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Abstract
Social networks have reached more than one hundred million users worldwide. This large 

amount of data makes it  interesting for scientific studies and the development of specific 

programs for their investigations. In contrast to the numerous developments and the large 

amounts of data to work on, test data to evaluate the integrity of the code is available only in 

a very limited amount.

Although it is basically possible to read test data directly from the social networks, the high 

expenditure  of  time  and  the  problem  with  anonymisation  of  personal  data  hinder  the 

publication of new datasets and are certainly the main reasons for the lack of available test 

data.

In this master thesis a program is being developed which uses Forest Fire Model for the 

generation of artificial networks of any size and number that exhibit structures similar to that 

of the Twitter network. Together with an integrated simulation of communications provided by 

the tool, the possibility of a realistic simulation of the overall processes in this social network 

is established. This way, a basis for extensive testing scenarios can be provided.

The output data of the program shall be an adequate approximation of a real social network 

without real personal data provided in feasible form to serve as input to other programs. By 

using the Twitter-Testbed as a source of anonymous test data, the development process is 

accelerated and the quality of  the results  can be stabilized.  The cost  and time involved 

should be reduced significantly due to the elimination of the problems that come into play 

when trying to gather data from the real network.
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Kurzfassung
Soziale Netzwerke haben heutzutage Dimensionen jenseits der hundert Millionen Benutzer 

erreicht.  Diese  große  Datenmenge  macht  sie  interessant  für  wissenschaftliche 

Untersuchungen  und  die  Entwicklung  von  spezifischen  Programmen,  welche  sie 

untersuchen.  Im  großen  Kontrast  zu  den  unzähligen  Entwicklungen  und  den  großen 

Datenmengen  auf  denen  diese  arbeiten  sollen,  stehen  Testdaten  zur  Evaluierung  der 

Integrität nur äußerst beschränkt zur Verfügung. 

Obwohl  es  grundsätzlich  möglich  ist  Testdaten  direkt  aus  den  sozialen  Netzwerken 

auszulesen, steht dem ein hoher zeitlicher Aufwand und die Problematik der Anonymisierung 

von personenbezogenen Daten entgegen, welche den genannten Mangel an verfügbaren 

Testdaten begründen.

In der vorliegenden Master-Arbeit  stellen wir  ein Programm vor,  welches das Forest  Fire 

Model   zur  Grafengenerierung  nutzt,  um  künstliche  Netzwerke  in  beliebiger  Größe  und 

Anzahl  zu  erstellen,  welche  ähnliche  Strukturen  wie  das  Twitter  Netzwerk  aufweisen. 

Zusammen mit einer integrierten Simulation von Kommunikationsvorgängen, bietet dieses 

Werkzeug  die  Möglichkeit,  einer  realitätsgetreuen  Nachbildung  der  Vorgänge  in  diesem 

sozialen Netzwerk und damit eine Grundlage für ausgiebige Testszenarios.

Die  Ausgabedaten  des  Programms  stellen  eine  adäquate  Approximation  eines  realen 

sozialen Netzwerks dar, beinhalten dabei aber keinerlei personenbezogener Daten. Durch 

den  Einsatz  des  Twitter-Testbeds  als  Quelle  für  anonyme  Testdaten,  kann  der 

Entwicklungsprozess beschleunigt und die Qualität der Ergebnisse stabilisiert werden. Die 

Kosten  und  der  Zeitaufwand  sollten  auf  Grund  des  Wegfalls  der  beschriebenen 

Problematiken spürbar reduziert werden.
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Introduction - Introduction 1

1 Introduction
Social network services (SNS) like Facebook1, Myspace2, Twitter3 and various other forms of 

that kind are a fast-growing business with hundreds of millions of users today. Facebook as 

the biggest SNS today lately reported over 750 million active users [1] and has still a growing 

rate of more than 10 million new users per month. Although, according to “Inside Facebook” 

[2] a slight decrease can be noted.

Today there are numerous SNSs supporting all kinds of interests and practices. While most 

of  them focus on specific groups like authors (LiveJournal4),  movie enthusiasts  (Flixter5), 

photographers (flikr6), music fans (Last.fm7) or students (studiVZ8) and support them in their 

own specific way, their key technological features are fairly consistent.

SNSs typically support the user in generating a profile where the person can put information 

about themselves. Further, they provide the possibility to create a community by linking to 

other users in some way and to send messages an receive updates from others. Usually 

SNSs are also notifying a person of the activities of other connected users.

In these Social Networks millions of people are sharing information about themselves all of 

which is accumulated in a central point. Depending on preferences of the user, the available 

information can be very detailed: personal data like age, gender, education or interests are 

only a few of which is made available to the public. The relationships of nodes within these 

SNSs and  this  accumulation  of  private  data  makes  their  exploration  very  interesting  for 

researchers from various different fields.

The growing availability of social network data facilitates the work of researches. Instead of 

having to ask people directly in interviews, researchers simply tap into the data of social 

networks. In fact, social network data is often more detailed than data that can be retrieved 

when asking people directly.

SNSs are also interesting for computer sciences in terms of new technologies and network 

architecture.  Social  computing  is  engaged  in  ways  of  human communication  as  well  as 

human-machine communication to support collaborative work through social networks.

1 http://www.facebook.com
2 http://www.myspace.com
3 http://www.twitter.com
4 http://www.livejournal.com
5 http://www.flixster.com
6 http://www.flickr.com
7 http://www.lastfm.de
8 http://www.studivz.net

http://www.facebook.com/
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A field that is strongly related to social networks is Graph Theory, which studies mathematical 

structures used to model the relations in social networks, building the methods to describe 

and compare them. Common questions in graph theory are questions like “How to find the 

shortest  path  between  two  nodes?”  or  “How  to  find  clusters  of  nodes  that  are  more 

connected to each other than to the rest of the network?”. Graph theory is only one specific 

research field out of various domains in the field of mathematics showing great scientific 

interests for social networks.

Today these services are almost all free of charge and financed mostly through advertising. 

With an advertising revenue of nearly 2 billion dollars for Facebook in the year 2010 [3] it is 

obvious that  there is an incentive for economic sciences as well.  There is an interesting 

potential  for  advertising  focused  ontarget  groups  because  of  the  knowledge  of  user's 

interests and relations. “Viral marketing” is a keyword describing a field of economic sciences 

that uses existing social network platforms for marketing purpose [4]. 

In this thesis we will focus on the Twitter network, one of the most popular social networks 

today. Twitter has currently over 200 million users and a growing rate of about 460.000 users 

per day [5] [6] [7] [8]. The aim of the work is to artificially generate a graph that has similar 

properties as the real network and simulate the communication within. This way an infinite 

number  of  different  yet  similar  networks  can  be  created  serving  as  test  data  for  the 

development process of new algorithms in various fields aiming on social networks in any 

way. 

In the next chapter (1.1 Motivation) the motivation of this work will  be described in more 

detail. The questions “What is the goal of the project?” and “Why is this application a benefit 

for the scientific community?” will be answered in the following chapter. Chapter 1.2 we will 

describe the Twitter network and explain the differences and characteristics to other SNSs. 

The organisation of the rest of the work will be summarized in chapter 1.3.
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1.1 Motivation
The raise of online social networks facilitated the study of network phenomena for scientific 

fields like mathematics, sociology [9], economics or computer science [4]. Existing scientific 

investigations of this phenomenon in the field of computer science focus on the description of 

Social Network Services  [10],  [11], their representation[12],  [13], impact  [14] and evolution 

[15] . Over the recent years there has been conducted a considerate amount of scientific 

research on how social network services can be used for others then the intended task of 

communication. Crowdsourcing, for example, aims to use popular social network services to 

manage business processes [16], [17], [18] . This chapter will explain our motivation to build 

a simulation of  the Twitter  network and the potential  benefit  such a network has for  the 

scientific community. Further, the decision to choose Twitter as specimen will be outlined.

A common challenge for the development of applications regarding big social networks is 

gathering  test  data  from  the  desired  network.  The  extraction  of  the  structure  of  social 

networks is a complex task and due to restrictions from the SNS-providers it is usually nearly 

impossible to obtain the whole graph without possible black holes. There are always nodes 

that  cannot  be reached, be it  because of time, privacy settings,  network structure or the 

algorithm used. Moreover, because  of the impossibility to compare to the “ground truth”, one 

cannot estimate the influence of the missing data on the overall graph. Still, the extraction 

process for a representative piece of a popular SNS can take several weeks or even months 

depending on the size and the complexity.

Kwak et. Al [14] obtained 41.7 million nodes (users) and 1.47 billion edges (relations) in a two 

month continuous crawling attempt to the Twitter network and wrote the data to one 24GB 

graph  file.  Basically,  what  they  did  was  a  breadth-first  search  along  the  followers  and 

followees starting at a very popular person. While this process is very time consuming, the 

result is an enormous amount of data and still does not capture the entire network.

Sharing the gathered information with the scientific community raises again some difficulties. 

The first difficulty bears the size of the file – To store this vast amount of data on a portable 

media  would  take  several  DVDs,  transferring  it  through  the  internet  even  with  a  fast 

connection  would  take  even  days.  The  second  difficulty  lies  in  the  matter  of  privacy 

protection. Before a dataset can be shared with the scientific community, all the private data 

has to be removed,  profiles and messages are not allowed to be shared with the public 

because of privacy restrictions that have been set up by the service providers. Furthermore, 

the identification numbers, used to reference a profile, have to be anonymised in order to 

make it impossible to link the data to real user accounts. Although it is possible to reduce the 

gathered data  to  an anonymised  structure,  it  has  been  shown that  these  efforts  do not 
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provide a solution. By identifying unique subgraphs or using auxiliary graphs datasets can be 

de-anonymised  by  malicious  parties  [16],  [17].  Because  synthetic  graphs  do not  contain 

private information they offer an attractive alternative to overcome these problems.

To be sure to represent the structure of the network accordingly even in early stages of the 

development  process,  the  only  way to test  an algorithm is  to  run it  against  these huge 

graphs.  Nevertheless, it should be taken into account that this process sparks off problems 

with memory consumption and the execution time of the program. Although, the developer 

might not be sure where the algorithm he is about to develop leads in the end, considerable 

problems with the test data have to be faced which make the development process very 

complicated and time consuming.

In  order  to  assess  the  functionality  of  algorithms  in  a  reasonable  time  frame,  the 

development  of  algorithms of  the huge data sets requires  prior  testing  on similar,  albeit 

smaller versions of social networks. To make the development process faster and more solid, 

a testbed for social network services is needed. Such a testbed is able to generate a graph 

according  to  the  properties  of  the  desired  network  and  is  scalable  in  matter  of  size 

considering the stage of development and the purpose of the software. 

Literature research shows that there where only a small amount of papers published on the 

simulation  of  social  networks  in  general.  According  to  our  assumption  and  dues  to  our 

research results, it is our firm belief that this is the first attempt to simulate a social network  

including graph generation and communication simulation.

We expect our project and the program we developed to have a considerable impact and a 

great amount of benefit  for the developmental process in all  related research areas. The 

reason why we believe that is the following:

• It  is possible to study the whole network structure without possible black holes of 

protected or unreachable content that bias the network structure.

• The process of getting test data is less time-consuming.

• The testing  will  get  a  stronger  foundation because an infinite  number  of  network 

variations can be generated and tested on.

• Scientists will have complete control over the test environment with the possibility to 

change the network structure and/or behaviour according to the problem.

• Content of communication can be defined to match some experimental syntax.

• A graphical representation of the simulation can help to understand the behaviour.

• By using synthetic graphs one would not have to deal with privacy concerns.
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All of the above mentioned reasons lead to a faster and more solid development process for 

all scientific domains concerning social networks as listed in the Introduction (chapter 1).

The focus of this thesis is a simulation of the well known Twitter network. With over 200 

million users worldwide, Twitter is not only one of the most popular social networks today but 

also has some outstanding differences to most other popular social networks. This makes 

Twitter an ideal candidate for our first approach of SNS-simulation.

Twitter restricts messages to a maximum of 140 characters in plain text. This simplicity make 

Twitter  perfectly  suitable  for  communication  via  all  sorts  of  mobile  devices.  Although  it 

separates the audience into “Followers” and people who are for whatever reason not capable 

of squeezing their messages they want to convey into 140 characters, this kind of simplicity 

of  communication  provides  the  perfect  basis  for  further  intense  data  analysis.  The  high 

information  content  makes  it  possible  to  use  this  protocol-like  writing  style  for  human-

machine communication like for example in [18]. It will also ease the development of a test 

bed because there are no special media types or rating systems to deal with.

Furthermore, one difference to other social networks is the bidirectional relation structure of 

the Twitter graph. This means that there are actually four types of connections between users 

instead of two in a usual unidirectional network. The additional possibilities to connect to 

each other allows for more connections in total which means a wider reception area and a 

faster spread of information into the network. Because of all these above mentioned factors 

Twitter is even a more attractive subject for research in computer science.

Due to the given reasons this paper will put its focus on the Twitter network. The goal is to 

generate a network that has similar properties as those that can be found in the real Twitter 

graph  and  make  a  simple  simulation  of  random  communication  between  the  connected 

nodes.  Although this thesis aims to create a simulation of Twitter, this paper is just the first  

attempt of a social network simulation and could be extended for other social networks too.

1.2 What is Twitter?
Starting in march 2006, Twitter has become the most popular microblogging service today. 

Twitter is reported to have over 200 million registered users [7] and a growing rate of 460,000 

new users  per  day  [8],  making Twitter  one  of  the  biggest  social  networks  of  the  world. 

Starting out as a company internal research project for communication improvements, the 

Twitter service had experienced a vast increase in popularity soon after it won the South by 

SouthWest (SXSW) conference9 Web Awards in march 2007.

9 http://sxsw.com/
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Twitter enables people to share short textual messages - “tweets” - with others within the 

system. The reason why Twitter has limited the characters of one tweet to 140 is because 

originally  the  service  was  designed  for  messages  to  be  shared  via  SMS10.  Though  the 

service evolved to include more uses besides SMS, such as web and desktop clients, this 

limitation persisted and was therefore rearranged as a feature. “Twitters Creative Director Biz 

Stone argues: 'creativity comes from constraint'.” [19]

Through the strict restriction of a maximum of 140 characters and no support for multimedia 

like photos or videos, the users have to express themselves precisely, which results in an 

average information content  that  is  very high compared to other  social  networks.  Twitter 

users have learned to make their message as short as possible and to even leave space for 

others to comment within the 140 characters when replying. Obviously the shortness of the 

messages  influences  the  speed  of  information  spread  as  one  can  read  them  quickly, 

download and display them fast and answer or forward within a short time. That made Twitter 

an  important  service  for  instant  information  sharing  during  various  critical  events  and 

disasters around the globe e.g. the earthquake in Haiti 2010 or the forest fires in the United 

States (California) 2007. 

Unlike most online social networking sites such as Facebook or MySpace, the relationship of 

“following” and being “followed” requires no reciprocation on Twitter. The difference between 

the more common unidirectional networks and a bidirectional structure is illustrated in Table

2. Figures 1 and 2 show a simple sample of a bidirectional, respectively unidirectional graph. 

As the graph clearly shows, the bidirectional network allows those kind of relationships where 

one person pays attention to another  but  the other  person does not  in  return.  A simple 

example of such a relationship is the one of a celebrity compared to their fans, where the 

celebrity does not pay the same amount of attention the way their fans pay to them. Such 

kind of relations not only make sense for famous people. For example, an employee might 

want to get all notifications from their boss but they might not want to get every notification 

from each of their workers.

bidirectional unidirectional
A not connected to B
B not connected to A ● ●
A connected to B
B connected to A ● ●
A connected to B
B not connected to A ●
B connected to A
A not connected to B ●
Table 1: Possible relations in bidirectional and unidirectional networks

10 SMS (Short message service) is a text messaging service developed for mobile phones.
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Twitter users are able to post direct and indirect updates. Direct posts are used if  a user 

dedicated their update to a specific person, whereas indirect updates are used if the update 

is  meant  for  anyone  who  cares  to  read  it.  Even  though  direct  updates  are  used  to 

communicate directly with a specific person, they are usually public and anyone can see 

them.

All  tweets  can  also  include  so  called  “hashtags”.  Deriving  from  the  conventions  in  the 

historical  communication  channel  IRC11,  words  prefixed by a  “#”  are used to  highlight  a 

keyword or topic of the message. A Twitter user is able to categorize all messages by these 

tags and to subscribe to hashtags in order to receive tweets from all Twitter users mentioning 

that keyword. This practice speeds up the information processing even more as it connects 

people with the same interests even if they are initially not connected.

1.3 Organisation
The remainder of the thesis is structured as follows:

The next chapter (2) presents related scientific works of other associated areas that have 

inspired the work. They are grouped into five thematic headlines that reflect the effected part 

in  this  thesis:  Graph  Generation (2.1),  Properties  and  Behavioural  Patterns  of  Social

Networks (2.2),  Recent Analysis of the Twitter Network (2.3),  Simulation (2.4), and  Social

Sciences (2.5).

The main part of this thesis is chapter 3 (Methodology). This chapter includes the whole work 

beginning from the design, heading towards the implementation and usage of the Twitter-

Testbed. The design chapter (3.1) will deal with the theoretical background that can be seen 

like  graph  theory  (3.1.1),  characteristics  of  a  social  network  graph  (3.1.2),  the  graph 

generation process (3.1.3)  and a description of  a communication simulation task (3.1.4). 

Finally, there has also been included a chapter about the input and output interfaces (3.1.5). 

Also, this chapter explains how to make the generated content accessible in a way that it can 

serve as test data for other researchers.

A technical description of the implementation can be found in chapter 3.2. Before we head to 

the detailed description of the program architecture, we will first characterise used resources 

and other projects like the JUNG framework, graphML and Status.Net (3.2.1 - 3.2.3). Graph 

generation and communication simulation are separated in the code to allow for use of the 

simulation feature using existing graphs and so are treated apart from each other in sections 

3.2.4 and 3.2.5 respectively. The final chapter deals with input and output functions, which 

allow access to the test data (3.2.6).

11 IRC (Internet Relay Chat), a former very popular chat system for text messages.
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Chapter 4 explains the usage of our application and summarises all parameters that can be 

set to control the structure of the network and the communication flow.

An evaluation of our work will be done in chapter 5 where conformance to the real networks 

metrics  and  figures  of  usability  concerns  like  speed  and  memory  consumption  will  be 

presented. It will be explained if the applications performance can hold for a replacement of 

the current methods of gathering test data while fulfilling an accordance of structure similarity.

A conclusion is drawn in chapter  6 and a future outlook for some ideas concerning future 

work will be presented in chapter 7. This work can be seen as a prototype with the ability for 

further  improvements.  Together  with  the  ongoing  research  in  social  network  services, 

methods used in this thesis should be regularly revised and adapted to new findings and 

requirements.

