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Abstract

The aim of the present thesis is to develop a better understanding of the mecha-
nisms underlying the imperfectly competitive environment of telecommunications
industries. To this end, we first identify price schedules that are being commonly
offered. These are: linear, two-part tariffs, three-part tariffs and flat-rates. As a sec-
ond step, we systematically review linear and two-part tariff models of the two-way
interconnection literature. We concentrate on equilibrium comparative statics with
respect to the Hotelling transport cost parameter. Moving on to more complex price
schedules, we extend a model of consumer overconfidence (denoted M). M is capa-
ble of explaining three-part tariffs. The extension (H) incorporates duopolistic price
competition, and draws on the framework of competition in utility space. Finally,
we propose an extension of H to H+ that is motivated by the two-way interconnec-
tion literature: variable costs differ based on the network on which the call termi-
nates.

Our results can be interpreted at two levels. At the general level, if the setting of a
fixed fee is allowed, then if competition increases, the fixed fee is going to drop. Unit
prices will be charged at marginal costs. If a fixed fee is not allowed to be set, then
competition decreases the unit price both on- and off-net. Our specific contribu-
tion is that we are successful in extending M to H, and show that a symmetric equi-
librium in the utility space exists. The extension does not alter the marginal price
structure of M, which is a three-part tariff. The monopolistic and the prefect com-
petitive results of M turn out to be flanking cases of the result from H. The transport
cost parameter provides smooth transition between the two extremes, only affect-
ing a fixed fee. We are not able to derive sharp conclusions from the extension H+.
Thus, we present a simple numerical example. The conclusions from this example
are: we are able to find a symmetric equilibrium of the utility game, but this equi-
librium might not exist in general; the price structure of H is not likely to H+. Com-
parative static analysis, however, shows that our general level conclusions apply to
this particularly simple setting.

5



Chapter 1

Introduction

“The telecommunications industry has been changing rapidly

for years, but academic research is still lagging behind” – Laffont and Tirole (2000, p. XIII.)

The aim of the present thesis is to develop a better understanding of the mecha-

nisms underlying the imperfectly competitive environment of telecommunications

industries.

The telecommunications sector is a dynamic part of the economy in all OECD

countries. After the liberalisation of the markets heavy price competition had arisen

in many countries. This competitive pressure induced providers’ pricing behaviour

to change dynamically. As a result of this, various new pricing schedules had emerged

and the application of more conventional price schedules had fallen out of common

practice. As Laffont and Tirole point out, academic research is lagging behind this

rapidly changing reality. For this reason, the present thesis identifies some real-life

developments and investigates theoretical models from this new perspective.

Starting from models of linear pricing and concluding with models suitable for

generating three-part tariffs1 we give a systematic account on what the strategic

variables are and how they react to changes in competition (suitably defined) within

the respective model.

As mentioned above, the telecommunications industry is an important sector

to analyse and understand. This is due to its inherent imperfections such as net-

work externalities, oligopolistic environments, high sunk costs amongst others. As

a result of these properties the sector is intensively monitored and heavily regulated

in all OECD countries by the national regulatory authorities (NRAs). Therefore, it

would not only be of academic interest if we were able to derive general conclusions

1By “generating” we mean that the optimal fully nonlinear price schedule will closely resemble a
three-part tariff structure, and this result stems from the primitives of the model.
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regarding the mechanisms underlying price setting and the effect of competition

thereon.

To achieve this general understanding, we review existing models that are suit

for the analysis of the telecommunications industry and concentrate on the equi-

librium comparative statics. This review can easily be carried out in models using

linear and two-part tariffs that are based on models of two-way interconnection—a

model framework explicitly designed for the analysis of telecommunications indus-

tries (Armstrong and Wright, 2009; Laffont, Rey, and Tirole, 1998a,b).

Unfortunately, these models are only tuned towards simple price structures. If

we want to examine models of more complex price schedules (namely three-part

tariffs), then we have to turn to the monopolistic screening, nonlinear pricing liter-

ature.

Monopolistic models are, however, clearly unsatisfactory for our purposes. There-

fore, the main specific contribution of this thesis is to extend an existing monopolis-

tic nonlinear pricing model that is able to generate three-part tariffs (Grubb (2009) –

henceforth called M) along two dimensions. First, a Hotelling oligopolistic environ-

ment (H) is introduced into M. Second, we propose an extension of H that utilizes

the structure of a telecommunications industry better (henceforth H+). In principle,

H+ is motivated by the two-way interconnection model framework.

Our results are positive. At the general level we are able to identify a pattern that

is common to almost all the models under scrutiny: if fixed fees are allowed, then

the intensified competition will drive this fixed fee down; if only linear pricing is

available, then the unit price will be smaller the more intense the competition is. On

the specific level, our main results are Proposition 3.3 and Corollary 3.4 which show

that the main results of M will be flanking outcomes of H. Further, while getting to

this result we demonstrate that the oligopolistic extension from M to H does not

destroy the original price structure of M—which is a three-part tariff. From model

H+, however, we are not able to derive sharp results. Therefore we resort to an illus-

tratory example that sheds light on the complications of solving for the equilibrium

optimal nonlinear tariff in H+. In particular, the properties of model H (and thus

also M) are not likely to carry on to H+.

The thesis proceeds as follows. Section 1.1 highlights some facts about the im-

portance of the telecommunications sector and gives real-world examples for all the

price schedules that we examine in detail. Chapter 2 gives a systematic review of the

literature on two-way interconnection, thereby illustrating the main principles and

themes in the models with linear and two-part tariffs. Chapter 3 consists of two

loosely connected parts. First, Section 3.1 gives an introduction into some key no-

tions of mechanism design and nonlinear pricing that are necessary to understand
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for the subsequent analysis. Second, Section 3.2 develops model H by extending

model M. By discussing H, this section also highlights the important points in M.

Section 3.3 illustrates the proposed extension from model H to H+. Finally, Chapter

4 concludes.

1.1 Facts about the telecommunications sector

The OECD Communications Outlook 2011 (OECD, 2011) provides a detailed and

up-to-date collection of facts and figures about the telecommunications industry

based on various data sources. Highlighting some of these figures, and observing

the patterns in the contractual tariffs among the Austrian mobile providers gives a

well-grounded motivation for the subsequent discussion.

The importance of the telecommunications sector

An everyday observation might lead to the conclusion that mobile and Internet

telecommunications play an important role in our life. This observation holds true

for the macroeconomic and microeconomic levels. Table 1.1 shows the revenues

from telecommunications as a percentage of the country’s GDP for selected coun-

tries and the OECD as a whole.

Table 1.1: Telecom revenues in percentage of GDP

Revenues in percentage of GDP

Country 2002 2003 2004 2005 2006 2007 2008 2009

Austria 2.57 2.66 2.61 2.53 2.35 2.11 1.90 1.85
France 2.75 2.75 2.77 2.88 2.76 2.71 2.74 2.79
Germany 2.89 2.95 3.02 3.00 2.85 2.63 2.51 2.53
Hungary 5.79 5.58 4.68 4.63 4.44 4.19 3.74 3.62
Poland 3.48 3.53 3.80 3.77 3.76 3.43 3.38 3.22
United Kingdom 3.04 3.04 3.10 3.08 3.02 2.95 2.88 2.91
United States 3.21 3.07 2.93 2.89 2.78 2.71 2.72 2.71
OECD 3.14 3.08 3.00 2.97 2.89 2.82 2.76 2.81

Source: OECD (2011), http://dx.doi.org/10.1787/888932397568 (29.05.2012)

Since the numbers in the table represent mobile telecommunication revenues,

the price level of the sector affects the magnitude of the data. Thus, for exam-

ple in the case of Austria, the large decline in the price level of this sector lowers

the figures throughout the years (Lappöhn, Pohl, and Zucker, 2011). Nevertheless,

even with the significant price decrease, this sector creates substantial revenues rel-

ative to GDP in each of the respective countries. These figures demonstrate that

the telecommunications sector plays an important role in the macroeconomy of a

country.
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Table 1.2: Mobile phone subscriptions per 100 inhabitants

Subscriptions per 100 inhabitants

Country 2002 2003 2004 2005 2006 2007 2008 2009

Austria 83.33 87.39 97.75 101.65 111.74 118.52 127.2 136.7
France 62.64 67.22 71.33 76.55 81.75 87.06 90.4 95.3
Germany 71.69 78.53 90.08 96.04 103.99 118.10 130.6 132.2
Hungary 67.79 78.43 86.35 92.40 98.95 109.69 121.8 117.7
Poland 36.35 45.56 60.49 76.43 96.36 108.59 115.2 117.4
United Kingdom 83.52 88.65 99.76 108.72 115.15 120.99 125.0 129.9
United States 51.27 54.55 62.90 71.87 80.82 87.06 85.7 89.2
OECD 59.25 64.16 71.96 79.88 87.79 96.06 99.9 102.6

Source: OECD (2011), http://dx.doi.org/10.1787/888932398005 (29.05.2012)

Table 1.2 displays the number of mobile phone subscriptions per 100 inhabi-

tants for the same sample of countries. It shows more about the patterns of sub-

scriptions: starting from the early 2000’s, the mobile penetration rate grew heavily,

now amounting to over 100 per cent.2

If we consider increasing penetration rates together with the fact that mobile

telecommunication revenues constitute a significant part (above 60 per cent in most

highlighted countries) of the total telecommunication revenues (OECD, 2011, Table

3.4, p. 113), then we can conclude that the telecommunications industry plays an

important role both at the macro- and microeconomic levels. This conclusion leads

to the need of understanding this industry, its patterns, and most importantly its

mechanics. Most fruitfully, this analysis can be done in simple theoretical microe-

conomic (industrial organisation – IO) models.

Trends in pricing

If we would like to examine (or build) models of telecommunications, then we first

have to decide on the strategic variable and look at its characteristics. This, in the

case of the telecommunications, is unarguably the price or, in more complicated sit-

uations, the price schedule. Through casual observation we can identify four com-

mon pricing schedules: linear tariffs, two-part tariffs, three-part tariffs and flat-rate

tariffs.

Table 1.3 illustrates that three-part tariffs do indeed exist and are common in

practice by giving examples for contractual tariffs of the four Austrian main mo-

bile phone providers: A1, Hutchinson 3G, Orange, T-Mobile.3 The numbers make

2This implies that many subscribers have more subscriptions, perhaps some not heavily used.
For example, in Hungary it is common to offer tariffs with two SIM-cards that give the opportunity of
free calling between the two SIM-cards included. Besides this, however, the outbound tariffs might
be worse than with other subscriptions.

3The table concentrates on voice telephony. Inclusive SMS-s are displayed to give an idea about
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Table 1.3: Contractual tariffs in Austria
Inclusive Price (€)

Provider Tariff Minutes SMS (pcs) Fix Overage Comment

A1∗ Smart 1 1000 500 19.9 0.29
Smart 2 2000 1000 29.9 0.29
Smart 3 3000 1000 39.9 0.29
Smart Unlimited ∞ ∞ 59.9 0 Flat-rate
Talk 500 0 14.9 0.29 On-net calls free
Jugend 2000 1000 19.9 0.29 Youth tariff

H3G∗ Light 250 0 5 0.35
L 1000 1000 20 0.35
XL 2000 1000 30 0.35
XXL 3000 1000 40 0.35
Comfort 1000 100 10 0.35 Limited data usage
Comfort Plus 1000 100 15 0.35

Orange All in 10 1000 100 10 n.a. 1000 plus minutes for€ 10
All in 15 1000 1000 15 n.a. 1000 plus minutes for€ 10
All in 20 2000 1000 20 n.a. 1000 plus minutes for€ 10
All in 30 3000 1000 30 n.a. 1000 plus minutes for€ 10
All in 40 4000 1000 40 n.a. 1000 plus minutes for€ 10
Supernet 3000 1000 2000 15 n.a. –”–, youth tariff

T-Mobile Hit 1000 1000 0 8 0.29 No data volume included
All Inclusive 1000 1000 15.92 0.29

*: The contract includes a phone when first signed.

Sources: http://www.orange.at/Content.Node/tarife/; http://www.a1.net/handys-telefonie
http://shop.t-mobile.at/002/1_1_1/10026/index.html;http://www.drei.at/webshop (all 15.05.2012).

obvious that firms usually offer so-called three-part tariffs, where a fixed fee con-

tains inclusive minutes and over these inclusive minutes a per-minute price must

be paid. In the case of provider A1’s Smart Unlimited tariff we can see an example

of a flat-rate tariff, i.e. a fixed fee with unlimited usage.

The pre-paid subscriptions, i.e. where the consumer buys a certain amount of

minutes and uses them up can, by definition, be perceived as a linear tariff.

An example to the existence of pure two-part tariffs, i.e. where the payment of a

fixed fee is followed by unit pricing from the first minute onwards, is harder to find.

However, the inspection of some Hungarian contractual mobile tariffs shows that

they are closer to being two-part than three-part, especially compared to Austria.

