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Kurzfassung

Motivation: Die Simulation und Berechnung von Epidemien hat eine lange Tradition in
der Mathematik, aber auch in anderen Wissenschaften. Dominierten früher noch einfache
Laborversuche und Modelle, werden die Simulationen durch steigende Rechenleistungen
der Computer und Verfügbarkeit von umfassenderen Daten zunehmend komplexer und de-
taillierter. Dadurch können Fragestellungen untersucht werden, deren Betrachtung bisher
nicht möglich war.

Ziele und Methoden: Das Ziel dieser Arbeit ist die Untersuchung, Definition und In-
terpretation von dynamischen Effekten bei der Ausbreitung von Epidemien unter Verwen-
dung verschiedener Modelle. Wesentlich ist dabei der gezielte Einsatz und Vergleich von
agentenbasierten Modellen, welche die Ausbreitung der Krankheit als Folge von Übertra-
gungen von Mensch zu Mensch simulieren und Markov-Modellen, die auf stochastischen
Prozessen basieren. Während erstere durch ihre Struktur in der Lage sind, reale Effekte
zu erzeugen, verwenden letztere vorgegebene Übergangswahrscheinlichkeiten und erlauben
daher keine Rückkopplungs-Effekte.

Ergebnisse: Einfache Epidemien bestehen aus einem einzelnen Erreger, welcher sich in
einer Bevölkerung ausbreitet. In komplexeren Fällen treten mehrere Arten eines Erregers,
sogenannte Serotypen, auf, die miteinander in Konkurrenz stehen und sich gegenseitig in
ihrer Ausbreitung behindern. Interventionen gegen derartige Epidemien, beispielsweise
durch Impfungen, haben im Allgemeinen nichtlineare Effekte zur Folge. Dieses nichtlin-
eare Systemverhalten wurde in der Realität in der Vergangenheit regelmäßig beobachtet
und dokumentiert und tritt auch im agentenbasierten Modell auf. Ein wichtiger Effekt in
diesem Zusammenhang ist die Herdenimmunität, die den Vorteil einer Impfstrategie für
ungeimpfte Personen beschreibt. Im Fall konkurrierender Serotypen kann es durch Imp-
fungen außerdem zu einer Änderung der Kräfteverhältnisse der Serotypen kommen, welche
als Serotypenverschiebung bezeichnet wird. Durch geeignete, flexible Definitionen sind
aussagekräftige Interpretationen dieser Phänomene möglich, die zusätzliche Erkenntnisse
über die Ausbreitung von Epidemien liefern. Markov-Modelle sind aufgrund vorgegebener
Übergangswahrscheinlichkeiten nicht in der Lage, derartige Effekte zu erzeugen und liefern
daher vom agentenbasierten Modell abweichende Ergebnisse.
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KURZFASSUNG

Durch Berücksichtigung von Herdenimmunität und, im Fall konkurrierender Serotypen,
auch Serotypenverschiebung im Markov-Modell können allerdings die Ergebnisse des agen-
tenbasierten Modells erreicht werden. Dieser Zusammenhang wird anhand einiger Testfälle
gezeigt und lässt sich auch analytisch nachweisen.

Fazit: Die Definitionen in dieser Arbeit sind hinreichend flexibel, sodass sie sowohl bei
Modellen als auch unter Laborbedingungen und bei realen Epidemien verwendbar sind.
Es zeigt sich deutlich, dass agentenbasierte und Markov-Modelle unterschiedliche Resul-
tate liefern, welche allerdings erklärt und quantitativ dargestellt werden können. Die
Ergebnisse führen zu dem Schluss, dass Herdenimmunität und Serotypenverschiebung die
Gesamtheit aller dynamischen Effekte darstellen, die durch Interventionen gegen Epi-
demien verursacht werden.
Durch die entwickelten Methoden und gewonnenen Erkenntnisse werden die Auswirkun-
gen von Impfstrategien besser verständlich und können potentiell genauer prognostiziert
werden. Darüber hinaus liefern sie Hinweise, wie ein Modell beschaffen sein muss, um eine
konkrete Epidemie bestmöglich zu simulieren und um Impfungen und andere Maßnahmen
korrekt und valide abschätzen zu können. Agentenbasierte Modelle sind empfehlenswert
aufgrund ihrer Modellierung von realen Strukturen und ihrer Fähigkeit, entstehendes
Verhalten darzustellen. Markov-Modelle dagegen sind nur bedingt und in wenigen Situa-
tionen zur Simulation ansteckender Krankheiten geeignet.
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Abstract

Motivation: Models for simulation of epidemics have a long tradition in the field of
mathematics and other sciences. In the past, simple laboratory experiments and models
were mainly used. But today, simulations are getting more complex and detailed due to
increasing calculation power of computers and availability of more comprehensive data.
Hence it is possible to consider questions that could not be examined before.

Goals and methods: The aim of this work is to examine, define and interpret dynamic
effects on the spread of epidemics through the use of different models. This approach is
heavily based on the deliberate application of agent based models, which simulate the
spread of a disease as a consequence of transmission from person to person, and Markov
models, which are based on stochastic processes. Thanks to its structure, the former
approach is able to create real effects, while the latter approach uses given transition
probabilities, and hence is not able to produce feedback effects.

Results: Simple epidemics consist of a single pathogen that spreads among a popula-
tion. In more complex cases, several types of the pathogen, which are called serotypes,
occur. Often they are in competition and interfere with each other in their propagation.
Interventions against such epidemics, for example by vaccinations, generally cause non-
linear effects. This nonlinear system behavior has been observed and documented several
times in the real world and also occurs in agent based models. One important effect
in this context is herd immunity which describes the benefit of unvaccinated people by
a vaccination strategy. In case of competitive serotypes, vaccinations might additionally
change the balance of powers of serotypes, which is called serotype shift. Suitable, flexible
definitions allow meaningful interpretations of these phenomena that provide additional
information on the spread of epidemics. Markov models do not allow generating such
effects due to given transition probabilities, hence their results differ from the ones of
the agent based model. By taking into consideration the herd immunity and, in case of
competitive serotypes, also the serotype shift, the results of the Markov model can be
corrected so that they match the agent based model. This relationship is demonstrated
in representative test cases and is also proved analytically.
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ABSTRACT

Conclusions: The definitions in this work are sufficiently flexible so that they can be
used for models as well as for experiments under under laboratory conditions as well as
on real epidemics. The differences between agent based and Markov models are obvious
but it is possible to explain them clearly and quantitatively. This leads to the conclusion
that herd immunity and serotype shift cover all dynamic effects that are caused by inter-
ventions against an epidemic.
By the developed methods and gathered insights, the consequences of vaccination strate-
gies become more understandable and can potentially be predicted more accurately. Fur-
thermore, they lead to hints on how a model needs to be set up so that it simulates
epidemics best and can be used to assess the impact of vaccinations and other inter-
ventions correctly and validly. Agent based models seem to be suitable because of their
real world structure and their ability to capture emerging behavior. Markov models,
in contrast, are useable only in limited situations and under restrictive assumptions for
simulation of infectious diseases.

iv



Contents

Kurzfassung i

Abstract iii

Contents v

List of figures xi

1 Introduction 1

2 Agent based models 3

2.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Goals of agent based modelling . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 What is an agent? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1 Conceptual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.2 Definitions in literature . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Characteristics of agent based models . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Modelling of emerging behavior . . . . . . . . . . . . . . . . . . . . 7

2.5.2 Natural description of a system . . . . . . . . . . . . . . . . . . . . 10

2.5.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Advantages and disadvantages of agent based modeling . . . . . . . . . . . 10

v



CONTENTS

3 Different approaches for modeling of epidemics 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 The basic model types: SIS and SIR . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 SIS models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 SIR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Extensions of SIS and SIR models . . . . . . . . . . . . . . . . . . . 16

3.4 Top-Down & Bottom-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Theoretical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.2 From the theory to the model . . . . . . . . . . . . . . . . . . . . . 20

3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.4 SIS epidemics with Markov models . . . . . . . . . . . . . . . . . . 26

3.5.5 SIR models with Markov models . . . . . . . . . . . . . . . . . . . 26

3.6 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.1 SIS models with differential equations . . . . . . . . . . . . . . . . . 27

3.6.2 SIR models with differential equations . . . . . . . . . . . . . . . . 29

3.7 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Agent based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8.1 Example of an agent based epidemic model . . . . . . . . . . . . . . 32

3.8.2 Extension of agent based epidemic models . . . . . . . . . . . . . . 34

3.9 Comparison of the presented approaches . . . . . . . . . . . . . . . . . . . 35

3.9.1 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9.2 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9.3 Cellular automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9.4 Agent based models . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Herd immunity: Terminology, motivation and origin 39

4.1 Usage of the term “herd immunity” in the literature . . . . . . . . . . . . . 39

vi



CONTENTS

4.2 Usage of the term “herd immunity” in this work . . . . . . . . . . . . . . . 40

4.3 Emergence of herd immunity . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Calculation of the herd immunity . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Quantification of the disadvantage . . . . . . . . . . . . . . . . . . . 45

4.4.3 Alternative calculation of the disadvantage . . . . . . . . . . . . . . 46

4.5 Herd immunity in models . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Herd immunity as an explaining quantity . . . . . . . . . . . . . . . . . . . 48

4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.2 Analytic calculation of herd immunity in an SIS model . . . . . . . 49

4.6.3 Example: Herd immunity in an agent based SIS model . . . . . . . 52

4.6.4 Example: Herd immunity in an agent based SIR model . . . . . . . 57

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Parameter studies on herd immunity . . . . . . . . . . . . . . . . . . . . . 60

4.8.1 Relationships in the SIS model . . . . . . . . . . . . . . . . . . . . 60

4.8.2 Parameter studies with the SIS model . . . . . . . . . . . . . . . . 63

4.8.3 Parameter studies with the SIR model . . . . . . . . . . . . . . . . 69

5 Comparison of Markov models and agent based models for epidemic
simulations 73

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Comparison of equilibriums in an SIS epidemic . . . . . . . . . . . . . . . . 74

5.2.1 Construction of the models . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Parameterization of the model . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Implementation of vaccinations . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Explanation of the differences and harmonization of the results . . . 77

5.3 Comparison of the temporal progress of an SIR epidemic . . . . . . . . . . 78

5.3.1 Construction of the models . . . . . . . . . . . . . . . . . . . . . . . 78

vii



CONTENTS

5.3.2 Parameterization of the model . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Implementation of vaccinations . . . . . . . . . . . . . . . . . . . . 81

5.3.4 Explanation of the differences and harmonization of the results . . . 82

5.4 Comparison of a complete SIR epidemic . . . . . . . . . . . . . . . . . . . 84

5.4.1 Construction of the models . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 Parameterization of the model . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Implementation of vaccinations . . . . . . . . . . . . . . . . . . . . 84

5.4.4 Explanation of the differences and harmonization of the results . . . 85

5.5 Analytic considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Simulation of two competitive serotypes 89

6.1 Consideration of serotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Competition of serotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Streptococcus pneumoniae . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Influenza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.3 Haemophilus Influenzae . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.4 Serotype shift and consequences of competitive serotypes . . . . . . 91

6.3 Models with competitive serotypes in literature . . . . . . . . . . . . . . . 91

6.4 Preliminary remarks on modeling of competitive serotypes . . . . . . . . . 93

6.5 Modeling approach 1: Competition by carrying only one serotype . . . . . 94

6.5.1 Modeling an SIS epidemic with approach 1 . . . . . . . . . . . . . . 95

6.5.2 Modeling an SIR epidemic with approach 1 . . . . . . . . . . . . . . 97

6.6 Modeling approach 2: Competition by carrying only one serotype and mu-
tual susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6.1 Modeling an SIS epidemic with approach 2 . . . . . . . . . . . . . . 100

6.6.2 Modeling an SIR epidemic with approach 2 . . . . . . . . . . . . . . 103

6.6.3 Conclusions of modeling approach 2 . . . . . . . . . . . . . . . . . . 103

viii



CONTENTS

7 Herd immunity and serotype shift in case of two competitive serotypes105

7.1 Initial situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Requirements and preliminary remarks . . . . . . . . . . . . . . . . . . . . 105

7.3 Definitions of herd immunity and serotype shift . . . . . . . . . . . . . . . 107

7.4 Definition of the disadvantage . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Herd immunity and serotype shift as an explaining quantity . . . . . . . . 110

7.5.1 Herd immunity and serotype shift in SIS models . . . . . . . . . . . 111

7.5.2 Herd immunity and serotype shift in SIR models . . . . . . . . . . . 112

7.6 Parameter studies for herd immunity and serotype shift . . . . . . . . . . . 117

7.6.1 Parameter variations of the SIS model . . . . . . . . . . . . . . . . 117

7.6.2 Parameter variations of the SIR model . . . . . . . . . . . . . . . . 118

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Comparison of Markov and agent based models for epidemic simulations
with two competitive serotypes 127

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1.2 Considerations about comparability of agent based and Markov
models with two serotypes . . . . . . . . . . . . . . . . . . . . . . . 128

8.1.3 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Comparison of equilibriums in an SIS epidemic . . . . . . . . . . . . . . . . 129

8.2.1 Construction of the models . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.2 Parameterization of the models . . . . . . . . . . . . . . . . . . . . 130

8.2.3 Implementation of vaccinations . . . . . . . . . . . . . . . . . . . . 133

8.2.4 Explanation of the differences and harmonization of the results . . . 133

8.3 Comparison of the temporal progress of an SIR epidemic . . . . . . . . . . 133

8.3.1 Construction of the models . . . . . . . . . . . . . . . . . . . . . . . 133

8.3.2 Parameterization of the models . . . . . . . . . . . . . . . . . . . . 138

8.3.3 Implementation of vaccinations . . . . . . . . . . . . . . . . . . . . 140

8.3.4 Explanation of the differences and harmonization of the results . . . 141

ix



CONTENTS

8.4 Comparison of a whole SIR epidemic . . . . . . . . . . . . . . . . . . . . . 142

8.4.1 Construction of the models . . . . . . . . . . . . . . . . . . . . . . . 142

8.4.2 Parameterization of the models . . . . . . . . . . . . . . . . . . . . 143

8.4.3 Implementation of vaccinations . . . . . . . . . . . . . . . . . . . . 144

8.4.4 Explanation of the differences and harmonization of the results . . . 144

8.5 Analytic considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Summary and Conclusions 149

9.1 Summary of insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.3 Further considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.4 Recommendation for usage of Markov models . . . . . . . . . . . . . . . . 154

Bibliography 155

Lebenslauf 161

x



List of Figures

2.1 Visualization of an agent according to the definition presented at the Win-
tersim 2005/2006 [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 “emerging behavior”: Rule for example 1 . . . . . . . . . . . . . . . . . . . 8

2.3 “emerging behavior”: System with rules of example 1 . . . . . . . . . . . . 8

2.4 “emerging behavior”: Rule for example 2 . . . . . . . . . . . . . . . . . . . 9

2.5 “emerging behavior”: System with rules of example 2 . . . . . . . . . . . . 9

3.1 SIS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Typical results of SIS models . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Typical results of an SIR model . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Example of a state transition diagram . . . . . . . . . . . . . . . . . . . . . 19

3.6 Example of a Markov tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Example of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Commonly used terms for models in the area of stochastic processes . . . . 24

3.9 Result of a typical SIS Markov model . . . . . . . . . . . . . . . . . . . . . 26

3.10 Result of a typical SIR Markov model . . . . . . . . . . . . . . . . . . . . . 27

3.11 Visualization of the differential equation SIS model . . . . . . . . . . . . . 28

3.12 Typical result of a differential equation SIS model . . . . . . . . . . . . . . 29

3.13 Visualization of the differential equation SIR model . . . . . . . . . . . . . 29

3.14 A typical result of an SIS model of differential equations . . . . . . . . . . 30

3.15 Neighborhoods on cellular automata . . . . . . . . . . . . . . . . . . . . . 31

3.16 Realization of an SIR model as a cellular automaton . . . . . . . . . . . . . 31

xi



LIST OF FIGURES

3.17 Realization of an SIR model based on an LGCA . . . . . . . . . . . . . . . 32

3.18 Agents in an epidemic model . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.19 Contacts between agents in an epidemic model . . . . . . . . . . . . . . . . 33

3.20 Infections of agents in an epidemic model based on contacts . . . . . . . . 33

3.21 Recovery of agents in an epidemic model . . . . . . . . . . . . . . . . . . . 34

3.22 Result of a typical agent based SIS model . . . . . . . . . . . . . . . . . . 34

3.23 Result of a typical agent based SIR model . . . . . . . . . . . . . . . . . . 34

4.1 Visualization of the infection probability of a marked person . . . . . . . . 42

4.2 Infection states of persons in an SIS model . . . . . . . . . . . . . . . . . . 48

4.3 Infection states of persons in an SIR model . . . . . . . . . . . . . . . . . . 49

4.4 Graph of the herd immunity depending on the vaccinated part of the pop-
ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 States in the SIS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 New infections in the SIS model . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Calculation of the herd immunity upon current new infections . . . . . . . 55

4.8 Calculation of the herd immunity upon infections since simulation start . . 55

4.9 Calculation of the herd immunity upon current carriers . . . . . . . . . . . 55

4.10 States in the SIS model with vaccinations after 100 time steps . . . . . . . 56

4.11 Infections in the SIS model with vaccinations after 100 time steps . . . . . 56

4.12 Herd immunity based on current infections with vaccinations after 100 time
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.13 States in the SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.14 New infections in the SIR model . . . . . . . . . . . . . . . . . . . . . . . . 59

4.15 Is there a disadvantage or still a benefit in time 40 to 80? . . . . . . . . . . 59

4.16 Calculation of the herd immunity upon current new infections . . . . . . . 59

4.17 Calculation of the herd immunity upon infections since simulation start . . 59

4.18 Calculation of the herd immunity upon current carriers . . . . . . . . . . . 59

4.19 Results of the test series for infection probability and contacts per persons. 61

4.20 Deviation of the agent based model from the analytic calculation in case
of no vaccinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



LIST OF FIGURES

4.21 Deviation of the agent based model from the analytic calculation in case
of 10% vaccination rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.22 Deviation of the agent based model from the analytic calculation in case
of 20% vaccination rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.23 Deviation of the agent based model from the analytic calculation in case
of 30% vaccination rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.24 Variation of the infection probability in the SIS model . . . . . . . . . . . . 65

4.25 Herd immunity of the variation of the infection probability in the SIS model 65

4.26 Variation of the recovery time in the SIS model . . . . . . . . . . . . . . . 65

4.27 Herd immunity of the variation of the recovery time in the SIS model . . . 66

4.28 Variation of the infection probability in the SIR model . . . . . . . . . . . 70

4.29 Herd immunity of the variation of the infection probability in the SIR model 70

4.30 Variation of the recovery time in the SIR model . . . . . . . . . . . . . . . 71

4.31 Herd immunity of the variation of the recovery time in the SIR model . . . 71

5.1 The state transition diagram of the SIS Markov model for unvaccinated
people . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 The Markov tree of the SIS Markov model . . . . . . . . . . . . . . . . . . 75

5.3 Carrier rates of the equally parameterized SIS models without vaccinations 76

5.4 Results of vaccinations in the Markov model and in the agent based model
for SIS epidemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Results of vaccinations in the Markov model (corrected by the herd immu-
nity) and in the agent based model for SIS epidemics . . . . . . . . . . . . 78

5.6 The state transition diagram of the SIR Markov model for unvaccinated
people . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 The decision tree of the SIR Markov model . . . . . . . . . . . . . . . . . . 80

5.8 Time-dependent parameter in the SIR Markov model without vaccination . 81

5.9 Results of the equally parameterized SIR models . . . . . . . . . . . . . . . 81

5.10 Results of vaccinations in the Markov model and in the agent based model
for SIR epidemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Herd immunity in the agent based SIR model based on the current carrier
rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Results of vaccinations in the Markov model (corrected by the herd immu-
nity) and in the agent based model for SIR epidemics . . . . . . . . . . . . 83

xiii



LIST OF FIGURES

5.13 Relationship between agent based models and Markov models through herd
immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Visualization of an SIS disease with two competitive serotypes (using ap-
proach 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Carrier rates of an SIS epidemic with equivalent serotypes and approach 1
(p = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Carrier rates of an SIS epidemic with different serotypes and approach 1
(p1 = 0.022, p2 = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . 96

6.4 Carrier rates of an SIS epidemic with different serotypes and approach 1
(p = 0.02, d1 = 11 time steps, d2 = 10 time steps) . . . . . . . . . . . . . . 96

6.5 Visualization of an SIR disease with competitive serotypes (using approach
1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Carrier rates of an SIR epidemic with equivalent serotypes and approach 1
(p = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Carrier rates of an SIR epidemic with different serotypes and approach 1
(p1 = 0.022, p2 = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . 99

6.8 Carrier rates of an SIR epidemic with different serotypes and approach 1
(p = 0.02, d1 = 11 time steps, d2 = 10 time steps) . . . . . . . . . . . . . . 99

6.9 Visualization of an SIS disease with two competitive serotypes (using ap-
proach 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.10 Visualization of an SIR disease with two competitive serotypes (using ap-
proach 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.11 Carrier rates of an SIS epidemic with equivalent serotypes and approach 2
(p = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.12 Carrier rates of an SIS epidemic with different serotypes and approach 2
(p1 = 0.022, p2 = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . 102

6.13 Carrier rates of an SIS epidemic with different serotypes and approach 2
(p = 0.02, d1 = 11 time steps, d2 = 10 time steps) . . . . . . . . . . . . . . 102

6.14 Carrier rates of an SIR epidemic with equivalent serotypes and approach 2
(p = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.15 Carrier rates of an SIR epidemic with different serotypes and approach 2
(p1 = 0.022, p2 = 0.02, d = 10 time steps) . . . . . . . . . . . . . . . . . . . 103

6.16 Carrier rates of an SIR epidemic with different serotypes and approach 2
(p = 0.02, d1 = 11 time steps, d2 = 10 time steps) . . . . . . . . . . . . . . 103

7.1 Visualizing the emergence of serotype shift . . . . . . . . . . . . . . . . . . 107

xiv



LIST OF FIGURES

7.2 New infections by serotype in the SIS simulations . . . . . . . . . . . . . . 111

7.3 Total new infections in the SIS simulations . . . . . . . . . . . . . . . . . . 111

7.4 Carrier rates by serotype in the SIS simulations . . . . . . . . . . . . . . . 112

7.5 Total carrier rates in the SIS simulations . . . . . . . . . . . . . . . . . . . 112

7.6 Epidemic effects in the SIS simulation, calculated upon current new infections113

7.7 Epidemic effects in the SIS simulation, calculated upon new infections since
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.8 Epidemic effects in the SIS simulation, calculated upon the carrier rate . . 113

7.9 New infections in the SIS simulation with vaccination after 100 time steps . 114

7.10 Carrier rates in the SIS simulation with vaccination after 100 time steps . . 114

7.11 Epidemic effects in the SIS simulation with vaccination after 100 time steps,
calculated upon current new infections . . . . . . . . . . . . . . . . . . . . 114

7.12 New infections by serotype in the SIR simulation . . . . . . . . . . . . . . 115

7.13 Total new infections in the SIR simulation . . . . . . . . . . . . . . . . . . 115

7.14 Carrier rates by serotype in the SIR simulation . . . . . . . . . . . . . . . 115

7.15 Total carrier rates in the SIR simulation . . . . . . . . . . . . . . . . . . . 115

7.16 Epidemic effects in the SIR simulation, calculated upon current new infections116

7.17 Epidemic effects in the SIR simulation, calculated upon new infections since
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.18 Epidemic effects in the SIR simulation, calculated upon the carrier rate . . 116

7.19 New infections per time step (variation of the infection probability in the
SIS model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.20 Carrier rates (variation of the infection probability in the SIS model) . . . 119

7.21 The herd immunity (variation of the infection probability in the SIS model) 119

7.22 The serotype shift (variation of the infection probability in the SIS model) 119

7.23 The general herd immunity (variation of the infection probability in the
SIS model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.24 New infections per time step (variation of the recovery time in the SIS model)120

7.25 Carrier rates (variation of the recovery time in the SIS model) . . . . . . . 120

7.26 The herd immunity (variation of the recovery time in the SIS model) . . . 121

7.27 The serotype shift (variation of the recovery time in the SIS model) . . . . 121

xv



LIST OF FIGURES

7.28 The general herd immunity (variation of the recovery time in the SIS model)121

7.29 Total number of infections (variation of the infection probability in the SIR
model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.30 The herd immunity (variation of the infection probability in the SIR model)123

7.31 The serotype shift (variation of the infection probability in the SIR model) 123

7.32 The general herd immunity (variation of the infection probability in the
SIR model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.33 Total number of infections (variation of the recovery time in the SIR model)124

7.34 The herd immunity (variation of the recovery time in the SIR model) . . . 124

7.35 The serotype shift (variation of the recovery time in the SIR model) . . . . 125

7.36 The general herd immunity (variation of the recovery time in the SIR model)125

8.1 The state transition diagram of a Markov model in case of two competitive
serotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Tree stucture of a Markov model in case of two competitive serotypes . . . 131

8.3 Carrier rates of the agent based model compared to the Markov model in
the equilibrium of the SIS simulation . . . . . . . . . . . . . . . . . . . . . 134

8.4 Herd immunity and serotype shift in the equilibrium of the SIS model . . . 134

8.5 Carrier rates of the agent based model compared to the adjusted Markov
model in the equilibrium of the SIS simulation . . . . . . . . . . . . . . . . 134

8.6 The state transition diagram of the Markov model for SIR epidemics with
two competitive serotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.7 Transition matrix of the Markov model for SIR epidemics with two com-
petitive serotypes for unvaccinated people . . . . . . . . . . . . . . . . . . 139

8.8 Transition matrix of the Markov model for SIR epidemics with two com-
petitive serotypes for vaccinated people . . . . . . . . . . . . . . . . . . . . 139

8.9 The carrier rates of the agent based and the Markov model for SIR epi-
demics in the base case without vaccinations . . . . . . . . . . . . . . . . . 140

8.10 The carrier rates of the agent based and the Markov model for SIR epi-
demics in the test case with 10% vaccinations . . . . . . . . . . . . . . . . 140

8.11 The carrier rates of the agent based and the Markov model for SIR epi-
demics in the test case with 20% vaccinations . . . . . . . . . . . . . . . . 140

8.12 The carrier rates of the agent based and the Markov model for SIR epi-
demics in the test case with 30% vaccinations . . . . . . . . . . . . . . . . 140

xvi



LIST OF FIGURES

8.13 Herd immunity in the SIR model . . . . . . . . . . . . . . . . . . . . . . . 141

8.14 Serotype shift in the SIR model . . . . . . . . . . . . . . . . . . . . . . . . 141

8.15 The carrier rates of the agent based and the corrected Markov model for
SIR epidemics in the test case with 10% vaccinations . . . . . . . . . . . . 141

8.16 The carrier rates of the agent based and the corrected Markov model for
SIR epidemics in the test case with 20% vaccinations . . . . . . . . . . . . 142

8.17 The carrier rates of the agent based and the corrected Markov model for
SIR epidemics in the test case with 30% vaccinations . . . . . . . . . . . . 142

8.18 State transition diagram of the Markov Model of a whole SIR season . . . 143

8.19 Relationship of vaccinations between agent based models and Markov mod-
els with two serotypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.1 Stochastic and contact based epidemic models in comparison . . . . . . . . 152

9.2 Stochastic and contact based epidemic models in comparison . . . . . . . . 153

xvii



LIST OF FIGURES

xviii



Chapter 1

Introduction

Models for simulation of epidemics have a long tradition. Humans have always been
interested in infectious diseases because they have consistently taken their toll on human
life and they are still doing it. In addition to that, they cause numerous sicknesses with
partly severe consequences. In general, one might talk about an epidemic when the disease
affects many people. A better definition does not exist and actually there is no need to
have one. The term “epidemic” arises from a necessity based on different situations and
not least it heavily depends on the public awareness.

