such an environment is predictive in spite of its inherencertainty. The proposed base
algorithm can be considered rather precise (average ydahtiation 0.025), and, therefore, can
be applied for negotiating the agreements. The experingtte that the prediction accuracy
depends on deadline remoteness, the guaranteed valueftbaran be adjusted accordingly.
These results show that crowdsourcing platforms can benizgg to provide quality guarantees
for the consumers. They can strengthen the certainty ardicpability in process planning
and design, and enable Service Level Agreements with cestonFrom a Business Process
Management perspective, such guarantees provide ancamditialue, thus promoting more
advantageous crowdsourcing services.

49

CHAPTER

Optimized Execution of Business
Processes with Crowdsourcing

The crowdsourcing approach presented in Chapter 4 is ajppdidor simple tasks that can be
generally finished in small amount of time and don't require worker to know the context of
the task, corporate standards, conventions or practicesvdSourcing of complex tasks how-
ever requires workers to be affiliated with the consumer ttageextent. Firstly, because of se-
curity reasons, as the worker who gets the task might neeaM®dmn insight into the company’s
processes and to have an access to company’s data (e.dopteent of features for software
components requires the partial knowledge of the systerdsrdrastructures deployed in the
company). Secondly, because such tasks are more costly argaritical for business, and
therefore require certain confidence in possible candiddieie to these reasons, crowdsourc-
ing of such tasks cannot provide the similar scalabilityeptinl compared to crowdsourcing of
simple tasks, and makes it unrealistic to perform diredgassents alike to the approach pre-
sented in Chaptérd 4. It still however can deliver more flditjband allow to reduce costs via
competition

In this chapter we propose a framework for adaptive execwfdusiness processes on top
of aninternal crowdsourcing platform. Based on historical data gathénethe platform we
mine the booking behavior of people based on the nature amahiie of the crowdsourced
tasks. Using the learned behavior model we derive an ineentanagement approach based on
mathematical optimization that executes business presdasa cost-optimal way considering
their deadlines We evaluate our approach through simulations to provedasilbility and ef-
fectiveness. The experiments verify our assumptions dagguthe necessary ingredients of the
approach and show the advantage of taking the booking leshiat® account compared to the
case when it is partially of fully neglected.

51

5.1 Overview

Crowdsourcing has the potential to give companies flexibleess to a talent pool of almost
unlimited size. In fact, according to an internal strategguiment that leaked out in early 2012,
IBM plans to employ a radically new business model [80]. Woines to let the company run
by a small number of core workers. A dedicated Web-basefbptatis used to attract special-
ists and to create a virtual “cloud” of contributors. Simila cloud computing where computing
power is provided on demand, IBM’s people cloud would allodetrerage a flexible on-demand
workforce. Today’s crowdsourcing systems are still reklyi simple and only suitable for non-
critical, atomic tasks requiring minor efforts. In partiay Amazon offers a task-based crowd-
sourcing marketplace called Amazon Mechanical Turk (AM3]) [Requesters are invited to
issue human-intelligence tasks (HITs) requiring a certpialification to the AMT. The regis-
tered customers post mostly tasks with minor effort thatydwer, require human capabilities
(e.g., transcription, classification, or categorizatiasks [35]).

We foresee that in the future companies will increasingly aowdsourcing to address a
flexible workforce. However, it is still an open issue how &ry out business processes lever-
aging crowdsourcing. In case if a crowdsourcing platformvjates guarantees (see Chapier 4)
regarding QoS, then it is possible to use QoS-based optimizésee, e.g., [73]) to fulfill the
process-level guarantees while minimizing costs. Howeaediscussed above, providing such
guarantees for particular tasks within an internal enisepcrowdsourcing platform is not real-
istic. Nevertheless, if there are enough historical infation about the prior assignments, it is
possible to estimate the needed parameters for the puthliakks to fulfill process-level guar-
antees. The main problem is, however, that people book taduatarily in such competition-
based crowdsourcing, which means the only way to influenokibg and execution times of
single tasks is to either change incentives or modify otseeets of a task, e.g., define a later
deadline.

The contribution of this chapter is an enterprise crowdsiagrapproach that executes busi-
ness processes on top of a crowdsourcing platform. For éagle sask in the business process
we reason about the optimal values for incentive and tinwtadl when crowdsourcing them.
The goal is to carry out the business process with minimastments before the deadline. Dur-
ing execution of the business process we constantly mahitgprogress and adjust these values
for tasks that have not been booked by a worker yet. Our aplpifoa calculating optimal values
is based on mining historical data about task executiogs, which influence higher rewards
have on the booking time, analyzing the current status obtigness process, and quadratic
programming, which is a mathematical optimization forntiola that can be solved efficiently.
We evaluate our approach through simulations for diffeprotess sizes and structures. The
experiments show the effectiveness of the approach andrdgrate its adaptivity to the poorly
predictable crowdsourcing environment. We prove that bmpkme is one of the key features
for optimizing process execution in context of crowdsooggiand that taking it into account can
reduce the deadline misses up to 14%.

52

Type Description| Ready to start Effort | Time Allotted | Reward

JavaScript| Click here | now 21h 5d $2,090 | Book
Ul Design | Click here | 2012-04-01 14:0Q 12h | 7d $810 Book
NET Click here | 2012-04-03 10:0Q 3h 14d $110 Book

Figure 5.1: Schematic Ul for the enterprise-internal cresudcing platform of a large software
company

5.2 Motivating Scenario

We consider a scenario of a large software company that ptadeploy an enterprise crowd-
sourcing platform for software development tasks. Figuiesehematically shows how tasks
are presented to the employees. Each task is described pg arny a textual description. The
third column gives an estimate when the employee will be #blstart working on the task.
Since a task may require input from other tasks the actualda#e and time can deviate from
the announced one. Effort provides information about theeteffort necessary to finish the
task. Time allotted defines the time frame in which the taskiposed to be processed. It starts
when the task is ready to start or when the task is booked ewbiis later. The reward tells the
employee how much he will get for successfully processimgtéisk on time. Instead of money,
rewards could also consist of more abstract reward pointenfan employee books a task s/he
is responsible for delivering the results within the aéidttime. Tasks can be booked before they
are ready to start. As long as tasks are not booked the systssmmmdify allotted time and re-
ward. The crowdsourcing platform generates and storesfognation for each processed task,
as illustrated in Figure 5.2. We assume that at least infoomaegarding the task type, time
effort, time allotted, the reward for which the employeeuatly booked the task, and the time
it took from publishing to booking is stored for each taskqassed via the platform. Usually
paying much for a task would reduce its booking time; alsojrtpa high allotted time should
make tasks more attractive compared to tasks with a tigtdlicea

$405

| Type | Effort | Time Allotted | Reward | Booking Time |

| .Net | 24h | 14d | $520 | 1d |

Crowdsourcing | | -Net | ;2: [‘;d | $:$2 [zh [
Platform Logs | | -Net | | 5d I # | ed |
| .Net | 36h | 5d | $850 | 5h |

| UI Design | 12h | 8d | | 3h |

| | | | | |

Figure 5.2: The crowdsourcing platform maintains a dataltastaining information related to
the processing of each task

However, the software company has problems to map its kasiwerkflows to the crowd-
sourcing platform. Figure_ 5.3 shows a workflow describinguaitiess process the company
wants to execute. The aim is to integrate a new plugin intoxastieg software product. The
plugin consists of two features that together make up thetimmality of the plugin. Each fea-

53

Feature 1
> Implementation |—
T p
> Testing u
Integration /
Deployment
L i Feature 2 2012-05-03
T Implementation — 18:00
> Testing i Integration Test
b —

Figure 5.3: An exemplary business workflow describing theettsmment of a new plugin for a
software product. The plugin consists of two features tieadrto be developed, integrated, and
deployed into the software product. Each implementatiep & followed by testing. There is a
deadline for the completion of the whole plugin.

ture consists of three tasks, the actual implementatiorttandriting of test cases, which can be
done in parallel, and the testing of the implementation gi$ive test cases. After both features
have been implemented and tested, an integration and depidystep is necessary to ensure
proper installation into the software product. Three défe testing tasks are to ensure the high
quality of the plugin; all three are based on the integratast case.

The introduced business process is simple yet helps to stagher the challenges addressed
by this work. The question is how to crowdsource the taskfi®@fworkflow using the crowd-
sourcing platform, i.e., how to set the values for the crawased tasks. Type, description, and
estimated effort of each single task typically are alreaghilable; the approximate ready-to-
start times can be computed by the crowdsourcing platforoe drhas scheduled all predecessor
tasks. This is relatively straightforward yet not triviadhe it involves the computation is based
on constant monitoring and recalculations to cover dewiatirom the schedule, e.g., delayed or
early finished tasks. However, there is no obvious solutiail #or how to determine the values
for time allotted and reward. Time allotted should be assibim a way to ensure the adherence
to the deadline. Rewards should consider the usual “marieggj of the respective tasks, but
also sometimes be increased to strengthen the competitimmg employees and ensure that
tasks critical to the success of the workflow are timely baokdso, in case the allotted time is
short to process the task, then this should be reflected irethard.

5.3 Approach

The goal of our solution is to ensure the timely execution udibess processes that contain
crowdsourced tasks while minimizing the expenses assatigith crowdsourcing rewards. We

assume that the crowdsourcing platform allows to specibttatl time and reward for each task
(as described in Sectign 5.2). The expenses can be reducsstting lower rewards for tasks,

however, if the reward is too small, a task might stay not ledolor too long, if booked at all.

54

Such situations can significantly affect the execution ef phocess, and become a reason of
missed deadlines. The allotted time also affects expelisisdess likely that an employee de-
cides to take an urgent task for a regular reward. Hences ttear be more employees interested
in a non-urgent task at a lower reward, because some of theht iave less experience in
this type of tasks, and would like to improve, but need maretallotted. Obviously, the time
allotted also directly influences the process completioreti The main idea of our approach is
to find a most beneficial trade-off between rewards, alldfteds, and expected booking times
for crowdsourced tasks in the process.

