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Abstra
tWe 
onsider a resour
e 
onstrained wireless sensor network, where a setof distributed sensors and a fusion 
enter (FC) 
ollaborate to estimate anunknown ve
tor sour
e. The basi
 question is, how should a sensor en
odeand/or 
ompress the lo
ally observed data before transmitting it over animperfe
t 
hannel to the FC. This en
oding should be su
h that the FC
an estimate the unknown ve
tor sour
e most a

urately under the givenbandwidth and power 
onstraints for the data transmission. In this thesis,we fo
us our dis
ussion on linear systems, where ea
h sensor linearly en
odesits lo
al observed data and also the FC applies a linear mapping in order toestimate the unknown ve
tor sour
e, based on its re
eived data. We adoptthe Fisher information as our performan
e metri
, whi
h is motivated bytheir relation to the Cramér�Rao lower bound. We investigate two types of
hannel usage between sensors and FC, an orthogonal (i.e., non�interfering)and a 
oherent multiple a

ess 
hannel (MAC). For the 
ase when the sour
eis s
alar�valued, we derive the optimal lo
al sensor rule, when the 
hannelsbetween sensors and FC are orthogonal. We also derive an optimal powers
heduling strategy, when a given total power is optimally s
heduled amongsensors. Simulations show that the proposed power s
heduling performsmu
h better than that for the uniform power s
heduling. For a s
alar�valuedsour
e, we also study the 
oherent MAC under a total power 
onstraint andderive optimal lo
al sensor rules in 
losed form for 
ertain assumptions on the
hannel states. We also show in simulation that the asymptoti
 performan
e,when the number of sensors in
reases, 
riti
ally depends on the di�erentmultiple a

ess s
hemes. For the general 
ase, when the sour
e is ve
tor�valued, we 
onsider only the 
ase of an orthogonal MAC. We derive optimallo
al sensor rules for 
ertain assumptions on the 
hannel states in 
losedform.





ZusammenfassungWir betra
hten ein drahtloses Sensornetz mit begrenzten Ressour
en, in demdie Sensoren ihre lokalen Beoba
htungen an einer unbekannten, im allge-meinen vektorwertigen Quelle, einem so genannten Fusion Center (FC) über-mitteln. Vor allem in drahtlosen Sensornetzen ist die Bandbreite limitiertund Energiee�zienz von groÿer Bedeutung. Aus diesem Grund sollte jederSensor seine Beoba
htungen (Messdaten) komprimiert und/oder 
odiert zumFC übertragen. Das Codieren soll dabei in einer Art und Weise ges
hehen,damit das FC die unbekannte Quelle mögli
hst genau (optimal) s
hätzenkann, für eine vorgegebene maximale Bandbreite und Sendeleistung. ImRahmen dieser Diplomarbeit bes
hränken wir uns auf lineare Systeme, wodie Codiervors
hrift am lokalen Sensor (Sensor�Regel) als au
h die S
hätz-funktion am FC mit einer linearen Transformationen bes
hrieben werden.Als Performan
ekriterium verwenden wir die Fisher Information, motiviertdur
h ihre Beziehung zur Cramér�Rao-S
hranke. Wir betra
hten einer-seits einen orthogonalen (d.h. ohne Na
hbarkanal�Interferenzen), anderer-seits einen koheränten Mehrfa
hzugri�skanal (MZK) zwis
hen den Sensorenund dem FC. Für den Spezialfall einer skalarwertigen Quelle und der An-nahme eines orthogonalen MZKs geben wir die optimale Codiervors
hriftam lokalen Sensor an; eine optimale Leistungs�Verteilungsstrategie, wenneine vorgegebene maximale Gesamtleistung im Sensornetz auf die einzelnenSensoren optimal aufgeteilt werden soll, sodass die maximale Systemperfor-man
e resultiert. Dur
h Simulationen wird gezeigt, dass dadur
h ein sig-ni�kanter Performan
e�Gewinn resultiert, gegenüber der einer glei
hverteil-ten Verteilungsstrategie. Für einen koheränten MZK und einer skalarwerti-gen Quelle werden optimale Codiervors
hriften unter einer Gesamtleistung-begrenzung und für gewisse Spezialfälle an das Kanalmodell gezeigt. Für denallgemeinen Fall einer vektorwertigen Quelle wird im Rahmen dieser Diplo-marbeit nur der orthogonale MZK Fall studiert, wobei unter bestimmten An-nahmen an den Kanalzuständen optimale Codiervors
hriften in ges
hlossenerForm gezeigt werden.
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Chapter 1Introdu
tion1.1 Motivation � Wireless Sensor NetworksConsider a distributed wireless sensor network (WSN), where sensors ob-serve data from a ve
tor sour
e and transmit it, possibly after performingsome prepro
essing, to a fusion 
enter (FC) over an imperfe
t 
hannel. Anexample 
ould be a target tra
king s
enario, where several sensors tra
kthe movement of a target obje
t and transmit their observations to a 
en-tral unit. Cooperative 
ommuni
ations between sensors would 
ost mu
hmore lo
al energy and in addition in
rease the system 
omplexity. There-fore, distributed s
hemes (i.e., non�
ooperative lo
ally) are of more pra
ti
alimportan
e. The FC re
eives the transmitted data set from the di�erent sen-sors, whi
h are in general a�e
ted by the 
hannel more or less, and basedon the re
eived data, it generates a �nal estimate on the unknown sour
efor a spe
i�
 signal pro
essing task. We investigate two types of 
hannelusage between sensors an FC: an orthogonal and a 
oherent multiple a

ess
hannel (MAC). For the 
ase of an orthogonal MAC, the sensors have theirindependent non�interfering 
hannels to the FC. As for a 
oherent MAC,we allow all sensors transmit simultaneously, by assuming that all transmitmessages rea
hes the FC in a 
oherent sum.However, 
ommuni
ations between sensors and FC is 
ostly, as is the 
asein WSNs. Espe
ially in su
h networks is an important fa
t, energy e�
ien
yof their operation. E.g., battery 
apa
ities may be small and their repla
e-ment unfeasible. There 
an be signi�
ant power savings, if less informationis transmitted to the FC, without degrading the overall performan
e. Thebasi
 question is, how to en
ode and/or 
ompress the lo
ally observed databefore transmitting it over the 
hannel to the FC. This en
oding shouldbe su
h that the FC 
an estimate the parameter of interest most a

uratelyunder the given bandwidth and power 
onstraints for the data transmission.There are at least two approa
hes in whi
h the �nite bandwidth 
onstraint
an be modeled. On the one hand, we 
an limit the number of binary bits1



CHAPTER 1. INTRODUCTION 2that ea
h sensor transmit to the FC per observation period (sour
e 
oding).This bandwidth measure is from a digital 
ommuni
ations point of view. Onthe other hand, we 
an limit the number of real�valued messages that ea
hsensor transmit to the FC per observation period, whi
h is dire
tly propor-tional to the physi
al frequen
y bandwidth in the system. This approa
h issuited for analog transmission s
hemes. Throughout this thesis, we adoptthe se
ond bandwidth measure, i.e., we 
onsider analog transmission of real�valued sensor messages (
f. intro of [1℄). The power 
onstraint in 
ontrastlimits the strength of the transmit signals.In this thesis, we dis
uss the joint estimation of a ve
tor parameter by asensor network with a FC. The transmission between sensors and FC is sub-je
t to bandwidth and power 
onstraints. We fo
us our dis
ussion on linearsystems, where en
oding fun
tions at the lo
al sensors and the fusion fun
-tion at the FC are all linear. The reason behind restri
ting to linear modelsis tra
tability. For non�linear models, there are often numeri
al/iterativete
hniques ne
essarily, whi
h in parti
ular often 
onverges only to lo
al op-timum solutions. As a 
onsequen
e of 
onsidering linear models, we 
andes
ribe our lo
al sensor rule by some sensor matrix and additive systemati
noise. The power 
onstraint limits the strength of ea
h transmitted data,while the bandwidth 
onstraint limits the number of real�valued transmit-ted symbols (messages) per observation period. Under a Cramér�Rao lowerbound (CRLB) 
riterion, we design the optimal lo
al sensor rule, based onthe 
hannel states and the se
ond order statisti
s of the lo
al observation.1.2 State of the ArtSimilar questions were addressed by the authors of [1℄ and [2℄. They de-signed optimal lo
al sensor rules under the mean square error (MSE) 
rite-rion and 
onsidered a Bayesian setting in 
ontrast (minimum mean squareerror (MMSE) estimator).In [1℄, they designed optimal lo
al sensor rules by assuming non�orthogonal
hannel usage (the orthogonal 
hannel usage has been studied in [3℄ before),subje
t to bandwidth and/or power 
onstraints, for 
ases where the param-eter of interest and lo
al sensor observations are s
alars or ve
tors.For the s
alar 
ase, they used solutions for the optimal lo
al sensor rulesfrom [3℄ and derived an optimal power s
heduling strategy, i.e., where agiven total transmit power is optimally s
heduled among all sensors su
hthat the a
hieved MSE is maximized. Simulations show that the proposedpower s
heduling strategy signi�
antly improves the MSE performan
e when
ompared to an uniform power s
heduling (i.e., all sensors use the sametransmit power). They have also shown that the MSE performan
e 
riti
allydepends on the di�erent multiple a

ess s
hemes (orthogonal and 
oherentMAC), whi
h has in parti
ular signi�
antly di�erent asymptoti
 behaviours



CHAPTER 1. INTRODUCTION 3(in the sense when the number of sensors in
reases). When the parameterof interest and lo
al sensor observations are ve
tors, they derived a 
losed�form solution of an optimal lo
al sensor rule for a noiseless 
hannel (i.e.,negle
ting the additive 
hannel noise). For a noisy 
hannel, the problem
an be e�
iently solved by a numeri
al method (semi�de�nite programming(SDP)).In [2℄, they di�erentiate between un
orrelated and 
orrelated lo
al sen-sor observations, i.e., whether the lo
al sensor observations are un
orrelatedamong di�erent sensors or not. They 
onsidered the 
ase of estimating a ve
-tor parameter and analyzed the MSE performan
e for a system setup with anorthogonal MAC. For 
orrelated sensor observations, they derived a 
losed�form MSE optimal lo
al sensor rule and showed an optimal power s
hedulingstrategy in a water�lling�like manner so as to balan
e 
hannel strength andadditive 
hannel noise varian
e. For 
orrelated sensor observations, theyfurther developed an iterative algorithm with guaranteed 
onvergen
e to atleast a stationary point of the MSE�
ost.By 
ontrast, we 
onsider a 
lassi
al estimation problem, where the pa-rameter ve
tor is modeled as unknown deterministi
 and use the Fisher in-formation (FI) as the performan
e metri
. The motivation for using the FIis based on its relation to the CRLB.1.3 Organization of this ThesisThe rest of this thesis is organized as follows. In Chapter 2, we review someelementary 
on
epts of 
lassi
al estimation theory. In parti
ular, we intro-du
e the 
on
epts of the CRLB, the Fisher information matrix (FIM) and dis-
uss their properties. We then spe
ialize to the linear Gaussian model (LGM)whi
h will be used throughout the thesis. In Chapter 3, we give a generalproblem formulation for our system model. The FI performan
e metri
 andpower 
onstraints are derived in terms of the lo
al sensor rules. We alsodis
uss some fundamental notions of the optimal experiment design. In par-ti
ular, we introdu
e various optimality 
riteria whi
h 
an be used in the 
aseof a ve
tor�valued parameter. Then, we formulate the basi
 design problemin the most general form, in order to obtain the optimal lo
al sensor rule. InChapter 4, we show the main results of this thesis. We solve the basi
 designproblem for 
ertain spe
ial 
ases, �rst, for the spe
ial 
ase of a s
alar pa-rameter, afterwards, for the general 
ase of a ve
tor parameter, where in thelatter, we are parti
ularly interested in two optimality 
riteria. For the s
alarparameter, we also show an optimal power s
heduling strategy. Finally, inChapter 5, we show numeri
al experiments, �rst, for the s
alar parameter,where we are interested in the optimal power s
heduling performan
e gain.For a ve
tor parameter, we 
ompare the two 
ases of optimal designs withregard to the MSE performan
e in a single sensor setup.



CHAPTER 1. INTRODUCTION 41.4 Symbols and NotationsThroughout this thesis we adopt the following notations: A lower/upper 
aseletter a/A denotes a real s
alar, a boldfa
e/lower
ase letter a denotes a ve
torand a boldfa
e/upper
ase letter A denotes a matrix; R denotes the set of realnumbers, R+ denotes the set of positive real numbers in
luding 0, R\ {0} de-notes the set of real numbers ex
luding 0, R+\ {0} denotes the set of positivereal numbers ex
luding 0, Rm denotes the set of all real ve
tors of dimension
m, R+m denotes the set of all real ve
tors with positive elements; +

√· denotesthe positive square root; | · | denotes the absolute value; sign (·) denotes thesignum fun
tion (returns 1 or−1 depending on the sign of the argument); (·)∗denotes an optimum; min {a1, a2, . . . , aK} and max {a1, a2, . . . , aK} denotethe minimum and maximum of the set {a1, a2, . . . , aK}.Matrix and Ve
tor Analysis: The notations AT , A−1, A−T , A† meanthe transpose, the matrix�inverse, the matrix�inverse�transpose and thepseudo�inverse of a matrix A; I denotes the identity matrix; 1 denotes ave
tor of ones; 0 denotes a ve
tor of zeros. The ith element of a ve
tor a isdenoted by ai, the element of the ith row and jth 
olumn of A is denotedby (A)i,j , the ith 
olumn ve
tor of A is denoted by ai, the ith row ve
tor of
A is denoted by ari . We denote the set of all real (k × k)�symmetri
 matri-
es by Sym (k), �positive semi�de�nite matri
es by NND (k) and �positivede�nite matri
es by PD (k). Let A,B ∈ Sym (k), then the relations A ≥ Bor B ≤ A means that A − B ∈ NND (k), similarly, A > B or B < Ameans that A − B ∈ PD (k) (Loewner ordering among symmetri
 matri-
es). The relation '�', '�', '≻' and '≺' denote the 
orresponding element�wise inequalities for ve
tors. The notation R (A) , {Av ∈ R

m : v = 0} andN (A) , {v ∈ R
n : Av = 0} mean the range and the nullspa
e of the matrix

A ∈ R
m×n. The notation rank (A) means the rank of the matrix A. Theve
tor ei denotes the ith unit ve
tor. The notation 1 ≤ i, j ≤ N meansthat i, j ∈ {1, 2 . . . , N}. diag {x1, x2, . . . , xK} denotes a diagonal matrixwith entries xi for 1 ≤ i ≤ K. tr {A} and det {A} denote the tra
e ad thedeterminant of a matrix A, ‖·‖ denotes the Eu
lidean norm (l2�norm).Statisti
al Signal Pro
essing: The notations Ca and µa mean the auto�
ovarian
e matrix and the mean of the random ve
tor a; a ∼ N (µa,Ca)means that a is Gaussian distributed with mean µa and 
ovarian
e matrix

Ca; var {a} and 
ov {a} mean the varian
e and the auto�
ovarian
e matrix(equivalent to the notation Ca) of a; 
ov {a,b} means the 
ross�
ovarian
ematrix between a and b; E {·} denotes the expe
tation operator.Abbreviations: "Fig.", "w.r.t.", "w.l.o.g." denote "Figure", "with respe
tto", "without log of generality"; "i�" means "if and only if"; "
f." means"
onfer"; "ev.", "p.", "ftn." stand for "evaluated", "page", "footnote".



Chapter 2Basi
 Con
epts of Classi
alEstimation TheoryIn this 
hapter, we will introdu
e the Cramér�Rao lower bound (CRLB)and the Fisher information matrix (FIM) for the general 
ase of a ve
torparameter, whi
h is a fundamental result in 
lassi
al estimation theory. TheCRLB is a lower bound on the varian
e of any unbiased estimator and ispra
ti
ally useful sin
e it provides a ben
hmark against whi
h we 
an 
om-pare the performan
e of any unbiased estimator. In 
ertain 
ases, it evenallows us to �nd the minimum varian
e unbiased (MVU) estimator. Beforewe go into details of the CRLB and the FIM, we review some basi
 
on
eptsof 
lassi
al estimation theory.2.1 The Estimation ProblemLet us 
onsider an unknown, deterministi
 parameter ve
tor θ ∈ R
n. A so
alled fusion 
enter (FC) re
eives the data z and estimates the parameterve
tor θ, based on the observed data z. It should be noted that the FChas no prior information about the parameter ve
tor θ, i.e., we 
onsider the
lassi
al estimation setting in 
ontrast to the Bayesian setting, where theparameter ve
tor is modeled random with a known prior probability densityfun
tion (pdf). The dependen
e of the observed data z and θ is des
ribedby the family of pdfs

f (z;θ) , (2.1)i.e., the notation in (2.1) means, that the pdf of z is parameterized (indexed)by θ. For an estimator θ̂ (z) the estimation error e is de�ned as
e = θ̂ (z)− θ. (2.2)5



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 6The mean square error (MSE) of an estimator θ̂ (z) is given byMSEθ

{
θ̂ (z)

}
=

1

n
E{‖e‖2} (2.2)

=
1

n
E{∥∥∥θ̂ (z)− θ

∥∥∥
2
}

=
1

n

∫

z

∥∥∥θ̂ (z)− θ

∥∥∥
2
f (z;θ).

(2.3)It is important to note that the expe
tation in (2.3) is only with respe
t to z,sin
e θ is non-random. As the notation in (2.3) suggests, the MSE dependson the parameter ve
tor θ in general. The MSE 
an be de
omposed into twoterms1:MSEθ

{
θ̂ (z)

}
=

1

n

∥∥∥biasθ {θ̂ (z)
}∥∥∥

2
+ varθ {θ̂ (z)

}
, (2.4)where the bias of θ̂ (z) is de�ned as the expe
tation of the estimation error

e, i.e.,biasθ {θ̂ (z)
}
, Eθ {e}

(2.2)
= Eθ

{
θ̂ (z)− θ

}
= Eθ

{
θ̂ (z)

}
− θ, (2.5)and the varian
e of the estimator θ̂ (z) is given byvarθ {θ̂ (z)

}
=

1

n
Eθ

{∥∥∥θ̂ (z)− Eθ

{
θ̂ (z)

}∥∥∥
2
}
. (2.6)As the MSE, also the bias and the varian
e of an estimator depend on θ ingeneral.De�nition 2.1.1 An estimator θ̂ (z) is said to be unbiased i�biasθ {θ̂ (z)

}
= Eθ {e} = 0 for all θ. (2.7)As 
an be veri�ed easily, for an unbiased estimator θ̂ (z) it holds thatEθ

{
θ̂ (z)

}
= θ for all θ(
f. (2.5)) and moreover, by (2.4), we haveMSEθ = varθ {θ̂ (z)

}
.We also de�ne the 
ovarian
e matrix of θ̂ (z) by
ovθ {θ̂ (z)

}
= Eθ

{(
θ̂ (z)− Eθ

{
θ̂ (z)

})(
θ̂ (z)− Eθ

{
θ̂ (z)

})T}
. (2.8)1The de
omposition is only valid in the 
lassi
al 
ontext, i.e., if θ is modeled as deter-ministi
.