Choosing one particular tariff, the Basic Tariff 1 (Alaptarifa 1) from Telenor Hun-

gary we can make the following observations:4 a) The monthly fee is € 5.5, b) The

per-minute price is € 0.13, c) The monthly fee can be used up for payment, thus

approximately 40 minutes are included.5 Compared to the Austrian tariffs, it can be

inferred, that this tariff is close to being two-part.6

why seemingly similar tariffs differ. Included data volumes are usually unlimited except for Orange.
These latter two services are, however, not part of the subsequent analysis.

4Calculating with the rate 100 Hungarian Forints equal 34.5 Eurocents.
5Source: http://www.telenor.hu/szamlas-tarifa/alaptarifa/ (29.05.2012).
6A comprehensive analysis of the Hungarian tariffs would be more complex than it is for Austria.

This is due to the greater complexity and variety of the tariffs being offered. Sticking to the example
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Having given examples for all the tariff types mentioned above, the need of ex-

amining competition in all of these pricing schedules becomes evident. The rest of

the pages documents this adventure. Welcome on board!

of Telenor Hungary, 16 different tariffs can be counted. The youth division of Telenor Hungary runs
under a different name (djuice), and offers 7 different tariffs. Thus altogether, Telenor Hungary offers
25 tariffs. This great variety is also observable at the other two providers: T-Mobile Hungary and
Vodafone Hungary.
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Chapter 2

Competing in linear and two-part

tariffs

Analysing the game of two (or more) service providers in telecommunications sim-

ply as a Bertrand price setting game would lead to the trivial result that (given sym-

metric providers and perfect information) the price of one minute call is equal to

its marginal cost. This result, however, is hardly observed in the real world, hence a

more sophisticated reasoning and a more satisfactory model is needed.

Accordingly, Laffont, Rey, and Tirole (1998a) argue, the telecommunications in-

dustry was in need of a theoretical framework in the caller party pays (CPP) princi-

ple1 that allows regulators and academics to evaluate regulatory intervention, pric-

ing behaviour, welfare and to identify the relationships and channels through which

these measures act. To this end, seminal papers of Armstrong (1998), Laffont, Rey,

and Tirole (1998a,b) created a simple framework that allowed academics to organ-

ise thoughts. Due to their simplicity, these models did not necessarily match even

the most straightforward and intuitive real world observations, thus, much work has

been done to accommodate these mismatches.

Since the seminal papers mentioned above, much progress has been made for

the understanding of the economics of two-way interconnection. Starting from lin-

ear, non-discriminatory prices, the literature has incrementally built up a model

that includes two-part tariffs and termination based price discrimination. This frame-

work gives a consistent way of thinking about the—possibly nontrivial—interaction

between two mobile or one fixed and one mobile provider.

Models of two-way interconnection are the presently the most advanced frame-

works that allow us to think about telecommunications industries. Thus, in the fol-

lowing I present a simple model of such kind following Armstrong and Wright (2009)

1This is the most widespread principle that is applied all throughout Europe. In the US the re-
ceiver pays.
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that—due to its simplicity—allows me to concentrate on the main points of pricing

behaviour, and the effect of competition thereon. Their model is in the spirit of Gans

and King (2001).

2.1 Different levels of model sophistication

The key observation of the models of two-way interconnection is that a call that

is originated in network A and terminates in network B requires the two networks

A and B to be interconnected. In case of telecommunications, the networks are

obviously reciprocally interconnected, hence the term two-way interconnection.

If we assume that the retail market and the market for termination are different

markets and let providers charge different prices, then this creates very interesting

tradeoffs and channels that affect the pricing of these services. The reason for this is

that a network operator acts as a competitive bottleneck for its own customers on the

termination market thereby having quasi-monopoly power in this respect. Thus, a

network operator has the incentives to get as many customers as it can under his

belt for the prospect of the termination rents that these customers will generate.

This results in a stronger retail market competition. However, if operator A drives

out operator B from the market, there will be no termination rents at all. Under-

standing this interaction, therefore is not straightforward.

Different levels of model sophistication can be examined, all of which have their

own channels of “exercising” competition and each have their own equilibrium pro-

perties. Since in the basic frameworks we have two networks, each operating on a

retail and a termination market, each firm i ∈ {0, 1} has the option to choose the

optimal value of the following instruments: p i for price per minute of on-net calls,

p̂ i for price per minute of off-net calls, Fi for the fixed (subscription) fee and a i for

termination charge. These instruments allow for a wide variety of model setups with

the combination of the following properties:

1. Termination rates can be reciprocal (a i = a for i = 0, 1) or unilaterally chosen.

2. Per minute prices can be uniform (p i = p̂ i for i = 0, 1) or discriminated based

on termination.

3. The pricing schedule can be linear (Fi = 0 for i = 0, 1), or can consist of two

part tariffs.

At this first sight, we can already infer something about the possible channels of

competition. As a generic result in two-part tariff pricing, the important instrument

of earning a market share will be the fixed fee. If competition is in linear prices, all
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interaction will be picked up in the per minute prices. Termination rates may act as

channels of competition if they are unilaterally chosen. This is less so, if we allow

for termination based price discrimination. Discriminated prices also allow us to

separate the effects of termination charges on off-net and on-net prices.

2.2 Baseline model

Customers

Suppose that there is a unit mass of customers distributed uniformly on the Hote-

lling line2 where at the two endpoints 0 and 1 firm A ≡ x0 and B ≡ x1 can be found

respectively. Transport cost (the exogenously given level of product differentiation)

is denoted by τ. In the Hotelling model each consumer can be uniquely identified

by his location on the line. Thus, a consumer located at x ∈ [0, 1] on the line, calling

(on average) q ∈ R+3 minutes, having income y ∈ R+ and joining network i ∈ {0, 1}
obtains the utility of

v0+ y −τ|x −x i |+u (q ) , (2.1)

where v0 is the utility gain from subscribing to either one of the networks. For sim-

plicity, v0 is assumed to be big enough to ensure full participation. u (q ) is some

well-behaved utility function, i.e. satisfying u ′(q )> 0, u ′′(q )< 0 and limq→∞u ′(q ) =

0, limq→0 u ′(q ) =∞.4

The consumer’s demand function for call minutes is

q (p ) = arg max
q
{u (q )−pq} , (2.2)

and the variable net surplus is for this above given demand function is

v (p ) =max
q
{u (q (p ))−pq (p )} . (2.3)

Consequently, v ′(p ) =−q (p ).

Given the triple (p i , p̂ i , Fi ), i.e. on-net, off-net prices and fixed fee respectively,

and assuming that the calling pattern is balanced the total net surplus from joining

network i is

w i = s i v (p i )+ (1− s i )v (p̂ i )− Fi , (2.4)

where s i is the market share of firm i . In the Hotelling specification consumer lo-

2See for example Shy (1995) or Tirole (1988).
3Here and henceforth R+ denotes the nonnegative reals (i.e. including zero), and R++ denotes

the strictly positive reals.
4An example of this would be—as in Laffont, Rey, and Tirole (1998a)—the function u (q ) = q 1−1/η

1−1/η
.
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cated at s i is indifferent between joining the two networks if and only if

w i −τs i =w j −τ(1− s i ) . (2.5)

This implies that the market share of network i is made up from precisely those

consumers that are located between x i and s i . Therefore, in the unit interval this

results in the well known formula

s i =
1

2
+

w i −w j

2τ
. (2.6)

Firms

Each network i ∈ {0, 1} incurs fixed cost f per subscriber. Originating a call results

in cost cO , while terminating a call costs cT . Further, if network i ’s customer calls a

customer in network j , then a unilateral or negotiated access charge a i ≥−cO
5 has

to be paid by i to j . Given these specifications, the costs of providing an on-net call

is con = cO + cT , whereas the costs of providing an off-net call is coff = cO +a i .

With respect to pricing, for the moment, there are two different alternatives: lin-

ear pricing and two-part tariffs. Linear tariffs simply involve a pair (p i , p̂ i ) for on-

and off-net calls per minute respectively, whereas two part tariffs constitute a triple

(p i , p̂ i , Fi ), where Fi is a fixed fee paid by the customer e.g. monthly.6 On the level of

the model setup, allowing for the decision over the full triple is without loss of gen-

erality. When solving for different variations of the model, restrictions can be made

appropriately.

Given market shares s i , s j = 1− s i , demand function q (p ) and triple (p i , p̂ i , Fi ),

firm i ’s profit can be written as

πi = s i ·






s i q (p i )(p i − con)+ (1− s i )q (p̂ i )(p̂ i − coff)+ Fi − f
︸ ︷︷ ︸

revenues from own customers






+

(1− s i ) · s i (a i − cT )q (p̂ j )
︸ ︷︷ ︸

termination revenues

. (2.7)

5This assumption rules out that the cost of outgoing calls is negative. This would induce the pos-
sibility of making arbitrarily large revenues by simply originating calls to the rival’s network infinitely
often.

6Note, that in this case, there are no quantity allowances for this fixed fee. The fixed fee must be
paid and above that, the customer pays per minute. If the fixed fee also involved quantity allowances
then we would talk about three-part tariffs and if the price per call was zero, then we would have
flat-rate tariffs.
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Timing

1. Firms negotiate cooperatively a reciprocal access charge or firms choose ter-

mination charge unilaterally,

2. Firms choose simultaneously, non-cooperatively the pair (p i , p̂ i ) or the triple

(p i , p̂ i , Fi ).

3. Upon observing these, the customers make their subscription decision and

their calling quantity decision.

Equilibrium

Berger (2004a) calls the equilibrium in the subscription strategies of the third sub-

game consumer equilibrium. The equilibrium is the subscription decision of the in-

dividual from which she has no incentive to deviate given that all other individuals

play their equilibrium subscription strategies. Put differently and more concisely,

the equilibrium subscription decisions simply result in equilibrium market share

for firm i such that none of its consumers has the incentive to deviate to firm j and

vice versa.

Notice that this consumer equilibrium is not unique. With the plausible as-

sumptions of: 1. on-net prices being lower that off-net prices; 2. prices being the

same for both networks; 3. goods being sufficiently homogeneous, it is an equilib-

rium that one of the two networks has market share s i = 1, i.e. it corners the market

Berger (2004b). This is true, because if a customer expects that all other customers

subscribed to network i , then she has no incentive to subscribe to network j given

that the on–off-net price differential is sufficiently large compared to the transport

costs τ.7

Generically, however, we are not interested in such corner solutions, but rather

in a shared equilibrium. Equation 2.6 and the arguments preceding it shows a for-

mulation of this shared equilibrium in an implicit way (w i contains s i ). Under ap-

propriate conditions, the shared equilibrium exists and is stable.8

To simplify the game further, it is solved for a symmetric equilibrium, i.e. where

s i = 1/2 and (p i , p̂ i , Fi ) = (p j , p̂ j , Fj ). This greatly simplifies the calculations and the

analysis.

For LINEAR, NONDISCRIMINATORY PRICES AND NEGOTIATED ACCESS CHARGES Propositions

7As to which cornered solution arises, it is the usual question that arises in coordination games,
like the “battle of sexes”.

8Detailed treatment can be found in Laffont, Rey, and Tirole (1998a) and in even more detail in
Berger (2004b).
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1 and 2 of Laffont, Rey, and Tirole (1998a) show interesting results based on the util-

ity function u (q ) = q 1−1/η

1−1/η
, with η > 1. According to Proposition 1 (p. 10), for small

enough a and large τ, a unique symmetric equilibrium for prices exists.9 However,

for small τ and large a , there is no equilibrium. This observation is interesting, es-

pecially if we see it jointly with part ii. of Proposition 2 (p. 11). This states that

if τ decreases then so does p ∗, the equilibrium price and if τ goes to zero then p ∗

approaches the socially optimal price. Putting this result differently: if the networks

become closer substitutes, competition drives prices down ultimately to the socially

optimal level. Due to the nonexistence result mentioned above, in order to guaran-

tee the existence of the equilibrium, a has to come close to its cost, cT .10

In the case of linear, nondiscriminatory prices and UNILATERAL TERMINATION CHAR-

GES, we might ask whether this termination charge can become an instrument of

competition between the two networks. The answer is, on the one hand, positive: it

does act as a strategic device. However, the direction of the termination charges in

response to increased competition (lower τ) is ambiguous according to Proposition

4 (p. 14). Note, however, that the proposition gives a condition for the decrease of

a if τ decreases with a small amount from the no substitution case: a decreases if

π0 < (η−1) f , where π0 is the equilibrium profit in the case of no substitution.

In LINEAR, DISCRIMINATORY PRICES, the results of Laffont, Rey, and Tirole (1998b),

Berger (2004a) and Berger (2004b) make the analysis intuitive and more plastic. The

equilibrium on- and off-net prices can be found by intersecting two curves: a linear,

and a nonlinear one. The linear curve is the so-called proportionality rule

poff =
�

1+
a − cT

cO + cT

�

poff (2.8)

whereas the second curve is a non-linear curve giving the value of poff dependent

on a , η, τ, cO , cT and pon. Following Berger (2004a), if we express these equations in

reciprocals, it is easy to visualise in the
�

1
poff

, 1
pon

�

coordinate space. This is done in

Figure 2.2.