Finally the appendix (chapter  8) provides further resources like source code examples and 

tables of figures.
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2 Related Work

2.1 Graph Generation
A representation of various network generation models was presented by Newman et al. [20] 

who compared a number of models for unipartite and bipartite random networks with data 

from existing Social Networks. In their work they show that the model of Erdõs and Rényi 

[21] is not well suited for social networks because their method produces a Poisson degree 

distribution rather than a power-law distribution which most social  networks are stated to 

have. Along with the comparison to the extension by Molloy and Reed [22], they finally come 

up with their own model focusing on specifying distribution and that their statistical properties 

are mathematical solvable. Their strategy is to take a number of N vertices and assign to 

each number a random number k drawn from the desired distribution. The next step is to 

randomly choose nodes in pairs and form edges between them where every node takes part 

in this process k times. This way they derive a random graph that has exactly the desired 

degree distribution and a clustering tendency. They concluded that the difference between 

clustering coefficients in their random graphs and real networks indicates lack of randomness 

in real networks.

Kumar et al. [23] published a model to simulate the “flickr” and “Yahoo! 360”12 networks. He 

showed  remarkable  conformance  in  degrees  of  nodes.  Their  extensive  study  of  these 

networks is presenting in detail several properties for social networks. A biased preferential 

attachment approach is being used, extended by a categorization of the nodes in “passive” 

(simply not  active),  “inviters”  (recruiting  new members)  and “linkers”  (full  participants)  to 

generate a realistic  model.  “Inviters”  form links to new nodes only whereas “linkers”  are 

connecting to any other node.

A comparison of characteristics of recent random graph models done by Leskovec et al. can 

be found in their paper  [24] and a more detailed revision in their later research work  [25] 

where  the  temporal  evolution  of  five  different  networks  was  studied.  Their  results  were 

compared with the Community Guided Attachment model and its extensions. In their work 

they present a new model called the “Forest Fire Model”. This is a simple, intuitive model that 

requires  few  parameters  and  produces  graphs  exhibiting  the  full  range  of  properties 

observed. The Forest Fire Model, which we use as well in our work, will  be discussed In 

detail  in  chapter  3.1.3 (The Forest  Fire  Model).  In  the study of  70 networks  of  different 

domains  [26],  they compared data  with  4  graph  generation  models  namely  “Preferential 

Attachment” [27], “Recursively hierarchical community structure” [28], “geometric preferential 

12 A social networking portal operated by Yahoo! Inc., closed in 2009.
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attachment” [29] and their own “Forest Fire Model”. By focusing on the envelopment of these 

graphs they have found, that instead of a growing diameter, most social networks have an 

effective decreasing diameter over time. 

Recently  Leskovec  et  al.  introduced  a  new  model  focusing  on  the  microscopic  node 

behaviour which leads to a powerful and surprisingly simple approach in [30] where they use 

Kronecker graphs to generate a realistic network structure.

Sala  et  al.  did  a  comparison  of  six  different  graph  generation  models  in  [31],  namely 

Barabasi-Albert [27], Forest Fire [24], Random Walk [32], Nearest Neighbor [32], Kronecker 

Graphs [30] and dK-graphs [33]. By an approach to fit these models to real graphs this work 

shows the strengths  and weaknesses of  each algorithm.  They also  pointed out  that  the 

metrics used in science to describe graphs may not be feasible to rate the success of a 

graph generation model.

2.2 Properties and Behavioural Patterns of Social Networks
It is important to know how the networks architecture looks like in detail and what the main 

characteristics are for the communication to happen inside the network in order to simulate 

its processes appropriate. Here are some works that are useful in this context:

Karagiannis et al.  [34] studied the usage characteristics of email service for the design of 

new features  like  those known from social  network  services.  They present  “behavioural” 

profiles for the employees of a large multinational corporation. Although there have been 

several  studies  about  email  communication  networks,  this  one  is  especially  interesting 

because it gives an insight of the causes that drive this communication. Reading this paper 

gives a deeper  understanding of  why and under  what  circumstances a message will  be 

replied and how long it would take for that response to happen.

Centola [35] carried out an interesting experiment about the effects of network structure on 

the behaviour of the users and the role of social reinforcement. One limitation the author 

stated  was  that  he  could  not  vary  the  topological  structure  independently  to  test  the 

predictions.  Again,  this  fact  point  out  the  necessity  of  controllable  artificial  networks  for 

testing purpose.
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2.3 Recent Analysis of the Twitter Network
The retrieval and analysis of large complex graphs like Twitter and its competitors is not 

trivial  and  would  be  out  of  scope  for  this  work.  To  model  the  presented  graph  it  was 

necessary to rely on prior  works that  studied the structure  of  these networks.  Literature 

research has shown remarkable few works focusing on the structure of Twitter compared to 

the popularity and the outstanding differences to other networks.

With 87,897 nodes the work of Java et al.  [36] is covering a rather small part of the whole 

Twitter  network today.  Despite of  this  very fact,  they present  some important  values not 

presented by others to our collection of Twitter's properties. The focus of this work is on the 

intention  of  the  users  and  presents  the  observation  of  three  major  user  groups  named 

“Information Source”, “Friends” and “Information Seeker” according to their intention.

Another  important  study  is  presented  by  Krishnamurthy  et  al.  [37].  They crawled  about 

100,000 distinct  users merging the data of  three different  crawl  attempts and presenting 

various statistical parameters. Moreover, they also suggested the categorization of users in 

three main groups (broadcasters, acquaintances and miscreants) which are comparable to 

the ones mentioned by Java et al. (see above).

The  dataset  of  Huberman  et  al.  [10] consists  of  309,749  users.  Although  they  are  not 

presenting many statistical  properties,  they come up with the idea of  “real  friends”  as  a 

parameter of behaviour of the network instead of relying on the number of followers and 

followees. They defined a “real friend” “as a person whom the user has directed at least two 

posts to.”[10]

Kwak et al.  [14] have made enormous efforts to crawl the Twitter network resulting in an 

dataset  of  41.7  million  users.  They focused on the evaluation of  ranking algorithms and 

analysed  the  top  trending  topics.  Their  approach  is  certainly  a  good  starting  point  in 

analyzing the Twitter network. The interested reader is referred to their website13 which offers 

some additional information and the full graph (without tweets) to download for free.

Based on our knowledge we can say for sure that up to this point Cha et al.  [38] made the 

biggest effort to collect Twitter's network. They obtained 54 million nodes and including two 

billion directed “follow-links”. Their work focuses on the influence a particular user has on the 

network. Taking a closer look on the role of “Retweets” (forwarded messages) and “Mentions” 

(messages  containing  references  to  other  users).  Unfortunately,  they  did  not  present 

properties of the Twitter network structure that we could use in this paper.

13 http://an.kaist.ac.kr/traces/WWW2010.html
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Because Twitter messages are restricted to the length of 140 characters, a new and unique 

syntax has emerged to characterize the purpose of the message. Moreover, the tendency to 

restrict the messages to the most minimal amount of characters possible makes it not always 

easy to understand the syntax of tweets. In order to understand the syntax that one might  

come across in some tweets, it is helpful to start off reading two pieces of studies that deal 

with this aspect of Twitter: 

People who are not familiar with the following symbols and their meaning “RT”, “@”, “#” and 

“ ” should definitely take a look at the works of Boyd et al.  ♻ [19] and their research on the 

controversial aspects of Twitter focusing on retweets. It gives the reader an overview of what 

kind of syntax conventions the community of the service has built since its start-up. Using a 

series of case studies and empirical data Boyd et al. present the conventions used by the 

community and also discuss the background of the special syntax of Twitter's users.

Honeycutt  et  al.  [39] investigated the usability  of  Twitter  for  collaborations  and therefore 

focused specially on the @-symbol. Used to mark other users in a message, the “@” stands 

for  an indicator  of  possible collaborations.  In  their  work they present  an overview of  the 

possible usage patterns of the @-symbol in tweets.

2.4 Simulation
One very related paper to this thesis is the one of Harald Psaier et  al.  [40].  They did a 

simulation of a service-oriented collaboration network in order to evaluate the efficiency of 

similarity-based adaptation in a virtual team of a crowd of task-based services. The work 

presents some strategies and evaluations of the performance of the overall system when 

different strategies are applied.

Page and Kreutzer decribe in their work “The Java Simulation Handbook” [41] strategies for 

simulation systems of  various kinds.  Although our work is certainly not  a simulation with 

regards to the authors' understanding of this topic, we could benefit especially during the 

design phase from the considerations drawn in this book. It provides insights into the design 

and implementation perspectives of discrete and continuous event simulation. Moreover, it is 

coupled  with  DESMO-J14,  a  freely  available  event  simulation  tool  written  in  Java  and  a 

website offering a tutorial and source code examples.

2.5 Social Sciences
The field of social sciences has gained considerable amount of attention recently. Due to the 

availability of large data sets (e.g., Twitter, Facebook, MySpace, ...), social scientists were 

able to study more in detail the relationships and behavioral aspects between people. For 

14 http://desmoj.sourceforge.net/
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instance, Backstrom et al.  [15] provide a detailed discussion on influential factors for group 

formation and community growth. In their work they emphasize the social influences (e.g., 

number of friends, relation structure, ...) that have impact on the network. These revelations 

are important for graph generation that aim to create realistic models of social networks.
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3 Methodology

3.1 Design
As  mentioned  in  the  previous  chapter  “Motivation”  (1.1),  this  paper  should  help  the 

development process in areas related to social  networks.  The main target is to create a 

network that is customizable through some input parameters and to store that network in a 

file  for  later  inspections.  Further,  it  should  be  possible  to  generate  a  simulation  of 

communication and save the output in a separate file.

For our purposes we need first of all to generate a network that is random while matching 

predefined statistical properties. Because all other parts of the application rely on the right 

design of the graph, this part has to be taken into special consideration. The first step is to 

find out what properties are crucial for the Twitter network. A literature research has been 

conducted with  the conclusion that  works about  graph generation (see chapter  2.1)  and 

Twitter  (chapter  2.3)  are  available  but  unfortunately  no  works  on graph  generation  of  a 

network similar to Twitter. This way, we are able to say that our approach is the first one to 

generate a  Twitter-like network structure at random.

We will start off this chapter with some basic graph theory in 3.1.1. We will first have a look at 

the differences between existing graph types. Next, we will discuss graph metrics that are 

used to compare different network structures. This chapter also focuses on mathematical 

definitions of used metrics throughout this paper like reciprocity,  clustering coefficient and 

diameter.

The properties of Twitter that can be found in literature research are presented in section 

3.1.2. These parameters will give us a model of how the generated network should look like. 

The goal is to get as close as possible to those values to represent the network satisfyingly, 

therefore the network generation model has to feature similar structural properties as the 

Twitter network. We will take a look at the network structure and Twitter's characteristics and 

list all properties we found about the real network. In order to achieve realistic results, each 

of these properties have to be interpreted and decisions of the importance of each of these 

values has to be made.

As stated above,  it  is  our firm belief  that  this  is  the first  attempt to rebuild  a Twitter-like 

network structure. Therefore it is our goal to design this model as flexible as possible, also 

because  we  want  further  improvements  on  this  model  to  be  configured  easily.  For  the 

generation of a random graph structure we chose the Forest Fire Model by Leskovec et al. 

[24] which, in comparison with other network generation models, focuses on social networks. 

Moreover,  the Forest  Fire  Model  is  more convincing due to its  intuitive  process of  node 
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attachment  and  the  promised  properties  of  the  expected  networks  it  is  able  to  create. 

Additionally, the burning process from node to node seames to be perfect for adaptations 

when trying to entirely fit the model to the real Twitter network. A description of the Forest  

Fire Model and its extensions will be presented in this chapter (3.1.3 The Forest Fire Model).

We will  also describe the design process of the simulation system and the decisions we 

made along the way to get to a satisfying result. While the design of the graph generation 

process is mostly determined by the Forest Fire Model, we had to develop a social network 

simulation  flow  from  scratch.  In  chapter  3.1.4 we  will  deal  with  the  specification  of 

components that allow for a synthetic message flow, including a scheduler as the heart of the 

process.  We  also  describe  regulation  algorithms  that  are  responsible  for  the  network's 

behaviour.

3.1.1 Graph Theory Basics
In order to better understand the terms used in the following chapters, it is crucial to know 

some graph theory basics. The intention of this chapter is to give readers who are not familiar 

with graph theories a basic insight into this matter. It is important to understand the basics in 

order  to  understand  the  concepts  that  are  about  to  follow  in  the  upcoming  chapters. 

Experienced readers may skip this chapter entirely or jump to the part that revolves around 

topics they are less familiar with.

In the fields of mathematics and computer science a graph is a set of objects (referred to as 

nodes) and their relations (referred to as edges). In theory they are often visualised as dots 

or circles for the nodes and lines for edges. A wide range of relationships in real life can be 

represented by graphs like public  transportation (stations,  paths),  street  maps (junctions, 

streets), company employees (employees, supervisor relationships) and many more.

The mathematical definition of a graph G is a pair of a set of vertices V and a set of 

edges E where E consists of 2-element subsets of V {u ,v } .

G=(V , E)

The order of a graph is defined as the number of vertices ∣V∣ and its size is ∣E∣ , the 

number of edges. The number of edges connected to a node is called its “Degree” and can 

be divided into in- and out-degree if the underlying graph is directed. Otherwise, in and 

undirected graph, an edge has no starting or finishing point and connects two nodes in both 

directions.
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Distinction of Graph Types

a: undirected graph b: directed graph c: mixed graph d: mixed multigraph

Figure 3: Graph types

Graphs can be differentiated in various ways and the definitions are not always consistent. 

Figure 3 shows the most prominent criteria that are often found in literature. Without further 

specifications, a graph is usually meant to be an undirected simple graph (a). In contrast to 

undirected graphs (a), it is possible to have a relation only going one way (for example from 

node A to node B) and not vice versa like in a directed graph (b). Mixed graphs (c) allow both 

edge types to be used and multigraphs (d) even permit more then one relation between two 

nodes (A,C).

Nodes and edges might have one or more properties. Edges that are holding a property 

value are often called “weighted” edges. For example sample (d) in the graphs of Figure 3 

can also contain self loops. Although the definitions of so called “simple” graphs may vary, 

“simple graphs” are mostly meant to disallow loops, whereas “multigraphs” might or might not 

permit them.

Graph Characteristics

There are a number of statistical measures that serve as indices for specific network 

characteristics in order to compare graphs with each other. Still, it is not clear to what extend 

these values  are able to measure the similarity of structures. Because of the complexity of 

graphs, one can assume that a graph conforms to one statistical measure while having a 

completely different structure. We will present some of the popular graph metrics that are 

also used in this thesis. 

Degree Distribution
One of the most basic characteristics of a graph is its degree distribution P (k ) , defined as 

the  fraction  of  nodes  having  degree k .  Directed  graphs  also  have  the  distributions 

P (k in) for in-degrees and P (kout ) for out-degrees that are calculated the same way, but 

considering only edges that are pointing in the related direction.
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A visual comparison can now be drawn by plotting the degree distributions or by calculating 

the moments (mean, variance, skewness, …) and their comparison. In most social networks 

there are a few nodes with a very high degree and a lot with a small degree. Figure 4 shows 

a typical degree distribution following power law.

Shortest Path
The shortest path is an important  metric for information transportation in a network.  It  is 

defined as the minimum number of hops on a possible path from node A to node B. All 

shortest paths of a network can be represented by a matrix d i , j holding the shortest paths 

from each node i to every other node j .

(a) undirected (b) directed (c) undirected + weighted

Figure 5: Shortest Path calculation samples

The calculation of a shortest path is depending on the type of graph. We will describe the 

calculation using the examples in Figure 5. If edges are unweighted (a, b) then every edge 

has equal costs of 1. To get the shortest path, one has to find a valid connection that delivers 

the minimum summation of costs. The shortest path from A to F in (a) is {A,B,D,F} = 3. For 

the directed graph (b)  there is  only on possible path from A to F {A,B,C,E,D,F}  = 5.  In  

example (c) we have to consider the weights of the edges to calculate the costs the shortest 

path is now {A,C,E,D,F} = 7.

Figure 4: Sample power law degree distribution
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Average Shortest Path
The average shortest path length L , also known as characteristic path or average path 

length is defined as the mean over all shortest paths (see above) of a network. It is a typical 

measure for the separation between nodes of the graph and therefore an indicator for the 

efficiency of information transport on a network.

L=
1

n(n−1)
⋅ ∑
i , j∈N ,i≠ j

d i , j

Diameter
The diameter D is a measure of connectivity. It is the greatest distance between any pair 

of nodes in the graph and calculated as the maximum of all shortest paths. To calculate the 

diameter, one has to calculate d i , j , the shortest paths of all nodes first (see above).

D=max {d i , j}

Clustering Coefficient
Watts and Strogatz introduced the clustering coefficient  in 1998  [42] to compare random 

networks.  It  is  a  measure  of  “cliquishness  of  a  typical  neighborhood”.  The  clustering 

coefficient of a node is defined as the proportion of existing edges between the neighbours of 

a node and all possible edges between them. The overall clustering coefficient of a graph is 

defined by the average of the clustering coefficients of all nodes.

Let Gi be the subgraph of connected neighbours of node i and e i the edges in Gi . 

The local clustering coefficient c i of node i is the ratio between e i and k i(k i−1) /2 , 

the maximum number of possible edges in Gi . Then the clustering coefficient of a graph is 

given by the average of all local clustering coefficients:

C=〈c 〉=
1
N

⋅∑
i∈N

c i

Three sample calculations of a graph's clustering coefficient are visualised in Figure 6, 

showing three simple graph structures Gi , together with the corresponding clustering 

coefficient c i .

Figure 6: Calculation of the local clustering coefficient
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Reciprocity
A vertex pair {A , B} is said to be reciprocal if there are edges e i , j between them in both 

directions  ( ∃(ei , j∧e j , i) ).  The  reciprocity  of  a  directed  graph  is  the  proportion  of  all 

possible {A , B} pairs which are reciprocal, provided there is at least one edge between

A and B . The reciprocity of an empty graph is undefined. Undirected graphs always 

have a reciprocity of 1.0 unless they are empty. This measure provides an indicator of the 

relation between nodes because friends tend to reciprocate where unknown people normally 

do not link back to every follower. A calculation example can be seen in Figure  7, given 3 

sample graphs Gi and the accurate reciprocity value r .

