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Abstract

Medical imaging has become crucial in detection and diaigrafsoreast cancer. Advanced im-
age modalities like Dynamic Contrast Enhanced MagnetioRasce Imaging (DCE-MR), Dif-
fusion Weighted Magnetic Resonance Imaging (DWI), PositEmission Tomography (PET),
and Magnetic Resonance Spectroscopy (MRS) provide congpltery information about the
lesion biology and increase the precision and certaintyanter diagnosis. A systematic analy-
sis and categorization of the image data is essential foceurate diagnosis. Computer Aided
Diagnosis (CAD) systems aid radiologists in this task bygsligital image analysis methods
and machine learning algorithms.

The aim of this thesis is the development of a novel multinhddeast lesion CAD system
with a fully automatic combination of several medical imagedalities, the fully automatic
detection and segmentation of cancerous regions, and lligeaftomatic classification of the
lesions into benign and malign ones. As modalities DCE-MRNI and PET are used in this
initial project, with the opportunity to add additional nadities later on. The CAD system con-
sists of three main elements: the registration of the imagdatities using a Large Deformation
Diffeomorphic Metric Mapping (LDDMM) method, the deteati@and segmentation of the le-
sion using a Random Forests (RF) algorithm, and the claatidfit of the lesions into benign
and malign using a further RF.

In the validation process it is qualitatively and quaniiy demonstrated on 16 breast
studies that a multimodal approach improves the segmentatid classification performance
in comparison to a single-modal DCE-MRI approach. The segatien performance measured
by the mean Dice Similarity Coefficient (DSC) increased fo/39 to 0.45. The classification
performance measured by Sensitivity / Specificity incrddsmm 61% / 68% to 89% / 99%, and
the Area under Curve (AuC) of a Receiver Operating Chariatite(ROC) curve increased from
0.65 t0 0.94. The results of the validation also demonstratethe proposed method provides a
comparable performance to state-of-the-art single-nitydaAD systems.






Kurzfassung

Ein wesentlicher Bestandteil fiir die Erkennung und Diagnesn Brustkrebs sind medizini-
sche Bildgebungsverfahren. Moderne Bildgebungsverfaimie Dynamische Kontrasterweiter-
te Magnetresonanztomographie (DCE-MRI), Positronemistomographie (PET), Diffusions-
gewichtetes MRT (DWI) und MagnetresonanzspektroskopiB 8liefern eine Vielzahl an In-
formationen Uber die Tumorbiologie und erméglichen sornméegenauere und sicherere Dia-
gnose von Brustkrebs. Eine systematische Analyse und Kiasezyung der Bilddaten ist ein es-
sentieller Bestandteil einer préazisen Diagnose. Computerstiitzte Diagnosesysteme (CAD)
unterstitzen Radiologen bei der Analyse der Bilddatentdden Einsatz von digitalen Bildana-
lysemethoden und Maschinenlernalgorithmen.

In dieser Arbeit wird ein neuartiges multimodales CAD Sgsteeschrieben, welches eine
automatische Kombination der Bildmodalitaten, eine a@igohe Lokalisierung und Segmen-
tierung von Brustkrebsgewebe, und eine automatische iKiassing der Lasionen in benign
und malign ermdglicht. Die verwendeten Modalitaten in diesProjekt sind DCE-MRI, PET
und DWI, wobei weitere Modalitaten spater hinzugeflgt veerdonnen. Das CAD System be-
steht aus drei Hauptteilen: die Registrierung der Bildntitiiten mit Hilfe einer Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) Methode, der Dadttion und Segmentierung der
Lasion durch einen Random Forests (RF) Klassifikator, umdJdgerscheidung von benignen
und malignen Lasionen durch einen weiteren RF Klassifikator

Im Validierungsprozess konnte anhand von 16 Patientendggeeigt werden, dass der mul-
timodale Ansatz sowohl die Segmentierung als auch die Kizissung verbessert, verglichen
mit einem Ansatz basierend auf der DCE-MRI Modalitat. Digr8entierungsgenauigkeit, ge-
messen durch den mittleren Dice Similarity Coefficient ()S&ieg von 0.39 auf 0.45. Die
Sensitivitat / Spezifitat der Klassifizierung stieg von 61 @&8/% auf 89 % / 99 % und Area
under Curve (AuC) der Receiver Operating Characterist@ERrstieg von 0.65 auf 0.94. Die
Ergebnisse der Validierung zeigen auch, dass dieser Avsagleichbare Resultate zu aktuellen
unimodalen CAD Systemen bietet.
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CHAPTER

Introduction

Breast cancer is the most common cancer among women, andirgeause of cancer death in
most Western countries [53]. Early detection and a predesgnadsis are essential for efficient
treatment [18]. Radiological imaging, like mammograph@7Jl or breast ultrasound [52] are
used for detection and biopsy of suspicious lesions. Theseartodalities are clinical standards
for breast cancer detection and characterization. Howéath modalities are still limited in
lesion detection with regard to both sensitivity and speitjfi83, 163]. In addition, mammog-
raphy suffers from a high false positive rate of 16.3% at &irst 9.6% at subsequent mammog-
raphy [75]. Alternative imaging methods such as MagnetisdRance Imaging (MRI) [164] or
Positron Emission Tomography (PET) [182] have been deeelopith the aim of overcoming
the limitations of mammography and ultrasound. MRI is régpdion the one hand to be a sen-
sitive method; on the other hand a low to moderate specifisitgported [85]. PET provides
functional information through metabolism about the lasioence it suffers from a low spatial
resolution and a lack of morphological information, resigitin a difficult localization of the le-
sion [153]. To overcome this limitation hybrid PET / Compiiiomography (CT) scanner [147]
and recently PET / MRI scanners [5, 78] have been developediding a combination of func-
tional and morphological information about the lesion. MRiIsed functional and metabolic
imaging methods such as Dynamic Contrast Enhanced MagResonance Imaging (DCE-
MRI) [119], Diffusion Weighted magnetic resonance Imag{ByVl) [24], and Magnetic Reso-
nance Spectroscopy (MRS) [63] have been shown to providelditianal diagnostic value to
the morphological MRI modality [63,87,97].

Combining these multimodal imaging methods is a novel anthpging research area, where
an increase in the accuracy of cancer diagnosis, assesameitiherapy progress is expected
[56,117,118].

To aid radiologists in detection and diagnosis of breastegrComputer Aided Detection
& Diagnosis (CAD) systems have been proposed [15]. Suclstaa able to analyze a large
amount of image data in reasonable time, detect and visuadbmplex correlations and patterns,
as well as provide objective and repeatable results [168fling in an increased accuracy of a
diagnosis in many cases [88]. CAD systems are divided intodstegories: Computer Aided
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Detection (CADe) and Computer Aided Diagnosis (CADx). CAdystems assist radiologists in
localizing suspicious regions in medical images, where&®xXCsystems support the radiologist
in the diagnosis of suspicious regions by providing andyairad) information extracted from
these regions [159].

The aim of this thesis is the development of a breast lesio® Gpstem with a fully au-
tomatic combination of several medical image modalitiés, fully automatic detection and
segmentation of cancerous regions, and the fully autorokssification of the lesions into be-
nign and malign ones. As modalities DCE-MRI, DWI and PET aseduin this initial project
with the opportunity to add additional modalities later @te performance of the CAD system
is evaluated and compared with single modality approaches.

1.1 Problem Statement

In this thesis it is hypothesized that the various breasgamaodalities provide complementary
information, resulting in an improved performance when borimg them in a breast lesion CAD
system. Thus, the aim of this thesis is the development of B @Amework that combines
and interprets the 3-dimensional image modalities PET, MRTE-MRI, and DWI. These
modalities give insight into morphological changes (MR$)well as changes at the cellular
level such as angiogenesis (DCE-MRI), metabolism (PET cafidunction (DWI) of cancerous
and non-cancerous tissue. In this thesis it is evaluatedtigat@ely, which combinations of
image modalities are suitable for an accurate localizagfdahe lesion and for an accurate cancer
diagnosis, and what the benefit of each modality is in a CADesys

A crucial step in such a framework is the accurate fusion efithage modalities. In this
fusion process deformations of the breast, introduced byn@patient positions in the scanners
and image distortions of the DWI modality [74], have to be pemsated. The fused data are
then used for automatic detection and segmentation of oaumedissue (CADe), as well as the
automatic classification of the lesions into benign and gmaint (CADXx). The performance of
the CAD system has to be validated and compared with statieeedirt single modality CAD
systems.

1.2 Methodological Approach
The CAD system is implemented as a pipeline with three majpss(Figure 1.1):
1. Fusion of the image modalities loggistrationof the 3D images,
2. Segmentatiownf the lesion, and
3. Classificationof the lesion with regard to being benign or malign.
In the registration step all modalities are aligned by figdaorrespondences in the images

and applying a deforming transformation on them. The seggtien step is implemented as
a voxel-based binary classification process, where a Raritmests (RF) machine learning
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Image modalities

Figure 1.1: The CAD pipeline.

algorithm [28] predicts for each voxel (=3-dimensionalg)xf it is classified as cancerous tis-
sue or normal tissue. Discriminative segmentation featare extracted from the multimodal
dataset for each voxel. Manual segmentations annotated byperienced radiologist are used
as ground-truth for validation and classifier training. bid#ion to classification, the RF al-
gorithm is also used for feature selection, by determinimgfeature combinations best suited
for discriminating between cancerous and normal tissubs. predictive power of the selected
features is evaluated using cross-validation. In the ifleg8on step a second RF classifier is
used to discriminate between malignant and benign lesiBns.this reason a multimodal set
of features is extracted from the previously obtained aat@ysegmentation. Instead of using
voxel-based features, as for the segmentation, the datatfre voxels are subsumed inttus-
tersthat characterize the entire lesion. These cluster-bassdres are used for classifying the
segmented lesions into malign or benign after identifyiagvant features. The classification
performance is evaluated in a cross-validation process.higtopathological analysis serves as
ground-truth for the training and validation of the RF ciass

1.3 Contribution of the Thesis

The contribution of this thesis is the development and etadn of a fully-automatic CADe and
CADx framework using a multimodal medical image datasebtalize, segment and classify
breast lesions.

Numerous CAD systems based on DCE-MRI are available (sept@hé- 'Related Work’).
Although, the usage of a combination of several modalitiesCAD system is a novel approach.
The following are the main contributions:

» Automatic fusion of multimodal breast image data (PET, Maid DWI) by a registration
process,

 Using the fused information from all modalities for autdimaegmentation and classifi-
cation of the lesion,

» Using an advanced machine learning algorithm, which is &bfind significant informa-
tion for segmentation and classification in the multimodatbdet, and



 Using a clustering method for automatic selection of gigant regions in DWI and PET
modalities for lesion classification.

1.4 Thesis Outline

The thesis is divided into seven chapters. The outline ofhiasis is as follows:

1. Introduction. The first chapter provides a coarse overview of the motigatind problem
statement of the proposed multimodal breast lesion CADesystThe chapter is closed
by a short outline of the medical image modalities used ifQA® pipeline.

2. Multimodal Image Registration. The theoretical background and the general state-of-the-
art in medical image registration is provided in this chapiéhe focus of this chapter is
on non-rigid registration methods, which are able to hafailge deformations as well as
images of various modalities.

3. Classification and Regression by Random Forestslhe functional principle of the RF al-
gorithm is outlined in this chapter. In addition, methods fimature analysis, feature se-
lection and performance evaluation using RF are discussed.

4. Related Work. Related work done by other research groups is outlined sndimapter, with
the aim of giving a state-of-the-art overview in multimotiadéast image registration, seg-
mentation of breast lesions, and the classification of biesi®ns. In addition, a summary
of the performance of breast CADx methods is given in thigptdra

5. Methodology. In this chapter the CAD pipeline is presented in detail, frdeta acquisition,
registration, and segmentation to classification. The tenegdso contains a detailed de-
scription of the features extracted from the images, whiemaeded for the segmentation
and classification.

6. Experiments and Results.This chapter is divided into three main sections, coveltireyval-

idation and evaluation of the registration process, theneegation, and the classification.
In the registration section several transformation modetssimilarity metrics are evalu-
ated, in order to optimize the multimodal breast image atignt. In the second section
the performance of the segmentation features are examiiiixthe focus on exploration
of the benefit of each modality. The performance of the seg¢gtien using various com-
binations of features is evaluated using cross-validatifime last section of this chapter
presents the examination of the classification featurabtlair performance in a classifi-
cation process. The performance and the predictive powtiedRF are also evaluated in
a cross-validation process.

7. Summary and Conclusion. Finally, in this chapter the essential parts of the thesseca-
pitulated, the main results of the experiments are sumedyidiscussed and compared
with the related work, and closing remarks are given. Thethracloses with thoughts
about future work and improvements of the CAD system.
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Figure 1.2: Series of DCE-MRI images. The contrast agent accumulatid®icancerous region
over time and causes a signal intensity change in the imafes.chronological order of the
images is from left to right and top to bottom.

1.5 Medical Image Modalities

In this section a short overview of the modalities used is thiesis is given. It describes the
information each modality provides, the contribution of thodality in a diagnosis system, and
the performance of the modality in breast cancer diagnosis.

1.5.1 Dynamic Contrast Enhanced Magnetic Resonance ImagifDCE-MRI)

DCE-MRI is used amongst other modalities for localizingdsteesions and differentiation of
benign from malignant breast lesions by analyzing the specicrovascular structure of can-
cerous tumors [85].Angiogenesiss the process of growing new blood vessels from existing
vessels [134]. At normal tissue this process stops whenltu supply of the tissue is suffi-
cient. Invasive cancers keep the angiogenesis activeishysthteir increasing metabolic demand
for oxygen and nutrients, resulting in a growth of exporarfrmation of microvascular struc-
tures in the cancerous tissue.

To get a DCE-MRI series a contrast agent is intravenouslyiehpwvhile MRI scans are
acquired at regular intervals. The contrast agent incestimelocal magnetization, resulting in
higher signal intensities. The dense microvascular straadf cancerous tissue does also have
an increased vascular leakage. Therefore, more contrst apves from the vascular system to
the tumor tissue and is accumulated there. The accumuleaioses a rise of the signal intensity
in cancerous tissue (Figure 1.2). This change of signahgittg is denoted in the literature as
contrast enhancemeif®7] or enhancement kinetid85]. The characteristics of enhancement
kinetics in cancerous regions can be used to differ benigm fmalignant breast lesions [87].
In order to do this a radiologist draws a Region Of Intere€IjRn the signal enhancing part
of the lesion. From this ROI a DCE-MRime-signal curvgalso referred to akinetic curve
is computed by averaging the signal intensities in the R@Ilefach image acquisition time-
point and plotting these values in a diagram (Figure 1.3.lefit addition to a morphologic
categorization of the lesion, the characteristic shapbefitne-signal intensity curve is used for
differential diagnostics, by analyzing the steepness@ttintrast uptake in the early phase after
applying the contrast agent, and the behavior of the curtlednater phase: whether the signal
intensity continues to increase after the initial uptakg€), whether it exhibits a plateau (Type
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Figure 1.3: Left: DCE-MRI Time-Signal intensity curve extracted frorR®I within cancerous
tissue (red) and normal tissue (green). Right: Schemasiwidg of the time-signal intensity
curve phases and types (I - lll). The percent numbers nextdoctirve type represents the
likelihood of a malign / benign lesion having the specificeygf curve, as determined by Kuhl
etal. [87]

I), or whether it declines again (Type Il or washout cur¢€gure 1.3 right). Invasive cancers
tend to have a curve with a steep uptake in combination wittashaut (Type Ill) or plateau
(Type 1l) [85], whereas benign lesions tend to have eithesvadontrast uptake rate or have
a persistent increasing enhancement (Type 1). A detailedriition of characterizing lesions
by interpreting the kinetic curves and the morphology (ghapargins...) is given in Kuhl et
al. [85]. In Figure 1.3 a time-signal curve from a contrasitt@ncing cancerous tissue region and
non-contrast enhancing normal tissue region is presertadhermore, a schematic overview
of the contrast enhancement phases and kinetic curve typagen.

A sensitivity of 89-100% is reported using the DCE-MRI magalOn the other hand, the
reported specificity is rather variable, ranging from 37 T@®[85]. In the last years PET and
DWI have been proposed as additional modalities to incrdasepecificity of MRI [108, 171,
172].

1.5.2 Diffusion Weighted Magnetic Resonance Imaging (DWI)

DWI measures the diffusivity of water molecules in tissuggviding an insight into tumor
cellularity [116]. A compact cellular structure, as occurgnalignant tumors, results in a re-
duced extracellular spacing and limited water diffusiancdntrast, in benign lesions, where the
extracellular space is larger, the diffusion of water is lesstricted [116].

The main parameter in the DWI acquisition process is thausiifin attenuation, denoted as
b-value(sec/mm) [16]. It can be seen as a parameter for the sensitivity foigidn. Images
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Figure 1.4: Diffusion Weighted Magnetic Resonance Images. Left: b e/ghootocol of 0
sec/mnd. Middle: b value protocol of 850 sec/nfm An identical scaling and color coding
is used for both images. Blue color refers to low DWI signdugared color refers to a high
DWI signal value. Right: ADC mapping. The arrow point out thalign lesion. A reduced
ADC value is observed within the lesion, in comparison togherounding tissue.

acquired with a low b-value are less diffusion weighted thrmages with a high b-value. On
low b-valued images more morphologic structures are \asibimages acquired with high b-
values have a lower Signal-to-Noise Ratio (SNR) and morgémtistortion. On the other hand,
on high b-valued images malignant tumors are highlighteg, td the restriction of the water
diffusion. This effect is illustrated in Figure 1.4.

The signal intensity values in DWI are influenced by MRIand T, relaxations in addition
to diffusion amount [16]. In order to reduce the relaxatiffiect in DWI images and to get more
“pure” diffusion values, an Apparent Diffusion Coefficig§DC) map is calculated from two
(or more) measurements with different b-valugsandb,, by using following formula [16]:

52 (-Ia Y, Z)
Sl (1’, Y, Z)

S1 andS; are the diffusion signal values from two images acquiredh Wit different b-values.

The ADC value is correlated with the amount of diffusion anerefore inversely correlated
with the compactness of the cellular structure of tumors.ligiant breast tumors exhibit a
higher cellularity, resulting in a lower ADC value than foeriign breast tumors (Figure 1.4
right). A simple threshold level of the ADC value may therefbe used to get a differentiation
between benign and malign lesions. Several studies dematetstthe effectiveness of such a
method [24, 65,97,171-173]. Guo et al. [65] reports a seitgiand specificity of 93 % and
88%, respectively. Marini et al. [97] reports a sensitivity 80% and a specificity of 81%.
Bogner et al. [24] evaluated the influence of the b-value rpatar on the ADC-values and
determined the optimal b-values. They report a sensitivitgpectively specificity of 96% and
94%.

ADC(x,y,z) =In [ ] /(b1 — b2) 1.2

1.5.3 Positron Emission Tomography (PET)

PET is a nuclear medicine imaging method, using a positroittiag radionuclide tracer).

When using FluoroDesoxyGlucose (FDG) as tracer, a 3-diraeakfunctional image can be
obtained in a PET scanner, describing the glucose metaddiiity on a molecular level [44].
The FDG tracer is taken up and accumulated in glucose conguagills, resulting in an in-
creased amount of positrons emitted at these regions. Thibilation of a positron with an
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Figure 1.5: Breast PET image. The highlighted region in the top-left pérthe image is a
malignant lesion.

electron produces two gamma photons moving in oppositetiires. These paired gamma
photons are detected in the PET-scanner. By accumulatirsgofethousands coincident events
of gamma photons detected in the scanner, a 3-dimensioagkiitan be reconstructed [44].

Liver, kidney, and brain tissues, but also many cancer@ssi¢is have a high glucose meta-
bolism, resulting in a higher signal intensity in the func@l PET images (Figure 1.5). There-
fore, the metabolic information provided by the PET scarigarseful in lesion localization,
in differentiating benign and malignant breast lesionsdisease staging, and assessment of
treatment response [180].

However, PET suffers from a very low resolution, which is 4nf for commercial scanners
[38], a low SNR, and lack of morphologic information. Thisders the localization of lesions
difficult, and prevents the detection of small lesions. Teroceme this limitation hybrid PET
/ CT scanner [147] and recently PET / MRI scanner [5, 78] hasenbproposed, where the
functional PET image is fused with a morphologic CT or MR iraag

The potential of fused PET-MRI in breast cancer diagnosie b&en shown in several stud-
ies [108, 117,120]. Moy et al. showed that fusing breast esagf PET and MRI increases
the specificity of MRI, whereas in this study only the mormgit information of MRI is used.
Initial results of a study by Pinker et al. [117, 120], wheteTPDCE-MRI, and DWI is com-
bined, demonstrated promising results, with a reporteditéty of 98 % and a specificity of
78 % in the diagnosis of breast cancer and lymph-node metsisiéhis master thesis is partially
founded on and motivated by the study of Pinker et al.



CHAPTER

Multimodal Medical Image
Registration

This chapter describes the multimodal registration of firemages. The aim of the registration
process, as used in this thesis, is the transformation ahtilémodal dataset into one unified
coordinate system, so that an accurate spatial relatiprstihe images is ensured. In this appli-
cation the relationship is the anatomical correspondeimcether applications functional corre-
spondences (e.g. lining up functionally equivalent regiofithe brains) or structural—functional
correspondences (e.g. correctly positioning functionfdrimation on a structural image) [43]
are used for registration.

As Guo et al. [66] stated in their surveithe challenging task of breast-image registration
is the inhomogeneous, anisotropic nature of the softissithin the breast, its nonrigid body
behavior and the various imaging conditionsSpatial variations in the multimodal breast im-
ages are inherent in the image acquisition process: i.athing and slight patient movement
during a DCE-MRI acquisition; varying patient positionstire MRI and the PET/CT scanner;
anisotropic image distortions of the DWI modality [74]. Big 2.1 illustrates such spatial vari-
ations. Advanced nonrigid registration methods are necgswhich are able to handlarge
deformationsas well asntermodalregistration.

The aim of this chapter is to give an overview of the statéhefart image registration meth-
ods, with the focus on registration of multimodal breastge® In the following sections the
essential components of a registration framework are désm) covering the topics of image
similarity measures in Section 2.2, transformation mo¢gesction 2.3) and an outline of opti-
mization strategies in Section 2.4.

2.1 Theoretical Overview of a Registration Framework

The registration process can be seen as an optimizatioeggpwhere a spatial mapping from
image(x) to image.J(z) is obtained in a way that both images are optimally alignelis 15
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Figure 2.1: Spatial variations of the acquired images. Left: MR imagel)roverlaid by a CT
image (blue/white). A nonrigid displacement is observetiveen these two modalities, due to
different scanning positions and orientations for MR andi@@ges. Middle: Overlay of two
MR images acquired in a DCE-MRI time-series. A small shiftween these two images is
visible, as a result of small patient movement and/or biegtim the acquisition process. Right:
MR image (red) overlaid by a DW image (white). The anisotcapiage distortion of the DW
image, which is inherent in this modality, causes the mismaf these two images. All images
are thresholded for illustration purpose.

done by finding a transformatidh that maps all locations from image!(x) to imageJ(z) by
minimizing a cost functiorC"

Toptimal = arg m’Ii‘Il Z ¢ (I(T(X))> J(Z)) (21)

In this thesis imagd (x) is the input image that is going to be transformed, diwl) is called
thereferenceimage, to whom the input image is registered to. Formallynaagel represents
a data functior? : Q — R%, where) C R" is the image domaing = 2 is 2D domainn = 3

is 3D domain) on which the data are definddiefines the dimension of the data, ide= 1 are
scalar values, such as images acquired with MR+, 3 are color images or vector images. The
transformatioriI’ can then be seen as a mapping in the image dorfiatr) — €.

A registration framework is derived from the optimizatioroplem, containing three main
elements: Théransformation modethecost functionand theoptimization strategyThe trans-
formation model describes the kind of transformation aguplon the registration, likénear
transformations odeformabletransformations. The cost function is realized asirailarity
metric IT.. quantifying the amount of similarity, often in combinati@rith a regularization or
penalization ternilz. Since the optimization problem is ill-posed, regulaimatadds addi-
tional user knowledge to the problem, i.e. by applying ptgismodels like the fluid or elastic
model. Since finding the optimal solution is NP-completerfon-rigid registration [80], itera-
tive optimization techniques are commonly used for findimg approximate optimal solution.
The choice of the transformation model, the similarity noetand the optimization strategy is
highly depending on the application [30].

2.2 Similarity Metrics

The similarity metric measures how “similar” two images,avbere similarity is defined by the
amount of correspondences between two images. It is antedgmart of the cost function that
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is optimized. The choice of the similarity metric is highlgmknding on the application. Giving
an general overview of all similarity metrics is far out obpe of this thesis. In the following
part metrics suitable for medical image registrations avéewed.

The similarity measures can be divided into two main cafegpthe geometric based, and
the intensity based. In geometric approaches correspoadesre defined on anatomical el-
ements identifiable in both images. These elements can In¢ lppidmarks, curves, or sur-
faces. The correspondence points guides the registratioexe points in between are interpo-
lated [130]. Typically, the distances among physical poerte minimized in the optimization
process. The paired landmarks are either defined manu8y fit automatically by identifying
anatomical feature correspondences, like nipple positiorast shape [166, 176], or geometri-
cally by identifying points, edges, curves or surfaces gisive voxel intensities and the gradi-
ent [20, 94, 149, 150]. Point landmarks may also be definedhygipal objects attached to the
scanning subject that are clearly visible in the image mes| like skin fiducial markers [162].

