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Abstract  

To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the 

European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its 

SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a 

medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, 

especially over Europe (  2 days). Given the planned high temporal sampling and the operational 

configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in 

hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been 

demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project   

using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR).  

To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be 

provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) 

datasets was indispensible for their application in models, for extractions of blended SSM products, as 

well as for their usage in evaluation of other soil moisture datasets. 

This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating 

measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and 

the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of 

applications of soil moisture datasets is presented and evaluation measures are suggested for each 

application according to its requirement on the dataset quality.  The evaluation of the Advanced 

Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation 

measures comprises a second objective of the work. To achieve the second objective, the data from the 

Australian Water Assessment System (AWRA-L) hydrological model, OzNET in-situ stations, and several 

other coarse resolution data sources were used. The results are combined to provide an exhaustive 

estimate of all qualities of the ASAR GM SSM product. The third objective is to provide guidance on 

appropriate evaluation methodology applicable to any SSM product. For this purpose the results of the 

ASAR GM evaluation analyzed are discussed from a general perspective and restructured to answer 

scientific questions identified in the introductory part of the thesis. These include:  

 Can we apply the evaluation requirements from comparable missions such as SMOS and SMAP 

to ASAR GM SSM? 

 How does spatial resolution influence error estimates? 

 Is there a single measure to describe the quality of SSM data? 

 What is the quality and what are the limitations of ASAR GM SSM? 

 Learning from ASAR GM SSM errors for Sentinel-1 

The findings and suggestions originating from the discussion are transferable to other satellite-derived 

soil moisture data. Of special interest is its transfer to data from the planned Sentinel-1 SAR sensor that 

shares similar technical characteristics but has an improved retrieval error comparable to the ASAR GM 

sensor. The operationally available medium resolution soil moisture from Sentinel-1 with a well-

characterized error is likely to yield benefits for modelling and monitoring of land surface-atmosphere 

fluxes, crop growth and water balance applications.  



 

 

Kurzfassung 

Zur Unterstützung für den operationellen Einsatz von Erdbeobachtungssystemen wie Synthetic Aperture 

Radar (SAR) entwickelt die Europäische Weltraumbehörde ESA den Radar-Satelliten Sentinel-1, der im C-

Band arbeitet. Ähnlich seinen SAR-Vorgängern auf den Plattformen ERS, ENVISAT, oder RADARSAT wird 

der Sensor Sentinel-1 bei einer mittleren räumlicher Auflösung im Bereich von 5 bis 40 m arbeiten, 

allerdings mit einer vielfach erhöhten Wiederholrate, die über Europa etwa im Bereich von ca. 2 Tagen 

liegen wird. Aufgrund dieser hohen zeitlichen Auflösung sowie dem operationellen Design wird der 

Satellit einen großen Beitrag zur Überwachung von dynamischen Prozessen in Hydrologie und 

Phänologie leisten. Der Nutzen von C-Band SAR-Überwachungssystemen in der Hydrologie wurde in der 

Vergangenheit bereits im Rahmen des Projects SHARE (Soil Moisture for Hydrometeorologic 

Applications) gezeigt, bei dem Daten des Instruments ASAR (Advanced Synthetic Aperture Radar) im 

Global Mode (GM) verwendet wurden (Doubkova et al., 2009). Um das volle Potential von SAR-

Produkten im Bereich Bodenfeuchtigkeit auszuschöpfen, ist ein mitgeliefertes Fehlermaß unerlässlich. 

Das Verständnis dieses Fehlermaßes ist unentbehrlich für die Anwendung von Bodenfeuchteprodukten 

in Modellen, die Extraktion oder Erstellung von Produkten, sowie den Vergleich mit anderen 

Bodenfeuchteprodukten geht. 

Die vorliegende Arbeit umfasst mehrere Ziele. Erstens werden Grundlagen sowie ein aktueller Stand der 

Technik im Bereich der Fehlermaße von Bodenfeuchteprodukten dargestellt, wie etwa dem 

quadratischen mittleren Fehler, Korrelationskoeffizienten oder erweiterten Methoden wie 

Fehlerfortpflanzung und triple collocation. Des Weiteren wird eine Übersicht der Anwendungsbereiche 

von Bodenfeuchteprodukten präsentiert und Evaluierungsmethoden je nach Bereich und 

Qualitätsanforderung vorgeschlagen. Die Evaluierung von ASAR GM Bodenfeuchteprodukten mit eben 

diesen Methoden stellt ein zweites Ziel dieser Arbeit dar. Um dies zu erreichen wurden Daten des 

australischen hydrologischen Modells Water Assessment System (AWRA-L), Feldmessungen des 

australischen Netzwerkes OzNET, sowie weitere grob aufgelöste Fernerkundungsdaten verwendet um 

die Qualität der Bodenfeuchteprodukte umfassend zu beschreiben. Die dritte Zielsetzung dieser Arbeit 

ist das Bereitstellen von Richtlinien für eine Evaluierungsmethode, die auf beliebige 

Bodenfeuchteprodukte angewendet werden kann. Zu diesem Zweck wurden die ASAR GM Ergebnisse 

vor einem breiteren Hintergrund analysiert um folgende Fragestellungen zu beantworten: 

 Ist es möglich die Qualitätsanforderungen von vergleichbaren Missionen wie SMOS oder SMAP 

auf ASAR GM Bodenfeuchteprodukte zu übertragen? 

 Wie beeinflusst die räumliche Auflösung die Fehlerabschätzung? 

 Gibt es ein einziges Maß für die Qualitätsbeschreibung von Bodenfeuchteprodukten? 

 Wie ist die Qualität von ASAR GM Bodenfeuchtigkeitsprodukten und wo liegen 

Einschränkungen? 

 Wie ist die Qualität von Sentinel-1 Bodenfeuchtigkeitsprodukten und wo liegen 

Einschränkungen? 

Diese Arbeit liefert Antworten und Ergebnisse, die auch auf weitere Satelliten-basierte 

Bodenfeuchteprodukte angewendet werden können. Besonders die Übertragung auf den geplanten 

Sentinel-1 Sensor ist von besonderem Interesse da dieser Sensor zwar ähnliche technische 

Eigenschaften, aber ein verbessertes Fehlermaß im Vergleich zu ASAR GM besitzt. Die operationell 

verfügbaren Bodenfeuchteprodukte von Sentinel-1 werden wesentlich zur Modellierung und 

Beobachtung von Land-Atmosphäre Interaktionen, Ernteertrag sowie Anwendungen im Bereich der 

Wasserbilanz beitragen.  



 

 

Acknowledgment 

This work would not have happened without the unending support of the team at the Institute of 

Photogrammetry and Remote Sensing (IPF) at the Vienna University of Technology (TU WIEN). A special 

thanks goes to Daniel Sabel and Stefan Hasenauer who supported and motivated my work throughout 

five years at IPF and especially in the last few months when writing this thesis. Further thanks go to 

Ewelina Rupnik who has, within a short time, become a perfect collegue and friend who always brought 

energy to the office. Also thanks to Wouter Dorigo for the scientific discussions that spiced up this work, 

and to Alena Hegyova for the efficient programming support. 

Thank you to all who found, even in the last moments, time to proofread this work: Carl Salk, Michael 

Cwach, Elin Högström, and Mirela Tulbure.  

A Big Thank You goes to my supervisors – Professor Wagner and Professor Blöschl – who, even under 

time pressure, invested their evenings to provide me with comments that significantly improved the 

quality of this thesis. In addition, thanks to the trust and responsibilities given by Professor Wagner 

during my stay at IPF that prepared me to master this thesis. 

Last but not least, thank you to my family and my partner Robert Permann who have been so 

understanding during the last busy year. 

 

  



 

 

1. INTRODUCTION .................................................................................................................................. 1 

1.1 EVALUATION OF SOIL MOISTURE DATASETS ................................................................................................... 1 

1.2 OBJECTIVE AND STRUCTURE ....................................................................................................................... 4 

2. THEORY .............................................................................................................................................. 7 

2.1 PRE-PROCESSING STEPS PRIOR TO DATA EVALUATION ...................................................................................... 7 

2.1.1 Statistical terminology ................................................................................................................ 7 

2.1.2 Preprocessing steps for soil moisture evaluation ........................................................................ 9 

2.2 EVALUATION MEASURES AND METHODS ..................................................................................................... 13 

2.2.1 Standard evaluation measures ................................................................................................. 13 

2.2.2 Advanced evaluation methods ................................................................................................. 18 

2.2.3 The next stage: how to evaluate quality of the evaluation measures? .................................... 22 

2.3 THE SELECTION OF APPROPRIATE EVALUATIONS MEASURES AND METHODS ........................................................ 25 

2.3.1 Sequential data assimilation ..................................................................................................... 27 

2.3.2 A direct input into Environmental Process models ................................................................... 30 

2.3.3 Distinguishing between different soil moisture levels .............................................................. 31 

2.3.4 Anomaly computation .............................................................................................................. 32 

2.3.5 Conclusion ................................................................................................................................. 34 

3. METHODOLOGY ............................................................................................................................... 35 

3.1 DATASETS ............................................................................................................................................ 35 

3.1.1 ASAR GM soil moisture dataset and processing ....................................................................... 35 

3.1.2 The AWRA-L landscape hydrological model.............................................................................. 37 

3.1.3 AMSR-E dataset ........................................................................................................................ 38 

3.1.4 GLDAS-NOAH ............................................................................................................................ 38 

3.1.5 ERA-Interim ............................................................................................................................... 38 

3.1.6 OZNET in-situ soil moisture ....................................................................................................... 39 

3.1.7 Ancillary data on land cover and roughness ............................................................................. 41 

3.2 METHODS ............................................................................................................................................ 42 

3.2.1 Pre-processing........................................................................................................................... 43 

3.2.2 Evaluation of ASAR GM SSM ..................................................................................................... 45 

4. RESULTS ........................................................................................................................................... 49 

4.1 PREPROCESSING .................................................................................................................................... 49 

4.1.1 Understanding frequency distribution of SSM datasets ........................................................... 49 

4.1.2 Data transformation ................................................................................................................. 52 

4.2 STANDARD EVALUATION MEASURES .......................................................................................................... 55 

4.2.1 Absolute evaluation measures .................................................................................................. 55 

4.2.2 Relative evaluation measures ................................................................................................... 65 

4.3 ADVANCED EVALUATION METHODS ........................................................................................................... 68 

4.3.1 Error propagation ..................................................................................................................... 68 

4.3.2 Predicted RMSE ......................................................................................................................... 69 

4.3.3 Triple collocation (TC) ............................................................................................................... 73 

5. DISCUSSION ..................................................................................................................................... 85 

5.1 CAN WE APPLY THE EVALUATION REQUIREMENTS OF SMOS AND SMAP TO ASAR GM SSM? ........................... 85 

5.2 HOW DOES THE SELECTION OF SPATIAL RESOLUTION INFLUENCE ERROR ESTIMATES? ........................................... 87 

5.3 IS THERE A BEST COMBINATION OF MEASURES TO DESCRIBE THE QUALITY OF ASAR GM SSM DATASET? ................ 88 



 

 

5.3.1 Absolute evaluation measures .................................................................................................. 89 

5.3.2 Relative evaluation measures ................................................................................................... 94 

5.3.3 Resume ..................................................................................................................................... 95 

5.4 WHAT IS THE QUALITY AND WHAT ARE THE LIMITATIONS OF ASAR GM SSM DATA? .......................................... 96 

5.5 LEARNING FROM ASAR GM SSM ERRORS FOR SENTINEL-1 .......................................................................... 98 

6. CONCLUSION.................................................................................................................................. 100 

7. REFERENCE ..................................................................................................................................... 103 
0 

  



 

 

List of acronyms 

AMSR-E  The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

ASAR GM  The Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM)  

AWRA-L  The Australian Water Resource Assessment modelling system (AWRA-L)  

EP Error propagation 

ERA-Interim  The ERA-Interim reanalysis 

GLADAS-NOAH  The Global Land Data Assimilation System (GLDAS) NOAH land surface model 

OzNET The Australian monitoring network for soil moisture and micrometeorology 
(OzNET) 

SSM Surface soil moisture 

TC Triple collocation 

RMSE Root mean square error 

R Pearson correlation coefficient 

RS Spearman correlation coefficient 

ERS European Remote Sensing Satellite 

SMOS Soil Moisture and Ocean Salinity 

ASCAT  Advanced Scatterometer (Metop) 

SMAP Soil Moisture Active Passive 

MAE Mean absolute error 

SSM/I Special sensor microwave/imager 

ESA European Space Agency 

GM Global Mode 

SAR Synthetic Aperture Radar 

 

  





 1 

 

1. Introduction  

1.1 Evaluation of soil moisture datasets  

Numerous SSM datasets are available on an operational or semi-operational basis from remote 

sensing platforms at coarse and, recently, also at medium resolutions. These originate from 

microwave remote sensing instruments such as  scatterometers (e.g. ERS) (Naeimi et al., 2009b; 

Wagner et al., 1999b) radiometers (e.g. AMSR-E) (Kerr et al., 2010; Njoku et al., 2003), and SARs 

(e.g. ASAR GM) (Pathe et al., 2009b). Soil moisture estimates from remote sensing demonstrated 

the potential to improve weather forecast capabilities in numerical weather forecast models 

(Drusch, 2007; Mahfouf, 2010) and water balance in hydrological systems (Brocca et al., 2010c; 

Matgen et al., 2011), as well as to support estimation of trends and anomalies related to climate 

change (Liu et al., 2009) or vegetation stratification over areas with water limited vegetation 

(Sass et al., 2012). The demonstrated benefits of the products motivated an extension of the 

existing missions (e.g. ASCAT) (Naeimi et al., 2009a) and proposals for new satellite SSM missions 

(e.g. SMOS and SMAP) (Kerr et al., 2010) and products (Sentinel-1 SSM) (Hornacek et al., 2012).  

Understanding errors and differences between remotely sensed SSM datasets was indispensible 

for their application in models and for an extraction of blended SSM products (Liu et al., 2011). 

For instance, only a dataset with a good quality error estimation could drive the respective data 

weights in data assimilation. 

The common evaluation methods of remote sensing products were based on their direct 

comparison with ground-based measurements, where the ground-based measurements were 

held to be of higher accuracy. For such purpose soil moisture campaigns have been conducted 

and networks established (e.g. Tarrawarra, REMEDHUS). These guaranteed a collection of ground 

soil moisture measurements combined with ancillary datasets such as soil and vegetation 

roughness, vegetation, or meteorological flux measurements.  

Early experiments coupling remote sensing with field observations were already performed in 

1980 by the Beltsville Agricultural Research Center (BARC) (Wang et al., 1980). Since then the 

importance of soil moisture has grown rapidly and motivated the establishment of additional soil 

moisture networks and campaigns. Some examples of such networks include the OzNET 

(http://www.oznet.org.au/, (e.g. Young, R., Walker, J., Yeoh, N., Smith, A., Ellett, K., Merlin & and 

Western, 2008), the SMOSMANIA (Calvet et al., 2007) or the REMEDHUS (Martinez-Fernandez & 

Ceballos, 2003)) networks that were planned to systematically collect data for several years to 

decades. In contrast, soil moisture campaigns take usually only few months, investigate the 

spatio-temporal variations of soil moisture at footprint as well as sub-footprint scale and provide 

a good testing ground for hydrological models (i.e. Tarrawarra (Western & Grayson, 1998)). Often, 

short-term campaigns complement satellite missions in that they support algorithm development 

(NAFE’05 (Panciera et al., 2008)) or evaluate data accuracy (Iowa SMEXo2 (Jacobs, 2004)).   

Recently, a global  centralized data hosting facility for data from the in-situ networks was 

established (Dorigo et al., 2011). This facility allows for a panoramic overview of the globally 

In-situ networks 
and campaigns 

Available 
remotely sensed 
SSM datasets 

http://www.oznet.org.au/


 2 

 

existing in-situ stations, but more importantly, supports standardization of the data and 

simplifies their use for evaluation of the modeled and remotely sensed datasets.   

The role of in-situ observational networks is indispensable as demonstrated by numerous studies 

(Ceballos et al., 2005; Gruhier et al., 2010; Jackson et al., 2010; Rüdiger et al., 2009; Wagner et 

al., 2007). The latter studies evaluated one or several remote sensing SSM products (ERS, AMSR-

E, METEOSAT and TMI) against the in-situ soil moisture networks in southern Europe, western 

Africa, Australia, and in the USA.  

The unique advantages of the evaluations over the in-situ stations are that a) these are 

considered to represent the best estimate of the true soil moisture values at the point, b) 

ancillary information (i.e. soil texture, porosity or local vegetation conditions) are available that 

may improve understanding on the retrieved statistical results and c) the spatial characteristics of 

SSM within one satellite footprint may be assessed if many locations are sampled (Ceballos et al., 

2005; Jackson et al., 2010). It should, however, be noted that the existence of several 

measurements within one satellite footprint is common for the soil moisture campaigns but it is 

exceptional for the soil moisture networks (Dorigo et al., 2011; Miralles et al., 2010). 

A disadvantage of the evaluation with the in-situ data is that the interpretation of results is 

hampered by errors of representation. These can originate in the differences in the sensing 

depths, acquisition times, and scaling. The scaling differences originate in the spatio-temporal 

distribution of precipitation events (i.e. a convective precipitation events may not be captured by 

an in-situ station but may still affect a large portion of the corresponding satellite footprint) or in 

the effects of topography and landcover (i.e. the wetting dynamics measured by an in-situ station 

in the forest that is situated in the middle of large fields will differ from the wetting dynamics 

measured by a satellite sensor over a footprint that represents the entire area). Furthermore, the 

scaling errors showed to be larger than the retrieval error of a single dataset (Martinez-

Fernandez & Ceballos, 2005).  

The concept of temporal stability is often implemented to understand and mitigate spatial 

differences (Vachaud et al., 1985). The concept states that soil moisture acts steadily in time 

(consistently higher, lower or equal) when compared to the spatial mean representing a larger 

area. If such spatio-temporal behavior is known, one single point can accurately represent the 

areal mean (Brocca et al., 2010a; Cosh et al., 2004; Famiglietti et al., 1998; Jackson et al., 1999; 

Jacobs, 2004). This is only possible during days when the study area is governed by its typical 

characteristic precipitation conditions.  

Furthermore, the triple collocation method was recently applied to estimate and mitigate the 

sampling errors associated with the spatial upscaling of the point measurements (Miralles et al., 

2010).  

Despite the demonstrated improvements of evaluation studies with in-situ data, these remain 

restricted to the extent of the networks, where the number of long-term in-situ monitoring 

networks is still small and mostly restricted to mid-latitude regions (Dorigo et al., 2011). However, 

to allow for a good evaluation of satellite soil moisture products their global evaluation is needed 

(Dorigo et al., 2010; Gruhier et al., 2010); mainly because the performance is expected to differ 

under different land cover, soil type, and climatic conditions. 

Evaluation with 
spatial data 

Evaluation with 
in-situ data 

 

Sources of 
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The first spatial comparisons of in-situ and spatial acquired SSM data were performed in mid 

2000’s. These comparisons evaluated soil moisture products with other spatial datasets; for 

instance with remotely sensed precipitation datasets (Bartalis et al., 2008; McCabe et al., 2005) 

or with aircraft-based soil moisture datasets (Drusch et al., 2004; Mladenova et al., 2010; 

Panciera et al., 2008). These approaches extended over regions where global soil moisture data 

could be evaluated. In addition, EP techniques were employed, which allowed evaluation over 

the entire spatial domain of the data products. EP estimates the error of the soil moisture 

retrieval based on propagated standard errors of each individual observation (Naeimi et al., 

2009b; Parinussa et al., 2011; Pathe et al., 2009a). 

Furthermore, numerous evaluation studies were performed using soil moisture outputs of spatial 

soil water balance and land surface models (Laguardia & Niemeyer, 2008; Parajka et al., 2006; 

Rüdiger et al., 2009; Wooldridge et al., 2003). A thin soil moisture layer has been included into 

some hydrological models that allowed easy assimilation and evaluation of the shallow (0-5 cm), 

remotely sensed, soil moisture observations (Brocca et al., 2011; Parajka et al., 2009). The errors 

of the soil moisture output of modelling system are independent from those of an empirically 

retrieved remotely-sensed observation and provide additional input to evaluation methods such 

as triple collocation.  

Commonly, the evaluation approach consisted of a straightforward computation of the 

correlation coefficient R, RMSE, and the bias between the remotely sensed and the reference 

dataset (in-situ or modeled data). A low RMSE value with in-situ data was until now the 

important soil moisture quality requirement. For instance, the SMOS and SMAP missions’ SSM 

product requirement relies on RMSE < 0.04 m
3
/m

3 
 (Kerr et al., 2010). Several other accuracy 

requirements for soil moisture provided by WMO are based upon an absolute measure between 

SSM datasets. Absolute assessments are however largely complicated by differences in 

represented depths, spatial scaling, and in the exact factors the datasets define. Moreover, they 

refer to differences in datasets rather than errors, as both of the datasets contribute to the final 

error estimate with their individual random as well as systematic errors.  

The goal to acquire an absolute error estimate largely delayed the development of the soil 

moisture products from the SAR systems. In fact, the roughness parameterization which has a 

strong impact on the strength of backscatter is the main source of errors in SAR soil moisture 

retrievals and its complexity is expected to even increase with the increasing spatial resolution. 

With the advent of new SAR sensors operating at high spatial resolutions (e.g. TerraSAR-X, 

RADARSAT-2, and, for 2013 planned, Sentinel-1) the soil moisture product parameterization is 

expected to remain a major constrain for the SAR soil moisture product development.  

In the last decade a large amount of remotely sensed soil moisture datasets have become (Kerr 

et al., 2010; Naeimi et al., 2009a; Njoku et al., 2003; Pathe et al., 2009b; Wagner et al., 1999b) 

that utilize independent algorithms and have an independent error structure. The latest, SMOS, is 

the first spaceborne mission that was designed specifically for the purpose of soil moisture 

monitoring over land (Kerr et al., 2010). These products have provided new research 

opportunities and evaluation activities in the soil moisture domain for coarse resolution sensors.  

First, multi-correlation evaluation techniques were implemented. These assumed that a large 

number of corresponding datasets signifies that these represent an identical phenomenon (Jeu et 

al., 2008; Rüdiger et al., 2009; Wagner et al., 2007). Second, a triple collocation method was 

Advanced 
evaluation 
measures 

Evaluation with 
water balance 
models 

Evaluation with 
other remotely 
sensed datasets 

Commonly used 
RMSE 

Evaluation of 
SAR SSM 
products 
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implemented to estimate the error variances by simultaneously solving for systematic differences 

in the climatologies of three data sources with independent error structures (Dorigo et al., 2010; 

Scipal et al., 2008b). Third, EP studies were implemented to estimate the random error. A large 

advantage of the EP and TC method is the fact that these do not require a reference dataset. 

Fourth, evaluation techniques were developed that judge the quality of soil moisture 

observations based on the improvements they can bring in a real application. An example of such 

study is the novel method based on the assimilation of soil moisture retrievals into a simple 

surface water balance model (Crow, 2007). In this study, the authors analyzed the rainfall errors 

against filter increments to establish a proxy for the accuracy of the soil moisture retrieval. 

Another example is a study demonstrating the use of agricultural productivity as an alternative 

for dataset error evaluation (Champagne et al., 2012). Lastly, a specific case of EP was introduced 

that evaluates the standard error of the remotely sensed SSM using a soil moisture estimate from 

a hydrological model (Doubková et al., 2012). The necessary prerequisite of the method is a good 

understanding on the standard errors of both datasets and their independency. 

In conclusion, some historical trends should be highlighted: 

 The role of the in-situ observational networks is and will remain indispensable for accurate 

evaluation of SSM data products 

 An increasing number of the coarse resolution soil moisture datasets, retrieved using 

independent algorithms, and their increasing accuracy allowed for the development of more 

complex and robust evaluation techniques.  

 It is inevitable to complement in-situ evaluation studies with advanced evaluation methods 

that use a number of soil moisture datasets. 

 For several decades, the limited understanding of the effects of the soil roughness and 

vegetation on the SAR backscatter hampered the development and evaluation of a regional, 

operationally available, SAR soil moisture product.  

1.2 Objective and structure 

To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the 

European Space Agency (ESA) is developing Sentinel-1, a constellation of two polar-orbiting C-

band radar satellites. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT and 

RADARSAT) the Sentinel-1 will operate at a medium spatial resolution, but with a greatly 

improved revisit period. Given the planned high temporal sampling and the operational 

configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic 

processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in 

hydrology has already been demonstrated within the scope of the Soil Moisture for 

Hydrometeorologic Applications (SHARE) project (http://www.ipf.tuwien.ac.at/radar/share/) 

(Doubkova et al., 2009). SHARE is one of the ESA's Data User Element (DUE) Tiger Innovator. As 

part of the project a soil moisture dataset at medium resolution was retrieved from the GM of 

the ASAR onboard ENVISAT (Pathe et al., 2009b). 

This thesis was motivated by the need to evaluate  the quality of the ASAR GM SSM medium 

resolution dataset and to provide guidance on appropriate evaluation methodology applicable to 

any SSM product. The evaluation results are summarized in chapter 4. The guidance on a general 

evaluation approach is provided in chapter 5.  

Thesis objective 
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Prior to the result and discussion section, the state of the art of the SSM evaluation studies is 

provided in chapter 1, complemented by this section that motivates the objective of this thesis. 

The essential theoretical background of the work  is summarized in section 1.1 introducing 

currently used evaluation measures in the soil moisture field and providing examples on how the 

evaluation measures can be selected if an exact application of the data is known and requires a 

particular data quality. The theoretical part of the work is summarized in chapter 2. Methods and 

datasets are to be found in chapter 3. 

Two main issues hamper the interpretation of the evaluation studies; namely differences in the 

representation of the spatial extent and sensing depth. Methods exist that mitigate the latter 

differences; these were summarized in section 4.1. For a long time, error assessment studies 

were based on an absolute quality requirement of SSM. These were supplemented by relative 

error assessments and form together a group of evaluation measures that is here referred to as 

standard evaluation measures. Evaluation of the ASAR GM SSM dataset using standard 

evaluation measures can be found in section 4.2.   

Recently, advanced evaluation methods have emerged in the literature. These rely on statistical 

analyses of several datasets, or directly on analyzes of filter increments after data assimilation. By 

doing so these methods take away the long-lasting but unrealistic expectation of the soil 

moisture community on the existence of one true soil moisture dataset. Given the successful use 

of advanced evaluation techniques for coarse resolution datasets, their fruitful use  to describe 

the quality of medium resolution SSM products was expected and assessed for the ASAR GM SSM 

in section 4.3. The new  evaluation methods are expected to be beneficial for SSM products from 

the SAR data. Their development was delayed due to the long lasting relying on standard 

evaluation measures and requirement of a reference dataset. Such evaluations were often not 

successful due to the limited understanding of the effects of soil roughness (Verhoest et al., 

2008) and vegetation on the SAR backscatter (Wagner et al., 2009). 

In the discussion section, the results are analyzed from a general perspective and form answers 

to questions related to the characteristic problems of data evaluation.  

Given the issue of retrieving absolute soil moisture values from SAR sensors, the requirements of 

SMOS and SMAP communities on an absolute accuracy appear challenging to apply to the SAR 

SSM products. This hesitation motivated the first question in the discussion section: “Can we 

apply the evaluation requirements of SMOS and SMAP to ASAR GM SSM?” (section 5.1). 

Any evaluation study is hampered by the differences in the sensing depth, acquisition times, and 

spatial scaling. The former differences are commonly experienced (e.g. evaluation between the 

remotely sensed and in-situ SSM) and were shown to be larger than the retrieval error of a single 

dataset (Martinez-Fernandez & Ceballos, 2005). Importantly these are expected to also have a 

large impact on the evaluation studies where medium resolution datasets are evaluated along 

with coarser resolution products. For this reason section 5.2 reflects on following: “How does 

spatial resolution influence the error estimates?”  

