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Abstract

Medical imaging has become crucial in detection and diagnosis of breast cancer. Advanced im-
age modalities like Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), Dif-
fusion Weighted Magnetic Resonance Imaging (DWI), Positron Emission Tomography (PET),
and Magnetic Resonance Spectroscopy (MRS) provide complementary information about the
lesion biology and increase the precision and certainty of cancer diagnosis. A systematic analy-
sis and categorization of the image data is essential for an accurate diagnosis. Computer Aided
Diagnosis (CAD) systems aid radiologists in this task by using digital image analysis methods
and machine learning algorithms.

The aim of this thesis is the development of a novel multimodal breast lesion CAD system
with a fully automatic combination of several medical imagemodalities, the fully automatic
detection and segmentation of cancerous regions, and the fully automatic classification of the
lesions into benign and malign ones. As modalities DCE-MRI,DWI and PET are used in this
initial project, with the opportunity to add additional modalities later on. The CAD system con-
sists of three main elements: the registration of the image modalities using a Large Deformation
Diffeomorphic Metric Mapping (LDDMM) method, the detection and segmentation of the le-
sion using a Random Forests (RF) algorithm, and the classification of the lesions into benign
and malign using a further RF.

In the validation process it is qualitatively and quantitatively demonstrated on 16 breast
studies that a multimodal approach improves the segmentation and classification performance
in comparison to a single-modal DCE-MRI approach. The segmentation performance measured
by the mean Dice Similarity Coefficient (DSC) increased from0.39 to 0.45. The classification
performance measured by Sensitivity / Specificity increased from 61% / 68% to 89% / 99%, and
the Area under Curve (AuC) of a Receiver Operating Characteristic (ROC) curve increased from
0.65 to 0.94. The results of the validation also demonstratethat the proposed method provides a
comparable performance to state-of-the-art single-modality CAD systems.
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Kurzfassung

Ein wesentlicher Bestandteil für die Erkennung und Diagnose von Brustkrebs sind medizini-
sche Bildgebungsverfahren. Moderne Bildgebungsverfahren wie Dynamische Kontrasterweiter-
te Magnetresonanztomographie (DCE-MRI), Positronemissionstomographie (PET), Diffusions-
gewichtetes MRT (DWI) und Magnetresonanzspektroskopie (MRS) liefern eine Vielzahl an In-
formationen über die Tumorbiologie und ermöglichen somit eine genauere und sicherere Dia-
gnose von Brustkrebs. Eine systematische Analyse und Kategorisierung der Bilddaten ist ein es-
sentieller Bestandteil einer präzisen Diagnose. Computerunterstützte Diagnosesysteme (CAD)
unterstützen Radiologen bei der Analyse der Bilddaten durch den Einsatz von digitalen Bildana-
lysemethoden und Maschinenlernalgorithmen.

In dieser Arbeit wird ein neuartiges multimodales CAD System beschrieben, welches eine
automatische Kombination der Bildmodalitäten, eine automatische Lokalisierung und Segmen-
tierung von Brustkrebsgewebe, und eine automatische Klassifizierung der Läsionen in benign
und malign ermöglicht. Die verwendeten Modalitäten in diesem Projekt sind DCE-MRI, PET
und DWI, wobei weitere Modalitäten später hinzugefügt werden können. Das CAD System be-
steht aus drei Hauptteilen: die Registrierung der Bildmodalitäten mit Hilfe einer Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) Methode, der Detektion und Segmentierung der
Läsion durch einen Random Forests (RF) Klassifikator, und der Unterscheidung von benignen
und malignen Läsionen durch einen weiteren RF Klassifikator.

Im Validierungsprozess konnte anhand von 16 Patientendaten gezeigt werden, dass der mul-
timodale Ansatz sowohl die Segmentierung als auch die Klassifizierung verbessert, verglichen
mit einem Ansatz basierend auf der DCE-MRI Modalität. Die Segmentierungsgenauigkeit, ge-
messen durch den mittleren Dice Similarity Coefficient (DSC), stieg von 0.39 auf 0.45. Die
Sensitivität / Spezifität der Klassifizierung stieg von 61 % /68 % auf 89 % / 99 % und Area
under Curve (AuC) der Receiver Operating Characteristic (ROC) stieg von 0.65 auf 0.94. Die
Ergebnisse der Validierung zeigen auch, dass dieser Ansatzvergleichbare Resultate zu aktuellen
unimodalen CAD Systemen bietet.
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CHAPTER 1
Introduction

Breast cancer is the most common cancer among women, and a leading cause of cancer death in
most Western countries [53]. Early detection and a precise diagnosis are essential for efficient
treatment [18]. Radiological imaging, like mammography [107], or breast ultrasound [52] are
used for detection and biopsy of suspicious lesions. These two modalities are clinical standards
for breast cancer detection and characterization. However, both modalities are still limited in
lesion detection with regard to both sensitivity and specificity [83, 163]. In addition, mammog-
raphy suffers from a high false positive rate of 16.3% at firstand 9.6% at subsequent mammog-
raphy [75]. Alternative imaging methods such as Magnetic Resonance Imaging (MRI) [164] or
Positron Emission Tomography (PET) [182] have been developed with the aim of overcoming
the limitations of mammography and ultrasound. MRI is reported on the one hand to be a sen-
sitive method; on the other hand a low to moderate specificityis reported [85]. PET provides
functional information through metabolism about the lesion; hence it suffers from a low spatial
resolution and a lack of morphological information, resulting in a difficult localization of the le-
sion [153]. To overcome this limitation hybrid PET / Computed Tomography (CT) scanner [147]
and recently PET / MRI scanners [5,78] have been developed, providing a combination of func-
tional and morphological information about the lesion. MRI-based functional and metabolic
imaging methods such as Dynamic Contrast Enhanced MagneticResonance Imaging (DCE-
MRI) [119], Diffusion Weighted magnetic resonance Imaging(DWI) [24], and Magnetic Reso-
nance Spectroscopy (MRS) [63] have been shown to provide an additional diagnostic value to
the morphological MRI modality [63,87,97].

Combining these multimodal imaging methods is a novel and promising research area, where
an increase in the accuracy of cancer diagnosis, assessmentand therapy progress is expected
[56,117,118].

To aid radiologists in detection and diagnosis of breast cancer, Computer Aided Detection
& Diagnosis (CAD) systems have been proposed [15]. Such tools are able to analyze a large
amount of image data in reasonable time, detect and visualize complex correlations and patterns,
as well as provide objective and repeatable results [168], yielding in an increased accuracy of a
diagnosis in many cases [88]. CAD systems are divided into two categories: Computer Aided
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Detection (CADe) and Computer Aided Diagnosis (CADx). CADesystems assist radiologists in
localizing suspicious regions in medical images, whereas CADx systems support the radiologist
in the diagnosis of suspicious regions by providing and analyzing information extracted from
these regions [159].

The aim of this thesis is the development of a breast lesion CAD system with a fully au-
tomatic combination of several medical image modalities, the fully automatic detection and
segmentation of cancerous regions, and the fully automaticclassification of the lesions into be-
nign and malign ones. As modalities DCE-MRI, DWI and PET are used in this initial project
with the opportunity to add additional modalities later on.The performance of the CAD system
is evaluated and compared with single modality approaches.

1.1 Problem Statement

In this thesis it is hypothesized that the various breast image modalities provide complementary
information, resulting in an improved performance when combining them in a breast lesion CAD
system. Thus, the aim of this thesis is the development of a CAD framework that combines
and interprets the 3-dimensional image modalities PET, MRI, DCE-MRI, and DWI. These
modalities give insight into morphological changes (MRI) as well as changes at the cellular
level such as angiogenesis (DCE-MRI), metabolism (PET) andcell function (DWI) of cancerous
and non-cancerous tissue. In this thesis it is evaluated quantitatively, which combinations of
image modalities are suitable for an accurate localizationof the lesion and for an accurate cancer
diagnosis, and what the benefit of each modality is in a CAD system.

A crucial step in such a framework is the accurate fusion of the image modalities. In this
fusion process deformations of the breast, introduced by varying patient positions in the scanners
and image distortions of the DWI modality [74], have to be compensated. The fused data are
then used for automatic detection and segmentation of cancerous tissue (CADe), as well as the
automatic classification of the lesions into benign and malignant (CADx). The performance of
the CAD system has to be validated and compared with state-of-the-art single modality CAD
systems.

1.2 Methodological Approach

The CAD system is implemented as a pipeline with three main steps (Figure 1.1):

1. Fusion of the image modalities byregistrationof the 3D images,

2. Segmentationof the lesion, and

3. Classificationof the lesion with regard to being benign or malign.

In the registration step all modalities are aligned by finding correspondences in the images
and applying a deforming transformation on them. The segmentation step is implemented as
a voxel-based binary classification process, where a RandomForests (RF) machine learning
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Figure 1.1: The CAD pipeline.

algorithm [28] predicts for each voxel (=3-dimensional pixel) if it is classified as cancerous tis-
sue or normal tissue. Discriminative segmentation features are extracted from the multimodal
dataset for each voxel. Manual segmentations annotated by an experienced radiologist are used
as ground-truth for validation and classifier training. In addition to classification, the RF al-
gorithm is also used for feature selection, by determining the feature combinations best suited
for discriminating between cancerous and normal tissues. The predictive power of the selected
features is evaluated using cross-validation. In the classification step a second RF classifier is
used to discriminate between malignant and benign lesions.For this reason a multimodal set
of features is extracted from the previously obtained automatic segmentation. Instead of using
voxel-based features, as for the segmentation, the data from the voxels are subsumed intoclus-
ters that characterize the entire lesion. These cluster-based features are used for classifying the
segmented lesions into malign or benign after identifying relevant features. The classification
performance is evaluated in a cross-validation process. The histopathological analysis serves as
ground-truth for the training and validation of the RF classifier.

1.3 Contribution of the Thesis

The contribution of this thesis is the development and evaluation of a fully-automatic CADe and
CADx framework using a multimodal medical image dataset to localize, segment and classify
breast lesions.

Numerous CAD systems based on DCE-MRI are available (see Chapter 4 - ’Related Work’).
Although, the usage of a combination of several modalities in a CAD system is a novel approach.
The following are the main contributions:

• Automatic fusion of multimodal breast image data (PET, MRI, and DWI) by a registration
process,

• Using the fused information from all modalities for automatic segmentation and classifi-
cation of the lesion,

• Using an advanced machine learning algorithm, which is able to find significant informa-
tion for segmentation and classification in the multimodal dataset, and
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• Using a clustering method for automatic selection of significant regions in DWI and PET
modalities for lesion classification.

1.4 Thesis Outline

The thesis is divided into seven chapters. The outline of thethesis is as follows:

1. Introduction. The first chapter provides a coarse overview of the motivation and problem
statement of the proposed multimodal breast lesion CAD system. The chapter is closed
by a short outline of the medical image modalities used in theCAD pipeline.

2. Multimodal Image Registration. The theoretical background and the general state-of-the-
art in medical image registration is provided in this chapter. The focus of this chapter is
on non-rigid registration methods, which are able to handlelarge deformations as well as
images of various modalities.

3. Classification and Regression by Random Forests.The functional principle of the RF al-
gorithm is outlined in this chapter. In addition, methods for feature analysis, feature se-
lection and performance evaluation using RF are discussed.

4. Related Work. Related work done by other research groups is outlined in this chapter, with
the aim of giving a state-of-the-art overview in multimodalbreast image registration, seg-
mentation of breast lesions, and the classification of breast lesions. In addition, a summary
of the performance of breast CADx methods is given in this chapter.

5. Methodology. In this chapter the CAD pipeline is presented in detail, fromdata acquisition,
registration, and segmentation to classification. The chapter also contains a detailed de-
scription of the features extracted from the images, which are needed for the segmentation
and classification.

6. Experiments and Results.This chapter is divided into three main sections, covering the val-
idation and evaluation of the registration process, the segmentation, and the classification.
In the registration section several transformation modelsand similarity metrics are evalu-
ated, in order to optimize the multimodal breast image alignment. In the second section
the performance of the segmentation features are examined,with the focus on exploration
of the benefit of each modality. The performance of the segmentation using various com-
binations of features is evaluated using cross-validation. The last section of this chapter
presents the examination of the classification features, and their performance in a classifi-
cation process. The performance and the predictive power ofthe RF are also evaluated in
a cross-validation process.

7. Summary and Conclusion.Finally, in this chapter the essential parts of the thesis are reca-
pitulated, the main results of the experiments are summarized, discussed and compared
with the related work, and closing remarks are given. The chapter closes with thoughts
about future work and improvements of the CAD system.
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Figure 1.2: Series of DCE-MRI images. The contrast agent accumulates inthe cancerous region
over time and causes a signal intensity change in the images.The chronological order of the
images is from left to right and top to bottom.

1.5 Medical Image Modalities

In this section a short overview of the modalities used in this thesis is given. It describes the
information each modality provides, the contribution of the modality in a diagnosis system, and
the performance of the modality in breast cancer diagnosis.

1.5.1 Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)

DCE-MRI is used amongst other modalities for localizing breast lesions and differentiation of
benign from malignant breast lesions by analyzing the special microvascular structure of can-
cerous tumors [85].Angiogenesisis the process of growing new blood vessels from existing
vessels [134]. At normal tissue this process stops when the blood supply of the tissue is suffi-
cient. Invasive cancers keep the angiogenesis active to satisfy their increasing metabolic demand
for oxygen and nutrients, resulting in a growth of exponential formation of microvascular struc-
tures in the cancerous tissue.

To get a DCE-MRI series a contrast agent is intravenously applied, while MRI scans are
acquired at regular intervals. The contrast agent increases the local magnetization, resulting in
higher signal intensities. The dense microvascular structure of cancerous tissue does also have
an increased vascular leakage. Therefore, more contrast agent moves from the vascular system to
the tumor tissue and is accumulated there. The accumulationcauses a rise of the signal intensity
in cancerous tissue (Figure 1.2). This change of signal intensity is denoted in the literature as
contrast enhancement[87] or enhancement kinetics[85]. The characteristics of enhancement
kinetics in cancerous regions can be used to differ benign from malignant breast lesions [87].
In order to do this a radiologist draws a Region Of Interest (ROI) in the signal enhancing part
of the lesion. From this ROI a DCE-MRItime-signal curve(also referred to askinetic curve)
is computed by averaging the signal intensities in the ROI for each image acquisition time-
point and plotting these values in a diagram (Figure 1.3 left). In addition to a morphologic
categorization of the lesion, the characteristic shape of the time-signal intensity curve is used for
differential diagnostics, by analyzing the steepness of the contrast uptake in the early phase after
applying the contrast agent, and the behavior of the curve inthe later phase: whether the signal
intensity continues to increase after the initial uptake (Type I), whether it exhibits a plateau (Type
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Figure 1.3: Left: DCE-MRI Time-Signal intensity curve extracted from aROI within cancerous
tissue (red) and normal tissue (green). Right: Schematic drawing of the time-signal intensity
curve phases and types (I - III). The percent numbers next to the curve type represents the
likelihood of a malign / benign lesion having the specific type of curve, as determined by Kuhl
et al. [87]

II), or whether it declines again (Type III or washout curve)(Figure 1.3 right). Invasive cancers
tend to have a curve with a steep uptake in combination with a washout (Type III) or plateau
(Type II) [85], whereas benign lesions tend to have either a low contrast uptake rate or have
a persistent increasing enhancement (Type I). A detailed description of characterizing lesions
by interpreting the kinetic curves and the morphology (shape, margins...) is given in Kuhl et
al. [85]. In Figure 1.3 a time-signal curve from a contrast-enhancing cancerous tissue region and
non-contrast enhancing normal tissue region is presented.Furthermore, a schematic overview
of the contrast enhancement phases and kinetic curve types is given.

A sensitivity of 89-100% is reported using the DCE-MRI modality. On the other hand, the
reported specificity is rather variable, ranging from 37 to 97% [85]. In the last years PET and
DWI have been proposed as additional modalities to increasethe specificity of MRI [108, 171,
172].

1.5.2 Diffusion Weighted Magnetic Resonance Imaging (DWI)

DWI measures the diffusivity of water molecules in tissues,providing an insight into tumor
cellularity [116]. A compact cellular structure, as occursin malignant tumors, results in a re-
duced extracellular spacing and limited water diffusion. In contrast, in benign lesions, where the
extracellular space is larger, the diffusion of water is less restricted [116].

The main parameter in the DWI acquisition process is the diffusion attenuation, denoted as
b-value(sec/mm2) [16]. It can be seen as a parameter for the sensitivity to diffusion. Images
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Figure 1.4: Diffusion Weighted Magnetic Resonance Images. Left: b value protocol of 0
sec/mm2. Middle: b value protocol of 850 sec/mm2. An identical scaling and color coding
is used for both images. Blue color refers to low DWI signal value, red color refers to a high
DWI signal value. Right: ADC mapping. The arrow point out themalign lesion. A reduced
ADC value is observed within the lesion, in comparison to thesurrounding tissue.

acquired with a low b-value are less diffusion weighted thanimages with a high b-value. On
low b-valued images more morphologic structures are visible. Images acquired with high b-
values have a lower Signal-to-Noise Ratio (SNR) and more image distortion. On the other hand,
on high b-valued images malignant tumors are highlighted, due to the restriction of the water
diffusion. This effect is illustrated in Figure 1.4.

The signal intensity values in DWI are influenced by MRI T1 and T2 relaxations in addition
to diffusion amount [16]. In order to reduce the relaxation effect in DWI images and to get more
“pure” diffusion values, an Apparent Diffusion Coefficient(ADC) map is calculated from two
(or more) measurements with different b-values,b1 andb2, by using following formula [16]:

ADC
(

x, y, z
)

= ln

[

S2

(

x, y, z
)

S1

(

x, y, z
)

]

/
(

b1 − b2
)

(1.1)

S1 andS2 are the diffusion signal values from two images acquired with the different b-values.
The ADC value is correlated with the amount of diffusion and therefore inversely correlated

with the compactness of the cellular structure of tumors. Malignant breast tumors exhibit a
higher cellularity, resulting in a lower ADC value than for benign breast tumors (Figure 1.4
right). A simple threshold level of the ADC value may therefore be used to get a differentiation
between benign and malign lesions. Several studies demonstrated the effectiveness of such a
method [24, 65, 97, 171–173]. Guo et al. [65] reports a sensitivity and specificity of 93 % and
88%, respectively. Marini et al. [97] reports a sensitivityof 80% and a specificity of 81%.
Bogner et al. [24] evaluated the influence of the b-value parameter on the ADC-values and
determined the optimal b-values. They report a sensitivity, respectively specificity of 96% and
94%.

1.5.3 Positron Emission Tomography (PET)

PET is a nuclear medicine imaging method, using a positron-emitting radionuclide (tracer).
When using FluoroDesoxyGlucose (FDG) as tracer, a 3-dimensional functional image can be
obtained in a PET scanner, describing the glucose metabolicactivity on a molecular level [44].
The FDG tracer is taken up and accumulated in glucose consuming cells, resulting in an in-
creased amount of positrons emitted at these regions. The annihilation of a positron with an
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Figure 1.5: Breast PET image. The highlighted region in the top-left part of the image is a
malignant lesion.

electron produces two gamma photons moving in opposite directions. These paired gamma
photons are detected in the PET-scanner. By accumulating tens of thousands coincident events
of gamma photons detected in the scanner, a 3-dimensional image can be reconstructed [44].

Liver, kidney, and brain tissues, but also many cancerous tissues have a high glucose meta-
bolism, resulting in a higher signal intensity in the functional PET images (Figure 1.5). There-
fore, the metabolic information provided by the PET scanneris useful in lesion localization,
in differentiating benign and malignant breast lesions, indisease staging, and assessment of
treatment response [180].

However, PET suffers from a very low resolution, which is 4 - 6mm for commercial scanners
[38], a low SNR, and lack of morphologic information. This renders the localization of lesions
difficult, and prevents the detection of small lesions. To overcome this limitation hybrid PET
/ CT scanner [147] and recently PET / MRI scanner [5, 78] have been proposed, where the
functional PET image is fused with a morphologic CT or MR image.

The potential of fused PET-MRI in breast cancer diagnosis have been shown in several stud-
ies [108, 117, 120]. Moy et al. showed that fusing breast images of PET and MRI increases
the specificity of MRI, whereas in this study only the morphologic information of MRI is used.
Initial results of a study by Pinker et al. [117, 120], where PET, DCE-MRI, and DWI is com-
bined, demonstrated promising results, with a reported sensitivity of 98 % and a specificity of
78 % in the diagnosis of breast cancer and lymph-node metastasis. This master thesis is partially
founded on and motivated by the study of Pinker et al.
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CHAPTER 2
Multimodal Medical Image

Registration

This chapter describes the multimodal registration of breast images. The aim of the registration
process, as used in this thesis, is the transformation of themultimodal dataset into one unified
coordinate system, so that an accurate spatial relationship of the images is ensured. In this appli-
cation the relationship is the anatomical correspondence.In other applications functional corre-
spondences (e.g. lining up functionally equivalent regions of the brains) or structural–functional
correspondences (e.g. correctly positioning functional information on a structural image) [43]
are used for registration.

As Guo et al. [66] stated in their survey:“the challenging task of breast-image registration
is the inhomogeneous, anisotropic nature of the soft-tissue within the breast, its nonrigid body
behavior and the various imaging conditions.”. Spatial variations in the multimodal breast im-
ages are inherent in the image acquisition process: i.e. breathing and slight patient movement
during a DCE-MRI acquisition; varying patient positions inthe MRI and the PET/CT scanner;
anisotropic image distortions of the DWI modality [74]. Figure 2.1 illustrates such spatial vari-
ations. Advanced nonrigid registration methods are necessary, which are able to handlelarge
deformationsas well asintermodalregistration.

The aim of this chapter is to give an overview of the state-of-the-art image registration meth-
ods, with the focus on registration of multimodal breast images. In the following sections the
essential components of a registration framework are discussed, covering the topics of image
similarity measures in Section 2.2, transformation models(Section 2.3) and an outline of opti-
mization strategies in Section 2.4.

2.1 Theoretical Overview of a Registration Framework

The registration process can be seen as an optimization process, where a spatial mapping from
imageI(x) to imageJ(z) is obtained in a way that both images are optimally aligned. This is
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Figure 2.1: Spatial variations of the acquired images. Left: MR image (red) overlaid by a CT
image (blue/white). A nonrigid displacement is observed between these two modalities, due to
different scanning positions and orientations for MR and CTimages. Middle: Overlay of two
MR images acquired in a DCE-MRI time-series. A small shift between these two images is
visible, as a result of small patient movement and/or breathing in the acquisition process. Right:
MR image (red) overlaid by a DW image (white). The anisotropic image distortion of the DW
image, which is inherent in this modality, causes the mismatch of these two images. All images
are thresholded for illustration purpose.

done by finding a transformationT that maps all locationsx from imageI(x) to imageJ(z) by
minimizing a cost functionC:

Toptimal = argmin
T

∑

x

C (I(T(x)), J(z)) (2.1)

In this thesis imageI(x) is the input image that is going to be transformed, andJ(z) is called
the referenceimage, to whom the input image is registered to. Formally an imageI represents
a data functionI : Ω → R

d, whereΩ ⊆ R
n is the image domain(n = 2 is 2D domain,n = 3

is 3D domain) on which the data are defined.d defines the dimension of the data, i.e.d = 1 are
scalar values, such as images acquired with MRI,d = 3 are color images or vector images. The
transformationT can then be seen as a mapping in the image domain:T : Ω→ Ω.

A registration framework is derived from the optimization problem, containing three main
elements: Thetransformation model, thecost function, and theoptimization strategy. The trans-
formation model describes the kind of transformation applied on the registration, likelinear
transformations ordeformabletransformations. The cost function is realized as asimilarity
metricΠ∼ quantifying the amount of similarity, often in combinationwith a regularization or
penalization termΠR. Since the optimization problem is ill-posed, regularization adds addi-
tional user knowledge to the problem, i.e. by applying physical models like the fluid or elastic
model. Since finding the optimal solution is NP-complete fornon-rigid registration [80], itera-
tive optimization techniques are commonly used for finding the approximate optimal solution.
The choice of the transformation model, the similarity metric, and the optimization strategy is
highly depending on the application [30].

2.2 Similarity Metrics

The similarity metric measures how “similar” two images are, where similarity is defined by the
amount of correspondences between two images. It is an essential part of the cost function that
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is optimized. The choice of the similarity metric is highly depending on the application. Giving
an general overview of all similarity metrics is far out of scope of this thesis. In the following
part metrics suitable for medical image registrations are reviewed.

The similarity measures can be divided into two main categories, the geometric based, and
the intensity based. In geometric approaches correspondences are defined on anatomical el-
ements identifiable in both images. These elements can be point landmarks, curves, or sur-
faces. The correspondence points guides the registration,where points in between are interpo-
lated [130]. Typically, the distances among physical points are minimized in the optimization
process. The paired landmarks are either defined manually [130] or automatically by identifying
anatomical feature correspondences, like nipple position, breast shape [166, 176], or geometri-
cally by identifying points, edges, curves or surfaces using the voxel intensities and the gradi-
ent [20, 94, 149, 150]. Point landmarks may also be defined by physical objects attached to the
scanning subject that are clearly visible in the image modalities, like skin fiducial markers [162].

Intensity based approaches do not use any anatomical knowledge, instead intensity patterns
are matched over the whole image. A mathematical or statistical similarity metric is defined,
which is used to adjust the transformation model until the similarity function is maximized
(or the error is minimized). It is assumed, that the images are registered when they are most
similar. Hermosillo et al. reviewed several intensity similarity metrics [71], where the three
common metrics Mean Squared intensity difference (MSQ) [40, 148, 156], Cross-Correlation
(CC) [12,58], and Mutual Information (MI) [98,132,158] arereviewed in this thesis.

