Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitat Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available gigifieainaiistibiiaiyaoi
the Vienna University of Technology (http://www.ub.tulllien.ac.at/engi\welr). T E C H N IS C H E

UNIVERSITAT

WIEN
Vienna University of Technology

DISSERTATION

AN OPEN-SOURCE, VENDOR AND
TECHNOLOGY INDEPENDENT TOOLKIT
FOR BUILDING MONITORING, DATA
PREPROCESSING, AND VISUALIZATION

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von
Univ.-Prof. Dipl.-Ing. Dr.techn. Ardeshir Mahdavi
E 259-3 Abteilung fur Bauphysik und Baudkologie
Institut fur Architekturwissenschaften

eingereicht an der
Technischen Universitat Wien
Fakultat far Architektur und Raumplanung

von
Mag. DI(FH) Robert Zach
Matr. Nr.: 0726404
Gebharts 46, 3943-Schrems

Wien, im Juli 2012

Zusammenfassung

Der Energieverbrauch von Gebaduden entspricht in den meisten Lédndern
einem signifikanten Teil des Gesamtenergieverbrauches. Um Gebaude
optimal betreiben zu koénnen, sind Informationen (ber aktuelle
Energieverbraucher, Anforderungen der Gebaudebenutzer und aktuelle
Steuerungsbefehle von wesentlicher Relevanz. Allerdings sind passende
Sensorik und Datenverarbeitungsstrategien in der (berwiegenden
Mehrzahl bestehender Gebdude nicht vorhanden. Aber auch Neubauten
vermissen meist Moglichkeiten bendtigte Daten in passender Form

weiterzuverarbeiten.

Diese Arbeit beschreibt mogliche Datenerfassungs-Infrasstrukturen um
unterschiedliche Gebdudedaten (Energieverbrdauche, Komfortparameter,
usw.) in Echtzeit zu verarbeiten. Solche Daten konnen natlrlich fir
unterschiedliche Zwecke weiterverarbeitet werden. Zu diesem Zweck wird
ein Toolkit, bestehend aus fiinf Komponenten (Connector, Database,
Data-Abstraction Framework, MATLAB Framework, Visualization
Framework), vorgestellt. Das Toolkit ermoglicht die Erfassung und
Verarbeitung der Gebaudedaten in unterschiedlichen
Anwendungsgebieten. Es verfligt Uber leistungsfahige
Datenaufbereitungs-Funktionen (z.b. generierung zeitlich strukturierter
Datensétze), bietet Schnittstellen fir eine automatisierte
Stapelverarbeitung (MySQL, OPC-UA, usw.) und beinhaltet Anwendungen
flir Daten-Aggregation, Visualisierung und Analyse (z.b. Erstellung eines

Mollier-Diagramm, Unterstiitzung unterschiedlicher Dateiformate, usw.).

Um den Nutzen des Toolkits in einem praktischem Kontext zu
untersuchen, wurden zwei unterschiedliche Geb&dude in Wien, Osterreich
als Referenzimplementierung gewahlt. Eines der Gebaude ist ein Neubau
und enthalt bereits teilweise Infrastruktur zur Gebdudedatenerfassung.
Die Arbeit zeigt wie das Toolkit verwendet werden kann, um Daten aus
allen Gebdudeautomatisierungssystemen zu erfassen. Das zweite
Gebdude ist ein Altbau und bietet keine wiederverwendbare Infrastruktur.

Daher wird ein unabhangiges System zur Datenerfassung installiert.

Summary

In most countries the energy consumption of buildings represents a
significant part of the overall energy usage. To run buildings with optimal
operation regimes, information about actual energy consumers, user
requirements and current building control actions is critical. However, the
presence of appropriate sensing, data-storage, and data-processing
capabilities is almost entirely absent in the vast majority of existing
buildings. Even new buildings mostly miss the possibility to process and

analyze building data in an appropriate way.

The present contribution describes possible monitoring infrastructures to
collect and process building data (energy use, comfort parameter, etc.) in
real-time. Such data can be, of course, applied for various purposes.
Toward this end, a toolkit, consisting of five components (Connector,
Database, Data-Abstraction Framework, MATLAB Framework,
Visualization Framework), is presented. The toolkit facilitates beneficial
use of building data in various processing applications. It provides
powerful preprocessing functions (e.g., generation of temporally
structured data sets), offers interfaces for batch processing (MySQL, OPC-
UA, etc.) and includes applications for data aggregation, display,
visualization, and analysis (e.g. psychrometric and thermal comfort chart

plots, data encapsulation and export, etc.).

To probe and gauge the utility of the toolkit in a realistic and practical
context, two distinct buildings in Vienna, Austria were used for reference
implementation. One is a new building, with some existing monitoring
infrastructure elements. The dissertation illustrates how this building's
data can be accessed using the toolkit, by connecting to all kinds of
building automation infrastructures. The second building is more than
hundred vyears old and provides no reusable building automation
infrastructure. Therefore, an independent system needed to be installed

for monitoring.

Acknowledgments

The research presented in this dissertation is supported by funds from the
program “Innovative Projekte” of the Vienna University of Technology,
the Austrian Science Foundation (FWF): Project: | 545-N22 (Ubiquitous
dynamic building performance monitoring) and the program “Neue
Energien 2020” within the “Klima- und Energiefonds”. Additional support
was provided by the division "Gebdude und Technik" (Amtsdir. Hodcek),
which supplied us with real-world test beds. Moreover, the thematic link
to the CAMPUS 21 project (Control & Automation Management of
Buildings & Public Spaces in the 21% Century, no: 285729) provided

further impulses for the realization of the research objectives.

Parts of the text in this thesis are adopted from papers, written in relation
to the projects, and co-authored with Prof. Ardeshir Mahdavi and project-

team members.

First of all, | would like to thank Prof. Ardeshir Mahdavi for his support,
guidance and advising throughout my thesis. | highly appreciate the time

he invested into me by giving suggestions and review my work.

Special thanks belong to all MOST team members and my colleagues at
the Department of Building Physics and Ecology. | really enjoy the time

here.

Finally, I would like to thank my mum who cooked for me so often.

Contents

Chapter 1. Introductioncccceeeiiiiiinnneiiiiniinnnnsiinninnennnn. 1
1.1, Motivation ...cceeeeiiiiiiiiiiiiccrr e 2
1.2. Research statement..........cccceiiiiiiiiiiiii 4
I T 1 Lot (¥] U 5

Chapter 2. Approach........ciieeeciiiiiiinnnsiiiniinnen. 6
2.1. Requirement analysescccerriiimemmeeiiiiiiiinieenneiiiniiieesssenes 7

2.1.1. PhySiCal I@VEl....uuuriiiieeee e 7
2.1.2. Fieldbus leVelcooiiiiiiieieeeee e 8
2.1.3. Automation levelccoueeiiiiiiiiiiee e, 10
2.1.4. Management leVel......cccooooiciiiiiieiee e 10
2.2, USE CASES..citteuureritrunieriiraniirttnnsiistrnssiertesssiereesssisreesssesseesssessesnns 11

Chapter 3. Monitoring System ToolKit..........ccccccveeiirrirnnnnenienns 13

00 I 07 11 1 1= o1 o oS 14
3.1.1. Connector frameWork.......ccocueerieeeriieeiie e 14
3.1.2. Java Database Connectivity - Connectorcccccvveeeeeennnn. 18
3.1.3. OPC Data Access - CONNECLONuuveviiiiiiiiiiiiiiiiiiieeeceeee, 20
3.1.4. Remote data collection......c.ccccovvireriiiiniiieniie e, 22

3.2. Databaseeeeerreeiieeiiiiiiiiiiiiii e 23
3.2.1. Database-designccccccieieiiiiiiiiiiiieee e 24
3.2.2. Data pPreproCeSSING ..cccciiiiiuuierieeiiiiiieeeeeeteriee e e eeeeaaieseseeeenans 25
3.2.3. Setup OPLIONS..ciiiiiiiieie e 32
3.2.4. Benchmark teStScocueeriieeiiiieiiiie ettt 34

3.3. Data-Abstraction Framework........cccccceeeiiiiiiiiiiniiiniiiniinninnnnnnn, 38
3.3.1. Physical and virtual datapoints........ccccceeeeeeiiiiciiniiiiieeeeeeenn, 38
3.3.2. MeasUremMeNtS....cccccvieiiiiiiiiiiiiitet e 40
3.3.3. Z0ONe ManagemMeENt...cciiiiiiiiiiee et eaaa 41
3.3.4. Database connection pool........cccccovieeiieiiiiiiicciiieeeee e, 42
3.3.5. Remote data aCCessccoceeeriiieriiieeeiiee et 43

3.4. Data-Processing Framework for MATLAB.......cc.ccccovririeennnnnnnnns 46

3.5. Visualization Frameworkeeeeeeeeeeeeeeeereeeeeenneenneennnenenenns 48
3.5.1. Technical reqQUIrementsccccceiriieiieeee e, 48
3.5.2. CONCEPT . ittt e eaaa 50
3.5.3. Visualization librarycccccceeriiiiiiiiieee e, 52
3.5.4. Drag and Drop....cccccuieeeeeeeeeeeeecccciirreee e e e e e e e eeesrnnrrreeeeaea e 53
3.5.5. MOAUIES . 54

Chapter 4. Prototypical implementation.........cccccccervennireennnens 61

4.1. Lehartrakt......ccccoveeiiiiiiiiiiien e 62

4.2, Mitteltrakt......ccoooiiiiiiiiiiiiii e 67

4.3. 1T infrastruCture.......ccocecviviiiiiinnennnennneeeneeaneeaneanaeaasaaasaaaaes 71

4.4. Data utilization.......cccoivviiiiiiiiiiic e 72
4.4.1. INCrease USer @WalrENEeSS.....cccveiiiiiiiiinrinrieteeeeeessenrnneeeeees 72
4.4.2. Simulation model calibration.........ccceceeenieiiniiiiniiieieee 73

(01 =17 =T TR 0o T Tl (V1] T o 77

5.1. CoNntribUtioNnsceevveeiieeiiiiiimiiiiiiieiiieeirrerrrrerrrerrcrsree e 77

5.2. FUtUre reSearcheeeeeeeiiriiieeiiieiiiniiieninnenneeneeeneeeeneesneseneeens 78
5.2.1. BUildiNg VIEWETuutiiiiiiiii ettt 79
5.2.2. OPC CONNECEONuuiiiiiiiiiiiiiiiiiiiee e 79
5.2.3. Data XPOr el 80
5.2.4. OPCUA SEIVEI .cccciiiiiiiiiieeiieeirrettee e 80

5.3. Publications.........ceeieeeiieeiiieiimiiiiiiiniiiniinnere 80

Chapter 6. References.........ccccceueiiiiiiiiennsiiiininennesiinnineenn, 83

R T 11 =T - 1 N 83

TR 2 I < [88

T T o - ¥ =N 88

Chapter 7. AppendiX...ccccccciiireemniiiiiiniennsiiiininenmiesm. 92

7.1. MySQL Stored Proceduresccccccevriiiinniineennnnssisnnnneeensnsnsnns 92

7.2. Virtual datapoint example......cccccccviiiiiiiniiinenneiniiiinnneeneen. 105

7.3. MATLAB-FrameWOrKcceeeeereeermeereemmmeeemeemmeeemeemmmemmmmemmeenn 109

Chapter 1.

Introduction

Given the enormous global challenges associated with accelerating
resource depletion, energy crisis, and climate change (IPCC 2009),
multiple serious efforts are needed to curtail energy consumption, waste
of resources, and environmental pollutions. Thereby, the building sector
plays a significant role. In most countries the energy consumption due to
the building sectors represents 40% and more of the overall energy usage

(Graubner und Hiske 2003).

To achieve optimal operational regimes, however, the availability of
information on building's energy and environmental performance is
critical. Collection of such information requires, however, the presence of
appropriate sensing, metering, data-transmission, data-storage, and data-
mining capabilities. Such capabilities are almost entirely absent in the vast
majority of existing buildings (Neumann and Jacob 2008, Mahdavi et al.
2008). Even in newer — so-called intelligent — buildings, the incorporated
infrastructures for zonally differentiated sub-metering and environmental
sensing are often ineffectual: data is not monitored in a comprehensive
and consistent manner, multiple streams are not integrated, monitored
data is not strategically stored, actual operational routines seldom make
use of the potential of whatever data that is monitored and stored. In this
context, substantial research and development efforts are necessary
toward realization of highly versatile and scalable systems for concurrent
and multi-layered energy, performance, and occupancy data acquisition

and operational optimization in buildings.

Moreover, to realize a higher level of energy and resource efficiency in the
whole buildings sector, the consideration of the existing building stock is
crucial. For example, in Austria, new construction volume per annum
represents less than 1% of the existing building stock's volume (Statistik

Austria 2007). The factual energy conservation potential of new buildings

1

Introduction

is even less than what this figure suggests, as new buildings are, in
comparison to the existing ones, more energy efficient. New buildings
offer of course a field of opportunities to conceive, develop, implement,
and test new energy-efficient products and technologies. But the existing
building stock represents undoubtedly the true challenge for improving
the sustainability of the built environment. Toward this end, object-
centered hardware developments (e.g. better thermal insulation of the
building envelope, incorporation of efficient mechanical and electrical
equipment, passive and active solar energy methods and devices) are
important, but not sufficient. Specifically in the context of the existing
building stock the intelligent (energetically and resourcially optimized)

building operation is of utmost importance.

1.1. Motivation

Currently available building management systems (BMS) could be
improved in view of a number potentially important functionality. For
example, real-time data access to salient — and often dynamically
changing — building information (such as zone temperature and energy
use) could be provided via appropriate data processing and performance
modeling applications (such as spreadsheets, mathematical routines,
simulation tools). Moreover, additional data processing functionalities
could be offered, involving, for example, the calculation and display of
performance data in a structured spatial and temporal manner. These
improvements would facilitate the exploitation of the critical benefits that
could result from the integrated and concurrent analysis of multiple
building data streams (Raftery et al. 2010, O'Donnell 2009). Such benefits

include:

- Operation energy optimization through improved management of
technical building systems.
- Increased awareness in building users regarding their impact on

buildings’ energy use.

Introduction

- Early detection (and treatment) of deficiencies and malfunctions
in energy systems and devices, thus effectively supporting a
preventive maintenance regime.

- Successive building performance improvement and optimization
via the analyses of dynamically updated building energy and
performance databases.

- Long-term accumulation of empirical information on buildings'
energy and environmental performance toward improving the

design, construction, and operation of existing and new buildings.

To facilitate data utilization for all interest groups, open software
interfaces play an important role. Technical limitations (no real-time data
access, missing interfaces for batch processing, etc.) can prevent
processing applications from accessing building data in the required way.
Unstructured measurement data sets can further increase analyses effort
and reduce exploitation potential. Therefore, application independent
interfaces and appropriate data preprocessing (calculation of timely
structured data sets, linked queries of energy use for specific time
intervals and building zones under specific occupancy conditions, etc.) is
critical to maximize data usage for all interest groups (facility manager,

occupant, building owner, etc.).

It can be argued that, due to the long life cycle of buildings and the fast
evolution of building technologies, a vendor and technology independent
approach for monitoring is essential to ensure future-proof
comprehensive data collection. Furthermore, independence from the
building market developments can be increased by using open-source

technologies.

1.2.

Introduction

Research statement

The following postulates the starting point of the research:

A) Building monitoring without appropriate data preprocessing reduces

significantly the exploitation potential.

Building performance optimization based on building monitoring is a
common approach (Gokce 2010). Many use cases can be expected from
the collected data. However, possible exploitation potential is often not
sufficiently covered. One reason is that data analyses effort can rise

significantly if data is not available in the required structure.

B) Vendor and technology independent building monitoring is of central

importance for future proof domain comprehensive data collection.

Due to the long life cycle of buildings and the fast evolution of building
technologies, a vendor and technology independent monitoring approach
reduces the risks of vendor lock. Using open-source technologies further

increases independents of market development (Cassia 2007).

C) Open software interfaces are necessary to facilitate data utilization for

all interest groups.

Technical limitations (no real-time data access, missing interfaces for
batch processing, etc.) can prevent processing applications from accessing
building data in the required way. This can significantly reduce data usage

for different interest groups.

D) Runtime building monitoring is required to ensure energy-efficient

operation.

Many case studies show that building performance can be very different
then planned, if not all important parameters are taken into correct

account (Raftery et al. 2010, Mahdavi 2009). Since various parameters

4

1.3.

Introduction

(e.g. user behavior, system faults, etc.) can change over time, a

continuous evaluation is required.

E) Support of multiple fieldbus and building management system

technologies is essential for a generic building monitoring system.

Since different physical conditions often require distinct measurement
approaches, requirements for the monitoring system can vary. Therefore,
the best fitting measurement, data transfer and storage technology can
be very different. Given that no universal fieldbus and building
management systems have emerged yet, a future proof building

monitoring systems needs to support various technologies.

Structure

This dissertation is structured in terms of seven sections. Section 2
provides general information regarding the research approach and the
requirements for the proposed building monitoring system. Section 3
describes each component of the developed monitoring toolkit in detail.
Section 4 shows two real world implementations. Finally, section 5
discusses the research conclusions and future outlook. Section 6 lists
references, figures and tables while section 7 contains documentation
about various implementation details (flow diagrams, class diagrams,

etc.).

Chapter 2.
Approach

To achieve the desired building monitoring characteristics, the Monitoring
System Toolkit - MOST - is developed. Based on five components
(Connectors, Database, Data-Abstraction Java Framework, MATLAB-
Framework, Web-Visualization Framework), the toolkit facilitates
beneficial use of building data in various processing applications. It
provides powerful preprocessing algorithms (e.g., generation of
temporally structured data sets), offers interfaces for batch processing
(MySQL, OPC-UA, etc.) and includes applications for data aggregation,
display, visualization, and analysis (e.g. psychrometric and thermal

comfort chart plots, data encapsulation and export, etc.).

To evaluate real-life application scenarios, two buildings (housing a
number of offices, labs, and lecture rooms of the Vienna University of
Technology) were partly equipped with necessary monitoring
infrastructures. One of the buildings is completed 2010 and provides — to
a certain degree — a reusable building automation infrastructure. The
second building was built more than 100 years ago and provides no
reusable building automation infrastructure. As such, these buildings are
representative of a large fraction of buildings in the existing building
stocks. They represent a wide range of technical challenges that need to
be met in order to realize the postulated dynamic data acquisition and
processing architecture in the context of existing buildings. Such
challenges pertain specifically to the technology update requirements for
incorporation of high-resolution sensory and metering capabilities, device
connectivity, and cross-platform data transfer. The described monitoring
infrastructure provides a flexible base to handle these challenges and

presents data processing applications to improve building performance.

Approach

2.1. Requirement analyses

To obtain the requirements for the proposed monitoring toolkit, essential
building technologies are analyzed. Building communication networks are
usually described via the three layer model defined in ISO 2004. This
model is appropriate to describe network communication strategies, but
lacks the coverage of sensor/actor technologies. It does not deal with the
challenge of getting the information of different physical domains into an
electrical signal and their different requirements regarding fieldbus
networks. Since the proposed system focuses on the measurement and
processing of different physical parameters, an additional Layer — Physical
level — was added as shown in Figure 1. This Layer covers the technologies

required to converts the desired data stream (e.g. temperature, relative

humidity, etc.) into the digital domain.

(%) - o
- .
= s
— e 9 Access
@ control
Automation
level DDC DDC DDC
Zone 1 Zone 2 Zone 3
Fieldbus
level
7N 00 o
—(— -~
Physical AT 00 l O < 7;)\, co2
level

Figure 1. Four layer model of a generic monitoring system

2.1.1. Physical level

The physical level addresses pertinent sensory devices and technologies

that are required toward an efficient, dynamic, and scalable acquisition of

Approach

the required data. Table 1 provides an overview of relevant data streams

together with their required sensor technologies.

Table 1. Data streams and required sensor technologies

Data Stream Sensor Technology
i Energy use (Sub-)Meters for electricity, gas, oil, water, etc.
ii | Indoor environment Temperature, humidity, Co2, VOC,

illuminance, etc.

iii | Outdoor environment Temperature, wind, rain, solar radiation, etc.

iv | Occupants’ presence, | Motion/presence detectors, number of
actions, and feedback people, location sensing, etc.

v | Environmental control | Window and door states, blinds, etc.
systems states

Different sensor technologies do often require different fieldbus
characteristics. For example, a presence-detector to turn on the light
needs to send its information in a fraction of seconds while a CO2 sensor
for heating, ventilation, and air-conditioning (HVAC) can work with longer

intervals (i.e., minutes).

2.1.2. Fieldbus level

In a monitoring system the function of the fieldbus level is to transfer the
measured data streams to the automation layer, which then acts as a
backbone. Common service parameters for networks are throughput,
reliability, security, scope, real-time, and power use. These characteristics
can be used to describe a fieldbus, but it is not always possible to directly
compare them based on these properties. For example, KNX has a much
smaller throughput than LonTalk on the wire. But, depending on the
system design and the grouping of devices in different KNX lines, the
overall network load can be less than in a comparable LonTalk system. To
get a starting point for technology decisions, current wired and wireless
fieldbuses and their field of applications are listed in Table 2 and Table 3

(Daniels 2003, KNX 2004, Kastner et al. 2005, LON 2010).