Intensity based approaches do not use any anatomical kigg/lnstead intensity patterns
are matched over the whole image. A mathematical or statlssimilarity metric is defined,
which is used to adjust the transformation model until thrilarity function is maximized
(or the error is minimized). It is assumed, that the imagesragistered when they are most
similar. Hermosillo et al. reviewed several intensity sarity metrics [71], where the three
common metrics Mean Squared intensity difference (MSQ) 148, 156], Cross-Correlation
(CC) [12,58], and Mutual Information (MI) [98, 132, 158] ameviewed in this thesis.

2.2.1 Mean Squared Intensity Difference (MSQ)

A simple and intuitive metric is the MSQ, also titled as SumSgfuared Differences (SSD),
which assumes identical intensities in both images, varidg by Gaussian noise. This metric
is therefore only suitable for intramodal image registrasi It is defined as:

MSQ = 3 (I(T(x)) — J(x))? (2.2

An optimal match results in a zero valued MSQ. The advantagEsometric is that it is simple
to compute [76] and it has a relatively large capture radi?§¥’]. The main disadvantages are
its restriction to intramodal image registration, and imstivity to small number of outlier
voxels [43]. Also, a linear change in intensity values ressinl a poor similarity score [177].

2.2.2 Cross-Correlation (CC)

This metric, also denoted a®rrelation coefficientor normalized correlation computes the

pixel-wise cross-correlation of the two images, normaliby the square root of the autocor-
relation of each image. A linear relationship of the imagensities is assumed, unlike the
MSQ metric, where an identical intensity relationship istesed. This makes the CC met-
ric suitable for intramodal as well as for some intermodagistations. Defining the variables
J(x) = J(x) — pyx) @andI(x) = I(T(x)) — pr(r(x)), Wherep ) is the mean intensity value
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of the imageJ(x), leads to following formulation of the metric:

oo — 2x1J (2.3a)
or-oy
B S I-J
- (2.3b)
a.7)
0170 (2.3¢)

|| is the L2-Norm and(- ) is the vector inner product. The optimum value of this mesid
when both images match perfect, whereas misalignmentkgé@silower values.

CC is robust to variations in lighting and exposure cond#i§92]. Avants et al. [12] pro-
posed a windowed version of CC for medical image registnatichere the coefficient is calcu-
lated from a sliding window. They showed that this versioagd well to situations with locally
varying intensities, like MRI inhomogeneities (bias field)

2.2.3 Mutual Information (MI)

This metric has been introduced independently by Viola aetls/f158] and by Maes et al. [96]
as a information theoretic measure. Unlike the CC metricera@ta functional intensity rela-
tionship is assumed, Ml assumes only a probabilistic ktatiip among the voxel intensities.
The image intensities of the two images are considered asamdom variablest and B. Ml
measures how much information of the second random variglitethe first random variable
by using theShannon entropjl38]. The entropy variables are defined as following:

ZPA -log pa(a) (2.4a)
ZPB ) - logpp(b) (2.4b)
H(A,B) = - pas(a,b) -logpap(a,b) (2.4c)

a,b

whereH (A) respectivelyH (B) are the entropies of the two random variables, &fdl, B) is
the joint entropy.p4 is the marginal probability density function for randomiehie A, and
pap IS the joint probability density function. It and B are completely unrelated, then the joint
entropy is the sum of the individual entropies:

pas(a,b) =pa(a) - pp(b) (2.5a)
H(A,B) = H(A) + H(B) (2.5b)

If they are related, thefi/ (A, B) is smaller thanH (A) + H(B). The difference between the
joint entropy and the marginal entropies is called Mutu&bimation:

MI(A, B) = H(A) + H(B) — H(A, B) (2.6)
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Ml is zero if the two random variables are independent, wdmerith an increasing dependency
of the random variables Ml increases too.

The advantage of using this probabilistic approach is thatpecific form of dependency is
necessary [177], in contrast to the two previously reviemetkics, where an intensity similarity,
respectively a linear dependency is assumed. This makesidbte for multi-modality regis-
tration [122]. MI, applied on a global scale, is known as gwisaetric for a robust rigid regis-
tration [12]. However, the performance of Ml on a local scakeit is necessary for deformable
registration, is reduced when non-stationary noise patter intensity inhomogeneities in the
image (i.e. MRI bias fields) exists [12,143]. The joint-pabilities have to be calculated from
a large number of samples to get meaningful statistics)tiegun a trade-off between locality
of the MI estimation and the statistical reliability [12].

Joint Histogram In an image registration problem the marginal and joint plility densities
are in common not available and have to be estimated fronnthge intensities. This can be
done by using either mint histogramfor discrete values oParzen windowindg114, 131] for
continuous values. As an alternative, continuous valuesbeadiscretized by binning them.
Parzen windows are also used to smooth the discrete histograbability densities yielded
from the joint histogram [98].

The joint histogrant(a, b) is a 2-dimensionak x m matrix, wheren andm are the number
of (binned) discrete intensity values in the imadesnd.J. Entry (a,b) of the matrix contains
the number of times intensity in the first image and in the second image appear at the same
spatial location. The probability densities are estimdtedh the normalized joint histogram:
Pap(a,b) = h(a,b)/N, whereN is the sum over the histogram. The marginal probability
densities are estimated by summing over the rows, respictbolumns, of the normalized
histogram:P4(a) = 37", Pag(a,b), andPg(b) = 32", Pap(a,b).

Parzen Windowing Parzen windowing, also known &grnel density estimatarss a non-
parametric method of estimating the probability densityction of a random variable. Intensity
samplesS are taken at random positions from the image and a kernefifum& (-) is placed on
the samples. The estimated probability density is the ggsition of all kernels:

Pla) = n—lh ZSK(“ %) 2.7)
S;€

n is the number of samples in the sgtandh > 0 is the smoothing parameter or bandwidth,
which is used to scale the kernel. The kernel function needstsmooth, symmetric, have
zero mean and integrate to one, like Gaussian, boxcar, gtiBesunctions. The choice of the
smoothing parametér is always a trade-off between the bias of the estimator anhitiance.
A large h may smooth out features, like the modes of the density, velset@o smallh may
result in a too noisy density distribution. Figure 2.2 ithates an estimation using the Gaussian
as kernel function.

To get discrete values from the continuous density estimativhich are needed in the en-
tropy calculation (Equation 2.4) two methods have beengseg: In the method of Viola and
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Figure 2.2: lllustration of the Parzen windowing. A kernel function (be5aussian) is placed
at each sample point (top). A continuous density functiaroisstructed by superimposition the
kernel functions (bottom). Image taken from [76].

Wells [158] a second sample sktis drawn from the image, in addition to the probability distr
bution estimating set. The entropy is then approximated as a sample mean:

H(A) = % > logP(r;) (2.8)
r;€ER

Mattes et al. [98] uses only one sample S&b estimate the probability densities using B-Spline
kernel functions. The entropy is then approximated by etalg the probability densities at
equally spaced discrete positions or bins.

Normalized Mutual Information  Studholme et al. [144] proposed a normalized version
of the MI metric, dealing with the problem that the MI metri@yincrease withincreasing
misregistration for cases of a small initial overlap. If tedative areas of background and object
are in balance, the sum of the marginal entropies may ineffaater than the joint entropy [122].
The normalized mutual information metric is:

MI(A,B) H(A)+ H(B)

NMI(A,B) =1+ B ~  HAD) (2.9)

wherel < NMT < 2.
Another variant of a normalized MI metric has been proposeillaes et al. [96], hamely
the Entropy Correlation Coefficient (ECC)

MI(A, B)

FCC(A,B) =2+ o s

(2.10)

whereECC =2 —2- NMI and0 < ECC < 1.
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2.3 Transformation Model

The transformation model describes the spatial mappinigeofput image coordinate system to
the reference image coordinate system. The choice of theldefines the type and the number
of possible deformations [43], and is dependent on the egiin. The transformations can be
divided into following categories: [7]

« Rigid - Non-Rigid
« Parametric- Non-parametric
* Global- Local

In a rigid transformation the distances and proportiongefabjects are preserved, whereas in a
non-rigid transformation this is not the case in common.gidriransformation is a combination
of rotation and translation. Non-rigid transformationsynie affine transformations, allowing
shearing and scaling of the image; orelastictransformation, allowing local deformations in
the moving image.

Parametric transformations are defined by a limited set &rpaterp = (p1, ..., pn). FoOr
instance, a two-dimensional rigid transformation is pagtarized by a rotation angkkand a
translation vectot. The number of parameters defines tlegrees of freedomf a transforma-
tion. Non-parametric transformations usually operate ectar fields describing the displace-
ment of each voxel [155].

Parametric transformations are divided into global andllt@nsformations, according to
the range of influence of a parameter on the transformatiolobab transformations are for
instance rigid and affine transformation, where a changepaframeter has a global influence.
Another global transformation is the Thin-Plate Spline §)Rransformation [27], where the
transformation parameters are the positions of contrabtpaiefining the shape of thin-plate-
splines. Shifting a control point position affects all atip®ints [43]. Global transformations
have the disadvantage that the ability of modeling locabaeftions is limited [43].

In the subsequent section following transformations aed ttoncepts are described:

* Rigid and Affine transformations,

« Spline-Based transformations,

« Demon-Based transformations, and
« Symmetric Normalization (SyN).

Rigid and affine transformations are used to match imagesghobal scale. Spline-Based
transformations are able to register images containingrigith deformations, with a limited
use of modeling large deformations, due to the small deftomaonstraint formulation [11].
Demon-based algorithms are known to be a fast and efficigmstration method in a large
deformation framework [156]. SyN is a large deformatiodetimorphic mapping. Such models
are known for being able to generate a dense, smooth andilibenapping (diffeomorphic)
along with the capability of handing large deformations.NS3lso supports various metrics
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(MI,CC,MSQ, labeled point sets) [14]. These facts make tilaigsformation of special interest
for this thesis, where large non-rigid deformations in thdtimmodality breast images have to
be taken into account.

2.3.1 Rigid and Affine Transformation

A rigid transformation is a mapping of a Euclidean spacedelfif where the distance between
the points is preserved. A rigid transformed object has #messhape and size as the original
object. Two geometrical operations and their combinatioitfdl this definition: rotation and
translation A rigid transformationZ” applied on the coordinatescan be written as:

T(x) =Rx +t (2.11)

where R needs to be an orthogonal transformatidtf (= R~') defining the rotation, antlis
the translation vector.

A superset of the rigid transformation is the affine one, agldhe geometrical operations
scalingandshearingto the transformation. The affine transformation can betaniais a com-
pact matrixT, including the translation, by using homogeneous cootdfl67]. In the two-
dimensional case the affine transformation has the form [61]

t11 ti2 O
[ac Y 1]:[2} w 1]T:[v w 1] ta1 tog O (2.12)
t31 t32 1

Depending on the parametets to t3» a rotation, translation, shear, and/or scale of the co-
ordinates are applied. Table 2.1 lists how the parametfligeirce the transformation. Affine
transformations can be combined into a single affine mairby applying a matrix multiplica-
tion on them. This follows from the associativity of the nisatnultiplication:

A(Bx) = (AB)x (2.13)

It has to be noted, that the order of the multiplication isdmgnt, since the matrix multiplication
is in common not commutativeAB # BA.

The affine and rigid transformations are global and pardaoeensformations. Local defor-
mations cannot be modeled by them. This limits the usagefioleaansformations for breast
image registration, since the breast is highly non-rigige th the soft-tissues in the breast. How-
ever, rigid transformations can be used as initial regisimao minimize the global alignment
error, followed by a deformable transformation modeling libcal deformations [14, 132].

2.3.2 Spline-Based Transformations

This kind of transformation relies on spline functions ahd spatial variation of their control
points to model a non-rigid transformation. They are suététr point-based landmark registra-
tions [62] as well as for voxel registration using an intgnsiased metric [132].

Goshtasby [62] proposed a point-based landmark regmtrathsed on TPS for registration.
The corresponding landmark points are used as controlg@intthe splines. The landmarks

16



1 0 0 _
Identity none 0 1 0 r=v
0 0 1 y=w
c 0 0 _
Scaling Cx,Cy 0 cy 0 T = cgv
0 0 1 Y =cgw
cosf sinf 0 _ o
Rotation 0 —ein® cos® 0 T =wvcosf —wsinf
0 0 1 y = vsinf + wcos
1 0 0 _
Translation ta,ty 0 1 0 T=v+ty
te by 1 y=w+ty
1 0 0 _
Shear (vertical) Sv s 1 0 T =0+ spw
0 0 1 y=w
Losn 0 T=v
Shear (horizontal) sh s 1 0 =
0 0 1 Yy =Spvt+w

Table 2.1: Two-dimensional affine transformationg:, y) = T[(v, w)].

are displaced in the first image, so that they match with thdrfearks in the second image.
The deformations in between the landmarks are interpolasaty TPS. Figure 2.3 illustrates
the TPS-based transformation. Since the influence of th&aigooints on the spline-shape
is global, a movement of one control point affects all otheinfs in the image. This global
behavior has two side-effects: adapting the model to matchl Ideformations is limited, and
the computational costs when moving a single point risesptewith increasing number of
control points [43].
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Figure 2.3: lllustration of a TPS-based transformation. The blue esdhre the correspond-
ing landmarks from a reference image (left) and a moving en@ight). The TPS function is
applied on a regular grid to illustrate the deformation @& thoving image when moving the
corresponding center landmark to the matching positiomgeradapted from [105].

+
++

++ + o+
+ *t o+

+ + + o+ o+ o+ 4
+ o+ F F o+ o+ o+ o+
+ o+ o+ F o+ o+ o+ o+ o+

+ o+ + + + + + + +

Figure 2.4: lllustration of a FFD-transformation. Initial configuraii (left) and deformation by
displacing the control points (right). Image adapted frd:35]

To overcome these problems Rueckert et al. [132] suggestleid imilestone paper a Free-
Form Deformation (FFD) model [136] using B-Splines [89]. &P is based on a mesh-grid
of control points, where the deformation is modeled by @isjpig these grid points. Figure
2.4 illustrates such a deformation. Using B-Splines haeeativantage that they are locally
controlled, in contrast to TPS, making them computatioffaient even for a large number of
control points, and a change of a control point influenceyg thd local neighborhood.

The deformation transformation works as follows: First ashagrid ® of control points
®; ;.1 With uniform spacing is created. The FFD transformation can be written as a 3-8bten
product of 1-D cubic B-Splines:

3

3
T(X) - Z Z Z Bl(U)Bm(U)Bn(w)dsi-i-l,j-i-m,k-i-n (214)

=0 m=0n=0
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By is thelth basis function of the B-Spline:
Bo(u) = (1 —U) /6
Bi(u) = (3u — 6u® +4)/6
By(u) = (—3u® + 3u® + 3u +1)/6
Bs(u) = u3/6
In an optimization process the positions of the control {®oil are varied until the cost

function is minimized. The cost function is consisting ofimitarity metric termIl., and a
penalty termll as regularization:

C(®) = I1.(J(x), I(T(x)) + AIx(T) (2.15)

The penalty term forces the FFD transformation to be smadtlere thel is a weighting param-
eter of the penalty term, influencing the smoothness of tinesformation. In 3-D, the penalty
term is defined as following:

mmg L 1GE)  (G) = (52

2 2 2
+ (i) +(5) + () Jastwe

(2.16)

whereV is the volume of the image. The second-order mixed partidglaldves used in the
penalty term are a measure of the smoothness [160].

The control pointsd are the parameters of the B-Spline FFD. Few control pointh @i
large spacing are only able to model global nonrigid deftiona, whereas a fine mesh of
control points is able to model local deformations. A higtlegree of freedom increases also
the computational effort. Therefore a trade-off betweerdehdlexibility and computational
complexity is given [132]. Rueckert et al. proposed a hihival refinement approach, starting
with an initial large spacing, and successively halvingghacing between the control points by
adding new ones using a B-Spline subdivision algorithm.[54]

2.3.3 Demons Based Transformation

In 1998 Thirion proposed a nhon-rigid and non-parametricgen@gistration method treating the
non-rigid registration as a diffusion process [148]. He edrit “Demons Algorithm”, where the
“demons” term is referring to a concept introduced by Maxwethe 19th century, solving the
Gibbs paradox in the thermodynamics.

In Thirions approach demons are forces that push accorditigtoptical flow equation [17].
For small displacements of a given paithe optical flow equation is:

u-VI(x) =1(x)—J(x) (2.17)
whereu is the displacement, arid/(x) is the gradient of imagé at the spatial poink. From
this equation Thirion derived the Demons formulation:

J(x))VI(x)

(I(x) -
NS NIRP T () — T()? (2-18)
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In this case the displacement is guided by two forces, ttegnat edge based foréél(x) and
the external forcé (x) — J(x). The term(I(x) — J(x))? has been added by Thirion to make the
equation more stable. Wang et al. [161] enhanced this equbti considering also the image
edge forcesV J(x) of the second image, and Cachier et al. [32] added a norrtiatizeerm «
to the equation, leading to following formulation:

((x) - J(x))VI(x) (I(x) - J(x))VJ(x)

+

T IVIGR +a2(I(0) = JX)? T VIR + a2 (I(x) — J(0))?

(2.19)

This equation is used in an iterative algorithm as an upddgefor a displacement field. The
displacement field is alternatively updated by the equg@oi9) and regularized by smoothing
the displacement field with a Kernél: U + K * U, whereK is typically a Gaussian Kernel,
andx is the convolution operator. The transformati®fx) is then:

T(x) =x+ U(x) (2.20)

The original demons formulation as proposed by Thirionnstied to intramodal registra-
tion only, since it relies on image intensity differencesefiefore several enhancements to the
Demons algorithm have been proposed, where either thesitismnof one modality are trans-
formed to the other modality [64, 84]; or by using an alteiveaformulation of the Demons
registration introduced by Vercauteren et al. [154], whheeintensity difference is replaced by
other metrics, like normalized mutual information [106]pmintwise mutual information [95].

Vercauteren et al. proposed also a formulation of the Demegistration restricting the
transformation to the group of diffeomorphisms [154—15Bhey denoted it as Diffeomorphic
Demons (DD). A detailed discussion of diffeomorphisms dadise in registration frameworks
is given in the next section.

2.3.4 Symmetric Normalization (SyN)

SyN [14] is a state-of-the art large deformation, non-rigidn-parametric transformation model,
which operates in the group of diffeomorphisms, formulgtine mapping as spatio-temporal
optimization problem [12].

A diffeomorphic mapping is aninvertible and in both directionglifferentiable bijective
mapping [50] that is closed under composition [14]. Resitricthe mapping to the group of
diffeomorphisms has the advantage that the topology of tlagoay is preserved and foldings
that are physically impossible are prevented [156]. Thepimgpis always smooth, invertible
and continuous parameterizable (i.e. in time) [177]. Itikéity is for instance a requirement
when registering Diffusion Tensor Imaging (DTI) [175]. TH&eomorphic properties are also
of interest in Computational Anatomy (CA), where the stai#d variability of anatomical struc-
tures is analyzed, as in [8,12,90, 103, 104]. The diffeomicrfarge deformation setting allows
more shape variability to be modeled than in a small defdomatnvironment, like B-Splines
or elastic mapping [57] due to the fact that large defornmatiwodels penalizes deformation
linearly, whereas small deformation models penalizesrdedtion quadratically [14].

The diffeomorphic approach was introduced by Trouve etl&l1] and has been enhanced
by Miller et al. [103] by formulating the problem as an Eulexgrange equation. Based on
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this work Beg et al. developed a large deformation formafatn the group of diffeomorphism,
donating it as Large Deformation Diffeomorphic Metric Mapyp(LDDMM) [19]. In this thesis
a symmetric approach of the LDDMM is discussed, introducediants et al. [12—-14], namely
SyN. This method is also part of the proposed CAD pipelindne®©proposals of diffeomorphic
registration frameworks may be found in [9,72, 155].

SyN operates in the diffeomorphic spd2#f ; by assuming a mapping of the image domain
Q to itself, and a homogeneous boundary condition such tleaintiage border maps to itself:
»(6Q2) = Id. Therefore rigid and scaling transformations have to bédiegpefore the diffeo-
morphic mapping. The mapping parameterized by the time parametet [0, 1], the spatial
coordinatex and a smooth time-dependent velocity vector fiefst, ) : Q x t — RY, leads to
a family of diffeomorphismsg(x, t) :  x t — €. These diffeomorphisms can be calculated as
solutions of the ordinary differential equation (o.d.e):

do(x,t)
b v(p(x,t),t) (2.21)

with respect top(x,0) = x. The spatial transformatiog is gained by integrating the velocity
field v in time:

1
o(x,1) = ¢(x,0) —|—/O v(p(x,t),t)dt (2.22)

The existence and uniqueness theorem for o.d.e.'s [41pdeg a smooth vector field, en-
sures that the integration of Equation (2.21) generatedfeodiorphism [19]. From such a
diffeomorphism a displacement or deformation fi€lds calculated in the following way

U(x) = o(x,1) — x. (2.23)

The time-parameterized transformatiofx, t) can be seen as a path in the space of diffeo-
morphic transformations, describing the movement of agarin the velocity field over time,
starting at positiorx at timet = 0 and ending at timeé = 1 at the positionp(x,1) = z. The
length s of such a path in the diffeomorphic space is calculated imalai way than the arc
length of a curve connecting two points in the Euclidean spac

1
D ($(x,0), $(x, 1)) = /0 v (. Bl dt (2.24)

where|| - || is a Sobolev Norm and is a linear operator. More details about the linear operator
L are given below. Ageodesigath, which is per definition the shortest path of two pointa i
space (here diffeomorphic space), is found by takingrtfismmumof all paths formed by Equation
2.24. The length of such a path gives a metric distance mefEal. In an optimization process
such a geodesic path between two diffeomorphism transtansas(x, 0) andé(x, 1) is going

to be found by minimizing the distance between theti{x, 0) is usually set to the identity
transformationld. Combining a similarity metridI.. with the geodesic metric, which may
be alternatively seen as a diffeomorphic regularizalibyp leads to the LDDMM variational
optimization problem introduced by Beg et al. [19]:

1
v = argmin{/ HLvH2dt+)\/ (I, $(x, 1),J)dQ} (2.25)
v 0 Q
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Figure 2.5: Left: An illustration of traversing a geodesic path, in tinfieom two end-points
x andz to a midpointy via ¢; and¢,. Right: Traversing from one end-point to the the other
end-point by inverting the second diffeomorphia@1 and combining it with the first diffeo-
morphisme¢; . Image adapted from [13].

where\ controls the weight of the similarity measuteis a linear differential operator and reg-
ularizes the velocity field, to ensure that the velocity field remains smooth in the dgtiion
process. Smoothness of the velocity field is a prerequigitaloulating the diffeomorphisms.
As linear operator a fluid regularization, lik&’ +1d, Navier-Stokes, or Cauchy-Navier operator
is suggested [19,40]. The linear operator is either intceduas a term in a variational minimiza-
tion [19] or in terms of a convolution with a Green’s kernehftion K: v,,00tn = K * v. AS
kernel functionK a Gaussian with varying may be used [14, 34, 156], whesecontrols the
“smoothness” of the velocity field. A detailed discussiomuativelocity field regularization is
given in Dupuis, Grenader and Miller [49].

Avants et al. constructed a symmetric alternative of the MMDEquation (2.25) [13], con-
sidering the fact that a diffeomorphisgnis closed under composition, and may be decomposed
into two components; and¢s, as well as the fact that a geodesic path is symmetric andspoin
on the pathy(x, t) can be parameterized from both endpoiris(z, 1 — t) =y = ¢1(x,t). A
full path ¢ and its inverse)—! can therefore be found by combining the partial pathsind¢,
using the compositiony(x, 1) = ¢, (¢1(x,t),1 —t) andp™(z,1) = ¢ (p2(z,t),1 — 1).
Figure 2.5 illustrates the parameterization from both eintp and the composition of the two
transformations); and ¢, to ¢. In contrast to the LDDMM formulation, where the transfor-
mation is found at the endpoint of a geodesic path, beginfiorg the coordinate system of a
moving imagel to the reference imagé, the symmetric formulation develops the transforma-
tion from both endpoints to a fixed point midway of the geodgsith. The full transformation
¢ is gained then by composition, as described above. The fizied may be anywhere in the
interval [0, 1], whereas setting it to6 = 0.5 has the effect, that the transformation is equally
distributed on both imagesand.J. The terms “moving” image and “reference” image become
obsolet in this environment. This approach guaranteegpsb-accurate, invertible transfor-
mations [12]. Theoretically all diffeomorphisms are gudesd to be symmetric and invertible,
in practice interpolation errors summing up linearly witle number of interpolation steps can
cause invertibility errors. The symmetric solution minaes this kind of error by exploiting the
diffeomorphic invertibility [12]. Figure 2.6 illustratethe transformation of two shapes along a
diffeomorphism to the midpoint of the geodesic path.

Definingv(x,t) = vi(x,t) in the intervalt € [0,0.5], andv(x,t) = va(x,1 — t) in the
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Figure 2.6: An illustration of the deformation of two shapésind.J along the geodesic paths
and¢- to a midpoint, forming a mean shape. The top row shows thénatignages, which are

used as initialization of the SyN method. The bottom row shtwve images after convergence
of the SyN solution for the given time-pointe [0, 0.5]. Image adapted from [12].

intervalt € [0.5, 1] leads to the symmetric variant of Equation (2.25) [14]:

0.5 0.5
(wivih —argmin{ [ v old+ [ Lvaxp)P
) 0 0

(2.26)
+)\/ HN([o¢(x,0.5),Joq§(x,O.5))dQ}
Q

A solution of the variational optimization problems (2.2&d (2.26) is found by using
Euler-Lagrange equations [103]. A discussion of develgg@ind solving such Euler-Lagrange
equations is beyond the scope of this discussion. One magfegad to Beg et al. [19] and
Avants et al. [12] for a detailed description.