Specifically, we address the following questions:

How to estimate booking time? The time it takes someone to book a task after it is an-
nounced in the platform, or theooking time can be influenced by various factors. However,
we are convinced, that it is driven mostly by the strengtrhef¢competition among employees.
Therefore, tasks, whose time allotted and reward combinatisfies demands of more people,
are generally booked earlier, and vice-versa. Undouhtegin if an employee is satisfied with
the time allotted and the reward offered, s/he can stillsefio book a task, because of being too
busy, not interested in this particular type of tasks, ot jud being in the mood. Nevertheless,
if the crowd is large enough, the trend should remain. Ouraggh is to determine this trend
using platform logs (see Sectibnb.2).

How to optimize allotted times and rewards? The optimization should consider the de-
pendency between booking times, rewards, allotted timmabtree structure of the process. Also,
it can happen that something goes not as expected (e.g. kemdmlays a critical task, or com-
pletes it significantly earlier), so either it becomes nsagsto get some tasks done faster to
cope with a deadline or an opportunity to cut more costs eeserghe optimization therefore
should perform adaptively, and consider the process statakh

When tasks should be published in the crowdsourcing platfan? If a task is booked by
an employee, then the platform undertakes a commitment an'tl @emand the employee to
perform faster or change the reward for this task any moreveder, as mentioned above, an
adaptive behavior can be advantageous, and it can be mceédi@into publish tasks later. But
this should not be done too late and be aligned with the psoerscution state. Our approach
is to publish a task when the sum of its optimized booking diatted times, and expected
execution time of subsequent activities in the processnmsi as long as the time left before
deadline. In Sectidn 5.4 we experimentally prove that sucipgroach produces optimal results.

We thus map the described functionality to components anggse a framework for a
deadline-driven reward optimization for processes cairigi crowdsourced tasks (See Fig-
ure[5.4). The estimator collects the statistical data frbm glatform logs and estimates the
functional dependency for each type of taskThe optimization component retrieves structure
and state of processés, booking state of already published tasksfunctional dependencies
O, and determines optimal values for booking time, reward,tane allotted. These values are
further used by publishing component which announces tdke platform at appropriate time
and updates them if needed.

Subsections below provide a detailed description of theesponding components of the
framework. Estimation should be performed for all task g/pefore rewards can be optimized.
After some time, it can be re-executed to conform to the ct®wllanging characteristics. The

55

Business Process Engine

minimize
f(x) =% x" Qx + ¢’ x
subject to
Ax<b

Crowdsourcing Platform Logs

Figure 5.4: The architecture of the framework

optimization and publishing components are activatedodérally thus realizing the adaptive
behaviour.

5.3.1 Estimation component

As described in Sectidn 8.2, each log entry corresponds to@gsed task and includes task
type, weight (e.g., in hours of effort), allotted time, baaktime, and reward. Let us reference to
these values dB, w, t, bt, r. The estimation for each task type is done independentlgréfare,
for a particular type of task, an entry can be represented ast, bt, r >.

Assuming that reward and time allotted linearly depend enweight, and booking time
depends on the combination of reward and time allotted, weccasider a mappingt’ =
f(,r") which is populated with log entries as follows: = ¢/w;r’" = r/w;bt’ = bt, which
reflects tasks with weight 1.

Further, we need to estimate a functiob(t,) which is an upper bound for mapping
at each(t,). Even with a weak competition, a task can be booked fast daectwncidence.
Therefore, for stable prediction in the context of deadféliment, we are interested in the

56

maximuntime that it takes a task with specified reward and time a&itbtb get booked. The
particular methods for upper bound estimation can varyra@og to the real setup.

Finally, using the discovered upper bound, we need to appair the functiory(¢, bt) that
reflects the reward that need to be set for a specified timt#etdland expected booking time.
This function will be used in an objective function for opimation. The dataset for approxi-
mating g is obtained as a set of tuples r;, ¢;, ub(t;, ;) > for each(r;, t;) that are defined in
mappingbt. We argue thay should be approximated with a 2nd degree polynomial, bec@us
polynomial-based optimization is well studied [51], (iiamy optimization frameworks support
quadratic programming [57] , and (iii) the 2nd degree is adgtvade-off between optimization
complexity and fitting accuracy for the problem. In our exmpents, the difference in accu-
racy between 2nd and 5th degree polynomial approximationless than 5%, whereas it was
more than 20% between 1st and 2nd degree. The estimatiofdsdlea determine minimum
and maximum values for all arguments. The approximatedtifumshould therefore have the
following form:

g(t,bt):a,1*t2+a2*t*bt+a3*bt2+a4*bt+a5

An example of an approximated function is illustrated int®ed5.4.

5.3.2 Optimization component

The goal of the optimization is to fulfill process deadlindyile trying to minimize the offered
rewards. Therefore, based on the state and structure ofdbhegs and estimated dependencies,
we formulate a quadratic programming problem. The congsainsure that the process can be
finished before the deadline considering all the bookingadiudted times, and the optimization
objective is the sum of the rewards that will be paid for tasistained in the process.

We formally represent a process as a directed acyclic gnpRre nodes represent tasks
and edges represent control flow. The graph has 2 speciat ribderepresent the beginning
and the end of the process, namglyandout Thus, for each node in the graph, there exists a
path fromin to out which contains this node. A task can be started when all @sriring edges
are adjacent to already finished tasks. Besides crowdgbtasks, a process can contain simple
activities, whose execution times are regarded as cosstaat simplicity,in andout nodes can
be considered dummy, i.e., simple activities with executime 0. Such representation is more
general than, e.g. combination ftdw andsequencectivities in BPEL. In this work we do not
consider constructs such as conditions or loops for the sidienplicity, although the approach
can be extended to support such elements.

Each task has a property that indicates its status, whichbeaeitherunavai | abl e,
publ i shed, ready, startedorfini shed. The process engine can thus launch only
the tasks that areeady. Tasks are marked gsubl i shed when published in the crowd-
sourcing platform, and change their statug tsady when booked. For each not yet booked
crowdsourced task, decision variables for allotted time fam booking time are included for
optimization. The variables are restricted using the mimmand maximum values provided
by the estimation component. Two categories of constrairdincluded into the optimization
model:

57

1. Constraints covering all the processing and allotte@githroughout all possible process
execution paths from the current state. The combinatiohese constraints ensures that
the slowest branch will complete before the deadline.

2. Constraints covering booking time fanavai | abl e andpubl i shed tasks and all
possible subsequent process execution paths. Theseaiotssemsure that booking times
will not endanger the deadline fulfillment.

If a task is already booked or represents a simple activign tits execution time is fixed. If
it has been already started, then its completion time carstsma&ted for current situation. In
both of these cases, the execution time is regarded as aanbficim the perspective of the
optimization. The exact algorithm for building the constta is described in Algorithin 5.1.

An example of the algorithm’s functionality is shown in FiglE.5. A simple activity has
already started and has been processed for five time unitbjsigated by the time line. Since
the expected processing time for the activity is 20 timegyrilte optimizer assumes that the
activity finishes in 15 time units. Since there is only onetethactivity, the optimizer adds two
constraints of first category because there exist two patims this this activity toout activity.

As all the other tasks are either unavailable or publisheslcbnstraints of the second category
should be created for them. Therefore, two constraints doking timet, are generated, cov-
ering both successor paths. For begrandt,, only one constraint is generated for each single
path toout

The optimization objective is composed as a sum of rewardsyube scaled values of
estimated dependency functions:

min Z(gtypes (ts/ws, bts) * ws)
ses

whereS - all tasks in the processg,,,., - dependency function for the type of taskt,, bt -
decision variablesy - weight of tasks.

If the optimization problem turns out to be infeasible, thtimizer should try to extended
the deadline and try again, until a feasible solution is thumhis will ensure that even if the
deadline cannot be met, then the best possible solutiorbevitirovided.

33 15 4+ t9 +t3 < 100
15 +ty 4+ t4 < 100

deadline

100

Y

bto + to + t3 < 100
bty +to +1t4 < 100
btz 4+ t3 < 100
bty + t4 < 100

Time |
Line | 4 Ot

Figure 5.5: Example for the generation of optimization ¢aists for the quadratic program-
ming problem formulation

58

input: timeToDeadline processGraph
call : createConstraints([], processGraphoutNode)

createConstraintq list path, task t) {

addt to the beginning ofpath;

foreach (incoming edgee of t) {
get adjacent nod€ which is source ofe;
if (status oft’ is not finished) createConstraintqpath, t’);

}

if (there were no incoming edges with adjacent finished nodes)
addConstraint(path, 1st type); else
addConstraint(path, 2nd type);

removet from path;

}

addTermsToExpressiorflist path, constraint expressioexpr) {
foreach (t in path)
if (status oft is unavailable or published)
add decision variable for allotted time dfto expr; else
add expected execution time left fdras a constant t@xpr;

}

addConstraint(list path, constraint typecType) {
t = first task in path;
if (cTypeis "2nd type" and status of is not either unavailable or published) return
create constraint expressiaxpr;
if (t is unavailable) add decision variable for booking time afto expr;
if (t is published) add predicted time fort to be booked as constant &xpr;
addTermsToExpressiorfpath, expr);
add optimization constraint gxpr < timeToDeadline];

Listing 5.1: Algorithm for creating optimization constraints

5.3.3 Publishing component

A task is published in the platform when the sum of its expédteoking time, allotted time,
and expected execution time of subsequent activities ipitheess is almost as current time to
deadline. In other words, the time to deadline when it shbelgublished can be determined by
() finding the longest path from the task nodeotat node in the process graph, where weights
of edges are set to the determined optimal values for tinottedl of their source nodes, and
(i) adding the booking time of the task to this value. A tasih@lso be updated after being
published if it has not been booked yet.