Approach

Different monitoring strategies can be used to get the measured data
from the sensor to the management level. The sensor can send
measurements event triggered when some predefined conditions occur,
or periodically with a fixed interval, or the Direct Digital Controller (DDC)
can poll the stations. Depending on the data stream, different strategies
fit best. For example, data from a presence detector is most accurate
when an event-based strategy is used while an electrical meter is usually
polled with a periodic interval to obtain a temporal view. An event-based

strategy can also be used to reduce power consumption of battery or self-

powered devices.

Table 2. Wireless fieldbus technologies and their field of applications

Fieldbus

Field of applications

ZigBee

Supports the dynamic creation of meshed networks which
increases reliability and scope. ZigBee is based on the IEEE
802.15.4 standard and can work in the 2,4 GHz and 868 MHz
ISM band. Most devices use the 2,4 GHz band which is often
crowded when, for example, wireless local area networks
(WLAN) are used too. ZigBee is used as a general purpose
fieldbus.

EnOcean

Is optimized for low power consumption, which therefore
allows the construction of self-powered sensor/actor devices.
EnOcean uses the 868 MHz ISM band with amplitude
modulation optimized for short packet transmission time and
low power consumption. This increases throughput and
reliability. EnOcean is mainly used for self-powered sensors
and simple actuators.

KNX/RF

Is the wireless version of KNX. Only a few devices are
available on the market at the time.

Z-Wave

Is designed for small systems in the field of home automation.

M-Bus/RF

Is the wireless version of M-Bus. Only a few devices are
available on the market at the time.

IEEE
802.15.4

Defines only the lowest levels of a wireless communication.
IEEE 802.15.4 is reused in some other standards and
proprietary systems.

Approach

Table 3. Wired fieldbus technologies and their field of applications

Fieldbus Field of applications

KNX/TP General-purpose fieldbus. Used for lights, blinds and HVAC
systems. KNX is the successor of the European Installation Bus
(EIB) and is therefore mostly used in the European Union.

LonTalk General-purpose fieldbus. Used for lights, blinds and HVAC
systems.

M-Bus Used for metering devices (electrical meter, heat meter, flow
meter, etc.).

DALI Used for controlling lights in isolated applications.

2.1.3. Automation level

The target of the automation layer in a monitoring system is to transfer all
data streams to a central control station. It therefore acts as a backbone,

which needs to handle higher data rates then the fieldbus networks.

Common network technologies in the automation level are Ethernet/IP,
BACnet, KNX and LonTalk. Ethernet/IP provides high bandwidth, cheap
mass-components and flexible integration possibilities and is therefore
the most common technology for backbone networks. Underlining
fieldbus packets can be encapsulated in Ethernet or IP frames (e.g.
BACnet/Ethernet, BACnet/IP, KNX/IP, etc.) or the measured data can be
directly transferred with pure Ethernet/IP communication (OPC Unified
Architecture, proprietary Ethernet/IP protocol, etc.). Because Ethernet/IP
provides only limited support for real-time data transfer and bandwidth
allocation, a combination with an unpredictable office network can be

problematic.

Pure BACnet, KNX or LonTalk provides only limited bandwidth, which is

usually not sufficient for monitoring systems in the automation level.
2.1.4. Management level

The management layer handles the historical data storage, the
visualization and the further processing of the data streams. Common

technologies for historical storage and abstract data representation are

10

2.2,

Approach

OPC (Data Access - DA, Historical Data Access - HDA, Unified Architecture -

UA), BACnet/Web-Services (WS), oBIX and custom database designs.

OPC DA is highly used to provide a common software interface to
different automation and fieldbus networks in the management layer. So
called OPC DA servers abstract the sensors and actors as datapoints. The
data of the OPC servers can then be accessed with OPC clients, which can
be a user interface or any other processing application. OPC DA server
provide only live data and run only on windows operating systems due to
dependencies to the Distributed Component Object Model (DCOM 2012).
To provide historical data access the OPC HDA standard or a custom

database are popular solutions (lwanitz and Lange 2002, OPC 2012).

To overcome the restriction of running OPC DA and OPC HDA server on
windows only and to integrate all OPC sub-standards (DA, HDA, etc.) to a
uniform technology, the OPC UA standard was created. It provides high
potential, but is not fully supported by common products yet (Mahnke et
al. 2009).

The standards BACnet/WS (ASHRAE 2004) and oBIX (OASIS 2006) provide
comparable functionality as the OPC standards, but are only rarely

supported by available products at the time.

Use cases

Use cases are investigated to obtain desired functionality for a general
building monitoring system. Different interest groups and stakeholders
presuppose diverse preferences and attitudes for building monitoring. To
gain data regarding their attitudes and preferences, a user survey with
134 participants (occupants, guests, system developers, building
operators, designers and facility managers) was conducted. The use cases
listed in Table 4 are defined based on the results of the questionnaires

(Chien et al. 2011).

11

Approach

Table 4. Exemplary use cases of the proposed visualization framework

Use case category

Use case examples

Visualize real time
and historical data

Show all temperature values in the zone X
Show the electrical energy consumption in the
zone X from 01/2012 to 04/2012

Show all zones, which have a temperature
above 24 degrees

Show zones of dissatisfied users, the type and
value of the reason (the reason is reported by
the user)

Show the top 10 energy consumer zones
(energy by square meter) of non occupied
zones

Show prediction of
future energy
needs/costs

What are the energy needs/costs for the next
few days (based on the weather forecast, etc.)
On which days are which zones usually not
occupied (e.g. by analyzing historical data.
Most users are on holiday in calendar week x
or on days x and y)

Give suggestions of
what actions could
optimize building
performance

Turn off the light and reduce the temperature
in zones X

Suggest window and door states (to reduce
overheating - natural cooling)

Suggest window and door states for the best
cross-ventilation with current or predicted
outdoor weather conditions

Suggest working times and days based on
predicted work area conditions

Suggest work place for mobile workers based
on their requirements and the building
performance

Maintanance/Fault
detection

List defect sensors and actors

Show maintenance work needed right now
Show predicted maintenance work (e.g. change
light x at y based on current usage pattern)
Early detection (and treatment) of deficiencies
and malfunctions in energy systems and
devices (by analyzing collected historical data
from the building)

12

Chapter 3.
Monitoring System Toolkit

Based on the investigated requirements and use cases for building
monitoring, the Monitoring Systems Toolkit — MOST — was developed. It
focuses on vendor and technology independent building monitoring, data
preprocessing, and visualization. Powerful data preprocessing algorithms
and different software interfaces allow various applications to process
desired building data streams. MOST also includes applications for data
aggregation, display, visualization and analyses to simplify beneficial use

of building data.

All software components of the proposed toolkit are shown in Figure 2.
The toolkit provides Connectors to collect data from diverse building
systems, a Database for historical data storage and data preprocessing, a
Data-Abstraction Framework which serves different software interfaces, a
Webinterface for simple data access and visualization, and a MATLAB

Framework for complex data processing.

Data-Abstraction Framework
(OPC UA, GWT-RPC, virtual datapoints, etc.)

Database
(MySQL)

2
D
k=

Figure 2. Software components of the Monitoring System Toolkit - MOST

| 13

3.1.

3.1.1.

Monitoring System Toolkit

All components can be used independently and are licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License (License

2012).

Connector

To support vendor independent communication with common building
management systems and building automation technologies, diverse

connectors were developed.

Connector framework

To simplify connector development, the following framework was
implemented using the programming language Java. It abstracts each
desired measurement point as a datapoint (stored in the MOST database)
and each device driver (which reads the measurements from the
respective sensor) as a connector object. A cutout of the class diagram is
shown in Figure 3. The proposed connector software can be executed on
any computer (or embedded system), which supports Java and provides
access to the respective building sensor network and the desired

monitoring server.

The startup method implemented in the class ConnectorController
connects to the MOST database, loads required data source information
and instantiates appropriate Connector objects. Each Connector object
handles the communication between one sensor/actor and an associated

datapoint of the MOST toolkit. It holds the following information:

- dpName — Defines the associated datapoint

- connectionType — Defines the type of connection which is
supported by this connector (e.g. jdbc, opc-da, etc.)

- connectionVariables — Contains variables which are required for
the respective connector. Each connector can store multiple

variables separated with the “;” character within this argument.

The syntax is defined as <variable name> <space> <value> <;>. For

14

Monitoring System Toolkit

example, to define the timezone of a data source and a desired
polling interval, the variables timezone and pollinterval can be set
using the following string “timezone Europe/Vienna; pollinterval
3600;”. The respective connector can use the method
getVariable(String) to read the value of defined variables.
writeable — This flag tells if this connector is writeable. If the flag is
set, the method writeData(value) is called for each value change
of the associated datapoint. Write event propagation is
implemented using the observer design pattern.

vendor/model — The vendor and model parameter can be used to

define device specific connector implementations.

(®ConnectorController
bpi.most.connector

ecConnectorController[)

@’ main(String[)):void

®PoliService

bpi.most.connector

4 defaultPollTimer: Timer
o pollList: List<PollElement>
o pollinterval: int

o start():void
@ stop():void

o setPollinterval(int):void

@ getPollinterval():int

& PollService()
esgetlnstance():PolIService
esgetlnslance(im):PoIIService

@ registerConnector(Connector,int):b...

®ConnectorDTO

bpi.most.shared

% serialVersionUID: long

o connectionNumber: int

o dpName: String

o deviceName: String

o connectionType: String

o connectionVariables: String
o writeable: boolean

o vendor: String

o model: String

& ConnectorFactory

bpi.most.connector

@ ConnectorFactory()
9“getConnector{ConnectorDTO):Connector

Y/

Gconnector

bpi.most.connector

FTIMEZONE: String
FPOLL_INTERVAL: String

o dpService: DatapointService
o dpName: String

o deviceName: String

o connectionType: String

o connectionVariables: String
o writeable: boolean

a vendor: String

o model: String

< valueHistory: List<DpDataDTO>

@ Connector(ConnectorDTO)
<fwriteData(DpDataDTO):boolean
d‘getSourceDara():DpDaraDTO
&'getSourceData(Date):DpDatasetDTO

@ getSourceData(Date,Date):DpDatasetDTO
@ processEvent():Date

@ processEvent(DpDataDTO).void

@ processTimeframe(Date):Date

@ processTimeframe(Date Date):void
o AAdANAtANANAtANTMNVinG

Figure 3. Class diagram of the connector framework

15

Monitoring System Toolkit

A datapoint can be connected to one or more devices (sensors/actors).
Based on the requested data source information (connection type,
connection variables, writeable flag, vendor and model - ConnectorDTO),
appropriate Connector objects are instantiated. Different devices and
communication technologies need different implementations. To enable
the user to add support for additional devices during the building lifecycle,
the Java Service Loader is used. The Java Service Loader searches for all
classes, that implement the abstract class ConnectorFactory, instantiates
it and calls the method getConnector(ConnectorDTO
dataSourceMetadata). Each ConnectorFactory implementation needs to
check if the requested data source is supported. In this case, an
appropriate Connector instance must be returned. This strategy enables
the toolkit to add support for additional devices without recompiling the
overall project (plugin concept). Generic connector implementations for
diverse building related communication technologies (JDBC, OPC-DA,
BACnet/IP, KNXnet/IP, etc.) are able to support standard conform devices.
To add support for new or proprietary technologies/devices, the abstract

classes ConnectorFactory and Connector must be implemented.

To register a new connector to the Java Service Loader, the fully qualified
name of a class implementing the ConnectorFactory must be added to the
file META-INF/services/bpi.most.connector.ConnectorFactory.
Furthermore, the abstract class Connector needs to be extended with the
actual driver implementation. Afterwards, a Java Archive (JAR) file must

be generated and copied within the Java Classpath.

Abstract connector class

The abstract class Connector provides diverse generic connector
functionality and defines methods that need to be implemented by
intended connectors. For example, support for the connector variables
timezone and pollinterval is implemented within this class. The variable
timezone can be used to adapt the time offset of the sensor
measurements (e.g. GMT+1) to the MOST database (UTC). For example,

16

Monitoring System Toolkit

by setting the variable to the timezone of Austria (“timezone
Europe/Vienna;”), each measurement is reduced for one hour during
wintertime and two hours during the summertime period. The variable
pollinterval can be used if the respective device should to be polled in a
periodic manner (e.g. “pollinterval 3600;”). Desired intervals must be

defined in seconds.
To add a new connector, the following methods must be implemented:

- getSourceData() — Returns the latest measurement.
- getSourceData(starttime) — Returns all measurements after the
requested starttime. If historical reads are not supported, only the

latest measurement should be returned.

If the desired connector supports write access (actor), the method
writeData(value) must be implemented too. The actual measurement
processing is implemented within the methods processEvent() and
processTimeframe(starttime). If the respective connector reads its
measurements event triggered, the method processEvent() or
processEvent(measurement) must be called for each event. If polling is
enabled (by defining the variable pollinterval), the method
processTimeframe(starttime) is called by the PollService within each

interval.

Storing measurements

The overall communication from the connectors to the MOST toolkit is
transacted within the class ConnectorService. Currently, all measurements
are stored directly in the MOST database using the Java DataSource
interface. This forces the toolkit to periodically poll measurements from
the database for processing applications requesting real-time data access.
To avoid this communication overhead and improve real-time event
propagation, the class ConnectorService is intended to be updated. By
using web services to store measurements, events can be triggered within

the data-abstraction framework for each new value (see chapter 3.3). This

17

Monitoring System Toolkit

enables the toolkit to directly notify processing applications about new

measurements, without polling the database.

3.1.2. Java Database Connectivity - Connector

This connector is based on the proposed framework and enables
communication with systems and read/write file formats, which are
supported by Java Database Connectivity (JDBC) compatible drivers. It
therefore supports data access to various databases (Oracle, Microsoft
SQL, ODBC compliant databases, etc.) and popular file formats such as
CSV, Excel, etc. based on the Structured Query Language (SQL). Due to
technical limitations (the JDBC library is not notified when new data is
added to the database/file), this connector supports data transfer by
polling in a periodical manner only (i.e., every
minute/hour/day/week/etc.). A class diagram of the actual

implementation is shown in Figure 4.

<<Java Class>>
<<Java Class>> (®ConnectorJdbc
@Connec(orFac(oN bpi.most.connector.impl
bpi.most.connector <l .FSQL_DATA_SOURCEI String
C
(eﬁconnectorFactory() ' @°ConnectorJdbc()
getConnector(ConnectorDTO).Connector @ getConnector(ConnectorDTO):Connector

<<Java Class>>
G Connector
bpi.most.connector
FTIMEZONE: String
FPOLL_INTERVAL: String
o dpService: DatapointService
o dpName: String
o deviceName: String
o connectionType: String
o connectionVariables: String
o writeable: boolean

<<Java Class>>
(® ConnectorJdbcimpl
bpi.most.connector.impl

4 jdbcConnFactory: ConnectorJdbcConnectio...
FsQL_TABLE_NAME: String
FsaL_TIMESTAMP_COLUMN: String
<FSQL_DATAPOINT_COLUMN: String

FSQL_DATAPOINT_NAME: String

FSQL_VALUE_COLUMN: String

C
o vendor: String | @ ConnectorJdbcimpl(ConnectorDTO,Connect...
o model: String > getSqiTableName():String
> valueHistory: List<DpDataDTO> < getSqlTimestampColumn():String

< getSqglDatapointColumn():String

< getSqglDatapointName():String

< getSqglValueColumn():String

> writeData(DpDataDTO):boolean

@ getSourceData():DpDataDTO

@ getSourceData(Date):DpDatasetDTO

@ getSourceData(Date,Date):DpDatasetDTO

> getSourceDatasetFromQuery(String):DpDat...

e°Connector(ConnectorDTO)
FwriteData(DpDataDTO):boolean
&'getSourceData():DpDataDTO
&'getSourceData(Date):DpDatasetDTO

@ getSourceData(Date,Date):DpDatasetDTO
@ processEvent():Date

@ processEvent(DpDataDTO):void

@ processTimeframe(Date):Date

@ processTimeframe(Date,Date).void
= AddNataiNANAtaNTNVIint

Figure 4. Class diagram of the JDBC connector implementation

18

Monitoring System Toolkit

The proposed JDBC connector is used for all data sources that define the
connection type “jdbc” and provide no vendor and model information.
The class ConnectorJdbc implements the ConnectorFactory and checks the
requested connection type, vendor and model. The connector variable
sq/DataSource is used to find the respective JDBC compatible source
(database or file). If the desired data source is available, the actual

connector implementation ConnectorJdbcimpl is instantiated.

The class ConnectorJdbcimpl extends the abstract class Connector. It
automatically detects the table structure of the data source based on the
information described in Table 5. By probing the defined column names,
appropriate SQL statements are generated. This enables plug and play

support for most common data source structures shown in Table 6 (a) and

(b).

Table 5. Variables required for the JDBC connector

Datasource definition Description

sqlDataSource Name of the DataSource connection (database
connection) registered to the respective Java Virtual
Machine.

sqlTableName Name of the table including the measurements

sqlTimestampColumn Columnname of timestamp

sqlDatapointColumn Columnname of the datapoint/sensor

sqlDatapointName ID of the datapoint (required only if all datapoints
are in the same column)

sqlValueColumn Name of the column containing the value (required
only if all datapoints are in the same column)

19

Monitoring System Toolkit

Table 6. Supported data source structure of the JDBC Connector

a) Multiple columns

Timestamp Sensor1l | Sensor2 | etc.
2012-01-01-15:00 23,5 14,1
2012-01-01-15:10 22,3 14,4

b) Multiple rows

Timestamp Sensor (ID) | Value
2012-01-01-15:00 Sensor 1 23,5
2012-01-01-15:00 Sensor 2 14,1
2012-01-01-15:10 Sensor 1 22,3
2012-01-01-15:10 Sensor 2 14,4

3.1.3. OPC Data Access - Connector

The Open Process Control (OPC) Data Access (DA) standard (OPC 2012)
enables communication to various building automation networks such as
BACnet, KNX, EnOcean, M-Bus, ZigBee, as well as to many building
management systems (BMS). Due to implementation complexity, the OPC
connector is implemented with the programming language Gamma, using
the OPC Datahub (OPC Datahub 2012) environment. All systems providing
a OPC DA Server software can be accessed by this connector (see Figure
5). Since all OPC DA Servers provide the same Application programmable
Interface (API), uniform communication to different building networks is
possible. OPC DA supports registration for events (value changed, etc.).

This allows to process building data streams in real-time.

OPC DA - Client l

Software

| Ethernet/IP

Figure 5. OPC Client / Server infrastructure

20

Monitoring System Toolkit

The class diagram of the current implementation is shown in Figure 6.
Each project inherits from the ConnectorEngine. On startup, a
DatapointOPC object is instantiated for each datapoint with an OPC data
source defined in the MOST database. Adaption of measurements within
the Connector (e.g. to convert the measurement into a desired format)

can be achieved by overwriting the transformValue() method.

Because of the limited adaption options and vendor lock risks caused by
using the proprietary environment OPC Datahub / Gamma scripting, a
technology independent alternative is envisioned. Within the Google
Summer of Code 2012 (GSOC 2012), the development of a Java based OPC
Connector, using the OPC DA library JEasyOPC 2012 and the proposed

connector framework, is intended.

Datapoint
datapoint_name
ConnectorEngine -deadband
Llog_file_name -sample_interval

—— - -sample_interval_min
+periodic(in Datapoints) 0.* |lmath_operations
+addDataRecord(in Datapoint) Ltype -

+processEvent(in Datapoint)

-current_value

+ogToFile(in string) 1 Hast_value
+Connecl() Hast_timestamp
+constructor() -

+destructor()

+readValue()
+getAttr(in string)
+getTimestamp()

+checkQuality()
i +transformValue(in value)
Project A Project B +valueOQutOfDeadband(in value)
-projectname -projectname +valueOlderThen(in time)
-DSN -DSN
-user Fuser ZP
-password -password DatapointOPC
L I tlog_fil
log_file_name log_file_name 'OPC_DA value_pah

+readValue()
+getTrigger()
+getTimestamp()
+checkQuality()

Figure 6. Class diagram of the OPC DA connector

21

Monitoring System Toolkit

3.1.4. Remote data collection

Since all communication of the presented connectors to existing building
systems is based on Ethernet/IP, various installation setups are possible.
For example, secure remote access to different building systems can be
realized by using a Virtual Private Network (VPN). Figure 7 shows a
configuration setup where the monitoring server collects data from

various building systems (located anywhere in the world) through a VPN.

Monitoring
Server

VPN-Client

Automation
level

DDC DDC
Zone 1 Zone 2 Zone 3

Figure 7. Using a Virtual Private Network for monitoring over building limits

By using an adaptive routing configuration on the VPN-GWs (e.g. OpenWrt
2012), infrastructure independent plug and play installation is possible.
For example, the VPN-GWs can scan for possible Internet connections
(Ethernet/IP, WLAN, UMTS, etc.) and automatically connect to the best
fitting one. Based on the VPN a secure communication to the monitoring
server is guaranteed. By using watchdog scripts on the VPN-GWs,
automatic reconnection in case of communication faults can reduce data

loss and maintenance effort.