Geodesic and Greedy SyN Avants et al. describes two variants of the numerical smhuti
of Equation (2.26), the Symmetric Geodesic Normalizati®ypGN) and the computational and
memory lower-cost greedy variant, the Greedy Symmetriondization (GrSyN) [14]. The
former is closer to the theoretical diffeomorphic formidatof the Equation by using a dense-
in-time gradient calculation along the geodesic path inititerval [0, 0.5] and a reintegration
of the diffeomorphisms after each iteration. In the greegiinsization of Equation (2.26) the
gradient is only calculated at the midpoint of the full diffeorphism. Instead of reintegration
of ¢1 and¢, they are updated from the previous iteration using follapiguation:

$i(x,0.5) = ¢i(x,0.5) + (6K * VIL;(x,0.5))~¢;(x,0.5), i € 1,2 (2.27)

where) is the step size of the gradient based optimization process.

2.4 Optimization Strategy

The optimization strategy defines how the transformatiaampaters, deformation fields or ve-
locity fields are adjusted to improve the image similarity hinimizing the cost functiorC'.
Usually an iterative approach is used, where an initial ipatar set is estimated, and iteratively
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adjusted until a convergence criterion is achieved. At éachtion the cost functiod’ is eval-
uated using the current parameter estimation. Then thengteas are adjusted in a way that
the cost function is reduced. The optimization is termidatten some convergence criterion is
achieved (i.e. cost function is not reducing anymore) [Bandard strategies are available for
this kind of optimization, like Steepest Gradient Descé&unjugate Gradient Method, Gauss-
Newton Method, Powell’s Method, Downhill Simplex Methoddaathers [124]. Discussing
these optimization methods is beyond the scope of thisgshé&aders interested in this topic
may be referred to [26].

Gradient based optimization methods operate on the costidtnderivative. Though, also
the derivatives of the similarity functions are needed. krmHosillo et al. [71] and Avants et
al. [12] derivatives of the intensity similarity metricseadlescribed.

Multiresolution Optimization  The optimization solutions mentioned above are only able to
find local minima of the cost function, which might be far aweym the overall or global min-
imum of the cost function. To improve the robustness, aayuaad also the speed of the opti-
mization process, a multi-resolution approach using asesto-fine scheme is widely used [76].
The registration is first done on a coarse scale with a redaicenlint of pixels or control points.
On this level coarse deformations are identified, whereaslSmage variations are ignored.
The spatial mapping determined at this level is then useditialization of the registration at
the next finer scale. These steps are continued until reqdéfull scale. At the full scale level
all image details are given, although the optimization pescneeds to handle just fine deforma-
tions, since larger deformations are already considerétkiprevious steps. This coarse-to-fine
strategy improves the registration success rate and alsgaiges robustness by eliminating local
optima at coarser scales [76].

To get a coarse-to-fine scheme based on the image sdakyssian resolution pyramiid
used. At each level of the pyramid the resolution is halvéefresolution of the next level. Such
a pyramid is recursively built by starting with the origirialage(°) and recursively calculate
the reduced resolution levels by applying a Gaussian sritgptb the image of the previous
level, followed by a downscaling:

1 (z,y,2) = (w® I") (22, 2y, 22) (2.28)

wherew is a discrete Gaussian smoothing kerm@gklenotes a discrete convolution ands the
level index. The number of levels depends on the resolutitimecoriginal image and the amount
of deformation. Avants et al. [14] suggests a 3 level pyrafoidmages with a resolution of 1
mm?, and a sampling. > 3 in cases where the initial affine registration is weak.

2.5 Discussion

In this chapter the theoretical background of the registnaprocess has been described with
the focus on multimodal image registration. The aim of thgsteation process as used in this
thesis is the transformation of the multimodal dataset orie unified coordinate system, so
that an accurate anatomical relationship of the imagessared. The registration is realized
as an optimization process, where a transformation igitefp developed and applied onto the
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input image until the similarity with theeferenceimage is optimized. The degree of similar-
ity is measured by a metric. Three of these similarity msthave been described in detail in
this chapter, namely MSQ, CC, and MI. All of them are intensidsed, where MSQ assumes
identical intensities, CC assumes a linear relationshtpérintensities, and MI assumes a prob-
abilistic relationship of the input and reference imagersities. The transformation model is
responsible for the spatial mapping of the input image tadifierence image. The choice of the
transformation model defines the degrees of freedom for @gping. Four different types of
transformation models have been described in this chaghierigid and affine transformations,
suitable for global registration; spline-based transfations, where the image is deformed by
varying control points of splines, and interpolating invke¢n of them; Demon-based transfor-
mations, where a vector field is iteratively evolved, guitdgdhe optical flow equation; and the
LDDMM transformation, where the large deformation mappapgrates in the space of diffeo-
morphisms, providing an invertible, topological presegyidense and smooth mapping. SyN as
a symmetric formulation of the LDDMM has been described itaiiewhere both images con-
tribute to the registration process. Finally, the optirtiaza process has been briefly described,
where the parameters of the transformation model areiitehatmodified until the cost func-
tion, which is a combination of the similarity metric and guéarization term, is minimized. A
multiscale optimization based on a Gaussian resolutioampig has been described, which is
used to improve the robustness and the speed of the reigistpsbcess.
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CHAPTER

Classification and Regression by
Random Forests

Random Forests (RF) were developed and introduced by LenBreand Adele Cutler [28].
It is an ensemble classifier, with the basic idea of growingiynanpruned decision trees and
using the statistical mode of the outcome of the trees tamite the class. Unpruned decision
trees have a low bias, but suffer from a high variance, resuin sensitivity to noise [69].
RF gains a low bias from the unpruned decision trees, andesdine variance by aggregating
many decision trees induced from bootstrap samples ofdivéng data lfootstrap aggregation
and selecting random features during the tree buildingge®§69]. An excellent overview of
decision trees and RF is given by Hastie et al. [69]

RF is known to be an efficient algorithm with a comparable rerate to ADA-Boost [55],
and robustness to noise [28]. The RF algorithm is used fasiflaation or regression tasks. It
is able to handle large feature sets without pre-selectwen if only a few variables carry the
information necessary for the classification prediction] the other variables are noise [28,133].
Additionally, the algorithm provides a measurement of thhgdortance” of features, which gives
a more detailed insight into the contribution of featurethinclassification, and which has been
shown to be useful for feature selection [6,59]. Anotheraauiage of RF is that it has only three
tuning parameterntree the number of treesnTry, the number of features considered at each
split of a node, andiodesizethe size of the leaves.

Writing a chapter about the RF algorithm is motivated by thet that the RF algorithm is
an integral part of this thesis. RF is used for binary classiibn in the segmentation part of the
CAD pipeline to determine if a tissue is cancerous or norcessus, and in the classification
part of the pipeline to distinct between benign and maligioles. The variable importance
measurement provided by the algorithm is used for featustysis and feature selection in both
cases.

The main topics of the chapter are the description of the RBrithm in Section 3.1 and
details about the measurement of the variable importan8edtion 3.2.

27




3.1 The Random Forests Algorithm

The RF algorithm is aupervised learning algorithmThis means that the algorithm is trained
using a training seL containing the input seK = {xi,xs,...,x,} € R"*? forming ap-
dimensional feature space, and the corresponding outpwtse{y,, v, ..., yn }:

L= {(x;,y:)|l <i<n} (3.1)

wheren is the number of training examples. In case of classificatieroutputy is of categorical
type (i.e. class labels), whereas in the regression casrithat is continuous. From the training
setL a prediction model is generated. This model is used to pradioutput valug; from a
new observatio .., according to the given model.

The RF prediction model is generated by following algoritHret n denote the number of
training samplesy the number of feature variables (=dimension) of a samplZathe " tree
in the forest.

For each tre€}, 1 < b < ntree:

1. Get a bootstrap sampk* from the training data by drawing. samples at random with
replacement from the training data-3ét

2. Recursively grow a tre€; by applying following steps on each node:

« Selectm Try feature variables at random from theariables available

 Find the best feature variable / splitting point among th&ry variables and split
the node into two sub-nodes

» Repeat the recursive steps until the node size fall beloiweangninimum node size.

Breiman suggests as size fal'ry = |,/p], and a minimum node size affor classification.
For regression, the default valuernsI'ry = |p/3], and the minimum node size is five. As
bootstrap sizem, he suggests to use about two-third of the instances. Theedrsamples are
denoted as the Out-Of-Bag (OOB) samples [28]. These saropielse used to estimate then-
eralization errorby predictingy for each sample; using only the trees of the Random Forest,
in which the sample:; is an OOB sample. The average of the errors made in the predist
the OOB error rate, which has been shown to be an unbiasedagisin of thegeneralization
error [28]

Find the best feature variable / splitting point In the algorithm a best split is applied at each
node by determining the splitting variable and the splitfpoint giving the best binary partition
of the node.

Regression trees For regression trees one way of finding the best splittingntpisi the
minimization of a sum-of-squares criterion, as propose@taiman et al. for their Classifica-
tion And Regression Tree (CART) algorithm [29]. Denoting #plitting variable ag and the
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splitting point (threshold) as one may write the partition of the data in two regidRsand R,
at a node as:

Ri(j,5) = {X|x; < s} andRy(j, s) = {X][x; > s} (3.2)

Approximations for the splitting variablgand the splitting poing are found by solving:

Ao . . EPSRY . EPRY
j»$ = argmin | min Y. wi—m)?+min Y (i~ i) (3.3)
z;€R1(5,5) z;€R2(j,s)

[11 andji, are determined for any choice gfands by calculating the mean af; in the region
Ry anng

f1 = mean(yi|x; € Ri(j,s)) andjia = mean(y;|x; € Ra(j,s)) (3.4)

This greedy algorithm tends to minimize the sum varianceghi® two resulting nodes.

Classification trees For classification trees the objective in splitting the nél¢éhat all
samples in the sub-nodes should be ideally of the same dlaesamount of “wrong” classes, or
heterogeneity of target classes in a node is denot@u @ity of a node. The splitting variable
and splitting point is chosen in a way that the biggest rédnatf impurity in the sub-nodes is
achieved.

Let i(¢) be a function measuring the impurity at nodeFurthermore let; andt, be the
left and right child node of nodég andn; be the number of samples in notleBy partition the
node according to a splitting variabjeand splitting points in a similar way as in Equation (3.2)
one may calculate the probabilitiés and P, of the sub-nodes depending on the size of the two
regions:

_ RGO qnap (,s) = Play > 5) = B2 (55

P(j,s) = Plz; <
l(]as) (.I] = 3) Ny ny

where|R; (j, )| is the number of samples in the left sub-node. The reducfionpurity (Ai(t))
between the parent nodend the child nodeg andt, is then calculated as follows:

Az(t) - Z(t) - b Z.(tl) - P i(tr) (36)

The best split is then determined by finding the biggest realuof impurity by solving follow-
ing maximization problem:

.8 = g max(i(t) = Ay s) - i(t) = PG, s) - )] (3.7)
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Measuring the node impurity Two common methods of measuring the node impurity
i(t), producing almost similar results [31], a®ini index as used in the CART algorithm [29],
and the concept dhformation entropyas used in th€4.5 decision trealgorithm of Quinlan
[125].

Let p(k|t) be the conditional probability of clags € 1,..., K at nodet. An empirical
determination op(k|t) is given byp(k|t) = ny/n¢, wheren,t denotes the number of examples
for nodet andn; the number of examples belonging to classThe Gini impurity function
ic(t) and the information entropy impurity functiar (¢) are defined as following:

K K K
ia(t) =Y p(klt)p(lt) =Y p(klt)(1 — p(k[t)) = 1= p*(k|t) (3.8)
12k k=1 k=1
K
in(t) ==Y p(klt)log p(k|t) (3.9)

k=1

The Gini reduction of impurity Qi) and the entropy reduction of impuritsl¢ ) are gained by
usingiq, respectivelyig as impurity measures in Equation (3.6).

Prediction To get a prediction of; from a new samplex,.,, the sample is pushed down
each tree of the forest ending in a terminal node. This nodessggned as outcome of the
tree to the sample. For regression an average of all tre@met is calculated as prediction:
J(Xnew) = @ >y Ti(xnew ). For classification anajority ruleis suggested:

C = magority rule{Ci(Xpew)} (3.10)

whereC; is the class prediction outcome of thil tree. The majority rule, also denoted as
winner-takes-allprinciple, selects the class with the most votes. In the c&d®F each tree
“votes” for one class.

3.2 \Variable Importance

An interesting aspect of RF is that it provides a measureroktite contribution amount of
a feature to the classification and prediction accuracyptehasvariable importance Two
methods of calculating the importance are proposed:Gimé importance based on the Gini
impurity; and thepermutation accuracy importancbased on the OOB accuracy [6].

The Gini importance measures the average amount of infamgain using the Gini index
splitting criterion (Equation 3.8). It is calculated for &vgn feature variable by averaging the
reduction of the Gini impurity {Ai) over all trees for those nodes, where the feature variable
has been chosen as splitting variable. Sidge (t) is calculated as splitting criterion for each
node, it just needs to be accumulated during the creatidmeoRE. The Gini importance is also
often denoted asiean decrease in Gini inde@r mean decrease in Gini impurifg].

Another type of variable importance is calculated from tH@BDsamples. It measures the
prediction strength of each variable. First, for a tree tt@B3samples are used for prediction
and the accuracy is recorded. Then the samples are pertoyh@ermuting the variablg. The
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accuracy is calculated again for these perturbed samplesalBulating the mean difference of
the two accuracies over all trees, fiermutation accuracy importander variablej is obtained.

The Gini importance measure correlates well with the peatiant accuracy importance [6],
although the computational effort for calculating the Gimportance is lower than for the per-
mutation accuracy importance, since it is a side produdi@triee creation. On the other hand,
Gini importance tends to be biased when predictor variadeg in their number of categories
or scale of measurement, whereas the permutation accungoytance is reliable in such cases,
when using sub-sampling without replacement instead ofsh@pping [141].

3.3 Discussion

The Random Forests algorithm, used for regression andifatatisn, has been described in
this chapter. The RF algorithm is a supervised learningrdlgo, where a prediction model is
trained on a given input set containing a p-dimensionalufeavector per input sample, and a
output value (target). The basic idea of the RF training ritlgm is the growth of many unpruned
decision trees with a random selection of input samples geisibn tree (bootstrapping) and a
random selection of feature variables chosen from the featector for each decision node. In
the classification case for each decision node the bestréeedwiable with the optimal splitting
threshold is determined by finding the biggest reductiom@rtode-impurity of the child nodes
in an optimization process. The node-impurity measuresatheunt of “wrong” classes, or
entropy in the child-nodes. Two metrics for measuring thpunty have been described in this
thesis, the Gini index and the information entropy. It hasrbghown that the Gini index can be
used to determine the importance of a feature variable loplzding the mean decrease in Gini
index considering each node using the specific variable lasrgpvariable. This importance
measurement has been denoted as Gini index. A predictidre @ftput variable for a new input
feature vector is done by pushing down the feature variad®e®y each tree until a terminal node
is reached. The outcome of the tree is a vote for a class. Talgpliedicted class is obtained by
selecting the class with the most votes (majority rule).
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CHAPTER

Related Work

The previous chapters gave a general overview and backgiaéormation about the registra-
tion and classification methods used in this thesis. Thevatlg sections are a more specific
overview of related research and state-of-the-art acegrtti the three cornerstones of the the-
sis: the multimodal breast image registration, the autamiaseast lesion segmentation, as well
as the automatic lesion classification.

4.1 Multimodal Breast Image Registration

Several methods are proposed for registration of breast-BIREimages. A summary is given
in the paper of Guo et al. [66]. Rueckert et al. [132] modefettansformation using a free-form
deformation (FFD) based on B-Splines. Normalized mutufarination was used as a voxel-
based similarity measure. It has been observed by Tannér[248] and Rohlfing et al. [129]
that registering DCE-MRI images using free-form deformrasi tend to shrink the tumor. They
developed volume preserving registration methods. Amatbgistration method using finite
elements is proposed by Miga [102]. Hill et al. [73] evalehfeur methods for registration
of DCE-MRI breast images and their influence on the DCE-MRlamwement curves. They
revealed that even a small motion of as little as 1 mm canfggnily change the shape of the
enhancement curve. Therefore, they suggest that a nahregistration method always should
be applied before analyzing the contrast enhancement.

Registration of PET images to other modalities is a challengask, since PET suffers
from a low SNR, a low spatial resolution and almost no morpbigial information [153]. For
automatic registration of rigid body parts, like the head;bdsed similarity metrics have been
proposed by Collignon et al. [42], Wells 1l et al. [165] andalk et al. [96]. A recent evaluation
of PET-MRI registration methods for head images is giverlBv].

A direct fusion of PET and MRI breast images from separatarsas is only reported with
assistance of using fiducial markers [108,153]. An autarmain-rigid image registration of soft
tissue PET and MR images without markers has been propos8drhgr et al. [140]. In their
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paper they describe a hybrid MRI to PET/CT registration métirhey register the MRI image
in a first step to the CT image. In a subsequent step the obtéiarsformation is applied on
the PET image to register MRI to PET. They showed that thishotkts accurate and reliable,
and that it gives significant better results than a direct REWMRI registration. Meanwhile

prototypes of combined MRI/PET scanners are available, W8]ch enables the direct fusion
of MRI with PET images [39].

Reiner et al. co-registered full-body DWI and CT scans [lid6fheir study. They used
a software prototype (Multimodality; GE Healthcare) fosifan. Huang et al. [74] used a
LDDMM to correct the geometric distortion caused by BO inlommneities in DWI by doing
a registration of the bO DWI tos;Fweighted MRI. To the knowledge of the author no automatic
fusion of DWI and MRI breast images has been published.

4.2 Breast Lesion Segmentation

The segmentation of breast lesions can be divided into nhasermi-automatic, and automatic
approaches. In emanual approacta radiologist delineates the lesion boundary. In this work
this annotation represents the gold standard. Howeverjahiaaegmentation suffers from inter-
observer annotation variability, due to interpretatioffietlences of the images [77,81], and they
are time-consuming.

Semi-automatienethods are automatic segmentation approaches that raly initial man-
ual setup, such as setting seed points [67], or drawing a BPIA semi-automatic method,
where each pixel/voxel is classified for being cancerousoorcancerous, has been proposed
by Chen et al. [35]. They used a Fuzzy C-Means (FCM) cluggebimsed method for the seg-
mentation, applied on a breast DCE-MRI series. Wu et al.][pr@posed a Markov Random
Field (MRF) based clustering of the time-series data ofsirB& E-MRI. An alternative to pixel-
wise classification are contour methods, like Active Cont®AC) [79], resulting in a closed
contour of the lesion. In Shi et al. [139] an AC is evolved lihsa FCM clustered DCE-MRI
data. A graph-cut based segmentation algorithm has be@oged by Zheng et al. [181]. Re-
cently, Agner et al. [3] presented a hybrid AC method, whaeelireast DCE-MRI time-series
is characterized by principal Eigenvectors derived froimméipal Component Analysis (PCA),
and the AC evolvement is guided by these eigenvectors.

Automatic segmentatiamethods do not rely on an initial manual setup, in contrasetui-
automatic methods. Automatic segmentation methods maybalseen as CADe systems, since
they automatically localize suspicious regions. Twellma al. [152] developed a pixel-wise
classification model by using a Support Vector Machine (S\éd5sifier in conjunction with
DCE-MRI. Woods et al. [169] used 4-D co-occurrence textteatures obtained from the breast
DCE-MRI to classify the voxels. Yao et al. [174] used co-acence and run-length matrix
textural features, and applied a wavelet-transformatiorthe textural temporal breast DCE-
MRI sequences to extract frequency features. As clasdifgsrised a SVM committee. Vignati
et al. [157] described a method of localizing lesions indiappressed DCE-MRI images. Those
images are known to suffer from a low SNR due to the fat-siggioe.

Multimodal approaches, combining several modalities oaitg reported for CT/PET breast
images, where Han et al. [67] segmented lesions by applyomgeh-based MRF method on a
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Agner et al. [2], 2011 41 (17 /1 24) 0.92 95.00% 82.00% | Morphology + textural kinetics
Chen et al. [36], 2006 121 (44/77) 0.85 - - Contrast enhancement

Texture, lesion size, time to

Gibbs et al. [60], 2003 40 (17 /23) 0.92 96.00% 71.00% | maximum enhancement, and
patient age

Levman et al. [91], 2008 94 (70/ 24) 0.74 62.50% 78.60% | Contrast enhancement

McLaren et al. [100], 2009 71 (28/43) 0.82 - - Morphology + texture

Meinel et al. [101], 2007 80 (37 /43) 0.97 - - Morphology

Nie et al. [111], 2008 71(28/43) 0.86 - - Morphology + texture

Szab6 et al. [145], 2004 103(30/73) | 0.85 Morphology + Contrast
enhancement

Zheng et al. [181], 2009 36 (14/22) 0.97 95.00% 100.00% | Textural kinetics

Table 4.1: Summary of performance of breast DCE-MRI CADx methods.

combined CT/PET image, taking the advantage of both maekglithe high spatial resolution of
CT and the functional information of PET. To the author’s Wfexlge no multimodal approach
using a combination of DWI, MRI and PET has been proposed.

4.3 Breast Lesion Classification

The aim of breast lesion CADx systems is the automatic dleason of a lesion as benign or
malignant using a set of features extracted from the lesiand a classifier that explores the
features to discriminate between these two types.

Several methods exploring the DCE-MRI time-series have Ipeeposed [2, 36,60,91, 100,
101,111,145, 181]. A summary of model-based and modelgfagametric DCE-MRI analysis
methods is given by Eyal and Degani [51]. Features extraitted the lesion are based on
the morphology [101], lesion texture [60, 181], contrashamement [36, 91], a combination
of morphology and contrast enhancement [145], or a combimatf morphology and texture
[2,100,111]. Table 4.1 summarizes the performance of thethods.

Contrast enhancement methods, like Levman et al. [91], @nG al. [36], compute fea-
tures from the DCE-MRI time-signal curves, such as enharoé¢matio and time to peak en-
hancement. Chen et al. [36] used a FCM clustering method ttatgeracteristic time-signal
curves from the lesion. With this method they addressed thblgm that drawing manual
ROIs within the lesion suffers from significant inter- andr@mbserver variability [36]. Sz-
abo et al. [145] combined contrast enhancement featurésmatphological categories such as
margins (smooth, lobulated, irregular, spiculated), anbgeneity (homogeneous, intermediate,
heterogeneous). The categories were determined by rgiitdo Meinel et al. [101] calcu-
lated morphological features from the segmented lesika,rfiean volume, area, radial length,
spiculation, perimeter length, and compactness. Suchhotogical features are also used in
Agner et al. [2], McLaren et al. [100], and Nie et al. [111]ptlyh they combined the morpho-
logical features with textural features. Gibbs and Turhf@f)] used the co-occurrence matrix
and Haralick features [68] for classifying the lesion. Thegre able to improve the result by

35



adding additional morphological (lesion size), and caiteamhancement (time to maximum en-
hancement) features, as well as the patient age. Chen 87hk)ftended Gibbs and Turnbull's
work by replacing the 2-dimensional co-occurrence matitk @& 3-dimensional non-directional
co-occurrence matrix. They were able to show that the ¢ieagon performance of volumetric
texture features is significantly better than the clasdiioebased on 2-dimensional texture anal-
ysis. Zheng et al. [181] and Agner et al. [2] proposed spatipioral texture features, denoted
by Agner et al. asextural kinetics These features aim in capturing the spatiotemporal clsange
in breast lesion texture. Zheng et al. [181]computed therelis Fourier transform of Gabor
filtered texture features of the DCE-MRI series to obtain spatiotemporal changes. Agner
et al. [2] combined spatiotemporal texture features sudBatsor filter, Sobel filter, first-order
statistics, and second-order (Haralick) statistics, withrphological and contrast enhancement
features.

Using DWI for classification shows promising results [24, 956, 171-173]. Marini et al.
[97] report a sensitivity of 80% and a specificity of 81% usimgly DWI for classification.
Yabuuchi et al. [171,172] combined DWI with DCE-MRI morphgical categories and contrast
enhancement features. They report a sensitivity, spegjfiend accuracy of 92%, 86%, and
91% for mass-enhanced lesions [172], and 87%, 86%, and &ectively for non-mass-like
enhanced lesions [171].

To the authors knowledge using combined DCE-MRI, PET, and BMdalities in a CADe
or CADx system is a novel approach.

4.4 Discussion

In this chapter a state-of-the-art summary has been givetihéothree cornerstones of the the-
sis: the multimodal breast image registration, the bressibh segmentation and classification.
References to methods for DCE-MRI registration, PET to MRjistration via CT, and DWI to
MRI registration have been given. Semi-Automatic and aatizrsegmentation methods have
been listed, either aiming on a segmentation on a voxel,lbyatlassifying each voxel of being
lesion or background, or aiming on considering the topologysing active contours or graph
cut methods. In addition, methods for the classificationhef lesion have been presented in
this chapter. The performance of methods analyzing the ME&Etime-series have been listed
and the approaches used for getting discriminative featlike morphology, contrast enhance-
ment, and textural changes, have been described. Finalimiging results of using DWI for
classification has been summarized in this chapter.
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CHAPTER

Methodology

In this chapter the CAD pipeline is presented in detail, frdata acquisition, registration and
segmentation to classification. In the first section an aearef the CAD pipeline is given. The
second section presents the medical imaging methods us#ief€AD system. Furthermore,
the image acquisition and preprocessing steps are eladidatthis section. The third section
covers the multimodal image registration method. In Sechid@ the extraction of the features
needed for the segmentation process is described. Sechienfains the segmentation process.
Section 5.6 involves the extraction of features neededi®ictassification of the lesion. In the
final section the classification method is described.