The relevant region where we have to pay attention to the behaviour of the curves

is within the two dashed lines. The line closer to the y axis is the reciprocal of the

monopolistic price p M =η(cO + cT )/(η−1), which is calculated from the relation of

the price–cost-margin and η, the elasticity of demand (cf. Tirole (1988)). The sec-

ond line is the reciprocal of the total cost cO + cT . As we can see, in Subfigure (a),

9But the prices cannot be given explicitly, only implicitly.
10Part i. of Proposition 2 raises the issue that termination charges can be instruments of tacit

collusion insomuch as p ∗ is increasing with a . This view has rapidly been dispensed with even in
Laffont, Rey, and Tirole (1998a) but also in most other follow-up works.
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(a) Equilibrium may fail to exist
(a = 1.8> cT , τ= 0.34)
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(b) High τ increases both prices
(a = cT = 0.5, τ= 1.78)
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(c) Low τ decreases both prices
(a = cT = 0.5, τ= 0.8)
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(d) High a decreases pon, increases poff

(a = 1.3> cT , τ= 0.8)

Figure 2.1: Comparative statics in the linear discriminatory price model

The equilibrium may fail to exist for small τ and large a ; in Subfigures (b)-(c), both

on- and off net prices increase with τ (note that the values are in reciprocals); in

Subfigure (d) The increase of the access charge a decreases pon, but increases poff,

regardless of the value of τ. These results are all intuitive, and analytically provable

(Laffont, Rey, and Tirole, 1998a).

NONLINEAR, DISCRIMINATORY PRICING allows us to separate a different channel of com-

petition: the fixed fee. To see this, consider the equilibrium results from the above,

baseline model following Armstrong and Wright (2009)11:

p i = con ; p̂ i = coff (2.9)

Fi = f +τ−v (con)+v (coff) (2.10)

Π′(a )|a=cT < 0 (2.11)

First of all, the prices of calls are equal to their respective perceived marginal

costs. Thus, the only factor that causes the difference between the on- and off-net

11See Appendix A for detailed calculations.
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prices is their cost difference. This cost difference is only caused by the termination

price.

Second, the fixed fee is set such that the firm extracts above cost ( f ) profits from

the higher product differentiation (τ) and the difference in the consumers’ indirect

utility from calling in and out of the network: v (con)− v (coff). If the termination

charge is high, so that this “surplus” is positive, the firm optimally lowers its fixed

fee in order to gather more customers under its belt therefore extracting higher ter-

mination rents. If a is lowered (or cut), this results in a higher fixed fee (besides

lower per-usage fees).12 Further, observe the result that firms compete de facto in

the fixed fees. Since the optimal usage prices are cost based, τ, the product differ-

entiation parameter only appears in the optimal fixed fee. Thus, firms compete for

subscriptions through adjusting the fixed fee depending on the degree of product

differentiation which can be thought of as a proxy of the intensity of competition.

The closer the products are (lower τ), the more intense firms’ interaction is.

Thirdly, even though the actual value of the termination charge depends on

the specification of the demand function, under the fairly general assumption that

q (p )> 0 for p > 0, we can establish that in the ε-vicinity of the termination marginal

cost cT firms have the incentive to charge lower termination charges. This result is

in contrast with the first results of the literature. Those models, however, use simple

linear pricing (without price discrimination).

Note the puzzling implication of this result with respect to retail pricing: since

coff = cO + a and con = cO + cT , if a < cT then p̂ < p from Equation 2.9, which is

clearly not the case in the real world. Why can it be optimal to set such a termination

price that makes off-net calls less expensive than on-net calls? If operator A ceteris

paribus charges below cost termination prices so that operator B will choose lower

off-net prices the result will be that customers of B call more to A thereby generating

higher termination revenues for A. On the subscription level observe, that lower a

results in higher F , i.e. this termination pricing decision relaxes competition in the

subscription market. This is also intuitive: if p̂ < p , then customers prefer joining

the network with smaller market share.

As regards welfare, since the socially optimal prices are equal to their respective

(exogenous) marginal costs cO+cT , the first relationship above also implies that the

socially optimal termination charge equals its marginal cost cT . Thus, the incentive

to charge lower termination charges also results in that they are going to be below

12This observation is related to the waterbed effect. The waterbed effect is the phenomenon that
a drop in rents from termination services (e.g. due to regulation) might result in an increase in the
price of retail market services. Viewed from the opposite perspective it means that the profit per
customer generated through termination will be to some extent competed away on the retail market
(Jullien, Rey, and Sand-Zantman, 2010). Genakos and Valletti (2011a) and (2011b) show the existence
and the magnitude of this effect in relation to the fixed-to-mobile termination.
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the socially optimal.

The below cost termination charge result is only true for MTM termination. If we

analyse the fixed-to-mobile termination rates between an incumbent fixed network

operator and a mobile operator (assuming that fixed and mobile calls constitute

two separate markets) we can easily intuitively conclude that the profit maximis-

ing FTM termination charge will be the monopolist one. To argue, why this is so,

note that since the two markets are separate, a mobile operator does not compete

with the fixed operator for the customers. Instead, they want to extract the maximal

amount of profits from terminating FTM calls. Thus, the profit maximising FTM

termination charge will generically be the monopolist charge.13 This result is even

more appealing if we note that the per-usage call prices charged by fixed operators

are widely and tightly regulated. Thus, even if we expect that termination rates will

raise FTM call charges thereby lowering call demand and consequently termination

rents, most probably this cannot happen due to the regulated prices.

We still did not comment on NONLINEAR, NONDISCRIMINATORY PRICES. The reason

for this is that the results are quite similar to that of the discriminatory case. In

particular, the following results hold for a symmetric shared equilibrium (if exists):

p = con+
a − cT

2
(2.12)

F = f −
(a − cT )

2
q (p )+τ . (2.13)

Here, the intuition is, that the uniform price will contain the expected costs of out-

bound and inbound calls. The symmetric equilibrium may fail to exist because of

too low substitutability or too high termination charge.

2.3 Extensions

2.3.1 Call externalities

One side of the research agenda of Ulrich Berger in his economics doctoral disserta-

tion (Berger, 2004b) was to incorporate demand side network externalities into the

baseline framework models.14 The justification for this seems natural: we do not

13A slightly more elaborate treatment can be found in Armstrong and Wright (2009). The intuition,
however, is already described.

14The second theme of this research work was to dynamise market shares thereby in a way con-
ducting a robustness check for the static models of two-way interconnection. This extension tackles
an important question whose outcomes cannot be seen in a straightforward way. According to the
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only care for calling, we do care about being called. In fact, as Berger (2004b) ar-

gues, by answering the phone we “reveal” that we gain at least as high utility from

being called as from rejecting it. Call externalities are modeled by the condition

ū (q ) = βu (q ). In this condition u (q ) is the utility from outwards calling, ū (q ) is the

utility from receiving calls and β ≥ 0.

Berger (2004a) embeds call externalities into a linear, discriminatory pricing model,

whereas Berger (2005) extends the discussion to a two-part tariff, discriminatory

pricing model. In the former, the call externality parameter β creates an ambiguity

with respect to the effect of τ on the off-net prices. This result is illustrated in figure

2.2 which is to be interpreted analogously to Figure 2.2.15
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(a) β = 0.96, τ= 5.04
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(b) β = 0.96, τ= 4.23

Figure 2.2: The effect of high call externalities on off- and on-net prices

As standard results show, the on-net price falls as τ falls. However, lowering τ

combined with high β results in an upward pressure to the off net price because of

the negative slope of the first (blue) curve. This is due to the intuition that if provider

A charges high off-net prices, it restricts the utility that provider B can provide to its

customers, since customers care about being called (the more, the higher β is), but

the amount of off-net calls from A is decreasing if p̂A increases. Further, if the differ-

entiation is sufficiently low, consumers have an incentive to join A. This incentive

is strengthened by the low on-net price that A is able to offer due to high off-net

prices.

Berger (2005) reinforces the results that we have already seen in the framework

of two-part tariffs with termination-based price discrimination. There is only one

different observation: cost-based termination pricing can never be socially optimal.

Thus, it can be the case that bill-and-keep agreements are welfare improving, in

results, for fixed price structures and at least three networks, the stable consumer equilibrium need
not exist, except for the case where the off-net price is below the on-net price (Berger, 2004b, p. 64).

15Note, however, the different scales on the y axis. In Figure 2.2, the range runs from -0.2 to 2,
whereas in Figure 2.2, the upper bound is 0.8. This is for the ease of display.
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contrast to Gans and King (2001) who show that zero termination charges can lead

to the softening of retail competition.

2.3.2 Low termination charges?

As we have seen above, one of the main outcome of the network competition model

with two-part tariffs and price discrimination is that MTM termination charges will

be set too low. This outcome is puzzling on two levels: 1. consequently, the off-

net price will be below the on-net charge, and 2. it has never been the concern of

any regulator that MTM charges will can be too low—even below the socially opti-

mal level. This discrepancy between the model and the intuition have been tried

to be treated recently by Armstrong and Wright (2009) and Jullien, Rey, and Sand-

Zantman (2010).

Armstrong and Wright (2009) argue that the huge difference between MTM and

FTM termination prices (remember, the FTM charge was at the monopolist level)

allows for arbitrage possibilities. For example, the fixed provider can set up a de-

vice that routes all outgoing calls through either one of the MTM networks.16 This

leads to he natural conclusion that if we impose that a = ã , i.e. the MTM and FTM

termination charge is the same, then it can lead to the result that the uniform termi-

nation charge will be below the monopolist level, but above the perceived marginal

cost if the networks choose their access charges unilaterally (Armstrong and Wright,

2009).

Coordination between the two mobile providers does not yield this result. This

is due to the fact, that if we incorporate FTM termination charges into the above

described model, R(ã ) the revenue from it enters both the profit function and the

optimal fixed fee additively, with opposite signs, thus they cancel out each other.17

Consequently, the industry profit is also independent of ã , the FTM termination

charge.

Jullien, Rey, and Sand-Zantman (2010) propose an interesting and plausible so-

lution to this problem. In their model, which is a two-part tariff model in both

nondiscriminatory and discriminatory prices, the demand side is made up of heavy

and light usage customers. Heavy usage customers constitute a fix unit mass, whereas

the subscribing amount of low usage customers (α̃T in their notation) is determined

endogenously depending on the fixed fee offered to them. To make their point, they

assume that the light usage consumers do not call, they are only being called. How-

16Interestingly, this happened in France where, until recently, the MTM termination charges were
zero (Genakos and Valletti, 2011a).

17To see this more clearly, in Appendix A. if we modify the profit function A.5 to π̃i = s i · [F̃i − f +
(1−s i )(a −cT )q (coff)+R(ã )], and substitute F̃i = f +τ−v (con)+v (coff)−R(ã ), then R(ã ) cancels out.
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ever, they also demonstrate that their results are robust to releasing this assumption

(as long as the light users call sufficiently less than the heavy users). In this setup

they are able to generate MTM termination charges that are above their costs, and

above the socially optimal level, giving ground to conventional regulatory wisdom.

2.4 Two part tariffs and beyond

The analysis of interconnecting networks in linear tariffs is clearly an oversimplifi-

cation of the observed telecommunications industries. Nevertheless, the close in-

teraction between unit pricing, access pricing and market share building creates

and interesting intellectual exercise that we have tried to investigate above.

The possibility of charging a two-part tariff in the presence of fixed fees has two

merits in my view: 1. it allows us to disentangle unit pricing from market share

building, thereby simplifying the analysis of competition to basically one strategic

variable (fixed fee) and 2. it is plausible that a two-part tariff is the optimal fully

non-linear tariff. This latter statement is true for homogeneous consumers, who do

not differ in, say, calling demands only with respect to subscription demand.

In the case of heterogeneous consumers, pricing has an additional role besides

acting as strategic devices towards the competitor: they act as strategic devices to-

wards the customers insomuch as they allow to separate different types through

(possibly complex) type-dependent mechanisms. As Armstrong and Vickers (2001),

Rochet and Stole (2002) and Armstrong and Vickers (2010) show, two-part nonlin-

ear tariffs still can be optimal in a general competitive environment with heteroge-

neous consumers in the presence of fixed cost plus constant marginal cost. These

results (sometimes interpreted as “no screening results”) show that a large amount

of intuition can be used to replace mechanism design in possibly complex market

situations.

However, as Dessein (2003) and Hahn (2004) show, this result disappears if the

termination charges are away from their costs. Hahn (2004) characterises the fully

nonlinear separating equilibrium price schedule for a continuum of consumer types

θ ∼ F (θ ) with support [θ , θ̄ ] which is assumed to be independent from the “lo-

cation” type x ∈ [0, 1] (distributed uniformly on its support). In this scenario, the

boundary types pay according to the marginal cost, but the interior types pay unit

prices larger or smaller prices than marginal costs if a > cT or a < cT respectively

(Hahn, 2004, Proposition 2.).

