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Abstract
Interpolation is an important technique in computer aided verification and static analysis of

programs. In particular, interpolants extracted from so-called local proofs are used in invariant
generation and bounded model checking. An interpolant extracted from such a proof is a boolean
combination of formulas occurring in the proof.

In this talk we first describe a technique of generating and optimizing interpolants based on
transformations of what we call the “grey area” of local proofs. Local changes in proofs can change
the extracted interpolant. Our method can describe properties of extracted interpolants obtained
by such proof changes as a pseudo-boolean constraint. By optimizing solutions of this constraint
we also improve the extracted interpolants. Unlike many other interpolation techniques, our
technique is very general and applies to arbitrary theories. Our approach is implemented in the
theorem prover Vampire and evaluated on a large number of benchmarks coming from first-order
theorem proving and bounded model checking using logic with equality, uninterpreted functions
and linear integer arithmetic. Our experiments demonstrate the power of the new techniques:
for example, it is not unusual that our proof transformation gives more than a tenfold reduction
in the size of interpolants.

While local proofs admit efficient interpolation algorithms, standard complete proof systems,
such as superposition, for theories having the interpolation property are not necessarily complete
for local proofs. In this talk we therefore also investigate interpolant extraction from non-local
proofs in the superposition calculus and prove a number of general results about interpolant
extraction and complexity of extracted interpolants. In particular, we prove that the number
of quantifier alternations in first-order interpolants of formulas without quantifier alternations
is unbounded. This result has far-reaching consequences for using local proofs as a foundation
for interpolating proof systems - any such proof system should deal with formulas of arbitrary
quantifier complexity.
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