The analysis of epidemics pursues at least two goals:

• To know, why and how an epidemic is spread

• To come up with the most realistic estimates of consequences of interventions to
fight epidemics accurately and efficiently

First mathematical approaches of simulation of infectious diseases hark back to the 1920s
when A. G. McKendrick and W. O. Kermack implemented their SIR models with dif-
ferential equations [28]. Today, 80 years later, these models are still popular and widely
used. At the same time, other scientists performed laboratory experiments with groups of
animals to examine the spread of a disease under standardized conditions [53]. In contrast
to statistical calculations, the experiments revealed effects on the epidemics that could
not be expected a priori. The dynamics of epidemics also occurred in the real world.
While smallpox could be eradicated and measles could be significantly reduced with com-
prehensive vaccination strategies, another ambitioned program to fight the Malaria failed.
Despite the knowledge about dynamic effects on epidemics, Markov Models became the
most important tool to predict occurrence of epidemics and to examine strategies. Al-
though they are not able to cover such effects, they have been used due to their growing
popularity in the past few decades in the area of “evidence based medicine”. At the end
of the 1990s, computational power grew rapidly and simulation of new and more com-
plex models became possible. These approaches simulate single persons who live in an
environment and can infect each other. Such models do not rely on knowledge about the
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epidemic itself but instead on its fundamental basics. These are the transmissions based
upon contacts and the progression of the disease. The epidemic then occurs automati-
cally. These models offer totally new opportunities to examine the spread of epidemics.
Moreover, it is possible to analyze effects that are suspected to occur in reality but could
not be examined properly under standardized conditions, even if they might have been
observed in special cases.

This work gives special attention to two such effects: herd immunity and serotype shift.
Herd immunity refers to the phenomenon in case of vaccinations against a disease. Not
protected people meet less infected people due to vaccinated people in the population,
consequently they have a lower risk of getting infected and so they profit from the vac-
cinations as well. These consequences eventually result in a different propagation of the
epidemic. These connections can even lead to a situation where an epidemic cannot spread
any more even though only a part of the population is vaccinated. Serotype shift becomes
relevant for diseases that are caused by different variants of one pathogen just like in the
case of influenza or streptococcus pneumoniae. These variants, often called serotypes,
compete for susceptible persons and interfere each other as they spread. Vaccines often
work against some serotypes only. Such an intervention in a population result in a larger
living environment for the other serotypes, hence they can spread more freely. This can
reduce the benefit of a vaccination strategy, even though the vaccines work and fight
the designated serotypes successfully. Both phenomena are heavily disputed and their
real occurrence is widely unknown. Relevant literature does not even provide concrete
definitions which could put the discussion on a sound basis.

The main goal of this work is to examine herd immunity and serotype shift. First of all,
it is necessary to find general, useful and mathematical definition of these effects. Second,
the task is to observe the degree of these phenomena in agent based models which are
close to reality due to their contact based epidemic spread. Furthermore, one might
suppose that herd immunity occurs for the reason of contact based transmission. This
is precisely what is modeled by the agents. Previous studies show definitely that both
herd immunity and serotype shift occur in agent based models. Analysis of test cases
lead to an assessment of practicability of the definitions and also to extensive and valid
interpretations due to quantitative results. Situations where herd immunity become so
strong that proper spread is not possible any more and the disease gets extinct will be
considered particularly. Another task is to compare contact based and stochastic models
by using agent based and Markov models. Stochastic models always rely on transmission
probabilities which must be explicitly known and completely describe the behavior of the
whole system. This comparative study is pursuing two goals. For one thing it should
reveal the structural differences of those two model types and outline differences in the
results. For another thing, it should try to find out whether it is possible to consider
herd immunity and serotype shift in Markov models and how this could be accomplished.
Firstly, this leads to a deeper understanding on phenomena in the spread of epidemics.
Secondly, it can show when and under what circumstances the usage of stochastic models
is possible, useful and valid.
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Chapter 2

Agent based models

Agent based modelling is a relatively young discipline that has become possible with
powerful computers in the nineties of the twentieth century.

2.1 Historical background

The historical background of agent based models and simulation lies in the “complex
adaptive systems” (=CAS). They are so called “bottom up” systems which, in contrast
to “top down” systems, are described by the behavior of single elements. The usual
background of CAS is the question how complex system behavior emerges and works
through connection and interaction of single elements. This includes, among others, self-
organization and dynamic reorganization of single components [38].

Relevant in this context is the attempt to understand and simulate people with their
individual, social behavior based on independent decisions.

2.2 Goals of agent based modelling

• Generation of an environment which allows to model details and relations satisfy-
ingly exact.

• Creation of dynamic effects that cannot be created with other models and that
cannot be represented by parameters.

• Build models with natural and descriptive structure and data (in contrast to many
other model types that use abstract and aggregated variables).
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2.3 Notations

Literature shows a variety of different notations when someone talks about agent based
models. Common designations are:

• ABM (agent-based modelling)

• ABS (agent-based systems)

• IBM (individual-based modelling)

• MAS (multi-agent systems)

• ABMS (agent-based modelling and simulation)

2.4 What is an agent?

2.4.1 Conceptual analysis

One might think about secret agents, detectives or the FBI in the context of “agents”.
Agents in models are definitely different things, even though their meanings are based on
the same origin.

The word “agent” originates from the Latin word “agere” which means “someone who
acts”. In English it is also often used as “someone who acts for another”.

This means that an agent is an entity that does something more or less independently,
based on its own rules, sometimes on behalf of another. We see that agents are not
necessarily persons, especially in the area of modeling.

2.4.2 Definitions in literature

Back in the middle of the 1990s, scientists have regularly worked on general, formal
definitions for agents in the area of modeling and simulation. Their explications are
partly different, but also have certain ideas in common.

One of the first definitions goes back to Wooldridge (1997) [62]. According to him,
agents have to have four essential features:

• Autonomy: Agents are in a state that is not visible to others. They make decisions
based on their state without interventions of human and others.

• Reactivity: Agents are situated in an environment, they are able to perceive it
and are able to respond to changes that occur in it.
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• Pro-activeness: Agents are able to to act and make decisions that are not triggered
by something else. In this case they “take the initiative”.

• Social ability: Agents can interact with each other in a specific language that
allows them to adapt their decisions.

Another early definition originates from John L. Casti, also from 1997. In his book
“Would-Be Worlds: How Simulation is Changing the Frontiers of Science” [7],
he describes two basic requirements for agents that he calls a two-level set of rules:

• On the one hand, agents need rules which describe their action.

• On the other hand, agents also need meta-rules which describe how agents can
change their own rules upon they act.

Jennings (2000) [24] describes agents generally as components which are able to make
independent decisions.

The topic is even more abstract for Bonabeau (2001) [4]. In his paper he declares in the
broadest sense every model as agent based that consists of components. As an example he
takes a system of differential equations which is consequently an agent based model. Each
single equation stands for an agent; behavior and interactions of the agents are defined
by the right side of the equation.

C. Macal and M. North developed in the context of the Winter Simulation Conference
2005 a new definition of agents which was revised in 2006 [37] [38]. This work demands
an agent to have five features:

• An agent is identifiable.

• An agent lives in an environment with other agents and can interact with both other
agents and the environment.

• An agent acts goal-directed.

• An agent acts autonomous and self-directed.

• An agent is flexible, and has the ability to learn and adapt its behaviors over time
based on experience.

Figure 2.1 visualizes the technical appearance of agents which also originates from this
paper at the Winter Simulation Conference.
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Figure 2.1: Visualization of an agent according to the definition presented at the Win-
tersim 2005/2006 [38]

2.4.3 Summary

These five attempts of definitions show that it is obviously not easy to clarify how an
agent based model should look like in detail.

Why is that?

Agent based models consist, in contrast to classical mathematical models, of a textual,
informal description. If the formal description of an agent follows a straight definition,
then it could be very easy to change the description slightly and violate the definition.
Often, it still makes sense to use such adapted versions of agents. Table 2.1 shows common
difficulties in this context.

The questions in table 2.1 illustrate that useful models do not necessarily need to stick
to all requirements for agents. The problem is that constructs, that occur by violation of
some rules, still look like agents but by definition they are not. Taking account for these
considerations, we inevitably end up at Bonabeau’s approach which basically allows to see
any system as an agent based model as long as it consists of components. Needless to say,
it does not make too much sense to call a system of differential equations an agent based
model because the mathematical theory is much stronger for that matter. But it leaves
open the possibility to model agents that act like differential equations. Such a model
can generally be useful and even needed in some cases. Consequently it seems suitable to
talk about agents whenever the intention is to work with individual components. These
components might be described by at least four features:

• They are clearly identifiable.
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Statement Difficulty

Agents are self-directed.
Can an agent have rules that allows him
to be externally controlled?
Is not any implementation of agents as a
computer program externally controlled?

Agents act goal oriented.
Can the pure obedience of rules already be
the goal or must an agent have long-term
goals?

Agents have adaptable rules.
Must each and every agent have meta-rules
to adapt his behavior?

Agents interact with each other.
Must each and every agent interact with
other agents?

Table 2.1: Difficulties in the context of definitions for agent based models

• They have properties that might change over time.

• They act upon individual, adaptable rules.

• They can communicate with the environment and other agents.

Additionally, an agent based system requires an appropriate environment in which agents
can exist, and with which they can interact.

Last but not least, this discussion shows clearly that agent based modeling is
more a general concept than a specific set of modeling instructions.

2.5 Characteristics of agent based models

The concept of agent based modeling leads to some typical characteristics. Based on
Bonabeau [4], they can be differentiated into three categories:

• Modelling of emerging behavior

• Natural description of a system

• Flexibility

2.5.1 Modelling of emerging behavior

An agent based model is described by the behavior of agents. This can lead to a situation
where relatively simple rules for agents result in a complex and unpredictable global
system behavior. In a way, the system develops its own dynamics. This seems to be a
disadvantage but actually, it is a benefit because it allows to model extremely complex
systems in which the characteristics are known but the behavior cannot be described
appropriately.
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Example 1: In first simple example we consider a delimited area. The agents are small
particles which can move within this area with a certain speed and direction. All agents
have only two simple rules:

• Choose two random agents A and B at the beginning of the simulation.

• Adapt your speed and direction all the time during the the simulation so that B
is always between you and A. Consider position, speed and direction of A, B and
yourself.

In other words, the particle should try to be positioned in a line with A and B with B
between A and itself. This rule is illustrated in figure 2.2.

Figure 2.2: “emerging behavior”: Rule for example 1

The system behavior of the model is that the particles move around chaotically, mostly
close to the border of the area (figure 2.3).

Figure 2.3: “emerging behavior”: System with rules of example 1

Example 2: Example two is based on example 1 with a different rule 2: The particle
has to move, depending on position, speed and direction of A and B, that it is always
between A and B (see figure 2.4).

This rule leads to a complete different system behavior: All particles collapse together
while this bunch of particles moves around randomly in the area (see figure 2.5).
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Figure 2.4: “emerging behavior”: Rule for example 2

Figure 2.5: “emerging behavior”: System with rules of example 2
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2.5.2 Natural description of a system

Agent based models provide a natural description of the real system. This means:

• Agents in the model look like components in reality and act in a way that can be
observed in the real system.

• Parameters in the model correspond with quantities that occur in the real system.

2.5.3 Flexibility

Agent based systems are flexible because of their modular structure. This means many
adaptations can be done locally without affecting the rest of the system structure.
The following points are especially important:

• Scalability: The number of agents can be increased without limitations while the
structure of agents is not affected. Often, an increase of the environment is necessary
so that all agents fit in.

• Level of detail: The level of detail how agents are modelled is generally not
restricted because it depends on the number and complexity of rules and attributes
of agents.

• Rules of single agents can be adapted easily for the set-up and even during
simulation without affecting the structure of other agents and of the environment.

• Parameterization of single agents can be set individually and can be changed
any time during simulation.

2.6 Advantages and disadvantages of agent based mod-

eling

Concluding, we see three main reasons for usage of agent based models:

• Modeling of real world structures result in real, dynamic behavior.

• Easiness of handling and understanding the model.

• Structures can be modeled on any detailed level. Results can be exam-
ined on any modeled level of details.

Aside from the fact that the handling and the characteristics of agent based models provide
several advantages, there are also some issues that go along with it.

10
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Technical advantages:

• Possibility to model dynamic effects by well-known rules, while the complex dynamic
behavior can hardly be described.

• Flexible modelling environment that provides scalability for size and details in a
simple way.

• Direct usage of data (parameters, relations between details). Ideally, no adjustment
of data is necessary and the whole model gets parameterized in a natural way.

• Extension of agent based models is often less work than extension of other model
approaches.

Advantages in application:

• Knowledge about mathematical theories is not necessary.

• Model structure is very clear. Non-modelling project partners (economists, medics,
etc.) understand the model structure and can provide important input to the model.

Technical disadvantages:

• Non-consideration of agent rules or wrong agent rules may result in wrong global
system behavior. Extensive validation is important to overcome this issue.

• Data for agents (parameters, rules) are sometimes not completely available. Then
a comprehensive and often expensive calibration is necessary.

• There are no mathematical methods for analyzing agent-based models. Often, sta-
tistical evaluation of results is the only possible method.

• The initial creation of an agent based model can be more programming work than
other models.

• Simulations with many agents often require powerful computer systems and long
runtimes. Efficient coding and appropriate scaling of the model helps to handle this
issue.

Dangers in applications:

• Agent based models look very “real”. The feeling of having a correct model must
not replace comprehensive validation.

• Danger of wrong usage and interpretation by non-modelers may happen because the
model looks so “real”.
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Chapter 3

Different approaches for modeling of
epidemics

3.1 Introduction

There are several methods for modeling and simulation of epidemics. This chapter pro-
vides an overview over common modeling techniques and strategies in the area of epidemic
simulation. However, according to the context of this work, the presented methods are
bound to infectious diseases that are caused by a certain pathogen. Hence, the modeling
and interpretation of transmission has a great importance.

On the one hand, this work deals with appropriate simplifications to represent epidemics,
particularly with SIS and SIR models.

On the other hand, it describes the most important methods, explains their advantages
and disadvantages and demonstrates by examples how epidemics can be modeled with
this methods in specific cases.

13
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3.2 Terms

susceptible . . . . . . . . . . A person that is susceptible to a pathogen.
infected . . . . . . . . . . . . . A person that carries a pathogen (=carrier).
infectious . . . . . . . . . . . A person that is infected with a pathogen and can transmit it to

other persons.
resistant . . . . . . . . . . . . A person that cannot get infected with a pathogen.
carrier . . . . . . . . . . . . . . A person that is “infected”.
sick . . . . . . . . . . . . . . . . . A person that has symptoms of sickness. Especially for detailed

views of diseases, it should be clear that the state “sick” is not
necessarily connected to the states “infected” and “infectious”.
Thus, it should be used with care.

healthy . . . . . . . . . . . . . The opposite of “sick”. Since it is not necessarily connected to
the state “susceptible” it should also be used with care.

vaccination rate . . . . . The vaccination rate indicates the part of the population that is
vaccinated or gets vaccinated. In the proper meaning of the word,
it is not a rate but only a fraction.

carrier rate . . . . . . . . . . The carrier rate indicates the part of infected people in the whole
population. Is is also not a rate from a technical point of view.

infection . . . . . . . . . . . . An infection determines the transmission of the disease. Typi-
cally, this is the transition from the state “susceptible” to the
state “infected”.

3.3 The basic model types: SIS and SIR

The basic model types SIS and SIR fundamentally have their origins in the epidemic
models of W. O. Kermack and A. G. McKendrick which have been published in three
papers in the years 1927 to 1933 [28] [29] [30]. Their approaches have been picked up
many times and used in numerous variations. They have also been extensively examined
and further developed [6, chapter 3].

3.3.1 SIS models

SIS models are a simplified representation of a large class of infectious diseases. They
represent infections that can be transmitted from person to person. Infected persons
recovers after a while but are not able to develop a form of resistance against the disease.

This means that a person is either susceptible (=S) or infected (=I). Susceptible people
can get infected upon transmission. Infected people become susceptible again after a
while upon recovery (see figure 3.1).

Characteristics and behavior: The general characteristic of SIS models is that it ends
up in an equilibrium after an adaption phase. This means that the number of susceptible
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Figure 3.1: SIS model

and the number of infected people do not change over time. In general, both numbers
are greater than zero. This model state is reached because the number of newly infected
people equals the number of recovered people in a certain period of time.

• The epidemic either extincts or reaches a non-trivial equilibrium with infected and
susceptible people depending on the parameters.

• The initial values usually do not correspond with the equilibrium. Thus an adaption
phase occurs after simulation start and after parameter changes during runtime
which ends by reaching the equilibrium. Shape and duration of the adaption phase
depend on parameters as well as on the initial state of the model.

• The equilibrium depends on the parameters but it is independent of the initial state.
Same parameters always lead to the same equilibrium.

• Tests in previous studies have shown and will show in this work that different
modeling approaches of SIS epidemics lead to different results. These differences are
based on non-equivalent model structures and parameters that are not completely
comparable.

Figure3.2 shows typical simulation results of SIS models.

Figure 3.2: Typical results of SIS models

3.3.2 SIR models

SIR models are, like SIS models, a simplified representation of a large class of infectious
diseases. Its only difference from SIS models is that infected persons in an SIR model
become resistant against the disease after recovery.
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Thus, people are in either of these three available states: susceptible (=S), infected (=I)
and resistant (=R). The state I can only be reached by susceptible persons upon trans-
mission and the state R can only be reached by infected persons upon recovery (see figure
3.3).

Figure 3.3: SIR model

Characteristics and behavior: An SIR epidemic always lasts for a limited duration
because infected persons become resistant after some time and cannot be infected again.
Since the number of persons is finite, there is only a limited pool of susceptible persons.
Consequently, only a limited number of persons can be infected with the disease during the
simulations and therefore, the epidemic can only last for a finite time. After the epidemic
becomes extinct, only susceptible and resistant people are left and transmissions cannot
happen any more.

Usually, the initial state of an SIS model is a large susceptible part of the population, a
small infected part and no resistant people. This corresponds to the start situation of an
epidemic. Typically the number of infected and resistant persons increase rapidly at first,
while the number of susceptibles decreases until the number of infected people reaches a
peak. Due to the decreasing number of susceptible people after the peak, less people get
infected than people who recover. Thus, the number of infected and susceptible people
decrease while the resistant people grow. The epidemic is over when only susceptible and
resistant but no infected people are left.

An SIR disease is commonly characterized by the time and the height of the peak, the
duration until extinction and the remaining susceptibles after extinction. The progress
of the disease depends on the initial values and on the parameter settings. Like an SIS
epidemic, different modeling approaches might lead to different results caused by non-
equivalent structures.

Figure 3.4 shows three typical results of SIR models.

3.3.3 Extensions of SIS and SIR models

Simple SIS and SIR models simulate a homogenous population where all persons are
equally parameterized. Increased complexity might be realized in various ways:

• Consideration of persons or groups of persons with different disease parameters.
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Figure 3.4: Typical results of an SIR model

– Example: Definition of persons with a weak immune system who have a higher
transmission probability and a longer recovery time.

– Example: Add the age to the attributes of persons and define age-dependent
disease parameters.

• Consideration of a more complex disease progression.

– Example: Take an SIR epidemic where resistant persons become susceptible
after a while so that they can be infected again. Such a disease is called SIRS.

– Example: Distinction of infected persons (=I) in a latent state (=exposed
=E) and an infectious state (=I). Such models are called SEIS or SEIR.

• Further complexity can be gained by any combination of the two methods described
above.

3.4 Top-Down & Bottom-Up

Top-down approaches are models that simulate aggregated values, so they see the reality
virtually from above.
In contrast, bottom-up approaches are models that simulate single individuals or particles
with certain rules. Due to the rules of the individuals or particles, a behavior of the overall
system emerges which is usually of interest.

The following chapters describe different modeling approaches that present schematically
possible ways to model epidemics. Advantages and disadvantages of these approaches are
also subject of discussion.

3.5 Markov models

Markov models are typical representatives of top-down approaches. They are popular in
many areas due to their relatively simple handling [5].
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3.5.1 Theoretical basics

Stochastic processes: To put it simply, a stochastic process is a family of random
variables {Xt, t ∈ T} that are indexed by a totally ordered index set T . T usually describes
the time but, for example, it can also describe the place. Xt represents the the system in
time t. The set S of all possible values of the random variables is named value space or
state space. The realization of a random variable represents its the observation and yields
an element of the state space. A realization of the stochastic process, which consists of
the realizations of all Xt, is called “path”. This means, a path is a family of states indexed
by T . If T is a finite or a countably infinite set, then the process is called time-discrete
and can be denoted as {X0, X1, X2, . . .}. If T is an interval, then the stochastic process
is called time-continuous. [47, p. 41-42]

Markov processes and Markov chains: Markov processes are special stochastic pro-
cesses where the state in a time can only depend on most recent state but not on other
states. This can always be tested since T is a totally ordered set. For Markov processes
T is usually referred to as “time” and not any more “index set”. If the state space is
discrete, then a Markov process is called “Markov chain”.

A Markov process is defined as follows: For any set of n time points t1 < t2 < . . . <
tn−1 < tn, the random variable Xtn , for given values of Xt1 , . . . , Xtn−1 , depends only on
Xtn−1 , the most recent known value. This property is called “memoryless” or “Markov
property”. [43, p. 188-189]

The Markov property can be expressed explicitly for time-discrete Markov processes. Let
P denote the probability and T = 0, 1, 2, . . . :

P [Xt+1 = sjt+1|Xt = sjt , Xt−1 = sjt−1 , ..., X0 = sj0 ] = P [Xt+1 = sjt+1|Xt = sjt ]

This means that the probability that a system in state si in time t will be in state sj in
time (t+ 1), depends only on last the state and the time t.

Remark: Sometimes it is considered that states of a Markov model can depend on the
states of the last m time steps. For discrete time, this property can be stated explicitly:

P [Xt+1 = sjt+1|Xt = sjt , Xt−1 = sjt−1 , ..., X0 = sj0 ] =

P [Xt+1 = sjt+1|Xt = sjt , ..., Xt−m+1 = sjt−m+1 ]

If time and state space are discrete, then such stochastic processes can be named “Markov
chains of order m”. This approach is only partly documented in literature and rarely
applied. Hence, it is not further used in this work.

Visualization of Markov chains: State transition diagrams are suitable to visualize
Markov chains. In this diagram, all states are positioned somewhere on the figure, and
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arrows between states show where transitions between states are possible. Self-referring
arrows are possible but not necessarily needed. Without further statements, it is usually
presumed that the system can remain in a state. Description of arrows can contain the
probability that a system changes from one state to another in the following time unit.
Hence, the sum of the probabilities of all outgoing arrows of a state is not more than 1
and, if it is less than 1, then system remains in this state with the remaining probability.
Figure 3.5 shows such a state transition diagram.

Markov cycle trees, which are mainly used for Markov models, are another visualization
technique which will be explained later.

Figure 3.5: Example of a state transition diagram

Realization of Markov chains: Markov chains can be realized in a descriptive way
by matrices and vectors if they meet three requirements:

• The state space S is finite.

• The time T is discrete.

• The Markov chain is memoryless.

Then, the state space can be explicitly written as S = s1, s2, . . . sm with m ∈ N.
The transition matrix M = (pi,j) is an m×m-matrix that holds:

P [Xt+1 = sj|Xt = si] = pi,j

This means that pi,j is the probability that a system that is in state si will be in state sj
in the following time point. From this it follows:

0 ≤ pi,j ≤ 1 for all 1 ≤ i, j ≤ m

The row sums of the matrix must equal 1:

N∑
j=1

(pi,j) = 1 for all 1 ≤ i ≤ N

A transition matrix can either be constant for the whole time or be dependent on the
time point t. [47, p. 163-164] [52, p. 25, p. 81-184] [45] [5]
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Distribution of a random variable: Further calculations require introduction of a
new term: The “distribution of a random variable” is a distribution on the state space
which indicates the probabilities that a certain state is reached. For a discrete state space,
the distribution of a random variable in s gives the probability that a realization of the
random variable results in the state s. For a finite state space, this distribution can be
interpreted as a vector, and its elements sum up to 1.

This definition can now be used for Markov chains. Let a(t) = (a1(t), a2(t), . . . , an(t))
be the distribution of the random variable in time t. Then, ai indicates the probability
that the system is in state si in this time point. a(0) is the distribution of the first
time point, hence it is called initial distribution or initial vector. Furthermore, one has
a(t+ 1) = a(t) ·M for constant transition matrices respectively a(t+ 1) = a(t) ·M(t) for
time-dependent transition matrices. This statement is intuitively true and easy to prove.

Using this shown concepts, it is possible to write down time-discrete Markov chains with
finite state spaces, calculate realizations and immediately specify the distribution in every
time step.

3.5.2 From the theory to the model

Theory: The previous chapter defined stochastic and Markov processes as given families
of random variables. Based on this knowledge, it is possible to define Markov models. We
consider a dynamic system which is evaluated in equidistant time points 0, 1, 2, . . .. In
every time point, the system is in one of the states s of a finite amount of states S. The
probabilities pi,j(t) indicate the probability that a system in state i in time t will be in
state j in time (t+1). These probabilities can be considered as a transition matrix that is
either constant or time dependent. Due to given transition probabilities, the progression
of the states fulfills the Markov property. Hence, the constructed system is a Markov
chain.

Remark: Markov models can be extended to “Markov decision models” by introduction
of a finite set of actions or decisions d ∈ D. In every time point, an action is performed
that affects the transition probabilities. Hence, they are denoted as pi,j(a) for the time-
invariant case. Actions cause costs which are, additionally to the state of the system in
time t, of interest. ci(d) indicates the costs of an action d whenever a system is in state
i. This makes it possible to define a time-dependent cost function which sums up the
costs of single actions in every time point. This approach is commonly used, but it is not
needed in this work because this study does not consider economic evaluations. [52, p.
234-237] [51]

Realization of Markov models for health economics: The following deliberations
are generally based on the results of the ISPOR-SMDM Joint Modeling Good Research
Practices Task Force [51]. Markov models in the field of health economics are used to
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simulate the temporal progress of persons or of a population. Two model types as appli-
cations of Markov chains are commonly used: Microsimulation and cohort models. Both
approaches as based on the same Markov model but they perform different calculations.
The underlying Markov model is defined for single persons as follows:

• The time is given as a sequence 0, 1, 2, . . . , n. The number of simulated time units
and the corresponding real time of one time unit should be chosen case-related.