Gi

r 0 /2=0 1/2=0.5 3/3=1

Figure 7: Calculation of reciprocity

Power law
Power law distributions have gained attention over the last years because they can be found 

in diverse range of natural phenomena. A quantity x obeys a power law if it is drawn from a 

probability distribution

p (x )∝ x−α ,

where α is a constant parameter known as the power law exponent.[43] 

If  you plot  a power  law distribution with both axes using a logarithmic scale it,  draws a 

straight line with the slope of the power law exponent. Figure 8 shows a pseudo-randomly-

distributed power law distribution (blue circles) and a reference line for a slope of -2.5. 
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Although verifying a power law by fitting the logarithmic plot is a common used method, it is  

not mathematically accurate. Clauset et al. have published a guide in which they “describe in 

detail a set of statistical techniques that allow one to reach conclusions like these” [43] . For 

fitting a power law they calculate the godness-of-fit and a likelihood ratio test for a statistical 

probability of the hypothesis. The whole calculations are complex and extensively described 

in their paper so the interested reader is referred to their work for details. On their website 

they offer Matlab15 functions to download that aid in calculating and plotting a power law fit.

3.1.2 Characteristics of the Twitter Network
In order to create a graph similar to a real world network, one has to get the specifications 

about the underlying structure of the desired network. We had to rely on the small number of 

works already done to analyse the structure of Twitter due to various reasons:

First  of  all,  Twitter  does not  provide their  data to research institutes due to their  privacy 

policies. Moreover, they do not even offer any official up-to-date statistics about the size of 

the network or the overall user activities available as it is the case for other social services. 

The  only  way  to  get  these  properties  is  to  gather  the  structure  by  crawling  the  public  

available Twitter graph. Due to the size of the network, it is challenging and it would take 

weeks to get the data. Even trying to crawl the whole graph would not be sufficient because 

calculations  of  graph  metrics  done  with  millions  of  nodes  would  take  normal  computer 

systems to the limit of their technological capacities. Crawling and analysing data of a more 

than 200 million nodes network is outside of the scope of this paper. Therefore, we will only 

work with published literature that provide us with the necessary information.

15 Matlab is a numerical computation environment developed by MathWorks Inc.

Figure 8: Visual power law fit
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To our knowledge the biggest effort to collect Twitter's network up until now has been made 

by Cha et al. [38]. They obtained 54 million nodes with two billion directed follow-links among 

them. Albeit,  this is only a forth of the whole 200 million users Twitter has today,  still  an 

armada of 58 white listed machines and certainly at least a month continuous crawl attempts 

where needed to achieve this goal.

In Kwak et al.'s data  [14] there are 41.7 million users connected with each other by 1.47 

billion relations. They gathered a communication set of 106 million tweets containing 4,262 

trending topics16. To obtain this dataset, Kwak et al. did a breadth-first crawl beginning with a 

very popular person and extended this connected component with user profiles that referred 

to trending topics.  They used 20 white-listed machines in a two month continuous crawl 

attempt to extract the data, resulting in a 24 GB graph file. Although this data is available for 

other researchers, it is not easy to calculate statistics of datasets that large. We have tried to 

build some metrics for the provided graphs ourselves but did not have success until recently. 

Unfortunately, although Kwak et al. got one of the biggest copies of the Twitter network, they 

only present a few metrics about the graphs structure. We belief that this is because they 

might also have reached their limits of capacities.

As described in chapter 2.3 it was just possible to find three works revolving around listing 

properties of the Twitter graph. The hard facts about them are listed below:

The dataset of Java et al. [36] consisted of 1,348,543 posts, 829,053 links and 87,897 users 

in two month. This data was gathered by monitoring status updates on the overall  public 

timeline and fetching their relations to other users with the Twitter API.

Huberman et al. [10] had 309,740 users, leaving the reader in the dark about how they where 

chosen. A calculated number of 78,983,700 status updates was concluded from the given 

average number of posts. These users are connected by 51,107,100 links, again, calculated 

by the average numbers of followers and followees.

Table 2 lists all important features of the Twitter network gathered from the sources above. 

16 Most popular topics that are talked about in a defined time-frame.
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Parameter Value (Source) Source

Avg. number of Followers 85 [10]

Avg. number of Followees 80 [10]

Average degree 18,86 [36]

In-degree slope -2,4 [36]

Out-degree slope -2,4 [36]

Degree correlation 0.59 [36]

Diameter 6 [36]

Clustering coefficient 0.11 [36]

Reciprocity 0.58 [36]

Reciprocity 22.1% [14]

Average path length 4.1 [14]

Table 2: Figures of the Twitter network

3.1.3 The Forest Fire Model
In  order  to  find  a  suited  network  generation  model,  we  did  another  literature  research. 

Although there are plenty of models in literature, only some of them are focusing on social  

networks. The models we found are briefly described in chapter 2.1. The Forest Fire Model 

by Leskovec et al. [24], claims to fulfil all characteristics we have collected about the Twitter 

network. Therefore, it  seems to be best suited for this project. It has an intuitive straight-

forward way of  building the network structure and can be easily extended.  Matching the 

power-law exponent of -2,4 of Twitter, it has a heavy-tailed in and out degree. Communities 

are built where nodes are more connected to each other than to the rest of the network, 

corresponding to the clustering coefficient  of  0.11 we found.  Moreover,  the model  has a 

densification power law and a shrinking diameter, meaning that the network becomes denser, 

and the diameter is decreasing as the network grows.

The Forest Fire Model was first published in  [24] and revised in  [25], where they observed 

snapshots of several social  networks to inspect their temporal evolution. Comparing their 

observations with existing models like the “Community Guided Attachment model” and its 

extension the “Dynamic Community Guided Attachment model”, Leskovec et al. have found 

out that these models do not capture all the properties they observed. This very fact lead 

them to the creation of a new model – The Forest Fire Model.

This model is based on having new nodes attach to the network by “burning” through existing 

edges  in  epidemic  fashion.  Nodes  arrive  one  at  a  time  where  every  new node  v  gets 

attached  to  an  existing  node  w  (called  ambassador)  and  starts  burning  through  w's 
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neighbours. Node v then links to the neighbours of w with a certain probability (p) and further 

continues the same burning strategy on those newly discovered nodes and their neighbours. 

In this way, v burns from one node to another like a forest fire that spreads from tree to tree.

This process is intuitively corresponding to the way new people usually discover a social 

network: A new person (represented by node v ) will most certainly be invited by a friend 

(the ambassador w ), connect to it and look, if it can find other known people in the crowd

w is connected to. If some interesting / known person u  could be found on ambassador

w 's friend's list, the new person v will probably look up the list of u 's friends and so 

on.

The most basic version of the model can be formalized as follows:

Every time t>1 a new node v gets added to the graph Gt it has to follow the following 

rules:

1) choose an ambassador w uniformly at random and connect to it to v .

2) Generate  two  geometrically  distributed  random  numbers x and y with  means

p
1−p

and
rp
1−rp

respectively.

3) Node v chooses  up  to x out-links  and  up  to y in-links  (not  visited  yet)  of

w (w1 ,w2 ,. .. ,w x+ y) randomly and connects itself to the nodes on the other side.

4) Apply steps 2 and 3 recursively to each of w1 ,w2 , . .. ,w x+ y

Note  that  in  the  whole  process  each  node  can  only  be  visited  once,  preventing  the 

construction from cycling.

This way the model naturally builds communities because nodes closer to the ambassador 

have  a  higher  probability  getting  linked  than  those  far  away.  In  the  same  way  the 

Densification  Power  Law comes  in  as  the  number  of  links  a  newcomer  creates  per 

discovered node will drop out rapidly with the distance from the ambassador.  Heavy tailed 

out-degrees arise  from  the  fact  that  highly  linked  nodes  can  easily  be  reached  by  a 

newcomer, no matter where the process starts.

As these properties descriptions are quite intuitive and easy to explain, the Forest Fire Model 

also provides a shrinking diameter. Although the authors stated that it is hard to provide an 

explicit explanation, they have shown in simulations that the model is capable of producing 

sparse or dense graphs with effective diameters that either increase or decrease, while also 

producing power-law in- and out-degree distributions, by varying the forward and backward 

burning parameters (p and r).
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Extensions of the Model

The  basic  model  features  all  expected  parameters  of  a  general  social  network  but  by 

extending the model it  can capture observed data of a given network even more closely. 

Leskovec et al. already proposed to extend their own model with orphans, nodes that are not 

connected to any other node. This can be achieved by either initializing the graph with a set 

of unconnected nodes or providing some probability to which a newcomer will not form any 

links (not even to its ambassador).

In  our  model  we  will  create  orphans by initialising  the graph  with  a  variable  number  of  

unconnected nodes that can be set in the properties file and default to one.

We  extended  the  model  by  adding  a  back-link-probability  as  well  which  gives  each 

discovered node the possibility to form a link back to the newcomer that links to it. In this way 

the effective in- and out-degrees can be better controlled to fit the desired network.

Leskovec et al.  [24] also experimented with the idea of “multiple ambassadors”,  where a 

newcomer can choose more than one starting point. This extension should accentuate the 

decrease in effective diameter over time as nodes with multiple ambassadors are bringing 

far-apart parts of the graph together. Although we didn't use more than one ambassador for 

the presented graphs, it is still an interesting modification worth experimenting with in future 

works. We have implemented the function in the application. In order to invoke it, one has to 

make a change in the settings only (see 4 Application Usage).

3.1.4 Communication Simulation
The initial specification of our application was quite simple:

It should be able to automatically generate a random albeit representative network structure 

(graph) of variable size, store it into a file and “send” some random messages from node to 

node along the edges of the graph, thereby producing a protocol of “who tweeted what and 

when”. This protocol should then be the input to any testing algorithm and the outcome could 

be compared with the real network-structure in the graph file. This schema is illustrated in 

Figure 9.



Methodology - Design 25

Once the network is established it should be able to generate an output similar to Twitter, 

which is basically the so called “timeline”. The “timeline” basically are messages of the users 

in a continuous time flow. To generate the timeline, a simulation has to be done where the 

action (message) from one node triggers a reaction from another node.

At first it seemed feasible to create one thread for each node which then listens to messages 

and has the ability to react in a certain way. While this would be a realistic representation of 

these processes in real life, that would require a lot of memory and CPU for thousands of 

nodes. In fact, only a small number of all nodes will post frequently and a certain number 

might do nothing at all  but consuming memory space. Besides that,  one has to face the 

challenge of multi-threading issues.

We realised that what we needed is a scheduler that can hold events in a timely ordered list 

and execute one event after the other. If one node would for example send a message, it is 

actually  adding the event  “sendMessage”  to the  scheduler  with  the time of  its  expected 

execution. The scheduler would execute this event after all other events that had stated an 

earlier  execution-time have been executed.  This way we will  not  have any problem with 

memory consumption and CPU, especially as the communication doesn't need to be “real-

time”.
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Scheduler

The scheduler  is  the heart  of  our simulation process.  It  is  holding all  events in  a timely 

ordered list and is responsible for the execution of the event's actions. Start and end of the 

simulation  are  controlled  by  the  scheduler  and  it  is  also  the  docking  point  for  output 

interfaces. Figure 10 shows a schematic view of how the process flow works.

To  start  a  simulation,  the  scheduler  has  to  be  initialised  by  a  number  of  start  events. 

Therefore, we will iterate over all nodes in the graph and produce a starting event for each of 

them. In the case of Twitter this is a normal tweet. The crucial element is the time of this 

starting event that could possibly also be beyond the scope of the schedulers time limits and 

would result in a nodes that is not actively tweeting. Still, this node can react passively on 

other updates.

After a list of events has been created in the initialisation, the scheduler has to iterate over 

each element and trigger one event after another, removing it from the queue afterwards. 

This process will continue until a stop criteria is met, which is either an empty queue or the 

exceeding of the time limit. To prevent the process from dying out after the first tweet of each 

node, every tweet recreates the next update of the respective node. Whilst the simulation run 

reactions to tweets can also be added to the queue by the receivers.

A similar procedure has also been used in the Java Simulation Handbook [41], where some 

of the concepts adapted for this project derive from. The introduced scheduler therein and 

the code examples of DESMO-J, a simulation framework developed by the authors, have 

been helpful as a boilerplate and where partly used in our code as well.
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Furthermore, every event type has to provide a function that can be called by the scheduler 

to start the appropriate reactions. For example, considering a normal tweet this method has 

to call every node with an incoming edge (follower) and calculate if a reaction has to be set 

and if it does, what type of reaction this should be.

Event Types

After the concept of the operating procedure, one has to figure out the types of events that  

have to be implemented. Posting an update in Twitter is commonly referred to as “tweeting”. 

Besides, it is also possible to send private messages to other users. These messages do not 

exhibit  the  limitation  of  140  characters  and  will  not  be  part  of  the  time  line.  As  private 

messages are not visible to the public, no statistics concerning their frequency of occurrence 

could be found in literature. Because they are addressing one particular user, they do not 

play a major role in scientific investigations concerning the network structure. Therefore, we 

decided to skip the topic of private messages entirely and focus on the tweet events.

Based on the intention of  a tweet,  updates can be categorized into three types:  Normal 

tweets, retweets and replys. All of them have the same format limitations and can only be 

differentiated by the occurrence of some special syntax.
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Tweets are propagated to all  followers and visible to any user of the network. They are 

meant to make status updates. Replys and retweets are in fact tweets including some special 

syntax to signalize their special meaning. Moreover, the difference between tweets, retweets 

and replys only emerges at the point where the receiver is notified.

Retweeting is the Twitter-term for what is called “forwarding” in email communication. The 

retweeting of interesting tweets to ones own followers is a crucial operation for the Twitter 

system because it is what allows a message to spread into the network and reach a bigger 

audience.  In  fact,  every  tweet  that  includes  the  quintessence  of  another  tweet  can  be 

referred to as a retweet. To clarify that this information is the creation of another user, a 

special syntax has emerged. In the same way as forwarded emails in email communication 

are  usually  labled  with  “FW:”  or  “Forward:”  a  retweet  starts  with  “RT  @Username”  or 

“Retweet  @Username”  mentioning  the  cited  user.  This  way a  former  received  message 

spreads to all followers of the receiver and the sender gets a notification that one of their 

messages has been used for a retweet.

Replys start with “@Username” and will have the user “Username” get a special notification. 

After a change of Twitter's policies in 2009, replies with the mentioned syntax will only get  

passed along with followers of “Username” and the person replying. To prevent this from 

happening one can put a “.” (or any other sign) in front of the message and it will pass to all  

followers while still  notifying the mentioned user.  Usually this operation is called “.reply”. 

Although this practice is meant to answer to someone’s tweet it bears not necessarily the 

intention of actually replying to something in order to use this syntax. Generally speaking, it is 

used any time someone wants to directly address a particular user in a public update. For 

this reason we will rather refer to this type of message with the more general terms “directed 

tweet” or “directed message”.

As most of this conventions grew with the network, there are several modified versions of the 

basic syntax that was mentioned above. Some modifications aim to encourage and to leave 

enough characters for the message and possible additions of other users. Others target the 

readability and understanding of messages. Because they are just conventions for the user, 

everyone is free to use one of the available styles or even invent their own. Boyd et al. have 

studied the conversational aspects of retweeting on Twitter [19]. They present an insight into 

their  findings  of  the  most  popular  methods  used  to  edit,  comment  and  relay  retweets. 

Honeycutt  and  Herring  have  worked  on  the  usage  patterns  of  the  @  sign  in  Twitter 

messages, which is an indicator for replys and mentions [39]. For further information about 

Twitter's common conventions,  interested readers are encouraged to take a look at  their 

works.
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In order to filter out the individual types from the text of tweets, the following rules have to be 

obeyed:

1) Messages starting with “@username” are considered to be direct tweets or replys, 

dependent on prior messages.

2) A message can be considered a retweet if and only if it is not starting with “@” and 

contains one of the retweet keywords:

“RT: @”, “retweeting @”, “retweet @”, “(via @)”, “RT (via @)”, “thx @”, “HT @”, “r @”, 

“♻ @”, … [19]

3) If  the  message  has  no  one  of  the  above  mentioned  indicators  but  still  includes 

mentionings (“@username”) somewhere in the text it is considered to be a mention.

4) Everything else is a normal tweet.

As we are generating all messages by ourselves, it is not necessary to parse each message 

in order to extract the keywords. Instead, each message type will also have its own class and 

therefore  can  easily  be  distinguished  from  other  types.  We  will  also  add  additional 

information to the message types objects, like the ID of the message a reply is an answer of 

or, in the case of retweets, their original message which they relay.

Actually, all of the message types mentioned are just normal tweets considering their text 

content.  The  difference  emerges  when  it  comes  to  the  intention  of  the  sender  and  the 

reaction of the receiver. As normal tweets are meant for anybody who cares to read them, 

they will only get a reaction if the message really matters the receiver. It has been found out 

that  retweets  have  a  higher  chance  to  get  retweeted  again  than  normal  tweets  (“Once 

retweeted, a tweet gets retweeted almost instantly on the 2nd, 3rd, and 4th hops away from 

the source, ...” [14]). The only difference between the diverse message types is the inclusion 

of  special  keywords  like  for  example  “Retweet”  or  “RT”  at  the  beginning  of  a  message 

identifying a retweet. That also means that the message types can be mixed. Like in Listing 

1, it is possible to retweet one's tweet and mention another one to give them a special notice 

of what might interest them.

RT @twitteruser Japanizing English - a book by Johnannes Perling  @someuser 
certainly a good read :-) 

Listing 1: Example update text of a mixed message type

In our model we have defined 5 message types to cover all forms of tweets:

• tweets: Non of  the retweet keywords or “@user” included
◦ mentions: includes one or more “@user” keywords

▪ directed tweets: begins with “@user” to address that user
• replys: begins with “@user” and is related to a prior message

▪ retweets: includes at least one retweet keyword and probably also “@user”
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These message types build a hierarchy where each child element is also of the type of its 

parent. For example: a retweet is a mention and a tweet. If it is a mixed type, children count  

before parents because they are more precise and directed tweets count more than retweets 

because they limit the audience.

Obviously,  the tweet event is the fundamental messaging event.  “Tweeting” is the Twitter 

name for sending a status update to all followers. This event has to hold a message, the ID 

of the sender and the time of action. If such an event gets triggered it must initiate a process 

that alerts every node having an incoming connection from the sender of the message so 

that they can react and trigger a corresponding event (like a reply) themselves. How this 

process  is  achieved  will  be  thoroughly  discussed  in  the  upcoming  chapter  (Network

Behaviour). Figure 11 shows the process of message sending that represents a detailed view 

of the “trigger event E” state in Figure 10.

Almost the same procedure has to be done for the other message types respectively. It is 

exactly the same chain for retweets apart from another message text and the inclusion of an 

original message reference. The only difference is the reaction pattern on the receiver's side.
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Other message types vary only in regards of their audience, which changes slightly. Mentions 

for example have to alert the mentioned user in a special way and get propagated to all other 

users as normal tweets. Replys and directed tweets are not visible to all  of  the sender's 

followers but  to all  mentioned users in  the message and their  followers.  So actually the 

“iterate through all followers” step has to be done for each of the receivers instead for the 

sender (Figure 12).