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 7If θ̂ (z) is unbiased, i.e., Eθ

{
θ̂ (z)

}
= θ for all θ, the 
ovarian
e matrix of

θ (z) from (2.8) equals the "MSE-matrix" Eθ

{
eeT

}:
ovθ {θ̂ (z)
}
= Eθ

{(
θ̂ (z)− θ

)(
θ̂ (z)− θ

)T} (2.2)
= Eθ

{
eeT

}
.Furthermore, 
ovθ {θ̂ (z)

}
= 
ovθ {θ̂ (z)− θ

}
= 
ovθ {e} sin
e θ is deter-ministi
. Note that the kth diagonal element of 
ovθ {θ̂ (z)

} equals the vari-an
e of the kth estimator 
omponent θ̂k, i.e., varθ {θ̂k} =
(
ovθ {θ̂ (z)

})

k,k
,and thus it equals the MSE of θ̂k, if θ̂ (z) is unbiased. In parti
ular, theMSE of θ̂ (z) is obtained as the arithmeti
 mean of all individual MSEs of

θ̂k for 1 ≤ k ≤ n. Hen
e, the MSE is also given by the tra
e of the "MSE-matrix"/error 
ovarian
e matrix/
ovarian
e matrix of an unbiased estimator
θ̂ (z), divided by n:MSEθ =

1

n
tr {Eθ

{
eeT

}}
=

1

n
tr {
ovθ {e}} =

1

n
tr{
ovθ {θ̂ (z)

}}
. (2.9)2.2 The Cramér�Rao Lower BoundGiven an observation z and an estimator θ̂ (z), it is desirable to quantifyhow good the estimator performs, e.g., by 
omparing it against some ben
h-mark. We now introdu
e our 
entral performan
e ben
hmark for the setof all unbiased estimators for a 
lassi
al estimation problem, whi
h is re-lated to the Cramér�Rao lower bound (CRLB) and the Fisher informationmatrix (FIM).2.2.1 The Fisher Information MatrixIn the following, we assume that ∂

∂θk
ln f (z;θ) and ∂2

∂θk∂θl
ln f (z;θ) exist andare absolutely integrable with respe
t to z. Consider an estimation problembased on the observation ve
tor z, whose pdf f (z;θ) is parametrized by theparameter ve
tor θ, whi
h we would like to estimate. We 
an then de�nethe 
orresponding FIM as

Jz (θ) , Eθ

{[
∂

∂θ
ln f (z;θ)

] [
∂

∂θ
ln f (z;θ)

]T}
. (2.10)The FIM is a square matrix of size n × n, where n is the dimension of theparameter ve
tor θ. It should be noted that Jz (θ) depends on the parameter

θ in general. The elements of Jz (θ) are thus given by
(Jz (θ))k,l =

∫

z

[
∂

∂θk
ln f (z;θ)

] [
∂

∂θl
ln f (z;θ)

]
f (z;θ) dz. (2.11)
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an write (2.10) and (2.11) also in the more 
ompa
t form as
Jz (θ) = −Eθ

{
∂

∂θ

∂

∂θ
ln f (z;θ)

} (2.12)and
(Jz (θ))k,l = −Eθ

{
∂2

∂θk∂θl
ln f (z;θ)

}
. (2.13)The FIM is symmetri
, i.e., Jz (θ) = JT

z (θ) ∈ Sym (n) and positive semi-de�nite, i.e., Jz ∈ NND (n). For the set of symmetri
 matri
es, we 
an de�nea partial ordering to be able to 
ompare two or more FIMs [4℄.De�nition 2.2.2 The partial ordering ≥, is de�ned on Sym (s), by
A ≥ B ⇐⇒ A−B ≥ 0 ⇐⇒ A−B ∈ NND (s) ,whi
h is known as the Loewner ordering of symmetri
 matri
es. Note thatthe notation B ≤ A is equivalent to A ≥ B. We also de�ne the 
loselyrelated variant >, by
A > B ⇐⇒ A−B > 0 ⇐⇒ A−B ∈ PD (s) .In the s
alar 
ase, i.e., for s = 1, the Loewner ordering redu
es to thefamiliar total ordering on the real line R. Or, the other way around, the totalordering of the real line R is extended to the partial ordering of the matrixspa
es Sym (s), with s > 1. In Chapter 3, we will de�ne our basi
 designproblem, whi
h is based on the Loewner ordering among FIMs. Anotherimportant property holds, if the data zk are statisti
ally independent for all

1 ≤ k ≤ n. Then, the FIM 
an be written as
Jz (θ) =

n∑

k=1

Jzk (θ) , (2.14)where Jzk (θ) is the FIM for the zkth data. This property 
an be easilyveri�ed sin
e for independent data zk, the pdf f (z;θ) 
an be fa
tored intothe form
f (z;θ) =

n∏

k=1

f (zk;θ) .2.2.2 The Cramér�Rao Lower BoundIf the FIM Jz (θ) is non-singular, i.e., the inverse J−1
z (θ) exists for all θ,it 
an be shown that the MSE matrix/error 
ovarian
e matrix/
ovarian
e



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 9matrix of any unbiased estimator θ̂ (z) is bounded below by the inverse FIM
Jz (θ) [5℄,Eθ

{
eeT

}
= 
ovθ {e} = 
ovθ {θ̂ (z)

}
≥ J−1

z (θ) . (2.15)The inequality (2.15) is referred to as the Cramér�Rao lower bound (CRLB).Throughout this thesis we only 
onsider estimation problems where the FIM
Jz (θ) is non-singular. However, there are also generalizations of the CRLBto situations where the FIM is singular [6℄.2.2.3 E�
ient EstimatorsIf the 
ovarian
e matrix 
ovθ {θ̂ (z)

} of an unbiased estimator θ̂ (z), i.e.,Eθ

{
θ̂ (z)

}
= θ for all θ, attains the CRLB, i.e.,
ovθ {θ̂ (z)

}
= J−1

z (θ) ,then su
h an estimator is 
alled e�
ient, denoted by θ̂e� (z). An e�
ientestimator exists if and only if ∂
∂θ ln f (z;θ) 
an be written as

∂

∂θ
ln f (z;θ) = K (θ) [g (θ)− θ] , (2.16)with some n × n matrix K (θ) and some fun
tion g (θ) [5℄. This estimatoris then given by

θ̂e� (z) = g (z) , (2.17)and its 
ovarian
e matrix is given by
ovθ {θ̂e� (θ)} = J−1
z (θ) = K−1 (θ) , (2.18)i.e., the FIM Jz (θ) = K (θ). If an e�
ient estimator exists, it 
oin
ides withthe MVU estimator and the maximum likelihood (ML) estimator.In the following, we will de�ne the CRLB and the FIM for the spe
ial
ase of a Gaussian distributed observation z. Furthermore, we spe
ializeit to a linear observation model, i.e., when observation z (θ) is linear in θ,be
ause we will 
onsider only that system model ex
lusively throughout thisthesis.2.2.4 The Gaussian CaseFor the 
ase of a Gaussian distributed observation, i.e., we assume z ∼

N (µz (θ) ,Cz (θ)), where Cz is non-singular, it 
an be shown [5℄ that
(Jz (θ))k,l =

[
∂µz (θ)

∂θk

]T
C−1

z (θ)

[
∂µz (θ)

∂θl

]
+

1

2
tr{C−1

z (θ)
∂Cz (θ)

∂θk
C−1

z (θ)
∂Cz (θ)

∂θl

}
.

(2.19)
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onsider the LGM, i.e., the observation z 
an be written in the form
z = Hθ + v,where H is a deterministi
 matrix of size p× q, with p ≥ q and full 
olumn-rank, i.e., rank (H) = q. The random ve
tor v is Gaussian distributed withmean µv and the non-singular 
ovarian
e matrix Cv, i.e., v ∼ N (µv,Cv).The LGM is a spe
ial 
ase of the general Gaussian model with mean µvand 
ovarian
e matrix Cv. Therefore, we obtain the FIM of the LGM byspe
ializing (2.19) as
Jz =

(
∂µz

∂θ

)T

C−1
z

∂µz

∂θ
= HTC−1

v H. (2.20)An important property of the LGM is that the FIM Jz from (2.20) does notdepend on θ. Furthermore, it 
an be shown [5℄ that for a LGM,
• there always exist an e�
ient estimator given by

θ̂e� (z) = (HTC−1
v H

)−1
HTC−1

v (z− µv) , (2.21)
• the estimator is unbiased, E{θ̂ (z)

}
= θ for all θ, and its 
ovarian
ematrix is given by

C
θ̂e�(z) = J−1

z =
(
HTC−1

v H
)−1and does not depend on θ,

• the e�
ient estimator θ̂e� (z) is Gaussian distributed, i.e.,
θ̂e� ∼ N

(
θ,
(
HTC−1

v H
)−1
)
,

• the estimator θ̂e� (z) 
oin
ides with the MVU, the ML and the bestlinear unbiased estimator (BLUE).



Chapter 3Problem Formulation andSystem ModelIn the last 
hapter, we introdu
ed the CRLB and the FIM for a 
lassi
alestimation problem. Sin
e the CRLB is a lower bound on the MSE ma-trix/error 
ovarian
e matrix/
ovarian
e matrix of any unbiased estimator, it
an be used as a performan
e ben
hmark for this 
lass of estimators. As al-ready indi
ated in Chapter 1, our goal is to design optimal lo
al sensor rules,in order to obtain maximal overall performan
e for estimating the unknowndeterministi
 parameter at the FC, subje
t to bandwidth and/or power 
on-straints of the transmit signals. It is 
lose therefore to use the FIM, basedon the �nal observation at the FC, as a performan
e indi
ator, due to theirrelation to the CRLB (
f. (2.15)). In what follows, we setup the systemmodel and problem statement that will be 
onsidered.3.1 System ModelSuppose, there are L ≥ 1 sensors, ea
h making an observation yi ∈ R
miabout an unknown sour
e, whi
h is des
ribed by a parameter ve
tor θ ∈

R
n. We assume that θ is deterministi
, i.e., we have no prior informationavailable. The relation between the sensor observation yi and the parameterve
tor θ is fully des
ribed by the parametrized pdf f (yi;θ). The lo
al sensors
ommuni
ate to a FC, whi
h 
omputes a �nal estimate on θ.In most WSNs, sensors only have limited battery power and limited 
om-muni
ation 
apability. For this reason, lo
al data en
oding/
ompression atea
h sensor is of importan
e, to redu
e 
ommuni
ation requirement betweensensors and the FC. Therefore, we introdu
e as dis
ussed in Chapter 1,bandwidth and power 
onstraints on ea
h transmit signal. We assume, thatthe distributed sensors have no inter�sensor 
ommuni
ation. The role ofea
h sensor is to en
ode/
ompress the observed lo
al data yi to a transmit11



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 12data si by a mapping LOi : yi → si for 1 ≤ i ≤ L.In what follows, we denote su
h an lo
al sensor rule by writing LO. Thetransmit data si for 1 ≤ i ≤ L are then transmitted over a MAC to the FC,whi
h is due to the bandwidth 
onstraint, limited by a �nite dimension. TheFC produ
es a �nal estimate θ̂ (z) of the true parameter ve
tor by applyingsome fusion rule, whi
h is a deterministi
 estimator fun
tion to the re
eivedve
tor z (
f. Fig. 3.1). As already mentioned in Chapter 1, we 
onsider
θ

y1

y2

yL

LO1
s1LO2
s2

LOL
sL

f (
y1
; θ
)

f (y2
; θ)

f (y
L ; θ)

MAC z FC θ̂ (z)
...

Figure 3.1: System model for a sensor network with FC and MAC.throughout this thesis a linear Gaussian setting, i.e., every blo
k in Fig. 3.1
orresponds to a matrix multipli
ation and addition of a Gaussian noiseve
tor.Spe
i�
ally, we assume the sensor observation yi ∈ R
mi are the linear
ombination of θ 
orrupted by additive noise and 
an be des
ribed as

yi = Giθ + ni, (3.1)where Gi ∈ R
mi×n is the known, deterministi
 observation matrix of sensor

i. The additive observation noise ni ∈ R
mi is assumed to be zero�meanand Gaussian distributed with �xed and known 
ovarian
e matrix Cni

, i.e.,
ni ∼ N (0,Cni

). We assume that the observation noise ve
tors ni for all iare un
orrelated a
ross di�erent sensors, i.e., the 
ross�
ovarian
e matrix
ov {ni,nj} = E {nin
T
j

}
= 0 for 1 ≤ i, j ≤ L, i 6= j.The main task of the ith lo
al sensor is to map the lo
al observed data

yi to a trasmit data ve
tor si before transmitting over the 
hannel to theFC, in order to maximize the overall performan
e. As already mentioned,our performan
e indi
ator is based on the CRLB or the FIM for the �nalobservation at the FC (already introdu
ed in Chapter 2). Sin
e we haveassumed a linear and Gaussian setup, we des
ribe the ith lo
al sensor ruleLOi by a deterministi
 matrix Ai ∈ R
qi×mi and some additive systemati




CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 13noise nli , whi
h we restri
t to be zero�mean and Gaussian distributed with
ovarian
e matrix Cli , i.e., nli ∼ N (0,Cli). Both matri
es Ai and Cli , fullydes
ribe our lo
al sensor rule LO of the ith lo
al sensor, i.e., LOi , (Ai,Cli).The LOi performs a linear transformation of yi and adds systemati
 noise
nli , to generate the transmit data si, whi
h is given by

si = AiGiθ +Aini + nli for 1 ≤ i ≤ L, (3.2)where we assume that ni is un
orrelated with nlj (also orthogonal, sin
eboth are zero�mean) for all i and j, i.e.,
ov {ni,nlj

}
= E{nin

T
lj

}
= 0 for 1 ≤ i, j ≤ L.Moreover, we also request that all systemati
 noise ve
tors nli for all i areun
orrelated a
ross di�erent sensors, i.e.,
ov {nli ,nlj

}
= E{nlin

T
lj

}
= 0 for 1 ≤ i, j ≤ L, i 6= j.The bandwidth 
onstraint on si leads to dimensionality 
ondition on Ai,i.e., Ai ∈ R

qi×mi . I.e., the ith lo
al sensor 
an transmit qi messages (real�valued symbols) to the FC, whi
h is determined by the degrees if freedom(dimension) of the 
hannel from sensor i to the FC and is potentially de
idedby the 
hannel bandwidth [1℄. The power 
onstraint on si will be de�ned inthe next se
tion.Ea
h sensor thus transmits their en
oded and/or 
ompressed data si overa 
hannel to the FC. Depending on the di�erent multiple a

ess s
hemes, weinvestigate two 
ases for the MAC between sensors and FC, an orthogonaland a 
oherent MAC [1℄. For the 
ase of an orthogonal MAC, we assume thatthe sensors have their own separate non�interfering 
hannel to the FC. This
an be realized, e.g., by a time�division, 
ode�division or frequen
y�divisionmultiple a

ess s
heme (TDMA/CDMA/FDMA). As for a 
oherent MAC,we allow all sensors transmitting simultaneously by using for example thesame frequen
y band or time slot. Here, we assume perfe
t syn
hronizationbetween sensors and FC, i.e., the transmitted data from all sensors rea
hesthe FC in a 
oherent sum. In the following we 
omplete our model systemfor both multiple a

ess s
hemes and derive the 
orresponding expressionsfor the FIM.3.1.1 Orthogonal MACThe orthogonal MAC 
onsists of L separate and non�interfering 
hannelsbetween ea
h lo
al sensor and the FC. The re
eived ve
tor z at the FC isgiven by the 
on
atenation of L individual re
eive ve
tors zi 
orrespondingto the lo
al sensors (
f. Fig. 3.2). The signal zi re
eived at the FC from the
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θ

y1

y2

yL

A1

nl1

s1

A2

nl2

s2

AL

nlL

sL

H1

H2

HL

nh1

nh2

nhL
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1
; θ
)

f (y2; θ)

f
(y
L ; θ)

FC θ̂
(
{zi}Li=1

)

...
...

...