In practice, the time to deadline value which is provided pbiroization and publishing
components can be lower than the real value in order to keepadi Baction of time reserved
for handling unexpected events.

59

5.4 Evaluation

As we mention in Section 5.5, best to our knowledge there asemilar approaches. Therefore,
we were not able to make a comparative evaluation. Becaesdistinguishing feature of our
approach is consideration of competition in crowdsour@ng booking time, we compare the
effectiveness of the optimization with cases when bookimg tis partially of fully neglected.
We also empirically prove the optimal choice of task pubtightime, and evaluate the overall
performance overhead of the optimization component.

To evaluate our approach, we examined a prototype impletientof the framework in
a simulated environment. We used MATLAB surface fitting fondtional approximation, and
GUROBI [60] framework for solving the quadratic optimizatiproblem. We used discrete time
model, so time was measured in arbitrary integer units.

5.4.1 Simulation setup

Workers. The size of the simulated crowd size was assumed to be 100&wgoiPlatform logs
were generated assuming that, generally, at any point d¥lybthem are willing to use the
crowdsourcing platform (at varios times those can be difieworkers). For every task type,
each worker was assigned two values: the least time allttggds/he needs to finish a task of
this type with weight 1, and the minimum acceptable rewattesE values were generated using
the normal distribution. Then, for a random sampling of tatletted and reward pairs, 200 log
entries were created. To pick a sensible booking time forgaelatry, the competition value
was calculated as a number of workers from the crowd, whas tene allotted and minimum
acceptable reward were less than the log entry had. Thamassthat only 5% of the potential
competitors would actually compete for the task, the bagkime estimation was guided by the
probability that at least one of competing workers bookstéis& before time:, assuming that
the time of booking the task by one worker follows the normiatribution. The actual value
was determined by stepwise increasingnd comparing a uniformly distributed random value
with this probability. Once it happens that the random vasukess than the probability; is
the booking time. Such a method covered coincidental faskibgs while generally exhibiting
the trend associated with competition. This method was @dsal to simulate actual booking
while performing experiments, i.e., the crowd simulatorswet informed about the booking
time chosen.

Tasks. Three types of crowdsourced tasks were simulated. Eachwaskdescribed by
average reward and allotted time, booking time by one woiked corresponding deviations.
The types of tasks and their generation parameters (lefiyedisas the estimated dependen-
cies between booking time, allotted time, and reward fdkgaxf Type 1 (right) are shown in
Figure[5.6.

ProcessesThe simulator randomly generated processes with diffesiziats. We simulated
small processes (5-10 tasks) and big processes (10-30), timskisding all types of crowdsourced
tasks and simple activities. We believe that bigger numbeesnot realistic in a real setup,
because usually business logic is clustered into concisgasitions that are then managed on
a higher level. Weights for tasks were selected randomiw fitee range [0.5,5].

60

10 5 Booking time

g&‘&%«t&

Type 1 Type 2 Type 3 \
Property Avgyp Dev Avgyp Dev Avgyp Dev “‘l““ E
Reward 100 15 50 7 80 10 ‘ &
Time allotted 20 3 15 3 13 2 ‘
Booking time for | 30 9 20 | 85| 15 5 |~
one worker

Figure 5.6: Task generation parameters are shown in the éatthe left. The figure on the right
illustrates the estimated quadratic polynomial that dbssrthe dependencies between booking
time, allotted time, and rewards for tasks of Type 1.

5.4.2 Experiments

We ran the prototype in different simulation settings byd@mizing process structures, and by
emulating the inaccuracy of task execution and bookingdifttee results from different random
generation seeds were averaged). The actual executionfaintasks was set using normal
distribution with deviations of 0.1 and 0.2 of the supposeekcation time. We considered both
cases when the deadline could and could not be adhered thlosieg how different parameters
of the approach impact both critical and not critical siilas. \We compare the results based
on average reward, total time penalty (time penalty is aydefaa process with regard to the
deadline for cases where deadline was missed), and numipeisséd deadlines produces, as
these indicators fully reflect the goal of the approach.

Publishing time. In our solution a task is published when the difference betwthe time
left before deadline and the sum of the task’s allotted tiamel expected execution time of sub-
sequent activities in the process (let us refer to this vasi®oking buffey is equal to its decided
booking time. In order to prove that this is the optimal cloiwe performed experiments where
tasks were published at earlier and later times. The reardtshown in Figure 5.Ya. We used
booking buffer values equal to 0.2,0.5,1,2,3,4,5,6 miigtipby the task’s decided booking time,
and, finally, we tested the case when the tasks were publistted platform immediately after
a process was starte@iStartmark in the figure).

It can be clearly seen that booking buffer equal to the exue¢tlecided) booking time
produces the optimal results. When it is lesser than thiseydhe tasks are not booked in time,
so the optimizer has to compensate that by putting higherdsyand, regardless of that, more
deadlines are missed because of these delays. When boakfagib greater than the decided
booking time, then there is less room for maneuvering to leandcertainty in execution and
booking times, because tasks become booked earlier amgheineameters cannot be changed any
more. It results into more missed deadlines and bigger pesall his behaviour then gradually

61

changes in an opposite way, which can be explained by théfarcthe real booking time can be
longer than the estimated one, and therefore the impactsinficcuracy is reduced for bigger
values of booking buffer. However, the number of missed lil@esiremains at least 25% greater
than in the ultimate case when all the tasks are publishech\phwcess is started, and rewards
and time penalties in this case are almost the same.

40

—%— Reward
—&— Penalty time |
——&— Number of missed deadlines|

35
1.8

30

1.6
25

1.4 20

1.2

Optimization overhead in seconds

1

Proportional value of a corresponding measure

0.8

0 1 2 3 4 5 6 OnStart

How much in advance tasks are published 0 20,000 40,000 60,000
(the assumed booking time multiplied by the value on this axis) Number of constraints
(a) Publishing time (b) Performance overhead

Figure 5.7: Figure (a) shows the effect when the bookingdougfvaried and tasks are published
not as suggested by our approach (1 on the X axis). Figurehfyssthe dependency of the
performance overhead on the number of constraints in thenizaition problem for one run.

Booking time. Consideration of booking time is a key feature in our appnod® analyze
the effectiveness of this feature, we compare the fulldiest optimization to the case where
booking time constraints (Second type of constraints, sati@[5.8) are completely removed
from the optimization problem (tasks are still publishethatappropriate time according to the
expected booking time which inferred from the decided relwand allotted times), and to the
case where average booking time is chosen for each taske$tksrfor small and big processes
are shown in Figurds 5.8a alnd 5.8b respectively, depidiegame indicators as in the previous
set of experiments.

As the results show, choosing an average booking time alvessysts in approximately 13%
more expenses for all process sizes, and produces more@stasimuch penalties and deadline
misses as the full-featured optimization does. This happetause some task do not need to
be booked fast, and the full-featured optimization woultkpess competitive and therefore less
expensive values for rewards.

Disabled booking time constraints do not affect the indicafor big processes. This can
be explained by the fact that there is almost always enoungé fibr booking the tasks in long
processes. Only first tasks of the process can be delayeitidoes not affect the overall perfor-
mance. Also, booking times are always chosen to be maxinthisrcase because they are not
constrained and it reduces the paid rewards. However, fatlenprocesses, the consideration

62

of booking time is crucial, as it can stronger affect thetieddy short process execution time.
The unconstrained case produces 14% more deadline migspeiaalties.

One can argue that the full-featured optimization shouldope at least with the same
performance as two other approaches. In perfect conditiosgssertion would hold. However,
on the one hand, the booking time is estimated asmoer boundtherefore, the booking can
often take less time than predicted. On the other hand, whercampetition is too low, it
can have the opposite effect: a task, which is assumed to ddeetiaand executed earlier and
costs more, can be eventually delayed more than a task wbgth less and was expected to be
booked later. Therefore, estimating realistic bookingesns one of the key requirements of this
approach. The accuracy of booking time in our experiments32&6, which resulted in at most
2% of more missed deadlines and penalties.

[IFull-featured optimization
I Optimization with average booking time]
| Optimization without booking time constraints

[JFull-featured optimization
. Optimization with average booking time

1.2
[] Optimization without booking time constraints

1.2}

117

0.9} 1
0.8 1
0.7~

Reward Time penalty Missed deadlines Reward Time penalty Missed deadlines

(a) Small processes (5-10 tasks) (b) Big processes (10-30 tasks)

1.1

0.9}

0.8}

Proportional value of a corresponding measure
-

Proportional value of a corresponding measure
-

Figure 5.8: Effect of neglecting the booking time in optiatinn

Performance overhead.The overhead of optimization depends on the number of Vasab
and the number of constraints. However, the number of @sdbr our problem is proportional
to the number of tasks involved, which was less than 30, amddhiance within this limit did
not affect the overhead. However, the number of constramisoportional to the total amount
of all possible paths that go througih and out activities (See Section_5.3), and this number
depends on the process structure and scales from 1 to temsustinds. Figufe 5.17b depicts the
overhead dependency on the number of constraints for oimaination ruﬂg.

For small processes (up to 10 tasks), the worst case is wieea iha sequence of 5 con-
structs each with 2 activities in parallel, the number o@ists is less thad® « 2 = 64, which
implies that an optimization run for a small process alwayes$ less than 0.01 second. For big-
ger processes, the worst casglis«2 = 65535, so an optimization run can take up to 35 seconds
in this case. In both cases, the overhead is acceptable fflarméng periodical adaptations in
processes with human tasks which can span from severalesitmtours or days.