This result shows that finishing our investigation in a two-part tariff model is

not satisfying. In fact, per call prices can be lower than their costs, therefore the

possibility of zero per-call prices (either for all quantities or for some quantities) is
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possible.18 This leads us to the fuller exploration of the possibility of flat-rate and,

especially, three-part tariffs.19

18But not for all types. The boundary types pay according to marginal costs.
19Further, Jensen (2006) argues that in a duopolistic environment it may even not be feasible to

implement a two-part tariff. However, a three-part tariff can be implementable even if the two-part
is not feasible.
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Chapter 3

Competing in three-part tariffs

Generally, a k -part tariff consists of a fixed fee (the first part) and k − 1 marginal

prices for different levels of consumption. A three-part tariff in our usage will be

a tariff, where the marginal price for the first Q units is zero and strictly positive

afterwards.1 Put differently, in return for the fixed fee there is a quantity allowance

and usage based price above that.

As we can see, a three-part tariff is a quite complex pricing schedule which in-

cludes three variables for one firm to decide upon: 1. the fixed fee, 2. the cutoff

quantity below which the marginal price is zero and 3. per-usage price above the

cutoff quantity.

The investigation of these tariffs thus falls into the investigation of non-linear

pricing. What is important and interesting to see is that standard economic the-

ory with standard simplifying assumptions cannot easily give a rationale for such

complex price structures. According to standard results (cf. Wilson (1993)) opti-

mal pricing schedule for a monopolist should be usage based. Indeed, in the view

of the discussion of competition in telecommunications in the preceding chapter,

even though two-part tariffs need not be optimal, there will always be types, who

pay cost-based prices (Hahn, 2004).

Hence, to create a model environment in which three-part tariffs are set in opti-

mum is a challenging intellectual exercise. There are two ways to argue for the opti-

mality of such tariffs: I. make usage-based pricing costly so that it becomes (at least

weakly) optimal to incorporates flat parts in the tariffs2 and II. approach from the

demand side. In the present discussion we stick to the second alternative. In setting

a proper demand side environment, there are two ways to proceed: 1. set up an en-

vironment in which consumers have taste for such tariffs or 2. create a model where

1Generally, we can call a tariff three-part if the marginal price of he first Q minutes is not zero, but
in the context of telecommunications industries the zero marginal price case is more common.

2This approach has been taken by Sundararajan (2004).
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firms find it optimal to exploit their customers’ cognitive biases through these tar-

iffs. The former approach is taken by Herweg and Mierendorff (2012) in the context

of flat-rate tariffs, however, this idea has only partially been examined in the con-

text of three-part tariffs. Nevertheless, in the subsequent discussion we examine the

competitive extension of a model based on the latter approach, namely, exploiting

consumer overconfidence.3

Seeing these general nonlinear pricing results one might ask the question, why

we investigate them in the context of telecommunications industries.4 There are

two answers to that: 1. as will be seen both analytically and intuitively, all of the

results that will be elaborated below hold only if (marginal) costs of providing one

more unit of consumption is sufficiently low (even zero) which is a natural property

of the telecommunications industries, and 2. the structure of decision making from

the consumers’ side fits intuitively the way how consumers make their subscription

and calling decisions.

Note, that the existing results are tuned towards monopolistic nonlinear pricing

(screening). One of our main aim is to examine the extension of these results to an

oligopolistic setting. This way we will be able to investigate whether the established

price structures remain the same and through what channels do competition affects

the strategic variables.

The next section (3.1) covers methodological notions that will be necessary to

investigate the completely nonlinear pricing problems in the sections to follow. The

discussion of these methodological notions, however, at points exceeds the textbook-

level treatment (as can be found e.g. in Fudenberg and Tirole (1991) or Börgers

(2010)) in that we incorporate results from the most recent literature.

Section 3.2 presents the model of consumer overconfidence in a generalised set-

ting and discusses results concerning three-part tariffs. Section 3.3 presents a possi-

ble extension of the consumer overconfidence model that is tuned towards telecom-

munications industries.

3.1 Methodological odds and ends

The theory of nonlinear pricing and screening partly belongs to the theory of mech-

anism design. The difference between the classical mechanism design problems

and the nonlinear pricing, monopolistic screening is that in these latter there is one

3As a general, short survey of these kinds of models see Grubb (2012).
4We also have to give up from the complexity of the two-way access interconnection models.

However, by examining a more simple structure we are able to generate more complex price sched-
ules. In the end of this chapter, however, we take steps towards extending the models into a setting
that resembles the structure of the telecommunications industry more.

26



principal (uninformed actor) and a single agent (informed actor), thus there is no

strategic interaction between the agents. In our settings, the principal is going to be

the seller and the single agent is going to be the buyer. It is without loss of generality

to say that the single agent represents a unit mass of consumers each possessing a

type that is known by the agent. The principal, however, only has prior probabilistic

beliefs that are characterised by the distribution of the type..

3.1.1 Direct mechanisms and the revelation principle

The crucial problem in our settings is for the seller to induce the buyers to reveal

their type correctly when making their purchase decision. This she does by imple-

menting a mechanism. We are particularly interested in the so called direct mecha-

nisms, since they are the contracts that we are looking for.

Let the type of the agent be a pair (x ,θ ) ∈ X ×Θ, and, for the ease of notation

denote Ξ ≡ X ×Θ. A contract is a pair {q (x ,θ ), P(x ,θ )} of quantity and payment

schedule respectively for each type that is offered by a monopolist.

Definition 3.1. A direct mechanism is the pair of functions q : X ×Θ→ R+ and P :

X ×Θ → R. Put differently, in a direct mechanism the type that reports (x ,θ ) is

offered q (x ,θ ) quantities for P(x ,θ ) payment.

The revelation principle allows us to concentrate on direct mechanisms from the

class of mechanisms in general. Recall thatΞ :=X×Θ. LetΣ⊆Ξ. A strategyσ :Ξ→Σ
is a function that gives a type ξ′ ∈Σ for each input ξ∈Ξ.

Proposition 3.1 (Revelation principle (Börgers, 2010)). For every mechanism M and

every optimal buyer strategy σ in M there is a direct mechanism M ∗ and an optimal

buyer strategyσ∗ in M ∗ such that:

1. σ∗(ξ) = ξ for all ξ∈Ξ (thus, also Σ=Ξ),

2. For every ξ ∈ Ξ, the purchases q (ξ) and payments P(ξ) under M ∗ are equal to

those under M if the buyer plays her optimal strategyσ.

This means that if a strategy is generally optimal, then: 1. there is a mechanism

that induces truthtelling and, 2. this mechanism is a direct mechanism.

3.1.2 Sequential screening

The general nonlinear pricing, contracting problem can be demonstrated by the

sequential screening problem. Moreover, the intuitive idea behind this modeling
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setup suits our purposes well in studying telecommunications.5

A very plausible assumption regarding mobile service subscriptions is that at

the time of signing a contract, we do not exactly know how much we are going to

call during the following month, but have beliefs about this. In the meantime, we

“learn” this private information from our preferences and make our calling quantity

decision accordingly. This setup makes sense especially in the case of monthly con-

tracts, where this “learning” and “buying” can simply be interpreted as the amount

of calls made in that given monthly period and not in an instant.

This idea can be studied in a model of sequential screening as proposed for ex-

ample by Courty and Hao (2000).6 Since the original, “canonical” model displays

a binary decision over consumption (or production) and the valuation of the com-

modity is linear in the type7, it is necessary to generalise the formulation to serve our

illustrational purposes in two ways: 1. by adding a type dependent utility function

and 2. by allowing for a quantity decision.

Let a continuum of consumers have two types: 1. x , distributed according to F (x )

on X := [x , x̄ ], and 2. θ ∈ [θ , θ̄ ] =:Θ that is distributed according to the conditional

distribution G (θ | x ). Thus, each consumer is described by the pair (x ,θ ). Sup-

pose, that x is known to the consumer at the time of contracting, whereas θ will be

revealed only in the second period, after contracting. One simplifying additional

assumption that Courty and Hao (2000) make is that G (θ | x ) have the same support

for all x .

A contract is a pair {q (x ,θ ), P(x ,θ )} of quantity and payment schedule respec-

tively for each type that is offered by a monopolist. Supplying a unit q costs k

and the subscription of one customer costs K . Consumers obtain a general type-

dependent utility, u (x ,θ ,q (x ,θ )) from consumption. The payoff functions (profit

and utility) and the beliefs about types are common knowledge.

Given the above specifications, the optimal design problem is the following:

max
{q (x ,θ ),P(x ,θ )}

∫ x̄

x

∫ θ̄

θ

[P(x ,θ )−kq (x ,θ )−K ]dG (θ | x )d F (x )

subject to

u (x ,θ ,q (x ,θ ))−P(x ,θ )≥ u (x ,θ ′,q (x ,θ ′))−P(x ,θ ′) ∀x ,∀θ ,θ ′ , (IC2)

5Note, that the setup in this section is general and we do not intend to solve the model at this
stage in any way. The concrete application will always be simpler, and will have more structure so
that we can derive results.

6This inspection will also give hints on how to possibly formulate an oligopolistic model in which
the firms are differentiated à la Hotelling.

7See also Krähmer and Strausz (2011).
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∫ θ̄

θ

[u (x ,θ ,q (x ,θ ))−P(x ,θ )]dG (θ | x )≥

∫ θ̄

θ

[u (x ,θ ,q (x ′,θ ))−P(x ′,θ )]dG (θ | x ′) ∀x ,x ′ , (IC1)

∫ θ̄

θ

[u (x ,θ ,q (x ,θ ))−P(x ,θ )]dG (θ | x )≥ 0 ∀x . (IR)

The constraints can be interpreted as follows. IC2 (incentive compatibility) requires

the firm to set up a contract that forces type (x ,θ ) customer to report her type θ in

period 2 correctly for every type x . IC1 represents the same with respect to type x

taking into account that customers have probabilistic beliefs about their type in the

θ dimension. IR ensures that the customer is individually rational, i.e. she does not

accept a contract in the first period that yields negative expected surplus.8

This is a very general program for contracts with general nonlinear tariffs (P(x ,θ ))

that—imposing certain assumptions on the parameters and functions—might or

might not yield the flat-rate or three-part tariffs that we are aiming at.

3.1.3 Local and global incentive compatibility

If we observe IC2, we can see the quantor ∀θ ,θ ′, i.e. the constraint must hold for all

combinations of types. This results in a great number of constraints that must hold,

and we have to check whether all of them are satisfied simultaneously.

A simplifying technique that is very common in the literature is to observe the

incentive compatibility property in the small vicinity of the true type θ and impose

constraints in this vicinity. Then it is necessary to find assumptions under which the

local incentive compatibility implies global IC. As is demonstrated by Carroll (2012),

the sufficiency of local IC to imply global IC generally depends on: 1. the proper-

ties and shape of the type space, 2. the utility function. In the case of mechanisms

without transfers very general results can be established regarding when local IC

constraints are sufficient to imply global IC. In contrast, in the present case of mech-

anism with transfers (payments), Carroll (2012) (in its extended web-appendix) sug-

gests that the utility function being linear in own type is an indispensable assump-

tion (besides convex type spaces) for the implication local IC → global IC to hold

8Krähmer and Strausz (2011) also allow for an outside option in the second period, thus, a second
IR constraint is necessary in that setting. Generally, this is a plausible extension, since e.g. in job
contracts it is possible to terminate the contract during the second period, or it is possible to bring
back a good to the shop and get full refund. In a telecommunications setting, however, sticking
to only ex ante (i.e. contractual) outside options and only period one IR constraint is a reasonable
simplification.
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generally.9

In the light of this discussion we see that the implication “local IC→ global IC”

may not hold generally in our settings. Therefore, we have to check, for which types

of problem formulations this implication actually holds. These are standard as-

sumptions in the literature that can be found e.g. in Fudenberg and Tirole (1991)

or Börgers (2010). We will investigate these properties in the actual problems.10

3.1.4 Competition in utility space

Observe, that we assumed above, that the firm (principal) is a monopolist. Thus, in-

tuitively, the individual rationality constraint (participation constraint) binds, since

the monopolist aims at extracting the highest surplus that is possible. What hap-

pens if we would like to incorporate an imperfect competitive environment (assum-

ing symmetric firms)? The IR constraint will possibly not bind at 0, because the ex-

tractable surplus is bounded from below by the competitive environment. Thus, a

way to proceed is to set the IR formula equal to a certain level of v , expected con-

sumer surplus, and find the optimal contract for that particular v . Then, the optimal

profit function π(v ) is going to depend on v . Further, as is suggested by Armstrong

and Vickers (2001), in a second optimisation problem the firms A and B (now in

the extended model) are going to play a game where they choose strategies v i ∈R+.