• The states should cover all relevant properties of a person and should be mutually
exclusive.

• The transition probabilities must be given for all possible transitions between states.
They can be constant for the whole simulation time or time-dependent. Convenient
notations are transition matrices or Markov trees which will be explained later.

This structure builds a model which is able to simulate the state progression of a person
over time.

Often, persons are not equally parameterized. Instead, they differ by properties that have
an influence on the questioned states. For example, the progression of a disease might
depend on the age of the person. Furthermore, Markov models are commonly used to
analyze interventions by comparison of different experimental and control groups. One is
advised to split up the population by properties and interventions at first and then define
a Markov model for each group which only models the questioned circumstances.

Visualization of Markov models: State transition diagrams are a visualization tech-
nique which has been explained already. Trees are an alternative technique. These trees
are decision trees, which means that every branch has a probability. The probabilities of
all outgoing branches of a single node must sum up to 1, hence the probability of one of
the outgoing branches can be written as # to represent the remaining probability.

These trees consist of two classes of decision trees. The first part is a tree which describes
the splitting of the population into the mentioned groups. The leaves of this tree are
Markov nodes which are the root nodes of another decision tree, called Markov tree,
which visualizes the Markov model of this group. The Markov node has one outgoing
branch for each state of the state space. The description of these edges usually contains
the initial distribution. These nodes are followed by subtrees that represent cases and
their probabilities. Every leaf of these subtrees contains the state that has been reached
along this specific path of branches. With this technique, the transition probabilities can
be constructed in a descriptive way and do not need to be given as single values. Figure
3.6 shows a Markov tree and figure 3.7 shows a decision tree for splitting the population
with the attached Markov trees.

Based on the preliminary work it is now possible to describe the two simulation methods.
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Figure 3.6: Example of a Markov tree. The variables Ij represent the distribution of
the initial state and pj and qj show the probabilities for cases.
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Figure 3.7: Example of a decision tree. The variables pj and qj show the probabilities
for decisions.
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Microsimulation: Microsimulation, also called Monte Carlo simulation, is a technique
that simulates single persons whose states are simulated by a Markov model. The sig-
nificance of simulation of single persons is usually low, hence it is required to simulate
enough persons of each group to make useful statements about expectation values and
variation.

Cohort simulation: A cohort is a group of the population. A cohort simulation calcu-
lates the expected distribution of each group for each time point that arises when every
person runs its own Markov model. These values correspond to the distribution of a
Markov chain, hence they can be calculated by vector-matrix-multiplications. The dis-
tribution of the whole population can be reached by multiplying the group distributions
with the group size and summing them up. Cohort simulations require less effort than
Microsimulation and often, they already yield the desired results of the Markov model.

Used terms: Such models are often referred to as “state transition models”. This
term is not exactly specified, it just describes a class of models where something switches
between available states over time. Figure 3.8 illustrates relationships between commonly
used terms in this area of modeling.

Figure 3.8: Commonly used terms for models in the area of stochastic processes

3.5.3 Discussion

Avoiding the Markov property: The Markov property means that a system can
only depend on the most recent state, no matter which path it took to reach this state.
Technically, it is possible to avoid this Markov property if a state contains other past
states.

One approach is to distinguish between system states and actual states. Then the system
state in time t is a vector that contains the actual state in time t and the past m actual
states. For calculation of the system state in time (t+ 1), the last element of the vector,
which contains the furthermost state, is dropped and the new actual state is calculated
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and added. In case of finite state spaces, this means that a Markov chain of order m can
always be described as a memoryless system.

Another possibility is to define a state in a way that it contains the past state. This
means that the realization of X1 contains the realization of X0. Then the realization of
X2 contains the realization of X1 which still contains the realization of X0. Hence a state
contains the whole history of states in a recursive way.

Both cases do not affect the Markov property. However, the state space and the number
of transition probabilities grow exponentially because a state can contain all possible
combinations of past states. Hence, it can be very complicated to build such a system.
An implementation by appropriate vectors and functions seems possible, but constructing
a Markov models with transition matrices or Markov trees is almost impossible due to
the fast growing number of states.

Feedback loops: Many systems and models are able to produce feedback loops. This
means that single components interact with each other and produce a system behavior
that would not be possible without this interaction. Markov models, in contrast, calculate
the transition probability for each person due to their construction. Therefore, they do not
allow feedback loops. But, it is an important question if there can be stochastic processes
with feedback loops. It is clear that mutual influence generally does not need information
from the past so it does not violate the Markov property. But, it is subject for research if
such a system can be a valid stochastic process. It is easy to build a process with feedback
loops. Following the idea of the Markov model, one can recalculate the transition matrix in
every time point, depending on the states of other persons. Mathematically speaking, this
means that the transition Matrix of a Markov chain in time t depends on the distribution
of the system in t. The realization of the system is still subject to variations due to
randomness and it can be evaluated in each time point. Thus, it is an ordered family of
random variables and hence it is a stochastic process.

Remark: Definitions of a stochastic process often require that all random variables
{Xt, t ∈ T} are defined on the same probability space [55, p. 1]. This definition raises
several questions. If the probability space represents a single event (for example a coin
toss), then the realization of a random variable can only be the result of this single event.
Hence, it is impossible to include information of past states in the random process. This
means that neither typical Markov processes nor the common example “random walk”
are stochastic processes any more.

Alternatively, it is possible to build the probability space in a way that it contains the
whole stochastic process. This means that the whole path of the process can be calculated
by a single element of the sample space. In other words, an element of the sample space
allows calculation of the realization of Xt for every t ∈ T . In this case the probability
space can be constructed arbitrarily so that any desired feedback loop in a Markov process
can be represented.
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3.5.4 SIS epidemics with Markov models

An SIS model needs two states: s1 = susceptible and s2 = infected. These states are
sufficient to characterize the health state of a person in an SIS model.

An example of a transition matrix is:

M =

(
0.9 0.1
0.2 0.8

)
This means that the probability for a susceptible person to get infected in a time step
is 10% and for an infected person to get susceptible is 20%. This is equivalent to the
statement that 10% of the susceptible persons in the population get infected and that
20% of the infected persons get susceptible per time step.
Let (0.99 0.01) be an exemplary initial distribution of the system. Then 1% of the
population is infected while the rest is susceptible in the beginning.

A cohort simulation of the model with the given parameters shows a system that reaches
an equilibrium after a few time steps (figure 3.9).

Figure 3.9: Result of a typical SIS Markov model

3.5.5 SIR models with Markov models

An SIR model needs three states: s1 = susceptible, s2 = infected and s3 = resistant.

A transition matrix of such a model looks like this:

M =

0.9 0.1 0
0 0.8 0.2
0 0 1


This means: The probability that a susceptible person gets infected in a time step is 10%
and the probability that an infected person recovers and becomes resistant is 20%. Again
this is equivalent to the statement that in a population 10% of the susceptible persons
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get infected and 20% of the infected persons recover per time step.
Let the initial distribution of the system be (0.99 0.01 0). This means that 99% of the
initial population is infected and the rest is susceptible.

The cohort simulation with the given parameters shows an epidemic where the number of
infected people in the population increase rapidly in the beginning, reaches a maximum
and then slowly decreases to zero (figure 3.10).

Figure 3.10: Result of a typical SIR Markov model

Remark: It is important to say that Markov models are hardly used for modeling prop-
agation of epidemics. Instead, they are used to simulate sickness numbers over long time
periods without consideration of the concrete dynamics of the epidemic. The following
chapters in this work explain in detail why the Markov approach is not able to represent
the spread of epidemics correctly.

3.6 Differential equations

Differential equations are one of the oldest and best examined modeling approaches for
epidemics. Since they calculate with cumulative values and not with single persons, they
are top-down approaches.

The general, extensive theory of differential equations is not explained here. Instead, let
me refer to a huge selection of books.

3.6.1 SIS models with differential equations

An SIS model leads to a system of two equations (formula 3.1) which can also be visualized
(figure 3.11).
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Ṡ(t) = −α · I(t) · S(t) + β · I(t)

İ(t) = α · I(t) · S(t)− β · I(t)

with the initial values

I(0) = I0 ≥ 0, S(0) = N − I(0)

(3.1)

Figure 3.11: Visualization of the differential equation SIS model

With: S(t) . . . Number of susceptible persons in time t
I(t) . . . Number of infected persons in time t
α, β > 0 . . . Model parameters
N . . . Total number of persons

This differential equation has an exact solution. Since N is constant and no persons get
lost, S(t) = N −I(t) is always true. As a consequence, it is enough to solve I(t) explicitly
and then calculate S(t) with it. We plug in for S(t) in İ(t):

İ(t) = α ·
(
N − β

α
− I(t)

)
· I(t) (3.2)

For simplification we define D := N − β
α

. Then two cases have to be solved separately:

Case 1: D = 0

İ(t) = −α · I2(t)⇒ I(t) =
I0

α · t · I0 + 1
(3.3)

Case 2: D 6= 0

İ(t) = α · (D − I(t)) · I(t) (3.4)

Rearrangement of the equation, indefinite integration and plug in of the initial values
yields:

I(t) =
I0 · eαDt

1− I0
D

(1− eαDt)
(3.5)

Such an epidemic model always leads to an equilibrium. In case of D ≤ 0 the epidemic
becomes extinct - then the equilibrium means that all persons are susceptible. The case
D > 0 leads to a real equilibrium and I equals asymptotically D = N − β

α
(by application

of L’Hôpital’s rule). Figure 3.12 shows a typical result of such a differential equation SIS
model.
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Figure 3.12: Typical result of a differential equation SIS model

3.6.2 SIR models with differential equations

A SIR model consists of three population groups and therefore requires three equations
as shown in formula 3.6. Figure 3.13 shows an illustration of this approach.

Ṡ = −α · I(t) · S(t)

İ = α · I(t) · S(t)− βI(t)

Ṙ = β · I(t)

with the initial values

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = N − S(t)− I(0)

(3.6)

With: S(t) . . . Number of susceptible people in time t
I(t) . . . Number of infected people in time t
R(t) . . . Number of resistant people in time t
α, β > 0 . . . Model parameters
N . . . Total number of persons

Figure 3.13: Visualization of the differential equation SIR model

This system of differential equations is not exactly solvable, in contrast to the SIS model.
At least the theory states that this system has a solution and that it is unique for given
initial values S(0), I(0) and R(0) (referring to the Picard–Lindelöf theorem [3, p. 68-71]).
Figure 3.14 shows a typical result of an SIS model of differential equations.
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Figure 3.14: A typical result of an SIS model of differential equations

3.7 Cellular Automata

The concept of cellular automata (=CA) was introduced in the 1950s by John von Neu-
mann [56]. Based on this idea, John Conway developed the well known “Game of Life”
[18]. Stephen Wolfram showed in his books “Theory and Applications of Cellular Au-
tomata” and later in “A new kind of science”, how complex behavior can be achieved
upon simple rules in cellular automata [60] [61]. Based on the basic ideas, several types
of cellular automata have been developed and classified for different fields of applications
[17].

Cellular automata are constructions for calculation of spatial dynamic behavior of systems.
They consist of a finite number of cells and states, while a specific cell is always in exactly
one of those states in a point in time. The automaton is calculated time-discrete, that
means time point by time point. The state of a cell in time t+ 1 only depends on its own
state and the states of its neighboring cells in time t.

Hence, a cellular automaton is mathematically defined by these elements [10]:

• A space R (cell space)

• A finite neighborhood N

• A set of states Q

• A local transition function δ : QN → Q

In the most simple case a cellular automaton consists of a 2-dimensional grid and square-
shaped cells. For that case two important neighborhoods exist: The Moore- and the
von-Neumann-neighborhood (see figure 3.15) [59, p. 28].

For epidemic simulations, the different infection states build the set of states. For ex-
ample, susceptible cells get infected if at least x cells in their neighborhood are infected.
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(a) Von-Neumann-neighborhood (b) Moore-neighborhood

Figure 3.15: Neighborhoods on cellular automata

Afterwards, they pass through a number of infection states until they get susceptible
(in an SIS model) or resistant (in an SIR model) again (see figure 3.16). Fuentes and
Kuperman compared such a system in 1999 with a differential-equation-model [15].

Figure 3.16: Realization of an SIR model as a cellular automaton

An extension of cellular automata are particles that move around on cells of a cellular
automaton or on a grid. These approaches are described and examined very well under
the terminology “Lattice Gas Cellular Automata” (LGCA), which are mainly used for
simulation of fluids and gases [59, p. 51-57]. For epidemic simulations, this approach
is extended again so that particles have an infection state and can infect other particles
in their neighborhood. This methodology has been introduced by Yakowitz 1990 [63].
An epidemic model on a hexagonal LGCA is schematically shown in figure 3.17. Fukś
and Lawniczak performed extensive technical analyses on models based on this idea [16].
Further model comparisons with differential equations have been shown by Štefan Emrich
and Günter Schneckenreither [65] [50].
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Figure 3.17: Realization of an SIR model based on an LGCA

3.8 Agent based models

Agent based models have already been defined and described in chapter 2. Based on the
general ideas, this chapter describes agent based models for epidemic simulation.

Such a model generally consists of three parts:

1. Agents: They represent persons.

2. Contacts: Contacts happen between persons.

3. Disease:

• Infection: A susceptible agent can get infected upon a contact with an infected
agent.

• Recovery: An infected agent recovers after some time. This does not depend
on contacts with other agents.

3.8.1 Example of an agent based epidemic model

• Agents: They represent persons.

• Attributes:

– Infection state: An SIS model allows two values: S and I. And SIR model
allows three values: S, I and R. The states are visualized in figure 3.18.

• Rules:

– Contact rule: An agent has a certain number of contacts with other agents
within a time interval (figure 3.19).
Parameter: Number of contacts per time interval.
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– Infection rule: If the agent is susceptible and has a contact with an infected
agent, then it changes its state with a certain probability to I - an infection
happens (figure 3.20).
Parameter: Infection probability.

– Recovery rule: Infected agents change their infection state after a certain
time interval to S (in an SIS model) or to R (in an SIR model) - this is called
recovery (figure 3.21).
Parameter: Time to recovery (=recovery time).

Figure 3.18: Agents in an epidemic model

Figure 3.19: Contacts between agents in an epidemic model

Figure 3.20: Infections of agents in an epidemic model based on contacts

Results: The figures 3.22 and 3.23 show results of a simulation with an agent based
epidemic model with 500 agents of an SIS epidemic and an SIR epidemic. A random
noise on the graphs is clearly visible. It is based on the fact that agents do not behave
deterministically. Instead, every agent underlies random decisions based on probabilities
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Figure 3.21: Recovery of agents in an epidemic model

all the time. Hence, in some time steps, more or less agents than the statistic mean gets
infected. Comparison of these curves with the differential equation model clearly shows
this effect as well (compare to figures 3.12 and 3.14).

Figure 3.22: Result of a typical agent
based SIS model

Figure 3.23: Result of a typical agent
based SIR model

3.8.2 Extension of agent based epidemic models

An important benefit of agent based models is their flexibility and extensibility. Possible
extensions are presented below, based on the model in chapter 3.8.1.

Parameter changes: Every agent is parameterized individually. In the most simple
case all agents have same parameters. But in other cases, some agents can get assigned
higher contact rates, lower infection probability or a longer recovery time without any
structural changes on the model and even without affecting other agents.

Additional attributes: Agents can get new attributes. Their implementation is almost
without effort because they do not affect any other parts of the model. Useful application
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of new attributes is to consider them in some agent’s rules which usually is simple to
implement, as stated in the next paragraph.
Persons in an epidemic model could be given additional attributes like age, gender or
strength of the immune system.

Adding/change of rules: Rules of agents can be changed or added individually. No
changes in the rest of the model have to be done as long as these rules do not require
circumstances that do not exist in the model yet. For example, this means that an agent
can only fly to the moon if the moon exists in the model. This also allows to redefine,
change, split up or combine classes of persons without much effort.
Making use of this idea for epidemic models, contact rates could depend on the age or
the infection probability could depend on the immune system of the person.

Conclusions: The example shows the benefit of agent based modeling very well, which
is already generally stated in chapter 2.5. Because of the simplicity of these kind of
modeling, one should not forget that changes of parameters or rules of a few agents might
already have strong impact on the system behavior and the result. Hence, an extensive
validation is very important for justification of working with a valid, correct model.

3.9 Comparison of the presented approaches

Chapter 3 deals with four important modeling approaches which are commonly used for
simulation of the spread of epidemics. In this context, the question arises which the
“accurate” or at least the “most accurate” model is.

First of all, it needs to be cleared that a model is always a simplification of the reality.
The actual problem, the concrete question and also the knowledge (and available data)
on the real system should be considered in choosing the right approach.

All presented modeling approaches have its justification for simulation of epidemics. It
depends on the actual situation which one should be used for modeling and simulation of a
concrete problem. Therefore, advantages and disadvantages of these models are presented
below.

3.9.1 Markov models

Advantages

• Direct extrapolation of data and hence relatively simple parameterization.

• Transparent calculation that is clear even for non-modelers.
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• Programming is not necessary. Markov models can even be calculated with Mi-
crosoft EXCEL. However, there is specialized software which still require program-
ming knowledge.

Disadvantages

• There are no feedback loops because the models work with static transition proba-
bilities (for example, susceptible persons can be infected even though no infectious
persons exist). Hence, possibly existing dynamic effects are ignored.

• Temporal dynamics are generated by given, time-dependent transition matrices but
they are not based on structural dependencies.

• There are limited level of details. Every consideration of a detail requires splitting
of at least one new cohort or adding at least one new state. Hence, more and larger
transition matrices appear and the system is much harder to parameterize.

3.9.2 Differential equations

Advantages

• Extensive mathematical theory for solution and analyses of differential equation
models.

• Possibility of descriptive visualization by system dynamics.

• No explicit consideration of details and relationships on a micro-level, hence they
do not need to be known.

Disadvantages

• The model itself is not descriptive and hard to understand for non-specialists.

• Common usage of abstract parameters that can only be set by calibration and that
are often not directly related to the real system.

• Very limited level of details. Every additional consideration of a detail requires at
least one additional variable and an equation. Furthermore, the other equations are
usually changing. This leads to very large systems of equation which are hard to
calibrate and to solve.

3.9.3 Cellular automata

Cellular automata can be seen as a prestage of agent based models where single compo-
nents with strict and fixed rules are used.

36



3.9. COMPARISON OF THE PRESENTED APPROACHES

Advantages

• Relatively simple description of the system.

• Very standardized way of modeling.

• Dynamic “emergent behavior” happens obviously and clearly, which is described in
chapter 2.5.

• Simple visualization.

Disadvantages

• Same type and parameterization of all cells.

• Cellular automata are often a high abstraction level of the real system.

• No mathematic theories for analysis of behavior and results.

3.9.4 Agent based models

Advantages

• Clarity also for non-specialists: The epidemic in the model is based on the same
reasons as in the real world: transmissions from person to person.

• Direct usage of known data as parameters and rules: The contact behavior
can be observed in social studies. The disease states and progressions are generally
medically known.

• Flexibility of the system: Contact behavior and disease progressions can be
changed easily without need to adopt any other parts of the model. This allows
efficient testing of fictional or real assumptions, but it also increases reusability of
the models in other projects.

• Easiness of creation of complex system dynamics that do not need to
be known priorly (“emerging behavior”): Different parameterizations and
interventions (for example vaccinations) usually result in a nonlinear change of the
disease spread.
Remark: The following chapters examine such effects which can be described very
well by appropriate definitions of herd immunity and serotype shift.

• Flexible scalability: The simulated number of persons but also personal attributes
and rules are generally extensible as desired. The only restrictions are memory and
runtime on the computer.
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Disadvantages

• Simulation of details might require extensive validation because their impact on
the whole system is often a priori unknown. Especially the occurrence of an un-
expected epidemic spread by certain assumptions must be examined carefully and
meticulously to find out whether the results are based on wrong or insufficient as-
sumptions or if they are indeed modeled correctly.

• A large number of agents require powerful computers and long runtimes. Efficient
coding and appropriate scaling based on prior knowledge helps to overcome this
problem.

• There are no standardized methods for analysis of the system behavior and of the
results. The idea of agent based modeling does not provide any methods on how
the spread of epidemics might be recorded and described.
Remark: The following chapters show that different situations often require differ-
ent statistical analyses on persons or on parts of the population.
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Chapter 4

Herd immunity: Terminology,
motivation and origin

4.1 Usage of the term “herd immunity” in the liter-

ature

Herd immunity is an effect which is of importance for interventions against epidemics.

The usage of the term “herd immunity” in the literature is very divergent; exact expla-
nations and specifications are rarely found.

The term “herd immunity” occurs for the first time in 1923 in a paper titled “The spread
of bacterial infection: the problem of herd immunity” by the British bacteriolo-
gists William Whiteman Carlton Topley and Graham Wilson. Based on experiments with
mice, they describe in their study that it is not enough to take account of the immunity
of single individuals. Additionally, the resistance of whole populations should also be
considered. [53]

Paul E. M. Fine examines in 1993 in “Herd Immunity: History, Theory, Practice”
the historic approaches to herd immunity and combines the ideas. He interprets herd
immunity as a resistance of a population which describes if an epidemic breaks out or dies
out, depending on given initial configurations and values. He also compares his theoretic
conceptions to practical examples like the impact of vaccinations against smallpox or
measles. [14]

Michael Haber et al. define a quantity called “herd immunity effectiveness” in their paper
“Herd immunity and pneumococcal conjugate vaccine: A quantitative model”.
This quantity indicates the relative reduction of sicknesses in a not vaccinated part of the
population. [21]

T. Jacob John and Reuben Samuel distinguish between the terms “herd immunity” and
“herd effect” in “Herd immunity and herd effect: new insights and definitions”.
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Based on three other studies they use “herd immunity” for the part of immune people in
a population [41, 42, 46]. In contrast to that, they denote with “herd effect” the change
of epidemiologic parameters (for example the reduction of sicknesses) in the unvaccinated
part of the population. [25]

“Dorland’s Illustrated Medical Dictionary” explains herd immunity as the resis-
tance of a group against an attack of a disease, caused by immunity of a sufficient large
part of the group, so that potential sick people do not meet enough susceptible people to
induce an outbreak of the epidemic. [12]

Gerald T. Keusch and Kenneth J. Bart explain herd immunity in “Immunization and
Vaccine Use” (Harrison’s Practice of Internal Medicine) as an indirect protection
of not vaccinated or not immune persons because the pathogen cannot spread freely due
to prevalence of immune persons. [31]

In “Oxford Textbook of Medicine” herd immunity is described as an effect which
leads to extinction of a disease by high vaccination rates. [57, p. 353]

Herd immunity also plays a role in the HTA report of the year 2008 to pneumo-
coccal vaccinations in Germany. At first, herd immunity is explained as resistance
of a population so that a pathogen cannot spread and con no longer become an epidemic.
Later on the term “herd immunity effect” is used to describe infection numbers in the
unvaccinated population. [9, p. 56-58]

Similar effects are also explained in “The impact of indirect (herd) protection on
the cost-effectiveness of pneumococcal conjugate vaccine” by using the terms
“indirect protection”, “herd protection” and “community immunity”. [23]

Herd immunity is also divergently used in studies that examine the spread of epidemics:

Guy Katriel and Lewi Stone find out in their model that the number of infected people
does not linearly depend on the infected people at simulation start. They justify this
effect by herd immunity. [27]

Ana Perisic and Chris T. Bauch explain herd immunity as an effect, where unvaccinated
people hardly get infected in case of high vaccination rates, even though they are still
susceptible. [44]

4.2 Usage of the term “herd immunity” in this work

The following, general statement serves as a basis for the subsequent mathematical defi-
nition of herd immunity:

Herd immunity is an effect in the area of infectious diseases that
indicates a benefit for unvaccinated persons by vaccination of other
persons.
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In this context a second definition of a term seems to be useful:

Complete herd immunity indicates the state of a population (“herd”),
when a particular disease cannot spread successfully and becomes
extinct instead.

Remarks:

• The previous considerations show clearly that herd immunity is an effect which plays
a role on diseases that are spread in a population by transmission. Other diseases
that are not transmittable are obviously not affected. Therefore only models, that
simulate infectious diseases, are important for examination.

• For consideration of vaccinations only persons that actually get immune by the vac-
cine need to be distinguished. Vaccinated persons that do not get immune play the
same role as unvaccinated persons for the spread of a disease. From the health-
care system’s point of view, such persons cause costs and need resources but these
aspects are not relevant for examination of herd immunity.

• Depending on the disease, people can become resistant against the pathogen after
recovery of an infection and cannot get infected again. For calculations of herd
immunity it is important to distinguish between immunity due to an infection and
immunity due to a vaccination because the focus of interest is the benefit of people
who are not immunized by an intervention.

• Persons can also get resistant by taking drugs for a shorter or longer time instead of
vaccinations. It is also possible to simulate such treatments with epidemic models
and study the herd immunity.

• The benefit for unvaccinated people should be interpreted by values that describe
the disease very well. These values could be, dependent on the point of view and
on available information, newly infected people, carrier or sick people.

• Complete herd immunity is reached when enough people are vaccinated so that the
disease cannot spread any more and becomes extinct. This is the highest possible
benefit for unvaccinated people. This state is characterized by a maximal herd
immunity. Higher values cannot be reached by herd immunity because a benefit
beyond extinction of a disease is not possible.

• About the term: Objectively the usage of the term “herd immunity” in this work
can be misleading because it does not indicate the immunity of a group. Instead, it
describes the benefit of a not immune group due to immunity of other people. In this
sense, I agree more with T. Jacob John and Reuben Samuel [25] that the term “herd
effect” is terminologically more suitable. Yet I decided to call it “herd immunity”
due to its common usage. Last but not least, “complete herd immunity” is not only
closely related to “herd immunity”, it also represents its original meaning. So this
work does not discuss something completely different from the original meaning.
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4.3 Emergence of herd immunity

The basis is a transmittable infectious disease. Susceptible persons (persons who can get
infected potentially) catch the disease with a certain probability from infectious people
(=people who can spread the pathogen). The actual probability in reality depends of many
factors and also varies from person to person. A crucial factor is the number of potentially
infectious contacts of a susceptible person. These are contacts with infectious persons.
Obviously, general personal health of the susceptible person, intensity and duration of the
contacts and other influences also play a role for transmission.

Situation 1: This situation considers an infectious disease in a population where nobody
is vaccinated. The probability of a person to get infected depends on the number of
infectious people around this person. Figure 4.1 (left) visualizes this circumstance using
red and green arrows.

Situation 2: Situation 2 refers to a state where a part of the population is vaccinated.
All other aspects that are not illustrated (like social behavior or general health of the
person) are assumed to correspond to situation 1. Then one can state that a susceptible
person has less potentially infectious contacts compared to situation 1, and so they have
a lower probability to get infected by someone. The schematic visualization shows this
circumstance in a way that in situation 2 less red arrows go to the marked person compared
to situation 1 (figure 4.1, right).

Figure 4.1: Visualization of the infection probability of the marked person.
Situation 1: No people are vaccinated.
Situation 1: A part of the population is vaccinated.