2.2.1 Mean Squared Intensity Difference (MSQ)

A simple and intuitive metric is the MSQ, also titled as Sum ofSquared Differences (SSD),
which assumes identical intensities in both images, variedonly by Gaussian noise. This metric
is therefore only suitable for intramodal image registrations. It is defined as:

MSQ =
1

N

∑

x

(I(T(x))− J(x))2 (2.2)

An optimal match results in a zero valued MSQ. The advantage of this metric is that it is simple
to compute [76] and it has a relatively large capture radius [177]. The main disadvantages are
its restriction to intramodal image registration, and its sensitivity to small number of outlier
voxels [43]. Also, a linear change in intensity values results in a poor similarity score [177].

2.2.2 Cross-Correlation (CC)

This metric, also denoted ascorrelation coefficientor normalized correlation, computes the
pixel-wise cross-correlation of the two images, normalized by the square root of the autocor-
relation of each image. A linear relationship of the image intensities is assumed, unlike the
MSQ metric, where an identical intensity relationship is assumed. This makes the CC met-
ric suitable for intramodal as well as for some intermodal registrations. Defining the variables
J(x) = J(x)− µJ(x) andI(x) = I(T(x))− µI(T(x)), whereµJ(x) is the mean intensity value
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of the imageJ(x), leads to following formulation of the metric:

CC =

∑

x
I · J

σI · σJ
(2.3a)

=

∑

x
I · J

√

∑

x
I
2 ·∑

x
J
2

(2.3b)

=
〈I, J〉
‖I‖ · ‖J‖

(2.3c)

‖ is theL2-Norm and〈· 〉 is the vector inner product. The optimum value of this metricis 1
when both images match perfect, whereas misalignments results in lower values.

CC is robust to variations in lighting and exposure conditions [92]. Avants et al. [12] pro-
posed a windowed version of CC for medical image registration, where the coefficient is calcu-
lated from a sliding window. They showed that this version adapts well to situations with locally
varying intensities, like MRI inhomogeneities (bias field).

2.2.3 Mutual Information (MI)

This metric has been introduced independently by Viola and Wells [158] and by Maes et al. [96]
as a information theoretic measure. Unlike the CC metric, where a functional intensity rela-
tionship is assumed, MI assumes only a probabilistic relationship among the voxel intensities.
The image intensities of the two images are considered as tworandom variablesA andB. MI
measures how much information of the second random variableis in the first random variable
by using theShannon entropy[138]. The entropy variables are defined as following:

H(A) = −
∑

a

pA(a) · log pA(a) (2.4a)

H(B) = −
∑

b

pB(b) · log pB(b) (2.4b)

H(A,B) = −
∑

a,b

pAB(a, b) · log pAB(a, b) (2.4c)

whereH(A) respectivelyH(B) are the entropies of the two random variables, andH(A,B) is
the joint entropy.pA is the marginal probability density function for random variableA, and
pAB is the joint probability density function. IfA andB are completely unrelated, then the joint
entropy is the sum of the individual entropies:

pAB(a, b) = pA(a) · pB(b) (2.5a)

H(A,B) = H(A) +H(B) (2.5b)

If they are related, thenH(A,B) is smaller thanH(A) + H(B). The difference between the
joint entropy and the marginal entropies is called Mutual Information:

MI (A,B) = H(A) +H(B)−H(A,B) (2.6)
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MI is zero if the two random variables are independent, whereas with an increasing dependency
of the random variables MI increases too.

The advantage of using this probabilistic approach is that no specific form of dependency is
necessary [177], in contrast to the two previously reviewedmetrics, where an intensity similarity,
respectively a linear dependency is assumed. This makes MI suitable for multi-modality regis-
tration [122]. MI, applied on a global scale, is known as a useful metric for a robust rigid regis-
tration [12]. However, the performance of MI on a local scale, as it is necessary for deformable
registration, is reduced when non-stationary noise patterns or intensity inhomogeneities in the
image (i.e. MRI bias fields) exists [12, 143]. The joint-probabilities have to be calculated from
a large number of samples to get meaningful statistics, resulting in a trade-off between locality
of the MI estimation and the statistical reliability [12].

Joint Histogram In an image registration problem the marginal and joint probability densities
are in common not available and have to be estimated from the image intensities. This can be
done by using either ajoint histogramfor discrete values orParzen windowing[114, 131] for
continuous values. As an alternative, continuous values can be discretized by binning them.
Parzen windows are also used to smooth the discrete histogram probability densities yielded
from the joint histogram [98].

The joint histogramh(a, b) is a 2-dimensionaln×m matrix, wheren andm are the number
of (binned) discrete intensity values in the imagesI andJ . Entry (a, b) of the matrix contains
the number of times intensitya in the first image andb in the second image appear at the same
spatial location. The probability densities are estimatedfrom the normalized joint histogram:
P̂AB(a, b) = h(a, b)/N , whereN is the sum over the histogram. The marginal probability
densities are estimated by summing over the rows, respectively columns, of the normalized
histogram:P̂A(a) =

∑m
b=1 P̂AB(a, b), andP̂B(b) =

∑n
a=1 P̂AB(a, b).

Parzen Windowing Parzen windowing, also known askernel density estimators, is a non-
parametric method of estimating the probability density function of a random variable. Intensity
samplesS are taken at random positions from the image and a kernel function K(·) is placed on
the samples. The estimated probability density is the superposition of all kernels:

P̂ (a) =
1

nh

∑

sj∈S

K(
a− sj

h
) (2.7)

n is the number of samples in the setS, andh > 0 is the smoothing parameter or bandwidth,
which is used to scale the kernel. The kernel function needs to be smooth, symmetric, have
zero mean and integrate to one, like Gaussian, boxcar, or B-spline functions. The choice of the
smoothing parameterh is always a trade-off between the bias of the estimator and its variance.
A large h may smooth out features, like the modes of the density, whereas too smallh may
result in a too noisy density distribution. Figure 2.2 illustrates an estimation using the Gaussian
as kernel function.

To get discrete values from the continuous density estimation, which are needed in the en-
tropy calculation (Equation 2.4) two methods have been proposed: In the method of Viola and
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Sigma

Gray levels

Figure 2.2: Illustration of the Parzen windowing. A kernel function (here Gaussian) is placed
at each sample point (top). A continuous density function isconstructed by superimposition the
kernel functions (bottom). Image taken from [76].

Wells [158] a second sample setR is drawn from the image, in addition to the probability distri-
bution estimating setS. The entropy is then approximated as a sample mean:

H(A) =
1

N

∑

rj∈R

logP̂ (rj) (2.8)

Mattes et al. [98] uses only one sample setS to estimate the probability densities using B-Spline
kernel functions. The entropy is then approximated by evaluating the probability densities at
equally spaced discrete positions or bins.

Normalized Mutual Information Studholme et al. [144] proposed a normalized version
of the MI metric, dealing with the problem that the MI metric may increase withincreasing
misregistration for cases of a small initial overlap. If therelative areas of background and object
are in balance, the sum of the marginal entropies may increase faster than the joint entropy [122].
The normalized mutual information metric is:

NMI (A,B) = 1 +
MI (A,B)

H(A,B)
=

H(A) +H(B)

H(A,B)
(2.9)

where1 ≤ NMI ≤ 2.
Another variant of a normalized MI metric has been proposed by Maes et al. [96], namely

theEntropy Correlation Coefficient (ECC):

ECC (A,B) = 2 · MI (A,B)

H(A) +H(B)
(2.10)

whereECC = 2− 2 · NMI and0 ≤ ECC ≤ 1.
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2.3 Transformation Model

The transformation model describes the spatial mapping of the input image coordinate system to
the reference image coordinate system. The choice of the model defines the type and the number
of possible deformations [43], and is dependent on the application. The transformations can be
divided into following categories: [7]

• Rigid - Non-Rigid

• Parametric- Non-parametric

• Global - Local

In a rigid transformation the distances and proportions of the objects are preserved, whereas in a
non-rigid transformation this is not the case in common. A rigid transformation is a combination
of rotation and translation. Non-rigid transformations may beaffine transformations, allowing
shearing and scaling of the image; or anelastic transformation, allowing local deformations in
the moving image.

Parametric transformations are defined by a limited set of parametersp = (p1, ..., pn). For
instance, a two-dimensional rigid transformation is parameterized by a rotation angleθ and a
translation vectort. The number of parameters defines thedegrees of freedomof a transforma-
tion. Non-parametric transformations usually operate on vector fields describing the displace-
ment of each voxel [155].

Parametric transformations are divided into global and local transformations, according to
the range of influence of a parameter on the transformation. Global transformations are for
instance rigid and affine transformation, where a change of aparameter has a global influence.
Another global transformation is the Thin-Plate Spline (TPS) transformation [27], where the
transformation parameters are the positions of control points defining the shape of thin-plate-
splines. Shifting a control point position affects all other points [43]. Global transformations
have the disadvantage that the ability of modeling local deformations is limited [43].

In the subsequent section following transformations and their concepts are described:

• Rigid and Affine transformations,

• Spline-Based transformations,

• Demon-Based transformations, and

• Symmetric Normalization (SyN).

Rigid and affine transformations are used to match images on aglobal scale. Spline-Based
transformations are able to register images containing non-rigid deformations, with a limited
use of modeling large deformations, due to the small deformation constraint formulation [11].
Demon-based algorithms are known to be a fast and efficient registration method in a large
deformation framework [156]. SyN is a large deformation diffeomorphic mapping. Such models
are known for being able to generate a dense, smooth and invertible mapping (diffeomorphic)
along with the capability of handing large deformations. SyN also supports various metrics
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(MI,CC,MSQ, labeled point sets) [14]. These facts make thistransformation of special interest
for this thesis, where large non-rigid deformations in the multi-modality breast images have to
be taken into account.

2.3.1 Rigid and Affine Transformation

A rigid transformation is a mapping of a Euclidean space to itself, where the distance between
the points is preserved. A rigid transformed object has the same shape and size as the original
object. Two geometrical operations and their combinationsfulfill this definition: rotation and
translation. A rigid transformationT applied on the coordinatesx can be written as:

T (x) = Rx+ t (2.11)

whereR needs to be an orthogonal transformation (RT = R−1) defining the rotation, andt is
the translation vector.

A superset of the rigid transformation is the affine one, adding the geometrical operations
scalingandshearingto the transformation. The affine transformation can be written as a com-
pact matrixT, including the translation, by using homogeneous coordinates [167]. In the two-
dimensional case the affine transformation has the form [61]:

[

x y 1
]

=
[

v w 1
]

T =
[

v w 1
]





t11 t12 0
t21 t22 0
t31 t32 1



 (2.12)

Depending on the parameterst11 to t32 a rotation, translation, shear, and/or scale of the co-
ordinates are applied. Table 2.1 lists how the parameters influence the transformation. Affine
transformations can be combined into a single affine matrixT by applying a matrix multiplica-
tion on them. This follows from the associativity of the matrix multiplication:

A(Bx) = (AB)x (2.13)

It has to be noted, that the order of the multiplication is important, since the matrix multiplication
is in common not commutative:AB 6= BA.

The affine and rigid transformations are global and parametric transformations. Local defor-
mations cannot be modeled by them. This limits the usage of affine transformations for breast
image registration, since the breast is highly non-rigid, due to the soft-tissues in the breast. How-
ever, rigid transformations can be used as initial registration to minimize the global alignment
error, followed by a deformable transformation modeling the local deformations [14,132].

2.3.2 Spline-Based Transformations

This kind of transformation relies on spline functions and the spatial variation of their control
points to model a non-rigid transformation. They are suitable for point-based landmark registra-
tions [62] as well as for voxel registration using an intensity-based metric [132].

Goshtasby [62] proposed a point-based landmark registration based on TPS for registration.
The corresponding landmark points are used as control points for the splines. The landmarks
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Transformation
Name Parameter Affine Matrix T Coordinate Equations

Identity none





1 0 0
0 1 0
0 0 1





x = v

y = w

Scaling cx, cy





cx 0 0
0 cy 0
0 0 1





x = cxv

y = cxw

Rotation θ





cos θ sin θ 0
− sin θ cos θ 0

0 0 1





x = v cos θ − w sin θ

y = v sin θ + w cos θ

Translation tx, ty





1 0 0
0 1 0
tx ty 1





x = v + tx

y = w + ty

Shear (vertical) sv





1 0 0
sv 1 0
0 0 1





x = v + svw

y = w

Shear (horizontal) sh





1 sh 0
sv 1 0
0 0 1





x = v

y = shv +w

Table 2.1: Two-dimensional affine transformations:(x, y) = T[(v,w)].

are displaced in the first image, so that they match with the landmarks in the second image.
The deformations in between the landmarks are interpolatedusing TPS. Figure 2.3 illustrates
the TPS-based transformation. Since the influence of the control points on the spline-shape
is global, a movement of one control point affects all other points in the image. This global
behavior has two side-effects: adapting the model to match local deformations is limited, and
the computational costs when moving a single point rises steeply with increasing number of
control points [43].
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Figure 2.3: Illustration of a TPS-based transformation. The blue circles are the correspond-
ing landmarks from a reference image (left) and a moving image (right). The TPS function is
applied on a regular grid to illustrate the deformation of the moving image when moving the
corresponding center landmark to the matching position. Image adapted from [105].

Figure 2.4: Illustration of a FFD-transformation. Initial configuration (left) and deformation by
displacing the control points (right). Image adapted from [135]

.

To overcome these problems Rueckert et al. [132] suggested in his milestone paper a Free-
Form Deformation (FFD) model [136] using B-Splines [89]. A FFD is based on a mesh-grid
of control points, where the deformation is modeled by displacing these grid points. Figure
2.4 illustrates such a deformation. Using B-Splines have the advantage that they are locally
controlled, in contrast to TPS, making them computational efficient even for a large number of
control points, and a change of a control point influences only the local neighborhood.

The deformation transformation works as follows: First a mesh-gridΦ of control points
Φi,j,k with uniform spacingδ is created. The FFD transformation can be written as a 3-D tensor
product of 1-D cubic B-Splines:

T(x) =
3

∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)Φi+l,j+m,k+n (2.14)
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Bl is thelth basis function of the B-Spline:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

In an optimization process the positions of the control points Φ are varied until the cost
function is minimized. The cost function is consisting of a similarity metric termΠ∼ and a
penalty termΠR as regularization:

C(Φ) = Π∼(J(x), I(T(x)) + λΠR(T) (2.15)

The penalty term forces the FFD transformation to be smooth,where theλ is a weighting param-
eter of the penalty term, influencing the smoothness of the transformation. In 3-D, the penalty
term is defined as following:

ΠR =
1

V

∫ X

0

∫ Y

0

∫ Z

0

[(δ2T

δx2

)2
+

(δ2T

δy2

)2
+

(δ2T

δz2

)2

+
(δ2T

δxy

)2
+
(δ2T

δxz

)2
+

(δ2T

δyz

)2]

dxdydz

(2.16)

whereV is the volume of the image. The second-order mixed partial derivatives used in the
penalty term are a measure of the smoothness [160].

The control pointsΦ are the parameters of the B-Spline FFD. Few control points with a
large spacing are only able to model global nonrigid deformations, whereas a fine mesh of
control points is able to model local deformations. A higherdegree of freedom increases also
the computational effort. Therefore a trade-off between model flexibility and computational
complexity is given [132]. Rueckert et al. proposed a hierarchical refinement approach, starting
with an initial large spacing, and successively halving thespacing between the control points by
adding new ones using a B-Spline subdivision algorithm [54].

2.3.3 Demons Based Transformation

In 1998 Thirion proposed a non-rigid and non-parametric image registration method treating the
non-rigid registration as a diffusion process [148]. He named it “Demons Algorithm”, where the
“demons” term is referring to a concept introduced by Maxwell in the 19th century, solving the
Gibbs paradox in the thermodynamics.

In Thirions approach demons are forces that push according to the optical flow equation [17].
For small displacements of a given pointx the optical flow equation is:

u · ∇I(x) = I(x)− J(x) (2.17)

whereu is the displacement, and∇I(x) is the gradient of imageI at the spatial pointx. From
this equation Thirion derived the Demons formulation:

u =
(I(x)− J(x))∇I(x)

|∇I(x)|2 + (I(x)− J(x))2
(2.18)
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In this case the displacement is guided by two forces, the internal edge based force∇I(x) and
the external forceI(x)−J(x). The term(I(x)−J(x))2 has been added by Thirion to make the
equation more stable. Wang et al. [161] enhanced this equation by considering also the image
edge forces∇J(x) of the second image, and Cachier et al. [32] added a normalization termα
to the equation, leading to following formulation:

u =
(I(x)− J(x))∇I(x)

|∇I(x)|2 + α2(I(x)− J(x))2
+

(I(x)− J(x))∇J(x)
|∇J(x)|2 + α2(I(x)− J(x))2

(2.19)

This equation is used in an iterative algorithm as an update rule for a displacement fieldU. The
displacement field is alternatively updated by the equation(2.19) and regularized by smoothing
the displacement field with a KernelK: U← K ∗U, whereK is typically a Gaussian Kernel,
and∗ is the convolution operator. The transformationT(x) is then:

T(x) = x+U(x) (2.20)

The original demons formulation as proposed by Thirion is limited to intramodal registra-
tion only, since it relies on image intensity differences. Therefore several enhancements to the
Demons algorithm have been proposed, where either the intensities of one modality are trans-
formed to the other modality [64, 84]; or by using an alternative formulation of the Demons
registration introduced by Vercauteren et al. [154], wherethe intensity difference is replaced by
other metrics, like normalized mutual information [106] orpointwise mutual information [95].

Vercauteren et al. proposed also a formulation of the Demonsregistration restricting the
transformation to the group of diffeomorphisms [154–156].They denoted it as Diffeomorphic
Demons (DD). A detailed discussion of diffeomorphisms and its use in registration frameworks
is given in the next section.

2.3.4 Symmetric Normalization (SyN)

SyN [14] is a state-of-the art large deformation, non-rigid, non-parametric transformation model,
which operates in the group of diffeomorphisms, formulating the mapping as aspatio-temporal
optimization problem [12].

A diffeomorphic mappingφ is an invertible and in both directionsdifferentiable bijective
mapping [50] that is closed under composition [14]. Restricting the mapping to the group of
diffeomorphisms has the advantage that the topology of the anatomy is preserved and foldings
that are physically impossible are prevented [156]. The mapping is always smooth, invertible
and continuous parameterizable (i.e. in time) [177]. Invertibility is for instance a requirement
when registering Diffusion Tensor Imaging (DTI) [175]. Thediffeomorphic properties are also
of interest in Computational Anatomy (CA), where the statistical variability of anatomical struc-
tures is analyzed, as in [8,12,90,103,104]. The diffeomorphic large deformation setting allows
more shape variability to be modeled than in a small deformation environment, like B-Splines
or elastic mapping [57] due to the fact that large deformation models penalizes deformation
linearly, whereas small deformation models penalizes deformation quadratically [14].

The diffeomorphic approach was introduced by Trouve et al. [151] and has been enhanced
by Miller et al. [103] by formulating the problem as an Euler-Lagrange equation. Based on
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this work Beg et al. developed a large deformation formulation in the group of diffeomorphism,
donating it as Large Deformation Diffeomorphic Metric Mapping (LDDMM) [19]. In this thesis
a symmetric approach of the LDDMM is discussed, introduced by Avants et al. [12–14], namely
SyN. This method is also part of the proposed CAD pipeline. Other proposals of diffeomorphic
registration frameworks may be found in [9,72,155].

SyN operates in the diffeomorphic spaceDiff 0 by assuming a mapping of the image domain
Ω to itself, and a homogeneous boundary condition such that the image border maps to itself:
φ(δΩ) = Id. Therefore rigid and scaling transformations have to be applied before the diffeo-
morphic mapping. The mappingφ, parameterized by the time parametert ∈ [0, 1], the spatial
coordinatex and a smooth time-dependent velocity vector fieldv(x, t) : Ω× t→ R

d, leads to
a family of diffeomorphisms,φ(x, t) : Ω× t→ Ω. These diffeomorphisms can be calculated as
solutions of the ordinary differential equation (o.d.e):

dφ(x, t)

dt
= v(φ(x, t), t) (2.21)

with respect toφ(x, 0) = x. The spatial transformationφ is gained by integrating the velocity
field v in time:

φ(x, 1) = φ(x, 0) +

∫ 1

0
v(φ(x, t), t)dt (2.22)

The existence and uniqueness theorem for o.d.e.’s [41], assuming a smooth vector fieldv, en-
sures that the integration of Equation (2.21) generates a diffeomorphism [19]. From such a
diffeomorphism a displacement or deformation fieldU is calculated in the following way

U(x) = φ(x, 1) − x. (2.23)

The time-parameterized transformationφ(x, t) can be seen as a path in the space of diffeo-
morphic transformations, describing the movement of a particle in the velocity field over time,
starting at positionx at timet = 0 and ending at timet = 1 at the positionφ(x, 1) = z. The
lengths of such a path in the diffeomorphic space is calculated in a similar way than the arc
length of a curve connecting two points in the Euclidean space:

D (φ(x, 0), φ(x, 1)) =

∫ 1

0
‖v(x, t)‖Ldt (2.24)

where‖ · ‖L is a Sobolev Norm andL is a linear operator. More details about the linear operator
L are given below. Ageodesicpath, which is per definition the shortest path of two points in a
space (here diffeomorphic space), is found by taking theinfimumof all paths formed by Equation
2.24. The length of such a path gives a metric distance measure [19]. In an optimization process
such a geodesic path between two diffeomorphism transformationsφ(x, 0) andφ(x, 1) is going
to be found by minimizing the distance between them.φ(x, 0) is usually set to the identity
transformationId. Combining a similarity metricΠ∼ with the geodesic metric, which may
be alternatively seen as a diffeomorphic regularizationΠR, leads to the LDDMM variational
optimization problem introduced by Beg et al. [19]:

v∗ = argmin
v

{∫ 1

0
‖Lv‖2dt + λ

∫

Ω
Π∼(I, φ(x, 1), J)dΩ

}

(2.25)
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Figure 2.5: Left: An illustration of traversing a geodesic path, in time, from two end-points
x andz to a midpointy via φ1 andφ2. Right: Traversing from one end-point to the the other
end-point by inverting the second diffeomorphismφ−1

2 and combining it with the first diffeo-
morphismφ1. Image adapted from [13].

whereλ controls the weight of the similarity measure.L is a linear differential operator and reg-
ularizes the velocity fieldv, to ensure that the velocity field remains smooth in the optimization
process. Smoothness of the velocity field is a prerequisite of calculating the diffeomorphisms.
As linear operator a fluid regularization, like∇2+Id, Navier-Stokes, or Cauchy-Navier operator
is suggested [19,40]. The linear operator is either introduced as a term in a variational minimiza-
tion [19] or in terms of a convolution with a Green’s kernel functionK: vsmooth = K ∗ v. As
kernel functionK a Gaussian with varyingσ may be used [14, 34, 156], whereσ controls the
“smoothness” of the velocity field. A detailed discussion about velocity field regularization is
given in Dupuis, Grenader and Miller [49].

Avants et al. constructed a symmetric alternative of the LDDMM Equation (2.25) [13], con-
sidering the fact that a diffeomorphismφ is closed under composition, and may be decomposed
into two componentsφ1 andφ2, as well as the fact that a geodesic path is symmetric and points
on the pathφ(x, t) can be parameterized from both endpoints:φ2(z, 1 − t) = y = φ1(x, t). A
full pathφ and its inverseφ−1 can therefore be found by combining the partial pathsφ1 andφ2

using the composition:φ(x, 1) = φ−1
2 (φ1(x, t), 1 − t) andφ−1(z, 1) = φ−1

1 (φ2(z, t), 1 − t).
Figure 2.5 illustrates the parameterization from both endpoints and the composition of the two
transformationsφ1 andφ2 to φ. In contrast to the LDDMM formulation, where the transfor-
mation is found at the endpoint of a geodesic path, beginningfrom the coordinate system of a
moving imageI to the reference imageJ , the symmetric formulation develops the transforma-
tion from both endpoints to a fixed point midway of the geodesic path. The full transformation
φ is gained then by composition, as described above. The fixed point may be anywhere in the
interval [0, 1], whereas setting it tot = 0.5 has the effect, that the transformation is equally
distributed on both imagesI andJ . The terms “moving” image and “reference” image become
obsolet in this environment. This approach guarantees sub-pixel accurate, invertible transfor-
mations [12]. Theoretically all diffeomorphisms are guaranteed to be symmetric and invertible,
in practice interpolation errors summing up linearly with the number of interpolation steps can
cause invertibility errors. The symmetric solution minimizes this kind of error by exploiting the
diffeomorphic invertibility [12]. Figure 2.6 illustratesthe transformation of two shapes along a
diffeomorphism to the midpoint of the geodesic path.

Definingv(x, t) = v1(x, t) in the intervalt ∈ [0, 0.5], andv(x, t) = v2(x, 1 − t) in the
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Figure 2.6: An illustration of the deformation of two shapesI andJ along the geodesic pathsφ1

andφ2 to a midpoint, forming a mean shape. The top row shows the original images, which are
used as initialization of the SyN method. The bottom row shows the images after convergence
of the SyN solution for the given time-pointt ∈ [0, 0.5]. Image adapted from [12].

intervalt ∈ [0.5, 1] leads to the symmetric variant of Equation (2.25) [14]:

{v∗
1,v

∗
2} = argmin

v1,2

{

∫ 0.5

0
‖Lv1(x, t)‖2dt +

∫ 0.5

0
‖Lv2(x, t)‖2dt

+ λ

∫

Ω
Π∼(I ◦ φ(x, 0.5), J ◦ φ(x, 0.5))dΩ

}

(2.26)

A solution of the variational optimization problems (2.25)and (2.26) is found by using
Euler-Lagrange equations [103]. A discussion of developing and solving such Euler-Lagrange
equations is beyond the scope of this discussion. One may be referred to Beg et al. [19] and
Avants et al. [12] for a detailed description.