In the results section, evaluation methodologies are summarized based on numerous 

assumptions. For instance, a simple comparison of two datasets assumes one of the datasets to 

be close to the “truth”. This is clearly violated because all observation systems contain errors and 

may introduce a substantial pseudo bias effect (Stoffelen, 1998). Another example is the triple 

Results section 

Discussion 
section 

Intro, theory, 
and 
methodology 
section 
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collocation method. While this method does not rely on one reference dataset, it assumes the 

errors of the implemented observations to be fully independent. This can be violated given, for 

instance, the similar physical principles behind all microwave soil moisture datasets. The third 

discussion question (section 5.3) addresses the fact that different evaluation measures have 

different assumptions and may evaluate ifferent qualities of the data and is . In particular, it asks: 

“Is there a best combination of measures to describe the quality of soil moisture data?” 

described in. 

Finally, the findings on the error characterization of the ASAR GM SSM product retrieved in 

chapter 4 are collected and summarized to answer the question in section 5.4  “What is the 

quality and what are the limitations of ASAR GM SSM data?” These findings are transferred to the 

potential Sentinel-1 SSM product. Changes to the final product due to the sensor characteristics 

are taken into consideration. Finally, a discussion of the following topic: “Learning from ASAR GM 

SSM errors for Sentinel” is provided in section 5.5. 

This work provides a critical assessment of standard and advanced evaluation methods for the 

remotely sensed soil moisture products and applies these to assess the performance of the 

medium resolution ASAR GM SSM product. While individual evaluation methods have been 

introduced in journal papers and project reports before, this work is innovative as it provides a 

concise summary of evaluation measures combined with a demonstration of their shared use. 

Furthermore, the inovation lies in the transformation of the triple collocation evaluation method 

to the ASAR GM medium resolution SSM product, which was applied until now only to evaluate 

coarse resolution ( 25 km) datasets (i.e. Dorigo et al., 2010; Scipal et al., 2008). 

A well-specified error characterization of the medium resolution ASAR GM SSM is provided. The 

demonstrated evaluation strategies are easily transferable to the future Sentinel-1 SSM product. 

While data assimilation of the ASAR GM soil moisture estimates may be currently restricted by its 

poor radiometric resolution, the improved radiometric accuracy of the proposed SSM product 

from Sentinel-1 combined with at least so good temporal coverage of the ASAR GM SSM suggests 

a great benefit of the product for flux exchange, crop growth, and water balance modelling.  

  

Future 
Sentinel-1 SSM 
product 

Inovativness of 
the thesis 
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2. Theory 

2.1 Pre-processing steps prior to data evaluation  

This chapter presents the terminology used in this work and highlights steps that are necessary 

prior to soil moisture data evaluation. These steps consist of understanding and the mitigating 

differences in the datasets caused by different spatial and temporal resolution, different units 

and sensing depth.  

The chapter is written in general terms and can be applied to soil moisture datasets originating 

from any source (model, remotely sensed sensor or ground station).  

2.1.1 Statistical terminology 

The statistical terms presented in this chapter are used in the literature interchangeably. The 

author’s goal is to define their meaning for the scope of this work. 

The sources of errors are generally classified into two categories, systematic and random. 

Systematic errors can be introduced by faulty equipment, faulty calibration of a model or an 

instrument, or from data unrepresentativeness in space or time. Random errors can originate 

from statistical fluctuation in the collection of the finite numbers and arise each time the 

experiment is repeated.  

For the purpose of this study the systematic errors are further divided into a) time-variant 

systematic errors (e.g. due to missing parameter), and b) time-invariant systematic errors 

(indicated as systematic bias throughout this study) that occur due to different mean and range 

of several soil moisture datasets.  

Furthermore, the terms accuracy, precision, and error need to be distinguished as these are 

interchangeably used in evaluation studies. While accuracy is defined as the level of closeness 

between the measured phenomena and the true value, precision refers to the reproducibility of 

the measurement or to the degree of scatter. According to this, precision relates to random 

processes (Iso, 1994) while accuracy involves a combination of the random components as well 

as systematic errors (Figure 1). Accuracy can be assessed with the mean absolute bias and 

precision with the standard deviation computed from the mean value. 

 

Sources of 
errors 

Accuracy, 
precision, and 
error 
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Figure 1. A graphical representation of precision and accuracy. 

Error is the actual difference between the measured phenomena and the true value. It is what 

causes values to differ when a measurement is repeated or when a measurement is biased.  

An interesting discussion relates to the understanding of the terms error and difference 

(sometimes also discrepancy). The term error is computed between two datasets where one 

represents the true measurement (often represented by a ground station). The term difference 

(discrepancy) is used for a difference computed between any datasets representing the same 

quantity, where their ‘truth’ is not guaranteed. Similar discussion relates to the difference 

between the terms Root Mean Square Error (RMSE) and the Root Mean Square Difference 

(RMSD). The RMSE is used if the representation of the “truth”is known or it can be assumed 

(commonly, observations from ground station). On the contrary, the RMSD is used in cases when 

no assumption about the true dataset can be made.  

It is, nevertheless, a difficult task to decide which measurement represents the “truth”, what is 

the needed level of accuracy and what are the defining criteria to decide about the “acceptance” 

of the model. For that reason and for the sake of simplification the terms error and RMSE 

(instead of the commonly and more correct “difference” and RMSD) will be used throughout this 

work. 

Also the terms model evaluation and model validation are used in the literature interchangeably 

(Prisley & Mortimer, 2004) for studies that compare two or several soil moisture datasets.  In 

general terms, model validation is achieved if the model accurately predicts the observed 

phenomena within a certain precision. The model evaluation refers to any assessment of quality 

of the remotely sensed data. In this work we refer to the means of evaluation as an assessment 

of errors without consideration whether these fall within certain margin of error.  

The relevance of the usage of the term validation has been widely discussed. The satellite soil 

moisture missions have frequently defined validation activities to verify that retrievals meet the 

required margin of RMSE. It is, nevertheless, a difficult task to decide what represents the 

“truth”, what is the needed level of accuracy and what are the defining criteria to decide about 

the “acceptance” of the model. In fact, the term validation is controversial and used as a term to 

denote model assessment (Bellocchi et al., 2011). Finally, it is argued that the term validation 

puts pressure on modelers going beyond the degree to which they feel comfortable when 

discussing the strength of the model (Oreskes, 1998).   

Error and 
difference  

Evaluation 
versus 
validation 
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While there are no common procedures widely accepted to perform evaluation tasks (Cheng et 

al., 1991), some suggested norms exist (Jakeman et al., 2006; Van Dijk & Warren, 2010). These 

suggest that an evaluation should judge the acceptability of the performance of a model or an 

algorithm for a particular purpose (e.g. has the soil moisture dataset a high accuracy to improve 

performance of a river-runoff model?).  Typically, it is claimed that a model evaluation includes 

any action in which the quality of a model or an algorithm is established (Jakeman et al., 2006).  

2.1.2 Preprocessing steps for soil moisture evaluation 

Soil moisture products can be derived from remotely sensed data, can be measured on the 

ground or modeled with hydrological or land surface models. The remotely sensed soil moisture 

implies observations that are directly related to soil moisture in upper few centimeters. The 

models (i.e. hydrological, landscape-hydrological, atmospherical), on the other hand, rely on 

simplified and theoretical relationships. Often the satisfaction of the assumptions on the 

different soil moisture flows is sometimes more important than the output variable itself. 

Furthermore, remote sensing data have a spatial character while models are often forced by 

point-based precipitation inputs. In addition, models often represent soil layers of the upper 10 

cm (e.g. AWRA-L represents 5-10 cm) or deeper whereas C-band microwave products retrieve 

signal from less than 5cm centimeters.  

The resulting retrievals and models often represent different soil moisture depths and spatial 

extents and can be expressed in different units. Furthermore, even if representing the same 

depth and scale the retrievals may differ due to their varying soil moisture sensitivity. The latter 

differences prevent measuring an absolute agreement between the time-series (Brocca et al., 

2011) and inclusion and assimilation of the datasets into models (Brocca et al., 2010c).  

Transformation measures are therefore needed to be applied prior to data evaluation. Four 

commonly used transformation measures are here summarized. These include:  

 the transformation into common soil moisture units 

 the linear regression 

 the rescaling using mean and standard deviation 

 the CDF matching approach  

 modelling of vertical soil moisture distribution (e.g. the Soil Water Index (SWI), or the 

Richards equation) 

Table 1 suggests which of the latter methods should be used to remove systematic differences 

caused by spatial scale, the differences in depth, and the differences in units. 

Table 1. The reasons for the systematic differences between soil moisture datasets and suggested 

methods for their removal. 

Cause of the systematic 
difference 

Recommended method for its removal 

Differences in spatial 
representation 

CDF, linear regression, or rescaling using mean and standard 
deviation 

Differences in depth modelling of vertical soil moisture distribution, CDF, linear 
regression, or rescaling using mean and standard deviation 

Differences in units Unit transformation 
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Several effects due to the transformations should be considered. Firstly, all pre-requisites of the 

transformation techniques need to be fulfilled (e.g. normality of data, sufficient data samples). 

These are discussed in detail later in this section. Secondly, the higher-order transformation may 

overfit data to the reference dataset and introduce further bias. Performing transformation on 

varying window sizes (temporal as well as spatial) may serve as sensitivity analyses on the 

stability of the calibration constants. Lastly, the dataset transformation alters the absolute values 

of soil moisture observations and therefore the evaluation results. Such effect can be neglected 

given that all applied studies of soil moisture require relative rather than absolute estimates of 

soil moisture parameters (section 2.3).  

2.1.2.1 Unit transformation 

The soil moisture products are expressed in a variety of units. The most commonly used soil 

moisture units used in a large number of soil moisture networks (i.e. OzNet, REMEDHUS or the 

AMMA) and satellite soil moisture products (e.g. from AMSR-E or SSM/I) are the volumetric units. 

These were referred to throughout this thesis as vol % or m
3
/m

3 
and express the ratio between 

the volume of water and the volume of soil holding the water in a given soil depth [m
3
 water per 

m
3
 of soil]. In other words it represents the fraction to which the pores are filled with water. The 

pores usually occupy soil fraction lower than 0.6. As a result, the volumetric fraction ranges 

between 0.0 m
3
/m

3
 (completely dry) and 0.6 m

3
/m

3
 (full saturation).  

Soil moisture datasets are also often expressed in relative units. The relative units are commonly 

used for microwave satellite soil moisture products and measure the change of the retrieved 

signal relative to its maximum dynamic range (0–1 or 0–100 %). An example of such dataset are 

the ERS the ASCAT, or the ASAR GM soil moisture products. The backscatter measurements are 

converted to soil moisture estimates by applying the TU Wien soil moisture retrieval algorithm 

(Wagner et al., 1999c). To transform the volumetric to the relative soil moisture it simply needs 

to be divided by porosity P. 

A detailed information of these and other existing soil moisture units (e.g. gravimetric, plant 

available water) and their conversion measures were presented elsewhere (Dorigo et al., 2011).  

Unit conversion measures were not the focus of this thesis due to the following reasons which 

include: given the linear character between the volumetric and the relative soil moisture units 

(the only used in this thesis) it was expected that other transformation methods (e.g. linear 

regression or CDF, see following sections for detailed discussion) can well replace the unit 

transformation methods. In addition, other transformation methods account for the 

shortcomings of the ancillary data (i.e. texture, porosity, and organic matter content), and for the 

differences in spatial representation and depth of the different measurements. These could not 

be accounted for by the unit transformation technique.  

2.1.2.2 Linear normalization 

Two approaches are commonly used for linear regression of soil moisture datasets. Both require 

an assumption of linear relationship between the datasets. One is based on the application of a 

simple regression equation between two evaluated datasets, minimizes the RMSE between the 

compared datasets, and removes the differences in the mean (Jackson et al., 2010). The latter 

approach can also be performed iteratively. In iterative regression the individual RMSEs are 

Existing units  

Consequences of 
data 
transformation 

Linear 
regression 
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initially assumed to be equal. Consequently, the calibration constants and errors are iteratively 

altered until their convergence is achieved. This method is of a great benefit if more than two 

datasets are used in regression. 

The second approach removes the differences in the standard deviation and the mean between 

two datasets (Brocca et al., 2010b; Draper et al., 2009) and as such requires these datasets to 

have a normal distribution. In particular, the matched dataset y is computed using two SSM 

datasets x and y as follows: 

            , 2-1 

where i =1,...,N, N is the total number of soil moisture acquisitions and the local coefficients A 

and B are defined as: 

 
   ̅  

 (  )

 (     )
 ̅ 2-2 

and  

 
  

 (  )

 (     )
  2-3 

where    ̅̅ ̅̅  is the mean of all xor,i,  ̅ mean of all yi and x represents the rescaled xor.  

Here, the parameter B mirrors the difference in the variability of individual SSM datasets; the 

parameter A reflects combination of differences of both the variability and the mean. Implicitly, 

these parameters also refer to different soil types, land cover, and climate (Scipal et al., 2008a). If 

the expectation on normal distribution is fulfilled the parameters linear fitting parameters and 

the parameters A and B in linear rescaling using mean and standard deviation should be equal. 

Importantly, while the linear regression aproach allows evaluated time-series to have different 

mean, the linear rescaling aproach allows dataset to have different mean and variance. 

2.1.2.3 Cumulative Distribution Function (CDF) 

To remove differences in higher order moments a non-linear CDF is recommended (section 

5.2.3). Application of the CDF is commonly performed in data assimilation studies. As mentioned 

at the beginning of this chapter caution should be given not to over fit the evaluated datasets as 

this may introduce unnecessary bias. For the latter reason only datasets with similar data 

distribution should be transformed. Significantly different data distributions and dynamics may 

signify that the datasets represent different phenomena. 

CDF  

Linear rescaling 
using mean and 
standard 
deviation 
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The CDF is performed by matching cumulative distribution functions of two datasets by using 

linear or polynomial fitting. Depending on the order of the fitted polynomial, equivalent number 

of moments is mitigated. For instance, a 3
rd

 order polynomial could correct differences in the first 

four moments (the mean, the variance, the skewness and the kurtosis) (Drusch et al., 2005).  

 

Figure 2. The CDF for a point location in southeastern Australia for two soil moisture datasets (left) 

and the corresponding differences in soil moisture for each rank (computed as a difference 

reference – to be adjusted) (right). The operators were computed using a 6
th

 order polynomial fit. 

The actual computation of the CDF function is performed in three separate steps. Firstly, the 

datasets are ranked. Secondly, the differences in soil moisture between the corresponding ranks 

of the two datasets are computed (Figure 2, left). Lastly, the observation operators are computed 

as a polynomial fit between the computed differences and the ranked observed soil moisture 

(Drusch et al., 2005) (Figure 2, right). These remove the systematic differences between both 

datasets. The observation operators are defined by the type of the observations; in particular, by 

their specific statistical properties and distributions (Drusch et al., 2005). 

2.1.2.4 Exponential filter 

The exponential filter can be used to remove the difference in depth of soil moisture 

measurements. It simulates the profile soil moisture over a deeper soil layer based on the 

acquisitions of the shallow soil moisture as in Wagner et al. (Wagner et al., 1999b). In this study 

the version of the SWI according to (Albergel et al., 2010) is introduced: 

               [   (  )        )], 2-4 

with the gain Kn at time tn given by: 

 
   

    

        
 (
       

 )
  2-5 

Exponential 
filter  
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where T is a characteristic time length that characterize the temporal variation of soil moisture 

within the root-zone profile and the gain Kn ranges between 0 and 1. For the initialization of this 

filter, K0 =1 and SWI0 = SSM(t0). 

2.2 Evaluation measures and methods 

The interest in evaluation of climatological and environmental datasets has grown rapidly 

(Willmott & Matsuura, 2005). Likewise, the need to address the error of remotely sensed soil 

moisture datasets is evident (e.g. Matgen et al., 2011; Scipal, Holmes, De Jeu, Naeimi, & Wagner, 

2008). Interest is mounting which statistical measures are the most suitable and how their 

selection differs based on an application. The commonly used evaluation measures in soil 

moisture campaigns were the correlation coefficient (R) (Brocca et al., 2010b) and the root mean 

square error (RMSE) (Jackson et al., 2010). Regrettably, it is RMSE that is also the most 

misinterpreted error measure (Willmott & Matsuura, 2005).  

This chapter summarizes standard (section 2.2.1) as well as advanced evaluation measures 

(section 2.2.2) that may complement the commonly used RMSE and R. Furthermore, several 

recommendations about when to use these evaluation measures or how to combine several of 

them are provided. Detailed recommendations on application-relevant evaluation measures can 

be found in section 2.3. The last chapter (2.2.3) introduces the future direction in soil moisture 

evaluation studies: the evaluation of evaluation measures.  

2.2.1 Standard evaluation measures 

This section introduces and interprets the commonly used evaluation measures. These include a 

measure of the absolute agreement (RMSE, MAE, and bias) and the relative agreement (R, R
2
 and 

Rs) between two or more soil moisture datasets. While the absolute measures assess the effect 

of random and/or systematic errors, the relative measures inspect the evolution in time of the 

separate datasets. The relative measures are often yielded by dividing the absolute measure by 

the dataset itself or by its variance or standard deviation. Such measures are spatially 

comparable and independent on the absolute magnitude. 

All standard evaluation measures are based on a comparison of two observation systems, where 

both systems contain errors. As such, final evaluation results only represent differences and 

should not be considered as errors related to the true observations. Such assumption  may 

introduce a substantial pseudobias effect (Stoffelen, 1998). 

2.2.1.1 Measures of absolute agreement 

Measures of absolute agreement refer to the positive magnitude or mean of two variables 

dissimilarity. The measures outlined here provide a summary of dissimilarities of comparative soil 

moisture datasets.  

The measures of absolute agreement should be interpreted carefully as these are influenced by 

the mean and variance of the datasets. For instance, the increasing MAE and RMSE can be 

explained by the increasing error in the datasets as well as by the increasing mean or variance. 

For the latter reason, the normalized versions of the absolute measures are often computed.  
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Furthermore, the absolute evaluation measures are performed on already transformed datasets 

(see chapter 4). Applying evaluation measures on the original datasets would assess random 

errors as well as errors due to differences in spatial scale, units or soil moisture dynamics. The 

final evaluation measure is expressed in the units of the datasets to which the original data were 

transformed. A brief summary of the current measures of the absolute agreement is provided 

below.  

RMSE is currently the most commonly used measure of precision and, if evaluated with a ground 

observations, also of accuracy. It has been widely used in evaluation studies of soil moisture 

datasets (i.e. (Brocca et al., 2010b, 2011; Doubková et al., 2012; Jackson et al., 2010; Mladenova 

et al., 2010)) and plays an important role in the assessment of performance criteria for the SMOS 

and SMAP missions (Miralles et al., 2010). RMSE signifies the closeness of two datasets 

representing the same phenomena and is defined for two samples of variables xi and yi as follows: 

 

     √
∑ (     )

  
   

 
  2-6 

where i=1…, N and N is the number of measurements. By its computation RMSE alters the 

magnitude of each difference by its squaring and rooting. The squaring is performed to remove 

the potential negative value. However, this has a potentially negative consequence of 

quadratically penalizing the residuals between parameters. 

It should be noted that RMSE reflects not only the average error but also the variance in the error 

and the number of data points (Willmott & Matsuura, 2005).  

Further measures of consistency between two datasets are the Mean Absolute Error (MAE) and 

Bias. Both are absolute measures of error. Importantly, bias is computed on non-transformed 

datasets. The Mean Absolute Error (MAE) of a sample of n measurements is defined as: 

 
    

∑ |(     )|
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, where xi and yi  are two continuous variables with yi being the representation of the true value. 

The measure returns the average absolute magnitude of each difference and represents so the 

typical error magnitude. 

Unlike RMSE, MAE doesn’t quadratically penalize errors, nor does it reflect their variance. For 

these reasons, MAE has been recommended by several studies as a more suitable measure of 

average error than RMSE (Mielke & Berry, 2007; Willmott & Matsuura, 2005).  

In particular, large errors have a relatively greater influence on the total square error than do 

smaller errors. In other words, RMSE increases if the total error is concentrated within a small 

number of increasingly large individual errors. As such, RMSE reflects total error magnitude 

(MAE) as well as variability of error magnitudes and it is impossible to distinguish between them.  

RMSE 

MAE  

MAE versus 
RMSE 
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If the positive or negative nature of the error is required the Bias can be computed. It is 

calculated using the expression: 

 
     

∑ (     )
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where xi and yi  are two continuous variables.  Bias should be interpreted cautiously since it 

indicates the average model bias and for two datasets with the same bias can approach 0. This is 

explained by the cancelation of the independent negative and positive errors. Furthermore, bias 

measures reflect only on accuracy measures while RMSE and MAE reflect on both accuracy and 

precision. 

On the contrary to all above listed measures, nRMSE assess a scaleless performance. It is here 

provided for the sake of completeness. nRMSE normalizes RMSE with  ̅, the mean of yi’s, as 

follows: 

 
       

    

 ̅
   2-9 

The final measure gives an estimate of the averaged, quadratically penalized, difference between 

two datasets normalized by their mean. The nRMSEm allows for a spatial comparison as it is not 

affected by the dataset variance. An identical normalization can be performed using the standard 

deviation.  

2.2.1.2 Measures of relative agreement 

In many cases, information pertaining to the nature of the association between two variables, 

and not solely the nature of their dissimilarity, is required. To extract such information, we use 

measures of relative agreement. Relative agreement refers to the potential existence and 

strength of an association between two variables.  Outlined here are correlation measures which 

serve to convey information about such associations.  

The Pearson correlation coefficient R measures linear relationship between two variables.  It is 

retrieved by a division of the covariance by the  estimators of the standard deviations: 

 
  

   (   )

 ( ) ( )
  2-10 

where x
* 

and y
*
 represents respectively the standard normal random variable for which the 

  ̅̅ ̅    and s stands for the estimator of the standard deviations. The same applies for y. This is 

written in full using (2-10) and the definition of the standard deviation of the variables xi and yi , 

as: 

Pearson 
correlation 
coefficient  

Bias 

Normalized root 
mean square 
error (nRMSE) 
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where  ̅ is the mean of all xi‘s and  ̅ is the mean of all yi‘s. The achieved values range between 1 

and -1. These maxima indicate a perfect positive and negative correlation respectively. R 

effectively provides a measure of how well the two datasets are associated in their evolution in 

time. 

To obtain an easier to understand meaning of R it is recommended to compute its square (R
2
). 

Known as the coefficient of determination, R
2 

represents the proportion of the total variation in yi 

that can be attributed to the linear relationship with corresponding values in xi. In a perfect 

correlation (where     ) a variation in one of the variables is exactly matched by a 

corresponding variation in the other. The parameter 1- R
2
 indicates to what extent other factors 

(outside xi, yi) influence xi and yi. 

To assess significance level of R and R
2
 auxiliary tests need to be performed. For that purpose the 

t-statistic test can be used: 

 

   √
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where N-2 signifies the degrees of freedom. 

For small number of samples and for cases when data follow bi-normal or two-dimensional 

Gaussian distribution the t has Student’s t-distribution. The null hypothesis claims that there is no 

correlation between data. This is tested by comparing the value of t with t-table tail probabilities 

for a given significance level. If t is larger than the t-table tail probability, the null hypothesis is 

rejected and the significance of the correlation is demonstrated.  

The next metric is the Spearman nonparametric correlation (RS). Its key advantage is that it does 

not require any assumption about the nature of the relationship between evaluated datasets and 

measures only monotonic relationship between datasets. The computation relies on the 

replacement of the values with its rank among all xi in the sample. This is useful in cases where 

the raw soil moisture data values or estimate values are not normally distributed or contain 

outliers. The Spearman rank correlation is defined as:   
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where Si and Ti are the rank of xi and yi, where i=1…, N and N is the number of measurements. 

Similarly to R the significance of the correlation can be computed according to (2-12). 

Importantly, RS is independent on the distribution of the data. As that it is less affected by 

variance of data and allows for spatial comparisons with different evaluation results. 

 

In case of soil moisture, R computed on absolute values may be artificially enhanced by the effect 

of seasonality. This is given by the mathematical formulation of R that incorporates covariance 

and standard deviations; these both increase with increasing magnitude of the absolute values. 

RS is computed on ranked datasets and doesn’t weight to the actual values of soil moisture. As 

such it reflects solely the quality of the data to depict the order of the values in an ordered 

sequence.  

Last but not least, correlation does not prove causation; that can only come from knowledge of 

underlying behavior.  

Many environmental datasets exist as a sequence in time or space where a single measurement 

relates to neighboring measurements in time or space. Such tendency is called autocorrelation. 

Autocorrelation causes errors to be non-random and can thus violate the basic assumption for 

computation of correlation coefficients R and RMSE. It also alters the computed significance level 

of a correlation and may artificially increase the variance of the data. By selecting the evaluated 

acquisitions randomly provides a solution to avoid autocorrelation. Often, the Durbin-Watson 

statistic is used to examine the possible autocorrelation effects by studying independency of the 

residuals.  

The Durbin-Watson test examines whether the first order autocorrelation parameter ρ is 0. If this 

is the case, the residuals are independent and the autocorrelation is dismissed. The statistic is 

computed as: 
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where ei  are the residuals determined by fitting a model using least square, where i=1,…, N and N 

is the number of measurements. Durbin and Watson obtained the approximate upper and lower 

bounds (dU  and dL) on the statistic D. If dL ≤ D ≤ dU, the test is inconclusive. However, D > dU 

concludes that ρ= 0; and D < dL signifies that ρ > 0.  

The way how to avoid autocorrelation in data is to conduct experiments on random selection 

rather than on the consequent measurements. 

2.2.1.3 Evaluation of multiple datasets 

The above mentioned statistical measures can be computed between more than two datasets. 

When several datasets are evaluated the statistical measures are computed between each 

dataset pair (Rüdiger et al., 2009; Wagner et al., 2007). The results can be than averaged or 

interpreted independently.  

Autocorrelation 
and Durbin 
Watson test  
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When correlations are computed between several datasets it is important to ensure that the 

errors of the datasets are independent and that they capture the same physical phenomenon. 

Only then would high individual cross-correlations signalize a high probability that these 

represent an identical phenomenon that is closely linked to soil moisture. The probability 

increases with the increasing number of datasets with high correlation values.  

Also,  a simple averaging of R and RMSE computed among several soil moisture datasets can 

provide valuable results (Wagner et al., 2007). While the mean R gives an estimate of a cross-

association between several datasets the mean RMSE represents the cross-difference of several 

datasets. As mentioned in chapter 6.1.1 the absolute evaluation measures are performed on 

already transformed datasets to allow RMSE to include errors due to different spatial scaling or 

sensing depth of the evaluated datasets.  

2.2.2 Advanced evaluation methods 

An increasing number of coarse resolution soil moisture datasets and their improving accuracy 

supported the development of advanced evaluation methods. These are introduced in this 

chapter along with a discussion on their ability to assess random and systematic errors.  

The advanced evaluation methods are performed on transformed datasets (see chapter 4) to 

avoid effects of errors due to a different spatial or temporal scaling or a different sensing depth.  

2.2.2.1 Error propagation (EP) 

The EP technique determines the standard deviation of the error of a model by assessing the 

impact of the standard deviations of the errors in the individual input model parameters (Taylor, 

1997). The final measure comprises random errors but doesn’t encompass the effect of 

systematic errors. 

The solution of the EP can be described as follows. Firstly, several assumptions about the 

different sources of errors are made. Secondly, the detected standard deviation of the errors are 

propagated through the model while it is assumed that all approximations are negligible and that 

the model itself is correct. Finally, the numerical or analytical solutions of the EP are solved. An 

example of a numerical method is the Monte Carlo simulation (Metropolis & Ulam, 1949), an 

example of an analytical method is the method of moments (Wong, 1985) . 