Notations For the subsequent formulas following notation is used: thhee-dimensional im-
ages are denoted &s,,4q1ity, Wherel .. is the DCE-MRI modality,/ 4,,; is the DWI modality,
andI,. is the PET modality. The image functions are parameterizeithds spatial voxel coor-
dinatesx = (xy 2), withz,y,2 € N*, 2 < X,y <Y, 2 < Z. The constant, Y, Z represent
the size of the image in each dimension.

I'modality (x) returns the intensity value of the modality at the given dowates. The DCE-
MRI modality is indexed by an additional parametee N*, with 1 < i < N and N is the
number of frames in the DCE-MRI sequence.I3Q(x, i) specifies the intensity value at spatial
positionx for the DCE-MRI framei.

5.1 The Computer Aided Detection & Diagnosis (CAD) Pipeline

The CAD pipeline is implemented as a process of six stepau(€i§.1). The first step is the
data acquisition and preprocessing step. The multimodad@s are obtained from a MRI and
a PET/CT scanner, converted to a compact image file formaigated and finally converted to

a unified image coordinate system. As a second step the inaage®-registered and scaled to
a reference image, so that they are all aligned and all of theve the same spatial resolution.
After the registration process the feature extractionggltace. Features needed for the segmen-
tation process are calculated for each voxel within thediréhe segmentation is implemented
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Figure 5.1: A representation of the CAD pipeline.

as a binary classification process, where a RF machine tepafgorithm decides, depending on
the voxel features, if a voxel is classified as cancerousdiss normal tissue. As a result of this
step a segmentation of the lesion is achieved. From the sggthkesion features are extracted,
which are necessary for the classification of the lesion.s&teatures are calculated from re-
gions or clusters of voxels, in contrast to the segmentdéatures, which are voxel-based. The
classification in benign and malign lesions is done by a RFhinadearning algorithm.

5.2 Image Acquisition

In the image acquisition step three dimensional imagescaygireed from a 3 Tesla MRI scanner,
and a combined PET/CT scanner. At the MRI scanner the DCEdviBRthe DWI sequences are
recorded in a single session. All MR images are acquired &@&iTesla MRI scanner (Tim Trio,
Siemens, Erlangen, Germany) using a 4-channel breashodgila. At the PET/CT scanner an
image of the thorax is acquired for each modality, where t&& Bnd CT images are initially
aligned by the scanner software.

5.2.1 Dynamic Contrast Enhanced Magnetic Resonance ImagiMDCE-MRI)

In the DCE-MRI acquisition sequence a combination of higatigp resolution and high tem-
poral resolution MR images are recorded, where the highapatolution images are used to
capture the detailed morphological information of thedasiand the high temporal resolution
images capture the contrast enhancement over time. A sunwh#ine DCE-MRI acquisition
protocol is given in the following part of this section. Thaly detailed acquisition protocol, as
developed by Pinker et al., is described in [119].

The DCE-MRI acquisition protocol consists of 5 parts. Fieshigh spatial resolution T1-
weighted image with water excitation and fat suppressiaedsrded with an acquisition time
of 2 minutes. The dimension of the image is 320x320x120, withxel size of 1 mm isotropic.
This image is hereinafter referred toREE-MRI Pre-Contrast imageand in the mathematical
context as je.-,r. Subsequently, 16 contrast-enhanced T1-weighted imailesacquisition
time of 13 seconds are recorded. The higher temporal résolused in this sequence leads to
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T1 Pre-Contrast T T1 Peak-Contrast T T1 Post-Contrast

High spatial resolution High temporal resolution High spatial resolution High temporal resolution High spatial resolution

| | | | [
2 min 3:32 min 2 min 5:22 min 2 mi
16 measurements 24 measurements min

Figure 5.2: DCE-MRI recording sequence in chronological order. Theetimthis diagram is
the time needed for recording the image or image sequence.

a lower spatial resolution of 1.7 mm isotropic and an imageestision of 192x192x72. After 75
seconds a contrast agent is injected. So the first 5 imagée gequence are recorded without
contrast agent, and are used to determine the baseline MRhinage. Next, a high spatial
resolution T1-weighted image is acquired. At this time tlealpof the contrast enhancement
at the lesion is expected [86]. This high-resolution imageeferred to aPCE-MRI Peak-
Contrast imagerespectivelyl g...p.q;- Thereafter, 24 images with a high-temporal resolution
are acquired, to capture the washout of the contrast agdnally: a high spatial resolution
image is acquired, which is referred toREE-MRI Post-Contrast imageespectivelyl ;... post -
The DCE-MRI acquiring sequence is illustrated in Figure B@plying this protocol results in
a set of three MR images with a high spatial resolution, twthef contrast enhanced, and an
image sequence of 40 MR images, denoted as with a high temporal resolution, capturing
the contrast uptake and washout.

5.2.2 Diffusion Weighted magnetic resonance Imaging (DWI)

The DW images are acquired in the same recording sessioa BXOB-MR images. A combined
b value protocol of 0 and 850 sec/mmz2 is used, resulting it DW images and an ADC
mapping calculated from the two DW images. In Figure 1.4 tkiél Bnd ADC images acquired
from a patient are shown. A novel DWI sequence is used in thaisition process, which is
less distorted and which has a higher SNR than other DWI segsg123]. Details of the DWI
protocol and its parameters are listed in [25].

The resolution of the image 09 x 2.09 mm, with a slice thickness of 5.5 mm, resulting
in an image dimension dfr2 x 86 x 24. The first DW image with a b value of 0 sec/mm2 is
used in the subsequent registration and segmentation Stieissmage has a higher contrast and
there are more morphological structures visible than irsfmnd DW image using the b value
of 850 sec/mmz2, as seen in the Figure 1.4 presented in tlegimtion chapter. In subsequent
parts the DW image with a b value of 0 sec/mm2 is referred as QW}), and the DWI-ADC
mapping is denoted as ADC, respectivély,..

5.2.3 Positron Emission Tomography (PET)/Computed Tomogphy (CT)

PET and CT images of the thorax are acquired in a combined®E3¢anner|[*® F'] fluorodes-
oxyglucose [(®F] FDG) is used as a radiotracer for the PET image. The spatial tésolaf

the PET image igl x 4 mm with a slice thickness of 3 mm. The dimension of the image is
168 x 168 x 74. The CT image has a resolution bB7 x 1.37 mm, a slice thickness of 3 mm
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and an image dimension 612 x 512 x 74. The PET and CT images are aligned automatically
by the scanner software.

5.2.4 Image Preparation

Following pre-processing steps are performed after imagaisition:

Conversion The acquired images are initially stored in a Picture Artigvand Communica-
tion System (PACS), from which they have been exported fahéuw processing using the DI-
COM [23] image format. The DICOM format stores each slicearfreacquired image in a sep-
arate file, resulting in directories containing severaligand DICOM files for each patient. The
DICOM images are therefore converted to a more compact rakidiage file format, the Neu-
roimaging Informatics Technology Initiative (NIfTDh¢t p://nifti . ni mh. ni h. gov/)
image format. In this format one file is representing one mwdtric dataset. Hence, one single
NIfTI file per image modality is gained after conversion.

Mask creation A binary maskM = {x|x € breast is created frony ;..,.., to segment the
region inside the breast from the surrounding air. All sgosat calculations of features and
performance ratings are done for voxels specified insiddtbast only. A single mask for all
modalities is calculated, since all modalities are registen the subsequent step Ig.c_pre-
M is created by using an intensity based region-growing élgar[1l]. The seed points are
defined manually by selection points within the surroundiirg The intensity threshold is also
defined manually, so that the region growing algorithm gsla@ voxels only, and stops at the
soft-tissue border of the breast. The mask is invertedvadtals, resulting in a selection of the
breast region. Small errors in the segmentation, whichroedwue to the partially low contrast
of the skin-tissue, have been manually corrected.

Truncating PET/CT The original CT and PET images show the whole thorax, whetteas
MR images cover the breast region only. For this reason thedPld CT images are truncated
by manually selecting a bounding box in a way, that the field@ed is approximately the same
than the field of view of the MR images.

The NIfTI file format has a coordinate system included, taespnt the position, orientation
and resolution of the underlying image. It is used i.e. fonwesting image coordinates to
patient coordinates and vice versa. The subsequent ad@stmprocess uses this information
too. To get initially roughly aligned CT/PET and MR image®e toordinate system origins of
the CT and PET images are replaced by the one from the MR infdgare 5.3 illustrates the
truncating process and the initial alignment of the CT andiMBRge. The truncated PET image
is subsequently denoted 35, and the CT image a&;.

In Table 5.1 a summary of all acquired images and their denstis given.
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Figure 5.3: Left: PET and CT image of the thorax as acquired from the PE®¢nner. Top
right: Truncated PET and CT image. Bottom right: Overlayhaf MRI (cyan) and the truncated
CT image (red) using the MRI coordinate system origin.

DCE-MRI Tjee(x,1) DCE-MRI time-series (40 images)
DCE-MRI Pre-Contrast | Igeepre(x) | DCE-MRI high-resolution pre-contrast image
DCE-MRI Peak-Contrast 1 gc-pear (x) | DCE-MRI high-resolution peak-contrast image
DCE-MRI Post-Contrast| c.0st(x) | DCE-MRI high-resolution post-contrast image

DWI 1 g (%) DWI (b-value: 0 sec/mm2)

ADC Toge (%) DWI ADC mapping

PET Ipet(x) Truncated PET image

CT I.(x) Truncated CT image

Mask M (x) Binary mask image obtained frof...,.

Table 5.1: Summary of image types obtained in the data acquisition aegbgpcessing step.

5.3 Registration of Image Modalities

The registration of the image modalities is the next stepén@AD pipeline, with the objective
of transforming all images to a reference coordinate sysfEime image modalities are aligned
using a 3D voxel intensity-based approach.

The registration is done in two steps. First an affine regfistn is performed, to do a global
alignment of the breast images, followed by a non-rigid sfamrmation. The latter transfor-
mation is necessary to compensate the patient movementraathing during a DCE-MRI
recording sequence, the distortions, which are inhereBMH, as well as the different image
acquiring conditions and patient positions in the MRl andTRH scanner. For instance, all
MRI modalities are recorded by placing a coil between the imaasts, causing a slight defor-
mation, which is not present at the PET/CT acquisition, ahtthvneeds to be compensated in
the registration process.;..., is used as the reference image, to which all other images are
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Figure 5.4: Results of the registration process for one patient. Top Reference Pre-Contrast
MRI and registered Post-Contrast MRI; middle row: regestilbWI and ADC map; bottom row:

registered CT and PET images. The PET image is overlayedeoM Rl image to visualize the

combined morphologic and functional information of these modalities.

registered to. Allimages are upscaled to Ihg. . resolution after registration using a trilinear
interpolation. After the registration step all image mdtitd share a common coordinate sys-
tem, they are aligned, and they have the same orientatiomestution. After registration the
spatial coordinate vectot refers to the same spatial location in all image modalifiégure 5.4
shows the result of the registration process for one patient

Registration Framework The ANTS framework by Avants et al. [14] has been chosen for
registering the multimodal images. It implements seveeaigformation models, like SyN, Dif-
feomorphic Demons, elastic and rigid/affine registratiaswell as several kinds of similarity
metrics, like MI, CC, and MSQ. ANTS is open source, it is waltdmented and it works in
Linux, Windows and Mac OsX environments. These facts as agelhe top rankings of SyN in
the Klein et al. [82] study and the EMPIRE10 challenge [1@%hie main motivation for using
this framework.

Affine Registration At this registration step an affine transformation maffig? is succes-
sively modified in an optimization process. The registrai®performed on a multi-resolution
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scale based on a 3 level Gaussian pyramid, as Avants et hsUdigests for images with 1 mm
resolution. The initial registration begins with a quardérthe original resolution, the second
turn uses half of the resolution and the final turn is perfatwith the full resolution. Ml with
32 bins is used as the similarity metric.

Nonrigid Registration During the non-rigid registration step a deformation riizfy" is cre-
ated and successively optimized, covering the non-rigfdrdgation of the breast. As similarity
metric CC is used for registerink,; and/,,; t0 I jcc-pre. Thely.. series is registered using the
MI metric. As transformation model GrSyN is used. Other mstand transformation models
have been evaluated, whereas these combinations of meitricsransformation models have
the best performance. Details of the evaluation procesfansl in Section 6.1 of the “Experi-
ments” chapter.

The non-rigid optimization process is also performed usidevel Gaussian pyramid. The
maximum number of iterations is limited to 500, 300 and 15feBpect to the resolution level.

The registration of DWI to MRI can be formally written as:
[Zklwi (X) = Lqwi (wai,mm’ (X)) (51)

whereT 4, mr IS the transformation obtained in the registration prowelssn registering j,,;

t0 Ijce-pre- This transformation is a composition of the nonrigid and #ifine transforma-
tion: TSN (149 (x)). The registration transformations of the other modalifigs I,
I*

dee-pea @NA IG5, ., are defined analogous. Sinég;. and /4, share the same coordinate

system, T 4.,; mri IS Used for the transformation &f,. to the reference image.

PET to MRI registration I, is not directly registered td,...,.. The low resolution, to-
gether with the absence of morphological information inRIES modality, severely complicates
an accurate non-rigid registration. Therefore the PET &riagegistered in an indirect way to
the MR image by registering the CT image to the MR image in & $texp, and applying the
registration transformatiof'.; ,,,» on the PET image in a second step:

I;et = Tpet (Tct,mm’ (x)) (5.2)

The higher resolution of the CT image, and the presence gblnadogical structures within the
CT image results in an accurate registratiod 9fto /4., and as a consequence the accurate
registration ofl,,¢; t0 Igcc_pre. This method is inspired by Somer et al. [140], where sefitte
PET/CT and MR images have been registered in a similar way.

After registration the imageg; ;, I} ., Lpets Iy T, Ijlce_pwk, Izce—post’ and/ jcepre Share
a common reference coordinate system. Subsequently thialspeordinatesx refers to this
coordinate system. To facilitate the reading, this skipped in the subsequent sections and

chapters.
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5.4 Data Preparation and Segmentation Feature Extraction

After image registration the data is pre-processed andrestare extracted for the subsequent
segmentation step. The preprocessing step consists ofitteeation of the lesion and the nor-
malization of the MRI data.

Annotation The annotation of the lesion is used as a reference for tigaiahd as gold-
standard for validation of the segmentation process. Thetation is a labelind.(x) € {0, 1}
operating in the reference frame, where the non-lesioronsgare labeled a& and the lesion
voxels are labeled als An experienced radiologist manually annotated the lesitiver on the
registered gee-pear OF Lice-post, depending on where the lesion is better visible. ITK-SrA#8]

is used as the annotation tool. The lesions are annotatedaiiyahy paintbrushing and by using
active snake segmentation [79], which is driven by imagenisity. Care has been taken, that the
whole lesion is covered by the annotation. Although, esfigcat the border of the lesion partial
volume effects are taking place, rendering the decisionvafxal imprecise for being cancerous
or non-cancerous. Hence, inaccuracies in the annotatitne dsion border are possible.

Data normalization The variable scale of the signal intensities is inherent iR Mhages
and varies from patient to patient. Therefore the data isnatized to get a uniform scale
for all patients MR images. As normalization the standarmresds used:I’'(x) = @

it and 6 are estimated for each patient from the masked Pre-CoritRstimage intensities
Tice-pre N M. These precontrast parameters are also used for norngalizin/ jcc-peqr, and
Tce-post- The contrast uptake, which differs for each patient, wddde an influence on the
statistic parametergands and the normalization, if they would have been calculatpasgely
for each frame of the DCE-MRI series. Therefore the statiparameters of;...,. are used
for normalization of the contrast enhanced images, assuthat all images of the DCE-MRI
sequence share the same scald g@s,,.. Since for segmentation and classification only the
normalized values are used, in the subsequent sedi@nSice-pre, Lice-peak» ANAL gee-post refers
to the normalized images.

5.4.1 Segmentation Feature Extraction

Subsequently the features needed for the segmentatiorgsrace extracted from the prepro-
cessed data on a voxel base. The features can be categatizéollbwing groups:

* Signal intensity based features,
* texture based features, and
« DCE-MRI kinetic curve features.

In the first category features are subsumed, which are bastbe gignal intensities of the image
modalities; the features from the second category are asedalyze textural properties of the
lesion; and the features from the third category are desgriproperties of the kinetic curve of
the DCE-MRI sequence.
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A list of all features extracted for segmenting the lesiangiven in Table 5.4 at the end of
this section. A detailed performance evaluation of the segation feature is given in Section
6.2 of the “Experiments” chapter. Subsequently, the ete¢thfeatures at a given spatial position
x are represented by a feature vedigy,. (x), wheretype specifies the category, respectively
modality of the extracted feature.

Signal intensity based features The signal intensities fromMy,i, Ladc, Ipets Ldce-pres Ldce-peak
and ..ot are extracted from each voxel within the magk Formally, fg,i(x) = 14w (x),
analogous for the other modalities. Also the signal int&ssiof 1,.. are extracted, result-
ing in 40 values per voxel, representing the signal intgnsitange over time:f;..(x) =
(Lgee(x,1), ..., I4c¢(x,N)). In Figure 5.5 the DCE-MRI signal intensity values for oneafo
within the lesion, one voxel from a fat tissue, and one voxeirf a lobules region is plotted
over time. An intensity change at the cancerous tissue casbberved beginning with frame
7. At this time point the contrast agent causes a change isigihal intensity. Intensity values
after this time point are discriminative features to distinetween cancerous and non-cancerous
voxels, whereas the intensity values of the pre-contras-points are not able to discriminate
between cancerous and lobules tissue.

al Intensity (Normalized)
N © N
y (Normalized)
N © N

{
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{
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Figure 5.5: Left: Signal intensity of a voxel from a DCE-MRI time serieRight: Derivation
of the signal intensity values. Red: voxel from a cancer@sié region, blue: voxel from a
lobules region, green: voxel from a fatty tissue region.

The rapid contrast uptake in cancerous tissue after injecti the contrast agent is modeled
by using an approximate derivative over timelgf., denoted ag\i,... The derivative at spatial
positionx is calculated by using the forward difference method:

Idce(xai + 1) - Idce(xai)

Alee (%) = tir1—
1 1

Vl<i<N-1 (5.3)

wheret; is the acquisition time point in seconds of framé& he normalization term, ., — ¢; is

not necessary, if the acquiring time points are equally epachis is not the case for the DCE-
MRI protocol used in this CAD pipeline, where a 2 minute gaistabetween frame 16 and 17.
At this time-point/ ;... peqr iS acquired. Therefore the normalization term has beendatidthe

calculation. The derivative intensity values are plottedrigure 5.5. A peak in the derivative
intensity values for cancerous tissue can be observed dintieewhere the contrast agent is
injected and the signal intensity changes rapidly. Thikpeaiot present for non-cancerous
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tissues, which are not affected by the contrast enhancerfptfeature vectof 4 4. contains
the intensities ofAl,..

The difference in signal intensity dfjce-pear 10 Lgce-pre @NA Lgeepost 10 Lce-pre @re used
as additional features. Formally writterfapcak-pre(X) = ITdce-peak(X) — Ldce-pre(x), and

prost—pre (X) = Idce—post (X) - Idce—pre (X) .

Texture based features A 3-dimensional Gray-Level Co-occurrence Matrix (GLCM)dan

second-order statistics based on this matrix as suggegteldfalick [68] are used to describe

textural properties of the DCE-MRI. Using co-occurrencetueal features is inspired by the

work of Woods et al. [169], where spatiotemporal texturduess are used for segmentation of
the lesion, as well as the work of Chen et al. [37], where niogetional 3D GLCMs are used to

classify the lesions.

The GLCM is a way to describe the distribution of intensitithin a region, as well as
spatial variations of intensities in a given direction. dtdefined as following: Consider an
image withL possible grey-levels. Lat be a displacement vector describing the difference in
the spatial locations of two voxels. The entiy;) of a co-occurrence matrié&q is the number
of times that intensities afandj occurs in voxel-pairs having a spatial distancelofThe size
of Gyq isL x L.

To get the empirical probability of occurrence of voxelygawith an intensity of andj, the
co-occurrence matrix is normalized by the total number cklpairs:

Gd(%])
> ki—1 Ga(k, 1)

The displacement vectal can be interpreted as a directional vector defining the iffse
tween two voxel. For example in the two dimensional case @latiement vector of1, 0) pairs
the pixel with the one immediately to the right, wheré@s—2) is the pixel-pair of the pixel two
pixels above of the current pixel. For a certain distadcthere are 8 neighboring voxel-pairs
in 4 independent directions. In the 3-dimensional casesthes 26 neighboring voxel-pairs in
13 independent directions. The displacement vectors itbasgrthe independent directions are
summarized in Table 5.2.

From the GLCM thirteen second-order statistics as propbgddaralick [68] are computed
(f; tofy3). These statistics are commonly referred tblasalick Features They describe proper-
ties of the texture like contrast, entropy or homogeneitgetailed description of all 13 Haralick
texture features is given in the Appendix (Table A.1).

For every voxel inside the breasta 5 x 5 window is used for calculating the GLCM matrix.
On the one hand this small window size has been chosen to soat texture regions, like
small lesions. On the other hand, if the window size is toolkriee statistical expressiveness
would have been reduced. Border voxels are skipped in ttoaillagibn, assuming that there
is no lesion localized in the voxel border. The intensityuesl are binned to 32 gray-levels,
as proposed by Chen et al. [37]. The distance d is set to 1 \anala GLCM is calculated
for all 13 independent directions. A non-directional medtO® is computed from these 13
matrices and it is normalized afterwards. The thirteen litdréeatures are calculated from this
non-directional GLCM.
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d d
(d,0) (d,0,0)
(0,d) (0,d,0)
(d,d) (0,0,d)
(d,—d) (d,d,0)

(_d7 70)
(0,d,d)
(07 7_d)
(d,0,d)
(d,0,—d)
(d,d, d)
(_d7 7d)
(d,d,—d)
(—d,d,—d)

Table 5.2: Displacement vectord covering all unique directions for 2-dimensional and 3-
dimensional imagesl is the offset between the voxels

The Haralick features are calculated fQf., as well as fol yec-pre, Ldce-peak» ANAL gee-post -
To reduce the computational effort and the memory consumpévery second DCE-MRI frame
is skipped in the calculation, resulting in Haralick featfor 20 frames:

Jrea-dee(x) = (f1,1(x), f1,2(x), ..., f1,13(x), f2,1 (%), ..., Fv,13(x)) (5.5)

where in this cas§ ; denotes the Haralick featugeof frames, obtained from/,... Analogous,
the texture feature of the high-resolution MR images is:

ftez-mri (X) :(fpre,l (X)a fpre,2 (X)a ooy fpre,l?; (X)a

f

(5.6)
peak,1 (X), ceny fpeak,l?) (X)a fpost,l (X), ooy fpost,13 (X))

fore,; denotes thgth Haralick feature obtained fromy ...

The change in the texture over time due to the contrast eehzant in the DCE-MRI time
series is modeled by using the derivative of the Haralickuies. The derivative is approximated
by forward differencing, analogous 1 4..:

Afyj = 2 (5.7)
tiv1 —t
fAtez—dce = (Ale, cey AfN*l,l?)) (58)

DCE-MRI Kinetic Curve Features This kind of features describes kinetic properties of the
DCE-MRI time-signal intensity curve. Following propediare calculated for each voxel:

« Area under Curve (AuC),
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» Maximum of intensity Enhancement (MaxEnh),
* Maximum of Slope (MaxSlope) and
» Time to Half Maximum (THM).

These features are calculated from the relative change afténsity to the baseline intensity in
I,.., the enhancement rate. The baseliijdor a voxel is determined from the four normalized
precontrast DCE-MR images, by calculating the mean intyo$ithese four intensities:

4
SO(X) = i Z Idce (X, Z) (59)
=1

The enhancement rafg, is then calculated by following formula:
Rt(xai) = (Idce(xai) - SO(X))/SO(X)v 1<i<N (510)

From R, the kinetic curve features are determined. The AuC is caledl by using a
trapezoidal integration approximation. MaxEnh is deteedi by finding the maximum in-
tensity in R;. MaxSlope describes the steepest slope along the timesittecurve and is
defined as the maximum of the forward differencetyf And THM is defined as the time-
point, where the intensity value exceeds the half of the MéixEThe formal definition of
the features is given in Table 5.3. Figure 5.6 illustratesdktracted features from a voxel of
DCE-MRI time-intensity curve. These features are subsedin the feature vectofy;,(x) =
(AuC', MaxEnh, MaxSlope, THM).

Signal Intensity (Normalized)

300 400
Time (sec)

o
THM

Figure 5.6: lllustration of the four features extracted from a voxellef DCE-MRI time series.
Red: Maximum Enhancement; Green: Maximum Slope; Mageniae To Half Maximum;
Blue: Area under Curve
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N-1 : :
Ri(x,1) + Re(x,2+ 1
AuC Areaunder Curve|  Ay(/(x) = Z,_l (hir — 1) £(%, ) ! i )
Maximum
= N); 1<i<
MaxEnh Enhancement MazEnh(x) = max(R(x,7)); 1 <i< N

MaxSlope| Maximum Slope MazSlope (x) = max (Rt(xai +1) - Rt(X,i)>

tit1 — 1

Time to Half . : ,
THM Maximum THM (x) = min(¢;); subject toR;(x,i) > MaxEnh/2

Table 5.3: Formal definition of the DCE-MRI kinetic curve featurgs,,. R:(x, ) is the relative
intensity change to the baseline intensity at spatial posi for frame number. ¢; is the
acquisition time-point of imagé relative to the time-point of acquisition of the first image i
seconds.

