
DISSERTATION

Molecular Dynamics Evidence of a

Three-term Kinetic Friction Law for

Mixed- and Boundary-lubricated

Nanotribological Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften
unter der Leitung von

Ao.Univ.-Prof.i.R. Dr.phil. Gerhard Betz
E 134 - Institut für Angewandte Physik

und

Priv.-Doz. Dr.rer.nat. Dipl.-Phys. András Vernes
E134 - Institut für Angewandte Physik

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von

Dipl.-Ing. Stefan Eder
Matrikelnummer: 9625614

Graf Starhemberg Gasse 29/23, 1040 Wien

Wien, im Juni 2012

1

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



DISSERTATION

Molecular Dynamics Evidence of a

Three-term Kinetic Friction Law for

Mixed- and Boundary-lubricated

Nanotribological Systems

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences
under the supervision of

Ao.Univ.-Prof.i.R. Dr.phil. Gerhard Betz
E134 - Institute of Applied Physics

and

Priv.-Doz. Dr.rer.nat. Dipl.-Phys. András Vernes
E134 - Institute of Applied Physics

at the Vienna University of Technology
Faculty of Physics

by

Dipl.-Ing. Stefan Eder
Matriculation No.: 9625614

Graf Starhemberg Gasse 29/23, 1040 Wien

Vienna, June 2012

2



Kurzfassung

In dieser Arbeit wird ein neues kinetisches Nano-Reibgesetz mit drei Termen vorgestellt
und verifiziert. Es beinhaltet den Amontons-Coulomb Term, der den lastabhängigen
Beitrag, und den Bowden-Tabor Term, der den haftungsabhängigen Beitrag zur Reibkraft
beschreibt, sowie den lastunabhängigen sogenannten Derjaguin-Offset, der durch die Ad-
häsion im Schmierstoff bedingt ist. Das Reibgesetz reproduziert Nichtlinearitäten und
Diskontinuitäten im Last-gegen-Reibkraft Verhalten, die man üblicherweise beobachtet,
wenn atomistische Tribosysteme unter Mischreibungsbedingungen geschert werden. Die
direkte Festkörperkontaktfläche, die zwischen zwei rauen Festkörperoberflächen entsteht,
wenn der Schmierfilm versagt, wird mittels eines selbst entwickelten Smooth Particle
(SPM) Ansatzes berechnet, der es erlaubt, diskrete Daten von Molekulardynamik (MD)
Simulationen ins Kontinuum abzubilden. Diese SPM+MD Methode wurde erfolgreich
angewandt, um den Einlaufvorgang von Nanotribosystemen zu analysieren, die anfangs
stark ausgeprägten direkten Festkörperkontakt zeigen, welcher gegen Ende fast vollends
verschwindet. Weiters wurde der Versuch unternommen, bei Systemen unter Grenzrei-
bungsbedingungen ohne direkten Festkörperkontakt den Derjaguin-Offset mit dem Grad
der Unordnung im Schmierstoff in Relation zu setzen. Diese Unordnung wird durch die
konfigurationelle Entropie quantifiziert und mit einem Makromolekül-Ansatz abgeschätzt,
der auf Kovarianz(super)matrizen der Kohlenstoffatome im Schmierstoff beruht. Das
Hauptresultat dieser Arbeit ist, dass die Reibzahl ihre makroskopische Bedeutung ver-
liert, d.h. sie kann nicht als Verhältnis der Reibkraft zur Last berechnet werden, wenn
die Schmierspaltdicke auf wenige Monolagen von Schmierstoffmolekülen reduziert wird,
was letztlich zum Versagen des Schmierstoffs und damit zu direktem Festkörperkontakt
führen kann. Allerdings können mit der Reibzahl, der effektiven Scherfestigkeit und
dem Derjaguin-Offset, die aus dem vorgestellten Reibgesetz folgen, drei lastunabhängige
Systemparameter angegeben werden, welche eindeutig die tribologische Reaktion von
Nanosystemen charakterisieren.
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Abstract

In this work a three-term kinetic friction law at nanoscale is proposed and proven to
hold. It includes the Amontons-Coulomb term describing the load-controlled contribu-
tion and the Bowden-Tabor term providing the adhesion-controlled contribution to the
friction force, as well as the load-independent Derjaguin-offset ascribed to adhesion in the
lubricant. The proposed law can reproduce the non-linearities and discontinuities in the
load-vs.-friction behavior commonly encountered when shearing atomistic tribological sys-
tems under mixed lubrication conditions. The solid-solid contact area occurring between
two rough solid surfaces when the lubrication film fails is calculated using a self-developed
smooth particle approach (SPM) which allows one to map the discrete data obtained from
molecular dynamics (MD) simulations to continuum. This MD+SPM method is success-
fully applied to analyze the run-in period of nanotribological systems exhibiting strong
solid-solid contact at the beginning and almost none at the end. Furthermore, an attempt
is made to relate the Derjaguin-offset in boundary lubricated systems without solid-solid
contact to the degree of disorder in the lubricant, which is quantified by its configurational
entropy and estimated using the single macromolecule approach based on covariance (su-
per)matrices of the carbon backbone atoms in the lubricant. The main finding of this
work is that the coefficient of friction loses its macroscopic meaning, i.e., it cannot be iden-
tified with the friction force per applied load as the lubrication gap thickness decreases to
a few monolayers of lubricant molecules, which eventually may lead to lubricant failure
and subsequent solid-solid contact. However, the coefficient of friction, effective shear
strength, and Derjaguin-offset following from the proposed three-term kinetic friction law
constitute the three load-independent system parameters which uniquely characterize the
tribological response of nanosystems.
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Introduction

Tribology is the science of bodies in relative motion and deals mainly with friction, lubri-
cation, and wear [1]. However simple the concept of friction (and the phenomenological
laws describing it) may seem, its atomistic origins are still disputed. Understanding any
tribological system will usually require a sound appreciation of a variety of phenomena
covering a large spectrum of length and time scales [2]. It is this inherently multiscale
nature of tribology that has led to considerable effort in recent years to bridge the gaps
between the involved theories and methods.

In this context, atomistic modeling and simulation play an important role as tools for
discovery [3]. The method of molecular dynamics (MD) simulations was first applied in
the 1950s [4], but its introduction to the field of tribology did not come until the late 1980s
[5, 6]. It allows the modeling of the behavior of solids and lubricants in systems where
the surfaces come in such proximity that the resulting lubrication gap is of the order of
a nanometer. In this case, the molecular/atomistic nature of matter can no longer be
ignored, and continuum mechanics fails to correctly reproduce how the systems behave.
Nowadays, MD is a well-established tool for studying friction at nanoscale, and several
book chapters have been written on how to properly set up and carry out the required
simulations [2, 7, 8, 9]. With powerful and flexible MD-codes abounding and often freely
available over the internet [10, 11, 12, 13], this basic numerical machinery can thus be
used by anyone with access to sufficient computing capacity. However, the art of scientific
computing often starts when all the simulations have finished and the data have to be
analyzed and interpreted.

My initial efforts in computational tribology were atomistic sliding simulations with
unpolar lubricants similar to Refs. [14, 15, 16] aiming at the calculation of a nanoscopic
coefficient of friction from the contact forces [17]. However, many tribological systems also
involve surfactant-type molecules, which instead of layering laterally in the lubrication
gap tend to adsorb to the slider surface and stand more or less upright, forming quasi-
crystalline monolayers [18, 19, 20]. Furthermore, the behavior of these systems changes
considerably with the nano-roughness of the sliders [21, 22] and the lubricant coverage,
i.e., the packing density of the molecular chains on the surface [23, 24]. I therefore studied
the relationship between the applied load and the resulting friction force in systems with
varying slider roughness, lubricated with monolayers of fatty acids at diverse lubricant
coverages [25, 26, 27]. Some of these systems obeyed the Amontons-Coulomb friction
law [28, 29], but many, while being linear in their load-vs.-friction behavior, exhibited
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a non-vanishing friction force at zero load, an offset first introduced by Derjaguin [30].
In this case, the nanoscopic coefficient of friction must be calculated as the slope of the
load-vs.-friction relation for the respective system.

Things are further complicated when the asperities, i.e., the roughness features on the
substrate, become as tall as the lubricant film is thick, so that they engage in contact
if the lubricant fails to separate the solid surfaces. In a fashion conceptually similar to
some work by Gao and co-workers [31], who analyzed the effect of an infinite, barrier-
type roughness on a nano-junction lubricated with n-hexadecane, I simulated systems
lubricated with fatty acids and studied their frictional response to the collisions of large
asperities [32, 33, 34]. This leads to non-linearities and discontinuities in the load-vs.-
friction relation where asperity contact plays a crucial role. A first approach to quantify
the amount of asperity contact using the discrete MD representation of the system yielded
a contact atom counting procedure, which proved to be quite simple but almost impossible
to automatize and therefore neither reliable nor practical. This difficulty led to the idea
of using the asperity contact area as a measure for the amount of asperity contact and
calculating it with continuum mechanics.

Therefore, this work initially deals with the question of how MD data can be visualized
continuously and how this representation may be used to better analyze simulation results.
This constitutes an important step in the direction of multiscale tribology, as concepts
for connecting the discrete world of atomistic simulations with continuum mechanics are
being developed [35]. I will present a self-developed computational scheme which maps
MD data to continuum based on the smooth particle method (SPM) [36]. This approach
is then applied to straightforwardly calculate the contact area between two asperities as
they touch during the breakdown of the lubricant film.

In a further step, I investigated if the knowledge of the asperity contact area can
be incorporated into a nanoscopic kinetic friction law that can correctly reproduce the
frictional response of lubricated atomistic tribosystems, i.e., the friction force as a function
of the normal load, even if direct contact between the solid sliders occurs. The friction laws
commonly in use only apply to systems under very specific conditions. A slightly extended
friction law, which under certain circumstances automatically simplifies to well-known and
trusted friction laws, could be applied much more generally to all kinds of nanotribological
systems. By extending Derjaguin’s modified Amontons-Coulomb friction law [30] with
the Bowden-Tabor term [37], which includes the asperity contact area, I obtained a new
three-term kinetic friction law which can reproduce the distinct non-linearities occurring
in the load-vs.-friction behavior of many nanoscopic tribosystems [38, 39]. To my best
knowledge, the simultaneous occurrence of the Derjaguin-offset and the Bowden-Tabor
term in one friction law is extremely rare in literature. The parameters describing a
system’s frictional response are obtained from a fitting procedure and turn out to be
load-independent system parameters. Several large-scale case studies to test the validity
of the SPM-approach demonstrate that the proposed friction law is very well suited not
only for characterizing steady-state sliding, but also nanoscopic run-in procedures [40].

2



A third aspect of this work is the speculation on the origin of the Derjaguin-offset
in the proposed three-term kinetic friction law, which occurs predominantly, but not
exclusively, in nanoscopic systems and is linked to adhesion in the presence of a thin layer
of lubricant. In particular, there seems to be a connection between this offset and the
degree of disorder in the lubricant [41], which may be quantified as its configurational
entropy [40]. In real nanoscopic systems, e.g., nano-electromechanical systems (NEMS),
the friction force is usually dominated by the adhesion-controlled contribution [42]. I will
show that the load-independent friction force offset due to lubricant adhesion is reflected
in the configurational entropy of the lubricant when disorder is induced by low lubricant
coverage.

In chapter 1, I will lay out the theoretical framework to the extent required for un-
derstanding the MD simulations in this work. Chapter 2 deals with the components and
the employed setup procedures of the simulated nanosystems. The methods for post-
processing data analysis will be described in chapter 3. Finally, in chapter 4 I will present
several large-scale case studies of MD shear simulations, validating the proposed methods,
and discuss the theoretical findings.
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Chapter 1

Classical Molecular Dynamics (MD)

In classical molecular dynamics (MD) simulations, atoms are treated as discrete particles
characterized by properties such as their position, velocity, mass or charge. By integrating
Newton’s equations of motion for a set of these particles, the time development of the
system can be followed. The forces acting on the particles are calculated as the negative
gradient of their total energy, which is determined by the potentials governing the particle
interactions.

Although the mathematical background for performing MD simulations has been
known for a long time, for its actual application fast computers were necessary to carry
out the numerical calculations and handle the large amounts of resulting data. In one of
the pioneering works, Alder and Wainwright simulated the phase transition from liquid
to solid for a hard sphere system in 1957 [4]. Gibson, Goland, Milgram, and Vineyard
were probably the first to use a contionuous potential in an MD calculation simulating the
defects induced by radiation in 1960 [43]. In 1964, Rahman investigated numerous prop-
erties of liquid argon using a Lennard-Jones-type potential (discussed in section 1.2.1),
obtaining surprisingly good results with respect to experimental data due to the inertness
of the noble gas [44]. In another paper about the properties of argon in 1967, Verlet intro-
duced his time integration algorithm (see section 1.3.1) which is still one of the most-used
in MD simulations today [45]. Among the areas of interest to MD nowadays are liquids,
fracture mechanics, cluster properties, biomolecules and drug design, and the subject of
this work: friction at the nanoscale.

In this chapter I will briefly introduce some basic concepts required for understanding
MD simulations. In general, only those aspects of MD which are important for this work
will be discussed, for further information the reader is referred to textbooks which address
the subject matter in a more comprehensive manner [46, 47, 48, 49, 50].

1.1 Newtonian Dynamics of Atoms

In classical MD, it is important to know why one may apply Newtonian dynamics to
systems small enough that one would consider a quantum mechanical approach more
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appropriate. In the widest possible sense, any system of particles obeys the rules of rel-
ativistic quantum mechanics. The problem is that the associated time-dependent Dirac
equations describing the system’s behavior are either impossible or extremely time con-
suming to solve for most systems. Therefore, depending on which sort of questions one
wants to answer, certain approximations can be made which allow one to either simulate
bigger systems and/or follow them for longer time spans, giving insights into the phenom-
ena of interest. An overview of the hierarchy of approximations which can be made is
given in Ref. [35], and a full account of how to derive classical molecular dynamics from
quantum mechanics can be found in Ref. [50], but a short summary will be given here.

One can start by neglecting relativistic effects and try to solve the time-dependent
Schrödinger equation. A first approximation is to separate the motion of the nuclei from
that of the electrons, since the masses of protons and neutrons are almost 2000 times
greater than those of electrons. Now it is reasonable to look at the electrons as moving
in an effective force field generated by the nuclei, which leads to a system of two coupled
equations which constitute the basis of the so-called time-dependent self-consistent field
(TDSCF) approach. Taking the classical limit ~→ 0 of the time-dependent Schrödinger
equation governing the motion of the nuclei, one obtains a set of equations which are
isomorphic to the Hamilton-Jacobi formulation of the classical equations of motion. The
nuclei now move according to Newton’s equations in an effective so-called Ehrenfest po-
tential which results from weighted-averaging the electrons’ degrees of freedom with the
nuclei held fixed.

In a next step, the calculation of the nuclear positions can be separated from the calcu-
lation of the potential energy hypersurface by solving the stationary electronic Schrödinger
equation for numerous nuclear configurations. Thus it is possible to sample the Ehren-
fest potential, allowing the introduction of an approximative reconstruction of the global
energy hypersurface using analytical many-body potentials. Accordingly, Newton’s equa-
tions of motion for classical MD simulations are written as

MiR̈i(t) = −∇Ri
V (R(t)) , (1.1)

whereMi is the mass and R̈i(t) the acceleration of nucleus i, ∇Ri
is the gradient evaluated

at the position of nucleus i, and

V (R(t)) =
N
∑

i=1

VI(Ri(t)) +
N
∑

i<j

VII(Ri(t),Rj(t)) +
N
∑

i<j<k

VIII(Ri(t),Rj(t),Rk(t)) + . . . .

(1.2)
Here,R(t) is shorthand forR1(t),R2(t), . . . ,RN(t), whereN is the total number of nuclei.
The expansion in Eq. (1.2) can be further simplified to a two-body (pairwise) potential
function V depending only on the distance between nuclei i and j, |Rj(t)−Ri(t)|. From
here on, the explicit time-dependence of R(t) will be omitted for clarity if not necessary.
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1.2 Interaction Potentials

The physics of an MD simulation is described by the potentials which model how the
particles interact. The right choice of potentials used for a particular MD simulation is
therefore of crucial importance. Potentials come in many classes, each one specialized in
its own field of applications. Metals, for example, need to be treated quite differently than
organic molecules or noble gases. Due to its simplicity and historical importance, I will
first discuss the Lennard-Jones potential. I will then briefly introduce more specialized
potentials used for modeling metal substrates in section 1.2.2 as well as for describing
organic lubricants in section 1.2.3.

1.2.1 Lennard-Jones potential

The Lennard-Jones (LJ) potential as a simple but very useful two-body (pairwise) poten-
tial was introduced in the early 1930s [51],

V (LJ)(rij) = αε

[(

σ

rij

)n

−
(

σ

rij

)m]

, m < n , m, n ∈ N , (1.3)

where
rij := |Rj −Ri| , (1.4)

and

α =
1

n−m

(

nn

mm

) 1
n−m

(1.5)

is a scaling factor ensuring that the minimum value of the function is −ε, such that the
potential energy of a system of N particles is given by

V (LJ)(R) =
N
∑

i=1

N
∑

j>i

V (LJ)(rij) . (1.6)

In this work, the LJ potential is used in its most common form, namely with n = 12
and m = 6, i.e.,

V (LJ)(rij) = 4ε

[

(

σ

rij

)12

−
(

σ

rij

)6
]

. (1.7)

The term with the exponent 6 represents the van der Waals potential and models the
dispersive dipole-dipole interactions between the particles. The other term may be in-
terpreted as one which mimics the Pauli-repulsion of electrons, although the choice of
the exponent 12 is not based on any physical law but mainly on numerical simplicity,
since the term can then be easily calculated as the negative square of the van der Waals
contribution. The energy parameter ε stands for the depth of the potential well, so higher
values cause tighter binding and harder materials. The other parameter σ denotes the
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zero-crossing of the LJ potential function and is proportional to the equilibrium distance
21/6σ = 1.12σ between the two particles. In Fig. 1.1 it can be seen that the potential
decreases towards zero quite rapidly, so in order to save a considerable amount of compu-
tation time it makes sense to introduce a cut-off radius rc, which is usually of the order of
3σ, beyond which all interactions are neglected. The small jump in the resulting potential,
which causes a spike in the potential’s gradient and therefore in the inter-particle force,
can be remedied by shifting the entire function by −V (LJ)(rc).

Figure 1.1: The Lennard-Jones potential as given in Eq. (1.7) for ε = 1 and σ = 1.

1.2.2 Interaction potentials for metals

The Lennard-Jones potential cannot adequately reproduce the behavior of metals since it
does not use information about the electronic structure. However, explicitly considering
electrons would require a quantum mechanical treatment of the system, which is much
more complex and would reduce the maximum number of atoms to ∼ 1000. To overcome
this difficulty, in the mid-1980s several groups, most notably Daw and Baskes [52], Finnis
and Sinclair [53], and Ercolessi, Parrinello, and Tosatti [54], developed potentials based
on the general concept of density. As the local surrounding of an atom becomes denser,
bonds become weaker, therefore the relationship between cohesive energy and coordination
should not be linear anymore, as is the case with pairwise potentials [55]. This changes
the form of the attractive part of the potential, while the part modeling the repulsion
between atomic cores may remain pairwise.

In the approach by Daw and Baskes, the embedded atom method (EAM), an atom
is viewed as an impurity embedded in a host of other atoms [52], and the total potential
energy reads

V (EAM)(R) =
∑

i

Fi

(

∑

j 6=i

ρj(rij)

)

+
1

2

∑

i

∑

j 6=i

φ(rij) , (1.8)
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where Fi is the embedding energy as a function of the sum over the electronic densities
ρj (at the position of, but excluding the contribution of atom i), and φ is the repulsive
pairwise potential. Although Fi is a multi-body contribution since it depends on all atoms
within atom i’s vicinity, the total energy is still a simple function of the positions of the
atoms and therefore relatively straightforward to calculate.

The general functional form in Eq. (1.8) also applies to the Finnis-Sinclair potential
and the glue model by the other groups mentioned above. However, the method leading
to the functions Fi, ρj, and φ varies greatly between the three approaches.

1.2.3 Interaction potentials for molecules

System components that are truly molecular, i.e., including covalent bonds, feature in-
ternal degrees of freedom which are described with a different class of potential. There
exist several potentials with associated sets of parameters intended for the description of
molecular systems. Some of these are non-reactive, e.g., AMBER [56], CHARMM [57],
or OPLS [58], while others such as REBO [59], AIREBO [60], and REAX-FF [61] allow
the breaking and forming of bonds, thus being able to describe certain chemical reactions
explicitly.

The original Optimized Potential for Liquid Simulations (OPLS) employs a partially
united-atom (UA) model [62], where several atoms are grouped together and treated as a
single superatom. Although this is computationally attractive since it greatly reduces the
number of considered atoms and thus the computation time, the all-atom (AA) version of
OPLS [63], which is used throughout this work, adds a considerable degree of exactness
with respect to molecular torsions and partial charge distributions. The parameters for
the non-bonded and the torsional potential terms, which will be discussed in the following,
are either fitted to ab initio relativistic Hartree-Fock results or obtained from Monte Carlo
simulations [58].

(a) (b) (c)

Figure 1.2: Representation of bond stretching (a), angle bending (b), and bond torsion
parameters (c).

9



Intermolecular force field The OPLS-AA force field uses an LJ and a Coulombic
potential to describe intermolecular interactions as well as the non-bonded intramolecular
ones with more than two bonds between them,

V (inter)(rij) = V (LJ)(rij) + V (Coul)(rij) =

=

{

4εij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

+
C

ǫ

qiqj
rij

}

fij , rij < rc .
(1.9)

Here, εij and σij are the LJ-parameters and rij is the distance between atoms i and j,
which do not necessarily have to be of the same kind. The parameter qi denotes the
charge of atom i, C is an energy conversion factor depending on the used units, and ǫ is
the relative dielectric constant. The scaling factor fij is zero if atoms i and j are separated
by one or two bonds, 0.5 if separated by exactly three bonds, and 1 otherwise. The cut-off
radius rc may be different for the two parts of the potential since the Coulombic term
is more long-ranged than the LJ term. LJ parameters for pairs of non-identical atoms
(i 6= j) are obtained by applying the mixing rules

σij =
√
σiσj and εij =

√
εiεj (1.10)

to the parameters for pairs of identical atoms.

Bond stretching The simplest internal degree of freedom in molecules is vibrational.
This can be described, using Hooke’s law, as a harmonic one with the two bonded particles’
distance rij and the average bond length r0,

V (bond)(rij) = Kr(rij − r0)
2 , (1.11)

where Kr is the bond stiffness. Most of the bond stretching parameters tabulated for
numerous atomic pairings in OPLS-AA were taken from the AMBER force field [56].

Angle bending Fig. 1.2 (b) shows how the bond angle θ between three neighboring
bonded atoms i, j, and k is defined. The OPLS-AA force field includes harmonic oscilla-
tions of θijk about its equilibrium value θ0,

V (angle)(θijk) = Kθ(θijk − θ0)
2 , (1.12)

with Kθ being the corresponding angle stiffness. As with the bond oscillations, most of
the used values originate from the AMBER force field [56].

Bond torsions Perhaps the most important internal degree of freedom in molecules
with more than three atoms is the bond torsion, which can be explained by inspecting
Fig. 1.2 (c). Groups of three neighboring atoms, (i, j, k) and (j, k, l), connected by suc-
cessive bonds (shown in dark blue), define two planes (in lighter shades of blue). The
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Figure 1.3: Shapes of the OPLS-AA torsional potential functions for the dihedral types
C–C–C–C (red), H–C–C–H (green), and O=C–O–H (blue) in fatty acids.

angle between these two planes is the torsion or dihedral angle φijkl. The group of the
four atoms (i, j, k, l) defining φijkl is called a dihedral.

The potential governing which values φijkl are energetically favorable is of the general
form

V (tors)(φijkl) =
1

2
V1[1 + cos(φijkl)] +

1

2
V2[1− cos(2φijkl)] +

1

2
V3[1 + cos(3φijkl)] , (1.13)

where the combination of the coefficients V1, V2, and V3 determines the symmetry and
multiplicity of the respective dihedral. The interplay between all dihedrals within a
molecule influences the possible shapes of that molecule at a given temperature, and
therefore its physico-chemical properties. Looking at Fig. 1.3, it is clear that the three
exemplarily chosen dihedral types occurring in fatty acids favor the trans-configuration
(φijkl = π = 180◦). The H–C–C–H dihedral has two additional minima allowing gauche-
conformations (φijkl = ±π/3 = ±60◦), while the O=C–O–H dihedral allows switching
between the trans- and the cis-configuration (φijkl = 0), although only at high energetic
cost. Note that this definition of φijkl is conform to the IUPAC-convention, which differs
from the so-called polymer-convention by a phase angle of π = 180◦ [50].

1.3 Integrators

In order to calculate the trajectories of the interacting particles in an MD simulation, their
equations of motion, Eq. (1.1), must be integrated using a time integration algorithm.
Time is discretized into finite time steps ∆t, and knowing the configuration space of
the system at a given time t, the algorithm calculates the configuration space at a time
t + ∆t. The iteration of this scheme then yields the system’s time development. There
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exists an abundance of time integration algorithms, an overview of which can be found in
Refs. [46, 50], but I will briefly discuss the ones used in this work in the following.

1.3.1 Basic and velocity Verlet algorithm

The Verlet algorithm has come to be one of the most widely used time integrators in
MD. Although it was first applied on a computer to calculate the phase diagram of argon
in 1967 by Verlet [45], the algorithm itself dates back to Størmer (1921) [64] and even
Delambre (1790) [65].