Geodesic and Greedy SyN Avants et al. describes two variants of the numerical solution
of Equation (2.26), the Symmetric Geodesic Normalization (SyGN) and the computational and
memory lower-cost greedy variant, the Greedy Symmetric Normalization (GrSyN) [14]. The
former is closer to the theoretical diffeomorphic formulation of the Equation by using a dense-
in-time gradient calculation along the geodesic path in theinterval [0, 0.5] and a reintegration
of the diffeomorphisms after each iteration. In the greedy optimization of Equation (2.26) the
gradient is only calculated at the midpoint of the full diffeomorphism. Instead of reintegration
of φ1 andφ2 they are updated from the previous iteration using following Equation:

φi(x, 0.5) = φi(x, 0.5) + (δK ∗ ∇Πi(x, 0.5))∼φi(x, 0.5), i ∈ 1, 2 (2.27)

whereδ is the step size of the gradient based optimization process.

2.4 Optimization Strategy

The optimization strategy defines how the transformation parameters, deformation fields or ve-
locity fields are adjusted to improve the image similarity byminimizing the cost functionC.
Usually an iterative approach is used, where an initial parameter set is estimated, and iteratively
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adjusted until a convergence criterion is achieved. At eachiteration the cost functionC is eval-
uated using the current parameter estimation. Then the parameters are adjusted in a way that
the cost function is reduced. The optimization is terminated when some convergence criterion is
achieved (i.e. cost function is not reducing anymore) [10].Standard strategies are available for
this kind of optimization, like Steepest Gradient Descent,Conjugate Gradient Method, Gauss-
Newton Method, Powell’s Method, Downhill Simplex Method and others [124]. Discussing
these optimization methods is beyond the scope of this thesis. Readers interested in this topic
may be referred to [26].

Gradient based optimization methods operate on the cost function derivative. Though, also
the derivatives of the similarity functions are needed. In Hermosillo et al. [71] and Avants et
al. [12] derivatives of the intensity similarity metrics are described.

Multiresolution Optimization The optimization solutions mentioned above are only able to
find local minima of the cost function, which might be far awayfrom the overall or global min-
imum of the cost function. To improve the robustness, accuracy and also the speed of the opti-
mization process, a multi-resolution approach using a coarse-to-fine scheme is widely used [76].
The registration is first done on a coarse scale with a reducedamount of pixels or control points.
On this level coarse deformations are identified, whereas small image variations are ignored.
The spatial mapping determined at this level is then used as initialization of the registration at
the next finer scale. These steps are continued until reaching the full scale. At the full scale level
all image details are given, although the optimization process needs to handle just fine deforma-
tions, since larger deformations are already considered inthe previous steps. This coarse-to-fine
strategy improves the registration success rate and also increases robustness by eliminating local
optima at coarser scales [76].

To get a coarse-to-fine scheme based on the image scale, aGaussian resolution pyramidis
used. At each level of the pyramid the resolution is halve of the resolution of the next level. Such
a pyramid is recursively built by starting with the originalimageI(0) and recursively calculate
the reduced resolution levels by applying a Gaussian smoothing to the image of the previous
level, followed by a downscaling:

I(n+1)(x, y, z) = (ω ⊛ In)(2x, 2y, 2z) (2.28)

whereω is a discrete Gaussian smoothing kernel,⊛ denotes a discrete convolution andn is the
level index. The number of levels depends on the resolution of the original image and the amount
of deformation. Avants et al. [14] suggests a 3 level pyramidfor images with a resolution of 1
mm3, and a samplingn > 3 in cases where the initial affine registration is weak.

2.5 Discussion

In this chapter the theoretical background of the registration process has been described with
the focus on multimodal image registration. The aim of the registration process as used in this
thesis is the transformation of the multimodal dataset intoone unified coordinate system, so
that an accurate anatomical relationship of the images is ensured. The registration is realized
as an optimization process, where a transformation is iteratively developed and applied onto the
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input image until the similarity with thereferenceimage is optimized. The degree of similar-
ity is measured by a metric. Three of these similarity metrics have been described in detail in
this chapter, namely MSQ, CC, and MI. All of them are intensity based, where MSQ assumes
identical intensities, CC assumes a linear relationship inthe intensities, and MI assumes a prob-
abilistic relationship of the input and reference image intensities. The transformation model is
responsible for the spatial mapping of the input image to thereference image. The choice of the
transformation model defines the degrees of freedom for the mapping. Four different types of
transformation models have been described in this chapter:the rigid and affine transformations,
suitable for global registration; spline-based transformations, where the image is deformed by
varying control points of splines, and interpolating in between of them; Demon-based transfor-
mations, where a vector field is iteratively evolved, guidedby the optical flow equation; and the
LDDMM transformation, where the large deformation mappingoperates in the space of diffeo-
morphisms, providing an invertible, topological preserving, dense and smooth mapping. SyN as
a symmetric formulation of the LDDMM has been described in detail, where both images con-
tribute to the registration process. Finally, the optimization process has been briefly described,
where the parameters of the transformation model are iteratively modified until the cost func-
tion, which is a combination of the similarity metric and a regularization term, is minimized. A
multiscale optimization based on a Gaussian resolution pyramid has been described, which is
used to improve the robustness and the speed of the registration process.
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CHAPTER 3
Classification and Regression by

Random Forests

Random Forests (RF) were developed and introduced by Leo Breiman and Adele Cutler [28].
It is an ensemble classifier, with the basic idea of growing many unpruned decision trees and
using the statistical mode of the outcome of the trees to determine the class. Unpruned decision
trees have a low bias, but suffer from a high variance, resulting in sensitivity to noise [69].
RF gains a low bias from the unpruned decision trees, and reduces the variance by aggregating
many decision trees induced from bootstrap samples of the training data (bootstrap aggregation)
and selecting random features during the tree building process [69]. An excellent overview of
decision trees and RF is given by Hastie et al. [69]

RF is known to be an efficient algorithm with a comparable error rate to ADA-Boost [55],
and robustness to noise [28]. The RF algorithm is used for classification or regression tasks. It
is able to handle large feature sets without pre-selection,even if only a few variables carry the
information necessary for the classification prediction, and the other variables are noise [28,133].
Additionally, the algorithm provides a measurement of the “importance” of features, which gives
a more detailed insight into the contribution of features tothe classification, and which has been
shown to be useful for feature selection [6,59]. Another advantage of RF is that it has only three
tuning parameter:ntree, the number of trees,mTry, the number of features considered at each
split of a node, andnodesizethe size of the leaves.

Writing a chapter about the RF algorithm is motivated by the fact that the RF algorithm is
an integral part of this thesis. RF is used for binary classification in the segmentation part of the
CAD pipeline to determine if a tissue is cancerous or non-cancerous, and in the classification
part of the pipeline to distinct between benign and malign lesions. The variable importance
measurement provided by the algorithm is used for feature analysis and feature selection in both
cases.

The main topics of the chapter are the description of the RF algorithm in Section 3.1 and
details about the measurement of the variable importance inSection 3.2.
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3.1 The Random Forests Algorithm

The RF algorithm is asupervised learning algorithm. This means that the algorithm is trained
using a training setL containing the input setX = {x1,x2, ...,xn} ∈ R

n×p forming a p-
dimensional feature space, and the corresponding output set y = {y1, y2, ..., yn}:

L = {(xi, yi)|1 ≤ i ≤ n} (3.1)

wheren is the number of training examples. In case of classificationthe outputy is of categorical
type (i.e. class labels), whereas in the regression case theoutput is continuous. From the training
setL a prediction model is generated. This model is used to predict an output valuêy from a
new observationxnew according to the given model.

The RF prediction model is generated by following algorithm: Let n denote the number of
training samples,p the number of feature variables (=dimension) of a sample, and Ti theith tree
in the forest.

For each treeTb, 1 ≤ b ≤ ntree:

1. Get a bootstrap sampleZ∗ from the training data by drawingm samples at random with
replacement from the training data-setX.

2. Recursively grow a treeTi by applying following steps on each node:

• SelectmTry feature variables at random from thep variables available

• Find the best feature variable / splitting point among themTry variables and split
the node into two sub-nodes

• Repeat the recursive steps until the node size fall below a given minimum node size.

Breiman suggests as size formTry = ⌊√p⌋, and a minimum node size of1 for classification.
For regression, the default value ismTry = ⌊p/3⌋, and the minimum node size is five. As
bootstrap size,m, he suggests to use about two-third of the instances. The unused samples are
denoted as the Out-Of-Bag (OOB) samples [28]. These samplescan be used to estimate thegen-
eralization errorby predictingŷ for each samplexi using only the trees of the Random Forest,
in which the samplexi is an OOB sample. The average of the errors made in the prediction is
the OOB error rate, which has been shown to be an unbiased estimation of thegeneralization
error [28]

Find the best feature variable / splitting point In the algorithm a best split is applied at each
node by determining the splitting variable and the splitting point giving the best binary partition
of the node.

Regression trees For regression trees one way of finding the best splitting point is the
minimization of a sum-of-squares criterion, as proposed byBreiman et al. for their Classifica-
tion And Regression Tree (CART) algorithm [29]. Denoting the splitting variable asj and the
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splitting point (threshold) ass one may write the partition of the data in two regionsR1 andR2

at a node as:

R1(j, s) = {X|xj ≤ s} andR2(j, s) = {X|xj > s} (3.2)

Approximations for the splitting variablej and the splitting points are found by solving:

ĵ, ŝ = argmin
j,s



min
c1

∑

xi∈R1(j,s)

(yi − µ̂1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − µ̂2)
2



 (3.3)

µ̂1 andµ̂2 are determined for any choice ofj ands by calculating the mean ofyi in the region
R1 andR2

µ̂1 = mean(yi|xi ∈ R1(j, s)) andµ̂2 = mean(yi|xi ∈ R2(j, s)) (3.4)

This greedy algorithm tends to minimize the sum variances for the two resulting nodes.

Classification trees For classification trees the objective in splitting the nodeis that all
samples in the sub-nodes should be ideally of the same class.The amount of “wrong” classes, or
heterogeneity of target classes in a node is denoted asimpurity of a node. The splitting variable
and splitting point is chosen in a way that the biggest reduction of impurity in the sub-nodes is
achieved.

Let i(t) be a function measuring the impurity at nodet. Furthermore lettl and tr be the
left and right child node of nodet, andnt be the number of samples in nodet. By partition the
node according to a splitting variablej and splitting points in a similar way as in Equation (3.2)
one may calculate the probabilitiesPl andPr of the sub-nodes depending on the size of the two
regions:

Pl(j, s) = P (xj ≤ s) =
|R1(j, s)|

nt
andPr(j, s) = P (xj > s) =

|R2(j, s)|
nt

(3.5)

where|R1(j, s)| is the number of samples in the left sub-node. The reduction of impurity (∆i(t))
between the parent nodet and the child nodestl andtr is then calculated as follows:

∆i(t) = i(t)− Pl · i(tl)− Pr · i(tr) (3.6)

The best split is then determined by finding the biggest reduction of impurity by solving follow-
ing maximization problem:

ĵ, ŝ = argmax
j,s

[i(t)− Pl(j, s) · i(tl)− Pr(j, s) · i(tr)] (3.7)
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Measuring the node impurity Two common methods of measuring the node impurity
i(t), producing almost similar results [31], are:Gini index, as used in the CART algorithm [29],
and the concept ofinformation entropy, as used in theC4.5 decision treealgorithm of Quinlan
[125].

Let p(k|t) be the conditional probability of classk ∈ 1, ...,K at nodet. An empirical
determination ofp(k|t) is given byp̂(k|t) = nk/nt, wherentt denotes the number of examples
for nodet andnk the number of examples belonging to classk. The Gini impurity function
iG(t) and the information entropy impurity functioniE(t) are defined as following:

iG(t) =

K
∑

l 6=k

p(k|t)p(l|t) =
K
∑

k=1

p(k|t)(1 − p(k|t)) = 1−
K
∑

k=1

p2(k|t) (3.8)

iE(t) = −
K
∑

k=1

p(k|t) log p(k|t) (3.9)

The Gini reduction of impurity (∆iG) and the entropy reduction of impurity(∆iE ) are gained by
usingiG, respectivelyiE as impurity measures in Equation (3.6).

Prediction To get a prediction of̂y from a new samplexnew the sample is pushed down
each tree of the forest ending in a terminal node. This node isassigned as outcome of the
tree to the sample. For regression an average of all tree outcomes is calculated as prediction:
ŷ(xnew ) =

1
ntree

∑n
i=1 Ti(xnew ). For classification amajority rule is suggested:

Ĉ = majority rule{Ci(xnew )} (3.10)

whereCi is the class prediction outcome of theith tree. The majority rule, also denoted as
winner-takes-allprinciple, selects the class with the most votes. In the caseof RF each tree
“votes” for one class.

3.2 Variable Importance

An interesting aspect of RF is that it provides a measurementof the contribution amount of
a feature to the classification and prediction accuracy, denoted asvariable importance. Two
methods of calculating the importance are proposed: theGini importance, based on the Gini
impurity; and thepermutation accuracy importance, based on the OOB accuracy [6].

The Gini importance measures the average amount of information gain using the Gini index
splitting criterion (Equation 3.8). It is calculated for a given feature variable by averaging the
reduction of the Gini impurity (∆iG) over all trees for those nodes, where the feature variable
has been chosen as splitting variable. Since∆iG(t) is calculated as splitting criterion for each
node, it just needs to be accumulated during the creation of the RF. The Gini importance is also
often denoted asmean decrease in Gini index, or mean decrease in Gini impurity[6].

Another type of variable importance is calculated from the OOB samples. It measures the
prediction strength of each variable. First, for a tree the OOB samples are used for prediction
and the accuracy is recorded. Then the samples are perturbedby permuting the variablej. The
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accuracy is calculated again for these perturbed samples. By calculating the mean difference of
the two accuracies over all trees, thepermutation accuracy importancefor variablej is obtained.

The Gini importance measure correlates well with the permutation accuracy importance [6],
although the computational effort for calculating the Giniimportance is lower than for the per-
mutation accuracy importance, since it is a side product of the tree creation. On the other hand,
Gini importance tends to be biased when predictor variablesvary in their number of categories
or scale of measurement, whereas the permutation accuracy importance is reliable in such cases,
when using sub-sampling without replacement instead of bootstrapping [141].

3.3 Discussion

The Random Forests algorithm, used for regression and classification, has been described in
this chapter. The RF algorithm is a supervised learning algorithm, where a prediction model is
trained on a given input set containing a p-dimensional feature-vector per input sample, and a
output value (target). The basic idea of the RF training algorithm is the growth of many unpruned
decision trees with a random selection of input samples per decision tree (bootstrapping) and a
random selection of feature variables chosen from the feature-vector for each decision node. In
the classification case for each decision node the best feature variable with the optimal splitting
threshold is determined by finding the biggest reduction in the node-impurity of the child nodes
in an optimization process. The node-impurity measures theamount of “wrong” classes, or
entropy in the child-nodes. Two metrics for measuring the impurity have been described in this
thesis, the Gini index and the information entropy. It has been shown that the Gini index can be
used to determine the importance of a feature variable by calculating the mean decrease in Gini
index considering each node using the specific variable as splitting variable. This importance
measurement has been denoted as Gini index. A prediction of the output variable for a new input
feature vector is done by pushing down the feature variablesalong each tree until a terminal node
is reached. The outcome of the tree is a vote for a class. The final predicted class is obtained by
selecting the class with the most votes (majority rule).
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CHAPTER 4
Related Work

The previous chapters gave a general overview and background information about the registra-
tion and classification methods used in this thesis. The following sections are a more specific
overview of related research and state-of-the-art according to the three cornerstones of the the-
sis: the multimodal breast image registration, the automatic breast lesion segmentation, as well
as the automatic lesion classification.

4.1 Multimodal Breast Image Registration

Several methods are proposed for registration of breast DCE-MRI images. A summary is given
in the paper of Guo et al. [66]. Rueckert et al. [132] modeled the transformation using a free-form
deformation (FFD) based on B-Splines. Normalized mutual information was used as a voxel-
based similarity measure. It has been observed by Tanner et al. [146] and Rohlfing et al. [129]
that registering DCE-MRI images using free-form deformations tend to shrink the tumor. They
developed volume preserving registration methods. Another registration method using finite
elements is proposed by Miga [102]. Hill et al. [73] evaluated four methods for registration
of DCE-MRI breast images and their influence on the DCE-MRI enhancement curves. They
revealed that even a small motion of as little as 1 mm can significantly change the shape of the
enhancement curve. Therefore, they suggest that a non-rigid registration method always should
be applied before analyzing the contrast enhancement.

Registration of PET images to other modalities is a challenging task, since PET suffers
from a low SNR, a low spatial resolution and almost no morphological information [153]. For
automatic registration of rigid body parts, like the head, MI-based similarity metrics have been
proposed by Collignon et al. [42], Wells III et al. [165] and Maes et al. [96]. A recent evaluation
of PET-MRI registration methods for head images is given in [137].

A direct fusion of PET and MRI breast images from separate scanners is only reported with
assistance of using fiducial markers [108,153]. An automatic non-rigid image registration of soft
tissue PET and MR images without markers has been proposed bySomer et al. [140]. In their
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paper they describe a hybrid MRI to PET/CT registration method. They register the MRI image
in a first step to the CT image. In a subsequent step the obtained transformation is applied on
the PET image to register MRI to PET. They showed that this method is accurate and reliable,
and that it gives significant better results than a direct PETto MRI registration. Meanwhile
prototypes of combined MRI/PET scanners are available [78], which enables the direct fusion
of MRI with PET images [39].

Reiner et al. co-registered full-body DWI and CT scans [126]in their study. They used
a software prototype (Multimodality; GE Healthcare) for fusion. Huang et al. [74] used a
LDDMM to correct the geometric distortion caused by B0 inhomogeneities in DWI by doing
a registration of the b0 DWI to T2-weighted MRI. To the knowledge of the author no automatic
fusion of DWI and MRI breast images has been published.

4.2 Breast Lesion Segmentation

The segmentation of breast lesions can be divided into manual, semi-automatic, and automatic
approaches. In amanual approacha radiologist delineates the lesion boundary. In this work
this annotation represents the gold standard. However, manual segmentation suffers from inter-
observer annotation variability, due to interpretation differences of the images [77,81], and they
are time-consuming.

Semi-automaticmethods are automatic segmentation approaches that rely onan initial man-
ual setup, such as setting seed points [67], or drawing a ROI [3]. A semi-automatic method,
where each pixel/voxel is classified for being cancerous or non-cancerous, has been proposed
by Chen et al. [35]. They used a Fuzzy C-Means (FCM) clustering-based method for the seg-
mentation, applied on a breast DCE-MRI series. Wu et al. [170] proposed a Markov Random
Field (MRF) based clustering of the time-series data of breast DCE-MRI. An alternative to pixel-
wise classification are contour methods, like Active Contour (AC) [79], resulting in a closed
contour of the lesion. In Shi et al. [139] an AC is evolved based on FCM clustered DCE-MRI
data. A graph-cut based segmentation algorithm has been proposed by Zheng et al. [181]. Re-
cently, Agner et al. [3] presented a hybrid AC method, where the breast DCE-MRI time-series
is characterized by principal Eigenvectors derived from Principal Component Analysis (PCA),
and the AC evolvement is guided by these eigenvectors.

Automatic segmentationmethods do not rely on an initial manual setup, in contrast tosemi-
automatic methods. Automatic segmentation methods may also be seen as CADe systems, since
they automatically localize suspicious regions. Twellmann et al. [152] developed a pixel-wise
classification model by using a Support Vector Machine (SVM)classifier in conjunction with
DCE-MRI. Woods et al. [169] used 4-D co-occurrence texturalfeatures obtained from the breast
DCE-MRI to classify the voxels. Yao et al. [174] used co-occurrence and run-length matrix
textural features, and applied a wavelet-transformation on the textural temporal breast DCE-
MRI sequences to extract frequency features. As classifier they used a SVM committee. Vignati
et al. [157] described a method of localizing lesions in fat-suppressed DCE-MRI images. Those
images are known to suffer from a low SNR due to the fat-suppression.

Multimodal approaches, combining several modalities, areonly reported for CT/PET breast
images, where Han et al. [67] segmented lesions by applying agraph-based MRF method on a
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No of lesions (be-
nign/malignant)

AuC Sensitivity Specificity Features

Agner et al. [2], 2011 41 (17 / 24) 0.92 95.00% 82.00% Morphology + textural kinetics
Chen et al. [36], 2006 121 (44 / 77) 0.85 - - Contrast enhancement

Gibbs et al. [60], 2003 40 (17 / 23) 0.92 96.00% 71.00%
Texture, lesion size, time to
maximum enhancement, and
patient age

Levman et al. [91], 2008 94 (70 / 24) 0.74 62.50% 78.60% Contrast enhancement
McLaren et al. [100], 2009 71 (28 / 43) 0.82 - - Morphology + texture
Meinel et al. [101], 2007 80 (37 / 43) 0.97 - - Morphology
Nie et al. [111], 2008 71 (28 / 43) 0.86 - - Morphology + texture

Szabó et al. [145], 2004 103 (30 / 73) 0.85 - -
Morphology + Contrast
enhancement

Zheng et al. [181], 2009 36 ( 14 / 22) 0.97 95.00% 100.00% Textural kinetics

Table 4.1: Summary of performance of breast DCE-MRI CADx methods.

combined CT/PET image, taking the advantage of both modalities, the high spatial resolution of
CT and the functional information of PET. To the author’s knowledge no multimodal approach
using a combination of DWI, MRI and PET has been proposed.

4.3 Breast Lesion Classification

The aim of breast lesion CADx systems is the automatic classification of a lesion as benign or
malignant using a set of features extracted from the lesions; and a classifier that explores the
features to discriminate between these two types.

Several methods exploring the DCE-MRI time-series have been proposed [2,36,60,91,100,
101, 111, 145, 181]. A summary of model-based and model-freeparametric DCE-MRI analysis
methods is given by Eyal and Degani [51]. Features extractedfrom the lesion are based on
the morphology [101], lesion texture [60, 181], contrast enhancement [36, 91], a combination
of morphology and contrast enhancement [145], or a combination of morphology and texture
[2,100,111]. Table 4.1 summarizes the performance of thesemethods.

Contrast enhancement methods, like Levman et al. [91], or Chen et al. [36], compute fea-
tures from the DCE-MRI time-signal curves, such as enhancement ratio and time to peak en-
hancement. Chen et al. [36] used a FCM clustering method to get characteristic time-signal
curves from the lesion. With this method they addressed the problem that drawing manual
ROIs within the lesion suffers from significant inter- and intraobserver variability [36]. Sz-
abó et al. [145] combined contrast enhancement features with morphological categories such as
margins (smooth, lobulated, irregular, spiculated), or homogeneity (homogeneous, intermediate,
heterogeneous). The categories were determined by radiologists. Meinel et al. [101] calcu-
lated morphological features from the segmented lesion, like mean volume, area, radial length,
spiculation, perimeter length, and compactness. Such morphological features are also used in
Agner et al. [2], McLaren et al. [100], and Nie et al. [111], though they combined the morpho-
logical features with textural features. Gibbs and Turnbull [60] used the co-occurrence matrix
and Haralick features [68] for classifying the lesion. Theywere able to improve the result by
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adding additional morphological (lesion size), and contrast enhancement (time to maximum en-
hancement) features, as well as the patient age. Chen et al. [37] extended Gibbs and Turnbull’s
work by replacing the 2-dimensional co-occurrence matrix with a 3-dimensional non-directional
co-occurrence matrix. They were able to show that the classification performance of volumetric
texture features is significantly better than the classification based on 2-dimensional texture anal-
ysis. Zheng et al. [181] and Agner et al. [2] proposed spatiotemporal texture features, denoted
by Agner et al. astextural kinetics. These features aim in capturing the spatiotemporal changes
in breast lesion texture. Zheng et al. [181]computed the discrete Fourier transform of Gabor
filtered texture features of the DCE-MRI series to obtain thespatiotemporal changes. Agner
et al. [2] combined spatiotemporal texture features such asGabor filter, Sobel filter, first-order
statistics, and second-order (Haralick) statistics, withmorphological and contrast enhancement
features.

Using DWI for classification shows promising results [24, 65, 97, 171–173]. Marini et al.
[97] report a sensitivity of 80% and a specificity of 81% usingonly DWI for classification.
Yabuuchi et al. [171,172] combined DWI with DCE-MRI morphological categories and contrast
enhancement features. They report a sensitivity, specificity, and accuracy of 92%, 86%, and
91% for mass-enhanced lesions [172], and 87%, 86%, and 86%, respectively for non-mass-like
enhanced lesions [171].

To the authors knowledge using combined DCE-MRI, PET, and DWI modalities in a CADe
or CADx system is a novel approach.

4.4 Discussion

In this chapter a state-of-the-art summary has been given for the three cornerstones of the the-
sis: the multimodal breast image registration, the breast lesion segmentation and classification.
References to methods for DCE-MRI registration, PET to MRI registration via CT, and DWI to
MRI registration have been given. Semi-Automatic and automatic segmentation methods have
been listed, either aiming on a segmentation on a voxel level, by classifying each voxel of being
lesion or background, or aiming on considering the topologyby using active contours or graph
cut methods. In addition, methods for the classification of the lesion have been presented in
this chapter. The performance of methods analyzing the DCE-MRI time-series have been listed
and the approaches used for getting discriminative features, like morphology, contrast enhance-
ment, and textural changes, have been described. Finally, promising results of using DWI for
classification has been summarized in this chapter.
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CHAPTER 5
Methodology

In this chapter the CAD pipeline is presented in detail, fromdata acquisition, registration and
segmentation to classification. In the first section an overview of the CAD pipeline is given. The
second section presents the medical imaging methods used for the CAD system. Furthermore,
the image acquisition and preprocessing steps are elucidated in this section. The third section
covers the multimodal image registration method. In Section 5.4 the extraction of the features
needed for the segmentation process is described. Section 5.5 explains the segmentation process.
Section 5.6 involves the extraction of features needed for the classification of the lesion. In the
final section the classification method is described.