LO1LO2

LOLFigure 3.2: Linear de
entralized estimation with orthogonal MAC.
ith lo
al sensor, 
an be written as

zi = HiAiGiθ +HiAini +Hinli + nhi for 1 ≤ i ≤ L, (3.3)where Hi ∈ R
pi×qi is the known, deterministi
 
hannel matrix from sensor ito the FC and nhi

∈ R
pi is the additive 
hannel noise, whi
h is again assumedto be zero�mean and Gaussian distributed with the known 
ovarian
e matrix

Chi
, i.e., nhi

∼ N (0,Chi
). Here, we assume that the 
ovarian
e matrix Chiis non�singular. Moreover, we assume that, �rstly, nhi

is un
orrelated with
nj for all i and j, i.e.,
ov {nhi

,nj} = E {nhi
nT
j

}
= 0 for 1 ≤ i, j ≤ L,and se
ondly, nhi

is un
orrelated with nlj for all i and j, i.e.,
ov {nhi
,nlj

}
= E{nhi

nT
lj

}
= 0 for 1 ≤ i, j ≤ L.Additionally, we again request that all 
hannel noise ve
tors nhi

for all i areun
orrelated a
ross di�erent sensors, i.e.,
ov {nhi
,nhj

}
= E{nhi

nT
hj

}
= 0 for 1 ≤ i, j ≤ L, i 6= j.Further, we assume that zi from (3.3) for all i are jointly Gaussian. Notethat the signal model in (3.3) is an instan
e of the linear Gaussian model(
f. Subse
tion 2.2.5) with system matrix H = HiAiGi and noise 
ovarian
ematrix Cn = Czi , where

Czi = HiAiCni
AT

i H
T
i +HiCliH

T
i +Chi

. (3.4)Therefore, we 
an use the expression (2.20) for the FIM of a LGM, to obtain
Jzi

(θ) = GT
i A

T
i H

T
i

(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1
HiAiGi, (3.5)
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e Czi (
f. (3.4)) is non�singular (i.e., invertible), due to the assumptionthat Chi
for 1 ≤ i ≤ L is non�singular. The estimation problem is fully
hara
terized by the joint pdf f (z1, z2, . . . , zL;θ) parametrized by θ. Notethat the joint pdf 
an be fa
tored as

f (z1, z2, . . . , zL;θ) = f (z1;θ) ·f (z2;θ) . . . f (zL;θ) =

L∏

i=1

f (zi;θ) , (3.6)sin
e all data ve
tors zi are statisti
ally independent. This follows from ourassumption that all in the system o

uring noise ve
tors are un
orrelatedto ea
h other (thus 
ov {zi, zj} = 0 for 1 ≤ i, j ≤ L and i 6= j) and theassumed joint Gaussianity of the data ve
tors zi. Hen
e, the FIM for the�nal observation z , {zi}Li=1 at the FC, a

ording to (2.10), 
an be obtainedas
Jz (θ) = E{[ ∂

∂θ
ln f (z1, z2, . . . , zL;θ)

] [
∂

∂θ
ln f (z1, z2, . . . , zL;θ)

]T}(3.6)
= E[ ∂

∂θ
ln L∏

i=1

f (zi;θ)

][
∂

∂θ
ln L∏

i=1

f (zi;θ)

]T


= E[ ∂

∂θ

L∑

i=1

ln f (zi;θ)

] [
∂

∂θ

L∑

i=1

ln f (zi;θ)

]T


(a)
=

L∑

i=1

E{[ ∂

∂θ
ln f (zi;θ)

] [
∂

∂θ
ln f (zi;θ)

]T}

=

L∑

i=1

Jzi
(θ) , (3.7)where Jzi

(θ) has been already derived in (3.5). The derivation in (3.7)veri�es the general 
omposition property (2.14) of the FIM for independentdata. In step (a) of (3.7), we used the linearity property of the operators
∂
∂θ (·) and E {·}, respe
tively. Combining (3.5) with (3.7) yields

Jz (θ) =

L∑

i=1

GT
i A

T
i H

T
i

(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1
HiAiGi.(3.8)It is important to note that the FIM Jz (θ), a

ording to (3.8), does notdepend on the (unknown) parameter θ, whi
h is 
on
eptually appealing.One immediate question that arises here is, for whi
h 
onditions on thesystem model with an orthogonal MAC exists at least one e�
ient unbiased
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ondition for the existen
e of an e�
ient estimator is given in(2.16). Invoking [5, p.89℄, we 
an stri
tly follow the derivation of the e�
ientestimator for a LGM model. With Xi , HiAiGi, the �rst derivative ofln f (zi;θ) 
an thus be written as
∂

∂θ
ln f (zi;θ) = XT

i C
−1
zi zi − Jzi

(θ) θ,where Jzi
(θ) is given in (3.5) and sin
e all zi are statisti
ally independentto ea
h other (
f. (3.6) and the derivation in (3.7)), we obtain

∂

∂θ
ln f (z1, z2, . . . , zL;θ) =

L∑

i=1

∂

∂θ
ln f (zi;θ)

=

L∑

i=1

XT
i C

−1
zi zi − Jzi

(θ)θ

(a)
= Yz− Jz (θ) θ

(b)
= Jz (θ)

[
(Jz (θ))

−1
Yz− θ

]

= K [g (z)− θ] ,

(3.9)
where in step (a), we used (3.7) and introdu
ed

Y ,
[
XT

1 C
−1
z1 XT

2 C
−1
z2 . . . XT

LC
−1
zL

] and
z ,

[
zT1 zT2 . . . zTL

]T
.

(3.10)In step (b), we assumed that Jz (θ) is non-singular. In the last equation of(3.9) we introdu
ed
K , YX

(3.10)
=

L∑

i=1

XT
i C

−1
z1 Xi

(3.8)
= Jz (θ)and

g (z) , (YX)−1
Yz

(3.10)
=

(
L∑

i=1

XT
i C

−1
z1 Xi

)−1( L∑

i=1

XT
i C

−1
zi zi

)

= J−1
z (θ)

(
L∑

i=1

GT
i A

T
i H

T
i C

−1
zi zi

)
.Comparing with (2.16), we 
on
lude the following:

• It exists an e�
ient estimator (
f. (2.17)), whi
h is given by
θ̂e� (z1, z2, . . . , zL) = g (z) = J−1

z (θ)

(
L∑

i=1

GT
i A

T
i H

T
i C

−1
zi zi

)
, (3.11)



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 17and is simultaneously the MVU estimator. It exists i� Jz (θ) and Czifor all i are non�singular.
• The FIM is Jz (θ) = K; it does not depend on θ.
• The estimator θ̂e� (z1, z2, . . . , zL) from (3.11) is obviously unbiased,Eθ

{
θ̂e� (z1, z2, . . . , zL)} = θ for all θ, and its 
ovarian
e matrix (
f.(2.18)) is given by
ovθ {θ̂e� (z1, z2, . . . , zL)} = J−1

z (θ) . (3.12)This is the e�
ient estimator (MVU estimator) for our system model withan orthogonal MAC. It exists if
Jz is non�singular and
Czi is non�singular for all 1 ≤ i ≤ L,

(3.13)where again, the last 
ondition is guaranteed, to due our assumption that
Chi

is non�singular for all i.3.1.2 Coherent MACAs a se
ond model for the link between lo
al sensors and FC, we 
onsiderthe 
ase of 
oherent MAC. Here, the individual transmit signals si of thelo
al sensors, add up at the FC in a 
oherent sum (signals are perfe
tlysyn
hronized between sensors and FC1). We also assume that all by the
hannel 
orrupted trasmitted data ve
tors have the same length p = pi for
1 ≤ i ≤ L. Then, we 
an use the following observation model at the FC (seeFig. 3.3),

z =
L∑

i=1

Hisi + nh =
L∑

i=1

(HiAiGiθ +HiAini +Hinli) + nh, (3.14)where again Hi ∈ R
p×qi is the known, deterministi
 
hannel matrix fromsensor i to the FC and nh ∈ R

p is the additive 
hannel noise, whi
h isagain assumed to be zero�mean and Gaussian distributed with the known
ovarian
e matrix Ch, i.e., nh ∼ N (0,Ch). As in the orthogonal MAC 
ase,we assume that nh is un
orrelated with nj for all j, i.e.,
ov {nh,nj} = E {nhn
T
j

}
= 0 for 1 ≤ j ≤ L,1In the orthogonal MAC 
ase, we only need to assume pair�wise syn
hronization be-tween ea
h sensor and the FC, where syn
hronization among di�erent sensors is not re-quired.
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LOLFigure 3.3: Linear de
entralized estimation with 
oherent MACand further that nh is un
orrelated with nlj for all j, i.e.,
ov {nh,nlj

}
= E{nhn

T
lj

}
= 0 for 1 ≤ j ≤ L.Unless otherwise stated, we assume that the 
hannel matri
es Hi for 1 ≤

i ≤ L are of full 
olumn�rank and the noise 
ovarian
e matrix Ch is non�singular.Let us introdu
e the shorthand
Ãi , HiAi ∈ R

p×mi . (3.15)Due to our assumption, that Hi has full 
olumn�rank, implying p ≥ qi, we
an reobtain Ai from Ãi via Ai = H
†
iAi. Here, H†

i denotes the pseudo�inverse of Hi and is given by H
†
i =

(
HTH

)−1
HT . We refer to Ãi as thesensor�
hannel matrix of sensor i. Let us furthmore de�ne

Ã ,

[
Ã1 Ã2 . . . ÃL

]
, Ã ∈ R

p×k,

G ,
[
GT

1 GT
2 . . . GT

L

]T
, G ∈ R

k×n,

H ,
[
H1 H2 . . . HL

]
, H ∈ R

p×q,

(3.16)where k = m1 + m2 + · · · + mL and q = q1 + q2 + · · · + qL. Let us referto Ã and G as the total sensor�
hannel matrix and the total observationmatrix, respe
tively. Analog, we de�ne the total observation noise and thetotal systemati
 noise by
n ,

[
nT
1 nT

2 . . . nT
L

]T
, n ∈ R

k,

nl ,
[
nl

T
1 nl

T
2 . . . nl

T
L

]T
, nl ∈ R

q.
(3.17)Using the notations in (3.16) and (3.17), we 
an write the observation z atthe FC, given in (3.14), in the form

z = ÃGθ + Ãn+Hnl + nh. (3.18)



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 19Note that the signal model in (3.18) is again an instan
e of the linear Gaus-sian model (
f. Subse
tion 2.2.5) with system matrix H = ÃG and noise
ovarian
e matrix Cn = Cz, where
Cz = Ch +HClH

T + ÃCnÃ
T . (3.19)Therefore, we 
an use the expression (2.20) for the FIM of a LGM, to obtain

Jz (θ) = GT ÃT
(
Ch +HClH

T + ÃCnÃ
T
)−1

ÃG. (3.20)We 
an invoke (2.20), sin
e the 
ovarian
e matrix Cz (
f. (3.19)) is non�singular. This is guaranteed by the assumption that Ch is non�singular.Note that the FIM Jz (θ) in (3.20) does not depend on the parameter θ.As dis
ussed at the end of Subse
tion 3.1.1, we will now analyze 
ondi-tions on our system model with a 
oherent MAC, su
h that it exists at leastone e�
ient unbiased estimator. Now, it is mu
h easier to �nd an e�
ientestimator as in the orthogonal MAC, sin
e we 
an dire
tly use the deriva-tion for a simple LGM in [5, p.89℄, and 
on
lude that it exists an e�
ientunbiased estimator (MVU estimator) i� the FIM Jz (θ) from (3.20) and Czfrom (3.19) are both non-singular. Then, we 
on
lude the following:
• It exists an e�
ient estimator, whi
h is given in (2.21) for systemmatrix H = ÃG (not be 
onfused with H from (3.16)) and noise
ovarian
e matrix Cn = Cz, where H has full 
olumn�rank n and Cnis non�singular, i.e.,

θ̂e� (z) = J−1
z (θ)GT ÃTC−1

z z, (3.21)and is simultaneously the MVU estimator.
• The estimator θ̂e� (z) from (3.21) is obviously unbiased, Eθ

{
θ̂e� (z)} =

θ for all θ, and its 
ovarian
e matrix is given by
ovθ {θ̂e� (z)} = J−1
z (θ) . (3.22)This is the e�
ient estimator (MVU estimator) for our system model witha 
oherent MAC. It exists i� Jz (θ) and Cz are both non�singular. Notethat we already assumed that the 
hannel noise 
ovarian
e matrix Ch isnon�singular and thus Cz is non�singular (
f. (3.19)).Lemma 3.1.3 Consider matri
es A ∈ R

m×n and B ∈ R
n×p, thenrank (A) + rank (B)− n ≤ rank (AB) ≤ min {rank (A) , rank (B)} .Proof. see [7, Lemma 2.1, p.16℄.



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 20Let us �nally derive 
onditions on the system matri
es Ã and G, su
hthat it exists an e�
ient estimator (MVU estimator), whi
h is given in (3.21).This o

urs i� the matrix produ
tH = ÃG has full 
olumn�rank. A

ordingto Lemma 3.1.3, we 
on
lude that rank(ÃG
)
= n when rank (G) = n and

n ≤ rank(Ã) ≤ k. Hen
e, the 
onditions for the existen
e of at least onee�
ient, unbiased estimator on our system model with a 
oherent MAC 
anbe summarized as follows:
n ≤ rank(Ã) ≤ k, rank (G) = n,

p ≥ n, k = m1 +m2 + · · ·+mL ≥ n,and
Cz is non�singular, (3.23)where again, the last 
ondition is guaranteed, to due our assumption that

Ch is non�singular.So far, we have derived the FIM Jz (θ) for both multiple a

ess s
hemes.In both 
ases, it is important to note that, due to the assumption on a LGM,the FIM Jz (θ) does not depend on the parameter θ. Thus, we simply write
Jz in what follows. Before, we de�ne our optimization problem in detail, wewill now introdu
e the power 
onstraint on the transmit data si ∈ R

qi for
1 ≤ i ≤ L, whi
h seems in addition to the already mentioned bandwidth
onstraint.3.2 Power ConstraintRemember that our goal is to determine ea
h LOi for 1 ≤ i ≤ L, su
hthat the FIM or, equivalently, the CRLB for the observation at the FCis optimized. In WSN, energy e�
ien
y is highly desirable, e.g., due tousing battery powered devi
es and 
hanging battery is not possible easily.Hen
e, ea
h lo
al sensor has only limited power available for transmittingthe prepared data si to the FC over the 
hannel. Therefore, we have tointrodu
e an appropriate power 
onstraint for the transmitted data si. Onthe other hand, without 
onsidering su
h a power 
onstraint, we 
an alwaysensure ideal links between sensors and the FC, by s
aling the sensor matri
es
Ai for 1 ≤ i ≤ L, with an arbitrarily large fa
tor. Throughout this thesis,we 
onsider two types of power 
onstraints. The �rst, more natural power
onstraint, is given by

Eθ

{
‖si‖2

}
≤ P0,i for 1 ≤ i ≤ L, (C1)whi
h is the mean power of the transmit data si. The 
onstant P0,i denotesthe known, maximum power for si, whi
h we allow for sensor i. The se
ond
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onstraint readsvarθ {si} = Eθ

{
‖si −Eθ {si}‖2

}
≤ P ′

0,i for 1 ≤ i ≤ L, (C2)whi
h 
onsider in 
ontrast to (C1), the varian
e of the transmit data si.The 
onstant P ′
0,i denotes the known, maximum (varian
e) power for si,
orrespondingly. It is important to note that the expe
tation in (C1)) and(C2) is only with respe
t to si, sin
e θ is modeled as deterministi
. Thesubs
ript θ in (C1) and (C2) indi
ates that the expe
tation of si depends on

θ in general. Both power 
onstraints have their justi�
ation. Note that the
onstraint (C2) is equivalent to (C1), if we 
hoose
P ′
0,i = P0,i − ‖Eθ {si}‖2 , (3.24)whi
h follows dire
tly from the identityvarθ {si} = Eθ

{
sTi si

}
− ‖Eθ {si}‖2 . (3.25)The optimum design for ea
h lo
al sensor with 
onsideration to 
onstraint(C1), will in all likelihood depend on the unknown parameter ve
tor θ, whi
hmakes an implementation not pra
ti
able. However, we 
an estimate theparameter θ, �rst lo
ally, at ea
h lo
al sensor, i.e., for sensor i, we 
omputean estimate θ̂LOi

. With the estimate θ̂LOi
, we are then able to design a, of
ourse, sub�optimum LOi. Note that the ith lo
al sensor has to redesignitself dynami
ally, a

ording to the value of the estimate θ̂LOi

.Let us now spe
ialize the 
onstraints (C1) and (C2) to our spe
i�
 systemmodel. The expe
ted power of the transmit data si, i.e., Eθ

{
‖si‖2

}, where
si is given in (3.2), 
an be expressed asEθ

{
‖si‖2

}
= Eθ

{
sTi si

}

= Eθ

{
(AiGiθ +Aini + nli)

T (AiGiθ +Aini + nli)
}

(a)
= Eθ

{
θTGT

i A
T
i AiGiθ + nT

i A
T
i Aini + nl

T
i nli

}

+ Eθ

{
θTGT

i A
T
i Aini + nT

i A
T
i AiGiθ + nT

liAini

+θTGT
i A

T
i nli + nT

i A
T
i nli + nT

liAiGiθ
}

(b)
= Eθ

{
θTGT

i A
T
i AiGiθ

}
+ Eθ

{
nT
i A

T
i Aini

}
+ Eθ

{
nT
linli

}

(c)
= ‖AiGiθ‖2 + tr{AiCni

AT
i

}
+ tr {Cli} . (3.26)In step (a) and (b), we used the linearity of the expe
tation operator E {·}.In step (b), we used the fa
t that observation noise ni and systemati
 noise

nli have been a

epted as zero�mean and un
orrelated to ea
h other for all
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i, i.e., 
ov {ni,nli} = E {ninl

T
i

}
= 0 for 1 ≤ i ≤ L. The se
ond expe
tationterm in (a) is thus zero. In the last step (
), we obtain the �nal expressionfor the expe
ted power on si. If we write ‖AiGiθ‖2 = θTGT

i A
T
i AiGiθ, we
an reformulate the last equation of (3.26) with the tra
e operator property

a = tr {a} for a ∈ R [8℄, also in the more 
ompa
t form asEθ

{
‖si‖2

}
= tr {θTGT

i A
T
i AiGiθ

}
+ tr{AiCni

AT
i

}
+ tr {Cli}

(a)
= tr {AiGiθθ

TGT
i A

T
i +AiCni

AT
i

}
+ tr {Cli}

= tr {Ai

(
Giθθ

TGT
i +Cni

)
AT

i

}
+ tr {Cli}

(b)
= tr {AiMiA

T
i

}
+ tr {Cli} ,

(3.27)where in step (a) we used the 
y
li
 property and the linearity of the tra
eoperator tr {·} [8℄ and in step (b) we introdu
ed the matrix
Mi , Giθθ

TGT
i +Cni

. (3.28)The varian
e of si, i.e., varθ {si}, 
an be dire
tly obtained by insertingthe last equation of (3.26) into (3.25), i.e.,varθ {si} = ‖AiGiθ‖2 + tr (AiCni
AT

i

)
+ tr {Cli} − ‖Eθ {si}‖2

(a)
= ‖AiGiθ‖2 + tr (AiCni

AT
i

)
+ tr {Cli} − ‖AiGiθ‖2

= tr{AiCni
AT

i

}
+ tr {Cli} ,

(3.29)where in step (a) we insert the mean of si, as 
an be veri�ed easily by
omputing the expe
tation of si, i.e., Eθ {si} = GiAiθ. Note that from(3.29), we 
on
lude that the se
ond power 
onstraint (C2) does not dependon the parameter θ, whi
h is indeed unknown.Let us summarize both power 
onstraints, (C1) and (C2), byEθ

{
‖si‖2

}
= tr{AiMiA

T
i

}
+ tr {Cli} ≤ P0,i for 1 ≤ i ≤ L, (C1)where Mi is given in (3.28), andvarθ {si} = tr{AiCni

AT
i

}
+ tr {Cli} ≤ P ′

0,i for 1 ≤ i ≤ L, (C2)obtained from the last equations in (3.27) and (3.29), respe
tively.3.3 Problem FormulationWe are now able to de�ne our basi
 design problem in a general form. In-spired by the CRLB for the MSE of the MVU, as dis
ussed in the previous
hapter, we 
hoose the lo
al sensor rules LOi for 1 ≤ i ≤ L, su
h thatthe CRLB is minimized or equivalently the FIM is maximized, w.r.t. theLoewner ordering.
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tion 2.2.2, that the CRLB is the inverse of the FIM(
f. (2.15)).Corollary 3.3.4 Let A,B ∈ PD (k), then
A ≥ B ⇔ B−1 ≥ A−1.Proof. see [9, p.471, 
orollary 7.7.4℄A

ording to Corollary 3.3.4, we 
on
lude that minimizing the CRLBis equivalent to maximizing the FIM, w.r.t. the Loewner ordering. Hen
e,we 
an de�ne our optimal LOi, in the sense of maximizing the FIM Jz orminimizing the CRLB J−1
z .De�nition 3.3.5 A lo
al sensor rule LOi, given by (Ai,Cli), is 
alledLoewner optimal, when the FIM Jz (Ai,Cli) satis�es
Jz