I 22

3.2

Monitoring System Toolkit

Database

The MOST database is designed to historically store and process various
different building data streams. Storage rules minimize database load
while a number of data preprocessing functions enable effective data
analysis. Various performance optimizations minimize required computer
resources. Performance benchmarks are conducted to show the practical

limits.

Since large building complexes can include many thousand measurement
points (temperature, occupancy, energy use, etc.), a scalable database
technology is required for historical data storage. The data transfer rate of
most building data sources is comparable to other domains (web
applications, ticket systems, etc.). Data requests can cover a few hours to
multiple years and are often limited to particular datapoints or zones
under specific conditions. Appropriate database technologies can be
categorized in relational databases (Kemper and Eickler 2009) and No
Structured Query Language (NoSQL) solutions. Relational databases
structure data within an Entity Relationship (ER) model and provide data
access with the Structure Query Language (SQL). NoSQL technologies use
no uniform storage structure, provide very diverse data access interfaces,
but can sometimes be optimized to accommodate specific use cases. Due
to available wide support in different software environments, the
adoptability, and the documented performance characteristics, the open-

source relational database MySQL was chosen.

23

Monitoring System Toolkit

3.2.1. Database-design

The developed ER model shown in Figure 8 focuses on a generic
representation to support various building data sources. All measurement

points are expressed in the datapoint table and hold information about

- the location of the measurement (by referencing a zone)
- if it is a virtual or physical sensor/actor (by referencing a data
source)

- the unit, accuracy, value range, deadband, sample interval, etc.

"] zone_has zone ¥] data v
zone_high INT datapoint_name VARCHAR(100)
zone_low INT timestamp DATETIME

"] datapoint v
v value DOUBLE
PRIMARY

‘ datapoint_name VARCHAR(100) 0.* =

accuracy NUMERIC 1 fk_data_datapoint1
index_data_value

fk_zone_has_zone_zone2
custom_attr VARCHAR(500)

0.* 0.7 unit VARCHAR(45) index_data_timestamp
0-1] 0.1 min NUMERIC PRIMARY
] zone v max NUMERIC o
type VARCHAR(45) 97
idzone INT " device v

math_operations VARCHAR(45)

name VARCHAR(45)
description VARCHAR(...
country VARCHAR(45)
state VARCHAR(45)
county VARCHAR(45)
city VARCHAR(45) —
building VARCHAR(45)
floor VARCHAR(45)
room VARCHAR(45)

deadband NUMERIC(10,2)
sample_interval NUMERIC

sample_interval_min NUMERIC

watchdog NUMERIC
zone_idzone INT
device_name VARCHAR(100)

PRIMARY
fk_datapoint_zone1

v

device_name VARCHAR(100)

. model VARCHAR(100)
_ vendor VARCHAR(100)
| v
: | PRIMARY |
| -
1 o ___ s
"] data_source v

] warning v
wid INT
erorCode TINYINT

@ datapoint_name VARCHAR(100)
description VARCHAR(200)
toDo VARCHAR(200)
fromTime DATETIME
toTime DATETIME
priority TINYINT

reR DOUSLE fk_datapoint_device1 datapoint_name VARCHAR(100) sour:o VARGHAR(100}
volume DOUBLE 0.1 =
v OPG_DA value_path VARCHAR(500)
PRIMARY ODBC_value_path VARCHAR(500) ::R:::::? !
1
e
"] role_zone_permissions ¥] role v] user_role ¥] user v
role_id INT id INT uid INT id INT
idzone INT . name VARCHAR(100) . rid INT . name VARCHAR(100)
read BOOLEAN L. 1 { VARCHAR(1... I L 0. v 0. 1 » password BINARY(60)
write BOOLEAN v uid A/
admin BOOLEAN PRIMARY rid PRIMARY
> name_UNIQUE ‘ PRIMARY name_UNIQUE
Figure 8. Entity-relationship model of the proposed database
Multiple datapoints can be aggregated into a physical device.

Measurements are stored within the data table by adding a new row with
datapoint name, timestamp, and value. The Coordinated Universal Time
(UTC) is used as timestamp to prevent overlapping data sets during the

switch of summertime and wintertime. The datapoint_name field is the

24

Monitoring System Toolkit

identifier of the sensor/actor and is unique for each datapoint. The value
field contains the measured data represented in units defined in the
datapoint table. Any values compatible to the double format are
supported. Boolean values are expressed as 1 (true) and O (false). The
source of each datapoint is defined in the data_source table. Each
datapoint can generate a message in the warning table in case of a
malfunction. The zone has zone table enables zones to be grouped
independent of any hierarchy. The storage engine InnoDB is used in the
default configuration. InnoDB provides row-locking, which enables
multiple queries to insert data without locking the whole table. These
feature increase multi-user concurrency and performance. Using the
proposed database design, sensors/actuators can be easily added and

removed during the building's lifecycle.

3.2.2. Data preprocessing

Various performance optimization techniques are used to minimize the
required computer resources and to improve database performance. This
includes Indexes to cache measurements in the memory and MySQL

Stored Procedures to implement various data processing algorithms.

Indexes

To improve the performance of reading stored measurements, the data
table is highly indexed. It uses a multiple-column hash-index based on the
datapoint name, timestamp, and value to presort measurements. The
index is kept in memory and enables the database to process datapoint
and timeframe specific requests (get values of datapoint X from time A to
time B, etc.) without accessing the hard disk. By including the value
column in the index, the system can return stored measurements without
accessing the hard disk at all (MySQL 2012). To reduce memory usage,
varying index approaches can be applied to different MySQL partitions as
explained further down. By using an appropriate index design, a

significant data access performance improvement can be reached.

25

Monitoring System Toolkit

Stored procedures

All access to the database is done with ,getters” and ,setters”
implemented in MySQL stored procedures. This object-oriented way of
database access allows handling performance and permission issues in a
more fine-grained way than with direct access using SQL. It also enables a
centralized implementation of data preprocessing algorithms. This can
optimize data-query performance and prevent redundant code in
different client applications. Table 7 and Table 8 list some of the

developed stored procedures.

Storing measurements

To store measurements, the stored procedure addData(dpName,
timestamp, value) is provided. Since measurements of diverse building
data streams can occur event based or periodically, a generic data storage
strategy was developed (see Figure 9). When a value of a measured
parameter is added, the system checks if the value is out of a defined
deadband and a minimal sample interval (sample_interval_min). The
measurement is only stored if both criteria are fulfilled. Thus, flooding of
the database with unnecessary data is avoided. If a sample_interval is
defined for a specific datapoint, a value is saved at each period. All time
frame definitions are done in seconds. The deadband is defined in the unit
of the respective datapoint. To ignore the proposed processing rules the
addDataForced(dpName, timestamp, value) can be used. This data
storage strategy maximizes temporal accuracy while minimizing the
database load. Due to the minimized database size, measurements can be

processed in an efficient manner.

26

Monitoring System Toolkit

A
value
sample_interval_min

>He

deadband /"\
sample_interval

time

Figure 9. Data storage rules to minimize database load

Reading measurements

To simplify data analysis, powerful data preprocessing algorithm for data
requests were developed. For example, window state information can be
stored in a high-resolution fashion by saving timestamps marking the
window opening and closing actions. Subsequent data processing
applications may want to obtain this information in a periodic manner
(e.g., hourly). Therefore, the preprocessing algorithm must deliver, for
each discrete interval, either the value "open", or "close". This is achieved
via appropriate reasoning depending on the use case of the processing
application. For example, window may be declared open or close if a
corresponding action took place in the respective interval. Alternatively,
window may be declared open if it was open during most of the
respective interval. To account for this and other data preprocessing
challenges, a number of stored procedures (e.g. getValuesPeriodicXXX)
are implemented. Figure 10 to Figure 12 show examples of values
calculated with the stored procedure getValuesPeriodicBinary(dp, start,
end, period, mode) using different modes. Crosses mark stored
measurements while circles show calculated return values. Figure 13 and
Figure 14 show the modes provided by the stored procedure

getValuesPeriodicAnalog(dp, start, end, period, mode).

27

Monitoring System Toolkit

Watchdog

To probe the database for datapoints, which do not deliver measurements
in the expected timeframe, a watchdog service was developed. Based on
the information defined in the column watchdog of the datapoint table,
the stored procedure runWatchdog() examines missing measurements. If
a datapoint does not store any measurements for the defined watchdog
interval, a corresponding message in the warning table is generated. The
runWatchdog() function is called every 15 minutes in the default

configuration.

value

0 P I F—+—@ O—m

T 2T 3T 4T 5T 6T T time

Figure 10. getValuesPeriodicBinary() - mode 1: majority decision / sample & hold

value

0 ox—@ % H*—@ —»

T 2T 3T 4T 5T 6T T time

Figure 11. getValuesPeriodicBinary() — mode 2: forced 0 / default 1

28

Monitoring System Toolkit

value

@ —%—@ o—>

T time

Figure 12. getValuesPeriodicBinary() — mode 2: forced 1 / default 0

value

Interpolated values

4T 5T 6T T time

Figure 13. getValuesPeriodicAnalog() — mode 1: time-weighted average / linear

interpolation
value
L S — @ @
‘@
| | | | | »
I T T T T Ll
3T a7 5T 6T T time

Figure 14. getValuesPeriodicAnalog() — mode 2: time-weighted average / sample
& hold

29

Monitoring System Toolkit

Table 7. Data-preprocessing with stored procedures

Name

Description

getValues(dp, start, end)

Returns stored measurements of the requested
datapoint (dp) between the start- and endtime. If the
argument starttime and endtime are null the last entry
is returned. If only the argument endtime is null the
first measurement before starttime is returned. If only
the argument starttime is null the first measurement
after the endtime is returned.

getValuesWhereDpEqual(dp1,
start, end, dp2, value)

Returns all measurements of datapoint 1 (dp1) where
the nearest value in the past of datapoint 2 (dp2) is
equal to value. Additional functions with lower, bigger
and between conditions are available.

getValuesPeriodic(dp,
end, period)

start,

This procedure automatically selects and calls the
required function (analog or digital) for the generation
of values, depending on the type of the datapoint (dp).
Period specifies the time interval of the returned
values. A quality index gives feedback about how
many real measurements are available for the
calculated values at each interval.

getValuesPeriodicAnalog(dp,
start, end, period, mode)

Returns periodic values for any type of analog
measurement (temperature, carbon dioxide, relative
humidity, etc.). In the default mode (1), a linear
interpolation and arithmetic average is used for
calculating periodic values. If the requested period
contains more then one measurement, the arithmetic
average is calculated. If no measurement is available
for the requested period, a linear interpolation to the
next measurement is performed. Mode 2 uses sample
& hold instead of linear interpolation.

getValuesPeriodicBinary(dp,
start, end, period, mode)

Returns periodic values for any type of digital
measurement (window/door state, occupancy, etc.). It
supports three modes:

- majority / sample & hold,

- dominant "0" / default "1",

-dominant "1" / default "0".

The majority/sample & hold mode returns the
majority if more then one measurement is available in
the requested period. If no measurement is available,
the last value of the previous period is returned. The
mode dominating "0"/default "1" returns "0", if one or
more measurements in the requested period are "0".
If no measurement is available, the default value "1" is
returned. The mode dominating "1"/default "0" works
the same way, but swaps "0" and “1”.

getValuesPeriodicWhereDpEqu
al(dp1, start, end, period, dp2,
value, modeDp1, modeDp2)

Returns all measurements of datapoint 1 (dp1) where
the datapoint 2 (dp2) has the equal value. ModeDp1
and modeDp2 is used for generating the respective
periodic values. Additional functions with lower,
bigger and between conditions are available.

30

Monitoring System Toolkit

Table 8. Datapoint, device, and zone management

Name

Description

runWatchdog()

Probes all datapoints if measurements are delivered in
the expected timeframe. A warning is created in the
warning table if a fault is detected.

addDatapoint(dpName, type,
unit, accuracy, min, max,
deadband, sample_interval,
sample_interval_min,
watchdog, math_operations,
custom_attr)

Adds a datapoint with the respective characteristics to
the datapoint table. The dpName is needs to be
unique within the database. Type is a freely choosable
string. If appropriate one of the following should be
selected: temperature, humidity, air-quality (CO2,
VOC), state (contact sensors, etc.), meter (heat meter,
electricity meter, etc.), power, occupancy, brightness,
other. The arguments math_operation and
custom_attr are not implemented yet and can be set
null.

addDevice(deviceName,
vendor, model)

Adds a device with its respective vendor and model
description, DeviceName needs to be unique within
the database.

addZone(name, description,
coutry, state, county, city,
buiding, floor, room, area,
volume);

Adds a zone with its respective description. Not used
parameters can be set null.

addDatapointToDevice(dp,
deviceName);

Adds the datapoint dp to a device (deviceName).

addDatapointToZone(dp, zone);

Adds the datapoint dp to a zone. The ID of the zone
needs to be passed.

addZoneToZone(zonel, zone2);

Adds an existing zone (zonel) to another existing zone
(zone2). The IDs of the zones needs to be passed.

deleteDatapoint(dp)

Deletes the datapoint dp from the table datapoint, all
associated measurements and the definition of the
data source.

emptyDatapoint(dp)

Deletes all measurements of the datapoint dp, but
keeps the datapoint and data source table untouched.

emtpyDatapointTimeslot(dp,st
art,end)

Deletes all measurements of the datapoint dp
between start- and endtime and but keeps the
datapoint and data source table untouched.

31

Monitoring System Toolkit

3.2.3. Setup options

The proposed database design supports various installation setups. The
following section describes a few possibilities to improve the database

performance.

MySQL configuration parameters

Since the size of the data table can reach several GBytes in case of large
implementations, the MySQL index pool size should be increased to
minimize hard disk operations. For the default storage engine InnoDB the
innodb_buffer_pool size parameter in the my.cnf file should be set
depending on the database size. Given a dedicated database machine, up
to 80% of the available memory can be used for the index pool. For the
storage engine MyISAM the key buffer_size parameter must be used. The
value of this variable indicates the amount of memory requested.
Internally, the server allocates as much memory as possible up to this

amount, but the actual allocation might be less.

MySQL partitions

Using partitions enables splitting of measurements in different virtual
tables as shown in Figure 15. Values are separated depending on their
timestamps. From the user point of view, only the data table is visible.
This strategy improves database performance by using diverse index
approaches on different partitions. Recent partitions can be highly
indexed while older partitions use fewer indexes to reduce memory
usage. The overall reduced memory usage improves performance for

highly loaded databases.

32

Monitoring System Toolkit

Table: data

Name Timestamp Value

temp1 2012-02-15 23
12:13:50

-
thul 2012-02-15 34 Range: P *'T
15:14:55 ™ February "Ef"eA“
il
temp2 2012-03-05 22
12:14:57

R, o
occl 20120317 0 Range: ——
16:13:50 ™ March -FLFlle B?
thu3 2012-0322 32 -

19:13:23
templ 2012-04-01 22 Range: |. b
03:23:30 Ly Nang ->EFile c]
April)
rhu1 2012-04-07 28 — EE——
15:12:20

Figure 15. Splitting measurements in different partitions depending on their
timestamps

MysSaQl replication

The default database configuration performs well for most common
queries. Specific use cases (large batch processing, long-term data
archiving, etc.) can be optimized by using MySQL replication with adapted
partition and index layout as shown in Figure 16. This setup is only

required for large installations with diverse usage patterns.

ke InnoDB:

N . Partitions optimized

= for recent data
Master

Live data access

~

‘ InnoDB: -

Y ~ .

5) Partitions optimized | [+ ﬁ;c:'avr:i'ﬁ o
= for yearly data = r
Slave Slave

Large batch processing Long term data access

Figure 16. Using MySQL replication to optimize the database for different use
cases

33

Monitoring System Toolkit

3.2.4. Benchmark tests

Using a simulator implemented with the programming language Java,
different benchmark tests were conducted. The tests were executed in a
virtual machine using Virtualbox with four Intel Xeon CPU X5650 cores at
2.67GHz and 6 GByte Memory. The host and the guest system were
running a 64 bit Debian 6.0 Linux Distribution and MySQL version 5.1.49

was installed for testing.

The following test cases were selected to compare the performance of the
database design with varying number of datapoints, zones, and stored
measurements. All tests are conducted for two different scenarios.
Scenario A consists of 10000 datapoints, 2500 zones, and 2.5 million
stored measurements. Scenario B consists of 100000 datapoints, 25000

zones, and several million stored measurements.

Testcase 1.x

These test cases tread the write performance of the database system.
Therefore, five concurrent connections are established to the database,
and each connection writes 10000 measurements into the data table as

fast as possible.

Testcase 2.x

These test cases tread the read performance of the database system.

They cover:

- reading of raw data - getValues()

generation of periodic values - getValuesPeriodic()

reading raw data with conditions - getValuesWhereDpEqual(), etc.

generation of periodic values with conditions -

getValuesPeriodicWhereDpEqual(), etc.

34

Monitoring System Toolkit

Testcase 3.x

These test cases tread the read performance under concurrent write load
of the database system. Therefore the same test cases as in 2.x are run,

while a new measurement is written every 50ms.

Results

The number of defined datapoints showed no significant impact on the
performance of different stored procedures. The overall performance of
the developed preprocessing algorithm demonstrates the usability of the
presented storage approach. For example, the calculation of hourly values
of a common room temperature sensor within a timeframe of 6 month

takes about 3 seconds in the described benchmark setup.

Test cases 1.x showed a maximal writing performance of about 1000 new
measurements per second. Test cases 2.x compared the performance of
the stored procedures using different conditions (timeframes, modes,
periods, etc.). Figure 17 shows the duration of generating periodic values

depending on the period, the type of the datapoint, and the mode used.

getValuesPeriodic
30
80
70
0 60
s 50
o 40
v 30
20
10
n ._L- —

Period 1min 5min 15min lhour lday

B Analog/ Mode 1| 80,481 19,391 8,876 3,993 0,749

M Analog/ Mode 2| 67,564 16,006 7,379 3,385 0,64

Binary / Mode 1 | 74,849 15,772 6,131 2,106 0,296

W Binary / Mode 2 | 65,895 13,884 5,257 1,778 0,327

Figure 17. Duration of calculating periodic values depending on period, datapoint
type and mode

35

Monitoring System Toolkit

The timeframe of the queries is 6 month. The processing time of different
queries (Analog/Binary, Mode 1 / 2 and varying periods) is shown in
seconds and consists of the calculation time only. The time needed to
fetch the calculated values from the database to the processing client is

not included, since it varies with different installation setups.

The calculation of periodic data turns out to be much faster for the longer
periods as compared to the shorter periods. This is because averaging is
much faster than interpolation, so if there is at least one value in each
period, the whole stored procedure call is much faster. Furthermore, the
used mode has little impact on the calculation duration, although in
general binary datapoints are calculated faster than analog ones and
mode 2 is faster than mode 1. Figure 18 shows the duration of generating
periodic values, depending on the value of another datapoint (e.g.,

getValuesPeriodicWhereDpEqual).

getValuesPeriodic with condition

10

9

8

7

k] 6

c

] 5

g 4

3

2

1

0

Analog/Mode 1 | Analog/Mode 2 | Binary/Mode 1 | Binary/ Mode 2

H Between 8,312 7,511 4,256 3,565
u Bigger 8,583 7,431 4,156 3,666
u Lower 8,892 7,521 4,276 3,975
® Equal 8,493 7,591 4,146 3,715

Figure 18. Duration of calculating periodic values depending on condition type,
datapoint type and mode (period = 1hour)

The generation of the periodic values takes most of the stored procedures

processing time. Therefore, the duration of a stored procedure call is

36

Monitoring System Toolkit

much smaller for binary datapoints then for analogue ones. Moreover,
the duration does not depend on the condition type used (between,
higher, lower, equal). Test cases 3.x showed no significant impact of

concurrent read and write access on the database.

37

Monitoring System Toolkit

3.3. Data-Abstraction Framework

The Data-Abstraction Framework enables consistent access to different
building data streams. It supports various data aggregation functions (e.g.
virtual datapoints), covers user authentication and zone management,
and provides different software interfaces for real-time data processing
with diverse client applications (Web interface, Microsoft Excel, MATLAB,
etc.). Figure 19 shows the communication between the abstraction
framework (server side) and different processing applications (client side).
The programming language Java is used for implementation of the

proposed abstraction layer.

Data-Abstraction Framework
(Virtual datapoints, Zones, etc.)

Figure 19. Communication between server and client side

3.3.1. Physical and virtual datapoints

The server side abstraction layer represents all sensors and actors as
datapoints. The abstract class Datapoint is used to provide a coherent
view to desired datapoints. Figure 20 shows a class diagram of how

datapoints can be accessed within the framework.