Notations For the subsequent formulas following notation is used: Thethree-dimensional im-
ages are denoted asImodality , whereIdce is the DCE-MRI modality,Idwi is the DWI modality,
andIpet is the PET modality. The image functions are parameterized by the spatial voxel coor-
dinatesx = (x y z), with x, y, z ∈ N

+, x ≤ X, y ≤ Y, z ≤ Z. The constantsX,Y,Z represent
the size of the image in each dimension.

Imodality (x) returns the intensity value of the modality at the given coordinates. The DCE-
MRI modality is indexed by an additional parameteri ∈ N

+, with 1 ≤ i ≤ N andN is the
number of frames in the DCE-MRI sequence. SoIdce(x, i) specifies the intensity value at spatial
positionx for the DCE-MRI framei.

5.1 The Computer Aided Detection & Diagnosis (CAD) Pipeline

The CAD pipeline is implemented as a process of six steps (Figure 5.1). The first step is the
data acquisition and preprocessing step. The multimodal images are obtained from a MRI and
a PET/CT scanner, converted to a compact image file format, truncated and finally converted to
a unified image coordinate system. As a second step the imagesare co-registered and scaled to
a reference image, so that they are all aligned and all of themhave the same spatial resolution.
After the registration process the feature extraction takes place. Features needed for the segmen-
tation process are calculated for each voxel within the breast. The segmentation is implemented
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Figure 5.1: A representation of the CAD pipeline.

as a binary classification process, where a RF machine learning algorithm decides, depending on
the voxel features, if a voxel is classified as cancerous tissue or normal tissue. As a result of this
step a segmentation of the lesion is achieved. From the segmented lesion features are extracted,
which are necessary for the classification of the lesion. These features are calculated from re-
gions or clusters of voxels, in contrast to the segmentationfeatures, which are voxel-based. The
classification in benign and malign lesions is done by a RF machine learning algorithm.

5.2 Image Acquisition

In the image acquisition step three dimensional images are acquired from a 3 Tesla MRI scanner,
and a combined PET/CT scanner. At the MRI scanner the DCE-MRIand the DWI sequences are
recorded in a single session. All MR images are acquired froma 3 Tesla MRI scanner (Tim Trio,
Siemens, Erlangen, Germany) using a 4-channel breast coil in vivo. At the PET/CT scanner an
image of the thorax is acquired for each modality, where the PET and CT images are initially
aligned by the scanner software.

5.2.1 Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)

In the DCE-MRI acquisition sequence a combination of high spatial resolution and high tem-
poral resolution MR images are recorded, where the high spatial resolution images are used to
capture the detailed morphological information of the lesion, and the high temporal resolution
images capture the contrast enhancement over time. A summary of the DCE-MRI acquisition
protocol is given in the following part of this section. The fully detailed acquisition protocol, as
developed by Pinker et al., is described in [119].

The DCE-MRI acquisition protocol consists of 5 parts. First, a high spatial resolution T1-
weighted image with water excitation and fat suppression isrecorded with an acquisition time
of 2 minutes. The dimension of the image is 320x320x120, witha voxel size of 1 mm isotropic.
This image is hereinafter referred to asDCE-MRI Pre-Contrast image, and in the mathematical
context asIdce-pre . Subsequently, 16 contrast-enhanced T1-weighted images with an acquisition
time of 13 seconds are recorded. The higher temporal resolution used in this sequence leads to
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Figure 5.2: DCE-MRI recording sequence in chronological order. The time in this diagram is
the time needed for recording the image or image sequence.

a lower spatial resolution of 1.7 mm isotropic and an image dimension of 192x192x72. After 75
seconds a contrast agent is injected. So the first 5 images of the sequence are recorded without
contrast agent, and are used to determine the baseline of theMR image. Next, a high spatial
resolution T1-weighted image is acquired. At this time the peak of the contrast enhancement
at the lesion is expected [86]. This high-resolution image is referred to asDCE-MRI Peak-
Contrast image, respectivelyIdce-peak . Thereafter, 24 images with a high-temporal resolution
are acquired, to capture the washout of the contrast agent. Finally, a high spatial resolution
image is acquired, which is referred to asDCE-MRI Post-Contrast image, respectivelyIdce-post .
The DCE-MRI acquiring sequence is illustrated in Figure 5.2. Applying this protocol results in
a set of three MR images with a high spatial resolution, two ofthem contrast enhanced, and an
image sequence of 40 MR images, denoted asIdce , with a high temporal resolution, capturing
the contrast uptake and washout.

5.2.2 Diffusion Weighted magnetic resonance Imaging (DWI)

The DW images are acquired in the same recording session as the DCE-MR images. A combined
b value protocol of 0 and 850 sec/mm2 is used, resulting into two DW images and an ADC
mapping calculated from the two DW images. In Figure 1.4 the DWI and ADC images acquired
from a patient are shown. A novel DWI sequence is used in the acquisition process, which is
less distorted and which has a higher SNR than other DWI sequences [123]. Details of the DWI
protocol and its parameters are listed in [25].

The resolution of the image is2.09 × 2.09 mm, with a slice thickness of 5.5 mm, resulting
in an image dimension of172 × 86 × 24. The first DW image with a b value of 0 sec/mm2 is
used in the subsequent registration and segmentation steps. This image has a higher contrast and
there are more morphological structures visible than in thesecond DW image using the b value
of 850 sec/mm2, as seen in the Figure 1.4 presented in the Introduction chapter. In subsequent
parts the DW image with a b value of 0 sec/mm2 is referred as DWI(Idwi ), and the DWI-ADC
mapping is denoted as ADC, respectivelyIadc .

5.2.3 Positron Emission Tomography (PET)/Computed Tomography (CT)

PET and CT images of the thorax are acquired in a combined PET/CT scanner.[18F ] fluorodes-
oxyglucose ([18F ] FDG) is used as a radiotracer for the PET image. The spatial resolution of
the PET image is4 × 4 mm with a slice thickness of 3 mm. The dimension of the image is
168 × 168 × 74. The CT image has a resolution of1.37 × 1.37 mm, a slice thickness of 3 mm
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and an image dimension of512× 512× 74. The PET and CT images are aligned automatically
by the scanner software.

5.2.4 Image Preparation

Following pre-processing steps are performed after image acquisition:

Conversion The acquired images are initially stored in a Picture Archiving and Communica-
tion System (PACS), from which they have been exported for further processing using the DI-
COM [23] image format. The DICOM format stores each slice of each acquired image in a sep-
arate file, resulting in directories containing several thousand DICOM files for each patient. The
DICOM images are therefore converted to a more compact medical image file format, the Neu-
roimaging Informatics Technology Initiative (NIfTI) (http://nifti.nimh.nih.gov/)
image format. In this format one file is representing one volumetric dataset. Hence, one single
NIfTI file per image modality is gained after conversion.

Mask creation A binary maskM = {x|x ∈ breast} is created fromIdce-pre , to segment the
region inside the breast from the surrounding air. All subsequent calculations of features and
performance ratings are done for voxels specified inside thebreast only. A single mask for all
modalities is calculated, since all modalities are registered in the subsequent step toIdce-pre .
M is created by using an intensity based region-growing algorithm [1]. The seed points are
defined manually by selection points within the surroundingair. The intensity threshold is also
defined manually, so that the region growing algorithm selects air voxels only, and stops at the
soft-tissue border of the breast. The mask is inverted afterwards, resulting in a selection of the
breast region. Small errors in the segmentation, which occurred due to the partially low contrast
of the skin-tissue, have been manually corrected.

Truncating PET/CT The original CT and PET images show the whole thorax, whereasthe
MR images cover the breast region only. For this reason the PET and CT images are truncated
by manually selecting a bounding box in a way, that the field ofview is approximately the same
than the field of view of the MR images.

The NIfTI file format has a coordinate system included, to represent the position, orientation
and resolution of the underlying image. It is used i.e. for converting image coordinates to
patient coordinates and vice versa. The subsequent registration process uses this information
too. To get initially roughly aligned CT/PET and MR images, the coordinate system origins of
the CT and PET images are replaced by the one from the MR image.Figure 5.3 illustrates the
truncating process and the initial alignment of the CT and MRimage. The truncated PET image
is subsequently denoted asIpet, and the CT image asIct.

In Table 5.1 a summary of all acquired images and their denotions is given.
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Figure 5.3: Left: PET and CT image of the thorax as acquired from the PET/CT scanner. Top
right: Truncated PET and CT image. Bottom right: Overlay of the MRI (cyan) and the truncated
CT image (red) using the MRI coordinate system origin.

Image type Denoted as Description
DCE-MRI Idce(x, i) DCE-MRI time-series (40 images)
DCE-MRI Pre-Contrast Idce-pre(x) DCE-MRI high-resolution pre-contrast image
DCE-MRI Peak-Contrast Idce-peak (x) DCE-MRI high-resolution peak-contrast image
DCE-MRI Post-Contrast Idce-post (x) DCE-MRI high-resolution post-contrast image
DWI Idwi (x) DWI (b-value: 0 sec/mm2)
ADC Iadc(x) DWI ADC mapping
PET Ipet (x) Truncated PET image
CT Ict(x) Truncated CT image
Mask M(x) Binary mask image obtained fromIdce-pre

Table 5.1: Summary of image types obtained in the data acquisition and pre-processing step.

5.3 Registration of Image Modalities

The registration of the image modalities is the next step in the CAD pipeline, with the objective
of transforming all images to a reference coordinate system. The image modalities are aligned
using a 3D voxel intensity-based approach.

The registration is done in two steps. First an affine registration is performed, to do a global
alignment of the breast images, followed by a non-rigid transformation. The latter transfor-
mation is necessary to compensate the patient movement and breathing during a DCE-MRI
recording sequence, the distortions, which are inherent inDWI, as well as the different image
acquiring conditions and patient positions in the MRI and PET/CT scanner. For instance, all
MRI modalities are recorded by placing a coil between the twobreasts, causing a slight defor-
mation, which is not present at the PET/CT acquisition, and which needs to be compensated in
the registration process.Idce-pre is used as the reference image, to which all other images are
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Figure 5.4: Results of the registration process for one patient. Top row: Reference Pre-Contrast
MRI and registered Post-Contrast MRI; middle row: registered DWI and ADC map; bottom row:
registered CT and PET images. The PET image is overlayed on the MRI image to visualize the
combined morphologic and functional information of these two modalities.

registered to. All images are upscaled to theIdce-pre resolution after registration using a trilinear
interpolation. After the registration step all image modalities share a common coordinate sys-
tem, they are aligned, and they have the same orientation andresolution. After registration the
spatial coordinate vectorx refers to the same spatial location in all image modalities.Figure 5.4
shows the result of the registration process for one patient.

Registration Framework The ANTS framework by Avants et al. [14] has been chosen for
registering the multimodal images. It implements several transformation models, like SyN, Dif-
feomorphic Demons, elastic and rigid/affine registrations, as well as several kinds of similarity
metrics, like MI, CC, and MSQ. ANTS is open source, it is well documented and it works in
Linux, Windows and Mac OsX environments. These facts as wellas the top rankings of SyN in
the Klein et al. [82] study and the EMPIRE10 challenge [109] is the main motivation for using
this framework.

Affine Registration At this registration step an affine transformation matrixTAff is succes-
sively modified in an optimization process. The registration is performed on a multi-resolution
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scale based on a 3 level Gaussian pyramid, as Avants et al. [14] suggests for images with 1 mm3

resolution. The initial registration begins with a quarterof the original resolution, the second
turn uses half of the resolution and the final turn is performed with the full resolution. MI with
32 bins is used as the similarity metric.

Nonrigid Registration During the non-rigid registration step a deformation mapTSyN is cre-
ated and successively optimized, covering the non-rigid deformation of the breast. As similarity
metric CC is used for registeringIct andIdwi to Idce-pre . TheIdce series is registered using the
MI metric. As transformation model GrSyN is used. Other metrics and transformation models
have been evaluated, whereas these combinations of metricsand transformation models have
the best performance. Details of the evaluation process arefound in Section 6.1 of the “Experi-
ments” chapter.

The non-rigid optimization process is also performed usinga 3 level Gaussian pyramid. The
maximum number of iterations is limited to 500, 300 and 150 inrespect to the resolution level.

The registration of DWI to MRI can be formally written as:

I∗dwi (x) = Idwi (Tdwi ,mri (x)) (5.1)

whereTdwi ,mri is the transformation obtained in the registration processwhen registeringIdwi
to Idce-pre . This transformation is a composition of the nonrigid and the affine transforma-
tion: TSyN

dwi ,mri (T
Aff
dwi ,mri (x)). The registration transformations of the other modalitiesI∗ct , I

∗
dce ,

I∗dce-peak , andI∗dce-post are defined analogous. SinceIadc andIdwi share the same coordinate
system,Tdwi,mri is used for the transformation ofIadc to the reference image.

PET to MRI registration Ipet is not directly registered toIdce-pre . The low resolution, to-
gether with the absence of morphological information in thePET modality, severely complicates
an accurate non-rigid registration. Therefore the PET image is registered in an indirect way to
the MR image by registering the CT image to the MR image in a first step, and applying the
registration transformationTct ,mri on the PET image in a second step:

I∗pet = Ipet (Tct ,mri(x)) (5.2)

The higher resolution of the CT image, and the presence of morphological structures within the
CT image results in an accurate registration ofIct to Idce-pre , and as a consequence the accurate
registration ofIpet to Idce-pre . This method is inspired by Somer et al. [140], where soft-tissue
PET/CT and MR images have been registered in a similar way.

After registration the imagesI∗dwi , I
∗
adc , I∗pet , I

∗
ct , I

∗
dce , I∗dce-peak , I∗dce-post , andIdce-pre share

a common reference coordinate system. Subsequently the spatial coordinatesx refers to this
coordinate system. To facilitate the reading, the∗ is skipped in the subsequent sections and
chapters.
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5.4 Data Preparation and Segmentation Feature Extraction

After image registration the data is pre-processed and features are extracted for the subsequent
segmentation step. The preprocessing step consists of the annotation of the lesion and the nor-
malization of the MRI data.

Annotation The annotation of the lesion is used as a reference for training and as gold-
standard for validation of the segmentation process. The annotation is a labelingL(x) ∈ {0, 1}
operating in the reference frame, where the non-lesion regions are labeled as0, and the lesion
voxels are labeled as1. An experienced radiologist manually annotated the lesioneither on the
registeredIdce-peak or Idce-post , depending on where the lesion is better visible. ITK-Snap [178]
is used as the annotation tool. The lesions are annotated manually by paintbrushing and by using
active snake segmentation [79], which is driven by image intensity. Care has been taken, that the
whole lesion is covered by the annotation. Although, especially at the border of the lesion partial
volume effects are taking place, rendering the decision of avoxel imprecise for being cancerous
or non-cancerous. Hence, inaccuracies in the annotation atthe lesion border are possible.

Data normalization The variable scale of the signal intensities is inherent in MR images
and varies from patient to patient. Therefore the data is normalized to get a uniform scale
for all patients MR images. As normalization the standard score is used:I ′(x) = I(x)−µ̂

σ̂ .
µ̂ and σ̂ are estimated for each patient from the masked Pre-ContrastMR image intensities
Idce-pre ∩ M . These precontrast parameters are also used for normalizing Idce ,Idce-peak , and
Idce-post . The contrast uptake, which differs for each patient, wouldhave an influence on the
statistic parameterŝµ andσ̂ and the normalization, if they would have been calculated separately
for each frame of the DCE-MRI series. Therefore the statistical parameters ofIdce-pre are used
for normalization of the contrast enhanced images, assuming that all images of the DCE-MRI
sequence share the same scale asIdce-pre . Since for segmentation and classification only the
normalized values are used, in the subsequent sectionsIdce ,Idce-pre , Idce-peak , andIdce-post refers
to the normalized images.

5.4.1 Segmentation Feature Extraction

Subsequently the features needed for the segmentation process are extracted from the prepro-
cessed data on a voxel base. The features can be categorized into following groups:

• Signal intensity based features,

• texture based features, and

• DCE-MRI kinetic curve features.

In the first category features are subsumed, which are based on the signal intensities of the image
modalities; the features from the second category are used to analyze textural properties of the
lesion; and the features from the third category are describing properties of the kinetic curve of
the DCE-MRI sequence.
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A list of all features extracted for segmenting the lesions is given in Table 5.4 at the end of
this section. A detailed performance evaluation of the segmentation feature is given in Section
6.2 of the “Experiments” chapter. Subsequently, the extracted features at a given spatial position
x are represented by a feature vectorf type(x), wheretype specifies the category, respectively
modality of the extracted feature.

Signal intensity based features The signal intensities fromIdwi , Iadc , Ipet , Idce-pre , Idce-peak ,
andIdce-post are extracted from each voxel within the maskM . Formally,fdwi(x) = Idwi (x),
analogous for the other modalities. Also the signal intensities of Idce are extracted, result-
ing in 40 values per voxel, representing the signal intensity change over time:fdce(x) =
(Idce(x, 1), ..., Idce (x, N)). In Figure 5.5 the DCE-MRI signal intensity values for one voxel
within the lesion, one voxel from a fat tissue, and one voxel from a lobules region is plotted
over time. An intensity change at the cancerous tissue can beobserved beginning with frame
7. At this time point the contrast agent causes a change in thesignal intensity. Intensity values
after this time point are discriminative features to distinct between cancerous and non-cancerous
voxels, whereas the intensity values of the pre-contrast time-points are not able to discriminate
between cancerous and lobules tissue.
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Figure 5.5: Left: Signal intensity of a voxel from a DCE-MRI time series.Right: Derivation
of the signal intensity values. Red: voxel from a cancerous tissue region, blue: voxel from a
lobules region, green: voxel from a fatty tissue region.

The rapid contrast uptake in cancerous tissue after injection of the contrast agent is modeled
by using an approximate derivative over time ofIdce , denoted as∆Idce . The derivative at spatial
positionx is calculated by using the forward difference method:

∆Idce(x, i) =
Idce(x, i+ 1)− Idce(x, i)

ti+1 − ti
,∀1 ≤ i < N − 1 (5.3)

whereti is the acquisition time point in seconds of framei. The normalization termti+1 − ti is
not necessary, if the acquiring time points are equally spaced. This is not the case for the DCE-
MRI protocol used in this CAD pipeline, where a 2 minute gap exists between frame 16 and 17.
At this time-pointIdce-peak is acquired. Therefore the normalization term has been added to the
calculation. The derivative intensity values are plotted in Figure 5.5. A peak in the derivative
intensity values for cancerous tissue can be observed at thetime where the contrast agent is
injected and the signal intensity changes rapidly. This peak is not present for non-cancerous
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tissues, which are not affected by the contrast enhancement. The feature vectorf∆dce contains
the intensities of∆Idce .

The difference in signal intensity ofIdce-peak to Idce-pre and Idce-post to Idce-pre are used
as additional features. Formally written:f∆peak -pre(x) = Idce-peak (x) − Idce-pre(x), and
f∆post-pre(x) = Idce-post (x)− Idce-pre(x).

Texture based features A 3-dimensional Gray-Level Co-occurrence Matrix (GLCM) and
second-order statistics based on this matrix as suggested by Haralick [68] are used to describe
textural properties of the DCE-MRI. Using co-occurrence textural features is inspired by the
work of Woods et al. [169], where spatiotemporal texture features are used for segmentation of
the lesion, as well as the work of Chen et al. [37], where non-directional 3D GLCMs are used to
classify the lesions.

The GLCM is a way to describe the distribution of intensitieswithin a region, as well as
spatial variations of intensities in a given direction. It is defined as following: Consider an
image withL possible grey-levels. Letd be a displacement vector describing the difference in
the spatial locations of two voxels. The entry(i, j) of a co-occurrence matrixGd is the number
of times that intensities ofi andj occurs in voxel-pairs having a spatial distance ofd. The size
of Gd isL× L.

To get the empirical probability of occurrence of voxel-pairs with an intensity ofi andj, the
co-occurrence matrix is normalized by the total number of voxel-pairs:

pd(i, j) =
Gd(i, j)

∑L
k,l=1Gd(k, l)

(5.4)

The displacement vectord can be interpreted as a directional vector defining the offset be-
tween two voxel. For example in the two dimensional case a displacement vector of(1, 0) pairs
the pixel with the one immediately to the right, whereas(0,−2) is the pixel-pair of the pixel two
pixels above of the current pixel. For a certain distanced, there are 8 neighboring voxel-pairs
in 4 independent directions. In the 3-dimensional case there are 26 neighboring voxel-pairs in
13 independent directions. The displacement vectors describing the independent directions are
summarized in Table 5.2.

From the GLCM thirteen second-order statistics as proposedby Haralick [68] are computed
(f1 to f13). These statistics are commonly referred to asHaralick Features. They describe proper-
ties of the texture like contrast, entropy or homogeneity. Adetailed description of all 13 Haralick
texture features is given in the Appendix (Table A.1).

For every voxel inside the breast a5×5×5window is used for calculating the GLCM matrix.
On the one hand this small window size has been chosen to coversmall texture regions, like
small lesions. On the other hand, if the window size is too small, the statistical expressiveness
would have been reduced. Border voxels are skipped in the calculation, assuming that there
is no lesion localized in the voxel border. The intensity values are binned to 32 gray-levels,
as proposed by Chen et al. [37]. The distance d is set to 1 voxeland a GLCM is calculated
for all 13 independent directions. A non-directional mean GLCM is computed from these 13
matrices and it is normalized afterwards. The thirteen Haralick features are calculated from this
non-directional GLCM.
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2-dimensional 3-dimensional
d d

(d, 0) (d, 0, 0)
(0, d) (0, d, 0)
(d, d) (0, 0, d)
(d,−d) (d, d, 0)

(−d, d, 0)
(0, d, d)
(0, d,−d)
(d, 0, d)
(d, 0,−d)
(d, d, d)
(−d, d, d)
(d, d,−d)
(−d, d,−d)

Table 5.2: Displacement vectorsd covering all unique directions for 2-dimensional and 3-
dimensional images.d is the offset between the voxels

The Haralick features are calculated forIdce , as well as forIdce-pre , Idce-peak , andIdce-post .
To reduce the computational effort and the memory consumption, every second DCE-MRI frame
is skipped in the calculation, resulting in Haralick features for 20 frames:

ftex -dce(x) = (f1,1(x), f1,2(x), ..., f1,13(x), f2,1(x), ..., fN,13(x)) (5.5)

where in this casefi,j denotes the Haralick featurej of framei, obtained fromIdce . Analogous,
the texture feature of the high-resolution MR images is:

ftex -mri(x) =(fpre,1(x), fpre,2(x), ..., fpre,13(x),

fpeak,1(x), ..., fpeak,13(x), fpost,1(x), ..., fpost,13(x))
(5.6)

fpre,j denotes thejth Haralick feature obtained fromIdce-pre .
The change in the texture over time due to the contrast enhancement in the DCE-MRI time

series is modeled by using the derivative of the Haralick features. The derivative is approximated
by forward differencing, analogous to∆Idce :

∆fi,j =
fi+1,j − fi,j

ti+1 − ti
, (5.7)

f∆tex -dce = (∆f1,1, ...,∆fN−1,13) (5.8)

DCE-MRI Kinetic Curve Features This kind of features describes kinetic properties of the
DCE-MRI time-signal intensity curve. Following properties are calculated for each voxel:

• Area under Curve (AuC),
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• Maximum of intensity Enhancement (MaxEnh),

• Maximum of Slope (MaxSlope) and

• Time to Half Maximum (THM).

These features are calculated from the relative change of the intensity to the baseline intensity in
Idce , the enhancement rate. The baselineS0 for a voxel is determined from the four normalized
precontrast DCE-MR images, by calculating the mean intensity of these four intensities:

S0(x) =
1

4

4
∑

i=1

Idce(x, i) (5.9)

The enhancement rateRt is then calculated by following formula:

Rt(x, i) = (Idce(x, i)− S0(x))/S0(x), 1 ≤ i ≤ N (5.10)

From Rt the kinetic curve features are determined. The AuC is calculated by using a
trapezoidal integration approximation. MaxEnh is determined by finding the maximum in-
tensity inRt. MaxSlope describes the steepest slope along the time-intensity curve and is
defined as the maximum of the forward difference ofRt. And THM is defined as the time-
point, where the intensity value exceeds the half of the MaxEnh. The formal definition of
the features is given in Table 5.3. Figure 5.6 illustrates the extracted features from a voxel of
DCE-MRI time-intensity curve. These features are subsumized in the feature vectorfkin(x) =
(AuC ,MaxEnh,MaxSlope ,THM ).

Figure 5.6: Illustration of the four features extracted from a voxel of the DCE-MRI time series.
Red: Maximum Enhancement; Green: Maximum Slope; Magenta: Time To Half Maximum;
Blue: Area under Curve

48



Feature Description Calculation

AuC Area under Curve AuC (x) =
N−1
∑

i=1

(ti+1 − ti)
Rt(x, i) +Rt(x, i+ 1)

2

MaxEnh
Maximum

Enhancement
MaxEnh(x) = max(Rt(x, i)); 1 ≤ i ≤ N

MaxSlope Maximum Slope MaxSlope(x) = max

(

Rt(x, i+ 1)−Rt(x, i)

ti+1 − ti

)

THM
Time to Half
Maximum

THM (x) = min(ti); subject toRt(x, i) ≥ MaxEnh/2

Table 5.3: Formal definition of the DCE-MRI kinetic curve featuresfkin. Rt(x, i) is the relative
intensity change to the baseline intensity at spatial position x for frame numberi. ti is the
acquisition time-point of imagei relative to the time-point of acquisition of the first image in
seconds.