Remark: In reality, the actual infection probability in a case like situation 2 does not
only depend on the number of vaccinated people, but also on a person’s individual social
behavior.
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Background: The example of situation 1 and 2 shows only a very simplified view of this
effect. Actually, it could happen that only susceptible people get vaccinated. Then, the
remaining susceptibles have no benefit from this intervention at first because they neither
can get infected by susceptible nor by vaccinated persons. But herd immunity still arises,
because generally it emerges successively by an interplay of contacts and transmissions:

• The infected persons meet a certain number of persons. If there are vaccinated peo-
ple in the population, there tend to be less susceptible persons among their contact
persons than in a case without vaccinations. Thus, less transmissions happen.

• Consequently, susceptible people meet less infected people (because less people got
infected) and so they have a lower probability to get infected themselves.

An alternative interpretation of this effect: The benefit of unvaccinated people is
a consequence of the fact, that unvaccinated susceptible people meet vaccinated people.
In a case without vaccination, these vaccinated people might have been infectious and
could have infected a susceptible person.

4.4 Calculation of the herd immunity

4.4.1 Definition

Herd immunity should describe the benefit of the unvaccinated part of the population.
In the context of epidemics, people only receive a disadvantage. Hence, the benefit can
only be a decrease of this disadvantage. This decrease of a quantity always requires a
comparison of different situations.

What the disadvantage is and how it can be calculated remains unresolved at the moment
- this will be discussed later in chapter 4.4.2. The only requirement is the possibility to
specify the disadvantage for each point in time of the system.

The proposed calculation of herd immunity needs three steps:

1. Two scenarios are required: a base scenario and a test scenario. The base scenario
represents the initial situation and the test scenario is a situation with a vaccination
strategy that might lead to a benefit.

2. Calculate the disadvantage of the unvaccinated population for both scenarios in
each point in time.

3. Calculate the herd immunity as the relative decrease of the disadvantage from the
basis scenario to the test scenario.
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This leads to the following equation:

H(t) . . . . Herd immunity in time t
T0(t) . . . . Disadvantage of the unvaccinated population in the base scenario in time t
TV (t) . . . Disadvantage of the unvaccinated population in the test scenario in time t

H(t) =
T0(t)− TV (t)

T0(t)

Consequences of this definition

• Herd immunity is a time-dependent function which represents the effect of herd
immunity for a given scenario in each point in time.

• This way of calculation is suitable for discrete-time models (like agent based models)
and continuous-time models (like ODE-models) as well as for real studies with a
control group.

• The function of herd immunity can be discrete-time or continuous-time, depending
on the model, study or scenario.

• Herd immunity ranges over the interval (−∞; 1]

� = 1 indicates a maximal effect for unvaccinated people. They do not have any
disadvantage by disease any more.

� > 0 indicates a positive effect for unvaccinated people. They experience a
decrease of the disadvantage.

� = 0 indicates no effect for unvaccinated people, their disadvantage does not
change.

� < 0 indicates a negative effect for the unvaccinated people. They experience a
growth of the disadvantage.

• Often, the base scenario is a situation without vaccination and the test scenario is
a situation with vaccinations. But, it is possible that in the base scenario people
are vaccinated already and in the test scenario even more people get vaccinated.
Then, herd immunity should describe the effect of these excess vaccinations. The
definition above allows to consider such situations because it compares unvaccinated
people in both scenarios.

• Complete herd immunity, which means an extinction of the disease, is reached if
and only if the herd immunity is 1.

Remark: The herd immunity is defined on the unvaccinated population but potentially
it seems possible to calculate it on other population parts as well. This could be the whole
population for a generalized view or subgroups of the unvaccinated population to provide
detailed aspects. It will be subject to further research to find out which calculations are
most appropriate.
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4.4.2 Quantification of the disadvantage

The quantification of the disadvantage that the unvaccinated population experiences is
obviously one of the central aspects for the calculation of herd immunity.

Statement: The disadvantage is represented by persons that get infected with the dis-
ease. People that never get in touch with the disease cannot contribute to the disadvan-
tage.

However, the assessment of an epidemic in a point in time is not necessarily bound to
this single point. Instead, it might also depend on the past. Technically, there are three
possibilities regarding consideration of infections over the time:

• New infections: The new infections refer to the number of persons that get infected
in the concerned time point or time step (for discrete-time systems). In continuous,
differentiable systems this corresponds to the derivative of the infections.

• Infections since the beginning of the epidemic: This calculation refers in a
time point to the number of persons that have been infected since the start of the
epidemic inclusively up to this point in time. This makes sense if the epidemic is
considered as a completed event where the total number of infections are relevant.

• Infections during the last x time units: This calculation refers in a time point
to the number of persons that have been infected in the last x time units including
the actual point in time. If this method is used x should be chosen accordingly to
the actual epidemic.

Usage of the different temporal considerations

• New infections: This method makes sense, if only the actual point in time is
relevant for assessment of an epidemic.

• Infections since the beginning of the epidemic: This method makes sense, if
the epidemic is considered as a completed event where the total number of infections
are relevant.

• Infections during the last x time units: This consideration makes sense, if the
epidemic underlies variations and the infection numbers are relevant over a time
interval for assessment of the epidemic.

Calculation of the disadvantage: The calculation is done in two steps:

1. Choose the suitable temporal resolution at first.
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2. Calculate the disadvantage as the proportion of the number of infections in the
unvaccinated population based on unvaccinated persons:

T (t) =
Number of infections of unvaccinated persons within the chosen time interval

Number of unvaccinated persons

Remarks:

• Especially for long time intervals, it can happen the T (t) > 1 when people are
infected multiple times because they get susceptible again after infection.

• The normalization of the disadvantage on the unvaccinated population - this is the
calculation on the proportion based on unvaccinated people - is essential because the
number of unvaccinated people in the base and the test scenario is usually different.
Consequently, a comparison of absolute infection numbers is not correct.

4.4.3 Alternative calculation of the disadvantage

Often, the number of infections is unknown. Then it is still possible to use different
quantities for the calculation of herd immunity. But one has to keep in mind that these
calculation might produce misleading results. Below, some alternative quantities are
discussed.

Carrier rate: The carrier rate describes the number of infected people within a pop-
ulation. Its change is composed of infections and recoveries. Herd immunity can be
calculated by the carrier rate if the infections are not explicitly known. For that method
all carriers have to be counted.
Error: People stay infected until they recover. For a uniform recovery time the function
of the herd immunity is a shifted version of the original herd immunity by the recovery
time. If recovery time is variable, the herd immunity is also distorted.

New sickness cases: Another option is quantification of the disadvantage by new
sickness cases. One should keep in mind that not all infected people necessarily fall sick.
Error: If the proportion of infected people who fall sick is the same in both scenarios,
then this consideration is a good approximation for herd immunity. However, the curve
might be shifted and even distorted due to incubation time.

Number of sick people: Counting the number of sick people in a point in time is
another alternative way to quantify the disadvantage.
Error: This calculation results in a herd immunity that is shifted and possibly distorted
by both the incubation time and recovery time.
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4.5 Herd immunity in models

4.5.1 Usage

The explanations show clearly that herd immunity is an effect which occurs because
people interact with each other and transmissions happen upon these contacts. A model
that simulates epidemics where herd immunity can occur has to take account of these
relationships. Agent based models seem to fit perfectly because they represent persons
naturally in their interactions and the consequences. Furthermore they are flexible, easily
extendable and allow numerous analyses of details that can show the spread of an epidemic
from every angle. Therefore, the studies in the following chapters are done by agent based
models.

Models in this work serve as tools that allow to make epidemiologic effects, especially
herd immunity, visible and to examine them.

4.5.2 Prerequisites

Serotypes: In this chapter we consider models with only one existing serotype. Hence,
serotype shift cannot occur because a serotype cannot be replaced by another. Still, herd
immunity is likely to appear in many situations.

Impact of vaccinations: The assumption for this model is that vaccinations either
have full impact or no impact at all for a particular person. This means that a person
with an immune response upon a vaccination cannot be infected any more. Other persons
will still be considered to be susceptible.

Vaccinated persons: The term “vaccinated person” in this study refers to persons who
produced an immune reaction after a vaccination so that they became resistant. Persons
who received a vaccination that had no effect on them are not separately considered,
they are just found among unvaccinated people in the model. Such a strategy is justified
because vaccinations without effect do not affect the propagation of the disease at all.
They play a role for economic evaluations and resources in the healthcare system but
these aspects do not matter in this study.

Assumptions for modeling: Consider a simple, agent based SIS or SIR model. This
models works under the following assumptions:

• The agents in the model are persons.

• All persons in the model are of the same type. This means, they do not have
different behavioral rules or sets of attributes.
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• For SIS diseases, three infections states are available: susceptible, infected and vac-
cinated. For SIR epidemics, the state resistant additionally exists. Every person is
in exactly one of those states in each point in time.

• Contacts are distributed uniformly and randomly on the population. The used
parameter is k = “contacts per person per time unit”.

• The propagation of the disease happens upon three rules:

– If a susceptible person meets an infected person, then the susceptible person
changes its infection state to infected with probability α.

– An infected person stays exactly d time units in this state until it changes its
state to susceptible (in SIS epidemics) or resistant (in SIR epidemics).

– A vaccinated person stays in the state vaccinated until the end of the simula-
tion.

Illustrations of the infections states of SIS and SIR models are shown in figures 4.2
and 4.3.

• The model is simulated in discrete time steps. Personal updates happen once in
each time step after all contacts are performed. Contacts are considered to happen
simultaneously for all persons, and so do personal updates.

Figure 4.2: Infection states of persons in an SIS model

4.6 Herd immunity as an explaining quantity

4.6.1 Introduction

Based on the definitions in chapter 4.2, this chapter focuses on possibilities for calculations
and concrete representations of herd immunity. The aimed benefit of this part of the
study is to gain a deeper understanding of the system and on the spread of epidemics
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Figure 4.3: Infection states of persons in an SIR model

by calculation of herd immunity. It should also help to understand more about the
functionality and the dynamics of epidemic models. SIS and SIR epidemics will serve as
examples because they are well known, extensively examined and easy to handle.

4.6.2 Analytic calculation of herd immunity in an SIS model

Previous knowledge: It is known that an SIS model reaches an equilibrium after an
adaption phase. The equilibrium is stable as long as there are no changes in the model. If
persons are vaccinated during runtime, another adaption phase leads to a new equilibrium.

Calculation of the equilibrium: The following notation is used for the calculation:

N Number of persons
S Number of susceptible persons
I Number of infected persons
V Number of vaccinated persons
k Number of contacts per person per time unit
α Infection probability
d Recovery time

The equilibrium is inevitably reached if and only if the numbers of newly infected persons
and recovered persons are the same in each time step.
Statistically these equations hold for one time step:

new infections = S · k · I
N
· α

recoveries =
I

d
with d ≥ 1

Thus, the equilibrium is reached when equation 4.1 is true.

S · k · I
N
· α =

I

d
(4.1)
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Solving the equation for S leads to another equation 4.2. This only works if I > 0. The
situation I = 0 is trivial because in this case persons can never get infected. Then, every
calculation is useless.

S =
N

d · k · α
and I > 0 (4.2)

This formula leads to a few important statements about the model:

• S cannot be greater than N . Also, d ·k ·α ≥ 1 must be true, otherwise the equation
cannot yield a result. d · k · α < 1 means that the epidemic would die out and S
would equal N − V . Then, d · k · α = 1 applies.

• S + I + V = N must always be true. Since N and V are assumed to be unchanged
for a whole simulation it is possible to calculate the number of infected people in
the equilibrium: I = N − S − V . I cannot be negative and so N ≥ S + V must
be true. The number of vaccinated people can be chosen freely from 0 to N . If
N − V is lower than the calculated S, then I would be negative. This means that
the disease becomes extinct.

• This leads to equation 4.3.

S =

{
N

d·k·α if d · k · α > 1 and V ≤ N − N
d·k·α

N − V otherwise
(4.3)

• It is possible to show that the calculated equilibrium for S is independent on the
initial state of the system. For this purpose show: If S is lower (respectively greater)
than the calculated equilibrium, then more (respectively less) people get newly
infected than people recover in this time step.

Attention: The following calculation only applies for the equilibrium and not for the
adaption phase.

Assumptions:

• Require d · k · α > 1 and for the initial configuration I 6= 0 so that S can reach the
calculated equilibrium.

• Base scenario: No vaccinated persons.

• Test scenario: Vaccination of V persons (V ≤ N).
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Quantification of the disadvantage:

• Type: As a comparison, the disadvantage is calculated upon both the new infections
and the carrier rate.

• Temporal resolution: The disadvantage is calculated for a single point in time
(and not over intervals).

Notations for the state in the equilibrium:

T0 Disadvantage of the unvaccinated population in the base scenario
TV Disadvantage of the unvaccinated population in the test scenario
I0 Number of infected people in the base scenario
IV Number of infected people in the test scenario
H Herd immunity

Calculation of the herd immunity in the equilibrium:

Disadvantage by new infections Disadvantage by carrier rate
The disadvantage is all new infections
based on the unvaccinated population.

The disadvantage is the carrier rate based
on the unvaccinated population.

T0 =
I0
d

N
=
N − S
d ·N

TV =
IV
d

N − V
=
N − S − V
d · (N − V )

H =
T0 − TV
T0

=

N−S
d·N −

N−S−V
d·(N−V )

N−S
d·N

=
S · V

(N − S) · (N − V )

T0 =
I0

N
=
N − S
N

TV =
IV

N − V
=
N − S − V
N − V

H =
T0 − TV
T0

=
N−S
N
− N−S−V

N−V
N−S
N

=
S · V

(N − S) · (N − V )

We see that the herd immunity is the same with both calculation methods. This is
because the time shift due to the recovery time does not affect the herd immunity in the
equilibrium.

Calculation of the herd immunity with the formula is only possible if the disease does not
become extinct. If V is so great that the disease becomes extinct then herd immunity
equals 1. Hence, the following formula 4.4 for herd immunity in the equilibrium of SIS-
Models applies (considering the calculation of S according to equation 4.3).

H =

{
S·V

(N−S)·(N−V )
if 0 ≤ V ≤ N − N

d·k·α

1 if N − N
d·k·α < V ≤ N

(4.4)
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Remark 1: Complete herd immunity, which refers to the situation when the disease
becomes extinct, is reached when V > N − N

d·k·α .

Remark 2: In the equilibrium N and S = N
d·k·α have always the same value, indepen-

dently of V . Hence the formula can be rearranged:

S · V
(N − S) · (N − V )

=
N

d·k·α · V
(N − N

d·k·α) · (N − V )

=
N · V

(d · k · α) ·N · (1− 1
d·k·α) · (N − V )

=
V

(d · k · α− 1) · (N − V )

Furthermore herd immunity in the equilibrium of an SIS model can be seen as a function
of V with the constants d, k and α with d · k · α > 1 (equation 4.5).

H(V ) =

{
V

(d·k·α−1)·(N−V )
für 0 ≤ V ≤ N − N

d·k·α

1 für N − N
d·k·α < V ≤ N

(4.5)

Remark 3: The function of the herd immunity H(V ) is a strictly monotonically in-
creasing, convex function on 0 ≤ V ≤ N − N

d·k·α (see figure 4.4).

Figure 4.4: Graph of the herd immunity depending on the vaccinated part of the pop-
ulation. Chosen constants: d = 10, k = 10, α = 0.02

4.6.3 Example: Herd immunity in an agent based SIS model

Assumptions: In contrast to the theoretic calculations of chapter 4.6.2, in this chapter
a concrete agent based model is used. The model builds on the description in chapter
3.8.1 and follows the specifications for SIS models in chapter 4.5.2.
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Simulation-parameters:
Persons: N = 500 000
Contacts per person per time step: k = 10
Infection probability: α = 0.02
Recovery time: d = 10 time steps
Vaccinations: No vaccinations in the base scenario, 20% vaccinated people in the
test scenario.

Simulation results: The results of the simulations are shown in figure 4.5. The graph of
the states is a common visualization approach for epidemic models. This study focuses on
the disadvantage caused by the disease. The previous chapter states that the disadvantage
is generally represented by the number of infections and only alternatively by carriers.
Hence, the number of infections per time step is plotted in figure 4.6.

In both scenarios the models reach their equilibrium after a short adaption phase. The
figures show clearly that in case of vaccinations less infections happen and, consequently,
the carrier rate is lower.

Figure 4.5: States in the SIS model
Left: Base scenario (no vaccinated persons)

Right: Test scenario (20% vaccinated persons)

Definition of the disadvantage: Three different methods for quantification of the
disadvantage are used for comparison.

1. Current new infections:
The disadvantage in time x is Number of newly infected persons in time step x

Number of unvaccinated persons

2. New infections since start:
The disadvantage in time x is Number of newly infected persons since simulation start

Number of unvaccinated persons
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3. Current carriers:
The disadvantage in time x is Number of carriers in time step x

Number of unvaccinated persons

Interpretation of the herd immunity: Figures 4.7, 4.8 and 4.9 show the herd im-
munity based on the three different quantification methods.

• All three cases show an increase of the herd immunity in the first few time steps up
to 0.60-0.65 and then a decrease to about 0.25. This means that the disadvantage
in the equilibrium (after about 70 time steps) for unvaccinated people is about
25% lower in the test scenario. In other words, the probability of an infection for
unvaccinated people is 25% lower in case of 20% vaccination rate.

• The strong increase of herd immunity followed by a decrease can be explained eas-
ily because the adaption phase is shorter in the base scenario. Consequently, the
advantage is greater during the adaption phase than in the equilibrium.

• Calculation of herd immunity by current new infections and carriers is very similar,
only for calculation upon carriers the graph is slightly shifted to the right.

• If herd immunity is calculated upon all infections since simulation start, the decrease
happens much slower because the high benefit in the beginning affects every later
time step.

Alternative Simulation: Alternatively, the dynamic of herd immunity in SIS models
might be shown by vaccinations during runtime, after the system has reached its equi-
librium. Then it is possible to observe how the epidemic goes from one equilibrium to
another under the impact of herd immunity. The simulation parameters are the same as
above and the already shown simulation without vaccinations serve as the base scenario.
Figure 4.10 shows the states and figure 4.11 shows the new infections of this simulation.
The results make clear that in the time steps after the vaccination, a process occurs that
finally brings the system successively to the new equilibrium. This circumstance can be
seen explained by the herd immunity which is 0.2 directly after the vaccination and then
rises to 0.25 (figure 4.12).

Comparison with the analytic considerations: The analytic calculation in chapter
4.6.2 provides for herd immunity of an SIS model in the equilibrium the formula H =

V
(d·k·α−1)·(N−V )

. With d = 10, k = 10, α = 0.02 and a vaccination rate of 20% this yields

the herd immunity H = 100 000
(10·10·0.02−1)·(400 000)

= 0.25. This agrees very well with the results
of the agent based model.
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Figure 4.6: New infections in the SIS
model

Figure 4.7: Calculation of the herd im-
munity upon current new infections

Figure 4.8: Calculation of the herd im-
munity upon infections since simulation
start

Figure 4.9: Calculation of the herd im-
munity upon current carriers

55



CHAPTER 4. HERD IMMUNITY: TERMINOLOGY, MOTIVATION AND ORIGIN

Figure 4.10: States in the SIS model
with vaccinations after 100 time steps

Figure 4.11: Infections in the SIS model
with vaccinations after 100 time steps

Figure 4.12: Herd immunity based on
current infections with vaccinations after
100 time steps
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4.6.4 Example: Herd immunity in an agent based SIR model

Assumptions: Consider the simple agent based SIR model, which is defined in chapter
4.5.2.

Simulation parameter:
Persons: N = 500 000
Contacts per persons per time step: k = 10
Infection probability: α = 0.02
Recovery time: d = 10 time steps
Vaccinations: No vaccinations in the base scenario, 20% vaccinated people in the
test scenario.

Simulation results: The graphs in figures 4.13 show the results of the simulations
by evaluation of the states. Figure 4.14 shows the infections per time step to visualize
the disadvantage for the population. Both scenarios yield the well known curves of SIR
epidemics. In case of vaccinations the peak of the epidemic is much lower but the epidemic
lasts longer until is becomes extinct.

Figure 4.13: States in the SIR model
Left: Base scenario (no vaccinated persons)

Right: Test scenario (20% vaccinated persons)

Remark: The results clearly show that the epidemic lasts longer in case of vaccinations.
Then, especially between time 40 and 80 more infections happen. This circumstance is
shown by the blue area figure 4.15. So the main question is: “Is there still a benefit by
the vaccinations in time 40 to 80 or not?” On the one hand there is a benefit because
in the first 80 time steps much less people get infected in the test scenario, but on the
other hand there are more infections in time 40 to 80. However, the difference is small in
absolute numbers and large in relative values.
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Definition of the disadvantage: Again, for comparison reasons three different meth-
ods are used to calculate the disadvantage.

1. Current new infections

2. New infections since start

3. Current carriers

Interpretation of the herd immunity: Figures 4.16, 4.17 and 4.18 show the results
of the three calculations of herd immunity.

• The calculations upon current new infections or carriers are hardly meaningful. As
expected, both graphs are very similar, and only the herd immunity based on carriers
is slightly distorted. The less meaningful values of the herd immunity are based on
the fact that the epidemic curve is shifted to the right by vaccinations.

– In the first 40 to 50 time steps, most persons are infected and the herd immunity
makes sense and is positive.

– Between time 40 and 70, already more infections happen in the test scenario,
hence the herd immunity is negative.

– From time 80 onwards only very few infections happen and small number have
to be compared. Still more infections happen in the test scenario, even though
they are almost neglectable in absolute numbers. Hence, the herd immunity
has values that are very negative and in case of x

0
they are even virtually −∞.

• Against this, the method with all infections since start clearly shows the benefit for
the unvaccinated population. It is about 0.2 in the end. This means that in the
case of vaccinations about 20% less infections happen to the unvaccinated people
within the whole epidemic.

4.7 Conclusions

The examples obviously show an impact of vaccinations on the unvaccinated population.
An appropriate calculation and representation of this impact by herd immunity highly
depends in the actual epidemic and on the point of view. Especially temporal shifts,
which apply for example for SIR epidemics, require a detailed definition of the interval
that is used to represent the disadvantage at a point in time.
Generally, it is suggested to calculate the disadvantage upon newly infected people but if
this information is not available other methods exist as alternatives. One should consider
that these alternatives might yield different results than the original herd immunity.

However, the examples reveal the capability of herd immunity and its additional informa-
tion on the system if the temporal component is chosen appropriately. This leads to the
main conclusions of this chapter:
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Figure 4.14: New infections in the SIR
model

Figure 4.15: Is there a disadvantage or
still a benefit in time 40 to 80?

Figure 4.16: Calculation of the herd im-
munity upon current new infections

Figure 4.17: Calculation of the herd im-
munity upon infections since simulation
start

Figure 4.18: Calculation of the herd im-
munity upon current carriers
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• The temporal component must be chosen accordingly to the actual epi-
demic and given problem.

• Alternative quantifications of disadvantage than by newly infected people
are possible but might lead to different results.

• Usage of an appropriate time interval for quantification of the disadvan-
tage results in informative values that represent the benefit of unvacci-
nated people by a vaccination strategy.

4.8 Parameter studies on herd immunity

4.8.1 Relationships in the SIS model

In this chapter, SIS epidemics in an agent based model are compared to the analytic
formula for deeper understanding of the results in the following chapters. Formula 4.4
from the analytic calculation implies that the equilibrium of SIS models is a function of the
product of infection probability, recovery time and contacts per person. But, simulations
with the agent based model partly lead to different results than the formula. These
differences will be examined and explained by two test series below.

Test series 1 - Relationship between infection probability and contact number:
A constant product of infection probability and contact number yields almost the same
carrier rates by simulation with the agent based model, corresponding to the analytic
formula. This behavior can easily be explained because the number of infections per time
step is exactly the product of potential infectious contacts and the infection probability.
Potentially infectious contacts are contacts between infected and susceptible persons.
Obviously the probability of such a contact is 2 · carrier rate · (1− carrier rate). Thus the
transmissions on the agent based model in one time step for a given carrier rate depend on
the product of infection probability and contact number. Thus, the model should result
in the same equilibrium.

Used settings:

• Number of persons: 500 000

• Recovery time: 10 time steps

• The carrier rate is set accordingly to the analytic calculation to prevent a long
adaption phase.

• Simulation time: 150 time steps

• Calculation of the carrier rate: Average carrier rate of the time steps 126 to 150.
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Infection probability and contact number are varied in nine different settings (see table
4.1) and simulated for 0%, 10%, 20% and 30% vaccination rates with the agent based
model. k defines the average number of contacts per person which is used to calculate the
total number of contacts in the population, hence it can be a decimal number and does
not need to be an integer. The results, which are represented by the carrier rates in the
equilibrium, are shown in figure 4.19.

Table 4.1: Parameter settings of the test series for infection probability α and contacts
per persons k.

Setting 1 2 3 4 5 6 7 8 9

k 2 4 6 8 10 100
8

100
6

100
4

100
2

α 0.2
2

0.2
4

0.2
6

0.2
8

0.02 0.016 0.012 0.008 0.004

Figure 4.19: Results of the test series for infection probability and contacts per persons.

Test series 2 - Study on the deviations of the equilibrium in the agent based
model and the analytic calculation: The deviations of the agent based model com-
pared to the analytic calculation are examined in the second test series. Since the rela-
tionship between infection probability and contact number is known, it is enough to vary
the recovery time and the contact numbers and leave the infection probability constant.

The general settings for the test series are the same as for the test series above. The
parameter variation consists of all combinations of 2, 4, 6, 8, 10, 100

8
, 100

6
, 100

4
and 100

2
for

both contacts per person and recovery time. If the recovery time is a decimal number then
people receive in case of an infection the rounded down or up value, so that in average
among the population the given number is reached.

The result is shown as the relative difference of the carrier rate in the equilibrium of the
agent based model from the analytic calculation. The whole test series is simulated for
0% (figure 4.20), 10% (figure 4.21), 20% (figure 4.22) and 30% (figure 4.23) vaccination
rates. The z-axis is printed upside-down since the carrier rates in the agent based model
are generally lower than the ones in the analytic calculation.
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Figure 4.20: Deviation of the agent
based model from the analytic calculation
in case of no vaccinations.

Figure 4.21: Deviation of the agent
based model from the analytic calculation
in case of 10% vaccination rate.

Figure 4.22: Deviation of the agent
based model from the analytic calculation
in case of 20% vaccination rate.

Figure 4.23: Deviation of the agent
based model from the analytic calculation
in case of 30% vaccination rate.
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Interpretation of the results of the test series: A few general insights on differences
between the agent based model and the statistical calculation turn out.

• If the product of infection probability and contact number stays constant, then the
agent based model yield the same results. This relationship can be explained very
well.

• The carrier rate of the agent based model is generally lower than the one in the
analytic calculation.

• Simulations without any difference are usually situations where the disease becomes
extinct.

• The longer the recovery time is the greater is the difference.

• The difference is obviously independent from the contact number but strongly de-
pends on the recovery time.

• The vaccination rate does not seem to have an impact on the difference.