Two distinct implementations of the class Datapoint are available in the
framework (DpPhysical and DpVirtualXXX). The class DpPhysical
represents real sensors and actors of a building and reads/writes directly

to the database. So-called “virtual datapoints” are used to obtain

38

Monitoring System Toolkit

information concerning parameters that are not directly measureable. A
virtual datapoint can be, for example, the energy use of a zone, which
represents an aggregation of all energy measurements in this zone. Virtual
datapoints can be added by implementing the abstract class
DpVirtualFactory and register it to the Java Service Loader (by using the
text file META-INF/services/bpi.most.server.DpVirtualFactory). Each
implementation of a virtual datapoint has to provide a unique identifier
(String ID) and need to return a desired Datapoint implementation with
the method getVirtualDp(String uniqueString). On request, the
DpController searches for the respective implementation and returns a
reference to an instance. Generic virtual datapoints are provided within
the framework. A prototypical implementation of a virtual datapoint is

shown in appendix 7.2.

<<Java Class>>
(©DatapointService

bpi.most.server.services

& DatapointService()
@*getinstance():DatapointService

© getData(User,String,Date Date):DpDataset
© getEntities(User):ArrayList<DpEntity>

© getEntities(User,String):ArrayList<DpEntity> —ref

© getEntities(User,String,String):ArrayList<DpEntity> ja 1
~dpCtrl|0..1
<<Java Class>> <<Java Class>>
& Datapoint ®DpController
bpi.most.server.model bpi.most.server.model
o datapointName: String =DpController()
& Datapoint(String) . o’getinstance():DpController
q ~datapoints) o :
© addData(DpData):int l«—— = lookupD String):Datap
&'delData():int 0.* @ getDatapoint(String):Datapoint
& delData(Date,Date):int © isValidDp(String):boolean
o'getData():DpData © getEntities():ArrayList<DpEntity>
o'getData(Date, Date).DpDataset _ @ getEntities(String):ArrayList<DpEntity> _ref
o'getDataPeriodic(Date,Date,Float,int):DpDataset < © getEntities(String,String):ArrayList<DpEntity> j
© getDatapointName():String B -

N
<<Java Class>>
@ DpVirtualFactory
<<Java Class>> <<Java Class>> bpi.most.server.model
©DpPhysical © DpVirtualExamplelmpl 1itation & DpVirtualFactory()
bpi.most.server.model bpi.most.server.model dpvirtual o getVirtualDp(String, String):Datapoint

& DpPhysical(String) &°DpVirtualExamplelmplementation(String)
© addData(DpData):int © addData(DpData):int
@ delData():int @ delData()int
@ delData(Date Date)int @ delData(Date Date):int
@ getData():DpData @ getData():DpData
@ getData(Date Date):DpDataset @ getData(Date,Date):DpDataset
o getDataPeriodic(Date,Date,Float,int):D... © getDataPeriodic(Date Date Float,int):Dp...

Figure 20. Building data abstraction using different Datapoint implementations

39

3.3.2.

Monitoring System Toolkit

From the user's point of view, the same mode of access (abstract class
Datapoint) can be applied to both physical (sensor-based) and virtual
datapoints. The data aggregation functionality provided by virtual
datapoints enables the reduction of the vast amount of measured data in
buildings, to the respective information required. By using the data
preprocessing functionality of the proposed database, information
processing is accelerated. For example, the calculation of temporally
structured data sets, e.g. hourly/weekly/monthly/etc. values, linked
gueries of energy use for specific time intervals and building zones under
specific occupancy conditions, etc. are implemented within the database.
This approach increases the performance and scalability of the overall

system.

Measurements

Each measurement is represented as a DpData object within the
framework. It includes the measured value, the timestamp and a quality
value to judge the correctness of the measurement. A set of
measurements within a specific timeframe is composed to a DpDataset.
The class DpDataset is implemented as an ArraylList of DpData objects as
shown in Figure 21. In addition, several methods are provided by the
DpDataset class to simplify data processing, e.g.

getDataBefore(timestamp), getDataAfter(timestamp), etc.

40

Monitoring System Toolkit

<<Java Class>>
(9 ArrayList<E>
java.uti
5 serialVersionUID: long
o elementData: Object]]

o size: int
@ ArrayList(int) <<Java Class>>
= (9 DatapointData
Zr bpi.most.shared
5 serialVersionUID: long

<<Java Class>>
(9 DatapointDataset
bpi.most.shared
S.F

o serialVersionUID: long
o datapointName: String @ DatapointData()

""""" oc DatapointData(Date,Double)

oc DatapointData(Date,Double,Float)
@ getTimestamp():Date

@ setTimestamp(Date):void

@ getValue():Double

@ setValue(Double):void

@ getQuality():Float

@ setQuality(Float):void

o timestamp: Date
o value: Double
o quality: Float

@ DatapointDataset()

& DatapointDataset(String)

@ getDatapointName():String

@ setDatapointName(String):void

Figure 21. Measurement representation within the framework

3.3.3. Zone management

To group multiple datapoints within zones, the classes Zone,
ZoneController and ZoneService are developed (see Figure 22). These
classes enable logical grouping of datapoints independent of any physical
structures (stories, rooms, etc.). The current implementation limits a
datapoint to be linked to one zone only. However, a zone can be part of
multiple other zones and a zone can contain any number of subzones and

datapoints.

The method getHeadZones() returns the head objects of defined zone tree
structures. Subsequent, the getSubzones(int sublevels) method can be
used to browse the tree. The variable sublevel defines the number of
requested sublevels. The leaves of the zone structure are datapoints and

can be requested with the method getDatapoints(int sublevels).

41

Monitoring System Toolkit

==Java Class==
(®ZoneService

bpi.most.senversenvices

B ZoneService(

&’yetinstance(:ZoneService

@ getHeadZones(User):List<ZoneEntity=

@ getSubzones{ZoneEntity,inf):List=ZoneEntity=
@ getDatapoints(ZoneEntity inf):List=DpEntity=

~zoneCtrl (0.1 -Ter 0.1
<=Java Class»= <<Java Class=>
®Zone (®ZoneController

bpi.most.server.model bpi.most.senver.model
Aczoneld: int g @ lookupZonelnCache(int).Zone
@ Zone(int) = @ getZone(inty:.Zone
o getEntity (. ZoneEntity o getZone(String):List<Zone=
@ getSubzones(int):List<Zone> @ getHeadzUnesojl_is,kZone:
o addSubzone{Zone):hoolean ~cachedZones @ getHeadZones(User):List=Zone>
o getDatapoints(int):List=Datapoint= / © addZone{Zone).boolean
o getDatapoints(int, String):List=Datapoint= 0 & ZoneController(
© getColumnDouble(String):double getinstance(:ZoneController -ref
> getColumnString(String):String A 0.1

o getZoneld()int
© getName():String
o getDescription():String ...
@ getCountry():String
@ getState():String
© getCounty(:String

==Java Class=>
@Datapoint

bpi.most.senver.model

o datapointName: String

o getCity():String @ Datapoint(String)

o getBuilding(:String @ addData{DpData):int

© getFloor(:String &'delDatag):int

o getRoom{:String ' deiData(Date, Date):int

o getArea(:Double d'getDatag):OpData

o getvolume(:Double o' getData(Date, Date):DpDataset

B At b DA viaAinf D ata Mata Cinat ind - OnDataont

Figure 22. Zone management within the data-abstraction framework

The class Zone is used as Data Access Object (DAO) to zone information.
This enables future development to integrate other zone definition
sources into the abstraction layer. For example, Building Information
Models (BIM) could be used to provide zone information by implementing
a respective DAO zone class. In case of IFC2x4 2010, this DAO class could
use the IFC objects IfcZone, IfcSpatialZone, IfcSpace, etc. to gather

required information.

3.3.4. Database connection pool

To support scalable access to the database, the tomcat JDBC connection
pool (Tomcat 2012) is used. The class DbPool implements the interface to
the pool using a singleton design pattern. Figure 23 shows the

configuration options and the methods provided by the connection pool.

42

Monitoring System Toolkit

<<Java Class>> <<Java Class>>
G DbPool (G DbProperties

bpi.most.server.utils bpi.most.server.utils
o°datasource: DataSource % HOSTNAME: String
o°p: PoolProperties % USERNAME: String

£ o
= DbPool() SSZFPASSWORD. String
@ getinstance():DbPool - SOFDATABASE: String .
@ getConnection():Connection CONNECTION_POOL_MIN:int
.1 | % CONNECTION_POOL_MAX: int
@ DbProperties()

Figure 23. Database connection pool implemented in the class DbPool

3.3.5. Remote data access

The proposed abstraction layer provides different software interfaces for
data access. To support communication with the Google Web Toolkit
(GWT) the GWT Remote Procedure Call (RPC) protocol is used. To enable
direct access from additional processing applications (e.g. Microsoft
Excel), an OPC Unified Architecture (UA) server and a web service, based
on the Simple Object Access Protocol (SOAP), is currently in development.
In addition, a data export for diverse file formats is planed to be
implemented within the web visualization framework, described in

chapter 3.5.

All software interfaces (GWT-RPC, SOAP, OPC UA) provided by the
abstraction layer are part of the package bpi.most.server.services. This
package contains generic service classes and an additional sub package for
each interface implementation as show in Figure 24. The generic service
classes (AuthenticationService, DatapointService, ZoneService) provide
access to the abstraction model (Datapoint, DatapointController, Zone,
etc.) and cover permission issues. Each interface implementation must
provide an authentication service and map respective sessions to User
objects. Subsequent, this User objects are passed to the service methods

for each request (see Figure 25).

43

Monitoring System Toolkit

=y > services 1193

> £ gwtrpc
> #3 > opcu
> §3 > soap

1193
a

» [J} AuthenticationService.java 1193
» [J) DatapointService.java 1193
» [J} ZoneService.java 1193

Figure 24. Generic service classes

<<Java Class>>
®uUser

bpi.most.server.model

<<Java Class>>
(® DatapointServicelmpl

bpi.most.server.services.gwimpc

5F serialVersionUID: long

& DatapointServicelmpl()

@ getData(String,Date,Date):DpDataset
@ getEntities():ArrayList<DpEntity>

@ getEntities(String):ArrayList<DpEntity>

L2 natEntitiae/Strina StrinnlArravl icteNnEntihes

~dpService [0..1

a userld: String

& User(String)

@ hasPermission(Datapoint,Permissions):boolean
@ hasPermission(Zone,Permissions):boolean

@ changePassword(String,String):boolean

@ addToRole(String):boolean

@ delFromRole(String):boolean

@ isinRole(String):boolean

@ getRoles().List<String>

@ getUserld():String

<<Java Class>>
(© DatapointService

bpi.most.server.services

4 dpCtrl: DpController

& DatapointService()
o°getinstance():DatapointService

o getData(User,String,Date,Date).DpDataset
@ getEntities(User):ArrayList<DpEntity>

o getEntities(User,String):ArrayList<DpEntity>

e T L A s e P B iy AP

Figure 25. Generic datapoint service used by the GWT-RPC implementation

-ref
0.1

Javadoc 2012 is used to document the developed source code. Figure 26

gives an overview of available packages and classes implemented in the

data-abstraction framework. A current version of the documentation is

available at http://most.bpi.tuwien.ac.at/doc/javadoc-server/index.html

44

Monitoring System Toolkit

All Classes Overview Package Class Use Tree Deprecated Index Help

All Classes Prev Next Frames No Frames

AuthenticationController . . .
AuthenticationService Monitoring System Toolkit
AuthenticationServicelmpl

BCrypt

Datapoint Packages

DatapointService

DatapointServicelmpl ST LT
DbPool ‘ bpi.most.server.model

Db(P:roperties bpi.most.server.model.dpvirtual
DpController

DﬁDala ‘ bpi.most.server.services

DpDataset bpi.most.server.services.gwtrpc

DpEntity bpi.most.server.utils

DpEntity.Permissions ‘ B e

DpPhysical bpi.most.shared

DpVirtualExample

DpVirtualFactory

ModuleControllerServicelmpl Overview = Package Class Use Tree Deprecated Index Help
PersonModuleServicelmpl

RadiatorHeatPower Prev Next Frames No Frames

User

Zone

ZoneController

ZoneEntity

ZoneService

Figure 26. Source code documentation overview

3.4.

Monitoring System Toolkit

Data-Processing Framework for MATLAB

To simplify complex data processing with MATLAB, a dedicated
framework was developed. It provides common data processing
algorithms in an object-oriented way. Figure 28 shows a cutout of the
class diagram. The complete class diagram is shown in the appendix 7.2.
The MainCtrl initializes the framework (instantiates required objects —
Datapoint’s, StatisticCtrl, etc.) and keeps track of the database
connection. A set of Objects (StatisticCtrl, PlotCtrl, DatapointCtrl,
Datapoint, ZoneCtrl, etc.) provide various methods to simplify data
analysis. Figure 27 shows a sample psychrometric chart generated with
the method plotMollierOfZone(). Due to the open-source nature of the
framework, functionality can be easily enhanced or adopted to respective

needs.

-) Figure 3: molier diagram: 2011-06-01 12:00:0 -0 x|
File Edit Yiew Insert Tools Desktop Window Help ~

DAL MAROTDLL-|S|0E >
molier diagram: 2011-06-01 12:00:00 to 2011-06-10 12:00:00
20 ,

out of rangé: 18.43 9 ef@;*é?siﬁ C 18 | 223

Specific Humidity [o/kg]
=] o

m

0 i
15 20 25 30 35
Dry Bulb Temperature [°C]

Figure 27. Psychrometric chart generated with the MATLAB-Framework

46

Monitoring System Toolki

Liiodeyegeyep-|ja)-Aesiy : (38O} 1 Jiwi| ‘Ul : Julodeiegeiep |3 AeLiy)IWITIIPUNAIENDIIBYMEIRJIAOW.

10123/ : (MOPUIMIIOJWOD IDNIIS © MOPUIMIIOIWOD I3 __O_>_.>w‘__< I BIEP)UOIIDRSIIRSIDI|[ONRIR|ND|BD

1S1Y7|19D°ARay : (J01D3A : dburyeIep ‘101D9A : UlRIEp)IasSeIRgWRIhOoISIHIIR|ND|eD
Ax-Aeuty @ (10109 1 dburYeIEP ‘J0IIIA @ U[BIEP)IFSBIBQUINSIANBINWNDIIR|ND|Ed JO1IIA : (40323A @ duoz ‘Bulns : adAy)auozujadA]josiulodereqiab +
10129 : (3eO[) : Jw| ‘i : Julodeyegeiep-||a)-Aeaay)Aiienpeierayd

Add AWd Aedly : (19bue4"Add AWd Aelly : ujeiep)iabueq add AWd@ie|nd|ed
=+ ‘qeo|4-Aedly 1 Qul : wsijogelaw)asereglabued"add ANd1e|nd[ed
MOPUIMII0OJWO0D1INAS : (3BOJ) : dWIIUBIW)MOPUIMIIOJW O I3I||ONRIB|ND[BD

jujodeieq : (buins : aweu)ulodereqiab +
p1OA : (uiodele(: JulodejegAw)iulodeiegais|ap +
p10oA : (Quiodele(: JulodeyegAw)uloderegppe +

+4++ 4+ o+

Ja1jjoWAealy @ (3eo|4Aelay 1 yJ ‘yeoj4-Aeary : dway)iaseiegaal|jopaie|ndjed 101I3A : SJul0deIRQI0IIANA ~

M1Dwiodeieq

[11D2nsnels

Ax*Aeaay : (qul : uonenjeAd”polad ul : Juswainseaw poriad ‘Bulng : dwnpud ‘bulns : awnueisiyul @ suoz ‘buins : adAl)awnAeqgjoauoz joadAj0san|eAsbelaayiold +
PIOA : (ui : uonen|eAd” pordd ‘ul : Juawainseaw poliad ‘Bulns : dwnpud ‘bulns : swnuels quiodeieg-Aelly : ulodeiegAw)dipoliadiuioderegiolojdxogiold +
1 PIOA : (JuI : uonenjeAd” pouad ‘bulns : awnpud ‘Hulns : sawnieys quiodereq-Aesty : yulodeiegAw)uloderegjolojdxogiold +

PIOA : (ui : @poriad ‘Bulng : awnpua ‘bulns : dwnuiels ‘yulodereg-Aenty : juloderegiw)diponadiuiodereqiold +

p1oA : (bulns : awnpua ‘bulns : dwneys ‘quiodeyeq-Aelly : yujodeyegAw)uiodereqiold +

PIOA @ (Ul : SjudwidINseaW poriad ‘Buls @ swnpua ‘bulng : dwnIelS ‘Ul : dUoz)duozjouonnglisigandiold +

PIOA @ (ui : SjudwidInseaw poriad ‘bulng : awnpua ‘bBulis @ dwnNIeIS ‘Ul : 3U0Z)duozZjouonngrisigaddiold +

PIOA @ (JuI : sjudwidnseaw poriad ‘bulng : awnpua ‘bulns : dwnlIels ‘ul : 3uoz)auozjoAduanbalgasneinwindaddiold +

PIOA : (uI : Sjudwidinseaw poriad ‘Buls : dwnpud ‘bulns : dwNIeIS ‘Ul : duoz)duozjoAduanbaigaanenwndAndIold +

PIOA @ (Jul : uonenjeAd” poriad qul : Juswainseaw poliad ‘Bulng : dwnpud ‘bulns @ dwniiels ‘Jeol) : dwajueaw ‘ul : duoz)duozjouondejsnessaijjowiold +
PIOA : (JuI : JudwaInseaw ™ porad ‘bulns : dwnpud ‘bulis : dwniiels ‘yeoys : dwajueaw auoz)suozjosaljjonrold +

PIOA : ()gpI2aUU0daL +

pioA : ()gpuado +

pIoA : ()siulodeiegazijeniul +

T

b1yuo)PNAS : jeqolb : biyuod -
[11Dwitodeleq : |nDwilodeiegAw -
4130215181 [1DdNseIsAw -

& 1DojdAw -

[Durepn

Figure 28. Cutout of the MATLAB-Framework class diagram

47

Monitoring System Toolkit

3.5. Visualization Framework

The proposed framework simplifies platform independent graphical user
interface (GUI) development for building data visualization. Various
components are provided to reduce development efforts. Exemplary

modules show the usability of the framework.

3.5.1. Technical requirements

Different native GUI toolkits support different platforms (Linux, Windows,
0SX) and have different features such as accessibility, layout engines, and
looks. To enable platform independent GUI development, web based
technologies can be used. Furthermore, web frameworks (JSF, GWT, etc.)
simplify development by abstracting specific web technologies. An
overview of common standards, programming languages and libraries is

shown in Table 9 to Table 11.

Due to the platform and technology independence of web frameworks,
the Google Web Toolkit (GWT) was chosen for implementing the
proposed visualization framework. GWT enables web development by
using the programming language Java for server (running on a central
server station) and client side code (running in the user’s browser). Client
side code is converted to platform optimized JavaScript at compile time.
This strategy allows the development of reusable components for several

use cases.

48

Monitoring System Toolkit

Table 9. Visualization technologies based on native software solutions

- GTK (used in Gnome)
- QT (used in KDE)
- EFL (used in Enlightenment)

Common PC solutions Mobile devices (smartphone,
tablet, etc.) solutions
Linux: Android:

- Java based SDK

Mac OSX:

iOS:

- Metro (Windows 8)

- Cocoa - Objective-C based SDK
Windows: Windows Phone 7:
- WPF - Metro

OS independent:
- Java based libraries (e.g. Swing)

OS independent:
- Java ME

Table 10. Common web standards

Communication standards

Visualization standards

-HTTP 1.1

- HTTP 2.0, SPDY

- Ajax

- Web services (SOAP)

- HTML, CSS
- WebGL

Table 11. Web based visualization technologies

Server side

Client side

- Java servlets

- ASP, .NET

- PHP

- Ruby

- with CGI (all executeables,
python, perl, etc.)

- JavaScript (and libraries - jquery,
dojo, etc.)

- Plugins (Flash, Java Applets,
Silverlight, etc.)

Web frameworks

- ISF
-GWT

Monitoring System Toolkit

3.5.2. Concept

The visualization framework provides a simple interface for human
interaction. The user scenarios investigated within the requirement
analysis are divided into modules. A module in this context is defined as a
number of classes, which fulfill a certain purpose, related to human
interaction (e.g. querying and displaying values of a certain datapoint). By
dividing the architecture of the visualization into three levels (see Figure
29), coherent functionality can be grouped into reusable components

(ModuleControlle, DNDCtrl, etc.).