The ASAR GM error estimated according to Pathe et al. (Pathe et al., 2009a) was used in this 

study that implements the method of moments. For detailed information on the application of EP 

methods for the ASAR GM SSM dataset refer to Pathe et al. (Pathe et al., 2009a). 

The commonly used formulation for the method of moments is the first-order second-moment 

error analyses that estimates the spread of x based on a first-order approximation to f, where 

x=f(u). The standard deviation of the error of x is thus approximated as: 

 
   |

  

  
|      2-15 

Cross-
correlations 
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where    and     are the standard deviations of the errors of the dataset x and u. In other words, 

the standard deviation of the error in x depends on the standard deviation of the error of u and 

how sensitive is change in x to change in u (expressed as dx/du in (2-15)). 

Considering a function of two variables x=f(u,v) the problem expands as follows. Taking 
  

  
 and 

  

  
 

as the slopes in the u and v dimension, the error variance of x is expressed as: 
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where    ,   , and    are the standard deviations of the errors of the datasets x, u, and v. The 

final standard deviation of the error can thus be expressed as: 
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The parameter    will be greater if u and v are positively correlated. In an opposite case, when u 

and v are uncorrelated, the entire equation gets simpler as the third term can be omitted. The 

resulting relationship is denoted as the Gaussian EP method in which the standard deviation of 

the  error in x depends on the standard deviations of the errors in u and v and on their sensitivity 

to x as follows: 
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An important assumption of the EP is the fact that the separate errors are small compared to the 

partial derivatives. 

A successful application of the Gaussian EP has been used to assess the standard deviation of the 

error  of satellite (Doubková et al., 2012; Naeimi et al., 2009b; Parinussa et al., 2011; Pathe et al., 

2009b) as well as modeled (Mölders et al., 2005) soil moisture datasets. It has been concluded 

that the Gaussian EP is indispensable for analyses of parameterized soil processes (Mölders et al., 

2005). Other study concluded that the Gaussian EP method can achieve comparable results to, 

the computationally much more expensive, Monte Carlo method (Parinussa et al., 2011).  

2.2.2.2 Triple collocation (TC) 

The triple collocation (TC) method estimates errors (random and systematic error alternating in 

time (e.g. due to missing parameter)) of three or more calibrated soil moisture products by 

multiplying differences between three, to a common dataset calibrated, soil moisture products 
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with independent error structures. The assumptions on the statistical characteristics of the 

datasets and errors are crucial for the validity of the method and assume that: 

 the residual errors are uncorrelated 

 the different datasets observe the same physical phenomenon 

 a sufficient number of triplets is available 

Three datasets x, y and z with independent error structures are needed that represent an 

identical phenomenon. These are expected to relate to the true soil moisture dataset t in a linear 

fashion. Their transformation can be performed using a simple linear fitting , linear normalisation 

by using standard deviation and mean or iterative linear least square approximation (Scipal et al., 

2008b). The selection of an appropriate matching technique should be considered careful based 

on the distribution of the input data. See section 8.1 for detailed discussion. Importantly, in 

contrast to other evaluation measures the triple collocation doesn’t require a dataset 

representing the “truth”.  

The TC method is here demonstrated with a linear calibration:  
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where        and N is the total number of elements,   ,    and    are the residual errors of 

the datasets x, y and z and a and b are the linear scaling coefficients with subscript corresponding 

to the actual dataset. 

The aim is to estimate the variance of the residual errors of each dataset. To do so we first need 

to simplify the equation (2-19) by eliminating the calibration constants a and b. This can be 

achieved by expressing   
  

     

  
 and     

  
    

  
 . The analogous relationships apply also for the 

other two equations in (6.2-5)  and result in  
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where the flagged variables demonstrate the fact that we refer to the transformed datasets x, y, 

and z  and to the transformed error estimates   .  

To eliminate the unknown “truth” the difference between the datasets   
 ,   

  and   
  is computed 

as 
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Finally, the variance of the residual errors 〈  
  〉    

   can be retrieved by the cross-

multiplications of the equations (2-21) assuming a sufficiently large population (signalized by the 

angle brackets) (Zwieback et al., 2012). If the errors are uncorrelated their covariances 〈  
    

 〉, 

〈  
    

 〉 and 〈  
    

 〉 are equal 0 and the residual errors can be expressed as: 
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The scaling coefficients a and b cannot be solved since the true soil moisture value t is never 

known. We therefore select one of the datasets, x in this case, as a reference assuming the 

scaling coefficient a and b equal to 0 and 1, respectively. This allows for solving of the other 

calibration coefficients ay, by, az and bz and for solving of the equations (2-22).  

The absolute magnitudes of the residual errors will reflect the climatology of the reference 

dataset according to     
  

    

  
. Since the calibration coefficients influence the computation of 

residual errors an iterative scheme for its derivation is recommended that takes into account 

errors in both datasets (Scipal et al., 2008b). If all prerequisites are met the relative patterns  of 

the residual errors should remain stable for any reference dataset (Dorigo et al., 2010).  

As already mentioned the final errors are expressed in the climatology of the reference dataset. 

To be able to compare the results it is recommended to keep the computed errors in the 

dynamics of the reference dataset (Dorigo et al., 2010). If needed, the inversion to the original 

dynamics is possible using the equation (2-19). 

Note , while more than 500 samples were recommended to achieve the relative uncertainty of 10% 

(Zwieback et al., 2012), evaluation studies usually adopt the threshold of 100 triplets (Dorigo et 

al., 2010; Scipal et al., 2008b).  

The introduced TC technique can be computed using the absolute values of soil moisture dataset 

(Stoffelen, 1998) as well as soil moisture anomalies (Dorigo et al., 2010; Miralles et al., 2010). The 

results of such studies differ in their interpretation. The first refers to the capability of the 

product to estimate the overall seasonality of the soil moisture product (e.g. wet and dry season), 



 22 

 

while the anomaly-based approach gives an estimate on the ability of datasets to capture single 

drying and wetting events (Dorigo et al., 2010).  

2.2.3 The next stage: how to evaluate quality of the evaluation measures? 

An increasing usage of diverse evaluation measures for soil moisture datasets has been 

demonstrated in the last decade (Dorigo et al., 2010; Naeimi et al., 2009b; Parinussa et al., 2011; 

Scipal et al., 2008b). To understand divergences and similarities of the errors resulting from the 

different evaluation measures these need to be qualitatively or quantitatively compared. This 

chapter introduces a quantitative method to assess quality of the  EP method (section 2.2.3.1 and 

a qualitative comparison of several methods estimating random and systematic errors (section 

2.2.3.2). 

2.2.3.1 Predicted RMSE  

This method estimates the RMSE from the error characteristics of two datasets x and y with 

independent error structures (Taylor, 1997) and as thus represents addition of random errors of 

both datasets. The method combines the Gaussian EP method with the RMSE estimate 

(equations (2-6) and (2-18). Given the independence of the observed and predicted RMSE, their 

high correspondence is in this thesis used to assess quality of the individual error estimates 

estimated by the EP method. 

The error of xi is equal to         , where x represents the evaluated dataset and y the 

reference dataset, and        and N is the total number of elements. RMSE is then equal to: 

 

     √
 

 
∑  

 

 

   

  2-23 

The critical assumption of the predicted RMSE is that  ∑ (  )
    〈  〉 

   , where the angle 

brackets represent the mean over time. RMSE can therefore be expressed as: 

      √〈  〉  2-24 

Given that errors in x and y datasets are independent and constant, the Gaussian EP method 

(equation (2-18)) can be applied to estimate the error of    (   ) as: 

 〈  〉    
    

   2-25 
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where the variables    and    represent the standard errors of the datasets x and y, respectively. 

The partial derivatives of the parameters x and y are equal to  
  

  
 

  

  
   and are neglected in 

equation (2-25).  

By a combination of the equations (2-24) and (2-25) one receives that: 
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The equation (2-26) demonstrates that evaluated as well as reference datasets contain errors. 

This finding has been prior highlighted in another study (Stoffelen, 1998). For a good estimate of 

RMSE the errors of the independent datasets need to be known. 

The equation (2-26) was applied to estimate the RMSE between two coarse resolution datasets 

(Wagner et al., 2007) or  to assess the impact of scaling error introduced by point in-situ 

measurements (Miralles et al., 2010).  

2.2.3.2 Qualitative comparison of RMSE, EP and TC 

A large variety of evaluation methods have been introduced in section 2.2. Interestingly, a large 

portion of these assessed absolute errors (predicted RMSE, observed RMSE, EP, and TC). Their 

absolute values are however expect to differ due to the different weight they give to systematic 

and random errors. This section assesses such differences and provides their possible causes. 

Understanding the similarities and differences between evaluation measures and methodologies 

allows for an efficient selection of an adequate combination of evaluation methods and helps to 

avoid redundancy in evaluation studies.  

Importantly, in the discussion below a good quality of the evaluated algorithm is assumed. 

The observed RMSE (equation 2-6) refer to a combination of time-variant systematic and random 

errors of two evaluated datasets whereas the predicted RMSE (2-26) only takes into account 

random errors of both datasets (this is given by the fact that the separate standard errors are 

estimated using the EP scheme). The latter assumes that the time-invariant systematic error 

(bias) to be removed. If all conditions are fulfilled for the predicted RMSE and if the time-variant 

systematic error is minimal the expectation is that both RMSEs are equal. The predicted RMSE 

introduces strict simplifications on the individual errors   , namely that ∑ (  )
    〈  〉 

   . This 

assumption is expected to be violoted in areas where the individual parameters x and y are highly 

variant (Willmott & Matsuura, 2005). This may result in predicted RMSE < observed RMSE.  

Importantly, the absolute value of predicted RMSE is dependent on the estimation of errors of 

individual datasets; these are estimated using the EP method. As a result, the absolute range of is 

highly influenced by the quality of the  estimated EP error ( ). Importantly, the   error estimates 

need to be performed only after data transformation to account for a possible systematic bias 

between the datasets. 

Predicted and 
observed RMSE 
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The s assesses random errors solely; it doesn’t account for the effect of systematic errors. This is 

on the contrary to RMSE that reflect a) systematic error (the time-variant portion of it, see 

section 2.1.1 for explanation of time-variant error), and b) random errors of both datasets.  As a 

result, it is expected that       . The spatial differences between RMSE and   may be 

accounted a) to the time-variant systematic error of the second dataset, or b) to the missing or 

wrongly propagated parameter in the EP method. Importantly, the absolute value of   is 

dependent on the quality of each of the detected errors. 

The TC method estimates the combined effect of random error and systematic error alternating 

in time (e.g. due to missing parameter) of the second and third evaluated dataset. As such the 

relative TC error    is expected to differ from   mainly due to the assessment of time-variant 

systematic error. 

The essential difference between    and RMSE is the usage of an additional dataset in the TC 

computation. While RMSE relies on a second power of difference between two datasets (6.1-1), 

the TC error uses a multiplication of differences between three datasets (6.1-10). As such RMSE 

reflect a combination of errors of both datasets. On the contrary, the effects of a second and a 

third dataset are mitigated (cancel each other) in the    computation due to their independency. 

The latter explains why exchanging one dataset in the TC method doesn’t change the relative 

patterns of the residual errors (Dorigo et al., 2010). 

Further, the advantage of the TC method is that it assess the relative quality of several products 

simultaneously (Dorigo et al., 2010). It does so by assuming that the closer together are the 

products the higher is the probability that these represent the studied phenomenon. This is only 

possible if all errors of the datasets are independent. Violation to the latter may introduce 

pseudo biases (Zwieback et al., 2012). In particular, the estimated   of the dependent datasets 

would decrease while the error of the independent datasets would increase. Increasing the 

number of datasets may reduce such pseudo bias. Further, studying changes introduced by 

switching one dataset in the TC computation is also a good way how to investigate dataset 

independency. 

In evaluation studies, datasets with different spatial resolutions need to be implemented, often 

because no other dataset with comparable scale is available. Given the high radiometric quality 

of the coarse resolution sensors (e.g. AMSR-E or ERS) also the SSM products derived from these 

sensors are expected to have lower errors comparable to the medium (1-5 km) resolution 

datasets (e.g. ASAR GM). Second reason for the low errors of the coarser resolution datasets may 

be the fact that the parameterization of the models becomes simpler when moving to coarser 

scales suggesting existence of so called “effective states” (Settin et al., 2007). Third, the medium 

resolution datasets may exhibit a shift or small geocoding mismatches that may cause that the 

forcing effect influencing one dataset counteract the forcing effects of the other. This is not 

expected to influence coarse resolution datasets that are effected by large-scale atmospheric 

forgings (Vinnikov et al., 1999) and correlate to local soil moisture patterns according to concept 

of temporal stability (Cosh et al., 2004).  

Given all the above reasons the effect of scale needs to be carefully considered when interpreting 

evaluation results and was therefore given a special attention in separate section (section 5.2).  

Below, the findings of this chapter are summarized (these are graphically incorporated in Table 2): 

EP and RMSE 

TC and RMSE 

Effect of scale 

TC and EP 
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 The possible sources of discrepancies between the relative spatial patterns of   and    

can be accounted to the fact that: a) the residual errors in    are not independent, or b) 

the estimates of the input variable errors s in the EP method are not correct or missing.  

 The possible spatial differences between RMSE and   can be accounted either to the 

time-variant systematic error of the second dataset used in RMSE or to the missing or 

wrongly propagated parameter in the EP method. 

 The possible spatial differences between RMSE and    can be accounted either to a) the 

time-variant systematic error of the second dataset used in RMSE, or b) to the fact that 

the residual errors in the TC method are not independent. 

 The absolute values of the four methods are expected to compare as follows: 

          . This order is caused by the fact that RMSEs include time-variant 

systematic error of the second evaluation dataset,   doesn’t assess the impact of 

systematic error of interpretation (correctness of the model), and the error of the 

second and third dataset in   is mitigated due to their independency. 

 The absolute value of   is highly dependent on the quality of each of the detected 

errors. This can rapidly change the position of s in the above ranking.  

 The assumptions on the statistical characteristics of the datasets and errors are crucial 

for the validity of the method. 

 The effect of different spatial resolution needs to be considered when interpreting 

results of RMSE, EP, and TC. 

Table 2. The list of reasons for possible discrepancies between advanced evaluation methods. 

The possible differences 
can be explained by the: 

     

RMSE 
 

time-variant systematic error 
 
error of the second dataset in 
RMSE 
 
lacking independency of the 
residual errors in the TC method 

time-variant systematic error 
error of the second dataset in 
RMSE 
estimates of the input variables in 
the EP method are not correct 
missing variable in the EP method 

    lacking independency of the 
residual errors   in the TC 
method 
estimates of the input variables in 
the EP method are not correct 
missing variable in the EP method 

2.3 The selection of appropriate evaluations measures and 

methods  

This chapter a) provides the state of the art in the application of soil moisture datasets, b) 

identifies (from the existing literature) the dataset qualities impacting the success or the failure 

of each application, and c) provides a set of evaluation measures that are expected to address 

these qualities (see section 2.2 for the implication of the evaluation measures). The evaluation 

measures are summarized in Table 3.  

Summary 
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Importantly, while in this section it was assumed that the actual application of the SSM data is 

known, this is often not the case because: a) the dataset is only an experimental product or b) 

numerous applications of the dataset are expected (e.g. planning a new satellite mission). In such 

situations another evaluation approach is needed (see section 5.3).  

No soil moisture estimate, neither from remote sensing, nor from a model, nor from in-situ,  

represents the absolute “truth”. As a result, the performance of soil moisture in models is 

influenced by the quality of a remotely sensed soil moisture dataset as well as by the quality of a 

model and the scaling errors of the in-situ measurements (Dharssi et al. 2011; van Dijk and 

Renszullo 2011). This chapter summarizes efforts made to evaluate quality of soil moisture 

products; it only marginally discusses limitations of models or a usefulness of soil moisture in 

models.  

In the long history of evaluation studies of soil moisture datasets, two main trends dominated; 

the first stresses the importance of the absolute correspondence of soil moisture acquisitions 

[provided usually in m
3
/m

3
] (e.g. Jackson et al. 2010), while the second stresses the ability of the 

product to capture the relative dynamics (e.g. Drusch 2007; Entekhabi et al. 2010).  

The main goal of the evaluation using absolute measures is to retrieve RMSE through a direct 

comparison of the remotely sensed data with in-situ or modelled data. An example may be the 

requirement on the SMOS level 3 product setting up a condition of RMSE < 0.04 m
3
/m

3 
(Kerr et 

al., 2010). Numerous other requirements for soil moisture provided by WMO are provided as an 

absolute error measure (WMO, 2012). Moreover, these rely on only one number without 

specifying land cover for which this number should be applied. However, the meaning of the 

absolute difference is uncertain as it is a combined effect of variances of the datasets, variable 

scales of hydrologic processes, as well as the depth that these represent. Also, the poor quality of 

the soil maps may enlarge these absolute differences (Koster et al., 2009). For the latter reason 

transformation measures need to be applied prior to data evaluation. Such measures serve to 

mitigate effects of different scales, depths, units or soil maps and were in detail summarized in 

section 2.1. 

Contrary to RMSE, the correlation coefficient between modelled, in-situ and remotely sensed 

data should in general agree across different spatial scales because temporal changes in soil 

moisture are driven by atmospheric processes identical across several scales (Entin et al., 2000). 

This obviously holds only over areas where soil moisture varies. Such an effect is referred to as a 

“temporal stability” concept and is the reason why coarse resolution datasets and point 

measurements correlate.  

The temporal stability concept formed the basis for the second evaluation trend stressing the 

relative dynamics of a product. This approach is based on the principle that as long as the 

products represent the relative dynamics well they can be biased in their mean and dynamic 

range and still be useful (Entekhabi et al., 2010). 

Recently, an evaluation trend combining the latter two strategies emerged (Bellocchi et al., 2011; 

Crow et al., 2012; Entekhabi et al., 2010). This recommends selecting the most appropriate 

evaluation measure according to the technique used in the application (e.g. data assimilation, a 

direct input). This approach relies on the fact that no single metric can capture all attributes of 

environmental variables. For instance, some techniques may require a good ability of the soil 

Evaluation using 

absolute 

measures 

Evaluation using 

relative 

measures 

Evaluation 

based on 

application 
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moisture product to capture the relative evolution in time of soil moisture (e.g. data 

assimilation), others may require a linear relationship with the “truth” or ability to distinguish 

between two soil moisture stages (e.g. soil moisture evaporation).  

Some first evaluation studies performed evaluation according to the application needs (i.e. 

Brocca et al. 2010; Brocca, Moramarco, et al. 2011; C. S. Draper et al. 2012). In particular, the 

latter studies implied a correlation coefficient to judge the relevance of the dataset for data 

assimilation. Other studies addressed the diverse application needs by providing a combined 

assessment of both, absolute and relative evaluation measures (Draper et al., 2009; Entekhabi et 

al., 2010; Verstraeten et al., 2010). 

This chapter discusses and further evolves the ‘evaluation based on application’ (EbA) approach 

in evaluation studies (Entekhabi et al., 2010). Motivated by Entekhabi’s study, a set of necessary 

steps for the selection of the most appropriate evaluation measure is recommended: 

a) specify how soil moisture data are used in an application 

b) define the soil moisture data requirements of the method (i.e. a low absolute difference, 

a good relative correspondence, a good quality of soil moisture within/below/above 

certain threshold) 

c) select an evaluation measure(s) that describes the above relationship 

d) compare the results of the selected measure for several soil moisture data sources  

e) select the best performing dataset 

Even though EbA method seems quite demanding, the usage of it in practice should be possible 

given that few techniques are used to implement datasets into models. Contra versa, it may be 

hampered by the not clearly definable requirements of some applications on the soil moisture 

dataset. For a demonstrational purpose Table 3 summarizes qualities needed for four major SSM 

applications and suggests set of evaluation measures. 

2.3.1 Sequential data assimilation  

Data assimilation is an analysis technique commonly used to apply remotely sensed soil moisture 

into numerical weather prediction (NWP), seasonal forecast (SF), river-runoff (RR) or crop yield 

models. It is here defined as a technique that jointly estimates a variable from observed data and 

model. The modelling of land-surface processes requires certain simplifications that often lead to 

systematic errors in the modeled soil moisture fields. An example of such a simplification is the 

computation of the precipitation field as an average of several in-situ acquisitions. Data 

assimilation helps to overcome the latter weaknesses by introducing remotely sensed datasets 

that, comparable to the models, represent a more direct measure of surface soil moisture and 

operate at corresponding resolutions.  

The assimilation techniques differ from very simple weighting of differences (i.e. nudging) to 

complex sequential assimilations (e.g. the Extended Kalman filter). The nudging scheme was 

successfully applied mainly in NWP and RR models. It adjusts the modelled measurement 

towards the remotely sensed measurement by adding a weighted (K) difference between the two 

estimates. The K is usually temporally and spatially stable and, in case of optimal nudging, can be 

determined by minimizing some cost function (i.e. 4D-VAR). Nudging doesn’t include any 

potential random errors of the satellite data, and in this respect the scheme assumes that the 

The EbA 
strategy  

Assimilation 
schemes  
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observations are highly accurate with respect to the model (Drusch, 2007). On the contrary, the 

Kalman filter and extended Kalman filter predict the soil moisture state sequentially for every 

time step and correct each prediction according to the remotely sensed estimate and its initial 

error.  

2.3.1.1 Studies  

There are numerous studies that assimilate active and passive microwave surface soil moisture 

products in numerical weather predictions models, river-runoff models and recently also, for 

instance, in crop yield models. The studies implement nudging schemes (Dharssi et al., 2011; 

Drusch, 2007; Pauwels et al., 2002; Scipal et al., 2008a), simple Kalman Filter (Mahfouf, 2010), 

and Ensemble Kalman Filters (Reichle et al., 2008a, 2008b) methods. Data assimilation 

techniques are also commonly applied to improve rainfall-runoff estimates (Aubert et al., 2003; 

Draper et al., 2011; Francois et al., 2003; Pauwels et al., 2001), crop yield modelling (Verstraeten 

et al., 2010), or improving rainfall estimates (Crow et al., 2009). 

In synthetic experiments, the skill of assimilated products exceeded the skill of the model acting 

alone in the majority of cases (Reichle et al., 2008b). Nevertheless, the positive impacts of the 

assimilated product in real experiments differed according to time of the year (Francois et al., 

2003), land cover type, and topography  (Matgen et al., 2011) or climatic conditions (Wooldridge 

et al., 2003). In particular, the improvements were demonstrated over sparsely-vegetated and 

shallow-rooted vegetation. On the contrary, the limited success of soil moisture assimilation was 

found over densely vegetated areas and areas with deeply rooted vegetation.  A common result 

in initial RR modelling was an improvement of surface soil moisture but no or small improvement 

of river runoff (Parajka et al., 2006, 2009).  

Several reasons may have caused the assimilation of real data to fail in contract to synthetic data: 

a) the real errors are usually not Gaussian, b) can be expected to change with time, and to start 

with c) the fact that the error characteristics are often unknown. The latter provides a further 

evidence about the criticality of error assessment studies such as this thesis.  

Contrary to NWP there seems to be no obvious explanation in RR studies that would clarify under 

which conditions an improvement can be achieved. Recently, several studies demonstrated 

positive impact when assimilation soil water index (SWI) (Wagner et al., 1999b) (Brocca et al., 

2010a, 2010c; Matgen et al., 2011; Meier et al., 2011). SWI represents the profile soil moisture in 

the root zone which is the hydrologically most important zone in terms of runoff generation 

(Parajka et al., 2006).  

A positive effect of assimilation was also demonstrated in vegetation and carbon modelling. The 

ability of SWI to determine the limitation of available water and correctly present the low soil 

moisture values is especially important since these limit soil respiration and photosynthesis 

(Verstraeten et al., 2010; de Wit & van Diepen, 2007)(Verstraeten et al., 2010). Furthermore, a 

recent study (Van der Velde et al., 2011) highlighted the importance of detection of excessive soil 

moisture by remote sensing products as this limits crop development due to increased pest and 

disease development. 

Still, there seem to be a need for improvements in both hydrological models as well as in 

remotely sensed datasets (Brocca, Moramarco, et al. 2011; Bronstert et al. 2012). The critical 
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aspects to be addressed include a) the selection of the adequate data assimilation techniques, b) 

a proper structure of the model (in particular a strong coupling of the surface and the deeper soil 

layer (Kumar et al., 2009)), c) the high accuracy and temporal resolution of the remotely sensed 

data and d) the correspondence of the depth of the assimilated products.  

2.3.1.2 Evaluation measures and methods 

The correspondence of the relative dynamics between the model and remotely sensed data is 

more important than the correspondence of absolute values (Drusch, 2007; Reichle et al., 2008b). 

The absolute accuracy of the soil moisture data in data assimilation is of lesser importance mainly 

because the absolute values are calibrated before use by the models. The calibration is 

performed using the wilting point and field capacity (Drusch, 2007) and/or  methods such as 

linear regression or non-linear matching (Brocca et al., 2011).   

To assess the relative correspondence between datasets the combination of Spearman 

correlation coefficients (RS) and MAE can be used. RS is preferred to the Pearson’s coefficient (R) 

because it doesn’t require linearity on datasets and is not affected by the absolute magnitude of 

soil moisture dataset. As such, it refers to the ability of datasets to capture anomalies rather than 

absolute seasonality which is needed for short-term forecasting (Reichle et al., 2008b). It is 

anticipated, that similar effects can be achieved by computing Person’s correlation coefficient on 

anomalies. The MAE should be computed on transformed datasets and is a good complement to 

RS as it assess independent quality of the dataset - dataset precision.  

As it assesses both, relative and absolute error, combination of R and MAE is an evaluation 

strategy common to several application methods. This is commonly supplemented by additional 

measures or limited to certain data ranges (see following sections). 

Knowledge of random errors is required in several assimilation techniques. The traditional 

method to estimate observational error examines MAE between evaluated data and a reference 

dataset. The latter is assumed to represent or to be close to the ‘truth’. Nevertheless, 

assumptions about what is true may introduce a substantial pseudobias effect (Stoffelen, 1998).  

An improved method that solves initial error is the adaptive filter (Reichle et al., 2008b) that 

estimates and continuously updates the observations error parameters according to the 

innovative functions. Nevertheless, implementation of the triple collocation technique appears 

computationally more feasible (Dorigo et al., 2010; Scipal et al., 2008b).  

The results of assimilation studies in hydrological models were significantly better when profile 

soil moisture data were implemented (Brocca et al., 2012). There are several possible reasons for 

the latter. First, in hydrological modelling the profile soil moisture is generally better understood 

than shallow soil moisture parameter. Secondly, the remotely sensed surface soil moisture 

represents an extremely shallow layer (< 5 cm) that is problematic to simulate in hydrological 

models and is also difficult to acquire with in-situ instruments. Third, as recently suggested by 

Brocca et al. (Brocca et al., 2012), the improved assimilation results could be caused by the 

reduced noise of the profile soil moisture. Fourth, the profile measurements better represent the 

areal mean as the spatial scaling errors are smaller.  

In general, a good correspondence of the depths of the assimilated and modelled dataset seems 

essential to achieve improvements in parameters of the hydrological models. Different soil 
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moisture layers were demonstrated to have characteristic reaction time and lag-time that could 

be measured using a simple correlation R as well as autocorrelation function (Rebel et al., 2012). 

Autocorrelation analyses were less sensitive to outliers and appear better suited to evaluate the 

correspondence of soil depth layers.  

The absolute accuracy is of limited importance for data assimilation. As a result, data 

transformation became a required pre-processing step for the data assimilation studies. The CDF 

matching technique is commonly applied in assimilation studies (Drusch et al., 2005; Reichle & 

Koster, 2004) because it has the ability to assign together data with different soil moisture 

dynamics as well as with different data distributions. Importantly, modellers should stay away 

from matching data with significantly different distributions as this may indicate that these 

represent different phenomena. Also, it is important not to overfit data which may introduce 

additional bias to the models.  