Firm A is going to have payoff:

m (v A , v B )π(v A) , (3.1)

where m (·, ·) is the market share function that is increasing in its first and decreasing

in its second argument, and π(v A) is the maximal profit as a function of v A .11 Thus,

given the strategy of firm B , firm A maximises should maximise own market shares

times profits and vice versa. The equilibrium will give optimal v A and v B , which we

can substitute back into the profit function to find the optimal profits of each firm.

9However, the extent of this problem is unclear.
10Of course, the formulations should also ensure that IC holds locally. This is also a conclusion of

the usual approaches.
11In this discussion a confusion might arise. Strictly speaking Armstrong and Vickers (2001), while

suggesting this formulation do not propose a model. They only discuss about functions m (·, ·) and
π(·) satisfying certain, general assumptions. Besides these assumptions, however, no additional
structure is imposed on the problem e.g. by specifying cost structure. This way, they are able to
illustrate the general idea of competition in utility space and derive generally applicable results.
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3.2 Competing in a model of consumer overconfidence

Grubb (2009) investigates the effects of consumer overconfidence to pricing in a

monopolistic and perfectly competitive screening model. The timing of decisions

in this model are analogous to the sequential screening model described above. The

crucial assumption that drives his results is that consumers underpredict the actual

variance of their future consumption, i.e. they are overconfident about predicting

their future preferences and consumption.

This assumption can be easily formalised. Let the taste parameter θ be dis-

tributed according to F (θ ) with support Θ := [θ , θ̄ ]. This F is the true distribution

of θ . Denote consumers’ (wrong) priors about this distribution with F ∗(θ ) with the

same support. Then overconfidence can be modeled by assuming that

Assumption 3.1 (Grubb (2009)). F ∗(θ ) crosses F (θ ) only once from below at θ ∗.

This means that for every θ < θ < θ ∗, F ∗(θ ) < F (θ ) and for every θ̄ > θ > θ ∗,

F ∗(θ ) > F (θ )12, i.e. more mass is concentrated around θ ∗ in the distribution F ∗(θ ).

Figure 3.1 illustrates, with µ∗ and µ denoting the mean of F ∗ and F respectively.13

Note also, that if θ ∗ is the expectation of both F and F ∗, then this assumption can

be interpreted such that F is the mean preserving spread of F ∗.
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Figure 3.1: F (θ ) and F ∗(θ ) satisfying Assumption 3.1

In the following we discuss Grubb’s model in a generalised setting by extending it

to a Hotelling oligopolistic environment. Our main result is that this extension does

not alter the results in Grubb (2009) about the optimal contracts in a crucial way,

but the comparative statics with respect to τ, the differentiation parameter can be

investigated more thoroughly.

12Since the two distributions F (θ ) and F ∗(θ ) have common support, at θ and θ̄ the functional
values must be the same too.

13In both plots F is the uniform distribution on [0, 1]. F ∗ is the beta distribution with parameters
(a) α = 2.5, β = 2, (b) α = 1.6, β = 2. Plot (b) illustrates that Assumption 3.1 is not equivalent to F ∗

second order stochastically dominating (SOSD) F , only if µ∗ ≥µ, as in plot (a).
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There are two simplifying assumptions that make the analysis more transparent

by allowing us to rely on Armstrong and Vickers (2001). These are: 1. the Hotelling

location parameter x is stochastically independent from the consumption type pa-

rameter θ , and 2. at the stage of contracting consumers are homogeneous and de-

cide according to their expectations of their future demand.14

3.2.1 Model setup

Firms

Suppose that there are two firms offering contracts specified by the pair {q (θ ), P(θ )}
of quantities and payment schedules for each consumer type θ . Firms have the

correct priors about the distribution F (θ ). The firms are symmetric and the profits

are given by πi = Pi (θ ) − C (q (θ )), where C is a cost function that is assumed to

be increasing and convex in q . The two firms are spatially differentiated and are

located at the two ends of the interval [0, 1].

Note that this firm specification implicitly assumes that that the location param-

eter x and the consumption type parameter θ are independent, since the contract

offered does not depend on the location type, i.e. it is the same for all types x .

Consumers

Consumers are heterogeneous with respect to a pair of types (x ,θ ). The two types

are stochastically independent. Consumers’ priors on θ are represented by F ∗(θ ).

The true distribution F (θ ) is related to F ∗(θ ) according to Assumption 3.1. Type

x is distributed uniformly on [0, 1]. Consumers know their location x at the time

of contracting, but the realisation of type θ will only be revealed to the consumers

after the contracting stage.

Preferences are represented by the type dependent utility function u (q ,θ ). For

each type there is a satiation point q s (θ ) above which quantities are freely dispos-

able. The utility function satisfies the following assumptions:

Assumption 3.2.

1. For all θ the satiation point q s (θ ) is finite, and given by min{q : uq (q ,θ ) = 0}
for all θ . This satiation point is increasing in θ .

14The framework of Rochet and Stole (2002) is of the same spirit, however they model firms as
selling qualities, rather than quantities. The mechanics of an oligopolistic nonlinear pricing model
can be well understood from Stole (1995). Stole’s modeling approach also allows for interacting (not
independent) types.
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2. uq (q ,θ ) > 0 for q < q s (θ ); and uq (q ,θ ) = 0 for all q ≥ q s (θ ), uqq (q ,θ ) < 0;

uqθ > 0 for all θ .

3. u (0,θ ) = 0 for all θ .

4. u (q ,θ ) is three times continuously differentiable with bounded derivatives.

In the next step we can verify the following claim that is going to be important

in the subsequent analysis.

Claim 3.2. Given Assumption 3.2, u (q ,θ ) has weakly increasing differences, i.e. for

all θ ′ >θ and q ′ >q

u (q ′,θ ′)−u (q ′,θ )≥ u (q ,θ ′)−u (q ,θ ) .

The inequality is strict if and only if q <q s (θ ′).

Proof. Suppose Assumption 3.2 holds. Take any q ′ >q and θ ′ >θ , and show that

1. If q ≥q s (θ ′), then the inequality holds with equality.

Since for any θ , uq (q ,θ ) is zero for all q ≥q s (θ ), then u (q ′,θ ′) = u (q ,θ ′). Since

q s (θ ) is increasing in θ , q s (θ ′)≥q s (θ ), and, in particular q ′ >q ≥q s (θ ). Thus,

also u (q ′,θ ) = u (q ,θ ). Hence, u (q ′,θ ′)−u (q ′,θ ) = u (q ,θ ′)−u (q ,θ ) = 0.

2. If q <q s (θ ′), then the inequality is strict.

First of all, let q < q s (θ ) (θ without a prime). Since uqθ (q ,θ ) > 0 for all θ ,

and uq (q ,θ ) > 0 for all q in this region, thus uq (q ,θ ′)− uq (q ,θ ) > 0. If q ′ <

q s (θ ), then this implies that u (q ′,θ ′)− u (q ,θ ′) > u (q ′,θ )− u (q ,θ ), what we

wished for. If q s (θ ) ≤ q ′ < q s (θ ′), then uq (q ′,θ ′) > 0 and uq (q ′,θ ) = 0. In

particular then uq (q ′,θ ′)> uq (q ′,θ ). Thus, for all q < q ′, u (q ′,θ ′)−u (q ,θ ′)>

u (q ′,θ )−u (q ,θ ). If q ′ ≥ q s (θ ′), then u (q ′,θ ′) > u (q ′,θ ) (from uqθ > 0), and

the functions are maximised, thus for all q < q s (θ ′), u (q ′,θ ′) > u (q ,θ ′), and

u (q ′,θ )≥ u (q ,θ ). These two inequalities together give a strict inequality that

we wished for.

If q s (θ ) ≤ q < q s (θ ′), then u (q ,θ ) = 0. But, since uq (q ,θ ′) is still positive,

uq (q ,θ ′)− uq (q ,θ ) > 0, and u (q ′,θ ′)− u (q ,θ ′) ≥ 0, with equality only if q ≥
q s (θ ′), which condition is a contradiction. Thus the inequality is strict.

3. q < q s (θ ′) is necessary for the strict inequality. Suppose the contrary, i.e. q ≥
q s (θ ′). This is by the first point a contradiction.
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Since for each consumer type there is a unique satiation point, beyond which

quantities are freely disposable, every type θ reporting type θ ′ is going to consume

min[q (θ ′),q s (θ )]. The variable surplus of type θ reporting θ ′ is denoted by V (θ ,θ ′)≡
u (min[q (θ ′),q s (θ )],θ )−P(θ ′). The surplus from joining provider i ∈ {0, 1} is gener-

ally given by

Wi (θ ,θ ′,x )≡V (θ ,θ ′)−τ|i −x | . (3.2)

Note, that in the contracting first period consumers only have expectations about

their future surplus. Thus, there is no place for not telling the truth about the loca-

tion type x . The contracts will be incentive compatible with respect to x if they are

with respect to θ . Hence, the above expression simplifies to Wi (θ ,x ), orE∗[Wi (θ ,x )].

Timing

1. Firms simultaneously offer contracts to consumers.

2. Consumers choose firm subscription based on their prior beliefs by accepting

a particular firm’s contract.

3. The real types are revealed, consumers make consumption (calling) decision

accordingly and pay an amount that the contract prescribes.

3.2.2 Solving for the optimal contract {q (θ ), P(θ )}

In order to solve this problem in a transparent way, we use the approach of Arm-

strong and Vickers (2001) and model the two firms as competing in the utility space.

This we do by solving the problem in two steps: 1. Finding the optimal tariff for a

given level V̄ of utility supplied to consumers and 2. Choosing the optimal utility

supplied to consumers given the other firm’s analogous decision by playing a game.

Besides this, the arguments closely follow Grubb (2009).15

Since both firms are symmetric, we can formulate the optimal contract problem

without a firm index. This problem is the following:

max
{q (θ ),P(θ )}

E[P(θ )−C (q (θ ))]

subject to

V (θ ,θ )≥V (θ ,θ ′) ∀θ ,θ ′ ∈Θ (IC)

E∗[V (θ ,θ )] = V̄ (IR)

15All statements phrased as claims or propositions so far and henceforth are stated and proven by
me, except where the contrary is clearly indicated.
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V̄ ≥ 0; q (θ )≥ 0∀θ

This program specifies the incentive compatible optimal contract for a given level

of expected consumer surplus. At this point, we differentiate between quantities of-

fered by the firm q (θ ) and the quantities actually consumed q c (θ ,θ ′)≡min[q (θ ′),q s (θ )]

denoting q c (θ ,θ ) =q c (θ ).

The derivative of V is:

∂ V (θ ,θ ′)
∂ θ

= uq (q c (θ ,θ ′),θ ) ·
∂ q c (θ ,θ ′)
∂ θ

+uθ (q c (θ ,θ ′),θ ) .

Recall, that q c is a minimum function, therefore we have to split for the two cases

q (θ ′) < q s (θ ) and q (θ ′) ≥ q s (θ ). In the former case q c (θ ,θ ′) = q (θ ′), thus the

derivative according to θ is zero. In the latter case, q c (θ ,θ ′) = q s (θ ), in which case

d q s (θ )/dθ is zero by assumption. Thus

∂ V (θ ,θ ′)
∂ θ

= uθ (q c (θ ,θ ′),θ ) a .e . ,

where a.e. denotes “almost everywhere”, i.e. except for a set whose (Lebesgue) mea-

sure is zero. In our case, this is the point where the minimum function is not differ-

entiable.

As Grubb (2009, Lemma 1., p. 1778.) shows, if the contract {q̂ (θ ), P̂(θ )} is opti-

mal, then so is {min[q̂ (θ ),q s (θ )], P̂(θ )}, and that if costs are strictly increasing then

q̂ (θ ) ≤ q s (θ ) (a.e.). Hence, we can invoke the strict increasing property from claim

3.2, combine it with the property that q c (θ ) is nondecreasing and refer to Fuden-

berg and Tirole (1991, Theorem 7.3, p. 261.) to conclude that the optimal contract is

globally incentive compatible. If the optimal contract is globally incentive compat-

ible, then we can refer to Milgrom and Segal (2002, Theorem 2, p. 586), to conclude

that the following envelope formula holds

V (θ )−V (θ ) =

∫ θ

θ

Vθ (s )d s

V (θ ) =V (θ )+

∫ θ

θ

uθ (q c (s ), s )d s . (3.3)

From this this equation, we can express E[V (θ )] and E∗[V (θ )] as

E◦[V (θ )] =V (θ )+E
�

uθ (q c (θ ),θ )
1− F ◦(θ )

f (θ )

�

, (3.4)

where ◦ either stands for ∗ or nothing.