Network Behaviour

The question we are facing is “When does an event trigger”. In the simulation the essential 

challenge is to determine at what time what kind of event has to be triggered. This seems to 

be quite obvious at first glance but it gets trickier the more we go into detail. To make a 100% 

accurate  simulation  of  the  communication  in  real  SNS,  an  almost  infinite  number  of 

parameters would have to be studied and implemented. Besides, it is fairly impossible to get 

figures to every potential parameter and trying to pack all that data into the model would 

result  in  an  infeasible  large  amount  of  useless  data.  The  question  we  therefore  asked 

ourselves is “What parameters are really crucial for the simulation when it comes down to the 

lowest possible level”. Our goal was to find a maximum of 5 parameters to be stored in the 

graphs properties that define the behaviour of our nodes.
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The first  parameter  we invented was a  closeness value.  All  reactions of  a person to a 

message depend to some degree on the level of closeness. For example, it is more likely to 

respond to the same message if it comes from a close friend rather than if it comes from 

someone they haven't met yet.

As already mentioned before, we can always go into more detail with the parameters used. 

For  example,  the  closeness  value  can  be  seen  as  an  aggregation  of  several  other 

parameters like for example:  “how well node a knows node b”,  “how node a likes node b”, 

“what type of relationship node a has to node b”. But as we don't want to store all these 

information and we want to keep the model as simple as possible, we aggregated all these 

possible parameters in the parameter of closeness ranging from 0 to 1. Zero means there is 

no relation at all,  these nodes don't  know each other; possibly connected by mistake. An 

closeness  value  of  1  means  the  opposite,  these  nodes  act  like  twins,  reacting  to  any 

message of each other.  So the higher the closeness value,  the more likely it  is  to get a 

response.

Another parameter often seen in literature is the nodes usage intention. In that case, there 

are three different groups presented. In [36] and [37] they are named [“Information source”, 

Friends”,  “Information  Seeker”]  and  [“broadcasters”,  “acquaintance”,  “miscreants”] 

respectively. Whereas the first two groups can be considered as identical, the last ones might 

not  necessarily  be  identical.  Anyway,  these  groups  can  be  calculated  by  the  degree 

correlation. For our “activity type” property we will follow the terms used by Java et al. but 

replacing “Friends” with “normal user”. 

type property

Information source Significant higher in-degree

Information seeker Significant higher out-degree

Normal user in- and out-degree almost equal

Table 3: Twitter user's activity types

Theoretically, we could calculate this parameter using in- and out-degree, but as we don't 

want it to be solely determined by the ratio of degrees (because it could be possible that 

even a famous person is only an information seeker) and we also want that every parameter 

can be stored in the graph-file for reproducibility. We will store this property within the node 

object.

Each node, in either of the user-type groups, can be more or less active. As the activity type 

defines the ratio between event types evoked by this node, we need a value that stands for 

the frequency of new updates. This parameter does not depend on the number of followers 
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though it may be influenced by it. We will add the parameter “activity level” again, ranging 

from 0 to 1. The higher the activity level, the more tweets will be send and the more possible 

reactions will actually be triggered by this node.

Decision-Making Process
Now we should be able to calculate a conditional probability of IF a node triggers an event.  

We are doing this by taking the closeness value, the activity type and the activity level into 

account. To trigger an appropriate action we additionally need to know the exact time WHEN 

the event should take place. Thus, a parameter is required that allows us to determine the 

nodes frequency of looking up other's new updates – or in other words: when the user is 

available / using the social network. Therefore we invented the “availability level”.

Availability level is also ranging from 0 to 1 and it  tells us how often a node is willing to 

interact with the network. This way it is possible that a person can react to every tweet (high 

activity level) but with a long delay (low availability level) and vice versa.

Users can also be classified into time slots of usage. Not every individual uses the service 

24/7. Each person has rather their own preferences as to when they want to use a social  

network.  On the one hand there are users who are only looking for  new updates in the 

evening after works, while others may prefer to check the latest news in the morning on their 

way to work. Some people may only make use of Twitter at weekends and holidays because 

that’s when they have time to do so and there might be also other users who utilise Twitter 

for their work and do not want to use it in their free time.

The first step is to implement the “availability type” on a predefined day-type basis for each 

user, dividing them into weekend, weekday or all-day users.

To sum up, we have four properties that mainly influence the communication in the system: 

the closeness value, the activity type, the activity value and the availability value. As can be 

seen  in  Figure  13 The  closeness  value  is  a  property  of  the  edge  whereas  the  other 

parameters are stored within the node.
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To calculate if a reaction to a certain event should be done we will consider the event type, 

closeness value and activity level. Basically, we will build the mean of closeness value (c) 

and  activity  level acl and  compare  it  to  the  threshold  t e for  the  event  type.  If  the 

calculated value is higher than the stated threshold for the event type t e , a reaction should 

occur. 

f (x )=
c⋅acl
2

≥t e

This way the reaction of one node to a specific event of another node would always be the 

same.  To  prevent  that  from  happening  we  will  randomise  the  value  using  a  normal 

distribution. 

X∼N (μ ,σ2)

Choosing the mean of the calculated value f(x) and a standard deviation of 0.1 produces a a 

variance where 68% of the values are within mean ± 0.1, 95% within mean ± 0.2 and 99% 

within mean ± 0.3. Because a normal distribution does not have an absolute minimum or 

maximum we will cut it at 0 and 1 respectively. Figure 14 shows a Gaussian distribution with 

the mean 0.8 and a standard deviation of 0.1 fitted to the parameter space 0-1.

As the graphic illustrates, a value below 0.5 is highly unlikely.

g ( x)=0 for N ( f (x) ,0.12)≤0

g ( x)=N ( f (x ) ,0.12) for 0≤N ( f ( x) ,0.12)≤1

g ( x)=1 for N ( f ( x) ,0.12)≥1

The normal distributed number g ( x) will now be compared to the threshold t e instead of

f (x ) .
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To determine when the reaction will take place in the time-line we will again use activity level

acl and closeness value c together with availability level avl , availability type avt

and a predefined maximum time interval i for reactions. Because it should also be random, 

each time a reaction gets triggered and to save calculations, we will use the same normal 

distributed value g ( x) that we have already computed using c and acl . To get a time 

interval we will multiply avl with the interval i and 1−g (x) .

h (x)=avl⋅i⋅(1−g (x ))

For normal tweets we will compute the time of action in a similar way but without closeness 

value:

f (x )tweet=
acl+avl+act

3

Again, we add a variance by using a random Gaussian distributed value:

g ( x)=0 wenn N ( f (x ) ,0.12)≤0

g ( x)=N ( f (x ) ,0.12) wenn 0≤N ( f ( x) ,0.12)≤1

g ( x)=1 wenn N ( f ( x) ,0.12)≥1

In the end, we multiply with the defined maximum interval i :

h (x)=i⋅(1−g ( x))

Each time a node sends a message, a decision has to be made in terms of what type this 

message is. In our model there are two main scenarios:

1. “Status update”: Node sends a message by its own intention

2. “Reaction”: Node reacts on another event (message type)

Possible  event  types  for  self-intended  “status  updates”  are  a  normal  tweet,  a  tweet 

containing a mentioning or a directed message. For “reactions” the decision is retweet or 

directed message (reply).

Research in literature revealed several metrics for these event types. Directed messages 

(including retweets and replys) have a occurrence of 25% [10], 31% [39] and 36%  [19] in 

different datasets averaging to 31%. From these messages 86% are replys according to [19]. 

Moreover,  3%  respectively  6%  of  all  tweets  are  considered  retweets  by  [19] and  [44]. 

Sysomos17 reports on their  website[44] that  29% of  all  tweets get  a reaction from which 

19,3% are retweets and the rest (80,7%) replies [44]. For convenience purposes, all figures 

are summarised in Table 4.

17 http://www.sysomos.com
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Parameter Value Source

Directed messages (of all tweets) 25.4% [10]

Retweets (of all tweets) 3% [19]

Directed tweets (of all mentions) 86% [19]

Tweet including hashtag 5% [19]

RT not followed by @user 5% [19]

Mentions (of all tweets) 36% [19]

Mentions (of all tweets) 12,5% [36]

Mentions (of all tweets) 31% [39]

Retweeted tweets 6% [44]

Replied tweets 23% [44]

Table 4: Figures for the communication simulation

One can estimate from these numbers that the mass of all tweets gets divided into our event 

types as follows: normal tweets 69%, mentions 1%, retweets 5%, directed messages 25% 

(see Figure 15). Considering that 29% of all tweets are a reaction to another tweet (following 

[44]), we calculate for the former invented scenarios “status update” and “reaction” that the 

percentages should be 71% and 29% respectively and thus can make a separate breakdown 

for both settings (Figure 16).
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To  fit  the  model  to  these  numbers  we  have  introduced  thresholds  for  each  individual 

message type that control the distribution. Again, there is a randomisation taking place to 

make the output more realistic while still supporting the desired partition.

3.1.5 Input and Output Interfaces
We have to define interfaces for the applications input and output. The output of the program 

consists of a graph and the communication in form of messages that need to be stored for 

further investigations. Nevertheless it should be possible to load a predefined graph into the 

program serving as basis for the simulation. 

Graph Structure

To make it easy to load an existing graph into the simulation we wanted to implement one of 

the popular file formats already used by other graph related software. The two most popular 

formats with respect to graph related software are graphML and the Pajek file format. The 

latter has no official file format definition but is determined by the routines of a Windows 

based graph  analysis  tool  called  Pajek18.  In  comparison  to  graphML,  it  is  much simpler 

18 http://pajek.imfm.si

Figure 16: Tweet types ratio scenario separated breakdown
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because it abandons the use of attributes. This compactness makes it suited for very large 

graphs where size is a major concern. Nevertheless it is not suited for our purpose because 

we want to store the nodes attributes within the graph file.

GraphML19 on the other hand is based on XML20, a hierarchical structured file format that is 

widely used for data interchange in various domains. It can handle nodes, edges and any 

type of properties or attributes. Because of the extensibility of XML, it is even possible to 

save graphical representations within a graphML file. As we will use node specific properties 

in  the simulation  process which we  want  to  save as attributes in  the graph file,  we will  

therefore have to use graphML. A detailed description of this format being made in chapter 

3.2.2 and an additional of a graphML file is attached in appendix C.

Communication Data

Another type of data will be produced by the simulation that produces randomly generated 

messages to serve as test data for communication analysis applications. As these messages 

are meant to be the input  for  other applications analysing social  networks,  the format in 

which it will be provided is important for its usability.

Because we expect an amount of thousands of messages, the file format should be light 

weighted. To make sure it is supported by other applications and, in case it is unsupported, 

can be implemented without much trouble, it should be a flexible and popular file format. A 

test environment should always be as close to the real issue as possible to produce reliable 

information. The file format therefore has to be also akin to what is produced by the real 

network.

To cut things short, we did not find the perfect format that combines all of these attributes, so 

we decided to provide more than one format giving the user additional flexibility. It is up to the 

tester to choose the appropriate format that fits best for their work.

The most simple data format for this use is probably CSV. Comma-separated text files are 

compact  and therefore revealing their  strength when it  comes to large datasets and the 

importance of size. They can be viewed in any spreadsheet application for an advanced 

analysis. 

One of the most flexible formats is XML. Because of its well defined hierarchical structure it is 

used as an exchange format between platforms, especially on the internet. Moreover, XML is 

supported by a lot of other applications and can easily be implemented in any programming 

19 http://graphml.graphdrawing.org/
20 http://www.w3.org/XML/
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language. One major drawback of this data format is that when it comes to large data it can 

get difficult to guarantee a valid (closing all  branches) XML document if  the process gets 

interrupted or if it does not come to an end.

With regards to authenticity we see that no social network offers a CSV or XML file download 

for its communication data. Most of them offer some kind of API that allows simple queries to 

be made. When speaking of Twitter a very akin application is Status.Net21, an open source 

project developing a software for setting up a personal social network service. Status.Net 

features a Twitter-like API compatible to all major query scenarios. By using Status.Net as a 

container, it  is possible to use the same methods to retrieve communication data as one 

would use with the original Twitter social service.

Therefore, the Twitter-Testbed will feature a CSV and XML export of all the communication 

information  like  message  text,  sender,  message  type,  mentioned  users  and  referred 

message. Additionally, we will implement an interface to connect and propagate all messages 

to a Status.Net instance. The user may either use the API or the web front-end to retrieve the 

desired information from the Status.Net application.

Statistics and Debug Mode

For convenience purposes we plan to implement some statistical metrics for characterizing 

the graph after  generation  has  finished.  It  should  be possible  to  calculate  some overall 

statistics for the network and to extend the class with more statistical properties. Further, 

debugging  information  can  be  printed  to  follow  the  processes  routines  and  reconstruct 

decisions that have been made by the application.

21 http://status.net/
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3.2 Implementation
In  this  section  the  implementation  of  the  network  generator  and  the  communication 

simulation is presented.  To give an overview, a diagram containing the whole process is 

shown first (Figure 17). Next, general implementation issues are being discussed. Later on, 

this section will take a look at the details of those components.

During the search for a comprehensive framework to support the convenient manipulation of 

graphs in Java22, we found JUNG, a software library with extensive built-in capabilities. The 

main features will be described in 3.2.1. The whole implementation was done in Java using 

the JUNG-framework for graph manipulation.

GraphML, which is already supported by JUNG, will be used to store the network structure in 

a file. It is an open XML-based file format described in more detail in section 3.2.2.

The  process  of  graph  generation  is  completely  separated  from  the  simulation  process. 

Therefore, it is possible to load any graphML-conform directed graph into the program. The 

initialisation  will  generate  the  required  properties  for  the  simulation  to  the  nodes  if  not  

available in the graphML file provided.

3.2.1 The JUNG Framework
The Java Universal Network/Graph Framework23 (short JUNG framework) is an extendible 

framework  for  modelling  analysis  and  visualisation  of  all  sorts  of  graphs  in  Java.  It  is 

available for free as an open source project under the Berkeley Software Distribution (BSD) 

license24.

22 http://creativecommons.org/licenses/by/3.0/
23 http://jung.sourceforge.net
24 http://www.linfo.org/bsdlicense.html

Figure 17: Application overview
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JUNG supports directed graphs, undirected graphs, multi-modal graphs, hypergraphs and 

nearly any other representation of entities and their relations, thereby making it possible to 

extend the program using any other social network.

Providing  a  rich  visualisation  framework,  JUNG  makes  it  easy  to  implement  interactive 

exploration of graphs. Because it is a very flexible graph framework and is written in Java, 

which  we  intend  to  use  for  our  program  as  well,  we  have  chosen  to  use  the  JUNG 

framework.

To sum up, JUNG was chosen because it is written in Java, freely available, has a detailed 

documentation and a strong user base, it supports all kind of graphs and is extensible.

We  are  using  JUNG2  (version  2.0.1)  which  is  a  major  revision  of  the  former  JUNG 

framework.   It  depends on three other libraries:  Junit25,  Colt26 and Common Collections27 

included in the downloadable JUNG package.

JUNG2 provides an interface for  graphs and sub interfaces for  special  kinds  of  graphs, 

defining the basic operations that can be performed on a graph. Nodes and edges in the 

graph can be any Java object starting from simple integer values to complex objects.

3.2.2 The GraphML File Format
GraphML is an XML28 based file format for graphs released under the Creative Commons 

License. It is supported by the JUNG framework and is widely used. As it is based on the well 

known XML,  it  is  intuitive to work with  and compatible  with a variety  of  other  programs 

supporting XML.

Important XML elements to recognize for GraphML:

• graphml: the root element of the GraphML document
• key: a type description for graph element properties 
• graph: the beginning of the graph representation 

• node: the beginning of a vertex representation 
• edge: the beginning of an edge representation 

• data: the key/value data associated with a graph element 

A graphML file has three parts starting with a common XML schema definition  Figure 18, 

including file format (“xml”) and data format (“graphml”) definitions:

25 http://junit.sourceforge.net/
26 http://acs.lbl.gov/software/colt/
27 http://sourceforge.net/projects/collections/
28 http://www.w3.org/XML/
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<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">

Figure 18: graphML XML schema definition

Next, we will look into attributes specifications (Figure 19). A graphML attribute is defined by 

a  “key”  element  specifying  an  identifier  (id)  and  a  domain  (for).  Additionally,  a  name 

(attr.name)  and  datatype  (attr.type)  can  be  specified.  It  is  possible  to  define  a 

description (desc) and a default value (default) for a graphML attribute.

<key id="al" for="node" attr.name="activityLevel" attr.type="double">
<desc>Activity Level is ...</desc>
<default>0</default>

</key>
<key id="t" for="node" attr.name="TweetResponseTime" attr.type="double">

<desc>TweetResponseTime is ...</desc>
<default>0</default>

</key>
<key id="at" for="node" attr.name="ActivityType" attr.type="int">

<desc>Activity Types describe ...</desc>
<default>0</default>

</key>
<key id="rt" for="node" attr.name="ReTweetResponseTime" attr.type="double">

<desc>ReTweetResponseTime is ...</desc>
<default>0</default>

</key>
<key id="w" for="edge" attr.name="weight" attr.type="double">

<desc>Weight is ...</desc>
<default>0</default>

</key>

Figure 19: graphML attributes specification

The graph structure (Figure 20) is defined in a graph element which can declare an default 

edge type (edgedefault) and a description of the graph (desc). The graph element holds a 

list of nodes and their data values followed by a list of edges and data values.
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<graph edgedefault="directed">
<desc>This is a TwitterGraph generated by a ForestFireModel implemented by 
Andreas Scharf at the Distributed System Groups of the Technical University 
Vienna. (Vertices: 1000 Edges: 234996)</desc>
<node id="5219">

<data key="al">0.331340844351512</data>
<data key="t">0.8445161016295285</data>
<data key="at">2</data>
<data key="rt">0.6252733485264058</data>

</node>
<node id="5949">

<data key="al">0.8269918223619688</data>
<data key="t">0.2236424681753011</data>
<data key="at">3</data>
<data key="rt">0.29174933234809375</data>

</node>
<edge id="1055121" source="5679" target="5286">

<data key="w">0.7978553809181289</data>
</edge>
<edge id="945447" source="5079" target="5012">

<data key="w">0.7916924680049227</data>
</edge>

</graph>

Figure 20: graphML graph structure

The opened graph tag has to be closed at the end of the file in order to get a valid GraphML 

file (Figure 21).

</graphml>

Figure 21: graphML end of graphml definitions

3.2.3 Status.Net
Status.Net29 is a social network service written in PHP30. It allows anyone to create its own 

private social  network aiming to bring the benefits of  micro blogging communication into 

companies.  The  program  is  available  for  free  as  an  open  source  project  and  can  be 

downloaded  and  used  under  the  Create  Commons  License31.  It  features  additional 

functionality  like  cross-posting  from  and  to  other  social  network  services,  availability  of 

address books and much more. Still, the basic usage is very similar to that of Twitter. Like 

Twitter,  the main operations are making a status update,  replying to others statuses and 

forward someone’s status. The underlying network is directed and relationships are named 

“followers”  and “following”  just  like  Twitter  does.  Also,  the  user  interface features known 

concepts from Twitter  and other social  networks,  like the timeline and an extra “replies”-

section. Figure 22 and 23 show the home screen of both applications that make the similarity 

visible.