We start out from two Taylor expansions of particle i’s positions Ri(t) at the times
t+∆t and t−∆t,

Ri(t+∆t) = Ri(t) + Ṙi(t)∆t+
1

2
R̈i(t)∆t2 +

1

6

...
Ri(t)∆t3 +O(∆t4)

Ri(t−∆t) = Ri(t)− Ṙi(t)∆t+
1

2
R̈i(t)∆t2 − 1

6

...
Ri(t)∆t3 +O(∆t4)

. (1.14)

Adding these two expressions and rearranging the terms yields

Ri(t+∆t) = 2Ri(t)−Ri(t−∆t) + R̈i(t)∆t2 +O(∆t4) , (1.15)

which constitutes the basic form of the fourth-order accurate Verlet algorithm. Here, the
acceleration R̈i(t) of the particle is computed using Newton’s second law by dividing the
negative gradient of the interaction potential V (R(t)) by the particle’s mass Mi,

R̈i(t) = −
1

Mi

∇Ri
V (R(t)) , (1.16)

which is equivalent to Eq. (1.1). The first and third time derivatives of Ri(t) in Eq.(1.15)
have canceled each other out, which means that the particle velocity Ṙi(t) is not explicitly
calculated in this formulation. Since it is necessary to compute the system’s kinetic energy,
the velocity may be obtained using

Ṙi(t) =
Ri(t+∆t)−Ri(t−∆t)

2∆t
, (1.17)

but this expression is only second-order accurate.
The situation can be resolved by reformulating the Verlet algorithm to its velocity

formulation, which explicitly produces the position, the acceleration, and the velocity of
a particle at the time t+∆t,

Ri(t+∆t) = Ri(t) + Ṙi(t)∆t+
1

2
R̈i(t)∆t2

R̈i(t+∆t) = − 1

Mi

∇Ri
V (R(t+∆t))

Ṙi(t+∆t) = Ṙi(t) +
1

2

[

R̈i(t) + R̈i(t+∆t)
]

∆t

, (1.18)
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while being numerically more stable than the basic formulation.

1.3.2 rRESPA multi-timescale scheme

A problem commonly encountered when dealing with truly molecular systems which ex-
plicitly feature hydrogen atoms is that due to these atoms’ small masses, the respective
bond oscillations are of high frequency. In order to sample these oscillations sufficiently
for ensuring energy conservation, the time step of the simulation would need to be set to
∼ 0.5 fs, slowing down the entire calculation by a factor of ∼ 4 compared to, e.g., a purely
metallic system. It is therefore desirable to implement a multi-timescale scheme which
allows the treatment of the computationally cheap bond oscillations using a shorter time
step than for the much more expensive non-bonded interactions (LJ, EAM/FS).

The reversible REference System Propagator Algorithms (rRESPA) [66], which is
related to predictor-corrector integrators, constitutes such a scheme and permits either
the separation of time scales or of forces into short and long range components. For
disparate mass systems, the “fast” and “slow” degrees of freedom are labeled ξ and ζ,
respectively. The Liouville operator can be decomposed as

iL = iLξ + iLζ , (1.19)

with

iLξ = ξ̇
∂

∂ξ
+ Fξ(ξ, ζ)

∂

∂pξ
(1.20)

and

iLζ = ζ̇
∂

∂ζ
+ Fζ(ξ, ζ)

∂

∂pζ
. (1.21)

The discrete time propagator Gξζ(∆t) is factorized (Trotter-factorization [67]) as

Gξζ(∆t) = exp

[

iLξ

(

∆t

2

)]

exp [iLζ(∆t)] exp

[

iLξ

(

∆t

2

)]

. (1.22)

Here, the “fast” propagator is further factorized as

exp

[

iLξ

(

∆t

2

)]

=

[

exp

(

∆t

2
Fξ

∂

∂pξ

)

exp

(

δtξ̇
∂

∂ξ

)

exp

(

∆t

2
Fξ

∂

∂pξ

)]n
2

, n ∈ N ,

(1.23)
where δt = ∆t/n. The middle propagator can also be factorized as

exp [iLζ(∆t)] = exp

(

∆t

2
Fζ

∂

∂pζ

)

exp

(

∆tζ̇
∂

∂ζ

)

exp

(

∆t

2
Fζ

∂

∂pζ

)

. (1.24)

The velocity Verlet integrator is then employed for n small steps δt for the fast degrees
of freedom, and only for one large step ∆t for the slow degrees of freedom.
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In this work, rRESPA is used to differentiate between bond, angle/dihedral, and non-
bonded interactions. Bonds are updated every 0.5 fs, which sufficiently samples the H-
bond oscillations, angles and dihedrals are updated every 1.0 fs, and non-bonded interac-
tions every 2.0 fs. This leads to a ∼2.5-fold speed-up compared to using a constant time
step of 0.5 fs for all interactions.

1.4 Thermostats

If a thermally isolated system has a constant number of particles, constant volume, and
constant internal energy, then the equations of motion in Eq. (1.18) yield an isokinetic
simulation, known in statistical physics as microcanonical or NVE-ensemble. Such ther-
modynamical conditions are difficult to maintain in real-world experiments, where it is
usually the temperature which can be controlled via a heat bath.

1.4.1 Temperature of MD systems

The equipartition theorem states that the mean translational kinetic energy of a system
and its temperature are linked as follows

〈Ekin〉 =
3N

2
kBT , (1.25)

where N is the number of particles in the system (3N is the total number of degrees
of freedom), kB is the Boltzmann constant, and T is the temperature. By rearranging
Eq. (1.25), the temperature is obtained as

T =
1

3NkB

〈

N
∑

i=1

MiṘ
2

i

〉

. (1.26)

However, this definition is only accurate if the mean velocity of all particles is zero. This
does not hold true for most tribological simulations as, per definitionem, the bodies are
in relative motion. For this case, Eq. (1.26) has to be adjusted according to the local rest
frame [68],

T =
1

3NkB

N
∑

i=1

Mi

[

Ṙi − 〈vreg(Ri)〉
]2

, (1.27)

where 〈vreg(Ri)〉 is the mean velocity in a region around Ri (“advection velocity”) and
well-defined as long as it changes sufficiently slowly. Problems arise in simulations when
the difference in the mean velocity between adjacent molecules starts becoming compa-
rable to thermal velocities, in which case the temperature is not well-defined anymore.
Care must therefore be taken that advection (e.g., shear) velocities remain below 10% of
the speed of sound in order to prevent artifacts in the structure of the molecular systems
or the friction forces [7].
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1.4.2 A simple thermostat

The easiest and fastest way to thermostat a molecular system is based on explicitly
rescaling the velocities of the particles with a scaling factor [50]

ϑ =

[

T (target)

T (current)

]

1
2

=

[

E
(target)
kin

E
(current)
kin

] 1
2

(1.28)

every ∼ 100 time steps. This is done to allow the system’s evolution during this rescaling
interval. A more gentle way to change the velocities using a damping term has been
proposed by Berendsen [69]. However, one needs to be aware that none of these meth-
ods comply with any known thermodynamic ensemble, so it is not possible to extract
meaningful thermodynamic data from MD simulations which have been treated in this
fashion. Moreover, these methods cannot remove unwanted or local correlations in the
movement of the particles. They still constitute a very useful approach to quickly equili-
brate a given system to the desired temperature before switching to a more sophisticated
thermostatting scheme.

1.4.3 Langevin thermostat

A way to control the temperature of a system according to a thermodynamic ensemble
such as the canonical (or NVT) ensemble is by extending the Hamiltonian of the system
with an additional degree of freedom representing a heat bath. Several methods have
been published to achieve this, notably the one proposed by Nosé and extended by Hoover
[70, 71].

A related thermostat used throughout this work is the Langevin thermostat as de-
scribed in Ref. [72]. Mathematically, it models an interaction with a background implicit
solvent and, coupled with a suitable time integration scheme, performs Brownian dy-
namics on a system. In this case, the force F i acting on each atom i consists of three
contributions,

F i = F
(c)
i + F

(f)
i + F

(r)
i , (1.29)

where F
(c)
i is the conservative force calculated from the pairwise potentials,

F
(f)
i = −Mi

λ
Ṙi (1.30)

is a viscous damping force, with Mi being the mass and Ṙi the velocity of atom i, and λ
is the damping time constant inversely proportional to the simulated heat conductivity.
F

(r)
i is a uniform (non-Gaussian) random force [73], for which

|F (r)
i | ∝

√

kB Tbath Mi

∆t λ
(1.31)
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holds true. Here, kB denotes Boltzmann’s constant, Tbath is the heat bath temperature
and ∆t is the time step. In order not to influence the motion of the atoms in the directions
of shear or compression through the thermostat, one can choose to apply it only in the
direction normal to these directions.

1.5 Boundary Conditions

The type of boundary conditions for the simulation box have to be specified for each
Cartesian direction. With periodic boundary conditions, particles interact across the
boundary, and they can exit the simulation box on one end and re-enter from the other end.
These cyclic boundary conditions must be applied to both faces of a spatial dimension.
The alternative to periodic boundary conditions is fixed ones. This means that the box is
non-periodic, so that particles do not interact across the boundary and do not move from
one side of the box to the other. The position of the simulation box face is fixed, so if an
atom moves outside it is usually lost. This can be remedied by employing a variation of
fixed boundary conditions, where the position of the face is set so as to encompass the
atoms in that dimension (“shrink-wrapping”), no matter how far they move.

In the tribological simulations in this work, two surfaces are moved with respect to each
other. The two directions which span these surfaces, x and y, require periodic boundary
conditions in order to minimize boundary effects, while the third direction along which
the normal force is applied, z, requires fixed or shrink-wrapped boundary conditions,
where the latter represent the safer solution since atoms cannot be lost even during severe
loading conditions.

1.6 LAMMPS

The code used to perform all simulations in this work is LAMMPS, the Large-scale
Atomic/Molecular Massively Parallel Simulator developed at Sandia National Labs [10,
74]. It runs on a single processor or in parallel and supports distributed-memory message-
passing parallelism (MPI) via spatial decomposition of the simulation domain. Written
in C++, it is available under the GNU Public license and is relatively easy to extend with
new features and functionality.

LAMMPS features numerous particle and model types and includes several force fields.
It supports various thermodynamic ensembles, thermostats, boundary conditions, and
integrators, and has highly customizable output options. LAMMPS usually runs from an
input script and requires users to do most of their pre- and post-processing externally. It
does not feature a built-in graphical user interface, but it can be linked with interactive
MD (IMD) clients such as the VMD visualization program [75].

Finally, there is a large world-wide community of LAMMPS users who will help each
other out, most notably the main developers who answer most of the questions themselves.

16



There are near-daily updates and bugfixes, and major revisions can be expected about
every 6 months.

Some technical aspects of LAMMPS are covered in the discussion of a typical script
file used for MD shear simulations which can be found in appendix A.
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Chapter 2

MD-setup of Nanosystems

In this chapter, all of the nano-systems treated in this work will be described. They
differ in overall size, the type and the amount of lubricant used, as well as the crystal
structure, thickness and the roughness of the solid substrates. I will first introduce all
system components including the constraints on the system necessary to ensure the desired
sliding conditions, i.e. either constant or periodic friction force, and then go through all
steps necessary for system assembly. The setups of the specific systems are explained in
the respective sections of chapter 4.

2.1 System Components

2.1.1 Substrate

All tribological nanosystems in this work have solid sliders consisting of pure Fe as an
approximation for a steel surface. Although a Fe oxide such as hematite (Fe2O3) may
constitute an even better approximation, its dynamic modeling, particularly in the case
of plastic deformation, is very difficult and affected by a high degree of uncertainty. The
Fe-Fe interactions are governed by a Finnis-Sinclair potential (formally equivalent to the
embedded atom method, EAM [52]) as introduced in section 1.2.2, with the parameters
taken from Ref. [76], which will be referred to as the EAM-FS potential. The cutoff-
radius intrinsic to this set of parameters is 0.53 nm. The used potential can describe the
substrate and the asperities much more accurately than any type of pair potential [55].
This is important since the simulations in this work include solid-solid contact with plastic
deformation and material transfer, which otherwise would not be handled correctly. Most
considered substrates are amorphous in order to model tribologically pre-worn surfaces,
but section 4.3 also features crystalline bcc Fe(100) surfaces which can be interpreted as
a model of the α-ferrite phase of steel [77].

The large Fe substrates designed for studies focusing on asperity shape and contact
area have lateral dimensions of 26 × 13 lattice constants. With the lattice constant of
aFe = 0.2855 nm used in the EAM-FS potential, this is equivalent to an apparent contact
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area of 7.42 × 3.71 = 27.56 nm2. The small substrates intended for studies of boundary
lubricant performance and disorder have lateral dimensions of 13 × 13 lattice constants,
leading to a nominal contact area of 3.71× 3.71 = 13.78 nm2.

(a) (b) (c)

(d)

Figure 2.1: Amorphization of a bcc Fe crystal. (a) perfect crystal at 0 K, (b) fluid Fe
at 5000 K, (c) amorphous solid Fe at 300 K, (d) normalized radial distribution function
g(r) of the system at 0 K (blue), 5000 K (red), and 300 K (green).

Amorphization procedure The iron is amorphized by setting up a bcc Fe crystal of
26×13×13 lattice constants for the large systems, see Fig. 2.1 (a), and 13×13×6 lattice
constants for the small systems. Using periodic boundary conditions in all three spatial
directions in order to simulate bulk behavior, this crystal is heated to 5000 K, well beyond
the boiling point of Fe, see Fig. 2.1 (b). It is kept at this temperature for 5 ps using a
crude velocity-rescaling scheme, cf. section 1.4. The Fe is then quenched by linearly
reducing the temperature to 300 K within 0.25 ps. This results in the formation of an

20



amorphous solid, which is relaxed at 300 K for another 5 ps, see Fig. 2.1 (c). Fig. 2.1 (d)
shows the normalized radial distribution function g(r) [46] of the system at the three
temperatures, which quite clearly confirms the expected order in all structures. From the
shape of the green curve which denotes g(r) at T = 300 K, it is obvious that the system
has not recrystallized but remains in the amorphous state.

Large asperities The substrates with large asperities are generated by carving the
desired geometry from the amorphous block of Fe. The three different asperity types
treated in this work are characterized as follows:

• Semi-sphere, see Fig. 2.2 (a). Geometrical parameters: xC = 5.568 nm, yC =
1.856 nm, rasp = 1.5 nm, see Fig. 2.2 (b), 606 atoms.

• Truncated cone, see Fig. 2.2 (c). Geometrical parameters: xC = 5.568 nm, yC =
1.856 nm, rbase = 1.6 nm, hasp = 1.8 nm, ω = 65◦, see Fig. 2.2 (d), 707 atoms.

• Slanted pyramid, see Fig. 2.2 (e). Geometrical parameters: xC = 5.568 nm, yC =
1.856 nm, dx = 3.0 nm, dy = 2.0 nm, dz = 1.8 nm, α = 40◦, β = 70◦, γ = δ = 75◦,
see Fig. 2.2 (f), 443 atoms.

The asperity base center coordinates xC and yC are chosen in such a way that if the
upper slider is moved in positive x-direction at the constant shear velocity of 4.0 m/s =
4.0 nm/ns, while the bottom slider is held fixed in space, the two asperities may start
touching after approximately 0.75-1.25 ns, depending on their geometry.

Multiple small asperities The small crystalline systems are given nanoscopic rough-
ness by placing three nominally cylindrical islands on the exposed bcc (100) surface of
each slider with radii of 3.5, 5.25, and 7 Å, and with center coordinates of (28.55, 11.42) Å,
(7.57, 7.57) Å, and (17.13, 25.70) Å, respectively, see Fig. 2.3. The height is varied equally
for all islands from 1–4 monolayers (ML) of bcc Fe, where 1 ML corresponds to a rough-
ness of Ra = 1.43 Å. The higher cylindrical islands (3–4 ML) blunt to a more pimpled
shape within several ps of surface relaxation at T = 300 K.

Constraints and thermostat In the large systems, the topmost 676 atoms of the top
slider as well as the bottommost 676 atoms of the bottom slider, corresponding to 2 ML
of bcc Fe(100), are kept rigid at all times in order to account for the underlying bulk solid
and to facilitate the movement control of the respective counteracting bodies, see the light
parts of the substrates in Fig. 2.2. For the smaller systems, the number of rigid atoms per
slider is 507, corresponding to 3 ML of bcc Fe(100) in the crystalline substrates. The rigid
part of the lower slider is held fixed in space, while the rigid part of the upper slider is
not allowed to move perpendicular to the directions of load and shear, i.e., in y-direction.

A Langevin thermostat, discussed in section 1.4.3, with a damping time constant of
λ = 0.5 ps keeps all non-rigid Fe atoms at 300 K, allowing the lubricant molecules to

21



(a) (b)

(c) (d)

(e) (f)

Figure 2.2: The three large asperity types used in this work: (a, b) semi-sphere, (c,
d) truncated cone, (e, f) slanted pyramid. In the MD-snapshots in the left column, the
blue parts of the substrate are treated dynamically, i.e. the atoms interact via the EAM-
FS potential, and are thermostatted, while the gray parts are kept rigid throughout the
simulations. The sketches in the right column are annotated to explain the meaning of
the geometrical asperity parameters used in the text. The lengths yC and dy as well as
the slanted pyramid aperture angles γ and δ lie perpendicular to the paper plane and
should be interpreted accordingly.

(a) (b)

Figure 2.3: Side (a) and top view (b) of the small substrates with roughness corresponding
to 2 ML of bcc Fe(100). The roughness islands are shown in dark gray.
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remain unthermostatted. The frictional heat generated in the lubrication gap during
sliding is therefore transported towards the substrate and hence to the heat bath via
phononic heat transfer. In analogy to Refs. [78, 79, 80, 81], this thermostat is applied
only in the y-direction to prevent any influence on shear (in x-direction) and compression
(in −z-direction). Although a more sophisticated thermostatting procedure [82, 83] might
lead to a more realistic temperature distribution within the nanotribological systems, the
employed Langevin thermostatting method remains sufficiently appropriate as long as
the shear velocity does not exceed 10 m/s [84], which is not the case here as described in
section 2.2.4.

2.1.2 Lubricants

All model lubricants simulated in this work interact via the Optimized Potential for Liq-
uid Simulations – All Atom (OPLS-AA) introduced in section 1.2.3, which includes bond
stretching, angle bending and dihedral (torsional) parameters for intramolecular interac-
tions, as well as van der Waals and Coulombic terms. The OPLS-AA force field treats
all atoms in the molecules explicitly, ensuring a very exact description of the lubricant,
and is in widespread use for the analysis of the tribological properties of lubricants, e.g.,
Refs. [78, 79, 80, 81]. However, chemical reactions such as the breaking and forming of
bonds are not described in this force field. The cutoff-radii for the LJ and Coulombic
interactions are 1.0 and 1.8 nm, respectively. These values are a good compromise be-
tween accuracy and computational efficiency. All potential parameters used throughout
this work can be found in appendix B.

It is not intended in this work to model any high-molar, industrially applied lubricants,
but rather to simulate simple representants of several lubricant categories, namely unpolar
hydrocarbons, fatty acids, and esters, shown in Figs. 2.4–2.7.

(a)

(b)

(c)

Figure 2.4: n-hexadecane (alkane): CH3(CH2)14CH3, (a) side view, (b) 45-degree view,
(c) front view. Carbon atoms are shown in brick red, hydrogen atoms in white.
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(a) (b) (c)

Figure 2.5: stearic acid (saturated fatty acid): CH3(CH2)16COOH, (a) side view, (b) 45-
degree view, (c) front view. Carbon atoms are shown in blue, hydrogen atoms in white,
and oxygen atoms in red.

(a) (b) (c)

Figure 2.6: oleic acid (monounsaturated omega-9 fatty acid):
CH3(CH2)7CH=CH(CH2)7COOH, (a) side view, (b) 45-degree view, (c) front view.
Carbon atoms are shown in yellow, hydrogen atoms in white, and oxygen atoms in red.
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(a) (b) (c)

Figure 2.7: stearic acid methyl ester (methyl stearate): CH3(CH2)16COO–CH3, (a) side
view, (b) 45-degree view, (c) front view. Carbon atoms are shown in green, hydrogen
atoms in white, and oxygen atoms in red.

The molecule chosen to represent the first of these categories is n-hexadecane, or
cetane, a linear alkane with the chemical formula CH3(CH2)14CH3, which can be seen in
Fig. 2.4. It has been widely used in nanotribological MD-simulations, e.g., [15, 85, 86, 87],
due to its relative simplicity as well as its well-defined and experimentally well-known
properties. In this work, n-hexadecane was employed as a model lubricant in preliminary
simulations [17] and as a base lubricant in section 4.3. The representants of the second
lubricant category, fatty acids, are stearic acid, CH3(CH2)16COOH, cf. Fig. 2.5, and
one of its mono-unsaturated versions, oleic acid, CH3(CH2)7CH=CH(CH2)7COOH, cf.
Fig. 2.6. Both are polar surfactant-type molecules which can adsorb to the sliders with
their carboxylic (COOH) head groups and form well-ordered monolayers, thus protecting
the surface against wear and/or modifying its frictional properties. The main difference
between the two is the double C=C bond in the middle of oleic acid which introduces a
layer of defects in its surface films. Finally, stearic acid methyl ester, or methyl stearate
with the chemical formula CH3(CH2)16COO–CH3, cf. Fig. 2.7, represents the lubricant
category of esters. It also forms monolayers on slider surfaces, which again have slightly
different frictional properties, mainly due to its bulkier head group which has a methyl
group attached. The color scheme in Figs. 2.4–2.7 uses different colors for the C-atoms in
different types of lubricants, making their distinction in section 4.3 easier. In sections 4.1
and 4.2, where only stearic acid is used as a lubricant, a different color scheme was used
for better contrast between the lubricant layers, see Fig. 2.12.

Solid-lubricant interaction The interaction between the lubricant and the solid is
governed by an LJ potential, which is constructed by first assuming some “dummy” LJ
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parameters for the substrate atoms (“dummy” because they are used only for constructing
the lubricant-solid potential, not for the actual calculation of solid-solid interactions) and
then applying the geometric mixing rules εij =

√
εi εj and σij =

√
σi σj from section 1.2.3

to these and the non-bonded OPLS-AA parameters of the lubricant. These “dummy”
parameters were chosen in such a way that they yield values for the interaction between
the substrate and the aliphatic tails of the lubricant comparable to those in Refs. [88, 89].
In a similar fashion to Ref. [19], the interaction potential for O and Fe was then modified
so that it is roughly five times stronger than the C-Fe interaction, yielding εO−Fe = 0.1 eV
and σO−Fe = 0.29 nm.

2.2 Assembly of a Tribosystem

In this section I will discuss which general steps are necessary to successfully assemble
an MD-nanosystem from the components introduced above. The solid surfaces may be
atomically flat or nanoscopically rough, in which case the lubricant molecules need to be
rearranged to obtain a more or less uniform boundary layer with all lubricant molecules
attached to the substrate. I will finally explain the equilibration, compression and shear
procedures used throughout this work.

2.2.1 Lubricant coverage

Uniform lubricant film For many of the simulations in this work, a uniform cover of
lubricant molecules adsorbed to the solid surface is desired. For flat and slightly rough
substrates, this can be achieved by placing molecules on a regular two-dimensional mesh,
with the functional groups pointing towards the substrate, see Fig. 2.8 (a). Note here that
periodic boundary conditions in the lateral dimensions lead to seemingly disconnected
molecules. This highly ordered film is then positioned so that it is initially at a distance
of several Ångströms to the surface. Typical maximum achievable lubricant coverages
η, i.e., the number of molecules per unit area, for the small sliders range from ≃ 60 to
80 molecules per slider, depending on lubricant type, which is equivalent to an available
substrate area of ≃ 17–23 Å2 per head group.

(a) (b)

Figure 2.8: Equilibration of a boundary layer of 7 × 8 oleic acid molecules on a flat
amorphous Fe surface. (a) initial configuration, (b) after 100 ps of equilibration.
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Surface roughness adaptation With growing surface corrugation, especially for the
case of a single large asperity, it becomes increasingly difficult to achieve uniform coverage
in a reasonable amount of time (≃ 100 ps) using the approach described above. This is
due to the fact that the film would have to be initially placed far enough from the solid
surface so as not to overlap with the highest asperity. The lubricant then tends to clot
together and/or lose its orientation before it can form a film. This problem can be
remedied by searching for the surface atom with the highest z-value in the area allocated
to each lubricant molecule, thus coarsely meshing the surface. This representation of the
substrate may then be used to place every individual lubricant molecule at the same z-
distance to the surface, thus reproducing the surface topography with the lubricant film.
This allows much faster film formation on substrates with roughness exceeding ≃ 5 Å.

2.2.2 Lubricant equilibration

With the solid and the lubricant assembled into one MD system as described above and as
shown in Figs. 2.8 (a) and 2.10 (a), one may now simulate film formation on the substrate
using the solid-lubricant interaction potential discussed in section 2.1.2. Film formation is
usually straightforward for sufficiently flat substrates, but with growing surface roughness
it may become necessary to add a moderate force to the lubricant molecules in−z direction
for the first ps to accelerate the process and ensure that all molecules adsorb to the surface.
Depending on the lubricant type and the lubricant coverage η, the molecules assume a
typical tilt angle with respect to the surface normal [23]. Fig. 2.9 shows how the tilt angle
develops during film adsorption to a flat slider with high (a) and one with low η (b). Here,
the tilt angle is defined as the angle of the vector between the two second-to-outermost
C-atoms in every lubricant molecule with the z-axis. After approximately 100 ps, most
films have adsorbed to the substrate as shown in Figs. 2.8 (b) and 2.10 (b), which may
be verified by monitoring the energy contributions of the lubricant as well as the pressure
and the volume of the system.

Pre-worn boundary lubricant For simulations of mixed lubrication, it can make
sense to construct a lubricant layer so that it represents a pre-worn film of boundary lu-
bricant which has already been subjected to tribological stress. In these cases, lubricant
coverages lie well below the experimentally observed [90] or calculated [23] ones for per-
fectly ordered monolayers. Furthermore, in order to analyse systems where the boundary
lubricant is at the verge of failing, as will be discussed in section 4.1, it is of interest to
find the lubricant coverage for each system where the occurrence of direct asperity con-
tact depends on the applied load. This coverage is a function of asperity size and shape,
and must be found empirically. If set too high, direct asperity contact might never occur
during shear. Likewise, if set too low, asperity contact might always occur, irrespective of
load. To find a coverage in the narrow transition regime in between, configurations with
a range of lubricant coverages are simulated at various loads. As an example, the first
simulations may be carried out with 50, 60, 70 and 80 molecules per slider. If solid-solid
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(a)

(b)

Figure 2.9: Equilibration development of the individual molecular tilt angle on a flat
substrate with 7 × 9 (a), and one with 5 × 7 stearic acid molecules (b). The bold black
curves are averages over all the molecules in the film.