Next, we have to find P(θ ) by expressing it as P(θ ) = V (θ )− u (q c (θ ),θ ). From
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Equation 3.3, we get that

P(θ ) =V (θ )+

∫ θ

θ

uθ (q c (s ), s )d s −u (q c (θ ),θ ) . (3.5)

Up until now, we have only used the IC constraint for the derivation. Let us turn

to the IR constraint and combine it with 3.4. This way we can express V (θ ) and

substitute, thus,

P̂(θ , V̄ ) = V̄ −E
�

uθ (q c (θ ),θ )
1− F ∗(θ )

f (θ )

�

︸ ︷︷ ︸

V (θ )

+

∫ θ

θ

uθ (q c (s ), s )d s −u (q c (θ ),θ ) , (3.6)

which is essentially the same as the result of Grubb (2009), except for the constant

term V̄ . In the next stage of optimisation, we have to pin down V̄ .

Note already, however, one interesting aspect of this pricing schedule: the marginal

price will be independent of the particular utility level V̄ that the firm offers. This

means, that the marginal price cannot be the channel through which the two firms

compete. Indeed, V̄ is part of the fixed fee, hence this fixed fee will be one of the

channels of competition.

What about the quantity offered for a particular type θ consumer? Notice, that

in the derivation of the above pricing schedule we used both the IC and IR con-

straints. Thus P(θ ), which depends on the truthtelling q c (θ ) identifies the optimal

(incentive compatible and individually rational) contract price for any q (θ ) and V̄ .

What remains then is to maximise profits again along the q (θ ) dimension subject to

only two constraints: 1. 0 ≤ q (θ ) ≤ q s (θ ) and 2. q (θ ) nondecreasing. This way, we

can find the optimal quantity schedule q̂ (θ ).16

As we have already noted, the second constraint is a necessary condition for a

contract in the q dimension to be incentive compatible (Börgers, 2010; Fudenberg

and Tirole, 1991). Whenever this constraint is binding, an “ironing” procedure (cf.

Fudenberg and Tirole (1991, Chapter 7., Appendix.)) is applied which results in that

the optimal quantity offered to the types where the constraint is binding will be the

same (pooling).

Note, that this maximisation problem immediately implies that V̄ (being a con-

stant) does not enter the quantity decision either, so the fixed fee is the only channel

through which firms actually compete.

16For the purposes of the present discussion, the actual characterisation and properties of this
optimal quantity schedule is redundant. For the details please refer to Grubb (2009, Section D.).
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Now we turn to the second phase: a noncooperative game for consumers. As we

have already seen in the Hotelling specification, in the case of full consumer partic-

ipation the expected market share function for firm i will be

m (V̄ i , V̄ 1−i )≡







0, if (V̄ i − V̄ 1−i )≤−τ
1
2
+ V̄ i−V̄ 1−i

2τ
, if (V̄ i − V̄ 1−i )∈ (−τ,τ)

1, if (V̄ i − V̄ 1−i )≥τ
. (3.7)

Note, that because of the constraint is related to V̄ , this market share function is

based on the expectation of the consumers’ priors. This is clearly the case, since

consumers subscribe to either one of the providers based on their own beliefs.

Recall, that q̂ (θ ) is the optimal quantity schedule offered in the contract. Bearing

this in mind, define

Π̂(θ , V̄ i )≡ P̂(θ , V̄ i )−C (q̂ (θ )) . (3.8)

Further, for the ease of notation, define

Ω̂(θ )≡E
�

uθ (q̂ (θ ),θ )
1− F ∗(θ )

f (θ )

�

−
∫ θ

θ

uθ (q̂ (s ), s )d s +u (q̂ (θ ),θ ) ,

i.e. the optimal price schedule without V̄ . Given the two symmetric firms, the opti-

mal contracts, the already calculated profit functions and the market share function,

we can make the following claim

Proposition 3.3. Define a two player normal form game as: firm i ∈ {0, 1} can choose

actions V̄ i ∈R+ and has the payoff function

m (V̄ i , V̄ 1−i ) ·E
�

Π̂(θ , V̄ i )
�

, (3.9)

where m (·, ·) and Π̂(·, ·) are given by Equations 3.7 and 3.8 respectively.

This game has a symmetric pure strategy Nash-equilibrium ˆ̄V 0 = ˆ̄V 1 = ˆ̄V that is

given by
ˆ̄V =E

�

Ω̂(θ )−C (q̂ (θ ))
�

−τ , (3.10)

if E
�

Ω̂(θ )−C (q̂ (θ ))
�

−τ≥ 0, or by ˆ̄V = 0 else.

Proof. The optimal contracts, thus the variable profits are the same for both firms,

therefore we can drop the subscripts for Ω̂ and C .

1. E
�

Ω̂(θ )−C (q̂ (θ ))
�

−τ≥ 0.

If both firms offer ˆ̄V =E
�

Ω̂(θ )−C (q̂ (θ ))
�

−τ, then the equilibrium payoff for
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firm i is 1
2
τ, since m ( ˆ̄V, ˆ̄V ) = 1/2, and E

h

Π̂(θ , ˆ̄V )
i

= E
�

Ω̂(θ )−C (q̂ (θ ))
�

− ˆ̄V .

Now suppose that that firm 1− i offers ˆ̄V , but firm i deviates by offering V̄ ′ .

First, consider the deviation, where D ≡ (V̄ ′ − ˆ̄V ) ∈ (−τ,τ). Depending on the

sign of the deviation, the increase (or decrease) in market share m (V̄ ′ , ˆ̄V ) for

firm i is given by D/2τ. The change in expected profit is simply given by −D.

Thus, the payoff change is −(D)
2

2τ
, which (as τ > 0) is negative regardless of the

sign of the deviation.

Second, consider a deviation where D ≡ (V̄ ′ − ˆ̄V ) ≥ τ. Then the market share

is going to be 1, and the payoff will be

τ− V̄
′ ≤ V̄

′ − ˆ̄V − V̄
′
=− ˆ̄V ≤ 0 ,

since ˆ̄V ≥ 0. This is smaller than 1/2τ for all τ.

Last, consider a deviation such that D ≡ (V̄ ′ − ˆ̄V ) ≤ −τ. Then the payoff is

going to be zero, because of the zero market shares. Zero is smaller than the

equilibrium payoff.

2. E
�

Ω̂(θ )−C (q̂ (θ ))
�

−τ< 0, and ˆ̄V = 0.

The equilibrium payoff is 1
2
E
�

Ω̂(θ )−C (q̂ (θ ))
�

.

Offering a strictly negative deviation is not a feasible action. If firm i offers a

strictly positive deviation V̄ ′
< τ, then the change in the payoff for firm i is,

again, going to be −(V̄ ′ )2
2τ

, which is negative. If V̄ ′ ≥ τ, then the payoff is going

to be

E
�

Ω̂(θ )−C (q̂ (θ ))
�

− V̄
′ ≤E

�

Ω̂(θ )−C (q̂ (θ ))
�

−τ< 0 .

Reversing the role of the firms and repeating the argument concludes the proof.

Plugging back the equilibrium ˆ̄V into the price schedule P̂ yields:

P̂H (θ ,τ) = u (q̂ (θ ),θ )−
∫ θ

θ

uθ (q̂ (s ), s )d s +E
�

uθ (q̂ (θ ),θ )
1− F ∗(θ )

f (θ )

�

−E
�

uθ (q̂ (θ ),θ )
1− F ∗(θ )

f (θ )

�

+E
�

uθ (q̂ (θ ),θ )
1− F (θ )

f (θ )

�

−E









u (q̂ (θ ),θ )−C (q̂ (θ ))
︸ ︷︷ ︸

S(q̂ (θ ))









+τ , (3.11)

where S(q̂ (θ )) is the total surplus.
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Note the following two observations:

1. the mere existence of this oligopolistic environment cancels the extra surplus

E
h

uθ (q̂ (θ ),θ )
1−F ∗(θ )

f (θ )

i

that is based on the wrong priors, and replaces it with

the extra surplus E
h

uθ (q̂ (θ ),θ )
1−F (θ )

f (θ )

i

that is based on the correct priors,

2. τ, the transport cost enters into the formula only additively, without any mul-

tipliers.

The following immediate corollary provides a direct connection between our results

and the results of Grubb (2009).

Corollary 3.4.

1. If τ is large enough, then ˆ̄V = 0 and

P̂H (θ ,τ) = u (q c (θ ),θ )−
∫ θ

θ

uθ (q c (s ), s )d s+E
�

uθ (q c (θ ),θ )
1− F ∗(θ )

f (θ )

�

. (3.12)

2. If τ→ 0, then

P̂H (θ ,τ)→ u (q̂ (θ ),θ )−
∫ θ

θ

uθ (q̂ (s ), s )d s

+E
�

uθ (q̂ (θ ),θ )
1− F (θ )

f (θ )

�

−E









u (q̂ (θ ),θ )−C (q̂ (θ ))
︸ ︷︷ ︸

S(q̂ (θ ))









. (3.13)

These are the exact pricing formulas that Grubb (2009) derives in Proposition 1.

(p. 1779.) for the monopolist firm and the perfectly competitive firm respectively.

This is not surprising: if the transport cost is very high, each firm acts like a local

monopolist, and if the transport cost is near zero, then a Bertrand-type intuition

suggests that the outcome will be the competitive one in the limit.

This is exactly the case here, and the Hotelling-specification provides a smooth

transition between the two extremes with the transport cost parameter that enters

additively into the pricing schedule. In particular, if we denote the right-hand-side

of Equation 3.13 as P̂C (θ ), then, if τ is not too high, we have the following relation-

ship:

P̂H (θ ,τ) = P̂C (θ )+τ . (3.14)

If we compare Equation 3.12 (denoting it P̂M (θ )) with P̂C (θ ), then we can see that

the main difference between a monopolist, and the (perfect) competitive industry

is a difference in the fixed fee. If we consider the Hotelling setting, then we can
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see that the “comparative statics” with respect to τ are very simple: the smaller the

transportation cost, the lower the fixed part of the price is.

The difference between the monopolist pricing in this overconfident setup and

the usual monopolistic screening result (as is described for example in Fudenberg

and Tirole (1991)) is the term with positive sign E
h

uθ (q̂ (θ ),θ )
1−F ∗(θ )

f (θ )

i

. I.e. the mo-

nopolist sets up a generally higher price schedule, and this extra revenue is fixed for

all types, since it is an expectation.

As noted earlier, the effect of the oligopolistic environment is that its existence

sweeps away the extra revenue based on customers misperception of the expectation

and replaces it with an expected virtual surplus based on the real distribution. In

addition, the difference (with negative sign towards the competitive outcome) is

going to be a fixed fee that is exactly the expected total surplus.

If the transport costs are close to zero, and the firms are playing a simple Bertrand-

type game, the oligopolistic price schedule will be precisely the same as the compet-

itive pricing.

After highlighting these aspects of the optimal contract result of Grubb (2009)

and our results in a Hotelling duopolistic setup, we can conclude this section with

the following summary:

Result. The quantity schedule specified by the optimal contract of the above pro-

gram is the same for the three specifications: Monopoly (M), Perfect competition (PC),

Hotelling duopoly (H). The optimal price schedule differs across the three specifica-

tions by only a fixed fee. In the case of the H, this fixed fee is precisely τ in addition

to the price schedule of PC. Thus, in the case of τ = 0, the outcome of H and PC is

precisely the same. If, however, τ is sufficiently large, then the provided utility in a

symmetric equilibrium will be zero and the result of H will be the same as M.

3.2.3 Further pricing results

The importance of demonstrating (showing) that the results from M, PC and H differ

only by a fixed fee in the price schedule is that this leaves the results of Grubb (2009)

regarding the marginal price identically valid. Thus, also in the case of H, we do not

lose the structure of three part tariffs that is discovered by Grubb for the model of

overconfidence.

If we link the optimal price schedule to the quantity consumed by denoting

P̂(q ) = P̂(θ̂ (q )), with θ̂ (q ) ≡ inf{θ : q̂ (θ ) = q}, then for those quantities where we

do not have to care about the monotonicity constraint, the following marginal pric-

40



ing result is true (Grubb, 2009, Proposition 2., p.1781):

d P̂(q )
q

=max

¨

Cq (q )+uqθ (q , θ̂ (q ))
F ∗(θ̂ (q ))− F (θ̂ (q ))

f (θ̂ (q ))
, 0

«

. (3.15)

From this result we can immediately see that if the real and perceived priors of the

customers were the same (F (θ ) = F ∗(θ ) for all θ ), then the optimal marginal price

would be marginal cost pricing for all θ -s—a result already familiar from the case of

two-part tariffs.

Further, recall that F (θ ) and F ∗(θ ) coincide in each elements of the set {θ ,θ ∗, θ̄ }.
For θ < θ ∗, F ∗(θ ) < F (θ ), and for θ > θ ∗ the relationship is reverse. Thus, if we de-

note q ≡ q̂ (θ ), q ∗ ≡ q̂ (θ ∗), q̄ ≡ q̂ (θ̄ ), then we can conclude17 that whenever the

marginal cost is zero, and the monotonicity constraint does not bind in the deriva-

tion of optimal quantity schedule,

1. Marginal price is zero for all quantities below q ∗ and for q̄ ,

2. Marginal price is positive for all quantities in the complement of the above

set, i.e. strictly between q ∗ and q̄ .