(
A∗

i ,C
∗
li

)
≥ Jz (Ai,Cli) ,or equivalently,

J−1
z

(
A∗

i ,C
∗
li

)
≤ J−1

z (Ai,Cli) ,for all (Ai,Cli). The pair (A∗
i ,C

∗
li
), whi
h satis�es the power 
onstraint(C1) or (C2), respe
tively, denotes the (Loewner) optimal LOi for sensor i,denoted by LO∗

i , (A∗
i ,C

∗
li
).The question arises how to maximize a matrix valued FIM in the senseof Loewner optimality. For a s
alar parameter, i.e., θ ∈ R and n = 1, theFIM redu
es to a s
alar fun
tion on LOi = (Ai,Cli). In that 
ase we haveto maximize a s
alar real-valued fun
tion under the 
onstraint (C1) or (C2).For the general 
ase, i.e., for n ≥ 1, the fo
us in
ludes all parameters to beestimated. Su
h optimal designs are 
onsidered in [4℄, where they introdu
edreal-valued optimality 
riteria.3.3.2 Real�Valued Optimality CriteriaIn this subse
tion, we introdu
e real�valued optimality 
riteria, i.e., real�valued fun
tions, whi
h measure (in some sense) the "largeness" of an in-formation matrix. Thus, an optimality 
riteria is a real�valued fun
tion φfrom the domain of positive semi�de�nite matri
es (i.e., on the 
losed 
oneNND(s)) into the real line,

φ : NND (s) → R. (3.30)The fun
tion φ should 
apture the idea of whether an information matrix (aninformation matrix in
ludes the 
lass of FIMs as spe
ial 
ases, 
f. [4, Chapter



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 243℄) is large or small. It is important to note, that su
h a transformation fromthe high dimensional matrix 
one to the one dimensional real line, 
an onlyretain partial aspe
ts. Let C and D be two information matri
es of size s×s.The main properties, whi
h have to be satis�ed by those 
lass of fun
tionsare [4, Chapter 4℄:
• Isotoni
: The main aspe
t of an optimality 
riterion φ is the orderingamong information matri
es. They are isotoni
 relative to the Loewnerordering, i.e.,

C ≥ D ≥ 0 ⇔ φ {C} ≥ φ {D} . (3.31)
• Con
ativity, i.e.,

φ {(1− α)C+ αD} ≥ (1− α)φ {C}+ αφ {D} , (3.32)for all α ∈ [0; 1], C,D ≥ 0.
• Positive homogeneity, i.e.,

φ (δC) = δφ (C) for all δ > 0, C > 0. (3.33)
• Super�additive, i.e.,

φ {C+D} ≥ φ {C}+ φ {D} for all C,D ≥ 0. (3.34)
• Non�negative, i.e.,

φ (C) ≥ 0 for all C ≥ 0, (3.35)and positive, i�
φ (C) > 0 for all C > 0. (3.36)Thus, information 
an never be negative. Noti
e, that positive homo-geneity (3.33) implies that φ vanishes for the null matrix, φ (0) = 0,be
ause φ (0) = φ (2 · 0) = 2φ (0).

• Non�
onstant, i.e.,
φ {C} = φ {D} ⇔ C = D. (3.37)

• Upper�semi
ontinuity, i.e.,
{φ ≥ α} = {C ∈ NND (s) : φ {C} ≥ α} (3.38)are 
losed, for all α ∈ R.
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riteria are the so-
alled matrix means(
f. [4℄), whi
h are denoted by φp for p ∈ [−∞; 1] (throughout this subse
-tion, p denotes the paramater for matrix means; not be 
onfused with thedimension p of the observation ve
tor z in our system model).De�nition 3.3.6 For positive semi�de�nite matri
es, C ∈ NND (s), thematrix mean φp is represented by [4, Se
. 6.7℄
φp (C) =





λmax (C) p = ∞,
(
1
s tr {Cp}

)1/p
p ∈ (−∞, 0) ∩ (0,∞) ,

(det {C})1/s p = 0,

λmin (C) p = −∞,where λmax (C) and λmin (C) denote the largest- and smallest eigenvalue of
C, respe
tively.For the parameter p ∈ [−∞; 1], all stated properties (3.31)-(3.38) for anoptimality 
riterion fun
tion φ are satis�ed [4, Se
. 6.7℄. This family ofoptimality 
riteria fun
tions 
ontain the well�known 
riteria termed D�, A�,E� and T�optimality as spe
ial 
ases.Let us now 
onsider the A� and T�optimality 
riteria in more detail, sin
ethroughout this thesis, we will 
onsider only these two parti
ular examplesof the φp�family, with parameter p = {1,−1}. In what follows, let C be aFIM of size s× s, i.e., C ∈ NND (s) and furthermore C ∈ Sym (s).A�Criterion: The A�
riterion (also known under the name average-varian
e
riterion) 
an be obtained for p = −1, i.e., φ−1 (C) is de�ned by

φ−1 (C) ,

(
1

s
tr{C−1

})−1

, (3.39)for a non�singular C. An A-optimal design minimizes the MSE of an e�
ientunbiased estimator (
f. (2.9), sin
eC−1 is the CRLB). Note that maximizingthe average�varian
e 
riterion φ−1 among information matri
es is the sameas minimizing
1

φ−1 (C)
=

1

s
tr{C−1

}
. (3.40)T�Criterion: The T�
riterion (also known under the name tra
e 
riterion)
an be obtained for p = 1, i.e., φ1 (C) is de�ned by,

φ1 (C) ,
1

s
tr {C} . (3.41)
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riterion has no dire
t pra
ti
al justi�
ation.However, the T�
riterion has the appealing property of being linear, i.e.,
φ1 (k1C1 + k2C2) =

1

s
tr {k1C1 + k2C2}

= k1
1

s
tr {C1}+ k2

1

s
tr {C2}

= k1φ1 (C1) + k2φ (C2) ,

(3.42)where C1 and C2 are two arbitrary FIMs and k1, k2 ∈ R
+. Deriving the T�optimal solution might give some intuition about the stru
ture of the optimalrules for di�erent 
riteria, e.g., the A�optimality 
riterion.With the introdu
tion on optimality 
riteria, we are now able to de�neour basi
 design problem.3.3.3 The Basi
 Optimization ProblemIn the previous subse
tion, we have introdu
ed real-valued optimality 
ri-teria, whi
h enables us to measure information of FIMs. Given su
h anoptimality 
riterion φ, whi
h is de�ned on NND (n), the basi
 optimizationproblem then readsmaximizeLOi=(Ai,Cli)

1≤i≤L

φ {Jz}subje
t to Jz satis�es (3.8) or (3.20)
Ai ∈ R

qi×mi for 1 ≤ i ≤ L,

Cli ∈ R
qi×qi : Cli ≥ 0 for 1 ≤ i ≤ L,(C1) or (C2) is satis�ed, i.e.,(C1) : tr{AiMiA

T
i

}
+ tr {Cli} ≤ P0,i for 1 ≤ i ≤ L,(C2) : tr{AiCni

AT
i

}
+ tr {Cli} ≤ P ′

0,i for 1 ≤ i ≤ L.

(P-I)
De�nition 3.3.7 A lo
al sensor rule, given by (Ai,Cli), whi
h solves (P-I),is said to be formally φ-optimal and is denoted by LO∗

i φ ,
(
A∗

i ,C
∗
li

)
φ
.The FIM Jz is given in (3.8) for a system with an orthogonal MAC andin (3.20) for a system with a 
oherent MAC, respe
tively. This 
alls for max-imizing information as measured by an optimality 
riterion φ. For solving(P-I), we assume that the FC has perfe
t knowledge of the observation modeland the 
hannel states, i.e., the matri
es {Gi,Cni

,Hi}Li=1, moreover, the
hannel noise 
ovarian
e matri
es {Chi
}Li=1 (for the orthogonal MAC 
ase)and Ch (for the 
oherent MAC 
ase), are assumed to be known. This as-sumption is reasonable for a quasi-stati
 s
enario, i.e., when {Gi,Cni

,Hi}Li=1and {Chi
}Li=1 or Ch, respe
tively, 
hange slowly in a quasi-stati
 manner.The optimization problem in the form (P-I), with an optimality 
riteria φ
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alled φ-optimization problem, sin
e thesolution, i.e., LO∗
iφ

=
(
A∗

i ,C
∗
li

)
φ
for 1 ≤ i ≤ L depends on the 
hoi
e ofthe optimal design 
riterion φ. Note that we do not ne
essarily require theexisten
e of an e�
ient estimator (
f. 
onditions in (3.13) or (3.23), respe
-tively) - we also study 
ases, when the FIM is singular, unless permitted bythe spe
i�
 optimality 
riterion φ, e.g., the T-optimality 
riterion.After having formulated our basi
 optimization problem (P-I), we willnow present the solutions for (P-I), separately for the 
ase of a 
oherentand an orthogonal MAC. Within this work, we fo
us on solving (P-I) for theorthogonal MAC 
ase, �rst for a s
alar parameter and afterwards for a ve
torvalued parameter, where we are interested on T- and the A-optimal designs.For the 
oherent MAC we 
onsider only the 
ase of a s
alar parameter.
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Chapter 4Optimal Lo
al Sensor RulesIn this 
hapter we will solve (P-I) for 
ertain spe
ial 
ases. First we solve(P-I) with respe
t to the systemati
 noise 
ovarian
e matrix Cli and showthat the optimal Cli o

urs with C∗
li
= 0, without any restri
tion on oursystem model. From then on, we restri
t our system model with Cli = 0for 1 ≤ i ≤ L. Furthermore, we will show that for an orthogonal MAC andin parti
ular for the 
lass of linear optimality 
riterion fun
tions φ, we 
andetermine ea
h optimal LOi independently of ea
h other, whereby we may
onsider a single sensor setup. Afterwards, we will show that we 
an redu
eour original system model to an equivalent model, in whi
h observation and
hannel noise {n′

i,n
′
hi
,n′

h, 1 ≤ i ≤ L
} are beeing independent and identi-
ally distributed (iid) and the 
hannel matri
es {H′

i, 1 ≤ i ≤ L} (only foran orthogonal MAC) have diagonal stru
ture. This model redu
tion 
on-
erning iid observation and 
hannel noise, only o

urs, when we 
onsiderpositive de�nite observation and 
hannel noise 
ovarian
e matri
es in theoriginal system model, i.e., for {Cni
> 0,Chi

> 0,Ch > 0, 1 ≤ i ≤ L}. Us-ing this foundation, we �rst 
onsider the spe
ial 
ase of a s
alar parameterand afterwards the general 
ase of a ve
tor parameter.4.1 Systemati
 NoiseLet us now 
onsider the additive systemati
e noise nli ∼ N (0,Cli ≥ 0) atsensor i, in parti
ular. As a designer of Cli for LOi, we have to 
hoose Clioptimally for (P-I). The next theorem shows that the optimal Cli o

urswith C∗
li
= 0, i.e., negle
ting the systemati
 noise nli at sensors i.Lemma 4.1.8 Let A and B are real symmetri
 matri
es of size s× s, then

A ≥ B ⇒ TTAT ≥ TTBT,for all T of size s× k. If k ≤ s, we also have
A > B ⇒ TTAT > TTBT,29



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 30whenever T has rank k.Proof. see [10, p.470, Observation 7.7.2℄.Theorem 4.1.9 The optimal Cli for a lo
al sensor rule LOi = (Ai,Cli)with �xed sensors matrix Ai is optimal for (P-I) if and only if C∗
li
= 0, foran arbitrary optimality 
riterion fun
tion φ.Proof. We 
onsider a given design for the ith LO, i.e., a sensor matrixAi anda 
ovarian
e matrix Cli , whi
h satis�es the power 
onstraint (C1) or (C2),respe
tively. Then, we will show that the LOi with same sensor matrix Ai,but 
ovarian
e matrix C′

li
= 0, will never result in a de
rease of the FIM

Jz from (P-I) (w.r.t. to the Loewner ordering) or, equivalently, of φ {Jz}(
f. (3.31)) from (P-I). Finally, we will show that C′
li
= 0 also satis�es thepower 
onstraints (C1) or (C2), respe
tively.To that end, we re
all the general expression of the FIM Jz, �rst, for theorthogonal MAC 
ase, given in (3.8), i.e.,

Jz =
L∑

j=1

GT
j A

T
j H

T
j C

−1
zj HjAjGj , (4.1)where the 
ovarian
e matrix Czj is given in (3.4), i.e.,

Czj = Chj
+HjCljH

T
j +HjAjCnj

AT
j H

T
j for 1 ≤ j ≤ L. (4.2)Let us �rst 
onsider the 
ovarian
e matrix Czi (sensor i) from (4.2) for i = j.It is evident that

Chi
+HiCliH

T
i +HiAiCni

AT
i H

T
i ≥ Chi

+HiAiCni
AT

i H
T
ifor all Cli ≥ 0, sin
e HiCliH

T
i ≥ 0 (positive semi-de�nite) for all Hi, sin
e

xTHiCliH
T
i x = yTCliy ≥ 0 for all x ∈ R

pi , y = HT
i x ∈ R

qi . By Corollary3.3.4, we have that
(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1 ≤
(
Chi

+HiAiCni
AT

i H
T
i

)−1 (4.3)for all Cli ≥ 0. We now introdu
e Ti , HiAiGi ∈ R
pi×n. With (4.3) andLemma 4.1.8, we 
on
lude that

TT
i

(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1
Ti

≤ TT
i

(
Chi

+HiAiCni
AT

i H
T
i

)−1
Ti for all Cli ≥ 0.

(4.4)From (4.4), it is obvious that the FIM Jz from (4.1) for any Cli ≥ 0 (atsensor i), is bounded above (for a variable Cli , but otherwise �xed system
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Jz =

L∑

j=1

TT
j

(
Chj

+HjCljH
T
j +HjAjCnj

AT
j H

T
j

)−1
Tj

≤
L∑

j=1,j 6=i

TT
j

(
Chj

+HjCljH
T
j +HjAjCnj

AT
j H

T
j

)−1
Tj

+TT
i

(
Chi

HiAiCni
AT

i H
T
i

)−1
Ti , Ji

z for all Cli ≥ 0.

(4.5)
Note that Ji

z is equivalent to Jz evaluated for C′
li
= 0.Let us now re
all the system model with a 
oherent MAC. The generalexpression for the FIM Jz is then given in (3.20), i.e.,

Jz = GT ÃTC−1
z ÃG, (4.6)where the 
ovarian
e matrix Cz is given in (3.19), i.e.,

Cz = Ch +HClH
T + ÃCnÃ

T , (4.7)and G, Ã, Ch, Cn, Cl are de�ned in (3.16) and (3.17), respe
tively. NotethatCl has blo
k-diagonal stru
ture, whose blo
k-diagonal entries areClj for
1 ≤ j ≤ L (
f. (3.17) and the assumption that all systemati
 noise ve
tors njare un
orrelated among di�erent sensors), i.e., Cl = diag {Cl1 ,Cl2 , . . . ,ClL}.For a given (i.e., �xed) set {Clj

}L
j=1,j 6=i

and variable 
ovarian
e matrix Cli ≥
0 for sensor i, we have that
Cl = diag {Cl1 , . . . ,Cli , . . . ,ClL} ≥ diag{Cl1 , . . . ,C

′
li
= 0, . . . ,ClL

}
, Ci

l (4.8)for all Cli ≥ 0, sin
e1
xTClx = xTdiag {Cl1 ,0, . . . ,0} x+ · · ·+ xTdiag {0, . . . ,Cli , . . . ,0}x

+ · · · + xTdiag {0, . . . ,ClL}x
≥ xTdiag {Cl1 ,0, . . . ,0} x+ · · ·+ xTdiag {0, . . . ,C′

li = 0, . . . ,0
}
x

+ · · · + xTdiag {0, . . . ,ClL}x = xTCi
lx for all x ∈ R

q,Cli ≥ 0.Thus from (4.8), we 
on
lude that
(
Ch +HClH

T + ÃCnÃ
T
)−1

≤
(
Ch +HCi

lH
T + ÃCnÃ

T
)−1 (4.9)for all Cli ≥ 0, sin
e HClH

T ≥ HCi
lH

T for all H (
f. Lemma 4.1.8). Wenow introdu
e T , ÃG ∈ R
p×n. With (4.9) and Lemma 4.1.8, it is obvious1The Loewner ordering A ≥ B, where A,B ∈ Sym (k), is equivalent to x

T
Ax ≥ x

T
Bxfor all x ∈ R

k (
f. [4℄).



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 32that the FIM Jz from (4.6) for any Cli ≥ 0, is again bounded above by
Jz = TT

(
Ch +HClH

T + ÃCnÃ
T
)−1

T

≤ TT
(
Ch +HCi

lH
T + ÃCnÃ

T
)−1

T , Ji
z for all Cli ≥ 0.

(4.10)Hen
e, for a variable 
ovarian
e matrix Cli ≥ 0 at sensor i, but otherwise�xed system setup (orthogonal or 
oherent MAC), we have showed that theFIM Jz is upper bounded by the FIM Ji
z for the same system setup, but
ovarian
e matrix C′

li
= 0, in the sense of the Loewner ordering. Sin
eany optimality 
riterion φ is isotoni
, relative to the Loewner ordering (
f.subse
tion 3.3.2), it holds:

Jz ≤ Ji
z ⇔ φ (Jz) ≤ φ

(
Ji
z

) for all Cli ≥ 0,i.e., the obje
tive fun
tion of (P-I) is bounded above a

ordingly.It remains to verify that the power 
onstraint, i.e., (C1) or (C2), whi
his assumed to be satis�ed for a given LOi with Cli ≥ 0, is also be satis�edwhen C′
li
= 0. Let us re
all the ith 
onstraint of (C1). We 
on
lude that(C1) is also satis�ed for C′

li
= 0, sin
etr {AiMiA

T
i

}
+ tr{C′

li
= 0

}
≤ tr{AiMiA

T
i

}
+ tr {Cli} ≤ P0i ,be
ause tr {0} = 0 and tr {Cli} ≥ 0 for all Cli ≥ 0 [8℄. Analog, we re
all the

ith 
onstraint of (C2). We 
on
lude that (C2) is also satis�ed for C′
li
= 0,sin
e tr {AiCni

AT
i

}
+ tr{C′

li
= 0

}
≤ tr {AiCni

AT
i

}
+ tr {Cli} ≤ P ′

0i ,again, be
ause tr {0} = 0 and tr {Cli} ≥ 0 for all Cli ≥ 0.Thus, we have showed that C′
li
= 0 is the optimum for (P-I), i.e., C∗

li
=

C′
li
= 0.We 
on
lude from Theorem 4.1.9 that optimal Cli for 1 ≤ i ≤ L for(P-I), is given by C∗

li
= 0. Thus, we 
an reformulate the basi
 optimizationproblem (P-I) asmaximize

Ai, 1≤i≤L
φ {Jz}subje
t to Jz satis�es (3.8) or (3.20)ev. for Cli = 0 for 1 ≤ i ≤ L,

Ai ∈ R
qi×mi for 1 ≤ i ≤ L,(C1) or (C2) is satis�ed, i.e.,(C1) : tr{AiMiA

T
i

}
≤ P0,i for 1 ≤ i ≤ L, or(C2) : tr{AiCni

AT
i

}
≤ P ′

0,i for 1 ≤ i ≤ L.