Figure 29. Software architecture of the proposed visualization framework

The abstraction layer encapsulates building information
(DatapointController, Datapoint, etc.) and contains logic that cannot be
directly manipulated by user input (e.g., ModuleController to manage the
modules, AuthenticationController to manage security procedures, etc.).
Communication to the server side is done with GWT-RPC requests. The
ModuleController (see Figure 30) registers new modules (defined in the
ModuleRegistrator class) and adds the main menu entry (MainMenuEntry)
in the user interface. Figure 31 shows the main menu generated by the

ModuleController.

| 50

Monitoring System Toolkit

<<Java Class>>
&Modulewidget

bpi.most.client.modules

-;pModuleWidget(ModuIeInterface)
<*ModuleWidget()

@°getinstance(Modulelnterface):ModuleWidget

-moduleWidget|0..1

<<Java Class>>

(®MainMenuEntry
bpi.most.client.mainlayout

o MODULE_MENU_ITEM_TEXT: String
o MODULE_URL: String

a linkinMenultem: String

o menultemid: String

o menulconClass: String

@& MainMenuEntry()
© getMODULE_MENU_ITEM_TEXT():String

® getMODULE_URL():String

@ setMODULE_URL(String):void

o getLinkinMenultem():String

@ setLinkinMenultem(String):void

© getModuleWidget():ModuleWidget

@ setModuleWidget(ModuleWidget):void
@ getMenultemld():String

@ setMenultemld(String).void

o getMenulconClass():String

© setMODULE_MENU_[TEM_TEXT(String}....

Figure 30. Methods provided by the Module Controller

TECHNISCHE
UNIVERSITAT
WIEN

<<Java Interface>>
@ Modulelnterface

bpi.most.client.modules

@ getModuleName():String

@ getMenultemText():String

>1 @ getModuleUrl():String

@ getMenultemCssClass():String

@ getMainMenuEntry():MainMenuEntry
@ getModuleWidget():ModuleWidget

@ getMenultemld():String

| @ getMenulconClass():String

A ¥

<<Java Class>>

(®ModuleRegistrator
bpi.most.client.modules

0°ModuleRegistralor()

,‘ﬂ

@ registerMainMenuModule(Modulel...

<<Java Class>>
®ModuleController

bpi.most.client. modules

% moduleCtriService: ModuleControllerServiceAsync

o*dpce: DpController

& ModuleController()
ngetlnstance():ModuIeComroller

esregisterMainMenuModule(ModuIeInterface):void j

Vienna University of Technology

+ref
0.1

Log

Desktop Module

Desktop Module

€ New Chart

DRAG ME

€ New Chart

ZIEH MICH RUM !

Figure 31. Main menu generated by the Module Controller

Monitoring System Toolkit

The module based design principles support the learning process of the
user by emphasizing the logical modules visually. MOST provides a
framework for developing and using custom modules that cover specific
use cases. To add a new module to the webinterface, the Modulelnterface
needs to be implemented and registered within the ModuleRegistrator
class. The Modulelnterface contains only metadata of a module (module
name, module URL, etc.). The respective module needs to implement the
method getModuleWidget() which must return an instance of the actual
graphical implementation of the module. This instance needs to inherit
from the ModuleWidget class and contain all graphical components of the
module. The module can be instantiated on demand, since metadata
(Moduleinterface) and graphical components (ModuleWidget) are
separated into different classes. This can improve the performance and
the scalability of the overall webinterface. To offer a starting point in
module development, a generic module implementation and various

reusable components are available.

3.5.3. Visualization library

As shown in Figure 32, the visualization library provides various
components (MenuWidget, DragWidget, etc.), which simplify module
development and lead to a uniform design. The library is based on native

GWT features and can be integrated in any GWT project.

Figure 32. Visualization library of the proposed framework

Monitoring System Toolkit

An example is the class DragWidget. It can contain any kind of
information, e.g., displaying a chart or presenting a formula as well as all
generic GWT widgets (buttons, checkboxes, tables, etc.) (see GWT-
Example 2012). Furthermore, the DragWidget supports the drag and drop
logic of the proposed visualization framework. Detailed information and
documentation about different visualization components can be found in

the source-code (Javadoc) of MOST 2012.

3.5.4. Drag and Drop

By wrapping any custom information with a DragWidget, the object
natively supports the basic drag and drop functionality within the user
interface. The drag and drop (DND) features of GWT are enhanced with
the DNDController (e.g. highlighting of droppable areas), as MOST uses
drag and drop actions as the primary interaction method. By offering the
user an alternative method to common interface interaction, MOST adds

a dynamic feel to the user interaction process.

As shown in Figure 33, the DND logic communicates across all three
software layers. To enable highlighting, a module must create a
DNDHighlightElement object for each DragWidget. The
DNDHighlightElement establishes a relation between the DragWidget and
possible DropWidgets (which should be highlighted while dragging).
During the drag process, the DNDController handles all DND related
operations. The DNDController is part of the abstraction layer and is
instantiated during the login process at the web interface. It subsequently
listens for DND actions. The highlighting functionality is shown in Figure
34. When triggering a DND event, the DNDController highlights areas
where a DragWidget is allowed to be dropped using the DOM-element of

the widget.

53

Monitoring System Toolkit

+currentParent 0.

<<Java Class>>

(® DropWidget
bpi.most.chent. DragWindow

-ref
LA

\‘-bg‘mentDrag 0.1

<<Java Class>>

(© DNDController | -ref
bpi.most.chent. DragWindow

-highlightElemests 0..*

<<Java Class>>
(9 DNDHighlightElement
bpi.most.chent. DragWindow

oY
<<Java Class>>
(© DragWidget +ref

bpi.most.chent. DragWindow fP 1

Figure 33. Relations of the DNDController within the client side software

architecture

@ Desion oaue

Figure 34. Highlighting of droppable areas while moving a DragWidget

3.5.5. Modules

To show the potential of the visualization framework, some modules

covering various use cases were implemented.

Chart Module

The chart module enables creating trend charts from any datapoint by

dropping it on a defined area in the module. Highcharts 2012 is used

within a DragWidget as shown in Figure 35. To enable the visualization of

timeframes containing a critical amount of measurements with the

54

Monitoring System Toolkit

highcharts library, the number of shown values needs to be reduced due
to performance limits. Therefore, the data preprocessing methods -
provided by the database and the virtual datapoints - are used to
calculate a reduced number of values on behalf. Before drawing a chart,
the amount of measurements in the requested timeframe is analyzed. If a
critical amount of measurements is exceeded, the getValuesPeriodic()
method is used to request a temporally set of data (periodic values) with a
reduced amount of values. Finally, the preprocessed data is drawn in the
chart. If the user zooms into the chart, new values are requested in the
same way. This strategy reduces the high amount of measured data in a
transparent manner. It shows how the data preprocessing functionality

can be used to simplify application development.

G voc5

von 2012/02/22 17:48 Live v
bis 2012/02/22 17:48

Reset zoom

Value

-=- voc3
-+ voc4
-¥- voc5S

Figure 35. Data visualization using the chart module

Desktop Module

The desktop module enables the centralized visualization of information
coming from different modules as shown in Figure 36. It allows moving
(using drag and drop) any DragWidget to a central page (similar to the
Microsoft Windows Desktop). This way, desired information from multiple

sources can be combined on a single page.
55

Monitoring System Toolkit

M ST &

(M

Welcome to MOST - Monitoring System Toolkit

In this demo we want to introduce you in the project and show the core
functions of the system. We are still at work, 5o this is a prototyp and not
all functions are implemented yet.

The Desktop Module informes you about actual data the user needs and
gives you an overview for the widgets. Widgets contents data and can be
drag and dropped. Try it! Drag a widget to e.g to the Export Module.

$ - con5.
! 2
Comments are welcome! You can contact us at the email 3 occd

most@tuwien.ac.at - occ3

or you visit us on our website and comment our Blog. You also get there
further information about the GSOC and the puzzles.

most.bpi.tuwien.ac.at

von
2011/05/05 12:00
bis

2011/05/07 12:00

Live

1,400
von
2011/05/05 12:00
1,200 bis
2011/05/07 12:00

Live

1,000 100

-* cdi7 1,000
-*- cdi6
- cdi3

Value

Value

- cdi2

Figure 36. Centralized data visualization using the desktop module

Three-dimensional building visualization

To map the location of datapoints within the real building, the modul “3D-
Viewer” was developed. It visualizes a three-dimensional building model
and respective datapoints based on the platform independent Web
Graphics Library (WebGL). WebGL provides a 3d rendering engine

supported by all current web browsers.

Prototypical implementations have been examined by adapting the
projects IFCwebserver 2012 and BIMsurfer 2012. IFCwebserver 2012 uses
the WebGL based SpiderGL 2012 library, supports the COLLADA 2012 file
format, and showed various disadvantages during tests with building
related models (performance issues, large model size, unstructured code,
etc.). BIMsurfer 2012 extends the WebGL based ScenelS 2012 library, uses
a JavaScript Object Notation (JSON) based file format and showed
appropriate performance characteristics. Therefore, BIMsurfer 2012 was

chosen to be enriched with building monitoring related features. An

56

Monitoring System Toolkit

example of the building visualization, using BIMsurfer 2012, is shown in

Figure 37.

Figure 37. Three-dimensional building visualization using BIMsurfer 2012

The following use cases were investigated for the “3D-Viewer” module:

A. Lead the user within the three-dimensional building model to a

desired datapoint and

B. show the user the location of a particular datapoint.

To support use case A in an intuitive way, additional building model
browsing features were implemented. For example, diverse building
stories can be exposed using a slider bar as shown in Figure 38. If no
building story is marked, all levels are shifted. If a single floor is selected,
only this one is exposed (see Figure 39). Furthermore, the transparency of

the building walls can be controlled with an additional slider bar (see

Figure 40).

57

Monitoring System Toolkit

M ST

H

Logged n: GSOC Demo User

© o e
o —
o

o e
Defaut | Frnt Sde | Top
SetViewto Dstapoint

- Zonenhierarchie (IFC)

Figure 38. Exposing all levels of a building model

o Hite
Logges n: GSOC Demo ser
oot |

Figure 39.

Exposing a single floor

Views.
Defaul| Front Side| Top
Set View to Datapolnt

~ Zonenhierarchie (1FC)
@ BPL05 (Bulding;

Monitoring System Toolkit

zzzzzz

Praview Datapoint

Figure 40. Building model visualization with enabled transparency

A preview of a particular datapoint (description, latest measurement, etc.)
is shown by marking it via a single mouse click. To use the respective
datapoint within any other module, drag and drop from the building

model to the desired module is intended to be implemented.

Use case B (show the location of a particular datapoint) is planed to be
supported by dynamically moving the view to the location of a requested
datapoint. A prototypical implementation was tested based on the
snapshot feature of BIMsurfer 2012. Future development intends to
trigger the location visualization by dropping any datapoint object on the

module.

To create a building model for the 3d viewer, any Computer-Aided Design
(CAD) software, which supports the export of IFC2x4 2010 (Industry
Foundation Classes) compatible files, can be used. Since the used CAD
application did not support IfcSensor and IfcActor objects, a naming
convention based approach was used to link IFC objects to respective
datapoints. Any IFC object using the syntax “dp_<datapoint name>”" is
processed as a datapoint in the 3d viewer (preview on click, drag and drop
support, etc.). To convert the IFC file to the required JSON format,

BIMserver 2012 is used.

59

Monitoring System Toolkit

Module development

To implement further modules, generic sample code is provided. An
export module is intended to be implemented to show how data can be
requested based on various rules (e.g., only workdays, only defined time
slots, etc.). Javadoc 2012 is used to document the developed source code.
Figure 41 gives an overview of currently implemented packages and
classes of the visualization framework. Online access to the
documentation is available at http://most.bpi.tuwien.ac.at/doc/javadoc-

client/index.html

All Classes Overview Package Class Use Tree Deprecated Index Help

All Classes Prev Next Frames No Frames
AuthenticationService . . .
AuthenticationServiceAsync Monitoring System Toolkit
BimSurferinjection
Chartinterface
ChartWrapper Packages
Curve

Package Description
D3Module g i
D3ModuleWidget bpi.most.client
DataExportModule bpi.most.client.login
DataExportModuleWidget
Datapoint bpi.most.client.mainlayout
DatapointHandler bpi.most.client.model
DalapO{ntSeN{oe bpi.most.client. modules
DatapointServiceAsync
DateTimePickerBox bpi.most.client. modules.charts
DateTimePickPopup bpi.most.client. nodules.charts.Highchart
DesktopModule
DesktopModuleWidget bpi.most.client.modules.d3viewer
DNDController bpi.most.client.modul
DNDDragStartinterface bpi.most.client.modules.exporter
DpControlier
Draginterface bpi.most.client. modules.feedback
DragWidget bpi.most.client.rpc
Droplnterface
DropWidget bpi.most.client.utils
FeedbackModule bpi.most.client.utils.dnd
FeedbackModuleWidget '

GConfig

GeneralDragWidget Overview Package Class Use Tree Deprecated Index Help
GeneralDropWidget

HiohchartStandart

Figure 41. Source code documentation of the visualization framework

Chapter 4.

Prototypical implementation

To study real-life implementation and application scenarios, two buildings
were selected and partly equipped with necessary monitoring
infrastructure. These buildings house offices, labs and lecture rooms of

the Vienna University of Technology.

One of the buildings (Lehartrakt, see Figure 42) was completed 2010 and
provides reusable building automation infrastructure to various degrees.
The second building (Mitteltrakt, see Figure 43) was built more than 100
years ago and provides no reusable building automation infrastructure. As
such, these buildings are representative of a large number of existing
buildings in Vienna. They thus represent a wide range of technical
challenges that need to be met in order to realize the postulated dynamic
data acquisition and processing architecture in the context of existing
buildings. Such challenges pertain specifically to the technology update
requirements for incorporation of high-resolution sensory and metering

capabilities, device connectivity, and cross-platform data transfer.

Figure 42. Building Lehartrakt

61

Prototypical implementation

Figure 43. Building Mitteltrakt

4.1. Lehartrakt

Recently completed (2010), Lehartrakt is equipped to various degrees
with current building automation technologies. Therefore, the monitoring
system can reuse some of the sensor and network infrastructure to
reduce installation efforts. Figure 44 shows a four layer model of the

entire monitoring infrastructure.

3
Monitoring RS

Server
Building
Management
System

BACnet/IP EnIP eeeee = D
A ti i Eth./IP Eth.IP: Eth./IP |

DDC KNX IP M-Bus - IP EnOcean - IP Weather
(Ec05502) G y Gat Station
[

T i
Analog (0-10V, -
< 4-: 2nmA) i Enouan Analog
:Zslecllbus M-Bus i (0-10V)
i 3 User
i | U : Feedback [

)
<
&

Y

/ ‘T, RH, ", \
{voe coz, T 'S
"/

_/\

Figure 44. Four layer model of the monitoring system in Lehartrakt

Prototypical implementation

Many sensors in the existing BACnet, KNX, and M-Bus networks are
reused. Electricity meters are added to the M-Bus system. All other
sensors are added with the wireless fieldbus EnOcean to reduce
installation costs. KNX, M-Bus and EnOcean networks are accessed by
using the OPC DA Connector. Heating ventilation and air conditioning
(HVAC) is controlled by a proprietary Building Management System (BMS)
which provides an Open Database Connectivity (ODBC) interface only.

Therefore the JDBC Connector is used to poll required data.

The monitored area in Lehartrakt covers two labs, two office rooms and
one conference room. Figure 45 and Figure 46 show the floor plans
including all sensors. Energy use of hydronic radiators is monitored with
heat meters, which measure incoming and outgoing water temperature
and the volume flow (see Figure 47). The energy use of a fan-coil units is
calculated by measuring the temperature difference between the
incoming and outgoing air and the air volume flow (see Figure 48).
Relative humidity, room air temperature, window/door states, and
occupancy are monitored with self-powered sensors using the wireless
fieldbus EnOcean (see Figure 49 to Figure 51). Carbon dioxide and volatile
organic components are measured with legacy sensors, which are
equipped with EnOcean wireless modules. Electrical energy use is
measured with M-Bus meters. Light and blind states are monitored by
tapping the KNX fieldbus. Diverse gateways are used to access all fieldbus
technologies based on Ethernet/IP. To enables secure remote data access,
the Ethernet/IP network is tunneled to the monitoring server using a VPN
concentrator. A Linksys WRT54GL router with an OpenWRT 2012
installation is used to establish the VPN connection. OpenVPN 2012 is
used as VPN technology. A watchdog scripts on the router periodically
probes the VPN connection and initiates a reconnection if communication
problems occur. The installation setup of the EnOcean and the M-Bus
Gateway including a router to establish the VPN connection is shown in

Figure 52.

63

Prototypical implementation

@0@ e 0600 O

B Blinds RH Relative humiditv
CO2 Carbon dioxide S Servo-valve-drive

D Door-contact T Temperature-sensor
H Heat meter Tset Temperature-setooint
L Liaht \ Volume

Lux. llluminance VOC Volatile oraanic

M Electrical meter W Window-contact
Occ. Occupancv

Figure 45. Floor plan including sensors of two office rooms and one conference
room in Lehartrakt

@ @ @
RHT
C02
L O | O

EnOcean—IPGW KNX-IPGW M-Bus -IP GW VPN

Figure 46. Floor plan including sensors of two laboratories in Lehartrakt

64

Prototypical implementation

Figure 47. Heat meters installed at radiators

|
Il
I

Figure 48. Sensor setup at the fan-coils

Figure 49. Temperature, relative humidity, CO2 and VOC sensor setup

65

Prototypical implementation

Figure 50. Occupancy detection based on a wireless motion sensor

Figure 51. Contact sensor used to measure window state

66

4.2.

Prototypical implementation

Figure 52. Installation setup of various fieldbus gateways

Mitteltrakt

The building Karlsplatz provides no reusable building automation
infrastructure at all. To reduce installation costs, a fully independent
wireless approach for the fieldbus network is used. Figure 53 shows the
four layer model of the entire monitoring infrastructure in Mitteltrakt. To
transfer the measured data from the EnOcean - IP gateway to the

monitoring server, a VPN-concentrator is used.

EnOcean was chosen as the wireless fieldbus system because of its
optimized design for low power use. It allows the construction of self-
powered sensor devices, which reduces installation efforts and increases
installation flexibility. Nevertheless, some sensors still need a power
supply due to the energy use of the sensor technology. For example, a
CO2 sensor needs a significant power supply to drive its heating coil.
Many sensors with integrated EnOcean communication technology are
available on the market. Missing sensors can be easily developed using
legacy devices and EnOcean-modules of the STM and TCM series as

shown in Figure 54.

Prototypical implementation

== 8

Monitoring
Server

Custom
0PC DA Gy

EnOcean — Weather
IP Gateway Station

. P Analog
Fieldbus | | EnOcean. | I, (0-10V)
level i | i User
1 Feedback N
L T, RH. 5
vocC e,
Physical <L = ete
level

Figure 53. Four layer model of the monitoring system in Mitteltrakt

Figure 54. Legacy CO2 sensor equipped with the EnOcean wireless module
STM110

Figure 55 shows the floor plan of the monitored area including all sensors.
The heating energy transfer rate of the radiators is calculated by
measuring the temperature of the radiator and the room (see Figure 56).
Using the K values described in DIN 1994, heating energy use can be

estimated. States of lights are detected by measuring their electrical

| 68

Prototypical implementation

energy use (see Figure 57). A small rack is used to avoid unintended
covering of air quality sensors (CO2, VOC, temperature, relative humidity)
and to measure close to the real working area (see Figure 58). Occupancy

detection for single work areas is realized by limiting the range of motion

sensors to the desired place (see Figure 59).

Figure 55. Floor plan including sensors in Karlsplatz

Figure 56. Sensor setup to measure the mean radiator temperature

Prototypical implementation

Figure 57. Electrical meter installed on lights

Figure 58. Rack for air quality sensors

Figure 59. Occupancy detection using motion sensors

4.3.

Prototypical implementation

IT infrastructure

Measurements of both monitoring implementations are processed within
the same Information Technology (IT) infrastructure. To improve
scalability, flexibility and stability, virtual machines are used. Diverse
components of the proposed toolkit are installed in respective virtual
machines. VirtualBox 2012 is used as virtualization technology. Different

virtual machines are used for the

- Connector
Virtual machine based on Microsoft Windows.

- VPN-concentrator
OpenVPN installed within a Debian/Linux system.

- Database
MySQL installed within a Debian/Linux system.

- Data-abstraction framework including the GWT based web-
interface
Apache Tomcat/TomEE Java Application Server supporting the
Java Enterprise Edition installed within a Debian/Linux system.

- anumber of virtual machines for diverse processing applications
MATLAB, EnergyPlus, etc. is installed within respective operating

systems.

Figure 60 shows the webinterface of the server system running all
productive virtual machines. It provides 12 GByte of memory and eight
Intel Xeon CPU cores. To enable stress tests, applied during development,
an additional virtual machine server, providing 24 GByte of memory and
twelve Intel Xeon CPU, is used. Furthermore, an independent computer is

used to automatically backup all virtual machines and databases.