(a) (b)

Figure 2.10: Equilibration of a boundary layer of 66 stearic acid molecules on an amor-
phous Fe-slider with semi-spherical asperity. (a) Initial configuration with the stearic acid
molecules positioned using surface roughness adaptation. (b) After 100 ps of equilibration.

28



contact occurs at all loads for the system with 60 molecules, but no contact occurs at 70
molecules per slider, the systems with 62, 64, 66 and 68 molecules per slider are tested as
well. If the system with 66 molecules exhibits solid-solid contact at high loads, but not
at low loads, the coverage of interest has been found.

In order to obtain a pre-worn lubricant film, the number of molecules is controlled by
first uniformly covering the surfaces with lubricant molecules using the method discussed
above and then removing molecules one by one, starting from the top of the asperity mov-
ing downward. A reasonable choice for the reference atom is an O-atom in the functional
group of the molecule, as it is very close to the substrate and least likely to be shifted
by molecular tilting. So, to generate a configuration with 70 molecules per surface, one
can start out with a uniform grid of 11 × 8 molecules and then remove the 18 topmost
molecules from the asperity. This approach is motivated by previous simulations [32]
which showed that the molecules on the tips of asperities are the first to be sheared off as
a result of previous tribological loading. Fig. 2.11 illustrates that the desorbed molecules
are among the ones originally located near the top of the asperities, in particular on the
sides facing each other.

(a) (b)

Figure 2.11: Lubricant molecules desorbed from the asperities due to shear: (a) initial
configuration and (b) after asperity contact. For clarity, no molecules which remain
adsorbed to the surface throughout the shear simulation are shown. Colors: Fe (top)—
yellow, Fe (bottom)—blue, C (top)—orange, C (bottom)—light blue, H—white, O—red.
Different colors for Fe and C in the top and bottom halves of the system only serve to
better show the sliding interface as well as material transfer.

2.2.3 Compression

As soon as a film of lubricant has equilibrated on the lower substrate, this entire system
is duplicated, with the upper slider flipped upside-down and placed above the lower one
so the lubricant films face each other. The equations linking the atom positions of the
upper slider (x, y, z)hi to the ones of the lower one (x, y, z)lo read

xhi = 2xC,box − xlo , yhi = ylo , zhi = 2zC,box +Dz + δz,offset − zlo , (2.1)

29



where (x, y, z)C,box is the position of the simulation box center andDz is the z-dimension of
the box. A distance δz,offset must be kept between the two halves of this new system so no
molecules can overlap, which would lead to very high initial forces due to close proximity
and subsequent disintegration of the system. A distance of δz,offset = 0.3 nm is usually
sufficient between the topmost lower lubricant and the bottommost upper lubricant atom
centers. However, for highly corrugated surfaces, different values may apply depending
on the respective configuration. The atom velocities of the entire system are usually re-
assigned randomly according to the Maxwell-Boltzmann velocity distribution in order to
decouple the thermodynamics of the two sliders. If this is not wanted, the momentary
velocities of the lower-slider atoms must be transformed as well via the equations

vx,hi = −vx,lo , vy,hi = vy,lo , vz,hi = −vz,lo . (2.2)

(a) (b)

Figure 2.12: Compression of a semi-spherical asperity system. (a) Before compression.
(b) Compressed to L = 22.04 nN (0.8 GPa). The color scheme is the same as in Fig. 2.11.

With the position of the lower slider of the system kept stationary, the compression
velocity −vz, applied to the rigid portion of the upper slider, is ramped from 0–35 m/s
over a period of 22 ps and then kept at this maximum value for another 170 ps.

During the compression period, the relevant thermodynamic properties such as the
energetic contributions, the system volume, temperature and pressure, as well as the
reaction forces in the system are monitored (more information on calculating forces can
be found in section 3.3). For systems with very small surface roughness and well-ordered
boundary lubricant films, one can observe a period of adhesion between the lubricant layers
before the proximity of the sliders leads to repulsion, see Fig. 2.13(b). The compression

30



(a) (b)

Figure 2.13: Compression curves (red) showing the load L as a function of the MD time
step at a constant compression velocity of 35 m/s. (a) Semi-spherical asperity system.
(b) Oleic acid system with high lubricant coverage and low roughness. The dashed grey
curves are polynomial fits to the data.

of the system is continued well beyond the point where the maximum desired load occurs.
Depending on the type and size of the system, the compression simulation will usually
crash (because atoms are lost due to the occurring high forces) at a load of several hundred
nN, which is roughly a factor 10 higher than the maximum load of interest for shear
simulations (. 50 nN).

Initial MD configurations close to the loads at which the shear simulations should be
carried out are then found by fitting a 7th–13th-order polynomial to the load-vs-time
curve of the compression simulation, which at constant compression velocity is equivalent
to a load-vs-approach curve, see Fig. 2.13. Since this relationship is bijective for the loads
of interest considered in this work, a unique system configuration consisting of all atom
positions and velocities can usually be found for any desired load. Horizontal dashed-and-
dotted lines in Fig. 2.13 mark which loads should be simulated, black circles mark the best
intersection points with the dashed grey fit according to the available time step resolution,
which in turn yield the time steps with the initial configurations for the respective loads.

2.2.4 Shear

With the initial system configurations obtained as described above, individual simulation
runs are carried out for each load/configuration to ensure maximum comparability over the
load spectrum. For each of these runs, the system is initially kept at constant separation
for 1.25 ps by keeping the rigid parts of both sliders stationary, thus allowing the lubricant
molecules a short recovery after the sudden end of the compression. This constraint is
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then released and replaced with the chosen constant load applied to the rigid part of the
upper slider in −z-direction, causing small oscillations in the slider separation. The shear
velocity, applied to the same atoms as the load, is ramped from 0–4 m/s over 9.75 ps in
40 equal steps. After a dynamic equilibration period of 0.5 ns, which corresponds to 2 nm
of sliding distance, steady-state sliding is assumed and simulation data is collected for
analysis. Note the formation of an even sliding interface between the boundary lubricant
layers in Fig. 2.14 (c). The chosen sliding velocity lies at the upper end of the range of
technically relevant values while still being computationally feasible as well as easily and
reliably thermostattable, cf. [82]. Unless stated otherwise, the data acquisition period
after equilibration for all sliding simulations in this work lasts 2 ns.

(a) (b) (c)

Figure 2.14: Compression and equilibration of the oleic acid system with 7× 8 molecules
per slider on a flat amorphous substrate. (a) Before compression. (b) Compressed to
L = 11.02 nN (0.8 GPa). (c) After 0.5 ns of shear (dynamic equilibration period).
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Chapter 3

Analysis Methods

In this chapter I will discuss methods which are applied to analyze the output data
of MD simulations. First, I will propose a self-developed visualization scheme based
on the smooth particle method which can be used for mapping discrete MD data to
continuum as well as for defining and determining the asperity-asperity contact area in a
mixed-lubrication simulation. I will then introduce the theoretical concepts and explain
the numerical methods required for calculating contact forces in MD shear simulations.
These forces and the contact area will then serve as a basis for obtaining the tribologically
relevant system parameters. Finally, I will discuss certain ways to analyze and quantify
lubricant (dis)order.

All theoretical and computational aspects covered in this chapter will be exemplified
with data from three nanotribological systems, and some numerical results required to
validate the employed methods are presented. These systems are prepared following the
general guidelines for large substrates in chapter 2. The thickness of the amorphous
Fe substrates is 1.96 nm, which is equivalent to 4050 atoms or ∼ 12 monolayers of bcc
Fe(100). Only stearic acid is used as boundary lubricant, and the lubricant coverage of
66 molecules per slider is the same for all three asperity types (semi-spherical, truncated
cone and slanted pyramid). Snapshots of two of the three systems can be seen at the
beginning of section 4.2. The 62 applied loads L range from 2.07 to 44 nN in steps of
0.69 nN, corresponding to nominal pressures between 75 MPa and 1.6 GPa in steps of
25 MPa.

3.1 Smooth Particle Post-processing (SPM)

Discrete simulation methods like MD are very well suited to follow the time development
of atomistic systems. The data they produce are either of a global nature (energies, tem-
peratures, etc.) or are relevant for individual atoms (positions, velocities). However, it is
not computationally or even conceptually straightforward to calculate spatially continuous
quantities based on discrete data.
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Continuum mechanics (CM), on the other hand, is ideal for treating problems in which
the properties of matter change continuously and differentiably in space, but mesh-based
methods do not treat individual particles very well. The introduction of particle-based
methods to CM was initially an attempt to increase the efficiency of solving ordinary or
partial differential equations [36]. When simulating anisotropic and/or inhomogeneous
systems, the division of space into macroscopic pseudoparticles can greatly reduce the
number of the degrees of freedom.

The smooth particle method (SPM), also called smoothed-particle hydrodynamics
(SPH), has been used in astrophysics and hydrodynamics since the late 1970s [91]. It has
also been used to study impact fracture in solids, where it is referred to as smooth-particle
applied mechanics (SPAM) [36]. The method works by smoothing physical quantities
known at irregular points in space over a typical spatial distance called the smoothing
length via kernel functions such as Gaussians or cubic splines—for a recent overview see
Ref. [92].

In this work, some of the concepts of SPM were taken up to devise a method which
can map discrete MD data to continuum. This allows the definition and the calculation
of the irregularly shaped contact area between two solid asperities Aasp(L) in a fast and
computationally reliable manner. Thus a novel application of SPM in conjunction with
MD is introduced, which was so far restricted to improving the convergence of Ewald
sums [93].

3.1.1 SPM basics

By partitioning the continuum into a finite number of representative subsystems of mass
Mj and density ρj concentrated at ~Rj (t), the smooth-particle interpolation rule for an
arbitrary quantity Q reads

Q(~r) =
N
∑

j=1

Mj

ρj
Qj w(~r − ~Rj, hj) =

N
∑

j=1

Qj W (~r − ~Rj, hj) , (3.1)

where Qj is the value of Q for the jth pseudoparticle temporarily situated at ~Rj, w is
the smoothing kernel (weight function) which has the dimension of an inverse volume and
should rapidly fall with distance, W = wMj / ρj, and hj stands for the spatial smoothing
length defining the influence domain of w. In Eq. (3.1), the summation is performed over
all pseudoparticles for which ~r is in their kernel support.

This formalism may be used to map the discrete momentary positions ~ri of atoms
as obtained from an MD simulation to a continuous representation. The definition of a
material density

ρ(~r) =
N
∑

i=1

w(~r − ~ri, hi) , (3.2)
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where N is the total number of atoms in the simulation domain, is the simplest way to
associate each atom with a smooth particle. The kernel function used throughout this
work reads

w(~r − ~ri, hi) =
1

h3
i

β(3)

(

~r − ~ri
hi

)

, (3.3)

where β(3) (x) is a symmetric cubic B-spline [94] and acts as a partial material density
distribution which does not take into account the mass of the individual atoms. Consid-
ering mass would not add any useful information in this case, as we are only interested
in the spatial extent of the atoms, which does not depend on the number of protons and
neutrons in the nucleus, but rather on the electronic configuration of an atom, which
in turn has hardly any impact on the mass distribution. Thus the resulting smoothed
pseudoparticles are continuous and time-dependent material densities characterized by a
dimensionless smearing factor csmear, which determines the amount of smoothing applied
to the particle boundaries by setting the spatial smoothing length to hi = csmear r

(LJ)
i .

Here r
(LJ)
i = σi/2 represents the Lennard-Jones radius of the atom i (with σi used in the

sense as introduced in section 1.2), which is usually not identical for atoms of different
types and may therefore be used as a measure for the atoms’ spatial extent.

In practice, to transform an atomistic nano-system, where the coordinates of the
atoms’ center positions as well as the atom radii are known (see Fig. 3.1 (a)), to its SPM
representation, a mesh of size d is laid over the simulation cell (Fig. 3.1 (b)). It must
be fine enough (d = 40 pm throughout this work) to sufficiently resolve the continuous
distribution of the total material density and to keep the mapping error of the atom centers
below d/2, see the difference in position between the green dots and the green squares in
Figs. 3.1 (a) and (b). Next, one generates a 3D-histogram for each atom type which counts
the number of atom centers of that type in each mesh element. Since in our case the mesh
size is considerably smaller than the interatomic distances, the only values occurring in
these histograms are 0 and 1. They are then convolved in all spatial dimensions (using
periodic boundary conditions) using the convolution kernel from Eq. (3.3), see Fig. 3.1 (c).

The resulting partial material densities of the different atom types can be superimposed
in various combinations to yield scalar material density fields for any desired configuration.
Surfaces and volumes of interest may then be visualized by plotting iso-surfaces at a chosen
material density threshold ρ0 (e.g. , the bold red curve in Fig. 3.1 (d)). So for visualizing
the surfaces of the solids, one would superimpose the partial material densities of the
upper and the lower slider and show the iso-surface at ρ0. Alternatively, for visualizing
cavities in the lubricant, one would superimpose all available partial material densities,
so the iso-surfaces at ρ0 mark the locations where material is absent.

Note that this visualization of surfaces and volumes of various parts of the nanotri-
bological system is to some extent similar to that used in the rolling ball algorithm to
envelop macromolecules [95, 96]. In this work, however, an approximation of e.g. the total
cavity volume at a given time is calculated by integrating over the volume which has a
material density below the threshold ρ0. By integrating over the faces of the iso-surfaces,
surface areas may be determined as well.
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(a) (b)

(c) (d)

Figure 3.1: From MD to continuum with SPM, illustrated in 2D for identical surface
atoms. (a) Discrete representation of MD nanosystem. (b) Meshing of the simulation
box; the green squares are the atomic center elements. (c) Convolution of the center
element distribution with the kernel function yields a quasi-continuous material density
distribution. (d) Surface visualization as an iso-surface at the density threshold ρ0 (bold
red line).
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3.1.2 Determination of SPM-parameters

To find a set of parameters csmear and ρ0 which is valid for all systems treated in this work,
and to estimate the parameter dependence of Aasp(L), a systematic parameter variation
study was undertaken. As a first overview, Aasp(L) was calculated with csmear taking the
values 1.1, 1.3, 1.5, 1.75, and 2.0, while ρ0 was varied logarithmically between 0.001 and
0.09 Å−3. This was done for the semi-spherical asperity shape at a low load of 1.38 nN
which favors cavities and a high load of 28.1 nN where asperity contact occurs. The results
for Aasp(L) were then compared to the data from the contact atom counting procedure
discussed in section 3.1.4. At L = 1.38 nN, where Aasp(L) should be equal to zero, all
parameter pairings which indicated asperity contact were discarded. At L = 28.1 nN, only
those pairings were kept in consideration which yielded contact times in rough agreement
(±20 ps) with the counting algorithm. The remaining valid parameter sets suggest that
there exists, with a certain bandwidth, a linear dependence of the general form

ρ0 = k (csmear − 1) . (3.4)

From the initial data, the slope k of this curve was expected to be in the range 0.02–
0.04 Å−3. To refine the first guess of k = 0.03 Å−3, a second parameter study was carried
out. This time, the fit parameter k was varied from 0.02 to 0.04 Å−3 in steps of 0.002 Å−3,
and csmear was varied between 1.3 and 1.75 in steps of 0.05. Accordingly, ρ0 ranged from
0.006 to 0.03 Å−3. The goal was to find the k producing values for Aasp(L) that are
independent of csmear. For this, the relative error σAasp of Aasp(L) with respect to changes
in csmear was calculated as a function of k and the load L. Fig. 3.2 shows the results
of this study for three different asperity types. The pronounced minimum value of σAasp

for k ≈ 0.024 Å−3, regardless of asperity shape, means that for this slope in the linear
dependence between csmear and ρ0, Aasp(L) will typically change by no more than 1% of
its value for any csmear in the range of 1.3 to 1.75. This means that csmear can be set
to any value within these bounds producing a practicable degree of smoothing without
any impact on the results obtained for Aasp(L). Furthermore, σAasp is small enough to
be negligible and therefore does not enter the least-squares fitting procedure discussed in
section 3.4.2. Unless stated otherwise in chapter 4, the values used throughout this work
are csmear = 1.6 and ρ0 = 0.0144 Å−3.

3.1.3 Estimation of the asperity contact area

Fig. 3.3 (a) shows an SPM-representation, as discussed in section 3.1.1, of the system with
the truncated cone asperity at a load L = 31.7 nN at t = 1.8 ns during asperity contact.
For calculating the asperity contact area, one can exploit the fact that the upper slider
is sheared in x-direction only, so one may consider xz-slices of the system and find the
shortest distance between the two non-Fe domains which occur during asperity contact.
Fig. 3.3 (b) and (c) show two such xz-slices at the edge and the center of the contact zone,
respectively. At those values for y where the two asperities touch, the Fe-domain (shown
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(a) (b)

(c)

Figure 3.2: Relative error σAasp over csmear of the asperity contact area Aasp(L) as a
function of the slope k from Eq. (3.4) and the load L, calculated for a semi-spherical
(a), truncated cone (b), and slanted pyramid asperity (c). For each system, one load was
omitted which led to high relative errors because there was no asperity contact.
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in dark red) becomes simply connected, while the non-Fe-domain (i.e. , the lubricant
domain) splits in two. Each xz-slice contributing to the contact area is then treated in
the following way:

• generate a logical mask where 0 represents Fe and 1 represents non-Fe areas

• identify the two separate non-Fe domains and treat the left (Ψ1) and the right (Ψ2)
domain individually

• perform a Euclidean distance transform [97] on the binary matrix representation of
Ψ1, thus assigning each matrix element a number that is the distance between it and
the nearest nonzero element, then keep only those values which lie within Ψ2 (and
vice versa), see Fig. 3.3 (b) and (c)

• find the coordinates of the absolute minima in the two resulting matrices and cal-
culate the length of the vector connecting them

The green lines in Figs. 3.3 (b) and (c) connect the two points of nearest approach, shown
for the edge of the contact zone in Fig. 3.3 (b) and for its center in Fig. 3.3 (c). The
coordinates of all points bounding the contact zone are now known, as shown by the green
curve in Fig. 3.3 (d). This iso-surface has been made semi-transparent to allow a view
of the far side of the contact zone. Summing up these segments multiplied by the length
element in y-direction (d = 40 pm) yields the minimum cross-section of the contact zone,
defining the asperity contact area Aasp(L). Note that this approach does not find the
zone of minimum contact boundary (as an elastic band would), and that it does not yield
any information about the interior structure of the contact zone, since it neglects the
asperity affiliation of the individual atoms. However, as will be shown in the following
two sections, this greatly increases the reliability of the method since its accuracy does
not depend on the success of determining the asperity affiliation of each atom at every
moment during material transfer.

The limitations of this method would emerge if the solid bridge between the asperities
deformed in y-direction in such a way that there exists no xz-slice through the system
yielding a simply connected Fe area. However, since one constraint to all systems in this
work is that the sliders may not move in y-direction, this is not an issue here.

3.1.4 Contact atom counting procedure (CCP)

The proposed smooth particle post-processing method may be validated via a comparison
to the number of atoms participating in asperity contact, which is expected to be pro-
portional to the asperity contact area Aasp(L). In the contact atom counting procedure
(CCP), two atoms belonging to different asperities are considered in contact if their cen-
ters are closer to each other than a certain contact distance dcont. To define dcont, which
will depend on the lattice constant or the mixed Lennard-Jones radius, as well as the
crystal structure and the temperature, one can study the radial distribution function of
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(a)

(b) (c)

(d)

Figure 3.3: Calculation of Aasp(L). (a) 3D SPM representation of an MD nanosystem
during asperity contact. (b) Masked 2D Euclidean distance transform of an xz-slice near
the edge and (c) near the center of the contact zone. The color code is rainbow-style with
blue denoting low and red denoting high values. Straight green lines connect the minima.
(d) Same as (a), but with the minima of the Euclidean distance transforms of all xz-slices
within the contact zone connected by a green curve bounding the contact area Aasp(L).
The surface is semi-transparent to allow a view of the far side of the contact zone.
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the substrates during a typical simulation run. In the systems in this work, the shortest
distance between two Fe atoms at 300 K is 0.21 nm, while the first local minimum in
the radial distribution function of amorphous Fe lies at about 0.33 nm, recall the green
radial distribution function in Fig. 2.1 (d). To consider almost the entire first peak of this
curve, which represents the immediate neighborhood of a given atom, as contact atoms,
dcont was set to 0.3 nm in this work. As can also be seen in Fig. 2.1 (d), this choice of
dcont would consider first and second neighbors in contact in a bcc lattice. However, some
atoms usually transfer from one asperity to the other during the period of contact. In the
following, these atoms will be referred to as deserters. For the above-mentioned contact
criterion to work properly, care must therefore be taken that all deserters are associated
with the correct asperity at every time step. Failure to change the asperity affiliation of
a deserter will falsely lead to a higher number of contact atoms. This is most obvious at
the end of the contact period, when the solid bridge has obviously already broken apart,
but the CCP erroneously reports a constant number of atoms which are still in contact.

The distinction between deserters and non-deserters is made by analysing the difference
between their initial and their final mean velocities in sliding direction ∆vx. For deserters,
∆vx ≈ ±4m/s, while non-deserters have a value close to zero (see the bar graph in
Fig. 3.4 (a)). Once a deserter has been identified, its asperity affiliation is changed at the
time step when it first reaches half the sliding velocity. Fig. 3.4 (b) gives a breakdown of
the number of contact atoms into contributions from the upper and the lower asperity,
proving that they are equal on average, as expected. Also shown is the total share of
deserters, which amounts to a little less than half in the beginning, and a little more
than half towards the end of contact. From this one can conclude that atoms which
are still in contact while the contact zone is breaking apart are slightly more likely to
change asperity sides than those involved during contact formation. Figs. 3.4 (c) and
(d) show the running average (window size ∆tavg = 0.5 ns) of the velocity component in
shear direction of all contact atoms that are non-deserters or deserters, respectively. The
bold lines illustrate the average change in advection velocity for atoms that are initially
affiliated with the upper (yellow) or the lower (blue) asperity. It can be seen clearly that
the average non-deserter is accelerated (or decelerated) by ∼ 1 m/s (1/4 of the sliding
speed) during contact before finally relaxing onto its original slider.

The total number of deserters ndes is split up into those atoms that change from the
lower asperity to the upper one and vice versa. Fig. 3.5 compares these two groups
by showing the difference in unidirectional deserter numbers ∆ndes divided by the total
number of deserters for all three asperity types as a function of load. The spread of these
values is quite high and there are instances where all deserters change asperities in the
same direction, which is quite likely if only few atoms are involved in material transfer.
However, when one calculates the cumulative sum of ∆ndes over all loads and divides by
the sum of ndes, one obtains 11%, 12%, and 15% for the semi-spherical, the truncated
cone, and the slanted pyramid asperity, respectively. This could be either because not
enough loads were simulated and the statistics are therefore not yet sufficient, or possibly
due to the fact that the upper slider may oscillate in z-direction while the lower one is held
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(a) (b)

(c) (d)

Figure 3.4: Material transfer in the system with the truncated cone asperity at L =
31.7 nN. (a) Bar graph of ∆vx for all asperity atoms; those with ∆vx ≈ ±4 m/s transfer
from one asperity to the other during the simulation. (b) Time development of the number
of contact atoms belonging to the upper and the lower asperity compared to the total, as
well as number of deserters participating in contact. (c) and (d) vx of all non-deserting
(c) and deserting (d) contact atoms (running average, ∆t = 0.5 ns, the bold yellow and
blue curves are asperity averages).
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Figure 3.5: Directional material transfer balance in the systems with semi-spherical (red
circles), truncated cone (green squares), and slanted pyramid asperities (blue triangles)
as a function of load.

completely fixed in space. Generally, material transfer may still be considered sufficiently
balanced.

Fig. 3.6 (a) shows the load-dependence of the number of contact atoms ncont for the
semi-spherical asperity calculated using the CCP. In this figure one also observes that
while there is (almost) no contact at all until a load of about 4 nN is reached, the number
of contact atoms increases rapidly until 15-20 nN where it starts to level off. Similar
behavior can be seen for the truncated cone asperity in Fig. 3.6 (b), but here contact
already occurs at the second simulated load. The flat top of this asperity type results in
a much steeper increase of ncont with load, so for L > 10 nN, the values remain virtually
constant.

A comparison of the asperity contact duration with the total number of contact atoms
and the number of deserters yields a quadratic dependence in the first case and a cubic
one in the second, independently of asperity geometry, see Figs. 3.7 (a) and (b). One can
therefore expect a linear dependence of the number of deserters on the product of the
total number of contact atoms with the contact duration. Fig. 3.7 (c) shows that this is
indeed the case independent of asperity shape, although data for different geometries are
found in different regions along the linear fit with a correlation coefficient of 0.974. The
data in Fig. 3.7 (b) also suggests that there seems to be a minimum contact duration of
≈ 360 ps to allow material transfer.

Finally, in Fig. 3.7 (d), the mean asperity contact area, calculated with the smooth
particle approach is plotted over the mean number of contact atoms. The linearity of
this relation is evident, where Aasp(L) ≃ 0.02 〈ncont〉 when Aasp(L) is measured in nm2,
and the correlation coefficient of 0.994 strongly supports the validity of the employed
methods. As in Fig. 3.7 (c), this proportionality applies to all data points universally,
irrespective of load and asperity geometry. Some deviations from the linearity of the data
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(a) (b)

Figure 3.6: Number of contact atoms in the case of a nanotribological system with semi-
spherical (a) and truncated-cone (b) asperities as a function of load. Empty symbols
give the maximum instantaneous number of contact atoms, a value corresponding to the
maximum of the red curve in Fig. 3.4 (b). Filled symbols give the total number of contact
atoms, which is the sum of all atoms that are part of the contact zone at any time (not
only at the time of maximum contact) during the simulation. The dashed curves only
serve to guide the eye.

in Fig. 3.7 (d) may arise from the fact that the number of contact atoms is always an
integer, while the asperity contact area can change continuously. This may lead to large
relative errors for small asperity contact areas. Another difficulty lies in the exactness of
coincidence of onset and end of asperity contact between the two calculation methods.
In some cases, one method may indicate contact where the other does not, resulting in
an infinite momentary error. All of these issues are greatly resolved by time-averaging,
but they can still have an effect on the variance for small contact areas, which may lead
to some of the deviations between the original and the fitted data in the load-vs.-friction
behavior discussed in section 4.1.