Explanation of the results: The results of test series 1 are already explained by the
description of this test series. The assumed relationship between infection probability and
contact number is confirmed by the simulations.

It is expected that the carrier rate remains unchanged if the product of recovery time
and contact number stays constant, because such a parameter variation corresponds to
a distortion of the time axis. Multiplication of the contact number with x generates in
one time step as many contacts as before in x time steps. Division of the recovery by x
finally leads to a situation where one time step corresponds to x time steps in the original
situation. Scaling of the time axis theoretically does not have an impact on the carrier
rate. But the agent based model shows differences that are as larger as longer the recovery
time is. A shorter recovery time corresponds to longer time steps in the real system, thus a
rougher discretization and hence a larger error. Consequently, the smallest error happens
for long recovery rates which represent a fine discretization. This leads to the conclusion
that the differences of the carrier rates in both models are an effect of discretization of
the agent based model.

4.8.2 Parameter studies with the SIS model

Preliminary remarks: It is known that SIS epidemics always reach an equilibrium.
This quantity is more important for characterization of the epidemic than possibly existing
adaption phases. Consequently, examinations on longer time intervals are less important
because such an epidemic has no real start and end, in contrast to SIR epidemics. The
numbers of new infections per time step in the equilibrium are meaningful results for
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comparison of SIS simulations. Additionally they are the main characterization of the
disadvantage caused by the disease.

Herd immunity is suitable for comparison of effects of different vaccination rates or strate-
gies. The preceding chapters have shown that all calculation methods for herd immunity
of an SIS model yield useable results. However, herd immunity in this study is calculated
upon current new infections to take the pure outcomes and because they allow statements
about single points in time in the equilibrium.

The relationship between infection probability and contact numbers is already shown and
explained. Thus, it is sufficient to vary only one of these variables and keep the other one
constant. Hence, in this study only the infection probability and the recovery time are
varied.

Overview

• Simulation: SIS epidemic

• Model: Agent based model

• Representation of the results: New infections per time step in the equilibrium.
Since random noise can occur for agent based models, the new infections are calcu-
lated by the mean of 25 time steps.

• General settings:

– Persons: 1 000 000

– Infection probability: 0.02

– Contacts per person per time step: 10

– Recovery time: 10 time steps

– Vaccinations: All simulations are performed without vaccinations and 10%,
20% and 30% vaccination rate.

• Herd immunity:

– Base scenario: Simulation without vaccinations

– Test scenario: Simulations with vaccinations

– Calculation method: Current new infections in the equilibrium.

• Variations: Both, infection probability and recovery time are varied by 10%, 20%
and 30% lower and higher values. Combinations of these parameters are not varied.

64



4.8. PARAMETER STUDIES ON HERD IMMUNITY

Figure 4.24: Variation of the infection probability in the SIS model. The bars show the
new infections per time step in the equilibrium.

Figure 4.25: Herd immunity of the variation of the infection probability in the SIS
model. The bars show the herd immunity upon current new infections in the equilibrium.

Figure 4.26: Variation of the recovery time in the SIS model. The bars show the new
infections per time step in the equilibrium.
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Figure 4.27: Herd immunity of the variation of the recovery time in the SIS model. The
bars show the herd immunity upon current new infections in the equilibrium.

Results: Figure 4.24 shows the results of the parameter variation of the infection prob-
ability while figure 4.26 shows the ones of the variation of the recovery time. The herd
immunity is plotted in figure 4.25 and figure 4.27. This test series provides a few new
insights:

• The number of infections is as higher as higher the infection probability is.

• A higher recovery time leads, if at all, only to a slightly increased infection number.
However, due to the longer time to recovery the carrier rate increases significantly
at the same number of new infections.

• The herd immunity is a higher as higher the vaccination rate is.

• The herd immunity for a given vaccination rate is as higher as less carriers are present
in the base scenario. This means, the benefit for the unvaccinated population is
higher in SIS epidemics with lower carrier rates.

• Complete herd immunity can be observed in two cases where the epidemic becomes
extinct at 30% vaccination rate. In these cases the herd immunity equals 1 which
confirms previous deliberations.

Comparison of the results with the theory: The theory provides a formula to
calculate the herd immunity in SIS epidemics (see chapter 4.6.2, formulas 4.4 and 4.5).
The tables 4.2 and 4.3 show the calculated herd immunity compared to the measured
value in the agent based model. The results agree very well except for small deviations
which can be explained by random noise.
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Table 4.2: Comparison of the herd immunity in the SIS model with the formula (pa-
rameter studies of the infection probability)

Infection
probability

Vaccination
rate

Herd immunity
Deviation

AB model Formula

-30%
10% 0.28 0.28 +0.73%
20% 0.63 0.63 -0.03%
30% 1.00 1.00 +0.00%

-20%
10% 0.19 0.19 -1.13%
20% 0.42 0.42 -0.39%
30% 0.72 0.71 -0.28%

-10%
10% 0.14 0.14 +0.04%
20% 0.31 0.31 +1.02%
30% 0.53 0.54 +0.48%

basis
10% 0.11 0.11 -0.22%
20% 0.25 0.25 -0.45%
30% 0.43 0.43 -0.20%

+10%
10% 0.09 0.09 +0.62%
20% 0.21 0.21 -0.78%
30% 0.36 0.36 -0.39%

+20%
10% 0.08 0.08 +1.61%
20% 0.18 0.18 +0.74%
30% 0.31 0.31 +0.01%

+30%
10% 0.07 0.07 -2.49%
20% 0.16 0.16 -0.74%
30% 0.27 0.27 -0.15%
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Table 4.3: Comparison of the herd immunity in the SIS model with the formula (pa-
rameter studies of the recovery time)

Recovery time
Vaccination
rate

Herd immunity
Deviation

AB model Formula

-30%
10% 0.28 0.28 -0.97%
20% 0.62 0.63 +0.34%
30% 1.00 1.00 +0.00%

-20%
10% 0.19 0.19 -0.60%
20% 0.42 0.42 -1.14%
30% 0.71 0.71 +0.65%

-10%
10% 0.14 0.14 -0.52%
20% 0.31 0.31 -0.49%
30% 0.54 0.54 -0.32%

basis
10% 0.11 0.11 +0.58%
20% 0.25 0.25 -0.63%
30% 0.43 0.43 +0.65%

+10%
10% 0.09 0.09 +1.44%
20% 0.21 0.21 -0.08%
30% 0.35 0.36 +0.91%

+20%
10% 0.08 0.08 +0.04%
20% 0.18 0.18 +0.21%
30% 0.30 0.31 +0.51%

+30%
10% 0.07 0.07 +0.73%
20% 0.16 0.16 +0.79%
30% 0.26 0.27 +1.34%
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4.8.3 Parameter studies with the SIR model

Preliminary remarks: SIR epidemics are always temporal limited processes because
at the certain point the epidemic becomes extinct. Traditionally, only a few infected
people exist in the beginning, then the number of infected people grows until it reaches
a peak and then it decreases successively to zero. For characterization of SIR-Epidemics,
both values of the temporal propagation (peak and duration) as well as the total number
of infections of the whole epidemic are useful. In this study, the total number of infections
are used to compare simulations of the parameter studies.

The calculation of herd immunity can be tricky for SIR models if one considers only the
state in a single point in time because vaccinations can shift these kind of epidemics.
The method to calculate herd immunity upon the total number of infections since start
seems to be most promising since the SIR epidemic is always a time limited event. For
comparison of different vaccination rates in the studies, the herd immunity at the end of
the whole epidemic is used.

Overview

• Simulation: SIR epidemic

• Model: Agent based model

• Representation of the results: Total number of new infections for the whole
epidemic.

• General settings and variations: The settings and parameter variations are the
same as for the SIS model (see chapter 4.8.2). The start values are always 1%
infected and 99% susceptible persons (vaccinations are not part of the start values,
instead people get randomly vaccinated before the first time step).

• Herd immunity:

– Base scenario: Simulation without vaccinations

– Test scenario: Simulations with vaccinations

– Calculation method: New infections since the start of the epidemic. For com-
parison only the herd immunity at the end of the epidemic is shown.

Results: Figure 4.28 shows the results of the variation of the infection probability while
figure 4.30 shows those of the recovery time variation. The corresponding calculations of
herd immunity are illustrated in figure 4.29 and 4.31. This test series provides new insights
about SIR epidemics:

• Higher infection probability and recovery time leads to more total infected people
during the epidemic.
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Figure 4.28: Variation of the infection probability in the SIR model. The bars show the
total infections of the whole epidemic.

Figure 4.29: Herd immunity of the variation of the infection probability in the SIR
model. The bars show the herd immunity upon new infections since start at the end of
the epidemic.
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Figure 4.30: Variation of the recovery time in the SIR model. The bars show the total
infections of the whole epidemic.

Figure 4.31: Herd immunity of the variation of the recovery time in the SIR model. The
bars show the herd immunity upon new infections since start at the end of the epidemic.
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• The herd immunity is as stronger as less infected people exist for the whole epidemic
in the base scenario. This means, unvaccinated people have a lower benefit for fixed
vaccination rates in epidemics with many infected people compared to ones with
less infected people.

• The herd immunity is as stronger as higher the vaccination rate is.
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Chapter 5

Comparison of Markov models and
agent based models for epidemic
simulations

5.1 Overview

This chapter provides a comparison of Markov models with the agent based approach for
epidemic disease modeling, based on concrete examples and an analytic consideration.
The infections in the agent based approach are a result of contacts between single per-
sons and infection probabilities. In contrast to that, the Markov model requires direct
parameterization of the probability that persons change from one state to another.

The comparison is done by the following procedure:

1. Construction of an agent based and a Markov model for simulation of an epidemic.

2. Parameterization of both models so that their results correspond to each other for
simulations without vaccinations.

3. Implementation of different vaccination strategies on the population in both models
and comparison of the results.

4. Presentation the different results and attempt to explain the differences from a
mathematical point of view.

The goals of this study are firstly, to learn about the differences between contact based
and non-contact based epidemic models and secondly, to understand the impact of herd
immunity on the spread of epidemics better. Three concrete examples are studied for that
reason:

1. Comparison of equilibriums in an SIS model.
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2. Comparison of the temporal propagation of an SIR model.

3. Comparison of infection numbers of a complete season in an SIR model.

5.2 Comparison of equilibriums in an SIS epidemic

5.2.1 Construction of the models

The agent based model: The agent based model is the same that has been defined
and constructed in chapter 4.5.2 and extensively examined in chapter 4.8.2. Hence, its
functionality is not repeated again here.

The Markov model: The population is split into unvaccinated and vaccinated people
that are simulated with different Markov models.

Unvaccinated people: The SIS Markov model consists of two states: s1 =“Susceptible”
and s2 =“Infected”. Figure 5.1 shows the state transition diagram.

Figure 5.1: The state transition diagram of the SIS Markov model for unvaccinated
people

The distribution of the system in a point in time t is mathematically represented by
a 2-dimensional vector which contains the amounts of susceptible and infected people:
at = (a1,t, a2,t). The transition matrix contains the probabilities I that susceptible people
becomes infected and R that infected people recover and become susceptible. Thus, the
probabilities that people remain in their state are (1− I) respectively (1−R).

M =

(
1− I I
R 1−R

)

Vaccinated people: Vaccinated people always stay vaccinated, hence the Markov
model consists of only state: s1 =“Vaccinated”.

Figure 5.2 shows the tree of whole model.
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Figure 5.2: The Markov tree of the SIS Markov model

5.2.2 Parameterization of the model

Parameterization of the agent based model: The used parameters for this example
are the same as in the base simulation in the last chapter:

• Contacts per person per time step: k = 10

• Infection probability: α = 0.02

• Recovery time: d = 10 time steps

• Vaccination rate: 0%

• Infected persons at simulation start: 1%
However, start values are not important since only the equilibrium is relevant in
this example.

Parameterization of the Markov model: The infection probability I and the re-
covery probability R in the Markov model must be set correctly so that the distribution
reaches the same equilibrium as in the agent based model. Adaption phases to other
equilibriums are not considered (they usually occur in the beginning of the simulation
and after interventions during simulation).
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Thus, equation 5.1 defines for the agent based model two time-dependent functions I(t)
and R(t).

I(t) =
New infections(t)

Susceptible people(t− 1)
(5.1)

R(t) =
Recoveries(t)

Infected people(t− 1)

I(t) represents the probability that a susceptible person gets infected in time t and R(t)
indicates the probability that an infected persons recovers in time t and becomes sus-
ceptible. These probabilities correspond exactly with the transition probabilities in the
Markov model. The Markov model is calculated with a constant transition matrix since
only the equilibrium should be fitted. To prevent random noise, the quantities are cal-
culated as the mean of 20 time steps in the agent based model. This method yields the
parameters I = 9.11% and R = 10%.

The results of the models are shown as carrier rates of the whole population. Figure
5.3 shows that these parameters indeed yield the same equilibrium in both models. The
adaption phases are different due to structural differences but, as stated before, they are
no matter of interest.

Figure 5.3: Carrier rates of the equally parameterized SIS models without vaccinations

5.2.3 Implementation of vaccinations

In both models, three different vaccinations rates are performed at the beginning of the
simulation: 10%, 20% and 30%. The Markov model is parameterized based on the agent
based model without vaccination. The corresponding results of these vaccinations are
plotted in figure 5.4.

The Markov model shows the expected linear behavior: Vaccination of 10%, 20% or 30%
of the population yields to a reduction of infected people by the same percentage. This
leads to carrier rates that are significantly higher than the ones in the agent based model.
The adaption phases are also different but they are not discussed here, since only the
equilibrium should be compared.
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Figure 5.4: Results of vaccinations in the Markov model and in the agent based model
for SIS epidemics

5.2.4 Explanation of the differences and harmonization of the
results

The background for the different results is clear because it is already meticulously shown
that an epidemic, which has a propagation based on contacts, does not behave linear
because the unvaccinated population is affected as well. At this point the question arises,
if the Markov model can be corrected by the factor of non-linearity so that it yields carrier
rates that correspond to the agent based model. This means, we are looking for a quantity
that indicates how much the carrier rates are overestimated by the Markov model. Since
only unvaccinated people can get infected this quantity equals exactly the benefit of
the unvaccinated population, and this is the herd immunity. Hence, the herd immunity
has to be calculated in the agent based model from the current carrier rate. Table 5.1
shows the results of this comparison. The herd immunity is shown as a percentage for
better comparability with the other results. The small differences can be explained by
random noise in the agent based model. Figure 5.5 visualizes that the carrier rates in the
equilibrium in the Markov model indeed corresponds to the agent based model if they are
corrected by the herd immunity.

Table 5.1: Comparison of carrier rates and herd immunity in the SIS model

Vaccination rate 10% 20% 30%

Carrier rate in the agent based model 38.06% 28.61% 18.96%

Carrier rate in the Markov model 42.91% 38.15% 33.38%

Divergence of the Markov model from
the agent based model

11.30% 25.00% 43.20%

Herd immunity in the agent based
model

11.15% 24.83% 43.00%

This example leads to some important insights:
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Figure 5.5: Results of vaccinations in the Markov model (corrected by the herd immu-
nity) and in the agent based model for SIS epidemics

• A Markov SIS model with constant transition probabilities can always be parame-
terized so that its equilibrium corresponds to the agent based model.

• The carrier rate in the equilibrium of a correct parameterized Markov SIS model
does not correspond to the agent based model. But, decreasing the resulting carrier
rate by the herd immunity yields the correct result.

• The herd immunity of a concrete SIS epidemic depends on the vaccination rate and
cannot be generally set or used.

• The adaption phase - the duration, how long it takes after an intervention to reach
the new equilibrium - cannot be calculated correctly with a Markov model with
constant transition probabilities.

5.3 Comparison of the temporal progress of an SIR

epidemic

5.3.1 Construction of the models

The agent based model: The agent based model is already defined in chapter 4.5.2
and is extensively examined in chapter 4.8.3. For that reason, it will not be described
here again.

The Markov model: Like for SIS epidemics, the population of the Markov model is
split into unvaccinated and vaccinated people.

78



5.3. COMPARISON OF THE TEMPORAL PROGRESS OF AN SIR EPIDEMIC

Unvaccinated people: The Markov model for SIR epidemics is generally an exten-
sion of the SIS model. It requires three states: s1 =“Susceptible”, s2 =“Infected” and
s3 =“Resistant”. The state transition diagram in figure 5.6 visualizes this model.

Figure 5.6: The state transition diagram of the SIR Markov model for unvaccinated
people

Mathematically, the distribution of the system in a time point is represented by a 3-
dimensional vector which indicates the shares of susceptible, infected and resistant people:
at = (a1,t, a2,t, a3,t). The transition Matrix M shows the probabilities, that susceptible
respectively infected people transfer to the state “Infected” (with probability I) respec-
tively “Resistant” (with probability R). Thus, they remain in their state with probability
(1− I) respectively (1−R). Resistant people always remain in their state.

M =

1− I I 0
0 1−R R
0 0 1



Vaccinated people: All vaccinated people remain always vaccinated because they can-
not get infected. Hence, the Markov model consists of this state “Vaccinated” only.

Figure 5.7 shows the tree of the whole model.

5.3.2 Parameterization of the model

Parameterization of the agent based model: The parameterization of the agent
based model is the same as of the SIS model in the previous chapter 5.2.2.

Parameterization of the Markov model: The task is, to set the infection proba-
bility I and recovery probability R so, that the Markov model yields the same epidemic
progression as the agent based model. Thus, the transition probabilities have to be set
time-dependent. This is possible if the probabilities I and R are calculated as stated
already for the SIS model (equation 5.1).

The infection probability I is a time-dependent function that is similar to the progression
of the SIR disease (figure 5.8, left). The recovery probability is decreasing in the beginning
from 10%, because due to the given recovery time many people get infected but do not
recover yet. Then it increases again above 10% and finally, it ends in an almost chaotic
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Figure 5.7: The decision tree of the SIR Markov model
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behavior because only a few infected people are left, so that single recovering people
represent high percentages (figure 5.8, right).

Using these values I and R in the Markov model leads to the same epidemic curve as the
agent based model (figure 5.9).

Figure 5.8: Time-dependent parameter in the SIR Markov model without vaccination.
Left: Infection probability I, Right: Recovery probability R

Figure 5.9: Results of the equally parameterized SIR models

5.3.3 Implementation of vaccinations

A vaccination in the agent based model decreases the epidemic curve but it also distorts
it, hence it takes longer until the disease becomes extinct. In the Markov model, the
vaccination decreases the epidemic curve by the vaccination rate but does not change
its qualitative behavior over time. Figure 5.10 shows these differences of the simulation
results.
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Figure 5.10: Results of vaccinations in the Markov model and in the agent based model
for SIR epidemics

5.3.4 Explanation of the differences and harmonization of the
results

The last step of the procedure tries to capture the error and to harmonize the different
results. Vaccinated people do not participate in the epidemic curve, hence the effect
is caused by unvaccinated people. This means, an effect influences the unvaccinated
population that finally results in changed epidemic curves. This effect is exactly the
benefit compared to the base scenario without vaccination - the herd immunity. Since the
result is the temporal progression of the whole epidemic curve, the herd immunity must
be calculated upon the current carrier rate (see figure 5.11).

The herd immunity represents the benefit for the unvaccinated population. To use this
effect correctly the carrier rate in the Markov model needs to be multiplied by (1-herd
immunity). This means that for each time point t applies:

IMarkov with herd immunity(t) = IMarkov(t) ∗ (1−H(t))

with
I(t) ... Carrier rate in time t
H(t) ... Herd immunity in time t

Such a recalculated carrier rate finally corresponds to the agent based model as shown in
figure 5.12.

This example also leads to some important insights

• A Markov model can always be parameterized so that its temporal progression
corresponds to the agent based model.
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Figure 5.11: Herd immunity in the agent based SIR model based on the current carrier
rate

Figure 5.12: Results of vaccinations in the Markov model (corrected by the herd immu-
nity) and in the agent based model for SIR epidemics
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• Vaccination in a correctly parameterized Markov model yields generally divergent
results. Decrease of the carrier rate by the herd immunity yields the carrier rates
of the agent based model.

• Herd immunity in an SIR model is not a constant parameter but a time-dependent
function. Additionally, it depends on the vaccination rate and so it cannot be de-
clared generally and has to be calculated time-dependently for every specific setting.

5.4 Comparison of a complete SIR epidemic

5.4.1 Construction of the models

This chapter requires a model that only yields the number of infections of a whole SIR
epidemic.

Agent based model: The SIR agent based model is the same as in the previous chapter,
but the result is only the total number of infections.

Markov model: The Markov model is a very simple structure. One time step covers
one complete SIR epidemic. This allows to calculate recurring epidemics under the as-
sumptions that no infected people are left at the end of a season. This means that for a
time step only one parameter has to be set: the number of infections in the susceptible
population.

5.4.2 Parameterization of the model

Parameterization of the agent based model: The parameterization is the same as
in the agent based model for SIS and SIR epidemics which is set in chapter 5.2.2. A total
of 78.77% of the whole population get infected during the whole epidemic in the scenario
without vaccination.

Parameterization of the Markov model: The Markov model is parameterized by
the 78.77% infected people of the agent based model. It does not contain any other
parameters.

5.4.3 Implementation of vaccinations

The results of the agent based epidemics with vaccinations are taken from the previ-
ous chapter 5.3.3. The Markov model decreases the infections in the population by the
vaccination rate due to its linearity. The results are shown in table 5.2.
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Table 5.2: Infected population in the Markov model compared to the agent based model

Infected part of the population
Vaccination rate Markov model AB model
none 78.77% 78.77%
10% 78.77% · 0.9 = 70.89% 65.09%
20% 78.77% · 0.8 = 63.02% 50.85%
30% 78.77% · 0.7 = 55.14% 35.32%

General explanation of the behavior of the Markov model: Be ZAB,p the infec-
tion number of the agent based model and ZMarkov,p the one of the Markov model. Then
the following equation holds for the Markov model: ZMarkov,p = (1−p)·ZAB,0. This means
that the Markov model assumes the same infection probabilities for the unvaccinated part
of the population (1− p) for any vaccination strategy.

5.4.4 Explanation of the differences and harmonization of the
results

Again the differences result from a benefit or disadvantage of the unvaccinated population.
In this case herd immunity is calculated upon new infections since simulation start because
the results are total infections of the whole epidemic. Table 5.3 shows the calculation of
the herd immunity. Multiplication of the infection numbers of the Markov model by (1-
herd immunity) again yields the results of the agent based model as shown in table 5.4.

Table 5.3: Calculation of the herd immunity in the agent based model. All calculations
are performed with the exact (not rounded) values.

Vaccination rate Herd immunity

10%
78.77

1
− 65.09

0.9
78.77

1

= 0.0819

20%
78.77

1
− 50.85

0.8
78.77

1

= 0.1930

30%
78.77

1
− 35.32

0.7
78.77

1

= 0.3595

Table 5.4: Results of the Markov model with herd immunity compared to the agent
based model

Infected part of the population
Vaccination rate Markov model with herd immunity AB Model
none 78.77% 78.77%
10% 70.89% · (1− 0.0819) = 65.09% 65.09%
20% 63.02% · (1− 0.1930) = 50.85% 50.85%
30% 55.14% · (1− 0.3595) = 35.32% 35.32%
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5.5 Analytic considerations

The relationship between model results and herd immunity, which is already motivated
by the three examples, can be analytically shown as well.

Let Emodel,p be the result of an epidemic model with vaccination rate p in a point in time
or over a period of time. If the Markov model and the agent based model are equally
parameterized in the base scenario without vaccination to yield the same results, then
one has: EMarkov,0 = EAB,0.

The Markov model in case of vaccination assumes that vaccinated people cannot have
any disadvantage, and unvaccinated persons have the same result as before in the base
scenario. This means: EMarkov,p = (1− p) · EMarkov,0.

Let Hp be the herd immunity to a vaccination rate p and it should be calculated upon
the same disadvantage and time as the result of the model EMarkov,p. The herd immunity
is calculated in the agent based model. Then we can state by definition that:

Hp =
EAB,0 − EAB,p

(1−p)

EAB,0

This leads to:

EMarkov,p · (1−Hp) = EAB,0 · (1− p) ·

(
1−

EAB,0 − EAB,p

(1−p)

EAB,0

)

= EAB,0 · (1− p) ·
EAB,p

1−p

EAB,0

= EAB,p

Consequence: This consideration shows that the herd immunity, if calculated upon an
appropriate disadvantage and time, always completely describes the differences between
Markov models and contact-based models.

5.6 Conclusions

The results of this chapter clearly show the the highly different behavior of linear, stochas-
tic models and contact based models which are represented by Markov models and agent
based models. Examples show both qualitative and quantitative differences between these
approaches. Application of the already introduced herd immunity make these differences
graspable and they can be explained and calculated in a standardized way. This leads to
a few very important insights. These relationships are also shown in figure 5.13.
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• A Markov model with time-dependent transition probabilities can always be pa-
rameterized or calibrated that its results fit contact based models or other data.
For comparability, it is important that both models produce results of the same
structure.

• Correctly parameterized Markov models yield qualitative and quantitative different
results compared to contact based models upon interventions on the system (for
example vaccinations).

• Appropriate calculation of herd immunity in the contact based model completely
describes the differences of the results of the two model types. The disadvantage in
the Markov model, decreased by the herd immunity, yields the same results as the
contacts based model.

• Herd immunity represents the impact of contacts on the propagation of an epidemic
compared to fixed, independent infection probabilities.

• The right calculation of herd immunity depends on the used Markov model.

• Herd immunity cannot be generally declared for epidemics. It is highly dependent
on the whole configuration of the system and on the intervention.

• Generally, herd immunity is not constant but a time-dependent function.

Figure 5.13: Relationship between agent based models and Markov models through
herd immunity

As a consequence, this chapter shows that consideration of contacts is a nec-
essary requirement for modeling of infectious diseases.
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Chapter 6

Simulation of two competitive
serotypes

6.1 Consideration of serotypes

In the previous chapters, we always considered a single kind of a pathogen. However,
pathogens are developing and changing. Such changes occur because of different reasons
like mutations or genetic recombinations. Thus, new types of a pathogen emerge which
are called “strains” or “serotypes” [35].

Due to varying characteristics of different serotypes, it is often necessary to differentiate
and consider them separately.

• Different serotypes can cause different reactions of the human body. For example
some serotypes might cause severe progresses of the disease while others only cause
a mild disease.

• Vaccines often do not work against all kinds of a pathogen but only against a few
serotypes. This fact can lead to serious consequences, as the following chapters
show. Conjugate vaccines serve as an example. They work by recognizing bacteria
through their polysaccharide covering. Different strains of a pathogen often do not
have the same covering and so some of them cannot be recognized and the vaccine
does not work against them. Well known examples of conjugate vaccines are those
against streptococcus pneumoniae or haemophilus influenzae.

• Serotypes of a pathogen can affect each other so that they cannot spread freely any
more. This means that they have to share their living space which are potentially
susceptible persons.
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6.2 Competition of serotypes

Existing or newly emerged serotypes often do not exist independently, but instead they
affect each other. Hence, this leads to a competitive behavior which results in displacement
or replacement effects.