'Hardware used: Intel Core 2 Quad 2.40 GhZ with 6 GB of RAM

63

5.4.3 Discussion

The results clearly show that booking time should be comeiievhen publishing tasks to
achieve the best adaptable behavior, because the bedsrasilachieved when the booking
buffer equals to the estimated expected booking time. Baptime constraints for optimization
are however not always favourable. They should not be usdaidger processes (more than 10
tasks in out setting), but become important for smaller @sses. Such smaller processes can
emerge in, e.g., agile software development environmeviieye work is organized into short
cycles with small sets of tasks.

5.5 Related Work

Major industry players have been working towards standactiprotocols and languages for
interfacing with people in a service oriented way, which rhayused as technical foundation
for implementing our ideas in real businesses. Specifieatinch as WS-HumanTask [24] and
BPEL4People [4] have been defined to address the lack of himactions in service-oriented
businesses [49]. Although some prospective features foamyc resource management were
outlined for these standards _[74], however, they have besigded to model interactions in
closed enterprise environments where people have predefirestly static, roles and responsi-
bilities.

The area of QoS-aware composition of Web services has marilasties to the topics
addressed in this work. Web service compositions createevadlded services by composing
existing ones. Here the question arises which servicesdsecfor participation in a compos-
ite service, given that there are many available Web ses\poeviding equivalent functionality.
Liangzhao Zeng et all_[93] propose a QoS-aware middlewarediecting Web services that
maximize user satisfaction modeled as utility functionfieyl define multiple quality criteria,
i.e., execution price, execution duration, reputatiortcsgsful execution rate, and availability.
The authors propose service selection based on local @atiimim and global selection, consid-
ering aforementioned quality criteria. In the local optation case service selection is done for
each task individually, while the global planning also ddass the interrelations between ser-
vices. Integer Programming is used to solve the global jphgrwroblem. Canfora et al.[8] argue
that genetic algorithms, while being slower than integegpmming, represent an alternative,
more scalable option. Another woik [73] focuses on the optition of large-scale QoS-aware
compositions at runtime based on QoS specification basedmstraint hierarchies. Multiple
well-known metaheuristic optimization approaches ardiego solve the optimization prob-
lems. The major difference between Web service composéiahcrowdsourcing of business
processes is that Web services which are to execute a foatitiocan be directly chosen while
humans in the crowd are self-determined and act autonomousl

The recent trend towardawmllective intelligencend crowdsourcing can be observed by look-
ing at the success of various Web-based platforms that htraetad a huge number of users.
Well known representatives of crowdsourcing platformdude Yahoo! Answers [88] (YA) and
the aforementioned AMT_[5]. The difference between theséf@ims lies in how the labor of
the crowd is used. YA, for instance, is mainly based on int@yas between members. Ques-

64

tions are asked and answered by humans, thereby lackingifity &0 automatically control
the execution of tasks. In contrast, AMT offers access tddtgest number of crowdsourcing
workers. With their notion of HITs that can be created usiMyjeb service-based interface they
are closely related to our aim of mediating the capabilibesrowds to service-oriented business
environments. According to one of the latest analysis of Algg], HIT topics include, first of
all, transcription, classification, and categorizatioasks for documents and images. Further-
more, there is also tasks for collecting data, image tag@ngd feedback or advice on different
subjects.

While this work focuses on how to take a workflow and optimalhvert the subtasks into
crowdsourcing tasks, there is also research about how tocnosysourcing tasks to suitable
workers. A possibility is to use auctioning mechanisms fioplementing such a mapping [75].
All workers that meet the minimum requirements for a paticare invited to submit a bid to
an auction created for assigning the task. The winning batetermined by a combination of
the workers suitability for the task and the bid’s price. Foproved reliability and training of
workers a single task may be crowdsourced multiple times.

5.6 Summary

This chapter presented an approach for deadline-driveptimdaxecution of business processes
on top of an internal competition-based crowdsourcingfgiat. The main feature that distin-
guishes our approach from other workflow and process opdiiniz methods is consideration
of time that it takes a crowd to book a task. We proposed a nddtiraestimating the functional
dependency of booking time by using statistical data, mteskan algorithm for constructing an
optimization problem, and empirically determined the gt task publishing technique.

The results show that our model is effective for adaptingptfoperties of tasks in a crowd-
sourcing platform to adhere to process deadlines and tanizaithe rewards. We discovered
that booking time should be considered when publishingstéslachieve the best adaptable be-
havior, and that taking booking time into account in optiatian can reduce the deadline misses
up to 14%. The approach can also be used to predict feagibilil expenses for a specified
deadline by running a simulation like ours, therefore ailtayto explicitly observe the tradeoff
between processing time and associated costs.

65

CHAPTER

Private and Confidential Data
Propagation Control in SOA

Law regulations, corporate standards, and desire for owest@atisfaction require enterprises
to provide certain guarantees for the data obtained frowicesr that are offered to customers
or partners. As data integration proliferates, private anficlential information can be spread

across the system extensively. Striving for protectionasfgessed sensitive information, enter-
prises thus need comprehensive means to control such gipagin this chapter we propose

a private data propagation control framework (Providenabjch aims to give a comprehensive
view on private or confidential data usage throughout theesysnd to facilitate decision mak-

ing regarding the appropriate security-related SLOs ftaretl services and internal policies for
this data.

6.1 Overview

The proliferation of data integration intensifies the piggtaon of data throughout the enterprise,
since the result of one activity can serve as a source fohanothe more sources are involved,
the easier it is to overlook the inappropriate use of daté,@smes to be maintained in various
locations by different parties. Indeed, proliferation e$ource virtualization and cloud comput-
ing requires even more delicate consideration of privagycems [[65, 90]. Thus, striving for
protection of possessed sensitive information, entapmeed comprehensive means of control
over its propagation.

We address the problem in the general case of SOA where atipigimentation of services
is inaccessible and their functionality is unrestrictetisTimplies, for example, that data might
be stored by one service and retrieved or transferred lgtanbther service, so this fact can't
be established by workflow analysis. To our best knowledwgretare no solutions to date that
address this problem.

67

This chapter presents tirivate Data Propagatio Control Framework (Providence). Mon-
itoring the message exchange, it employs content inspethiat is successfully applied in Data
Loss Prevention (DLP) solutidsThe framework detects and logs private data disclosugs th
happen in the SOA environment. The log is then used to givergoehensive view on private
data usage throughout the SOA and to facilitate privacsteel decision making. The rationale
behind the framework is to have a practically-applicabletsmn that requires as few integration
efforts as possible.

6.2 Motivating Scenario

[86] outlines the scenario with harmful inappropriate usprivate data, where Alice, who has

a child with a severe chronic iliness, buys a book about theadie from online book store. Later
she applies for a job and gets rejected because the employehsw received the information
about her purchase and flagged her as high risk for experasivigyfhealth costs.

Below we show how the aforementioned scenario can take glae€o inappropriate control
over the private data in manifold data integration acthgtin SOAS.

Consider an enterprise Things’n’Books, which runs seumrainesses including online book
trading. It has complex infrastructure with various depemntts, each responsible for a particular
business. Things'n’'Books also has a delivery departmemdiivey all delivery needs of a com-
pany and a joint human resources department. To achievepai@bility between departments,
Things’n’Books employs SOA based on Web services.

When the client orders books on-line, the order details aténpo orders database exposed
as a data service (OrderService). Once the payment is egl;edvdelivery workflow, imple-
mented in BPEL, is initiated. It takes care of order prepanaand eventually calls the Web
service exposed by the delivery department (Delivery8ejwvhich takes delivery items and
the recipient contact data on input.

WebServer » OrderService DeliveryService » Mashup M —»wﬂg
0 g
\/ N e
Orchestration ﬁig
—»

Engine Delivery

Propagates to Department employee

Figure 6.1: Private data propagation scenario

The delivery department, in time, besides using the rededeta to perform delivery, stores
this data for both accounting reasons and further usagdiirederoutes analysis and optimiza-
tion through the instrumentality of an enterprise masNuprhe human resources department
also uses an enterprise mashup platform and benefits fraralparuse of mashuM. Also, it
outsources some duties to an independent HR company, ampdeseatative of that company,
Eve works in Things'n’'Books’s office.

http://wwv. ci 0. confarticl e/ 498166/ Best Data Loss Prevention Tools

68

http://www.cio.com/article/498166/Best_Data_Loss_Prevention_Tools

Thus, if Alice purchases a book from Things'n’Books’s, Exaslan opportunity to access
this information via the mashupl having no access to its origin source, the online orders
database. The propagation chain is illustrated on Figdie 6.

6.3 Providence Framework

In this section we introduce the Providence framework. Winstine architecture of the frame-
work, give formal specifications for control paradigms aeg@laceable components, specify
implementation remarks, and outline limitations of therfeavork.

6.3.1 Architecture

We start from specifying required adoptions in SOA, then wsectdibe each component of the
framework. The design of the framework is illustrated inl¥&6.2. The framework demands
two adoptions to be performed in SOA infrastructure, reqgiit to:

1. Submit private data entries to the registrator servicéhefframework, whenever such
entries appear in the system (e.g., when private data iseghteanually, received from a
partner organization, or submitted to a service in SOA).

2. Intercept messages exchanged in the integration andtsthiem together with the context
information to the monitor service of the framework for iesfion (e.g., SOAP messages
that travel on Enterprise Service Bus). Context informatimables the framework to
distinguish between different integration activities. aExles of context elements are

shown in Tablé€6J1.