3.1.5 Voronoi tessellation versus SPM

Voronoi tessellation (VT) is an alternative method to SPM for uniquely filling the space
around some punctiform particles, called generators, based on their momentary posi-
tions [98]. The Voronoi cell (polyhedron) associated with a set of punctiform particles i
(i = 1, 2, . . . , N) at a given moment t is the set of all spatial points ~r(t),

Ωi =
{

~r(t) ∈ R
3 | |~r(t)− ~ri(t)| ≤ |~r(t)− ~rj(t)| , ∀j 6= i

}

, (3.5)
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(a) (b)

(c) (d)

Figure 3.7: (a) The total number of contact atoms over the asperity contact duration for
the three different asperity types. The dashed curve is a quadratic fit to the data. (b) The
total number of deserters (atoms transferred to the other asperity during contact) over
the asperity contact duration. The dashed curve is a cubic fit to the data. (c) The number
of deserters as a function of the number of contact atoms and the contact duration. The
dashed line is a linear fit to all data points. (d) Comparison of the results obtained using
SPM and the CCP proposed in this work. The dashed line is a linear fit to all data points.
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which are at least as close to the position ~ri(t) of the ith particle as to any other particle
j 6= i situated at ~rj(t) (j = 1, 2, . . . , N). The union of all so-resulting closed and convex
Voronoi polyhedra then defines the VT,

Ωtot =
N
⋃

i=1

Ωi , such that
N
⋂

i=1

Ωi = 0 . (3.6)

Partitioning a finite spatial domain into Voronoi cells always yields information about
the shape of dominant regions and about the relationship between neighbors, even when
these are irregularly placed. These main features of VT make this construction method
so successful in many research fields from natural to social sciences [99]. Particularly
in condensed matter physics, the Voronoi construction is well established and has been
widely used for eight decades leading to Wigner-Seitz cells in real space and Brillouin
zones in reciprocal space. Both cells are translationally and rotationally invariant unit
cells centered around a single lattice node in one of the dual spaces [100].

Thus, by performing a VT of two asperities coming into contact, those nearest neigh-
bors within the solid-solid interaction zone which belong to different asperities and share
a common face Σij can be immediately identified,

Σij = Ωi ∩ Ωj 6= 0 , ∀i = 1, . . . , N (k)
asp , ∀j = 1, . . . , N (l 6=k)

asp (k, l = 1, 2) , (3.7)

where N
(k)
asp denotes the total number of particles in one of the two asperities. Having

determined these common faces, the asperity contact area A
(VT)
asp (L) due to the VT for a

given load L is straightforwardly calculated as

A(VT)
asp (L) =

1

2
A

(

⋃

i 6=j

Σij

)

=
1

2

∑

i 6=j

A (Σij) , (3.8)

with A (Σij) denoting the area of Σij.
Note that with the pairwise connection of the position of the punctiform particles

whose Voronoi cells share a common edge, a dual structure of the VT is obtained. This
structure can contain triangles and non-triangular polygons. If all non-triangular poly-
gons are then partitioned into triangles with non-intersecting line segments, an additional
tessellation called Delaunay triangulation results. Similarly to SPM, see section 3.1, the
Delaunay triangulation can also provide a good estimate for the solvent-accessible surface
around a solute and hence can be seen as a proper construction method to analyze contact
areas in MD simulations [101].

The results obtained for Aasp(L, t) with SPM were compared with those from a VT of
the simulation cell. For the VT, the MD geometry data for each time step is modified in
accordance with the CCP described in section 3.1.4, changing the asperity affiliation of
those atoms which migrate from one asperity to the other during contact at the appro-
priate time step. This ensures that single atoms or small groups of atoms which have left
their initial asperity cannot falsely contribute to Aasp(L, t).
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Next, a Delaunay triangulation of the simulation box is performed for each time step
from which the Voronoi cells are calculated. Based on the modified affiliation tables
mentioned above, those Voronoi cells are determined which belong to one asperity and
neighbour a cell belonging to the other one.

When all contacting cells are known, the total Voronoi cell contact surface can be
calculated. However, when comparing the time development of this quantity with the
results obtained with SPM, one notices that the Voronoi method estimates the contact
area ∼ 50% higher on average and up to ∼ 250% higher towards the end of contact, cf.
Fig. 3.8 (a). This is hardly surprising, as the SPM-based Aasp(L, t) is defined only by the

contact zone’s boundary, whereas the Voronoi-based A
(VT)
asp (L, t) is calculated taking into

account the topography of the contact zone, where its roughness enters into the result.

The comparability between the results obtained with the two methods is greatly im-
proved by calculating, weighting and averaging the normal vectors of all Voronoi cell
faces contributing to the contact zone and then projecting the entire contact zone onto
the average contact plane defined by the resulting normal vector. This eliminates the
contact topography from the Voronoi approach. Fig. 3.8 (a) compares the results for the
time development of the asperity contact area (for a load L = 22.04 nN and the semi-
spherical asperity geometry) calculated with the Voronoi-method (total and projected)
to those from SPM. On average, the asperity contact areas for the three methods are
2.009, 1.184, and 1.185 nm2, respectively, so the relative difference between the projected
Voronoi method and SPM is below 0.1% in this example.

Although the average and the maximum values for the asperity contact area in Fig. 3.8
coincide, one can see that at the onset of contact, SPM yields higher values than projected
Voronoi, while from 1.5 ns on, the opposite is the case. This may be attributed to the
increasing discrepancy between the position of the contact plane onto which the total
Voronoi contact zone is projected and the position of the contact zone obtained with
SPM, which does not take into account asperity affiliations, but only searches for the
smallest solid cross-section. Figs. 3.8 (b) and (c) compare the time development of the
normal vectors defining the average contact planes yielded by the two methods. The
average SPM contact plane is a best-fit plane of the bounding points. Evidently, the two
normal vectors behave very similarly until maximum contact is reached, but as the solid
bridge between the asperities is drawn out horizontally, the SPM normal vector starts
rotating about the y-axis and ends up pointing in x-direction when contact ends, while
the Voronoi normal vector, though also slightly rotating about the y-axis, remains much
more parallel to the z-axis (cf. Fig. 3.8 (f)). The differences in definition of the asperity
contact area between the Voronoi method and SPM are therefore most evident towards
the end of contact, explaining the behavior of the curves in Fig. 3.8 (a). The verticals in
Figs. 3.8 (a)–(c) indicate the points in time which are shown in the 3D illustrations in the
right column of Fig. 3.8.

Taking into account that SPM can estimate Aasp(L, t) roughly ten times faster than
the Voronoi method and that it does not require any asperity affiliation tables (which
cannot always be reliably calculated, especially when considering multiple pass contact),
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Figure 3.8: (a) Comparison of the results for the asperity contact area for a semi-
spherical asperity obtained with the Voronoi method (total and projected) and SPM. (b)
Time development of the components of the normalized normal vector ~u of the average
SPM contact plane. (c) Time development of the components of the normalized normal
vector ~u of the average Voronoi contact plane. (d)–(f) 3D-illustrations of the boundary
lubrication simulation at 1.0, 1.9 and 2.2 ns, respectively, as indicated by the verticals in
(a)–(c). Lubricant molecules have been deleted for clarity. Fe atoms of the lower slider
are shown in blue, those of the upper slider in yellow. The Voronoi contact area is shown
as a set of dark green polygons, encompassed by the average Voronoi contact plane as a
light green rectangle. The boundary of the SPM contact zone is shown as a black band,
with the average SPM contact plane shown as a light red rectangle.
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it is absolutely feasible to calculate Aasp(L, t) with SPM if no information about the
internal structure of the contact zone is required.

3.2 Asperity Deformation During Solid-solid Contact

A simple discrete approach was taken for visualizing and quantifying deformation in the
solid. The standard deviations of the positions σpos over a time interval of 2.5 ns, as well as
the difference ∆pos between the initial and the final positions (averaged over 0.2 ns each)
were calculated for each Fe atom in the dynamically treated parts of both sliders. The
sliding and compression movements of the upper slider were suppressed by subtracting
the movement of one of the top rigid atoms at every time step. Fig. 3.9 (a) shows an
illustration of which atoms are involved in plastic deformation (in x-direction) to which
degree.

(a) (b)

Figure 3.9: Visualization of the plastic deformation in the asperities (a) and of the elastic
deformation in the substrates (b) of a crystalline bcc Fe tribosystem with a semi-spherical
asperity. The size and color of the atoms, projected onto the system’s initial configuration,
denote the value of the quantity in the panel title. In the right panel, the deformation
of the asperities is not shown in order not to overshadow the much smaller differences in
the substrate.

An important application of this approach is to investigate up to which depth into the
substrate the Fe atoms are involved in elastic deformation. By comparing σpos of the Fe
atoms in a crystalline bcc Fe tribosystem (L = 44.08 nN, semi-spherical asperity), once
sheared in x-direction and once without any shear, it is obvious up to which depth σpos is

influenced by shear. Fig. 3.9 (b) shows an illustration of how |σ(shear)
pos − σ

(noshear)
pos | changes

with depth for the substrate atoms. It can be seen that virtually anywhere within the
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substrate, its value lies below 0.20 Å. Deeper than 5 ML into the substrate, the difference
drops below 0.03 Å and becomes negligible. This is in good agreement with the rule of
thumb proposed in Ref. [102] stating that the elastically treated substrate layer should
be as thick as the asperity is wide.

3.3 Contact Force Averaging and Error Estimation

The contact forces are calculated by block-averaging over 50 time steps the net force
exerted on the lower stratum of rigid atoms by all other atoms in the system. The
obtained force vector F (t) can be decomposed into the load L(t) = Fz(t), the friction
force F (t) = Fx(t) and the component perpendicular to the directions of load and shear
Fy(t).

3.3.1 Filtering methods

The time-resolved force output can be quite noisy due to thermal fluctuations, which can
make filtering necessary. Depending on the resolution required for the respective analysis,
several filtering methods come into consideration. The simplest one is the block average,
where the data is divided into nb blocks of length ∆t such that nb∆t = trun is the total run
time of the simulation. All data points within a block are then arithmetically averaged.

Another simple filtering method is the central running average, where the block length
∆t is chosen so that it contains an odd number nfilt of data points. If there are nrun force
data points Fi in the entire simulation run, then the central running average data values
can be calculated as

F
(avg)
i (nfilt) =

1

nfilt

i+I
∑

k=i−I

Fk , with I =
nfilt − 1

2
∈ N . (3.9)

Since the central running average scheme averages over data from the past and the future,
i ∈ [I + 1, nrun − I − 1] and data is lost at the beginning and the end of F

(avg)
i .

With the more sophisticated method of Gauss-windowing [103], the average of the
force is obtained from its values modulated in amplitude by a Gauss-pulse

wG(u) = e−αu
2

, u ∈ [0, 1] , (3.10)

whose duration is fixed in accordance with the desired time window

∆t = trun

√

π

α
, (3.11)

where α is a damping parameter which controls the amount of smoothing.
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3.3.2 Statistical inefficiency

A general method to estimate the accuracy of any time-dependent quantity produced in
MD simulations is based on the concept of the statistical inefficiency as introduced in
Ref. [46]. For this, the data of the friction force F (t) is split up into nb blocks of length
tb such that nb tb = trun, the total run time of the simulation. The variance of the mean
values 〈F 〉b of these blocks,

σ2 (〈F 〉b) =
1

nb

nb
∑

b=1

(〈F 〉b − 〈F 〉run)2 (3.12)

is expected to be proportional to t−1b for large tb, where F 〉run is the mean value over trun.
In order to estimate its behavior under these circumstances, one defines the statistical
inefficiency as

s = lim
tb→∞

tb σ
2 (〈F 〉b)
σ2 (F )

, (3.13)

which represents the fraction of the sampled configurations that are statistically relevant.
Here, σ2 (F ) is obtained assuming uncorrelated Gaussian statistics. This information may
then be used to calculate the numerical accuracy of the run average as

σsi (〈F 〉run) =
(

s

trun

)1/2

σ (F ) , (3.14)

where the subscript in σsi denotes that the standard deviation was calculated using the
statistical inefficiency. The challenge lies with stably automating the task of identifying
the plateau value of the limit in Eq. (3.13), as it may be obscured by many outliers for
large values of tb. This can be remedied by not allowing less than nb ≃ 20 blocks so that
fewer outliers are produced. One needs to be aware, however, that the error σsi (〈F 〉run)
estimated in this way is a factor of ∼ 2 smaller than when larger blocks are allowed, but
this factor can be multiplied in afterwards. Thus the slightly compromised accuracy of
the method to estimate the statistical inefficiency is by far outweighed by the benefit of
higher reliability.

3.3.3 Time dependence of contact force

To justify the use of the method explained above to estimate the error made when calcu-
lating the contact forces, further efforts were undertaken to analyze the time dependence
of F (t) over a simulation run. This was achieved by Gauss-windowing F (t), as briefly
discussed in section 3.3.1, with the smoothing window size ∆t varying from 0.1 ps to
10 ns and then calculating the standard deviation of the three force components. The
results obtained for three systems with different asperity geometries at varying loads can
be seen in Fig. 3.10. When comparing these figures, it is evident that the thick yellow
lines for σy and σz which denote the load-averaged smoothing behavior of Fy and Fz are
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almost independent of the asperity shape, whereas the load-averaged smoothing behavior
of Fx as well as its variance with respect to the load vary considerably between the three
systems.

(a) (b)

(c) (d)

Figure 3.10: The standard deviations σx, σy and σz of the contact force components as
a function of the smoothing window size ∆t for a system with a semi-spherical (a), a
truncated cone (b), and a slanted pyramid (c) asperity. Note the logarithmic scale on the
∆t-axis. Curves in hues of blue, green and red denote σx, σy and σz, respectively, with
darker curves for lower loads and lighter ones for higher loads. The thick yellow lines
show the load-averaged behavior. Panel (d) shows the load dependence of the lubricant
compressibility induced vibrations in z-direction. The dashed grey curve is an exponential
fit to the data points.

For ∆t smaller than 0.1 ps no changes can be expected as this value is smaller than
the sampling interval of the contact forces, leading to constant values for σx, σy and σz on
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the far left of Fig. 3.10 (a)–(c). Likewise, for ∆t greater than 2.5 ns (the total simulation
length), all force fluctuations must have averaged out, leading to vanishing values on the
far right in all three figures. The area where ∆t is increased from 0.1 to 1 ps is dominated
by a sharp drop of all three components of σ as the thermal fluctuations in the contact
force is filtered out. It can also be observed for all three asperity types that the initially
higher value of σz decreases at a faster rate than the other two components, dropping
below their values around ∆t = 0.5 ps.

The unusual behavior of σz between ∆t = 1 and ≃ 10 ps may be explained with
some inertial vibrations in z-direction, which are likely due to the compressibility of the
lubricant. According to a multiresolution analysis (MRA) [104] of the time-development
of the z-dimension of the simulation box, these vibrations have a period of ∆T ≃ 8−20 ps,
decreasing non-linearly with the load, ∆T = 24.02L−0.277, regardless of asperity shape,
see Fig. 3.10 (d). It can therefore be assumed that this is a purely lubricant-related effect.

Figure 3.11: The errors σsi obtained from the statistical inefficiency versus σ calculated
as in Figs. 3.10 (a)–(c) for all three asperity types at ∆t = 32 ps. Blue symbols denote
the x, green the y, and red the z-components.

At ∆t = 3 ps, the sharp decline of σx comes to a halt and its value remains almost
constant for the next two orders of magnitude of ∆t, which suggests that there are only
very few features in the time development of the friction force which have typical times
between 3 and 150 ps. At ∆t = 10 ps, σz has virtually vanished, which means that the
load may be considered constant with this amount of smoothing. Between ∆t = 5 ps and
2.5 ns, σy decreases monotonously at a slower pace than for higher frequencies, and its
value always lies between those of σx and σz.

In order to simplify the system parameter fitting procedure discussed in section 3.4.2,
a value for ∆t can be chosen so that the average value of σz/Fz lies below a threshold
of 0.1% and may be treated as zero. At the same time, ∆t should still be in the area
where σx has its plateau, retaining as many features in the time development of Fx(L, t)
as possible, which leads to ∆t = 32 ps. When comparing the values of σx, σy and σz to the
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corresponding values of σsi calculated via the statistical inefficiency based on Eq. (3.14),
one immediately sees the excellent linear correlation for σx and σy, see Fig. 3.11. However,
at very small values for σz, the corresponding statistical inefficiency does not vanish, as it
still retains information about the unfiltered signal variance. Note also that the correlation
does not remain constant for the three components of σ for all values of ∆t (not shown
here).

It can be concluded that for the systems treated in this work one may use the statistical
inefficiency as a means for estimating the error in the friction force while at the same
time neglecting any variance in the load, simplifying the fitting procedure for the system
parameters discussed in section 3.4.2.

3.4 Constitutive System Parameters

Tribologists are usually interested in characterizing the frictional properties of a given
system with the coefficient of friction µ. In the macroscopic world, this system parameter
is often sufficient to calculate a friction force F from the applied load L with the Amontons-
Coulomb friction law F (L) = µL [28, 29]. For all its simplicity, this law proves very
accurate in many applications.

In the nanoscopic regime, especially in mixed and boundary lubrication, one often has
to deal with non-linearities as well as with adhesive effects that prevent F from vanishing
when no load is applied. These issues require the introduction of one or two more load-
independent system parameters which make it possible to predict friction forces.

For the systems treated in this work, I found it most convenient to use the three-term
friction law proposed in this section. There may be certain cases where it simplifies to
well-known special forms, but whenever lubrication gaps of the order of a few lubricant
monolayers are present and/or solid-solid contact may occur—in short, for the atomistic
treatment of mixed- or boundary-lubricated systems—this form of nanoscopic friction law
always holds true.

3.4.1 Three-term kinetic friction law

The three-parameter friction law at nano-scale applied to the mixed- and boundary-
lubricated tribosystems in this work reads

F (L) = F0 + τAasp(L) + µL , (3.15)

where F (L) is the load-dependent friction force. F0 is the load-independent Derjaguin-
offset ascribed to the presence of the lubricant (discussed later in this section), τ is the
system’s effective shear strength, Aasp(L) is the time-averaged asperity contact area cal-
culated using SPM as discussed in section 3.1.3, µ is the nanoscopic coefficient of friction,
and L is the applied load. The Bowden-Tabor term τAasp(L) in Eq. (3.15) describes the
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adhesion-controlled friction, whereas the Amontons-Coulomb term µL describes the load-
controlled friction regime for nano-systems [105, 106]. This general form of the friction
law will hold at any considered load and reproduces the observed load-vs.-friction behav-
ior in all nanotribological systems in this work. It is valid independently of the particular
form of the asperities or whether solid-solid contact occurs or not, i.e., for all values of
the asperity contact area Aasp(L) ≥ 0.

In contrast to the friction law given in [107], namely Eq. (3.15) written without F0,
for this work it was absolutely necessary to consider a Derjaguin-offset F0 6= 0, because
in all mixed lubrication cases investigated here, the friction force F (L) does not vanish,
even if both the load L and the asperity contact area Aasp(L) do—as can be observed by
inspecting the load-vs.-friction graphs in chapter 4. Of course there are nanotribological
systems where such an offset of friction force either does not occur at L = 0 or is negligible
[108], a selection of which will be discussed in section 4.3.

Note that the above three-term friction law obtained for boundary lubrication in nan-
otribological systems formally comprises other long-standing friction laws well known in
literature. The Derjaguin-Amontons-Coulomb friction law, also referred to as modified
Amonton’s law [109],

F (L) = F0 + µL , (3.16)

directly results from Eq. (3.15) by assuming Aasp(L) = 0. The offset F0 was first identified
and introduced to tribology by Derjaguin in 1934 based on purely theoretical consider-
ations [30]. He argued that the presence of F0 6= 0 in the friction law is a direct conse-
quence of the cohesion forces between molecules within the lubricant, see also Ref. [110].
F0 / µ = L0 6= 0 can be seen as an internal load L0 caused by adhesion occurring in the
presence of lubricant at load L = 0, and accordingly this term can be combined with the
third one of Eq. (3.15) leading to F0 + µL = µ(L0 + L) as in Ref. [105].

The Bowden-Tabor friction law [37, 108], F (L) = τ ′Aasp(L) = τAasp(L) + µL, on
the other hand, immediately follows from Eq. (3.15) when F0 = 0, and by introducing
τ ′ = τ + µL/Aasp(L) [111]. From the latter particular form of Eq. (3.15), a generalized
Amontons-Coulomb friction law F (L) = µ′L may be written by introducing µ′ = µ +
τAasp(L)/L [112]. Both µ′ and τ ′ would be system parameters if Aasp(L) ∼ L, which
may hold for macroscopic systems, but is definitely not the case in nanoscopic ones, see
Fig. 3.6. It is also possible to ‘derive’ the last term of Eq. (3.15) starting from the second
one by assuming that the shear strength τ obeys a linear pressure dependence and can
therefore be written as τ + µ p, if Aasp(L) 6= 0 for all L considered, with p = L/Aasp(L)
[113, 114].

3.4.2 Least squares fitting procedure

Let us assume that the friction force F (L) as a function of the load L is known from
MD simulations, i.e. , consider a finite set of values Fi = F (Li) (i = 1, 2, . . . , n) together
with their corresponding errors σi made while calculating the friction forces as discussed
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in section 3.3. Because these errors σi are normally distributed, the chi-square merit
function [115],

χ2 (F0, τ, µ) =
n
∑

i=1

[

Fi − F0 − τ Aasp(Li)− µLi

σi

]2

(3.17)

achieves its minimum with respect to the parameters F0 (offset of the friction force), τ
(effective shear strength) and µ (coefficient of friction), and for the given nanotribological
system the three-term friction law in Eq. (3.15) holds. This means that the partial
derivatives of χ2 (F0, τ, µ) with respect to F0, τ and µ following from Eq. (3.17) all vanish,
and in order to determine these parameters one has to solve the system of linear equations
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for example by using Cramer’s rule, where
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(3.19)

In addition, the error (variance) made by estimating F0, τ and µ based on Eq. (3.17)
can be evaluated using Eq. (3.19) and
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where ∆ = S11S22S33 + 2S12S13S23 − S11S
2
23 − S2

13S22 − S2
12S33 is the determinant of the

system of linear equations in Eq. (3.18). Apart from Eq. (3.20), the goodness of fit can
be expressed in terms of the upper incomplete gamma function

Q

(

χ2

2
,
ndof

2

)

= 1− 1

Γ
(

ndof

2

)

χ2

2
∫

0

e−t t
ndof
2
−1dt , (3.21)

where χ2 is the chi-square merit function from Eq. (3.17) and ndof is the number of degrees
of freedom, i.e., the number of data points (loads) minus the number of fit parameters,
and Γ is the gamma function. Values of Q close to 1 denote high fit quality.

Note, however, that this least squares fitting of F0, τ and µ properly works only as
long as at least one load Li exists such that Aasp(Li) 6= 0. When Aasp(Li) = 0 for all
loads Li considered, Derjaguin’s friction law Eq. (3.16) holds and Eq. (3.18) is replaced
by

(

S11 S13

S13 S33

)(

F0

µ

)

=

(

S1

S3

)

, (3.22)

which, once solved, provides F0 and µ with an error (variance) of
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but the shear strength τ remains undefined. In this special case, one can also use the
corresponding chi-square merit function,

χ2 (F0, µ) =
n

∑

i=1

(

Fi − F0 − µLi

σi

)2

(3.24)

as an approach for measuring the goodness of fit when no solid-solid contact occurs during
sliding.

3.4.3 Convergence of constitutive system parameters

In order to get a feeling for the convergence of the system parameters, it was studied how
many data points np (i.e. loads) it takes for F0, µ, and τ to stabilize. For this, at first
np = 3 points were chosen at random out of the np,max = 62 available for each asperity
type, with the constraint that the first and the last data points are always the ones at the
lowest and highest load, respectively. The chi-square fitting procedure was then carried
out nr = 104 times for every random data configuration, after which the mean value
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and the standard deviation for each system parameter was recorded. This procedure was
repeated with 3 < np ≤ 62 in order to see general trends for the convergence of the system
parameters.

The detailed results of the convergence study is shown for the spherical asperity shape
in Figs. 3.12 (a), (c), and (e). The round yellow markers at np = 16 represent the
fitting results for 16 equally spaced data points. Looking at F0, the mean value drops
steeply for small np, has a pronounced minimum at np = 6 and then rises monotonically,
seemingly reaching saturation at np = np,max. The variance remains almost constant
for 10 < np < 50, then drops and reaches zero by default for np = np,max = 62. The
upper limit of the error bars reach the final value of F0 at np ≈ 30, from which point on
the obtained system parameter is statistically indistinguishable from the converged value.
Note, however, that the average value of F0 lies only 16% below the converged F0 even at
np = 6, where convergence is poorest.

By contrast, the mean value of µ rises steeply for small np and has a flat maximum
at np = 14 which lies within 3% of the final value. The variance decreases monotonically.
The convergence of τ , although with a different sign, is marked by similar behavior: its
mean value drops steeply at first but reaches a value within 2% of its final value by
np = 15, and the variance decreases monotonically as well.