In fact, for quantities above q ∗ the marginal price is generally higher than marginal

cost Cq (q ), which in the case of the above result is assumed to be zero. If the marginal

cost is strictly positive for all quantities (without the monotonicity constraint taken

into account), then for quantities below q ∗, marginal price is lower than marginal

cost, for quantities above q ∗, marginal price is higher than marginal cost and for the

points of coincidence (q ,q ∗, q̄ ) marginal price equals marginal cost.

Recall, that this result is independent of the market structure that we are inves-

tigating, as payments differ only by a fixed fee between market structures.

Since in the case of telecommunications, marginal costs can safely be assumed

to be close to zero, we have found the payment schedule structure that we have

aimed at: a three-part tariff. Thus we can phrase the following summarising result.

Result. With a model of overconfidence in the spirit of Grubb (2009), assuming zero

marginal costs we can generate a pricing structure that is qualitatively similar to a

three-part tariff. In this structure we can identify and show the following properties

concerning the three-part tariff:

1. The fixed fee is determined by the competitiveness of the market structure in

which we are investigating. The more competitive the industry, the lower the

fixed fee is.

17This is also stated in Grubb in Corollary 1 (p.1781).
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2. The quantity allowance is given by the quantity consumed by a particular in-

termediate demand type θ ∗, whose anticipated and correct priors (F ∗ and F

resp.) coincide.

3. The marginal price is independent of the market structure and is higher than

marginal cost after the quantity allowance is used up. The steepness of this

above-allowance marginal price is bigger if the difference between the antici-

pated and correct priors is bigger, or if the probability density (given by the pdf

f ) is smaller.

3.3 Towards telecommunications – A possible extension

In the light of the discussion of Chapter 2, assuming that the costs of making in-

bound calls is the same as that of making outbound calls might be with loss of gen-

erality if we investigate the telecommunications industry. The negotiated termina-

tion charge makes off-net (outbound) calls more costly for both firms.

If we observe todays’ tariffs in Austria for example (cf. Section 1.1), then it is

usual that there is no termination based price discrimination in the three part tariff

contract offered. Thus, building on the above extension of Grubb (2009) a different

model can be formulated that resembles the telecommunications industry more.

In this model costs differ based on the network where a call terminates with con <

coff for both firms, but the payment schedule P(θ ) is uniform for the two network

terminations. As we will see, this extension makes the model more complicated

than the simple oligopolistic extension of Grubb (2009).

3.3.1 Model setup

In this model, consumers are the same as in the model of section 3.2, i.e. have the

same utility function as described by assumption 3.2, and their incorrect priors are,

again, described by assumption 3.1, the satiation assumption applies. Motivated by

the models of Chapter 2, we make the simplifying assumption of balanced calling

pattern in this section. This means, that consumers do not intentionally choose the

network to which they call, rather, their call termination depends on the relative

market shares of the two firms.

The timing of the game is what is described in section 3.2.

Firms offer type dependent contracts {q (θ ), P(θ ) and are located at the two ex-

tremes of the Hotelling line. This section’s extension is, that firm i ∈ {0, 1} has vari-

able cost con for calls terminating in i ’s network, and coff for calls terminating in the

42



rival’s network.18 The relationship is con < coff. There is a fixed cost K associated with

each subscribing consumer. Writing m i ≡m (V̄ i , V̄ 1−i ) analogously to Equation 3.7,

and assuming (as natural in the Hotelling specification) that m1−i = 1−m i , firm i ’s

profit is from selling contract {q (θ ), P(θ )} to consumer of type θ , given opponent’s

V̄ 1−i and own V̄ i :

Πi (θ , V̄ i , V̄ 1−i )≡ P(θ )−m i conq (θ )− (1−m i )coffq (θ )−K . (3.16)

As costs did not appear in the derivation of the optimal pricing schedule given

q c (θ ), θ and V̄ i , in this setting the optimal (monopolist) price schedule will, again,

be given by Equation 3.6 which we rewrite here:

P̂(θ , V̄ ) = u (q c (θ ),θ )−
∫ θ

θ

uθ (q c (s ), s )d s +E
�

uθ (q c (θ ),θ )
1− F ∗(θ )

f (θ )

�

− V̄ i . (3.17)

Thus, since the structure is the same, we could hope, that the game in utility levels

will be as simple, as in the previous section.

However, this is not the case here, because q̂ (θ ), the optimal quantity offered will

depend on the market share function, thus on both V̄ i and V̄ 1−i . As a consequence,

the payment function P(θ ) in the optimal contract will also depend on V̄ i and V̄ 1−i

through q̂ (θ , V̄ i , V̄ 1−i ).

To characterise q̂ , we have to maximise the expected profits given the optimal

price schedule P̂(θ ), imposing the monotonicity and the satiation constraint. Ignor-

ing for the moment these constraints, the maximizand objective for firm i ∈ {0, 1}
therefore is:

E
�

u (q ,θ )−
∫ θ

θ

uθ (q , s )d s +E
�

uθ (q ,θ )
1− F ∗(θ )

f (θ )

�

+[m i (coff− con)− coff]q − V̄ i −K

�

. (3.18)

Which, after integrating by parts and using that the expectation of the expectation

(w.r.t. the same measure) is simply the expectation, simplifies to

E
�

u (q ,θ )+uθ (q ,θ )
F (θ )− F ∗(θ )

f (θ )
+ [m i (coff− con)− coff]q

�

− V̄ i −K . (3.19)

If we maximise this expression with respect to q for all θ without the expectation,

18Note that incoming calls do not generate costs. This is a simplification, because if it was not so,
the opponent’s optimal contract (or, rather the quantity offered therein) would also appear in the
profit function, as q (p j ) does in equation 2.7.
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then the expected value is also going to be maximised.

Denote

Ψ(q ,θ , V̄ i , V̄ 1−i )≡

u (q ,θ )+uθ (q ,θ )
F (θ )− F ∗(θ )

f (θ )
+ [m i (coff− con)− coff]q − V̄ i −K ,

and make the following technical assumption:

Assumption 3.3.

uθqq =

(

≥ 0, if F (θ )− F ∗(θ )< 0

≤ 0, if F (θ )− F ∗(θ )> 0
. (3.20)

Recall, further, that uqq < 0 for q ∈ [0,q s (θ )] for all θ . These assumptions, to-

gether with the recognition that if F (θ ) = F ∗(θ ), then uθqq (q ,θ )(F (θ )−F ∗(θ ))/ f (θ ) =

0, makeΨ strictly concave (Ψqq < 0). Hence, maximisingΨwith respect to q is a con-

cave optimisation problem on [0,q s (θ )], for all θ , where for each θ the optimum (in

the interior of [0,q s (θ )]) is characterised by the FOC

uq (q ,θ )+uθq (q ,θ )
F (θ )− F ∗(θ )

f (θ )
= coff−m i (coff− con) . (3.21)

Observe, that m i ≡m (V̄ i , V̄ 1−i ) enters this equation, thus, given V̄ 1−i , by changing

V̄ i also the optimal quantity q̂ (θ ) is going to change in contrast to the problem in

the previous section, where V̄ i entered the price schedule only additively, and had

no bearing on the optimal contract besides that.

While from Equation 3.21 in its generality we cannot say much about the explicit

dependence of q̂ on V̄ i , we can invoke the implicit function theorem to make the

following statement:

Proposition 3.5. Under Assumptions 3.1, 3.2 and 3.3, if the monotonicity, satiation

and non-negativity constraints are not binding, then q̂ (θ , V̄ i , V̄ 1−i ) is increasing in

V̄ i .

Proof. If neither of the three constraints (monotonicity, non-negativity, satiation)

are binding, then q̂ (θ , V̄ i , V̄ 1−i ) is characterised by Equation 3.21. This FOC is given

by the Equation Ψq (q ,θ , V̄ i , V̄ 1−i ) = 0, and q̂ ∈ (0,q s (θ )) open interval for all θ .

Since Ψqq < 0 on (0,q s (θ )), the implicit function theorem implies that

d

d V̄ i
q̂ (·, V̄ i ) =

ΨqV̄ i

Ψqq
,

and thus the sign of ΨqV̄ i tells how q̂ changes in response to a bigger V̄ i .
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Since ∂m (V̄ i , V̄ 1−i )/∂ V̄ i = 1/2τ, thus

ΨqV̄ i =
1

2τ
(coff− con) .

Since coff > con and τ> 0 by assumption, this expression is strictly greater than zero.

Hence, d
d V̄ i q̂ (·, V̄ i )> 0.

Interpreting this result is intuitive. Suppose firm i ceteris paribus supplies less

utility. Then m i decreases, and, in response, 1−m i increases, thus own consumers

are calling off-net with greater probability, which calls are more costly than on-net

calls. Hence, in order to suffer less losses, firm i reduces on the quantity it offers in

the contract. The magnitude of this effect is driven by the transport cost parameter

and the on–off-net cost difference in exactly the way we would intuitively anticipate

it. If the networks are more differentiated (τ is bigger), or the cost difference is small,

this effect is going to be smaller.

Along the same line of argument, it is evident that under the assumptions of

Proposition 3.5, the opponent firm can exercise competitive pressure on firm i through

its quantity schedule. In particular, q̂ changes downwards if V̄ 1−i rises.

3.3.2 A simple example

As the discussion above suggests, the formulation of this extension already makes

determining the equilibrium of the market share game complicated. To understand

the structure of the problem better we present, and attempt to solve, a simple illus-

trative example.

Example 1. Let F be the uniform distribution on [− 1
2

, 1
2
], and let F ∗ be the uniform

distribution on [ 3
8

, 3
8
]. The type space Θ := [− 1

2
, 1

2
]. These distributions ensure that

the monotonicity constraint is never binding (Grubb, 2009, p. 1783.). Let the utility

function be u (q ,θ ) ≡ 3
2
(1+ θ )q − 3

20
q 2. The costs of the firms are symmetric: con = 1

5

and coff = 1
4

for both firms.19

Since the derivative uθqq is zero, and uqq < 0, this utility function also satisfies

Assumption 3.3. This way, assuming that the satiation constraint is not binding, we

can explicitly calculate the optimal quantity q̂ (θ , V̄ i , V̄ 1−i ) from Equation 3.21. This

is given by the following formula:

q̂ (θ , V̄ i , V̄ 1−i ) =
120θτ+81τ+ V̄ i − V̄ 1−i

12τ
−

(

20θ
3
+ 1

2
, if θ ∈ [− 3

8
, 3

8
]

5 else
. (3.22)

19Calculations were carried out in Mathematica.
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Figure 3.2: Functions in Example 1

Naturally, the optimal quantity also depends on the exogenous τ (through the mar-

ket share). The case distinction in the curly bracket has to be made because F (θ )−
F ∗(θ ) is not precisely given by the two functional values. The reason for this is

that the support of F ∗ is essentially [ 3
8

, 3
8
]. In a more exact formulation, therefore,

F ∗(θ ) = 0, if θ ∈ [− 1
2

,− 3
8
], F ∗(θ ) = 1, if θ ∈ [ 3

8
, 1

2
], and given by the uniform formula

else. The result of Proposition 3.5 is also nicely illustrated by the positive derivative

of q̂ with respect to V̄ i .

The optimal price schedule is already very complicated. Nevertheless, its deriva-

tive with respect to V̄ i is contained in the appendix and is given by equation A.11.

From this we can see that it still depends on the particular V̄ i where we evaluate

it. Unfortunately, we cannot tell an explicit sign. The second derivative, however, is

clearly negative indicating that an increase in V̄ i diminishes the marginal increase

(or decrease) in P̂ .

After finding the optimal contract for each V̄ i (and V̄ 1−i )20 we can move one step

further finding the payoff function for the game described in Proposition 3.3. Since

the profits are evaluated in expectations, the case distinctions will not appear in the

payoff function that is given by the following equation:

1

τ3

�

0.5(τ+ V̄ i − V̄ 1−i )
h

4.81719τ2−0.003125(V̄ i )2

+ V̄ i�0.00625V̄ 1−i −τ2−0.06875τ
�

−0.003125(V̄ 1−i )2+0.06875τV̄ 1−i
i

�

(3.23)

Observe, that this equation is cubic in V̄ i , therefore we have to pay attention when

using the FOC maximisation approach. There is one additional problem that is il-

lustrated by the following figure.

20Remember: we are still assuming that the satiation and nonnegativity constraints do not bind
for each θ .
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Figure 3.3: Payoff function for each pair (V̄ i , V̄ 1−i ) for τ= 2.7

Figure 3.3 shows the payoff for each pair (V̄ i , V̄ 1−i ) for τ = 2.17, which can be

considered relatively high.21 From this plot we can see, that for V̄ 1−i high enough,

the maximal V̄ i need not be easy to find through a simple FOC approach, corner

solutions might appear.