Such a competitive behavior, or at least its results, can be observed in several studies as
the following examples show.

6.2.1 Streptococcus pneumoniae

Streptococcus pneumoniae are bacteria that can cause pneumonia, otitis media (middle
ear inflammation), meningitis and sepsis (blood poisoning) especially among children and
old people. There are over 90 serotypes which can be distinguished by its outer covering.
The prevalences of these serotypes differ a lot. Existing vaccines are conjugate vaccines
which work only against certain serotypes [9].

Direct competition: A US-American study from 2010 examined simultaneous occur-
rence of the two pneumococcal serotypes 24F and 7 in mice, under special consideration
of simultaneous occurrence of haemophilus influenzae bacteria. The results show clearly
that the two pneumococcal serotypes cannot exist independently from each other within
a mouse because in different situations serotype 24F or serotype 7 is ousted. Hence, the
competition is obvious. [36]

Effects of the competition: A common vaccine against streptococcus pneumoniae is
Prevenar, also called PCV7, which is in the market since 2004. PCV7 works against 7
frequently occurring serotypes that are altogether 80% of all pneumococcal occurrences in
the USA. First studies after it entered the market showed a strong decrease of pneumonia
and otitis media cases. However, they often only considered sicknesses caused by one
of those 7 serotypes [39]. But new studies from 2009 and 2010 reveal a strong increase
of sicknesses by other serotypes while the occurrence of PVC7-serotypes was decreasing.
Altogether, they found only a small reduction or even no change of the number of cases
as an effect of vaccinations with PCV7 [22] [19].

Hence, pneumococcal serotypes must influence each other if a decimation of some serotypes
cause an increased prevalence of other serotypes. If this influence would not exist, there
would not be an increase of sicknesses caused by other serotypes as an effect of the vac-
cinations.

6.2.2 Influenza

The influenza, also called flu, is an infectious disease that is caused by viruses of the
family of the Orthomyxoviridae. Influenza viruses are classified into the genera A, B and
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C while A is classified into serotypes. Further variations and mutations mostly exist within
serotypes of Type A. Hence, a separate consideration of single serotypes or variations of
influenza viruses is inevitable. [2] [8]

In 2009, the so called “swine flu” appeared which is a variation of the H1N1-influenza virus
A. This virus is described to be very infectious. Studies show that the common “seasonal
influenza viruses” have been widely ousted by the swine flu virus in the influenza season
2009/2010. Mutual influence of these serotypes is a plausible explanation of this behavior.
[1]

6.2.3 Haemophilus Influenzae

Haemophilus Influenzae are bacteria that can cause inflammations of the respiratory tract
and, especially for children, meningitis and other inflammatory diseases [58] [36]. Based
on their outer covering, these bacteria are classified into six types a,b,c,d,e and f [26]. A
conjugate vaccine against Haemophilus Influenzae type b was introduced in the year 2000
but, in contrast to streptococcus pneumoniae, no impact on the other serotypes has been
observed [32] [34].

6.2.4 Serotype shift and consequences of competitive serotypes

Studies show that different serotypes sometimes influence each other by sharing and com-
peting for living space which are potential colonizable people.

Fighting single serotypes of a pathogen might lead to a situation where other serotypes
have suddenly a larger living space available and can occupy the places of the defeated
serotypes. Such an increasing occurrence of strains caused by interventions like vaccina-
tions is called “serotype shift” or “serotype replacement”.

Consequences: Interventions on systems of competitive serotypes always result in a
redistribution of the living space. This process is time-dependent and nontrivial; its
result usually depends on several factors. The following chapters try to examine, describe
and explain such effects.

6.3 Models with competitive serotypes in literature

A literature search reveals a few attempts and approaches to simulate competitive serotypes.

One of the first models originates from K. Dietz in the year 1979. It is an SIR model that
consists of differential equations with two serotypes under the assumption that persons
cannot be infected with both serotypes at one time. This study extensively examines
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equilibriums and stability conditions. Vaccinations are not considered, hence phenomena
like herd immunity and serotype shift are not prevalent. [11]

The ideas of Dietz have been picked up and further developed several times, hence most
models of competitive serotypes are realized by differential equations or system dynamics.

S. Gupta examined in 1997 a differential equations model with four serotypes and the
possibility of vaccinations with optional cross protection. The main part of the work is
examination of equilibriums. Serotype shift in case of vaccinations is clearly visible as
well. [20]

Also in 1997, M. Lipsitch presented a system dynamics models for competitive serotypes.
People in this model can be infected with one or both serotypes and can recover. In all
compartments, he uses a constant death rate. The number of new susceptible people that
enter the model equals to the died people. Hence, the population size remains constant.
The flow rates to the infected-compartments do not depend on the number of vaccinated
people, hence herd immunity is not considered and cannot emerge. However in case of
vaccinations strong serotype shifts occur. [33]

In 2002, Lipsitch thoroughly examines the term “serotype shift”. In the publication
he states that a pairwise interaction between serotypes is a necessary requirement for
occurrence of serotype shift. [35]

Lipsitch’s modeling approach has been further practiced by other research groups. In
2002 A. Scherer and A. McLean examined a system dynamics model of an SIRS epidemic
that result in an oscillating state and is able to create effects of serotype shift. [49]

Another interesting study was published in 2003 by L. Esteva and C. Vargas about dengue
fever. In general they use an SIR model with two serotypes. In addition to the human
population they model a mosquito population with infected and healthy mosquitos while
infection rates of humans and mosquitos depend on each other. Furthermore a constant
rate of persons die. They do not leave the model completely but re-enter the model as
newborn susceptible people. Because of deaths and births, the model leads to a stable
system with equilibriums, even though it is an SIR model. The main part of the study
deals with examination of these equilibriums and statements about stability. [13]

Yidi Zhang also picked up the approach of Lipsitch 2006 in her dissertation, extended
them consequently to different SIS and SIR models with and without vaccinations and
examined the new systems by analytic aspects. [64]

Summarizing this, we can say that all found studies use differential equations or system
dynamics. This might be, because traditional statistic or stochastic models are not suffi-
cient for simulation of competition of serotypes. Furthermore, such differential equation
systems can be examined analytically very well. The different studies show interesting
approaches, ideas and also the limits of this methodology. While serotype shift is often
clearly visible, herd immunity is often deliberately avoided or ignored. However, the focus
of the found studies is not examination and explanation of occurring effects but rather
statements about equilibriums and stability.
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6.4 Preliminary remarks on modeling of competitive

serotypes

In chapter 3, a few approaches have been presented for modeling and simulation of the
propagation of an epidemic. Pathogens or serotypes that do not influence each other can
still be simulated with these models by calculating every pathogen independently in a
separate model.

But in case of competitive serotypes, models are required that calculate the share of a
living space. They also need to take account of the redistribution of this space after
interventions on the system [35].

Concrete modeling: The assumptions for modeling of competitive serotypes are a
priori not clear and cannot be clarified completely by medical studies. A competition
process might even differ for different pathogens. Hence, the following chapters show
different possibilities for modeling of such a competition.

Again, an agent based model is used as an approach for simulation of competitive serotypes
and for examination of herd immunity and serotype shift. This method has been used
successfully for single serotypes because it models epidemics as a result of interactions
of persons and thereby causing transmissions. Furthermore, it is flexibly extensible and
easy to handle (for more information on this topic read also the motivation of usage in
chapter 4.5).

Assumptions on agent based models: The assumptions on agent based models that
will be used for simulation of competitive serotypes build on the ones for single serotypes,
which are described in chapter 4.6.3.

• The agents in the model are persons.

• All persons in the model are of the same type. This means that they have the same
behavior and attributes and only differ in their temporal state.

• Infection states and progression of an infection: defined separately for each case.

• Contacts are uniformly distributed among the whole population. The parameter k
= “contacts per person per time step” defines the number of contacts.

• The model is calculated in discrete time steps. Updates of infection states of persons
happen simultaneously for the whole population once per time step.

Strength of serotypes: Epidemic parameters can be set for every serotype separately.
For simple SIS and SIR models, these parameters are the infection probability and the
recovery time. It is possible to distinguish two fundamental cases:
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• Equal parameters: If both serotypes have the same settings for all epidemic
parameters, then one can expect the same qualitative and quantitative behavior.

• Unequal parameters: If the value of at least one epidemic parameter differs for
both serotypes, then one can generally expect a different qualitative or quantitative
behavior of the serotypes. How these differences occur cannot be stated in general
and has to be examined in concrete situations.

6.5 Modeling approach 1: Competition by carrying

only one serotype

This approach for modeling of competitive serotypes is based on the following three as-
sumptions:

• A person can be infected with a maximum of one serotype in a time point.

• A person that is infected with a serotype cannot be infected with another serotype.

• The first two assumptions do not describe the system completely. The model simu-
lates discrete time steps where contacts happen and people get infected simultane-
ously at the end of each time step. Contacts are not considered to be in order.
Problem: What happens if a susceptible person would get infected with both
serotypes upon two different contacts?
Solution: A person remembers all infections that happen within a time step with-
out changing their infection state. At the end of the time step, when the states are
updated, the person chooses randomly one of the infection.
Consequence: If a person gets infected x times with serotype 1 and y times with
serotype 2 within a single time step, then the probabilities that they become infected
with serotype 1 or 2 in the end correspond to the ratio x : y.

Simulations: The competitive behavior of two serotypes is simulated for both SIS and
SIR models with different parameters to study this approach. Epidemics with competitive
serotypes produce a stronger random noise, hence 5 Million people will be simulated.

• Number of persons: N = 5 million

• Contacts per person per time step: k = 10

• Start values: In the initial state 1% of the population is infected with serotype 1
and serotype 2 each and 98% are susceptible.

• Three scenarios with different epidemic parameters are simulated:

1. Same epidemic parameters:
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• Infection probability: p = 0.02

• Recovery time: d = 10 time steps

2. Different infection probability:

• Infection probability:
p1 = 0.022 for serotype 1 and p2 = 0.02 for serotype 2

• Recovery time: d = 10 time steps for both serotypes

3. Different recovery time:

• Infection probability: p = 0.02 for both serotypes

• Recovery time: d1 = 11 for serotype 1 and d2 = 10 for serotype 2

6.5.1 Modeling an SIS epidemic with approach 1

Description: In an agent based SIS model, susceptible people can be infected by in-
fected people and become susceptible again after recovery. Figure 6.1 shows the process
of unvaccinated persons as well as of vaccinated persons.

(a) States of unvaccinated persons (b) States of vaccinated persons (with
vaccination against S1)

Figure 6.1: Visualization of an SIS disease with two competitive serotypes (using ap-
proach 1)

Simulation results: It turns out that in case of equivalent epidemic parameters, the
model reach an equilibrium where both serotypes exist on the same level. Figure 6.2
shows the results of the simulation.

Different parameters for the serotypes lead to distinction of the weaker serotype. The sur-
viving serotype then exists like in the single-pathogen-model and reaches an equilibrium.
Interestingly, the number of carriers is constant all the time even during the extinction
phase of the weak serotype. Figures 6.3 and 6.4 show the results of the simulations.

Comparison with differential equations: Such a system can also be modeled and
simulated with differential equations as shown in formula 6.1.
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Figure 6.2: Carrier rates of an SIS epi-
demic with equivalent serotypes and ap-
proach 1 (p = 0.02, d = 10 time steps)

Figure 6.3: Carrier rates of an SIS epi-
demic with different serotypes and ap-
proach 1 (p1 = 0.022, p2 = 0.02, d = 10
time steps)

Figure 6.4: Carrier rates of an SIS epi-
demic with different serotypes and ap-
proach 1 (p = 0.02, d1 = 11 time steps,
d2 = 10 time steps)
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Ṡ(t) = −α1 · I(t) · S(t)− α2 · J(t) · S(t) + β1 · I(t) + β2 · J(t)

İ(t) = α1 · I(t) · S(t)− β1 · I(t)

J̇(t) = α2 · J(t) · S(t)− β2 · J(t)

with the initial values

I(0) = I0 ≥ 0, J(0) = J0 ≥ 0, S(0) = N − I(0)− J(0)

(6.1)

With: S(t) . . . . . . . . . . . . . . . . . Number of susceptible people in time t
I(t), J(t) . . . . . . . . . . . . Number of infected people with serotype 1

respectively 2 in time t
α1, α2, β1, β2 > 0 . . . . Model parameter
N . . . . . . . . . . . . . . . . . . . Number of persons

Christoph Urach examined such a system of differential equation in his master’s thesis.
He revealed analytically that - like in the agent based model - no equilibriums for unequal
serotypes can be found, except for the trivial ones when one serotype becomes extinct.
Moreover, he found out that two equivalent serotypes lead to an equilibrium that is an
unstable solution of the equations. [54]

Conclusions: This method is not appropriate for simulation of competitive serotypes in
SIS epidemics because it is not possible to reach an equilibrium or at least coexistence of
unequal serotypes since one serotype always becomes extinct. Equal serotypes can survive
in the same equilibriums but this system is unstable. Then, even minimal influences or
changes lead to extinction of one serotype.

6.5.2 Modeling an SIR epidemic with approach 1

Description: An SIR model with competitive serotypes turns out to be much more
complex than an SIS model. Susceptible persons can potentially get infected with any
serotype. But it is not enough to indicate if a person is infected with a serotype, because
it is relevant if a person is already resistant against the other serotype due to a prior
infection. This is because a person get get infected again only after recovery of the
first infection. Then, after recovering from the second infection, a person is completely
resistant. Figure 6.5 shows this situation for vaccinated and unvaccinated persons.

Simulation results: Equal serotypes lead to the well known epidemic curves in line in
simple SIR models for both serotypes. Figure 6.6 shows the results.

If we change the infection probability or the recovery time of one serotype, then only
the stronger serotype spreads like a normal SIR epidemic. The weaker serotype has a
lower peak but has an epidemic curve that is distorted to the right and lasts longer. The
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(a) States of unvaccinated persons

(b) States of vaccinated persons (with vaccination
against S1)

Figure 6.5: Visualization of an SIR disease with competitive serotypes (using approach
1)
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spread of the weaker serotype seems to be highly dependent on the actual parameters.
The epidemic curves are shown in figures 6.7 and 6.8.

Figure 6.6: Carrier rates of an SIR epi-
demic with equivalent serotypes and ap-
proach 1 (p = 0.02, d = 10 time steps)

Figure 6.7: Carrier rates of an SIR epi-
demic with different serotypes and ap-
proach 1 (p1 = 0.022, p2 = 0.02, d = 10
time steps)

Figure 6.8: Carrier rates of an SIR epi-
demic with different serotypes and ap-
proach 1 (p = 0.02, d1 = 11 time steps,
d2 = 10 time steps)

Conclusions: The model leads to well known SIR epidemic curves for equal parameter-
ized serotypes and a distorted curve of one serotype in case of unequal parameterization.
However, the models seems to yield usable results.
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6.6 Modeling approach 2: Competition by carrying

only one serotype and mutual susceptibility

The first modeling approach shows a behavior that might not meet the requirements.
Especially for SIS epidemics, a stable coexistence of both serotypes is commonly required
and for SIR epidemics an undistorted curve for both serotypes might be desired.

The idea in the second approach is that infected persons can still be infected with the
other serotype. Since it is still required that people can carry at most one serotype, they
have to loose the initial serotype as soon as they get infected with the other one. The
background of this idea is a study that already revealed such processes for streptococcus
pneumoniae [36].

Figures 6.9 and 6.10 show visualizations of this approach. The following SIS and SIR
epidemics are simulated with the same parameters as in chapter 6.5.

(a) States of unvaccinated persons (b) States of vaccinated persons (with
vaccination against S1)

Figure 6.9: Visualization of an SIS disease with two competitive serotypes (using ap-
proach 2)

6.6.1 Modeling an SIS epidemic with approach 2

This approach finally allows stable coexistence of competitive serotypes. The system
reaches a stable equilibrium after a short adaption phase, independently of the start
values. Calibration of various levels seems to be possible with appropriate choice of the
infection probability and the recovery time. Figures 6.11, 6.12 and 6.13 show the carrier
rates of the test simulations.
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(a) States of unvaccinated persons

(b) States of vaccinated persons (with vaccination
against S1)

Figure 6.10: Visualization of an SIR disease with two competitive serotypes (using
approach 2)
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Figure 6.11: Carrier rates of an SIS epi-
demic with equivalent serotypes and ap-
proach 2 (p = 0.02, d = 10 time steps)

Figure 6.12: Carrier rates of an SIS
epidemic with different serotypes and ap-
proach 2 (p1 = 0.022, p2 = 0.02, d = 10
time steps)

Figure 6.13: Carrier rates of an SIS
epidemic with different serotypes and ap-
proach 2 (p = 0.02, d1 = 11 time steps,
d2 = 10 time steps)
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6.6.2 Modeling an SIR epidemic with approach 2

This approach yields epidemic curves that look like normal SIR epidemics for both
serotypes, even if they are not equally parameterized. Depending on the settings of
infection probability and recovery time, the epidemics of each of the serotypes last differ-
ent periods of time and have different peaks. Figures 6.14, 6.15 and 6.16 show the results
of the test simulations.

Figure 6.14: Carrier rates of an SIR epi-
demic with equivalent serotypes and ap-
proach 2 (p = 0.02, d = 10 time steps)

Figure 6.15: Carrier rates of an SIR
epidemic with different serotypes and ap-
proach 2 (p1 = 0.022, p2 = 0.02, d = 10
time steps)

Figure 6.16: Carrier rates of an SIR
epidemic with different serotypes and ap-
proach 2 (p = 0.02, d1 = 11 time steps,
d2 = 10 time steps)

6.6.3 Conclusions of modeling approach 2

The changes from approach 1 to 2 are able to yield the desired effects: SIS epidemics have
stable, coexisting serotypes in an equilibrium and adjustable levels of both serotypes. The
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results for SIR epidemics are epidemic curves of both serotypes that are not distorted any
more, but both look like the known curves of simple SIR epidemics with one serotype.

This modeling approach is not necessarily more correct than the first one. Actually,
the point is to show approaches and methods to cover a wide range of various epidemic
propagations. The decision on which approach is better depends on the concrete disease
and has to be made case-dependent.
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Chapter 7

Herd immunity and serotype shift in
case of two competitive serotypes

7.1 Initial situation

The model structures show that the situation is much more complex for competitive
serotypes than for single pathogens. For single serotypes, only the occurrence of the
pathogen is relevant. Now, one has to differentiate here between the two serotypes and
keep in mind that the sum of the disadvantages by any serotype might be relevant as well.

The goal of this chapter is qualitative and quantitative representation of the impact of
vaccinations and explanation of possibly occurring effects. At first, these intentions require
exact definitions of the used terms. Then, they can be examined.

7.2 Requirements and preliminary remarks

The following assumptions are made generally for the remarks, definitions and calcula-
tions, therefore will not be mentioned explicitly every time:

• There are two serotypes that are in competition with each other. How this competi-
tion works is irrelevant for definitions and theoretic considerations of epidemiologic
effects. However, competition will be stated clearly for simulation of the model.

• The vaccination only works against one serotype. The infection probability and the
personal disease progression of the other serotype is not affected by the vaccination.

• Another assumption is that the vaccination completely works for all vaccinated
people. This means that they get immune against the vaccinated serotype. In
reality, there are persons who do not get immune by the vaccinations. They cause
costs but for epidemiology they do not need to be considered separately because
they remain susceptible like unvaccinated persons.
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• The serotype against which the vaccination works will be called “serotype V” (“V”
like “vaccinated”). Analogously, the other serotype against which the vaccination
does not work will be called “serotype N” (with “N” for “not vaccinated”).

The definitions and calculations of this chapter follow the ones of the single-pathogen-case
because they proved themselves successfully and turned out to be sufficiently flexible. It
definitely makes sense to calculate effects as a comparison between a base and a test
scenario. Again, it is using a general view of the disadvantage that need to be set for
concrete situations, and should provide enough flexibility.

Herd immunity: Changes of carriage with serotype V only affects the unvaccinated
population because vaccinated persons cannot be infected at all with this serotype. Hence,
it is obvious to call the effect on this serotype herd immunity and calculate it analogously
to the single-serotype-case.

Serotype shift: Dealing with Serotype N is more complex. People can be infected by
these pathogens even after a vaccination, so it always affects the whole population. This
leads to the following general suppositions:

• Vaccination against serotype V can potentially lead to an increasing occurrence of
serotype N because it has a larger living space due to less competition.

• If there is an increasing occurrence of serotype N upon a vaccination, then it affects
the whole population.

• Such an effect of increasing occurrence of serotype N can be interpreted as “serotype
shift”.

• The vaccinated and the unvaccinated part of the population might be differently
affected by the serotype shift because their conditions are not the same.

• Hence serotype shift might be calculated optionally for the whole population or
separately for the vaccinated and unvaccinated part.

The causes of serotype shift are visualized in figure 7.1. It is important to consider that the
vaccination does not hinder the propagation of serotype N by any means. But, serotype
N does not need to compete with serotype V for vaccinated persons any more. The figure
shows this fact: In the right picture there are two green arrows which are green in the left
picture. Therefore, serotype N can spread more freely and hence it can be stronger.

General changes: Potentially interesting values are general changes of pathogen oc-
currence, independently of the serotype. For example, this could be the sum of carriers
with serotype N and serotype V. The unvaccinated population part can expect a decrease
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Figure 7.1: Visualizing the emergence of serotype shift

in disadvantages due to herd effects while they do not get in touch with the intervention.
Hence, it can be seen as some kind of herd immunity. For the vaccinated population
part it might mean a decrease due to immunity of serotype V. But, if vaccinated people
expect an unchanged infection rate with serotype N and experience an increase, then the
condition is called serotype shift. However, serotype-independent effects are not any ad-
ditional effects. Instead, they only the sum of serotype N and V and therefore compose
of herd immunity and serotype shift. On the whole population, this effect is based on the
sum of both serotypes and it is composed of herd immunity and serotype shift. Hence, it
does not need to be calculated separately. However, these effects can still be of important
interest.

7.3 Definitions of herd immunity and serotype shift

The disadvantage is generally named T . In the case of two competitive serotypes, it needs
three indexes:

T{affected part of the population},{base or test scenario},{serotype N or V}

The affected parts of the population are indicated by N (for “not vaccinated population”),
V (for “vaccinated population”) and A (for “all”). T is also used time-dependent as T (t).

Herd immunity: The herd immunity H(t) for competitive serotypes is defined based
on single-pathogen-case:

Herd immunity in case of competitive serotypes indicates a benefit for
unvaccinated persons by occurrence of vaccinated persons related to the

serotype(s) included in the vaccination.
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This means that the herd immunity is an effect that only depends in serotype V. It can
be described by equation 7.1.

H(t) =
TN,base,V (t)− TN,test,V (t)

TN,base,V (t)
(7.1)

Serotype shift: The definition of serotype shift refers to the remarks in chapter 7.2.

Serotype shift, in case of competitive serotypes, indicates a disadvantage by
serotypes that are not included in a vaccination. It potentially occurs when

people are vaccinated and affects the whole population.

Equation 7.2 shows the calculation of serotype shift S(t).

S(t) =
TA,test,N(t)− TA,base,N(t)

TA,base,N(t)
(7.2)

Alternative consideration of serotype shift: As said before, it might be necessary
to differentiate this effect for vaccinated and unvaccinated people.
In this context a question comes up: Whom should the vaccinated population be compared
with? If there are no vaccinated people in the base scenario, the only possibility is to
compare them to the unvaccinated people. If there are vaccinated people in the base
scenario, they could be compared to them.
In other words, this means that if there are no vaccinated people in the base scenario,
they would expect the same disadvantage by serotype N after the vaccination. If there
are vaccinated people in the base scenario, then unvaccinated people would expect the
same disadvantage upon vaccination by serotype N as already vaccinated people.

This leads to the following equation 7.3:

SN(t) =
TN,test,N(t)− TN,base,N(t)

TN,base,N(t)
(7.3)

SV (t) =
TV,test,N(t)− T{N |V },base,N(t)

T{N |V },base,N(t)

General herd immunity: Another important consideration is the change of the total
disadvantage by a vaccination, independent of the serotype. This effect affects the whole
population; it contains the direct reduction of serotype V by the vaccinations, the herd
immunity and the serotype shift. It seems practicable to name this effect “general herd
immunity” and abbreviate it by GH(t). This quantity is important if the characteri-
zation of the whole disadvantage does not need any differentiation between serotypes,
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even though the vaccination only works against one serotype. Equation 7.4 shows the
calculation of this effect.

GH(t) =
TA,base,V&N(t)− TA,test,V&N(t)

TA,base,V&N(t)
(7.4)

The general herd immunity can also be calculated with already known quantities if the
disadvantage of any serotype equals the sum of the disadvantages of serotypes N and
V. This means that Tx,y,V&N = Tx,y,V + Tx,y,N . The equations 7.5 and 7.6 show these
relations by differentiation between the two serotypes. All quantities in the formulas are
time-dependent but (t) has been removed due to better readability.

GH =
[TN,base,V + TA,base,N ]− [TN,test,V + TA,test,N ]

TN,base,V + TA,base,N

=
[TN,base,V + TA,base,N ]− [TN,base,V · (1−H) + TA,base,N · (1 + S)]

TN,base,V + TA,base,N

=
TN,base,V ·H − TA,base,N · S

TN,base,V + TA,base,N
(7.5)

GH =
[TN,base,V + TN,base,N + TV,base,N ]− [TN,test,V + TN,test,N + TV,test,N ]

TN,base,V + TN,base,N + Tv,base,N

=
TN,base,V + TN,base,N + TV,base,N
TN,base,V + TN,base,N + TV,base,N

−

− TN,base,V · (1−H) + TN,base,N · (1 + SN) + TV,base,N · (1 + SV )

TN,base,V + TN,base,N + TV,base,N

=
TN,base,V ·H − TN,base,N · SN − TV,base,N · SV

TN,base,V + TN,base,N + TV,base,N
(7.6)

Complete herd immunity: Complete herd immunity in case of competitive serotypes
indicates a state where Serotype V cannot survive any more and becomes extinct. This
definition is consistent to the one for single pathogens because this state is characterized
by the situation that serotype V does not cause any disadvantage any more. Hence, the
herd immunity reaches its maximum.

Generalized calculations of herd immunity and serotype shift: So far the defini-
tions have always been limited to the whole population or the vaccinated or unvaccinated
persons. However, there might be interest in particular groups of the population and the
effects of vaccinations on them, no matter if they are vaccinated or not. Especially for
non-homogeneous populations such calculations might be useful. The definitions gener-
ally allow to extend the calculations on any kind of such groups or population parts. One
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just has to keep in mind that some people do not necessarily exist in the base scenario if
the group is defined by their vaccination state. Hence, a useful reference group has to be
defined then.

7.4 Definition of the disadvantage

Consideration and calculation of the disadvantage works the same way like for single
serotypes, as described in chapter 4.4.2. This means that the disadvantage primarily
corresponds to the number of new infections because they are the immediate effect of a
disease. Carrier rates or sickness cases are examples of alternative quantifications. The
temporal component can be used in three ways that have to be selected depending on the
actual disease: Infections in time t, Infections in the last x time step before time t and
all infections since simulation start until time t.