SOA The PROVIDENCE framework
D Private data entries Registrator
Workflows
Processes > Service \ @ c *t ;
S onten
D{%H:I S Inspection
. Intercepted messages, Disclosure Engine
Servicos 3 ‘ corresponding contexts > Monitoring Specifications A
83 Service
o < S
Ovr;ége Icr;otl'}g In-house F F
Disclosure Dgﬁl,?;,re gﬁc;ec);t
T — Occurrences Log pojicies Promises
% Uses 3 f
P
| Provides | > @g Management module
! i \
S ! Privacy officer

Figure 6.2: The Providence framework

69

Table 6.1: Examples of context elements

Level Context element

Requestor host

Responding endpoint

Consuming application’s identifier

Application | Requestor’s credentials from responder’s perspective

Requestor’s credentials in requestor application, e.giashup platform
Process Corresponding process identifier, e.g. in business pranggiae

Network

Table 6.2: Examples of primitive types

Type Value Possible detectable forms
Name John Johnson John Johnson, J. Johnson, JOHNSON J
Date 02.01.2010 | 02/01/10, 1 Feb 10
Amount | 50000 50 000, 50.000

Registrator Service. Private data entries are submitted to the Registrator &eimiform
of disclosures Each disclosure contains typified pieces of private datiaitives and a logi-
cal rule, whose variables correspond to those primitivdso Aeach disclosure has a type. For
example, a disclosure of private information about a 50008%k loan issued to John John-
son who lives at 1040 Paulanergasse 2 can be specified asiyaapi; of type Name which
has value John Johnson”, p; of type Addresswhich has value 1040 Paul aner gasse
2", and ps of type Amountwhich has values0000, with rule (p; or ps) and ps and type
“Per sonal Loan”. It means that if the message exchange contains the amogethier with
either address or name, possibly in the different form (¢d. Johnson”), then the dis-
closure occurs. The type of primitive indicates how its fazam vary. When a disclosure is
submitted, primitives are separated from rule and grouptifiler, so only the mapping is kept.
The rule and group identifier are stored to Disclosure Spatifin Repository, the primitives
are registered at the Content Inspection Engine.

Monitoring Service. The monitoring service receives messages exchanged inrdata
gration processes and corresponding context informafidre messages are forwarded to the
Content Inspection Engine that detects previously regidtprimitives in messages’ content. If
any primitives are detected, the corresponding disclesare retrieved from Disclosure Specifi-
cations Repository and their rules are checked againsttéeterimitives. Occurred disclosures
are logged together with the context.

Content Inspection Engine. The Content Inspection Engine is responsible for detecting
primitives in the messages content. It receives primitivemn Registration Service and con-
tent for inspection from the Monitoring Service. The typeaoprimitive defines the possible
transformations of its data value. Examples of such typesshown in Tablé 612. There are
various content inspection techniques and algorithmisA8avhose explanation and evaluation
is beyond the scope of this thesis.

70

Management Module.This is the core component of the framework. Using the inftiom
from disclosure occurrences log, this module provides mé@anontrol private data propagation
to the privacy officer. She can (i) assign privacy promisesdotexts according to real data
usage practices in those contexts, (ii) assign privacycigslito disclosure types, and, based on
actual disclosure occurrences log and assigned polidgiggdt answers to following types of
questions:

1. Which privacy policy violations happened?
Which disclosures happen in specified context?

In which contexts disclosure of specified type happens?

W DN

What promise is enough for specified context to keep c@nplvith current private data
usage practices?

o1

How is the private data of specified type actually used?
6. How was the particular piece of private information used?

7. What if we want to set another policy for private data ortegty what violations will it
produce for the current environment?

The explanation of corresponding answers is given in thé sestion.

6.3.2 Formal Specifications

The framework is not coupled to a particular policy and cenhspecification. Nevertheless,
the framework’s logic heavily relies on these componentberéfore, we specify formal re-
quirements for these components and formally explain thi lof the management module as
follows:

Policy. We assume that both private data policies and context pesnaie expressed in the
same form. The policy specification should reflect both nements (policies) and promises
for data usage. It can encapsulate allowed usage purpeses/ing parties, and required obli-
gations. The implementation must provide a means to cheethgh data treatment under one
policy satisfies another policy (promise) and to calculbteibtersection and union of policies.

Formally, letP - set of all possible policies. There must be defined relations fies on P
which we mark as—, so thatp; — po; p1,p2 € P indicates that data treatment under poligy
satisfies policyps.

Further, there must be defined union operatarP x P — P that associates two policies
with a policy that is satisfied by either of themp;, ps € P p1 — (p1 Up2),p2 ~— (p1 U p2).

Finally, there must be defined intersection operator P x P — P that associates two
policies with a policy that satisfies both of thekp, p2 € P (p1 N p2) ~ p1, (p1 N p2) — pa.

Context. Context specification should distinguish activities thappen in SOAs in a way
that it is possible to assign feasible privacy promises tséhactivities. The implementation
must provide a means to check whether one context is a subxtaitanother. Occurrence of a

71

disclosure in some context implies its occurrence in altexts, of which the given context is a
subcontext.

Formally, letC - set of all possible contexts. There must be defined relatiam C, so that
c1 C ;1,0 € Cindicates that, is a subcontext ofs.

Configuration. The privacy officer manages context promises and private palicies.
Formally, we can consider that for a given point in time thisreonfiguration which contains
these mappings. As policy or promise might be unassignedntrna@uce unassigned polidy,
and extend® to P’ = PU{Q}. The rationale of unassigned policy is passivity in compaoites,
thus we refine—, N, U for P’ as follows:

Q—Q0NN=0,0UQ=0;

VpeP=Q«pp~—Q;
VpeP=QNp=p,pNQ=p;
Vpe P=QUp=p,pU=np.

Configuration is a tupleRromise, Policy), wherePromise : C — P’, Policy : T — P/,
whereT is a set of all disclosure type®romise maps contexts to privacy promises assigned,
Policy maps disclosure types to privacy polices assigned. For antext, its promise must
always satisfy a promise of any its subcontext:,c’ € C : ¢ C ¢ = Promise(c) ~—
Promise(c).

Management Actions Logic.Based on the current configuration and a part of the log (e.g.,
log for last month), management module enables the priviinento get answers on question
templates.

Formally, letL = {(¢;,d;)} : ¢; € C,d; € D,1 < i < N - disclosure occurrences log,
where D is a set of all registered disclosures, is number of log recordsy; is a disclosure
andc; is a context that corresponds to log entryLet T'ype(d),d € D indicate the type of
disclosured. Now, given current configuratioh = (Promise, Policy), for any part of log
L' ¢ L answers can be given as specified in Tablé 6.3:

6.3.3 Implementation

The prototype of Providence framework was designed andeémehted considering separation
of concerns. The core components implement the princiggt lasing unified interfaces to
replaceable components that are responsible for contgpédtion and privacy policies storing.
Replaceable components were implemented in an elementryondemonstrate functionality
of the framework. The prototype’s work is demonstrated i dhreencadt The evaluation of
results is given in Sectidn 8.5.

The success of the framework will depend on the selectioradiqular adoption points and
replaceable components. The context elements should serchie a way that (i) disclosures
that occur during the same data integration activity shanmach contexts as possible, and (ii)
disclosures that occur during different activities sharéesv contexts as possible.

2http: // www. i nf 0Sys. t uw en. ac. at / pr ot ot ype/ Provi dence/

72

http://www.infosys.tuwien.ac.at/prototype/Providence/

Table 6.3: Privacy-related questions and answers

Question Answer

1. Which privacy policy violations happened? (c,dy e L:
Promise(c) ¥~ Policy(Type(d))

2. Which disclosures happen in context d:d Ce(d,dyel

3. In which contexts disclosure of tyfféhap- c:Type(d) =T, (c,d) € L

pens?

4. What promisep is enough for context to | p = ﬂ Policy(Type(d))

keep compliant with current private data uses? c'Ce,(c',d)eL’

5. What policyp reflects the actual usage ofp = U Promise(c)

private data in disclosures of tyfe? Type(d)=T,{c,d)e L’

6. What policyp reflects the actual usage of p= U Promise(c)

private data in disclosuré? (c,dyeL

7. If we want to change the configuratiop, , .

what violations will the r?ew configurgtion’ (1) for configuration!’.

produce?

6.3.4 Limitations

Several limitations of the framework can be foreseen:

e Context elements must be accessible by message submitiipgi@n point. However, it
is a technical matter.

e Content inspection might give false negatives for complgta dhtegration patterns. False
positives might occur as well. The balance between falsitiyes false negatives, and the
detection rate in general will always depend on particulforimation systems, business
specifics, IT architecture and inspection engine settimpsrefore, to estimate these rates,
it is necessary to test the approach in real business envaors. However, fine-tuned
DLtooIs provide 80-90% accuracy and almost no false pesitin commercial product
testsl.

e It is impossible to obtain the data for inspection from epbegd messages. However, the
adoption points can be selected in such a way, that data avileint to inspection before
encoding. As the monitoring service does not forward tha day further and is supposed
to be deployed in-house, this should not raise any secsstyeis.

e Content inspection of internally exchanged messages ingputational overhead in
the system. However, submitted messages can be analyzechemyously using dedi-
cated resources, neither interrupting nor slowing dowimiess processes. We thus regard
the framework’s performance as a secondary concern.

®http://www. ci 0. conf articl e/ 498166/ Best Data Loss Prevention Tool S

73

http://www.cio.com/article/498166/Best_Data_Loss_Prevention_Tools

e The privacy officer will need to obtain actual context priygmomises. However, it is
inevitable due to assumption of inaccessibility of seniitglementations. Moreover,
given the solution that is able to conclude about actuatrtreat of data by a service
(e.g., using source code analysis), it can be coupled watlirdtmework, thus automating
context promises assignment.

6.4 Related Work

To the best of our knowledge, none of current research fuliresses the issue of private data
propagation control within the organization SOAs.

Works like [6/37,54] eventually come to rule-based accessiction to private data. How-
ever, none of these solutions can control the usage of priatiafter it gets released from the
guarded resource.

Approaches like [14,2[7,50] address the issue only withumidg of processes or workflows,
whereas integration techniques go beyond this paradigm.nstance, services can call each
other independently of the workflow engine, or they can stwieate data, so it can be later
picked up by other processes.