71

Prototypical implementation

e 00 phpVirtualBox - VirtualBox Web Console
J [phpVirtualBox - VirtualBox Web... l,+ l

(1)’ vm1.bpi.tuwien.ac.at/phpvirtualbox/ ¢ ‘ (*§~ Google Q) @

File Machine Help

o ¢ 2D i

{:} s 2 @ {53 Details @

New Settings Start Stop

7 VirtualBox (127.0.0.1) [} General

Rl £ Hosting - 4.1.8 0S Type: Linux (2.6.32-5-amd64)

VirtualBox: 4.1.8 (75467)

() debian64_sensors Base Memory: 12037 MB
(& & running 8971 MB (74%) 3066 MB

—— debian_mysql1 Processors: Intel(R) Xeon(R) CPU E5506 @ 2.13GHz (8)
(@) N HWVIirtEx, PAE, Long Mode (64-bit)
WS 1% Running

debian_tomcat1 &P Network
".«(‘ 4 & Running etho (Up)
1Pv4 Address: 128.130.110.63 / 255.255.255.128
debian_webhost1 1Pv6 Address: fe80:0000:0000:0000:0225:90ff:fe06:9926 / 64
1«(’ c& Running Ethernet (00:25:90:06:99:26)
debian64_sensors (Adapter 1, Adapter 2), debian_mysql1
@7 ubuntu_tools (Adapter 1), debian_tomcat1 (Adapter 1), debian_webhost1
(7, ‘3 Rurnink (Adapter 1), winxp-empty (Adapter 1), winxp-wago
g
(Adapter 1)

u!‘ winsrv_2008-opc eth1 (Down)
<) Running 1Pv4 Address: 192.168.57.1 / 255.255.255.0

Ethernet (00:25:90:06:99:27)

Figure 60. Webinterface of the productive virtual machine server

4.4. Data utilization

The measurements resulting from the described monitoring
implementation can be applied to various ends (fault detection, improving
building operation, etc.). This section shows only a few application

examples.

4.4.1. Increase user awareness

To increase the awareness of building users regarding their impact on
buildings’ energy use, an information screen, supporting touch
interaction, is installed in the Department of Building Physics of the

Vienna University of Technology. Figure 61 shows demonstratical usage.

72

Prototypical implementation

Figure 61. User interaction with the webinterface using touch control

4.4.2. Simulation model calibration

In the context of building performance simulation one of the key
problems is to determine the accuracy and reliability of simulation codes
and tools (Mahdavi 2001, Mahdavi et al. 2009). Certain core algorithms in
building performance simulation codes may be validated analytically, with
major simplifications of domain complexity and boundary condition
assumptions. Fundamental physical processes mapped in building
performance codes may be also tested via tightly controlled experiments
in appropriately designed test spaces and facilities. But real buildings are
far more complex, given contingencies in terms of occupancy processes
and use patterns, weather conditions, as well as initial and emerging
uncertainties in semantic properties assumptions. Such analytical
validation techniques or test in highly controlled conditions are hardly

applicable to complex real buildings. Comprehensive monitored data from

73

Prototypical implementation

buildings, on the other hand, can be advantageously deployed to obtain a
reliable empirical basis for the evaluation and calibration of respective

simulation models.

In this context the monitored data of the building Mitteltrakt was used to

(Tahmasebi and Mahdavi 2012):

- i) create a weather file based on local data instead of using a
predefined "typical" year,

- ii) populate the initial building model with dynamic data regarding
internal loads, device states, and occupancy processes,

- iii) to calibrate the initial model.

Table 12 shows all data streams used during the calibration process.

Table 12. Use of monitoring data for building simulation calibration (Tahmasebi

and Mahdavi 2012)
Use of data Datapoint Unit
Global horizontal radiation [W.m’z]
Diffuse horizontal radiation [W.m’z]
Outdoor air dry bulb temperature [°c]
Creati.ng local weather Outdoor air relative humidity [%]
data file
Wind Speed [m.s'l]
Wind direction [degree]
Atmospheric pressure [Pa]
Electrical plug loads (W]
State of windows and doors | [-]
Creating the initial | (open/closed)
model State of the lights (on/off)]
Occupancy (presence/absence) [-]
Calibrating the model | Indoor air dry bulb temperature [°c]

The building was modeled within EnergyPlus 2012. The monitored data

were incorporated into EnergyPlus by defining schedules. The schedule

74

Prototypical implementation

files are generated using a MATLAB script. A singe file was created for
each datapoint in an event-based manner (compact schedule). To
calibrate the desired simulation model, the optimization tool GenOpt
2012 was used. Data obtained via the monitoring system were deployed
to both populate the initial simulation model and to maintain its fidelity
through a systematic optimization-assisted calibration process. The results
showed noticeable improvement of the predictive potency of the
calibrated model. Figure 62 and Figure 63 compare monitored office
temperature with initial and calibrated model results, during a 9-day
period of calibration and validation. Details about the calibration process

are described in Tahmasebi and Mahdavi 2012.

28

27

Average Office Alr Temperature [C)

22

20

0€/07 CC:CO 0608 COCO 06/09 CC:CO 06/10 CCtCO 06€/11 OC:CO 06/12 CC:CO 0€/13 00:00 06/14 CCtCO 06/15 00:00 06/16 00:00

Monitored = =«Simulated

Figure 62. Monitored & simulated office temperature - initial model (Tahmasebi
and Mahdavi 2012)

75

Prototypical implementation

28

Ic]

age Office Alr Temperaty

2

20 t
0&/07 0000 0608 0000 06/05 0000 C6/10 CO0O 06/11 COCO 06/12 CO00 0613 OCiCO 06/14 CO00 06/15 00:00 06/16 CC:00

—Monitored = = =Simulated

Figure 63. Monitored & simulated office temperature - calibrated model
(Tahmasebi and Mahdavi 2012)

5.1.

Chapter 5.

Conclusion

Contributions

By using the proposed toolkit, multiple salient data streams originating
from a building's operation can be analyzed in a comprehensive manner.
Thus, the envisioned use cases can be realized. Provided interfaces enable
real-time data processing independent of software. Powerful data
preprocessing methods are implemented that support effective data
analysis. Such methods involve, for example, linked queries of energy use
for specific time intervals and building zones under specific occupancy
conditions. The scalable design of the monitoring framework can
accommodate very different system requirements and supports new
buildings (with existing building automation components) as well as
independently conceived and implemented monitoring systems that can
be realized in buildings without reusable infrastructure. The framework
developed and the associated applications support building operators to
rapidly respond to occupants' requirements. The toolkit is shown to be
flexible, as demonstrated via successful implementations in two very

distinct reference buildings.

The proposed database design showed how multiple building data
streams can be processed on a long-term basis. Powerful data
preprocessing algorithms allow effective data analysis and support
realizing the envisioned use cases. Various performance optimizations in
the database design minimize required computer resources. Practical
implementation demonstrated the usability of the database. The
benchmark tests showed a practical limit of about 900.000 datapoints
delivering about 4 measurements per hour. Two billion measurements
produce a database size of 160 GByte with the current design. This is
equivalent to about 110.000 datapoints storing a new value every 30
minutes for a period of one year. The high performance of the

preprocessing functions implemented in the database enables the

77

5.2.

Conclusion

generation of data sets (with a desired structure) in real-time. The
research efforts showed the limits of using relational databases for storing
diverse building data streams. Since common relational databases do not
support an adequate separation of measurements in multiple
(independently indexed) dimensions (e.g. MySQL partitions can only split
up values based on one criteria), an inefficient memory usage may result.
For example, in the proposed database design, all datapoints within one
partition (timeframe) are cached (indexed) the same way, even if they are
never used. Reduced memory usage could be achieved by keeping only
the currently relevant datapoints and timeframes in memory. This caching
strategy could be implemented by realizing the long term data storage
(currently covered with the data table) with an appropriate NoSQL
solution. Due to the cheap memory costs of present computers, this

limitation is only relevant for very large implementations.

The data-abstraction framework provides desired information in a generic
manner. By using virtual datapoints, multiple measurement sources can
be incorporated into a single data stream. Furthermore, complex data
gathering (e.g. calculation of values using simulation tools) can be
abstracted behind a simple interface (datapoint). By providing a web-
based visualization framework, user interface development can be
significantly simplified. Thus, increased awareness of building users and

improved BMS control can be fulfilled in a platform independent manner.

The overall toolkit consists of more then 100.000 lines of code with
additional 30.000 lines of documentation. More then 1.400 subversion
commits containing about 12.500 changes have been integrated.
Information on further developments is available at

http://most.bpi.tuwien.ac.at.

Future research

Future research and development challenges involve the implementation

of a software independent OPC DA connector to extend supported

78

Conclusion

building systems, improvement of the OPC UA interface to increase
compatibility with processing applications, enhancement of the web
visualization to simplify usage for non-technical skilled users, and
demonstration of various use cases (e.g. automatic calibration of
simulation models, simulation-based fault detection, remote data

collection for a number of projects, etc.).

To further improve historical building data storage, future research
challenges involve reduction of the database size by optimizing the
storage engine (e.g. switching to MyISAM), developing stored procedures
to automatically resort measurements in appropriate MySQL partitions,
performance analyses of the watchdog algorithm, and performance
optimization by replacing the datapoint name (varchar) of the data table

with an integer identification number.

Currently, the following projects are treated within the Google Summer of

Code (GSOC 2012).

5.2.1. Building viewer

Missing features of the proposed three-dimensional building viewer will
be implemented. Afterwards, the usability using diverse user interface
interaction technologies (mouse/keyboard, touch and gestures/natural

interaction) will be analyzed.

5.2.2. OPC connector

Since the existing OPC connector has limited adaption options, caused by
the proprietary software environment, an open-source alternative will be
implemented. The proposed implementation will extend the connector
framework and use JEasyOPC 2012 to access OPC data sources. A simple

user interface is intended to be implemented on top.

79

Conclusion

5.2.3. Data exporter

Using the GWT based web-visualization framework, a building data
exporter will be implemented. The exporter will be able to create
different file formats (CVS, etc.) based on various rules (only workdays,
when zone is occupied, etc.). For example: export hourly temperature
values, when zone XXX is occupied, from the 01.04.2011 to the
01.06.2011, on workdays only.

5.2.4. OPC UA server

5.3.

Based on the data-abstraction framework, an OPC UA server interface will
be implemented. Supporting OPC UA enables various processing
applications to easily access building data in real-time. The required OPC
UA information model will be based on datapoint and zone definitions.
Thus, the OPC UA tree (resulting from the information model) is build
based on zones with datapoints as lead nodes. Methods of the leaf nodes

(datapoints) enable data access.

Publications

As of this writing, various portions and reports on earlier stages of this

work have been published in the following articles:

R. Zach, M. Schuss, R. Brauer and A. Mahdavi. Improving building
monitoring using a data preprocessing storage engine based on
MySQL. 25 — 27 July, European Conference of Product and Process
Modelling (ECPPM 2012), Reykjavik, Island

R. Zach, S. Glawischnig, M. Honisch, R. Appel, A. Mahdavi. MOST: An open-
source, vendor and technology independent toolkit for building
monitoring, data preprocessing, and visualization. 25 — 27 July,
European Conference of Product and Process Modelling (ECPPM 2012),

Reykjavik, Island

R. Zach, S. Glawischnig, R. Appel, J. Weber, A. Mahdavi. Building data

visualization using the open-source MOST framework and the Google
80

Conclusion

Web Toolkit. 25 — 27 July, European Conference of Product and Process

Modelling (ECPPM 2012), Reykjavik, Island

R. Zach, A. Mahdavi: "MOST - Designing a vendor and technology
independent toolkit for building monitoring, data preprocessing, and
visualization"; Vortrag: 1ICAUD, Tirana, Albanien; 18.04.2012 -
21.04.2012; in: "Proceedings - First International Conference on
Architecture and Urban Design - 1-ICAUD", EPOKA Univ.; Dep. of Arch.
(Hrg.); Epoka University Press, 1 (2012), ISBN: 9789928-135-01-8; 7 S.

R. Zach, R. Brduer, M. Schuss, A. Mahdavi: "A Monitoring Framework for
Runtime Simulation Calibration and Validation"; Vortrag: Building
Simulation 2011 - IBPSA 2011, Sydney, Australien; 14.11.2011 -
16.11.2011; in: "driving better design through simulation - Proceedings
of the 12th Conference of The International Building Performance
Simulation Association", V. Soebarto, H. Bennetts, P. Bannister, P.C.
Thomas, D. Leach (Hrg.); Konferenzpublikation mit wissenschaftlichem

Lektorat, (2011), ISBN: 978-0-646-56510-1; S. 926 - 932.

R. Zach, M. Schuss, C. Proglhof, K. Orehounig, R. Brdauer, A. Mahdavi. An
integrated architecture for energy systems and indoor climate
monitoring in buildings. 16. — 18. Februar, Vienna, 7. Internationale

Energiewirtschaftstagung (2011).

M. Schuss, R. Zach, K. Orehounig, A. Mahdavi: "Empirical Evaluation of a
predictive Simulation-Based Control Method"; Vortrag: Building
Simulation 2011 - IBPSA 2011, Sydney, Australien; 14.11.2011 -
16.11.2011; in: "driving better design through simulation - Proceedings
of the 12th Conference of The International Building Performance
Simulation Association", V. Soebarto, H. Bennetts, P. Bannister, P.C.
Thomas, D. Leach (Hrg.); Konferenzpublikation mit wissenschaftlichem

Lektorat, (2011), ISBN: 978-0-646-56510-1; S. 918 - 925.

S. Chien, R. Zach, A. Mahdavi: "Developing user interfaces for monitoring

systems in buildings"; in: "Proceedings of the IADIS International

81

Conclusion

Conference - Interfaces and Human Computer Interaction 2011", K.
Blashki (Hrg.); iadis - international association for development of the
information society, Rome, 2011, ISBN: 978-989-8533-00-5, Paper-Nr.
4,8S.

R. Zach, A. Mahdavi: "Monitoring for Simulation Validation"; Vortrag:
BauSim2010 - Building Performance Simulation in a Changing
Environment, Technische Universitdt Wien; 22.09.2010 - 24.09.2010;
in: "BauSim 2010 - Building Performance Simulation in a Changing
Environment", A. Mahdavi, B. Martens (Hrg.); Verlag / Organisation /
Universitat mit wissenschaftlichem Lektorat, Wien (2010), ISBN: 978-3-

85437-317-9; S.190 - 195.

82

6.1.

Chapter 6.

References

Literature

ASHRAE 2004. ANSI/ASHRAE, Std. 135, BACnet — A Data Communication

Protocal for Building Automation and Control Networks

BIMserver 2012. Open source Building Information Modelserver, June

2012, http://bimserver.org

BIMsurfer 2012. Webviewer of IFC/BIM models based on WebGL,
February 2012, http://bimsurfer.org

Cassia F. 2007. Open Source, the only weapon against "planned
obsolescence", June 2012,
http://www.theinquirer.net/inquirer/news/1001739/open-source-

weapon-planned-obsolescence/

Chien S., Zach R., Mahdavi A. 2011. Developing user interfaces for
monitoring systems in buildings. Proceedings of the IADIS International
Conference - Interfaces and Human Computer Interaction 2011. Rome,

2011, ISBN: 978-989-8533-00-5, Paper-Nr. 4, 8S., pp 29 - 36

COLLADA 2012. XML schema that enables digital asset exchange within 3d
models. June 2012, https://collada.org

Daniels K. 2003, Advanced Building Systems, A Technical Guide for

Architects and Engineers, Birkhduser

DCOM 2012. Distributed Component Object Model, June 2012,
http://msdn.microsoft.com/library/cc201989.aspx

DIN 1994. DIN EN 834, Heat cost allocators for the determination of the

consumption of room heating radiators - Appliances with electrical

energy supply

EnergyPlus 2012. EnergyPlus Energy Simulation Software, June 2012,

http://appsl.eere.energy.gov/buildings/energyplus/

83

References

GenOpt 2012. Optimization program for the minimization of a cost

function, June 2012, http://simulationresearch.lbl.gov/GO/

Gokce H.U. 2010. Multi Dimensional Analysis of Building Performance
Data for Energy Efficient Building Operation. Dissertation. University

College Cork

Graubner C. and Huske K. 2003. Nachhaltigkeit im Bauwesen. Ernst &
Sohn. ISBN 3-433-01512-0.

GSOC 2012. Google Summer of Code, February 2012,

http://code.google.com/soc/

GWT 2012. Google Web Toolkit, February 2012,

http://code.google.com/webtoolkit/

GWT-Example 2012. Showcase of GWT widgets, February 2012,

http://gwt.google.com/samples/Showcase/

Highcharts 2012. Interactive JavaScript charts for web projects, February

2012, http://www.highcharts.com

IFC2x4 2010. Industry Foundation Classes, May 2011,
http://buildingsmart-tech.org/ifc/IFC2x4/rc2/html/index.htm

IFCwebserver 2011. Webviewer of IFC/BIM models, February 2012,

http://code.google.com/p/ifcwebserver/
IPCC 2009. http://www.ipcc.ch/ipccreports/index.htm, January 2012

ISO 2004. ISO 16484-2, Building automation and control systems (BACS) —

Part 2: Hardware

Iwanitz F. and Lange J. 2002. OPC: Grundlage, Implementierung und
Anwendung. Heidelberg: Hithig. ISBN 3-7785-2866-1

Javadoc 2012. Tool to generate documentation, June 2012,
http://www.oracle.com/technetwork/java/javase/documentation/inde

X-jsp-135444.html/

84

References

JEasyOPC 2012. Java based OPC DA Client, February 2012,

http://jeasyopc.sourceforge.net

Kastner W., Neugschwandtner G., Soucek S., Newman H.M. 2005.
Communication systems for building automation and control,

Proceedings of IEEE, vol. 93, no. 6, pp. 1178-1203

Kemper A. and Eickler A. 2009. Datenbanksysteme. 7. Auflage.
Oldenbourg Wissenschaftsverlag GmbH, ISBN: 978-3-486-59018-0

KNX 2004. Konnex Association, KNX Specifications, Version 1.1

License 2012. Creative Commons Attribution-ShareAlike 3.0 Unported

License, June 2012, http://creativecommons.org/licenses/by-sa/3.0/
LON 2010. LonMark International, June 2010, http://www.lonmark.org

Mahnke W., Leitner S.H., Damm M. 2009. OPC Unified Architecure.
Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-68898-3

Mahdavi A. 1997. Toward a Simulation-assisted Dynamic Building Control
Strategy. Proceedings of the Fifth International IBPSA (International
Building Performance Simulation Association) Conference. Vol. I, pp.

291 - 294.

Mahdavi A. 2001. Simulation-based control of building systems operation.
Building and Environment. Volume 36, Issue 6, ISSN: 0360-1323. pp.
789-796.

Mahdavi A., Mohammadi A., Kabir E., Lambeva L. 2008. Shading and
Lighting Operation in office Buildings in Austria: A Study of User Control
Behavior; Building Simulation, Volume 1 Number 2 June 2008 (2007), S.
111 -117.

Mahdavi A., Schuss M., Suter G., Metzger S., Camara S., Dervishi S. 2009.
Recent advantages in simulation-powered building systems control.
July 27 - 30, Glasgow, Scotland, Eleventh International IBPSA

Conference.

85

References

Mahdavi A. 2009. Patterns and Implications of User Control Actions in

Buildings. Journal Indoor and Built Environment, 18, 5; S. 440 - 446.

Mahdavi A., Orehounig K., Proglh6f C. 2009. A simulation-supported
control scheme for natural ventilation in buildings. Proceedings of the
11th IBPSA Conference, Building Simulation 2009, Glasgow, Scotland,
pp. 783 - 788.

MOST 2012. Monitoring System Toolkit, February 2012,

http://most.bpi.tuwien.ac.at

MySQL 2012. Multi-column indexes to improve database performance,
February 2012, http://dev.mysql.com/doc/refman/5.1/en/multiple-

column-indexes.html

Neumann C. and Jacob D. 2008. Guidelines for the evaluation of building
performance. Freiburg, Germany: Fraunhofer Institute for Solar Energy

Systems.

OASIS 2006. oBIX 1.0 Committee Specification 01, June 2012,

http://www.obix.org

O'Donnell J. 2009. Specification of Optimum Holistic Building
Environmental and Energy Performance Information to Support

Informed Decision Making. Doctorate, University College Cork, Ireland.
OPC 2012. OPC Foundation, June 2010, http://www.opcfoundation.org

OPC Datahub 2012. OPC Toolkit, February 2012,

http://www.opcdatahub.com

OpenWRT 2012. A Linux distribution for embedded devices, June 2012,

https://openwrt.org

OpenVPN 2012. Open source SSL VPN solution, June 2012,

https://openvpn.net

Orehounig K., Mahdavi A., Proglhof C., Schuss M. 2010. Virtual

implementation of a simulation-assisted passive cooling strategy in

86

References

buildings, 9 — 12 May, Antalya, Clima 2010, International Conference

on Sustainable Energy Use in Buildings.

Raftery P., Keane M., O’Donnell J., Costa A. 2010. Energy Monitoring
Systems: value, issues and recommendations based on five case
studies. 9 — 12 May, Antalya, Clima 2010, International Conference on

Sustainable Energy Use in Buildings.

ScenelS 2012. JSON-based scene graph APl for WebGL, June 2012,

http://scenejs.org

SpideGL 2012. JavaScript 3D Graphics library that relies on WebGL, June
2012, http://spidergl.org

Statistik Austria 2007. Bestand an Gebduden und Wohnungen, June 2012,
http://www.statistik.at/web_de/statistiken/wohnen_und_gebaeude/b

estand_an_gebaeuden_und_wohnungen/index.html|

Tahmasebi F. and Mahdavi A. 2012. Monitoring-based optimization-
assisted calibration of the thermal performance model of an office
building; Vortrag: 1ICAUD, Tirana, Albanien; 18.04.2012 - 21.04.2012;
in: "Proceedings - First International Conference on Architecture and
Urban Design - 1-ICAUD", EPOKA Univ.; Dep. of Arch. (Hrg.); Epoka
University Press, 1 (2012), ISBN: 9789928-135-01-8; 5 S.