(P-II)
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 Optimization Problem for an Or-thogonal MAC ReformulatedConsider the basi
 optimization problem (P-II) with an optimality 
riterion
φ and for the 
ase of an orthogonal MAC, in parti
ular. The FIM Jz is thengiven in (3.8) for Cli = 0, i.e., it 
onsists of the sum of all individual FIMs
Jzi

from (3.5) for Cli = 0 and for all i, i.e.,
Jz =

L∑

i=1

Jzi
.The next theorem shows that for the 
ase of an orthogonal MAC, we 
ansplit the joint problem (P-II) into L individual and independent problems,if we suppose φ to be linear.Theorem 4.2.10 Consider an optimality 
riterion φ, whi
h also is stilllinear1. Then, an optimal Ai for (P-II), is also optimal formaximize

Ai

φ {Jzi
}subje
t to Jzi

satis�es (3.5) ev. for Cli = 0,

Ai ∈ R
qi×mi ,(C1)i or (C2)i is satis�ed, i.e.,(C1)i : tr {AiMiA

T
i

}
≤ P0,i or(C2)i : tr {AiCni

AT
i

}
≤ P ′

0,i.

(P-III)
The notation (C1)i and (C2)i mean the ith 
onstraint of (C1) and (C2).Conversely, an optimal Ai for (P-III), is also optimal for (P-II).Proof. Let us �rst interpret Jzk

from (3.5) as a fun
tion on Ak for all k, i.e.,
Jzk

= Jzk
(Ak).Let us start with the proof so that an optimal Ai for (P-II) implies opti-mality for (P-III). We 
onsider a given (i.e., �xed) set {A′

j ∈ R
qi×mi

}L

j=1,j 6=i
,whi
h satis�es the 
onstraint in (P-II). A sensor matrix A∗

i is optimal for(P-II) i�
φ



Jzi

(Ai) +

L∑

j=1,j 6=i

Jzj

(
A′

j

)


 ≤ φ



Jzi

(A∗
i ) +

L∑

j=1,j 6=i

Jzj

(
A′

j

)


 (4.11)for allAi ∈ R

qi×mi , whi
h satis�es the 
onstraint in (P-II) (i.e., the ith power
onstraint (C1) or (C2)). On
e we have a

epted φ to be linear, (4.11) yields
φ {Jzi

(Ai)}+ φ





L∑

j=1,j 6=i

Jzj

(
A′

j

)


 ≤ φ {Jzi

(A∗
i )}+ φ





L∑

j=1,j 6=i

Jzj

(
A′

j

)


1An optimality 
riterion φ on NND (s) is linear i� φ {k1J1 + k2J2} = k1φ {J1} +

k2φ {J2}, where J1,J2 ∈ NND (s) and k1, k2 ∈ R
+.
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qi×mi , again whi
h satis�es the 
onstraint in (P-II), implying

φ {Jzi
(Ai)} ≤ φ {Jzi

(A∗
i )} for all Ai ∈ R

qi×mi , (4.12)whi
h satis�es the 
onstraint in (P-II). Sin
e both 
ontraints from (P-II)and (P-III) are identi
al, (4.12) implies optimality of A∗
i for (P-III).Conversely, if A∗

i is optimal for (P-III), then it is evident that
φ {Jzi

(Ai)} ≤ φ {Jzi
(A∗

i )} for all Ai ∈ R
qi×mi , (4.13)whi
h satis�es the 
onstraint in (P-III). Without violating (4.13), we 
anadd on both sides of (4.13)

φ {Jzi
(Ai)}+φ





L∑

j=1,j 6=i

Jzj

(
A′′

j

)


 ≤ φ {Jzi

(A∗
i )}+φ





L∑

j=1,j 6=i

Jzj

(
A′′

j

)


 (4.14)for all Ai ∈ R

qi×mi , whi
h satis�es the 
onstraint in (P-III) and, for anarbitrary, but �xed set {A′′
j ∈ R

qi×mi

}L

j=1,j 6=i
, whi
h satis�es the 
onstraintin (P-II), in parti
ular. With the assumption that φ is linear, (4.14) 
an alsobe written as

φ




Jzi
(Ai) +

L∑

j=1,j 6=i

Jzj

(
A′′

j

)



 ≤ φ




Jzi
(A∗

i ) +

L∑

j=1,j 6=i

Jzj

(
A′′

j

)



 (4.15)for all Ai ∈ R
qi×mi , whi
h satis�es the 
onstraint in (P-III). Again, sin
eboth ith 
ontraints from (P-II) and (P-III) are identi
al, (4.15) implies op-timality of A∗

i for (P-II).Supposing, an optimality 
riterion φ is linear and the system setup in-
ludes an orthogonal MAC for solving (P-II). Then, a

ording to Theo-rem 4.2.10 we 
an solve (P-II) or, equivalently, (P-III) for solving an opti-mal LOi, i.e., the optimal sensor matrix A∗
i . Note that this result 
learlyholds for a s
alar paramater, as a spe
ial 
ase. Any optimality 
riterion φ′would be equivalent and espe
ially linear, sin
e φ′ {k1 + k2} = k1 + k2 =

φ′ {k1} + φ′ {k2} for k1, k2 ∈ R. Thus, for the remaining part of the thesis,we will 
onsider problem (P-III) when we treat the spe
ial 
ase of a s
alarparameter and furthermore, when we determine T-optimal lo
al sensors fora ve
tor parameter, both, for a system with an orthogonal MAC.4.3 Redu
tion to Standard ModelIn Se
tion 4.1, we have already solved (P-I), w.r.t. Cli for all i, where wehave determined C∗
li
= 0 for 1 ≤ i ≤ L. In what follows, we restri
t ouroriginal system model (for both multiple a

ess s
hemes) with Cli = 0 for



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 35all i. Let us rewrite both LGMs, �rst, for the orthogonal MAC 
ase, i.e., the�nal observation zi for all i from (3.3) as
zi = HiAiGiθ +HiAini + nhi

for 1 ≤ i ≤ L, (4.16)where, due to the LGM, zi is Gaussian distributed with mean
µzi = HiAiGiθ, (4.17)and 
ovarian
e matrix
Czi = Chi

+HiAiCni
HT

i A
T
i . (4.18)For the 
oherent MAC 
ase, we rewrite the LGM, i.e., the �nal observation

z from (3.18) as
z = ÃGθ + Ãn+ nh, (4.19)where again, z is Gaussian distributed with mean
µz = ÃGθ, (4.20)and 
ovarian
e matrix
Cz = Ch + ÃCnÃ

T . (4.21)Note that the model parameters for the 
oherent MAC 
ase, i.e., Ã, Gand n 
an be obtained from (3.16) and (3.17), respe
tively. The 
ovarian
ematrix Cn = diag {Cni
}Li=1, due to the assumption that the observationnoise ve
tors ni for all i, are un
orrelated among di�erent sensors.De�nition 4.3.11 Two observations z1 and z2 are said to be equivalent,i� z1 and z2 have the same pdf for every θ, i.e., fz1 (z;θ) = fz2 (z;θ).The next theorem shows that we 
an redu
e the original model, i.e.,the LGMs for both multiple a

ess s
hemes from (4.16) and (4.19), into anequivalent model by the observation- and 
hannel noise ve
tors are beeing iidw.l.o.g. Note that this applies only if we suppose non-singular observation-and 
hannel noise 
ovarian
e matri
es in the original system model. All otherassumptions we have made so far to our original system model (
f. Se
tion3.1) are also valid for the equivalent model.Theorem 4.3.12 (Noise Whitening) Consider the original system model,shown in (4.16) and (4.19) for both multiple a

ess s
hemes. Assuming non-singular 
oarian
e matri
es Cni

, Chi
for 1 ≤ i ≤ L (thus Cn) and Ch,respe
tively. Then we 
an de�ne an equivalent system model, a

ording toDe�nition 4.3.11, for the orthogonal MAC 
ase as

z′i =
1

σh′
i

C
1/2
hi

(
H′

iA
′
iG

′
iθ +H′

iA
′
in

′
i + n′

hi

)
1 ≤ i ≤ L, (4.22)
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i ∼ N

(
0, σ2

n′
i
I
), n′

hi
∼ N

(
0, σ2

h′
i
I
), H′

i , σh′
i
C

−1/2
hi

Hi, A′
i ,

1
σn′

i

AiC
1/2
ni and G′

i , σn′
i
C

−1/2
ni

Gi with σ2
n′
i
> 0 and σ2

h′
i
> 0. Here, we as-sume that n′

i is un
orrelated with n′
hj

for all i and j, i.e., 
ov {ni,nhj

}
= 0for all i and j. For the 
oherent MAC 
ase, we 
an de�ne

z′ =
1

σh′

C
1/2
h

(
Ã′G′θ + Ã′n′ + n′

h

)
, (4.23)where n′

∼ N
(
0, σ2

n′I
), n′

h ∼ N
(
0, σ2

h′I
), Ã′ ,

σh′

σn′
i

C
−1/2
h ÃC

1/2
n and G′ ,

σn′C
−1/2
n G with σ2

n′ > 0 and σ2
h′ > 0. Again, we assume that n′ is un
orre-lated with n′

h.Proof. Let us start with the proof for the orthogonal MAC 
ase. To thatend, we insert H′
i, A′

i and G′
i into (4.22) yields

z′i =
1

σh′
i

C
1/2
hi

(
H′

iA
′
iG

′
iθ +H′

iA
′
in

′
i + n′

hi

)

=
σh′

i
σn′

i

σh′
i
σn′

i

C
1/2
hi

C
−1/2
hi

HiAiC
1/2
ni

C−1/2
ni

Giθ

+
σh′

i

σh′
i
σn′

i

C
1/2
hi

C
−1/2
hi

HiAiC
1/2
ni

n′
i +

1

σh′
i

C
1/2
hi

n′
hi

= HiAiGiθ +
1

σn′
i

HiAiC
1/2
ni

n′
i +

1

σh′
i

C
1/2
hi

n′
hi
,where z′i is Gaussian distributed, with mean

µz′
i
= HiAiGiθ, (4.24)and 
ovarian
e matrix

Cz′i
=

σ2
n′
i

σn′
i
σn′

i

HiAiC
1/2
ni

C1/2
ni

AT
i H

T
i +

σ2
h′
i

σh′
i
σh′

i

C
1/2
hi

C
1/2
hi

= HiAiCni
AT

i H
T
i +Chi

,

(4.25)due to our assumption that n′
i is un
orrelated with n′

hj
for all i and j.Comparing (4.24) with (4.17) and (4.25) with (4.18), we 
on
lude that z′ifrom (4.22) is equivalent to zi from (4.16) for 1 ≤ i ≤ L, a

ording toDe�nition 4.3.11, sin
e both are Gaussian distributed random variables withsame mean and same 
ovarian
e matrix.Let us now 
onsider the 
oherent MAC. To that end, we insert Ã′ and
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G′ into (4.23) yields

z′ =
1

σh′

C
1/2
h

(
Ã′G′θ + Ã′n′ + n′

h

)

=
σh′σn′

σh′σn′

C
1/2
h C

−1/2
h ÃC1/2

n C−1/2
n Gθ

+
σh′

σh′σn′

C
1/2
h C

−1/2
h ÃC1/2

n n′ +
1

σh′

C
1/2
h n′

h

= ÃGθ +
1

σn′

ÃC1/2
n n′ +

1

σh′

C
1/2
h n′

h,where z′ is Gaussian distributed, with mean
µz′ = ÃGθ, (4.26)and 
ovarian
e matrix
Cz′ =

σ2
n′

σn′σn′

ÃC1/2
n C1/2

n ÃT +
σ2
h′

σh′σh′

C
1/2
h C

1/2
h

= ÃCnÃ
T +Ch,

(4.27)again, due to the assumption that n′ is un
orrelated with n′
h. Comparing(4.26) with (4.20) and (4.27) with (4.21), we 
on
lude that z′ from (4.23)is equivalent to z from (4.19), a

ording to De�nition 4.3.11, sin
e both areGaussian distributed random variables with same mean and same 
ovarian
ematrix.A

ording to Theorem 4.3.12, we 
an assume Cni

= σ2
ni
I with = σ2

ni
> 0and/or Chi

= σ2
hi
I with σ2

hi
> 0 for our system model with an orthogonalMAC. Otherwise, we 
an absorb σn′

i
C

−1/2
ni and σ−1

n′
i
C

1/2
ni into the observationmatrix Gi and the sensor matrix Ai, respe
tively, and/or σh′

i
C

−1/2
h and

σ−1
h′
i
C

1/2
hi

into the 
hannel matrix Hi and the FC, respe
tively, su
h thatwe obtain an equivalent model in whi
h Cn′
i
= σ2

n′
i
I and/or Ch′

i
= σ2

h′
i
I.Similarly, we 
an assumme Cn = σ2

nI with σ2
n > 0 and Ch = σ2

hI with σ2
h > 0for the system model with a 
oherent MAC, w.l.o.g. Otherwise, we again 
anabsorb σn′C

−1/2
n and σ−1

n′ C
1/2
n into the total observation matrix G and thetotal sensor-
hannel matrix Ã, respe
tively, and/or σh′C

−1/2
h and σ−1

h′ C
1/2
hinto the total sensor-
hannel matrix Ã and the FC, respe
tively, su
h thatwe obtain an equivalent model in whi
h Cn′ = σ2

n′I and/or Ch′ = σ2
h′I (
f.Fig. 4.1).Unless otherwise stated, we assume throughout the remaining part of thisthesis iid 
hannel noise for both multiple a

ess s
hemes w.l.o.g. The nexttheorem shows that for the orthogonal MAC 
ase, we 
an assume diagonal
hannel matri
es Hi for 1 ≤ i ≤ L, w.l.o.g.
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θ

y

n ∼ N (0,Cn) nh ∼ N (0,Ch)

z
s

G A H(a)
θ

y′

n′
∼ N

(
0, σ2

n′I
)

n′
h ∼ N

(
0, σ2

h′I
)

z′

s′

s′

G σn′C
−1/2
n

1
σn′

C
1/2
n A

H σh′C
−1/2
h

1
σh′

C
1/2
h

G′ A′

H′(b)Figure 4.1: Equivalen
e of two system models - (a) original model (b) equiv-alent, noise whitened model. For the 
ase of an orthogonal MAC, we haveto index all model parameters (i.e., all o

uring ve
tors and matri
es, ex
ept
θ) by an index i. Then, the �gure illustrates sensor i with an appropriateobservation- and 
hannel model from sensor to the FC. For the 
ase of a
oherent MAC, �gure shows the whole system model, if we merge A with Hto obtain Ã = HA.Theorem 4.3.13 Let us 
onsider a system model with an orthogonal MAC,shown in (4.16). A

ording to Theorem 4.3.12, we assume iid 
hannel noise(zero-mean, Gaussian distributed) nhi

with 
ovarian
e matrix Chi
= σ2

hi
I(σ2

hi
> 0), w.l.o.g. Then we 
an de�ne an equivalent system model, a

ordingto De�nition 4.3.11 as
z′i = Uhi

(
H′

iA
′
iGiθ +H′

iA
′
ini + nhi

)
, (4.28)where H′

i = Σhi
and A′

i , VT
hi
Ai. Uhi

Σhi
and Vhi

follows from thesingular value de
omposition (SVD) of the original 
hannel matrix Hi =
Uhi

Σhi
VT

hi
, i.e., Uhi

and Vhi
are both unitary and the diagonal matrix Σhiof size pi× qi 
ontains the singular values of Hi on the main diagonal. Notethat n′

i is un
orrelated with n′
hj

for all i and j as already assumed.
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i and A′

i into (4.28) yields
z′i = Uhi

(
Σhi

A′
iGiθ +Σhi

A′
ini + nhi

)

= Uhi
Σhi

VT
hi
AiGiθ +Uhi

Σhi
VT

hi
Aini +Uhi

nhi

= HiAiGiθ +HiAini +Uhi
nhi

,

(4.29)where z′i is again Gaussian distributed, with mean
µz′i

= HiAiGiθ, (4.30)and 
ovarian
e matrix
Cz′i

= HiAiCni
AT

i H
T
i + σ2

hi
UhU

T
h

= HiAiCni
AT

i H
T
i + σ2

hi
I = HiAiCni

AT
i H

T
i +Chi

.
(4.31)Comparing (4.30) with (4.16) and (4.31) with (4.18) for Chi

= σ2
hi
I, we
on
lude that z′i from (4.28) is equivalent to zi from (4.16) for nhi

= σ2
hi
Iand for 1 ≤ i ≤ L, a

ording to De�nition 4.3.11, sin
e both are Gaussiandistributed random variables, with same mean and same 
ovarian
e matrix.