Figs. 3.12 (b), (d), and (f) compare the convergence progress of the three system
parameters with respect to the values at np = np,max = 62 for all considered asperity
types. Note the different scaling of the vertical axes. One immediately sees that F0, µ,
and τ are affected by errors due to incomplete convergence which are of the orders 15%,
3%, and 5%, respectively. It can therefore be concluded that µ is a very stable parameter
which may be estimated with good accuracy using only few load points. The system
parameter τ also converges quickly but generally its quality depends on the occurrence of
solid-solid contact, cf. the green curve in Fig. 3.12 (f), where a single load point with no
asperity contact slows convergence. Finally, F0 converges somewhat more slowly, and its
variance does not decrease monotonically. Its quality is strongly dependent on solid-solid
contact, or rather its absence in some points, especially at low loads, cf. the green curve
in Fig. 3.12 (b). Based on np = 16 load points, one can expect to obtain values within a
5% range around the converged value for µ (and τ , as long as sufficient solid-solid contact
occurs). As can be seen in Fig. 3.12 (a), the value for F0 may lie closer to the converged
value than the general trend indicates as long as the evaluated load points are evenly
distributed, but it may also be off by ±12% in the worst case.

3.5 Lubricant Analysis

Order in the lubricant film seems to play a considerable role in the occurrence of the load-
independent force offset F0 featured in all of the friction laws discussed in this work. To
investigate this, the correlations between the individual atoms of the carbon backbones of
the lubricant molecules were visualized using dynamic cross-correlation maps (DCCMs).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Convergence of the chi-square fitting procedure with increasing number of
data (i.e. load) points np for the system parameters F0 (a), µ (c) and τ (e). The left
column shows data from the system with the semi-spherical asperity. The right column
compares the progress of convergence of the system parameters for all three asperity types
in percent of the values at np = 62.
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The matrices which these represent have the additional advantage of directly serving as
a basis for calculating various forms of configurational entropy, which may be interpreted
as a single scalar quantification of certain aspects of lubricant order.

3.5.1 Dynamic cross-correlation maps (DCCM)

In terms of the position vectors ~ri(t) and ~rj(t) at the moment t of two “particles” (e.g.
atoms, groups of atoms, residues, atomic clusters, etc.), the corresponding element cij of
the covariance matrix is defined as [116]

cij = 〈∆~ri ·∆~rj〉 = 〈(~ri − 〈~ri〉) · (~rj − 〈~rj〉)〉 = 〈~ri · ~rj〉 − 〈~ri〉 · 〈~rj〉 , (3.25)

where · denotes the scalar product of two vectors and angle brackets indicate time av-
erages taken over the last period T − t0 of the simulations (T is the final, t0 the initial
moment) [117], for example,
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1
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∑
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〈~rk〉 =
1

Nt
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, (3.26)

with

Nt =

[

T − t0
∆t

]

∈ N ,

and ∆t being the time between two consecutive time frames or alternatively the period
used for partial averaging. Thus the diagonal elements of this covariance matrix,

ckk =
〈

∆~r2k
〉

=
〈

|∆~rk|2
〉

=
〈

~r2k
〉

− 〈~rk〉2 =
〈

|~rk|2
〉

− |〈~rk〉|2 , (3.27)

give the mean-square fluctuations of the kth particle. The normalized covariance ma-
trix, called the dynamic cross-correlation matrix C, is formed by the cross-correlation
coefficients [116, 117],

Cij =
〈∆~ri ·∆~rj〉

√

〈∆~r2i 〉
〈

∆~r2j
〉

=
cij√
ciicjj

∈ [−1, +1] , (3.28)

such that positive values of Cij quantify the correlated motion between particles i and j,
whereas negative valued cross-correlation coefficients indicate the degree of anticorrelation
in the motion of two particles and Cijs for extrema ∓1 mark perfectly (anti)correlated par-
ticle pairs. Furthermore, the so introduced cross-correlation coefficient Cij—also known as
Pearson correlation coefficient r [∆~ri,∆~rj]—is a suitable measure for time-correlated mo-
tions along a straight line by means of the relative displacements (i.e. , it properly detects
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linear correlations), but fails to provide any information about the magnitude of fluctua-
tions, which can range from small local oscillations to large-scale collective motions [118].
Moreover, correlations occurring due to parallel oscillations of the same period shifted
in phase by 90◦, or perpendicular oscillations in phase of identical period, which yields
a vanishing Cij, are not distinguished either [119]. For these reasons, complementary to
Cij [118], it is also useful to separately investigate the average maximum magnitude

rabs [∆~ri,∆~rj] =
〈|∆~ri| |∆~rj|〉
√

〈∆~r2i 〉
〈

∆~r2j
〉

(3.29)

and the average colinearity

rdir [∆~ri,∆~rj] =

〈∣

∣

∣

∣

∆~ri
|∆~ri|

· ∆~rj
|∆~rj|

∣

∣

∣

∣

〉

. (3.30)

In accordance with common practice in the known literature, ~ri(t) indicates the in-
stantaneous position of the backbone carbon atoms in the lubricant molecules [116, 117,
118, 119].

Per definition, the dynamic cross-correlation matrix C introduced in Eq. (3.28) is a
symmetric one. Therefore, when these matrices are shown graphically as so-called dy-
namic cross-correlation maps (DCCM), for sake of clarity and redundance-free represen-
tation, commonly in the upper triangle only the negative correlation values are displayed,
whereas in the lower triangle the positive correlation values only [119]. Beyond the time
interval considered for averaging in Eq. (3.26), the current magnitude and structure of the
correlation values in DCCM strongly depends on the global and unique reference frame
used as well. For example, translating this initial frame by ~R, the element c′ij of the
covariance matrix with respect to the new reference frame,

c′ij = cij +
〈

~R · ~R
〉

−
〈

~R
〉

·
〈

~R
〉

(3.31)

−
〈

~ri · ~R
〉

+ 〈~ri〉 ·
〈

~R
〉

−
〈

~rj · ~R
〉

+ 〈~rj〉 ·
〈

~R
〉

,

differs from that in Eq. (3.25) whenever ~R is time-dependent, e.g. , identical with the
center of mass of the entire system,

~RCM(t) =
1

m

∑

i

mi ~ri(t) , where m =
∑

i

mi , (3.32)

see Ref. [120].

3.5.2 Configurational entropy

The configurational entropy Sconfig contributes to the total entropy Stot of a given system
along with Str and Srot, which arise from the translational and rotational motions of the
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entire system. As it is related to the position of the constituent particles only, Sconfig can
be seen as a measure of the structural order within the system and is decomposed into
a conformational Sconf and vibrational Svib part. Independently of which contribution S
to Stot is to be determined for a given positional configuration ξ of particles, it can be
(at least in principle) directly obtained from the Shannon entropy of the joint probability
density function (PDF) ρξ(ξ) assigned to ξ [121],

S = −kB
∫

dξ ρξ(ξ) ln ρξ(ξ) , (3.33)

where kB is the Boltzmann constant. Note that for the sake of simplicity, in this expression
of S the temperature-dependent constant occurring due to the integration of the PDF in
the momentum space was omitted. Unfortunately, except for some model systems, ρξ(ξ)
cannot be computed with sufficient accuracy using MD simulations [122], and hence the
expression on the right hand side of Eq. (3.33) has to be approximated.

The most commonly used approach for the PDF in literature is the quasi-harmonic
(Gaussian) one where the canonical PDF ρξ(ξ) of particle motion is assumed in the form
of a multivariate Gaussian probability density [123],

ρξ(ξ) =
1

(2π)3N/2 detC
exp

(

−1
2
∆ξTC−1∆ξ

)

. (3.34)

Here the 3N × 3N covariance (super)matrix C is given by
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(3.35)

and N the total number of particles in the investigated system. The two-particle covari-
ance matrix Cij, on the other hand, is written as

Cij = ∆ξi∆ξTj =





∆xi∆xj ∆xi∆yj ∆xi∆zj
∆yi∆xj ∆yi∆yj ∆yi∆zj
∆zi∆xj ∆zi∆yj ∆zi∆zj



 , (i, j = 1, . . . , N) (3.36)

by compacting the Cartesian components of the positional deviations into a single column
matrix,

∆ξ = ξ − 〈ξ〉 =
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62



Thus any element of the covariance (super)matrix C reads

〈

∆ξ
(k)
i ∆ξ

(l)
j

〉

=
〈

ξ
(k)
i ξ

(l)
j

〉

−
〈

ξ
(k)
i

〉〈

ξ
(l)
j

〉

, with k, l = 1 (x) , 2 (y) , 3 (z) (3.38)

and the angle brackets denote time averages taken over the data acquisition period of the
simulation.

Particularizing Eq. (3.34) for the center of mass of the entire system consisting of N
particles of different masses mi, recall Eq. (3.32), Eq. (3.33) immediately yields for the
translational contribution to the total molar entropy [124],

Str = R ln

[

3
∏

k=1

(

e2mkBT

~2

)1/2

σξ(k)

]

, (3.39)

where ~ = h/ (2π) stands for the reduced Planck constant, e denotes the Euler number,
R is the universal (molar) gas constant, T the constant temperature, and σx, σy and σz

are the principal root-mean-square (RMS) fluctuations of the center of mass. Similarly,
the rotational contribution to the molar entropy Stot is obtained as [120]

Srot = R ln

[

8π2

(

ekBT

2π~2

)3/2

(IxIyIz)
1/2

]

(3.40)

by assuming a symmetry number of unit magnitude and inserting the principal moments
Ix, Iy and Iz as eigenvalues of the inertia tensor I built up with the elements [125]

Ikl =
N
∑

i=1

mi

(

〈ξ′i〉
2
δkl −

〈

ξ
′(k)
i

〉〈

ξ
′(l)
i

〉)

, where k, l = 1 (x) , 2 (y) , 3 (z) , (3.41)

determined using the atomic positions ξ′i with respect to the center of mass of the inves-
tigated system.

The common idea behind various estimations for Svib known in literature is the map-
ping of each vibrational eigenmode of the analyzed system onto a well-defined frequency
of a simple one-dimensional quantum harmonic oscillator [126]. In order to proceed in
this manner, one has to first diagonalize the symmetric covariance (super)matrix C from
Eq. (3.35) using an orthogonal coordinate transformation, i.e.,

T T C T = Λ = diag (λ1, λ2, . . . , λ3N) . (3.42)

Here the diagonal matrix Λ consists of 3N eigenvalues λJ ≡ λ
(l)
j labelled with a composite

index J = 3(j− 1)+ l, for example, such that the Jth column of the 3N × 3N orthogonal
matrix T is the eigenvector corresponding to λJ , called principal mode, and T T is the
transpose of T . Usually, the eigenvectors are also normalized, or alternatively one applies
an orthonormal transformation in Eq. (3.42) from the beginning to diagonalizeC [127]. At
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the end of the diagonalization, each eigenvector describes a single correlated displacement
of particles relative to 〈ξ〉 in a multidimensional space, and the eigenvalue associated
with this eigenvector gives the amplitude of the collective motion, i.e. , the mean-square
fluctuation in the direction of that principal mode [117]. Commonly, eigenvalues are
arranged in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λ3N ≥ 0 and the corresponding normalized
eigenvectors V J (J = 1, . . . , 3N) as columns form the orthonormal matrix V , which is
equal to T only if the transformation in Eq. (3.42) is an orthonormal one. Note that by
diagonalizing C as defined in Eq. (3.35), three eigenvalues will correspond to the collective
translational motion, three more to the rotation, and only the remaining 3N − 6 modes
are purely vibrational.

Once the 3N − 6 vibrational eigenmodes are identified, the frequencies ωJ of the
associated one-dimensional quantum harmonic oscillators are calculated relating these
to the classical variance

〈

∆ξ2J
〉

= λJ of the uncorrelated particle coordinates using the
equipartition theorem,

mJω
2
JλJ = kBT , (J = 1, 2, . . . 3N − 6) , (3.43)

which reasonably well holds as long as ~ωJ ≪ kBT . Summing up the analytically known
vibrational entropies S

(J)
vib directly obtained from Eq. (3.33) for all associated quantum

harmonic oscillators J = 1, 2, . . . 3N − 6, immediately results in the vibrational contribu-
tion to the total molar entropy within the quasi-harmonic approach as [128]

Svib = R
3N−6
∑

J=1

β~ωJ

exp (β~ωJ)− 1
−R

3N−6
∑

J=1

ln [1− exp (−β~ωJ)] , (3.44)

where β = (kBT )
−1. Schlitter in his ad hoc quantum mechanical approximation [129]

provided an upper bound to Svib and hence to the configurational entropy in most systems
with

SSchl =
1

2
R

3N−6
∑

J=1

ln

[

1 +
e2

(β~ωJ)
2

]

=
1

2
R ln

[

3N−6
∏

J=1

(

1 +
kBT e2

~2
mIλI

)

]

(3.45)

≃ 1

2
R ln det

(

1+
kBT e2

~2
MΛ

)

=
1

2
R ln det

(

1+
kBT e2

~2
M C

)

> Svib ,

which correctly reproduces both the quantum and the classical mechanical limits of the
entropy (SSchl = 0 if T → 0, and SSchl ∝ lnT if T → ∞) and is not singular even
if the 3N × 3N covariance (super)matrix C is [130]. In Eq. (3.45) 1 represents the
3N × 3N unit matrix and M represents the mass (super)matrix introduced as formed
with M ij = miδij 13×3, δij is the Kronecker symbol and 13×3 the 3× 3 unit matrix. Note
also that M C = M 1/2 CM 1/2 is the mass-weighted covariance (super)matrix built
up with the Cartesian components of the mass-weighted positional deviations, namely
M

1/2
ii Cij M

1/2
jj =

(√
mi∆ξi

)

(
√
mj ∆ξj)

T [127], which, once diagonalized, leads to mass-
weighted mean-square fluctuations along the eigenvectors [131]. By removing the trans-
lational and rotational motions of the center of mass of the system by a least squares fit,
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for example, SSchl will differ from that of the unfitted system, but its value may still be
used for relative comparisons with Svib [132].
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Chapter 4

Results and Discussion

This chapter presents three studies in which the analysis methods outlined in chapter
3 are applied to the data obtained from nano shear simulations. Sections 4.1 and 4.2
both deal with mixed lubrication in the nanoscopic regime, where boundary lubricants
fail, direct asperity contact occurs, and the three-term kinetic friction law applies in its
entirety. Finally, section 4.3 is a large-scale case study of the friction performance of dif-
ferent boundary lubricants under various conditions and with varied substrate roughness.
Nine of these systems are then analysed further in an attempt to correlate a particular
system parameter of the three-term kinetic friction law, the Derjaguin offset F0, to the
configurational entropy of the boundary lubricant.

4.1 SPM Analysis of Boundary Lubricant Failure

In this section I will exemplify how the SPM post-processing method discussed in section
3.1 may be used for a detailed analysis of the non-linear load-vs.-friction behavior in mixed-
lubrication shear simulations of rough nano-systems [38, 39]. The focus in this study
lies on forcing boundary lubricant failure at high loads, which leads to direct asperity-
asperity contact, while avoiding it at low loads, thus retaining boundary lubrication as in
Refs. [32, 33, 34]. These conditions are ideal for testing the stability and accuracy of SPM
for calculating contact areas, as well as for ensuring the applicability of the three-term
kinetic friction law at high load-resolution.

4.1.1 Specific system setup

The three nanotribological systems featured in this section are prepared following the
general guidelines for large substrates in chapter 2 and can be viewed in Fig. 4.1. The
thickness of the amorphous Fe substrates is 0.82 nm, which is equivalent to 1352 atoms
or ∼ 4 monolayers of bcc Fe(100). This substrate thickness may lie slightly below the
recommended minimum as discussed in section 3.2, but since the main interest here lies
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with the asperity tip deformation and comparative studies on systems with thicker sub-
strates have given similar results, it can be considered sufficient. Only stearic acid is used
as boundary lubricant. The procedure for generating pre-worn boundary lubricant films
described in section 2.2.2 is applied to the three simulated asperity types (semi-spherical,
truncated cone, and slanted pyramid) in order to achieve load-dependent occurrence of
asperity contact. This leads to lubricant coverages of 66, 84, and 74 molecules per slider,
respectively, explaining the noticeable difference in lubrication gap thickness between the
three systems. For comparison, an atomically flat surface of the same lateral dimensions
will typically hold around 130 molecules of stearic acid [23] which form a dense and almost
defect-free film at that coverage. The applied loads range from 1.38 to 44 nN, correspond-
ing to nominal pressures between 50 MPa and 1.6 GPa, which are not evenly distributed
over the load spectrum. The highest density of load points can be found near the most
pronounced discontinuities in the load-vs.-friction relations.

(a) (b)

(c)

Figure 4.1: Snapshots of the three MD-nanosystems analyzed in this section. (a)
semi-spherical asperity, η = 66 molecules/slider. (b) truncated cone asperity, η =
84 molecules/slider. (c) slanted pyramid asperity, η = 74 molecules/slider. The color
code is the same as in Fig. 2.11.
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4.1.2 Time-dependence of friction force

The friction force F (L) as a function of time for the MD-nanosystem with the semi-
spherical asperity shown in Fig. 4.1 (a) at five different loads can be seen in Fig. 4.2.
Note how F (L) remains low and relatively constant at L = 2.76 nN (blue). At L =
11.02 nN (cyan), a bulge between t ≃ 1.0 and 1.7 ns due to asperity contact becomes
apparent. Although asperity contact increases further with growing load, the associated
bulge becomes buried in the larger load-dependent contribution to the friction force at
L = 22.04, 33.06, and 44.08 nN (green, yellow, and red, respectively).

Figure 4.2: Friction force as a function of time for the system with the semi-spherical
asperity at loads of 2.76, 11.02, 22.04, 33.06, and 44.08 nN. All curves are running averages
with a time window of ∆t = 30 ps and are colored rainbow-style with blue denoting low
and red denoting high load.

4.1.3 Asperity contact area

Load-dependence As can be seen in the smooth particle method (SPM) visualization
in Fig. 4.3, the larger cavities at the smallest shown load of 4.8 nN are already greatly
reduced in size after 1.0 ns, but they remain present throughout the entire simulation.
This small load is one of the few examples where cavities and asperity contact occur
simultaneously. Necking of the solid bridge between the asperities is evident at 1.5 ns,
and one can observe some plastic deformation of the asperities at 2.0 ns after contact has
ended. At an intermediate load of 23.4 nN, all cavities have already vanished during the
dynamic equilibration period. A larger contact area than for 4.8 nN is apparent at 1.0
and 1.5 ns. The gaps in the green bead chains representing the perimeter of the contact
zone in Fig. 4.3 (e.g. at 1.0 ns), occur due to the discrete mesh and the contact zone
geometry at that time, but this does not influence the accuracy of the calculated asperity
contact area Aasp(L) for any of the considered loads L. The contact duration is also longer
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than for the low load, since contact has not yet ended at 2.0 ns, when a pronounced neck
has formed which is about to break. At the highest shown load of 42.6 nN in Fig. 4.3,
no cavities are present throughout the shear simulation, and it can be seen that some
plastic deformation of the asperities has already taken place through the lubricant during
the dynamic equilibration period and is evident in the image shown at 0.5 ns. One effect
of the higher degree of plastic deformation at this high load is that the contact zone is
less regularly shaped, especially during necking (at 1.5 and 2.0 ns). This leads to the
border of the asperity contact area becoming more jagged than at lower loads, which is
a consequence of how its position is calculated, see section 3.1.3. However, the error thus
introduced to Aasp(L) is negligible.

Figure 4.3: SPM representations of the nanotribological system with semi-spherical as-
perities at three different loads and at four different times. The lubricant is not shown
for clarity. Red iso-surfaces represent the Fe-surfaces while blue iso-surfaces show the
cavities within the lubricant. The green bead chains mark the points which encompass
the minimum cross-section in the contact zone and thus uniquely contour the asperity
contact area.

Asperity shape dependence Similar time-development is also observed for the other
considered asperity geometries. To illustrate the occurring differences, however, a com-
parison of the different asperity shapes at the same intermediate load of 23.4 nN is made
in Fig. 4.4. At 0.5 ns, the initial difference in asperity geometry is apparent. By 1.0 ns, the
systems with the semi-spherical and the truncated cone asperities have already engaged
in asperity contact, while the two slanted pyramid asperities have not come close enough
for touching due to their shapes. However, comparing this asperity geometry at 0.5 and
1.0 ns, one can see that some deformation (blunting) of the asperity has already taken
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Figure 4.4: SPM representations of three nanotribological systems with semi-spherical,
truncated cone and slanted pyramid asperities, respectively, at a load of 23.4 nN and at
four different times. The lubricant is not shown for clarity. Red iso-surfaces represent the
Fe-surfaces while blue iso-surfaces show the cavities within the lubricant. The green bead
chains mark the points which encompass the minimum cross-section in the contact zone
and thus uniquely contour the asperity contact area.

place before contact. At 1.5 ns, all three systems are in contact, with the semi-spherical
asperity having the largest contact area and the other two being comparable in size (cf.
Fig. 4.5). At 2.0 ns, contact has just ended for the truncated cone and the slanted pyramid
systems, with a high degree of plastic deformation and asperity corrugation visible in the
truncated cone system, while the slanted pyramid system still looks similar to the way it
did before asperity contact (especially the upper asperity). This may be attributed to the
short contact duration, the low number of contact atoms, as well as the original shape of
the asperity which is similar to the semi-spherical one after deformation. Also note the
formation of a small cavity at 2.0 ns for this asperity type.

Contact area Looking at the time-development of the asperity contact area calculated
with SPM in Fig. 4.5 for L = 23.4 nN, all curves exhibit the same general shape. The
differences are mainly in magnitude, as well as a time-offset in the beginning of contact
for different asperity geometries due to their shapes. One feature common to all asperity
shapes is a slightly steeper slope of the curve up to the peak, with a more moderate
decline after the maximum. This can be attributed to plastic deformation and necking of
the solid bridge before contact ends (cf. Fig. 4.3 at 2.0 ns; 23.4 and 42.6 nN).
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Figure 4.5: Calculated asperity contact area as a function of time at a load of 23.4 nN,
corresponding with the nano-systems shown in Fig. 4.4. The solid red line stands for the
system with semi-spherical asperity, while the green dashed and blue dash-dotted lines
stand for the truncated cone and the slanted pyramid asperity systems, respectively.

4.1.4 Cavities

One aspect briefly mentioned in section 3.1.1, which is important for the correct estimation
of Aasp(L) is the consideration of cavities within the simulation domain, i.e., regions
where the total material density drops below the threshold density ρ0. Gao, Luedtke
and Landman noticed the emergence of a large void after near-contact of two barrier-type
asperities due to turbulent flow within the lubricant of n-hexadecane [31], but the planned
further investigation in that direction was never carried out.

Should cavities for some reason exist within the asperity contact zone, this would
constitute a source of considerable error in the contact area estimation. This aspect was
therefore investigated separately, and the results of the analysis can be seen in Fig. 4.6,
where the total cavity volume calculated via SPM is depicted as a function of load and
time in a surface plot colored according to the number of contact atoms calculated via
CCP, discussed in section 3.1.4. What can be seen clearly is that in regions with high
cavity volumes, asperity contact plays little or no role, and vice versa. This may be
explained with the fact that as the two Fe surfaces jump to direct asperity contact, the
lubrication gap thickness is suddenly reduced, effectively removing all remaining cavities.
It may therefore be assumed that in our systems, cavities do not interfere with the contact
area calculation.

The system with the semi-spherical asperity (Fig. 4.6a) exhibits the most well-defined
behavior. Cavities exist for low loads up to approximately 10-15 nN and decrease in
volume to below 0.5% of the total box volume by 2 ns if no asperity contact occurs, or
almost vanish as soon as asperity contact starts. Up to loads of 10 nN, small volumes of
cavities and asperity contact may co-exist. At lower loads up to 4 nN, the total cavity
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Figure 4.6: Total cavity volume of the three nanotribological systems with semi-spherical
(a), truncated cone (b), and slanted pyramid (c) asperities, respectively, colored according
to the number of contact atoms as a function of load and time (left column). The right
column shows snapshots of an xz-section through the center of the three systems at a
load of 35.7 nN and at 1.4 ns (marked with white circles in the left column). Color code
as in Fig. 2.11.
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volume increases again after the asperities have passed by each other without contact.
Loads beyond 4 nN always exhibit asperity contact. For the other two asperity types
(Figs. 4.6b and 4.6c), the picture is not as clear. Although cavities are non-significant for
loads beyond about 10 nN, the contact situation is less predictable here. For the truncated
cone, some medium to high loads (notably 16.5 and 35.7 nN in Fig. 4.6b) exhibit little or
no asperity contact. The situation is even more chaotic for the slanted pyramid system.
Here, only about half the loads higher than 20 nN exhibit asperity contact.

The points marked by white circles in the left column of Fig. 4.6 are shown as snapshots
of the respective systems in the atomistic representation. They were chosen to visualize
three distinct contact situations. Although these situations are exemplarily shown here
for a particular asperity shape, load and time only, they can occur for several other
constellations of these parameters. The snapshot in Fig. 4.6 (a) shows a full asperity
contact situation where the lubricant has failed and high plastic deformation and material
transfer occur. This is typical of the system with the semi-spherical asperity for loads
greater than around 4 nN, where maximum contact areas range from 1.2 − 2.5 nm2.
Fig. 4.6 (b) shows a snapshot of a transition contact situation which is most common at
low to intermediate loads for all systems, but can occur at high loads for the truncated
cone and the slanted pyramid asperities. Typical contact areas for this contact situation
range from 0.1− 0.5 nm2. Finally, the snapshot in Fig. 4.6 (c) represents the no-contact
situation. This can be a result of low load (valid for all systems) or, as in this example,
due to plastic deformation of the asperities during their approach.

4.1.5 Three-term kinetic friction law

The left column in Fig. 4.7 shows the load-vs.-friction behavior of the three simulated
systems, for which L and F were obtained by time-averaging their values over 2.0 ns
after the dynamic equilibration period. For an example of the time development of the
friction force recall Fig. 4.2. Between 53 and 63 data points were obtained in this way
for each system, yielding a highly resolved load dependence curve for each case, which
clearly reveals non-linearities and discontinuities. The parameters F0, τ and µ entering
the three-term kinetic friction law F (L) = F0 + τAasp(L) + µL, obtained by minimising
χ2, as well as their estimated errors are summarized in Table 4.1, where Q denotes the
goodness of fit from Eq. (3.21). The standard deviations of the calculated friction force
values, which are necessary to fit the parameters and are shown as error bars in Fig. 4.7,
correspond to σsi,x and are calculated according to Eq. (3.14) based on the statistical
inefficiency. They include the factor 2 discussed in section 3.3.2 and amount to errors of
5–10%.