5.5 Segmentation of the Lesion

In the segmentation step each voxel within the breast is classified as either cancerous or non-
cancerous by a Random Forests (RF), resulting in a segmentation labelingl(x) ∈ {0, 1}, where
1 denotes a lesion voxel and0 background. The classification is based on a feature vector
f(x), which is a subset of the previously extracted features. Forinstance, a feature vectorf(x)
containing the modalitiesIpet andIdwi has the format:f(x) = (fpet , fdwi ). The feature vector
is used for training and prediction of new cases. Several feature subsets have been evaluated,
where the intensity based featuresfpet and fdwi in combination withfdce or ∆fdce showed
the best performance. A detailed evaluation of combinationof feature subsets is given in the
“Experiments” chapter (Section 6.2). Figure 5.7 illustrates the process of the segmentation.

RF Training In order to get a prediction model for a given feature subset,the RF needs to be
trained on this subset. For this reason a training feature set ftrain is evolved using the manual
annotated lesionsLi(x) as target features andf i(x) as training input data, wherei is in this
case the patient index. To get a reasonable size of training data,random undersampling[70] is
performed by sampling randomly 1000 voxels per patienti from the annotated lesion, as well as
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Feature vector Description
No. of

Features
fdwi DWI intensity value 1
fadc Apparent diffusion coefficient value 1
fpet PET intensity value 1
fdce-pre , fdce-peak ,
fdce-post

Intensity values of the high-resolution MR images 3

f∆peak -pre
Change in intensity between MRI Peak-Contrast and MRI
Pre-Contrast

1

f∆post-pre
Change in intensity between MRI Pre-Contrast and MRI
Post-Contrast

1

fdce
DCE-MRI intensity values for each frame of the DCE-
MRI series.

40

f∆dce
Difference of DCE-MRI intensity values between two
subsequent frames

39

ftex -dce
13 Haralick features calculated for every second frame of
the DCE-MRI series

13*20

f∆tex -dce
Difference of the 13 Haralick features between two sub-
sequent frames

13*19

ftex -mri
13 Haralick features calculated from the high-resolution
MR images

13*3

fkin

Kinetic Curve features: Area under Curve, Maximum En-
hancement of Intensity, Maximum of Slope, and Time to
Half Maximum

4

Sum: 637

Table 5.4: List of all features extracted from a voxel for the segmentation classification. Features
are grouped by ’Signal Intensity Features’, ’Texture BasedFeatures’ and ’DCE-MRI Kinetic
Curve Features’.

5000 voxels from non-lesion tissues. The higher amount of non-lesion tissue samples has been
chosen to cover the higher variability of tissues in these areas. Details of the sampling process
are given in the Experiments chapter - Section 6.2. The training feature setftrain is then used to
train a prediction model to determine between lesion tissueand background.

RF Classification To get the segmentation labelingln(x) for a new patient with indexn each
voxelx of the breast is classified by the trained RF using the same features as in the training step
(e.g. fn(x) = (fn

pet(x), f
n
dwi (x)). The classification is based on the RF votes, where each tree

of the forest votes, based onfn, if the voxel is representing a cancerous tissue. The summed
up votes of the trees are a kind of prediction of how likely it is that the voxel is a cancerous
tissue. The RF is applied on each voxel, and the result is stored in a prediction map. A threshold
is applied on the map afterwards, defining how many votes are necessary to classify a voxel as
cancerous. The default threshold of the RF algorithm is the majority vote, where more than half
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Figure 5.7: Illustration of the segmentation via RF classification for agiven voxel at positionx.
At first features are extracted from the image modalities (eg. fpet , fdwi ). Then they are combined
in a feature vectorf(x), which may contain all features or only a subset of the extracted features.
A trained RF predicts the labell(x) of the voxel depending onf(x), wether it is a lesion or
background.

of the trees need to vote for a class to assign it to a voxel. In this CAD pipeline an optimized
threshold level is used, giving the highest Dice SimilarityCoefficient in a Leave-One-Out Cross-
Validation (LOOCV) process. More details to the threshold level are given in the Section 6.2 of
the “Experiments” chapter. The final outcome of the segmentation step is a binary mapln, in
which every voxel within the breast is labeled as either cancerous or non-cancerous. Figure 5.8
illustrates the prediction map of a RF classification, and the threshold of the map.

Figure 5.8: Left: Prediction map of a RF Classification. The color codingillustrates how many
trees of the Random Forest voted for being cancerous. Blue means almost no tree voted and red
means almost all trees voted for being cancerous tissue. Right: MRI overlayed with a binary
map showing the segmented lesion (red). The binary image is gained by applying a threshold on
the prediction map.

5.6 Lesion Classification Feature Extraction

The next step in the CAD pipeline is the classification of the lesion into being either benign or
malign. Additional features are extracted from the images in order to get a prediction of the
lesion class. Since the non-lesion area is not of interest inthe classification step, only voxels
within the lesion are considered. The segmentation mapl(x) obtained in the previous CAD step
is used as mask for the feature extraction. Formally, the setof spatial coordinates within a lesion
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is defined asXl = {x|l(x) = 1}. The spatial voxel coordinates within the lesion are denoted as
xl ∈ Xl. In the feature extraction step only spatial locationsxl are considered.

In contradistinction to the voxel based featuresf(x) for the segmentation step, where fea-
tures are extracted for each voxel, the lesion classification featuresfl are extracted for the whole
lesion. An obvious and simple extraction method would be averaging the data values within
the lesion. Though, a high variability in the DCE-MRI contrast enhancement over the lesion is
observed [36]. For instance necrotic areas have a much lowercontrast enhancement than other
regions. Such areas of low contrast-enhancement have an effect on the overall average value.
Therefore, in the clinical practice a radiologist draws a small ROI over the region that appears
to be the most enhancing region. The intensity values of the selected ROI are averaged and a
kinetic curve is extracted from the averaged values [87]. The obtained kinetic curve can then be
used for classification of the lesion [87]. The manual ROI selection suffers from a high intra- and
interobserver variability in selecting a ROI within a lesion [110]. To overcome the variability
Chen et al. [36] developed an method, which automatically selects a ROI and extract the kinetic
curve by applying a FCM clustering on the DCE-MRI time-series. The cluster with the highest
contrast enhancement was selected for classification. Theydenoted this cluster as the Charac-
teristic Kinetic Curve (CKC) of the lesion. The clustering can be seen as a kind of dividing
the lesion into several regions, from regions with a high contrast enhancement to regions with a
low contrast enhancement. By picking the cluster with the high contrast enhancement, the ROI
selection in the manual approach is imitated up to a certain degree, with the adavantage of the
reproducibility of the automatic method.

The idea of Chen et al. of clustering DCE-MRI time-series is advanced in this thesis for
DWI-ADC and PET data, which is a novel approach. TheIadc values within a lesion also have a
high variability, partially due to the low resolution, partial volume effects and noise. In a manual
approach a radiologist draws a ROI in a region with a low ADC value [24]. In this thesisIadc is
clustered and the cluster center with the lowest ADC value ischosen, imitating the manual ROI
selection. In Section 6.3.1 of the “Experiments” chapter itis demonstrated that the clustering
method produces discriminative features and that it is robust against outliers.

Formally, the intensity values fromIdce(xl, i), Iadc(xl), andIpet (xl) within a lesion are
clustered using FCM. The obtained cluster centersµdce , µadc , andµpet are used as features for
classification, resulting in one feature vectorfl per lesion.

In the following sections the FCM clustering is described indetail, as well as the clustering
method of Chen et al. obtaining the CKC from theIdce time-series, and the clustering of theIadc
andIpet data using the FCM clustering method. At the end of this section a list of all features
extracted for classification is given (Table 5.6).

5.6.1 K-Means and Fuzzy C-means Clustering of Features within Lesions

Data clustering is an unsupervised method of subdividing a sample data setI into c nonempty
subsets (clusters) [22]. If each sample is assigned to one specific cluster, the clustering is termed
ashard clustering. In afuzzyclustering the strict assignment of a sample to one cluster subset is
softened by using a degree of membership of a sample data point to each cluster.

The assignment to a cluster is guided by a similarity criterion, so that sample data values
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within a cluster are more “similar” than data values of two distinct clusters. In acentroidbased
clustering the squared distance of a sample to its cluster center, which is the centroid (mean)
of all samples within the cluster, is minimized over all samples. When defining a fixed cluster
sizec, the centroid based clustering can be formulated as an optimization problem: find thec
cluster centers by assigning to each sample point a cluster so that the distances are minimized.
Formally written: Given a set of sampled data or observations I = (I(x1), I(x2), ..., I(xn))
with xj ∈ Xl, then samples are partitioned intoc setsS = {S1, S2, ..., Sc} so that the sum of
squares within the cluster is minimized:

argmin
s

c
∑

i=1

∑

I(xj)∈Si

‖I(xj)− µi‖2 (5.11)

µi is the mean of all observations of the setSi and represents the cluster center or centroid of the
clusteri. The problem is NP-hard in regards of complexity [4]. One well known approximation
algorithm, finding a local minimum of the solution, is the K-means algorithm by Lloyd [93].
It uses the fact that the optimal solution of the Eqn. (5.11) partitions the data into a centroidal
Voronoidiagram [47], where the cluster centers(µ1, µ2, ..., µc) are the generating points of the
diagram. The algorithm works as follows:

1. Start with an initial set ofc cluster centerŝµ1
1, ..., µ̂

1
c , either by placing the cluster centers

randomly, or by using heuristics.

2. Partition the data according to the Voronoi diagram from the cluster centers by assigning
each observation to the cluster with the closest cluster center. If two or more cluster
centers are having the same distance, select one of them. Formally:

St
i = {I(xp) : ‖I(xp)− µ̂t

i‖ ≤ ‖I(xp)− µ̂t
j‖; ∀1 ≤ j ≤ c, 1 ≤ p ≤ n} (5.12)

3. Update the cluster center positions by calculating the mean for each cluster from the ob-
servations within the cluster:

µ̂t+1
i =

1

|St
i |

∑

I(xj)∈St
i

I(xj) (5.13)

4. Repeat steps 2-3 until the algorithm converges. Convergence is reached when there is no
change in assignment of the observations to a cluster, or if the movement distance of the
cluster centers is below aε value.

The result of the K-Means clustering algorithm is the partition of the sample data inc clusters,
and the corresponding cluster centersµ̂i.

To explain the FCM algorithm, ac× n partitioning matrixU = [uij ] is introduced.uij rep-
resents the assignment of the observationsI(xj) to the cluster from setSi. For a hard clustering
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U is based on following constraints:

ui(I(xj)) = uij =

{

1; I(xj) ∈ Si

0; otherwise
(5.14a)

n
∑

j=1

uij > 0, ∀i (5.14b)

c
∑

i=1

uij = 1, ∀j (5.14c)

Eqn. (5.14a) specifies, thatuij is 1, whenI(xj) is assigned to the clusteri. Eqn. (5.14b) restricts
the clusters of having at least one observation assigned, whereas in Eqn. (5.14c) it is defined,
that each observation is assigned to exact one cluster.

In a fuzzy clustering, based on an idea of Zadeh [179], the strict assignment of an observation
to exactly one cluster is relaxed, by replacing the discretebinary assignmentuij ∈ {0, 1} in Eqn.
(5.14a) with a “fuzzy” continuous functionuij ∈ [0, 1]. The reformulated constraint foruij is:

0 ≤ uij ≤ 1; Eq. (5.14b); Eq. (5.14c) (5.15)

In a fuzzy clusteringuij describes the degree of membership of the observationI(xj) to cluster
i in a range from0 to 1. The hard clustering can be seen as an extreme case of the fuzzy
clustering [48].

Based on the fuzzy clustering, Bezdek developed a FCM clustering algorithm [21,22], which
works as follows: To introduce the degree of membershipuij , the k-Means objective function
(Eqn. (5.11)) is reformulated as:

Jb(U, V, Y ) =
c

∑

i=1

n
∑

j=1

uij
b‖I(xj)− µi‖2 (5.16)

whereU is the partition matrix containing the degree of membershipvariablesuij. V is thec×n
matrix containing the cluster center vectorsµi, andb ≥ 1 is a weighting exponent, describing
the amount of “unsharpness” (blur, defocus) of the memberships [22]. When settingb to 0 (no
unsharpness), the formulation is equal to the K-means clustering formulation (Eqn. (5.11))Jb
is in general minimized, when the cluster centersµi are close to those observation pointsI(xj)
with a high degree of membership to clusteri.

Necessary conditions, where the objective function (5.16)is minimized under the constraints
(5.15), can be derived using Lagrange multipliers [22]:

uij =
1

∑c
k=1

(

‖I(xj)−µi‖2

‖I(xj)−µk‖2

)2/b−1
(5.17)

µi =

∑n
j=1 u

b
ijI(xj)

∑n
j=1 uij

b
(5.18)

The FCM clustering algorithm iteratively obtains the partition matrixU and the cluster cen-
ter matrixV using Eq. (5.17) and Eq. (5.18) as follows:
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1. Initialize the cluster center matrixV randomly or by using heuristics.

2. Update the cluster center matrixV using Eq. (5.17)

3. Update the partition matrixU using Eq. (5.18)

4. Repeat steps 2-3 until a convergence criterionε is reached:‖U t+1 − U t‖ < ε

The result of the FCM clustering algorithm is a matrixV containing the cluster centers
(µ1, ..., µk), as well as the partitioning matrixU containing the degrees of membership of each
observation to each class.

5.6.2 Characteristic Kinetic Curve within Lesions

Within a lesion inhomogeneities in the contrast enhancement can be observed [36], resulting in
a variability of time-signal curves within a lesion. Figure5.9 illustrates the time-intensity curves
of five randomly picked voxels, illustrating the variability of the time-signal curves. Chen et
al. [36] proposed a method of categorizing these DCE-MRI time-signal curves into a number
of prototypic curves by using a FCM clustering method and using the curve with the highest
contrast enhancement rate, the CKC, for classification. They were able to show that using the
CKC for classification gives better results than using curves obtained by averaging the intensities
over the whole lesion.

This method is also used in the proposed CAD pipeline, and works as follows: LetIdce(xl)
be a vector containing the intensity values of the DCE-MRI time-series at given positionxl. Let
furthermoreIl be the set of data samples within the lesion:

Il = {Idce(x1), Idce(x2), ..., Idce (xn)} (5.19)

wheren is the number of voxels within a lesion. These samplesIl are clustered by a FCM
algorithm. As cluster sizec Chen et al. [36] empirically determinedc = max(2, [n/80]). They
usedb = 2 and the convergence criteria parameterε = 10−5. These parameters are adopted
in the CAD pipeline, with an additional termination condition of 500 iterations as maximum
number of iterations. The cluster centersV of the FCM are forming the prototypic curves of the
lesion (S1, S2, ..., Sc). The enhancement rateRt for each prototypic curve is calculated in the
similar way as in Equation (5.10). From these normalized curves the curvek with the maximum
enhancement is chosen as the CKC:

k = arg max
j=1,..,c

Sj(i)− Sj0; 1 ≤ i ≤ N (5.20)

Sj(i) is the signal intensity at time-pointi for prototypic curveSj andSj0 is the baseline inten-
sity of the prototypic curveSj . The baseline is obtained by calculating the mean intensityvalue
over the first four time-points of the prototypic curve.

In Figure 5.9 the prototypic curves obtained from a lesion are plotted, and a comparison
between the CKC and the curve received by averaging the intensities over the lesion is given.

The intensity values of the CKC are used as features for the classification. Formally:

fl-ckc = (Sk(1), ..., Sk(N)) (5.21)
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Figure 5.9: Left: Time-Intensity curves of five randomly picked voxels within the lesion. Mid-
dle: 11 prototypic curves obtained by FCM clustering. Right: CKC compared with the curve
obtained by averaging the signal intensities (dotted curve).

In addition the values from the derivative of the CKC are calculated by the forward difference
method (Eqn. (5.3) ) and are also used as classification features:

fl-∆ckc = (
Sk(2) − Sk(1)

t2 − t1
, ...,

Sk(N)− Sk(N − 1)

tN − tN−1
) (5.22)

5.6.2.1 Modeling of the Characteristic Kinetic Curve

To get the kinetic curve parameters (MaxEnh, TTP,...) the CKC is modeled by a regression
curve, and properties from this curve are used as features for classification. Instead of fitting
a third order polynomial, as proposed by Agner et al. [2], an asymmetric generalized logistic
function [128] is used, multiplied with an exponential termto model the terminal slope. This
regression curve has been developed by Grabner G. from theMR Center of Excellence, Medical
University of Vienna, Austriaand is published the first time in this thesis.

As a regression function an asymmetric generalized logistic function [128] multiplied with
an exponential term to model the terminal slope is proposed:

r(t) = G ∗











1− 1
(

1 + (2α − 1) ∗ exp
(

1

τ
∗
(

t− t1/2
)

))1/α











∗ exp
(

β ∗ tk
)

(5.23)

G,α,τ andt1/2 are the parameters of the asymmetric logistic function.G represents the scaling
of the underlying sigmoid curve,α is the asymmetry parameter,τ is a constant that governs
the steepness of the sigmoid curve,t1/2 is the time where half ofG is reached.exp

(

β ∗ tk
)

is the exponential term with the parametersβ andk, wherek defines the terminal slope of the
curve, andβ is a scaling factor of the exponential term. Figure 5.10 demonstrates the influence
of the parameters on the shape of the regression curve. All model parameters are estimated by
using a non-linear least squares regression method [142], which is provided by the Curve Fitting
Toolbox of Mathwork’s Matlab software.

The parametersα, τ , β, andk are used as features for the classification.G andt1/2 are not
used for further analysis, as the exponential function has an influence onG, andt1/2 can vary
due to time displacements, e.g. by a contrast media injection delay.
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Figure 5.10: Illustration of the logistic model parameters, and the model fitted to a CKC. Top
left: α defines the asymmetry of the logistic model; top right: withτ the steepness of the curve
is defined. For both illustrationsG has been set to1, t1/2 to 100, andk to 0. It can be seen
that at timet12 = 100 the model function has a value of0.5, which is the half ofG, and the
maximum of the function value is defined by the parameterG. Bottom left: The influence ofk
on the terminal slope is illustrated. Bottom right: The regression curve fitted to a given CKC.

From the fitted curve additional features are extracted, describing properties of the DCE-
MRI time-intensity curve. The kinetic curve features are closely related to the curve features
calculated for the segmentation (Section 5.4.1), but at this time the features are calculated from
the regression curve, and not from the DCE-MRI intensity values. Following features are calcu-
lated: AuC, MaxEnh, THM, Time To Peak (TTP), as well as Maximum of DERivative (MDER),
which is a replacement of the MaxSlope segmentation feature. For MaxSlope the maximum of
the approximated derivative is used, whereas for the MDER the maximum of the analytical
derivative δr

δt of the regression functionr(t) is used, which is more precise than the approxima-
tion. All features are calculated for an 8 minute interval, beginning at the time-pointt0, at which
the contrast enhancement starts. The starting pointt0 is determined by locating the time-point
at which the intensity exceeds0.5% of the maximum enhancement rate. To be tolerant towards
delays in the contrast media injection, the interval has been limited to t0 + 8 minutes; for this
interval DCE-MRI data points are still available, even whenthe contrast media injection is de-
layed by two frames or 26 seconds. The formal definitions of the regression curve features are
given in Table 5.5.

The feature vectorfl-curve = (α, β, τ, k,AuC ,MaxEnh,THM ,TTP ,MDER) represents
the kinetic curve features used for classification.
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Feature Description Calculation

AuC Area under Curve AuC =

∫ t0+8 min

t0

r(t)dt

MaxEnh
Maximum

Enhancement
MaxEnh = max(r(t)); t0 ≤ t ≤ t0 + 8 min

MDER
Maximum
Derivation MDER = max

(

δr

δt

)

THM
Time to Half
Maximum

THM = min(t)− t0; subject tor(t) ≥MaxEnh/2

TTP Time To Peak TTP = argmax
t

r(t)− t0; t0 ≤ t ≤ t0 + 8 min

Table 5.5: Formal definition of the DCE-MRI kinetic curve features for classification.r(t) is
the logistic regression function with the time parametert.

5.6.3 Clustering of DWI / PET data

In this thesis a FCM clustering is proposed to categorizeIadc andIpet , with the aim of getting
characteristic intensity values for a lesion, which are discriminative and robust against outliers.
Iadc(xl) values are collected in a set of data samples within the lesion:

Il = {Iadc(x1), Iadc(x2), ..., Iadc(xn)} (5.24)

wherexi is the spatial coordinate within a lesion andn is the number of voxels.I is then
clustered using a cluster sizec = 4. The cluster centerµadc with the lowest ADC value is
chosen as the characteristic intensity value. Formally written:

fl-adc = min(µi
adc), 1 ≤ i ≤ c (5.25)

Choosing the minimum value as the characteristic value for the lesion is justified by the fact that
malign lesions have in common a lower ADC value than benign lesions. In Section 6.3.1 of
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Feature Description
No. of

Features
fl-adc Clustered DWI-ADC value 1
fl-pet Clustered PET value 1
fl-ckc Data values of the DCE-MRI CKC 40

fl-∆ckc
Difference of values of the DCE-MRI CKC for two sub-
sequent frames

39

fl-curve
Parameter of the kinetic curve regression function:α, β,
τ , k, AuC, MaxEnh, MDER, THM, TTP

9

Sum: 90

Table 5.6: List of all features extracted for the classification. Features are grouped by ’Clustered
Signal Intensity Features’, and ’DCE-MRI Kinetic Curve Features’.

the “Experiments” chapter it is shown that using this methodwith a cluster size of 4 produces
discriminative features for the classification. TheIpet values are clustered in a similar way,
whereas in this case the cluster centerµpet with the maximum value is chosen, resulting in a
characteristic PET intensity value:

fl-pet = max(µi
pet ), 1 ≤ i ≤ c (5.26)
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Figure 5.11: Illustration of the lesion classification process for a given lesion segmentationl.
First the data within the lesion is clustered, and the cluster center with the highest enhancement
for Idce clustered data, the cluster center with the lowest value forIadc clustered data, and the
cluster center with the highest value forIpet are chosen as features. Then they are combined in
a feature vectorfl, which may contain all features or only a subset of the extracted features. A
trained RF predicts the labelll of the lesion depending onfl, wether it is benign or malign.

5.7 Classification: benign vs. malign

The classification step is the final step in the CAD pipeline, where the segmented lesions are
classified into malign and benign. A RF classifier is used for this task, where the decision is
based on a subsetfl of the previously extracted features. The RF predicts the label ll with
ll = 0 for benign lesions andll = 1 for malign lesions. Figure 5.11 illustrates the classification
process. A performance evaluation of the extracted features can be found in Section 6.3.3 of the
“Experiments” chapter.

RF lesion training To learn a prediction model for a given feature subsetfl, the RF needs to
be trained on this subset. Therefore a training feature setfl-train is evolved using the histopatho-
logical report as target label andf i

l as training input data, wherei is in this case the patient index.
fl-train is then used to train a RF classifier.

RF Lesion classification To classify a new lesionn, the feature vectorfn
l is extracted, con-

taining the same features as used for the RF training. The RF uses this subset to predict the label
ll by letting each tree of the forest vote for a class. Letnk be the number of votes for the classk.
The probabilitypnk of the classk is then calculated by following equation:pnk = nk

nTree
. Finally,

the lesion labelll can be predicted by using the majority rule, where more than half of the votes
of a RF prediction must be assigned to one class, to decide forthis class. Other threshold values
than the majority rule can be used to consider the misclassification costs. In this CAD pipeline
an optimized threshold value is used, where theF value, which is a combination of sensitivity
and specificity, is maximized in a LOOCV step.

The outcome of the CAD pipeline is a binary segmentation labeling l(x) , as well as a
classification labelingll of the segmented lesion, whether it is benign or malign.

60



5.8 Discussion

The aim of this chapter was the description of the proposed CAD pipeline, from image acquisi-
tion, registration and segmentation to the classification of the lesion with respect to being benign
or malign. The CAD pipeline is implemented as a process of sixsteps. In the first step the
DCE-MRI and DWI images are acquired from a MRI scanner, and the PET images are obtained
from a combined PET/CT scanner. As a second step the images are co-registered and scaled
to a reference image, so that they are all aligned and all of them have the same spatial resolu-
tion. As registration method the SyN in combination with CC similarity metric for DWI/MRI,
respectively PET/MRI registration, and MI similarity metrics for DCE-MRI registration have
been proposed. In the third step the features are extracted for each voxel within the breast from
the multimodal image dataset. A definition of the features, categorized into intensity based, tex-
ture based, and kinetic curve based features, have been given in this chapter. The segmentation
of the lesion in step four is implemented as a binary classification process, where a RF machine
learning algorithm decides, depending on the extracted voxel features, if a voxel is classified
as cancerous tissue or normal tissue. As a result of this stepa segmentation of the lesion is
achieved. Based on the obtained segmentations features forthe classification of the lesions are
extracted. In contrast to the voxel-wise feature extraction for the segmentation step, classifica-
tion features are extracted by clustering the values withinthe lesion and using the cluster centers
as features. There are inhomogeneities within a lesion, partial volume effects at the border of
the lesion and noise in the image modalities observed. The values within the lesions are cat-
egorized (clustered) and the mean value of the best discriminative category is used as feature.
For DCE-MRI the cluster with the highest contrast enhancement, for DWI the cluster with the
lowest ADC value and for PET the cluster with the highest PET intensity value are used. In
addition to the intensity based features aasymmetric generalized logistic function is fitted to the
kinetic curve obtained from the DCE-MRI clustering. Properties from this curve are used as fea-
tures for classification. Finally, the classification in benign and malign lesions is done by a RF
machine learning algorithm by using the clustered featuresin its prediction model. The outcome
of the CAD pipeline is a binary segmentation labeling, as well as a classification labeling of the
segmented lesion, whether it is benign or malign.
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CHAPTER 6
Experiments and Results

In this chapter the performance of the proposed CAD pipelineis evaluated. The aim, beside
of the CAD pipeline evaluation, is the validation of the hypothesis that a multimodal medical
imaging approach improves the performance of a breast lesion CAD system in comparison to a
single modality CAD system. Thus, one main point of the experiments relies on the exploration
of the DWI and PET modalities in combination with DCE-MRI.