29 http://status.net/
30 “PHP:  Hypertext  Preprocessor”  is  a  scripting  language  especially  suited  for  web  development 

(http://www.php.net/)
31 http://creativecommons.org/licenses/by/3.0/
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The main reason why we use Status.Net as one of the output methods is that it features a 

Twitter-compatible  API  which  enables  people  to  use  the same programs for  Twitter  and 

Status.Net by just changing the server address. Thereby, it is possible for developers to test 

any application designed to read the Twitter API without making supplementary changes. In 

addition, it enables the user to interact with the test environment, for instance, to log into a 

specific user's account and view all related messages to explore the communication flow.

Figure 22: Status.Net home screen
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3.2.4 Graph Generation
For the implementation of the graph generation described in the design part (3.1.3), we have 

used JUNG-Framework  that  supplies  all  necessary methods to create and manipulate  a 

network structure. As JUNG is already described in chapter 3.2.1, we will now focus on the 

implementation  of  our  theoretical  methods.  The  framework  is  already  providing  all  the 

relevant graph types suited for a variety of graph structures. For our purpose of imitating 

Twitter  we  used the class  DirectedSparseGraph that  gives  us  a graph only  allowing 

directed edges without self loops and permits parallel edges. A graph in JUNG is able to hold 

any  objects  as  nodes  and  edges  so  we  created  the  new  classes  TwitterNode and 

TwitterEdge which  get  the  desired  properties  and  functions  needed  in  the  simulation 

process. We have to pass it as a graph factory to the model generator as can be seen in 

Listing 2.

Factory<DirectedSparseGraph<TwitterNode, TwitterEdge>> graphFactory =
new Factory<DirectedSparseGraph<TwitterNode, TwitterEdge>>() {

@Override
public DirectedSparseGraph<TwitterNode, TwitterEdge> create() {

return new DirectedSparseGraph<TwitterNode, TwitterEdge>();
}

};

Listing 2: Defining a graph factory

Figure 23: Twitter home screen
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Class graphs.Node

In order to store the properties we have defined for our simulation in 3.1.4. We created our 

own node objects and added the appropriate variables. This is the basic node class that is 

intended  to  ease  the  implementation  of  additional  node  types,  for  example  when 

implementing another social network type. It provides an id (int) and a nextEvent (long) 

variable. The former is a provides a unique identifier, the latter will be used to store an event 

time used by the scheduler to cumulate events to a particular point in time.

Further the class defines variables for the properties that have been described before:

int  availabilityType;

double  availabilityLevel;

double  activityLevel;

LinkedList<Integer>  retweetedMessagesQueue;

Together  with  the  getter  and  setter  methods  this  is  the  blueprint  for  every  node  of  the 

application.

Class graphs.TwitterNode

The class TwitterNode will instantiate the node objects for the Twitter graph. It extends the 

graphs.Node class and adds methods used specially for Twitter nodes. To provide each node 

with an ability to remember which message has already been retweeted, it appends a list of 

retweeted messages (LinkedList<Integer> retweetedMessages). To limit this list it will 

make a simple size check before adding new message IDs:

public void addToRetweetedMessageQueue(int msgId) {
if (retweetedMessages.size() >= RETWEETED_MESSAGES_QUEUE_SIZE) {

retweetedMessages.removeFirst();
}
retweetedMessages.add(msgId);

}

Listing 3: Function addToRetweetedMessageQueue of TwiterNode

The  memory  of  nodes  can  be  adjusted  by  changing  the  size  of 

RETWEETED_MESSAGES_QUEUE_SIZE  allowing a node to remember more or less retweeted 

tweets.

Class graphs.Edge

The same way we implemented a base class for nodes, there is also a root class for edges 

to define basic functionality. These objects will be used as edges in the graph. As we do not 

need a lot of parameters attached to the edge in our simulation, this is a very simple class 

only providing a distinct  id (int) and a  closenessValue (double) variable that has to be 

between 0 and 1.
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Class graphs.TwitterEdge

The class used to emulate the Twitter network (TwitterEdge) does not need any further 

methods or variables inheriting all properties from graphs.Edge. It makes sure that the right 

edge type is used when more instances of Edge are implemented.

Class generators.ForestFireModelGenerator

As the Forest Fire Model is not yet available in Java its code has been reimplemented for this 

thesis extending the class EvolvingGraphGenerator provided by the JUNG framework. 

To evolve  the graph the method  evolveGraph() (see Listing  4)  has  to be called  which 

creates a new node, chooses one or more ambassadors and starts the burning process to 

link this node to others. In the end, all discovered nodes are linked to the new vertex and are 

given the possibility to link back to the new vertex. To change the number of ambassadors 

one  can  set  the  appropriate  property  in  the  settings  file.  Providing  a  maximum  of 

ambassadors, a random number up to this maximum will then be chosen as the number of 

starting nodes for the burning process.
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public void evolveGraph() {
  int randVertex;
  Vector<Node> toBeLinked = new Vector<Node>();
  // copy the preexisting Vertices
  Node[] preexistingNodesArray = new Node[mGraph.getVertexCount()]; 
  mGraph.getVertices().toArray(preexistingNodesArray);
  
  // STEP 1: Create a new Vertex
  Node newVertex = vertexFactory.create();
  // STEP 2: Get a random Vertex as Ambassador
  // adapt the number of ambassadors to preexisting nodes
  int ambassadors = 1;
  if(this.maxAmbassadors>1) {
    if (this.maxAmbassadors >= preexistingNodesArray.length/4) {
      ambassadors = (int)Math.ceil((double)preexistingNodesArray.length/4);
    }
    ambassadors = this.mRandom.nextInt(ambassadors)+1;
  }
  // STEP 3 burn through the ambassadors
  for(int i=0; i<ambassadors; i++) {
    randVertex = mRandom.nextInt(preexistingNodesArray.length);
    // STEP 4: remember this vertex as to be linked later
    toBeLinked.add(preexistingNodesArray[randVertex]);
    // STEPS 5-7 are applied by the function burn()
    toBeLinked = burn(preexistingNodesArray[randVertex], toBeLinked, 1);
  }
  // STEP 8: Add the new vertex and link all the discovered nodes to it
  mGraph.addVertex(newVertex);
  for (Node node : toBeLinked) {
    if (!mGraph.isSuccessor(newVertex, node)) {
      mGraph.addEdge(edgeFactory.create(), newVertex, node);
      // STEP 9: Backlink extension: allow nodes to link back
      if( mRandom.nextDouble() < blp ) {
        if (!mGraph.isPredecessor(newVertex, node)) {
          mGraph.addEdge(edgeFactory.create(), node,  newVertex);
        }
      }
} } }

Listing 4: Function evolveGraph of class ForestFireModelGenerator

evolveGraph() will call the method burn() that calls itself recursively to link to neighbours 

of  newly  discovered  nodes.  Because  already  discovered  nodes  should  not  be  followed 

anyway to avoid the algorithm from cycling, the extension of back-links is performed after the 

whole burning process has been finished (see Listing 4).

The method burn() takes three input parameters:

Node  node The currently active node to “burn” from.

Vector  toBeLinked A simple vector of nodes that holds already “burned” nodes.

int  depth A regulator to prevent the burning process to dig to deep

Additionally,  it  uses  parameters  that  are  globally  specified  for  the 

ForestFireModelGenerator:

double  pf Forward burning probability

double  pb Backwards burning probability
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For each edge type (incoming and outcoming) it performs the same procedure only varying 

the  corresponding  parameter p (pf  for  outgoing  and  pb  for  incoming  edges).  The 

corresponding parameter p is generating a geometric distributed random number x with 

mean
p

1−p
and  choosing  randomly x out  of  all  edges  of  that  direction,  or  all  if

x>(number of edges) . If the chosen nodes are not already part of the toBeLinked vector, 

they get added and the  burn() method gets evoked for each of them to recursively visit 

neighbours some hops away.  Listing  5 shows the source code of  the implementation  of 

function burn().
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private Vector<Node> burn(Node startVertex, Vector<Node> toBeLinked, int depth) {
  // if the depth limit is reached we stop here
  if (depth>= this.limitDepth) {  return toBeLinked;  }

  int x;  // Stores the random expression of the pf and pb
  double[] p = { pf, pb }; // Forward- and Backwardburning probabilitys
  ArrayList<Node>[] neighbours = new ArrayList[2];
  neighbours[0] = new ArrayList<Node>();
  neighbours[1] = new ArrayList<Node>();
  Vector<Integer> chosenNodes = new Vector<Integer>();
  neighbours[0].addAll(mGraph.getSuccessors(startVertex));    // followees
  neighbours[1].addAll(mGraph.getPredecessors(startVertex));  // followers

  for (int i = 0; i < 2; i++) {
    chosenNodes.clear();
    // STEP 5: Generate a geometrically distributed random number
    x = Distributions.nextGeometric(p[i], randGenerator);
    // STEP 6: Randomly choose x nodes linked to V (or all if x>all)
    if (!neighbours[i].isEmpty() && x > 0) {
      if (x < neighbours[i].size()) {
        int numChosen = 0;  int actRand;
        while (numChosen < x) {
          actRand = mRandom.nextInt(neighbours[i].size());
          while (chosenNodes.contains(actRand)) {
            actRand = mRandom.nextInt(neighbours[i].size());
          }
          chosenNodes.add(actRand);
          numChosen++;
        }
      } else {
        for (int j = 0; j < neighbours[i].size(); j++) {
          chosenNodes.add(j);
        }
      }
      // STEP 6b: Add the choosen Nodes from above
      Iterator<Integer> it = chosenNodes.iterator();
      while (it.hasNext()) {
        Node n = neighbours[i].get(it.next());
        if (!toBeLinked.contains(n)) {
          toBeLinked.add(n);
          // STEP 7: recursively apply this code to the new vertices
          Vector<Node> newVecs = burn(n,toBeLinked, depth+1);
          for (int k = 0; k < newVecs.size(); k++) {
            if (!toBeLinked.contains(newVecs.get(k))) {
              toBeLinked.add(newVecs.get(k));
            }
  } } } } } // close all brackets 
  return toBeLinked;
}

Listing 5: Function burn() of class ForestFireModelGenerator

Class generators.Initializer

To be able to load other graphs into the system we separated the initialisation of nodes and 

edges properties from the generation process. This class provides a convenient way to set all 

needed values by calculation of random numbers in a defined range. Therefore,  it  loops 

through all edges and nodes an sets the appropriate value.

The following settings can be made to the initializer changing its behaviour (Table 5):
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Property Name Default Description
actSourceRatio 0.1 Ratio out to in degree that specifies an information source
actSeekerRatio 0.1 Ratio in to out degree that specifies an information seeker

avtWeekdayRatio 0.6 ratio of weekday out of all availability types

avtWeekendRatio 0.2 ratio of weekend out of all availability types

avtAlldayRatio 0.2 ratio of allday out of all availability types

Table 5: Properties of the initialiser class

The properties actSourceRatio and actSeekerRatio assign the ratio of out- to in- and in- to out-

degree ratio respectively. If a nodes degree ratio is smaller then the provided value it will be 

set to the according activity type.

Availability  type is  assigned randomly  to  each node  using  the percentage values set  in 

avtWeekdayRatio,  avtWeekendRatio and  avtAlldayRatio. The total of all three ratios should be 

equal to 1, meaning 100%.

3.2.5 Communication Simulation
As described in section  3.1.4 (Event Types),  there are five main types of messages that 

evoke  different  behaviour  on  the  receiver's  side.  These  are  tweets,  mentions,  directed 

tweets,  replys and retweets. To distinguish them properly and to guarantee a convenient 

implementation of additional event types in the future, there is one class for each message 

type  that  provides  the  required  properties.  A  specific  trigger  function  will  specify  the 

appropriate action when this event takes place. Figure 24 shows the hierarchy of the classes 

of the events. Every event has to extend the class  Event to implement and override the 

abstract method triggerEvent() to successfully integrate into the simulation system.



52 Methodology - Implementation

Mentions, directed tweets, retweets and replys are actually messages like normal tweets but 

they have a different audience and are causing distinct reactions from the receiver. In Twitter 

these messages get distinguished by identifying key terms. This could possibly also be done 

whilst  simulation  but  because  we  already  know  the  intention  of  a  message  since  its 

generation, it does not make sense to throw that information away just to parse it in again a 

few minutes later to get the semantic back. To save that effort, each of these message types 

get their own class so that they can be easily be distinguished and are able to hold specific 

variables and functions. Because the types have similarities, we will make use of inheritance 

and declare  EventMention as subclass of  EventTweet.  EventDirectedTweet will be 

child class of EventMention and EventReply is subclass of EventDirectedTweet.

In the following paragraphs we will describe the event classes and their methods. It turnes 

out that the definition of proper event classes is one of the key factors for the simulation 

process.

Figure 24: Implemented events class schema
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Class events.Event

action when it is next in the queue. To be able to group events according to their intended 

behaviour, we added an simple event-type string variable. Besides, the following events we 

have implemented in this version of the application, it is possible to hook any other action in 

the  scheduler  to  be  performed  at  a  certain  point  in  simulation  time  by  extending 

events.Event. We will give some ideas for additional events in the chapter  Future Work 

(7.2).

Class events.EventTweet

This is the class for normal tweets. It extends the class events.Event 

that  defines  the  main  methods  for  all  events.  Because  every  other

message type is actually a modification of the basic tweet, it provides

the main properties for all other message types in this program.

In addition to the unique ID inherited from events.Event, it needs to

hold  the  sender  of  the  message  and  the  text  itself.  It  implements  the  abstract  method 

triggerEvent(),  which has to go through every node with an connected incoming edge 

(followers of this node) to activate their reactions. Because this class provides the most basic 

implementation of the triggerEvent() function we will attach its source code (Listing 6) to 

explain the concept of “message sending” that will also be used by the other types with some 

additional changes.

The functionality can be explained as follows: To get all followers of the sender the function 

calls JUNGs getPredecessors() function and then iterates over all of them to calculate for 

each node the likeliness to respond, depending on sender and receiver. This calculation of 

the probability is done by calcResponseWillingness(). The calculated value is compared 

to a threshold that can be adjusted in the properties file. If the decision is made in favour of a 

reaction  then  a  kind  of  response  has  to  be  chosen,  which  is  done  by  the  method 

getReactionEvent().  The  result  gets  added  to  the  scheduler.  Both  methods 

clacResponseWillingness() and getReactionEvent() are described in chapter Network

Behaviour (3.1.4). The source code can be found in the appendix (D.).
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Whether a reaction is taking place or not, the sender has to schedule it's next tweet-event to 

stay active.

@Override
public void triggerEvent(Scheduler scheduler) {
  // get all followers (in-edges)
  TwitterScheduler sched = (TwitterScheduler)scheduler;
  Collection<TwitterNode> c = sched.getGraph().getPredecessors(sender);
  Iterator<TwitterNode> it = c.iterator();

  // 1) the message is received by all followers, possibly evoking a response
  while (it.hasNext()) {
    TwitterNode reciever = it.next();
    // calculate a probability value for this node to decide a reaction
    double willingness = calcResponseWillingness(sched,sender,reciever);
    if (willingness >= sched.getWillingnessThresholdTweet()) {
      // add a proper reaction (retweet or reply) to the scheduler
      sched.addEvent( this.getReactionEvent( sched, reciever, this.getSender(),

willingness )
 );

    }
  }
  // 2) the node itself has to add its next tweet event in the future
  sched.addEvent(sched.getNextRandomTweet(this.sender));
}

Listing 6: Source code of the triggerEvent() function

Class events.EventMention

This class provides the extra capability of holding a list of nodes that

are  mentioned  in  the  tweet.  Moreover,  a  modified  version  of  the

triggerEvent()-function is implemented that has to differentiate in its

action between those nodes that are explicitly mentioned and the rest

of the receivers. All other properties and methods derive from the super

class events.EventTweet.

The difference in the  triggerEvent() function is an additional loop that goes through all 

mentioned nodes to calculate a response willingness with another probability. Because they 

are mentioned it is more likely for these nodes to produce a reaction.

Class events.EventDirectedTweet

appropriate nodes to iterate through.
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Besides the small  changes in  the  triggerEvent()-function,  its  main  role  is  to  make a 

distinction between this event and the other events so that the intention of the event is clearly 

stated.

Class events.EventRetweet

EventRetweet is  also  a  subclass  of  class  EventMention and

provides an extra property that stores the first message that has been

originally  retweeted (int originalMessage).  This  way it  is  ensured

that it is always clear if a tweet has already been retweeted even if the

message contained changes. In Twitter a change to the message text

of a retweet is often caused by edits of users who want to add a comment or have to shorten 

the text to conform to the 140 character limit when they try to add the name of the source. 

But because the meaning of a retweet does not change with these edits (at least from the 

senders  opinion),  it  is  important  to  make  sure  an  already  retweeted  message  can  be 

identified. To make this possible this original message ID is added to a limited stack of the 

node. It acts as the node's memory and thus can identify all other tweets deriving from the 

same original message as long as it stays in the stack.

The  triggerEvent() function is fairly the same as in  EventTweet.  The only difference 

between the two is another threshold because retweets are more likely to be retweeted then 

normal tweets.

Class events.EventReply

On the one hand a reply is like a directed tweet in the sense of that it

does include a mentioning that it addresses too. On the other hand it is

also similar to a retweet because it is a reaction to another message

that has to be referenced. We decided that a reply belongs to the group

of directed tweets because it covers the intention of the message a bit

more, which basically is to direct an update to a specific person rather than relaying some 

information to another audience.

The  EventReply adds  a  variable  originalMessage to  its  parent  class 

EventDirectedTweet through which it  identifies the update it  answers. A reply's trigger 

function  is  exactly  the  same as the one of  EventDirectedTweet.  Besides,  it  is  using 

another threshold value to separately control the amount of replys.
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Class simulation.Scheduler

The scheduler is the heart of the simulation process. It has to hold all events in a timely order 

and provide the ability to add new events at any time. At simulation time the scheduler has to 

call the events in the appropriate order and run their trigger function. Further, it provides an 

interface to the output methods.

This class defines the following variables:

long  startTime Start time of the simulation run

long  endTime End time of the simulation run

long  maxInterval Maximum timespan between updates.

double  cumulationThreshold Percentage of cumulated events

Table 6: Parameters defined in class Scheduler

All  variables of  Table  6 can be set  using the properties file.  While  startTime shifts  the 

simulation to a desired starting point, endTime acts as a stop criteria to limit simulation. It is 

set using one of the duration settings described in chapter  4. The value of  maxInterval 

influences the frequency of status updates because it limits the time between the current and 

the next update of a node. CumulationThreshold controlls the ratio of actual cumulation out 

of corresponding occurrences.