5.5 Segmentation of the Lesion

In the segmentation step each voxel within the breast isifled as either cancerous or non-
cancerous by a Random Forests (RF), resulting in a segriwentabelingl(x) € {0, 1}, where

1 denotes a lesion voxel aritlbackground. The classification is based on a feature vector
f(x), which is a subset of the previously extracted features.irfsdance, a feature vectg(x)
containing the modalitie$,.; andI,; has the formatyf (x) = (fpet, fawi). The feature vector

is used for training and prediction of new cases. Severalifessubsets have been evaluated,
where the intensity based featurgs, and fg,; in combination withf,.. or Afs. showed

the best performance. A detailed evaluation of combinatibfeature subsets is given in the
“Experiments” chapter (Section 6.2). Figure 5.7 illustsathe process of the segmentation.

RF Training In order to get a prediction model for a given feature sulibetRF needs to be
trained on this subset. For this reason a training featur¢;sg, is evolved using the manual
annotated lesion&(x) as target features antf(x) as training input data, whergis in this
case the patient index. To get a reasonable size of trairdtayrdndom undersamplinfZ0] is
performed by sampling randomly 1000 voxels per patidram the annotated lesion, as well as
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Jdwi DWI intensity value 1
Sade Apparent diffusion coefficient value 1
frpet PET intensity value 1
ijce‘pm’ Fdee-peat Intensity values of the high-resolution MR images 3
ce-post
Change in intensity between MRI Peak-Contrast and MRl
J apeak-pre Pre-Contrast 1
Change in intensity between MRI Pre-Contrast and MRI
J apost-pre Post-Contrast 1
f DCE-MRI intensity values for each frame of the DCE- 40
dee MRI series.
Difference of DCE-MRI intensity values between two
FAdee subsequent frames 39
13 Haralick features calculated for every second fram .
Frea-dee the DCE-MRI series 13720
Difference of the 13 Haralick features between two s "
Fatea-dee sequent frames 1319
f ' 13 Haralick features calculated from the high-resolut 13%3
tew-mi MR images
Kinetic Curve features: Area under Curve, Maximum En-
Jkin hancement of Intensity, Maximum of Slope, and Timg to 4
Half Maximum
Sum: 637

Table 5.4: List of all features extracted from a voxel for the segmeoitatlassification. Features
are grouped by ’'Signal Intensity Features’, 'Texture BaBedtures’ and 'DCE-MRI Kinetic
Curve Features’.

5000 voxels from non-lesion tissues. The higher amount oflasion tissue samples has been
chosen to cover the higher variability of tissues in thesaar Details of the sampling process
are given in the Experiments chapter - Section 6.2. Theitgifeature sef,.., is then used to
train a prediction model to determine between lesion tissukbackground.

RF Classification To get the segmentation labelifi¢x) for a new patient with index. each
voxel x of the breast is classified by the trained RF using the sanigréesaas in the training step
(e.9. f*(x) = (fpet(%), f1,5(x)). The classification is based on the RF votes, where each tree
of the forest votes, based git, if the voxel is representing a cancerous tissue. The summed
up votes of the trees are a kind of prediction of how likelysitfiat the voxel is a cancerous
tissue. The RF is applied on each voxel, and the result isgiara prediction map. A threshold

is applied on the map afterwards, defining how many votes ezessary to classify a voxel as
cancerous. The default threshold of the RF algorithm is thgrity vote, where more than half
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Feature Extraction Random Forest Label
Joe(X) Djég%%zm 0 if background
) —_ —_ _ g
Jx) = (f”“’(x) E@D Dﬁ% It 1 if lesion

Figure 5.7: lllustration of the segmentation via RF classification fgfizen voxel at positionx.
Atfirst features are extracted from the image modalities fgg, f4.:)- Then they are combined
in a feature vectof (x), which may contain all features or only a subset of the etethfeatures.
A trained RF predicts the labé{x) of the voxel depending oif(x), wether it is a lesion or
background.

of the trees need to vote for a class to assign it to a voxelhisn@AD pipeline an optimized
threshold level is used, giving the highest Dice Simila@ugefficient in a Leave-One-Out Cross-
Validation (LOOCYV) process. More details to the thresheleel are given in the Section 6.2 of
the “Experiments” chapter. The final outcome of the segntiemtastep is a binary mag’, in
which every voxel within the breast is labeled as either eames or non-cancerous. Figure 5.8
illustrates the prediction map of a RF classification, aredttineshold of the map.

Figure 5.8: Left: Prediction map of a RF Classification. The color codihgstrates how many
trees of the Random Forest voted for being cancerous. Blamsrdmost no tree voted and red
means almost all trees voted for being cancerous tissueht:RIgRI overlayed with a binary
map showing the segmented lesion (red). The binary imagangd by applying a threshold on
the prediction map.

5.6 Lesion Classification Feature Extraction

The next step in the CAD pipeline is the classification of #&dn into being either benign or
malign. Additional features are extracted from the imageerier to get a prediction of the
lesion class. Since the non-lesion area is not of interetftd@rclassification step, only voxels
within the lesion are considered. The segmentation t@pobtained in the previous CAD step
is used as mask for the feature extraction. Formally, thefsgiatial coordinates within a lesion
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is defined asX; = {x|l(x) = 1}. The spatial voxel coordinates within the lesion are dethate
x; € X;. In the feature extraction step only spatial locatiapsire considered.

In contradistinction to the voxel based featuyés) for the segmentation step, where fea-
tures are extracted for each voxel, the lesion classificdéaturesf; are extracted for the whole
lesion. An obvious and simple extraction method would beayiag the data values within
the lesion. Though, a high variability in the DCE-MRI corfr&nhancement over the lesion is
observed [36]. For instance necrotic areas have a much looverast enhancement than other
regions. Such areas of low contrast-enhancement have eat eff the overall average value.
Therefore, in the clinical practice a radiologist draws abmROI over the region that appears
to be the most enhancing region. The intensity values of ¢hected ROI are averaged and a
kinetic curve is extracted from the averaged values [87¢ dltained kinetic curve can then be
used for classification of the lesion [87]. The manual RCasbn suffers from a high intra- and
interobserver variability in selecting a ROI within a lesifi10]. To overcome the variability
Chen et al. [36] developed an method, which automaticalctgea ROI and extract the kinetic
curve by applying a FCM clustering on the DCE-MRI time-sgri€he cluster with the highest
contrast enhancement was selected for classification. déegted this cluster as the Charac-
teristic Kinetic Curve (CKC) of the lesion. The clusteringncbe seen as a kind of dividing
the lesion into several regions, from regions with a highta®@t enhancement to regions with a
low contrast enhancement. By picking the cluster with thyhliontrast enhancement, the ROI
selection in the manual approach is imitated up to a certagmes, with the adavantage of the
reproducibility of the automatic method.

The idea of Chen et al. of clustering DCE-MRI time-seriesdsamced in this thesis for
DWI-ADC and PET data, which is a novel approach. The values within a lesion also have a
high variability, partially due to the low resolution, paitvolume effects and noise. In a manual
approach a radiologist draws a ROl in a region with a low AD@i&424]. In this thesid 4. is
clustered and the cluster center with the lowest ADC valwhdsen, imitating the manual ROI
selection. In Section 6.3.1 of the “Experiments” chaptas ilemonstrated that the clustering
method produces discriminative features and that it isgbhgainst outliers.

Formally, the intensity values fromy..(x;, ), I4q.(x;), and I, (x;) within a lesion are
clustered using FCM. The obtained cluster centers, jtqq4., and,.; are used as features for
classification, resulting in one feature vecfpper lesion.

In the following sections the FCM clustering is describedié@tail, as well as the clustering
method of Chen et al. obtaining the CKC from thg, time-series, and the clustering of the,.
and/,.; data using the FCM clustering method. At the end of this erddi list of all features
extracted for classification is given (Table 5.6).

5.6.1 K-Means and Fuzzy C-means Clustering of Features with Lesions

Data clustering is an unsupervised method of subdividingnapte data sef into ¢ nonempty
subsets (clusters) [22]. If each sample is assighed to awfepcluster, the clustering is termed
ashard clustering. In duzzyclustering the strict assignment of a sample to one clusteset is
softened by using a degree of membership of a sample datatp@ach cluster.

The assignment to a cluster is guided by a similarity coteriso that sample data values
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within a cluster are more “similar” than data values of twstidict clusters. In @entroidbased
clustering the squared distance of a sample to its clustgeGewhich is the centroid (mean)
of all samples within the cluster, is minimized over all sé@sp When defining a fixed cluster
sizec, the centroid based clustering can be formulated as an izgtion problem: find the:
cluster centers by assigning to each sample point a clustiéras the distances are minimized.
Formally written: Given a set of sampled data or observatbr= (I(x1),1(x2), ..., I(x))
with z; € X, then samples are partitioned intosetsS = {51, So, ..., Sc} so that the sum of
squares within the cluster is minimized:

argmin Y [ 1(x;) — pill? (5.11)

=1 I(x;)eS;

1 1S the mean of all observations of the setand represents the cluster center or centroid of the
clusteri. The problem is NP-hard in regards of complexity [4]. Onel\webwn approximation
algorithm, finding a local minimum of the solution, is the Keems algorithm by Lloyd [93].

It uses the fact that the optimal solution of the Eqgn. (5.Hdr}ifions the data into a centroidal
Voronoidiagram [47], where the cluster centérs , uo, ..., 1) are the generating points of the
diagram. The algorithm works as follows:

1. Start with an initial set of cluster centergl, ..., il, either by placing the cluster centers
randomly, or by using heuristics.

2. Partition the data according to the Voronoi diagram frbmdluster centers by assigning
each observation to the cluster with the closest clustetecerf two or more cluster
centers are having the same distance, select one of themakar

St ={I(xp) : 11(xp) — fif]] < |I(xp) — p5|I; VI<j<ec,1<p<n}  (5.12)

3. Update the cluster center positions by calculating thamier each cluster from the ob-
servations within the cluster:

R 1
u§“=@ > Ix) (5.13)
g I(Xj)ES,f

4. Repeat steps 2-3 until the algorithm converges. Conuesgis reached when there is no
change in assignment of the observations to a cluster, beifrtovement distance of the
cluster centers is belowsavalue.

The result of the K-Means clustering algorithm is the piantitof the sample data inclusters,
and the corresponding cluster centgys

To explain the FCM algorithm, ax n partitioning matrixU = [u,;] is introduced.;; rep-
resents the assignment of the observatibfxs) to the cluster from se$;. For a hard clustering
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U is based on following constraints:

1; I(x;)€S;
(I(x) =g =4 J 5.14a
uill(x;)) = iy {0; otherwise ( )
> uy >0,V (5.14b)
j=1
> uy=1,Yj (5.14c)
i=1

Eqn. (5.14a) specifies, thaf; is 1, whenI(x;) is assigned to the clusterEqn. (5.14b) restricts
the clusters of having at least one observation assigneereah in Eqn. (5.14c) it is defined,
that each observation is assigned to exact one cluster.

In a fuzzy clustering, based on an idea of Zadeh [179], thet sissignment of an observation
to exactly one cluster is relaxed, by replacing the disdoetary assignment;; € {0,1} in Eqn.
(5.14a) with a “fuzzy” continuous function;; € [0, 1]. The reformulated constraint fat; is:

0 < uy < 1; Eq. (5.14b) Eq. (5.14c) (5.15)

In a fuzzy clustering:;; describes the degree of membership of the observafiey) to cluster
7 in a range from0 to 1. The hard clustering can be seen as an extreme case of the fuzz
clustering [48].

Based on the fuzzy clustering, Bezdek developed a FCM clogtalgorithm [21,22], which
works as follows: To introduce the degree of membershijp the k-Means objective function
(Eqgn. (5.11)) is reformulated as:

C n
BU VYY) =33 g 1(x5) = il (5.16)
i=1 j=1

whereU is the partition matrix containing the degree of membershimblesu;;. V' is thecxn
matrix containing the cluster center vecters andb > 1 is a weighting exponent, describing
the amount of “unsharpness” (blur, defocus) of the memlijgsqR2]. When setting to 0 (no
unsharpness), the formulation is equal to the K-meanseziagt formulation (Eqn. (5.11)),
is in general minimized, when the cluster centersire close to those observation poif{s;)
with a high degree of membership to cluster

Necessary conditions, where the objective function (54.6)inimized under the constraints
(5.15), can be derived using Lagrange multipliers [22]:

B 1
c ||f<x,7->—m|\2)2/"-1
2 k=1 <|II(X,7')—MH2
' D iy wig®

The FCM clustering algorithm iteratively obtains the géoti matrixU' and the cluster cen-
ter matrixV using Eq. (5.17) and Eq. (5.18) as follows:

(5.17)

uij

(5.18)
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1. Initialize the cluster center matriX randomly or by using heuristics.

2. Update the cluster center matfixusing Eq. (5.17)

3. Update the partition matri& using Eq. (5.18)

4. Repeat steps 2-3 until a convergence criterigireachedi| U+ — U?|| <

The result of the FCM clustering algorithm is a matfix containing the cluster centers
(p1, ---, ), @s well as the partitioning matriX containing the degrees of membership of each
observation to each class.

5.6.2 Characteristic Kinetic Curve within Lesions

Within a lesion inhomogeneities in the contrast enhancercam be observed [36], resulting in
a variability of time-signal curves within a lesion. Figlg® illustrates the time-intensity curves
of five randomly picked voxels, illustrating the varialyliof the time-signal curves. Chen et
al. [36] proposed a method of categorizing these DCE-MREtsignal curves into a number
of prototypic curves by using a FCM clustering method anaagishe curve with the highest
contrast enhancement rate, the CKC, for classification.y Thexe able to show that using the
CKC for classification gives better results than using csiatained by averaging the intensities
over the whole lesion.

This method is also used in the proposed CAD pipeline, an¢tsvas follows: Letl ;.. (x;)
be a vector containing the intensity values of the DCE-MREtiseries at given positiag. Let
furthermorel,; be the set of data samples within the lesion:

Il - {Idce(xl)vldce(x2)7---vIdce(Xn)} (519)

wheren is the number of voxels within a lesion. These samflleare clustered by a FCM
algorithm. As cluster size Chen et al. [36] empirically determined= max(2, [n/80]). They
usedb = 2 and the convergence criteria parameter 10~°. These parameters are adopted
in the CAD pipeline, with an additional termination conditi of 500 iterations as maximum
number of iterations. The cluster centéfof the FCM are forming the prototypic curves of the
lesion (51, 5, ...,S.). The enhancement rafe, for each prototypic curve is calculated in the
similar way as in Equation (5.10). From these normalizedesithe curveé: with the maximum
enhancement is chosen as the CKC:
k= argjr_nlaXch(i) - Sinl1<i<N (5.20)

S;(i) is the signal intensity at time-pointfor prototypic curveS; andsS is the baseline inten-
sity of the prototypic curves;. The baseline is obtained by calculating the mean intensitye
over the first four time-points of the prototypic curve.

In Figure 5.9 the prototypic curves obtained from a lesiam @ptted, and a comparison
between the CKC and the curve received by averaging thesitiesnover the lesion is given.

The intensity values of the CKC are used as features for #issitication. Formally:

fl—ckc = (Sk(l)v ey Sk(N)) (521)
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Figure 5.9: Left: Time-Intensity curves of five randomly picked voxelghin the lesion. Mid-
dle: 11 prototypic curves obtained by FCM clustering. RighKC compared with the curve
obtained by averaging the signal intensities (dotted Qurve

In addition the values from the derivative of the CKC are ghted by the forward difference
method (Eqgn. (5.3) ) and are also used as classificationrésatu

Sk(2) = Sk(1)  Sp(N) — Sk(N —1)
to — t1 T tny —tn—1

JrAcke = ( ) (5.22)

5.6.2.1 Modeling of the Characteristic Kinetic Curve

To get the kinetic curve parameters (MaxEnh, TTP,...) theCG& modeled by a regression
curve, and properties from this curve are used as featureddssification. Instead of fitting
a third order polynomial, as proposed by Agner et al. [2], synametric generalized logistic
function [128] is used, multiplied with an exponential tetonmodel the terminal slope. This
regression curve has been developed by Grabner G. froM@€Eenter of Excellence, Medical
University of Vienna, Austriand is published the first time in this thesis.
As a regression function an asymmetric generalized lagistiction [128] multiplied with

an exponential term to model the terminal slope is proposed:

rt)=Gx |1 1 o | e (5 « tk) (5.23)

(1 + (2% — 1) * exp (% * (¢ — t1/2)>>

G,a,7 andt; ;, are the parameters of the asymmetric logistic funct@mepresents the scaling
of the underlying sigmoid curvey is the asymmetry parameter,is a constant that governs
the steepness of the sigmoid curvg, is the time where half of+ is reached.exp (ﬁ * t’“)
is the exponential term with the parametgrand k, wherek defines the terminal slope of the
curve, ands is a scaling factor of the exponential term. Figure 5.10 destrates the influence
of the parameters on the shape of the regression curve. Alehparameters are estimated by
using a non-linear least squares regression method [14&hvis provided by the Curve Fitting
Toolbox of Mathwork’s Matlab software.

The parameters, 7, 3, andk are used as features for the classificatibandt, ;, are not
used for further analysis, as the exponential function masftuence onz, andt, ;, can vary
due to time displacements, e.g. by a contrast media injeciitay.
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Figure 5.10: lllustration of the logistic model parameters, and the nhditted to a CKC. Top
left: o defines the asymmetry of the logistic model; top right: witthe steepness of the curve
is defined. For both illustration& has been set to, ¢, to 100, andk to 0. It can be seen
that at timet;2 = 100 the model function has a value 6f5, which is the half ofG, and the
maximum of the function value is defined by the paraméteBottom left: The influence o
on the terminal slope is illustrated. Bottom right: The esgion curve fitted to a given CKC.

From the fitted curve additional features are extractedgrit@sg properties of the DCE-
MRI time-intensity curve. The kinetic curve features aresely related to the curve features
calculated for the segmentation (Section 5.4.1), but atttirie the features are calculated from
the regression curve, and not from the DCE-MRI intensityigal Following features are calcu-
lated: AuC, MaxEnh, THM, Time To Peak (TTP), as well as Maximof DERivative (MDER),
which is a replacement of the MaxSlope segmentation feakoeMaxSlope the maximum of
the approximated derivative is used, whereas for the MDERntlaximum of the analytical
derivativeg—;“ of the regression function(¢) is used, which is more precise than the approxima-
tion. All features are calculated for an 8 minute intervaginning at the time-poirty, at which
the contrast enhancement starts. The starting peiist determined by locating the time-point
at which the intensity exceed@s5% of the maximum enhancement rate. To be tolerant towards
delays in the contrast media injection, the interval has bieaited toty + 8 minutes; for this
interval DCE-MRI data points are still available, even wlilea contrast media injection is de-
layed by two frames or 26 seconds. The formal definitions efrégression curve features are
given in Table 5.5.

The feature vectof;_cyre = (o, B, 7, k, AuC, MaxEnh, THM , TTP, MDER) represents
the kinetic curve features used for classification.
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to+8 min
AuC Area under Curve AuC = r(t)dt
to
Maximum .
= o<t <

MaxEnh Enhancement MazEnh = max(r(t)); to <t <to+8min

Maximum or
MDER Derivation MDER = max <§)
THM Time to Half THM = min(t) — to; subject tor(t) > MazEnh/2

Maximum
TTP Time To Peak TTP = arg mfmxr(t) —tg; tg <t <ty + 8 min

Table 5.5: Formal definition of the DCE-MRI kinetic curve features fdagsification.r(t) is
the logistic regression function with the time parameter

5.6.3 Clustering of DWI/ PET data

In this thesis a FCM clustering is proposed to categofize and I,.;, with the aim of getting
characteristic intensity values for a lesion, which arerilisinative and robust against outliers.
I.4.(x;) values are collected in a set of data samples within therlesio

L= {Iadc(xl), Iadc(x2)a ) Iadc(xn)} (524)

wherex; is the spatial coordinate within a lesion ands the number of voxels.I is then
clustered using a cluster size= 4. The cluster centep,q. with the lowest ADC value is
chosen as the characteristic intensity value. Formallytevri

froade = min(ply.), 1 <i<ec (5.25)

Choosing the minimum value as the characteristic valudi®tdsion is justified by the fact that
malign lesions have in common a lower ADC value than benigiotes. In Section 6.3.1 of
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Sioade Clustered DWI-ADC value 1
fr-pet Clustered PET value 1
Siocke Data values of the DCE-MRI CKC 40
Difference of values of the DCE-MRI CKC for two sub-
Ji-Acke sequent frames 39
f Parameter of the kinetic curve regression function;s, 9
Feurve | 1k, AuC, MaxEnh, MDER, THM, TTP
Sum: a0

Table 5.6: List of all features extracted for the classification. Feagiare grouped by 'Clustered

Signal Intensity Features’, and 'DCE-MRI Kinetic Curve keas'.

the “Experiments” chapter it is shown that using this methaith a cluster size of 4 produces
discriminative features for the classification. Thg, values are clustered in a similar way,
whereas in this case the cluster cenigy; with the maximum value is chosen, resulting in a

characteristic PET intensity value:

fl—pet = maX(:u’;)et)’ 1<i<ec

(5.26)
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Figure 5.11: lllustration of the lesion classification process for a giVesion segmentatioh

First the data within the lesion is clustered, and the chustater with the highest enhancement
for 1,4, clustered data, the cluster center with the lowest valud fgr clustered data, and the
cluster center with the highest value %, are chosen as features. Then they are combined in
a feature vectoy;, which may contain all features or only a subset of the etdrhéeatures. A
trained RF predicts the labglof the lesion depending of), wether it is benign or malign.

S 1 if malign

i

5.7 Classification: benign vs. malign

The classification step is the final step in the CAD pipelineere the segmented lesions are
classified into malign and benign. A RF classifier is used ffitg task, where the decision is
based on a subsgi of the previously extracted features. The RF predicts thella with

l; = 0 for benign lesions ant] = 1 for malign lesions. Figure 5.11 illustrates the classifat
process. A performance evaluation of the extracted featar be found in Section 6.3.3 of the
“Experiments” chapter.

RF lesion training To learn a prediction model for a given feature sub$ethe RF needs to
be trained on this subset. Therefore a training featuré;sgt,, is evolved using the histopatho-
logical report as target label arfgﬁl as training input data, whetés in this case the patient index.
fi-train 1S then used to train a RF classifier.

RF Lesion classification To classify a new lesion, the feature vectoy;" is extracted, con-
taining the same features as used for the RF training. ThesB§-this subset to predict the label
[; by letting each tree of the forest vote for a class. ibebe the number of votes for the cldss
The probabilityp} of the classk is then calculated by following equatiop; = ——. Finally,
the lesion label;, can be predicted by using the majority rule, where more ttaiafithe votes
of a RF prediction must be assigned to one class, to decidhifoclass. Other threshold values
than the majority rule can be used to consider the miscleastn costs. In this CAD pipeline
an optimized threshold value is used, where khealue, which is a combination of sensitivity

and specificity, is maximized in a LOOCYV step.

The outcome of the CAD pipeline is a binary segmentationliape(x) , as well as a
classification labeling, of the segmented lesion, whether it is benign or malign.
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5.8 Discussion

The aim of this chapter was the description of the propose® @ipeline, from image acquisi-
tion, registration and segmentation to the classificatidhelesion with respect to being benign
or malign. The CAD pipeline is implemented as a process of&ps. In the first step the
DCE-MRI and DWI images are acquired from a MRI scanner, apdBT images are obtained
from a combined PET/CT scanner. As a second step the imageaegistered and scaled
to a reference image, so that they are all aligned and allavhthave the same spatial resolu-
tion. As registration method the SyN in combination with A@itarity metric for DWI/MRI,
respectively PET/MRI registration, and MI similarity mies for DCE-MRI registration have
been proposed. In the third step the features are extramtezhEh voxel within the breast from
the multimodal image dataset. A definition of the featuraesegorized into intensity based, tex-
ture based, and kinetic curve based features, have beeamigitleis chapter. The segmentation
of the lesion in step four is implemented as a binary clasditio process, where a RF machine
learning algorithm decides, depending on the extracte@&Mmatures, if a voxel is classified
as cancerous tissue or normal tissue. As a result of thissseggmentation of the lesion is
achieved. Based on the obtained segmentations featurdsefatassification of the lesions are
extracted. In contrast to the voxel-wise feature extractar the segmentation step, classifica-
tion features are extracted by clustering the values witiérlesion and using the cluster centers
as features. There are inhomogeneities within a lesioniapaolume effects at the border of
the lesion and noise in the image modalities observed. Thewsavithin the lesions are cat-
egorized (clustered) and the mean value of the best diswtive category is used as feature.
For DCE-MRI the cluster with the highest contrast enhancgpfer DWI the cluster with the
lowest ADC value and for PET the cluster with the highest PEe€risity value are used. In
addition to the intensity based features aasymmetric géimed logistic function is fitted to the
kinetic curve obtained from the DCE-MRI clustering. Prdjerfrom this curve are used as fea-
tures for classification. Finally, the classification in lggnand malign lesions is done by a RF
machine learning algorithm by using the clustered featurés prediction model. The outcome
of the CAD pipeline is a binary segmentation labeling, ad &k classification labeling of the
segmented lesion, whether it is benign or malign.
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CHAPTER

Experiments and Results

In this chapter the performance of the proposed CAD pipdalnevaluated. The aim, beside
of the CAD pipeline evaluation, is the validation of the hifpesis that a multimodal medical
imaging approach improves the performance of a breasn&3kD system in comparison to a
single modality CAD system. Thus, one main point of the expents relies on the exploration
of the DWI and PET modalities in combination with DCE-MRI.