θ
yi

ni ∼ N (0,Cni
) nhi

∼ N
(
0, σ2

hi
I
)

z′iGi Ai VT
hi

H′
i Uhi

A′
iFigure 4.2: Equivalent system model - 
hannel diagonalization between sen-sor i and FC.A

ording to Theorem 4.3.13, we thus 
an assume a diagonal 
hannelmatrix Hi in the 
ase of an orthogonal MAC w.l.o.g. Otherwise, we 
anabsorb Uhi

and VT
hi
, whi
h follows from the SVD Hi = Uhi

Σhi
VT

hi
into theFC and the sensor matrix Ai, respe
tively, su
h that we obtain an equivalentmodel in whi
h H′

i is diagonal, where the diagonal entries are the singularvalues of Hi. Note that the order of the diagonal entries, i.e., the singularvalues of Hi 
an be assumed arbitrarily. An illustration of the equivalentmodel for a diagonalized 
hannel matrix 
an be seen in Fig. 4.2. The originalmodel is shown in Fig. 4.1(a) for the orthogonal MAC.De�nition 4.3.14 (Standard Model) Assuming a system model with anorthogonal MAC, that has iid observation noise ve
tors ni and iid 
hannelnoise ve
tors nhi
(zero-mean, Gaussian distributed) with 
ovarian
e matri
es

Cni
= σ2

ni
I and Chi

= σ2
hi
I for 1 ≤ i ≤ L, and espe
ially diagonal 
hannelmatri
es Hi for 1 ≤ i ≤ L - is 
alled the standard model.
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alar Parameter CaseIn this se
tion, we 
onsider the spe
ial 
ase of estimating a s
alar parameter,i.e., θ ∈ R. In that 
ase, the FIMs Jz and Jzi
are both s
alar-valued, sin
e

n = 1 - thus we us the notations Jz and Jzi in what follows and set Jz = Jzand Jzi
= Jzi . In Theorem 4.1.9, we have already showed that ea
h LOi,
an be restri
t to the sensor matrix Ai, sin
e C∗

li
= 0 for 1 ≤ i ≤ L, i.e., we
onsider (P-II) for solving optimal LOi - even for this spe
ial 
ase. Note thatfor a s
alar parameter, we do not need any optimality 
riterion φ for solvingproblem (P-II), sin
e φ {Jz} = Jz for Jz ∈ R - in that 
ase all optimality
riteria are equivalent.Unless otherwise stated, we do not espe
ially assume iid observation noise

ni for sensor i for the 
ase of a s
alar parameter. We take only the assumption- whi
h has already been made in Se
tion 4.3 - that the 
hannel noise nhi
,for the orthogonal MAC 
ase and, nh, for the 
oherent MAC 
ase are bothassumed to be iid w.l.o.g., with 
ovarian
e matri
es Chi

= σ2
hi
I with σ2

hi
> 0for all i and Ch = σ2

hI with σ2
h > 0, respe
tively - that the 
hannel matri
es

Hi are assumed to be diagonal w.l.o.g., for the 
ase of an orthogonal MAC.Furthermore, we assume only for the 
oherent MAC that gi ∈ R (Cni
) \ {0}for all i. The reason for this parti
ular assumption is explained later byitself, when we 
onsider the 
oherent MAC 
ase in Subsubse
tion 4.4.3.2.Let us now 
ustomize the notations for our system model, espe
ially forthe s
alar parameter 
ase. Sin
e n = 1, the observation matrix Gi ∈ R

mi×1for sensor i redu
es to ve
tor - thus we use the notation gi ∈ R
mi and set

Gi = gi in what follows. Note that mi ≥ 1. As a 
onsequen
e, the notation
G ∈ R

k×1 from (3.16) redu
es to a ve
tor too - thus we use g ∈ R
k an set

G = g, a

ordingly. Thus, g is in the form g =
[
gT
1 gT

2 . . . gT
L

]T . Bothdeterministi
 ve
tors gi and g stands for the observation ve
tor for sensor iand for the total observation ve
tor, respe
tively.Let us �rst re
all the FIMs Jzi
from (3.5) and Jz from (3.8), both eval-uated for Cli = 0 and Chi

= σ2
hi
I - for the orthogonal MAC 
ase. Adaptedto our notations for the s
alar 
ase, this means:

Jzi = gT
i A

T
i H

T
i

(
σ2
hi
I+HiAiCni

AT
i H

T
i

)−1
HiAigi (4.32)and thus

Jz =
L∑

i=1

gT
i A

T
i H

T
i

(
σ2
hi
I+HiAiCni

AT
i H

T
i

)−1
HiAigi. (4.33)For the 
oherent MAC 
ase, we re
all the FIM Jz from (3.20) for Cl = 0and Ch = σ2

hI, thus
Jz = gT ÃT

(
σ2
hI+ ÃCnÃ

T
)−1

Ãg. (4.34)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 41Note that the model parameters for (4.34), are given in (3.16) and (3.17) for
Gi = gi and G = g.The remaining part of this se
tion is organized as follows: Before wesolve the optimization problem (P-II) or (P-III), espe
ially for the s
alarparameter 
ase, i.e., we 
onsider problem (P-II) for Jz = Jz from (4.33) or(4.34), and problem (P-III) for Jzi

= Jzi from (4.32) - we �rst show that forthe spe
ial 
ase of a s
alar parameter θ ∈ R, a lo
al sensor rule LOi 
an beredu
ed to an equivalent s
alar observation model w.l.o.g. Subsequently, we
an solve a simpli�ed, but equivalent optimization problem. Then we give anoptimal power s
heduling strategie, where a given total power is optimallys
heduled among all sensors. Finally, we will show how we 
an implementoptimal lo
al sensors.4.4.1 Redu
tion to S
alar ObservationLet us 
onsider the original observation model for a lo
al sensor i, whi
hspezializes for a s
alar parameter θ to
yi = giθ + ni, (4.35)where gi ∈ R

mi is the known, deterministi
 observation ve
tor os sensor
i and ni is again the observation noise ve
tor, i.e., ni ∼ N (0,Cni

). Theobservation model for sensor i is illustrated in Fig. 4.3, where the ith lo
alsensor rule LOi is also shown, even here with the additive systemati
 noise
nli . Note that the following theorem 
onsiders nli with some Cli ≥ 0, eventhough we already know how it is to be 
hosen optimally for (P-II). However,

θ
yi

ni nli

sigi Ai

LOi

Figure 4.3: Observation model for the ith lo
al sensor for a s
alar parameter.
yi from (4.35) 
an be equivalently modeled as a Gaussian distributed randomvariable, i.e.,

yi ∼ N (giθ,Cni
) . (4.36)The next theorem shows an equivalen
e of two lo
al sensor rules LOs,where the equivalen
e is based on De�nition 4.4.15. As a result, we 
on
ludethat we 
an redu
e our original observation model from (4.35) - with a ve
torobservation yi - to an equivalent observation model, with an appropriate
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alar observation yi. To that end, we �rst de
ompose the observation ve
tor
gi for sensor i into

gi = g′
i + g′

i⊥, (4.37)where g′
i denotes those 
omponents of g, whi
h lies in the range of Cni

, i.e.,
g′
i ∈ R (Cni

) and g′
i⊥ denotes 
onsequently those 
omponents of g, whi
hlies in the nullspa
e of Cni

, i.e., g′
i⊥ ∈ N (Cni

)1. Let us also de�ne even theequivalen
e of two LOs for an observation y = yi.De�nition 4.4.15 Two lo
al sensor rules, LO′ = (A′,C′
l) and LO′′ =

(A′′,C′′
l ) are equivalent, if and only if the 
orresponding outputs s′ and s′′,i.e., s′ = A′y + n′ and s′′ = A′′y + n′′ have the same pdf for every θ, i.e.,

fs′ (s; θ) = fs′′ (s; θ).Ex
lusively for the next theorem we use the spe
i�
 observation modelparameters (
f. (4.35), (4.36) and (4.37)): y = yi, g = gi (thus g′ = g′
i and

g′
⊥ = g′

i⊥), n = ni and �nally Cn = Cni
.Theorem 4.4.16 The set of lo
al sensor rules LOs, given by

{A,Cl}A∈Rn×m,Cl≥0
, (4.38)is equivalent to the set of LOs given by

{
A′ = Aa2a

T
1 ,C

′′
l = Cl +AC′

lA
T
}
A∈Rn×m,Cl≥0

, (4.39)where a1, a2 and C′
l are to be 
hosen as follows, depending on the observationve
tor g and the observation noise 
ovarian
e matrix Cn: For the �rst 
ase(
ase1), when g ∈ R (Cn) \ {0}, then

a1 , C†
ng, a2 ,

1

gTC
†
ng

g and C′
l ,

ggT

gTC
†
ng

,where C
†
n is the pseudo-inverse of Cn. For the se
ond 
ase (
ase2), when ghas at least one 
omponent in N (Cn) or, equivalently, g′

⊥ 6= 0, then
a1 , g′

⊥, a2 ,
g

g′T
⊥ g′

⊥

and C′
l , Cn.The last 
ase (
ase3) is the trivial one, when g = 0. Then, we 
an de�ne(where a2 
ould be 
hosen arbitrarily)

a1 , 0, a2 , 0 and C′
l , Cn.The equivalen
e of the sets (4.38) and (4.39) is taken a

ording to De�-nition 4.4.15. Note that C′

l has to be simulated/generated by some additiveGaussian and zero-mean systemati
 noise n′
l. The stru
ture (setup) of theoriginal- and the equivalent LOs are illustrated in Fig. 4.4.1Note that for a symmetri
 matrix C: {R (C)}⊥ = N (C) .
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y

nl

sA

LO
(a)

y

nln′
l

s′
ỹ y′

aT1 a2 A

LO′

(b)Figure 4.4: Equivalen
e of LOs (a) original LO model (b) equivalent LOmodel.Proof. Let us now 
onsider the equivalent LO′ model from Fig. 4.4(b), wherewe assume that n′
l is un
orrelated with the observation noise ve
tor n and,furthermore, with the systemati
 noise ve
tor nl. As indi
ated in theorem,we have to di�erentiate three 
ases, depending on how g and Cn is given:1. We assume g ∈ R (Cn) \ {0}, i.e., g has no 
omponent(s) in N (Cn).Then, we set

a1 = C†
ng. (4.40)First, we note that the appli
ation of aT1 redu
es the ve
tor y to thes
alar random variable ỹ, given by

ỹ = aT1 y = aT1 gθ + aT1 n = gTC†
ngθ + ñ = g̃θ + ñ, (4.41)where g̃ = gTC

†
ng and

ñ ∼ N
(
0, σ̃2 = gTC†

ng
)
, (4.42)be
ause σ̃2 = aT1Cna1 = gTC

†
nCnC

†
ng = gTC

†
ng

1. Thus
y′ = a2ỹ + n′

l

(4.41)
= a2g

TC†
ngθ + a2ñ+ n′

l, (4.43)1The pseudo-inverse C
†
n of the 
ovarian
e matrix Cn (symmetri
, positive semi-de�nite) is symmetri
 and positive semi-de�nite - both have the same eigenspa
e (eigen-ve
tors), in parti
ular.
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l ∼ N (0,C′

l). Choosing
a2 =

1

gTC
†
ng

g, (4.44)we obtain
y′ = gθ + n′, (4.45)where n′

∼ N (0,C′), with
C′ = a2σ̃

2aT2 +C′
l(4.44)

=
1

gTC
†
ng

ggTC†
ngg

T 1

gTC
†
ng

+C′
l

=
1

gTC
†
ng

ggT +C′
l.

(4.46)Note that a2 from (4.44) is realizable, sin
e gTC
†
ng > 0, due to theassumption that g is orthogonal to N (Cn) and g 6= 0. From (4.46) itis evident that the 
hoi
e

C′
l = Cn − 1

gTC
†
ng

ggT , (4.47)yields
C′ (4.46)=

1

gTC
†
ng

ggT +C′
l = Cn. (4.48)It 
an be argued that any noise n′
l with positive semi-de�nite 
ovarian
ematrix C′

l 
an be simulated/generated. Consequently, we now examinewhether xTC′
lx ≥ 0 is valid for all x ∈ R

m. To that end, we de
ompose
x, analog to (4.37), into

x = x′ + x′
⊥, (4.49)where x′ ∈ R (Cn) and x′

⊥ ∈ N (Cn) = {R (Cn)}⊥, i.e., Cnx
′
⊥ = 0.Be
ause of our assumption that g is orthogonal to N (Cn) and thus

gTx′
⊥ = 0, it follows that
x′T
⊥C′

lx
′
⊥

(4.47)
= x′T

⊥Cnx
′
⊥ − x′T

⊥

1

gTC
†
ng

ggTx′
⊥ = 0− 0 = 0. (4.50)Thus, it remains to verify that x′TC′

lx
′ ≥ 0 for all x′ ∈ R (Cn). Inwhat follows, we use the fa
t that

x′ = C†
nx, (4.51)
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ause R(C†
n

)
= R (Cn). Thus,

x′TC′
lx

′ (4.51)
= xTC†

nC
′
lC

†
nx(4.47)

= xT

(
C†

nCnC
†
n −C†

n

1

gTC
†
ng

ggTC†
n

)
x

= xTC†
n
1/2

C†
n
1/2

x− xTC†
n
1/2C

†
n
1/2

ggTC
†
n
1/2

gTC
†
n
1/2

C
†
n
1/2

g

C†
n
1/2

x

(a)
= x̃T x̃− x̃T g̃g̃

T

g̃T g̃
x̃

= ‖x̃‖2 −
(
x̃T g̃

)2

‖g̃‖2
, (4.52)where in step (a) we introdu
ed x̃ , C

†
n
1/2

x and g̃ , C
†
n
1/2

g. Usingthe Cau
hy-S
hwarz inequality, i.e.,
(
x̃T g̃

)2 ≤ ‖x̃‖2 ‖g̃‖2 , (4.53)we 
an show that
x′TC′

lx
′ (4.52)

= ‖x̃‖2 −
(
x̃T g̃

)2
/ ‖g̃‖2(4.53)

≥ ‖x̃‖2 − ‖x̃‖2 ‖g̃‖2 / ‖g̃‖2 = ‖x̃‖2 − ‖x̃‖2 = 0,

(4.54)and thus x′TC′
lx

′ ≥ 0 for all x′ ∈ R (Cn). Hen
e, C′
l is positive semi-de�nite.2. Now we 
onsider the 
ase, when g has at least one 
omponent inN (Cn). In that 
ase, we set

a1 = g′
⊥. (4.55)The appli
ation of aT1 redu
es the ve
tor y again to the s
alar randomvariable ỹ, given by

ỹ = aT1 y = aT1 gθ + aT1 n
(4.55)
= g′T

⊥ gθ + ñ = g̃θ + ñ, (4.56)where g̃ = g′T
⊥ g and ñ ∼ N

(
0, σ̃2 = g′T

⊥ Cng
′
⊥ = 0

) and thus 
an benegle
ted, i.e., ñ = 0. Thus
y′ = a2ỹ + n′

l
(4.56)
= a2g

Tgθ + n′
l (4.57)
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hoosing
a2 =

g

g′T
⊥ g′

⊥

, (4.58)we obtain
y′ = gθ + n′. (4.59)where n′

∼ N (0,C′) with C′ = C′
l. Thus, we 
an 
hoose C′

l = Cn,su
h that C′ = Cn, whi
h is obviously positive semi-de�nite and thus
an be simulated/generated.3. Last but not least, we now 
onsider the trivial 
ase, when g = 0.Setting a1 = 0, implies
ỹ = aT1 y = aT1 gθ + aT1 n = 0 = g̃θ + ñ, (4.60)where g̃ = 0 and ñ = 0. It is evident that y′ = n′

l and thus we obtain
y′ = gθ + n′, (4.61)where g = 0 and n′

∼ N (0,C′) with C′ = C′
l. We 
an again 
hoose

C′
l = Cn, su
h that C′ = Cn, whi
h is obviously positive semi-de�niteand thus 
an be simulated/generated.Hen
e, we have veri�ed the equivalen
e of LO and LO′ - the equivalen
eof the sets (4.38) and (4.39) - a

ording to De�nition 4.4.15. Sin
e for anarbitrary observation ve
tor g, we 
an determine deterministi
 ve
tors a1, a2and a zero-mean, Gaussian distributed systemati
 noise n′

l with 
ovarian
ematrix C′
l ≥ 0, a

ordingly, for obtaining equivalen
e between y and y′ andthus also between s and s′ (
f. Fig. 4.4).In Theorem 4.4.16, we have showed that there always exist an equivalentLO′ for a given original LO, if we 
onsider a s
alar parameter θ. Let us again
onsider a spe
i�
 observation model for sensor i in our original notation.As a 
orollary, we 
an design an equivalent lo
al sensor rule, denoted byLO′

i, also for an observation model a

ording to (4.41) (or (4.56) or (4.60)).In what follows, we thus 
onsider a s
alar observation model yi w.l.o.g., inorder to simplify the optimization problem later, i.e.,
yi = giθ + ni, with ni ∼ N

(
0, σ2

ni

)
. (4.62)For the �rst 
ase, when gi ∈ R (Cni

) \ {0}, the model parameters gi and σ2
nifor (4.62), 
an be obtained a

ording to (4.41) and (4.42) as

gi = gT
i C

†
ni
gi, σ2

ni
= gT

i C
†
ni
gi. (4.63)Note that for that 
ase gi > 0 and σ2

ni
> 0 is guaranteed. For the se
ond
ase, when gi has at least one 
omponent in N (Cni

), i.e., g′
i⊥ 6= 0, the
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ni

for (4.62) 
an be obtained a

ording to (4.56)for ñ = 0 as
gi = g′T

i⊥g
′
i⊥, σ2

ni
= 0, (4.64)where again gi > 0. Re
ently, the trivial third 
ase, i.e., when gi = 0. Thenthe model parameters are both zero, i.e.,

gi = 0, σ2
ni

= 0. (4.65)Based on the assumption of non-
orrelation between the individual observa-tion noise ve
tors ni for all i in our original system model, i.e., 
ov {ni,nj} =
0 for 1 ≤ i, j ≤ L with i 6= j, we 
on
lude that also ni from (4.62) for all i areun
orrelated a
ross di�erent sensors. Sin
e ni, follows by a linear mapping of
ni onto the real line, i.e., in the form ni = aT1 ni, where a1 is a deterministi
ve
tor (
f. Theorem 4.4.16). However,
ov {aT1 ni,a

T
2 nj

}
= E {aT1 nin

T
j a2

}
= aT1 
ov {ni,nj}a2 = 0for 1 ≤ i, j ≤ L with i 6= j and for arbitrary deterministi
 ve
tors a1 and a2.The equivalent lo
al sensor rule LO′
i, based on the s
alar observationmodel yi from (4.62), 
an thus be des
ribed by linear mapping with a sensorve
tor ai and additive systemati
 noise n′
li
(
f. Fig. 4.5), i.e., LO′

i ,
(
a,C′

li

).The next 
orollary shows how we 
an determine the original LOi = (Ai,Cli)

θ
yi

ni nli

sigi ai

LO′
i

Figure 4.5: Equivalent (s
alar) observation model for the ith lo
al sensor fora s
alar parameter.from a given LO′
i = (ai,C

′
li
).Corollary 4.4.17 Two lo
al sensor rules LOi = (Ai,Cli) and LO′

i =(
ai,C

′
li

) are equivalent i� it is of the form Ai = aia
T
1 and Cli = C′

li
,where a1 is de�ned in Theorem 4.4.16, i.e., a1 = C

†
nigi for the 
ase, when

gi ∈ R (Cni
) \ {0} - and a1 = g′

i⊥, when gi has at least one 
omponent inN (Cni
), i.e., when g′

i⊥ 6= 0 - and �nally a1 = 0, when gi = 0.Proof. The LOi = (A∗
i ,Cli) performs a linear mapping of yi, given in (4.35),to the transmit data si as

si = Aigiθ+Aini+nli , where si ∼ N
(
Aigiθ, AiCni

AT
i +Cli

)
. (4.66)
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i =

(
ai,C

′
li

) performs a linear mapping of yi, given in (4.62),to the transmit data s′i as
s′i = aigiθ + aini + n′

li . (4.67)For the �rst 
ase, i.e., when gi ∈ R (Cni
) \ {0}, (4.67) with (4.63) yields

s′i ∼ N
(
aig

T
i C

†
ni
giθ, aig

T
i C

†
ni
gia

T
i +C′

li

)
. (4.68)A

ording to De�nition 4.4.15, LOi and LO′

i are equivalent i� s from (4.66)and s′ from (4.68) have the same pdf for every θ - equivalen
e follows with
a1 = C

†
nigi:
Ai = aig

T
i C

†
ni

= aia
T
1 and

Cli = aig
T
i C

†
ni
gia

T
i +C′

li
−AiCni

AT
i

(a)
= aig

T
i C

†
ni
Cni

C†
ni
gia

T
i +C′

li −AiCni
AT

i

= aia
T
1Cni

a1a
T
i +C′

li −AiCni
AT

i

= AiCni
AT

i +C′
li −AiCni

AT
i = C′

li ,

(4.69)
where in step (a) we used C

†
ni = C

†
niCni

C
†
ni . For the se
ond 
ase, i.e., when

g′
i⊥ 6= 0, (4.67) with (4.64) yields

s′i ∼ N
(
aig

′T
i⊥g

′
i⊥θ, C′

li

)
. (4.70)Again, LOi and LO′

i are equivalent i� s from (4.66) and s′ from (4.70) havethe same pdf for every θ - equivalen
e thus follows with a1 = g′
i⊥:

Ai = aig
′T
i⊥ = aia

T
1 and

Cli = C′
li −AiCni

AT
i = C′

li − aig
′T
i⊥Cni

g′
i⊥a

T
i

(a)
= C′

li ,
(4.71)where in step (a) we used Cni

g′
i⊥ = 0, sin
e g′

i⊥ ∈ N (Cni
). Finally for the
ase, when gi = 0, (4.67) with (4.65) yields

s′i ∼ N
(
0, C′

li

)
. (4.72)Again, LOi and LO′

i are equivalent i� s from (4.66) and s′ from (4.72) havethe same pdf for every θ - equivalen
e thus follows with a1 = 0:
Ai = 0 = ai0 and
Cli = C′

li −AiCni
AT

i = C′
li .