Outline This chapter is structured into three main sections, corresponding to the three main
parts of the CAD pipeline: registration, segmentation, andlesion classification.

1. Registration. In Section 6.1 transformation models and similarity metrics suitable for
multimodal breast image registration are evaluated. The quality of the registration is veri-
fied for CT to MRI, DWI to MRI and DCE-MRI registration.

2. Segmentation. In Section 6.2, the segmentation is evaluated. First, the proposed seg-
mentation features are analyzed, using the variable importance functionality of the RF.
Features are evaluated with regard to the relevant information they provide to the voxel-
wise segmentation. The performance of the segmentation itself is examined, using several
combinations of features. The influence on the accuracy of the segmentation for each
modality and each category of features is explored.

3. Classification. The final section of this chapter (Section 6.3) addresses theperformance
evaluation of the classification of breast lesions into benign and malign. The outline of
this set of experiments is similar to the experiments from the segmentation section. First
the classification features are analyzed using the variableimportance score of the RF.
Then the performance and accuracy of the classification is evaluated for several groups of
features. Also the influence of the three modalities on the classification performance is
explored.

Each section is closed with a discussion, summarizing and reflecting the results of the experi-
ments.
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6.1 Registration

In this section the registration performance using three transformation models and similarity
metrics is evaluated. Registrations from CT, DCE-MRI and DWI to the MRI modality are
covered. The aim of these experiments is to find the best performing transformation model and
similarity metric for the given registration task.

As a similarity metric CC and MI are evaluated for CT to MRI, DCE-MRI time-series to
MRI and DWI to MRI. For DCE-MRI MSQ metric is also used. This metric has been chosen,
because it is less computational demanding than CC and MI, asreported by Avants et al. [14].

The types of transformation models used for the registration are Elastic (EL) [57], Diffeo-
morphic Demons (DD) [156], Symmetric Geodesic Normalization (SyGN), and Greedy Sym-
metric Normalization (GrSyN) [14]. The SyGN transformation model is used only for CT to
MRI registration, and has been skipped for the other modalities in the subsequent tests, due to
the high computational effort needed for the registration.The registration process revealed that
the time needed for registration is one magnitude higher than for other transformation models.
On an Intel Xeon CPU X5450 3.0 GHz the registration time for one breast image was between
10 and 20 hours, whereas for other modalities the maximum registration time was 3 hours.

6.1.1 Experimental Setup

As a first step an affine registration from CT, DCE-MRI and DWI to the MRI modality is applied,
to globally align the breast images. As similarity metric for the affine registration the mutual
information is used, since it is known to provide robust results in a rigid multimodal registration
process [12]. Based on this affine registration non-rigid models are evaluated. Both registration
types, affine and non-rigid, are computed on a multiresolution scale based on a 3 level Gaussian
pyramid. The initial registration begins with a quarter of the original resolution, the second turn
uses half of the resolution and the final turn is performed with the full resolution. The maximum
number of iterations is limited to 500, 300 and 150 in respectto the resolution level, after initial
experiments. As regularization a Gaussian filter with aσ2 of 3 is used. Both, the number of
resolution levels and the value forσ2 have been suggested by Avants et al. [14] as standard
registration parameters for MRI images with 1 mm3 resolution.

To evaluate the performance of DCE-MRI time-series registration, Idce-peak is exemplarily
chosen for registration in the following experiments.

6.1.2 Validation Measures

MI is used to evaluate the quality of the registration. It is calculated using the voxels within
the breast (x ∈ M ) from the registered volume and the MR volume, whereas voxels from
the surrounding air are masked out and not considered for thecalculation. A higher MI value
indicates a better registration. In addition to the MI metric a Dice Similarity Coefficient (DSC)
[45] is calculated from a threshold basic segmentation. TheDSC is defined as:

DSC (A,B) =
2× |A ∩B|
|A|+ |B| (6.1)
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Figure 6.1: Threshold CT, DCE-MRI and DWI (from left to right), on which the transformation
has been applied to. These threshold images are used for the DSC calculation. The transforma-
tion model in this example is GrSyN and metric is CC.

A are the foreground labels of the first image andB are the foreground labels of the second
image. The range ofDSC (A,B) is between0 and1, where0 indicates no overlap and a value
of 1 indicates a perfect match.

The segmentation is obtained by applying a threshold on the image. Otsu’s method [113] is
used to determine the optimal threshold level, resulting ina rough binary segmentation of the
breast tissue. The transformation yielded from the registration process is applied to the threshold
images, and the DSC is calculated from the transformed threshold images.

The CT threshold image is compared with the binary maskM of the MR breast image
instead of the MR threshold image. This is necessary, because at the CT threshold image the
whole breast, including the fat-tissue is declared as foreground, whereas in the MRI threshold
image the fat-tissue parts are declared as background, due to the low contrast of fat-tissue in fat-
suppressed MRI. In this case the DSC measures the similarityof the registered CT breast shape
to the MRI breast shape, whereas the accuracy of the registration within the breast is measured
by MI.

For DCE-MRI / MRI and DWI / MRI threshold images the DSC coefficient has a slightly
different meaning. The MR images are recorded using fat-suppression and also DWI values are
low for fat-tissue. Thresholding this kind of images set thelow-intensity fat tissue as background
and the other tissue as foreground voxels. The DSC is therefore a measurement of the overlap
of non-fat tissue in DCE-MRI and DWI. Image 6.1 shows the transformed threshold images for
one patient.

The registration and the calculation of MI and DSC are done for 8 patient images and the
mean and standard deviation of MI and DSC are calculated.

6.1.3 Results

CT to MRI Registration The evaluation results of the CT to MRI registration are sum-
marized in Table 6.1. Transformation models using MI as the similarity metric perform worse
than their CC counterpart. A lower DSC is also observed for MIsimilarity metric, which indi-
cates that the shape of the breast is not fitted as well as when using the CC metric. SyGN in
combination with CC gives the best results, followed by GrSyN.

In Figure 6.2 the registration process is visualized. It canbe seen that in addition to the rigid
registration a deformation registration is necessary to match the images. Figure 6.3 shows the
registration results for the given similarity metrics and transformation models. Especially at the
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Sim. Metric Transf. Model Mean MI Std MI Mean DSC Std DSC
DD 0.5424 0.1279 0.8450 0.0473

Mutual EL 0.5716 0.1029 0.7470 0.0712
Information (MI) GrSyN 0.6546 0.1728 0.8607 0.0463

SyGN 0.6183 0.1460 0.7685 0.0668
DD 0.6161 0.1228 0.8885 0.0452

Cross- EL 0.6646 0.1187 0.8890 0.0480
Correlation (CC) GrSyN 0.7125 0.1147 0.8930 0.0470

SyGN 0.7527 0.0949 0.8944 0.0459

Table 6.1: MI and DSC calculated using different types of similarity metrics and transformation
models for registration of CT and MRI modalities. DD - Diffeomorphic Demons style exponen-
tial mapping, EL - Elastic transformation, GrSyN - Greedy Symmetric Normalization, SyGN -
Symmetric Geodesic Normalization

Figure 6.2: Registration steps and results from the CT modality to the MRI modality. From left
to right: Unregistered images, affine registration, GrSyN registration with CC similarity metric.
The images in this figure are thresholded for illustration purpose. The thresholded MRI image
is red colored, the CT image is blue-gray colored.

regions next to the Pectoralis muscles a flawed registrationcan be observed for MI similarity
metrics. In this example it can be also seen that the shape is not well fitted using EL in com-
bination with MI. This behavior has been observed for registration results of several datasets
using MI as similarity metric. These kind of flaws result results in a lower DSC score for the MI
similarity metric, due to the reduced shape overlap.

DCE-MRI to MRI Registration In Table 6.2 the results of the DCE-MRI to MRI registra-
tions are summarized. In this case the MI similarity metric performs better than the CC variant,
and MSQ has the worst performance of all three. The contrast enhancement in the DCE-MRI
image and the resulting difference in the image intensitieshave a negative impact on the MSQ
metric. In this experiment the SyN transformation model also outperforms the other transforma-
tion models.In Figure 6.4 the registration is visualized. It can be seen that there is only a small
offset of the unregistered DCE-MRI image to the MRI image, which is a consequence of small
patient movements and breathing during the image acquisitions.

DWI to MRI Registration The registration evaluation from DWI to MRI is summarized
in Table 6.3. The CC similarity metric provides better results than the MI metric. Also in this
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a) b)

c) d)

e) f)

g) h)

Figure 6.3: Registration results from the CT modality to the MRI modality for one patient. For
a better orientation and comparison, a threshold MRI has been overlayed in red colors. The
blue-gray colored image is the registered CT image. Similarity metric for the first 4 images
a)-d) is MI, for the second 4 images e)-h) it is CC. The registration transformations are: DD
for a) respectively e), EL for b) respectively f), GrSyN for c) respectively g), and SyGN for d)
respectively f).

case the GrSyN transformation surpasses the other models. Figure 6.5 shows the registration
result for one patient.

6.1.4 Discussion

The aim of this experiment was the evaluation of similarity metrics and transformation models
in the context of multimodal breast image registration. Theregistration was performed on CT
to MRI, DCE-MRI to MRI, and DWI to MRI, using images from 8 patients. The performance
was evaluated using MI, calculated from the voxels within the breast of the transformed images
and the reference MRI image. In addition, the DSC has been computed from binary threshold
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Sim. Metric Transf. Model Mean MI Std MI Mean DSC Std DSC
Mutual DD 1.5875 0.2406 0.7826 0.0512
Information (MI) EL 1.6154 0.2393 0.7758 0.0537

GrSyN 1.6980 0.2200 0.8067 0.0418
Cross- DD 1.4882 0.2052 0.7786 0.0464
Correlation (CC) EL 1.4975 0.2029 0.7753 0.0474

GrSyN 1.5335 0.1968 0.7752 0.0472
Mean DD 1.0436 0.1750 0.6735 0.0591
Square EL 0.8779 0.2069 0.6070 0.0641
Difference (MSQ) GrSyN 1.1261 0.1800 0.6068 0.0511

Table 6.2: DSC and MI score computed from registration of DCE-MRI to MRIusing several
similarity metrics (MI,CC,MSQ) and transformation models(DD,EL,GrSyN).

Figure 6.4: Unregistered (left) and registered (right) DCE-MRI image(white) with a MRI im-
age(red) overlayed for orientation. Threshold of images are used for visualization purpose only.

Sim. Metric Transf. Model Mean MI Std MI Mean DSC Std DSC
Mutual DD 0.2919 0.1072 0.1490 0.0694
Information (MI) EL 0.3108 0.1092 0.0808 0.0491

GrSyN 0.3447 0.1232 0.2119 0.0847
Cross- DD 0.3256 0.1027 0.2112 0.1020
Correlation (CC) EL 0.3504 0.0953 0.2099 0.1034

GrSyN 0.4154 0.0892 0.2135 0.1018

Table 6.3: DSC and MI score computed from DWI to MRI registration using several similarity
metrics (MI,CC,MSQ) and transformation models (DD,EL,GrSyN).

images, to measure the similarity of the shape of the two breast images.
The LDDMM approach, SyN, provided the best results. In the first test, the registration

of CT and MRI images, both SyN variants, greedy and geodesic,have been evaluated. The
geodesic variant surpassed the greedy variant. However, the high computational demand of the
geodesic variant of SyN limits its usefulness.

For registration of CT/MRI and DWI/MRI images the CC similarity metric outperforms
the MI metric. The reason is that the linear intensity relationship of the tissues in the breast,
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a) b)

c) d)

e) f)

Figure 6.5: Registration results of DWI modality for one patient. Similarity metric for images
a)-c) are MI, for d)-f) it is CC. The registration transformation models are: DD for a) and d),
EL for b) and e), GrSyN for c) and f). The MRI modality is red colored, the DWI modality is
blue-gray colored.

like the fat tissue and the lobules, is a good guidance in the registration process. The reduced
performance of the MI metric may be deduced from the fact thatthe performance of MI on a
local scale is reduced when intensity inhomogeneities exists in the image [12,143] (i.e. MRI bias
fields). Such bias fields are observed in the MRI breast images. The DCE-MRI/MRI registration
performance is not influenced, since both images are acquired in the same sequence, and share
similar bias fields. The higher performance of MI for MRI images is in coincidence with this
hypothesis. However, this hypothesis is not investigated in detail in this thesis, and may be
explored in detail in further studies.

The following experiments are based on the results of the registration experiments. As pre-
requisite to the following segmentation and classificationexperiments, all patient images are
registered using GrSyN and CC for CT to MRI and DWI to MRI registration, as well as MI for
DCE-MRI to MRI registration.
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6.2 Segmentation

In this section the segmentation performance and the influence of feature groups on the seg-
mentation are evaluated. The following experiments aim at on the one hand finding the best
feature combination for segmentation, and on the other handelaborating the advantage of a mul-
timodal approach to a single DCE-MRI modality approach in the context of lesion localization
and segmentation.

The outline of this section is as follows:

• Multimodal feature selection via Gini importance: First, the contributions of the fea-
tures are explored using the Gini importance measure of the RF classifier. Based on the
importance measure a feature selection is performed and evaluated.

• Gini importance of the DCE-MRI time-series: The Gini importance of DCE-MRI time-
series features (intensity, texture) are analyzed to evaluate which part of the DCE-MRI
time-series carries information with regard to lesion segmentation.

• Segmentation performance for feature subsets: The segmentation performance is eval-
uated using subsets of features. It is analyzed, which feature set improves the segmen-
tation performance, and the benefit of using multimodal features with regard to lesion
segmentation.

• Qualitative Analysis of the Segmentation Results: Finally, the segmentation results are
plotted and discussed.

To recall the features used in the segmentation and in the following experiments, one may
be referred to Table 5.4 in the previous chapter.

Experimental Setup For the segmentation of the lesion the data from 16 patients are used.
Only voxels from within the breast are considered, the surrounding air is masked out and not
used in the training, prediction, and performance calculation by using the maskingM . For each
patient the lesions have been voxel-wise annotated by a radiologist (Li). A RF is trained on the
feature setftrain(x) of lesion and non-lesion voxels with the target labelsL(x). The trained RF
is then used for prediction of voxels being in the first or second class.

Since a breast image contains 1 Mio. voxels and more, and since there is a massive imbal-
ance in the size of samples in both classes (> 1 Mio. non-lesion, a few thousand lesion voxels),
random undersampling[70] is performed in order to get a reasonable size of training data and
to balance the training data. 1000 samples from the annotated lesion and 5000 samples from the
other breast tissue are drawn randomly per patient. The small imbalance between background
and foreground samples has been chosen to consider the higher variability of the background.
The sampling size has been empirically determined. It has tobe mentioned that random under-
sampling may result in an information loss, causing the classifier of missing relevant concepts
in the data [70]. Therefore the number of samples needs to have a certain size to be statistically
meaningful. However, using more advanced subsampling methods may reduce the needed sam-
ple size and increase the performance by reducing the information loss in the sampling process.
He and Garcia describe this problematic of undersampling indetail in [70].
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The number of trees (ntree) in the RF training is set to two times of the number of features
used, with a minimum size of 200. To take care of the 5:1 imbalance of the non-lesion and lesion
samples the class weight parameter of the RF has been also setto 5:1 (classwt). Chaoe Chen et
al. describe the effect of weighted RF in [33]. And as a last parameter for the RF the number of
input variables tried at each split, (mtry), is set to⌊

√
# features⌋ as suggested by Breiman [28].

This setup is used for all following segmentation experiments, unless otherwise stated.

Validation measures The validation of the segmentation performance is performed by using
Leave-One-Out Cross-Validation (LOOCV). The dataset fromone patient is used for validation
and the sampled dataset from the other patients are used for training. This is repeated so that
each patient is validated once.

The quality of the segmentation is measured by comparing thepredicted segmentationl(x)
with the manual annotated dataL(x) using DSC as similarity metric. Instead of using the
majority vote in the RF prediction, the threshold level for the RF votes is set in a way that the
mean DSC score is maximized. Boxplots [99] are used to visualize the statistical summaries,
and in particular the variance in the DSC score among the patients.

6.2.1 Multimodal Feature Selection via Gini Importance

In the following experiments the segmentation features areexplored using the Gini importance
obtained from a trained RF. The Gini importance measure is used on the one hand to get an
insight into the relevance of the features for segmentation, and on the other hand it is used for
feature selection by using the Gini importance measure to rank the features, and to drop features
with a low score. An interesting detail is that the RF algorithm does not have any a-priori
information about these features, and the relevance of the features is solely determined in the
training step.

The RF feature selection is also compared with another feature ranking method proposed by
Peng et al. [115]. Their method is calledminimum-Redundancy-Maximum-Relevance (mRMR)
feature selection. It provides a ranking of the features based on Mutual Information, where
the relevance of features and the redundancy between features are considered and rated. The
relevanceD(S, c) of the feature setS is calculated by averaging the MI among all featuresfi
and the target classc (Equation (6.2) ). The redundancyR(S) is measured by calculating the
mean of MI between two featuresfi andfj (Equation (6.3)). Maximizing the relevance and
minimizing the redundancy can be combined by calculating the difference ofD(S, c) andR(S).
This leads to the definition of mRMR as described in Equation (6.4).

D(S, c) =
1

|S|
∑

fi∈S

MI(fi, c) (6.2)

R(S) =
1

|S|2
∑

fi,fj∈S

MI(fi, fj) (6.3)

max
S

[ 1

|S|
∑

fi∈S

MI(fi, c)−
1

|S|2
∑

fi,fj∈S

MI(fi, fj)
]

. (6.4)
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Figure 6.6: Gini importance. The blue bars are features from PET and DWI,cyan bars are
high-resolution MRI and DCE-MRI features, yellow are DCE-MRI time-series features, orange
are Haralick texture features, and red are DCE-MRI kinetic curve features. For the DCE-MRI
features and Haralick texture features only the value with the highest Gini importance measure
of the whole time-series is plotted.

Experimental Setup To get the Gini importance and subsequently the ranking of the features,
a training of the RF is performed using all features and all ofthe sampled training dataset.

For the mRMR feature selection, and in particular for the MI calculation, the data values are
quantized in 5, respectively 32 bins. In addition, the MI is calculated from the continuous values
using a Parzens windowing. Peng et al. [115] suggest a maximum of 5 states per feature variable,
therefore 5 bins have been chosen. However, experiments revealed that there is a fluctuation in
the mRMR ranking with varying bin size. The ranking became stable with a size of 15 bins and
more. Therefore, 32 bins have been chosen as additional bin size for this experiment.

Validation measures To evaluate the quality of the ranking the features are successively re-
duced using the yielded rankings. A RF is trained on the reduced feature set. The performance
of the feature subset is evaluated as described at the beginning of this section by using LOOCV
and DSC as similarity measure. The performance value is obtained by calculating the mean of
the DSC scores for each patient. The evaluation is performedfor a feature subset size of 200,
100, 50, 25, 12, and 6 to 1 using the ranking obtained from the Gini importance, respectively the
mRMR.

Results In Figure 6.6 the Gini importance score is summarized. The 12highest ranked features
obtained from the Gini index, respectively the mRMR are summarized in Table 6.4. The color
coding used in the table refers to the colors used in the summary Figure 6.6.

The performance of the feature selection is plotted in Figure 6.7. The mean DSC is quite
stable up to a reduction to the 5 top-ranked features, even that RF and the mRMR algorithm
chose a different set of features. Therefore, a higher amount of features does neither increase
nor decrease the performance of the segmentation. The RF algorithm used for training and
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Figure 6.7: Mean DSC score using the reduced feature set. Subset selection is done by using
the RF Gini importance value and the mRMR method. Discretization of the data for the mRMR
method is done by quantification into 5 and 32 bins.

prediction inherently includes a feature selection, preferring “important” features. Going below
5 features removes features which are essential for prediction, resulting in a drop in the score.

The performance of RF feature selection is comparable to mRMR, whereas mRMR with 32
bins performs best, up to a reduction to 6 features. Using thefeatures of the mRMR with 5 bins
performs worst.

There is a drop in the DSC of the 32 bin mRMR observed, when reducing from 6 to 5
features. In this case the PET feature is dropped, which has quite valuable information needed
for a better segmentation, at least for this combination of features. There is also a drop from 5 to
4 features of the RF feature selection. In this case the AuC feature is dropped. In all the feature
selection algorithms the DWI feature is ranked in top positions, except for the 5 bins mRMR
feature selection. Removing this feature from the set causes a drop of the DSC (Feature #4 in
32 bin mRMR and feature #3 in continuous mRMR). This indicates that the DWI feature also
contains valuable information for the segmentation process.

The DCE-MRI Peak and Post-Contrast features and their derivatives are also ranked high in
all of the feature selection methods. It has to be noted that the annotations of the lesions were
drawn on the registered DCE-MRI Peak and Post-Contrast images. Also the DCE-MRI Peak
and Post-Contrast images have the highest resolution of allmodalities, therefore partial volume
effects at the border of the annotated lesion are smaller, resulting in a more precise segmentation.

One interesting point of the experiment result is, that evenwhen a complete different set
of features are selected, the performance is quite similar.This shows, that many features share
redundant information, and therefore can be combined in different ways. It is also interesting
to see, that the RF also do a comparable feature selection to mRMR, even though there is no
mechanism in the RF handling the redundancy of the information in features. The mRMR
algorithm measures the redundancy of the features via Mutual Information.
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Random Forest mRMR Continuous
1 DWI DCE-MRI Peak-Contrast
2 DCE-MRI Post-Contrast Haralick #6 DCE-MRI frame #15
3 DCE-MRI frame #22 ∆ Haralick #7 DCE-MRI frame #4
4 Haralick #6 MRI Post-Contrast DWI
5 Curve Feature: AUC ∆ MRI Pre-/Post-Contrast
6 DCE-MRI frame #30 Haralick #11 MRI Post-Contrast
7 DCE-MRI frame #24 Haralick #5 DCE-MRI frame #6
8 DCE-MRI frame #20 Haralick #6 MRI Post-Contrast
9 DCE-MRI frame #21 Curve Feature: Maximum Enhancement
10 MRI Peak-Contrast Haralick #11 MRI Peak-Contrast
11 Haralick #6 DCE-MRI frame #15 DCE-MRI frame #2
12 DCE-MRI frame #27 ∆ MRI Pre-/Peak-Contrast

mRMR 32 bins mRMR 5 bins
1 DCE-MRI Post-Contrast DCE-MRI frame #38
2 Haralick #6 DCE-MRI Frame #4 Haralick #6 MRI Pre-Contrast
3 DWI ∆ Haralick #6 DCE-MRI frame #4
4 ∆ Haralick #10 DCE-MRI frame #4 PET
5 ∆ DCE-MRI frame #7 ∆ MRI Pre-/Post-Contrast
6 PET Haralick #6 DCE-MRI frame #19
7 ∆ Haralick #6 DCE-MRI frame #4 MRI Peak-Contrast
8 ∆ MRI Pre-/Peak-Contrast ∆ Haralick #9 DCE-MRI frame #4
9 ∆ Haralick #7 DCE-MRI frame #13 ∆ DCE-MRI frame #7
10 Haralick #11 MRI Post-Contrast ∆ Haralick #11 DCE-MRI frame #4
11 DCE-MRI Frame #2 Haralick #6 MRI Post-Contrast
12 ∆ Haralick #4 DCE-MRI frame #3 MRI Post-Contrast

Table 6.4: The twelve top-ranked features using RF Gini importance measure and mRMR rank-
ing. The color of the cells are similar to the colors used in Figure 6.6. PET and DWI features are
blue, high resolution MRI features are cyan, DCE-MRI features are yellow, Haralick features
are orange, and DCE-MRI kinetic curve features are brown.
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Figure 6.8: Gini importance of a RF trained on the DCE-MRI time-series. The upper left dia-
gram shows the importance of the featuresfdce . The upper right diagram shows the importance
of the featuresf∆dce . On the lower left side the importance of the Haralick features ftex -dce
is plotted, grouped by the specific Haralick feature number.Each subhistogram represents the
time-series for the corresponding Haralick feature. The lower right diagram shows the impor-
tance off∆tex -dce , also grouped by the Haralick statistics.

6.2.2 Gini Importance of the DCE-MRI Time-series

In this experiment it is evaluated which part of the DCE-MRI time-series carries information
with regard to lesion segmentation. The DCE-MRI sequence contains forty images, from which
40 DCE-MRI, 39∆ DCE-MRI, as well as13 × 20 Haralick texture features and13 × 19 ∆
Haralick texture features are extracted, resulting in 507 DCE-MRI based features. The following
experiment takes a closer look on these DCE-MRI features. Itis analyzed, which features of
the DCE-MRI time series, and which Haralick feature contains valuable information for the
segmentation process. As in the previous experiment the Gini importance yielded from RF
training is used for exploration and interpretation of the DCE-MRI features.

Experimental Setup A RF with 400 trees is trained using the sampled training dataset, the
annotated lesions, and an alternating feature subset containing the DCE-MRI time series features
fdce , f∆dce , the Haralick DCE-MRI texture featuresftex -dce , respectivelyf∆tex -dce .

Validation Measures From each trained RF the Gini importance measure is retrieved. Each
Gini importance gives a measure of importance of the DCE-MRIand Haralick texture features,
respectively their derivatives.