Tomcat 2012. The tomcat JDBC connection pool, March 2012,

http://people.apache.org/~fhanik/jdbc-pool/jdbc-pool.html

VirtualBox 2012. Open-Source x86 virtualization, June 2012,

https.//www.virtualbox.org

87

References

6.2. Tables

6.3.

Table 1. Data streams and required sensor technologies..........ccccceveeeen.nn. 8
Table 2. Wireless fieldbus technologies and their field of applications...... 9
Table 3. Wired fieldbus technologies and their field of applications........ 10

Table 4. Exemplary use cases of the proposed visualization framework.. 12

Table 5. Variables required for the JDBC connectorccccccvvvvvveeeeeeennnn. 19
Table 6. Supported data source structure of the JDBC Connector 20
Table 7. Data-preprocessing with stored procedures..........ccccovveeeeeeeennn. 30
Table 8. Datapoint, device, and zone management........cccoccccvvvrieeeeeeeennn. 31

Table 9. Visualization technologies based on native software solutions.. 49
Table 10. Common web standards........ccccoecvviieiiiiiiieeiiiieee e 49
Table 11. Web based visualization technologiesccccceevcviiiiiieeenennnnn. 49

Table 12. Use of monitoring data for building simulation calibration

(Tahmasebi and Mahdavi 2012)........ceeveeeeeieiiiiiiiiieeeee e, 74
Figures
Figure 1. Four layer model of a generic monitoring systemccceee...... 7

Figure 2. Software components of the Monitoring System Toolkit - MOST

... 13
Figure 3. Class diagram of the connector framework..........cccccovvveeeeeennn. 15
Figure 4. Class diagram of the JDBC connector implementation.............. 18
Table 6. Supported data source structure of the JDBC Connector 20
Figure 5. OPC Client / Server infrastructure........ccocceeeeeciieeeeecinieee e, 20
Figure 6. Class diagram of the OPC DA connectorccoeeecuvvvivveeeeeeeennn. 21

Figure 7. Using a Virtual Private Network for monitoring over building

JIMES ceevreee et e s e e e e e e e re e e e e nrees 22
Figure 8. Entity-relationship model of the proposed database. 24
Figure 9. Data storage rules to minimize database load..........cccceeeeeeeeen. 27

Figure 10. getValuesPeriodicBinary() - mode 1: majority decision / sample

References

Figure 11. getValuesPeriodicBinary() — mode 2: forced 0 / default 1....... 28
Figure 12. getValuesPeriodicBinary() — mode 2: forced 1 / defaultO....... 29

Figure 13. getValuesPeriodicAnalog() — mode 1: time-weighted average /
linear iNterpolation ... 29

Figure 14. getValuesPeriodicAnalog() — mode 2: time-weighted average /
SAMPIE & KOl ... 29

Figure 15. Splitting measurements in different partitions depending on
Their TIMESTAMIPS . .ci it e e e e e e e e e eeannes 33

Figure 16. Using MySQL replication to optimize the database for different
USE CASES cevevrrrrrnrnrnnunuuuunaaasasaeeaeaeaeaaeeeeerereeeeneeeesensnsnnnnnnnanaaaaaaesaeaeaens 33

Figure 17. Duration of calculating periodic values depending on period,
datapoint type and Modeccccciiiiiiiiiee e 35

Figure 18. Duration of calculating periodic values depending on condition
type, datapoint type and mode (period = 1hour)cccccvveeeeeeeeeneicnnnns 36

Figure 19. Communication between server and client side.........ccc.......... 38

Figure 20. Building data abstraction wusing different Datapoint
IMPIEMENTATIONS ...uviiiiiiiiie e 39

Figure 21. Measurement representation within the framework.............. 41
Figure 22. Zone management within the data-abstraction framework.... 42
Figure 23. Database connection pool implemented in the class DbPool.. 43
Figure 24. Generic SErviCe ClasSesS.....ccieiiiiiiiciiiiiiiiiee e eeeeccirreree e e 44

Figure 25. Generic datapoint service used by the GWT-RPC
IMPIEMENTATION ..uuviiiiiiiiiie e e 44

Figure 26. Source code documentation OVErViewccccecccvvvvvveeeneeennn. 45
Figure 27. Psychrometric chart generated with the MATLAB-Framework 46
Figure 28. Cutout of the MATLAB-Framework class diagram. 47
Table 9. Visualization technologies based on native software solutions.. 49
Table 11. Web based visualization technologiesccccceevcviiiiieeeenennnn. 49

Figure 29. Software architecture of the proposed visualization framework

... 50
Figure 30. Methods provided by the Module Controller..........cccueeeeeen.n. 51
Figure 31. Main menu generated by the Module Controller.................... 51

References

Figure 32. Visualization library of the proposed framework..................... 52

Figure 33. Relations of the DNDController within the client side software
1ol o 11 =Tl U] OO PR PRSP 54

Figure 34. Highlighting of droppable areas while moving a DragWidget.. 54
Figure 35. Data visualization using the chart module.............cccovvveeneenn. 55
Figure 36. Centralized data visualization using the desktop module........ 56

Figure 37. Three-dimensional building visualization using BIMsurfer 2012

... 57
Figure 38. Exposing all levels of a building model.............ccccciviiieennnnnnn. 58
Figure 39. Exposing a single floor ..o 58
Figure 40. Building model visualization with enabled transparency......... 59

Figure 41. Source code documentation of the visualization framework .. 60

Figure 42. Building Lehartrakt.........cccceeeeeeiiicciiiieieeeee e 61
Figure 43. Building Mitteltrakt........cccccoeeeeiiiiiiiiiiiieeeee e, 62
Figure 44. Four layer model of the monitoring system in Lehartrakt 62

Figure 45. Floor plan including sensors of two office rooms and one
conference room in Lehartrakt.....cccoecveeeiiiiiieni i 64

Figure 46. Floor plan including sensors of two laboratories in Lehartrakt 64
Figure 47. Heat meters installed at radiators.......cccccceeeeeeeieccciiiiiiieeeeeeen, 65
Figure 48. Sensor setup at the fan-coils.........ccccovveveeiiiiiiiiciiee e, 65

Figure 49. Temperature, relative humidity, CO2 and VOC sensor setup .. 65

Figure 50. Occupancy detection based on a wireless motion sensor 66
Figure 51. Contact sensor used to measure window state..........cccce........ 66
Figure 52. Installation setup of various fieldbus gatewaysccccec...... 67
Figure 53. Four layer model of the monitoring system in Mitteltrakt 68

Figure 54. Legacy CO2 sensor equipped with the EnOcean wireless module

STIMILL0 cetiiieeeiiiee ettt ettt e et e e e st e e e s st e e e s sateeeessnbaeeessanseneeesanns 68
Figure 55. Floor plan including sensors in Karlsplatzccccoovveeeeeeennn. 69
Figure 56. Sensor setup to measure the mean radiator temperature...... 69
Figure 57. Electrical meter installed on lightsccccceeeiiiiiicciiiiiiieeeeeeen, 70
Figure 58. Rack for air quality SENSOrScccocecviiiiiiiieiee e, 70

References

Figure 59. Occupancy detection using motion sensors..........cccccveeeeeeennnn. 70
Figure 60. Webinterface of the productive virtual machine server.......... 72
Figure 61. User interaction with the webinterface using touch control... 73

Figure 62. Monitored & simulated office temperature - initial model
(Tahmasebi and Mahdavi 2012)........ceeeveeeeeeeiiiiiiiieeeee e, 75

Figure 63. Monitored & simulated office temperature - calibrated model
(Tahmasebi and Mahdavi 2012)........cceeveeeeiieiiiiiiiieeeee e, 76

91

Chapter 7.
Appendix

7.1. MySQL Stored Procedures

The following figures show the flow diagrams of the data preprocessing

algorithms implemented in the MySQL database using Stored Procedures.

VARCHAR(100): p_datapoint_name
DATETIME: p_starttime
DATETIME: p_enctime
DOUBLE: p_startvalue

DOUBLE: p_curentVdue
DOUBLE: p_lastvalidvalue
DOUBLE: p_guality

Iv_index =1

CREATE temporary takle IF NOT EXISTS
data_calcAverageWeighted
TRUNCATE table data_calcAverageWeighted

L]
add p_startvalue to table
data_calcéverageWeighted

copy values of timespan from table data
to table data_calciverageWeighted
v
add value and timeduraion 0 fr timesamp
p_endtime to table data_calciverageWeighted
]

‘ Iv_indexdax = rumber of rows of table ‘

data_calcéverageWeighted

Last rowoftahle Is
data_calcAverageWeighted reached? p_startvalue
(v_index+1 <= Iv_indextax?) NULL?

| timeduration = O for frst entry (v_index= 1) |

timeduration of current row (id=Iv_index) = l

timestamp of next row (id=Iv_index+1) |Iv_timeduration8um = sum ofcolumn timeduration |
timestamp of current row(id=Iv_index)

yes

v_timeduration
07

increment Iv_index

h 4

p_currentyalue = p_currentValue = value of second last
sum (value * timeduration) / lv_timedurationSum) row oftable data_calcPeriodicValues
T

y
_currentValue =
sum (value * timeduration) / lv_timedurationSum

p_guality = lv_index + 1

Figure 64. Flow diagram — calcAverageWeighted()

92

Appendix

input values

VARCHAR(100): p_datspoint_rame
DATETIME: p_starttime
DATETIME: p_ercitime

DOUBLE: p_periode

DOUBLE: p_value_starttime
DOUBLE: p_value_endtime

allowed?
no

yes

y

return error message

Iv_starttime_per = p_starttime
Iv_endime_per = lv_starttime_per + p_periode
Iv_delta_x = p_endtime — p_starttime
(p_value_endime - p_value_starttime) / Iv_delta_x
Iv_d = p_value_starttime;

Iv_guality = (p_petiode) J (v_delta_x),

END

enctime reached?

(Iv_endtime_per = p_endtime?)

m

|

A

Ilv_value= Iv_k *Iv_x +Iv_d |

Iv_guality = count number of values in last periode
UPDATE quality of last value in TABLE data_periodic with Iv_guality

y

store Iv_value, Iv_endime_per, p_datspoint_name,
Iv_guality in table data_periodic

y

shift to next periode:
Iv_starttime_per = lv_endtime_per
Iv_endtime_per = lv_endime_per + p_perode
Iv_x=lv_x+ p_periode

Figure 65. Flow diagram — interpolateValuesLinear()

93

Appendix

FROM PAGE 1 isp_mode 27

endtime reached?
(v_endtime_per = p_endtime?)

no

are
valuesin current

retum error message

period?

no

ves ~INP UT.

calcAverageWeighted

LOUTPUT-

Iv_courtPeriod = 1

store data (Iv_currentValue, Iv_guality) of
current period in table data_periodic

p_&atpoh Liane
U_starttme per+1
u_eadtme per
u_kstvalidfalie

u_ctmertialee
u_etvalitvalie
u_qeaty

y
|v_countPeriod ++
Iv_guality=1 / Iv_courtPeriod

y

store data (Iv_lagtValidValue, Iv_guality) of
current period in table data_perodic

A

shift to next period:
Iv_starttime_per = lv_endtime_per +1
Iv_endtime_per = lv_endtime_per + p_period

TOPAGE 1

Figure 66. Flow diagram — getValuesPeriodicAnalog()

94

Appendix

input values

VARCHAR(100): p_datapoint_name

alloved?

no

yes

create temporary table (if not exists) data_periodic
(auto increment iddata_periodic)
truncate table data_periodic

Iv_starttime_per = p_starttime
Iv_endtime_per = |v_starttime_per + p_period
Iv_firstValue = value of first date
Iv_lastValidvalue = Iv_firstValue
Iv_lastperiod_was_vdid = true
Iv_countP eriod = 1
store data (value) of first value

Is p_mode = 10007

retum error message

TOPAGE 2

isp_mode1?

yes

enctime reached?

Qv_endtime_per »p_endtine?) -

no

arevaluesin
current period?

Iv_courtPeriod ++
Iv_gudity=1 {lv_countP:

lessOthan 1 in
current period?

yes

I Iv_currentValue = 0 | | Iv_currentvalue = 1 |

l‘—l

Iv_quality = number of values in current period

Iv_countPeriod = 1

¥

IIv_IasValxd\/alue = last value of current period |

1

store Iv_currentValue and |v_quality in table
data_periodic (as value fr current period)

T

v

shift to next period:
Iv_starttime_per = Iv_enctime_per + 1
Iv_enctime_per = lv_endime_per +p_period

FROM PAGE 2

eriod

is
Iv_outputf nshled
true?

return genersted values

(table data_periodic)

Figure 67. Flow diagram — getValuesPeriodicBinary()

95

Appendix

AR o
DATETINE: p_startme
DATETINE: p_edtme
VARCHARQOD: p_cp2

DOUBLE: pualteLow

DOUBLE: pualeHigh

retum error message

create temporary table (if not exists) data_tmp

create temporary table (if not exists) data_tmp_sorted
ltruncate table data_tmp

ltruncate table data_tmp_sorted

¥

icopy values oftimespan for datapoint
p_dp1 from table data to table data_tmp

icopy values oftimespan for datapoint
p_cp2 from table data to table data_tmp

copy values ordered by timestamp and "
datapointname (b_dp2 before p_cp1) from table \:/’:!;1:3 t1:foolunn valid (BOOLE AN) of table data_tmp(_sorted):
data to table data_tmpto data_tmp_sorted invaid=0
l Undefined= NULL

iset column valid in table data_tmp_sorted to:

-TRUE for rows in which datapoint p_dp2 mests
criteria (between p_valueLowand p_valueHigh)
-FALSE for rows in which datapoint p_cp2 doesrit
meet criteria (between p_valueLowand p_valueHigh)

l

| Iv_timestampLastValid = p_starttime |

l

Iv_indexdax = MAX(id) of table data_tmp_scrted

More ertriesin teble
data_tmp_sorted?

no

return valid values of
datapoint p_dp1 (fom table
data_tmp_sorted)

yes

Last (before actual id)
entry of p_dp2 valk?

Current
rowy (rowwith id equal
Iv_index) invaikd?

Current entry vai?

rovy (rovwwith id ecual
Iv_index) undefined

Cunent
Iv_valid = F ALSE rovw(row with id equal
Iv_index) valid?

0 Iv_timestampLastValid =
timestamp of cument row

Iv_timestampDiff = yes
timestamp of currert row -
Iv_timestampLastValid

Iv_timestampDiff = 1

Calc and store quality
1000 / (v_timestampDiff)

Increment Iv_index

Figure 68. Flow diagram — getValuesWhereDpBetween()

96

Appendix

input values alloved?

VARCHAR (100):

X7

DATETINE: _startm e
DATETINE: pedtme
VARCHARQOD: p_p2
DOUBLE: pualte

no

create temporary table (if not exists) data_tmp

create temporary table (if not exists) data_tmp_sorted
ltruncate table data_tmp

ltruncate table data_tmp_sorted

retum error message

¥

icopy values of timespan for datapoint
p_dp1 from table data to table data_tmp

icopy values of timespan for datapoint
p_cp2 from table data to table data_tmp

copy values ordered by timestamp and
datapointname (p_dp2 before p_dp1) from table
data to table data_tmpto data_tmp_sorted

Values of colunn valid (BOOLE AN) of table data_tmp(_sorted):
Vald=1
invald=0

|

Undefined=NULL

iset column valid in table data_tmp_sorted to:
-TRUE for rowes in which datapoint p_dp2 mests
criteria (equa loverbigyer p_value)

-FALSE for rows in which datapoint p_cp2 doesrit
meet criteria (equalioverbigger p_value)

l

| Iv_timestampLastValid = p_starttime I

l

Iv_indexddax = MAX(id) of table data_tmp_sorted

More ertriesin teble

data_tmp_sorted?

no

yes

Last (before actual id)

entry of p_dp2 valk?

yes

Current
rowy (rovw with id ecqual
Iv_index) invaik?

yes

v_valid = F ALSE

Current entry vai?

Current
rovy (rovwith id ecual
Iv_index) undefined
(NULLY?

ument
rovw(row with id equal
Iv_index) valid?

Iv_timestampLastValid =
timestamp of current row

Iv_timestampDiff =
timestamp of currert row -

walid values of

Iv_timestampLastvalid

Iv_timestampDiff = 1

Calc and store quality
1000 { (v_timestampDiff)

Increment Iv_index

Figure 69.

Flow diagram — getValuesWhereDpXXX()

97

Appendix

VARCHAR(100Y p_datapoint_name
NP UT DATE TIME: p_timestamp
DOUBLE: p_value

input values
allowed?

no

A 4

Y:S retum error message

timeStampDiff = difference of seconds to last value of datapoint_name in table data;
maxTimestampDeadband = deadband of datapoint_name in table datapoint;
maxTimestampYalue = value of last entry for datapoint_name in table dats; A 4
maxiVadue = max of datapcint_name in teble datspoint
min¥alue = min of datspoint_name intable datapoirt

minYalue NULL?

_value <
minvalue?

SELECT -13

yes

mandvalue NULL?

p_value =
manivalue?

SELECT -12

ritries in takle data fo

| INSERT INTO data p_datapoint_name,
p_datapoint_name? i

p_timestamp, p_value

SELECT1

0.

timeStampDiff <
sample_interval?

Figure 70. Flow diagram - addData()

98

Appendix

START
INT idzone

NPUT INT: p_idzone

creste temporary table (f not exists) tmp_SP_getP enmissionOfl)serf orDatapoint
truncate takle tmp_SP_getP ermissionOfUserForD atepoint

Input values

allowned?

no

Is
p_permissionType
‘admin'?

Is

p_permissionType p_permissionType
‘read'? "wite'?

Yes

v Yes Yes

Write zones to which user has READ accessinto table
tmp_SP_getPermissionOfU serForDatapoint

lWirite zones to which user has ADMIN access into table
tmp_SP_getP ermissionOfUserForD atapoint

[Write zonesto which user hasWRITE accessinto table
tmp_SP_cetPermissionOfUserForDatapoint

A 4
Iv_index =1
Iv_indexMax = maxid of table . o
tmp_SP_getPermissionOf)serForDatapoint Return warning: ¥wrong permission type! I

Is
Iv_index <= lv_indexax?

yes

v

Iv_currentZone = idzone of lv_index (of table
tmp_SP_getP ermissionOfl serForDatspoint)

p_BBpohtiane

isDpInSubzone :|

LouTeuT- u_DphSibzore

Is
DpInSubzone
TRUE?

Iv_retum = TRUE

Iv_index = lv_index + 1

Figure 71. Flow diagram — getPermissionOfUserForDatapoint()

99

Appendix

INPUT INT: p_idzone

create temporary table (fnot exists)tmp_SP _getPemissionOfJserf orZone and
tmp_SP_getP ennissionO fserf orZoneHigher Zones
truncate tables

Input values
alloved?

no

return warning message

Is Is Is
b_pemmissionType no. _pemnissionType >no. i e
‘read? "wyite'? ‘admin'?

Yes Yes

Yes x

v
Wiite zonesto which user has READ accessinto table
tmp_SP_getPermissionO fUserf orZone

Wihite zonesto which user has ADMIN accessinto table
tmp_SP_getP ermissionO fUserf orZone

Wiite zcnes to which user has WRITE accessinto table
tmp_SP _getPermissionOfl)serFor Zone

Write all higher zones and zone itself into table
tmp_SP_getP ennissionOfl serf orZoneHigherZones

Does atleast one entry of
tmp_. ForZone and
tmp_.. Higher Zones match?