Again it is important to normalize the disadvantage which means to divide by the size
of the considered group. Usually there are less unvaccinated people in the test scenario
than in the base scenario. Hence, a comparison of absolute infection numbers is neither
correct nor meaningful.

7.5 Herd immunity and serotype shift as an explain-

ing quantity

The goal of this chapter is to examine herd immunity and serotype shift with the agent
based model and interpret them.

Model setup:

• The model and the parameters settings are the same as in chapter 6.5. However,
only the case with different infection probabilities (p1 = 0.022, p2 = 0.02) is used
here as an exemplary simulation. Extensive parameter variations are shown in the
following chapters.

• All simulations use approach 2 - competition with mutual susceptibility - because
approach 1 does not allow to produce stable equilibriums for SIS epidemics.

• Scenarios:

– Base scenario: In the base scenario, no people are vaccinated.

– Test scenario: The test scenario is calculated with a vaccination rate of 20%
against serotype 1. According to the different infection probabilities, this is
the stronger serotype. People are vaccinated at the simulation start and they
are chosen randomly among the whole population.
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• Disadvantage: The disadvantage is calculated by three methods: Current new
infections, new infections since simulation start and current carrier rate. Hence,
three different results for herd immunity and serotype shift are calculated.

7.5.1 Herd immunity and serotype shift in SIS models

The results of the simulations are shown as new infection curves (figures 7.2 and 7.3) and
carrier rates (figures 7.4 and 7.5). Both simulations show the typical SIS behavior which
results in an equilibrium after a short adaption phase. It is obvious that both suspected
effects occur: The vaccinations lead to a lower level of serotype V and a higher level of
serotype N. This means that serotype N indeed makes use of the fewer competition and
infects more people than before. Altogether, the vaccination has a positive effect as the
serotype-independent infection curves and carrier rates show.

These effects are also proved by herd immunity and serotype shift (figures 7.6, 7.7 and
7.8). All three calculation methods of the herd immunity show an increase from zero in
the beginning to peak right before time 30 and then a drop to almost 0.6. This means
that the unvaccinated population can expect a benefit concerning infections with serotype
V by 60%. On the other, hand there is a strong serotype shift. If it is calculated by the
new infections, it is about 0.3 in the equilibrium but for the carrier rate it is about 0.7.
This discrepancy results from the fact that in every time step several infected people get
infected with the other serotype. Therefore, the number of new infections and the carrier
rate does not correspond to each other.

The general herd immunity (figures 7.6, 7.7 and 7.8) reaches about 0.2 in the equilibrium.
Considering the 20% vaccination rate, this means that altogether herd immunity and
serotype shift almost neutralize each other and the positive effect for the population is
more or less the vaccination rate. Later, the parameter studies will show that this does
not always apply and different situation can lead to quite different epidemic dynamics.

Figure 7.2: New infections by serotype
in the SIS simulations

Figure 7.3: Total new infections in the
SIS simulations
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Figure 7.4: Carrier rates by serotype in
the SIS simulations

Figure 7.5: Total carrier rates in the SIS
simulations

Variation: An alternative vaccination strategy for SIS epidemics is to wait, until the
base scenario has reached its equilibrium and vaccinate then. The equilibrium after the
vaccination is the same since it does not depend on the initial values, but the adaption
phases show an interesting behavior. While the total number of infections reaches a new
level very quickly after vaccination, the redistribution of the living space is a process that
takes much longer. The figures 7.9 and 7.10 show the new infections and the carriers,
while the figure 7.11 shows the herd immunity, the serotype shift and the general herd
immunity (all calculated upon new infections).

7.5.2 Herd immunity and serotype shift in SIR models

The tests in the SIR model are performed analogously to the SIS model. The figures 7.12
and 7.13 show the new infections, while the figures 7.14 and 7.15 show the carrier rates.
It is obvious that the vaccinations strongly decreases the prevalence of serotype V while
an increased prevalence of serotype N can be observed.

If herd immunity and serotype shift are calculated upon current infections or carrier
rates, they raise the same issues as in the single-pathogen-case (see figures 7.16 and 7.18).
The herd immunity and the general herd immunity are strongly positive at first, but
after about 50 time steps they are becoming negative. The problem is that later in the
simulation, the epidemic is already dying out and only a few more people get infected.
Since the epidemic is distorted to the right by the vaccination, more infections happen in
the test case. By comparing very small numbers for the disadvantage, the herd immunity
is represented by large negative numbers. This means that there might be 10 or 20 times
more infections with serotype N in the test case after time 70, but the amount of people
after this time is almost negligible compared to the infections before.

The calculations based on the infections since simulation start are more meaningful as
shown in figure 7.17 and can therefore be interpreted well. Both herd immunity and
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Figure 7.6: Epidemic effects in the SIS
simulation, calculated upon current new
infections

Figure 7.7: Epidemic effects in the SIS
simulation, calculated upon new infec-
tions since start

Figure 7.8: Epidemic effects in the SIS
simulation, calculated upon the carrier
rate
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Figure 7.9: New infections in the SIS
simulation with vaccination after 100 time
steps

Figure 7.10: Carrier rates in the SIS
simulation with vaccination after 100 time
steps

Figure 7.11: Epidemic effects in the SIS
simulation with vaccination after 100 time
steps, calculated upon current new infec-
tions
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general herd immunity reach a level slightly below 0.2 at the end of the epidemic. There
is a strong serotype shift in the beginning but in the end it is very weak. This means
that the disadvantage by serotype N of the whole epidemic is almost the same in both
scenarios. It just has different temporal progressions. Herd immunity is clearly preva-
lent and represent a benefit of almost 20% concerning serotype V for the unvaccinated
population. Altogether the general herd immunity shows a benefit of almost 20% for the
whole population for all serotypes. In other words, thanks to the herd immunity and
low serotype shift, the 20% vaccination rate against one serotype only reduces the total
disadvantage by both serotypes by 20%.

Figure 7.12: New infections by serotype
in the SIR simulation

Figure 7.13: Total new infections in the
SIR simulation

Figure 7.14: Carrier rates by serotype
in the SIR simulation

Figure 7.15: Total carrier rates in the
SIR simulation
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Figure 7.16: Epidemic effects in the SIR
simulation, calculated upon current new
infections

Figure 7.17: Epidemic effects in the
SIR simulation, calculated upon new in-
fections since start

Figure 7.18: Epidemic effects in the
SIR simulation, calculated upon the car-
rier rate

116



7.6. PARAMETER STUDIES FOR HERD IMMUNITY AND SEROTYPE SHIFT

7.6 Parameter studies for herd immunity and serotype

shift

Based on the used and studied simulation which is defined in chapter 6.5, the infection
probability and the recovery time of Serotype V are varied. Due to the relation between
infection probability and contact number, it is not necessary to vary contacts as well.
Both parameters are adjusted by 10%, 20% and 30% lower and higher; table 7.1 shows
the concrete settings. Variations of Serotype N are not performed because the current test
series already includes both weaker and stronger serotypes V. Combinations of parameter
variations are also not examined which means that each simulation differs in exactly one
parameter from the base setting.

Table 7.1: Settings of the parameter variation for competitive serotypes

Variation of
serotype V

-30% -20% -10% base +10% +20% +30%

Infection
probability

0.014 0.016 0.018 0.02 0.022 0.024 0.026

Recovery
time

7 8 9 10 11 12 13

7.6.1 Parameter variations of the SIS model

The parameter variations are calculated as defined above. The results of the SIS model
are the new infections and the carrier rates of the equilibrium.

Variation of the infection probability: The figures 7.19 and 7.20 show the results
of the variation of the infection probability. It is clear that a higher infection probability
causes more infections with serotype V. However, due to the competition with serotype
N the total carrier does not reach a level above 60% and the total infection numbers even
decrease for a too strong serotype V. Herd immunity, serotype shift and general herd
immunity are shown in figures 7.21, 7.22 and 7.23.

Variation of the recovery time: The results are shown in figures 7.24 and 7.25 while
the epidemic effects in figures 7.26, 7.27 and 7.28. The impact of parameter changes is
similar to the infection probability test series but is quantitively less strong. Presumably,
quantitative results that are similar to the first test series can be generated by a stronger
variation of the recovery time.

Interpretation of the results: Complete herd immunity can be observed in a few cases
where serotype V becomes extinct due to the vaccination. In this cases, herd immunity
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equals 1. The herd immunity is mostly high but gets weaker as stronger serotype V is. A
higher vaccination rate results in a stronger herd immunity.

Serotype shift shows an interesting behavior. In most cases, the serotype shift is not very
strong, even though it is growing with the strength of serotype V, which causes serotype
N to be weak in the simulations without vaccinations. It also grows with the vaccination
rate. But setting the infection probability +30%, the serotype shift is even higher than
1. This means that serotype N is on a very low level due to the competition. Hence it
can become more than twice as strong by vaccination against serotype V.

The general herd immunity, which indicates the total effect of the vaccination, naturally
increases as the vaccination rate increases. However, it has its peak around the base
simulation which means that the overall outcome of the vaccinations reach its maximum
when both serotypes are equipollent or when the vaccinated serotype is slightly stronger.
Again for +30% infection probability, an interesting effect occurs. In this case, the general
herd immunity is negative which means that the serotype shift due to a few vaccinations of
10% or 20% is stronger than the herd immunity, so there is no benefit by the vaccination
at all. This effect can be explained that Serotype N spreads so much stronger in these
cases that it cannot be compensated by the vaccination rate and the herd immunity of
serotype V. However, 30% vaccination rate already causes a strong enough herd immunity
which leads to a positive effect again.

Figure 7.19: New infections per time step (variation of
the infection probability in the SIS model)

7.6.2 Parameter variations of the SIR model

In the SIR model, the results are represented by the total number of infections during
the whole epidemic. The temporal propagation is not considered. This corresponds to
the calculation of the epidemic effects which are based on the infections since start. They
are represented by their value at the end of the simulation, where the disease is already
extinct, so they cover the whole epidemic.
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Figure 7.20: Carrier rates (variation of the infection prob-
ability in the SIS model)

Figure 7.21: The herd immunity (variation of the infec-
tion probability in the SIS model)

Figure 7.22: The serotype shift (variation of the infection
probability in the SIS model)
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Figure 7.23: The general herd immunity (variation of the
infection probability in the SIS model)

Figure 7.24: New infections per time step (variation of
the recovery time in the SIS model)

Figure 7.25: Carrier rates (variation of the recovery time
in the SIS model)
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Figure 7.26: The herd immunity (variation of the recov-
ery time in the SIS model)

Figure 7.27: The serotype shift (variation of the recovery
time in the SIS model)

Figure 7.28: The general herd immunity (variation of the
recovery time in the SIS model)
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Variation of the infection probability: The figure 7.29 shows the results of the
variation of the infection probability. Obviously, a higher infection probability causes a
higher number of infected people. The total infections vary between 80% and 160%. The
number of infections can be higher than 100% because each person can be infected twice,
with serotype V and N, therefore the theoretical maximum is 200%. Vaccinations do what
they are ought to do and decrease the infection numbers.

Variation of the recovery time: The results of the variation of the recovery time are
shown in figure 7.33. They are very similar to the results of the variation of the infection
probability.

Interpretation of the results: Herd immunity, serotype shift and general herd im-
munity are shown in figures 7.30, 7.31 and 7.32 respectively 7.34, 7.35 and 7.36.

Complete herd immunity cannot be observed, only in case of -30% infection probability or
recovery time, 30% vaccinations can almost prevent an outbreak of serotype V. The herd
immunity is very high for a weak serotype V but it is rapidly decreasing to lower levels
as serotype V gets weaker. Altogether, this means that the unvaccinated population can
expect a benefit concerning serotype V. This benefit is growing with a higher vaccination
rate and with a weaker serotype V.

The serotype shift is on very low level, always below 0.08 which is much lower than for
SIS epidemics. For different infection probabilities, it has a maximum for equally strong
serotypes and it is lower for other settings for serotype V. In one case, it is even negative
which means that serotype N gets weaker due to the vaccination. The serotype shift
grows for longer recovery time but at some point, around the base setting, it reaches a
maximum. Generally, we can state that the impact of the vaccination on the number of
infections with serotype N is very low, typically Serotype N infects 1% to 5% more people
due to vaccinations against serotype V.

The general herd immunity is almost the same for both test series. For a weak serotype
V, it almost corresponds to the vaccination rate which means that the reduction of all
infections equals the part of the population that gets vaccinated against serotype V. If
serotype V gets stronger, then herd immunity decreases and serotype shift increases,
hence more infections happen. The general herd immunity shows this fact clearly because
it is decreasing for higher infection probabilities and recovery times. In other words, the
reduction of total infections is as lower as the vaccine-serotype gets stronger.

7.7 Conclusions

In this chapter, three terms for effects of epidemics with competitive serotypes have been
defined: The herd immunity shows the benefit for the unvaccinated population concerning
the vaccine-serotype, the serotype shift shows the disadvantage for the whole population
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Figure 7.29: Total number of infections (variation of the
infection probability in the SIR model)

Figure 7.30: The herd immunity (variation of the infec-
tion probability in the SIR model)

Figure 7.31: The serotype shift (variation of the infection
probability in the SIR model)
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Figure 7.32: The general herd immunity (variation of the
infection probability in the SIR model)

Figure 7.33: Total number of infections (variation of the
recovery time in the SIR model)

Figure 7.34: The herd immunity (variation of the recov-
ery time in the SIR model)

124



7.7. CONCLUSIONS

Figure 7.35: The serotype shift (variation of the recovery
time in the SIR model)

Figure 7.36: The general herd immunity (variation of the
recovery time in the SIR model)
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concerning the other serotype and the general herd immunity shows the total benefit of
vaccinations. Again, these effects rely on a correct calculation of the disadvantage by
the disease. If the time component is chosen appropriately then these three effects can
describe the impact of a vaccination strategy very well. For SIS epidemics, they are best
interpreted by the current infections in the equilibrium while SIR epidemics require the
sum of infections since start for every time point for useful and descriptive results.
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Chapter 8

Comparison of Markov and agent
based models for epidemic
simulations with two competitive
serotypes

8.1 Overview

8.1.1 Introduction

A comparison between Markov models and agent based models is also possible for epi-
demics with two competitive serotypes. The procedure is the same as in chapter 5:

1. Construction of an agent based and a Markov model for simulation of an epidemic.

2. Parameterization of both models so that their results correspond to each other for
simulations without vaccinations.

3. Implementation of different vaccination strategies on the population in both models
and comparison of the results.

4. Presentation of the diverging results and explanation the differences from a mathe-
matical point of view.

The examined examples are also similar to the single-pathogen-case since they are easy
to handle and are proven to yield a descriptive comparison.

1. Comparison of equilibriums in an SIS model.

2. Comparison of the temporal propagation of an SIR model.

3. Comparison of infection numbers of a complete season in an SIR model.
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8.1.2 Considerations about comparability of agent based and
Markov models with two serotypes

The models with a single pathogen provided direct comparability. Two serotypes lead
to much more complex models with more states and more possible transitions. Hence, a
state in the Markov model for competitive serotypes often depends on several transition
probabilities. These probabilities can always be measured in the agent based model and
allow to reproduce its results with the Markov model. But they cannot be adjusted easily
to obtain a desired output. Hence, calibration of the Markov model to reach the results of
the agent based model is a multi-dimensional optimization problem and would not work
well in this case. However, as long as direct parameterization is possible, calibration is
not needed. Additionally, it is required that both models produce results of the same
structure to provide comparability. The results of the Markov model are not necessarily
the states itself. Often they are derived from the states and from state changes.

Herd immunity and serotype shift are considered in a way that they are applied on the
results of the Markov-Model, like for models of single pathogens. This means that if new
infections or the carrier rate are the results of the Markov model, herd immunity and
serotype shift are calculated based on the same quantities.

An important question is how the vaccinated part of the population in the Markov model
should be handled because there are no vaccinated people in the base case of the used
simulations. Separation of the vaccinated and the unvaccinated population parts follows
the latest standard which is also suggested by the ISPOR-SMDM Joint Modeling Good
Research Practices Task Force [51]. Hence, the vaccinated part of the population must
be parameterized in a way that new infections and carriers with serotype N are the same
as in the unvaccinated population. The same problem already occurs for calculation of
herd immunity and serotype shift. The proposed solution in chapter 7.3 corresponds to
the strategy here. This is important to use and to apply herd immunity and serotype
shift correctly. If there are already vaccinated people in the base scenario, then their
parameters can be measured directly.

8.1.3 The models

The agent based model: The agent based model is the one that has been used already
in the previous chapters 6 and 7. To reach equilibriums the competition is again realized
by approach 2, which means mutual susceptibility. Hence, the definition of the used agent
based model originates from chapter 6.6 based on the definition in chapter 6.5.

The parameterization of the agent based model is the same as set in chapter 6.5, with un-
equal serotypes by different infection probabilities and vaccinations against the stronger
serotype. This simulation has been examined already for stability (chapters 6.6), vacci-
nations, herd immunity and serotype shift (chapter 7).

The settings for the agent based model:
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• Number of persons: N = 5 million

• Contacts per persons per time step: k = 10

• Disease type: The model can be used for both SIS and SIR diseases.

• Start values: In the initial state 1% of the population is infected with serotype 1
and serotype 2 each and 98% are susceptible.

• Infection probability: p1 = 0.022 for serotype 1 and p2 = 0.02 for serotype 2

• Recovery time: d = 10 time steps

• Competition: Approach 2 (mutual susceptibility)

• Base scenario: No vaccinations

• Test scenario: Three test scenarios are simulated with 10%, 20% and 30% vaccina-
tion rates against serotype 1.

The Markov model: The Markov model cannot be built in general. Therefore, it is
described separately for each test case. However, the population in all examples is split
into unvaccinated and vaccinated persons who are simulated with different models.

8.2 Comparison of equilibriums in an SIS epidemic

8.2.1 Construction of the models

The agent based model: The agent based model calculates an SIS epidemic and is
defined in chapter 8.1.3.

The Markov model: The Markov model is much more complex than in case of single
pathogens. Figure 8.1 shows the state transition diagrams, on the left for unvaccinated
people and on the right for vaccinated people. Figures 8.2 visualizes the tree of the whole
model.

Unvaccinated persons: Mathematically, a distribution of this system in time t is rep-
resented by a 3-dimensional vector at = (a1,t, a2,t, a3,t) following the states s1 =“susceptible”,
s2 =“infected with serotype V” and s3 =“infected with serotype N”. Hence, the transition
matrix looks like this:

M =

1− IV − IN IV IN
RV 1−RV − IV N INV
RN IV N 1−RN − INV
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Figure 8.1: The state transition diagram of a Markov model in case of two competitive
serotypes.
Left: For unvaccinated persons. Right: For vaccinated persons.

Vaccinated persons: The distribution of the system in time t is represented by a 2-
dimensional vector ãt = (ã1,t, ã2,t) following the states s̃1 =“vaccinated and susceptible”
and s̃2 =“vaccinated and infected with serotype N”. The transition matrix looks like this:

M̃ =

(
1− IvaccN IvaccN
RvaccN 1−RvaccN

)

8.2.2 Parameterization of the models

Parameterization of the agent based model: The parameterization of the agent
based model is defined in chapter 8.1.3 for all comparisons with the Markov model.

Parameterization of the Markov model: The goal is to parameterize the Markov
model so that the unvaccinated population corresponds to the base scenario of the agent
based model. Therefore the following functions are defined on the unvaccinated population
of the agent based model in the base scenario : IV (t), IN(t), IV N(t), INV (t), RV (t)
and RN(t). The coefficients of the Markov model correspond to the quantities of these
functions in the equilibrium.
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Figure 8.2: Tree stucture of a Markov model in case of two competitive serotypes
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IV (t) =
Susceptibles that get infected with serotype V in time t

Susceptibles in time (t− 1)

IN(t) =
Susceptibles that get infected with serotype N in time t

Susceptibles in time (t− 1)

IV N(t) =
Carriers with serotype V that get infected with serotype N in time t

Carriers of serotype V in time (t− 1)

INV (t) =
Carriers with serotype N that get infected with serotype V in time t

Carriers of serotype N in time (t− 1)

RV (t) =
Carriers with serotype V that get susceptible in time t

Carriers of serotype V in time (t− 1)

RN(t) =
Carriers with serotype N that get susceptible in time t

Carriers of serotype N in time (t− 1)

The calculations of IvaccN and RvaccN require further research. The goal is that the
vaccinated part of the population receive the same disadvantage by serotype N as the
unvaccinated part of the population. This means that new infections and carrier with
serotype N must agree with those among the unvaccinated population. This can be
reached if the sum of all transition probabilities that lead to or away from a state with
carriers of serotype N are the same for both population parts. This leads to the following
calculations:

Susceptible people and carriers with serotype V

IvaccN(t) =
that get infected with serotype N in time t

Susceptible people and carriers with serotype V in time (t− 1)

Carriers of serotype N that either recover or get

RvaccN(t) =
infected with serotype V in time t

Carriers of serotype N in time (t− 1)

The calculations yield the following transition matrices so that the Markov model reaches
the same equilibrium as the agent based model:

M1 =

0.8709 0.0835 0.0456
0.0757 0.8767 0.0476
0.0592 0.0854 0.8554

M2 =

(
0.9533 0.0467
0.1446 0.8554

)

Results: Indeed, both models yield the same equilibriums. The total carrier rate for
serotype V is 40.59% and the one for serotype N is 24.41%. The detailed results are
explained and showed subsequently together with the test case simulations with vaccina-
tions.
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8.2.3 Implementation of vaccinations

Representation of the results: To remain comparable, it is important to define the
quantities that represent the results of the simulation of both models. Due to the con-
struction of the Markov model, it seems practicable to use the carrier rates as relevant
results. They are shown in two ways: As carrier rates of Serotype V and N in the whole
population and separately for the unvaccinated and vaccinated population part.

Simulations of vaccinations: The results of the agent based model have been dis-
cussed already in previous chapters: vaccinations cause a significant decrease of serotype
V and a slight increase of serotype N. That is different for the Markov model where carrier
rates of the unvaccinated and vaccinated population part remains constant for all simula-
tions. Only the total carrier rates are changing because the parts of the populations are
changing due to vaccinations.

The detailed results of the simulations with and without vaccinations are shown in figure
8.3 and in the tables 8.1 and 8.2.

8.2.4 Explanation of the differences and harmonization of the
results

In the last step, the results of the Markov model are further processed. In this adjusted
Markov model, the carrier rate of V in the unvaccinated population is reduced by the herd
immunity and the carrier rates of N are increased by the serotype shift. It is important to
calculate the serotype shift based on the same population as the carrier rate of serotype
N. Reduction by the herd immunity means to multiply the carrier rate of V with (1−H),
and increase of the serotype shift is to multiply the carrier rate of N with (1−S) or with
(1 − SN) and (1 − SV ), depending on the considered population part. This adjustment
finally leads to the same results as in the agent based model.

The herd immunity and the serotype shift is shown in figure 8.4 and table 8.3 while the
results of the adjusted Markov model are shown in figure 8.5 and in the referenced tables
8.1 and 8.2.

8.3 Comparison of the temporal progress of an SIR

epidemic

8.3.1 Construction of the models

The agent based model: The agent based model calculates an SIR epidemic and is
defined in chapter 8.1.3.
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Figure 8.3: Carrier rates of the agent based model compared to the Markov model in
the equilibrium of the SIS simulation

Figure 8.4: Herd immunity and serotype shift in the equilibrium of the SIS model

Figure 8.5: Carrier rates of the agent based model compared to the adjusted Markov
model in the equilibrium of the SIS simulation
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Table 8.1: Carrier rates in the equilibrium of the SIS simulation (separately evaluated
for the unvaccinated and the vaccinated population)

Vaccination
rate

Unvaccinated
population,
Serotype V

Unvaccinated
population,
serotype N

Vaccinated
population,
Serotype N

A
B

m
o
d
el

0% 40.59% 24.41% —

10% 29.23% 33.93% 40.02%

20% 16.69% 41.07% 44.45%

30% 3.04% 46.58% 47.14%

M
ar

ko
v

m
o
d
el 0% 40.59% 24.41% —

10% 40.59% 24.41% 24.41%

20% 40.59% 24.41% 24.41%

30% 40.59% 24.41% 24.41%

A
d
ju

st
ed

M
ar

ko
v

m
o
d
el

0% 40.59% 24.41% —

10%
40.59% · (1− 0.2798)
= 29.23%

24.41% · (1 + 0.3901)
= 33.93%

24.41% · (1 + 0.6393)
= 40.02%

20%
40.59% · (1− 0.5888)
= 16.69%

24.41% · (1 + 0.6824)
= 41.07%

24.41% · (1 + 0.8210)
= 44.45%

30%
40.59% · (1− 0.9250)
= 3.04%

24.41% · (1 + 0.9080)
= 46.58%

24.41% · (1 + 0.9309)
= 47.14%
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Table 8.2: Carrier rates in the equilibrium of the SIS simulation (based on the total
population)

Vaccination
rate

Serotype V Serotype N

A
B

m
o
d
el

0% 40.59% · 1 = 40.59% 24.41% · 1 = 24.41%

10% 29.23% · 0.9 = 26.31% 33.93% ·0.9+40.02% ·0.1 = 34.54%

20% 16.69% · 0.8 = 13.35% 41.07% ·0.8+44.45% ·0.2 = 41.75%

30% 3.04% · 0.7 = 2.31% 46.58% ·0.7+47.14% ·0.3 = 46.74%

M
ar

ko
v

m
o
d
el 0% 40.59% · 1 = 40.59% 24.41% · 1 = 24.41%

10% 40.59% · 0.9 = 36.53% 24.41% ·0.9+24.41% ·0.1 = 24.41%

20% 40.59% · 0.8 = 32.48% 24.41% ·0.8+24.41% ·0.2 = 24.41%

30% 40.59% · 0.7 = 28.42% 24.41% ·0.7+24.41% ·0.3 = 24.41%

A
d
ju

st
ed

M
ar

ko
v

m
o
d
el

0% 40.59% 24.41%

10% 36.53% · (1− 0.2798) = 26.31% 24.41% · (1 + 0.4150) = 34.54%

20% 32.48% · (1− 0.5888) = 13.35% 24.41% · (1 + 0.7101) = 41.75%

30% 28.42% · (1− 0.9250) = 2.31% 24.41% · (1 + 0.9149) = 46.74%

Table 8.3: Herd immunity and serotype shift in the equilibrium of the SIS model

Vacci-
nation
rate

Herd
immunity

Serotype shift
(whole popu-
lation)

Serotype shift
(unvaccinated
population)

Serotype shift
(vaccinated
population)

10% 0.2798 0.4150 0.3901 0.6393

20% 0.5888 0.7101 0.6824 0.8210

30% 0.9250 0.9149 0.9080 0.9309
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The Markov model: The Markov model for SIR epidemics with two competitive
serotypes is already very large and complex because of the relevant order of infections
in this case. The state transition diagrams in figure 8.6 show the states and the transi-
tions for unvaccinated people (on the left) and for vaccinated people (on the right). The
transition probabilities are time-dependent and correspond to the notations in the state
transition diagram. The tree is not shown any more due to the large size in this case.
The model is defined by the state transition diagram anyway.