It is worth pointing out again that the values for Aasp(L) are obtained from geometri-
cal considerations only and are calculated completely independently of the friction force
data. With that in mind, the high degree of agreement between the original data and
the points fitted to the proposed friction law, which can be seen in the right column of
Fig. 4.7, is impressive. The accuracy of the proposed smooth particle approach also con-
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Figure 4.7: Load-vs.-friction behavior of the three nanotribological systems with semi-
spherical (a), truncated cone (b), and slanted pyramid (c) asperities, respectively. The
error bars in the left column are based on the statistical inefficiency of the MD force values.
Empty symbols represent simulations in which no asperity contact occurred, while filled
symbols denote simulation runs with asperity contact. In the right column, the original
data is superimposed with yellow stars showing the values obtained from the three-term
friction law in Eq. (3.15) using the χ2-fitted parameters from Table 4.1, while the dashed
lines represent the Derjaguin-form, i.e., F (L) = F0 + µL.
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asperity geometry F0 [nN] ∆F0 [nN] µ ∆µ τ [nN/Å2] ∆τ [nN/Å2] Q

semi-sphere 1.437 0.072 0.153 0.017 0.034 0.004 0.992

truncated cone 1.222 0.057 0.193 0.007 0.030 0.004 0.932

slanted pyramid 1.611 0.053 0.170 0.004 0.042 0.005 0.997

Table 4.1: Best-fit parameters and their respective estimated errors obtained from the χ2-
fitting procedure applied to Eq. (3.15). Q is the goodness-of-fit parameter from Eq. (3.21).

firms its possible applicability at nanoscale to estimate typical quantities from continuum
mechanics, when a simple downscaling fails as it has been already shown in Ref. [133] for
the asperity contact area.

The dashed lines in Fig. 4.7 represent the contributions to the friction force which do
not depend on asperity contact. The best way to discuss this is using the examples of
the semi-spherical asperity, which exhibits a high degree of asperity interaction, and the
slanted pyramid asperity, which is mainly load-controlled. In the first case, the dashed
line passes right through the data points as long as there is no asperity contact, while
the contributions of the load-controlled and the adhesion-controlled term are of similar
magnitude for higher loads where asperity contact occurs. In the case of the slanted
pyramid asperity, the left panel in Fig. 4.7 (c) shows that asperity contact occurs in only
about 50% of the simulations, even for high loads. This is reflected in the right panel,
as the dashed line remains close to the original data throughout the entire load range,
which means that except for some deviations between 20 and 35 nN, there is almost no
contribution from the adhesion-controlled term.

The predominantly load-controlled behavior of the slanted pyramid system may also
affect the quality of the fitted value of τ , which at ∼ 4 GPa is noticeably higher than for
the other systems, leading to a spread of 17.3% for the values of τ between asperities. It
is worth pointing out that τ represents the effective shear strength of the entire nanotri-
bological system and should therefore not be confused with the shear strength of bulk Fe.
The corresponding mean variation of µ is 11.7% and therefore lies within experimental
tolerances. The values for F0 in table 4.1 vary by 13.7% from one asperity to the next,
which may be a result of the slightly different lubricant coverages for different asperity
shapes and/or slightly different nominal asperity overlaps. F0 may be seen as the extrap-
olation of the data to zero load, which is reasonable because Aasp(L) can be considered
zero at small loads. The actual simulation of loads below the ones considered in this work
is very demanding since on one hand the large cavities in the initial configurations have
to be dealt with properly, and on the other hand the combination of large asperities and
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a relatively high shear velocity leads to uncontrolled separation of the two sliders at very
low loads.

Figure 4.8: Load-vs.-friction behavior of the nanotribological systems without any as-
perities, the lubricant coverage nominally corresponding to the one with semi-spherical
asperities. The dashed line is a linear fit to the data.

To compare the obtained results with a system that does not have any asperities, 24
load points were calculated for such a system with η = 96 molecules per surface. The
higher lubricant coverage compared to the other systems serves to fill the void left by
the removed asperities. Fig. 4.8 shows its load-vs.-friction behavior, which is very linear,
since with Aasp(L) = 0 there is no contribution from the adhesion-controlled term. The
linear regression yields µ = 0.15, F0 = 0.84 and a correlation coefficient of 0.996, which
compares well with the other values obtained for the nanoscopic coefficient of friction, µ
(cf. Table 4.1). The difference in F0 of a factor of about 2 is believed to originate on
one hand from the higher degree of order in the monolayers of the lubricant molecules,
which are undisturbed by asperities in this system, and on the other hand by the greater
effective distance between the solid surfaces.

We can conclude that the SPM approach for mapping MD data to continuum pro-
posed in section 3.1 has been successfully applied to visualize the Fe surface geometry of
the simulated nanosystems with load-dependent occurrence of asperity-asperity contact.
Furthermore, the method allows the straightforward calculation of the contact area, which
enters the three-term friction law introduced in section 3.4.1 and can be used to explain
the non-linearities in the load-vs.-friction behavior of the systems. Finally, Ref. [134] can
be seen as an experimental proof that a formally equivalent friction law also holds true
for fluid-fluid interfaces.
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4.2 Simulation of Nanoscopic Run-in

While the simulations in section 4.1 focus on many short runs to achieve high load res-
olution, here some of this resolution was sacrificed to the possibility of simulating much
longer time periods [40]. This allows the repeated occurrence of asperity-asperity con-
tact which may be interpreted as the simulation of a nanoscopic run-in procedure. In
this section I will compare two asperity types, one semi-sphere and one slanted pyramid,
at 16 equally spaced loads with 10 repeated sliding passes (chances for asperity-asperity
contact) each.

4.2.1 Specific system setup

The two nanotribological systems featured in this section are prepared following the gen-
eral guidelines for large substrates in chapter 2. The thickness of the amorphous Fe sub-
strates is 1.96 nm, which is equivalent to 4050 atoms or ∼ 12 monolayers of bcc Fe(100).
Both simulated asperity types (semi-spherical and slanted pyramid) have a uniform lu-
bricant coverage of η = 66 stearic acid molecules per slider. Snapshots of the systems can
be seen in Fig. 4.9. The 16 applied loads L range from 2.75 to 44 nN in steps of 2.75 nN,
corresponding to nominal pressures between 100 MPa and 1.6 GPa in steps of 100 MPa.

4.2.2 Asperity contact area

At the beginning of the simulation, the lubricant molecules are uniformly distributed over
the entire substrate surface. As the two asperities approach each other during shear, the
lubricant undergoes some initial restructuring, and if the local forces in the lubrication
gap (which depend on load, shear velocity, asperity geometry, etc.) become sufficiently
high, lubricant molecules situated on the asperities may be squeezed out and solid-solid
contact occurs. Figs. 4.10 and 4.11 show overviews of the time development of the slider
surface geometries for both asperity types at a load of 24.8 nN in SPM-representation, as
discussed in section 3.1.

The momentary asperity contact area Aasp(L, t) is calculated using the SPM post-
processing scheme described in section 3.1.3. When superimposing these data for all
calculated passes p, it is evident that the time of the onset of contact t

(p)
cont increases

appreciably after the first pass, see Fig. 4.12. At loads where asperity contact occurs in
almost every pass, t

(p>1)
cont fluctuates about a mean value greater than t

(1)
cont, whereas for

loads where Aasp(L, t) vanishes after several passes, t
(p)
cont < t

(p+1)
cont usually holds true.

As a general trend, it can be seen that the time-averaged contact area for a single pass

Aasp(L) = 〈Aasp(L, t)〉 , ∀t ∈
[

t
(p)
0 , t

(p)
0 + T

]

, (4.1)

where t
(p)
0 is the starting moment of pth pass of period T (p = 1, 2, . . . , 10), decreases

with every pass irrespective of load, see Fig. 4.13 (a). The types of asperity contact
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Side views of the semi-spherical (left) and the slanted pyramid (right) systems
at at a load of L = 24.8 nN . (a, b) Initial configurations at t = 0 ns. (c, d) Beginning of
first pass at t = 0.5 ns. (e, f) End of 10th pass at t = 19.1 ns. The color code is the same
as in Fig. 2.11.
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Figure 4.10: Snapshots of an SPM-representation of the semi-spherical asperity system
at L = 24.8 nN for sliding passes 1, 3, 5, 7, and 9, and at four equally spaced times during
each pass. The lubricant molecules are not shown for clarity. The green bead chains
mark the boundary of the contact zone calculated with SPM. The top left image shows
the initial configuration after the equilibraion period, and the bottom right one shows a
configuration near the end of the simulation.

development can be classified as follows: (1) Aasp(L) ≈ 0 for all L, (2) Aasp(L) decreases
monotonously with p, (3) Aasp(L) decreases with p, but has a plateau for several passes,
and (4) Aasp(L) has a local maximum at p > 1. With the exception of the sporadic cases
of the 3rd and the 4th type, asperity contact has virtually vanished after 5-6 passes.

This quite clear-cut behavior of Aasp(L) does not apply to the contact duration ∆tcont,
see Fig. 4.13 (b). ∆tcont and Aasp(L) have an approximately parabolic relationship, recall
Fig. 3.7 (a), meaning that even very small asperity surface areas can be in contact for
considerable periods. Therefore, even after 7 passes, one may encounter values for ∆tcont
which have only decreased to 30% of their initial or maximum values.

The top panels of Figs. 4.14 and 4.15 shows complete maps of the asperity contact
area Aasp(L) as a function of time and load for the semi-spherical and the truncated cone
asperity, respectively. The former illustrates how even at medium to high loads, asperity
contact may subside after the first pass (e.g. 27.6 and 35.8 nN), whereas even for low
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Figure 4.11: Snapshots of an SPM-representation of the slanted pyramid asperity system
at L = 24.8 nN for sliding passes 1, 3, 5, 7, and 9, and at four equally spaced times during
each pass. The lubricant molecules are not shown for clarity. The green bead chains
mark the boundary of the contact zone calculated with SPM. The top left image shows
the initial configuration after the equilibraion period, and the bottom right one shows a
configuration near the end of the simulation.

loads, recurring asperity contact is possible (e.g. 13.8 nN). In the second map it can
be seen that for the slanted pyramid asperity there exist high loads (> 38 nN) where,
due to prior asperity deformation, no (or only negligible) asperity contact occurs, see
section 4.2.3. Note that at the lowest load of 2.76 nN, asperity contact occurs only during
the passes 4, 5, and 6, which is a rare example of asperity contact development of type 4
in the classification above.

4.2.3 Asperity deformation

One quantity which may be readily calculated using smooth particle post-processing,
namely by integrating over the areas of the triangles which constitute the iso-surfaces
shown in Figs. 4.10 and 4.11, is the total Fe surface area AFe(L, t). Maps of the time and
load dependence of AFe(L, t) for both asperity types can be found in Figs. 4.14 and 4.15.
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Figure 4.12: The moment of asperity contact onset t
(p)
cont as a function of the pass number

p for the semi-spherical asperity. Time is counted starting after the dynamic equilibration
period of 0.5 ns and restarts with every pass. Colors are rainbow-style with blue denoting
low and red denoting high loads.

(a) (b)

Figure 4.13: Average asperity contact area (a) and contact duration (b) as a function
of the pass number p and the load for the semi-spherical asperity system. Colors are
rainbow-style with blue denoting low and red denoting high loads.
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Figure 4.14: Maps of the asperity contact area Aasp(L, t), the total Fe surface area
AFe(L, t), the “virtual asperity surface area” Avir(L, t), its time-derivative A

′
vir(L, t), and

the friction force F (L, t) as a function of time and load for the semi-spherical asperity.
The tick marks along the time axis denote the beginning of a new pass. The dynamic
equilibration period of 0.5 ns is not shown.
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Figure 4.15: Maps of the asperity contact area Aasp(L, t), the total Fe surface area
AFe(L, t), the “virtual asperity surface area” Avir(L, t), its time-derivative A

′
vir(L, t), and

the friction force F (L, t) as a function of time and load for the slanted pyramid asperity.
The tick marks along the time axis denote the beginning of a new pass. The dynamic
equilibration period of 0.5 ns is not shown.
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During asperity contact, one can see the sudden decrease of AFe(L, t) due to the loss of
2Aasp(L, t), cf. also Fig. 4.16 (a) and (b). This is due to the fact that free surface is
lost at the expense of contact area. One may therefore be tempted to calculate Aasp(L, t)
from AFe(L, t) directly, saving considerable computational effort, but this would only be
possible with low accuracy as long as AFe(L, t) remains otherwise constant for the entire
duration of contact, which is not the case if plastic deformation occurs.

(a) (b)

(c) (d)

Figure 4.16: The total Fe surface area AFe(L, t) of the system with the semi-spherical
(a) and the slanted pyramid (b) asperity at all considered loads, compared to the “virtual
asperity surface area” Avir(L, t) for the same systems shown in (c) and (d). The color
mapping is in rainbow style, with low loads represented in blue and high loads in red.
Tick marks along the t-axis denote the beginning of a new pass.

However, this also means that by using a reverse approach, through the knowledge of
AFe(L, t) and Aasp(L, t), one may estimate the amount and rate of plastic deformation of

85



the asperities. So by adding 2Aasp(L, t) to AFe(L, t) and subtracting an estimate for the
(approximately constant) non-asperity Fe surface area (2×xy-cross-section - 2×asperity
base), one obtains the “virtual asperity surface area” Avir(L, t), cf. the maps in Figs. 4.14
and 4.15 as well as Fig. 4.16 (c) and (d). Assuming only very little compressibility of
the iron and therefore nearly constant iron volume, Avir(L, t) is a reasonable measure for
the surface-to-volume ratio and hence the shape of the asperities. This holds true if the
non-asperity Fe surface of the system does not appreciably change its shape throughout
the simulation. Note that the initial value of Avir(L, t = 0) ≈ 28 nm2 corresponds to the
surface of two semi-spheres of radius 1.5 nm.

By numerically calculating the time-derivative of Avir(L, t),

A′vir(L, t) =
∂Avir(L, t)

∂t
, (4.2)

one can now identify the times when the shape of the asperities changes the most, which
may be interpreted as a geometrical indicator for asperity deformation.

Fig. 4.17 shows a side-by-side comparison of the time development of Aasp(L, t),
Avir(L, t), A

′
vir(L, t) and F (L, t) for both systems with different asperity geometries at

L = 24.8 nN. For clarity, A′vir(L, t) was filtered using a cubic B-spline kernel 600 ps wide,
and F (L, t) was block-averaged with a block size of 20 ps. In general, Avir(L, t) tends to
decrease over time, which reflects the relaxation of the surface in order to minimize the
surface-to-volume ratio. The decrease of Avir(L, t) is in the range of 0−7% and is greatest
if there is little or no asperity contact. At high loads, deformation of both asperities may
take place before contact would have occurred for the first time, sometimes preventing
contact altogether. This can be seen clearly in the behavior of Aasp(L, t) and A′vir(L, t) for
the slanted pyramid asperity at several loads greater than 12 nN. For example, looking
at the top-left corner of the map of A′vir(L, t) in Fig. 4.15, blue regions indicate a consid-
erable initial decrease of the slanted pyramid asperity surface, while a comparison with
the respective part in the map of Aasp(L, t) shows that little to no asperity contact occurs
during the first pass.

This surface relaxation is interrupted by local increases and sharp decreases ofAvir(L, t)
due to asperity contact. As can be expected, the local, usually linear increases coincide
with the times of asperity contact, where the solid bridge is drawn out into a “wire”,
thus increasing the surface area. As soon as contact ends and the wire breaks, Avir(L, t)
decreases, usually sharply at first as the two loose ends of the broken wire quickly retract,
then more moderately as the shapes of the asperities relax.

In rare cases it can occur that Avir(L, t) decreases sharply not at the end but at the
onset of asperity contact (e.g. semi-spherical, L = 24.8 nN, p = 5, cf. Fig. 4.10, center,
and Fig. 4.17). Here, an unrelaxed dangling wire end snaps onto the opposing asperity,
thus reducing the surface area very quickly.

Asperity contacts with maximum areas greater than 0.5 nm2 are usually reflected as
increases in the friction force F (L, t), see the bottom maps in Figs. 4.14 and 4.15 for an
overview and Fig. 4.17 for a particular example at L = 24.8 nN. This applies to low and
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Figure 4.17: Time development of the asperity contact area Aasp(L, t), the “virtual asper-
ity surface area” Avir(L, t), its filtered time-derivative A′vir(L, t), and the block-averaged
friction force F (L, t) for the semi-spherical (top) and the slanted pyramid asperity (bot-
tom) at L = 24.8 nN. Tick marks along the t-axis denote the beginning of a new pass.
The dynamic equilibration period of 0.5 ns is not shown.
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medium loads (up to 30 nN) in particular. At high loads, smaller increases are usually
buried in the noisy F (L, t)-signal.

Figs. 4.14 and 4.15 show complete maps of the asperity deformation rate A′vir(L, t)
as a function of time and load for both asperity types. Yellow, orange and red areas
denote loads and times where the surface-to-volume ratio of the asperities increases, as
is typically the case when the two asperities are in contact, whereas light- and dark blue
areas are dominated by relaxation of asperities, which occurs either after contact (when
the drawn-out dangling ends of the broken solid bridge retract) or at the very beginning
of a high-load simulation (cf. Fig. 4.15), where high pressure and shear lead to asperity
deformation without solid-solid contact. In the green parts of the maps, the virtual
asperity surface area does not change. Note that the “creeping relaxation” of asperities
(as can be seen for t > 9.8 ns in the top of Fig. 4.17) cannot be visualized well in these
maps due to the small gradients involved.

Looking at the SPM-representations of the surface geometry development in Figs. 4.10
and 4.11, the first five passes of the semi-spherical asperity system are dominated by
intense asperity contact, as can also be seen in the top panel of Fig. 4.17. The changes in
the shape of the asperities over time are evident. Note the image of pass 5 at 1.0 ns, which
shows the system shortly after the unrelaxed protrusion of the top asperity has snapped
onto the lower one, instantly reducing Avir(L, t) for L = 24.8 nN by more than 1 nm2.
The final shape of the asperities is already visible after pass number 5, when asperity
contact and plastic deformation have become negligible. It now looks very similar to
the slanted-pyramid asperity in Fig. 4.11, where the two asperities engage in moderate
contact only during the first pass, which blunts the tips sufficiently to prevent further
contact. Therefore, the final configuration can already be seen during pass number 3.
Note that the first 0.5 ns visible in the lower panel of Fig. 4.17 indicate that deformation
of the asperities already takes place before they first touch, which may reduce the overall
intensity of asperity contact. The fact that the final shape of this asperity type does not
differ very much from its initial one, and that the final geometries of both asperity types
(semi-spherical and slanted pyramid) are also very similar, suggests that the (blunted)
slanted pyramid is the final asperity geometry in a unidirectional mixed-lubrication sliding
simulation/experiment, regardless of the initial configuration.

4.2.4 Constitutive system parameters

The load dependence of the friction force differs considerably between the asperity types
for p = 1, as can be seen in Fig. 4.18 (a) and (b). However, as p grows and the influence
of solid-solid contact declines, the behavior becomes almost identical, with the slope of
the essentially linear load dependence for p = 10 leading to the same coefficient of friction
µ for both systems.

The least squares fitting procedure described in section 3.4.2 yields the system param-
eters as a function of the pass number p, shown in Fig. 4.18 (c) and (d). As in section
4.1, σi is based on the statistical inefficiency and calculated using Eqs. (3.13) and (3.14).
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(a) (b)

(c) (d)

Figure 4.18: Load-vs.-friction behavior of the semi-spherical (a) and the slanted pyramid
asperity (b). Results for the individual passes p are shown superimposed. The error
bars represent σsi,x based on the statistical inefficiencies of the MD friction force values.

Bottom row: development of the system parameters F
(p)
0 , µ(p), and τ (p) as a function of

the pass number p for the semi-spherical (c) and the slanted pyramid asperity (d). The

error bars are ∆F
(p)
0 , ∆µ(p), and ∆τ (p) from the least squares fitting procedure.
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The force offset F
(p)
0 and the coefficient of friction µ(p) are well-conditioned and exhibit

stable behavior from one pass to the next. The shear strength τ (p), however, is more
problematic since it becomes highly ill-conditioned for passes in which at none of the
simulated loads appreciable contact Aasp(L) occurs, as already explained in section 3.4.2.
This becomes more and more likely for higher pass numbers, as the system has already
run in and asperity tips have blunted, leading to values for τ (p) either off by two orders
of magnitude or even negative, with ∆τ (p) becoming very large accordingly.

(a) (b) (c)

Figure 4.19: Three indicators for formulating practical criteria whether to consider a
given value of Aasp(L) in the fitting procedure. Red circles represent the semi-spherical
asperity, while blue triangles represent the slanted pyramid asperities. Horizontal lines
mark the stricter (solid line) and the less strict (dashed line) minimum value for each
indicator.

Therefore in practice, the theoretical criteria introduced in section 3.4.2 which lead to
the omission of τ (p) from the fitting procedure have to be reformulated. Two empirically
found sets of criteria may be applied, with the less strict one merely avoiding divergence
of τ (p), while the stricter one also prevents large values of ∆τ (p). In the following list, the
stricter criterion used in this work is followed by the less strict one in parentheses (see
also Fig. 4.19):

• the number of loads for which Aasp(L) > 0 must be greater than 2 (1),

• the maximum Aasp(L) for a given pass must be greater than 0.06 nm2 (0.2 nm2),
and

• the value for Aasp(L) averaged over all loads which have asperity contact must be
greater than 0.022 nm2 (0.03 nm2).
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By comparison, with the potential parameters used, the cross-section of an Fe atom is
roughly 0.064 nm2. In cases where these criteria are not met, it makes sense to perform
the least squares fitting for F

(p)
0 and µ(p) only, as described in section 3.4.2, and leave τ (p)

undefined.
The results shown in Fig. 4.18 (c) and (d) strongly suggest that for the run-in system

F0, τ and µ are indeed constitutive system parameters, namely























F
(p)
0 ≃ F0

τ (p) ≃ τ

µ(p) ≃ µ

, ∀p > prun-in . (4.3)

Here prun-in is the number of the pass during which the nanoscopic run-in is completed.
We now define the run-in system parameters F0, µ, and τ as the averages of the single-pass
parameters F

(p)
0 , µ(p), and τ (p) for which p > prun-in, and their errors as the associated

standard deviations. Fig. 4.20 shows these parameters as a function of prun-in. The

(a) (b)

Figure 4.20: The run-in system parameters F0, µ, and τ as a function of prun-in for the
semi-spherical (a) and the slanted pyramid asperity (b). The error bars are the standard

deviation calculated from all values of F
(p)
0 , µ(p), and τ (p) for which p > prun-in.

error bars of F0 and µ in the system with the semi-spherical asperity, cf. Fig. 4.20 (a),
simultaneously decrease quite sharply in size between prun-in = 5 and 6. Moreover, asperity
contact has subsided at that stage, so τ is no longer defined. One can therefore conclude
that the run-in process has finished after 6 passes in this system. The slanted pyramid
asperity system does not exhibit such clear-cut behavior, especially since F

(p)
0 has an

unexpected jump from pass 5 to 6, so the error bars of F0 remain quite large until prun-in =
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5 in Fig. 4.20 (b). The end of run-in can therefore be only approximately set between
prun-in = 1 and 5. Note that for both asperity types the effective shear strength τ remains
at a constant level and can therefore also be considered a system parameter while it is
well defined.

The good coincidence of subsiding asperity contact with the end of the run-in period as
determined by the variance of the constitutive system parameters is strong evidence that
steady-state sliding of nanosystems in the mixed lubrication regime can be sufficiently well
described by the Derjaguin friction law, whereas the run-in period can only be properly
characterized with the proposed three-term kinetic friction law.

We can conclude that SPM is a suitable tool for monitoring repeated asperity-asperity
contact in MD shear simulations of mixed lubrication. It allows the analysis of the time-
development of the involved constitutive system parameters, namely the friction force
offset F0 > 0, the effective shear strength τ , and the coefficient of friction µ. If no
solid-solid contact occurs for any of the considered loads, i.e., Aasp(L) strictly vanishes
and hence the Derjaguin-form of the three-term friction law holds, it was found that
the same computational scheme yields only two constitutive system parameters, F0 ≥ 0
and µ. While Aasp(L) ≥ 0 depends on L during the nanoscopic run-in period, it was
demonstrated that the constitutive system parameters entering the three-term friction
law slightly depend on time, but become time-independent quantities as soon as asperity
contact subsides.
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4.3 Linking the Derjaguin-offset to Lubricant Disor-

der

In the last two sections, systems were considered in which direct asperity contact plays
a crucial role in their frictional properties. While this is necessary for applying and
validating the three-term kinetic friction law, the occurrence of asperity contact makes
the interpretation of the Derjaguin-offset F0 difficult.

In this section I will therefore discuss results of simulations carried out with systems
where the roughness is so small that asperities can never touch directly as in Refs. [25, 26,
27, 41]. The system parameter τ is thus not accessible via the fitting procedure, so here
the focus lies on the influence of lubricant type, lubricant coverage and nano-roughness
of the Fe sliders on the remaining system parameters, the coefficient of friction µ and the
Derjaguin-offset F0.

Since this study reveals that non-vanishing values for F0 occur when the lubricant in
the nanotribological systems is less ordered, nine systems with high and low values of
F0 are analyzed further. As a first step, the lubricant-lubricant interface as well as the
material density distribution are visualized using SPM. Then an attempt is made to relate
the friction force offset F0 to variously estimated entropies of the lubricant, which can be
seen as a measure for its structural disorder [40].