Note, however, that in the derivation so far we did not take into account the

following two factors: 1. The market share function is bounded for large differences

in V̄ , and 2. the satiation constraint. The former does gives less incentives to offer

greatly different utilities22 and the latter gives a bound on the utility that can be

offered to consumers.

Seeing the problem from this perspective, for relatively small V̄ 1−i we can hope

for a unique best response (possibly found through an FOC approach). This is illus-

trated in Figure 3.4.

In this figure we can see the isopayoff levels for each pair (V̄ 1−i , V̄ i ) (now the op-

ponent’s V̄ 1−i displayed on the x axis). In Subfigures (a)-(b): The red lines indicate

the zero isopayoff level; The black dashed line is the line with unity slope. Inter-

estingly, the ridge does not lie on the line that designates the symmetric equilibria

(black dashed line). Indeed, for sufficiently big V̄ 1−i it is a dominant strategy for

firm i to offer less utility down to a certain extent.23 Since the game is symmetric,

the same is true for the opponent. Therefore, the plot suggests that for high V̄ i and

V̄ 1−i no Nash-equilibrium might exist.

Note, however, that in the lower-left corner the payoffs are again positive, and

increasing. Subfigure (c), which is the combination of (a) and (b) can be viewed as

21The “flat”, grey parts show regions where the machine precision cannot calculate further.
22In fact, if the difference is so high, that one of the firms covers the whole market, then this firm

has the incentive to reduce the utility offered to its customers, as (given V̄ i−1) the market shares won’t
change and the profits will be higher.

23This crucial nature of this plot does not change significantly with varying τ. If we expand the set
of offerable utilities, then—as Figure 3.3 suggests—for a high choice of the opponent’s, firm i is more
likely to choose the zero corner solution.
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Figure 3.4: Contour plots for small V̄ values

the payoff matrix in a standard normal form game: for each pair (V̄ 1−i , V̄ i ) it shows

the payoff levels for both firms. Observing this subfigure we can see, that for suf-

ficiently small offered utility levels an equilibrium may exist. The symmetry of the

equilibrium and the small absolute level of the utilities offered make this equilib-

rium plausible, even if we have not characterised the full solution yet.

Figure 3.5 illustrates these equilibira. For respective choices of τH = 2.7 and

τL = 1.3, the following fixed points of firm i ’s best reply function can be calculated:
ˆ̄V i = 2.0484 and ˆ̄V i = 3.4484 respectively. Since the game is symmetric, the payoff

functions of the two firms are analogous, and also the reaction functions are the

same. Hence, if BRi (x , ·) = x , then also BR1−i (x , ·) = x , and the pair (x ,x ) constitutes

an NE. This way, we have found symmetric equilibrium candidates for the utility

space game.

Now we make the following claim:

Claim 3.6. In Example 1, if the satiation constraints are not binding for all θ , then
ˆ̄V = 2.0484 and ˆ̄V = 3.4484 constitute a symmetric NE for τ= 2.7 and τ= 1.3 respec-

tively.
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Figure 3.5: Fixed points in the utility space

Proof. The possible deviations from the symmetric equilibrium are analogous to

those in the proof of Proposition 3.3.

For deviation D ∈ (−τ,τ) the market share function is not kinked, thus the pay-

off is given by Equation 3.23. By looking at Figure 3.5 it is evident that every such

deviation is strictly dominated by the symmetric NE strategy.

For deviation D ≤−τ, the payoffs are zero, which is strictly worse than the equi-

librium payoff.

For deviation D ≥ τ, the market share of firm i is going to be 1. Hence, if we

take a look at Equation 3.21, we can see that the optimal quantity schedule (hence

the variable price schedule) will be the same for all offered utility levels as long as

the market share is. Hence it is a strictly dominant strategy to offer V̄ i such that

V̄ i − V̄ 1−i = τ. In this case, however, the opponent firm has the incentive to raise its

utility. Hence it cannot be an equilibrium.

Exchanging the role of the firms and repeating the argument concludes the proof.

From the above figures it is also intuitively clear that this NE that we have found

for each τ is unique.

From this example interesting conclusions can be drawn. First of all, observe

that the difference between the equilibrium utilities offered is precisely the differ-

ence in the trasport cost parameter, τ. Moreover, the equilibrium quantities offered

are the same for both transport cost parameters. As can be seen in Figure 3.6, the

optimal price schedules also differ only by a fixed fee. Hence, our general conclu-

sions apply in this example. Note, however, that the three-part tariff structure does

not carry on to this model extension, even if we let con be zero.
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Figure 3.6: Optimal quantity and price schedules

Since, this example has simple, well-defined structure, we are not able to draw

general conclusions about the proposed extension itself. Nevertheless, having un-

derstood the possible complications arising in this model setting, we can leave the

problems for future research.
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Chapter 4

Conclusion

The present thesis aims at examining the strategic mechanisms in the imperfectly

competitive environment of the telecommunications industries. To this end, we

systematically reviewed competition in linear, two-part and three-part tariffs. As

Section 1.1 illustrates, the telecommunications industry plays an important role

both at the macro- and the microeconomic level. Further, we have given real-world

examples for the existence and relevance of all price schedules that we investigate.

In the case of linear and two-part tariffs, we could build on the well-developed

literature of two-way interconnection (Armstrong and Wright, 2009; Laffont, Rey,

and Tirole, 1998a,b). In the case of three-part tariffs, however, a monopolistic non-

linear pricing model (Grubb (2009) – M) had to be extended to a duopolistic model

(H). Furthermore, an extension of H had been proposed (H+) in order to match the

model more closely with the telecommunications sector.

Our results can be interpreted at two levels. At the general level, we are able

to conclude that a general pattern in all models under scrutiny exists. First, if the

setting of a fixed fee is allowed, then due to an increase in competition, the fixed

fee is going to drop. Unit prices will be charged at marginal costs. Second, if a fixed

fee is not allowed to be set, then competition decreases the unit price both on- and

off-net. An exception to this latter rule is a model setting when utility can be gained

from being called by an other party (Berger, 2004a).

On the specific level, we were able to successfully generalise the consumer over-

confidence model of Grubb (2009) (M) to a duopolistic setting (H). To this end, we

assumed Hotelling product differentiation and applied the competition in utility

space approach proposed by Armstrong and Vickers (2001). Our main results are

Proposition 3.3 and Corollary 3.4 which show that the main results of M will be

flanking outcomes of H. In particular, a unique symmetric equilibrium in the utility

game exists, and varying the transport cost parameter τ to its two extremes (0 and

∞) gives back the perfect competitive and the monopolistic pricing results of M re-
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spectively. Furthermore, we were able to conclude that H yields the same marginal

pricing structure as M—which is a three part tariff. This way we were able to verify

that the general pattern found in simpler models also applies to the more complex

three-part tariff model.

Finally, an extension of H to H+ has been proposed, which was motivated by our

understanding of the two-way interconnection literature: variable costs differ based

on the network on which the call terminates. Thus, we have assumed that 1. off-net

costs are higher than on net costs and 2. the probability of a call terminating on-net

equals the relative market share of the home provider. This formulation resulted

in a more complex optimal contract problem than that of H. While under certain

strong assumptions we were able to give an implicit characterisation of the optimal

contract, we were not able to formulate the utility space game explicitly. However,

through the means of a simple example and computer simulations we illustrated

the interesting aspects of the problem, and drew two conclusions: First, the three-

part tariff structure of H is not likely to carry on to H+; Second, while a symmetric

equilibrium of the utility game might not exist in general, we are able to find a sym-

metric NE in this simple setting. Examining comparative statics in the symmetric

equilibrium of this example shows that our general level conclusions apply to this

particularly simple setting.

The full characterisation of the solution to H+ is an interesting area of further

investigation that we leave for future research.
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A Calculations

Calculations for the canonical model of interconnection

We are solving the game described in section 2.1 and taken from Armstrong and

Wright (2009) backwards. We have already established an implicit equation for mar-

ket shares as one equilibrium of the customers’ subgame.

Write the subscriber utility as

w i = s i v (p i )+ (1− s i )v (p̂ i )− Fi , (A.1)

further write the equilibrium market shares as

s i =
1

2
+

w i −w j

2τ
. (A.2)

First, firm i given j ’s action determines the optimal prices. The profit of firm i

that it seeks to maximise can be written as

πi = s i ·






s i q (p i )(p i − con)+ (1− s i )q (p̂ i )(p̂ i − coff)+ Fi − f
︸ ︷︷ ︸

revenues from own customers






+

(1− s i ) · s i (a − cT )q (p̂ j )
︸ ︷︷ ︸

termination revenues

. (A.3)

Suppose that s i = s j = 1/2. Suppose further that (p i , p̂ i , Fi ) = (p j , p̂ j , Fj ). A firm offers

the utility w i to its customers. In this symmetric equilibrium, the triple (p i , p̂ i , Fi )

must therefore be such that they satisfy A.1. Given this symmetric equilibrium (hence

dropping firm subscripts), firm profit can be written as

π=
1

4

�

q (p )(p − con)+q (p̂ )(p − coff)
�

+
1

2









1

2
v (p )+

1

2
v (p̂ )−w

︸ ︷︷ ︸

F









+K , (A.4)
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where K is a constant. The first order conditions for p and p̂ are

0=
∂ π

∂ p
=

1

4

�

pq ′(p )+q (p )− conq ′(p )+v ′(p )
�

0=
∂ π

∂ p̂
=

1

4

�

p̂q ′(p̂ )+q (p̂ )− coffq
′(p̂ )+v ′(p̂ )

�

,

and noting that v ′(p ) = −q (p ), it immediately follows that either q ′(p ) and q ′(p̂ )

must be zero, or p = con and p̂ = coff in optimum.

Next, firms act strategically, simultaneously to determine the fixed fees. Given

the cost-based prices, the decision over Fi is simplified to the maximisation of the

following function:

πi = s i · [Fi − f +(1− s i )(a − cT )q (coff)] . (A.5)

From A.2 and A.1 given the prices found above for the symmetric equilibrium, we

can express the equilibrium market shares as

s i =
1

2
−

s i (v (con)−v (coff))+v (coff)− Fi − s j (v (con)−v (coff))−v (coff)+ Fj

2τ

=
1

2
−
(2s i −1)(v (con)−v (coff))+ Fj − Fi

2τ

=
τ−v (con)−v (coff)+ Fj − Fi

2(τ−v (con)+v (coff))

⇓

s i =
1

2
−

Fi − Fj

2(τ−v (con)+v (coff))

where the second line follows from s j = 1−s i , and the third is the explicit expression

of s i .

DenoteΦ≡ 2(τ−v (con)+v (coff)), andΣ≡ (a−cT )q (coff). These are both indepen-

dent of Fi or Fj , thus are constants in the optimisation. Inserting the above explicit

s i into A.5 gives

Fi

2
−

F 2
i

Φ
+

Fi Fj

Φ
−

f

2
+

Fi f

Φ
−

Fj f

Φ
+
Σ
2
−

FiΣ
Φ
+

FjΣ
Φ
−
�

1

2
−

Fi − Fj

Φ

�2

Σ . (A.6)

Maximising this expression w.r.t. Fi (given Fj ) results in

1

2
−

2Fi

Φ
+

Fj

Φ
+

f

Φ
−
Σ
Φ
+2

�

1

2
−

Fi − Fj

Φ

�

Σ
Φ

. (A.7)

57



Substituting for Fi = Fj , i.e. investigating the symmetric equilibrium, the following

result holds

Fi = f +
Φ
2
= f +τ−v (con)+v (coff) . (A.8)

In the first stage, firms choose a . This they do by maximising the industry prof-

its, i.e. π1+π2. Noticing that Σ depends on a , and that coff = cO +a substituting A.8

into A.5 gives

Π= 2π= f +τ−v (coff)+v (cO +a )− f +
1

2
Σ(a )

=
1

2
Σ(a )+τ−v (con)+v (cO +a ) . (A.9)

Noting that v ′(p ) =−q (p ), The derivative of this profit function w.r.t. a is

Π′(a ) =
1

2
[(a − cT )q ′(cO +a )+q (cO +a )]−q (cO +a )

=
1

2
[(a − cT )q ′(cO +a )−q (cO +a )] , (A.10)

which is negative in the ε-neighborhood of cT given that assumption that a ≥ 0

(thus cO +a ≥ 0). Naturally, the actual value depends on the demand function and

its derivatives.

Supplement to Example 1

Recall, that in Example 1 θ ∈ [− 1
2

, 1
2
] by assumption.

The derivative of the optimal price schedule P̂ with respect to V̄ i is given by:

60

480τ

��

(

4θ
3
+ 1

2
− 3

8
≤ θ ≤ 3

8

1 8θ > 3

�

−8τ

 (

0.125θ+0.0625
τ

θ >−0.5

0 else

!

�

+
1

480τ2
[−60θτ+9τ− V̄ i + V̄ 1−i ] . (A.11)

The derivative of this with respect to V̄ i is − 1
480τ2 < 0.
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