[87] proposes a framework for building privacy-conscioasnposite Web services which
confronts service consumer’s privacy preferences withgmmnt services’ policies. This frame-
work does not address scenarios where private data is fitstlgd by a component service and
then retrieved outside of the composite service’s scopereas such scenarios are inevitable
for data integration.

[72] proposes to record and store logs of private data usaggtter with this data through-
out its lifespan. It requires services, which consume peidata, to record all actions performed
with this data to the log, and return this log together with thsponse. Such logs can then be
analyzed to conclude about appropriate use of data. Unlikdramework, this approach inter-
feres with the business logic of services, requiring themeport performed actions. Therewith,
it does not consider cases, when private data is stored byesaiee and then retrieved and used
by another.

[55] proposes to encrypt the messages that are exchangeddmeenterprises, so that a
request to the trusted authority must be performed to detngm. Using this technique, trusted
authority can check privacy promises of enterprises andraiothe access to the private data.
This technique neither applies to private data control iwithe enterprise, nor addresses the
usage of data once access to it was granted.

[68] provides tool support for solving a number of problemsiata usage control. How-
ever, the authors rely on their own model of a distributedesys67] which assumes that each
concerned peer has a secure data store that possessespaldte data available to this peer,
and that the peer routes this data through the usage corgatianisms whenever the data leaves
this store. Such assumption makes the work inapplicabl&@hs in the general case.

[7] addresses similar problems of private data misuses.altitteors build their work upon
the Private Data Use Flow expressed as a state machine. dowhesy give neither instructions
nor any explanations of how to build this state machine inw@oraated fashion having a live
system. Unlike it, our approach was designed to work in ré€AS

74

Data Loss Prevention solutions are different to our apgroa@ way that they protect the
system from casual leakages of private data from end usdrsteas our approach aimed to
detect systematic inappropriate uses of data which eneae$IOA complexity.

6.5 Evaluation

To evaluate our work, we emulated (created and deployed$@ environment and business
logic form the scenario in Sectidn 6.2. Genesis 2 testbeflHaé been used for emulation.
By using its service interceptors we were able to monitordata exchange and deliver the
disclosures to the prototype for inspection. Besides efésnand logic outlined in Sectidn 6.2,
the testing environment included printery department tvkicecutes private orders and employs
the delivery department for shipping. After performing tesiness logics simulation, we tested
the management module’s functionality to proof the concept

The business logic was executed as enumerated below. Edlidepicts the testing envi-
ronment and log records inserted during the emulation.

1. Two online book orders are made, thus tB@oksPurchaseisclosures are registered in
the framework.

2. PlaceOrderoperation ofOrderServiceis called for each purchase, disclosures are de-
tected, and log records 0,1 are generated.

3. For each purchase orchestration engine retrieves sletaitetOrderoperation ofOrder-
Service(log records 2,4) and later submits itDeeliver operation ofDeliveryServicglog
records 3,5).

4. Delivery department usédashupServiceo run the mashup, which featurooksPur-
chasedisclosures (log records 6,7).

5. HR department accesses private information@tderService(log record 8),Delivery-
Service(log records 9,10), anfllashupServic€log records 11,12)

6. Printery department composes private printery ordeis &PrinteryOrder disclosure is
registered in the framework.

7. The order details are submitted to theliver operation oDeliveryServicghus generating
log record 13.

8. Delivery department runs the mashup which now involvastgny order (log record 14).

Disclosure type policies and context promises of the tgstinvironment are shown in Fig-
ure[6.4. Data fronBooksPurchaseisclosures is allowed to be used for system administration
and research and developmeRtjnteryOrdefs policy is not assigned. Data submitted@o-
chestrationHoswithin bounds ofOrderProcesss known to be used for system administration
and individual analysis. Data propagatediteliveryServiceHosits known to be used for his-
torical preservation. If data is sent MashupHostand remote login iDeliveryWorker then

75

Orchestration il %
Engine a2
Delivery depathment worker

Run mashup
¢6,7,14

DeliveryService «¢GetDeliveries— MashupService

6,7,11,12,14

© / \ 9,10

Deliver \GetOrder GetDeliveries Run mashup
/ 13 \ / 11,12
8
-4 Tl
5 g 5
Printery department worker HR department worker

24 GetOrder Deliver 3.5

WebServer —PlaceOrder» OrderService
0,1

Figure 6.3: Testing environment

Disclosure type Policy
BooksPurchase Self=[admin, develop]
PrinteryOrder Unassigned
Context Promise
process = OrderProcess

destinationHost

OrchestrationHost

Self=[admin, individual-decision]

destinationHost

DeliveryServiceHost

Self=[historical]

destinationLogin
destinationHost

DeliveryWorker

Self=[develop]

= MashupHost

destinationHost = HRDepartmentHost
destinationLogin = HRWorker
destinationHost = MashupHost

ThirdParty=[other]

ThirdParty=[other]

Figure 6.4: Privacy policies and promises in testing emriment

it is used for research and development. Data propagatetRidepartmentHosbr retrieved
by MashupHostwith remote loginHRWorkeris known to be exchanged with third party for
undefined purposes.

Table[6.4 shows the output of the framework’s managemenutaddr violation detection.
Having discovered such violations, privacy officer can dedio strengthen context promise
(e.g., as in case of orchestration engine, log records Bd3e private data policy (e.g., as in
case of delivery service, log records 3,5) or assume adirgdtiie measures to prevent similar
access to private data (e.g., in case of HR worker, log rec®y@10,11,12).

The management module is able to give answers on questigiais from Section 6.3.2,
such as itemizing disclosure types that take place in a gbfetay.,BooksPur chase,Pri nt er yOr der
for the contexdest i nati onHost = Del i veryServi ceHost), itemizing the contexts,
in which disclosure of particular type happens (eRy.j nt er yOr der takes place in two
contexts, see Figufe_6.5), or inferring the actual policy garticular disclosure type (e.g.,
Sel f=[hi storical, devel op] forPrinteryQOrder).

Thus, the framework explicitly detects any disclosures ti@open during the data integra-

76

Table 6.4: Detected violations

Record N Context Policies
process = OrderProcess Private data policy:{Self=[admin, develop]}
2,4 host = OrderServiceHost Context promise:{Self=[admin, individual-
destinationHost = OrchestrationHost | decision]}
process = OrderProcess

Private data policy:{Self=[admin, develop]}

3.5 hOSt_ . - Orclhestratloerost Context promise:{Self=[historical]}
destinationHost = DeliveryServiceHost
8 host = OrderServiceHost Private data policy:{Self=[admin, develop]}

destinationHost = HRDepartmentHost | Context promise:{ThirdParty=[other]}

910 host = DeliveryServiceHost |Private data policy:{Self=[admin, develop]}
’ destinationHost = HRDepartmentHost | Context promise:{ThirdParty=[other]}
hostlLogin = MashupService
11.12 destinationLogin = HRWorker Private data policy:{Self=[admin, develop]}
’ host = DeliveryServiceHost | Context promise:{ThirdParty=[other]}
destinationHost = MashupHost
host = PrinteryDepartmentHost hostLogin = MashupService

destinationHost = DeliveryServiceHost destinationLogin = DeliveryWorker
host DeliveryServiceHost
destinationHost = MashupHost

Figure 6.5: Contexts where PrinteryOrder disclosure tpkase

tion and helps to prevent the inappropriate access to tlaeetan after it is propagated through-
out the system.

6.6 Summary

This chapter discussed the challenges of ensuring secatitted SLOs and controlling the
propagation of sensitive data in SOAs. We introduced theiBence framework which is able
to give a comprehensive view of private data usage througth@uenterprise and to facilitate
privacy-related decision making. It can be used to inferfdasible guarantees for consumers
of the corresponding services, and reduces the impact oahuarctors, as it is able detect
inappropriate uses of data initiated by actors who disedglae data usage policies. It also
helps to detect particular reasons of violations by maiiagi the detailed context information,
and facilitates service change management by providinghenfea “what-if” analysis. All the
considered limitations regarding the adoption of the fraorl in SOA are mostly technical and
do not prevent it from being implemented and deployed in bagstem.

e

CHAPTER

Conclusions and Future Research
Directions

This thesis has introduced models, algorithms, and aathites for SLA provision in service-
oriented environments with the focus on integrated humbadaand human factors that can
affect the performance in such systems. Proposed appioaciable the adaptive behaviour in
service-oriented systems to cope with SLAs under unstalmditions such as flexible and unan-
ticipated demand, unexpected failures, and poorly prabliethuman behaviour in open systems.
The considered cases includes both internal provisionrefcgs within a company, and provi-
sion of services to partners or consumers. The thesis disdysrovider's and consumer’s per-
spectives on these problems, and proposed the enhanceiorestiate-of-art technologies such
as business process orchestration engines and crowdsgppiaiforms.

The evaluation has been done through simulation of correpg systems and compo-
nents. All the experiments in the thesis indicated strorigmt@lity of the proposed approaches.
Although the proposed enhancements require certain sefterggineering and organizational
effort, no insurmountable obstacles are foreseen for tleebe tapplied in practice. This thesis
can therefore serve as a reference for implementing thess id industry.

7.1 Future research directions

The work in this thesis allows to make a step forward towardsraomous SLA provisioning,
seamless integration of human labour into automated psesesninimization of human factor
impact and associated risks and overheads, and achievefiégih reliability in mixed systems.
There is, however, a potential for enhancement of presentttiods. The following specific
directions can be highlighted:

e The proposed methods can be complemented with work fromrereeat workforce op-
timization to take into account satisfaction factors andsideration of social and psy-
chological effects impact. For example, scheduled crowdsieg can aim to assign jobs

79

80

of the same type to a particular worker for some period, setis g@asier for him/her to
concentrate, but to change the task type once in a while, gbehiactivity can be less
tedious and monotonous.