4.3.1 Specific system setup

The nanotribological systems featured in this section are prepared following the general
guidelines for small substrates in chapter 2. The substrates consist of either 6 monolayers
of bcc Fe(100) or an equivalent amount of 1014 atoms of amorphous Fe. The crystalline
substrates may feature roughness from 1–4 ML bcc Fe(100) in the form of three Fe islands
as described in section 2.1.1. Amorphous substrates have an inherent roughness Ra equiv-
alent to ≃ 0.5 ML bcc Fe(100). Each slider is covered with a boundary lubricant layer of
either stearic acid (blue), oleic acid (orange) or methyl stearate (green) molecules. The
lubricant coverage η is varied from 35 to 63 molecules per slider using initial molecular
grids of 5×7, 6×7, 6×8, 7×8, and 7×9. In some systems, six monolayers of n-hexadecane
(red) as a base oil are sandwiched between two boundary layers of stearic acid, forming
a binary lubricant. Some examples for various of the described MD-nanosystem setups
can be seen in Fig. 4.21. A system with oleic acid was already shown in Fig. 2.14. The
applied loads range from 1.38 to 22.04 nN, with at least 3, but usually 5 or 6 different
loads per configuration. After a dynamic equilibration period of 0.5 ns, during which the
sliding velocity is ramped to and kept at 4 m/s, the contact forces are recorded for 1.5 ns
as explained in section 3.3.
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(a) (b) (c)

(d) (e) (f)

Figure 4.21: Examples for MD-nanosystem setups. The meaning of the abbreviations can
be found in table 4.2. (a) SteAc–7×9–0ML, (b) SteAc–7×9–4ML, (c) SteAc–7×9–amo,
(d) SteAc–5× 7–amo, (e) Hex–5× 7–amo, (f) MeSte–7× 9–amo.
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4.3.2 Time-dependence of friction force

The friction force F (L) as a function of time for two different MD-nanosystems at a
constant load L = 2.76 nN can be seen in Fig. 4.22. The blue curve denotes the stick-slip
type behavior of the highly ordered system from Fig. 4.21 (a), while the red curve shows
the time development of the same system with 6 monolayers of n-hexadecane sandwiched
between the two films of stearic acid, which is much smoother and has an average value
which is roughly half of the other system.

Figure 4.22: Friction force as a function of time. Blue curve: 7× 9 stearic acid molecules
per flat bcc Fe(100) slider. Red curve: 7 × 9 stearic acid molecules per flat bcc Fe(100)
slider sandwiching 6 ML of n-hexadecane. Both curves are running averages with a time
window of ∆t = 30 ps.

4.3.3 Load-vs.-friction

The load and the friction force are both time-averaged over the data acquisition period.
Since no solid-solid contact occurs, the Derjaguin friction law, Eq. (3.16), holds, so the
remaining two system parameters F0 and µ can be fitted by solving Eq. (3.22) for every
system. A complete list of fitted system parameters together with their respective er-
rors calculated according to Eq. (3.23) can be found in appendix C. Fig. 4.23 shows the
load-vs.-friction behavior of selected groups of tribosystems, each panel with a different
parameter kept constant. The meaning of the abbreviations in the legends can be found
in table 4.2. The error bars on the friction forces have been omitted for better readability.

The left column in Fig. 4.23 compares the load-vs.-friction behavior when the nano-
roughness of the sliders is increased, while the right column compares different lubricant
coverages. Note that the left and the right column have different legends.

Fig. 4.23 (a) compares systems with amorphous sliders featuring very low nano-
roughness, where all systems show strong coverage-dependence of the friction forces. Gen-
erally, reducing η will make friction forces grow, especially via an increased µ. This picture
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(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Load-vs.-friction curves for various groupings of nano-tribosystems. The
meaning of the abbreviations can be found in table 4.2. (a) amo, (c) 2ML, (e) 4ML, (b)
7×9, (d) 6×8, (f) 5×7. Colors: SteAc—blue, OleAc—orange, MeSte—green, Hex—red.
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SteAc stearic acid (boundary lubricant type)
MeSte methyl stearate (boundary lubricant type)
OleAc oleic acid (boundary lubricant type)
Hex SteAc + n-hexadecane (base lubricant)
k × l molecules per slider

(boundary lubricant surface coverage η)
m ML monolayers of bcc Fe(100)

(surface nano-roughness Ra)
amo amorphous substrate

(no explicit roughness, classified as Ra ≃ 0.5 ML)

Table 4.2: Key to the used abbreviations.

does not change much with a slight increase in nano-roughness to Ra = 2ML bcc Fe(100),
although friction forces in general go up, see Fig. 4.23 (c). However, when the roughness
is set to 4ML bcc Fe(100), cf. Fig. 4.23 (e), the pattern changes. All boundary-lubricated
systems now have very comparable load-vs.-friction behavior, irrespective of η. There is a
noticeable gap between the fit lines of the boundary-lubricated systems and those of the
ones including n-hexadecane as a base oil.

Fig. 4.23 (b) shows an overview of the different systems’ friction behavior at high
boundary lubricant coverage (η = 63 molecules/slider), where the friction forces exhibit
strong roughness dependence, especially those of stearic acid and methyl stearate. As
the roughness increases, friction forces go up, and so does the slope of the fits, µ. This
behavior is typical of well-ordered and dense surface films, since any roughness feature
underneath such a film is almost perfectly reproduced on top of it. It is not surprising
that the red curves representing the systems with n-hexadecane sandwiched between the
films of stearic acid show somewhat less roughness dependence and generally have lower
friction forces. This is due to the fact that the n-hexadecane molecules are not attached
to any surface and can therefore better even out the roughness features at the top of the
stearic acid films.

The systems with intermediate boundary lubricant coverage (η = 48 molecules/slider)
in Fig. 4.23 (d) already show less roughness dependence as can be seen by comparing the
spread of the fit lines with that of Fig. 4.23 (b). Moreover, a gap seems to emerge between
the fit lines of the systems which are only boundary lubricated and those which also have
a layer of base oil, with the latter exhibiting lower friction forces. This gap becomes very
distinct in Fig. 4.23 (f), where η has been reduced to 35 molecules/slider. Here, most
of the boundary-lubricated systems have virtually the same friction forces irrespective of
roughness. This could be due to the less-ordered boundary lubricant layers having more
freedom to rearrange themselves according to the surface features of the slider, filling the
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troughs between asperities and ensuring a more even sliding interface. However, due to
the increased possibility of dissipation within the film, friction forces remain high. Adding
six monolayers of n-hexadecane lowers friction forces considerably, especially via reduction
of F0. The lower friction forces here are most likely due to the transverse layering of the
n-hexadecane which causes a more even sliding interface.

4.3.4 Constitutive system parameters

Figs. 4.24 and 4.25 compare the lubricant coverage dependence of F0 and µ for the 4 main
categories of considered lubricants, with the slider nano-roughness as a parameter. Note
that in Figs. 4.24–4.27, the symbols have been somewhat spread out laterally so they
do not obscure each other. All boundary lubricated systems have in common that F0

generally decreases with increasing coverage. They share a common maximum value of
F0 ≃ 0.6 nN at low coverage, decreasing to values around zero for systems with negligible
roughness and 0.5 for rough systems. At high lubricant coverage, there exists a pronounced
roughness dependence of F0, which is also obvious by comparing with Fig. 4.26. By
contrast, the systems which contain 6 ML of n-hexadecane as a base lubricant between
the two boundary lubricant layers of stearic acid, F0 fluctuates around zero independently
of boundary lubricant coverage, and with a very slight dependence on nano-roughness,
see Fig. 4.26 (d).

Comparing the coverage dependence of µ, one notices local maxima for the three
boundary-lubricant-only systems at coverages between 42 and 56 molecules/slider, de-
pending on the lubricant. Systems with coverages higher or lower than these values ex-
hibit lower coefficients of friction and therefore better frictional properties at high loads.
Values of µ vary between 0.05 and 0.2 for stearic acid, between 0.1 and 0.2 for oleic
acid and methyl stearate, while µ remains almost constant at 0.1 for all systems with
n-hexadecane.

One can observe that higher values for F0 occur when the lubricant in the nanotribo-
logical systems is less ordered. Motivated by this, nine systems out of the system matrix
discussed above are selected for further analysis. Three systems each were chosen with
the lubricant types stearic acid, oleic acid, and methyl stearate, such that one of them
exhibits F0 ≃ 0, and the other two have F0 > 0, once induced by low lubricant coverage η
and once due to high surface roughness Ra. These systems, along with their key param-
eters, are listed in table 4.3, and snapshots of their geometries are shown in the insets of
Fig. 4.28.

4.3.5 SPM-visualization of lubricant-lubricant interface

SPM-visualizations of the nine selected systems can be seen in Fig. 4.29. By treating the
upper and the lower boundary lubricant layers in the lubrication gap individually, one
can visualize the lubricant-lubricant interface which, depending on Ra and η may become
noticeably larger than the apparent contact area which is equal to the xy cross-section
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(a) (b)

(c) (d)

Figure 4.24: Boundary lubricant coverage dependence of the Derjaguin-offset F0 with
the nano-roughness Ra as a parameter for 4 different lubricant types. (a) stearic acid, (b)
oleic acid, (c) methyl stearate, (d) stearic acid with n-hexadecane.
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(a) (b)

(c) (d)

Figure 4.25: Boundary lubricant coverage dependence of the nanoscopic coefficient of
friction µ with the nano-roughness Ra as a parameter for 4 different lubricant types. (a)
stearic acid, (b) oleic acid, (c) methyl stearate, (d) stearic acid with n-hexadecane.

100



(a) (b)

(c) (d)

Figure 4.26: Nano-roughness dependence of the Derjaguin-offset F0 with the boundary
lubricant coverage η as a parameter for 4 different lubricant types. (a) stearic acid, (b)
oleic acid, (c) methyl stearate, (d) stearic acid with n-hexadecane.
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(a) (b)

(c) (d)

Figure 4.27: Nano-roughness dependence of the nanoscopic coefficient of friction µ with
the boundary lubricant coverage η as a parameter for 4 different lubricant types. (a)
stearic acid, (b) oleic acid, (c) methyl stearate, (d) stearic acid with n-hexadecane.
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Figure 4.28: Load-vs.-friction behavior of the nine selected nanotribological systems
with geometry snapshots shown in the insets. Values for boundary lubricant coverage
and nano-roughness as well as a key for the used symbols are listed in table 4.3.
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lubricant type Ra [ML bcc Fe(100)] η [molecules/slider] symbol
stearic acid 0.5 56 blue square
stearic acid 4 56 blue triangle
stearic acid 0.5 35 blue circle
oleic acid 0.5 56 orange square
oleic acid 4 56 orange triangle
oleic acid 0.5 35 orange circle
methyl stearate 1 56 green square
methyl stearate 4 56 green triangle
methyl stearate 1 35 green circle

Table 4.3: The nine systems selected for further analysis.

of the simulation box. The systems in Fig. 4.29 are ordered by growing F0 from left to
right, and when comparing the green lubricant-lubricant interfaces, one can see a slight
increase in the interfacial roughness between the systems in the left column (with low
Ra and high η) and those in the center column (with high Ra and high η). However,
the systems in the right column (with low Ra and low η) all exhibit a substantially
rougher lubricant-lubricant interface than the high-η systems. It therefore seems that
this interfacial roughness alone cannot explain the large differences in F0 between the
systems in the left column, where F0 ≃ 0, and the ones in the other two columns, where
F0 ≃ 0.6. To understand the somewhat surprisingly low interfacial roughness introduced
by the asperities, it must be taken into account that the high lubricant density does not
allow the molecules adsorbed to the asperity tips to laterally avoid the molecules of the
opposing lubricant layer. These molecules must therefore reduce their length by twisting
into shorter conformations, which requires a certain energy that might have an influence
on F0.

The rear faces of the SPM-representations in Fig. 4.29 are colored according to the
material density ρ as introduced in Eq. (3.2). When visually comparing the density
patterns, it becomes apparent that the lubricant order is reduced from left to right, where
the three asperities on the slider surface in the center column introduce a slight degree of
disorder, and the decreased boundary lubricant coverage in the right column yields a quite
chaotic lubricant density pattern. However, to make any proper comparative statements,
the degree of disorder has to be quantified, which will be done in the nest section.

4.3.6 Derjaguin-offset versus lubricant order

The load-vs.-friction data of the nine selected tribosystems in Fig. 4.28 are used to fit
the constitutive system parameters F0 and µ, shown in Fig. 4.30. The error bars are
∆F0 and ∆µ from the least squares fitting procedure. Notably, the highly ordered system
with 56 molecules of stearic acid covering an amorphous Fe surface with low roughness

104



Figure 4.29: SPM-visualizations of the nine systems shown in Fig 4.28. Top row—SteAc,
center row—OleAc, bottom row—MeSte. The lubricant-lubricant interfaces are shown
as solid-green surfaces, while the Fe surfaces are solid-red. The rainbow-style coloring of
the rear faces of the simulation boxes symbolizes the material density ρ as introduced in
Eq. (3.2), where dark red areas denote high and blue ones denote low density.
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has a coefficient of friction µ much lower than all other systems. In the following, an
attempt will be made to link the behavior of F0 to the lubricant order, which is quantified
by various estimates for contributions to its entropy based on the 3N × 3N covariance
(super)matrix C introduced in Eq. (3.35). These were obtained by time-averaging over
a data acquisition period of 1.5 ns, based on the lubricant molecules’ carbon backbone
positions in the center-of-mass system.

Figure 4.30: The constitutive system parameters F0 and µ in accordance with the linear
load-vs.-friction behavior from Fig. 4.28.

The maps shown in Fig. 4.31 are representations of these covariance (super)matrices,
which have been rearranged in a block-wise fashion so that the nine sub-matrices consti-
tute the Cartesian component-wise covariance matrices. All sub-matrices featuring the
x-component show clear evidence of the dominant translation in x-direction. The remain-
ing four sub-matrices reveal patterns according to the vibrational modes of the molecules,
as will be shown below.

In order to estimate the contributions to the total entropy based on Eqs. (3.39), (3.40)
and (3.44), the covariance (super)matrix C must be diagonalized, for example by using an
orthonormal coordinate transformation, which yields eigenvalues λJ (J = 1, . . . , 3N) in
decreasing order. Following this, the translational, rotational and vibrational eigenmodes
can be identified among the normalized eigenvectors V J (J = 1, . . . , 3N) which form
the columns of the transformation matrix V in Eq. (3.42). Although it is expected
that the eigenvector corresponding to the largest eigenvalue λ1 describes the collective
sliding motion along the x-axis in all of the nanotribological systems investigated here,
a symmetry study of the other eigenvectors V J (∀J ≥ 2) should be carried out because
one has to distinguish between the other collective modes as well. Therefore one attempts
to identify eigenvectors V J stored in the transformation matrix V with a structure of,

e.g.,
(

1 0 0 1 0 0 . . . −1 0 0 −1 0 0
)T
. This structure has three possible

permutations with respect to the Cartesian components, each of which characterizes a
purely collective translational motion along the axis for which the corresponding Cartesian
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Figure 4.31: Maps of the covariance (super)matrices of the three nanotribological systems
from Fig. 4.28 with oleic acid as a lubricant at a load of L = 11.02 nN. The elements
are calculated averaging over the entire data acquisition period of 1.5 ns and taking the
Cartesian components of the atomic positions with respect to the momentary center of
mass, see also key.

107



component does not vanish. Three differently structured typical eigenvectors can stand
for collective rotational motions in a given Cartesian coordinate plane about the center
of mass. One of the easiest ways to identify these six eigenvectors is to represent in
a histogram the number of occurrences within the transformation matrix V of a given
element, because for a purely collective translational motion, ±1 would be present in the
histogram N/2 times and so on. Such a histogram formed with the elements of V and
common to all the nanotribological systems considered in Fig. 4.28 is shown in Fig. 4.32
(top). In this figure, two tiny outlier peaks are present which were found to correspond to
V 1. By drawing the Cartesian component-resolved histogram of V 1 in Fig. 4.32 (bottom),
it becomes evident that V 1 describes the collective motion due to the sliding along the x-
direction. Inspecting the values of the components, apart from the symmetry of V 1, it is
evident that this collective motion also comprises random fluctuations along the other two
axes. Therefore and due to normalization of the eigenvector, the repeated x-component
value differs from unity. Furthermore, as can be seen in Fig. 4.32, there is no evidence of
any other translational or rotational collective modes, which means that all the remaining
ones are vibrational.

(a) (b)

Figure 4.32: Histogram of all components of all normalized eigenvectors corresponding
to eigenvalues greater than 10−5Å2 (a) and of the dominant one V1 (b; blue—x, green—
y, red—z) obtained by diagonalizing the covariance (super)matrix shown in Fig. 4.31
(middle). N = 2016 is the number of C-atoms in the system. The two peaks at ∼ ±0.02
hint at pure translation without rotation.

In view of these findings, it is now clear that for estimating the translational con-
tribution Str to the entropy, Eq. (3.39) is not directly applicable, but instead its 1D
counterpart,

Str = R ln

[

(

e2mkBT

~2

)1/2

σx

]

, (4.4)
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for which σx can be well approximated by the square root of the first eigenvalue λ1, namely

σx =
√

λ1 . (4.5)

Indeed, comparing this 1D-estimate for Str with the one obtained for σx, the square root
of the corresponding eigenvalue determined on the basis of the 3 × 3 covariance matrix
constructed for the center of mass of the system, it turns out that the former approach
yields only slightly larger values than the latter. This difference is due to the small random
y and z components in V 1, recall Fig. 4.32. Accordingly, in the case of the vibrational
contribution Svib to the entropy, strictly speaking one has to deal with 3N − 1 modes
in Eqs. (3.44) and (3.45). In practice, however, it turns out that both Svib and SSchl

converge slowly for small vibrational eigenvalues λJ , i.e., when the frequency ωJ of the
associated one-dimensional quantum harmonic oscillator tends to be extremely large, see
Eq. (3.43). Fortunately, when λJ → 0, its contribution to the vibrational entropy Svib

vanishes, because

lim
ωJ→∞

S
(J)
vib = R lim

ωJ→∞

β~

β~ exp (β~ωJ)
−R ln 1 = R lim

ωJ→∞

1

exp (β~ωJ)
= 0 , (4.6)

and hence one can introduce a cut-off λcut ≥ 0 below which all the positive vibrational
eigenvalues λJ can be set to zero and not counted for Svib and SSchl without significantly
altering their values. The value for λcut was set to 10

−5, resulting in about 100 contributing
eigenvalues per system. With that knowledge, large amounts of calculation time can be
saved by not having to invert the entire matrix, but simply by approximating the ≃ 300
largest eigenvalues.

The results for the entropy contributions estimated in this manner are given as per-
atom values in Fig. 4.33, where it can be seen that, to some extent, Str (right triangles,
left axis) better follows the trend of F0 in Fig. 4.30 than Svib (diamonds, right axis). Both
Str and Svib correlate well with F0 regarding changes in the lubricant surface coverage η,
but do not reflect changes in F0 due to an increase of surface roughness Ra. This could
have two main reasons. On one hand, the individuality of the constitutive molecules is
lost in the single macromolecule approach for the entropy, and so it seems to be unable to
measure the change in the structural order due to the higher surface roughness. On the
other hand, it could also be that, while the expressions for Str and Svib are derived from
the Shannon entropy, the quasi-harmonic (Gaussian) approach to the PDF considered
here oversimplifies the interatomic potential by reducing it to an elastic one. The same
holds for the Schlitter-entropy, recall Eq. (3.45), which by definition only sets an upper
bound for Svib—as confirmed by Fig. 4.33 (b).

In conclusion, it can be stated that if Aasp(L) ≡ 0 for all L considered, it was found that
the occurrence of the offset F0 can be partially related to the structural order of the system
by estimating the load-dependent entropy with the single macromolecule approach, which
is based on covariance (super)matrices of the carbon backbone atoms in the lubricant.
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(a) (b)

Figure 4.33: Molar per-atom contributions to the entropy within the single macromolecule
approach and following Schlitter’s ad hoc approximation, for all nanotribological systems
in Fig. 4.28. The translational entropy values are represented by blue right triangles, the
vibrational ones by red diamonds, and green left triangles stand for the configurational
entropy according to Schlitter.

110



Conclusion

In this thesis, I proposed a three-term kinetic friction law at nanoscale to explain the
distinct non-linearities and discontinuities in the load-vs.-friction behavior of atomisti-
cally simulated tribological systems operating under mixed lubrication conditions. This
law consists of the load-dependent Amontons-Coulomb term, the Bowden-Tabor term de-
pending on the contact area between opposing asperities, and a load-independent friction
force offset first introduced by Derjaguin. Through the exact knowledge of the mean
asperity contact area, the applied load, and the average friction force, I could then fit
the three load-independent constitutive system parameters of each system, namely the
friction force offset, the effective shear strength, and the nanoscopic coefficient of friction.
These three parameters can accurately reproduce the frictional response of a nanoscopic
tribosystem based on the load and the asperity contact area.

The main finding of this work is that the Amontons-Coulomb friction law, where the
coefficient of friction of a tribological system is defined as the friction force divided by
the applied load, may produce good results at the macro and micro scale. However, as
soon as one enters the mixed and boundary lubrication regimes, where the lubrication
gap thickness may be reduced to a few nanometers, the occurrence of a load-independent
friction force offset precludes the calculation of the coefficient of friction via a simple
division. Instead, the slope of the linear load-vs.-friction relation must be calculated,
which requires the computation or measurement of several friction forces at different
loads. Finally, when the lubricant film (partially) breaks down and direct asperity-asperity
contact occurs, linearity is lost and a mere derivation of the friction force with respect to
the applied load would lead to a coefficient of friction which is load-dependent and hence
no longer a system parameter. However, with the knowledge of the asperity contact area
and by using a proper fitting procedure for the proposed three-term kinetic friction law,
it is now possible to calculate the load-independent coefficient of friction governing the
load-controlled contribution to the friction force in nanosystems.

To estimate the asperity contact area, I developed a computational scheme which
allows the mapping of the geometrical configurational data obtained from classical molec-
ular dynamics (MD) simulations to continuum via a simple but powerful smooth particle
post-processing approach (SPM). With this method, it is possible to visualize surfaces and
interfaces in molecular systems as iso-surfaces of a calculated material density. Further-
more, it can deal with quantities resulting from MD simulations which may be awkward or
impossible to handle in a discrete atomistic representation, but can be straightforwardly
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treated with the methods of continuum mechanics. This bridging of the gap between
simulation methods which are usually confined to specific time and space domains is an
important step towards multiscale computational tribology.

I then applied this SPM approach to numerous MD simulations of mixed and boundary-
lubricated nanoscale systems, using it to calculate the solid-solid contact area which occurs
when the lubricant film breaks down and two opposing asperities touch. The resulting
values for this asperity contact area were successfully validated with two other approaches,
a contact atom counting procedure and a Voronoi tessellation of the contact zone, which
are either less reliable or computationally much more expensive than the SPM approach.

As a tribosystem in the mixed-lubrication regime runs in, which I simulated by repeat-
edly shearing two lubricated asperities against each other, the amount of direct solid-solid
interaction decreases over time, finally leading to the disappearance of the contact-area-
dependent contribution to the friction force from the proposed friction law. The subse-
quent linear load-vs.-friction behavior of the run-in system is described by a two-term
friction law, a special case of the proposed one for vanishing contact area called the
Derjaguin-form, which still retains the load-independent friction force offset.

To analyze the occurrence and the possible origins of this friction force offset, I car-
ried out a large number of shear simulations with boundary-lubricated tribosystems, i.e.,
systems without asperity contact during sliding. This case study involved the variation of
the boundary lubricant type and coverage as well as the roughness of the solid substrates.
Moreover, some systems were simulated which included several layers of a base-oil-type
lubricant between the two boundary lubricant films. The addition of the base oil resulted
in the vanishing of the load-independent friction force offset, finally leading to the purely
load-controlled load-vs.-friction behavior described by the well-known and macroscopi-
cally used Amontons-Coulomb friction law.

However, there were various tribosystems in the case study which were not additionally
lubricated with a base oil but still had a friction force offset close to zero. So to further
analyze the origins of its occurrence, I carefully selected several systems exhibiting high
and low friction force offsets. To corroborate the observation that the friction force off-
set was somehow linked to the degree of disorder within the lubricant, I attempted to
quantify this disorder by estimating the lubricant’s configurational entropy. The single
macromolecule approach, based on covariance (super)matrices of the carbon backbone
atoms in the lubricant, yielded the result that a higher friction force offset is reflected in
the configurational entropy of those systems in which lubricant disorder is caused by low
boundary lubricant coverage, but not in those where it is due to substrate roughness.
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Appendix A

LAMMPS Script

In this section I will briefly discuss the entire LAMMPS input script template used for
most of the large-asperity shear simulations in this work. In the following, text blocks
typeset in monospace are actual script code. Within the script, the pound character (#)
denotes a remark line which is ignored by LAMMPS. Script lines that do not start at the
far left are continuations of the previous line due to limited page width. I will print a
block of script code first and discuss it directly afterwards. For a full documentation of
LAMMPS commands, see the LAMMPS online manual [10].

# Shear simulation 4m/s for 2.5 ns

# Tribosystem amorphous Fe + semi-spherical asperity --

# Boundary lubricant: stearic acid (66 molecules/slider)

#

# Atomic Types:

# RCH3 Alkane CT type 1

# R2CH2 Alkane CT type 2

# HR Alkane HC type 3

# COOH CarbAc C type 4

# OH CarbAc OH type 5

# C=O CarbAc O type 6

# COOH CarbAc HO type 7

# Fe mobile lo Fe1 type 8

# Fe fixed lo Fe2 type 9

# Fe asp lo Fe3 type 10

# Fe mobile hi Fe4 type 11

# Fe fixed hi Fe5 type 12

# Fe asp hi Fe6 type 13

It is usually good practice to have a helpful header including information about the type
of simulation and a list defining the used atomic types.
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# Preamble

units metal

atom_style full

lattice bcc 2.855324

boundary p p s

# Read Data File

read_data data.tribo

Here the unit system is set to metal, meaning that distances are measured in Ångströms,
time in picoseconds and energy in electron volts. The atom style full requires every atom
in the simulation to be assigned a charge and to be treated molecularly. The lattice is set
to the bcc Fe lattice with the lattice constant from the used EAM-FS potential. Finally,
the boundary conditions are set to periodic in x and y-direction, and “shrink-wrapped”
(see section 1.5) in z-direction.