Outline This chapter is structured into three main sections, cpomding to the three main
parts of the CAD pipeline: registration, segmentation, las@n classification.

1. Registration. In Section 6.1 transformation models and similarity metsaitable for
multimodal breast image registration are evaluated. Tladityjuof the registration is veri-
fied for CT to MRI, DWI to MRI and DCE-MRI registration.

2. Segmentation. In Section 6.2, the segmentation is evaluated. First, tbpqsed seg-
mentation features are analyzed, using the variable irapoet functionality of the RF.
Features are evaluated with regard to the relevant infeomaiey provide to the voxel-
wise segmentation. The performance of the segmentatielfigsexamined, using several
combinations of features. The influence on the accuracy efsdgmentation for each
modality and each category of features is explored.

3. Classification. The final section of this chapter (Section 6.3) addressepdlfermance
evaluation of the classification of breast lesions into tperdand malign. The outline of
this set of experiments is similar to the experiments frommgbgmentation section. First
the classification features are analyzed using the variaippertance score of the RF.
Then the performance and accuracy of the classificatioraisiated for several groups of
features. Also the influence of the three modalities on thesification performance is

explored.

Each section is closed with a discussion, summarizing aihectimg the results of the experi-
ments.
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6.1 Registration

In this section the registration performance using threadsfiormation models and similarity
metrics is evaluated. Registrations from CT, DCE-MRI and IDld/the MRI modality are
covered. The aim of these experiments is to find the bestnpeirig transformation model and
similarity metric for the given registration task.

As a similarity metric CC and MI are evaluated for CT to MRI, E®RI time-series to
MRI and DWI to MRI. For DCE-MRI MSQ metric is also used. This tme has been chosen,
because it is less computational demanding than CC and Mépasted by Avants et al. [14].

The types of transformation models used for the registnagi@ Elastic (EL) [57], Diffeo-
morphic Demons (DD) [156], Symmetric Geodesic Normal@at{SyGN), and Greedy Sym-
metric Normalization (GrSyN) [14]. The SyGN transformatimodel is used only for CT to
MRI registration, and has been skipped for the other maesalih the subsequent tests, due to
the high computational effort needed for the registratibne registration process revealed that
the time needed for registration is one magnitude highar thaother transformation models.
On an Intel Xeon CPU X5450 3.0 GHz the registration time fog bneast image was between
10 and 20 hours, whereas for other modalities the maximuiatratjon time was 3 hours.

6.1.1 Experimental Setup

As afirst step an affine registration from CT, DCE-MRI and D@/Atte MRI modality is applied,
to globally align the breast images. As similarity metric foe affine registration the mutual
information is used, since it is known to provide robust hssa a rigid multimodal registration
process [12]. Based on this affine registration non-rigidlet® are evaluated. Both registration
types, affine and non-rigid, are computed on a multiresmhusicale based on a 3 level Gaussian
pyramid. The initial registration begins with a quartertuod briginal resolution, the second turn
uses half of the resolution and the final turn is performedh wie full resolution. The maximum
number of iterations is limited to 500, 300 and 150 in respetihe resolution level, after initial
experiments. As regularization a Gaussian filter with?aof 3 is used. Both, the number of
resolution levels and the value fef have been suggested by Avants et al. [14] as standard
registration parameters for MRI images with 1 hrasolution.

To evaluate the performance of DCE-MRI time-series regfigm,  ;.._pc.; iS exemplarily
chosen for registration in the following experiments.

6.1.2 Validation Measures

MI is used to evaluate the quality of the registration. It &calated using the voxels within
the breastx € M) from the registered volume and the MR volume, whereas gofteim
the surrounding air are masked out and not considered fazaloalation. A higher Ml value
indicates a better registration. In addition to the Ml me#&iDice Similarity Coefficient (DSC)
[45] is calculated from a threshold basic segmentation. D8&€ is defined as:

2 x |ANB|

DSC(A,B) = 5

(6.1)
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Figure 6.1: Threshold CT, DCE-MRI and DWI (from left to right), on whiche transformation
has been applied to. These threshold images are used folSBecBIculation. The transforma-
tion model in this example is GrSyN and metric is CC.

A are the foreground labels of the first image aBdre the foreground labels of the second
image. The range abSC (A, B) is betweer0) and1, where0 indicates no overlap and a value
of 1 indicates a perfect match.

The segmentation is obtained by applying a threshold omtlagié. Otsu’s method [113] is
used to determine the optimal threshold level, resulting mlough binary segmentation of the
breast tissue. The transformation yielded from the reagisin process is applied to the threshold
images, and the DSC is calculated from the transformedhblésmages.

The CT threshold image is compared with the binary maslof the MR breast image
instead of the MR threshold image. This is necessary, becaiuthe CT threshold image the
whole breast, including the fat-tissue is declared as foreryd, whereas in the MRI threshold
image the fat-tissue parts are declared as backgroundodie low contrast of fat-tissue in fat-
suppressed MRI. In this case the DSC measures the simitdiibye registered CT breast shape
to the MRI breast shape, whereas the accuracy of the rdgstraithin the breast is measured
by MI.

For DCE-MRI / MRI and DWI / MRI threshold images the DSC codéfitt has a slightly
different meaning. The MR images are recorded using faprggsion and also DWI values are
low for fat-tissue. Thresholding this kind of images setltve-intensity fat tissue as background
and the other tissue as foreground voxels. The DSC is therefoneasurement of the overlap
of non-fat tissue in DCE-MRI and DWI. Image 6.1 shows thedfarmed threshold images for
one patient.

The registration and the calculation of Ml and DSC are dome3fpatient images and the
mean and standard deviation of Ml and DSC are calculated.

6.1.3 Results

CT to MRI Registration The evaluation results of the CT to MRI registration are sum-
marized in Table 6.1. Transformation models using Ml as thmélarity metric perform worse
than their CC counterpart. A lower DSC is also observed fosMiilarity metric, which indi-
cates that the shape of the breast is not fitted as well as wdieg the CC metric. SyGN in
combination with CC gives the best results, followed by G¢Sy

In Figure 6.2 the registration process is visualized. Itlsaiseen that in addition to the rigid
registration a deformation registration is necessary tcmthe images. Figure 6.3 shows the
registration results for the given similarity metrics armhisformation models. Especially at the
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DD 0.5424 0.1279 | 0.8450 0.0473
Mutual EL 0.5716 0.1029 | 0.7470 0.0712
Information (MI) | GrSyN 0.6546 0.1728 | 0.8607 0.0463
SyGN 0.6183 0.1460 | 0.7685 0.0668
DD 0.6161 0.1228 | 0.8885 0.0452
Cross- EL 0.6646 0.1187 | 0.8890 0.0480
Correlation (CC)| GrSyN 0.7125 0.1147 | 0.8930 0.0470
SyGN 0.7527 0.0949 | 0.8944 0.0459

Table 6.1: Ml and DSC calculated using different types of similaritytnies and transformation
models for registration of CT and MRI modalities. DD - Diffeorphic Demons style exponen-
tial mapping, EL - Elastic transformation, GrSyN - Greedyriyetric Normalization, SyGN -
Symmetric Geodesic Normalization

Figure 6.2: Registration steps and results from the CT modality to thd MBdality. From left
to right: Unregistered images, affine registration, GrSgbistration with CC similarity metric.
The images in this figure are thresholded for illustrationppse. The thresholded MRI image
is red colored, the CT image is blue-gray colored.

regions next to the Pectoralis muscles a flawed registrationbe observed for MI similarity
metrics. In this example it can be also seen that the shapat iwedl fitted using EL in com-
bination with MI. This behavior has been observed for regii&in results of several datasets
using Ml as similarity metric. These kind of flaws result iésin a lower DSC score for the Ml
similarity metric, due to the reduced shape overlap.

DCE-MRIto MRI Registration  In Table 6.2 the results of the DCE-MRI to MRI registra-
tions are summarized. In this case the MI similarity metecfprms better than the CC variant,
and MSQ has the worst performance of all three. The contrdsireeement in the DCE-MRI
image and the resulting difference in the image intenshige a negative impact on the MSQ
metric. In this experiment the SyN transformation modeb alstperforms the other transforma-
tion models.In Figure 6.4 the registration is visualizetdcan be seen that there is only a small
offset of the unregistered DCE-MRI image to the MRI imagejolihis a consequence of small
patient movements and breathing during the image acaprisiti

DWI to MRI Registration  The registration evaluation from DWI to MRI is summarized
in Table 6.3. The CC similarity metric provides better réstihan the MI metric. Also in this
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Figure 6.3: Registration results from the CT modality to the MRI modgafitr one patient. For
a better orientation and comparison, a threshold MRI has beerlayed in red colors. The
blue-gray colored image is the registered CT image. Siitylanetric for the first 4 images
a)-d) is Ml, for the second 4 images e)-h) it is CC. The regt&in transformations are: DD
for a) respectively e), EL for b) respectively f), GrSyN fgrrespectively g), and SyGN for d)
respectively f).

case the GrSyN transformation surpasses the other modgisreF6.5 shows the registration
result for one patient.

6.1.4 Discussion

The aim of this experiment was the evaluation of similaritgtrics and transformation models
in the context of multimodal breast image registration. Tagistration was performed on CT
to MRI, DCE-MRI to MRI, and DWI to MRI, using images from 8 patits. The performance
was evaluated using M, calculated from the voxels withimtheast of the transformed images
and the reference MRI image. In addition, the DSC has beermpuated from binary threshold
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Mutual DD 1.5875 0.2406 | 0.7826 0.0512
Information (MI) | EL 1.6154 0.2393 | 0.7758 0.0537

GrSyN 1.6980 0.2200 | 0.8067 0.0418
Cross- DD 1.4882 0.2052 | 0.7786 0.0464
Correlation (CC) | EL 1.4975 0.2029 | 0.7753 0.0474

GrSyN 1.5335 0.1968 | 0.7752 0.0472
Mean DD 1.0436 0.1750 | 0.6735 0.0591
Square EL 0.8779 0.2069 | 0.6070 0.0641
Difference (MSQ)| GrSyN 1.1261 0.1800 | 0.6068 0.0511

Table 6.2: DSC and MI score computed from registration of DCE-MRI to MRIng several
similarity metrics (MI,CC,MSQ) and transformation mod@lD,EL,GrSyN).

Figure 6.4: Unregistered (left) and registered (right) DCE-MRI imaghite) with a MRI im-
age(red) overlayed for orientation. Threshold of imagesused for visualization purpose only.

Mutual DD 0.2919 0.1072 | 0.1490 0.0694
Information (MI) | EL 0.3108 0.1092 | 0.0808 0.0491
GrSyN 0.3447 0.1232 | 0.2119 0.0847
Cross- DD 0.3256 0.1027 | 0.2112 0.1020
Correlation (CC)| EL 0.3504 0.0953 | 0.2099 0.1034
GrSyN 0.4154 0.0892 | 0.2135 0.1018

Table 6.3: DSC and Ml score computed from DWI to MRI registration usiegeral similarity
metrics (MI,CC,MSQ) and transformation models (DD,EL,@&x}

images, to measure the similarity of the shape of the twosbirsges.

The LDDMM approach, SyN, provided the best results. In th&t tiest, the registration
of CT and MRI images, both SyN variants, greedy and geodésiee been evaluated. The
geodesic variant surpassed the greedy variant. Howeeehigih computational demand of the
geodesic variant of SyN limits its usefulness.

For registration of CT/MRI and DWI/MRI images the CC simitgrmetric outperforms
the MI metric. The reason is that the linear intensity relaship of the tissues in the breast,
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Figure 6.5: Registration results of DWI modality for one patient. Simity metric for images
a)-c) are MI, for d)-f) it is CC. The registration transforticea models are: DD for a) and d),
EL for b) and e), GrSyN for ¢) and f). The MRI modality is red aad, the DWI modality is
blue-gray colored.

like the fat tissue and the lobules, is a good guidance indhestration process. The reduced
performance of the MI metric may be deduced from the fact tiratperformance of Ml on a
local scale is reduced when intensity inhomogeneitiesekigthe image [12,143] (i.e. MRI bias
fields). Such bias fields are observed in the MRI breast images DCE-MRI/MRI registration
performance is not influenced, since both images are actjuirthe same sequence, and share
similar bias fields. The higher performance of Ml for MRI ine&gis in coincidence with this
hypothesis. However, this hypothesis is not investigatedetail in this thesis, and may be
explored in detail in further studies.

The following experiments are based on the results of thistragion experiments. As pre-
requisite to the following segmentation and classificagaperiments, all patient images are
registered using GrSyN and CC for CT to MRI and DWI to MRI réigison, as well as Ml for
DCE-MRI to MRI registration.
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6.2 Segmentation

In this section the segmentation performance and the irduef feature groups on the seg-
mentation are evaluated. The following experiments aimnathe one hand finding the best
feature combination for segmentation, and on the other kiadmbrating the advantage of a mul-
timodal approach to a single DCE-MRI modality approach i ¢bntext of lesion localization
and segmentation.

The outline of this section is as follows:

« Multimodal feature selection via Gini importance: First, the contributions of the fea-
tures are explored using the Gini importance measure of thel&ssifier. Based on the
importance measure a feature selection is performed arhabded.

 Giniimportance of the DCE-MRI time-series: The Giniimportance of DCE-MRI time-
series features (intensity, texture) are analyzed to atalwhich part of the DCE-MRI
time-series carries information with regard to lesion segtation.

» Segmentation performance for feature subsetsThe segmentation performance is eval-
uated using subsets of features. It is analyzed, which featet improves the segmen-
tation performance, and the benefit of using multimodaluiexst with regard to lesion
segmentation.

» Qualitative Analysis of the Segmentation ResultsFinally, the segmentation results are
plotted and discussed.

To recall the features used in the segmentation and in ttewolg experiments, one may
be referred to Table 5.4 in the previous chapter.

Experimental Setup For the segmentation of the lesion the data from 16 patieetsised.
Only voxels from within the breast are considered, the sunding air is masked out and not
used in the training, prediction, and performance calmnaby using the masking/. For each
patient the lesions have been voxel-wise annotated by alogit (L°). A RF is trained on the
feature seff1,4i, (x) Of lesion and non-lesion voxels with the target labe{x). The trained RF
is then used for prediction of voxels being in the first or setolass.

Since a breast image contains 1 Mio. voxels and more, and flirece is a massive imbal-
ance in the size of samples in both classes (> 1 Mio. nonfesidew thousand lesion voxels),
random undersampling70] is performed in order to get a reasonable size of trgimiata and
to balance the training data. 1000 samples from the annbiedéon and 5000 samples from the
other breast tissue are drawn randomly per patient. The samizdlance between background
and foreground samples has been chosen to consider the kagfebility of the background.
The sampling size has been empirically determined. It hag tmentioned that random under-
sampling may result in an information loss, causing thesifi@s of missing relevant concepts
in the data [70]. Therefore the number of samples needs ® haertain size to be statistically
meaningful. However, using more advanced subsamplingadstinay reduce the needed sam-
ple size and increase the performance by reducing the iatiomloss in the sampling process.
He and Garcia describe this problematic of undersamplirtgtail in [70].
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The number of treeqfreg in the RF training is set to two times of the number of feadure
used, with a minimum size of 200. To take care of the 5:1 imizaaof the non-lesion and lesion
samples the class weight parameter of the RF has been akeoSsgtclassw). Chaoe Chen et
al. describe the effect of weighted RF in [33]. And as a lasapeeter for the RF the number of
input variables tried at each splitm(ry), is set to| v/# feature$ as suggested by Breiman [28].

This setup is used for all following segmentation experitaeanless otherwise stated.

Validation measures The validation of the segmentation performance is perfdrimeusing
Leave-One-Out Cross-Validation (LOOCYV). The dataset frora patient is used for validation
and the sampled dataset from the other patients are useaiicing. This is repeated so that
each patient is validated once.

The quality of the segmentation is measured by comparingrbdicted segmentatidiix)
with the manual annotated dafgx) using DSC as similarity metric. Instead of using the
majority vote in the RF prediction, the threshold level foe RF votes is set in a way that the
mean DSC score is maximized. Boxplots [99] are used to vidhe statistical summaries,
and in particular the variance in the DSC score among themati

6.2.1 Multimodal Feature Selection via Gini Importance

In the following experiments the segmentation featureseapored using the Gini importance
obtained from a trained RF. The Gini importance measurees as the one hand to get an
insight into the relevance of the features for segmentatimd on the other hand it is used for
feature selection by using the Gini importance measureniottee features, and to drop features
with a low score. An interesting detail is that the RF aldoritdoes not have any a-priori
information about these features, and the relevance ofdhtifes is solely determined in the
training step.

The RF feature selection is also compared with anotherreaamking method proposed by
Peng et al. [115]. Their method is callednimum-Redundancy-Maximum-Relevance (mMRMR)
feature selection. It provides a ranking of the featurestban Mutual Information, where
the relevance of features and the redundancy between deadne considered and rated. The
relevanceD (S, ¢) of the feature sef is calculated by averaging the Ml among all featufes
and the target class(Equation (6.2) ). The redundandy(S) is measured by calculating the
mean of MI between two featureg and f; (Equation (6.3)). Maximizing the relevance and
minimizing the redundancy can be combined by calculatiegdifierence ofD(S, ¢) andR(S).
This leads to the definition of MRMR as described in Equatén)(

D(S.6) = 752 3 MI(fi0) (6.2)
fies
R(S) = = S MI(fi, 1) (6.3)
’S’ fisf5€8
max [ 0 M) = g 3 MICfy)). (6.)
fi€es fi,f;€8
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Figure 6.6: Gini importance. The blue bars are features from PET and ¥4n bars are
high-resolution MRI and DCE-MRI features, yellow are DCERMime-series features, orange
are Haralick texture features, and red are DCE-MRI kinative features. For the DCE-MRI
features and Haralick texture features only the value wighttighest Gini importance measure
of the whole time-series is plotted.

Experimental Setup To get the Giniimportance and subsequently the rankingeofehtures,
a training of the RF is performed using all features and athefsampled training dataset.

For the mRMR feature selection, and in particular for the Bltalation, the data values are
quantized in 5, respectively 32 bins. In addition, the Mlatcalated from the continuous values
using a Parzens windowing. Peng et al. [115] suggest a maxiofb states per feature variable,
therefore 5 bins have been chosen. However, experimerdalegl/that there is a fluctuation in
the mRMR ranking with varying bin size. The ranking becanablst with a size of 15 bins and
more. Therefore, 32 bins have been chosen as additionaizeirics this experiment.

Validation measures To evaluate the quality of the ranking the features are sistoaly re-
duced using the yielded rankings. A RF is trained on the reddeature set. The performance
of the feature subset is evaluated as described at the li@gjiohthis section by using LOOCV
and DSC as similarity measure. The performance value israatdby calculating the mean of
the DSC scores for each patient. The evaluation is perforfiored feature subset size of 200,
100, 50, 25, 12, and 6 to 1 using the ranking obtained from thei@portance, respectively the
MRMR.

Results In Figure 6.6 the Gini importance score is summarized. THadlest ranked features
obtained from the Gini index, respectively the mRMR are samped in Table 6.4. The color
coding used in the table refers to the colors used in the suynRigure 6.6.

The performance of the feature selection is plotted in FEigu7. The mean DSC is quite
stable up to a reduction to the 5 top-ranked features, evanRR and the mRMR algorithm
chose a different set of features. Therefore, a higher atrmfuieatures does neither increase
nor decrease the performance of the segmentation. The RFthig used for training and

72



0.4

0.354

0.3

0.25F

Dice Similarity Coefficient

0.2F

—&— mRMR 5 bins
0.15{ —e— mRMR 32 bins
—&— mRMR Continuousj

—&— Random Forest

Figure 6.7: Mean DSC score using the reduced feature set. Subset seléctione by using
the RF Gini importance value and the mMRMR method. Discriétizaf the data for the mRMR
method is done by quantification into 5 and 32 bins.

prediction inherently includes a feature selection, prafg “important” features. Going below
5 features removes features which are essential for praaicesulting in a drop in the score.

The performance of RF feature selection is comparable to RRMhereas mMRMR with 32
bins performs best, up to a reduction to 6 features. Usindeidiires of the mRMR with 5 bins
performs worst.

There is a drop in the DSC of the 32 bin mMRMR observed, whenciadurom 6 to 5
features. In this case the PET feature is dropped, which hiés epluable information needed
for a better segmentation, at least for this combinatioreafires. There is also a drop from 5 to
4 features of the RF feature selection. In this case the Aatife is dropped. In all the feature
selection algorithms the DWI feature is ranked in top posgi except for the 5 bins mMRMR
feature selection. Removing this feature from the set caasdrop of the DSC (Feature #4 in
32 bin mMRMR and feature #3 in continuous mMRMR). This indisatet the DWI feature also
contains valuable information for the segmentation preces

The DCE-MRI Peak and Post-Contrast features and theiratems are also ranked high in
all of the feature selection methods. It has to be noted tremahnotations of the lesions were
drawn on the registered DCE-MRI Peak and Post-Contrastemaglso the DCE-MRI Peak
and Post-Contrast images have the highest resolution ofalhlities, therefore partial volume
effects at the border of the annotated lesion are smalkarltieg in a more precise segmentation.

One interesting point of the experiment result is, that ewbien a complete different set
of features are selected, the performance is quite sinfilais shows, that many features share
redundant information, and therefore can be combined ferdifit ways. It is also interesting
to see, that the RF also do a comparable feature selectiorRidRy even though there is no
mechanism in the RF handling the redundancy of the infoomaith features. The mRMR
algorithm measures the redundancy of the features via Mutfeamation.
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Random Forest MRMR Continuous
DCE-MRI Peak-Contrast

DCE-MRI Post-Contrast
DCE-MRI frame #22

A MRI Pre-/Post-Contrast

DCE-MRI frame #30
DCE-MRI frame #24
DCE-MRI frame #20
DCE-MRI frame #21
MRI Peak-Contrast

DCE-MRI frame #2

DCE-MRI frame #27 A MRI Pre-/Peak-Contrast
mMRMR 32 bins MRMR 5 bins
DCE-MRI Post-Contrast DCE-MRI frame #38

A DCE-MRI frame #7 A MRI Pre-/Post-Contrast
MRI Peak-Contrast

A MRI Pre-/Peak-Contrast
A DCE-MRI frame #7

DCE-MRI Frame #2

MRI Post-Contrast

Table 6.4: The twelve top-ranked features using RF Gini importancesm&sand mRMR rank-
ing. The color of the cells are similar to the colors used guFe 6.6. PET and DWI features are
blue, high resolution MRI features are cyan, DCE-MRI feasuare yellow, Haralick features
are orange, and DCE-MRI kinetic curve features are brown.
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Figure 6.8: Gini importance of a RF trained on the DCE-MRI time-seriebe Tipper left dia-
gram shows the importance of the featufgs.. The upper right diagram shows the importance
of the featuresfaq... On the lower left side the importance of the Haralick feasuf;.,-jce

is plotted, grouped by the specific Haralick feature numBsrch subhistogram represents the
time-series for the corresponding Haralick feature. Theeloright diagram shows the impor-
tance off Ates-dce, alSO grouped by the Haralick statistics.

6.2.2 Gini Importance of the DCE-MRI Time-series

In this experiment it is evaluated which part of the DCE-MRid-series carries information
with regard to lesion segmentation. The DCE-MRI sequenata@as forty images, from which
40 DCE-MRI, 39A DCE-MRI, as well asl3 x 20 Haralick texture features and3 x 19 A
Haralick texture features are extracted, resulting in 5SCEEMRI based features. The following
experiment takes a closer look on these DCE-MRI featuress dhalyzed, which features of
the DCE-MRI time series, and which Haralick feature corgaimluable information for the
segmentation process. As in the previous experiment theifjportance yielded from RF
training is used for exploration and interpretation of tieE>MRI features.

Experimental Setup A RF with 400 trees is trained using the sampled training stathe
annotated lesions, and an alternating feature subseticimgtéhe DCE-MRI time series features
fdeer fAdee, the Haralick DCE-MRI texture featuref... 4., respectivelyf atez-dee-

Validation Measures From each trained RF the Gini importance measure is retfieZach
Gini importance gives a measure of importance of the DCE-gHRI Haralick texture features,
respectively their derivatives.
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Results The Gini importance for each group is plotted in Figure 6.8 éWusingf .. for RF
training, it can be seen that the algorithm prefers frames fthe middle and the last thirds of
the time-series, which is the late postcontrast phase.idmptiase the contrast or signal intensity
of the lesion is higher than for non-lesion tissue, provgdimportant discriminative features for
the RF classifier. A small peak at frame number 6 and 7 can alsb&erved. At this time-point
the contrast uptake takes place.

In the Gini importance measures 6f ;.. a significant peak at frame 6-7 and 7-8 can be
observed. This is also the time point of the contrast uptakere the intensity at the lesion
region increases fast. There is a second peak at frame nudiat. Between these two frames
there is a two-minute gap in the sequence, where the higdtes 7 ._,.q iS recorded. In
this case the difference between these two time points isaglated over two minutes, whereas
at the other time points there is only an accumulation of t8isds.

For fie:-qce it can be observed that the RF prefers the Haralick featurewich is the
“sum average”. A high value corresponds to a region with & lrigensity value; respectively,
a region with low intensity value has a low sum average. Thi&eovation covers well with the
Gini importance off,.. , where features with a high intensity value are chosen atetsien
region during the DCE-MRI sequence.

And in the last diagram of the Figure 6.8, tlfig;...4.. features, it can be seen that there
is a peak at frame 3-4 and 4-5 for almost all features with ighdst Gini importance for the
“sum-average” feature (Feature #6). Since the Haraliciufea are only calculated for every
second frame, these frames correspond to the frame 6-8 iwritfieal DCE-MRI time series.
This is the time-point of the contrast uptake.