The main justification in using satellite acquisitions in data assimilation is the fact that the error 

structures of the model and remotely sensed dataset are hoped to be independent and that their 

combination may result in less biased parameter estimation and so exhibit less random errors. 

The majority of studies however only assume but do not quantify such independency.   

2.3.2 A direct input into Environmental Process models 

2.3.2.1 Studies 

Brocca (Brocca et al., 2009) and Beck et al. (Beck et al., 2009) investigated the ability of remotely 

sensed soil moisture to simulate the maximum retention parameter (S) in the rainfall-runoff 

hydrological model over Italy’s Tibera river and  numerous Australian catchments, respectively. 

Ignoring other factors, S value refers to the infiltration rate and this is expected to be closely 

related to the antecedent wetness condition in the catchment. Brocca et al. found SWI derived 

from ASCAT scatterometer highly correlated with S and antecedent wetness over the Tibera 

basin and suggested that both can be reliable estimated using SWI parameter. Similarly, Beck et 

al. investigated the potential to improve S estimates using AMSR-E radiometer data and 

demonstrated an improved performance of the model that was as large as 0.25. Importantly, the 

SWI must have been calibrated prior to the inclusion to the model. 

Better results were achieved in dry catchments with low topographical relief and over areas 

where the precipitation datasets were of low quality. The original method of derivation of S uses 

the actual runoff for the parameter calibration. Larger runoff variations are therefore expected to 

exhibit better prediction of S. The correlation between SWI and S was demonstrated as a relevant 

proxy for improving runoff estimates. 

Zribi (Zribi et al., 2010) employed soil moisture from the ERS scatterometer data to propose a 

simple linear model for prediction of the NDVI values one month in advance at large spatial 

scales. Such empirical relationships could be very useful for vegetation forecast development, 

without the need for complex physical models. Importantly, such relationships only occur over 

regions with water limited vegetation types. 
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2.3.2.2 Evaluation measures and methods 

The latter studies used SWI directly. In particular, they calibrated the modelled parameter S 

(maximum retention parameter) and NDVI using SWI.  

Given the assumption of linear regression between the remotely sensed SWI and the retention 

parameter S and NDVI the RS and MAE appear as an appropriate combination of evaluation 

measures. The linearity can be evaluated by studying the difference between Spearman and 

Pearson correlation coefficients. In particular, a Spearman correlation coefficient higher than the 

Pearson coefficient is a sign of non-linearity. The opposite behaviour can be explained by the 

influence of seasonality on Pearson’s correlation coefficient. 

Very low RS would signalize a low correspondence between the parameters S/NDVI and the SSM 

dataset and demonstrates a low likelihood of remotely sensed SSM to improve S and NDVI 

estimates. On the contrary, very high RS  values can be expected to have very limited space for an 

improvement of the parameters S and NDVI. Setting up the RS threshold of possible improvement 

is probably the most challenging task. Inverse law applies on the MAE measure. 

2.3.3 Distinguishing between different soil moisture levels 

2.3.3.1 Studies 

Several crop yield and carbon flux monitoring studies highlighted the importance of SWI dataset 

to capture dynamics in lower soil moisture ranges (i.e. de Wit and van Diepen 2007; Entekhabi et 

al. 2010; Verstraeten et al. 2010). In these applications the limited water in the soil is essential as 

it limits the rates of photosynthesis, crop yield, evapotranspiration and frequently also the net 

ecosystem production (NEP). For evaluation purposes for such applications the ability of soil 

moisture to capture the relative dynamics at very low (< 30%) levels is essential whereas the 

ability to capture soil moisture in the near-saturated portion of the range is of limited importance.  

Matgen (Matgen et al., 2011) presented an  approach to improve RR models that is linked only to 

certain soil moisture levels. In particular, the effective field capacity is defined at which any 

additional soil water contributes to the generation of rapid water flow. The ASCAT SWI could 

reliably distinguish between the two main states under and above the effective field capacity and 

demonstrated so a good ability for assimilation into rainfall-runoff models. 

Similarly, Sass et al. (Sass et al., 2012) demonstrated the ability of SAR soil moisture estimates to 

detect different levels of species richness of vascular plants. In particular, the soil moisture 

dataset was divided into three essential classes for species richness - unsaturated, saturated and 

inundated.  

2.3.3.2 Evaluation measures and methods 

Simple statistics such as ‘missed alarms’, ‘false alerts’ or probability of detection (Dinku et al., 

2008) can be used to define the ability of dataset to fall into a specific range.  

Furthermore, to capture the aspired quantities within a defined range, the RS combined with 

MAE seem as appropriate evaluation measures. These should be computed on the values lying 
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within required ranges according to each application. The Spearman correlation is recommended 

as it is not affected by a dataset magnitude and seasonality. 

2.3.4 Anomaly computation 

2.3.4.1 Studies 

The ability to detect soil moisture anomalies can be a strong asset in seasonal rainfall forecasts 

(Koster et al., 2004). A close link between soil moisture anomalies and subsequent precipitation 

distribution and magnitude has been demonstrated (Kim & Wang, 2007; Koster et al., 2004; 

Kuenzer et al., 2009).  

In particular, Koster et al. (Koster et al., 2004) demonstrated that the main links between soil 

moisture and precipitation are in the transition zones between wet and dry climates. Kim et al. 

(Kim & Wang, 2007) demonstrated in different parts of the world that precipitation patterns are 

a) only dependent on soil moisture during certain times of the year, b) dependent on soil 

moisture linearly but only within a certain range, c) responsive for longer to dry than to wet soil 

moisture anomalies, and d) more persistently responsive to soil moisture anomalies at coarser 

scale than to those at smaller scales. Lastly, Kuenzer et al. (Kuenzer et al., 2009) showed that 

ENSO related floods and droughts can be depicted with the scatterometer-retrieved SWI anomaly 

maps derived from this time series in different geographical regions.  

Soil moisture anomalies affect also the vegetation stage. Gouveia (Gouveia et al., 2009) studied 

the impact of soil moisture on vegetation dynamics by analyzing monthly anomalies of SWI from 

ERS scatterometer and by studying the annual cycle of SWI versus NDVI. The impact of the soil 

moisture limitation was demonstrated over arable land and forest, with higher impact on arable 

land. As expected, the impacts of SWI were also related to the timing and duration of the events. 

2.3.4.2 Evaluation measures and methods 

In the presented applications the ability of datasets to detect anomaly (below or above normal 

stage) is essential. The recommended evaluation measures for anomaly detection are ‘missed 

alarms’, ‘false alerts’ or probability of detection. 

The actual magnitude of the anomaly was addressed only as secondary factor. For its evaluation 

the R is preferred to RS as it is computed directly on the anomalies (not on ranks) and address the 

effect of their magnitudes. A higher correspondence, means a higher probability that these 

detect the anomalies correctly. 

Lastly, the detection of soil moisture dry anomalies seems more important than the detection of 

wet anomalies. Also, coarse resolution products may be more appropriate for anomaly detection 

because only coarse resolution scale anomalies led to persistent effects on precipitation. Lastly, if 

certain applications demonstrated benefit for precipitation or vegetation monitoring only within 

certain bounds the above recommended evaluation measures should only be computed within 

this range. 
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Table 3. A list of applications and their recommended evaluation measures and methods. 

APPLICATION’s 
METHOD 

APPLICATION REQUIREMENT EVALUATION MEASURES and 
METHODS 

Data 
assimilation  

NWP, SC, RR 
models, crop 
yield and carbon 
monitoring, 
rainfall 
improvements 

A good relative 
correspondence of 
remotely sensed and 
modelled soil moisture 
datasets 

 RS 

 MAE 
 

Background and 
observation errors  
 

 TC  

 EP 
 

An assurance that 
corresponding depth 
layers are compared, (i.e. 
corresponding reaction 
times and lag-times) 

 Autocorrelation 
studies 

Check the independency 
of error structures of the 
model and remote 
sensing dataset 

 Check on 
independency of the 
errors (using EP 
method) 

 

A direct input 
into 
environmental 
models 

RR models A good relative 
correspondence and 
linearity achieved 
between the remotely 
sensed and required 
parameters 

 RS 

 Limited difference 
between R and  RS 

 MAE 

Distinguishing 
between 
different soil 
moisture levels 
 

RR models, crop 
yield and carbon 
models, 
vegetation 
monitoring 

A good relative 
correspondence of 
remotely sensed and 
modelled soil moisture 
datasets within a certain 
range 

 RS computed within a 
certain range of data 

 MAE computed 
within a certain 
range of data 

 

An ability to distinguish 
stages below and above a 
certain threshold 

 ‘missed alarms’, 
‘false alerts’ or 
probability of 
detection 

Anomalies as 
input to models 

Drought 
assessment, 
land-
atmosphere 
interaction 

A good relative 
correspondence of 
remotely sensed and 
modelled soil moisture 
datasets within a certain 
range 

 R computed on 
anomalies 

 MAE computed on 
anomalies 
 

A detection of anomalies  ‘missed alarms’, 
‘false alerts’ or 
probability of 
detection 
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2.3.5 Conclusion 

A state of the art in the application studies of soil moisture was provided. A variety of needed 

qualities of the SSM data was demonstrated and supplemented with the evaluation measures 

that well describe these qualities. A majority of demonstrated applications considered essential 

the ability of the remotely sensed soil moisture datasets to capture the relative dynamics while 

maintaining a high dataset precision. For some applications, this quality applies only to a certain 

soil moisture range. Other applications required a dataset to fall below or above a certain 

threshold. Interestingly, none of the applications required solely an understanding of absolute 

soil moisture values.  

The EbA strategy was recommended that supports selection of the evaluation methods for each 

particular application (see introduction in section 2.3). In step d) of EbA, spatial maps were 

retrieved that map the result of each evaluation measure. Importantly, these maps need to be 

interpreted with a consideration of a probability density function (PDF). For instance, soil 

moisture measurements will need to be more precise for dry regions comparable to regions with 

high soil moisture variation. A generation of such PDF maps (describing, for example, soil 

moisture mean and standard deviation) has been proposed by Entekhabi et al. (Entekhabi et al., 

2010).  A full discussion of weighting the PDF function and an evaluation measure is beyond the 

scope of this work. 

The actual selection of the best performing dataset is to be accomplished by the data users 

themselves based on the consideration of a) the spatial maps demonstrating results of the 

appropriate evaluation measures and methods, b) the PDF function, and c) the biogeophysical 

processes influencing the usefulness of the soil moisture in the particular region. 
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3. Methodology 

3.1 Datasets  

3.1.1 ASAR GM soil moisture dataset and processing 

The ASAR GM SSM represents the relative surface soil moisture in upper > 3-5 cm of soil 

retrieved from active radar sensor at  the 1 km spatial resolution. The ASAR GM dataset was 

retrieved using a change detection algorithm (Pathe et al. 2009) assuming a sufficiently long time 

series cover a full range of soil moisture values from wilting point to saturation (Pathe et al. 2009; 

Wagner et al. 1999a). The algorithm was initially developed for a derivation of soil moisture 

product for the ERS and ASCAT scatterometers (Wagner et al., 1999a). Its transformation to ASAR 

GM was possible due to the identical operating wavelengths and frequencies of coverage of the 

ASAR GM radar and the ERS and ASCAT scatterometer instruments. Conversely, the algorithm 

transformation was challenged due to differences in spatial and radiometric resolution, 

polarization as well as differences in image retrieval geometry. The units of the resulting product 

is % of saturated sol moisture. 

The ASAR GM change detection model defined (Pathe et al. 2009) as: 
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where σ
o

dry (30), σ
o

wet (30), β and S are considered constant in time and represent respectively 

the dry and wet reference at medium incidence angle 30° (Θ), the slope, and the sensitivity of the 

ASAR GM backscatter to soil moisture. The slope quantifies the dependence of sigma nought on 

the local incidence angle. Importantly, the slope parameter has been used, for instance, for 

normalization of the backscatter acquisitions to 30 degree incidence angle what is required for 

computation of the dry and wet references (see explanation below). The σ
o
(Θ,t) stands for the 

backscatter values at an incidence angle Θ in time t.  

The dry and wet references have been derived using a similar methodology to that of Pathe et al. 

(Pathe et al., 2009b). Respectively, the references are computed as an average of measurements 

taken during wet and dry conditions, respectively as: 
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where Ndry and Nwet is the number of measurements removed from the ranked ASAR GM 

measurements to retrieve the dry and wet reference and t refers to backscatter acquisitions in 

time. These  were expected to correspond to data outliers.  

The algorithm differs from that introduced by Pathe et al. (Pathe et al., 2009b) in how it retrieves 

Ndry and Nwet . While Pathe based his selection on the ratio computed between the number of ERS 

extreme (lowest and highest 5%, respectively) soil moisture acquisition to the total number of 

ERS soil moisture acquisition, in this study, Ndry and Nwet are computed as follows: 
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where NGM and NERS represent the total amount of ASAR GM and ERS backscatter measurements , 

respectively. The intervals for the dry and wet reference are defined as:  
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where   (    ) and   (    ) represent the backscatter measurements normalized to dry and 

wet crossover angle. The noise and crossover angle was described by Naeimi et al. (Naeimi et al., 

2009b). 

A number of simplifications needed to be adopted to the ASAR GM algorithm. These included: a) 

neglecting the seasonal effects on the ASAR GM backscatter, b) assuming linear relationship 

between the ASAR GM backscatter signal and soil moisture, and c) assuming similar signal to 

noise ratio of the ASAR GM and the ERS backscatter coefficients in equations (3-4) and (3-5).  

The last assumption is unlikely to be true and may cause a systematic bias by removing an 

insufficient number of ASAR GM acquisitions to retrieve dry and wet references. Nevertheless, 

systematic biases are easily removable and were demonstrated to have negligible impact on 

applied studies of soil moisture (section 2.3). 

The effect of vegetation on the ASAR WS SSM was demonstrated negligible (Van Doninck et al., 

2012). An identical result is expected for ASAR GM given even lower radiometric resolution of the 

product.  
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3.1.2 The AWRA-L landscape hydrological model  

The AWRA-L SSM represents the relative surface soil moisture in upper 5 – 10  cm of soil at  the 5 

km spatial resolution. The AWRA (Van Dijk & Warren, 2010) consists of a selection of models that 

estimate all water balance terms associated with the vegetation, soil, groundwater and surface 

water balance. The models operate at moderate to high resolution across the Australian 

continent. With a view to assimilate satellite-derived soil moisture observations, a gridded 

landscape hydrology model (AWRA-L) was built as a sub-model of the AWRA system (Van Dijk, 

2010) to explicitly model soil surface moisture dynamics. 

The AWRA-L landscape hydrological model estimates the soil water balance at a daily step for 

four different layers: a) the surface top soil, b) the shallow root zone, c) the deep root zone and 

d) the saturated ground water store. These are defined by their extractable water storage 

capacity that depends on the pore size distribution, soil porosity and storage capacity (Van Dijk 

and Warren 2010). The conceptual differences are that the surface soil layer loses water through 

direct evaporation; the shallow root zone is accessed by all vegetation; and the deep root zone 

can be accessed only by deep-rooted (usually perennial) vegetation. The model relies on a 

number of assumptions summarized by Van Dijk and Warren (Van Dijk & Warren, 2010). The top 

soil moisture water balance is estimated by: 

  (   )    ( )   ( )    ( )    ( ), 3-8 

where S0  is top soil water storage, I is infiltration, ES soil evaporation, and D0 top soil drainage 

integrated over a time step (Van Dijk & Marvanek, 2010) (all in mm). The model is based on 

energy and mass balance equations and uses empirical relationships to estimate the fluxes. The 

evaporation part of the model is critically important for soil moisture estimates. It accounts for 

rainfall interception evaporation, soil evaporation and transpiration; the latter two used the 

Penman-Monteith equation model. AWRA-L parameters were derived from the literature and 

analysis of streamflow data from several hundred Australian catchments. Full details on the 

model and its implementation can be found in Van Dijk (2010).  

A soil moisture estimate comparable to the relative satellite-derived soil moisture product was 

calculated as :  

   
  
     

   3-9 

where S0,FC is the top soil water storage capacity between field capacity and the point at which 

evaporation ceases (wilting point). S0FC was estimated at 30 mm across the continent, 

corresponding to 0- z cm of the top soil layer, where z ranges between 5 to 10 cm. While this 

differs from the depth represented by the ASAR GM (< 3 cm), high correlations are expected 

between the two layers due to their hydraulic coupling. Potentially, portion of the bias removed 

during the normalization may also be induced by the difference in the depth represented by the 

ASAR GM and AWRA-L soil moisture products.  

The AWRA-L soil moisture is estimated at 0.05° spatial resolution and daily time step. Errors in 

AWRA-L soil moisture estimates arise from a) the model structure, b) the model parameters, and 

c) the data used to force the model (Van Dijk & Warren, 2010). The errors in the model structure 
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are caused by the inevitable simplification of the processes regulating soil moisture dynamics. 

The errors of the model parameters are dominated by the inability to obtain optimal spatial 

parameter sets across large areas. The errors in input originate mainly in station measurement 

and interpolation. Precipitation errors in particular have been shown to strongly affect the 

agreement in satellite and model soil moisture (Crow et al., 2009; Draper et al., 2009; McCabe et 

al., 2008). 

The AWRA-L SSM daily data over entire continent of Australia were kindly provided from Albert 

van Dijk and the team at CSIRO, Australia (http://www.clw.csiro.au/). 

3.1.3 AMSR-E dataset 

The AMSR-E SSM represents the volumetric soil moisture in upper > 3–5 cm of soil retrieved from 

radiometer at 0.25 degree spatial resolution. The brightness temperatures measured by the 

AMSR-E were converted to volumetric soil moisture using the Land parameter Retrieval Model 

(Owe et al., 2008). The method uses a forward modelling optimization procedure to solve a 

radiative transfer equation for both soil moisture and vegetation optical depth.  

The AMSR-E soil moisture derived from the C-band was used in this study as this is expected to 

represent soil depth corresponding to that represented by the ASAR GM soil moisture product. 

The original resolution of the footprint measurements at C-band is 56 km; this was resampled to 

0.25 degree grid. Only night-time acquisitions were used as these were better suited for 

retrieving soil moisture than day-time observations (Jeu et al., 2008). 

3.1.4 GLDAS-NOAH 

The GLDAS-NOAH SSM represents simulations of soil moisture in upper approximately 0 – 10 cm 

of soil. Since 2000 the Global Land Data Assimilation System (GLDAS) uses the NOAH land surface 

model to provide soil moisture and other atmospheric and land surface variables at a 3-h time 

interval. The parameter implemented in this work is the GLDAS-NOAH gravimetric soil moisture 

measure simulated at 0-10 cm depth. The data are provided at spatial resolution of 0.25° (Rodell 

et al., 2004). The model is forced by a combination of NOAA/GDAS atmospheric analysis fields, 

spatially and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of 

Precipitation (CMAP) fields, and observation-based downward shortwave and longwave radiation 

fields derived using the method of the Air Force Weather Agency’s Agricultural Meteorological 

system (Rodell et al., 2004).  

The lower boundary of each layer is at 0.10, 0.40, 1.00, and 2.00 m, respectively. The Noah model 

uses the same soil property datasets LPRM (http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.php), 

which is based on the Food and Agriculture Organization (FAO) Soil Map of the World linked to a 

global database of over 1300 soil samples. Soil moisture and other fields are taken 8 times per 

day (00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC). Data generated by the 

GLDAS-NOAH model are publicly available from ftp://agdisc.gsfc.nasa.gov/data/s4pa/. 

3.1.5 ERA-Interim 

The ERA-Interim SSM represents simulations of soil moisture in upper approximately 0–7 cm of 

soil. The ERA-Interim reanalysis dataset contains atmosphere and surface parameters for the 

http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.php
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period from 1989 to present based on the ECMWF Integrated Forecast System (IFS) model 

(Simmons et al., 2007). The data can be downloaded at low resolution from http://data-

portal.ecmwf.int/data/d/interim_daily/. 

The ERA-Interim reanalysis is produced with a sequential data assimilation scheme. In each cycle, 

available observations are combined with prior information from a forecast model to estimate 

the evolving state of the global atmosphere and its underlying surface (Dee et al., 2011). The 

variety of satellite and ground based measurements assimilated include, among others, clear-sky 

radiance, rain-affected SSM/I radiances, or recalibrated ERS-1 and ERS-2 surface wind data). 

In the IFS, land surface processes are described by the Tiled ECMWF Scheme for Surface 

Exchanges over Land (TESSEL) (Viterbo & Beljaars, 1995). In TESSEL, soil processes are calculated 

in four layers. The lower boundary of each layer is at 0.07, 0.28, 1.0 and 2.68 m depth, 

respectively. For simplicity, TESSEL uses a globally uniform soil type with fixed soil hydraulic 

parameters. Saturation is prescribed with a value of 0.472 m
3
m

−3
, field capacity with 0.323 m

3
m

−3 

and the wilting point with 0.171 m
3
m

−3
. Soil moisture estimates are provided four times a day at 

approximately 80 km spatial resolution. 

3.1.6 OZNET in-situ soil moisture 

The Australian monitoring network for soil moisture and micrometeorology (OzNET) offers great 

resource for the validation of remotely sensed soil moisture data over a variety of land cover 

types (Figure 3). Each of the 38 stations measures soil moisture at four different depths: 0-5 cm, 

0-30, 30-60, and 60-90 cm using the technology of CS616 and CS615 water reflectometers 

(Merlin et al. 2007). Only the upper most layer is considered in this study. The CS616 

reflectometer implements the time-domain measurement method in order to measure the 

volumetric water content. The variety of soil moisture conditions is demonstrated in Figure 4. 

The stations were selected as they represent different land cover types within the network. 

http://data-portal.ecmwf.int/data/d/interim_daily/
http://data-portal.ecmwf.int/data/d/interim_daily/
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Figure 3. Location of the Oznet stations in south-eastern Australia. The background map displays 

the present major vegetation groups (Australian Government Department of the Environment and 

Water Resources, 2005).  

 

Figure 4. Frequency distribution of soil moisture datasets from four OzNET stations (A3, K4, M2 

and Y7). The units are volumetric %. 

The six soil moisture datasets and their original units are summarized in Table 4. These were 

transformed into the dynamics of ASAR GM SSM and later in this work provided in percentage 

units of saturated soil moisture (see section 4.1.2). 
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Table 4. List of all applied SSM datasets and their original units prior to dataset transformation. 

SSM 
dataset 

Original units Represented depth Spatial 
resolution 

Temporal resolution 
over Australia 

ASAR GM % of saturated 
soil moisture 

> 3 cm 1 km Approx.  every 2-3 day 

AWRA-L % of saturated 
soil moisture 

5 –10 cm 5 km Daily 

AMSR-E volumetric % > 3 cm 0.25 
degree 

Daily 

ERA-Interim volumetric % Approx. 7 cm 86 km Daily 

GLDAS 
-Noah 

volumetric % Approx. 10 cm 0.25 
degree 

Daily  

OzNET volumetric % 0 – 5 cm point data Daily 

3.1.7 Ancillary data on land cover and roughness 

Set of ancillary datasets were used to provide an understanding on biogeographic conditions of 

Australia. These were: 

The Interim Biogeographic Regionalisation (IBRA) (Thackway & Creswell, 1995), which was 

developed by the Australian Government as a planning tool for land conservation (Figure 5). The 

IBRA classifies Australia into 89 large, geographically distinct, bioregions based on common 

climate, geology, landform, native vegetation, and species information. Given the definition of 

the bioregions these are expected to exhibit distinct soil moisture conditions.  

 

Figure 5. The Interim Biogeographic Regionalization dataset for Australia (IBRA) with selected 

regions (Thackway & Creswell, 1995). 

Furthermore, a map of the Australian soil classification (Isbell, 1996) and a map of the major 

vegetation groups (Australian Government Department of the Environment and Water 

Resources, 2005) supported discussions on effects of soil groups and effects of vegetation on soil 

moisture signal throughout this study (Figure 6, on the left). 
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Figure 6. The Australian soil classification (Isbell, 1996) from 1996 (source: CSIRO, Division of Soils). 

National land use dataset from the Bureau of Rural Sciences (BRS) represents the land use of 

Australia from (Smart et al., 2006). It was produced by the Bureau of Rural Sciences (BRS) as a 

product of the Australian Collaborative Land Use and Management Program (ACLUMP). 

Finally, the mean annual precipitation layer, acquired from the Bureau of Meteorology (Figure 6, 

on the right) was used to support the discussion of the evaluation results. 

 

Figure 7. Mean Annual Precipitation for 1900 to 2005 (source: Bureau of Meteorology) (left) and 

the present major vegetation groups (Australian Government Department of the Environment and 

Water Resources, 2005), overlayed with the Interim Biogeographic Regionalization dataset for 

Australia – IBRA (Thackway & Creswell, 1995). Points 0, 12, and 34 refer to regions 1, 2, and 3; 

these will be referred to in section 4. 

3.2 Methods 

The goal of this thesis was to evaluate the ASAR GM SSM dataset using an exhaustive list of 

evaluation measures and to answer questions related to the general concept of evaluation of soil 

moisture dataset. These questions were motivated in the introduction section of this thesis. The 

steps performed to answer the above goals are summarized below and are divided into a) the 

pre-processing steps (section 3.2.1) and b) the evaluation steps (section 3.2.2). Section 3.2.1 

explains the ASAR GM SSM processing chain applied within the SHARE project over continents of 

Australia and Africa (Doubkova et al., 2009, 2012). Furthermore, the pre-processing of the five 
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ancillary SSM datasets (section 3.1), their transformation and sampling is described. Section 3.2.2 

provides a concise overview of evaluation measures used to evaluation the ASAR GM SSM 

dataset. These are introduced in the order as these appear in the text. The exact formulations, 

assumptions, and limitations of each measure are also listed.  

3.2.1 Pre-processing 

Data from the multiple modes of the side-looking SAR onboard ENVISAT are available since 

December 2004. The ASAR Global Monitoring Mode (GM) is activated by default when no data 

from other modes are requested. The ASAR GM 1-km resolution sensor thus offers higher 

temporal sampling over certain regions when compared to other modes and is suitable for 

monitoring of dynamical processes such as soil moisture (Pathe et al., 2009b) or inundation 

(Bartsch et al., 2009).  

 

Figure 8. The processing chain of the ASAR GM data  at the TU WIEN (Sabel et al. 2010). 

The algorithm used to retrieve soil moisture from the ASAR GM observations was derived from 

the soil moisture algorithm for the Earth Resource Satellite (ERS) scatterometer as in detail 

described in section 3.1.1. For the soil moisture product generation a processing chain has been 

setup at the Vienna University of Technology (TU WIEN) (Sabel et al., 2012). The processing 

consists of several steps including geocoding, radiometric correction, resampling, normalisation 
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and soil moisture retrieval (Figure 8). For the purpose of this study over 7000 ASAR GM scenes 

over Australia were processed (Figure 9). 

 

Figure 9. Number of ASAR GM SSM scenes per pixel used in the evaluation studies. 

The ASAR GM SSM and all other SSM products (AWRA-L, GLDAS-NOAH, ERA-Interim, OzNET SSM) 

were processed over time period during which all observations were available for all data sources 

– 1
st

 of January 2005 until 31
st

 of January 2010. The actual number of acquisitions was 

determined by the dataset with the least frequent temporal sampling –  the ASAR GM SSM (Table 

4). As such, the number of acquisitions used in the evaluation can be summarized by the Figure 9. 

A spatial aggregation was recommended to reduce the noise of the ASAR GM SSM when used in 

applied studies (Pathe et al., 2009). The evaluation analyses in this thesis were therefore 

performed at 5 km scale. To demonstrate the decreasing ASAR GM SSM noise with the 

coarsening spatial scale, RMSE evaluation measures were performed at both, 1 and 5 km scale. 

The AMSR-E, ERA-Interim, and GLDAS-NOAH datasets were oversampled to the 0.05 degree grid 

using the nearest neighbor technique. The ASAR GM data were averaged over the corresponding 

AWRA-L footprint.   