75



Results The Gini importance for each group is plotted in Figure 6.8. When usingfdce for RF
training, it can be seen that the algorithm prefers frames from the middle and the last thirds of
the time-series, which is the late postcontrast phase. In this phase the contrast or signal intensity
of the lesion is higher than for non-lesion tissue, providing important discriminative features for
the RF classifier. A small peak at frame number 6 and 7 can also be observed. At this time-point
the contrast uptake takes place.

In the Gini importance measures off∆dce a significant peak at frame 6-7 and 7-8 can be
observed. This is also the time point of the contrast uptake,where the intensity at the lesion
region increases fast. There is a second peak at frame number16-17. Between these two frames
there is a two-minute gap in the sequence, where the high-resolution Idce-peak is recorded. In
this case the difference between these two time points is accumulated over two minutes, whereas
at the other time points there is only an accumulation of 13 seconds.

For ftex -dce it can be observed that the RF prefers the Haralick feature #6, which is the
“sum average”. A high value corresponds to a region with a high intensity value; respectively,
a region with low intensity value has a low sum average. This observation covers well with the
Gini importance offdce , where features with a high intensity value are chosen at thelesion
region during the DCE-MRI sequence.

And in the last diagram of the Figure 6.8, thef∆tex -dce features, it can be seen that there
is a peak at frame 3-4 and 4-5 for almost all features with the highest Gini importance for the
“sum-average” feature (Feature #6). Since the Haralick features are only calculated for every
second frame, these frames correspond to the frame 6-8 in theoriginal DCE-MRI time series.
This is the time-point of the contrast uptake.

6.2.3 Segmentation Performance for Feature Subsets

In the first experiment of this section the RF has been used to select a feature subset fromall
features. In the following experiments the RF is trained on alimited set of features. The sets
of features are grouped by the modality (MRI, DWI, PET) and the category (intensity features,
texture features, kinetic curve features) for the MRI modality. Using groups of features for
training and prediction enables a comparison of the segmentation performance, when using a
single modality, respectively a multimodal approach. Alsoa comparison of intensity, texture,
and kinetic curve features is possible in such a setup. By restricting the feature set in the RF
training to a limited group of modalities and categories a deep insight in each of the categories
is given. The benefit of each modality and each category on thesegmentation performance is
evaluated in the following experiment.

Experimental Setup The features are divided into following groups:fdwi , fpet , fdce-pre , fdce ,
f∆dce , ftex -dce , f∆tex -dce, andfkin (AuC, THM, MaxEnh, and MaxSlope). In the subsequent
experiment single groups of features, respectively combinations of them are used for RF training
and prediction.

Validation Measures The segmentation performance is evaluated in a LOOCV process, cal-
culating the DSC score for each patient. From these DSC scores the mean and standard deviation
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Feature Type Mean DSC Std. DSC
fdce 0.3952 0.2920
fkin 0.3297 0.2809
f∆dce 0.3694 0.3385
ftex -dce 0.3131 0.2195
f∆tex -dce 0.3158 0.2715

Table 6.5: DSC statistics for DCE-MRI feature subsets.

is computed and the results are visualized using boxplots. In addition, the DSC score is plotted
as bar for each patient, enabling a visual comparison of the feature groups on a per-patient level.

6.2.3.1 Results

To get a better overview the results are grouped by the modality and category. First the results
of the DCE-MRI modality are presented, focusing on the intensity, texture and kinetic curve
features, and combinations thereof. The second part focuses on the modalities MRI, PET, and
DWI, where the performance of the individual modalities andcombinations of them is evaluated.
It is also analyzed, if a combination of PET, DWI and non-contrast enhanced MRI is able to
replace DCE-MRI, since the acquisition of the DCE-MRI time-series is more time-consuming
than the acquisition time of MRI and DWI. Getting accurate diagnostic values in a faster way is
always of interest.

A summary of all results is given at the end of this section in Table 6.9.

DCE-MRI feature sets The results are summarized in Table 6.5. The best results areachieved
using fdce , followed by f∆dce . fkin as well as the Haralick texture features are performing
worst in average. The boxplot in Figure 6.9 also summarizes the DSC statistics. One box is
representing the DSC of all patients for one selected feature subset. The boxplot representation
shows that there is a high variability in the DSC among the patients, ranging from0 up to0.9.
It also shows that no feature subset is able to segment all lesions. There is always at least one
lesion with a DSC of0, indicating that the segmentation failed completely in that case.

In Figure 6.10 the DSC is listed for each patient. The features f∆dce seem to improve the
result of segmentation in some cases significantly (Pat. 1, 3and 10) compared tofdce . In other
cases the Dice coefficient drops significantly (Pat. 6 and 15). For patient 6 the DSC is going
down to 0 for the derivative features. As seen in the first segmentation experiment (Section
6.2.2), the RF mainly picks the derivative features from theearly post-contrast phase, where the
contrast uptake starts (frames 6-8). Analyzing the time-intensity curve for patient 6 revealed that
the contrast uptake starts two frames later than for other patients. The uptake begins at frame 8,
for other patients it starts at frame 6. So the RF prediction misses the uptake for this patient, and
the segmentation fails usingf∆dce for this patient.

In Table 6.6 the performance of combinations of DCE-MRI feature subsets is summarized.
In Figure 6.11 the DSC is listed for each patient. In average the DCE-MRI feature is performing
better than combinations of this feature subset with others.
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Figure 6.9: DSC boxplot statistics for DCE-MRI feature subsets.
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Figure 6.10: DSC listed for each patient. Lesions 1 to 10 are malignant, 11to 16 are benign
lesions.

Feature Type Mean DSC Std. DSC
fdce + f∆dce 0.3819 0.3314
fdce + ftex -dce 0.2664 0.2317
fdce + f∆tex -dce 0.3571 0.2763
f∆dce + f∆tex -dce 0.3703 0.2938
fdce + f∆dce + f∆tex -dce 0.3477 0.2851

Table 6.6: DSC statistics for combinations of DCE-MRI feature subsets.

Multimodal (DCE-MRI, PET, and DWI) feature sets Table 6.7 and Figure 6.12 summarizes
the results usingfpet , fdwi and non-contrast enhanced MRI (fdce-pre ). Usingfpet alone results
in the worst performance. A combination offpet andfdwi increases the segmentation result
significantly. Addingfdce-pre to the features increases the performance in combination with
PET and DWI. It can be seen that treating each feature separately does have less predictive
power than using them in combination. This is an indication that the modalities provide useful
complementary information, at least from the segmentationpoint of view. The combination of
these modalities performs worse than usingfdce . It can be concluded that a combination of MRI,
DWI, and PET is not an adequate replacement for DCE-MRI.
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Figure 6.11: DSC of combinations of DCE-MRI feature subsets listed for each patient. Lesions
1 to 10 are malignant, 11 to 16 are benign lesions.

Feature Type Mean DSC Std. DSC
fdce 0.3952 0.2920
fpet 0.1997 0.2301
fdwi 0.2661 0.2570
fpet + fdwi 0.3263 0.2995
fdce-pre + fpet 0.1766 0.2217
fdce-pre + fdwi 0.2587 0.2807
fdce-pre + fpet + fdwi 0.3416 0.3184

Table 6.7: DSC statistics for combinations of PET, DWI and MRI features.
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Figure 6.12: DSC boxplot statistics for MRI, PET and DWI feature subsets.

However, the combination offdwi , fpet andfdce increases the segmentation performance.
The results can be found in Table 6.8. The performance offdce increases from0.40 to 0.45
when combining it withfpet andfdwi . The performance off∆dce increases from0.37 to 0.45.
Figure 6.13 lists the DSC per patient. For patient 6 it can be observed thatfdwi andfpet cannot
compensate the segmentation failure off∆dce , which has been described above in detail. It can
also be noticed thatfdwi andfpet improves in common the segmentation performance. But when
the segmentation fails completely for DCE-MRI, like in patient 13, adding DWI and PET do not
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Feature Type Mean DSC Std. DSC
fdce + fpet 0.4217 0.2818
fdce + fdwi 0.4287 0.3189
fdce + fpet + fdwi 0.4486 0.3043
f∆dce + fpet 0.4562 0.3099
f∆dce + fdwi 0.4254 0.3234
f∆dce + fpet + fdwi 0.4540 0.3156

Table 6.8: DSC boxplot statistics for DCE-MRI, PET and DWI feature subsets.
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Figure 6.13: Dice similarity coefficient of combinations of DCE-MRI, PETand DWI feature
subsets listed for each patient. Lesions 1 to 10 are malignant, 11 to 16 are benign lesions.

improve the segmentation.
Table 6.9 summarizes all results, sorted by the DSC score.

6.2.4 Qualitative Analysis of the Segmentation Results

The previous experiments focused on the quantitative analysis of the segmentation using the
DSC. In this section a qualitative analysis is given, where the segmentation results of each lesion
are plotted and the advantage and disadvantage of the feature modalities are discussed. In Figure
6.14 the segmentation results forfdce respectivelyf∆dce , in combination withfdwi andfpet are
plotted for each patient.

It can be seen that usingfdce produces more false-positive blobs thanf∆dce (e.g. patient 1,
3 and 10). On the other hand, when usingf∆dce it can be observed that the segmentation is often
much smaller than the annotated region (patients 2, 4, 6, 12 and 16). For patient 6 even the whole
lesion is missed, but this happened because the contrast uptake starts two frames later than for
other patients.fdwi + fpet as feature subset produces the noisiest segmentation (e.g.patient 4,
10) and small lesions are completely missed (patients 9, 10,11, 15 and 16). Since the scanner
software does not always align PET and CT image perfectly, anoffset in the segmentation can
be observed for patients 8 and 14.

Usingfdce in combination withfdwi andfpet does not reduce the amount of false positive
blobs. But regions inside the lesion, which are missed byfdce , are covered by these combined
modalities. This effect is even better visible when combining f∆dce with fpet andfdwi (patients
1, 2, 4, 5, 6, 7, 8 and 14). But whenfdce fails to segment lesions, combinations withfdwi and
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Feature Type Mean DSC Std. DSC
f∆dce + fpet 0.4562 0.3099
f∆dce + fpet + fdwi 0.4540 0.3156
fdce + fpet + fdwi 0.4486 0.3043
fdce + fdwi 0.4287 0.3189
f∆dce + fdwi 0.4254 0.3234
fdce + fpet 0.4217 0.2818
fdce 0.3952 0.2920
f∆dce + fkin 0.3873 0.3536
fdce + fkin 0.3818 0.2800
f∆dce + f∆tex -dce 0.3703 0.2938
f∆dce 0.3694 0.3385
Automatic feature selection: mRMR 32 bins0.3624 0.3195
fdce + f∆tex -dce 0.3571 0.2763
Automatic feature selection: Random Forest0.3545 0.3129
fdce + f∆dce + f∆tex -dce 0.3477 0.2851
fdce-pre + fpet + fdwi 0.3416 0.3184
fkin 0.3297 0.2809
fpet + fdwi 0.3263 0.2995
f∆tex -dce 0.3158 0.2715
ftex -dce 0.3131 0.2195
fdce + ftex -dce 0.2664 0.2317
fdwi 0.2661 0.2570
fdce-pre + fdwi 0.2587 0.2807
fpet 0.1997 0.2301
fdce-pre + fpet 0.1766 0.2217

Table 6.9: Summary of the DSC statistics, sorted by mean DSC.

fpet are also not able to do the segmentation (patient 13).
It can also be observed that there is often a small offset between the manually annotated

border of the lesion and the segmentation (e.g. patients 1, 8and 14). Especially at the borders
of the lesion partial volume effects take place, and it is often not easy to determine for the
radiologist, where the exact border of lesion is, resultingin inaccuracies at the lesion border.
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Figure 6.14: Segmentation results for DCE-MRI, PET and DWI features. True positive labels are green, false positive labels are yellow,
and false negative labels are of red color. Patients 1 to 10 have malign lesions, patients 11-16 have benign lesions. The order of the
patients is the same as in the previous diagrams.
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6.2.5 Discussion

In this section the segmentation performance for the modalities MRI, DWI, and PET, as well as
the categories DCE-MRI intensities, texture and kinetic curve features has been evaluated. The
performance measure has been obtained by calculating the mean DSC score from the manual
annotation and the segmentation yielded from the RF training and prediction in a LOOCV pro-
cess. Furthermore, the Gini importance measure obtained from the RF training has been used
to explore the contribution of the features on the segmentation. The ranking obtained from Gini
importance was also used for feature selection.

The RF feature selection has been compared with another feature selection method, the
mRMR feature selection. These feature selection methods revealed that the segmentation per-
formance remains constant up to a reduction of the feature vector to the top-6-ranked features.
The performance of RF and mRMR feature selection was similar, even when a different subset
of features was selected. This is an indication that severalsets of features share the same infor-
mation necessary for the segmentation. The top-ranking of DWI in both RF and mRMR feature
selection, as well as the significant drop in the performancewhen removing this feature indicates
thatfdwi contains valuable information for the segmentation process.

Analyzing the Gini importance features of the DCE-MRI time-series, the secondary texture
features, and their derivatives revealed that the relevantinformation offdce is in the late post-
contrast phase and forf∆dce andf∆tex -dce the relevant part is in the early post-contrast phase,
where the contrast uptake begins. Although, especially benign lesions can have a slow uptake
slope and may be missed by the derivative features, as seen inthe qualitative analysis of the
segmentations.

By calculating the mean DSC in a LOOCV process following insight has been received:
Combining DCE-MRI with the modalities PET and DWI gives the highest score. In general
fpet andfdwi improve the segmentation performance when added tofdce . In lesion areas, where
DCE-MRI does not enhance (e.g. necrotic areas), and the DCE-MRI segmentation fails for
this region, PET and DWI gives the relevant information for correct prediction of these regions.
Nevertheless, PET and DWI are not an appropriate replacement for the DCE-MRI modality.
Small lesions are often missed by these modalities, due to the relative low resolution of PET
and DWI. Also, DCE-MRI in combination withfpet andfdwi fails, when the prediction of the
segmentation fails forfdce .

The secondary DCE-MRI features, namelyftex -dce andfkin , do not improve the segmenta-
tion performance in comparison tofdce . Also combinations of them do not improve the perfor-
mance. This indicates that there is not enough additional information in the secondary features
and that they are mostly redundant.

As seen in the qualitative analysis, on the one handfdce is producing more false positives
regions thanf∆dce . On the other hand,fdce also has more true positive regions, so that in sum
both feature setsfdce andf∆dce have a similar DSC score.

As a side-effect, the experiment revealed that the time-point of the contrast uptake needs to
be determined and synchronized for all patient images in following studies.

The segmentations obtained in the previous evaluation are the foundation of the following
classification experiments.
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6.3 Classification

This part of the evaluation process covers the classification part of the CAD pipeline. The outline
of this section is as follows:

• DWI / PET features: In the first part several methods of extracting discriminative features
from Iadc andIpet are presented and evaluated. In particular the discriminative power of
FCM clusteredIadc values andIpet values is examined, since using FCM to extract rele-
vant Iadc values for classification is a novel approach. Furthermore,the FCM clustering
is compared with other algorithms extractingIadc values from the segmented lesion.

• DCE-MRI kinetic curve features: In the second part the discriminative power of the
DCE-MRI kinetic curve features is investigated. Boxplots and the Gini importance give
an insight into the relevance of each feature.

• Classification: Finally, the classification performance is evaluated in a LOOCV process
in two ways. First, themanualannotated segmentations of the lesions (Li) are used, to
exclude flaws introduced by the segmentation process and analyze the features, assum-
ing an optimal segmentation. In a second step the evaluationprocess is performed on the
automaticsegmented lesions (li) to investigate how well the full CAD pipeline is per-
forming. The same patient datasets are used for these experiments than in the previous
segmentation evaluation.

One may be referred to Table 5.6 in the previous chapter to getan overview of the classifi-
cation features used in the following experiments.

Experimental Setup The subsequent experiments share following experimental setup where
not otherwise stated. Data from the same 16 patients as in theprevious segmentation experiments
are used. The lesions of 10 patients are malignant and 6 are benign. The histopathologically
report of the lesions is considered as the ground truth.

The classification features are calculated from the voxels within the lesion. The lesion region
is specified either by the manually annotated lesionsLi, or by the segmentationli obtained
from the segmentation step in the CAD pipeline. For the automatic segmentation the feature
combinationfdce , fpet andfdwi has been used. This feature subset got the third-highest ranking
in the segmentation evaluation process, after thef∆dce , fpet , fdwi variants. These choice of
features produces on the one hand more false positive blobs than thef∆dce feature subsets, on
the other handfdce covers the lesion better than their derivatives. In a post processing step false
positive blobs are removed. The segmentation is divided into blobs using an 8-neighborhood.
The blobs coveringLi are used for classification process, and the other blobs are dropped. This
step simulates a manual selection of a suspicious region or blob by a radiologist, which he
wants to investigate further. One lesion, which was not detected in the segmentation process,
has been added to the classification evaluation, due to the low amount of available patients for
the classification evaluation. For this patient the manual annotated segmentation is used in both
cases. This patient is listed as number 13 in the segmentation experiments above.
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The mTry parameter, defining the number of feature variables tried ateach split in the RF
algorithm is set to⌊

√
# features⌋ as suggested by Breiman [28].

6.3.1 Evaluation of the DWI-ADC and PET features obtained via Fuzzy
C-means Clustering Method

The aim of this test is to examine, if the FCM clustering ofIadc andIpet value gives discrimi-
native features for the classification of the lesion. The FCMalgorithm is compared with other
methods of determining the “best” DWI-ADC values within a lesion.

The algorithms should imitate up to a certain degree the ROI selection by a radiologist in
a manual or semiautomatic classification process. In such cases the radiologist draws the ROI
inside the lesion, choosing a region with a low DWI-ADC value. Studies demonstrated that this
procedure gives good discriminative features [24]. In a fully automatic classification process the
ROI has to be defined by an algorithm. The algorithm should select within the lesion a region
with a discriminative DWI-ADC value and it should be robust against outliers introduced by
inaccuracies at the lesion border, noise in the data, and flaws in the segmentation process.

Following algorithms have been chosen to get the DWI-ADC value:

• the minimum value within the lesion,

• the minimum value of 3x3x3 median filtered ADC values withinthe lesion,

• a FCM clustering with fixed cluster size,

• a FCM clustering with variable cluster size and

• a k-means clustering with fixed cluster size.

The PET values are evaluated using the same algorithms, withthe only difference that the
maximum value is used instead of the minimum value.

Experimental Setup The experiment is performed on the manual annotated segmentations of
all 16 patients, to eliminate possible errors introduced byan inaccurate segmentation process.
The ADC value is calculated for each patient using each one ofthe five algorithms.

The number of clusters is a crucial parameter in k-means and FCM clustering. Therefore,
the k-means clustering and the FCM clustering are performedwith number of clusters ranging
from 2 to 15. The cluster center with the lowest ADC value is chosen as the representative ADC
value of the lesion.

In addition, a FCM clustering with a variable number of clusters has been evaluated, where
the number of clusters is dependent on the size of the lesion.This method is inspired by the FCM
clustering of the DCE-MRI intensity curves to get the CKC, asproposed by Chen et al. [36]. The
number of clustersc is in this case dependent on the number of voxelsN : c = max([N/80], 2).

To compare the automatic approach with a manual approach, a radiologist drew a squared
ROI within the lesion, from which an average ADC value has been calculated. The ROIs were
drawn in the unregistered DWI ADC images.
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Validation Measures The statistics of the ADC values from the 16 patients are summarized
in a boxplot grouped by each algorithm. So the mean, variance, and other statistical properties
and the discriminative power of each algorithm can be visually examined.

Results In Figure 6.15 the summary of the ADC values are plotted usingboxplots. Choosing
the minimum of the ADC values is very sensitive to outliers, and often an ADC value of0 is
chosen. The minimum of the median filtered values is less sensitive to small outliers. The ADC
values do not perfectly discriminate the malign from the benign lesions; there is an overlap in the
values. A nearly perfect discriminative result is given by using FCM clustering with 4 clusters.
There is one outlier in the benign ADC values, which is in the region of the malign ADC values.
The discriminative power of FCM clustering with variable cluster size is worse than using a
fixed cluster size. Using a k-means clustering with 4 clusters gives comparable results than the
FCM clustering, with a slightly higher variance of the clustered ADC data values. The ADC
value from the manually selected ROI are perfectly discriminating the lesion classes.
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Figure 6.15: ADC values of the 16 patients summarized by boxplots and grouped by malign (m)
and benign (b). The algorithms used for calculation are fromleft to right: minimum value, min-
imum of median filtered values, FCM clustering with 4 clusters, FCM clustering with variable
cluster size, k-means clustering and data from manual drawnROI

Figure 6.16 shows a boxplot summary of the ADC values for a cluster size ranging from
2 to 15. The ADC values are already discriminative when using2 clusters. The variance of
the clustered ADC values is increasing with a higher clustersize. The maximum gap between
the benign and malign ADC values, ignoring the outlier, is achieved when using cluster sizes
between 3 and 5.

The FCM clustering for one lesion is visualized in Figure 6.17. The histogram reveals that
there are a few outliers with an ADC value of 400. These ones are chosen when using the
minimum of ADC values. The main amount of ADC values lies within 700 to 1400, which is
mainly covered by the first two of the 4 clusters.

The algorithms are also applied onIpet , using the maximum of the intensity values. Figure
6.18 presents the results of the achieved PET values. The majority of the malign lesions have
a higher PET intensity value than the benign lesions, whereas the discriminative power is not
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Figure 6.16: Boxplot summary of ADC values for given cluster size, grouped by malign (m)
and benign (b) lesions.
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Figure 6.17: FCM clustering of ADC values for one lesion. The colored curves are the prob-
abilities, that a ADC value belongs to a cluster. The vertical lines represent the cluster centers.
The histogram in the background shows the distribution of the voxel ADC values.

as good as for ADC values due to overlaps of the data. The PET clustering algorithm does not
contrast from the other algorithms as much as it did for ADC-DWI clustering.

Figure 6.19 visualizes the centroid PET values for a clustersize ranging from 2 to 15. The
clustered PET value rises with increasing number of clusters, but the values are already discrim-
inative when using 2 clusters.

6.3.2 Evaluation of the DCE-MRI Kinetic Curve Features

The kinetic curve features extracted from the fitted asymmetric generalized logistic function are
examined in this experiment, which are MaxEnh, TTP, MDER, and AuC. For each of these
features the discriminative power is analyzed using boxplots and the Gini importance from a
trained RF.

Experimental Setup To get the importance ranking of the features a RF training isstarted
using all curve features obtained from the manual annotation, respectively the automatic seg-
mentation. The tree sizenTree has been set to1000.
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Figure 6.18: PET intensity values of the 16 patients summarized by boxplots and grouped by
malign (m) and benign (b). The algorithms used for calculation are from left to right: maximum
value, maximum of median filtered values, FCM clustering with 4 clusters, FCM clustering with
variable cluster size, k-means clustering with 4 clusters.
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Figure 6.19: Boxplot summary of PET values for given cluster size, grouped by malign (m) and
benign (b) lesions.

Validation Measures The discriminative power of the features is visualized by using boxplots.
For each feature the patient data is divided into benign and malignant groups and a boxplot
statistic is calculated from the feature values. The importance of a feature is indicated by the
Gini importance, yielded from the RF training.

Results The distribution of the feature data is summarized in Figure6.20 by a boxplot dia-
gram. The distribution is plotted for both data pools, the one from the manual annotation and
the one from the automatic segmentation. The boxplots visualizes how well the features are
discriminative when treating them independently from eachother. The MaxEnh and the AuC is
in the same range for benign and malign lesions, with a highervariance in the benign data. The
TTP feature reveals that the peak of the curves for the benignlesions is always at the end of the
DCE-MRI sequence, which indicates a constant increase of the signal intensity. For malignant
lesions the TTP values ranges from the early postcontrast phase to the late postcontrast phase.
The mean of the MDER feature is higher for malign lesions, which implies a rapid contrast
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Figure 6.20: Boxplots of the curve features used for classification, grouped by lesion type
malignant (m) and benign (b). Left: Data taken from manual annotated lesions, right: Data from
segmented lesion.

enhancement in the malign lesions. The mean THM is higher forbenign lesions, which is an
indication that the contrast uptake of benign lesions is slower than for malign lesions. These
observations are in concord with the results of Kuhl et al. [85, 87], where it has been observed
that 83% of the benign lesions have a constant increase of thesignal intensity, and that a washout
in the late post-contrast phase in combination with a rapid and intense enhancement is indicative
for malignancy.

In Figure 6.21 the Gini importance resulting from the RF training is plotted. For the manual
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Figure 6.21: The Gini importance of the DCE-MRI kinetic curve features. Left: Data taken
from manual annotated lesions, right: Data from segmented lesion.

annotated lesions the TTP, MDER and THM features get the highest ranks. For the automati-
cally segmented lesions theα and THM feature dominates the others features. Examining the
boxplots from Figure 6.20 reveals that there is less overlapof the benign and malignα values ob-
tained from the automatically segmented lesion than for theα values obtained from the manual
annotations, which results in a higher discriminative power and finally in a higher importance
score of the RF. MaxEnh and AUC, as well asβ andτ have a low score in both cases. As seen
in the boxplots there is a large amount of overlap for these data values, and this makes it less
attractive for the RF, resulting in a lower score.
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6.3.3 Classification Performance for Feature Subsets

The following experiment is evaluating the classification performance using RF as a classifier.
The benefits of each modality are evaluated by trainining andprediction of the class using subset
of features and combinations of them. The features are divided into following subsets:

• fl-adc, fl-pet : The DWI-ADC and PET value from FCM clustering with 4 clusters.

• fl-curve : features from the fitted asymmetric logistic function (α,β,τ , k, AUC, THM, TTP,
MDER, MAXENH).

• fl-ckc, fl-∆ckc: the plain DCE-MRI CKC intensity values, as well as their derivatives.

Experimental Setup The classification of the lesion is done using a RF classifier.The number
of trees (ntree) in the RF training is set to 200.