6.2.3 Segmentation Performance for Feature Subsets

In the first experiment of this section the RF has been usedléztsa feature subset froadl
features. In the following experiments the RF is trained dimited set of features. The sets
of features are grouped by the modality (MRI, DWI, PET) aral ¢ategory (intensity features,
texture features, kinetic curve features) for the MRI mitgalUsing groups of features for
training and prediction enables a comparison of the segtientperformance, when using a
single modality, respectively a multimodal approach. Adscomparison of intensity, texture,
and kinetic curve features is possible in such a setup. Byictisg the feature set in the RF
training to a limited group of modalities and categories epdimsight in each of the categories
is given. The benefit of each modality and each category osageentation performance is
evaluated in the following experiment.

Experimental Setup The features are divided into following group&ivu:, fpet, fdce-pres fdce
FAdees fres-deer fAtes-dees @Nd frin (AUC, THM, MaxEnh, and MaxSlope). In the subsequent
experiment single groups of features, respectively coatliins of them are used for RF training
and prediction.

Validation Measures The segmentation performance is evaluated in a LOOCV pspcas-
culating the DSC score for each patient. From these DSCstioeanean and standard deviation
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Jdce 0.3952 0.2920
Srin 0.3297 0.2809
fadee 0.3694 0.3385
ftez-dce 03131 02195
fAtex-dee 0.3158 0.2715

Table 6.5: DSC statistics for DCE-MRI feature subsets.

is computed and the results are visualized using boxplataddlition, the DSC score is plotted
as bar for each patient, enabling a visual comparison ofdateife groups on a per-patient level.

6.2.3.1 Results

To get a better overview the results are grouped by the mgdaid category. First the results
of the DCE-MRI modality are presented, focusing on the isitgntexture and kinetic curve
features, and combinations thereof. The second part feaus¢he modalities MRI, PET, and
DWI, where the performance of the individual modalities anthbinations of them is evaluated.
It is also analyzed, if a combination of PET, DWI and non-casit enhanced MRI is able to
replace DCE-MRYI, since the acquisition of the DCE-MRI tis®ries is more time-consuming
than the acquisition time of MRI and DWI. Getting accuratagiostic values in a faster way is
always of interest.
A summary of all results is given at the end of this sectionabl& 6.9.

DCE-MRI feature sets The results are summarized in Table 6.5. The best resulechieved
using f4ce, followed by fagee. frin @s well as the Haralick texture features are performing
worst in average. The boxplot in Figure 6.9 also summarizestSC statistics. One box is
representing the DSC of all patients for one selected feaubset. The boxplot representation
shows that there is a high variability in the DSC among théeptd, ranging front up t00.9.

It also shows that no feature subset is able to segment alhkesThere is always at least one
lesion with a DSC of), indicating that the segmentation failed completely irt ttese.

In Figure 6.10 the DSC is listed for each patient. The featiire;.. seem to improve the
result of segmentation in some cases significantly (Pat.ahd310) compared tf;... In other
cases the Dice coefficient drops significantly (Pat. 6 and EB) patient 6 the DSC is going
down to O for the derivative features. As seen in the first sagation experiment (Section
6.2.2), the RF mainly picks the derivative features fromehdy post-contrast phase, where the
contrast uptake starts (frames 6-8). Analyzing the timerisity curve for patient 6 revealed that
the contrast uptake starts two frames later than for othiggmda. The uptake begins at frame 8,
for other patients it starts at frame 6. So the RF predictitssas the uptake for this patient, and
the segmentation fails usingh 4., for this patient.

In Table 6.6 the performance of combinations of DCE-MRI deatsubsets is summarized.
In Figure 6.11 the DSC is listed for each patient. In averagdXCE-MRI feature is performing
better than combinations of this feature subset with others
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Figure 6.9: DSC boxplot statistics for DCE-MRI feature subsets.
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Figure 6.10: DSC listed for each patient. Lesions 1 to 10 are malignantpl1l6 are benign
lesions.

fdce + fAdce 0.3819 0.3314
face * frew-dece 0.2664 0.2317
fdce + fAtez—dce 0.3571 0.2763
fAdce + fAtez-dce 0.3703 0.2938
fdce + fAdce + fAte:c-dce 0.3477 0.2851

Table 6.6: DSC statistics for combinations of DCE-MRI feature subsets

Multimodal (DCE-MRI, PET, and DWI) feature sets  Table 6.7 and Figure 6.12 summarizes
the results using,;, f4., and non-contrast enhanced MRy pre). Using f,.; alone results
in the worst performance. A combination ¢f.; and f4,, increases the segmentation result
significantly. Adding fgc.-pre to the features increases the performance in combinatitim wi
PET and DWI. It can be seen that treating each feature sehaes have less predictive
power than using them in combination. This is an indicatiett the modalities provide useful
complementary information, at least from the segmentatinint of view. The combination of
these modalities performs worse than usjpg . It can be concluded that a combination of MRI,
DWI, and PET is not an adequate replacement for DCE-MRI.
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Figure 6.11: DSC of combinations of DCE-MRI feature subsets listed fahgaatient. Lesions
1 to 10 are malignant, 11 to 16 are benign lesions.

Jdce 0.3952 0.2920
fpet 0.1997 0.2301
Jawi 0.2661 0.2570
Jpet * fawi 0.3263 0.2995
Jdce-pre ¥ [pet 0.1766 0.2217
fdce—pre + fdwi 0.2587 0.2807
fdce—pre + fpet + fdwi 0.3416 0.3184

Table 6.7: DSC statistics for combinations of PET, DWI and MRI features
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Figure 6.12: DSC boxplot statistics for MRI, PET and DWI feature subsets.

However, the combination ofg,;, fye: and f4. increases the segmentation performance.
The results can be found in Table 6.8. The performancé;qf increases fron?.40 to 0.45
when combining it withf,,.; and f4,,;. The performance of a,4.. increases frond.37 to 0.45.
Figure 6.13 lists the DSC per patient. For patient 6 it canliseoved thaff4,,; and f,.; cannot
compensate the segmentation failurefaf;.., which has been described above in detail. It can
also be noticed thaty,,; and f,.; improves in common the segmentation performance. But when
the segmentation fails completely for DCE-MRI, like in jeati 13, adding DWI and PET do not
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Jdce ¥ fpet 0.4217 0.2818
Jace * fawi 0.4287 0.3189
face * fpet ¥ fawi | 0.4486 0.3043
fAdce + fpet 0.4562 0.3099
Jadee * fawi 0.4254 0.3234
fAdce + fpet + fdwi 0.4540 0.3156

Table 6.8: DSC boxplot statistics for DCE-MRI, PET and DWI feature sitbs
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Figure 6.13: Dice similarity coefficient of combinations of DCE-MRI, PEahd DWI feature
subsets listed for each patient. Lesions 1 to 10 are malighério 16 are benign lesions.

improve the segmentation.
Table 6.9 summarizes all results, sorted by the DSC score.

6.2.4 Qualitative Analysis of the Segmentation Results

The previous experiments focused on the quantitative aisabf the segmentation using the
DSC. In this section a qualitative analysis is given, whiaeesegmentation results of each lesion
are plotted and the advantage and disadvantage of thedentdalities are discussed. In Figure
6.14 the segmentation results ffr.. respectivelyfa .., in combination withf,,; and f,.; are
plotted for each patient.

It can be seen that usinfy,.. produces more false-positive blobs thixy.. (e.9. patient 1,

3 and 10). On the other hand, when usjig,.. it can be observed that the segmentation is often
much smaller than the annotated region (patients 2, 4, 6pd2@). For patient 6 even the whole
lesion is missed, but this happened because the contradteugtarts two frames later than for
other patients.fq,; + fpe: as feature subset produces the noisiest segmentatiorpgignt 4,
10) and small lesions are completely missed (patients 911,015 and 16). Since the scanner
software does not always align PET and CT image perfectlgfiset in the segmentation can
be observed for patients 8 and 14.

Using fgc. in combination withf,,; and f,.; does not reduce the amount of false positive
blobs. But regions inside the lesion, which are missed Ry, are covered by these combined
modalities. This effect is even better visible when comimnf 4 4. with f,.; and f4,,; (patients
1,2,4,5, 6,7, 8 and 14). But whefy.. fails to segment lesions, combinations wijth,; and
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fAdee * fpet 0.4562 0.3099
fAdce + fpet + fdwi 0.4540 0.3156
Jdce * fpet + fawi 0.4486 0.3043
fdce + fdwi 0.4287 0.3189
fadee * fawi 0.4254 0.3234
fdce + fpet 0.4217 0.2818
Jdce 0.3952 0.2920
fadee + frin 0.3873 0.3536
fdce + fkin 0.3818 0.2800
fAdee ¥ fAtes-dee 0.3703 0.2938
JAdee 0.3694 0.3385
Automatic feature selection: mRMR 32 bins0.3624 0.3195
fdce ¥ fAtes-dce 0.3571 0.2763
Automatic feature selection: Random For¢sd.3545 0.3129
fdce + fAdce + fAtez—dce 0.3477 0.2851
fdce—pre + fpet + fdwi 0.3416 0.3184
Jin 0.3297 0.2809
Jpet + fawi 0.3263 0.2995
fAtez—dce 0.3158 0.2715
Jtex-dce 0.3131 0.2195
fdce ¥ frew-dce 0.2664 0.2317
Jdwi 0.2661 0.2570
fdce-pre + fdwi 0.2587 0.2807
Jpet 0.1997 0.2301
fdce-pre + fpet 0.1766 0.2217

Table 6.9: Summary of the DSC statistics, sorted by mean DSC.

[pet @re also not able to do the segmentation (patient 13).

It can also be observed that there is often a small offsetdmtvthe manually annotated
border of the lesion and the segmentation (e.g. patientsahd8.4). Especially at the borders
of the lesion partial volume effects take place, and it i®mfhot easy to determine for the
radiologist, where the exact border of lesion is, resulimmaccuracies at the lesion border.
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Figure 6.14: Segmentation results for DCE-MRI, PET and DWI features eTpositive labels are green, false positive labels arewegllo
and false negative labels are of red color. Patients 1 to @ hwalign lesions, patients 11-16 have benign lesions. Ttierf the
patients is the same as in the previous diagrams.



6.2.5 Discussion

In this section the segmentation performance for the miegIMRI, DWI, and PET, as well as
the categories DCE-MRI intensities, texture and kineticvedeatures has been evaluated. The
performance measure has been obtained by calculating tae B@C score from the manual
annotation and the segmentation yielded from the RF trgiaimd prediction in a LOOCV pro-
cess. Furthermore, the Gini importance measure obtaioed tihe RF training has been used
to explore the contribution of the features on the segmiemtal he ranking obtained from Gini
importance was also used for feature selection.

The RF feature selection has been compared with anotharrdéeaglection method, the
MRMR feature selection. These feature selection methagsled that the segmentation per-
formance remains constant up to a reduction of the featwr®wréo the top-6-ranked features.
The performance of RF and mRMR feature selection was singilean when a different subset
of features was selected. This is an indication that segetalof features share the same infor-
mation necessary for the segmentation. The top-ranking/éf ib both RF and mRMR feature
selection, as well as the significant drop in the performavtoen removing this feature indicates
that f4,; contains valuable information for the segmentation preces

Analyzing the Gini importance features of the DCE-MRI tiseries, the secondary texture
features, and their derivatives revealed that the relevdotmation of f,.. is in the late post-
contrast phase and fgi .. and fasez-dce the relevant part is in the early post-contrast phase,
where the contrast uptake begins. Although, especialljgbeesions can have a slow uptake
slope and may be missed by the derivative features, as sdbe bualitative analysis of the
segmentations.

By calculating the mean DSC in a LOOCYV process following ghsihas been received:
Combining DCE-MRI with the modalities PET and DWI gives thighest score. In general
fpet @nd f4,,; improve the segmentation performance when addégg o In lesion areas, where
DCE-MRI does not enhance (e.g. necrotic areas), and the IREsegmentation fails for
this region, PET and DWI gives the relevant information forrect prediction of these regions.
Nevertheless, PET and DWI are not an appropriate repladefoethe DCE-MRI modality.
Small lesions are often missed by these modalities, dueetodiative low resolution of PET
and DWI. Also, DCE-MRI in combination witlf,.; and f,,; fails, when the prediction of the
segmentation fails fof ;...

The secondary DCE-MRI features, namély,_q.. and f.;,, do not improve the segmenta-
tion performance in comparison ... Also combinations of them do not improve the perfor-
mance. This indicates that there is not enough additiotiairimation in the secondary features
and that they are mostly redundant.

As seen in the qualitative analysis, on the one hgpd is producing more false positives
regions thanfag... On the other handf,.. also has more true positive regions, so that in sum
both feature set$;.. and f 4. have a similar DSC score.

As a side-effect, the experiment revealed that the timetpafithe contrast uptake needs to
be determined and synchronized for all patient images lovidhg studies.

The segmentations obtained in the previous evaluationharéoundation of the following
classification experiments.
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6.3 Classification

This part of the evaluation process covers the classificgiiot of the CAD pipeline. The outline
of this section is as follows:

« DWI/PET features: In the first part several methods of extracting discrimimateatures
from I,4. andI,.; are presented and evaluated. In particular the discrinagabwer of
FCM clustered/, . values and/,.; values is examined, since using FCM to extract rele-
vant 4. values for classification is a novel approach. Furthermibre FCM clustering
is compared with other algorithms extractifig,. values from the segmented lesion.

« DCE-MRI kinetic curve features: In the second part the discriminative power of the
DCE-MRI kinetic curve features is investigated. Boxplotsl dhe Gini importance give
an insight into the relevance of each feature.

« Classification Finally, the classification performance is evaluated inGACV process
in two ways. First, thenanualannotated segmentations of the lesioh¥) @re used, to
exclude flaws introduced by the segmentation process arlgzanthe features, assum-
ing an optimal segmentation. In a second step the evaluptimress is performed on the
automaticsegmented lesiong‘) to investigate how well the full CAD pipeline is per-
forming. The same patient datasets are used for these s than in the previous
segmentation evaluation.

One may be referred to Table 5.6 in the previous chapter tamgeverview of the classifi-
cation features used in the following experiments.

Experimental Setup The subsequent experiments share following experimeatapsvhere
not otherwise stated. Data from the same 16 patients as préh®us segmentation experiments
are used. The lesions of 10 patients are malignant and 6 aigrbeThe histopathologically
report of the lesions is considered as the ground truth.

The classification features are calculated from the voxétimthe lesion. The lesion region
is specified either by the manually annotated lesibfiisor by the segmentatiolf obtained
from the segmentation step in the CAD pipeline. For the aat@msegmentation the feature
combinationf ., fpe: and fq,; has been used. This feature subset got the third-highddhgan
in the segmentation evaluation process, after fRg.., fpe:, fawi Variants. These choice of
features produces on the one hand more false positive talbsthef A 4. feature subsets, on
the other hand;.. covers the lesion better than their derivatives. In a pastgssing step false
positive blobs are removed. The segmentation is dividea bidbs using an 8-neighborhood.
The blobs coverind.’ are used for classification process, and the other blobsrapped. This
step simulates a manual selection of a suspicious regiorobr iy a radiologist, which he
wants to investigate further. One lesion, which was notaletein the segmentation process,
has been added to the classification evaluation, due to tharwount of available patients for
the classification evaluation. For this patient the mannabgated segmentation is used in both
cases. This patient is listed as number 13 in the segmemtjperiments above.
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The mTry parameter, defining the number of feature variables triezhah split in the RF
algorithm is set td v/# feature$ as suggested by Breiman [28].

6.3.1 Evaluation of the DWI-ADC and PET features obtained va Fuzzy
C-means Clustering Method

The aim of this test is to examine, if the FCM clusteringlgf. andI,.; value gives discrimi-
native features for the classification of the lesion. The F&ybrithm is compared with other
methods of determining the “best” DWI-ADC values within ait.

The algorithms should imitate up to a certain degree the Ricton by a radiologist in
a manual or semiautomatic classification process. In susdsche radiologist draws the ROI
inside the lesion, choosing a region with a low DWI-ADC val&tudies demonstrated that this
procedure gives good discriminative features [24]. In lyfalitomatic classification process the
ROI has to be defined by an algorithm. The algorithm shouldcselithin the lesion a region
with a discriminative DWI-ADC value and it should be robugiamst outliers introduced by
inaccuracies at the lesion border, noise in the data, and flathhe segmentation process.

Following algorithms have been chosen to get the DWI-ADQieal

the minimum value within the lesion,

the minimum value of 3x3x3 median filtered ADC values witthe lesion,

a FCM clustering with fixed cluster size,

a FCM clustering with variable cluster size and
» a k-means clustering with fixed cluster size.

The PET values are evaluated using the same algorithms théthnly difference that the
maximum value is used instead of the minimum value.

Experimental Setup The experiment is performed on the manual annotated segtitaTs of
all 16 patients, to eliminate possible errors introducedabyinaccurate segmentation process.
The ADC value is calculated for each patient using each otleedfive algorithms.

The number of clusters is a crucial parameter in k-means &1id Elustering. Therefore,
the k-means clustering and the FCM clustering are perforwitdnumber of clusters ranging
from 2 to 15. The cluster center with the lowest ADC value issgn as the representative ADC
value of the lesion.

In addition, a FCM clustering with a variable number of ciusthas been evaluated, where
the number of clusters is dependent on the size of the le$ttis.method is inspired by the FCM
clustering of the DCE-MRI intensity curves to get the CKCpesposed by Chen et al. [36]. The
number of clusters is in this case dependent on the number of voRéls: = max([N/80], 2).

To compare the automatic approach with a manual approacdi@iagist drew a squared
ROI within the lesion, from which an average ADC value hashbesdculated. The ROIs were
drawn in the unregistered DWI ADC images.
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Validation Measures The statistics of the ADC values from the 16 patients are sarized
in a boxplot grouped by each algorithm. So the mean, varjeanue other statistical properties
and the discriminative power of each algorithm can be viguedamined.

Results In Figure 6.15 the summary of the ADC values are plotted ubimglots. Choosing
the minimum of the ADC values is very sensitive to outliensg aften an ADC value of is
chosen. The minimum of the median filtered values is lesstesen® small outliers. The ADC
values do not perfectly discriminate the malign from theipehesions; there is an overlap in the
values. A nearly perfect discriminative result is given lsyng FCM clustering with 4 clusters.
There is one outlier in the benign ADC values, which is in tgion of the malign ADC values.
The discriminative power of FCM clustering with variableuster size is worse than using a
fixed cluster size. Using a k-means clustering with 4 clesggres comparable results than the
FCM clustering, with a slightly higher variance of the ckrstd ADC data values. The ADC
value from the manually selected ROI are perfectly disarating the lesion classes.
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Figure 6.15: ADC values of the 16 patients summarized by boxplots andm@gdiy malign (m)
and benign (b). The algorithms used for calculation are fieftrto right: minimum value, min-
imum of median filtered values, FCM clustering with 4 clustdfCM clustering with variable
cluster size, k-means clustering and data from manual dR®@iIn

Figure 6.16 shows a boxplot summary of the ADC values for atelusize ranging from
2 to 15. The ADC values are already discriminative when ug@ngusters. The variance of
the clustered ADC values is increasing with a higher clusize. The maximum gap between
the benign and malign ADC values, ignoring the outlier, isi@eed when using cluster sizes
between 3 and 5.

The FCM clustering for one lesion is visualized in Figure®.The histogram reveals that
there are a few outliers with an ADC value of 400. These oneschosen when using the
minimum of ADC values. The main amount of ADC values lies witi00 to 1400, which is
mainly covered by the first two of the 4 clusters.

The algorithms are also applied @p.;, using the maximum of the intensity values. Figure
6.18 presents the results of the achieved PET values. Tharityagf the malign lesions have
a higher PET intensity value than the benign lesions, wisetlea discriminative power is not
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Figure 6.16: Boxplot summary of ADC values for given cluster size, gralijpy malign (m)
and benign (b) lesions.
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Figure 6.17: FCM clustering of ADC values for one lesion. The colored esrare the prob-
abilities, that a ADC value belongs to a cluster. The vellioas represent the cluster centers.
The histogram in the background shows the distribution efvibxel ADC values.

as good as for ADC values due to overlaps of the data. The Ristecing algorithm does not
contrast from the other algorithms as much as it did for AD@ARIustering.

Figure 6.19 visualizes the centroid PET values for a clusiter ranging from 2 to 15. The
clustered PET value rises with increasing number of clastert the values are already discrim-
inative when using 2 clusters.

6.3.2 Evaluation of the DCE-MRI Kinetic Curve Features

The kinetic curve features extracted from the fitted asymmegeneralized logistic function are
examined in this experiment, which are MaxEnh, TTP, MDERJ AaC. For each of these
features the discriminative power is analyzed using bdgpémd the Gini importance from a
trained RF.

Experimental Setup To get the importance ranking of the features a RF trainingtasted
using all curve features obtained from the manual annetatiespectively the automatic seg-
mentation. The tree siz€l'ree has been set to000.
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Figure 6.18: PET intensity values of the 16 patients summarized by bds@ad grouped by
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Figure 6.19: Boxplot summary of PET values for given cluster size, gralipemalign (m) and
benign (b) lesions.

Validation Measures The discriminative power of the features is visualized bypgiboxplots.
For each feature the patient data is divided into benign aaligmant groups and a boxplot
statistic is calculated from the feature values. The ingraré of a feature is indicated by the
Gini importance, yielded from the RF training.

Results The distribution of the feature data is summarized in Figh&0 by a boxplot dia-
gram. The distribution is plotted for both data pools, the &énom the manual annotation and
the one from the automatic segmentation. The boxplots Mimsahow well the features are
discriminative when treating them independently from eattfer. The MaxEnh and the AuC is
in the same range for benign and malign lesions, with a highgance in the benign data. The
TTP feature reveals that the peak of the curves for the bdagjons is always at the end of the
DCE-MRI sequence, which indicates a constant increaseedsitinal intensity. For malignant
lesions the TTP values ranges from the early postcontrasepto the late postcontrast phase.
The mean of the MDER feature is higher for malign lesions,clwlimplies a rapid contrast
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MAXENH TTP ~ AUC MDER THM a B T k MAXENH TTP ~ AUC MDER THM a B T k
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Figure 6.20: Boxplots of the curve features used for classification, peauby lesion type
malignant (m) and benign (b). Left: Data taken from manualgated lesions, right: Data from
segmented lesion.

enhancement in the malign lesions. The mean THM is highebdaign lesions, which is an
indication that the contrast uptake of benign lesions is/atahan for malign lesions. These
observations are in concord with the results of Kuhl et &, &1, where it has been observed
that 83% of the benign lesions have a constant increase sighal intensity, and that a washout
in the late post-contrast phase in combination with a rapdliatense enhancement is indicative
for malignancy.

In Figure 6.21 the Gini importance resulting from the RFrtirag) is plotted. For the manual
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Figure 6.21: The Gini importance of the DCE-MRI kinetic curve featureseftt. Data taken
from manual annotated lesions, right: Data from segmersidm.

annotated lesions the TTP, MDER and THM features get theeligtanks. For the automati-
cally segmented lesions theand THM feature dominates the others features. Examiniag th
boxplots from Figure 6.20 reveals that there is less overidipe benign and maliga values ob-
tained from the automatically segmented lesion than fonthealues obtained from the manual
annotations, which results in a higher discriminative poamd finally in a higher importance
score of the RF. MaxEnh and AUC, as well@aandr have a low score in both cases. As seen
in the boxplots there is a large amount of overlap for these dalues, and this makes it less
attractive for the RF, resulting in a lower score.
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6.3.3 Classification Performance for Feature Subsets

The following experiment is evaluating the classificati@rfprmance using RF as a classifier.
The benefits of each modality are evaluated by traininingpaadiction of the class using subset
of features and combinations of them. The features areativiigto following subsets:

* fi-ader fi-per- The DWI-ADC and PET value from FCM clustering with 4 cluster

* fi-curve. features from the fitted asymmetric logistic functienf,r, k, AUC, THM, TTP,
MDER, MAXENH).

* fi-cker J1-Acke: the plain DCE-MRI CKC intensity values, as well as theiridatives.

Experimental Setup The classification of the lesion is done using a RF classifiee number
of trees ftred in the RF training is set to 200.

Validation Measures The performance is evaluated using a LOOCYV process withe2@-it
tions. As performance measure the sensitivity, specificibyrect rate, error rate, positive pre-
dictive value, negative predictive value, AuC, and the Fasuee is calculated. A short explana-
tion of these performance measures is given in the ApperatieTA.2. The tests are performed
using the data obtained from the manual annotafibnas well as the data obtained from the
automatic segmentatidh

As rule for the RF votes on the one hand the majority rule isluadere more than half of
the votes of a RF prediction must be assigned to one clasectdedfor this class. On the other
hand an optimal threshold value for the votes is calculayechdximizing the F-measure, which
is the harmonic mean of sensitivity and specificity. Theshodd value is iterated from 0 to 200
(ntree) and the F-measure is calculated for the given tbtéstalue. The results given by the
threshold value with the maximum F-measure, are stored.

The Receiver Operating Characteristic (ROC) curve [112which the AuC measure relies
on, is computed by varying the threshold level for the votemfO tontreeand calculating the
sensitivity and (1-specificity) using the given threshold.

6.3.4 Results

Table 6.10 summarizes the F-Measure, the sensitivity, gkeificity and the AuC of the ROC
curve for feature combinations using the majority rule andoptimized threshold value. A
complete summary with all of the performance measuredlisb®ve, is given in the Appendix
Tables A.3and A.4.