Figure 8.6: The state transition diagram of the Markov model for SIR epidemics with
two competitive serotypes.
Left: For unvaccinated people. Right: For vaccinated people.

Unvaccinated people: Figure 8.7 shows the transition matrix and the distribution
a = (a1,t, . . . , a8,t) of the Markov model corresponds to the 8 states:

s1 = susceptible V+N
s2 = susceptible V & infected N
s3 = susceptible V & resistant N
s4 = infected V & resistant N
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s5 = infected V & susceptible N
s6 = resistant V & susceptible N
s7 = resistant V & infected N
s8 = resistant V+N

Vaccinated people: The distribution ã = (ã1,t, ã2,t, ã3,t) of the Markov model contains
three elements according to the state set s̃ ∈ S̃ and figure 8.8 shows the transition matrix.

s̃1 = vaccinated & susceptible N
s̃2 = vaccinated & infected N
s̃3 = vaccinated & resistant N

8.3.2 Parameterization of the models

Parameterization of the agent based model: The parameterization of the agent
based model is defined in chapter 8.1.3 for all comparisons with the Markov model.

Parameterization of the Markov model: The Markov model has to be parame-
terized so that its temporal progress coincides with the agent based model. This task
requires time-dependent transition matrices. The definitions of M1(t) and M2(t) in the
previous chapter (figures 8.7 and 8.8) are able to do this.

The transition probabilities IN1(t), RN1(t), INV (t), IV 2(t), RV 2(t), IV 1(t), RV 1(t), IV N(t),
IN2(t) and RN2(t) of the unvaccinated population part are calculated for each time step
in the agent based model. The transition probability in time t calculates as the part of
persons in a certain state in time t who change into another state in the subsequent time
(t+ 1). The transition probabilities IvaccN(t) and RvaccN(t) for the vaccinated population
part are set in a way that their infection rates and recovery rates with serotype N are the
same as in the unvaccinated population.

Representation of the results: The results are represented by the temporal progres-
sion of the carrier rates in the whole population. The carrier rates with serotype N in the
vaccinated and unvaccinated population part is very similar, hence they are not shown
for the sake of clarity in the figures.

Results: Figure 8.9 shows that the epidemic curves indeed coincide in the base case
without vaccinations. The results of the Markov models are shown as ‘x’ markers while
those of the agent based model are plotted as solid lines.
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8.3.3 Implementation of vaccinations

The vaccinations in the models are performed as explained in the previous chapters. The
carrier rates are shown in figures 8.10, 8.11 and 8.12 for 10%, 20% and 30% vaccinations.
It turns out that serotype V (red) is too strong in the Markov model while serotype N
(orange) is too weak compared to the agent based model in all three cases. This behavior
can easily be explained by herd immunity which affects serotype V, and serotype shift
which affects serotype N.

Figure 8.9: The carrier rates of the agent
based and the Markov model for SIR epi-
demics in the base case without vaccina-
tions

Figure 8.10: The carrier rates of the
agent based and the Markov model for SIR
epidemics in the test case with 10% vacci-
nations

Figure 8.11: The carrier rates of the
agent based and the Markov model for SIR
epidemics in the test case with 20% vacci-
nations

Figure 8.12: The carrier rates of the
agent based and the Markov model for SIR
epidemics in the test case with 30% vacci-
nations
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8.3.4 Explanation of the differences and harmonization of the
results

The herd immunity and the serotype shift are applied on the results of the Markov model
as a correction. This means that the carrier rate with serotype V is increased by the
herd immunity and the one with serotype N is decreased by the serotype shift. Both
epidemic effects are calculated upon the current carrier rate in the agent based model.
They are plotted in the figures 8.13 and 8.14. The figures 8.15, 8.16 and 8.17 show that
the corrected Markov model again yields the same results as the agent based model.

Figure 8.13: Herd immunity in the SIR
model

Figure 8.14: Serotype shift in the SIR
model

Figure 8.15: The carrier rates of the
agent based and the corrected Markov
model for SIR epidemics in the test case
with 10% vaccinations
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Figure 8.16: The carrier rates of the
agent based and the corrected Markov
model for SIR epidemics in the test case
with 20% vaccinations

Figure 8.17: The carrier rates of the
agent based and the corrected Markov
model for SIR epidemics in the test case
with 30% vaccinations

8.4 Comparison of a whole SIR epidemic

Remark: SIR epidemics are often not simulated over time but are instead considered
as one event that represents the whole season from appearance of the pathogen until
extinction. The results are represented by the total number of infections within the whole
population, and separately within the vaccinated and unvaccinated population part.

8.4.1 Construction of the models

The agent based model: The agent based model is the same as used in the previous
chapters. It is defined in chapter 8.1.3. The results of this model are not time-dependent.
Instead, they are the sum of infections of the whole simulation.

The Markov model: The Markov model is very simple. The whole epidemic is summed
up in a single event, hence the Markov model needs to simulate only one time step. The
states represent what infections happened to the persons during the whole season. There
are four possibilities: not infected, infected with serotype V, infected with serotype N,
infected with both serotypes. This leads to the structure of the model which is shown in
figure 8.18 by the state transition diagram.

It is important to mention that not the states but the numbers of infections are the results
of the Markov model. The infections with serotype N in the unvaccinated population are
the sum of the states “Sero N” and “Sero N & V” and in the vaccinated population
“Vaccinated Infected N”. The infections with serotype V are calculated analogously.
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Figure 8.18: State transition diagram of the Markov Model of a whole SIR season.
Left: For unvaccinated people. Right: For vaccinated people.

8.4.2 Parameterization of the models

Parameterization of the agent based model: The parameterization of the agent
based model is defined in chapter 8.1.3 for all comparisons with the Markov model.

Parameterization of the Markov model: For the initial configuration, 98% of the
people are considered to be “not infected” and 1% each with serotype V and N. To
reproduce the results of the agent based model one has to count the number of people who
get infected during the whole season. Based on these numbers, the transition probabilities
in the Markov model are calculated. The vaccinated population part should have the same
disadvantage by serotype N as the unvaccinated part, hence IvaccN = IN + INV is defined.
Table 8.4 shows this calculations.

Table 8.4: Parameterization of the Markov model of a whole SIR season by the agent
based model

Infections in the agent based
model

Transition probabilities of the
Markov model

unvaccinated
population

Serotype V: 19.39%
Serotype N: 13.96%
Serotype N & V: 59.76%

IV = 0.1939
IN = 0.1396
INV = 0.5976

vaccinated
population

- - IvaccN = 0.1396 + 0.5976 = 0.7372

Results: It turns out that both serotypes can infect more than 70% of the population
each during a whole season, with serotype V causing slightly more infections. The Markov
model yields the same results with the calculated parameters. The detailed numbers are
shown in the tables 8.5 and 8.6 in the following chapter together with the results of the
vaccinations.
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8.4.3 Implementation of vaccinations

Implementation of vaccinations in the agent based model shows the well known behavior
of SIR epidemics: a strong decrease of serotype V and a slight increase of serotype N. The
Markov model calculates too many infections with serotype V and too few with serotype
N. The results are shown in the tables 8.5 and 8.6.

Table 8.5: Total infections of an SIR epidemic (based on the unvaccinated and vaccinated
part of the population)

Vaccina-
tion rate

Unvaccinated
population,
Serotype V

Unvaccinated
population,
Serotype N

Vaccinated
population,
Serotype N

A
B

m
o
d
el

0% 79.15% 73.72% —

10% 73.32% 74.44% 74.77%

20% 65.95% 75.77% 75.99%

30% 56.00% 77.26% 77.41%

M
ar

ko
v

m
o
d
el 0% 79.15% 73.72% —

10% 79.15% 73.72% 73.72%

20% 79.15% 73.72% 73.72%

30% 79.15% 73.72% 73.72%

A
d
ju

st
ed

M
ar

ko
v

m
o
d
el

0% 79.15% 73.72% —

10%
79.15% · (1− 0.0737)
= 73.32%

73.72% · (1 + 0.0098)
= 74.44%

73.72% · (1 + 0.0143)
= 74.77%

20%
79.15% · (1− 0.1668)
= 65.95%

73.72% · (1 + 0.0278)
= 75.77%

73.72% · (1 + 0.0308)
= 75.99%

30%
79.15% · (1− 0.2926)
= 56.00%

73.72% · (1 + 0.0481)
= 77.26%

73.72% · (1 + 0.0500)
= 77.41%

8.4.4 Explanation of the differences and harmonization of the
results

The herd immunity and the serotype shift are calculated in the agent based model upon
the sum of infections of the whole simulation. They are shown in table 8.7. In both cases,
for the vaccinated and unvaccinated population as well as for the whole population, the
results of the adjusted Markov model are the same as of the agent based model (see the
results tables 8.5 und 8.6). Hence, the concept also works for longer time periods.
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Table 8.6: Total infections of an SIR epidemic (based on the whole population)

Vaccina-
tion rate

Serotype V Serotype N

A
B

m
o
d
el

0% 79.15% · 1 = 79.15% 73.72% · 1 = 73.72%

10% 73.32% · 0.90 = 65.99% 74.44% ·0.90+74.77% ·0.10 = 74.48%

20% 65.95% · 0.80 = 52.76% 75.77% ·0.80+75.99% ·0.20 = 75.81%

30% 56.00% · 0.70 = 39.20% 77.26% ·0.70+77.41% ·0.30 = 77.31%

M
ar

ko
v

m
o
d
el 0% 79.15% 73.72%

10% 79.15% · 0.90 = 71.24% 73.72% ·0.90+73.72% ·0.10 = 73.72%

20% 79.15% · 0.80 = 63.32% 73.72% ·0.80+73.72% ·0.20 = 73.72%

30% 79.15% · 0.70 = 55.41% 73.72% ·0.70+73.72% ·0.30 = 73.72%

A
d
ju

st
ed

M
ar

ko
v

m
o
d
el

0% 79.15% 73.72%

10% 71.24% · (1− 0.0737) = 65.99% 73.72% · (1 + 0.0103) = 74.48%

20% 63.32% · (1− 0.1668) = 52.76% 73.72% · (1 + 0.0284) = 75.81%

30% 55.41% · (1− 0.2926) = 39.20% 73.72% · (1 + 0.0487) = 77.31%

Table 8.7: Herd immunity and serotype shift of a whole SIR epidemic

Vacci-
nation
rate

Herd
immunity

Serotype shift
(whole popu-
lation)

Serotype shift
(unvaccinated
population)

Serotype shift
(vaccinated
population)

10% 0.0737 0.0103 0.0098 0.0143

20% 0.1668 0.0284 0.0278 0.0308

30% 0.2926 0.0487 0.0481 0.0500

145



CHAPTER 8. COMPARISON OF MARKOV AND AGENT BASED MODELS FOR
EPIDEMIC SIMULATIONS WITH TWO COMPETITIVE SEROTYPES

8.5 Analytic considerations

In all three examples the differences between the agent based and the Markov model were
exactly given by herd immunity and serotype shift. It is even possible to show these
relations in general.

Assumptions: The basis are an agent based and a Markov model. The results of both
models must be represented by time-dependent functions:

• T{Model},{Scenario},N,V (t):
The disadvantage of the unvaccinated population part by serotype V

• T{Model},{Scenario},N,N(t):
The disadvantage of the unvaccinated population part by serotype N

• T{Model},{Scenario},V,N(t):
The disadvantage of the vaccinated population part by serotype N

The parameterization of the agent based model is given for the base scenario. Then, the
Markov model must be parameterized so that its results equals the agent based model. If
there are no vaccinated persons in the agent based model, then the parameterization of the
Markov model has to be chosen so that TMarkov,{Scenario},V,N(t) = TMarkov,{Scenario},N,N(t).

Vaccinations: The test scenario yields the new results TAB,test,N,V (t), TAB,test,N,N(t)
and TAB,test,V,N(t) of the agent based model. These quantities allow to calculate herd
immunity H(t) and the serotype shift SN(t) of the unvaccinated population and SV (t) of
the vaccinated population by definition:

H(t) =
TAB,base,N,V (t)− TAB,test,N,V (t)

TAB,base,N,V (t)

SN(t) =
TAB,test,N,N(t)− TAB,base,N,N(t)

TAB,base,N,N(t)

SV (t) =
TAB,test,V,N(t)− TAB,base,N,N(t)

TAB,base,N,N(t)

Vaccinations in the Markov model only change the distribution of the cohorts, but within
cohorts the relative disadvantage remains unchanged. This means that:
TMarkov,base,N,V (t) = TMarkov,test,N,V (t)
TMarkov,base,N,N(t) = TMarkov,test,N,N(t)
TMarkov,base,V,N(t) = TMarkov,test,V,N(t)

Analyzation of the results: Under these assumptions, it is easy to how how the
results of both models are related.
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Relation 1: Decrease of the disadvantage by serotype V of the unvaccinated
population in the Markov model by the herd immunity yields the correspond-
ing result of the agent based model.

TMarkov,test,N,V (t) · (1−H(t)) =

= TMarkov,base,N,V (t) ·
(

1− TAB,base,N,V (t)− TAB,test,N,V (t)

TAB,base,N,V (t)

)
=

= TAB,base,N,V (t) ·
(
TAB,test,N,V (t)

TAB,base,N,V (t)

)
=

= TAB,test,N,V (t)

Relation 2: Increase of the disadvantage by serotype N of the unvaccinated
population in the Markov model by the serotype shift yields the corresponding
result of the agent based model.

TMarkov,test,N,N(t) · (1 + SN(t)) =

= TMarkov,base,N,N(t) ·
(

1 +
TAB,test,N,N(t)− TAB,base,N,N(t)

TAB,base,N,N(t)

)
=

= TAB,base,N,N(t) ·
(
TAB,test,N,N(t)

TAB,base,N,N(t)

)
=

= TAB,test,N,N(t)

Relation 3: Increase of the disadvantage by serotype N of the vaccinated
population in the Markov model by the serotype shift yields the corresponding
result of the agent based model. The corresponding calculation works analogously
to the one in relation 2.

Remark: The disadvantage does not necessarily need to be considered separately within
the vaccinated and the unvaccinated population. It is possible to show in the same way
that the disadvantage of the whole population or of other population parts can also be
corrected by the herd immunity and the serotype shift. In this case, both epidemic effects
H(t) and S(t) needs to be calculated on the respective population. Hence, the relationship
between Markov models and agent based models for epidemics is generally shown.

8.6 Conclusions

A comparison between Markov models and agent based models is also possible for epi-
demics with two competitive serotypes. For this purpose, the simulation results have
to be differentiated by the serotypes. Furthermore, the results of both models must be
structurally comparable. The herd immunity in a scenario with vaccinations represents
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the benefit of unvaccinated persons concerning this serotype, while serotype shift repre-
sents an increased disadvantage of the whole population concerning the other serotype.
These quantities can always be calculated in the agent based model. The Markov model
behaves the same, independent of the vaccination rate. Hence, it differs from the agent
based model exactly by the herd immunity and the serotype shift.

This circumstance is shown in three examples and is also analytically proven. Hence,
the definition of herd immunity and serotype shift in chapter 7 is suitable to represent,
interpret and use the emerging behavior of a contact based epidemic model. Figure 8.19
shows this situation.

Figure 8.19: Relationship of vaccinations between agent based models and Markov
models with two serotypes.
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Chapter 9

Summary and Conclusions

9.1 Summary of insights

This work deals with the spread of infectious diseases. In contrast to other studies in this
area, it does not examine real populations or patients in clinical trials. Instead, it uses
models as tools to answer the questions. Advantages of models are that they are cheaper,
allow wide examinations of details that are not always possible in real populations and
that they can be performed in an endless number of variations. The disadvantage is that
models only represent a simplified image of reality but cannot reflect reality completely.
Critical views on the model and extensive validation allow to keep the deviation between
model and reality small.

There are numerous possibilities to simulate infectious diseases and associated epidemics.
The chapters two and three contain short introductions into some important techniques
with a special focus on agent based model. The agent based models allow, due of their
close-to-reality-structure, simulation of spread of diseases as a consequence of transmis-
sions from person to person. This way of modeling often leads to several interesting
effects. Agent based models are in contrast to commonly used Markov models which are
in fact an extrapolation and rearrangement of known data. Effects that occur in agent
based models can theoretically be considered in Markov models, but they must be known
completely and quantitatively.

The main goal of this work is to define, to examine and interpret two common effects in
the area of epidemiology: herd immunity and serotype shift.

Herd immunity is already a household name since the 1920s, but its occurrence has
always been very disputed. Literature research reveals that there is not even a consensus
about what herd immunity actually is. Still, it is easy to explain the background of
the phenomenon “herd immunity”: If a part of a population gets vaccinated against an
infectious disease then not vaccinated persons experience a benefit. These unvaccinated
persons meet potentially less infectious persons (because some of them are vaccinated) so
they have a lower probability to get infected. This effect can even lead to extinction of a
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disease even though only a part of the population is vaccinated. These considerations lead
to the main definition of this study: Herd immunity is the benefit for not vaccinated people
by a vaccination strategy as an intervention in the system. The benefit itself is defined
as the reduction of disadvantage caused by the disease in comparison of two scenarios.
This leads to the problem that the disadvantage of a disease can be determined in many
ways. New infections, carrier rates, symptomatic cases or economic outcomes are only a
few values that are potentially usable. Analytic examinations and parameter studies show
that different calculations turn out to be appropriate in different situations to express herd
immunity in a useful way. The right calculation method should be chosen individually for
every single case. It highly depends on what characterizes the disadvantage of a particular
epidemic best and which values are measurable. The temporal component has also an
effect. It is possible to calculate the disadvantage in a single point in time or accumulated
over a period of time or since simulation start. Any temporal consideration seems suitable
for steady epidemics. But, interventions on periodic or time limited epidemics can cause
temporal offsets or distortions. Useful interpretations of herd immunity in such cases can
only be made with an accumulated calculation of the disadvantage. Anyway, the herd
immunity is a time-dependent function which represents the benefit of persons that are not
directly affected by an intervention. The examples in this study always use a homogenous
population which is subject to a vaccination strategy against the pathogen of a disease.
Appropriate calculation methods show that the benefit of the unvaccinated part of the
population usually grows with a higher vaccination rate. Additionally, it shows that the
herd immunity has a nonlinear behavior and does not only depend on the vaccination
rate but also on the general configuration of the whole model. Special attention is paid to
situations where a disease cannot spread any more and becomes extinct. Then the herd
immunity reaches a maximum so these situations are called complete herd immunity.

The previous discussed aspects about spread of diseases are not always sufficient. Pathogens
can mutate and then different strains, so-called serotypes, occur. Serotypes are often in
a competition. This means that infected persons cannot be infected additionally with
another serotype. However, under certain assumptions serotypes might be able to “kick”
another serotype “out” of an infected person and colonize him or her themselves. The in-
dividuals of a population are some kind of the living space for pathogens which is divided
and embattled among the serotypes. Vaccines against such diseases often fight only one
or some serotypes due to their biochemical production procedure. Vaccinations of peo-
ple in a population cause a completely new situation which results in a new distribution
of the living space. The idea of serotype shift is to show and explain possible effects
of changing occurrence of unaffected serotypes. Hereafter, we consider two competitive
serotypes causing an epidemic. Again two scenarios are compared; serotype shift is de-
fined as the increased disadvantage by not covered serotypes in the vaccine that affects the
whole population. It is useful to calculate this effect separately within the vaccinated and
unvaccinated population. Based on the previous knowledge on single-serotype epidemics,
it is practicable to define herd immunity in such cases as the decrease of the disadvan-
tage caused by vaccine-covered serotypes in the unvaccinated population. The general
herd immunity considers the whole effect of a vaccination strategy on the unvaccinated
population, disregarding the causing serotypes. Examinations show that the general herd
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immunity is just a summarized effect composed of the herd immunity and the serotype
shift on the unvaccinated population. Complete herd immunity refers to the situation
when the vaccine-covered serotypes cannot spread any more and become extinct. This
definition is consistent with the single-serotype-case because it is also characterized by the
highest possible value of herd immunity. The calculation of the disadvantage is done in the
same way using an appropriate value and temporal component. Parameter studies using
the agent based model simulate a homogenous population, two competitive serotypes and
a vaccination that fights only one serotype. All results clearly show prevalence of both
herd immunity and serotype shift. This means that unvaccinated persons benefit from
the vaccination due to reduction of one serotype, but the whole population suffers from an
increasing disadvantage caused by the other serotype. All in all the vaccination strategies
still have a positive impact, but it is often reduced by occurring serotype shift. Both
effects are stronger for higher vaccination rates, but also depend on other configurations
of the model. These dependencies are obviously nonlinear.

The calculation methods of herd immunity and serotype shift are so generally defined that
they are also applicable for inhomogeneous populations and for interventions other than
vaccinations. The only presumption is that a distinction between affected and not affected
people by the intervention can be made. In the case of two or more serotypes, a distinction
of the disadvantage caused by the single serotypes is also required. Consequently, herd
immunity and serotype shift can potentially be calculated and analyzed in various models
but also in real populations and studies.

Another examination in this work is a comparison of the agent based model and a Markov
model. In not less than six studies for both one and two serotypes, main characteristics
of the epidemics were compared: the levels in the equilibrium of an SIS model, the time
dependent spread of an SIR model and the result of a whole SIR epidemic. The first
step of the analysis showed that Markov models can always produce the same results as
agent based models with an appropriate structure ans parameterization. Actually, the
procedure is a calibration of the Markov model by choosing the right transition proba-
bilities. Even though this method is always possible, it does not explain anything. For
this reason, the second step goes beyond this. It starts with a scenario of an epidemic
without vaccination. Both the agent based and the Markov models are parameterized to
yield the same results. But, implementation of a vaccination strategies leads to strongly
divergent results. Calculations in the single-serotype case show that this divergence ex-
actly matches the previous defined herd immunity. This means that decrease of infections
within the unvaccinated population by the herd immunity in the Markov model yield the
result of the agent based model. This relation can be extended on epidemics of two com-
petitive serotypes: The difference of the results corresponds exactly to the herd immunity
and the serotype shift. This means that decrease of unvaccinated infected people with
the vaccine-serotype by the herd immunity and increase of infected people with the other
serotype by serotype shift in the Markov model yield the results of the agent based model.
This calculations even allow correct simulation of situations with complete herd immunity
with a Markov model, which means that the disease becomes extinct due to vaccinations.
With support of this research it is easy to show all these relations even analytically.
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9.2 Conclusions

It is obvious that models that simulate epidemics based on contacts and transmissions
from person to person, behave highly nonlinear. Markov models, in contrast, are linear
dynamical systems, hence they yield different results for the same problem.

Herd immunity and serotype shift can be used directly to explain and show the qualita-
tive and the quantitative benefit of unvaccinated people by a vaccination strategy, as well
as the disadvantage by other serotypes that reach a higher prevalence after vaccinations.
On top of that, it becomes apparent that herd immunity and serotype shift, if compet-
itive serotypes exist, describe the whole differences between stochastic calculations and
transmission based models for epidemics. Therefore, these quantities allow a complete
description of all nonlinear effects on the spread of epidemics caused by contacts and
transmissions. Furthermore, the research shows that herd immunity and serotype shift
are not constant values, instead they are time-dependent functions that depend on the
vaccination rate and on other aspects of the system configuration in a nonlinear way.
Even though their origin and explanation is clear, they are often not known and cannot
be measured in real world situations. Thus, it is possible to draw conclusions about usage
of Markov models for prediction of disease interventions in chapter 9.4. The figures 9.1
and 9.2 outline a comparison of agent based models and Markov models for epidemic
simulation.

The used definition and interpretations of herd immunity and serotype shift in this study
absolutely make sense because firstly, they can explain epidemic effects that occur in
populations and secondly, they lead to a deeper understanding of epidemiologic processes
and their representation in models.

Figure 9.1: Stochastic and contact based epidemic models in comparison
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Figure 9.2: Stochastic and contact based epidemic models in comparison

9.3 Further considerations

The insights lead to some general considerations on modeling of infectious diseases. Herd
immunity and serotype shift are computable very well upon comparison of different sit-
uations in an agent based model. Things are very different in real systems. There, herd
immunity can hardly ever be captured because testing of interventions in a closed pop-
ulation is usually not possible and so there is no test scenario available. Direct usage of
clinical data in stochastic models is somehow unrewarding due to the shown differences
to agent based models. Instead, only modeling of most realistic structures might provide
satisfying predictions of effects of interventions.

The represented type of contacts in the model depend on the epidemic because they
should be able to cover all transmissions of the actual disease. Plausible contact systems
are for example all interpersonal meetings with a maximum distance for airborne diseases,
direct or indirect physical contacts for smear infections or sexual contacts for sexually
transmitted diseases.

Many ways can lead to an appropriate complexity of a modeled contact system and other
epidemic influences. Increasing levels of details can be reached among other things by
modeling of ...

... additional personal attributes like age or “general personal health”.

... different places where contacts happen.

... duration of contacts.

... intensity of contacts.

... individual contact numbers.

... individual transmission probabilities.

Such additional model details can be realized in any desired level of details, and they
can be combined. For example, people could have age dependent contact numbers with
persons of different age classes. Transmission probabilities could depend on the individual
immune system of a person or of the intensity or the duration of the contact. Contact
numbers and intensity could be dependent on the place.

The opportunities for higher complexity seem to be endless. In this context, an important
question arises: How detailed should a model be, to be considered as an acceptable image

153



CHAPTER 9. SUMMARY AND CONCLUSIONS

of reality? The main principle in modeling and simulation is a good hint: “A model
should be as simple as possible but as complex as required.” A general recommendation
is definitely not not possible. Instead, the appropriate level of details should be evaluated
by approved methods of validation for a concrete problem. [40] [48]

9.4 Recommendation for usage of Markov models

Markov models are widely used to evaluate aspects and changes in the field of health care.
The model comparison in this study allows to determine in which situations can the usage
of Markov models for epidemic simulations generally produce valid results. The problems
of Markov models are, on the one hand, that they are not able to construct epidemics
structurally based. Instead, they require exact, time-dependent parameterization. On the
other hand, they cannot correctly simulate changes in the epidemic caused by interven-
tions. Therefore, usage of Markov models for infectious diseases is only recommendable
if all three of the following statements are true:

• The intervention does not influence the epidemic spread.

• The modeled timeframe contains either an equilibrium or a periodic epidemic prop-
agation (for example caused by seasonality).

• If the epidemic is not in an equilibrium, the duration of a time step in the Markov
model must be a full period or a multiple of a period.

For example, Markov models might be used to evaluate vaccination of a very few people.
For seasonal epidemics like the influenza, it is important that the time step always cover
a complete season.

Theoretically, Markov models could also be used if detailed data of herd immunity and of
serotype shift are available for every simulated intervention. Generation of such data in a
clinical study requires a sufficiently large, closed population which seems almost impossible
because it would correspond with a “real” structural reproduction of the agent based
model. Hence, usage of Markov models is actually not recommendable for simulating
widespread vaccination strategies and during ongoing adaption phases.
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Österreichisches Rotes Kreuz, Bezirksstelle Hart-
berg
Arbeit als Rettungssanitäter und Einsatzfahrer

10/2002 bis 09/2003 Zivildienst beim Österreichischen Roten Kreuz
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