# Interaction Potential Styles

pair_style hybrid eam/fs lj/cut/coul/cut 10.0 18.0

bond_style harmonic

angle_style harmonic

dihedral_style opls

# EAM/FS Parameters

pair_coeff * * eam/fs Fe_mm.eam.fs NULL NULL NULL

NULL NULL NULL NULL Fe Fe Fe Fe Fe Fe

# OPLS-AA Interatomic Potentials

pair_coeff 1 1 lj/cut/coul/cut 0.002862 3.500000

pair_coeff 2 2 lj/cut/coul/cut 0.002862 3.500000

pair_coeff 3 3 lj/cut/coul/cut 0.001301 2.500000

pair_coeff 4 4 lj/cut/coul/cut 0.004553 3.750000

pair_coeff 5 5 lj/cut/coul/cut 0.007372 3.000000

pair_coeff 6 6 lj/cut/coul/cut 0.009106 2.960000

pair_coeff 7 7 lj/cut/coul/cut 0.000000 0.000000

# Solid-lubricant Interaction Potentials

pair_coeff 1 8* lj/cut/coul/cut 0.01692 3.15832

pair_coeff 2 8* lj/cut/coul/cut 0.01692 3.15832

pair_coeff 3 8* lj/cut/coul/cut 0.01141 2.66927

pair_coeff 4 8* lj/cut/coul/cut 0.02134 3.26917

pair_coeff 5 8* lj/cut/coul/cut 0.10000 2.92404

pair_coeff 6 8* lj/cut/coul/cut 0.10000 2.90448

pair_coeff 7 8* lj/cut/coul/cut 0.00000 0.00000
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# Special OPLS-AA Settings

special_bonds 0.0 0.0 0.5

pair_modify shift yes mix geometric

The pair style hybrid allows the simultaneous use of the EAM-FS potential for the metal
sliders together with the Lennard-Jones and Coulomb potential required for the molecules.
Then all homogeneous and mixed LJ-parameters are set. Finally, the intermolecular
potentials are configured to OPLS-AA standard.

# Particle Group Definitions

group lofix type 9

group loslab type 8

group islands type 10 13

group hifix type 12

group hislab type 11

group fixed union lofix hifix

group tstat union loslab hislab islands

group mobile subtract all fixed

group allup subtract all lofix

Define various groups of atoms. Some of these will be used to configure external con-
straints, the thermostat, or simply some output commands.

# Thermostatting Computations

compute tstat1d tstat temp/partial 0 1 0

compute mob1d mobile temp/partial 0 1 0

# Reaction Force Computation

compute F_r allup group/group lofix

The first block configures the thermostat so it only interferes with the y-component of
the atom velocity. The second block sets the groups of atoms between which the friction
force and the load will be computed.

# Neighbor List Options

neighbor 2.0 bin

neigh_modify delay 5 one 4000

# Time Step and rRESPA-Integrator

timestep 0.002

run_style respa 3 2 2 bond 1 angle 2 pair 3
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# Thermodynamic Output Style

thermo_style multi

thermo 50

thermo_modify temp mob1d flush yes

The neighbor list must be made slightly bigger to accommodate more atoms for high-
load shear simulations. Next, the top-level time step is set, and the rRESPA algorithm is
configured to three time step levels, each a factor 2 apart. Finally, thermodynamic output
is set to include the partial energies of the internal molecular degrees of freedom, write
every 50 time steps, and calculate the temperature from the y-component of the atom
velocity only.

# Initialization

fix 1 all nve

fix 2 lofix setforce 0.0 0.0 0.0

fix 2b hifix setforce 0.0 0.0 0.0

# Langevin Thermostatting

fix 3 tstat langevin 300.0 300.0 0.5 699483

fix_modify 3 temp tstat1d

The integrating scheme and the Langevin thermostat are chosen and configured. In
LAMMPS, the Langevin thermostat must be coupled with the NVE ensemble to function
correctly. The setforce command makes the outermost slider atoms rigid. The number
699483 is the seed for the uniform random number generator.

# Time Averages of Reaction Forces

fix forces all ave/time 1 50 50 c_F_r[1] c_F_r[2] c_F_r[3]

file avg.forces_all

# Dumps (Configuration Snapshots)

dump 1 all custom 250 dump.tribo.gz tag mol type q x y z

dump 2 all custom 10000 dump.overview.gz tag mol type q x y z vx vy vz

The averaging and output options for the reaction forces are set, and two separate files
with system configurations (“snapshots”) are written. One every 0.5 ps for in-depth
analysis, and one every 20 ps for quick overviews and visualization.

# Constant Slider Separation for 1250 Steps

velocity hifix set 0.0 0.0 0.0 sum no units box

run 1250

# Apply Load: 1.6 GPa = 44.08 nN
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velocity hifix set 0.0 0.0 NULL sum no units box

unfix 2b

fix 2b hifix setforce 0.0 0.0 NULL

fix 4 hifix aveforce NULL NULL -0.04096358209

The slider separation is kept constant for 2.5 ps, then the load is applied in −z-direction
as a per-atom force in eV/Å.

# Ramp Velocity to 4m/s in 9750 Time Steps

velocity hifix set 0.001 0.0 NULL sum no units box

run 250

velocity hifix set 0.002 0.0 NULL sum no units box

run 250

# .

# .

# .

velocity hifix set 0.038 0.0 NULL sum no units box

run 250

velocity hifix set 0.039 0.0 NULL sum no units box

run 250

# Shear at 4m/s

velocity hifix set 0.04 0.0 NULL sum no units box

run 1239000

The sliding velocity is ramped to 4 m/s in steps of 0.1 m/s over 20 ps, then it is kept
constant for the rest of the total simulation time of 2.5 ns. The vertical ellipsis denotes
that several similar blocks of code have been omitted.
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Appendix B

Potential Parameters

The following tables list the potential parameters used throughout this work. The values
in tables B.1–B.4 are taken from the OPLS-AA force field discussed in section 1.2.3 and
gathered via private communication with W. Jorgensen, M. Chandross, C. D. Lorenz, and
L.-T. Kong, while the solid-lubricant interaction parameters in table B.5 were obtained
using the procedure from section 2.1.2. One- or two-letter abbreviations in parentheses
introduced in table B.1 are used throughout tables B.2, B.3, and B.4. Atoms which share
the same abbreviation may have different non-bonded parameters but behave identically
with respect to all bonded potentials. Further information on the OPLS-AA force field
can be found in [135] and the references therein.

In all tables, the first block lists the parameters required for modeling saturated car-
boxylic acids such as stearic acid. In the second block, additional parameters for also
including the double bonds occurring in unsaturated carboxylic acids such as oleic acid
can be found. The third block adds parameters needed for modeling the methyl group in
methyl esters such as methyl stearate.
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atom, group (abbreviation) q [e−] σ [Å] ε [eV] m [a.m.u.]
C, alkane: R–CH3 (CT) −0.18 3.50 0.002862 12.000
C, alkane: R–CH2–R’ (CT) −0.12 3.50 0.002862 12.000
H, alkane (HC) 0.06 2.50 0.001301 1.008
C, carboxyl (C) 0.52 3.75 0.004553 12.000
O(H), carboxyl (OH) −0.53 3.00 0.007372 15.999
O(C), carboxyl (O) −0.44 2.96 0.009106 15.999
H(O), carboxyl (HO) 0.45 0.00 0.000000 1.008
C, alkene (CM) −0.12 3.55 0.003296 12.000
H, alkene (HC) 0.12 2.42 0.001301 1.008
C, carbonyl (C) 0.51 3.75 0.004553 12.000
O(R), ester (OR) −0.33 3.00 0.007372 15.999
O(C), carbonyl (O) −0.43 2.96 0.009106 15.999
C, methoxy (CT) 0.16 3.50 0.002862 12.000
H, alkoxy (HC) 0.03 2.42 0.000651 1.008

Table B.1: Non-bonded potential parameters.

bond Kr [eV] r0 [Å]
CT–CT 11.622 1.529
CT–HC 14.744 1.090
CT–C 13.746 1.522
C=O 24.718 1.229
C–OH 19.514 1.364
OH–HO 23.980 0.945
CM–CM 23.807 1.340
CM–CT 13.746 1.510
CM–HC 14.744 1.080
C–CT 13.746 1.522
CT–OR 13.877 1.410
C–OR 9.280 1.327

Table B.2: Bond stretching parameters.
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angle Kθ [eV] θ0 [
◦]

CT–CT–CT 2.5302 112.7
CT–CT–HC 1.6262 110.7
HC–CT–HC 1.4310 107.8
CT–CT–C 2.7319 111.1
HC–CT–C 1.5177 109.5
CT–C=O 3.4691 120.4
CT–C–OH 3.0355 108.0
O=C–OH 3.4691 121.0
C–OH–HO 1.5177 113.0
CT–CM–HC 1.5177 117.0
CM–CT–CT 2.7319 111.1
CM–CT–HC 1.5177 109.5
CM–CM–CT 3.0355 124.0
CM–CM–HC 1.5177 120.0
CT–OR–C 3.5992 116.9
HC–CT–OR 1.5177 109.5
CT–C–OR 3.5125 111.4
OR–C=O 3.5992 123.4

Table B.3: Angle bending parameters.
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dihedral V1 [eV] V2 [eV] V3 [eV]
CT–CT–CT–CT 0.056373 −0.002168 0.008673
HC–CT–CT–CT 0 0 0.013009
HC–CT–CT–HC 0 0 0.013009
CT–CT–CT–C −0.073589 −0.019774 0.025368
HC–CT–CT–C 0 0 −0.003296
CT–C–OH–HO 0 0.209449 0
O=C–OH–HO 0 0.209449 0
CM–CT–CT–CT +0.056373 −0.002168 +0.008673
CM–CM–CT–CT +0.015004 +0.017563 −0.039201
CT–CM–CM–CT 0 +0.607097 0
CT–CM–CM–HC 0 +0.607097 0
HC–CM–CM–HC 0 +0.607097 0
HC–CT–CM–CM 0 0 −0.016131
HC–CM–CT–HC 0 0 +0.013790
HC–CM–CT–CT 0 0 +0.013790
HC–CT–CT–CM 0 0 +0.015871
CT–CT–C–OH 0 0 −0.023980
HC–CT–C–OH 0 0 +0.005724
CT–C–OR–CT +0.202467 +0.222198 0
O=C–OR–CT 0 +0.222198 0
C–OR–CT–HC 0 0 +0.008586

Table B.4: Dihedral potential coefficients.

lubricant–solid σij [Å] εij [eV]
CT–Fe 3.16 0.01692
HC–Fe 2.67 0.01141
C–Fe 3.27 0.02134
OH–Fe 2.92 0.10000
O–Fe 2.90 0.10000
HO–Fe 0.00 0.00000
CM–Fe 3.18 0.01815
HCalkene–Fe 2.63 0.01141
CTmethoxy–Fe 3.16 0.01692
HCalkoxy–Fe 2.63 0.00807

Table B.5: Mixed LJ-parameters for lubricant-solid interactions.
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Appendix C

Best-Fit Parameters

The following tables give a complete account of the calculated best-fit parameters and their
respective estimated errors for the systems discussed in section 4.3, grouped by lubricant.
The parameters were obtained from the χ2-fitting procedure applied to Eq. (3.16), and
in the tables ndata denotes the number of data points entering the fitting procedure. The
used system ID abbreviations are explained in table 4.2.
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system ID F0 [nN] ∆F0 [nN] µ ∆µ ndata

SteAc–5x7–0ML 0.553 0.058 0.149 0.005 5
SteAc–5x7–1ML 0.561 0.037 0.148 0.003 5
SteAc–5x7–2ML 0.603 0.022 0.155 0.002 5
SteAc–5x7–3ML 0.608 0.076 0.161 0.007 5
SteAc–5x7–4ML 0.610 0.140 0.154 0.012 5
SteAc–5x7–amo 0.645 0.017 0.140 0.002 5
SteAc–6x7–1ML 0.479 0.109 0.161 0.009 3
SteAc–6x7–2ML 0.522 0.074 0.172 0.007 3
SteAc–6x7–3ML 0.537 0.110 0.182 0.011 3
SteAc–6x7–4ML 0.531 0.017 0.159 0.002 3
SteAc–6x7–amo 0.484 0.082 0.136 0.007 3
SteAc–6x8–0ML 0.392 0.110 0.142 0.010 5
SteAc–6x8–1ML 0.435 0.057 0.152 0.005 5
SteAc–6x8–2ML 0.399 0.114 0.165 0.010 5
SteAc–6x8–3ML 0.557 0.052 0.159 0.005 5
SteAc–6x8–4ML 0.412 0.051 0.195 0.004 5
SteAc–6x8–amo 0.239 0.047 0.158 0.004 5
SteAc–7x8–1ML 0.119 0.027 0.055 0.003 3
SteAc–7x8–2ML 0.343 0.022 0.135 0.002 3
SteAc–7x8–3ML 0.396 0.019 0.176 0.002 3
SteAc–7x8–4ML 0.427 0.050 0.154 0.004 5
SteAc–7x8–amo 0.045 0.051 0.059 0.004 5
SteAc–7x9–0ML 0.084 0.128 0.077 0.011 5
SteAc–7x9–1ML 0.249 0.033 0.094 0.003 5
SteAc–7x9–2ML 0.255 0.026 0.124 0.002 5
SteAc–7x9–3ML 0.397 0.111 0.131 0.010 5
SteAc–7x9–4ML 0.413 0.021 0.159 0.002 5
SteAc–7x9–amo 0.374 0.118 0.085 0.010 5

Table C.1: Constitutive system parameters for stearic acid.
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system ID F0 [nN] ∆F0 [nN] µ ∆µ ndata

OleAc–5x7–1ML 0.498 0.049 0.158 0.005 3
OleAc–5x7–2ML 0.521 0.068 0.170 0.008 6
OleAc–5x7–3ML 0.581 0.064 0.138 0.006 3
OleAc–5x7–4ML 0.490 0.041 0.159 0.005 6
OleAc–5x7–amo 0.579 0.050 0.161 0.006 6
OleAc–6x7–1ML 0.521 0.020 0.183 0.002 3
OleAc–6x7–2ML 0.518 0.009 0.179 0.001 3
OleAc–6x7–3ML 0.632 0.185 0.165 0.020 3
OleAc–6x7–4ML 0.476 0.036 0.184 0.003 3
OleAc–6x7–amo 0.606 0.119 0.160 0.013 3
OleAc–6x8–1ML 0.501 0.120 0.182 0.011 3
OleAc–6x8–2ML 0.580 0.058 0.178 0.007 6
OleAc–6x8–3ML 0.578 0.002 0.177 0.000 3
OleAc–6x8–4ML 0.596 0.082 0.178 0.009 6
OleAc–6x8–amo 0.617 0.075 0.171 0.008 6
OleAc–7x8–1ML 0.218 0.016 0.189 0.002 3
OleAc–7x8–2ML 0.270 0.022 0.174 0.002 3
OleAc–7x8–3ML 0.337 0.029 0.194 0.003 3
OleAc–7x8–4ML 0.329 0.022 0.169 0.002 3
OleAc–7x8–amo −0.041 0.006 0.165 0.001 3
OleAc–7x9–1ML 0.009 0.128 0.137 0.016 3
OleAc–7x9–2ML 0.036 0.072 0.145 0.008 6
OleAc–7x9–3ML 0.152 0.150 0.125 0.015 3
OleAc–7x9–4ML 0.465 0.026 0.157 0.002 6
OleAc–7x9–amo −0.077 0.033 0.140 0.005 6

Table C.2: Constitutive system parameters for oleic acid.
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system ID F0 [nN] ∆F0 [nN] µ ∆µ ndata

MeSte–5x7–1ML 0.628 0.136 0.153 0.014 3
MeSte–5x7–2ML 0.569 0.112 0.148 0.012 6
MeSte–5x7–3ML 0.559 0.099 0.155 0.010 3
MeSte–5x7–4ML 0.550 0.069 0.147 0.008 6
MeSte–5x7–amo 0.417 0.041 0.157 0.004 3
MeSte–6x7–1ML 0.476 0.101 0.168 0.009 3
MeSte–6x7–2ML 0.509 0.124 0.159 0.011 3
MeSte–6x7–3ML 0.491 0.043 0.164 0.004 3
MeSte–6x7–4ML 0.526 0.015 0.174 0.002 3
MeSte–6x7–amo 0.331 0.067 0.169 0.006 3
MeSte–6x8–1ML 0.243 0.045 0.148 0.005 3
MeSte–6x8–2ML 0.288 0.050 0.153 0.005 6
MeSte–6x8–3ML 0.362 0.005 0.174 0.001 3
MeSte–6x8–4ML 0.597 0.073 0.169 0.008 6
MeSte–6x8–amo 0.246 0.007 0.129 0.001 3
MeSte–7x8–1ML 0.122 0.069 0.150 0.006 3
MeSte–7x8–2ML 0.307 0.035 0.138 0.003 3
MeSte–7x8–3ML 0.299 0.092 0.155 0.009 3
MeSte–7x8–4ML 0.577 0.059 0.156 0.006 3
MeSte–7x8–amo 0.388 0.082 0.099 0.008 3
MeSte–7x9–1ML 0.323 0.058 0.121 0.006 3
MeSte–7x9–2ML 0.403 0.059 0.142 0.006 6
MeSte–7x9–3ML 0.392 0.137 0.158 0.013 3
MeSte–7x9–4ML 0.540 0.093 0.181 0.009 6
MeSte–7x9–amo 0.421 0.069 0.131 0.006 3

Table C.3: Constitutive system parameters for methyl stearate.
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system ID F0 [nN] ∆F0 [nN] µ ∆µ ndata

Hex–5x7–1ML 0.031 0.018 0.112 0.002 3
Hex–5x7–2ML 0.064 0.004 0.117 0.000 3
Hex–5x7–3ML 0.093 0.016 0.111 0.002 3
Hex–5x7–4ML 0.093 0.071 0.088 0.006 5
Hex–5x7–amo 0.010 0.048 0.103 0.004 5
Hex–6x7–1ML 0.092 0.075 0.105 0.007 3
Hex–6x7–2ML 0.013 0.003 0.106 0.000 3
Hex–6x7–3ML 0.141 0.029 0.094 0.002 3
Hex–6x7–4ML 0.077 0.021 0.110 0.002 3
Hex–6x7–amo 0.003 0.132 0.101 0.015 3
Hex–6x8–1ML −0.055 0.047 0.123 0.006 3
Hex–6x8–2ML 0.037 0.063 0.105 0.007 3
Hex–6x8–3ML 0.079 0.030 0.099 0.003 3
Hex–6x8–4ML 0.038 0.031 0.110 0.004 6
Hex–6x8–amo −0.013 0.032 0.111 0.004 6
Hex–7x8–1ML −0.041 0.069 0.100 0.008 3
Hex–7x8–2ML 0.060 0.023 0.095 0.003 3
Hex–7x8–3ML 0.002 0.152 0.104 0.017 3
Hex–7x8–4ML 0.028 0.029 0.106 0.003 3
Hex–7x8–amo 0.033 0.036 0.073 0.004 3
Hex–7x9–0ML −0.035 0.054 0.067 0.005 5
Hex–7x9–1ML −0.034 0.076 0.100 0.008 3
Hex–7x9–2ML 0.074 0.079 0.100 0.007 3
Hex–7x9–3ML −0.009 0.016 0.108 0.002 3
Hex–7x9–4ML 0.008 0.027 0.106 0.003 5

Table C.4: Constitutive system parameters for stearic acid with n-hexadecane.

127



128



List of Figures

1.1 Lennard-Jones potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Bond stretching, angle bending, and bond torsion parameters. . . . . . . . 9
1.3 Several OPLS-AA torsional potentials. . . . . . . . . . . . . . . . . . . . . 11

2.1 Amorphization of a bcc Fe crystal. . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Three large asperity types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Small substrates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 n-hexadecane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Stearic acid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Oleic acid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Stearic acid methyl ester (methyl stearate). . . . . . . . . . . . . . . . . . . 25
2.8 Equilibration of a boundary layer (small slider). . . . . . . . . . . . . . . . 26
2.9 Development of the molecular tilt angle. . . . . . . . . . . . . . . . . . . . 28
2.10 Equilibration of a boundary layer (large slider). . . . . . . . . . . . . . . . 28
2.11 Desorbed lubricant molecules. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.12 Compression of a semi-spherical asperity system. . . . . . . . . . . . . . . . 30
2.13 Compression curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.14 Compression and equilibration of an oleic acid system. . . . . . . . . . . . 32

3.1 From MD to continuum with SPM. . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Effect of smearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Calculation of the asperity contact area Aasp(L). . . . . . . . . . . . . . . . 40
3.4 Material transfer in the truncated cone asperity system. . . . . . . . . . . . 42
3.5 Directional material transfer balance. . . . . . . . . . . . . . . . . . . . . . 43
3.6 Number of contact atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Validation of SPM with the contact atom counting procedure. . . . . . . . 45
3.8 Validation of SPM with Voronoi tessellation. . . . . . . . . . . . . . . . . . 48
3.9 Visualization of plastic and elastic deformation. . . . . . . . . . . . . . . . 49
3.10 Standard deviation of the contact force versus smoothing. . . . . . . . . . . 52
3.11 Justification for the statistical inefficiency approximation. . . . . . . . . . . 53
3.12 Convergence of the chi-square fitting procedure. . . . . . . . . . . . . . . . 59

4.1 Snapshots of three MD-nanosystems. . . . . . . . . . . . . . . . . . . . . . 68
4.2 Friction force as a function of time. . . . . . . . . . . . . . . . . . . . . . . 69

129



4.3 Time evolution of the semi-spherical asperity system at three different loads. 70
4.4 Time evolution of three different asperity systems at a given load. . . . . . 71
4.5 Asperity contact area as a function of time. . . . . . . . . . . . . . . . . . 72
4.6 Total cavity volume of three nanotribological systems. . . . . . . . . . . . . 73
4.7 Load-vs.-friction behavior of three nanotribological systems with asperities. 75
4.8 Load-vs.-friction behavior of a nanotribological systems without asperities. 77
4.9 Side views of the semi-spherical and the slanted pyramid systems. . . . . . 79
4.10 Time evolution of the semi-spherical asperity system at a given load. . . . 80
4.11 Time evolution of the slanted pyramid asperity system at a given load. . . 81
4.12 Moment of asperity contact onset as a function of the pass number. . . . . 82
4.13 Average asperity contact area and contact duration per pass. . . . . . . . . 82
4.14 Maps for the semi-spherical asperity. . . . . . . . . . . . . . . . . . . . . . 83
4.15 Maps for the slanted pyramid asperity. . . . . . . . . . . . . . . . . . . . . 84
4.16 Total Fe surface area compared to the “virtual asperity surface area”. . . . 85
4.17 Time development of the slanted pyramid asperity. . . . . . . . . . . . . . 87
4.18 Load-vs.-friction for the semi-spherical and slanted pyramid asperity systems. 89
4.19 Three practical fitting procedure indicators. . . . . . . . . . . . . . . . . . 90
4.20 Run-in system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.21 Six MD-nanosystem setups. . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.22 Friction force as a function of time. . . . . . . . . . . . . . . . . . . . . . . 95
4.23 Load-vs.-friction curves for various nano-tribosystems. . . . . . . . . . . . . 96
4.24 Boundary lubricant coverage dependence of the Derjaguin-offset. . . . . . . 99
4.25 Boundary lubricant coverage dependence of the coefficient of friction. . . . 100
4.26 Nano-roughness dependence of the Derjaguin-offset. . . . . . . . . . . . . . 101
4.27 Nano-roughness dependence of the coefficient of friction. . . . . . . . . . . 102
4.28 Load-vs.-friction behavior of nine selected nanotribological systems. . . . . 103
4.29 SPM-visualizations of nine selected systems. . . . . . . . . . . . . . . . . . 105
4.30 Constitutive system parameters for the linear load-vs.-friction behavior. . . 106
4.31 Maps of the covariance (super)matrices of three nanotribological systems. . 107
4.32 Histograms of eigenvector components. . . . . . . . . . . . . . . . . . . . . 108
4.33 Molar per-atom contributions to the entropy. . . . . . . . . . . . . . . . . . 110

130



List of Tables

4.1 Constitutive system parameters depending on asperity geometry. . . . . . . 76
4.2 Key to the used abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 The nine systems selected for further analysis. . . . . . . . . . . . . . . . . 104

B.1 Non-bonded potential parameters. . . . . . . . . . . . . . . . . . . . . . . . 120
B.2 Bond stretching parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.3 Angle bending parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.4 Dihedral potential coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.5 Mixed LJ-parameters for lubricant-solid interactions. . . . . . . . . . . . . 122

C.1 Constitutive system parameters for stearic acid. . . . . . . . . . . . . . . . 124
C.2 Constitutive system parameters for oleic acid. . . . . . . . . . . . . . . . . 125
C.3 Constitutive system parameters for methyl stearate. . . . . . . . . . . . . . 126
C.4 Constitutive system parameters for stearic acid with n-hexadecane. . . . . 127

131



132



Bibliography

[1] B. Bhushan, editor. Nanotribology And Nanomechanics: An Introduction. Springer,
2005.
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astronomiques. 1790.

[66] M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale
molecular dynamics. The Journal of Chemical Physics, 97(3):1990–2001, 1992.

[67] H. F. Trotter. On the product of semi-groups of operators. Proc. Am. Math. Soc.,
10:545, 1959.

[68] S. S. Sarman, D. J. Evans, and P. T. Cummings. Recent developments in non-
Newtonian molecular dynamics. Physics Reports, 305:1–92, 1998.

[69] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.
Haak. Molecular dynamics with coupling to an external bath. The Journal of
Chemical Physics, 81(8):3684–3690, 1984.
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Cargèse (F), 22-26 March 2010. Program Booklet, p. 57.

7. A. Vernes, G. Vorlaufer, S. Ilincic, S. Eder and F. Franek, “Ab initio atomic-scale
friction of graphene,” in Theoretical Modeling and Experimental Simulation in Tri-
bology, Institut d’Etudes Scientifiques de Cargèse, Cargèse (F), 22-26 March 2010.
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