The quality of externally provided crowdsourcing services be further improved by

designing more agile control mechanisms that allow to bidggther suitable workers and
requesters with guaranteed minimized temporal overhealing enough participants,

such systems can enahiear real-timecrowdsourcing which could open entirely new
possibilities for this market. From the perspective of versl these platforms can be
improved by taking into account personal and professionelepences and supply the
workers with tasks in more personalized and convenient grann

Internal crowdsourcing has a high potential for flexibleamigation of work inside the
company. To improve the adaptation capabilities of suckegys, standardized policies
for assignment cancellation and re-negotiation shoulddseldped, and the dependency
of competition among workers on task parameters shoulduokest in more detail. These
improvements would allow to create more sophisticatechtiptition and control mecha-
nisms on top of such platforms, which in turn could be betidoted to business require-
ments.

Privacy and security-related objectives depend not onlyherunderlying infrastructure
of the provided service, but on the entire system. Therefatgarts of the system that
can access the data of that service, should be aware of tteeepahpplied. While the
presented approach allows for detection of such violatimoes not prevent them. This
can be achieved by enhancing system design tools (e.gs fmobpplication and data
integration and business process design) with SLA contesllranisms at design time.

[1]
2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

C. Adams. Managing crowdsourcing assignme@stter IT Journa) 24(6):6—11, 2011.

Carl Adams and I. Ramos. The past, present and futureagdlsaoetworking and outsourc-
ing: impact on theory and practice. WK Academy for Information Systems Conference
Proceedings 2010: Information Systems: past, present@wkirg to the future2010.

Eugene Agichtein, Carlos Castillo, Debora Donato, #diss Gionis, and Gilad Mishne.
Finding high-quality content in social media. WiSDM '08 pages 183-194. ACM, 2008.

A. Agrawal et al. WS-BPEL Extension for People (BPEL4Plked., 2007.
Amazon Mechnical Turk. http://www.mturk.com. Acceds@0.06.2012.

Paul Ashley, Satoshi Hada, Giinter Karjoth, and Matt&elunter. E-p3p privacy policies
and privacy authorization. In Sushil Jajodia and Pieram§elmarati, editor§¥PES pages
103-109. ACM, 2002.

S. Benbernou, H. Meziane, and M. Hacid. Run-time moiigfor privacy-agreement
compliance. In Bernd Kraemer, Kwei-Jay Lin, and Priya Nem&sin, editorsService-
Oriented Computing — ICSOC 200¥olume 4749 ofLNCS pages 353-364. Springer
Berlin / Heidelberg, 2010.

Gerardo Canfora, Massimiliano Di Penta, Raffaele Egppand Maria Luisa Villani. An
approach for qos-aware service composition based on gealgbrithms. InProceed-
ings of the 2005 conference on Genetic and evolutionary otetipn, GECCO '05, pages
1069-1075, New York, NY, USA, 2005. ACM.

Cinzia Cappiello, Marco Comuzzi, and Pierluigi Pleba@in automated generation of web

service level agreements. Rroceedings of the 19th international conference on Adednc

information systems engineerinGQAISE’'07, pages 264—-278, Berlin, Heidelberg, 2007.
Springer-Verlag.

Alberto Caprara, Michele Monaci, and Paolo Toth. Madahd algorithms for a staff
scheduling problemMath. Program, 98(1-3):445-476, 2003.

Claudio Castellano, Santo Fortunato, and Vittorio étor Statistical physics of social
dynamics.Reviews of Modern Physic81(2):591-646, May 2009.

81

[12] Y.K. Che. Design competition through multidimensibaactions. The RAND Journal of
Economics24(4):668-680, 1993.

[13] Jen-Hsiang Chen, R. Anane, Kuo-Ming Chao, and N. Godwirchitecture of an agent-
based negotiation mechanism. Distributed Computing Systems Workshops, 2002. Pro-
ceedings. 22nd International Conference pages 379 — 384, 2002.

[14] W.K. Cheung and Y. Gil. Towards privacy aware data asiglyorkflows for e-science. In
AAAI Workshop on Semantic e-Science 2@@ges 22-26, Menlo Park, CA, USA, 2007.
AAAI Press.

[15] CloudCrowd. https://www.cloudcrowd.com/. Access2d.06.2012.

[16] Marco Comuzzi and Barbara Pernici. A framework for dp@sed web service contracting.
ACM Trans. Wep3(3):10:1-10:52, July 2009.

[17] Crowdflower. http://crowdflower.com/. Accessed:)2D12.

[18] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. v@@tsourcing systems on the
world-wide web.Commun. ACM54:86—-96, April 2011.

[19] Thomas Erl.SOA Principles of Service Design (The Prentice Hall Ser@cented Com-
puting Series from Thomas ErlPrentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

[20] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sieraf6scheduling and rostering: A
review of applications, methods and modefsiropean Journal of Operational Research
153(1):3 — 27, 2004. Timetabling and Rostering.

[21] A.T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, andJier. An annotated bibliogra-
phy of personnel scheduling and rosterimgnals of Operations Research?27:21-144,
2004. 10.1023/B:ANOR.0000019087.46656.e2.

[22] M. Ferber, S. Hunold, and T. Rauber. Load balancing uaorent bpel processes by dy-
namic selection of web service endpointsPhrallel Processing Workshops, 2009. ICPPW
'09. International Conference Qmpages 290-297, 2009.

[23] QoS for Web Services: Requirements and Possible Agpesa http://www.w3c.or.kr/kr-
office/tr/2003/ws-qos/. Accessed: 20.06.2012.

[24] Mark Ford et al. Web Services Human Task (WS-HumanTagk)sion 1.0., 2007.

[25] Martin Fowler.Patterns of Enterprise Application Architecturddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[26] Ganna Frankova, Magali Séguran, Florian Gilcher, Slirabelsi, Jorg Darflinger, and
Marco Aiello. Deriving business processes with servicellagreements from early re-
guirements.Journal of Systems and Softwag#(8):1351-1363, 2011.

82

[27] Y. Gil and C. Fritz. Reasoning about the appropriate afggrivate data through computa-
tional workflows. InSpring Symposium on Intelligent Privacy ManagemAmtAl Press,
2010.

[28] Ignacio Grossmann. Enterprise-wide optimization: éwnfrontier in process systems
engineering AIChE Journa) 51(7):1846-1857, 2005.

[29] SBnke Hartmann and Dirk Briskorn. A survey of variantsl &xtensions of the resource-
constrained project scheduling problenturopean Journal of Operational Reseaych
207(1):1-14, 2010.

[30] Mamoun Hirzalla, Peter Bahrs, Jane Cleland-HuangigQvtller, and Rob High. A pre-
dictive business agility model for service oriented amttiires. In Gerti Kappel, Za-
karia Maamar, and Hamid Motahari-Nezhad, edit@srvice-Oriented Computingol-
ume 7084 ofLecture Notes in Computer Sciengrges 653—660. Springer Berlin / Hei-
delberg, 2011.

[31] J. Howe.Crowdsourcing: Why the Power of the Crowd Is Driving the Fetaf Business
Crown Business, 2008.

[32] P.C.K. Hung, Haifei Li, and Jun-Jang Jeng. Ws-negiotiat an overview of research
issues. InSystem Sciences, 2004. Proceedings of the 37th Annual Hiaexnational
Conference ofpage 10, jan. 2004.

[33] Crowdsourcing in IBM. http://personneltoday.contiles/article.aspx?liarticleid=55343.
Accessed: 20.06.2012.

[34] P. Ipeirotis. Demographics of mechanical tuMew York University, Tech. Rep010.

[35] Panagiotis G. Ipeirotis. Analyzing the Amazon MechwahiTurk Marketplace. SSRN
elLibrary, 17(2):16-21, 2010.

[36] Lukasz Juszczyk and Schahram Dustdar. Script-baseergion of dynamic testbeds for
soa. InNICWS pages 195-202. IEEE Computer Saociety, 2010.

[37] Guenter Karjoth, Matthias Schunter, and Michael WaidnPrivacy-enabled services for
enterprises. IMEXA Workshopspages 483—-487. IEEE Computer Society, 2002.

[38] Ehud Karnin, Eugene Walach, and Tal Drory. Crowdsmgadn the document processing
practice. In Florian Daniel and Federico Facca, editGgrent Trends in Web Engineer-
ing, volume 6385 of_ecture Notes in Computer Scienpages 408—-411. Springer Berlin/
Heidelberg, 2010.

[39] Robert Kern, Hans Thies, and Gerhard Satzger. Stalsjuality control for human-based
electronic services. In Paul Maglio, Mathias Weske, Jiangyaand Marcelo Fantinato,
editors,Service-Oriented Computingolume 6470 of_ecture Notes in Computer Science
pages 243-257. Springer Berlin / Heidelberg, 2010.

83

[40] Robert Kern, Christian Zirpins, and Sudhir Agarwal. dging quality of human-based es-
ervices. In George Feuerlicht and Winfried Lamersdorfiadj ICSOC 2008 Workshops
volume 5472 ofLecture Notes in Computer Sciengeges 304-309. Springer Berlin /
Heidelberg, 2009.

[41] Gioacchino La Vecchia and Antonio Cisternino. Colleditve Workforce, Business Pro-
cess Crowdsourcing as an Alternative of BPO. Quarrent Trends in Web Engvolume
6385, pages 425-430, 2010.

[42] D. Davide Lamanna, James Skene, and Wolfgang Emme3iaimg: A language for defin-
ing service level agreementg.uture Trends of Distributed Computing Systems, IEEE In-
ternational Workshop0:100, 2003.

[43] Business Process Execution Language. Accessed:.20105
[44] Extensible Markup Language. http://www.w3.org/tnit. Accessed: 20.06.2012.
[45] Web Services Description Language. http:/mww.w@lmiwsdl. Accessed: 20.06.2012.

[46] P. Leitner. On Preventing Violations of Service Level Agreements in fios@d Services
Using Self-AdaptationPhD thesis, Vienna University of Technology, 2011.