(4.73)Hen
e, we have veri�ed the equivalen
e of LOi and LO′
i for all (three) 
asesof g.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 494.4.2 System Model for the Equivalent Model ReformulatedLet us now 
onsider the s
alar observation model from (4.62) and the equiva-lent lo
al sensor rule LO′
i for sensor i in what follows. Note assuming a s
alarobservation model, 
orresponds to the original system model with mi = 1for all i. We also re
all that for the original LOi: the optimal systemati
noise 
ovarian
e matrix C∗

li
= 0 for all i (
f. introdu
tion of this se
tion)and sin
e C′

li
= Cli (
f. Corollary 4.4.17), we 
on
lude that also C′∗

li
= 0,as expe
ted. Thus, we restri
t our equivalent lo
al sensor rule LO′

i by thesensor ve
tor ai in what follows. Let us re
all the transmit data ve
tor sifor the s
alar observation model. The LO′
i performs a linear mapping of yi,given in (4.62), to the transmit data si as

si = aiyi. (4.74)Depending on the di�erent multiple a

ess s
hemes, we will now 
ustomizethe s
alar-valued FIs Jzi and Jz, given in (4.32), (4.33) and (4.34) - espe-
ially to our equivalent model with s
alar observation from (4.62) and to theequivalent lo
al sensor rule LO′
i.Orthogonal MAC: In that 
ase, it is evident that the s
alar-valued FI

Jzi from (4.32), then spe
ializes to
Jzi = g2i a

T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiai, (4.75)and thus, the FI Jz from (4.33) yields

Jz =
L∑

i=1

g2i a
T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiai, (4.76)where the parameters gi and σ2

ni
are given in (4.63), (4.64) or (4.65), de-pending on the given original observation model parameters gi and Cni

.Coherent MAC: In that 
ase, we 
ustomize, �rst, the notations to thesystem model with s
alar observation. We re
all the shorthand (3.15), whi
hspe
ializes to a ve
tor as
ãi , Hiai. (4.77)Already made assumptions are, of 
ourse, also adopted for this spe
ial 
ase,so Hi for all i are of full 
olumn-rank - thus p ≥ qi for all i - we refer to ãias the sensor-
hannel ve
tor, a

ordingly. Note that we 
an re
laim ai from

ãi as ai = H
†
i ãi in a unique manner, sin
e Hi is of full 
olumn-rank. We
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all (3.16) and (3.17). Those variables, whi
h are then used in thefollowing, spe
ialize to
Ã ,

(
ã1 ã2 . . . ãL

)
, Ã ∈ R

p×L,

g ,
(
g1 g2 . . . gL

)T
, g ∈ R

L,

n ,
(
n1 n2 . . . nL

)T
, n ∈ R

L.

(4.78)Remember that p = pi for all i. Note that n ∼ N (0,Cn}. It is evident thatthe 
ovarian
e matrix Cn = diag {σ2
ni

}L
i=1

and is non-singular for the 
ase,when σ2
ni

6= 0 for all i, whi
h follows when gi from the original observationmodel for sensor i (4.35) holds: gi ∈ R (Cni
) \ {0} for all i (for the 
oherentMAC, we have already restri
ted to this spe
ial 
ase - 
f. introdu
tion of thisse
tion). To that end, we assume iid total observation noise for the s
alarobservation model n w.l.o.g., i.e., Cn = σ2

nI with σ2
n > 0. Otherwise, we 
ande�ne an equivalent model, in whi
h Cn′ = σ2

n′I (
f. Theorem 4.3.12). It isevident that the s
alar-valued FI Jz from (4.34), then spe
ializes to
Jz = gT ÃT

(
σ2
hI+ σ2

nÃÃT
)−1

Ãg, (4.79)where g and Ã are given in (4.78).Power Constraint: Let us re
all both 
onstraints (C1) and (C2) evalu-ated for Cli = 0 for all i. For a s
alar paramter and in parti
ular, for thes
alar observation model, (C1) spe
ializes toEθ

{
‖si‖2

}
= ‖ai‖2

(
(giθ)

2 + σ2
ni

)
≤ P0,i for 1 ≤ i ≤ L, (C1-s)and (C2) tovarθ {si} = ‖ai‖2 σ2

ni
≤ P ′

0,i for 1 ≤ i ≤ L. (C2-s)Note that 
onstraint (C2-s) does not depend on the parameter θ, as expe
ted.Total Power Constraint for the Coherent MAC: Later, when we 
on-sider the 
ase of a 
oherent MAC, we will simplify the optimization problem(P-II) by introdu
ing a modi�ed power 
onstraint. Here, we will 
onsidera total power 
onstraint - by whi
h the total transmit power for all sen-sors, i.e., the sum of all individual powers of si for all i is bounded above agiven 
onstant total power P0 =
∑L

i=1 P0,i - i.e., espe
ially adapted to theequivalent model with s
alar observation:
L∑

i=1

(
(giθ)

2 + σ2
n

)
‖ai‖2 ≤ P0. (C1-t)
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e 
onstraint with P ′
0 =

∑L
i=1 P

′
0,i as

L∑

i=1

‖ai‖2 ≤ P ′
0/σ

2
n. (C2-t)Note that for the 
oherent MAC, we have assumed Cn = σ2

nI with σ2
n > 0and thus σ2

ni
= σ2

n for all i.4.4.3 Optimal Lo
al Sensor Rules for a S
alar ParameterSo far, we have introdu
ed an equivalent s
alar observation model, in whi
hwe restri
ted an equivalent lo
al sensor rule LO′
i by the sensor ve
tor ai -sin
e we set C′

li
= 0 w.l.o.g. We have 
ustomized the FI Jz for both multiplea

ess s
hemes to the equivalent system model with s
alar observation (
f.(4.76) and (4.79))- espe
ially, the FI Jzi for the orthogonal MAC 
ase (
f.(4.75)). Furthermore, we have also adapted both 
onsidered 
onstraints (C1)and (C2) to the equivalent model - and dedu
ed (C1-s) and (C2-s).Let us re
all that an optimal sensor matrix Ai solves (P-II), where (P-II)
an be 
onsidered for both multiple a

ess s
hemes. Adapted to our equiva-lent model with s
alar obervation, it spe
ializes to:maximize

ai, 1≤i≤L
Jzsubje
t to Jz satis�es (4.76) or (4.79),
ai ∈ R

qi for 1 ≤ i ≤ L,(C1-s) or (C2-s) is satis�ed, i.e.,(C1-s) : ‖ai‖2
(
(giθ)

2 + σ2
ni

)
≤ P0,i for 1 ≤ i ≤ L, or(C2-s) : ‖ai‖2 σ2

ni
≤ P ′

0,i for 1 ≤ i ≤ L,

(P-II-s)
where gi and σ2

ni
are given in (4.63), (4.64) or (4.65), depending on the givenoriginal observation model parameters gi and Cni

.In parti
ular, we 
onsider problem (P-III) for determining the optimalLOi, for the 
ase of an orthogonal MAC (
f. Se
tion 4.2). For a s
alarparameter and espe
ially for the equivalent model with s
alar observation,(P-III) spe
ializes with (4.75) tomaximize
ai

Jzi = g2i a
T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiaisubje
t to ai ∈ R

qi ,(C1-s)i or (C2-s)i is satis�ed, i.e.,(C1-s)i : ‖ai‖2
(
(giθ)

2 + σ2
ni

)
≤ P0,i or(C2-s)i : ‖ai‖2 σ2

ni
≤ P ′

0,i.

(P-III-s)
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onstraint of (C1-s) and(C2-s). In what follows, we �rst solve problem (P-III-s) - we 
onsider theorthogonal MAC 
ase.4.4.3.1 Orthogonal MACLet us now 
onsider the 
ase of an orthogonal MAC. Remember, that wehave already assumed for this 
ase diagonal matri
es Hi for all i w.l.o.g.,i.e.,
(Hi)k,l =

{
hik k = l 1 ≤ k, l ≤ w , min {pi, qi}
0 k 6= l,

(4.80)where hik for 1 ≤ k ≤ w are the singular values of Hi, in parti
ular (
f. The-orem 4.3.13). In that 
ase, we 
onsider espe
ially the optimization problem(P-III-s), for determining the optimal lo
al sensor ve
tor ai for LO′
i. Thus,we 
onsider the FI Jzi from (4.75) and take note that gi ∈ R and σ2
ni

≥ 0.Let us �rst treat the trivial third 
ase, when gi = 0 and σ2
ni

= 0 (
f.(4.65)). Then, it is obvious that the FI Jzi from (4.75) yields Jzi = 0 forall ai ∈ R
qi , sin
e we assumed σ2

hi
> 0. Hen
e, for this spe
ial 
ase, thereexist no optimal LO′

i for (P-III-s) and (P-II-s) and thus no optimal LOi for(P-I). For further pro
eed we distinguish the two remaining 
ases - σ2
ni

> 0or σ2
ni

= 0. In what follows we assume gi > 0, whi
h is guaranteed for both
ases (
f. (4.63) and (4.65)).1. Case - σ2
ni

6= 0: The FI Jzi from (4.75) then yields
Jzi = g2i a

T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiai

(a)
= g2i ã

T
i

(
σ2
hi
I+ σ2

ni
ãiã

T
i

)−1
ãi

=
g2i
σ2
ni

ãTi

(
σ2
hi

σ2
ni

I+ ãiã
T
i

)−1

ãi for σ2
ni

> 0,

(4.81)where in step (a) we introdu
ed the shorthand
ãi , Hiai. (4.82)We now introdu
e
PAi

,
1

‖ãi‖2
ãiã

T
i . (4.83)Note that PAi

is the proje
tion matrix1 asso
iated to the linear sub-spa
e Ai = {cãi|c ∈ R}. Furthermore, P⊥
Ai

= I − PAi
is the pro-je
tion matrix asso
iated to the orthogonal 
omplement linear sub-spa
e A⊥

i of Ai, i.e., A⊥
i =

{
x ∈ R

pi |ãTi x = 0
} [5℄. With the identity1A proje
tion matrix P is symmetri
 (P = P

T ) and indempotent (P2 = P).
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I = PAi

+P⊥
Ai
, (4.81) 
an also be written in terms of PAi

and P⊥
Ai

as
Jzi =

g2i
σ2
ni

ãTi

((
‖ãi‖2 +

σ2
hi

σ2
ni

)
PAi

+
σ2
hi

σ2
ni

P⊥
Ai

)−1

ãi (4.84)for σ2
ni

> 0. Invoking [11℄, we have the identity
(
c1PAi

+ c2P
⊥
Ai

)−1
=

1

c1
PAi

+
1

c2
P⊥

Ai
, (4.85)for any c1 ∈ R\ {0} and c2 ∈ R\ {0}, sin
e

(
c1PAi

+ c2P
⊥
Ai

)( 1

c1
PAi

+
1

c2
P⊥

Ai

)
=

= PAi
PAi

+
c2
c1
P⊥

Ai
PAi

+
c1
c2
PAi

P⊥
Ai

+P⊥
Ai
P⊥

Ai

(a)
= PAi

+P⊥
Ai

= I,where in step (a) we used the fa
t that PAi
P⊥

Ai
= PAi

(I−PAi
) =

PAi
− PAi

= 0 = P⊥
Ai

− P⊥
Ai

= P⊥
Ai

(
I−P⊥

Ai

)
= P⊥

Ai
PAi

. Sin
ewe assumed that σ2
hi

> 0 and σ2
ni

> 0, we 
an use (4.85) for c2 =

σ2
hi
/σ2

ni
> 0 and c1 =

(
‖ãi‖2 + σ2

hi
/σ2

ni

)
> 0 and thus, (4.84) yields

Jzi =
g2i
σ2
ni

ãTi




1
σ2
hi

σ2
ni

+ ‖ãi‖2
PAi

+
σ2
ni

σ2
hi

P⊥
Ai


 ãi

=
g2i
σ2
ni

1
σ2
hi

σ2
ni

+ ‖ãi‖2
ãTi PAi

ãi +
g2i
σ2
hi

ãTi P
⊥
Ai
ãi

(a)
=

g2i
σ2
ni

ãTi ãiã
T
i ãi

‖ãi‖2
(

σ2
hi

σ2
ni

+ ‖ãi‖2
)

=
g2i
σ2
ni

‖ãi‖2
σ2
hi

σ2
ni

+ ‖ãi‖2
for σ2

ni
6= 0,

(4.86)
where in step (a) we inserted (4.83) and used the fa
t that

P⊥
Ai
ãi = (I−PAi

) ãi
(4.83)
= ãi − ãiã

T
i ãi/ ‖ãi‖2 = ãi − ãi = 0.Take note that ãTi ãi = ‖ãi‖2.2. Case - σ2

ni
= 0: In that 
ase, the FI Jzi from (4.75) yields

Jzi = g2i a
T
i H

T
i

(
σ2
hi
I
)−1

Hiai =
g2i
σ2
hi

aTi H
T
i Hiai for σ2

ni
= 0. (4.87)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 54Using the shorthand from (4.82), (4.87) 
an also be written in the form
Jzi =

g2i
σ2
hi

‖ãi‖2 for σ2
ni

= 0. (4.88)Let us summarize both derivatives (4.86) and (4.88), as follows:
Jzi =





g2i
σ2
ni

‖ãi‖
2

σ2
hi

σ2
ni

+‖ãi‖
2

σ2
ni

6= 0

g2i
σ2
hi

‖ãi‖2 σ2
ni

= 0,

(4.89)whi
h is in turn equivalent to (4.75). So we 
an repla
e the FI Jzi of problem(P-III-s) by (4.89), without loss. It 
an be veri�ed easily that the FI Jz,i,given in (4.89), is a monotoni
 in
reasing fun
tion in ‖ãi‖2, sin
e with x ,

‖ãi‖2 and Jzi = Jzi (x), the �rst derivation
J ′
zi
(x) ,

∂

∂x
Jzi (x) =





g2i
σ2
ni

1(
σ2
hi

σ2
ni

+x

)2 σ2
ni

6= 0

g2i
σ2
hi

σ2
ni

= 0,is stri
tliy positve for all x, i.e., J ′
zi
(x) > 0 for all x. Therefore, we
an equivalently maximize ‖ãi‖2 = aTi H

T
i Hiai instead of Jzi from (4.89),while respe
ting the 
onstraint (C1-s)i or (C2-s)i. The optimization prob-lem (P-III-s) 
an thus be reformulated equivalently asmaximize

ai∈Rqi
aTi H

T
i Hiaisubje
t to 




(
(giθ)

2 + σ2
ni

)
‖ai‖2 ≤ P0,i (C1-s)i or

σ2
ni
‖ai‖2 ≤ P ′

0,i. (C2-s)i (4.90)Theorem 4.4.18 Consider a real symmetri
 maxtrix A ∈ Sym (s). Let
λmax denotes the largest eigenvalue and vmax the 
orresponding eigenve
torof A, i.e., Aλmax = Avmax. Then,

aTAa ≤ λmax ‖a‖2 for all a ∈ R
s.Equality holds i� a = cvmax for any c ∈ R.Proof. Cf. [12, 6.2, p.110℄.Let us re
all that we assumed a diagonal 
hannel matrixHi with diagonalentries hik for 1 ≤ k ≤ w - the singular values of Hi (
f. (4.80)). It is evidentthat alsoHT

i Hi of size qi×qi is diagonal, where the w largest diagonal entries
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i Hi - are the squared singular values of Hi,i.e., h2i k for 1 ≤ k ≤ w. Let h2i max denotes the maximum value of the set{

h2i k, 1 ≤ k ≤ w
}. Let us write the sensor ve
tor ai in the form

ai = civi, (4.91)where ci = ‖a‖ ∈ R is the length and vi = a/ci ∈ R
qi denotes the nor-malized ve
tor of a (dire
tion), i.e., ‖vi‖2 = 1. We 
an reformulate (4.90)equivalently asmaximize

vi∈Rqi , ci∈R
‖vi‖

2=1

c2iv
T
i H

T
i Hivisubje
t to 




(
(giθ)