Validation Measures The performance is evaluated using a LOOCV process with 20 itera-
tions. As performance measure the sensitivity, specificity, correct rate, error rate, positive pre-
dictive value, negative predictive value, AuC, and the F-measure is calculated. A short explana-
tion of these performance measures is given in the Appendix Table A.2. The tests are performed
using the data obtained from the manual annotationLi, as well as the data obtained from the
automatic segmentationli.

As rule for the RF votes on the one hand the majority rule is used, where more than half of
the votes of a RF prediction must be assigned to one class, to decide for this class. On the other
hand an optimal threshold value for the votes is calculated by maximizing the F-measure, which
is the harmonic mean of sensitivity and specificity. The threshold value is iterated from 0 to 200
(ntree) and the F-measure is calculated for the given threshold value. The results given by the
threshold value with the maximum F-measure, are stored.

The Receiver Operating Characteristic (ROC) curve [112], on which the AuC measure relies
on, is computed by varying the threshold level for the votes from 0 tontreeand calculating the
sensitivity and (1-specificity) using the given threshold.

6.3.4 Results

Table 6.10 summarizes the F-Measure, the sensitivity, the specificity and the AuC of the ROC
curve for feature combinations using the majority rule and an optimized threshold value. A
complete summary with all of the performance measures listed above, is given in the Appendix
Tables A.3 and A.4.

Choosing an optimal threshold increases the prediction performance significantly in all
cases. For instance, the F-Measure forfl-adc increases from0.82 to 0.90 and the sensitiv-
ity/specificity from0.80/0.83 to 1.0/0.83 when using an optimal threshold. The trade-off be-
tween sensitivity and specificity can be observed in these two tables. When using an optimal
threshold the sensitivity is in common decreasing and the specificity is increasing.

fl-adc is performing best in all cases when comparing single feature subsets only (fl-adc ,
fl-ckc, fl-∆ckc, fl-curve , andfl-pet ). The sensitivity of1.0 and specificity of0.83, using an optimal
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threshold reflects the distribution of the feature dataset as observed in Figure 6.15. The clustered
ADC data values are perfect distinct, with the exception of one outlier. The performance is
similar for both manual annotated lesion data and automaticsegmented data.fl-adc and its
combination with other features are always in the top-ranks, both for manual annotation and
automatic segmentation as well as for majority votes and optimal threshold value. Usingfl-ckc,
fl-pet or fl-curve features withoutfl-adc for classification results in a low F-Measure and a low
ranking in the table.

There is a performance drop observed between manual and automatic segmented data, when
usingfl-ckc or fl-∆ckc, also in combination with other features. On the other hand,the F-value
and AuC measure forfl-curve in combination with other feature sets are higher for the segmented
data when using an optimal threshold.

Focusing on the AuC, which is independent of the choice of thethreshold, it can be observed
that the measure increases when modalities are combined. For instance, for automatic segmen-
tation the AuC forfl-adc is 0.80, for fl-pet 0.59, and forfl-curve 0.65. Though, when combining
fl-adc with fl-pet andfl-curve , a top score of0.94 is obtained for the automatic segmentation, and
fl-adc + fl-curve results in the top AuC score of0.90 for manual segmentation data. This indicates
that the robustness of the classifier increases when using combinations of several modalities.

6.3.5 Discussion

In this section the classification performance of the proposed CAD system has been evaluated,
as well as an insight in the proposed classification featureshave been given. In the first part
the proposed FCM clustering algorithm has been examined, whereIadc , respectivelyIpet values
within the lesion are clustered and the cluster center with the lowest, respectively highest value
is picked as representative value. FCM has been compared with the algorithms of minimum
value selection of raw data and mean filtered data, as well as k-means clustering. The experi-
ments revealed that FCM clustering of the ADC values with a cluster size greater than 2 gives
discriminative features. In the second part of this sectionthe kinetic curve features extracted
from the regression curve have been examined, revealing on the one hand that there is a variance
in the values obtained from the manual annotated data pool and the automatic segmented data,
resulting in a higher performance in the final classificationfor the automatic segmentation.

Finally, the performance of the classifier using subsets of features has been measured. The
results showed that when using a combined feature set of all three modalities, the performance
surpasses the performance of a single modality approach. The AuC values forfl-adc, fl-pet , and
fl-ckc, respectivelyfl-curve are for the automatic segmented lesions:0.80, 0.59, 0.51, respec-
tively 0.65, whereas the combination offl-adc, fl-pet , andfl-curve gives an AuC of0.94. This
indicates that the modalities provide complementary information for the classification, resulting
in a higher score.

Although, due to the small sample size of 16 patients the expressive power of the statistics is
quite limited. The increase in performance may therefore beseen more as a trend than as a solid
statistical performance measure. Anyway, with an increaseof the sample size similar results are
expected, since the results are compliant with results fromother studies. Yabuuchi et al. [172]
reports a sensitivity and specificity of82% and86% for combined DWI-ADC, DCE-MRI mor-
phological and kinetic curve features setup, where the datais interpreted by radiologists. In this
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thesis the sensitivity and specificity for combined DWI-ADCand DCE-MRI kinetic curve fea-
tures is87%/99% for the automatic segmentation, respectively81%/91% for manual annotated
lesions. Levman et al. [91] used DCE-MRI kinetic curve features in a CAD system and reports
an AuC, respectively sensitivity and specificity of0.74, 63% and79%. In this study the DCE-
MRI kinetic curve features shows an AuC, sensitivity and specificity of 0.70, 67% and83% for
the manual annotated lesions, respectively0.65, 61% and68% for the automatic segmentation.

The proposed CAD system gives comparable results to state-of-the-art DCE-MRI CAD sys-
tems. In a recent study Agner et al. [2] list an AuC, sensitivity and specificity of0.92, 95% and
82% using morphological and spatiotemporal texture features.One may be referred to Table 4.1
in the “Recent Work” chapter to get the performances of the various DCE-MRI CAD studies.
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Features F-Measure Sensitivity/Specificity
man seg man seg

fl-adc + fl-pet 0.83 0.75 0.90 0.77 0.86 0.68
fl-adc 0.82 0.82 0.80 0.83 0.80 0.83
fl-adc + fl-∆ckc 0.73 0.28 0.82 0.66 0.80 0.17
fl-adc + fl-curve 0.70 0.59 0.90 0.57 0.90 0.44
fl-adc + fl-ckc + fl-∆ckc 0.69 0.31 0.92 0.55 0.83 0.19
fl-adc + fl-pet + fl-curve 0.68 0.66 0.90 0.55 0.90 0.53
fl-∆ckc 0.66 0.02 0.81 0.56 0.75 0.01
fl-ckc + fl-∆ckc 0.66 0.33 0.94 0.51 0.70 0.22
fl-adc + fl-ckc 0.63 0.36 0.80 0.52 0.80 0.23
fl-pet + fl-curve 0.63 0.61 0.84 0.50 0.90 0.47
fl-ckc 0.62 0.46 0.80 0.50 0.72 0.33
fl-pet + fl-ckc 0.60 0.47 0.75 0.50 0.79 0.33
fl-curve 0.57 0.49 0.80 0.44 0.90 0.33
fl-pet 0.2692 0.27 0.70 0.17 0.70 0.17

Features F-Measure Sensitivity/Specificity AuC
man seg man seg man seg

fl-adc 0.91 0.91 1.00 0.83 1.00 0.83 0.79 0.80
fl-adc + fl-∆ckc 0.89 0.73 0.80 1.00 0.66 0.82 0.87 0.66
fl-adc + fl-pet 0.87 0.82 0.92 0.83 0.82 0.83 0.90 0.89
fl-adc + fl-curve 0.86 0.93 0.81 0.91 0.87 0.99 0.88 0.91
fl-∆ckc 0.84 0.60 0.76 0.95 0.58 0.63 0.79 0.45
fl-adc + fl-ckc 0.81 0.70 0.79 0.83 0.64 0.77 0.78 0.69
fl-adc + fl-pet + fl-curve 0.81 0.94 0.83 0.79 0.89 0.99 0.86 0.94
fl-adc + fl-ckc + fl-∆ckc 0.80 0.58 0.88 0.73 0.49 0.73 0.81 0.53
fl-ckc + fl-∆ckc 0.76 0.52 0.78 0.75 0.53 0.52 0.75 0.38
fl-pet 0.75 0.76 0.69 0.83 0.70 0.83 0.59 0.59
fl-ckc 0.74 0.55 0.70 0.79 0.62 0.49 0.70 0.51
fl-curve 0.74 0.64 0.67 0.83 0.61 0.68 0.70 0.65
fl-pet + fl-ckc 0.72 0.54 0.70 0.74 0.75 0.42 0.71 0.55
fl-pet + fl-curve 0.70 0.76 0.76 0.66 0.84 0.70 0.72 0.77

Table 6.10: Classification performance results using LOOCV with 20 iterations. The upper
Table represents the results using a majority vote for classification, and the lower Table the
results using an optimized threshold value. Performance values are listed for the manual an-
notated lesionsLi (man) and the automatically segmented lesionsli (seg). The feature subset
contains: DWI-ADC value from FCM clustering (fl-adc), PET values from FCM clustering
(fl-pet ), data values from the Characteristic Kinetic Curve (CKC) and their derivatives (fl-ckc,
fl-∆ckc), and features from the fitted asymmetric logistic function(fl-curve). The table is sorted
by the F-Measure of the manual annotated lesions. The AuC is identically for both majority vote
threshold and optimal threshold, and is therefore listed only once.
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CHAPTER 7
Conclusion

In this final chapter the crucial points of the Thesis are recapitulated and a summary of the
proposed CAD pipeline is given. A few ideas for possible future work are also given.

7.1 Summary

In this thesis a CAD system has been proposed, providing fully-automatic segmentation and
classification of breast lesions using a novel multimodal imaging approach. It has been hy-
pothesized that the modalities DCE-MRI, DWI, and PET provide complementary information,
resulting in an improvement of the CAD system. A main point ofthe thesis is the comparison of
the multimodal approach with single modality approaches. The performance of the CAD system
has been evaluated and compared with several state-of-the-art CAD systems.

The proposed CAD pipeline consisted of three main steps: registration of the modalities,
segmentation of the lesions, and the classification of the lesion into being benign or malignant.

In the registration step the image modalities were transformed to a reference coordinate sys-
tem, so that the spatial position of a voxel is equal for all modalities. Patient movement, distor-
tions in the DWI modality, as well as the differing patient positions in the MRI and PET scanners
had to be compensated. A LDDMM registration approach, the Symmetric Normalization [14],
in combination with CC and MI similarity metrics was able to register these modalities. The
PET modality has been registered indirectly by registeringthe CT modality acquired in PET-CT
scanner to the MRI modality, and applying the yielded transformation on the PET image. Us-
ing combined PET-MRI scanners, which are currently in the prototypical phase, will render this
indirect registration step obsolete.

In the segmentation step each voxel within the breast has been classified as either cancerous
or non-cancerous by a RF. Intensity based, textural based, and kinetic curve features have
been proposed. The evaluation of the segmentation revealedthat the textural and kinetic curve
features did not improve the performance of the segmentation. The evaluation also revealed
that the multimodal approach improves the segmentation performance in comparison with a
single-modality DCE-MRI approach. 15 from 16 lesions had been successfully located by the
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algorithm, although the segmentation performance with a mean DSC of 0.45 using DCE-MRI,
DWI and PET intensity values needs to be improved in future studies. Ideas of getting a better
segmentation are listed in the next section.

The classification step was the final step in the CAD pipeline,where the segmented lesions
had been classified into malign and benign using RF. For this purpose the DCE-MRI, DWI, and
PET data within the lesion have been clustered using FCM, where clustering DWI and PET is
a novel approach. In the evaluation process it has been shownthat the clustering process gives
discriminative features. It has been also revealed that themultimodal approach surpasses the
classification performance using only a single modality.

The main contribution of the thesis was the automatic fusionof multimodal PET, MRI,
and DWI breast image data by a registration process, the usage of the fused information from
all modalities for automatic segmentation and classification of the lesion, the usage of RF for
detecting significant information for segmentation and classification in the multimodal dataset,
and the FCM clustering method for automatic selection of significant regions in DWI and PET
modalities for lesion classification.

It can be concluded that the proposed CAD pipeline gives comparable results to other state-
of-the-art CAD methods. The hypothesis that the modalitiesprovide complementary informa-
tion, resulting in a performance improvement, has been validated and confirmed in the evaluation
process.

7.2 Future Work and Improvements

The approach described in this thesis gives plenty of opportunities for continued research and
improvement, which are exemplarily addressed in this section.

Modalities: Initial studies using Magnetic Resonance Spectroscopy forlesion diagnosis show-
ed promising results [63]. This modality can be easily addedto the proposed CAD system.
Similar evaluation methods as proposed in this Thesis may beapplied on the additional modality,
in order to analyze its potential in a CAD system.

Registration: The LDDMM registration process is computational demanding, resulting in
registration times of more than 3 hours for a single patient.This limits the potential of the
CAD system in the routine clinical practice. However, thereis room of optimization in the
registration framework. The version of the ANTS registration framework used in this Thesis
is single-threaded, computing the registration on a singlecore only, even when there are more
available. Adapting the algorithm to be multi-threaded would decrease the computation time
significantly [121]. The switch from the CPU to the GPU may become also of interest, which
enables massive parallel computing.

During the work on this Thesis it has been observed that the CT/PET scanner software does
not always align PET and CT image perfectly. An additional rigid registration using MI may
align them better and increase the segmentation performance.
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Segmentation: The segmentation as proposed in this thesis is performed on avoxel-level,
ignoring structural and topological relations. Methods, which consider the spatial relationship,
like active contour [3], graph-cut [157], or superpixel segmentation [127] in combination with
the multimodal dataset may improve the segmentation performance.

An important point in future studies has to be that the time-point of the contrast uptake is de-
termined and synchronized for all patient images when usingthe contrast uptake as segmentation
feature.

Classification: The classification features proposed in this thesis relies on image intensities
and intensity kinetics only. Other current CAD systems include textural and morphological
features too [2,100,111,181]. Adding these features may increase the classification performance.

Since producing manual segmentations of breast lesions is atime-consuming and unsatisfy-
ing process, a multiple-instance-learning (MIL) approach[46] may be an interesting alternative
in the context of breast cancer detection. Instead of using instances with segmented and la-
beled lesions for training, labeledbagscontaining many instances are used for training. As label
the classes ’no lesion’ and ’lesion’ may be used. From such a collection of labeled bags, the
classifier tries to induce a model, which can be used to label the individual instances correctly.
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APPENDIX A
Tables

A.1 Haralick Texture Features

The Haralick texture features are calculated from the GLCM as follows:

Notation N is the number of distinct intensities in the image.p(i, j) is the(i, j)th entry in the
normalized GLCM.

Following auxiliary statistic parameters are calculated to simplify the Haralick feature cal-
culation:px andpy are the marginal distributions. They are obtained by summing over the rows,
respectively summing over the columns (Eqn. A.1).µx andµy are the marginal means of the
two random variables and are calculated as described in Equation A.2. σx andσy are the vari-
ances of the two random variables (Eqn. A.3). The sum marginal probability px+y is defined in
Equation A.4) and the difference marginal probabilitypx−y is defined in Equation A.5).

px(i) =
∑

j

p(i, j) py(j) =
∑

i

p(i, j) (A.1)

µx =
∑

i

px(i) µy =
∑

j

py(j) (A.2)

σ2
x =

∑

i

(i− µx)
2px(i) σ2

y =
∑

i

(i− µy)
2py(i) (A.3)

px+y(n) =
∑

i

∑

j

p(i, j) with n = i+ j (A.4)

px−y(n) =
∑

i

∑

j

p(i, j) with n = |i− j| (A.5)
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F# Feature Formula Description

f1
Energy (Angular
Second Moment)

∑

i

∑

j

p(i, j)2
Measures the number of repeated pairs.
A high Energy indicates a high occur-
rence of similar pixel pair intensities.

f2 Contrast (Inertia)
∑

i

∑

j

(i− j)2p(i, j)
Measures the contrast of the pixel pairs.
A large Contrast value indicates a large
difference of the intensities.

f3 Correlation
1

σxσy

∑

i

∑

j

(i− µx)(j − µy)p(i, j)

Measures the correlation of two vari-
ables by using the covariance values.
The Correlation is high if the intensities
of the pixels are highly correlated.

f4
Sum Of Squares:

Variance

∑

i

(i− µx)
2
px(i)

Measures the variance of the distribu-
tion of the intensity values.

f5

Inverse Difference
Moment

(Homogeneity)

∑

i

∑

j

p(i, j)

1 + (i− j)2

Measures the homogeneity of the pixel
pairs. The Homogeneity is large if the
intensities of the pairs are similar.
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F# Feature Formula Description

f6 Sum Average
2N
∑

n=2

npx+y(n)

Measures the mean of the intensity val-
ues. A high Sum Average corresponds
with high intensity values of the pixels.

f7 Sum Variance
2N
∑

n=2

(n− f6)
2
px+y(n)

Measures the variance of the intensity
values. A high Sum Variance indicates
a high variability in intensity values of
the texture.

f8 Sum Entropy
−

2N
∑

n=2

px+y(n) log(px+y(n))
Measures the randomness of the inten-
sity values.

f9 Entropy −

∑

i

∑

j

p(i, j) log(p(i, j))
Measures the randomness of the distri-
bution. A high Entropy indicates ran-
domly distribution of the gray-levels

f10
Difference
Variance

∑

j

(

j −
∑

i

ipx−y(i)

)2

px−y(j)
Measures the variance of the difference
marginal probabilities.

f11 Difference Entropy
−

N−1
∑

n=0

px−y(n) log(px−y(n))

Measures the entropy or amount of dis-
order within the difference marginal
probabilities.

f12

Information
measure of

correlation 1

f9 +
∑

i

∑

j
p(i, j) log(px(i)px(j))

−

∑

i
px(i)log(px(i))

Haralick lists two ways of measuring
the information correlation.

f13

Information
measure of

correlation 2

√

1− e−2(Hxy−f9)

Table A.1: Haralick Texture features calculated from the Gray-Level Co-occurrence Matrix
(GLCM).

103



A.2 Classifier Performance Measures

Notation Name Description
TP True Positives Number of correctly classified malignant samples
FP False Positives Number of incorrectly classified malignant samples
TN True Negative Number of correctly classified benign samples
FN False Negative Number of incorrectly classified benign samples
N Number of overall samples

Performance Measure Formula Description

Sensitivity TP

TP + FN

Sensitivity relates to the classifier’s ability to detect
positive(malignant) samples.

Specificity TN

TN + FP

Specificity relates to the classifier’s ability to identify
negative (benign) results.

F-measure 2×
Sensitivity∗ Specificity
Sensitivity+ Specificity

Harmonic mean of precision and recall.

Correct Rate TP + TN

N

Rate of correctly identified samples, both malignant
and benign.

Error Rate FP + FN

N
Rate of incorrectly identified samples.

Positive Predictive Value TP

TP + FP

Proportion of samples with positive test results that
are correctly identified.

Negative Predictive Value TN

TN + FN

Proportion of samples with negative test results that
are correctly identified.

AuC
∫ 1

0

ROC
Area under ROC curve, where ROC is a plot of Sen-
sitivity vs. (1 - Specificity) [112]

Table A.2: Summary of common performance measures for classifiers.
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A.3 Classification Results

Features F-Measure Sensitivity Specificity Pos. Pred. Value Neg. Pred. Value Correct Rate Error Rate
man seg man seg man seg man seg man seg man seg man seg

fl-adc + fl-pet 0.8259 0.7544 0.8950 0.8550 0.7667 0.6750 0.8647 0.8143 0.8142 0.7364 0.8469 0.7875 0.1531 0.2125
fl-adc 0.8163 0.8163 0.8000 0.8000 0.8333 0.8333 0.8889 0.8889 0.7143 0.7143 0.8125 0.8125 0.1875 0.1875
fl-adc + fl-∆ckc 0.7283 0.2756 0.8150 0.7950 0.6583 0.1667 0.7990 0.6139 0.6810 0.3279 0.7563 0.5594 0.2438 0.4406
fl-adc + fl-curve 0.6955 0.5926 0.9000 0.9000 0.5667 0.4417 0.7759 0.7287 0.7727 0.7260 0.7750 0.7281 0.2250 0.2719
fl-adc + fl-ckc + fl-∆ckc 0.6884 0.3111 0.9200 0.8250 0.5500 0.1917 0.7731 0.6298 0.8049 0.3966 0.7813 0.5875 0.2188 0.4125
fl-pet + fl-adc + fl-curve 0.6828 0.6632 0.9000 0.9000 0.5500 0.5250 0.7692 0.7595 0.7674 0.7590 0.7688 0.7594 0.2313 0.2406
fl-∆ckc 0.6594 0.0165 0.8050 0.7450 0.5583 0.0083 0.7523 0.5560 0.6321 0.0192 0.7125 0.4688 0.2875 0.5313
fl-ckc + fl-∆ckc 0.6586 0.3309 0.9350 0.7000 0.5083 0.2167 0.7602 0.5983 0.8243 0.3023 0.7750 0.5188 0.2250 0.4813
fl-adc + fl-ckc 0.6279 0.3613 0.8000 0.8000 0.5167 0.2333 0.7339 0.6349 0.6078 0.4118 0.6938 0.5875 0.3063 0.4125
fl-pet + fl-curve 0.6269 0.6146 0.8400 0.9000 0.5000 0.4667 0.7368 0.7377 0.6522 0.7368 0.7125 0.7375 0.2875 0.2625
fl-ckc 0.6154 0.4557 0.8000 0.7200 0.5000 0.3333 0.7273 0.6429 0.6000 0.4167 0.6875 0.5750 0.3125 0.4250
fl-pet + fl-ckc 0.5984 0.4688 0.7450 0.7900 0.5000 0.3333 0.7129 0.6639 0.5405 0.4878 0.6531 0.6188 0.3469 0.3813
fl-curve 0.5691 0.4865 0.8000 0.9000 0.4417 0.3333 0.7049 0.6923 0.5699 0.6667 0.6656 0.6875 0.3344 0.3125
fl-pet 0.2692 0.2692 0.7000 0.7000 0.1667 0.1667 0.5833 0.5833 0.2500 0.2500 0.5000 0.5000 0.5000 0.5000

Table A.3: Classification performance results using LOOCV with 20 iterations, sorted by F-value. Performance values are listed for
the manual annotated lesions (man) and the segmented lesions (seg). The feature subset contains: DWI ADC value from fuzzy c-means
clustering (fl-adc), PET values from fuzzy c-means clustering (fl-pet ), data values from the CKC (fl-ckc) and their derivatives (fl-∆ckc),
features from the fitted asymmetric logistic function (fl-curve).
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Features F-Measure Sensitivity Specificity Pos. Pred. Value Neg. Pred. Value Correct Rate Error Rate
man seg man seg man seg man seg man seg man seg man seg

fl-adc 0.9091 0.9091 1.0000 1.0000 0.8333 0.8333 0.9091 0.9091 1.0000 1.0000 0.9375 0.9375 0.0625 0.0625
fl-adc + fl-∆ckc 0.8889 0.7270 0.8000 0.6550 1.0000 0.8167 1.0000 0.8562 0.7500 0.5868 0.8750 0.7156 0.1250 0.2844
fl-adc + fl-pet 0.8723 0.8241 0.9150 0.8150 0.8333 0.8333 0.9015 0.8907 0.8547 0.7299 0.8844 0.8219 0.1156 0.1781
fl-adc + fl-curve 0.8564 0.9269 0.8100 0.8700 0.9083 0.9917 0.9364 0.9943 0.7415 0.8207 0.8469 0.9156 0.1531 0.0844
fl-∆ckc 0.8414 0.5990 0.7550 0.5750 0.9500 0.6250 0.9618 0.7188 0.6994 0.4688 0.8281 0.5938 0.1719 0.4063
fl-adc + fl-ckc 0.8111 0.6976 0.7900 0.6400 0.8333 0.7667 0.8876 0.8205 0.7042 0.5610 0.8063 0.6875 0.1938 0.3125
fl-pet + fl-adc + fl-curve 0.8104 0.9381 0.8300 0.8900 0.7917 0.9917 0.8691 0.9944 0.7364 0.8440 0.8156 0.9281 0.1844 0.0719
fl-adc + fl-ckc + fl-∆ckc 0.8000 0.5812 0.8800 0.4850 0.7333 0.7250 0.8462 0.7462 0.7857 0.4579 0.8250 0.5750 0.1750 0.4250
fl-ckc + fl-∆ckc 0.7647 0.5233 0.7800 0.5300 0.7500 0.5167 0.8387 0.6463 0.6716 0.3974 0.7688 0.5250 0.2313 0.4750
fl-pet 0.7549 0.7609 0.6900 0.7000 0.8333 0.8333 0.8734 0.8750 0.6173 0.6250 0.7438 0.7500 0.2563 0.2500
fl-ckc 0.7430 0.5484 0.7000 0.6200 0.7917 0.4917 0.8485 0.6703 0.6129 0.4370 0.7344 0.5719 0.2656 0.4281
fl-curve 0.7395 0.6446 0.6700 0.6100 0.8250 0.6833 0.8645 0.7625 0.6000 0.5125 0.7281 0.6375 0.2719 0.3625
fl-pet + fl-ckc 0.7176 0.5357 0.6950 0.7500 0.7417 0.4167 0.8177 0.6818 0.5933 0.5000 0.7125 0.6250 0.2875 0.3750
fl-pet + fl-curve 0.7034 0.7636 0.7550 0.8400 0.6583 0.7000 0.7865 0.8235 0.6172 0.7241 0.7188 0.7875 0.2813 0.2125

Table A.4: Classification performance results using LOOCV with 20 iterations using an optimized threshold value for the Random
Forest prediction. The table is sorted by F-value.
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