I Retum warring: Wrong pemnission type!

return FALSE

Figure 72. Flow diagram — getPermissionOfUserForZone()

100

Appendix

WARC Ha,R(1O0): p_datapoht_ame
P uT‘<INT: p_zoNe >
Is

Iv_current_zone in table
zone’?

no

getSubzones_internal | f«—INPUT.
4

retum waming message

i

Is
daapoint_name in at
least on subzone of
p_zone?

no

yes
v

p_out = TRUE p_out = FALSE

<

A

END

Figure 73. Flow diagram — isDpInSubzone()

101

Appendix

p_errorCode TINYINT
p_datapoint_name VARCHAR(100)

p_timestamp DATETIME
START NPUT p_description VARCHAR(200)
p_toDo VARCHAR(200)

p_priority TINYINT
p_souwrce VARCHAR(100)

no l

retum error message

input values
allowed?

newverror OR first error OR

emorCode other than 104117 END
y
no insert values into table waming
update enctime of warning SELECT1

Figure 74. Flow diagram — addWarning()

START
input: INT idzone

NPUT INT: p_idzone

islv_current_zone in
table zone?

no

yes

getSubzones_interral | |e—INP UT

! :

returntable zones_tmpSPsubzores return warning message

END

Figure 75. Flow diagram — getSubzones()

102

Appendix

(START) i
input: INT idzone NPUT INT: p_idzone

crede temporary table (if not exists) zones_tmpSPsuwzones
(auto increment 1D)
truncate table zones_tmpSPsubzones
Iv_index =1

}

add p_idzone to takle zones_tmpSPsubzones l

!

| Ilv_currert_zone = p_idzone |

Iv_curent_zone in table
no

Iv_current_zone nat null
AND Iv_index<10007

false

Iv_current_zone a high zone
(does it have subzones)?,

is

yes

v

add subzones of lv_current _zone
to table zones_tmpSPsubzones

A 4

increment |v_index
Iv_curent_zone = zone with |D Iv_index fom zones_tmp

retum erro

I message

Is
Iv_index 10007

no

retum erro

({able zone_has_zone may be corupt)

I message

END

Figure 76. Flow diagram — getSubzones_internal()

103

Appendix

START
input: INT idzone

NPUT INT: p_id_zone

Iv_index =1

create temporary table (if not exists) zones_tmp (auto increment 1D)
create temporary table (f not exists) zones_basic (auto incremert 1D)

.

| add p_idzone to takle zones_tmp

l

| Iv_current_zone = p_idzone

islv_current_zore in

table zore?

yes

no

.

return error message

is lv_current_zone not null
AND Iv_index=10007

false

islv_current_zone a high zone

(does it have subzones)?

y

no

add subzones of current zore to
table zones_tmp

add |v_current_zone to

table zone:

increment Iv_index

Iv_curent_zone = zone with ID Iv_index from zones_tmp |

islv_index 10007

no

}

yes

A 4

retum errol

returntable zones_basic
drop table zones_tmp
drop table zones_basic

(table zone_has_zone may be corrupt)

I message

END

Figure 77. Flow diagram — getBasiczones()

104

Appendix

7.2. Virtual datapoint example

The following Java code shows the implementation of the virtual
datapoint RadiatorHeatPower within the data-abstraction layer. The
datapoint calculates the heat power of a radiator based on the mean
temperature and the standard heat output of the radiator and the room

temperature of the respective zone.

package bpi.most.server.model.dpvirtual;

import java.util.Date;

import bpi.most.server.model.Datapoint;
import bpi.most.server.model.DpController;
import bpi.most.server.model.DpVirtualFactory;
import bpi.most.shared.DpDataDTO;

import bpi.most.shared.DpDatasetDTO;

/**
ID = "RadiatorHeatPower" RadiatorHeatPower calculates the heat power of a
radiator based on the
- A) mean radiator temperature
- B) the standard heat output of the radiator (based on the respective

radiator size!! --> [W]), e.g. 1694 W for a common radiator with 1m length

- O (optional) the room
temperature of the respective zone (20C is used if not provided).

- A) dpMeanTemp - String of dp name

- B) standartHeatOutput - Integer, [W]

-) dpRoomTemp - String of

Example: dpMeanTemp teml; standartHeatOutput 1694; dpRoomTemp temZ2;

@author robert.zach@tuwien.ac.at
@parameter virtualDpId = "RadiatorHeatPower"
@return A Datapoint Instance or null if the requested type (string id) is
not support
*/
public class RadiatorHeatPower extends DpVirtualFactory {

*
*
*
*
*
*
*
*
* The following custom attributes should be provided:
*
*
*
*
*
*
*
*
*

@0verride
public Datapoint getVirtualDp(String virtualDpId, String dpName) {
// if virtualDpld is yours --> return a Datapoint instance
if (virtualDpId.equals("RadiatorHeatPower")) {
return new RadiatorHeatPowerImplementation(dpName);

}
return null;
}
/*
* Inner Class with the actual Implementation.
*/

public class RadiatorHeatPowerImplementation extends Datapoint {
// Custom Attributes

private final String IDdpMeanTemp = "dpMeanTemp";

private final String IDstandartHeatOutput = "standartHeatOutput";

private final String IDdpRoomTemp = "dpRoomTemp";

DpController dpct = null;

private DpDatasetDTO defaultRoomTemp;

public RadiatorHeatPowerImplementation(String dpName) {
super (dpName);
// get required DPs
dpct = DpController.getInstance();
// create default room temp Dataset - set to 20C

105

Appendix

defaultRoomTemp = new DpDatasetDT0(Q);
defaultRoomTemp.add(new DpDataDTO(new Date(), 20.0));
}

/*
* Overwrite getValues, getValuesPeriodic, etc.
*/

@0verride

public int addData(DpDataDTO measurement) {
// not supported
return 0;

3

@0verride

public int delData() {
// not supported
return 0;

3

@0verride

public int delData(Date starttime, Date endtime) {
// not supported
return 0;

3

@0verride
public DpDataDTO getData() {
// get required DPs
Datapoint dpMeanTemp = dpct.getDatapoint(getCustomAttr(IDdpMeanTemp));
// dpRoomTemp is null if not defined
Datapoint dpRoomTemp = dpct.getDatapoint(getCustomAttr(IDdpRoomTemp));

// put last value in Dataset
DpDatasetDTO meanRadiatorTemp = new DpDatasetDTO(Q);
meanRadiatorTemp.add(dpMeanTemp.getData());

if (dpRoomTemp == null) {
return calculateHeatPower(meanRadiatorTemp, defaultRoomTemp)
.get(0);
} else {
DpDatasetDTO roomTemp = new DpDatasetDTOQ);
roomTemp .add(dpRoomTemp . getData());
return calculateHeatPower(meanRadiatorTemp, roomTemp).get(0);

3

@0verride
public DpDatasetDTO getData(Date starttime, Date endtime) {
// get required DPs
Datapoint dpMeanTemp = dpct.getDatapoint(getCustomAttr(IDdpMeanTemp));
// dpRoomTemp is null if not defined
Datapoint dpRoomTemp = dpct.getDatapoint(getCustomAttr(IDdpRoomTemp));

if (dpRoomTemp == null) {
return calculateHeatPower(
dpMeanTemp.getData(starttime, endtime),
defaultRoomTemp);
} else {
return calculateHeatPower(
dpMeanTemp.getData(starttime, endtime),
dpRoomTemp.getData(starttime, endtime));

3

@0verride
public DpDatasetDTO getDataPeriodic(Date starttime, Date endtime,
Float period, int mode) {
// get required DPs
Datapoint dpMeanTemp = dpct.getDatapoint(getCustomAttr(IDdpMeanTemp));
// dpRoomTemp is null if not defined

106

Appendix

3

/**

Datapoint dpRoomTemp = dpct.getDatapoint(getCustomAttr(IDdpRoomTemp));

if (dpRoomTemp == null) {
return calculateHeatPower(dpMeanTemp.getDataPeriodic(starttime,
endtime, period, mode), defaultRoomTemp);
} else {
return calculateHeatPower(dpMeanTemp.getDataPeriodic(starttime,
endtime, period, mode), dpRoomTemp.getDataPeriodic(
starttime, endtime, period, mode));

* Actual calculation of the heat power Includes smaller quality value
* of meanRadiatorTemp and roomTemp in returned Dataset
* @return A Dataset of the calculated heat power

*/

public DpDatasetDTO calculateHeatPower(DpDatasetDTO meanRadiatorTemp,

/*
* @see

DpDatasetDTO roomTemp) {
DpDatasetDTO result = new DpDatasetDTOQ);
DpDataDTO matchingRoomTemp;
// set dp name in Resultset
result.setDatapointName(getDatapointName());
int standartHeatOutput = Integer
.valueOf(getCustomAttr(IDstandartHeatOutput));

// return empty Dataset if not all arguments are valid
if (meanRadiatorTemp.isEmpty() || roomTemp.isEmpty()) {
return result;

3

// calculate power value for each radiator meanTemp measurement
for (DpDataDTO meanTempData : meanRadiatorTemp) {
Double power = null;
Double diffTemp = null;
// ### get matching room temperature
// use roomTemp measurement before or equal to the respective
// meanTemp measurement timestamp
matchingRoomTemp = roomTemp.getDataBeforeOrEqual(meanTempData
.getTimestamp());
//if no data before or equal use after, only required for
//special case where you have no measurements in the beginning
if (matchingRoomTemp == null) {
matchingRoomTemp = roomTemp.getDataAfter(meanTempData
.getTimestamp());
}

// ### calc diff. temp.
diffTemp = meanTempData.getValue()
- matchingRoomTemp.getValue();
// negative values caused by measurement faults are set to @
if (diffTemp < 0.0) {
diffTemp = 0.0;

}

// calc heat power - see documentation

power = @0.0062 * java.lang.Math.pow(diffTemp, 1.2998)
* standartHeatOutput;

// set smaller quality value

if (meanTempData.getQuality() < matchingRoomTemp.getQuality())

result.add(new DpDataDTO(meanTempData.getTimestamp(),

power, meanTempData.getQuality()));

else
result.add(new DpDataDTO(meanTempData.getTimestamp(),
power, matchingRoomTemp.getQuality()));
}

return result;

107

Appendix

* bpi.most.server.model.Datapoint#getNumberOfValues(java.util.Date,
* java.util.Date)

*/
public int getNumberOfValues(Date starttime, Date endtime) {
return dpct.getDatapoint(getCustomAttr(IDdpMeanTemp))
.getNumberOfValues(starttime, endtime);
}
}
}

108

Appendix

MATLAB-Framework

7.3.

PIOA: (BULNS : AWRU)NBLNUALINIANES +
pIoA : (Ax'Aelly : eiep)sanjearod +

PIOA : (Jpuabaippe +
PIOA : ())3qeTdS +
10A : (12} IRpRIRI +
PIOA: ouw&z:zm_si

ploA

6

+

plo/

PIOA: (1

PIOA c_u%_u:_m;ﬁmt + 1

PIOA : (D3dsauImneja@ids +
A (3aNBIIMIU +
PIOA : (puabaTppe +

Buing : aweud|yns -
wi E&w_a:mc.

Wi

[2qe[24n614"10n1s : [aqe[Inbly -
2adsaurPnas : Jadsaul| -

uonen|eAd poLad ‘Jui : Juawa.nseaw~poliad ‘Bulis : swnpua ‘b
JuaWINseaW polsad ‘b

1S AWNPUR “BULLS : AWINILIS T80}y : dWAUBIL YU : 2UOZ)PUOZJOS

ummc%.ﬁh_mﬂﬁnuu Buing’|ja) Aesty : ajlissaxlel -
Umo,vvcsufi‘ Buing'|)Aelly : 3jlasaun -
- BuLng’|e)ARLIY : 40j0D) -
J20]) : Xew - =
“3_,‘. EEW. sanjen Bilspewe eainan - 31 (BuLS : AWNPUD ‘BULS © AWINIEIS)IWINPUIDIOPGIUNIEISNIY) +
. Jeol3 : Gopyjem - Juiodejeqeiep’|[3)ARLIY : (180]4 : YBIHAN[RA ‘JR0|4 | MOTaN[eA “uiodeleq : J3)j1fiutodeieAw ‘1eolq : poriad ‘Buig : awnpua ‘bulis : awneIS)uIMPgdaIAYMeIRAIRb +
pRELD “r 30]4 : Ul RAIUI 3| dwes - JulodeieqeIRp||3)°AeLly : (180]4 : an[eA ‘Jujodeleq : JayjifiutoderegAw ‘BuLs : AWNpud ‘BuLis : awnels)aB6IgdaasaymeIeaIdb +
1e013 : [eAsaIUIDdures - Jurodeyeqeiep’|[:ARLIY : (180]4 : @n[eA ‘Juiodeieq : Jay1utoderegAw ‘BuLns : AWNPUB ‘BULIS : AWIMIRIS)IIMOTAQRIAYMRIRQIRB +
REOIL{AUEAPESDES Jutodeyeqeiep’|3)AeLay : (10} : an[eA Jujodeieq : JajIpuiodeIegAw ‘BULS : AWNPUB ‘BULIS : AWILIS)[enbIdqaIYMeIeIb +
BuLng : SUONRIAAOYNRW - | N ere qerep|ja-y AeLsy - ([puoRCO™IuUI : 3pOL “Je0] : YBIHON[EA TE0] : MOTaN[eA Jui0deIeq : Ja31AUIOdEIRGAW “TR04 - POLIAd ‘BULAS : SWIPUS “BULIS | FWIMIEIS)U3aMIGACR IR IPOLIIGEIRCIR +
Bumng :A- 3E0ld © Xeuw - Jutodeyeeiep:|[@)°Araly : (euondo iul : apows ‘1eoj4 : anjen Juiodeieq : a1 aulodereAL ‘TR0l : porad ‘Bulng : aWwNpUa ‘BuLS : AWNLIRIS)IABBIGAQRIAYMIIPOLIAERIRQAIE +
Bulng : x - Ul D IdjIRXIPUI - 5 Je0|4 | U - ulodejeqeiep’||3)Aely : (JeuondoTiul : apows Jeol4 : anjea ‘Julodeleq : JayjifulodeiegAw ‘1eol4 : polad ‘BuliS : AWNPUD ‘BuLIS : AWNLIRIS)IIMOTAQIYMIIPOLIAZRIRAIB +
akhisauryxapul - UIAS © Je Woisnd - Jutodeyeqeiep’|2)°Ae4ay : (jeuondoul : apow ‘1eol4 : anjeA ‘uiodeleq : Ja1j1fiutodeiegAw ‘1eo4 : pouiad ‘Bulns : awnpua ‘BuLng : awmRIS)enbIdaIayMIIPOLIgRIREIB +
S U J0j0)X3PUI - Jeol4 : beunae - Jutoderegeiep'|[2)ArLy : (jeuondo Iul : 3pows ‘Jeoj4 : porsad ‘BULS : ANPU ‘BULS : BWIMIRIS)AIRUIEIIPOLIRIRIB +
% Ul : J0J0DIE 1IN JBNXIPUI - qauomurodeieg Jujodereqeyep |20 Ae.ly : (jeuondoul : apow “eojq : porsad ‘Burns : awNpU? ‘Buins : AWNLIBIS)BOjRUYIIPOLIAGRIRGID +
U1 : J0jo; Jejyxapul - ujodeyeqerep|):Aeiy : (jeuondoiul : apow ‘Jeoy : poliad ‘Bulis : AWNPU ‘BULS : BWINIRIS)IPOLIIGRIRQIB +
Buing : iRy - Julodejeqerep’|3)Aealy : (Bulng : wnpua ‘bulis : awnwels)eIeaIb +
BuLng'|[2) ARl : Xi0/dxoq - m_m ahisour -
Buns : 3 - uLAS : 10j03 -
FEOL < SZISIIEN - O]} : sanjeA A - Bup n -
|2qepRINBIIdNIS buing ojoDae e - JSEEL; S
BuLg : J0jo 0]} : SIXE-X - Buins : auwreu -
Je0l4 : UIPIMAUIT - ey Aeny
6uLS : |Angp - JadsaurTdnns
buins : JaALpqp -
> 0} ;i -
buins : pmssedqp - w01 ,MEEI 1
Buing : Jasnqp -
Buing : aweuqp - BRijlowAeny
180 : A9N[RA -
aseqeiep 180} © Xan|eA - 119°ARLly : (101237 : 3BueyeIRp ‘10123 : U[RIEP)RSEIRQWERIBOISIHAIR|ND[RD +
o Je0|§7[2D AR AxcRe11y : (10122 : 26UEYRIED “JO1IIA : U[EIEP)IASEIRQWNSIAE|NWNAR[ND[ED +
% ey 1201} - IvAIDOA - odejeqerep’|[):Aeily : (1O} : Jwi| i : Jujodeieqeiep’||a) AeLiyiwIipunAl[eNDRAYMRIRQRAOWRI + J01AA : (101937 : du0z ‘Buing : adArauozujadALjosiujodereqiab +
Ry Tione U0 S JODAA : (R0} : | Ul - ujodeyegerep’| Ry Aesy)AeNDRIREPIYD + J0P3A © (103 : 3U0Z)3u0ZjQsIulodereaiab +
- apoppIponad - 120 : AUpIWINHAE[) - Qdd AWdARLIY : (496UR4™Qdd AWdARLIY : UjeIep)sabuey Qdd AWdendfed + 10137 : (Buing : adAadAjosiutodereiab +
U1 SIN[EAJQIPGUINNISIY - 1201} - Aujend - Te0y) ¢ Aiydw) - 0| 'ARAY (U1 : WSI|oqelaw)IaseIegIabue " Qdd AINddIe|Nd[ed + iodeeq : (Buins : aweu)ujodeieiab +
m mm;_mao,_hmwh:uE;M_Eh‘ 1801 : anjeA - 120 : peyduw) - MOPUIMMOJWOD NS : (1RO]4 : dLUAIUBILMOPUIMIIOJWIODIB]|[OWIR|NI[e) + PIoA : (uiodeieq : JuiodeiegAw)iuioderegaiajep +
101 1RO |5 AN [RRDIWI| - 180}} : Qdd - JAQWINN3IBQ[LLIAS : ANep - 1001y v__o>>_mszxw‘ 101937 Eow:§:escw~sw:m.»hwu=,@uﬁ.ﬁﬁ ‘_.w__JJ%E.N_,_E%ESU;:mm_y QENE:N_NH PloA : (uiodeyeq : Jutodereghw)iutoderegppe +
aseqelep : uuod - 0014 2 AW - BuLng : aweuuiodeyep - Je0)4 [oWARLLY - (e0]3 ARl : Y “teol s Aery 1013 © Sjul0dRIRQI01AN -
6yuoydANS Qdd AWdAeny 1uodereqeepR)ARLY 126Ue4"Qdd AWdAery onsners mnuiodereq
T
g 1
pIoA : (asiy’|j2) Aeaiy : eep)weabolsiHiold +
PIOA : (180] 43D "ARAIY : BYRP)OJdXOgIO|d + Ax-Aealy : (i : uonen|eAd”potsad ui : JuawdINseaw™poLiad ‘Bulng : AwNpU ‘BuLS : BWNLIRIS ‘YUl : dU0Z ‘Bulig Qj0au0Z JORdALIO! d +
PIOA : (i E.;Sfi pouad ‘i : Juawainseaw~popad ‘Bulig : awnpua ‘bulng : wniels ‘ujodeieg-Aelty : ujoderegAw)

'0j0° +

PIOA: (3u1 : uoen|eAd”poiad ‘Burs : awnpua ‘Burs : swnLels qujodereAesy : ujodereghwpuioderegyoiojdxogiold +

PIOA : (ui : dpoliad ‘BuLiS : AwNpU? ‘Bulis : wmels JulodeieqAeiy : Julodeiegiw)diporiadiuiodereqiold +
(6urns : dwnpua ‘bulns : awnwels ujodereq-Aesy : wiodeiegiw)ulodereqiold +
PIOA : (U] S)URWIRINSERW POLIAd ‘BULN : AWNPU ‘BULIS : AWIMIBIS ‘Il : JUOZ)3UOZJOUORNGLISIAAWAO[d +
S)uaWaINseaW poLiad ‘bulns : SwNpU? ‘BulIS BWINIEIS ‘U] © 3UOZ)3UOZJOUONNG!.
PIOA: (U1 : SuBWRINSEAWI poLIad ‘BULIS : AWNPUB BULNS : AWMIBIS WUl : 3U0Z)aU0Z)0AIuANbLIAANEINWUNIAdI0d +
10A : (JuI : S)uaWRINseIW™poLiad ‘burng mE;vS “BuLiS : AWIEYS ‘Ul ¢

1sigaddiold +

3U02Z)3u0Zj0AduaNbaIJaANRINWNIAWAIOND +
au0z)auozjouoneyseSIlfjoAIo|d +
oprold +
PIOA : ()gp1AUU0II +

PIoA: (gpuado +

pio : (sutodereqazijeniul +

10D (U1 © 3U0Z)SAU0ZGNSIB +

61ju0 NS : [80[6 : BIju0) -
Jwurodereq : (auodeIegAw -
D20SHEIS ¢ [H)INSHeISAW -
141010]d : [010|dAw -

10ld

11D3u07

oUW

Figure 78. Complete class diagram of the MATLAB-Framework

109

CV - Robert Zach

Professional Background

2009 -

2006 - 2009

2002 - 2006

Univ.Ass., Department of Building Physics and
Building Ecology, Vienna University of Technology,

Austria

Embedded Systems trainer and engineer. So-logic

electronic consulting and Xilinx Inc.

Technical Support for Silberpfeil architects, SAPI
consulting, Phonetastic consulting and Bioservice

Zach Gmbh

Educational Background

2009

2007

2006

2006

2004

2003

2002

Research Areas

Mag.rer.soc., Vienna University of Technology,

Austria (with distinction)

Dipl.-Ing.(FH), University of Applied Science,

Austria (with distinction)

(Study abroad) University of California, UCLA, Los
Angeles, USA

Sun certified Java Programmer

HTBLA Vienna 10, College for Electronics and IT

(with distinction)
Cisco CCNA certified

HTBLA Karlstein/Thaya, Commercial School for

Microelectronics

Building physics, informatics, building automation, embedded systems

110