Remotely sensed and modeled SSM data often exhibit bias. This is because these refer to 

different soil moisture depths, and represent different spatial extents. Furthermore, these often 

represent different aspects. For instance, the ASAR GM and AWRA-L datasets are expressed in 

relative units ranging from 0-100% while the AMSR-E dataset is expressed in volumetric units. For 

these reasons transformation measures needed to be applied prior to data evaluation (section 

2.1). Because the goal of this study was to evaluate the quality of the existing ASAR GM SSM 

product, AMSR-E, and the modelled data were transformed to the dynamics of the ASAR GM SSM 

(for data assimilation studies, an inverse approach is more logical; Reichle and Koster 2004) using 

a simple regression equation. The selection of the linear regression is justified in section 4.1.2.  

An exception to the latter rule was the TC method for which the transformation between three 

SSM datasets is needed that is addressed with an iterative regression scheme. Importantly, no 

unit transformation was performed as the differences in units were accounted for during the 

linear rescaling. 

Assumption of 
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3.2.2 Evaluation of ASAR GM SSM 

All below described computations were performed on a continental grid at 5 km spatial 

resolution. The evaluation was performed over close to 500 000 pixels using a maximum 

available number of acquisitions per pixel (Figure 9). The large number of per pixel analyzed 

acquisitions increased the validity of the results and formed an important part of this thesis. 

First, absolute and relative standard evaluation measures were computed as introduced in 

section 2.2.1. The measures computed between the ASAR GM and five other SSM datasets are 

summarized in section 4.2. The emphasis was given on the understanding of spatial distribution 

of each of the resulting maps as well as on their comparison.  

The spatial patterns were assessed using the knowledge of the scattering and emitting behavior 

of the active and passive systems. Especially, the effects limiting the sensitivity of the ASAR C-

band backscatter and AMSR-E C-band temperature brightness to soil moisture were discussed. 

Also, the effects possible limiting the quality of models were listed. The correspondence of the 

measures to geophysical parameters was assessed using bioregion maps from the Biogeographic 

Regionalization dataset for Australia (IBRA) (Thackway & Creswell, 1995) (Figure 5) and the mean 

annual precipitation (Figure 7).  

Second, the ASAR GM SSM was assessed using advanced evaluation methods – the EP and TC 

methods (introduced in sections 2.2.2 and 2.2.3, respectively). The results are summarized in 

section 4.3. The EP method was computed according to the equation 3-10. In addition, a method 

was introduced – predicted RMSE – that assessed the quality of the EP method. The 

methodologies used for computation of EP, predicted RMSE, and TC methods are introduced 

below.  

The maximum ASAR GM SSM propagated error ( AS) at the 1 km spatial scale was estimated 

following Pathe’s et al. method (Pathe et al., 2009b). The method applies a Guassian EP scheme 

(section 2.2.2.1) to propagate the backscatter noise and the standard model parameter errors. In 

particular, it propagates the noise of the ASAR GM SSM (1.25 dB) and the standard deviation of 

errors incurred during a) the determination of the dry (    
 ) and wet (    

 ) references,  and b) 

the normalization of the influences of the local incidence angle using the slope (β). All three 

parameters are explained below in detail. 

The noise is a critical parameter for data users as it defines how well different surfaces can be 

classified. Noise can be produced by numerous factors including thermal effects, sensor 

saturation, quantization errors, and transmission errors  (Corner et al., 2003). In radar images 

both, additive and multiplicative noise (speckle) can be present. The multiplicative noise 

originates from the coherent superposition of spatially random multiple scatterers within the 

footprint of the radar.  

The exact errors are unknown and were estimated based on the understanding of the potential 

error sources that, importantly, were assumed to be independent. Out of four, by Pathe et al. 

(Pathe et al., 2009b) listed errors sources, two are expected to impact the ASAR GM SSM 

acquisitions over Australia. These are namely, the statistical methods used for calculating of the 

ASAR GM SSM parameters (β,     
  and     

 ) and the neglecting of seasonal vegetation cover 

effects, and were both incorporated in the Pathe’s EP scheme:  

Standard 

evaluation 

measures 

Error 

propagation 

Advanced 

evaluation 

measures 
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The algorithm could be easily transformed to the 5 km scale by decreasing the original noise to 

0.21 dB (corresponds to the noise of the 5 km product; see section 4.2.1.6). The model 

parameters      
  and       

  were assumed to be 10 % of saturated soil moisture (Pathe et al., 

2009b). Assuming that this number reflects, among others, the differences in signal to noise ratio 

of the ASAR GM and the ERS backscatter coefficients (see discussion about the ASAR GM SSM 

algorithm in section 3.1.1) it should decrease with decreasing spatial resolution of the ASAR GM 

SSM product. The resulting number is computed by dividing and rounding the original 10 % of 

saturated soil moisture by the ratio between the original noise (1.2 dB) and the noise of the 

product at the 5 km scale (0.21 dB) as in: 

     
       

       (    
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The final standard retrieval error at the 5 km scale then equals to: 
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The triple collocation method was implemented using ASAR GM, AWRA-L, and a model (either 

AWRA-L, GLDAS-NOAH, or ERA-Interim). The datasets were rescaled using the iterative linear 

regression (section 2.1.2.2). First, the significance of the relationship between the three soil 

moisture datasets was tested that is a prerequisite for the triple collocation method. The one-

tailed T test was implemented (section 4.1). Next, the errors    
 ,    

 , and    
  were computed 

according to the equations 3-13. The ASAR GM SSM data were used as a reference. The selection 

of the reference was not expected to influence the relative patterns of the residual errors (Dorigo 

et al., 2010). Finally, the trends in    
  related to the choice of the third reference dataset were 

assessed. For this purpose the triple collocation is repeated replacing AMSR-E with two different 

globally available model reanalysis dataset (ERA-Interim and GLDAS-NOAH).  

    
   〈(            )(            )〉 

   
   〈(            )(             )〉 

3-13 

Triple 

collocation 
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The method relies on the following fact: if datasets are alike in the way they evolve in time, their 

triple collocation errors decrease are and the probability that these represent the true soil 

moisture increases. Reversely, if a dataset largely differs from both of the others also its 

estimated error will be large. 

The TC method has rather strict assumptions that were presented as critical for the success of the 

method (Zwieback et al., 2012). These are listed below and assessed for ASAR GM, AWRA-L, and 

AMSR-E SSM:  

 Selected datasets must represent the same phenomenon (assumption of identity) 

 There is no bias between the separate datasets (assumption of zero bias) or this has 

been removed prior to data analyses 

 Errors of the datasets are uncorrelated (assumption of zero crosscorrelation) 

 Errors are not correlated in time (assumption of zero autocorrelation) 

 There is a sufficient number of triplets (assumption of sufficient triplets) 

The errors of the datasets were assumed to be independent given the large differences between 

the retrieval strategies of the three datasets (section 3.1). The second assumption has been in 

detail assessed in sections 3.2.1 and 4.1 and is especially important as bias is commonly found 

between remotely sensed and modeled data. The third assumption of uncorrelated errors is 

required by both, TC, and predicted RMSE measure and is discussed later in this section. Forth, 

the selection of the triplets (corresponding acquisitions of all three datasets) was limited by the 

availability of ASAR GM SSM – the shortest and the less frequent dataset. The ASAR GM SSM has 

a revisit period over Australia approximately every 3 to 4 days. Given the fast infiltration and 

evaporation rates over vast portions of Australia the autocorrelation level after three days can be 

assumed close to zero. Finally, the number of triplets used in the analyses range from 300 

(northeastern Australia) to 550 (southeastern Australia) with an exception of < 200 triplets in 

southeastern Australia. According to Zwieback et al. (Zwieback et al., 2012) this corresponds to 

the relative error of TC of 13% (300 triplets) to 9.5% (550 triplets).  

The predicted RMSE was computed according to the equation 2-26. This measure evaluates other 

evaluation measures and, hereby, represents a new class of evaluation measures. In the equation 

2-26, the parameters sy and sx stand for the independent errors of ASAR GM SSM and AWRA-L 

SSM, respectively. The computation is complicated by the limited knowledge of the AWRA-L  

dataset error (sy) (Van Dijk & Warren, 2010). In a first approximation, sy was assumed to be 

constant and equal to 15% of the soil moisture content at field capacity (30 mm). Given the top 

soil water storage of 30 mm sy of 15% accounts for approximately 4.5 mm. Considering that this 

corresponds to 0.05–0.10 m of the top soil layer, 4.5 mm corresponds to 0.045–0.09 m
3
/m

3
. This 

seems as a realistic error estimate for an uncalibrated model (Crawford et al., 2000). The 

assumption of a constant behaviour of sy is unlikely to be accurate, either spatially or temporally, 

but was necessary due to the lack of spatial estimates other than ASAR GM that could be used for 

the independent evaluation of the AWRA-L SSM dataset. Where possible the difference between 

Predicted RMSE 
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the RMSE and predicted RMSE is qualitatively assigned to the satellite or to the modelled data in 

interpretation. 

The predicted RMSE measure was applied to assess the ability of the ASAR GM propagated error 

(   ) to predict the RMSE between the ASAR GM and AWRA-L SSM. A model was used that 

relates the RMSE to the individual errors of each dataset according to the equation 2-26. The 

RMSE is calculated from the observations according to the equation 2-6. Given the independence 

of the two methods, a high correspondence between the RMSE and predicted RMSE would 

suggest a high quality of the RMSE model and     estimate. 

The assumptions of the predicted RMSE and TC methods require the respective errors to be 

independent. The assumption of errors is realistic as the main input data to the AWRA-L , GLDAS-

NOAH, and ERA-Interim datasets (daily precipitation, incoming shortwave radiation and 

temperature) are independent of the ASAR GM backscatter.  

The errors of the two remotely sensed datasets can be also assumed independent given the 

differences in the algorithms (Owe et al., 2008; Pathe et al., 2009b) and the resulting differences 

in the sensitivity of the ASAR GM backscatter and the AMSR-E brightness temperature to soil 

moisture (Parinussa et al., 2011; Pathe et al., 2009b). 

Finally, in the discussion section, all results were summarized to answer six scientific questions of 

the thesis presented in the introduction chapter.  

Simple visual interpretations of the error characteristics were supplemented with regression 

analyses performed between the separate error maps. The divergences between maps were 

assigned either to random error, systematic error, to a failure in fulfilling conditions of selected 

evaluation measures, or to an unknown error resulting. Also, for an easier understanding of the 

evaluation measures, these were divided into three groups according to the quality described: a) 

random and systematic error analyses, b) data evolution in time, and c) mean bias. One measure 

per group was selected that well described the entire group and could be used as a standard 

evaluation approach for any SSM dataset.  

 

  

Discussion 



 49 

 

4. Results  

4.1 Preprocessing 

To avoid systematic bias during data evaluation SSM datasets need to be transformed into a 

common soil moisture dynamics. Biases exist between different acquisitions of SSM due to 

different sensing depths and spatial extents represented. This chapter assesses biases and 

differences in the distributions of four SSM datasets implemented in this study (AWRA-L SSM, 

ERA-Interim SSM, GLDAS-NOAH SSM, and OzNET SSM). Understanding the biases and different 

distributions of the data was necessary to select a method to be able for data transformation. 

4.1.1 Understanding frequency distribution of SSM datasets 

In this chapter the frequency distribution of each of dataset is provided and the likely origin of 

discrepancies is explained.  

 

Figure 10. Frequency distribution of ASAR GM SSM plotted along with a) AWRA-L  SSM, b) AMSR-E 

SSM, c) ERA-Interim SSM, and d) GLDAS NOAH SSM over region 1 with a  centre coordinate 144 E, 

35.9 S (agriculture fields). The data are plotted in the original units (Table 4) representing areas of 

5x5 km (AWRA-L and ASAR GM SSM), 25x25 km (AMSR-E, GLDAS), and 86x86 km (ERA-Interim).  
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Figure 11. Frequency distribution of ASAR GM SSM plotted along with a) AWRA-L  SSM, b) AMSR-E 

SSM, c) ERA-Interim SSM, and d) GLDAS NOAH SSM over region 2 with a centre coordinate 130.1 E 

and 28.0 S (shrublands and rare woodlands). The data are plotted in the original units (Table 4) 

representing areas of 5x5 km (AWRA-L and ASAR GM SSM), 25x25 km (AMSR-E, GLDAS), and 

86x86 km (ERA-Interim).  

Figure 10 and Figure 11 represent frequency distributions of four SSM datasets along with the 

ASAR GM SSM (used as a reference dataset and displayed in blue) for two locations, representing 

wet climate with agriculture fields (region 1) and dry climate with rare woodlands and shrublands 

(region 2) respectively. The corresponding OzNET stations to region 1 are K4 and A3 (Figure 4). 

Unfortunately, no corresponding stations are available for region 2. Importantly, the data are 

plotted in their original units (% for ASAR GM and AWRA-L, volumetric % for ERA-Interim, AMSR-

E, and GLDAS-NOAH). Furthermore, the spatial resolutions of the datasets differ (Table 4) which 

may cause differences in dataset mean and the standard deviation.  

The frequency distributions over the two regions differ as they are controlled by different 

underlying rainfall and climate conditions, as well as vegetation and soil conditions (Settin et al., 

2007). Nevertheless, a common characteristic of the majority of displayed frequency distributions 

is the positive skewness (ASAR GM SSM, ERA-Interim, and GLDAS-NOAH SSM), which reflects log-

normal distribution. This corresponds to the expected PDFs over regions where lower boundary 

soil moisture values are approached  (Famiglietti et al., 1999; Western et al., 2002). Given the low 

mean precipitation conditions over vast portions of Australia (Figure 7) frequency distribution 

similar to that in Figure 10 and Figure 11 can be expected over the entire continent with an 

exception of tropical northern and temperate southeastern and southwestern Australia. 

Positively skewed lognormal distribution was also demonstrated over OzNET stations (Figure 4).  

Assumptions 

Frequency 

distribution 
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On the contrary, the AWRA-L SSM dataset demonstrate a whole range of distributions, including 

uniform, exponential (Figure 11), as well as bimodal distribution (Figure 10).  

 

Figure 12. Relationship between the ASAR GM SSM and AWRA SSM (a), ASAR GM and AMSR-E 

SSM (b), ASAR GM and ERA-Interim SSM (c), and ASAR GM SSM and GLDAS NOAH SSM (d) over 

region 1 with a centre coordinate 144 E, 35.9 S (agriculture fields). The data are plotted in the 

original units representing areas of 5x5 km (AWRA-L and ASAR GM SM), 25x25 km (AMSR-E, 

GLDAS), and 86x86 km (ERA-Interim). The color represents the density of points ranging from high 

(black) to very low (yellow).  

AWRA-L SSM exhibit bimodal distribution over vast portions of Australia with precipitation 

exceeding 400 mm (well demonstrated in Figure 10 and Figure 12). In particular, it corresponds 

with ASAR GM SSM in low soil moisture ranges, but was significantly higher in higher (> 40 %) soil 

moisture ranges. This is rather surprising as bimodal distribution is usually only encounter over 

areas with distinguishable seasonal behavior (e.g. dry and wet seasons) which is typical only for 

the northern tropical regions. Moreover, the second peak occurs at range close to saturation and 

often exceeds the peak in lower ranges. This is not encountered in any other dataset. The AWRA-

L distribution diverge from other datasets, also over very dry regions exhibiting exponential 

behavior (Figure 11). The latter may be caused by simplifications in the AWRA-L model. For 

instance, an assumption of identical soil water storage of the AWRA-L model (approximately 30 

mm) across the continent may keep soils with a fast infiltration rate saturated for too long and 

shift the soil moisture values towards higher ranges comparable to other SSM datasets. Another 

reason for the bimodal behavior may be an underestimation of evapotranspiration or runoff rate 

during the wet period which would also keep soil wetter than it actually is. 

The minimum value of the ERA-Interim dataset never decreases below 17.1 (Figure 12  and Figure 

11). This was expected and is explained by the scaling of the ERA-Interim data between the 

The sources of 
bias 

Frequency 
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saturation (0.323 m
3
m

−3
) and the wilting point (0.171 m

3
m

-3
). Similarly, the GLDAS-NOAH appears 

to be cut off at the wilting point (Figure 11 and Figure 12). Such differences are to be removed 

during dataset transformation. 

 

Figure  13. Relationship between the ASAR GM SSM and AWRA SSM (a), ASAR GM and AMSR-E 

SSM (b),  ASAR GM and ERA-Interim SSM (c), and ASAR GM SSM and GLDAS NOAH SSM (d) over 

region 2 with a centre coordinate 130.1 E and 28.0 S (shrublands and rare woodlands). The data 

are plotted in the original units representing areas of 5x5 km (AWRA-L and ASAR GM SM), 25x25 

km (AMSR-E, GLDAS), and 86x86 km (ERA-Interim). The color represents the density of points 

ranging from high (black) to very low (yellow).  

4.1.2 Data transformation 

To allow absolute comparison between SSM datasets the discrepancies described in chapter 

4.1.1 needed to be mitigated by transforming the original values to a reference soil moisture 

dynamics value. In this chapter the most appropriate transformation method was selected.  

The transformation technique was selected using the RMSE measure as a criterion. RMSE was 

computed using two sampling sizes (all triplets and only triplets corresponding to the evening 

AMSR-E acquisitions) to investigate if the performance of the transformation technique is 

influenced by the temporal sampling. ASAR GM SSM is selected as a reference given the aim of 

this study to characterize the errors of this dataset.  

It is Important to note that no unit transformation was performed in this thesis. The reason is 

that the transformation from relative to volumetric units (the only units seen in this thesis) has a 

linear character and could be equally well as part of other transformation measures. As such, the 
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result of the transformation performs both; the mitigation of the differences due to different 

units as well as differences in different spatial representations and depths. 

 

Figure 14. Relationship between ASAR GM SSM and AWRA-L (lower line), and ASAR GM and 

AMSR-E SSM (upper line). The relationship is displayed prior to data transformation (left), after 

applying CDF matching (third order) (middle), and after applying linear regression (right) 

techniques over region 1 with a centre coordinate 144 E, 35.9 S. The color represents the density 

of points ranging from high (black) to very low (yellow). 

The first method, linear rescaling using standard deviation and mean, requires datasets to be 

normally distributed. The method was rejected because none of the investigated datasets 

followed normal distribution. This is demonstrated on the example of regions 1 and 2 (Figure 9 to 

Figure 12).  

The second method, CDF matching technique (Drusch et al., 2005), is commonly applied prior to 

data assimilation. It assigns data distribution of a reference to an analyzed dataset and thus 

changes the data distribution. Given the complexity of the CDF method it was impossible to 

analytically describe the actual transformation of the dataset. Furthermore, there is a lack of 

understanding in the literature about the potential overfitting of the transformed to the 

reference dataset (especially if higher order fitting is used) that may alter information contained 

in the dataset. Given the above doubts, and the demonstrated higher RMSE comparable to other 

transformation methods (Figure 15 and Figure 16 left panel) this method was also rejected. 



 54 

 

 

Figure 15. RMSE between ASAR and AWRA-L SSM computed over 36 study points (randomly 

distributed over Australia, for distribution see Figure 16) on transformed datasets using a) CDF 

matching (third order), b) simple linear fit, c) second order polynomial fit, and d) third order 

polynomial fit. The analyses were performed at the 5 km spatial resolution. 

The simple regression equation demonstrated the lowest RMSE values (Figure 15) and preserved 

the original data distribution (Figure 14). Furthermore, using simple regression significantly eases 

the transformation and potential back-transformation of the datasets in the TC method. Higher 

order polynomial fit (Figure 15) only minimally (1%) improved RMSE, while this was possibly 

influenced by the increase in the number of model terms. 

As a result, a simple regression equation was chosen for data transformation. To assure that such 

selection is not influenced by temporal resolution an experiment was run investigating 

differences in RMSE when all and only night acquisitions were used. The results (Figure 16 right 

panel) demonstrated that the change in the  number of used scenes used for data transformation 

caused changes to RMSE of > 3 %,  which was considered negligible for the purpose of this study. 

 

Figure 16. ΔRMSE (between ASAR GM and AWRA-L SM) computed as a difference between RMSE 

using CDF matched datasets minus RMSE using linearly matched datasets (left), ΔRMSE (between 
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ASAR GM and AWRA-L SM) computed as a difference of RMSE using all images minus RMSE using 

only night acquisitions (right). The analyses were performed at the 5 km spatial resolution.  

4.2 Standard evaluation measures 

The standard evaluation measures (as introduced in section 2.2.1) computed between SSM data 

from the ASAR GM sensor, three separate models, the AMSR-E passive microwave sensor, and in-

situ OzNET SSM network are introduced in this section. The models are represented by the 

AWRA-L landscape hydrological model and the ERA-Interim and GLDAS-NOAH reanalyzes. The 

analyses were performed over the entire continent of Australia on previously transformed 

datasets (with the exception of untransformed RMSE in section 4.2.1.5). The transformation was 

performed according to rules presented in section 4.1.2. Important to note is that real absolute 

values, rather than anomalies, were used in the evaluation. 

4.2.1 Absolute evaluation measures 

The absolute measures used to evaluate ASAR GM SSM include RMSE, nRMSE, MAE, and bias. 

The results are provided as maps; for each measure several maps (2-5) were produced of the 

difference between ASAR GM SSS and the selected auxiliary soil moisture datasets.  The 

measures are not displayed for all datasets, given the sometimes very similar results. Results of 

each evaluation measure are discussed independently as well as compared with other absolute 

measures. Two additional chapters discuss the important effect of spatial scale on the 

computation of the absolute evaluation measures (section 4.2.1.6) and demonstrate the 

misrepresentation that can be caused when computing RMSE on datasets with different soil 

moisture ranges, depths, and spatial resolutions without performing dataset transformation 

(section 4.2.1.5).  

4.2.1.1 RMSE  

The RMSE maps for all gridded data are displayed in Figure 17 while Figure 18 displays RMSEs 

between ASAR GM and OzNET in-situ stations. The RMSEs computed using coarse resolution 

products were lower comparable to RMSEAW computed between ASAR GM SSM and the 5-km 

AWRA-L product (Figure 17). This can be explained by small geocoding mismatches between the 

medium resolution datasets. Mismatches can be assumed minimal at coarser resolution scales. 

Higher RMSEAW may also be influenced by the data distribution (unique or bimodal) of AWRA-L 

that significantly differed from other SSM datasets. As such, AWRA-L corresponds with other 

datasets at very low soil moisture and saturation stage; it however diverges at mid-range values. 

Another reason for high RMSEAW values may be the errors of AWRA-L (e.g. errors in precipitation 

forcing, model structure, the limited parameters available over large areas) that were presented 

in detail in section 3.1.2. The latter errors,  and especially the errors in precipitation forcing, get 

mitigated at coarser resolutions due to the averaging of in-situ precipitation datasets from a 

larger number of stations. Furthermore, the differences may also stem from the different 

represented depth (Table 4) that may not have been removed entirely during the dataset 

transformation. Lastly, the low error of the ERA-Interim dataset is partly due to the low dynamic 

range between wilting point and saturation of the ERA-Interim soil moisture dataset (Balsamo et 

al., 2009). 
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The relative RMSE patterns of all maps coincide and demonstrate high errors over areas with high 

annual precipitation and high soil moisture variation (southeast, southwest and eastern inland 

areas) and low errors in central and western Australia. The errors estimated over deserts in 

central Australia (e.g. the Simpson’ Desert) remain high due to the infrequent but severe rains 

that increase the variability of soil moisture. Such RMSE patterns are not surprising given that 

RMSE is an absolute measure and as such is strongly influenced by the mean and variance of a 

dataset.  

 

Figure 17. RMSE computed between ASAR GM and a) AWRA-L SSM (RMSEAW), b) AMSR-E SSM 

(RMSEAM), c) ERA-Interim SSM (RMSEAE), and d) GLDAS-NOAH SSM (RMSEAO). The grey areas 

display the non-significant correlation values (p > 0.05). The analyses were performed at the 5 km 

scale. The units are percentage (%) of saturated soil moisture. 

The highs and lows in RMSEAO and RMSEAW values are similar (Figure 18). RMSEAO ranges between 

14-18% over stations dominated by croplands (indexed with ‘K’), between 10-14% over stations 

dominated by a mixture of cropland and grassland (indexed with ‘Y’ and ‘A’) and is rather random 

over stations corresponding to urban areas (indexed with ‘M’).  

Nevertheless, a detailed look into Figure 17 reveals some differences. In particular, high errors 

(> 14%) in models (RMSEAW, RMSEAG, and RMSEAE) appear over the entire eastern and 

southwestern inland areas (more than about 200 km from the coast). High values of (> 14%) in 

RMSEAM are only evident over the southeast and southwest, keeping the RMSEAM over eastern 

Australia rather low (< 10%).  

Correspondences 

Discrepancies  
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The regions in the southwest and southeast are dominated by dense vegetation (e.g. Mallee 

bushes and woodlands in the Murray Darling Depression or eastern Mallee). This decreased the 

sensitivity of the ASAR GM C-band backscatter to soil moisture and was probably the main reason 

for high RMSEs. The quality of modeled data over these areas remains unexplained.  

Vice versa, eastern inland areas are covered with relatively sparse vegetation (grasslands, or 

cleared areas among sparse woodlands). It allows a good penetration of the ASAR GM 

backscatter signal and introduces a limited effect of vegetation optical depth on the AMSR-E 

brightness temperature. The higher values of the RMSE maps computed between ASAR GM SSM 

and the models may be explained by the different depth of soil moisture of each of the products 

(Table 4), uncertainties in rainfall forcing, and the simplified manner in which the models 

simulate evaporation and infiltration parts of the model.  

Furthermore, eastern inland areas are dominated by vertisols (Figure 6) that are known to form 

deep cracks during extended dry periods. The low RMSEAM over these areas suggests that the 

ASAR GM backscatter and AMSR-E brightness temperatures detect the process of drying and 

cracking of soils in a similar manner. On the contrary, the high RMSE values computed between 

ASAR GM SSM and models portray the simplifying nature of hydrological and landscape models 

that is not able to capture the cracking characteristics such as: a) drying via evapotranspiration 

beyond wilting point, b) large infiltration and c) change of porosity during the year (Liu et al., 

2010).  

Lastly, high RMSEAM values are found over coastal northern Australia with mangrove vegetation. 

These can be explained by the decreasing sensitivity of AMSR-E brightness temperature to soil 

moisture with increasing open water ratio. 

Given the non-existing global error estimates of the three soil moisture simulations (the common 

parameters used to assess the quality of the ERA-Interim dataset include humidity, wind speed, 

temperature, precipitation, or water vapour (Dee et al., 2011), only assumptions on their errors 

and contribution could be provided above. These, however, correspond to the findings recently 

published by Dorigo et al. (Dorigo et al., 2010) about TC errors of the ASCAT, ERA-Interim, and 

AMSR-E soil moisture datasets. In particular, the very low values of RMSEAE, as well as the in 

eastern inland enhanced errors of RMSEAE, correspond to these findings.  

Effect of 
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Figure 18. RMSE between ASAR GM SSM and SSM form OzNET in-situ stations (colored dots); at 

the background RMSE between ASAR GM and AWRA-L SSM. The grey areas in the correlation 

map display the non-significant correlation values (p=0.05%). The units are percentage (%) of 

saturated soil moisture. 

The above discussion suggests that the RMSE maps demonstrate two sources of variations: the 

first, and much stronger, acts at coarser resolution and reflects the mean and variation of soil 

moisture dynamics (and corresponds to the frequency distribution); the second acts mainly at 

medium scale and reflects the soil moisture behavior as impacted by different soil and vegetation 

types.  

 

Figure 19. The relationship between RMSEAW and RMSEAM. The analyses were performed at 5 km 

scale. 