The main features of this class are first of all to add new events to the right place of the 

queue, and second of all, to trigger its behaviour. Both are rather simple, the latter (start()) 

is attached in Listing 7. It has to iterate over all events of the event list and trigger its action. 

Additionally, events are sent to output handlers if a appropriate connector is provided.

public void start() {
  // Iterate through the event list until stop criteria met
  while (!eventList.isEmpty() && !(modelCurrentTime >= modelEndTime)) {
    EventNote e = eventList.firstElement();
    this.setModelCurrentTime(e.getTime());
    eventList.remove(0);
    e.triggerEvent(this);

    // Propagate event to the chosen output
    if(useConnector) {
      for(ConversationConnector c:cc) {
        c.writeEvent(e);
      }
    }
  }
}

Listing 7: Function start() of class Scheduler
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Class simulation.TwitterScheduler

This is a specialisation of the scheduler for use for a Twitter network, extending the class 

simulation.Scheduler.  It  defines  the  thresholds  for  message  types  to  control  its 

distribution  and  provides  a  function  to  calculate  the  next  status  update  time  and  type 

according to the description in chapter 3.1.4.

3.2.6 Input and Output

Class io.TwitterGraphMLReader

We implemented a graph reader in order to be able to run several simulations with the same 

underlying graph structure and to enable sharing network data. A graphML reader and writer 

functionality is already implemented in the JUNG framework and must only be fed with the 

appropriate transformers to translate the properties of the new objects  TwitterNode and 

TwitterEdge in  graphml  syntax.  The  classes  io.TwitterGraphMLReader and 

io.TwitterGraphMLWriter provide a convenient way to read and write a Twitter graph 

with all its properties by providing the necessary transformers. Listing 8 shows a sample of a 

node transformer for the graph reader. The edge transformer follows the same pattern.

Transformer<NodeMetadata, TwitterNode> vertexTransformer = new
   Transformer<NodeMetadata, TwitterNode>() {
  @Override
  public TwitterNode transform(NodeMetadata metadata) {
    TwitterNode v = new TwitterNode(
      Integer.parseInt(metadata.getId()),
      Integer.parseInt(metadata.getProperty("avt")),
      Double.parseDouble(metadata.getProperty("avl")),
      Integer.parseInt(metadata.getProperty("act")),
      Double.parseDouble(metadata.getProperty("acl"))
    );
    return v;
  }
};

Listing 8: graphReader - node transformer

Class io.TwitterGraphMLWriter

In order to save our graph we use the graphML writer that is already implemented in the 

JUNG framework and extend it  with the required node and edge transformers using the 

addVertexData() and addEdgeData() methods. A sample for setting up the availability type 

property is provided in Listing  9. For each property a transformer has to be added to the 

writer using  addVertexData() to inform it of one's existence and define a transformation 

routine.
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graphWriter.addVertexData(
    "avt",
    "Description: ...",
    "0", 
    new Transformer<TwitterNode, String>() {
      public String transform(TwitterNode v) {
        return Integer.toString(v.getAvailabilityType());
      }
    });

addVertexData(key_identifier, description, default_value, transformer);

Listing 9: graphWriter - node transformer

Interface ConversationConnector

As we wanted to support various output methods we implemented a connector class that can 

be used as an interface between scheduler and output method. Each class that implements 

this interface can be passed to the scheduler which calls the  writeEvent() method each 

time an event gets triggered.

We have currently implemented three ways to save the output of the simulation for further 

processing, as Figure 31 shows. All messages that get produced can either be stored in a 

text file or in a Status.Net database. The text file format can be chosen between CSV and 

XML.

Class ConversationConnectorCSVWriter

This class provides a file writer to save all messages to CSV format. Because it implements 

the interface ConversationConnector it can directly be passed to the scheduler.

Fields are delimited by semicolon (;) and text is enclosed with double quotes (“). To ensure a 

proper handling all double quotes that appear in messages are replaced by single quotes. 

The field mentions can contain a list of user IDs separated by comma (,) if the event does not 

include any mention it is set to string “NULL”. The original message field contains the ID of 

the referred message or “-1” if none. Figure 32 shows a cut of a sample CSV text file and the 

parameters included.

Figure 31: Class diagram for output of conversations
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Class ConversationConnectorXMLWriter

To give the user more flexibility we implemented a XML-writer to store all communication in a 

XML-file. For this purpose we used XOM32 an open source API for XML processing in Java.

Every event has an attribute type that defines the event type, for example tweet, retweet, etc. 

and  holds  at  minimum the  child  elements  id,  msg and  sender, including  the  appropriate 

values. Replys, mentions and directed tweets get an additional element mentions with one or 

more child elements  mention.  A  origmsg  element is appended to retweets and replys that 

holds the message ID of  the retweeted/replied update.  Listings  10-13 show the resulting 

XML-syntax for tweets, directed tweets, retweets and replys. A complete sample XML output 

file is attached in appendix E.

<cxml:event type="tweet">
  <cxml:id>1117</cxml:id>
  <cxml:msg>1esgn4bfaug5c</cxml:msg>
  <cxml:sender>691</cxml:sender>
</cxml:event>

Listing 10: XML-syntax for tweets

<cxml:event type="directedTweet">
  <cxml:id>370</cxml:id>
  <cxml:msg>@user613 02ht7bt0dhy</cxml:msg>
  <cxml:sender>554</cxml:sender>
  <cxml:mentions>
    <cxml:mention>613</cxml:mention>
  </cxml:mentions>
</cxml:event>

Listing 11: XML-syntax for directed tweets

<cxml:event type="retweet">
  <cxml:id>1141</cxml:id>
  <cxml:msg>RT: 1esgn4bfaug5c</cxml:msg>
  <cxml:sender>14</cxml:sender>
  <cxml:origmsg>1117</cxml:origmsg>
  <cxml:mentions>
    <cxml:mention>691</cxml:mention>
  </cxml:mentions>
</cxml:event>

Listing 12: XML-syntax for retweet

<cxml:event type="reply">
  <cxml:id>1143</cxml:id>
  <cxml:msg>@user14 
90mkym4vl70</cxml:msg>
  <cxml:sender>694</cxml:sender>
  <cxml:origmsg>1141</cxml:origmsg>
  <cxml:mentions>
    <cxml:mention>14</cxml:mention>
  </cxml:mentions>
</cxml:event>

Listing 13: XML-syntax for replys

32 http://www.xom.nu/

Figure 32: Sample CSV content for the conversation output

id;time;eventType;sender;message;mentions;originalMsg
4;5650324;"tweet";2;"1xsp3a7vfvmvq";NULL;-1
8;9858924;"directedtweet";5;"fb@3tf11@12eykwcf";3,12;4
5;12570060;"tweet";11;"4x9upuje9s0o";NULL;-1
...



60 Methodology - Implementation

Class ConversationConnectorDB

Connecting the scheduler to a database follows the same rules as any other output method. 

It is done by extending class CoversationConnector and implementing a writeEvent() 

method to send event data to a database.

Status.Net provides an API to handle updates in a simple way. Although its usage would 

probably  be  beneficial  to  supporting  several  Status.Net  versions,  it  is  not  capable  of  all 

manipulations we need for the simulation. Because we are generating totally new networks, 

we have to ensure that its structure is the same within Status.Net. Therefore, it is necessary 

to delete and create users and messages.

The API makes use of PHP- and HTTP- URL parameters to receive a request. This may be a 

feasible method considering posting and receiving updates from time to time, but in our case 

we are producing hundreds, thousands or even millions of updates in a short time. Passing 

them through  HTTP-  requests  would  take  much more  time  and  would  in  most  systems 

probably result in a denial of service due to overloading of the PHP-service.

Therefore, we decided to write directly to the underlying database which can be considered 

the fastest  way.  We had to do some reverse engineering by looking for  changes in  the 

database when using the Status.Net web interface. This step was vital to get information 

about the changes that would have to be made in order to propagate an update correctly to 

the database. Affected tables are shown in Figure 33 as ER diagram33.

First, we need to initialise the database tables. The method initializeStatusNetUsers(), 

called at creation time of the connector, truncates all affected tables and creates all users, 

profiles and the appropriate relations matching the given graph. Each user has to get an 

entry in the “users”, “profile” and the “inbox” table. For each outgoing edge in our graph an 

entry to the subscriptions table has to be done to set up the follower / followee structure.

After initialisation, the connector is ready to write updates to the database translating Twitter-

Testbed's messages to the database schema. Because the appropriate entries depend on 

the message type and do not  equal their  representation,  this step cannot  be considered 

trivial. All major entries for a proper integration in Status.Net are listed in Tables 7-10.

For  each new message we have to create an entry in  table notice with  the appropriate 

values. Table 7 lists the important columns for individual updates. If the message does not 

belong to a conversation (for example normal tweets or directed tweets), a new dataset has 

to be added to the “conversation” table (Table 8 and the resulting ID has to be written in the 

conversation field of table “notice”. Each new message has to make an update to the “inbox” 

table (Table 10) adding the ID of the notice to the inbox of all receivers of that update.

33 The entity-relationship model is a conceptional representation of database tables and their relations.
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For replys the field reply_to of table “notice” has to hold the user's ID it is a reply to. Further, a 

new entry in the table “reply” (Table  9) has to be done. These messages are part  of  an 

ongoing conversation which has to be referenced in the  conversation field of table “notice”. 

Retweets have to put the ID of the retweeting message in field repeat_of of table “notice”.

Table Column Description

notice id Unique identifier taken from the Testbed application

notice content Message text

notice rendered Message text again, rendered for html output

notice url URL of this update (basis url + notice id)

notice created Timestamp of the updates creation in simulation time

notice conversation Id of conversation it belongs to

notice reply_to Id of the referenced user, if any

notice repeat_of Id of referenced message, if any

notice object_type Activity stream identifier for message type

notice verb Activity stream identifier for action type

Table 7: Status.Net database entries required for table notice

Table Column Description

conversation id Auto incremented identifier

conversation uri reference url to the conversation thread

conversation created Timestamp of the conversations creation 

Table 8: Status.Net database required entries for table conversation

Table Column Description

reply notice_id Id of the current notice

reply profile_id Id of the person this is a reply to

Table 9: Status.Net database entries required for table reply

Table Column Description

inbox user_id Id of the related user

inbox notice_ids List of notices received

Table 10: Status.Net database entries required for table inbox
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Figure 33: Status.Net affected tables EER diagram
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4 Application Usage
The Twitter-Testbed is a simple command-line tool that takes a properties file as input and 

produces the requested output. The decision to use a properties file as input in favour of 

other possibilities has been made due to its convenience in usage. It would be confusing to 

set  a  large  number  of  parameters  through  command-line  parameters.  A graphical  user 

interface is scheduled for the next version due to the large amount of changes concerning 

available  parameters during the development.  A properties  file  can easily  be edited and 

copied. Furthermore,it is possible to create several property files with different settings and 

save them to disk for later use. It  does also advance the ease of sharing graph data by 

passing this file to interested users.

To run Twitter-Testbed, just call the provided jar-file from within Java and provide a path to a 

valid properties file. The command-line expression would look like the following (Listing 14):

> java -jar twittertestbed.jar -f /path/to/properties.prop

Listing 14: Command-line starting command for Twitter-Testbed application

Below we will describe each property that can be set. An example properties file is attached 

in the appendix (B. Twitter-Testbed Properties File). It is important to only put the name of the 

parameter and the value in one line separated by a single space character.

Parameters for Graph Generation:

Parameter Example value Description

pf 0.8 Forward burning probability

pb 0.7 Backwards burning probability

blp 0.42 Back link probability

initVertices 1 Number of vertices to start with

maxAmbassadors 1 Max number of ambassadors a node can start with

limitDepth 100 Depth limit of burning process for more performance

maxNodes 1000 Number of nodes to be created

Table 11: Properties for process graph generation 

All parameters listed in Table  11 are described in detail in chapter  3.1.3 (The Forest Fire

Model). Besides the essential parameters pf, pb, blp and maxNodes we provide the possibility 

to  start  with  a  number  of  unconnected nodes (initVertices)  to  produce several  connected 

components. With maxAmbassadors it is able to connect far-apart nodes by letting a new node 

start  with  more then one random entry point.  Raising  initVertices without  the increase of 

maxAmbassadors causes the graph to split  into  initVertices parts because there will  be no 

possibility to link to an unconnected node. One might limit the depth of the burning process to 

limitDepth levels in order to speed up graph generation.
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If a graphML file is provided to read the contained network all of the parameters for the graph 

generation  process  are  obsolete  and  will  be  ignored.  How to  specify  input  and  output 

parameters is being discussed below. In order to run the graph generation process at least 

pf, pb, blp and maxNodes have to be provided. The rest is optional and will be initialised with 

the default values.

Parameters for Graph Properties Initialisation:

Parameter Example value Description
graphForceInitialise false Override graph properties of a loaded graph

actSourceRatio 0.1 Out  to  in  degree  ratio  specifying  a  information 
source

actSeekerRatio 0.1 In to out degree ratio specifying a information seeker

avtWeekdayRatio 0.6 Ratio for type weekday out of all availability types

avtWeekendRatio 0.2 Ratio for type weekend out of all availability types

avtAlldayRatio 0.2 Ratio for type allday out of all availability types

Table 12: Parameters for the graph's initialisation

The initialisation of  graph properties is  intended to run only if  a  graph does not  already 

provide this data. Nevertheless, the application can be configured to reinitialise a network by 

setting  graphForceInitialise to true. This way it is not necessary to run the graph generation 

again and again to try out different initialisation settings.

actSourceRatio and actSeekerRatio define at what ratio a node is considered to be of activity 

type information source or  information seeker,  considering out-to-in-degree and in-to-out-

degree ratio respectively.

All properties for the initialisation of graphs are summarised in Table 12. 
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Parameters for the Simulation:

Parameter Example value Description

startTime 0 Model start time as UNIX timestamp

duration 1000000 Maximum simulation duration in milliseconds

durationHours 10 Maximum simulation duration in hours

durationDays 1 Maximum simulation duration in days

randomness 0.1 Standard deviation of random values

maxInterval 400000000 Max. interval between updates in milliseconds

cumulation 0.3 Probability of cumulating events to the same time 

updateMentionRatio 0.027 Ratio of updates containing mentions

updateDirectedRatio 0.51 Ration of mentions being directedTweets

responseTweet 0.33 Probability of a response on tweets

responseDirectedT
weet

0.2 Probability of a response on directed tweets

responseMention 0.3 Probability of a response on mentions

responseRetweet 0.3 Probability of a response on retweets

responseReply 0.23 Probability of a response on replys

responseRetweet
Ratio

0.4 Retweet / reply ratio of responses

Table 13: Parameters for the simulation

To run a simulation a duration has to be provided in either milliseconds (duration),  hours 

(durationHours) or days (durationDays). If more than one of them is found they will be totalled, 

if  none  of  them  are  given  the  simulation  will  be  skipped.  Providing  a  startTime (UNIX 

timestamp)  will  move  the  simulation  to  run  from  that  starting  point  on.  By  changing 

maxInterval (milliseconds) it is possible to change the update frequency. The lower maxInterval 

is set the more updates will be sent per hour. If a node wants to place an event into the 

scheduler while there is already one taking place with this sender, these actions can be 

cumulated to happen at the time of the first event. Set cumulation to specify how many of  

these events will be cumulated. updateMentionRatio is telling the scheduler how many of new 

updates should contain mentions. updateDirectedRatio says how many of these mentions will 

be directed tweets. The probabilities for reactions can be set for each event type separately 

(responseTweet,  responseDirectedTweet,  responseMention,  responseRetweet,  responseReply). 

Finally, responseRetweetRatio defines the fraction of retweets out of all reactions, the rest are 

replys.
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Parameters for Input and Output:

Parameter Example value Description

graphLoadPath /path/g-in.graphml Absolute path to a valid graphML file

graphSavePath /path/g-out.graphml Absolute path to save the graph data

convCSVSavePath /path/conv.csv Absolute path to save the conversation as csv

convXMLSavePath /path/conv.xml Absolute path to save the conversation as xml

Table 14: Parameters for input and output

Table  14 shows all  possible input and output methods that can be specified. If  no graph 

should  be  loaded  but  a  new  one  generated,  one  has  to  remove  or  out-comment  the 

graphLoadPath property by putting a “#” in front of the line. All  paths are optional and the 

appropriate action will simply be skipped if the parameter is not provided or the path value is 

missing. Definitions of the output methods can be found in section 3.1.5.

Parameters for Status.Net:

Parameter Example value Description

host localhost/statusnet Host address including database name

username user1 Database username

password password Corresponding password

url http://localhost/statusnet/ Base url to the status net front-end

Table 15: Parameters for Status.Net

Valid credentials to an existing and properly set-up database has to be provided to be able to 

output the simulation to a Status.Net installation. How to set-up a Status.Net instance can be 

found on the website of Status.Net (34). It is advisable to create a database user that has only 

rights for  the Status.Net  database tables.  If  a  host  is  provided in  the properties file,  the 

application will try to login with the provided credentials and propagate all messages to the 

Status.Net database if a connection was successful. The value of  host has to include host 

address and database name in one string as the provided example shows (Table 15).

To  turn  this  feature  off,  simply  do  not  provide  these  key  value  pairs,  for  example  by 

commenting the affected rows out (in fact out-commenting the host line is sufficient).

34 http://status.net/open-source
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5 Evaluation
The  goal  of  this  thesis  was  to  built  a  Twitter-like  network  structure  and  simulate 

communication on the generated graph. We will  evaluate the output of our application by 

comparing it  to  metrics  of  the  Twitter  network  presented in  3.1.2 (Characteristics  of  the

Twitter  Network)  and  3.1.4 (Network  Behaviour).  In  our  evaluation  we  will  also  consider 

speed and memory consumption to provide a perspective of the usability of the application.

At first, we will address the graph generation considering structure properties, flexibility and 

capability. We will then get to the communication simulation looking at the adaptability and 

accuracy of the output.

For calculations of graph metrics we made use of built-in capabilities of the JUNG-framework 

as well as two freely available graph analysis tools, Gephi and nodeXL.

Gephi35 [45] is a free and open source tool intended for rich graph visualisation. It is running 

on Windows, Linux and Mac OS X operating systems and supports different source formats 

including GraphML. The program's main focus lies on real time visualisation and interactive 

exploration of large graphs. Besides a large variety of different visualisations, Gephi comes 

with  a  repertoire  of  metrics  that  can  be  calculated  and  plotted,  like  degree,  diameter, 

centrality and clustering coefficient.