Choosing an optimal threshold increases the predictiofopaance significantly in all
cases. For instance, the F-Measure forq. increases fron0.82 to 0.90 and the sensitiv-
ity/specificity from0.80/0.83 to 1.0/0.83 when using an optimal threshold. The trade-off be-
tween sensitivity and specificity can be observed in thegetalles. When using an optimal
threshold the sensitivity is in common decreasing and tkeifipity is increasing.

fi.ade 1S performing best in all cases when comparing single feasubsets only fi_,qe,
J-ckes Ji-Acker fi-curve, @NAf1_per). The sensitivity ofl .0 and specificity 0f.83, using an optimal
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threshold reflects the distribution of the feature datasebaerved in Figure 6.15. The clustered
ADC data values are perfect distinct, with the exception é outlier. The performance is
similar for both manual annotated lesion data and autonsa&tigmented data.f;_,q4. and its
combination with other features are always in the top-rabksh for manual annotation and
automatic segmentation as well as for majority votes anuingbtthreshold value. Usingj_ ...,
Jr-pet OF fi_curve fEAtUrEs withoutf; 4. for classification results in a low F-Measure and a low
ranking in the table.

There is a performance drop observed between manual amdaitsegmented data, when
using fi.cke Or fi-Acke, @lSo in combination with other features. On the other h#melF-value
and AuC measure fofi_ ... in combination with other feature sets are higher for thersaged
data when using an optimal threshold.

Focusing on the AuC, which is independent of the choice ofttreshold, it can be observed
that the measure increases when modalities are combinedhgtance, for automatic segmen-
tation the AuC forf;_,4. is 0.80, for fi_,e; 0.59, and for f;_.,e 0.65. Though, when combining
Jr-ade With fi_pe; and fi_c.me, @ top score 08.94 is obtained for the automatic segmentation, and
Jieade ¥ fi-curve results in the top AuC score 6f90 for manual segmentation data. This indicates
that the robustness of the classifier increases when usimbinations of several modalities.

6.3.5 Discussion

In this section the classification performance of the preddSAD system has been evaluated,
as well as an insight in the proposed classification featha@g been given. In the first part
the proposed FCM clustering algorithm has been examineerenh,., respectivelyl,.; values
within the lesion are clustered and the cluster center wighdwest, respectively highest value
is picked as representative value. FCM has been comparédtivatalgorithms of minimum
value selection of raw data and mean filtered data, as wellrasdns clustering. The experi-
ments revealed that FCM clustering of the ADC values withustelr size greater than 2 gives
discriminative features. In the second part of this sectiankinetic curve features extracted
from the regression curve have been examined, revealinigeoonte hand that there is a variance
in the values obtained from the manual annotated data pablrenautomatic segmented data,
resulting in a higher performance in the final classificatimmthe automatic segmentation.

Finally, the performance of the classifier using subseteafures has been measured. The
results showed that when using a combined feature set dfrakk tmodalities, the performance
surpasses the performance of a single modality approa@hAliR values forf;_q4c, fi-pet, @and
fi-cker rESPEctivelyf, ...we are for the automatic segmented lesioAsk0, 0.59, 0.51, respec-
tively 0.65, whereas the combination ¢f 4qc, fi-pet, and fi_cume gives an AuC 0f0.94. This
indicates that the modalities provide complementary mfation for the classification, resulting
in a higher score.

Although, due to the small sample size of 16 patients theemsgire power of the statistics is
quite limited. The increase in performance may thereforedam more as a trend than as a solid
statistical performance measure. Anyway, with an increfgiee sample size similar results are
expected, since the results are compliant with results fstmar studies. Yabuuchi et al. [172]
reports a sensitivity and specificity 82% and86% for combined DWI-ADC, DCE-MRI mor-
phological and kinetic curve features setup, where theidatterpreted by radiologists. In this
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thesis the sensitivity and specificity for combined DWI-ARGd DCE-MRI kinetic curve fea-
tures is87%/99% for the automatic segmentation, respectiv&ly,/91% for manual annotated
lesions. Levman et al. [91] used DCE-MRI kinetic curve featuin a CAD system and reports
an AuC, respectively sensitivity and specificity @74, 63% and79%. In this study the DCE-
MRI kinetic curve features shows an AuC, sensitivity andcHjmity of 0.70, 67% and83% for
the manual annotated lesions, respectivetp, 61% and68% for the automatic segmentation.

The proposed CAD system gives comparable results to state-@rt DCE-MRI CAD sys-
tems. In a recent study Agner et al. [2] list an AuC, senstiaind specificity 00.92, 95% and
82% using morphological and spatiotemporal texture featubewe may be referred to Table 4.1
in the “Recent Work” chapter to get the performances of thioua DCE-MRI CAD studies.
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man seg man seg
fr-ade * fiopet 0.83 0.75 | 0.90| 0.77 | 0.86 | 0.68
fi-ade 0.82 0.82 | 0.80| 0.83 | 0.80 | 0.83
Jieade * froacke 0.73 0.28 | 0.82 | 0.66 | 0.80 | 0.17
fr-ade T fi-curve 0.70 0.59 | 0.90 | 0.57 | 0.90 | 0.44

fr-ade * fi-cke * fruacke | 0.69 0.31| 092 | 0.55| 0.83 | 0.19
fr-ade * fipet + fi-curve | 0.68 0.66 | 0.90 | 0.55 | 0.90 | 0.53

- Acke 066 | 002081 056] 0.75| 0.01
Froche * fi-eke 066 | 033|094 051 0.70 | 0.22
fr-ade ¥ frcke 0.63 | 0.36| 0.80 | 0.52 | 0.80 | 0.23
Fropet * frcurve 063 | 061 084 050 | 0.90 | 0.47
Frone 062 | 046 0.80| 0.50 | 0.72 | 0.33
frpet + frche 0.60 | 0.47 | 0.75| 0.50 | 0.79 | 0.33
frcurve 057 | 049 080 0.44 | 0.90 | 0.33
Fropet 0.2692| 0.27 | 0.70 | 0.17 | 0.70 | 0.17
| Features [ F-Measure | Sensitivity/Specificity [ AuC |
man seg man seg man seg
Trade 091|091 1.00[ 0.83] 1.00 [ 0.83 | 0.79 | 0.80
Froade * J-Acke 0.89 | 0.73| 0.80 | 1.00 | 0.66 | 0.82 | 0.87 | 0.66
fr-ade + frpet 0.87 | 0.82| 0.92| 0.83| 0.82 | 0.83 | 0.90 | 0.89
fr-ade * fi-curve 0.86 | 0.93| 0.81| 0.91] 0.87 | 0.99 | 0.88 | 0.91
- Acke 0.84 | 0.60 | 0.76 | 0.95 | 0.58 | 0.63 | 0.79 | 0.45
fr-ade + frcke 081|070 0.79| 0.83| 0.64 | 0.77 | 0.78 | 0.69

firade * fipet ¥ ficurve | 0.81 ] 0.94 | 0.83 | 0.79 | 0.89 | 0.99 | 0.86 | 0.94
fiade + ficke ¥ fi-acke | 0.80 | 0.58 | 0.88 | 0.73 | 0.49 | 0.73 | 0.81 | 0.53

fr-cke * fr-Acke 0.76 | 0.52 | 0.78 | 0.75| 0.53 | 0.52 | 0.75 | 0.38
Frpet 0.75| 0.76 | 0.69 | 0.83 | 0.70 | 0.83 | 0.59 | 0.59
Frone 0.74 | 055 0.70| 0.79 | 0.62 | 0.49 | 0.70 | 0.51
Jficurve 0.74 | 0.64 | 0.67| 0.83| 0.61 | 0.68 | 0.70 | 0.65
fipet * fi-che 0.72| 054 0.70 | 0.74 | 0.75 | 0.42 | 0.71 | 0.55
Frpet * fi-curve 0.70 | 0.76 | 0.76 | 0.66 | 0.84 | 0.70 | 0.72 | 0.77

Table 6.10: Classification performance results using LOOCV with 20atiens. The upper
Table represents the results using a majority vote for ifleaion, and the lower Table the
results using an optimized threshold value. Performantgesaare listed for the manual an-
notated lesiond.’ (mar) and the automatically segmented lesidhéseg. The feature subset
contains: DWI-ADC value from FCM clusteringfi(,4.), PET values from FCM clustering
(f1-pet), data values from the Characteristic Kinetic Curve (CK@J ¢heir derivatives f. .,
fi-aeke), and features from the fitted asymmetric logistic funct{gn.....). The table is sorted
by the F-Measure of the manual annotated lesions. The Awleiically for both majority vote
threshold and optimal threshold, and is therefore listdy once.
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CHAPTER

Conclusion

In this final chapter the crucial points of the Thesis are pigakated and a summary of the
proposed CAD pipeline is given. A few ideas for possible fatwork are also given.

7.1 Summary

In this thesis a CAD system has been proposed, providing-&ultomatic segmentation and
classification of breast lesions using a novel multimodadging approach. It has been hy-
pothesized that the modalities DCE-MRI, DWI, and PET previ@mplementary information,
resulting in an improvement of the CAD system. A main pointhef thesis is the comparison of
the multimodal approach with single modality approachdw gerformance of the CAD system
has been evaluated and compared with several state-ail@AD systems.

The proposed CAD pipeline consisted of three main stepdstragon of the modalities,
segmentation of the lesions, and the classification of tiereinto being benign or malignant.

In the registration step the image modalities were transfor to a reference coordinate sys-
tem, so that the spatial position of a voxel is equal for altiadities. Patient movement, distor-
tions in the DWI modality, as well as the differing patiensjiwons in the MRI and PET scanners
had to be compensated. A LDDMM registration approach, thar8gtric Normalization [14],
in combination with CC and MI similarity metrics was able &pister these modalities. The
PET modality has been registered indirectly by registettiregCT modality acquired in PET-CT
scanner to the MRI modality, and applying the yielded tramsftion on the PET image. Us-
ing combined PET-MRI scanners, which are currently in theqiypical phase, will render this
indirect registration step obsolete.

In the segmentation step each voxel within the breast hasdiassified as either cancerous
or non-cancerous by a RF. Intensity based, textural bagedl kimetic curve features have
been proposed. The evaluation of the segmentation reviaethe textural and kinetic curve
features did not improve the performance of the segmentatithe evaluation also revealed
that the multimodal approach improves the segmentatiofoqmeance in comparison with a
single-modality DCE-MRI approach. 15 from 16 lesions hadrbsuccessfully located by the
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algorithm, although the segmentation performance with amm&SC of 0.45 using DCE-MRI,
DWI and PET intensity values needs to be improved in futudies. Ideas of getting a better
segmentation are listed in the next section.

The classification step was the final step in the CAD pipelivtegre the segmented lesions
had been classified into malign and benign using RF. For thisgse the DCE-MRI, DWI, and
PET data within the lesion have been clustered using FCMrevtlestering DWI and PET is
a novel approach. In the evaluation process it has been stiatthe clustering process gives
discriminative features. It has been also revealed thatthiéimodal approach surpasses the
classification performance using only a single modality.

The main contribution of the thesis was the automatic fusbbmultimodal PET, MR,
and DWI breast image data by a registration process, theusfathe fused information from
all modalities for automatic segmentation and classificabf the lesion, the usage of RF for
detecting significant information for segmentation andsifécation in the multimodal dataset,
and the FCM clustering method for automatic selection afificant regions in DWI and PET
modalities for lesion classification.

It can be concluded that the proposed CAD pipeline gives eoaiype results to other state-
of-the-art CAD methods. The hypothesis that the modaljiievide complementary informa-
tion, resulting in a performance improvement, has beedatdd and confirmed in the evaluation
process.

7.2 Future Work and Improvements

The approach described in this thesis gives plenty of oppiti¢s for continued research and
improvement, which are exemplarily addressed in this gecti

Modalities: Initial studies using Magnetic Resonance Spectroscope$ion diagnosis show-
ed promising results [63]. This modality can be easily adttethe proposed CAD system.
Similar evaluation methods as proposed in this Thesis mappked on the additional modality,
in order to analyze its potential in a CAD system.

Registration: The LDDMM registration process is computational demandirggulting in
registration times of more than 3 hours for a single pati€fiis limits the potential of the
CAD system in the routine clinical practice. However, thexgoom of optimization in the
registration framework. The version of the ANTS registratframework used in this Thesis
is single-threaded, computing the registration on a singte only, even when there are more
available. Adapting the algorithm to be multi-threaded ldodecrease the computation time
significantly [121]. The switch from the CPU to the GPU maydree also of interest, which
enables massive parallel computing.

During the work on this Thesis it has been observed that th®ET scanner software does
not always align PET and CT image perfectly. An additiongidriregistration using MI may
align them better and increase the segmentation perfoenanc
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Segmentation: The segmentation as proposed in this thesis is performedvaxel-level,
ignoring structural and topological relations. Methodéick consider the spatial relationship,
like active contour [3], graph-cut [157], or superpixel semtation [127] in combination with
the multimodal dataset may improve the segmentation pagbce.

An important point in future studies has to be that the tiroapof the contrast uptake is de-
termined and synchronized for all patient images when usieagontrast uptake as segmentation
feature.

Classification: The classification features proposed in this thesis reliegmage intensities
and intensity kinetics only. Other current CAD systems udel textural and morphological
features too [2,100,111,181]. Adding these features nagase the classification performance.
Since producing manual segmentations of breast lesionsneaconsuming and unsatisfy-
ing process, a multiple-instance-learning (MIL) appropt] may be an interesting alternative
in the context of breast cancer detection. Instead of usistances with segmented and la-
beled lesions for training, labeldshgscontaining many instances are used for training. As label
the classes 'no lesion’ and ’'lesion’ may be used. From sucbllaation of labeled bags, the
classifier tries to induce a model, which can be used to l&eehidividual instances correctly.
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APPENDIX

Tables

A.1 Haralick Texture Features

The Haralick texture features are calculated from the GLGNbHows:

Notation N is the number of distinct intensities in the imagéi, ;) is the(i, j)th entry in the
normalized GLCM.

Following auxiliary statistic parameters are calculatedimplify the Haralick feature cal-
culation: p, andp, are the marginal distributions. They are obtained by surgrouer the rows,
respectively summing over the columns (Eqn. A.L). andy, are the marginal means of the
two random variables and are calculated as described intiegua.2. o, ando, are the vari-
ances of the two random variables (Eqn. A.3). The sum mdrgnadability p,.,., is defined in
Equation A.4) and the difference marginal probability , is defined in Equation A.5).

pali) = D _p(ij) py(i) = D_p(i.j) (A1)

fa = ijpxu‘) Hy = 3 py() (A2)

oy = Z(i — pta)*pe (i) oy = JZ(%’ — t1y)?py (i) (A.3)

Paty(n) = Z >_p(ij) with . = i l+j (A.4)

Pa-y(n) =D ip(@j) with = |i — j| (A5)
i
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2

o
1

(D—

Energy (Angular ) Measures the number of repeated pairs.
i . A -
fi | Second Moment) ZZP( 7) A high Energy indicates a high occu
i rence of similar pixel pair intensities.
5 Measures the contrast of the pixel pai
fa Contrast (Inertia) Z Z(i - 3)°p(i,5) A large Contrast value indicates a large
i difference of the intensities.
Measures the correlation of two var
. 1 ) ) .. ables by using the covariance value
fs Correlation 20y ZZ: Z(Z He) (7 = 1)) The Correlation is high if the intensities
! of the pixels are highly correlated.
£ Sum Of Squares: Z(i — 112)?pai) Measures the variance of the distrib
4 Variance - Hz) Ps tion of the intensity values.
Inverse Difference (i, ) Measures the homogeneity of the pixe
f5 Moment SN % pairs. The Homogeneity is large if th
(Homogeneity) i +(i—J) intensities of the pairs are similar.
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Measures the mean of the intensity vi

|-
is

ty

J

2N
fo Sum Average Z NPrty ues. A high Sum Average correspon
o with high intensity values of the pixels|
Measures the variance of the intens
. 2N values. A high Sum Variance indicate
fz Sum Variance > (0 —f6)?pety(n) a high variability in intensity values o
n=2 the texture.
Measures the randomness of the inte
fs Sum Entropy - prw ) log(paty(n)) sity values.
Measures the randomness of the dis
fg Entropy =3 (i, 5) log(p(i, ) bution. A high Entropy indicates ran
i domly distribution of the gray-levels
f Difference ' _ ) ? ] Measures the variance of the differen
10 Variance Z J= lew—y(l) Pe—y(J) marginal probabilities.
J A
Measures the entropy or amount of dis-
f11 | Difference Entropy _ Z Pa—y(n)log(ps_y(n)) order within the difference marging
probabilities.
flo Irr:]fgzrir;?rtéogf fo+>, Z p(%, j) log(pz(4)p=(5)) Haralick lists two ways of measurin
correlation 1 — >, pe(D)log(p. (i) the information correlation.
Information
fi3 measure of 1 — e—2(Hay—fo)

correlation 2

Table A.1: Haralick Texture features calculated from the Gray-LevetdCcurrence Matrix
(GLCM).
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A.2 Classifier Performance Measures

True Positives | Number of correctly classified malignant sample

False Positive§ Number of incorrectly classified malignant samples

True Negative | Number of correctly classified benign samples

False Negative| Number of incorrectly classified benign samples
Number of overall samples

Sensitivity+ Specificity

o TP Sensitivity relates to the classifier’s ability to detgct
Sensitivity S o -
TP+ FN positive(malignant) samples.
e TN Specificity relates to the classifier’s ability to identi
Specificity S — . -
TN + FP negative (benign) results.
F-measure Sensitivity Specificity Harmonic mean of precision and recall.

AuC

1
/ ROC
0

Area under ROC curve, where ROC is a plot of S¢
sitivity vs. (1 - Specificity) [112]

Table A.2: Summary of common performance measures for classifiers.
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Correct Rate TP+ TN Rate of gorrectly identified samples, both malignant
N and benign.
Error Rate FlitfiFN Rate of incorrectly identified samples.
Positive Predictive Value TP Proportion of_ sam_p_les with positive test results that
TP+ FP are correctly identified.
Negative Predictive Valud TN Proportion of.sam.p.les with negative test results t
TN + FN are correctly identified.
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A.3 Classification Results

man seg man seg man seg man seg man seg man seg man seg
Sieade * fiopet 0.8259 | 0.7544| 0.8950| 0.8550| 0.7667 | 0.6750 | 0.8647 | 0.8143 | 0.8142| 0.7364 | 0.8469 | 0.7875| 0.1531 | 0.2125
fieade 0.8163 | 0.8163 | 0.8000| 0.8000 | 0.8333| 0.8333 | 0.8889 | 0.8889 | 0.7143| 0.7143 | 0.8125| 0.8125| 0.1875| 0.1875
fi-ade ¥ fi-Acke 0.7283| 0.2756 | 0.8150 | 0.7950 | 0.6583| 0.1667 | 0.7990 | 0.6139 | 0.6810| 0.3279 | 0.7563 | 0.5594 | 0.2438 | 0.4406
Jieade + fi-curve 0.6955| 0.5926 | 0.9000| 0.9000 | 0.5667 | 0.4417 | 0.7759 | 0.7287 | 0.7727| 0.7260 | 0.7750| 0.7281| 0.2250 | 0.2719

froade * fiecke + froacke | 0.6884| 0.3111 | 0.9200 | 0.8250 | 0.5500 | 0.1917 | 0.7731 | 0.6298 | 0.8049 | 0.3966 | 0.7813| 0.5875| 0.2188 | 0.4125
fipet + froade + ficurve | 0.6828 | 0.6632 | 0.9000 | 0.9000 | 0.5500 | 0.5250 | 0.7692 | 0.7595 | 0.7674 | 0.7590 | 0.7688 | 0.7594 | 0.2313 | 0.2406

Jracke 0.6594 | 0.0165| 0.8050| 0.7450 | 0.5583| 0.0083 | 0.7523 | 0.5560 | 0.6321| 0.0192 | 0.7125| 0.4688 | 0.2875| 0.5313
Jicke * fi-Acke 0.6586 | 0.3309 | 0.9350| 0.7000| 0.5083| 0.2167 | 0.7602 | 0.5983 | 0.8243| 0.3023 | 0.7750 | 0.5188 | 0.2250 | 0.4813
Sfroade * fi-cke 0.6279| 0.3613 | 0.8000 | 0.8000 | 0.5167 | 0.2333 | 0.7339 | 0.6349 | 0.6078| 0.4118 | 0.6938 | 0.5875| 0.3063 | 0.4125
Jipet + fi-curve 0.6269 | 0.6146 | 0.8400| 0.9000 | 0.5000| 0.4667 | 0.7368 | 0.7377 | 0.6522| 0.7368 | 0.7125| 0.7375| 0.2875| 0.2625
Siocke 0.6154 | 0.4557 | 0.8000| 0.7200| 0.5000| 0.3333 | 0.7273 | 0.6429 | 0.6000| 0.4167 | 0.6875| 0.5750 | 0.3125| 0.4250
Sipet + frocke 0.5984 | 0.4688 | 0.7450| 0.7900 | 0.5000| 0.3333 | 0.7129 | 0.6639 | 0.5405| 0.4878 | 0.6531 | 0.6188 | 0.3469 | 0.3813
Ji-curve 0.5691| 0.4865| 0.8000| 0.9000 | 0.4417| 0.3333 | 0.7049 | 0.6923 | 0.5699 | 0.6667 | 0.6656 | 0.6875| 0.3344 | 0.3125
Si-pet 0.2692 | 0.2692| 0.7000| 0.7000 | 0.1667 | 0.1667 | 0.5833 | 0.5833 | 0.2500| 0.2500 | 0.5000 | 0.5000 | 0.5000 | 0.5000

Table A.3: Classification performance results using LOOCV with 20atiens, sorted by F-value. Performance values are listed fo
the manual annotated lesiomadr) and the segmented lesiorse§. The feature subset contains: DWI ADC value from fuzzy anse
clustering (-,4.), PET values from fuzzy c-means clusteriryfg (), data values from the CKG{( .x.) and their derivativesfi_cx.),
features from the fitted asymmetric logistic functigi {,,ve)-
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man seg man seg man seg man seg man seg man seg man seg
Sroade 0.9091 | 0.9091 | 1.0000| 1.0000| 0.8333 | 0.8333 | 0.9091| 0.9091| 1.0000| 1.0000 | 0.9375| 0.9375| 0.0625 | 0.0625
Joade + fr-acke 0.8889 | 0.7270| 0.8000| 0.6550| 1.0000| 0.8167 | 1.0000| 0.8562| 0.7500| 0.5868 | 0.8750 | 0.7156 | 0.1250 | 0.2844
S1-ade + fi-pet 0.8723 | 0.8241| 0.9150| 0.8150| 0.8333 | 0.8333 | 0.9015| 0.8907 | 0.8547| 0.7299 | 0.8844 | 0.8219 | 0.1156 | 0.1781
freade + fi-curve 0.8564 | 0.9269 | 0.8100| 0.8700| 0.9083 | 0.9917 | 0.9364 | 0.9943 | 0.7415| 0.8207 | 0.8469 | 0.9156 | 0.1531 | 0.0844
Jr-acke 0.8414 | 0.5990 | 0.7550| 0.5750| 0.9500| 0.6250 | 0.9618 | 0.7188 | 0.6994 | 0.4688 | 0.8281 | 0.5938 | 0.1719 | 0.4063
Sfiroade * fi-cke 0.8111| 0.6976 | 0.7900| 0.6400| 0.8333| 0.7667 | 0.8876 | 0.8205| 0.7042| 0.5610 | 0.8063 | 0.6875 | 0.1938 | 0.3125
fipet + fioade ¥ fiocurve | 0.8104 | 0.9381 | 0.8300 | 0.8900 | 0.7917 | 0.9917 | 0.8691 | 0.9944 | 0.7364 | 0.8440| 0.8156 | 0.9281| 0.1844| 0.0719
freade + fi-cke * fruacke | 0.8000| 0.5812| 0.8800| 0.4850| 0.7333 | 0.7250 | 0.8462 | 0.7462 | 0.7857 | 0.4579 | 0.8250 | 0.5750| 0.1750 | 0.4250
Jieeke * fi-Acke 0.7647 | 0.5233| 0.7800| 0.5300| 0.7500| 0.5167 | 0.8387 | 0.6463 | 0.6716| 0.3974 | 0.7688 | 0.5250 | 0.2313 | 0.4750
Sipet 0.7549 | 0.7609 | 0.6900| 0.7000| 0.8333 | 0.8333 | 0.8734 | 0.8750| 0.6173| 0.6250 | 0.7438 | 0.7500 | 0.2563 | 0.2500
Siocke 0.7430 | 0.5484 | 0.7000| 0.6200| 0.7917 | 0.4917 | 0.8485| 0.6703 | 0.6129| 0.4370 | 0.7344 | 0.5719 | 0.2656 | 0.4281
Ji-curve 0.7395| 0.6446 | 0.6700| 0.6100| 0.8250 | 0.6833 | 0.8645| 0.7625| 0.6000| 0.5125| 0.7281 | 0.6375| 0.2719 | 0.3625
Siepet + fiocke 0.7176 | 0.5357 | 0.6950| 0.7500| 0.7417| 0.4167 | 0.8177| 0.6818 | 0.5933 | 0.5000 | 0.7125 | 0.6250 | 0.2875 | 0.3750
Jipet + fi-curve 0.7034 | 0.7636 | 0.7550| 0.8400| 0.6583| 0.7000| 0.7865| 0.8235| 0.6172| 0.7241 | 0.7188 | 0.7875 | 0.2813 | 0.2125

Table A.4: Classification performance results using LOOCV with 20aitens using an optimized threshold value for the Random
Forest prediction. The table is sorted by F-value.
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