As mentioned above, all RMSE maps (Figure 17) seem to correspond closely. This correspondence 

is quantified in Figure 19 using an example of RMSEAW and RMSEAM . The high correspondence of 

RMSEs demonstrated that a larger proportion (64%, originates from Figure 19 and the computed 

R
2
=0.64) of its values can be explained by a) the overall mean and variance of soil moisture data 

and b) medium-scale effects influencing ASAR GM SSM error (land cover and topography). The 

medium-scale effects did not impact the AWRA-L model nor do they impact AMSR-E coarse 

resolution SSM data. On the contrary, a smaller percentage of variation (36%) originated in the 

differences between AWRA-L and AMSR-E. The prior applied matching/rescaling is not expected 

to increase correspondence in Figure 19  because the linear fit only removes the deterministic 
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component of the relationship between SSM datasets (slope and intercept) but cannot affect the 

relative spatial patterns of residuals.   

4.2.1.2 nRMSE 

The necessity to normalize RMSE statistics arose from the desire to compare performance of 

RMSE in different areas where the average soil moisture differs.  

Not surprisingly, the spatial patterns differ between Figure 20 and Figure 17. The largest 

difference is illustrated by the relative decrease of the values in eastern and southwestern 

Australia and the increase in central and southern Australia. This can be explained by the fact 

that the high RMSEs in areas with high soil moisture mean and variance had lower relative impact 

on retrieved soil moisture values than the same RMSE values over dry areas. Interestingly 

however, the values in densely vegetated areas (i.g. Mallee bushes and woodlands in the Murray-

Darling  Depression or in the eastern Mallee) remain high (> 0.6), accentuating the decrease of 

sensitivity of ASAR GM SSM over dense vegetation.  

 

Figure 20. nRMSE computed between ASAR GM and a) AWRA-L SSM (RMSEAW), b) AMSR-E SSM 

(RMSEAM), c) ERA-Interim SSM (RMSEAE) and d) GLDAS-NOAH SSM (RMSEAO). The grey areas 

display the non-significant correlation values (p>0.05). The analyses were performed at the 5 km 

scale. 

Interesting are the large (>0.8) values of nRMSE in central North (south of Mount Isa Inlier and 

Channel County bioregions). These may be influenced by the effect of clay cracking soils (Figure 

6) that hamper modelling of soil moisture and may also have a limited impact on RMSEAM since 
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the algorithm assumes a time-invariant soil porosity (Liu et al., 2010). Likewise, large nRMSE 

values are evident in the Channel country bioregion that is affected by cracking soils during the 

dry season and by extensive floods in the wet season; these leave water in the clay pans for 

several weeks. As expected, such effects were easier detectable by more direct acquisitions of 

AMSR-E and were difficult to capture in models, without assimilating empirical datasets.  

4.2.1.3 MAE 

The MAE is an evaluation measure that doesn’t quadratically penalize errors of datasets and 

therefore minimizes the effect of dataset variance. As such, MAE has, in contrast to RMSE, a 

consistent functional relationship with an absolute error. 

 

Figure 21. The relationship between RMSE and MAE for two combinations of datasets – ASAR GM 

SSM and AWRA SSM (left) and ASAR GM SSM and AMSR-E (right). The analyses were performed 

at the 5 km scale. The color represents the density of points ranging from high (black) to very low 

(yellow). 

The higher values of RMSE comparable to MAE in Figure 21 demonstrate the above mentioned 

effect of quadratically penalized RMSE. Furthermore, RMSEAW reach considerably larger errors 

than RMSEAM, which has been amply demonstrated (Figure 17) and discussed. The difference 

between MAE and RMSE increase with increasing RMSE values demonstrating the increasing 

penalization of large residuals with higher dataset variance. 

4.2.1.4 Bias 

Bias between soil moisture datasets has only minor importance for the majority of soil moisture 

applications (section 2.3) and was therefore removed prior to analyses performed in this work 

(section 4.1.2). However, it plays an important role in preliminary dataset evaluations that are 

commonly performed by a simple visual comparison of absolute values of soil moisture maps. A 

large and routine bias may cause distrust of the evaluated product. This section demonstrates 

biases computed between SSM datasets in their original units. 

The analyses of ASAR GM SSM bias reveal large differences in the mean values when compared 

to other studied datasets. These differences varied spatially. The resulting values provide a 

spatial demonstration of areas where ASAR GM SSM observations are below or above an average 

bias between pairs of datasets (Figure 22).  
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Figure 22. Bias computed between AWRA-L SSM and  ASAR GM SSM (BIASAW) (left) and  ASAR GM 

SSM and AMSR-E SSM (BIASAM) (right). Areas with non-significant correlations (p>0.05) are grey. 

The analyses were performed at the 5 km scale. The units are percentage (%) of saturated soil 

moisture. 

These discrepancies can be explained by differences between the physical principles of the 

satellite retrieval models and the design of AWRA-L hydrological models. The relative ASAR GM 

soil moisture values are closely linked to the dielectric properties of the surface and rely on a 

selection of appropriate scaling references to retrieve the saturation level (Pathe et al. 2009). The 

models simulate the movement of stored water in the top soil as a result of interactions between 

rainfall, evaporation, infiltration and drainage. The absolute values depend on the weighting of 

the discrete model components including wilting point and field capacity. AMSR-E applies the 

Land parameter Retrieval model (Owe et al., 2008) to solve a radiative transfer equation for both 

soil moisture and vegetation optical depth. The vegetation optical depth and water content 

within a pixel is known to strongly impact the absolute value of volumetric soil moisture. All three 

approaches rely on simplifying assumptions and introduce systematic errors (both detection and 

interpretation). These inevitably alter the absolute values and dynamics of the final soil moisture 

observations.  

The spatial patterns of bias are almost identical to the spatial patterns of mean annual 

precipitation (MAP) (Figure 6). While the AWRA-L soil moisture were considerably higher than 

ASAR GM over areas with large MAP, the opposite applied over areas with low MAP. Different 

patterns are evident in BIASAM; these remain negative due to the considerable lower range 

achieved by AMSR-E data (usually 0 to 0.6). The BIASAM is very low over central and western 

Australia, low over inland areas and high over coastal vegetated areas. 

A large portion of positive bias in both maps over arid areas may be explained by the systematic 

error of interpretation when assuming the ASAR GM dry reference parameter (Pathe et al. 2009). 

As referred to in section 3.1.1 on pre-processing, the reference retrieval was transformed from 

the ERS data without further consideration of the pronounced roughness effects at 1 km scale 

and the large noise of the ASAR GM data. This could have caused an underestimation of the dry 

reference and thereby an overestimation of average soil moisture values.  

On the contrary, the high AWRA-L simulations over the eastern coast may be explained by the 

poor knowledge of the soil water evaporation parameter in the AWRA-L model. Lastly, the highs 
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in AMSR-E may originate from the high vegetation optical depth that increases emission from 

vegetation while decreasing emission from soil by absorption or scattering.  

4.2.1.5 RMSE without dataset transformation 

This and the preceding chapters are closely related in that both reflect on dataset bias. 

Importantly, the original units of the datasets were used (AWRA-L in % and AMSR-E in volumetric 

units).  The theoretical range remains between 0 and 1. 

Figure 23 demonstrates RMSE measure computed on SSM datasets without dataset 

transformation. The spatial patterns differ substantially from those in Figure 17 and correspond 

to those in Figure 22. This is not surprising given that RMSE computed on original data, before 

transformation, reflect the absolute dataset error as well as bias between datasets. Bias reflects 

detection and interpretation errors, especially where the interpretation error (how the 

measurements are transformed to soil moisture variables) seems to differ substantially between 

the three datasets. In particular, all three datasets should range between 0 and 1, but in practice, 

AMSR-E does not exceed 0.6. 

 

Figure 23. The RMSE computed between ASAR GM and a) AWRA-L SSM (RMSEAW) and b) AMSR-E 

SSM (RMSEAM). The grey areas have non-significant correlation values (p>0.05). The analyses 

were performed at the 5 km scale. The units are percentage (%) of saturated soil moisture. 

Figure 17 and Figure 23 demonstrate that RMSE is spatially variable and reflects variation in 

absolute error as well as in mean and variance. Furthermore, Figure 23 illustrates that without 

dataset transformation RMSEs computed between different datasets cannot be compared even if 

they share identical units.  

4.2.1.6 Effect of spatial scale on absolute evaluation measures 

The standard evaluation methods were computed at the 5 km spatial scale. Noteworthy, 

however, are the differences between RMSE computed at 1 and 5 km scale. These are essential 

for understanding section 4.3 which incorporates analyses at two spatial scales.  

The RMSE computed at 1 and 5 km spatial scale are shown in Figure 24 (note the dynamic 

legend). It should be noted that the datasets were aggregated prior to data transformation. A 
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decrease of RMSE values with decreasing spatial resolution is evident. This is an expected result 

given the effects of spatial averaging; namely a) the improvement in the radiometric resolution of 

ASAR GM SSM with spatial averaging and b) the minimizing effect of spatial mismatch and 

increasing probability that the products react to identical atmospheric forcing.  

 

Figure 24. RMSE computed between ASAR GM and AWRA-L SSM (RMSEAW) at 1 km (left) and 5 km 

(right) spatial scale. The areas with non-significant correlation (p>0.05) are grey. The analyses 

were performed after data transfomration to ASAR GM dynamics. The units are percentage (%) of 

saturated soil moisture. 

Noteworthy, however, is that the decrease in RMSE is spatially variable (Figure 25, left) and 

appears more evident over areas with high values of 1km RMSEAW (e.g. Central Kimberley, Pilbara, 

or Channel country bioregions). Large decrease of RMSE is also evident over Mount Isa and 

Channel country bioregions. On the contrary, small decreases of RMSE with decreasing spatial 

resolution seem to dominate over areas with low values of 1 km RMSEAW.  

The result suggests that RMSE computed at 1 km scale is strongly affected by the spatial patterns 

introduced by medium-scale (1 km) features (land cover, topography) that impact the error of 

ASAR GM SSM.  Atmospheric forcing acts at larger scales (> 25 km) and impact both the error of 

ASAR GM SSM and AWRA-L SSM. This forcing seems to appear only as a secondary effect in the 

RMSE maps. A portion of the AWRA-L SSM error are expected to act directly at AWRA-L 

resolution (5 km) addressing different land cover and soil types (e.g. poor estimates over rock 

outcrops, salt lakes or clay soils). Nevertheless, its effect appears small in the 1 km RMSE map, 

probably due to its much smaller magnitude comparable to the large noise of the ASAR GM SSM.  

At the 5 km scale, the effect of small scale patterns is averaged out and the noise of the ASAR GM 

SSM decreases. As a result, the patterns change; this especially applies at scales > 5 km. A good 

demonstration of such change is the Pilbara region, where RMSE decreases on average from 25% 

to about 15%. Here, the soil moisture mean and variance remain very low, and most of the RMSE 

variation is attributed to the noise of ASAR GM SSM. When decreasing resolution to 5 km, the 

expected decrease of noise is large and can be described as: 
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√ 
      4-1 

where   stands for the noise and N is the number of independent measurements used in the 

aggregation. For a footprint with a 5 km diameter approximately 144 backscatter measurements 

with a sampling distance of 0.417 m were used. Assuming that only every fourth is independent 

(only non-overlapping measurements) the resulting N is 36.  

The radiometric noise can be transformed to radiometric accuracy according to: 

                (  √   
  )  4-2 

where ENL refers to the equivalent number of looks. Given the ENL of the ASAR GM SSM product 

at 1 km estimated to be 9 the resulting accuracy is equal to 1.2 dB. Using equation 4-1 the 

accuracy of the 5 km product is estimated to decrease to 0.21 dB. This result explains the large 

drops in the RMSE maps over dry and rocky areas. Here,  the magnitude of backscatter 

measurements during the year often does not exceed 4 dB and the low accuracy of the original 

product strongly impacted the soil moisture variations.  

Furthermore, changes in RMSE patterns are evident also over areas in northeastern Australia that 

receive sufficient amount of precipitation. The possible explanation is the increasing effect of 

AWRA-L errors acting at approximately 5 km (e.g. poor estimates over rock outcrops, salt lakes or 

clay soils) that becomes more pronounced in the RMSE computed at corresponding scale.  

 

Figure 25. The difference between RMSEAW computed at 1 km and 5 km spatial scales and the 

scatterplot demonstrating the relationship between RMSE computed at 1 and 5 km spatial scales. 

The units are percentage (%) of saturated soil moisture. The color of the right plot represents the 

density of points ranging from high (black) to very low (yellow). 
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Similar analyses were computed also on non-transformed datasets. Interestingly, the results 

present identical patterns at both 1 and 5 km spatial scales (Figure 26). This may be explained by 

the fact that the bias exceeds the effect of random error and doesn’t change with changing scale.  

 

Figure 26. RMSE computed between ASAR GM and AWRA-L SSM (RMSEAW) at 1 km (left) and 5 km 

(right) spatial scale. The grey areas had non-significant correlation values (p>0.05). The units are 

percentage (%) of saturated soil moisture. 

4.2.2 Relative evaluation measures 

4.2.2.1 Pearson Correlation 

An overall high agreement between the ASAR GM and four other SSM datasets is demonstrated 

in Figure 27. Significant correlations were found over 88% of the continent for AWRA-L, 95% for 

AMSR-E, 92% for GLDAS-NOAH, and 95% for the ERA-Interim model. High correlation values (R > 

0.6) dominate in southwest, southeast and northern Australia and coincides with areas with high 

RMSE values in Figure 17. The areas have in common high mean annual precipitation (Figure 6, 

right) and vegetation dominated by herbaceous plants (Figure 6, left).  

The good correlation results from a combined effect of a) high seasonality increasing the variance 

of soil moisture and b) physics of radiation transfer. In particular,  the sparse vegetation allows 

for a good penetration of C-band signals and increases the ASAR GM sensitivity to soil moisture. 

Likewise, the AMSR-E soil moisture sensitivity over these regions improves through the minor 

effect of the vegetation absorption and scattering. Australia’s wetter regions generally also have 

a greater density of precipitation gauging stations, which will also enhance the quality of the 

rainfall forcing of the models and reduce error in soil moisture estimates.  
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Figure 27. The Pearson’s correlation coefficient between ASAR GM and a) AWRA-L SSM, b) AMSR-

E SSM, c) ERA-Interim SSM and d) GLDAS-NOAH SSM. The white areas in the correlation map have 

non-significant correlation values (p>0.05). The analyses were performed at the 5 km scale. 

The correlations are generally higher for AMSR-E and ERA-Interim and GLDAS models than for 

AWRA-L SSM. The maps appear linearly and inversely related to magnitudes of RMSE found in 

Figure 17. Furthermore, high correlations (R > 0.6) dominate all of eastern Australia for the three 

coarse resolution products, including the Brigalow Belt of acacia woodland.  

Insignificant correlations were found over portions of central arid, north-western and eastern 

coastal Australia and correspond to low values (< 10 %) of RMSE (c). The potential reasons for low 

agreement in dry areas are the low mean and variance of mean annual precipitation, causing low 

variance in soil moisture and the lower quality of the rainfall data and hence model estimates. 

The signal-to-noise ratio over arid regions is expected to be minimal considering the low mean 

and variance of soil moisture data and the poor radiometric resolution of the ASAR GM (  1.2 dB) 

data. Also, the density of in-situ precipitation inputs to models over these areas is minimal. The 

low correlation in eastern coastal areas may be explained by the limited ASAR GM and AMSR-E 

sensitivity to soil moisture due to dense vegetation, heterogeneous relief and widespread urban 

development. 
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Figure 28. The Pearson’s correlation coefficient between ASAR GM and OzNET in-situ stations; the 

background is Pearson’s correlation coefficient between ASAR GM and AWRA-L SSM. The grey 

areas in the correlation map have  non-significant correlation values (p>0.05) (scale as in Figure 

27). 

The lows and highs in the correlation coefficient for spatial data correspond to the lows and highs 

of correlation coefficients computed between ASAR GM and OzNET in-situ stations (Figure 28).  

4.2.2.2 Spearman correlation 

Pearson’s correlation coefficient computed on absolute values may be artificially enhanced by 

the effect of seasonality. This is given by the mathematical formulation of R that incorporates 

covariance and standard deviations, which increase with increasing magnitude of the absolute 

values.  The Spearman correlation coefficient (Figure 29), given that it’s computed on ranked 

datasets, doesn’t relate to the actual values of soil moisture. As such, it reflects the quality of the 

data in an ordered sequence and mitigates (not eliminates!) the effect of seasonality. The results 

can thus be compared to the method introduced by (Dorigo et al., 2010; Scipal et al., 2008b) that 

calculates R on anomalies. Given the identical results achieved with all models (namely ERA-

Interim, GLDAS-Noah and AWRA-L), the results are only demonstrated on an example of the 

AWRA-L model and AMSR-E passive microwave dataset. 
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Figure 29. Spearman’s correlation coefficient RS between ASAR GM and a) AWRA-L SSM and, b) 

AMSR-E SSM. The grey areas in the correlation map have non-significant correlation values 

(p=0.05%). The analyses were performed at the 5 km scale. 

For both maps the relative patterns correspond demonstrating higher values of RS in forested and 

agricultural areas and higher values of RS over central and western Australia. However, of special 

interest is the comparison of RS and R.  

4.3 Advanced evaluation methods 

4.3.1 Error propagation 

 

Figure 30. Maximum ASAR GM SSM retrieval error (   ) for Australia calculated using the EP 

model (Pathe et al. 2009) at the 1 km (left) and at the 5 km (right) spatial scale. The units are 

percentage (%) of saturated soil moisture. 

The maximum ASAR GM SSM propagated error ( AS) computed at the 1 and at the 5 km spatial 

scale (Figure 30) strongly coincides with the spatial patterns of a combination of vegetation types 

(Figure 6) and landscape geomorphology (Van Dijk & Warren, 2010). In particular, the error is less 

(< 18%) for herbaceous and shrub vegetation classes and greater for forested areas and areas 

covered with rock outcrops in western, northern, and eastern coastal Australia. The impact of 

vegetation and geomorphological patterns on     is further emphasized by the correspondence 

of     with the bioregions of the Interim Biogeographic Regionalization (IBRA; Thackway and 



 69 

 

Creswell 1995) evident in Figure 5. The IBRA mapping combines attributes of climate, 

geomorphology, landform, and lithology. 

4.3.2 Predicted RMSE 

4.3.2.1 81B81BRMSE model performance 

RMSEAW was predicted according to the equation 2-26  at the 1 km spatial scale. The exact 

meaning and derivation of the predicted RMSE measure was in detail described in sections 

2.2.3.1 and  3.2.2. It is here displayed along with observed RMSEAW (Figure 31) to allow a direct 

method’s evaluation. A high agreement of the spatial patterns of predicted RMSEAW and RMSEAM 

is evident. Also, the patterns coincide with the spatial distribution of    . This was expected since 

    comprise the major input into predicted RMSEAW. The patterns seem to originate from 

processes at two spatial scales, medium (1-5 km) and a coarser (>25km) scale. 

The areas with high values (> 30%) coincide in both maps and cover regions associated with steep 

slopes and rock outcrops (e.g. rock outcrops in northern and Western Australia). These values act 

at medium scale and can be attributed to ASAR GM observational errors that originate in 

foreshortening effects in steep slopes or in diffuse scattering from very rough areas. Such effects 

are not always corrected during geometric and radiometric correction due to the limitations of 

the DEM. 

Errors above 30% are also encountered along the eastern coast and might be associated with 

dense vegetation that lowers sensitivity of the C-band backscatter to soil moisture. Similar 

findings demonstrating the sensitivity of RMSEAW to the topographical and geomorphological 

medium scale features were amply documented (Van Dijk & Warren, 2010). 

The medium values (20 to 24%) coincide in both maps and often correspond to areas with high R 

(> 0.6) demonstrated in Figure 27. These are alluvial, topographically uniform areas, or areas 

covered with herbaceous growth (e.g. alluvial region in the Gulf Plains in northern Queensland or 

the Nullarbor bioregion in southern Australia that exhibit relatively high mean annual 

precipitation. Furthermore, medium values dominate in central arid regions, act at considerable 

coarser scale, and correspond to areas with only limited mean annual precipitation (Figure 5). 

These areas correspond to areas with low RMSEAW values (< 10%) (Figure 17). 
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Figure 31. The maps represent RMSEAW computed from the observations (left) and RMSEAW 

predicted (right) at the 1 km scale.  The units are percentage (%) of saturated soil moisture. 

The match between both predicted RMSEAW and observed RMSEAW maps computed at the 1 km 

spatial resolution with growth forms is pronounced in southwestern and southeastern Australia. 

The crossover between herbaceous growing forms and shrubs is especially evident. An example is 

Menzies Line in southwest Australia dividing herbaceous vegetation on cleared land from native 

shrubland; there are sharp divisions between cropping and grazing land east of Adelaide, and the 

Cobar bioregion in eastern Australia that is dominated by small trees (Figure 7). These regions are 

easily detectable due to their specific land cover forms and also due to the specific soil and 

explicit bedrock type (Van Dijk and Warren 2010).  

 

Figure 32. The difference between eRMSEAW and RMSEAW computed from the observations.  

The predicted RMSEAW and observed RMSEAW maps correspond within ± 4% of saturated soil 

moisture over 89% of the land mass (Figure 32). The remaining 11% coincides mainly with rock 

outcrops, salt pans, and densely vegetated areas (Figure 7).  

The predicted RMSEAW underestimates the observed RMSEAW over areas with steep slopes and 

rock outcrop areas in central, western, and northwestern Australia (red colors in Figure 32). This 
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underestimation may originate from ASAR GM (Figure 2) as well as from the AWRA-L error 

estimates. The AWRA-L soil moisture estimates are likely to be poor where the surface is 

dominated by hard rock outcrops or salt lakes, as the model parameterization does not explicitly 

consider these features. Nevertheless, the AWRA-L errors are expected to be mainly related to 

the errors in rainfall forcing (Van Dijk and Warren 2010), and thus correspond to relatively large 

scale patterns. The predicted RMSEAW is also lower than observed RMSE in eastern coastal 

Australia. The reverse performance is found over large portions of central and western Australia 

(green colors in Figure 32). Given the limited mean annual precipitation (Figure 3) over these 

regions it is suggested that the error estimate of the AWRA-L model may be lower than the 

anticipated 15% (0.045 – 0.09 m
3
/m

3
).  

The results demonstrate a high agreement between observed RMSEAW and predicted RMSEAW. 

Given the independence of the two methods their correspondence suggests good accuracy of the 

predicted RMSE and the observed ASAR GM error estimate     at the 1 km spatial scale.  

Importantly, the results demonstrated that the main source of spatial variation of observed 

RMSEAW at the 1 km scale originates from the ASAR GM SSM data. This was expected given the 

effect of small scale (< 1km) patterns impacting the ASAR GM SSM product and the dominating 

effect of medium (> 5km) and large scale (> 25km) effects of atmospheric forcing impacting the 

AWRA-L dataset. As noted in section 4.2.1.6, the spatio-temporal behavior of absolute evaluation 

measures may change with the spatial scale. For instance, it can be expected that at the 5 km 

spatial scale, the medium resolution patterns impacting the ASAR GM SSM average out and the 

coarser resolution atmospheric processes become dominant. The change of predicted RMSE from 

the 1 to 5 km spatial scale is addressed in the following section. 

4.3.2.2 82B82BPerformance of predicted RMSE at coarser spatial scales 

The results from section  4.3.2.1 were published as a separate article (Doubková et al., 2012) and 

suggested that the main source of predicted RMSE at the 1 km scale originates in the ASAR GM 

SSM dataset. Only later, the significant impact of the spatial scale on the RMSEAW measure was 

revealed (section 4.2.1.6). This section investigates if the ASAR GM SSM error ( AS) remains the 

main contributor to predicted RMSE also at coarser spatial scale. In particular, it assesses the 

correspondence of the ASAR GM SSM error ( AS) to the observed RMSEAW at 1 and at 5 km spatial 

scale (Figure 33). 
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Figure 33. Maps of observed RMSEAW (upper part) and EP error     (below) computed at the 1 km 

(left) and 5 km (right) spatial scales.  

The correspondence of     and observed RMSEAW is pronounced at the 1 km scale. The highs (> 

24%) and lows (<18%) of both images correspond well. This corresponds to the findings of section 

4.3.2.1. Nevertheless, the correspondence decreases at the 5 km scale (Figure 33 right panel). 

This is most probably due to the rapidly decreasing noise of the ASAR GM SSM dataset and the 

fact that  AS loses its dominant effect to the AWRA-L error estimate in the computation of the 

predicted RMSEAW. This is demonstrated by the higher observed RMSEAW values in northeastern 

part of the image. This may be caused by  the cracking clay soils (Liu et al., 2010). These were 

discussed in the literature as complicated to account in models and passive microwave data (Liu 

et al., 2010). 
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Figure 34. Scatterplots between observed RMSEAW and EP error (   ) computed at the 1 km (left) 

and at the 5 km (right) spatial scale computed over the area of interest from the Figure 33. The 

color represents the density of points ranging from high (black) to very low (yellow). 

The above findings in Figure 34 are expressed as scatterplots. The scatterplot on the left side 

suggests that the equation 3-10 has probably a too high starting point. The scatterplot exhibiting 

the patterns at 5 km scale (Figure 34 right panel) reveals a dual behaviour of the image 

suggesting that by spatial averaging the low error values decrease more abruptly than the higher 

error values. 

4.3.3 Triple collocation (TC) 

The TC method has been in detail described in section 2.2.2.2 and its usage for the ASAR GM was 

introduced in the section 3.2.2. The TC errors are marked with * signalizing that the data were 

prior transformed to dynamics of one of the datasets. The main objective was to assess    of 

ASAR GM SSM (   
 ) and to investigate trends in    

  related to a) the change in spatial resolution 

from 5 to 25 km, and b) the choice of a hydrological model.  

The results and discussions are organized as follows. Section 4.3.3.1 assesses the spatial patterns 

of    
  at 5 and 25 km scale. This is followed by the assessment of the TC errors of AMSR-E (   

 ) 

and AWRA-L (   
 ) in section 4.3.3.2. Finally, section 4.3.3.3 reveals trends in    

  related to the 

choice of the third dataset. For this purpose the triple collocation is repeated using two different, 

globally available, model reanalysis datasets (ERA-Interim and GLDAS-NOAH).  

4.3.3.1 Assessment of the ASAR GM errors 

The resulting ASAR errors (   
 ) are displayed in Figure 35, at the 5 and 25 km spatial resolutions, 

respectively. The spatial relative patterns of    
  are discussed on a continental scale and then 

assessed over a region in southeastern Australia with a high (> 0.7) temporal stability (Cosh et al., 

2004). A high temporal  stability is expected to mitigate the effect of scaling errors. The temporal 

stability was computed as a correlation of the local (1 km) to the regional (25 km) ASAR GM soil 

moisture values.  

Section structure 
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Figure 35. The spatial errors    
  at 5 km and 25 km overlaid with the  Interim Biogeographic 

Regionalization dataset for Australia (IBRA) (Thackway & Creswell, 1995). The units are 

percentage (%) of saturated soil moisture. The grey areas (and the white areas in the right image) 

had non-significant correlation values (p>0.05).  

Important to note is that the analyses were computed on absolute values according to Scipal et al. 

(Scipal et al., 2008b). The estimated errors provide the ability of the dataset to capture the 

absolute soil moisture levels and are hence comparable with a majority of the evaluation results 

presented earlier in this work. 

The spatial patterns of    
  

act, similar to the standard evaluation measures (section 4.2.1), at 

large (>25 km) and medium (> 5 km) spatial scales. The medium patterns correspond to the 

different dense vegetation forms, soil roughness patterns or geomorphological features (e.g. 

malee bushes in Mallee, or the hilly and rocky landscapes of the sparsely vegetated Pilbara region 

(Figure 36)).  