[47] P. Leitner, A. Michimayr, F. Rosenberg, and S. Dustddonitoring, prediction and pre-
vention of sla violations in composite services.Viieb Services (ICWS), 2010 IEEE Inter-
national Conference qmpages 369-376, 2010.

[48] Philipp Leitner, Waldemar Hummer, and Schahram Dust@ost-based optimization of
service compositions. Technical report, Vienna UnivgrsftTechnology, 2011.

[49] Frank Leymann. Workflow-based coordination and coafien in a service world. In
CooplS volume 4275. Springer Berlin Heidelberg, 2006.

[50] Yin Li, Hye-Young Paik, and Jun Chen. Privacy inspeetaind monitoring framework for
automated business processesWeb Information Systems Engineeripgges 603—612.
Springer, 2007.

[51] Zhening LI. Polynomial Optimization Problems, Approximation Algbnts and Applica-
tions PhD thesis, The Chinese University of Hong Kong, 2011.

[52] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, and Tsd#uei Lee. Using string matching
for deep packet inspectiohEEE Computerd1(4):23-28, 2008.

[53] ITSM IT Service Management. http://www.itsm.infafibh.htm. Accessed: 20.06.2012.

[54] Marco Mont, Siani Pearson, and Robert Thyne. A systensgiproach to privacy en-
forcement and policy compliance checking in enterprisasiriist and Privacy in Digital
Businesspages 91-102. Springer Berlin / Heidelberg, 2006.

84

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Marco Casassa Mont, Siani Pearson, and Pete Bramhalliarfls accountable manage-
ment of identity and privacy: Sticky policies and enfordeatbacing services. IIDEXA
Workshopspages 377—382. IEEE Computer Society, 2003.

Oliver Moser, Florian Rosenberg, and Schahram Dusttem-intrusive monitoring and
service adaptation for ws-bpel. Proceeding of the 17th international conference on
World Wide WepWWW '08, pages 815-824, New York, NY, USA, 2008. ACM.

Jorge Nocedal and Stephen WrigRtumerical OptimizationSpringer Series in Operations
Research and Financial Engineering. Springer, 2nd edi?o06.

Business Process Modeling Notation. http://www.bpongy. Accessed: 20.06.2012.

Liam O’Brien, Paulo Merson, and Len Bass. Quality btites for service-oriented ar-
chitectures. InProceedings of the International Workshop on Systems Dpweint in
SOA EnvironmentsSDSOA '07, pages 3—, Washington, DC, USA, 2007. IEEE Comput
Society.

Gurobi Optimization. Gurobi optimizer reference mah2012.
Michael P PapazogloiMeb Services: Principles and Technolo@yrentice Hall, 2008.

M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Lepm&ervice-oriented computing:
State of the art and research challengésmputey 40(11):38 —45, nov. 2007.

D.C. Parkes and J. Kalagnanam. Models for iterativetiattribute procurement auctions.
Management Sciencbl1(3):435-451, 2005.

C. Patel, K. Supekar, and Y. Lee. A QoS oriented framé&wor adaptive management
of web service based workflows. Database and Expert Systems Applicatiopages
826-835. Springer, 2003.

Siani Pearson. Taking account of privacy when desmmiloud computing services. In
Proceedings of the 2009 ICSE Workshop on Software Engimge&hallenges of Cloud
Computing pages 44-52. IEEE Computer Society, 2009.

M. Pinedo.Scheduling: theory, algorithms, and syster8gringer Verlag, 2008.

A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T.ldfa Mechanisms for usage
control. InProceedings of the 2008 ACM Symposium on Information, Ctenpand Com-
munications Securifypages 240-244, New York, NY, USA, 2008. ACM.

Alexander Pretschner, Judith Ruesch, Christian Sehaand Thomas Walter. Formal
analyses of usage control policies. ARES pages 98-105. IEEE Computer Society, 2009.

Simple Object Access Protocol. http://www.w3.orfgtrap/. Accessed: 20.06.2012.

85

[70] H. Psaier, F. Skopik, D. Schall, and S. Dustdar. Resoamd agreement management
in dynamic crowdcomputing environments. Emterprise Distributed Object Computing
Conference (EDOC), 2011 15th IEEE Internationahges 193—-202, Sep 2011.

[71] Shuping Ran. A model for web services discovery with.g88secom Exch4(1):1-10,
March 2003.

[72] C. Ringelstein and S. Staab. Dialog: A distributed nidde capturing provenance and
auditing information.International Journal of Web Services Reseait{2):1-20, 2010.

[73] Florian Rosenberg, Max Benjamin Mduller, Philipp Laith Anton Michlmayr, Athman
Bouguettaya, and Schahram Dustdar. Metaheuristic Otioiz of Large-Scale QoS-
aware Service Compositions. Proceedings of the 2010 IEEE International Confer-
ence on Services Computing (SCC lf3ges 97-104, Washington, DC, USA, 2010. IEEE
Computer Society.

[74] Nick Russell and W.M.P. Van Der Aalst. Work distributi@and resource management
in bpel4people: Capabilities and opportunities. Pimceedings of the 20th international
conference on Advanced Information Systems Enginee@AgSE '08, pages 94-108,
Berlin, Heidelberg, 2008. Springer-Verlag.

[75] Benjamin Satzger, Harald Psaier, Daniel Schall, anthBam Dustdar. Stimulating skill
evolution in market-based crowdsourcing. In Stefanie BitedMa, Farouk Toumani, and
Karsten Wolf, editorsBusiness Process Managemevitlume 6896 ofLecture Notes in
Computer Scienggages 66—82. Springer Berlin / Heidelberg, 2011.

[76] D. Schall. Human Interactions in Mixed Systems - Architecture, Proi®cand Algorithms
PhD thesis, Vienna University of Technology, 2009.

[77] Daniel Schall and Schahram Dustdar. Dynamic contersiive pagerank for expertise
mining. InSoclinfo '10 pages 160-175. Springer-Verlag, 2010.

[78] I. Sourdis. Designs & Algorithms for Packet and Content InspectidghD thesis, Delft
University of Technology, 2007.

[79] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and MwSHrask-based adaptation for
ubiquitous computingIEEE Transactions on Systems, Man, and Cybernef663):328
—340, May 2006.

[80] Spiegel Online (In German). http://www.spiegel.detschaft/unternehmen/
0,1518,813388,00.html. Accessed: 20.06.2012.

[81] QiMing Tian, Li Li, Ling Jin, and XinXin Bai. A novel dynaic priority scheduling
algorithm of process engine in sodaMeb Services, IEEE International Conference on
pages 711-718, 2009.

[82] Amazon Mechanical Turk. http://www.mturk.com/. Aesed: 20.06.2012.

86

[83] W.M.P. Van Der Aalst, M. Rosemann, and M. Dumas. Deadhiased escalation in
process-aware information systen¥ecision Support Systeym3(2):492-511, 2007.

[84] The World Wide Web Consortium (W3C). http://www.w3ybr Accessed: 20.06.2012.

[85] Web Services Business Process Execution Languagedowegs0. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, April 2007.

[86] Daniel J. Weitzner, Harold Abelson, Tim Berners-Legad Feigenbaum, James Hendler,
and Gerald Jay Sussman. Information accountabitynmun. ACM51(6):82—87, 2008.

[87] W. Xu, V. N. Venkatakrishnan, R. Sekar, and I. V. Ramshknan. A framework for building
privacy-conscious composite web services4tim IEEE International Conference on Web
Services (Application Services and Industry Track)(ICVZS)6.

[88] Yahoo! Answers. http://answers.yahoo.com/. Accds26.06.2012.
[89] R.T. Yu-Lee.Essentials of Capacity Managemefissentials Series. Wiley, 2002.

[90] N. Yuhanna, M. Gilpin, L. Hogan, and A. Sahalie. Infortioa fabric: Enterprise data
virtualization. White Paper, Forrester Research |rR006.

[91] Chrysostomos Zeginis and Dimitris Plexousakis. Watvise adaptation: State of the art
and research challengeSycle 2:1-66, 2010.

[92] L. Zeng, H. Lei, and H. Chang. Monitoring the QoS for Welnsgces. Service-Oriented
Computing—ICSOC 200pages 132-144, 2010.

[93] Liangzhao Zeng, B. Benatallah, A.H.H. Ngu, M. Dumaskadlagnanam, and H. Chang.
Qos-aware middleware for web services compositidoftware Engineering, IEEE Trans-
actions on30(5):311-327, may 2004.

[94] F. Zulkernine, P. Martin, C. Craddock, and K. Wilson. élipy-based middleware for web
services sla negotiation. MWeb Services, 2009. ICWS 2009. IEEE International Confer-
ence onpages 1043 —-1050, 2009.

87

	Introduction
	Problem Statement
	Contributions
	Evaluation Approach
	Published Papers
	Structure of the Thesis

	State of the Art
	Service-Oriented Architecture
	Service Level Agreements
	Service Level Management
	Human-provided Services
	Crowdsourcing
	Workforce Optimization

	Adaptive Prioritization of Requests in Orchestration Engines
	Overview
	Scenario
	Adaptation Model
	Experiments and Discussion
	Related Work
	Summary

	SLA-aware Scheduled Crowdsourcing
	Overview
	Scheduled Crowdsourcing
	Worker Skills and Job Quality
	QoS and SLA
	Scheduling
	SLA Offer Estimation
	Experiments
	Related Work
	Discussion
	Summary

	Optimized Execution of Business Processes with Crowdsourcing
	Overview
	Motivating Scenario
	Approach
	Evaluation
	Related Work
	Summary

	Private and Confidential Data Propagation Control in SOA
	Overview
	Motivating Scenario
	Providence Framework
	Related Work
	Evaluation
	Summary

	Conclusions and Future Research Directions
	Future research directions

	Bibliography