Using the SNAP36 (Stanford Network Analysis Package) library by Jure Leskovec, developed 

at Stanford University, NodeXL37 [46] builds an easy-to-use graphical front-end integrated in 

Microsoft  Excel.  It  is  an open source project  of  the Social  Media Research Foundation38 

supported by Microsoft Research39 and has a interface to their graph gallery that enables the 

researchers to collectively share and gather data sets within the community. Importing and 

exporting graphs in formats like GraphML, Pajek, UCINet and others and the convenient 

usability of the result spreadsheet made it a useful tool for our evaluation. NodeXL does also 

support a variety of graph visualisations for graphical exploration.

For the evaluation we used a normal PC with a dual core 2.66 GHz CPU and 4GB memory.  

The operating system was a 32bit Microsoft Windows 7 Home Premium.

35 http://gephi.org/
36 http://snap.stanford.edu/snap
37 http://nodexl.codeplex.com/
38 http://www.smrfoundation.org
39 http://research.microsoft.com/en-us/collaboration/
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5.1 Graph Generation Metrics
In  this  chapter  we  will  evaluate  the graph generation  process and the properties  of  the 

generated  networks  structures.  The  basis  of  our  decision-making  as  to  whether  this 

procedure is a feasible replacement for crawling the Twitter network to gather test data relies 

on the metrics. Those metrics include factors like the execution time, memory consumption 

and the properties of the outputted graphs.

For this purpose we generated seven graphs ranging from 1,000 to 100,000 nodes in size. 

We fitted the parameters of the generation process to produce networks that exhibit similar 

structural properties as those we have found in literature for the original Twitter network.

5.1.1 Reality Conformance
We focused on the clustering coefficient and the reciprocity because most of the metrics are 

biased by the overall size of the network. For both metrics we considered a deviation of less 

than 0.01 as satisfying. Then we generated graphs varying the models parameters untill they 

had, according to the metrics of Twitter presented in 3.1.2, a clustering coefficient between 

0.10 and 0.12 and a reciprocity between 0.57 and 0.59.  Table  10 shows the evaluation 

graphs including clustering coefficient, reciprocity and creation time. A list of all calculated 

metrics for these networks and the configuration parameters can be found in the appendix (F. 

Evaluation Graphs).

Nodes 1,000 5,000 10,000 15,000 20,000 50,000 100,000

Edges 1,700 8,543 17,168 25,818 34,312 85,550 171,435

Clustering coefficient 0.1 0.115 0.121 0.116 0.117 0.112 0.116

Reciprocity 0.598 0.583 0.585 0.589 0.582 0.585 0.585

Creation time < 1s 2s 11s 15s 20s 2m 46s 12m 49s

Table 16: Evaluation of generated graphs (main figures)

By varying the parameters of the Forest Fire Model we fitted the desired graphs to match 

clustering coefficient and reciprocity in four attempts at the most. The values forward burning 

probability  (pf)  and  backwards  burning  probability  (pb)  that  are  affecting  the  clustering 

coefficient  in  the  way  that  a  rise  in  either  of  the  parameters  brings  a  reduction  of  the 

coefficient. Reciprocity is best controlled by the back-link-probability (blp). The higher the blp 

the higher the reciprocity will be.
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5.1.2 Speed
Our approach of generating test-data for social network applications should be less time-

consuming  compared  to  the  process  of  gathering  graph  data  from the  original  network. 

Nevertheless, generating big graphs with the Forest Fire Model may also take up much time. 

Generating graph data can even take up to days when a big amount of  data has to be 

produced, e.g. millions of nodes and edges.

To be able to compare the graph generation process to the process of crawling Twitter's data 

the resulting network has to be similar in terms of nodes to edge ratio. We have shown that  

the clustering coefficients and the reciprocity match Twitter's figures in all of our evaluation 

sets  and  recorded  the  duration  from  the  initialisation  to  the  termination  of  the  creation 

process. Measured times are included in Table 16.

The creation time is  increasing exponentially to  the graph's  size because of  the burning 

process of  the  Forest  Fire  Model.  The shape  of  the  line  plot  in  Figure  34 indicates  an 

exponent of 1.5 visualised by the green reference curve.

The recursive burning process can be tweaked to be faster by reducing the recursion depth. 

Still, it should be pointed out that if speed is the main concern, for example to generate large 

graphs in short time, the Forest Fire Model might not be the right choice and should probably 

be replaced by faster algorithms. Other algorithms like the nearest neighbour model could 

bring a speed boost.  Again, see the works of Sala et al.  [31] for a comparison of graph 

generation models.
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5.1.3 Memory
When it comes to memory consumption, both, the edges and nodes have to be taken into 

account. Because node objects have more properties then edges, they weight heavier in 

memory  consumption.  This  can  also  be  seen  in  Figure  35,  showing  three  curves  with 

different node to edge ratio. For the blue line we generated a graph with very few edges 

where the top value of 141 MB has a ratio of 101,000 nodes to 100,999 edges (almost 1:1). 

The opposite is true for the green line reaching 57 MB with 541 nodes and 292,140 edges 

(1:540). A realistic ratio setting has been chosen for the red curve taking up 148 MB with 

99,991 nodes to 171,230 edges (1:1.7). By the form of the curves it can be concluded that 

there  is  a  linear  correlation  between  memory  consumption  and  objects  in  the  graph 

depending heavily on the number of nodes.

Either way, for the purpose of aiding the development, graphs up to 100,000 nodes should be 

sufficient and do not raise problems with memory consumption.

5.2 Communication Evaluation
Communication in social networks is a complex process that we wanted to reproduce only at 

a very basic stage.  Still,  we will  answer the question of  to what  amount these randomly 

created messages meet observations in the real graph. To evaluate the usability in practice 

we will provide some benchmarks like memory consumption and duration of simulation.
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5.2.1 Reality Conformance
In chapter  3.1.4 (Network Behaviour) we have described all metrics found in research and 

presented calculations for the distribution of different message types. The resulting figures 

are shown in Table 10. A description of message types and a picture of the brake-down can 

also be reviewed in this chapter. Additionally, we calculated the frequency of updates per 

user from [6], [10] and [36] to adapt the interval of messages. [10] provides us with average 

posts per day and a timespan for the dataset, [36] presents start and end of data collection, 

number of users in the set and total updates. From these figures we got diverse results of 

0.30 and 1.24 respectively,  suggesting the truth lies somewhere in  between.  The official 

figures presented by Twitter at a developers conference in 2010 [6] give us registered users 

and updates per day to calculate a number of 0.52 updates per day and user.

Message type quota

Tweets 69%

Mentions 1%

DirectedTweets 1%

Retweets 5%

Replys 24%

Table 17: Quota of message types in Twitter

Now that we have an arrangement of metrics to compare with the output of our application, 

we tried to tweak simulation parameters to produce an output with similar conformation. It 

takes some time until  the distribution of overall  messages and message types reaches a 

stable point because the simulation process is initialized with updates of type "normal" tweet. 

We plotted a simulation of a 10,000 nodes network generated with the Forest Fire Model,  

which is included in the testbed in Figure 36. This run lasted for ten days and ten hours in 

simulation  time  which  were  seven  seconds  in  real  life.  It  can  be  seen  that  it  took 

approximately 60 hours of continuous increase to get a stable level of updates per hour. 

Between 200 and 300 updates per hour in a 10,000 nodes-network equals to an update-

frequency between 0.48 and 0.72 messages per day and user. The exact value for the whole 

simulation was 0.56 updates per person and day. This perfectly fits the specifications. Ratios 

of message types are presented in Table  18. Considering that we use a Gaussian normal 

distribution  with  a  standard deviation  of  0.1 to  randomise all  reactions,  the  data fits  the 

specifications of Table 17 very well. Although one might find slight deviations here, they are 

justified by the randomisation steps implemented.
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Message type quota benchmark

Tweets 72.9% 69%

Mentions 0.9% 1%

DirectedTweets 1.0% 1%

Retweets 5.4% 5%

Replys 19.6% 24%

Table 18: Ratios of message types in simulation (10,000 nodes; 10 days)

It  has  to  be  said  that  the  communication  depends  on  many parameters  and  the  graph 

structure it is working with. If the simulation runs on a very different network structure, even 

with the same parameters, the results may be completely different. The settings we used for 

this evaluations result are listed in the appendix (G.).

We created several graphs of different sizes in order to see how fragile the communication 

process is. Therefore we run simulations on these graphs with the same settings. We got 

almost the same figures and did not have to change settings to get satisfying results. To 

continue our thought process, this would mean that once a properties file is adjusted to the 

needs it can easily produce an unlimited number of different social network simulations with 

akin metrics. Moreover, one does not have to change settings to test on a bigger network. It 

is possible to expand the test data set in conformance to the development stage by only 

changing the size of the network through the number of nodes.

Figure 36: Number of updates in a simulation run (10,000 nodes; 10 days simulation)
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5.2.2 Speed
Speed is an important factor for the usability of our software in terms of generating multiple 

large graphs. For the development and evaluation of our software we hat to create a large 

amount of graphs. Thereby we realised that a graph generation process has to be finished 

within  a  certain  time  limit,  otherwise  the  process  is  getting  infeasible  for  intense 

investigations.

The speed of communication does not only depend on the size of the graph but also on its 

structure and of course on the parameters of the simulation process itself. Still, we want to 

present  a  reference  point  of  the  time  consumption.  For  this  matter  we  first  tested  the 

simulation on the seven datasets we already used for evaluation of the graph generation 

process (5.1). As can be seen in Figure  37, the time it takes to run a simulation increases 

exponentially. The blue line shows the time it took to simulate ten days with different network 

sizes and the red line is a fitted exponential function. While 20 minutes is a justifiable amount 

of  time to simulate a network with 100,000 nodes and to produce a number of  537,081 

messages, the exponential form predicts a long waiting time when the size increases to the 

one of a real network with over 300,000 millions of nodes.

Figure 37: Duration of the simulation process

1000 5000 10000 15000 20000 50000 100000
00:00

00:02

00:05

00:08

00:11

00:14

00:17

00:20

nodes

tim
e



74 Evaluation - Communication Evaluation

5.2.3 Memory Consumption

Memory  consumption  of  the  communication  process  is  slightly  increasing  over  time  but 

should reach a stable limit when the update frequency gets to its normal range. Figure  38 

shows the maximum memory used in a ten-days simulation run (simulation time). Again, the 

seven graphs and the simulation settings in prior evaluations are used. Initially, starting with 

memory used to load the graph and initialising the scheduler shows a linear increase untill it 

reaches a stable maximum. For the biggest graphs (10,000 and 50,000 nodes) this limit is 

not reached within ten days of simulation time. All of these simulation runs had an average of 

0,53 to 0,55 updates per node and day. One can see the average updates per hour in Table 

19. Memory consumption of the simulation process is depending on the updates frequency. 

By comparing Table 19 with Figure 38, it can be seen that the gap between the two biggest 

networks is present in terms of memory consumption and in terms of updates per hour.

nodes 1,000 5,000 10,000 15,000 20,000 50,000 100,000

updates / node / day 0,5483 0,5358 0,5404 0,5304 0,5367 0,5426 0,5384

updates / hour 22,8 111,6 225,2 331,5 447,2 1130,4 2243,3

Table 19: Updates per hour in different graph sizes

Figure 38: Memory consumption of different graph sizes over time
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6 Conclusion
The importance of social networks for the research community has grown in recent years 

also because of the increasing amount of people using these services. The expansion of 

social networks has lead to the development of new software to access and interpret the 

structure of these networks. Thus, the creation, investigation and analysis of new software of 

that kind has become a major subject of interest within the scientific research community. 

Although many teams around the world are working on projects concerning the same popular 

social  networks,  there are only a few datasets available for  testing new hypotheses and 

applications in the development stage. A literature research revealed that there are only two 

datasets for the Twitter network available for the public. By looking for reasons of this lack of 

provided training sets, we found out that it is a difficult and time-consuming task to gather 

data from social networks and that sharing this data raises some problems with the networks 

privacy policies. We came to the conclusion that another way has to be found to provide the 

scientific community with an appropriate amount of test data. Therefore, we came up with a 

solution that is applied in many other areas with similar problems. The project idea was to 

built a social network testbed to overcome this gap and speed up development.

In this thesis we introduced a solution for the widely-spread problem of test data distribution. 

The Twitter-Testbed is able to reproduce graph structures similar to the real Twitter network 

and runs a simulation of communication that meets the observations of the original service. 

This  way  we  were  able  to  produce  an  infinite  amount  of  test  data  without  having  to 

experience limitations due to privacy concerns. The produced data can be accessed in the 

same way as the original one and keeping additional adaptations marginal.

Generally,  choosing Twitter  as the first  network to simulate turned out  to be clever idea. 

Nevertheless, we had to face several drawbacks, First of all, we only found few studies about 

its structure and its behavioural aspects which made it difficult to adapt our results to the real 

network. One clear advantage of having chosen Twitter to simulate is the simplicity of the 

message types. This benefit was especially noticeable in the design process. Although we 

were able to adapt our system to the data we had, it is possible that they are not properly 

reflecting the real network and moreover bias our results. Considering the fact that, rather 

than replacing the original network, the purpose of the software is to produce a test bed, we 

are certain that the requirements are being met in most of the cases.

The Twitter-Testbed is  able to produce random graph structures.  Nevertheless,  it  can be 

parametrised to fit characteristics of real social networks. It is possible to produce all sizes of 

networks and save data for a graphML file for further analysis. Additionally, the opportunity to 

load graphs into the testbed enables the user to make use of already prepared networks or 
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even import data gathered from the real network instead of creating a random graph. Time 

and memory consumption are feasible to produce graphs up to 100,000 nodes instantly 

without the need of extra resources.

With  the  presented  evaluation  results  we  confirmed the similarities  between  the original 

network and the artificially created graphs. We have also proven the possibility of generating 

huge graphs consisting of  millions of  nodes and edges.  Although there are difficulties in 

telling how similar the structures of original and artificial network really are, we are certain  

that our evaluated graphs exhibit a feasible amount of similarity that serves as a foundation 

for application testing.

Communication simulation has been added to the testbed and successfully used to produce 

realistic interaction patterns. We have implemented different message types and are able to 

produce a similar message flow to the one expected from the original network in terms of 

number  of  different  messages  and  update  frequency.  With  the  possibility  to  access  the 

resulting data in different ways it is ensured that the application can widely be used without 

the need to make changes to either our application nor the users development project. In 

addition to storing the data in a CSV- and XML-file, we connected the whole process to a 

Status.Net instance. Runing the simulation combined with a Status.Net instance gives the 

opportunity to access the data with the same tools that can be applied on the original Twitter 

network. Thus, communication can be retrieved in real-time while the simulation process is 

running.

We showed  that  our  simulation  design  is  adjustable  to  produce  the  desired  amount  of 

messages and the given ratios of message types. The whole process from graph generation 

to output of simulated communication data can be controlled by a few parameters that are 

stored in a properties file. This way it is possible for people around the world to work on the 

same datasets without facing the problems of interchanging huge amounts of data by sharing 

the properties file used. The produced data can be shared and published without restrictions 

because no private data is being used.

We provided an overview of the characteristics of Twitter and justified our decisions as to 

why we used this network as the first network to simulate in our testbed. Then, we presented 

the design and implementation of a random graph generation process based on the Forest 

Fire  Model  to  rebuilt  Twitter's  network  structures.  We came up with  a  simple  simulation 

strategy  and  we  have  given  an  insight  into  the  design  and  the  implementation  of  our 

simulation procedure and showed the influencing properties. In the end, we provided some 

figures to show the conformance of our output of the observations in prior works and tested 

the application for usability factors.
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To sum up, we have designed and implemented a comprehensive simulation of the Twitter 

network that can be adjusted to fit to requested parameters and is capable to produce an 

unlimited amount of test data. The accessibility of large amounts of test data and the ability to 

grow sizes of test-graphs with development progress has the potential to raise the quality of 

affected software and at the same time reduces deployment costs.
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7 Future Work
We have shown that it is possible to generate a graph with the properties of a given real  

network in a reasonable amount of time concerning a test environment. We have also shown 

that the simulation of the communication can be done to produce an almost infinite number 

of test data. This project can be regarded as a prototype because there are some issues that 

could  be  improved.  The  following  chapter  is  dedicated  to  the  ideas  of  possible  further 

enhancements.

7.1 Graph Generation
In  the  beginning,  the  lack  of  available  statistical  measures  about  the  Twitter  network 

surprised us authors. From the few works we found, only a very small portion investigated 

the overall  network.  Therefore,  the calculated metrics where not  all  consistent.  For  most 

scientific investigations dealing with Twitter the structural properties are a crucial point that 

has to be taken with huge consideration. Nevertheless, the few available sources that we 

managed to find gave enough input to produce a prototype application and to evaluate if it is 

able to reproduce the data provided. One other important thing is that it has to be clear that 

the produced output is only a representation of the input we had. For further improvement or 

productive  usage  of  this  software  we  strongly  recommend  studying  the  structure  of  the 

desired network in detail.  For other social  network services there may be more scientific 

works  available  to  base  on.  Nevertheless,  SNSs  are  growing  fast  and  are  constantly 

changing their structure. It is therefore necessary to make sure the properties one retrieves 

from these  works  are  up-to-date  and  calculated from a  large  enough  source to  draw a 

conclusion for the overall graph.

The graph generation process is open for further improvements concerning different aspects. 

It  is possible that other models can produce an even more realistic representation of the 

desired network or have other advantages that favour their use for a specific goal. Some 

other models have been introduced in this paper (see 2.1 Graph Generation) and even more 

material can be found in literature. It  would be interesting to test the influence that other 

graph generation models have on our application.

It is also possible to improve the Forest Fire Model that we used in this thesis the same way 

we  did  with  our  extension  to  the  model  (3.1.3 Extensions  of  the  Model)  and  to  further 

experiment with the parameter settings to achieve better results. In the end, the fact remains 

that  all  of  these improvements are limited due to the quality of  upcoming studies of  the 

network structure and the conclusions that are drawn within these works. 
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Connecting the graph-building process to a database as a storage engine would not only 

offer  an  increase  in  the  dimension  limits  by  bypassing  the  size  restrictions  of  the  main 

memory, but also facilitate the calculation of many large-scale metrics. Moreover, it would 

offer an easy way to access the data for further investigations. Pre-fetch strategies could be 

used to increase the speed, depending on the intended model.

7.2 Communication Simulation
In  this  paper  we  tried  to keep the simulation  as simple  as possible.  Therefore,  we only 

included parameters in the model that we decided to be indispensable to produce reasonable 

message flow.  Depending on the requirements there always has to be found a balance 

between simplicity and speed on the one hand and customisability and authenticity on the 

other hand. Either way, here are some possible extensions to the simulation that we would 

like to add in future works:

Hashtags are a common way in Twitter to denote the topics of a message. Implementing a 

hashtag repertoire that populates tags into random messages would not only enhance the 

message body with a new feature to be analysed, but also could provide a decision-making 

aid for the reaction part. By adding some kind of profile information to the node including 

topics of interest, it would be possible to impact the reaction strategy by the accordance of 

hashtags and topics of interest.