The absolute values of    
  decrease when computed at the 25 km spatial resolution. This is 

explained by the improved radiometric accuracy achieved by averaging of the ASAR GM data. The 

original radiometric resolution of the ASAR GM mode is high (>1.25 dB) (equation 4-2) and 

further decreases according to equation 4-1 to about 0.21 dB for the 5 km resolution product. 

This is a reasonable estimate given that the estimated radiometric accuracy for the ERS 

scatterometer product was 0.2 dB (Attema & Lecomte, 1998).  

The map computed at the 25 km spatial resolution provides significantly smoother patterns. 

Nevertheless, some of the features from the medium resolution map remain evident also at 

coarser resolution (i.e. the higher error estimates over eastern Mallee or the hilly landscapes of 

the sparsely vegetated Pilbara region). This is an interesting finding since the effect of these 

features was not encountered in the error assessments of the coarse resolution active microwave 

sensors (Dorigo et al., 2010). The pronounced effect of the roughness of soils and vegetation on 

the medium resolution SAR datasets is most probably caused by the coherent characteristic of 

the SAR signal that initiates interference over these areas and remains high even after averaging 

of the original SSM product to coarser scales.  

TC errors at 5 and 

25 km 
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Figure 36. Photographs downloaded from the Confluence Project website (“Degree confluence 

project,” 2008) representing (from upper left to lower right) portions of Pilbara, Mallee, Gulf 

Plains and Mount Isa Inlier IBRA Bioregions (Thackway & Creswell, 1995).  

The low    
  errors (< 10%) are found over central and south-central Australia and correspond to 

regions with low annual precipitation and low soil moisture variation. Also the areas are 

dominated by relatively smooth surfaces with sand plains and sand dunes irregularly covered 

with shrubs or Eucalyputs (e.g.  Great Victoria Desert or Gibson Desert). Low values are also 

found in northern and northwestern Australia corresponding to areas with high soil moisture 

variation due to monsoonal systems. The low errors in the latter regions can be explained by the 

highly favorable conditions - high seasonality and penetrable vegetation - for detection of soil 

moisture with active microwave systems using change detection method.  

Medium values (10 – 14%) dominate over southeastern Australia (i.e. NSW South Western Slopes 

or Riverina bioregion) and southwestern Australia (i.e. Avon Wheat belt); both are agricultural 

areas. The    
  is higher over these regions than over northern Australia due to lower seasonality 

and attenuation by agricultural crops. 

A high    
  is found over densely vegetated areas and hilly and rugged hills. This is similar to 

results of the standard evaluation measures (chapter 4).  In addition, high values are found over 

regions that flood periodically (i.e. Channel Country bioregion). This is expected, given that the 

ASAR GM SSM product is not masked for sporadically appearing water bodies. High errors were 

also found over central desert regions (i.e. Simpsons and Strzelecki deserts).  

The actual soil moisture variation of the three compared products and their impact on    
  are 

discussed in detail below for three selected points in southeastern Australia. The selection of this 

region was motivated by high temporal stability values (> 0.7) (Figure 37 right panel) that 

minimize error due to spatial scaling. The average error over southeastern Australia (region 

enlarged in Figure 37) is 14%.  

The spatial 

patterns of the TC 

errors 
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Figure 37. The spatial errors      
  at 5km overlaid with the borders of the  Interim Biogeographic 

Regionalization dataset for Australia (IBRA) (Thackway & Creswell, 1995) (left) and the correlation 

layer computed between the local (1 km) and the regional (25 km) soil moisture (right). OzNET 

station k4 is located in the vicinity of region 3. The units are percentage (%) of saturated soil 

moisture. Points 0 and 34 refer to regions 1 and 3, these were discussed later in this section. The 

grey and white areas had non-significant correlation values (p>0.05). 

The triple collocation method relies on a multiplication of differences computed between cross-

calibrated datasets (see section 2.2.2.2). Therefore, by looking into time-series of absolute values 

and differences between the three datasets, ASAR GM, AWRA-L, and AMSR-E, over region 1, 

OzNET station K4, and region 2 (Figure 39 to Figure 41) one can better understand the origin of 

   
 .  

 

Figure 38. Scatterplot of differences between ASAR and AWRA-L and ASAR and AMSR-E SSM 

estimates over region 1, OzNET station K4, and region 3. The units are percentage (%) of 

The TC errors 

explained in 

time-series 
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saturated soil moisture. The color represents the density of points ranging from high (black) to 

very low (yellow). 

An interesting finding relates to the equation 2-22. While the left side of the equation can be 

assumed positive given the square root sign, the right side can have both signs as it is computed 

as an averaged multiplication of the differences between random soil moisture datasets. This is a 

rather interesting context that has not been addressed in the evaluation studies of soil moisture 

before. The results demonstrated that the vast majority of the retrieved    
  remain positive 

(Figure 37) with only rare negative values if coarser resolution models were used instead of the 

AWRA-L model. Figure 38 and also Figure 39 to  Figure 41 provide an explanation why    
  

remains positive. The separate multiplications of the differences are not random, rather jointly 

positive or negative. If ASAR GM SSM is higher than AWRA-L SSM, then it is also higher than 

AMSR-E SSM and vice versa. This signalizes large independency of the ASAR data caused probably 

by the combined effect of a) the coarser resolution or the forcing of the AMSR-E and AWRA-L 

data and b) the lower radiometric accuracy of the ASAR GM data. 

 

Figure 39. The time-series of the ASAR, AWRA-L, and AMSR-E SSM datasets (upper part) and the 

time-series of the differences between the ASAR and AWRA-L, and ASAR and AMSR-E SSM (lower 

part) for the region 1. The units are percentage (%) of saturated soil moisture. 

Can error 

variances be 

negative? 
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Figure 40. The time-series of the ASAR, AWRA-L, and AMSR-E SSM (upper) and the time-series of 

differences between ASAR and AWRA-L, and ASAR and AMSR-E SSM (lower) for OzNET station K4. 

The units are percentage (%) of saturated soil moisture. 

 

Figure 41. The time-series of the ASAR, AWRA-L, and AMSR-E SSM (upper) and the time-series of 

differences between the ASAR and AWRA-L, and ASAR and AMSR-E SSM (lower) for region 3. The 

units are percentage (%) of saturated soil moisture. 

Assessing Figure 39 to Figure 41 in detail, the time-series appear impacted by two types of 

fluctuations; one representing the seasonal effect and a second one, imposed on top of it, 

representing the effect of short-term events (several days). The ability to capture both 

Seasonality 
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fluctuations is reflected in the final    
  estimates. The ASAR GM data capture the absolute 

seasonality very well over region 1 and the OzNET station K4. This is evident in the absolute time-

series and further supported by the limited seasonal trend in the SSM differences (Figure 39 and 

Figure 40, lower parts). On the contrary, Figure 41 demonstrates a low ability of the ASAR GM 

data to capture soil moisture fluctuations; this is mainly caused by the dense vegetation cover 

(open woodland and shrubland).  

The ASAR GM and AMSR-E estimates document strong moisture peaks that are not captured by 

the AWRA-L model (depicted by the arrows in Figure 39). The latter is also exhibited in Figure 38 

as a cloud of points with high values on y- and close to 0 values on x-axes. It can be assumed that 

the increase corresponds to precipitation events because of the sudden increase in both ASAR 

GM and AMSR-E time-series that have independent inputs. The possible reasons why AWRA-L 

does not capture these peaks might be a) the error of the input precipitation data in the AWRA-L 

model, b) the simplifying assumptions on infiltration and evaporation in the model, c) the 

temporal mismatch of several hours that was allowed between datasets, and d) the point 

character of the precipitation data, the main forcing of the AWRA-L model, that may be located 

out of the path of the storm.  

To investigate the origin of the inconsistencies between ASAR GM, AWRA-L, and AMSR-E and to 

assess if these refer to the, by the AWRA-L dataset missed, precipitation event, the model was 

replaced with data from OzNET in-situ network and the soil moisture differences were re-plotted. 

Figure 42 demonstrates the differences from the Figure 40 (ASAR GM – AWRA-L and ASAR GM – 

AMSR-E) along with the differences between ASAR – OzNET and ASAR GM – AMSR-E. Only limited 

number of large differences between ASAR GM – AWRA-L disappeared or got mitigated when 

AWRA-L was exchanged with the OzNET data. Furthermore, additional peaks appeared. These 

can be explained by a) temporal mismatch of several hours that was allowed between datasets 

and b) point character of the precipitation data that may be located out of the path of the storm.  

The above results demonstrated that exchanging the modelled data with an in-situ soil moisture 

data may lead to analogous problems of spatial scaling related to point characteristic of dataset 

forcing. Furthermore, the results showed the complexity in determining a reference true soil 

moisture dataset.  

Ability to 

capture large 

precipitation 

events 
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Figure 42. The time-series of soil moisture differences expressed as a percentage (%) of saturated 

soil moisture. The difference between ASAR and AWRA-L SSM, and ASAR and AMSR-E SSM (upper 

part), and the differences between the ASAR GM and OzNET SSM, and ASAR GM and AMSR-E SSM 

(lower part) over OzNET station K4. 

A special attention should be given back to Figure 38. This demonstrates high correlations 

between distinct time-series differences. While the differences are by no means identical to 

dataset error, the demonstrated high correlations between separate differences may provide an 

inference that also the dataset errors may be correlated. This would violate the assumption on 

identity and zero cross-correlation (section 3.2.2).  

4.3.3.2 Assessment of the AMSR-E and AWRA-L errors 

The triple collocation errors of the AMSR-E SSM (   
 ) and AWRA-L SSM (   

 ) datasets are 

displayed in Figure 43. The    
  remains below 6 % over vast portion of the continent; this 

corresponds to the results of Dorigo et al. (Dorigo et al., 2010) and can be explained by the high 

radiometric accuracy as well as by the five times coarser spatial resolution of the AMSR-E sensor. 

An exception is the forested eastern and southeastern Australia and monsoonal, very wet and 

mangrove covered, northern Australian coast. Similar findings were found and in detail discussed 

for RMSEAM (section 4.2.1.1). 
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Figure 43. The triple collocation error for ASAR GM SSM (   
 ) (above), AWRA-L SSM (   

 ) (below 

left), and AMSR-E SSM (   
 ) (below right) soil moisture datasets computed at the 5 km spatial 

resolution with ASAR GM as a reference. The units are percentage (%) of saturated soil moisture. 

The    
  demonstrates highs (>12%) over areas with medium annual precipitation (approximately 

300-800 mm). Especially high values (>16%) are encountered over sparsely forested, clay soil 

dominated northeast regions. A possible explanation for high values over these areas is the 

simplifications in soil types in the AWRA-L model that mitigate differences between different soils 

and the fact that clay soils act differently in different time of the year. In particular, the soils are 

expected to fasten evapotranspiration, infiltration, and change porosity during part of the year. 

The lows (<8%) dominate central arid and northwestern Australia.  

The    
  is considerable larger than    

  and    
 . This can be explained by the compounded effect 

of the following: a) a minimizing effect of spatial errors if the major product’s forcing has spatial 

instead of point character, b) a minimizing effect of spatial mismatch with coarsening of the 

spatial resolution, c) differences in data distribution of AWRA-L comparable to other datasets 

(AWRA-L can well demonstrate very low soil moisture and saturation stage; fails however when 

describing the mid-range soil moisture values), and lastly d) the fact that AWRA-L model could 

not depict several large-magnitude events detectable by both the ASAR GM and AMSR-E SSM 

(Figure 39 to Figure 41).  
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4.3.3.3 TC computed with several models  

 

Figure 44. The triple collocation error of the a) ERA interim and b) GLDAS models computed at 5 

km spatial resolution ASAR GM data as a reference. The units are percentage (%) of saturated soil 

moisture.  

This section investigates the effect of exchanging a third dataset in the triple collocation with 

other models. In particular, the AWRA model was exchanged with GLDAS-NOAH and ERA-Interim 

models and the resulting    
 ,    

 ,    
  and    

  were assessed. The other two dataset, ASAR and 

AMSR-E, remain the same. The GLDAS-NOAH and ERA-Interim estimates were expressed in the 

ASAR dynamics. The selection of the third dataset should not influence the spatial patterns of    
 , 

if the random errors of all three datasets are assumed to be uncorrelated (Dorigo et al., 2010).  

The spatial patterns of the estimated error of the GLDAS-NOAH (   
 ) is similar to    

 ; lower 

error are demonstrated for the ERA Interim dataset (   
 ). The quality of the rainfall forcing and 

the representative depth has a large impact on the quality of soil moisture. The better 

performance of    
  may be explained by the fact that the ERA Interim assimilates several 

microwave radiances (rather than using rain rates) to improve sensitivity to atmospheric 

temperature, moisture; cloud water, and precipitation (cite Simmons ECMWF). Important to note 

is also that the ERA-Interim system runs at 80 km spatial resolution while GLDAS-NOAH provides 

soil moisture at the resolution corresponding to 0.25 degree. 

Next, the impact of exchanging the modeled dataset on    
  is investigated. The Figure 45 

demonstrates    
  computed with three different model inputs. The expectation was that 

exchanging a third dataset does not influence the spatial patterns of    
  if all errors of the 

datasets are independent (Dorigo et al., 2010). The overall patterns of high ASAR GM SSM error 

seem to correspond well in all three maps. The largest errors are in southwestern, southeastern 

Australia, and in desert regions and act at coarse resolution as well as at medium resolution 

scales.  

Nevertheless, the results also demonstrated alternations to    
  that seemed to mirror the effect 

of a third dataset. For instance,    
  appears as the highest when computed with the AWRA-L 

model and much lower when computed with the ERA-Interim model. Similar results were 

encountered also in the RMSE maps and were interpreted as effects of the second dataset 

(section 4.2.1.1). As a result, the alternations to    
  might be explained by the error of AWRA-L 

Effect on the 

ASAR and 

AMSR-E error 

Model error 
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acting at medium resolution scale that is expected to be larger than error of the other models 

acting at coarser resolution scales (ERA-Interim and GLDAS-Noah) or, for instance, by the several 

microwave radiances assimilated by the ERA-Interim dataset.  

It is suggested that introducing an additional datasets to the TC method may improve 

understanding of the ASAR GM SSM error. Other option may be to acquire the minimum 

   
  from several TC runs that used diverse second and third dataset as an input.  

 

Figure 45. The triple collocation error of ASAR GM SSM (   
 ) when computed with AMSR-E SSM as 

a second and a) AWRA-L, b) ERA-Interim, and c) GLDAS-NOAH as a third dataset, respectively. The 

units are percentage (%) of saturated soil moisture. 

Similarly, the effect of different models on    
  was investigated. The general patterns 

correspond and demonstrate low values over majority of the continent with exception of the 

coastal areas. Nevertheless, an evident decrease of    
   is evident when ERA-Interim model was 

used.  
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Figure 46. The triple collocation error of AMSR-E SSM (   
 ) when computed with ASAR GM SSM 

as a second and a) AWRA-L, b) ERA-Interim, and c) GLDAS-NOAH as a third dataset, respectively. 

The units are percentage (%) of saturated soil moisture. 
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5. Discussion  

This thesis was motivated with a view to evaluate the quality of the ASAR GM SSM medium 

resolution dataset and to provide guidance on appropriate evaluation methodology applicable to 

any SSM product. This chapter discusses the overall quality of the ASAR GM SSM and future 

Sentinel-1 SSM products and addresses common misconceptions and how these can be avoided 

in data evaluation studies. It is written in form of questions that were amply motivated in the 

introduction of this thesis (section 1.2) and addressed in chapters 2 and 4.  

5.1 Can we apply the evaluation requirements of SMOS and 

SMAP to ASAR GM SSM? 

The SMOS and SMAP missions SSM product requirement relies on a condition of RMSE < 0.04 

m
3
/m

3 
 (Kerr et al., 2010). Furthermore, the WMO recently published requirements on soil 

moisture quality that also rely on error defined as a single value per given spatial resolution 

(WMO, 2012). These requirements were driven by a) the results of in-situ campaigns that 

demonstrate 0.04 m
3
/m

3 
as the typical spread of soil moisture observations, b) by an acceptable 

estimation of the evaporation and soil transfer when RMSE < 0.04 m
3
/m

3
,
 
and c) by the fact that 

RMSE is currently the most commonly used measure of precision.  The two publications above 

motivated the scientific question: ‘Can we apply the evaluation requirements of SMOS and SMAP 

to the medium resolution ASAR GM SSM product?’ The question can be further split up between: 

“Shall we rely on an usage of a single RMSE criterion?” and “Can we setup an absolute threshold 

as an RMSE requirement?”. 

Before answering these questions, let us better understand the differences in the units. The 

relative units of the ASAR GM SSM product range between 0.0 and 100 % of saturation. The 

range of the volumetric units spans between 0.0 and 1.0 m
3
/m

3
. To transfer volumetric to relative 

units, the former needs to be divided by soil porosity. This is because the volumetric soil moisture 

expresses the amount of water in the entire soil mass (pores and solid form) while the relative 

soil moisture expresses only amount of water in soil pores.  Given the soil porosity over Australia 

ranging between 0.3-0.6 (Rodell et al., 2004) the transferred requirement on relative soil 

moisture ranges between 13 % of saturated soil moisture over low-porosity soils to 6.6 % of 

saturation over high-porosity soils.  

The findings from chapter 4  demonstrated that all measures describe slightly different data 

quality. Inversely, it can be expected that no single measure can describe all qualities of the ASAR 

GM SSM product. Furthermore, section 2.3 demonstrated that no application relies only on a 

single quality of SSM data. These findings let us conclude that assessing a single measure when 

evaluating ASAR GM SSM may not be sufficient and gives an evident answer to the first question.  

Several arguments to the second question are provided below: 

First, if an absolute agreement between different SSM time-series differences originating from 

different sensing depths, represented spatial extent, and different units need to be removed. The 

selection of an appropriate transformation needs to be performed with a careful consideration of 

data distribution and assumptions of transformation techniques (section 4.1). 

Justification of 
the question 

Bias removal 
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Second, the section 4.2.1.1 showed that RMSE is a spatially variant measure that strongly reflects 

variances of datasets. As a result,  a threshold of 0.04 m
3
/m

3
 can be easier met in desert regions 

than over wet areas with high soil moisture variance. Furthermore, the Australian soils in wet 

areas have higher porosity than soils in dry regions (Rodell et al., 2004), can hold more water, and 

the soil moisture variance is therefore higher. Consequently,  the threshold of 0.04 m
3
/m

3
 

becomes even more challenging to fulfill. It is evident that the general requirement on RMSE 

should be spatially varying and reflect  PDF of soil moisture. Another possibility might be using 

the nRMSE measure as a threshold that is independent of data distribution (section 4.2.1.2).  

Third, RMSE is computed between two datasets where one is often but wrongly assumed to be 

more accurate than the other. Nevertheless, there is no true estimation and assumptions about a 

true estimation have been demonstrated to generate a bias (Entekhabi et al., 2010). This is 

because every dataset, even a reference, possess random and systematic errors that affect the 

final value of RMSE. The systematic errors reflect the differences at spatial scales, sensed depths, 

and the dynamic of the models. These significantly influence RMSE (Figure 23). Removing 

systematic bias prior to RMSE computation is therefore essential (section 4.1 and 4.2.1.5).  

Fourth, RMSE estimates differed even after the removal of systematic bias (Figure 17). Such 

differences reflect random error combined with a systematic time variant error (e.g. due to 

missing parameter in the model) of the second dataset. These cannot be removed during dataset 

transformation (4.1.2). This finding suggests that independent methods need to be used to 

specify an absolute RMSE quality threshold (e.g. TC).  

Sixth, RMSE computed at 1 and 5 km spatial scale significantly differed (Figure 24) due to a) the 

noise that decreased with spatial resolution, b) the minimizing effect of spatial mismatch, and c) 

the increasing probability that the products react on identical atmospherical forcing (the AWRA-L 

SSM acts at 5 km scale). The requirements on accuracy of SMOS and SMAP missions were 

dimensioned to sensors with 25 km spatial resolution. If higher resolutions are evaluated the 

thresholds are expected to increase and contra versa.  

The above findings demonstrated that the requirement on RMSE < 0.04 m
3
/m

3
 is not directly 

applicable to the medium resolution ASAR GM SSM dataset. The major reasons are summarized 

below: 

 A single evaluation measure, such as RMSE, can only assess one dataset quality. 

Nevertheless, different applications were demonstrated to require a variety of qualities 

of the ASAR GM SSM product. 

 Defining a single RMSE value as a threshold doesn’t judge quality of the ASAR GM SSM 

over very wet and over very dry areas correspondingly. 

 A portion of the RMSEAW originated in the error of the reference dataset. The selection 

of diverse reference datasets with varying spatial resolution resulted in varying RMSE 

results.  

Several recommendations are listed below that should enable an evaluation of the ASAR GM SSM 

and possibly of all other SSM products: 

Spatially variant 
RMSE 

No absolute 
true SSM 

Effect of other 
datasets in the 
evaluation study 

Effect of spatial 
scale 
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 Do not rely on a single evaluation measure. Use a combination of evaluation measures 

to estimate dataset quality (e.g. RMSE combined with assessment of evolution in time 

(e.g. R or RS)). 

 If assessing RMSE, set up spatially variant thresholds for RMSE reflecting PDFs or rely on 

nRMSE 

 Transform acquired measures to a common dynamics (bias corrected measures). 

 The level of acceptance of the evaluation measures should be derived using 

independent methods that are not effected by random or systematic error of the 

reference dataset (e.g. TC method). 

 The RMSE threshold must refer to a specific spatial resolution. 

5.2 How does the selection of spatial resolution influence 

error estimates? 

Several methods were introduced in section 4.2 that estimate random and/or systematic errors 

of soil moisture datasets (TC, RMSE, MAE, and EP). It was demonstrated that the absolute values 

decrease and the spatial patterns of RMSE change with decreasing spatial resolution (Figure 24). 

It is anticipated that change in spatial scale influences also other absolute error estimates such as 

MAE, TC, or EP. This anticipation is supported by the findings of Martinez-Fernandez and Ceballos 

(Martinez-Fernandez & Ceballos, 2005) who demonstrated that scaling errors can be larger than 

the retrieval error of a single dataset. Similarly, Cosh at el. (Cosh et al., 2008) demonstrated that 

spatial representativeness of the ground observations largely influence the absolute error 

measure. 

These findings are of a great importance because the usage of datasets with varying spatial 

resolution is very common in evaluation studies and will increase with the upcoming launch of 

new coarse (e.g. SMAP) and medium (e.g. Sentinels) resolution sensors. This justified the 

question: ‘How does the selection of spatial resolution influence error estimates?’ While 

numerous studies addressed the role of scaling error for evaluations in-situ – remotely sensed 

data (e.g. Michael H Cosh et al., 2008; Miralles et al., 2010) there is only limited literature 

addressing the scaling problem in evaluations studies performed between spatial data with 

different resolutions. 

The absolute values of RMSEAW decreased with decreasing spatial resolution. Important to note is 

that also the spatial patterns changed; especially so over northeastern Australia and desert 

regions (Figure 24). The observed RMSE was impacted by several factors. First, it is influenced by 

random and time-variant systematic errors of the two datasets (see section 2.2.3.1); for instance  

RMSEAW is impacted by errors of ASAR GM and AWRA-L SSM. The letter errors act at different 

spatial scales. In particular, the AWRA-L errors are expected to be related mainly to rainfall 

forcing acting at large scales (> 25 km), and to rock outcrops, salt lakes and soil types acting at 

medium scales (  5 km). The ASAR GM errors are affected by medium scale geomorphological 

and land cover patterns acting at medium scales (  1 km). Second, if errors of the datasets are 

not fully independent their error covariances may also impact RMSE (Zwieback et al., 2012) and 

this is not easy to estimate. Third, RMSE decreases with decreasing resolution as a result of 

improved radiometric accuracy of the dataset (section 4.2.1.6). 

Justification of 
the question 

Effect of scale 
on RMSE 
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The above findings suggest that, at 1 km resolution, RMSE is impacted mainly by the errors  of 

the ASAR GM SSM product whereas errors of both datasets impact the patterns at 5 km scale. 

This results in differences in spatial patterns as well as in absolute values seen in the two RMSE 

maps. The theory was supported in section 4.3.2 by a close correspondence between predicted 

RMSE and     at 1 km but an insignificant correlation at 5 km scale (Figure 34).  

The question is if one can generalize this finding to say that the absolute errors are always 

dominated by the errors of the finer dataset. This, however, does not appear so evident. For 

instance, RMSEAG, RMSEAE, and RMSEAM seemed to be impacted by random errors of both 

datasets when assessed at 5 km scale (section 4.2.1.1) even though the ASAR GM SSM was 

retrieved at finer, 5 km, and the other datasets at coarser, > 25 km, spatial resolution. The 

assumption is that the ASAR GM errors largely decreased when averaged to 5 km (section 4.2.1.6) 

what transformed their errors to a comparable range with the errors  of the coarser resolution 

datasets. Importantly, the actual proportion of the separate errors remains unknown. 

Similar scaling effects influenced the triple collocation method. The interpretation is more 

complex given that a third dataset is required by the method. Figure 45 demonstrates results of 

   
  computed using AMSR-E, and three models acting at 5 km and at 25 km spatial scale, 

respectively. The triple collocation method relies on the availability of three datasets; their errors 

are expected to mitigate each other given their independency. The AMSR-E errors are expected 

to be of smaller magnitude than errors of the medium resolution datasets (ASAR GM and AWRA-

L), partly also due to the high noise of the ASAR GM data. As a result, the independent error 

differences cannot fully mitigate themselves (Figure 39 – Figure 41) because the individual 

covariances are not equal to 0. As a result,    
  may reflect some portion of the random and 

systematic error of AWRA-L SSM.  

Figure 38 demonstrates that different error magnitudes may result in a dependency of the 

separate differences. This may signify dependency of the errors themselves what would violate 

the TC presumptions. Such violation could be a reason why the selection of the third dataset, 

despite the differing expectations (Dorigo et al., 2010), influenced the final estimates of    
 . 

Despite the above hesitations the study was performed using data with different spatial 

resolutions simply because no other than AWRA-L dataset existed at the time of this research at a 

scale corresponding to the ASAR GM scale.  

5.3 Is there a best combination of measures to describe the 

quality of ASAR GM SSM dataset? 

This work demonstrated that a) every application has slightly different requirements on dataset 

quantities (section 2.3), and that b) there is no single measure that can describe all dataset 

qualities  (chapter 4). The appropriate evaluation method seems to consist of combination of 

several evaluation measures based on the application (some were suggested in Table 3). Often, 

the application of the data is not known at the stage of the algorithm development. In such cases, 

several measures need to be assessed that each represents different dataset quality and so that 

possibly all qualities are described. To easier assess the needs for such method the evaluation 

measures were divided in to three groups according to the quality these describe: a) random and 

Effect of scale 
on TC 

Justification of 
the question 



 89 

 

systematic error assessment (RMSE, MAE, EP, TC), b) assessment of the evolution in time (R, RS), 

and c) bias. 

The discussion below summarizes and confronts evaluation methods for these three groups. The 

comparison is based on the results achieved in chapter 4 for the ASAR GM data.  

5.3.1 Absolute evaluation measures 

This chapter summarizes and confronts following absolute evaluation measures – RMSE, MAE, TC, 

and EP. The discussions assume a good quality of the ASAR GM SSM model. While RMSE, MAE, TC, 

and EP measures are similar in the sense that they refer to dataset absolute error they differ due 

to the different weight they assign to time-variant systematic and random errors (section 

2.2.3.2).    
  was computed using ASAR GM, AMSR-E, and AWRA-L SSM dataset.  

Throughout this sections MAE was used instead of RMSE. Following few paragraphs justify why 

MAE was prioritized. 

RMSE is one of the most common evaluation measures used to estimate dataset error. An 

important feature is that it quadratically penalizes residuals between parameters to address 

problem of large residuals. By doing so the measure accounts for the dataset variability and 

magnitude field but loses its functional relationship with absolute error (Willmott & Matsuura, 

2005). MAE, on the contrary, has a functional relationship with the mean absolute error.  