Concerning networks that should represent a group of people who are spread all over the 

world, an important aspect is time variation. There are people located on one side of the 

globe who are active because it is day, others are passive because it is night and they might 

be asleep. The simulation would be more realistic if a day- and night-cycle were added to the 

message flow.

Including some kind of location position into the user's profile could influence the activity time 

of that node depending on time zones. Additionally, the geographic closeness of two nodes 

could influence the probability of a reaction. This geographic location information could be set 

by clustering the node space in strongly connected components, so called communities [47]. 

The timing of messages is what really defines a viral spread from within the network. An 

improvement in the calculation of the point-in-time when a reaction is taking place could 

make it possible to reflect this interesting phenomena in the simulation data.

In the current state simulation and graph generation are completely separated from each 

other. The reason is because it makes it possible to save and load graphs independent from 

the simulation process. For small networks, let us assume that one network only has 1,000 

nodes, it is feasible to make a simulation on a non-growing snapshot of a graph. Depending 
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on the question that is being raised, it might not make a difference even with larger graphs. In 

fact, one aspect of social networks that is often mentioned, not only in scientific papers, is 

that they are growing fast. Thinking of a social graph containing over ten thousands of nodes, 

it is very unlikely that there is no change in network structure even in a small time-frame that 

only includes some hours. Although the study of dynamics graphs of social network graphs 

has only recently begun, they would certainly depict reality more appropriately if the structure 

changes  during  the  simulation  process.  This  could  be  achieved  by  implementing  an 

additional event type that adds a new node to the graph when triggered.
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B. Twitter-Testbed Properties File
##### General settings #####
seed = 325987520
debug = false
printStatistics = true

#### Forest Fire model settings ####
pf = 0.8
pb = 0.7
blp = 0.42 
initVertices = 1
maxNodes = 100
maxAmbassadors = 1
limitDepth = 100

##### Initialiser settings #####
graphForceInitialise = false;
actSourceRatio = 0.1
actSeekerRatio = 0.1
avtWeekdayRatio = 0.6
avtWeekendRatio = 0.2
avtAlldayRatio = 0.2

##### Scheduler settings #####
startTime = 0
duration = 1000000000
durationHours = 0
durationDays = 10

randomness = 0.1
maxInterval = 400000000
cumulation = 0.3

updateMentionRatio = 0.027
updateDirectedRatio = 0.51

responseTweet = 0.33
responseDirectedTweet = 0.2
responseMention = 0.3
responseRetweet = 0.3
responseReply = 0.23
responseRetweetRatio = 0.4

##### Input / Output settings #####
graphLoadPath = C:\\test.graphml
graphSavePath = C:\\test.graphml
convCSVSavePath = C:\\testCSV.csv
convXMLSavePath = C:\\testCSV.csv

##### Status.Net Settings #####
host = localhost/statusnet
username = twittertestbed
password = twittertestbed
url = http://localhost/StatusNet/

###############################
(random generator seed)
(Print debugging information)
(Print basic metrics)

###############################
(forward burning probability)
(backward burning probability)
(back link probability)
(number of vertices to start with)
(number of nodes to create)
(max Ambassadors to be linked to)
(Limits depth of burning process)

###############################
(override graph properties)
(ratio specifying a Infor-Source)
(ratio specifying a Info-Seeker)
(ratio, weekday of all availability types)
(ratio, weekend of all availability types)
(ratio, allday of all availability types)

###############################
(model start time)
(max duration of the simulation)
(duration in hours)
(duration in days)

(standard deviation for randomisation)
(max time between events in milliseconds)
(probability of cumulation)

(ratio of updates including mentions )
(ratio of mentions being directed)

(response threshold for tweets)
(response threshold for directed tweets)
(response threshold for mentions)
(response threshold for retweets)
(response threshold for replys)
(ratio of reactions being retweets)

###############################
(Load graph from file)
(Save GraphML file)
(Save CSV Message list)
(Save conversation to XML file)

###############################
(MySql host address incl db name)
(DB username)
(DB password)
(Base URL of Status.Net instance)

Listing 15: Sample properties file

III
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C.Sample graphML File
Sample graphML file produced by the Twitter-Testbed application.

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">

  <key id="avt" for="node">
    <desc>Availability Types describe when a user is usually using the service</desc>
    <default>0</default>
  </key>
  <key id="acl" for="node">
    <desc>Activity Level is an indicator for how often a user gets active (tweets)</desc>
    <default>0</default>
  </key>
  <key id="avl" for="node">
    <desc>The Availability level is an indicator of how often a user checks the latest messages.</desc> 
    <default>0</default>
  </key>
  <key id="act" for="node">
    <desc>Activity Type is used to mark the users intention in using the network</desc>
    <default>0</default>
  </key>
  <key id="c" for="edge">
    <desc>The closeness value is a synonym for friendship tightness</desc>
    <default>0</default>
  </key>

  <graph edgedefault="directed">
    <desc>This is a Graph generated by a model implemented by Andreas Scharf 
          at the Distributed System Groups of the Technical University Vienna.
          (Vertices: 5 Edges: 10)</desc>

    <node id="2">
      <data key="avt">1</data>
      <data key="acl">0.4589039681992828</data>
      <data key="avl">0.5140197147718047</data>
      <data key="act">0</data>
    </node>
    <node id="1">
      <data key="avt">0</data>
      <data key="acl">0.8534815655725531</data>
      <data key="avl">0.02407301788226368</data>
      <data key="act">1</data>
    </node>
    <node id="3">
      <data key="avt">0</data>
      <data key="acl">0.45322491883345195</data>
      <data key="avl">0.9407195036895842</data>
      <data key="act">1</data>
    </node>
    <node id="4">
      <data key="avt">2</data>
      <data key="acl">0.7673385391215849</data>
      <data key="avl">0.8818601759865199</data>
      <data key="act">2</data>
    </node>
    <node id="5">
      <data key="avt">0</data>
      <data key="acl">0.7117114942639918</data>
      <data key="avl">0.42228491860858364</data>
      <data key="act">1</data>
    </node>

    <edge id="5" source="1" target="4"><data key="c">0.05788996773995292</data></edge>
    <edge id="8" source="4" target="5"><data key="c">0.693609748639321</data></edge>
    <edge id="0" source="2" target="1"><data key="c">0.6975718207087579</data></edge>
    <edge id="9" source="5" target="1"><data key="c">0.3953000172947976</data></edge>
    <edge id="6" source="4" target="3"><data key="c">0.7219677364814028</data></edge>
    <edge id="2" source="2" target="3"><data key="c">0.38869866008561116</data></edge>
    <edge id="4" source="4" target="1"><data key="c">0.80594617523336</data></edge>
    <edge id="3" source="4" target="2"><data key="c">0.330019988437524</data></edge>
    <edge id="7" source="5" target="4"><data key="c">0.8390112035849809</data></edge>
  </graph>
</graphml>

Listing 16: Sample graphML file
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D.Source Code Samples
protected double calcResponseWillingness( TwitterScheduler sched,

   TwitterNode sender,
   TwitterNode reciever ) {

  Graph<TwitterNode, TwitterEdge> g  =  sched.getGraph();
  Edge e;
  if((e = g.findEdge(reciever, sender)) != null) {
    double c   =  e.getClosenessValue();
    double acl =  reciever.getActivityLevel();
    double fx  =  (c*acl/2);
    double gx  =  fx + sched.rand.nextGaussian()*sched.getRandomness();
    
    return Math.abs(gx);
  } else {
    return 0;
  }
}

Listing 17: Source code of the calcResponseWillingness function

public EventNote getNextRandomTweet(TwitterNode sender) {
  double acl       =  sender.getActivityLevel();
  double avl       =  sender.getAvailabilityLevel();
  double act       =  sender.getActivityTypeValue();
  double rand      =  this.rand.nextDouble();
  int numFollowees =  this.getGraph().getSuccessorCount(sender);
  Event e;
  // Decide whether this message should include a mentioning
  if(rand<this.mentionsRatio && this.getGraph().getSuccessorCount(sender)>0) {
    // Choose one of the followees randomly as mentioning
    TwitterNode[] nodes = { this.getGraph().getSuccessors(sender)

.toArray()[this.rand.nextInt(numFollowees)]};
    // Decide if this mention is also a directed tweet
    if (rand < (this.mentionsRatio*this.directedRatio)) {
      e = new EventDirectedTweet(sender, this.getRandomDirectedMsg(

nodes[0].getId()),nodes );
    } else {
      e = new EventMention( sender, this.getRandomMentionMsg(

nodes[0].getId()), nodes);
    }
  } else {
    e = new EventTweet(sender, this.getRandomMsg());
  }
  // calculate time of the event
  double fx    =  ((acl+avl+act)/3);
  double gx    =  fx + this.rand.nextGaussian()*this.randomness;
  long eventTime  =  Math.abs(Math.round((1-gx) * this.getMaxIntervall()));
  EventNote n = new EventNote(eventTime, e);
  return n;
}

Listing 18: Source code of the getNextRandomTweet() function
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insertNotice = conn.prepareStatement("INSERT INTO notice VALUES" +
"(?, ?, ?, ?, ?, NULL, FROM_UNIXTIME(?), NOW(), ?, 1, '"+source+"', ?," +

"NULL, NULL, NULL, NULL, ?, ?, ?, ?);");
insertReply = conn.prepareStatement("INSERT INTO reply VALUES" +

"(?, ?, NOW(), NULL);");
insertConversation = conn.prepareStatement("INSERT INTO conversation VALUES" +

(NULL,CONCAT('"+apiURL+"index.php/conversation/'," +
(SELECT MAX(c2.id)+1 FROM conversation c2)),NOW(),NOW());" +
,Statement.RETURN_GENERATED_KEYS);

int conv;
insertNotice.setInt(1, id);  // id
insertNotice.setInt(2, sender);    // profile_id
insertNotice.setString(3, apiURL+"index.php/notice/"+id);  // uri
insertNotice.setString(4, msg);    // content
insertNotice.setString(5, msg);    // rendered
insertNotice.setLong(6, time/1000);  // time of the post (only till seconds part)
if(type=="reply"){
  insertReply.setInt(1, id); // Notice ID
  insertReply.setInt(2, mentions[0]);  // ID of referenced message
  insertReply.executeUpdate();
} 
// if this message refers to another message use its conversation 
if(origMsg>-1) {
  queryConversation.setInt(1, origMsg);
  ResultSet rs = queryConversation.executeQuery();
  conv = rs.getInt(1);
  insertNotice.setInt(7, mentions[0]);  // reply_to
  insertNotice.setInt(9, origMsg);  // repeat_of
} else {
  insertConversation.executeUpdate();
  ResultSet rs = insertConversation.getGeneratedKeys();
  conv = rs.getInt(1);
  insertNotice.setNull(7,1);    // reply_to
  insertNotice.setNull(9,1);      //repeat_of
}
insertNotice.setInt(8, conv);     // conversation
insertNotice.setString(10, objType);    // object_type
insertNotice.setString(11, verb);    // verb
insertNotice.setInt(12, 1);        // scope
insertNotice.executeUpdate();
insertNotice.clearParameters();
// If the message includes mentions
if(mentions!=null) {
  for(int m:mentions) {
    insertReply.setInt(1, id); // Notice ID
    insertReply.setInt(2, m); // ID of the mentioned user
    insertReply.addBatch();
  }
  insertReply.executeBatch();  // Execute insert query
  
}
//put the notice in the followers inbox
if(scope != 2) {
  updateInbox.setBytes(1,ByteBuffer.allocate(4).putInt(id).array());
  updateInbox.setInt(2, sender);
  updateInbox.execute();
}

Listing 19: Source code snippet of Status.Net connector
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E. Sample XML Output File
<?xml version="1.0" encoding="UTF-8"?>
<cxml:conv xmlns:cxml="http://www.tuwien.ac.at/infosys/TwitterTestbed/ConvXML">
    <cxml:event type="tweet">
        <cxml:id>1</cxml:id>
        <cxml:msg>p5sbtd92fhhy</cxml:msg>
        <cxml:sender>1</cxml:sender>
    </cxml:event>
    <cxml:event type="directedTweet">
        <cxml:id>2</cxml:id>
        <cxml:msg>@user1 3xjy7jsjimn</cxml:msg>
        <cxml:sender>2</cxml:sender>
        <cxml:mentions>
            <cxml:mention>1</cxml:mention>
        </cxml:mentions>
    </cxml:event>
    <cxml:event type="tweet">
        <cxml:id>3</cxml:id>
        <cxml:msg>rhl9s4ol4ylr</cxml:msg>
        <cxml:sender>3</cxml:sender>
    </cxml:event>
    <cxml:event type="retweet">
        <cxml:id>4</cxml:id>
        <cxml:msg>RT: p5sbtd92fhhy</cxml:msg>
        <cxml:sender>3</cxml:sender>
        <cxml:origmsg>1</cxml:origmsg>
        <cxml:mentions>
            <cxml:mention>1</cxml:mention>
        </cxml:mentions>
    </cxml:event>
    <cxml:event type="reply">
        <cxml:id>5</cxml:id>
        <cxml:msg>@user2 3jtu8ahveqw</cxml:msg>
        <cxml:sender>1</cxml:sender>
        <cxml:origmsg>2</cxml:origmsg>
        <cxml:mentions>
            <cxml:mention>2</cxml:mention>
        </cxml:mentions>
    </cxml:event>
    <cxml:event type="reply">
        <cxml:id>6</cxml:id>
        <cxml:msg>@user1 3mxlj6och0o</cxml:msg>
        <cxml:sender>2</cxml:sender>
        <cxml:origmsg>2</cxml:origmsg>
        <cxml:mentions>
            <cxml:mention>1</cxml:mention>
        </cxml:mentions>
    </cxml:event>
    <cxml:event type="tweet">
        <cxml:id>7</cxml:id>
        <cxml:msg>9jpx0kqojk94</cxml:msg>
        <cxml:sender>3</cxml:sender>
    </cxml:event>
    <cxml:event type="mention">
        <cxml:id>8</cxml:id>
        <cxml:msg>17b47xyw @user1 4itz</cxml:msg>
        <cxml:sender>3</cxml:sender>
        <cxml:mentions>
            <cxml:mention>1</cxml:mention>
        </cxml:mentions>
    </cxml:event>
</cxml:conv>

Listing 20: XML output format
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F. Evaluation Graphs
Parameters used for graph generation using the Forest Fire Model of Twitter-Testbed:

With these properties applied to the application it  is possible to recreate the exact same 

network structures referred to in the evaluations chapter (chapter 5).

The provided figures in Table 21 are calculated from within the Java application, nodeXL and 

Gephi as labelled in the first column.

VIII

Table 20: Evaluation graphs settings

Graph: 1,000 5,000 10,000 15,000 20,000 50,000 100,000
seed 325987520 325987520 325987520 325987520 325987520 325987520 325987520
pf 0.95 0.95 0.95 0.95 0.95 0.95 0.95
pb 0.9 0.89 0.89 0.89 0.89 0.89 0.89
blp 0.49 0.49 0.49 0.49 0.485 0.485 0.485
init Vertices 1 1 1 1 1 1 1
maxAmbassadors 1 1 1 1 1 1 1
maxNodes 1,000 5,000 10,000 15,000 20,000 50,000 100,000
limitDepth 100 100 100 100 100 100 100

Table 21: Statistical measures of seven evaluation graphs

Graph: 1,000 5,000 10,000 15,000 20,000 50,000 100,000
Nodes 1,000 5,000 10,000 15,000 20,000 50,000 10,000
Edges 1,700 8,543 17,168 25,818 34,312 85,550 171,435
Reciprocity 1 1 1 1 1 1 1
ExecutionTime 00:00:00 00:00:02 00:00:11 00:00:15 00:00:20 00:02:46 0:12.49

nodeXL Diameter (undirected) 25 36 33 38 35 40 43
nodeXL Avg geodesic dist 10.364 12.794 13.747 15.505 15.762 17.138 18.714
nodeXL Density 0.001698 0.000342 0.000172 0.000115 0.000086 0.000034 0.000017
nodeXL Min in-Degree 0 0 0 0 0 0 0
nodeXL Max in-Degree 10 16 16 18 22 19 23
nodeXL Avg in-Degree 1.698 1.708 1.717 1.721 1.716 1.711 1.714
nodeXL Med in-Degree 1 1 1 1 1 1 1
nodeXL Min out-Degree 1 1 1 1 1 1 1
nodeXL Max out-Degree 9 11 12 10 12 13 17
nodeXL Avg out-Degree 1.698 1.708 1.717 1.721 1.716 1.711 1.714
nodeXL Med out-Degree 1 1 1 1 1 1 1
nodeXL Min clustering coef 0 0 0 0 0 0 0
nodeXL Max clustering coef 1 1 1 1 1 1 1
nodeXL Avg clustering coef 0.100 0.115 0.121 0.116 0.117 0.112 0.116
nodeXL Med clustering coef 0 0 0 0 0 0 0
Gephi Avg degree 1.698 1.708 1.717 1.721 1.716 1.711 1.714
Gephi Network diameter (directed) 19 33 26 31 31 35 38
Gephi Avg path length 7.369 10.179 10.818 12.305 13.009 13.939 15.789
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G.Properties File for the Evaluation Run

########################################
# Sample Properties File               #
# for TwitterTestbed v0.1              #
########################################

##### General settings #####
seed = 325987520
debug = false
printStatistics = true

##### ForestFire model settings #####
pf = 0.95
pb = 0.89
blp = 0.485
initVertices = 1
maxAmbassadors = 1
maxNodes = 10000
limitDepth = 100

##### Initialiser settings #####
graphForceInitialise = false;
actSourceRatio = 0.1
actSeekerRatio = 0.1
avtWeekdayRatio = 0.6
avtWeekendRatio = 0.2
avtAlldayRatio = 0.2

##### Scheduler settings #####
startTime = 0
duration = 0
durationHours = 10
durationDays = 10
randomness = 0.1
maxInterval = 400000000
cumulation = 0.3
updateMentionRatio = 0.027
updateDirectedRatio = 0.51

responseTweet = 0.33
responseDirectedTweet = 0.2
responseMention = 0.3
responseRetweet = 0.3
responseReply = 0.23
responseRetweetRatio = 0.4

##### Input / Output settings #####
graphLoadPath = D:\\TwitterTestbed\\finalRevision\\testgraph_100000Nodes.graphml
#graphSavePath = D:\\TwitterTestbed\\finalRevision\\testgraph_random.graphml
#convCSVSavePath = D:\\TwitterTestbed\\finalRevision\\testgraph_random_com.csv

##### Status.Net Settings #####
# Mysql host adress including db name
#host = localhost/statusnet
username = twittertestbed
password = twittertestbed
url = http://localhost/StatusNet/

Listing 21: Properties file used for evaluaton runs
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