Section 4.2.1.3 demonstrated that the relative patterns of RMSE and MAE are extremely similar 

and the absolute values only slightly differed. While MAE doesn’t warn about existence of large 

variability within datasets, it can be easily interpreted as a mean absolute error between the 

ASAR GM and AMSR-E SSM datasets.  

The discussion above and the demonstrated results in 4.2.1.3 suggest that MAE has a better 

potential as an estimate of the dataset mean absolute compared to RMSE. These findings are 

supported by findings of Wilmott and Matsuura (Willmott & Matsuura, 2005) who first suggested 

that teasing variance out of evaluations of absolute error may be inappropriate.  

Importantly, Figure 21 demonstrated that the difference between error (MAE) and standard 

error (RMSE) is minimal and thus MAE can be used to compare against other absolute standard 

errors such as EP or TC, using MAE as a measure that is very easy to interpret.  

The theoretical differences and similarities between RMSE and    
  were discussed in section 

2.2.3.2. Given the similarities between RMSE and MAE the findings can be easily transformed also 

to MAE. Aassuming a good quality of the ASAR GM SSM model a good correspondence between 

   
  and MAE would indicate a) a minimum error of the reference datasets in MAE, and b) a 

complete fulfilment of the assumptions on    
 ; especially about the independency of the residual 

errors (section 2.2.3.2). 

The results are displayed in Figure 47 and demonstrate a significant correlation between    
  and 

MAEs. This finding that would, according to the theory from section 2.2.3.2, suggest minimum 

error of the reference dataset in MAE is surprising mainly because RMSE and MAE was found 

strongly impacted by the error of the second dataset in section 4.2.1. As more realistic therefore 

appears that both of the assumptions a) and b) were violated and that both MAE and TC methods 

MAE and TC 

RMSE versus 
MAE 
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address a combination of random and a systematic time-variant error of both (all three in case of 

the TC method) datasets.   

The highest correspondence was found between    
  and MAEAM. This is probably influenced by 

the selection of the reference dataset (AMSR-E) in both the TC and MAE method. The impact of 

the third dataset on    
  when computed at 5 km scale has been demonstrated in Figure 45. 

 

Figure 47. Scatterplots displaying relationship between MAE and    
 . The MAE was computed 

using ASAR GM SSM and a) AWRA-L dataset (MAEAW), b) AMSR-E dataset (MAEAM), c) ERA-Interim 

dataset (MAEAE), and d) GLDAS-Noah (MAEAG). The analyses were performed at the 5 km scale. 

The units are percentage (%) of saturated soil moisture. The color represents the density of points 

ranging from high (black) to very low (yellow). 

The spatial patterns between MAEAM and    
  are displayed in Figure 47. Given the above listed 

results the comparison was performed using MAEAM that demonstrated the highest 

correspondence with    
 . The relative patterns of highs and lows in MAE and    

   maps 

correspond very well with highs in southwestern, eastern, northern Australia, and over desert 

regions. As already discussed in section 4.2.4, MAE is higher than    
  because it weights the 

systematic time-variant error differently.    

 

Spatial patterns 
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Figure 48.    
  computed using AMSR-E and AWRA-L (left) and MAEAS computed between ASAR 

GM and AMSR-E. The grey areas display the non-significant correlation values (p>0.05). The 

analyses were performed at the 5 km scale. The units are percentage (%) of saturated soil 

moisture. 

The differences and similarities between RMSE and     were amply discussed in section 2.2.3.2. A 

high correspondence of EP and MAE would indicate a) a minimal error of the reference dataset, 

and b) a good understanding of the propagated errors in the EP method. Vice versa, low 

correspondance would refer to the error of the reference dataset, or to a wrong understanding 

of the propagated errors in the EP method.  

The results comparing MAE and     are displayed in Figure 50 and demonstrate non-significant 

correlation for all combinations of     and MAEs. The low correlation is expected to be impacted 

by a time-variant systematic error introduced by the second dataset. This doesn’t impact     but 

does MAE. The importance of the time-variant systematic error has been addressed in 4.2.1.1. 

This is a new result suggesting that previous findings (Doubková et al., 2012) demonstrating the 

ASAR GM SSM error as the main source in RMSE hold only at the resolution of the ASAR GM 

dataset (1 km). 

Other explanations of the low correlations explore the propagated errors in EP. First, the errors 

propagated in EP were assumed to be constant in time. This may have been violated especially 

over areas with high seasonality (northern Australia). Second, given that EP, as derived in this 

thesis, doesn’t address the variance of SSM data. Last reason, though probably of minor 

importance, is the fact that the separate propagated errors are not necessary independent as 

demonstrated on the relationship of slope ( ) and sensitivity (S) over Oklahoma (Pathe et al., 

2009b).  

MAE and EP 
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Figure 49. Scatterplots displaying the relationship between MAE and    . The MAE was computed 

using ASAR GM SSM and a) AWRA-L dataset (MAEAW), b) AMSR-E dataset (MAEAM), c) ERA-Interim 

dataset (MAEAE), and d) GLDAS-Noah (MAEAG). The analyses were performed at the 5 km scale. 

The units are percentage (%) of saturated soil moisture. The color represents the density of points 

ranging from high (black) to very low (yellow). 

 

Figure 50.     (left), and MAEAW computed between ASAR GM and AWRA-L. The grey areas 

display the non-significant correlation values (p>0.05). The analyses were performed at the 5 km 

scale. The units are percentage (%) of saturated soil moisture. 

Figure 49 provides a spatial understanding to the relationship between MAEAW and    . Severe 

differences between MAE and     were evident over most of the continent. In fact, the 

relationship seems inversed and supports the findings in Figure 49.  

Spatial patterns 
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The absolute values differ substantially with the 0 – 4 % saturation ranges for     and 0 – 18 % 

saturation ranges for MAEAW. Differences in absolute values were expected (section 4.2.4) as 

MAEAW estimates both random and systematic error, while     only estimates the random error. 

The following discussion only compares relative values evident in Figure 50 as highs (red) and 

lows (blue). 

While relative MAE is higher than     in the desert regions, over coastal regions, and in 

southeastern Australia, the opposite trend is shown in eastern and northern Australia. The 

possible reason for the high MAEAW over desert regions may be the high, but not accounted in 

the EP, variability of the ASAR GM sensitivity (S) (section 3.1.1) in the central desserts caused by 

the severe but exceptional rains. The high sensitivity propagates the EP through the model and 

decreases the final     without considering its high seasonal variance. Also, the parameter S is 

derived from the reference probabilities of the ERS scatterometer (Pathe et al., 2009b). Some 

inaccuracies in the references should therefore be expected given the differences in the 

sensitivity of the SAR and scatterometer to roughness effects of soils and vegetation. Similarly, 

the higher relative values of     in northern and northeastern Australia may be explained by the 

potential underestimation of S.  

The differences and similarities between     and    
  were amply discussed in section 2.2.3.2. A 

good correspondence of the EP and TC error maps would indicate a) a complete fulfilment of the 

TC assumptions and b) a good understanding of the propagated errors in the EP.   

 

Figure 51. Scatterplot displaying the relationship between     and    
  errors. The analyses were 

performed at the 5 km scale. The units are percentage (%) of saturated soil moisture. The color 

represents the density of points ranging from high (black) to very low (yellow). 

The results are displayed in Figure 51 and Figure 52 and demonstrate a non-significant 

correlation between the two measures. The possible explanations coincides with those explaining 

the differences between     and MAEAW and relate to the fact that a) the     error represents 

only random error while other measures, included MAE and    
 , may be effected by the time-

variant systematic error and b) some assumption of the EP method may be violated (e.g. 

independency of input parameters, or the assumption that these are stable in time).  

The first point deserves further attention. The parameter    
  was assumed not to be effected by 

random and time-invariant errors of the second and the third dataset (Dorigo et al., 2010) as the 

independent dataset errors mitigate each other. Nevertheless, this assumption has been shown 

violated in section 4.3 when data of different spatial resolutions and noise levels were used. As a 

EP and TC  

Spatial patterns 
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result the spatial patterns of    
  derived with other models somewhat differed (Figure 45) and 

reflected errors of the models used in the TC. Despite the latter, the TC method demonstrated a 

good ability to detect errors of AMSR-E dataset (Dorigo et al., 2010; Parinussa et al., 2011).  

 

Figure 52.     (left) and    
  computed using AMSR-E and AWRA-L (right). The grey areas display 

the non-significant correlation values (p>0.05). The analyses were performed at the 5 km scale. 

The units are percentage (%) of saturated soil moisture. 

5.3.2 Relative evaluation measures 

Two evaluation measures were introduced in chapter 4.2.2 – namely R and RS. It was expected 

that RS mitigates the effect of seasonality that is so strongly imprinted in R. Following section 

investigates the differences in qualities between these two measures. 

As demonstrated in Figure 53 the difference between the two coefficients for the ASAR and 

AMSR estimates ranges between -0.4 to 0.3. Rs and is generally lower over central and western 

Australia. Here, a minimal soil moisture variation, intercepted with rare but severe rainfall events, 

can be expected. While R values may be increased by the magnitude of these rains, the effect on 

RS  is expected to be minimal as RS  is computed on ranked dataset and doesn’t so strongly relate 

to rain event’s magnitudes.   
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Figure 53. The difference between Rs and R (computed as Rs - R) between ASAR GM and AWRA-L 

SSM (left) and ASAR GM and AMSR-E SSM (right). 

An opposite trend is evident over southwestern and southeastern Australia and, for the case of 

AWRA-L data, also over eastern Australia. The potential reason for the improvement in RS over 

vegetated areas may be the non-linear behavior of AWRA-L dataset that impacts to a lesser 

extent Rs than R. Another explanation may be connected to the large biomass. Above a certain 

biomass level the backscatter signal is less sensitive to soil moisture, causing a saturation effect 

and thus non-linear behavior. While this may deteriorate R, it has a negligible effect on Rs.  

5.3.3 Resume 

Important to note is that the goal of the above section was not to decide why one measure is 

better than the other, rather to understand their discrepancies and correspondences.   

The assumptions of the TC method have been summarized in section 2.2.2.2. Not fulfilling some 

of these (e.g. independency of errors) may influence the final TC assessment what was amply 

addressed by (Zwieback et al., 2012). In this thesis, the TC method appeared not to be able to 

eliminate the random and time-variant systematic errors of the second and the third dataset. The 

reasons are not evident but some suggestions are provided below. 

First, it is suggested that the TC method could not fully function with datasets acquired at 

different spatial resolutions, and so, with datasets demonstrating different error magnitudes. The 

second possibly reason may be that the errors were not fully independent as initially assumed 

(section 3.2.2). This is not easy to proof, but an indication of the latter may be the dependency of 

the separate differences demonstrated in Figure 38.  

The effect of errors of ancillary dataset was assessed by exchanging the third dataset and 

studying the impact on    
  (Figure 45). Similar results can be expected if exchanging the second 

dataset. Despite the latter, the TC method demonstrated a good ability to detect errors of the 

three models and AMSR-E dataset, when compared to independent studies (Dorigo et al., 2010; 

Parinussa et al., 2011). The general spatial relative patterns in all three    
  acquired with three 

different models also corresponded (Figure 45). Nevertheless, there seemed to be a secondary 

impact of the errors of other datasets used in the evaluation. This fact was further supported by 

the high correspondence between    
  and MAE (Figure 47). 

TC method 
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The interpretation of MAE is the most evident from all error estimates – it claims to reflect both 

the random and the systematic time-variant error of both datasets.  Nevertheless, the errors of 

the second dataset are not desired when assessing error characterization.  

An important finding was presented in the preceding chapter expanding results of recent 

publication (Doubková et al., 2012). In particular, the random error of the ASAR GM SSM has 

been addressed by the latter publication as the main contributor to the spatial variability of 

RMSE computed between ASAR GM SSM and an independent model. This thesis study 

demonstrated that this no longer holds after averaging both datasets to 5 km scale. At this scale, 

the errors of both datasets contribute to the final RMSE estimate. 

Second, the EP error is not affected by the systematic errors of other datasets and importantly, it 

doesn’t account for the variance of SSM. A correspondence with MAE or TC (both reflecting SSM 

variance and errors of other datasets) should have not be expected at first place. Instead, it is 

suggested that the difference between MAE and    
  may provide a good estimate about the 

random error of the ASAR GM SSM dataset comparable to sas. This assumption is only valid under 

the condition that all errors in the EP are addressed and correctly propagated.  

Bias between soil moisture datasets has only minor importance for the majority of soil moisture 

applications as it is often removed prior to the applied studies. It was added at the end of this 

chapter and analyzed in section 4.2.1.4 as it a) plays an important role in preliminary dataset 

evaluations that are commonly performed by a simple visual comparison of absolute values of 

soil moisture maps and b) may bring further understanding to the separate algorithms. 

Interesting finding arose from the comparison of R and RS measurement. Their differences were 

able to depict effects of high seasonality of saturation of SSM data. 

5.4 What is the quality and what are the limitations of ASAR 

GM SSM data? 

The evaluation results from chapter 4 were summarized in the preceding chapter. The goal was 

to identify and understand the reasons for the discrepancies and correspondence between 

separate evolution measures.  This chapter summarizes the same results from the user point of 

view.  

The largest advantage of the ASAR GM SSM dataset is undoubtedly its spatial resolution. Until 

recently, only coarse resolution soil moisture datasets were available that often discouraged the 

hydrological community operating at local (meters or few km) scales. The ASAR GM data are 

provided at 1 km spatial resolution and allow detection of spatial patterns that cannot be 

detected in coarse resolution sensors. This is an advantage especially over areas with 

precipitation and landcover heterogeneity (Meier et al., 2010; Pathe et al., 2009b).   

Furthermore, the ASAR GM SSM onboard ENVISAT allows for SAR acquisitions every 2-3 days 

over Australia and approaches so the requirement of WMO (WMO, 2012) of at least daily 

coverage of soil moisture for medium resolution products. As such the ASAR GM SSM product is a 

first sensor with quasi-operational abilities (Doubkova et al., 2009). 
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High spatial resolution decreases radiometric accuracy. Analyses demonstrated that at 1 km 

resolution the ASAR GM SSM is influenced by large noise (> 1.2 dB) that rapidly decreases to 0.21 

dB when averaged to 5 km spatial resolution (section 4.2.1.6). It is expected that providing ASAR 

GM SSM dataset at > 5 km resolution may increase the number of data users. Similar findings 

were suggested by (Thoma et al. 2008) who showed a need of spatial averaging and filtering to a 

regional scale (i.e. 0.5 or 1 km) for high resolution radar imagery.  

Table 5. The mean and standard deviation of EP, TC, MAE, R, and Rs measures computed as an 

average over the entire continent. The analyses were performed at 5 km and 1 km (only for the 

purpose of comparison) spatial resolution. Over 250 000 pixels were used. 

 Median (%) 
(5km) 

Stdev (%) (5 
km) 

Median (%) 
(1 km) 

Stdev (%) 
(1 km) 

TCAW 9.44 2.12   

TCAE 8.45 1.88   

TCAG 9.20 1.80   

EP 2.65 0.54   

MAEAW 8.42 1.75 17.8 2.90 

MAEAM 7.81 1.49   

MAEAE 7.81 1.49   

MAEAG 8.19 1.66   

RAW 0.44 0.19 0.31 0.17 

RAM 0.62 0.17   

RAE 0.62 0.17   

RAG 0.57 0.17   

RsAW 0.39 0.21   

RsAM 0.46 0.22   

The estimated errors  (Table 5) are several times higher than the average error of the ERS SSM 

(0.028 m
3
/m

3
)

 
(Scipal et al., 2008b) and, as expected, also than the ASCAT SSM product over 

Australia. The only exceptions are the results of the EP that remain below 3 %. Given the very low 

estimated radiometric noise of the data at 5 km (0.21 dB) this number appears to be impacted 

mainly by the errors of the dry and wet references, respectively. These were approximated to 2% 

in equation 3-12. Given the assessment with all other independent error estimates this number 

appears unrealistically low and requires further investigation.  

If approximated from the Table 5, the actual median error of the ASAR GM SSM lies between 

2.65–9.44 % with standard deviation between 0.54–2.12 % of saturated soil moisture. 

Importantly, these are median values; the actual spatial distributions of the errors provided in 

chapter 4 should be given an equal level of importance.  

While the continental averages of the correlation coefficients stayed rather low (Table 5), several 

regions demonstrated a very high correlation (RS > 0.8) and suggest an ability of the ASAR GM 

SSM to detect anomalies that are essential for drought and flood monitoring. These were namely  

southeastern, southwestern, and northern Australia  

Radiometric 
resolution 

Absolute and 
relative error 
estimate 
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The high error estimates of the ASAR GM SSM in the original resolution (right columns in Table 5) 

may be a reason why, until now, the data were only applied after averaging of the original 

product to coarser spatial resolutions. The ASAR GM SSM data were applied for crude qualitative 

(Water Research Commision, 2012) as well as quantitative (Van Dijk & Warren, 2010) evaluations 

of soil moisture datasets. Other applications implemented the data to detect a bias in the coarse 

resolution precipitation dataset (Milzow et al., 2010). Given the average error between 2.65–9.44 

% at 5 km resolution further applications are anticipated.  

Input of soil moisture data into assimilation systems as well as direct input studies demonstrated 

a diversity of results (section 2.3). No evident indicia was provided explaining the conditions 

under which remotely-sensed dataset improve a model.  

To conclude, several reasons were addressed explaining the current lack of applications of the 

ASAR GM SSM data. These include: a) a missing understanding of the required quality and 

quantity of remotely-sensed data in data assimilation systems, b) a low radiometric quality, and c) 

a low revisit period when compared to the coarse resolution dataset. Nevertheless, as 

demonstrated in this work, the error of the ASAR GM SSM improves rapidly with averaging 

already to 5 km scale. Also, order of magnitude improved radiometric quality is expected from 

the upcoming Sentinel-1 sensor. Second, the problem of temporal gaps could be solved using 

double collocation technique (Jin & Henderson, 2011) and third, new assimilation studies are on 

the way that are expected to better characterize the requirements of remotely sensed data in 

data assimilation schemes.  

5.5 Learning from ASAR GM SSM errors for Sentinel-1 

The evaluation approach demonstrated in this work is applicable to any remotely sensed soil 

moisture dataset and can therefore be used to assess the quality of Sentinel-1. It is expected that 

the influence of surface features, such as vegetation and roughness, will be more pronounced in 

the Sentinel-1 scale than it was in the ASAR GM. As a result, additional parameters will need to 

be added to the algorithm that will account for such effects in the change detection algorithm. 

In addition, the demonstrated modelling difficulties of soil moisture at fine scales (Thoma et al. 

2008) suggest averaging and filtering of the raw Sentinel-1 data to a regional scale (i.e. 0.5 or 1 

km) . The question arises how the effect of surface features will emerge at this resolution. A 

detailed discussion on the Sentinel-1 algorithm and error model is beyond the scope of this work, 

but anticipated modifications are likely to include: 

 The improved revisit period might improve the estimation of the individual model 

parameters.  

 Due to a characteristic local incidence angle (Hornacek et al., 2012) the final error of 

Sentinel-1 product is expected to be smaller due to the missing effect of slope error 

 The final error is expected to improve by an order of magnitudes due to a) the improved 

radiometric resolution of the Sentinel-1 backscatter measurements  (0.128 dB) (Snoeij et 

al. 2010) compared to ASAR GM (1.2 dB) and b) the averaging and filtering of the raw 

data to regional scale (i.e. 0.5 or 1 km)   

Currently, data assimilation and direct input of the ASAR GM SSM to models may be restricted by 

its poor radiometric resolution and revisit period. The proposed soil moisture product from 

Possible 
applications 
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Sentinel-1 has a foreseen coverage every six days globally, nearly daily over Europe and Canada 

(depending on latitude) (Hornacek et al., 2012) and by a greatly improved radiometric accuracy. 

As such, it has the potential to be of great benefit for data assimilation, anomaly and threshold 

detection, as well as, direct input into models operating at medium resolution scales.  
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6. Conclusion 

This work comprised three major objectives. First of all, it provided state of the art methods for 

evaluation measures of SSM supplemented by a concise overview of existing applications and 

their suggested evaluation measures. Second, it comprehensively evaluated the ASAR GM SSM 

medium resolution product, and third, it provided general guidance on an appropriate evaluation 

methodology applicable to any SSM product. The results were discussed in the form of answers 

to several questions identified in the introductory part of the thesis, which include following: 

1. Can we apply the evaluation requirement of SMOS and SMAP to ASAR GM SSM? 

2. How does the selection of spatial resolution influence the error estimates? 

3. Is there a best combination of measures to describe the quality of the ASAR GM SSM 

dataset? 

4. What is the quality and what are the limitations of the ASAR GM SSM data? 

5. Learning from ASAR GM SSM errors for Sentinel-1. 

As an answer to the first question, the results demonstrated that the SMOS and SMAP evaluation 

requirements on soil moisture datasets relying solely on RMSE evaluation measure are not 

applicable to other SSM dataset due to  the  fact that a) no single evaluation measure can assess 

all the qualities of a dataset, b) RMSE is a spatially variant. Therefore, it doesn’t judge the 

corresponding quality of the data over wet and over dry areas, and c) a portion of the RMSEAW 

originates in the error of the reference dataset and thus the selection of diverse reference 

datasets with varying spatial resolution results in varying RMSE. It was recommended: 

 not to use a single evaluation measure, rather to rely on a combination of evaluation 

measures to estimate dataset quality (e.g. RMSE combined with the assessment of 

evolution in time (e.g. R or RS)); 

if assessing RMSE then to: 

 setup a spatially variant level of acceptance for RMSE reflecting its PDFs (or to rely on 

nRMSE); 

 derive the level of acceptance of the evaluation measures using independent methods 

that are not affected by random or systematic error of the reference dataset (e.g. TC 

method); 

 transform the acquired measures to a common dynamics (bias corrected measures); 

 derive the thresholds with a consideration of a specific spatial resolution. 

As answer to the second, the major importance of the effect of scaling on the evaluation results 

was highlighted. In particular, it was demonstrated that the absolute evaluation measures (e.g. 

RMSE, MAE, TC) between two or more datasets are impacted unequally by errors of the datasets 

and that the individual error weights are linked to the dataset spatial resolutions. For instance, at 

1 km resolution, the spatial patterns of RMSE were dominated by the errors  of the ASAR GM 

SSM product (Doubková et al., 2012), whereas errors of both the datasets impacted the patterns 

at 5 km scale. These findings are of a major importance due to the frequent usage of datasets 

with varying spatial resolution in evaluation studies, which is expected to increase with the 

upcoming launch of new sensors operating at coarse (e.g. SMAP) and medium (e.g. Sentinels) 

resolutions. 
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It was also interesting to note that the expected error of SSM dataset increases as the spatial 

resolution decreases; most probably due to various factors such as soil and vegetation roughness. 

The requirement of WMO with inverse requirement trend appears inadequate (WMO, 2012). 

The third question was addressed by assessing the quality of the ASAR GM SSM product using a  

number of standard (RMSE, MAE, or bias) and advanced (EP, TC) evaluation measures, as well as 

a combination of remotely sensed (AMSR-E), modeled (AWRA-L, ERA-Interim, GLDAS-NOAH), and 

in-situ (OzNET) SSM estimates. The measures were divided into three groups in accordance to 

the attributes: a) random and systematic error assessment (RMSE, MAE, EP, TC), b) assessment of 

the evolution in time (R, RS), and c) bias.  

The results demonstrated that no single measure could depict all qualities of the dataset. Even 

within the same group, the measures demonstrated different data qualities, which prevented 

finding one best combination of measures – absolute and relative – to use in evaluation studies. 

Yet, following important aspects were found: 

 The impact of errors of the supplementary datasets in the TC method could not be 

mitigated probably due to the different spatial resolutions used in the experiment. 

 As such, TC and MAE closely corresponded yielding a good estimate of the combined 

random and systematic errors of two (and three in the case of TC) datasets. 

 Despite the fact that TC, MAE, and EP are representative of standard error, their 

meaning was in reality not the same. First, TC and MAE were impacted by random as 

well as systematic time-variant errors whereas EP only reflected random error. Second, 

under some conditions the TC method could be affected by errors of the second and the 

third dataset (as demonstrated in section 4.3.3). This was not the case for the EP 

method. Third, the EP method doesn’t address the variance of data while MAE and TC 

do.  

 Other methods are needed to evaluate the quality of the EP method at coarser (> 5 km) 

resolution. It is suggested to follow up on the method suggested by Doubkova et al. 

while improving the understanding of the error of the modeled dataset. For the latter 

the TC method can be applied. Needless to say, there is a need of better understanding 

of the impact of errors of the second and the third datasets. 

 An interesting finding arose from the comparison of R and RS measurements. Their 

differences were able to depict effects of high seasonality or saturation of SSM data. 

 Though less important for the majority of soil moisture applications, the demonstrated 

large bias highlighted the fact that this measure could play an important role in the 

preliminary dataset evaluations that are commonly performed by a simple visual 

comparison of absolute values of soil moisture maps. In addition, it might bring further 

understanding in different algorithms. 

The above discussion further motivated why relying on a single evaluation measure is not 

sufficient to describe overall data quality. Different situation arose if application of the data was 

known. For such cases a method called Evaluation based on Application (EbA) was introduced, 

which suggests a selection of the appropriate evaluation methods according to the application. 

This was summarized in section 2.3.  

Fourth and fifth, the median values of error estimates for ASAR GM SSM over the Australian 

continent ranged between 2.65–9.44% with the standard deviation between 0.54–2.12% of 
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saturated soil moisture. The median of R over the entire continent varied between 0.44–0.62. 

The original error estimates were estimated to approximately 17% of saturated soil moisture. The 

ASAR GM SSM data were provided to users in the original form of 1 km data resolution 

(Doubkova et al., 2009) and applied for crude qualitative (Water Research Commision, 2012) and 

quantitative (Van Dijk & Warren, 2010) evaluations of soil moisture datasets. Other applications 

implemented the ASAR GM SSM data to detect a bias in the coarse resolution precipitation 

dataset (Milzow et al., 2010). 

As of now, the application of the ASAR GM SSM data is still rather limited. The reasons for this 

limited applications were found to be a) a missing understanding of the required quality and 

quantity of remotely-sensed data in data assimilation systems, b) a low radiometric quality, and c) 

a low revisit period of the ASAR GM SSM when compared to the coarse resolution dataset. 

Nevertheless, these problems can be partly avoided. For instance, as demonstrated in this work, 

the error of the ASAR GM SSM improves rapidly with averaging already to 5 km scale. In addition, 

the problem of low radiometric accuracy should be eliminated in the upcoming Sentinel-1 sensor 

due to tis by an order of magnitudes improved radiometric quality. The problem of temporal gaps 

could be solved using double collocation technique (Jin & Henderson, 2011) and third, new 

assimilation studies are on the way that are expected to better characterize the requirements of 

remotely sensed data in data assimilation schemes. 

While individual evaluation methods have been introduced in earlier studies, this work is an 

innovative study as it provided a concise summary of evaluation measures combined with a 

demonstration of their shared use. Furthermore, the innovativeness of the theses lies in the 

transformation of the triple collocation evaluation method, applied until now only to evaluate 

coarse resolution ( 25 km) datasets (i.e. Dorigo et al., 2010; Scipal et al., 2008), to the ASAR GM 

medium resolution SSM product. 

Finally the last aspect of this study as that the findings and suggestions originating from the 

discussion are transferable to other satellite-derived soil moisture data. Of special interest is its 

transfer to data from the planned Sentinel-1 SAR sensor that shares similar technical 

characteristics but has an improved retrieval error comparable to the ASAR GM sensor. The 

operationally available medium resolution soil moisture from Sentinel-1 with a well-characterized 

error is likely to yield benefits for modelling and monitoring of land surface-atmosphere fluxes, 

crop growth and water balance applications. 
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