2 + σ2
ni

)
c2i ≤ P0,i (C1-s)i or

σ2
ni
c2i ≤ P ′

0,i. (C2-s)i (4.92)Take note that only the obje
tive fun
tion of (4.92) depends on the nor-malized ve
tor vi - the 
onstraints (C1-s)i and (C2-s)i are not a�e
ted by
vi. For solving (4.92) w.r.t. vi, we 
an maximize the obje
tive fun
tion of(4.92), without 
onsidering (C1-s)i or (C2-s)i. A

ording to Theorem 4.4.18,the obje
tive fun
tion of (4.92), with ‖vi‖ = 1, is bounded above by

c2iv
T
i H

T
i Hivi ≤ c2i h

2
imax for all vi ∈ R

qi, where ‖vi‖ = 1, (4.93)where equality (maximum) holds when vi = eimax, sin
e HT
i Hi is diagonal.The ve
tor eimax denotes those unit ve
tor (eigenve
tor of HT

i Hi), whi
h
orresponds to the largest eigenvalue h2imax of HT
i Hi. Hen
e, the optimal vifor (4.92) 
an be obtained with

v∗
i = eimax. (4.94)Inserting vi = eimax into (4.92) yieldsmaximize

ci∈R
c2i h

2
imaxsubje
t to 




(
(giθ)

2 + σ2
ni

)
c2i ≤ P0,i (C1-s)i or

σ2
ni
c2i ≤ P ′

0,i. (C2-s)i (4.95)It remains to determine the optimal 
onstant ci for (4.92) or, equivalently, for(4.95). Let us 
onsider 
onstraint (C1-s)i. Then, for the 
ase (giθ)
2 + σ2

ni
=

0, the 
onstraint is always ful�lled and ci 
ould be 
hosen arbitrarily highin order to maximize the obje
tive fun
tion in (4.95). Similar holds for
onstraint (C2-s)i when σ2
ni

= 0. However, both spe
ial 
ases 
an o

ur onlyif σ2
ni

= 0. To remain mathemati
ally 
orre
t in what follows, we ex
ludethe 
ase σ2
ni

= 0. For the analysis we therefore use the limit value σ2
ni

→ 0.
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ting the 
onstraint(C1-s)i or (C2-s)i, respe
tively. Thus, it is obvious that optimal ci for (4.95)results when equality prevails in (C1-s)i or (C2-s)i, in order to obtain maxi-mal value of the obje
tive c2i h
2
imax, i.e., for

c∗i =





√
P0,i

(giθ)
2+σ2

ni

(C1-s)i
√

P ′
0,i

σ2
ni

(C2-s)i. (4.96)In turn, optimal ai for problem (4.90) 
an be obtained by inserting (4.96)and (4.94) into (4.91) as
a∗i = c∗i eimax, where c∗i =





√
P0,i

(giθ)
2+σ2

ni

(C1-s)i
√

P ′
0,i

σ2
ni

(C2-s)i. (4.97)Hen
e, we have determined optimal LO′
i for an orthogonal MAC - for theequivalent model with s
alar observation. Finally, we give the optimal FI

Jzi , that follows for an optimal LO′
i. To that end, we insert a∗i from (4.97)into (4.82), i.e., ã∗i = Hia

∗
i = c∗iHieimax = c∗i himaxeimax, whi
h in turn isused in (4.75), i.e.,

J∗
zi

= g2i c
∗
i
2h2imaxeTi max (σ2

hi
I+ σ2

ni
c∗i

2h2imaxeimaxeTi max)−1
eimax

= g2i c
∗
i
2h2imax 1

σ2
hi

+ σ2
ni
c∗i

2h2imax(4.96)
=





g2i P0,ih2
imax

(giθ)
2+σ2

ni

1

σ2
hi

+σ2
ni

P0,i

(giθ)
2
+σ2

ni

h2
imax (C1-s)i

g2i P
′
0,ih

2
imax

σ2
ni

1

σ2
hi

+σ2
ni

P ′
0,i

σ2
ni

h2
imax (C2-s)i

=





g2i h
2
imaxP0,i

σ2
hi
((giθ)2+σ2

ni
)+σ2

ni
h2
imaxP0,i

(C1-s)i
g2i h

2
imax

σ2
ni

P ′
0,i

σ2
hi

+h2
imaxP ′

0,i
(C2-s)i for σ2

ni
6= 0.

(4.98)
Note that (4.98) only hold for the 
ase when gi 6= 0 and σ2

ni
> 0. For thetrivial 
ase, when gi = 0 and σ2

ni
= 0 (
f. (4.65)), we have already mentionedthat obviously J∗

zi
= 0.Let us now analyze (4.98) the one remaining 
ase (
f. (4.64)), i.e., when

gi 6= 0 and σ2
ni

= 0, in more detail. Considering �rst the se
ond 
onstraint(C2-s)i, in parti
ular. Here, we 
an use for the analysis, as already men-tioned, the limit value σ2
ni

→ 0. Then, the FI J∗
zi
goes to ini�ty, sin
e

lim
σ2
ni

→0
J∗
zi

= ∞. (C2-s)i
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ond 
onstraint(C2-s)i bounds only the varian
e of the transmit data si - whi
h goes to zero,when σ2
ni

→ 0. Therefore, we 
ould theoreti
ally provide an arbitrarily largepower for sensor i without violating the 
onstraint (C2-s)i, but this results inan arbirtraly large FI J∗
zi
. This is the reason why (C1-s)i has more pra
ti
alrelevan
e. Now, we 
onsider the �rst 
onstraint (C1-s)i. The optimal lo
alsensor rule ai, given in (4.97), depend on the parameter θ. In pra
ti
e,the 
omputation of the optimal ci from (4.96) for (C1-s)i, has to be solvedwith an estimate (lo
ally) θ̂ (yi), sin
e the true parameter θ is unknown. Inthis spe
ial 
ase, so even when σ2

ni
= 0, then we 
an estimate the unknownparameter without estimation error, sin
e θ̂ (yi) = yi/gi and the estimationerror e = θ̂ (yi)− θ = 0. Hen
e, at the lo
al sensor we know the exa
t valueof the parameter θ. However, we are interested at the resulting FI Jzi at theFC for an optimum LO′

i.
J∗
zi

=
h2imaxP0,i

θσ2
hi

.Both just been treated 
ases 
oin
ides with (4.98) when we use the lim-iting 
ase σ2
ni

→ 0. Last but not least, still indi
ate the total optimal FI Jzfrom (4.76) for the orthogonal MAC:
J∗
z =

L∑

i=1

J∗
zi
, where {J∗

zi
= 0 if gi = 0 and σ2

ni
= 0

J∗
zi
is given in (4.98) else, (4.99)whi
h is the optimum in (P-II-s) and also the global optimum in (P-I) forthe spe
ial 
ase of a s
alar parameter and 
onsidering the orthogonal MACwith L lo
al sensors, sin
e C′∗
li
= 0 and in turn C∗

li
= 0.4.4.3.2 Coherent MACLet us now 
onsider the 
ase of an 
oherent MAC. In that 
ase, we 
onsiderespe
ially the optimization problem (P-II-s), in order to determine the opti-mal lo
al sensor ve
tors ai (i.e., LO′

i) for 1 ≤ i ≤ L. Thus, we 
onsider the
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h 
an also be written as
Jz = gT ÃT

(
σ2
hI+ σ2

nÃÃT
)−1

Ãg

(a)
= gTVΣTUT

(
σ2
hI+ σ2

nUΣVTVΣTUT
)−1

UΣVTg

(b)
= gTVΣTUT

(
σ2
hUUT + σ2

nUΣΣTUT
)−1

UΣVTg

= gTVΣTUTU
(
σ2
hI+ σ2

nΣΣT
)−1

UTUΣVTg

=
1

σ2
n

gTVΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

ΣVTg

(c)
=

1

σ2
n

gTVDVTg,

(4.100)
where in step (a) we performed the SVD Ã = UΣVT , with the unitarymatri
es U ∈ R

p×p, V ∈ R
L×L and the (possibly re
tangular) diagonalmatrix Σ of size p × L, whi
h 
ontains the singular values σj for 1 ≤ j ≤

w , min {p, L} of Ã on the main diagonal, i.e., (Σ)j,j = σi for 1 ≤ j ≤ w. Instep (b), we used the fa
t that VVT = I and UUT = I, sin
e V and U areunitary. Let us assume that the singular values |σj | are ordered de
reasingly(in turn of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw|. Take note that, for the
oherent MAC 
ase, we assumed σ2
n > 0. In the last step (
), we introdu
edthe diagonal matrix

D , ΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

Σ, (4.101)whi
h is squared and diagonal of size L × L. The L elements on the maindiagonal are thus given by
di , (D)j,j =





σ2
j

σ2
h

σ2
n
+σ2

j

if 1 ≤ j ≤ w

0 else, (4.102)for 1 ≤ j ≤ L. Note that the diagonal elements dj are also ordered de
reas-ingly, i.e., d1 ≥ d2 ≥ ...dL ≥ 0, that follows by adopting the order of theset {|σj |} for 1 ≤ j ≤ w. As mentioned above, we 
onsider for the 
oher-ent MAC 
ase espe
ially, a total power/varian
e 
onstraint (C1-t) or (C2-t),respe
tively. Furthermore, we will treat only the 
ase for 
onstraint (C2-t).Let us re
all the shorthand from (4.77) and the notations from (4.78). Withthe assumption made that Hi for all i have all full 
olumn-rank, we 
anuniquely re
laim ai with ai = H
†
i ãi. Thus, we 
an reformulate (C2-t) with

ai = H
†
i ãi = H

†
iÃei (ei denotes the ith unit ve
tor), in terms of Ã as

L∑

i=1

‖ai‖2 =
L∑

i=1

∥∥∥H†
iÃei

∥∥∥
2
=

L∑

i=1

eTi Ã
T
(
HiH

T
i

)†
Ãei ≤ P ′

0/σ
2
n, (4.103)
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t (HT
i

)†
H

†
i =

(
H

†
i

)T
H

†
i =

(
HiH

T
i

)† [13℄. In termsof SVD Ã = UΣVT , (4.103) yields
t (U,Σ,V) ,

L∑

i=1

eTi VΣTUT
(
HiH

T
i

)†
UΣVTei

=
L∑

i=1

(
VΣTUT

(
HiH

T
i

)†
UΣVT

)
i,i

≤ P ′
0/σ

2
n,

(4.104)where we introdu
ed the 
onstraint fun
tion t (·). With the derivations(4.100) (exluding the 
onstant1) and (4.104), the optimization problem (P-II-s)
an thus be reformulated equivalently asmaximize
V,Σ,U

gTVDVTgsubje
t to L∑

i=1

(
VΣTUT

(
HiH

T
i

)†
UΣVT

)
i,i

≤ P ′
0/σ

2
n, (C2-t)

ΣΣT ≥ 0,

VVT = VTV = I,

UUT = UTU = I.

(4.105)
Solving (4.105) with respe
t to U, V, and Σ, further gives the optimal
Ã = UΣVT , and in turn, the optimal ai = H

†
iÃei for (P-II-s) (sin
e Hiis assumed to be of full 
olumn-rank). In what follows, we solve (4.105) fortwo spe
ial 
ases, with assumptions on the individual 
hannel matri
es Hifor all i.Orthogonal Channels: In that 
ase, we assume that all individual 
han-nel matri
es Hi for all i are orthogonal (unitary), i.e., HiH

T
i = HT

i Hi = Ifor 1 ≤ i ≤ L - implying p = qi for 1 ≤ i ≤ L. Then, the 
onstraint fun
tion
t (·) from (4.104) yields

t (U,Σ) =

L∑

i=1

(
VΣTUT

(
HiH

T
i

)†
UΣVT

)
i,i

=
L∑

i=1

(
VΣTUTUΣVT

)
i,i

= tr {VΣTUTUΣVT
}
= tr{ΣTΣ

}
,where we inserted HiH

T
i = I and used the 
y
li
 property of the tra
eoperator [8℄, further, the fa
ts that UTU = I and VTV = I. In turn,1 It is 
ommon to omit the 
onstant in the obje
tive fun
tion, sin
e it does not a�e
tthe optimal solution.
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V,Σ

gTVDVTgsubje
t to tr {ΣTΣ
}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0,

VVT = VTV = I.

(4.106)In what follows, we will solve (4.106) sequentially, by determining �rstthe optimum V and then the optimum Σ. A ne
essary 
ondition for V tobe optimum in (4.106), 
an be obtained by �xing Σ. For a �xed Σ′, theoptimum V has to solve the problemmaximize
V

gTVD′VTgsubje
t to tr{Σ′TΣ′
}
≤ P ′

0/σ
2
n, (C2-t)

Σ′Σ′T ≥ 0,

VVT = VTV = I,

(4.107)where D′ is obtained from (4.101) by inserting Σ′ for Σ. A

ordingly, wedenote d′j for 1 ≤ j ≤ L as the elements of D′. Now 
onsider the problem(4.107) we re
ognize that it no longer depends on the unitary U - we thus
an 
hoose an arbitrarily unitary U, e.g., U = I. AV is optimum for (4.107)if and only if it is optimum formaximize
V

gTVD′VTgsubje
t to VVT = VTV = I,
(4.108)as 
an be veri�ed easily. Let us denote the orthonormal 
olumn ve
tors ofthe unitary matrix V by vj for 1 ≤ j ≤ L. A

ording to Theorem 4.4.18,the obje
tive fun
tion of (4.108) is bounded above (g is given) by

gTVD′VTg ≤ d′1 ‖g‖2 , (4.109)sin
e we assumed that the diagonal entries d′j for 1 ≤ j ≤ L inD′ are orderedde
reasingly. Equality in (4.109) (maximum) holds when v1 = cg for any
onstant c ∈ R. Sin
e v1 must has unit norm, i.e., ‖v1‖ = 1, the optimal v1is given by
v∗
1 =

g

‖g‖ . (4.110)The remaining (L − 1) 
olumn ve
tors of optimum V, i.e., vj for 2 ≤ j ≤
L 
an be 
hoosen arbitrarily, su
h that the set {vj , 1 ≤ j ≤ L} form anorthonormal basis, i.e., V is unitary.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 61After having determined the optimal V for (4.106), we will now 
hara
-terize the optimum Σ for (4.106). To that end, we �rst insert the optimal
V in (4.106), where the obje
tive fun
tion then yields
gTV∗DV∗Tg =

L∑

j=1

gT djv
∗
jv

∗
j
T
g =

(
gTv∗

1

)2
d1+

L∑

j=2

(
gTv∗

j

)2
dj

(a)
= ‖g‖2 d1,(4.111)where in step (a) we inserted (4.110) and used the fa
t that gTv∗
j = 0 for

2 ≤ j ≤ L, sin
e g = ‖g‖v∗
1 (
f. (4.110)) and v1 is obviously orthogonalto ea
h vj for 2 ≤ j ≤ L by de�nition (V is unitary). Hen
e, with d1 from(4.102), (4.106) by inserting optimum V yieldsmaximize

Σ

‖g‖2 σ2
1

σ2
h

σ2
n
+ σ2

1subje
t to tr {ΣTΣ
}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0.

(4.112)Introdu
ing the ve
tor notation s =
(
s1, s2, . . . , sw

)T
,
(
σ2
1 , σ

2
2 , . . . , σ

2
w

)T ∈
R
+w, i.e., it has to be: s � 01, the 
onstraint (C2-t) 
an thus be writtenby tr{ΣTΣ

}
=
∑w

i=1 si = sT1 ≤ P ′
0/σ

2
n, where 1 denotes a ve
tor of ones.Thus, (4.112) 
an equivalently be written in terms of sj for 1 ≤ j ≤ w asmaximize

s
f (s1) ,

s1
σ2
h

σ2
n
+ s1subje
t to sT1 ≤ P ′

0/σ
2
n, (C2-t)

s � 0,

(4.113)where we introdu
ed the fun
tion f (s1). It is obvious that the fun
tion
f (s1) is a monotoni
 fun
tion in s1, sin
e the �rst derivation

∂

∂s1
fs1 (s1) =

1
(
σ2
h

σ2
n
+ s1

)2 > 0 for all s1 ∈ R.Thus, we 
an equivalentely maximize s1, while respe
ting the 
onstraint(C2-t). The optimization problem (4.113) 
an thus be reformulated equiva-lently asmaximize
s

s1subje
t to sT1 ≤ P ′
0/σ

2
n, (C2-t)

s � 0,

(4.114)1For two ve
tors a and b, the relation a � b means elementwise inequality, i.e., ai ≥ bifor all i, where ai and bi denote the ith elements of a and b, respe
tively.
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h 
an be easily solved by
s∗1 = P ′

0/σ
2
n and s∗j = 0 for 2 ≤ j ≤ w, (4.115)and therefore, with σj =

√
sj , we �nally obtain the optimal Σ for (4.106) as

(Σ∗)j,j = σ∗
j =

{√
P ′
0

σ2
n

for j = 1

0 else. (4.116)After having determined the optimal V and Σ for (4.106), assuming
U = I (but 
ould be an arbitrary unitary matrix), we are now able to
ompute optimal Ã as

Ã∗ = Σ∗V∗T =

w∑

j=1

σ∗
j ejv

∗
j
T (4.116)

=

√
P ′
0

σ2
n

e1v
∗
1
T (4.110)

=

√
P ′
0

σ2
n ‖g‖2

e1g
T ,(4.117)where again ej denotes the jth unit ve
tor. Note that the �rst unit ve
tor e1in (4.117) follows from the assumption that U = I. It remains to determinethe optimal lo
al sensor ve
tors ai for 1 ≤ i ≤ L, whi
h 
an be obtainedwith ai = H−1

i Ãei as
a∗i = H−1

i Ã∗ei
(4.117)
=

√
P ′
0

σ2
n ‖g‖2

HT
i e1g

Tei =

√
P ′
0

σ2
n ‖g‖2

gih
r
i 1 (4.118)for 1 ≤ i ≤ L, sin
e Hi is assumed to be unitary, i.e., H−1

i = HT
i . Theve
tor hr

i 1 denotes the �rst row-ve
tor of Hi and gi = gT ei denotes the ithelement of g (
f. (4.78)). Note that hr
i 1 has unit norm, i.e., ∥∥hr

i 1

∥∥ = 1, sin
e
Hi is unitary.Hen
e, we have determined optimal LO′

i for a 
oherent MAC, where Hifor all i are assumed to be orthogonal - for the equivalent model with s
alarobservation. Finally, we give the optimal FI Jz, that follows for an optimalLO′
i. To that end, we insert V∗ and D∗ - where D∗, with diagonal entries

d∗i , is obtained from (4.101) by inserting Σ∗ for Σ - into (4.100), i.e.,
J∗
z =

1

σ2
n

gTV∗D∗V∗Tg
(a)
=

‖g‖2
σ2
n

d∗1
(b)
=

‖g‖2
σ2
n

σ∗
1
2

σ2
h

σ2
n
+ σ∗

1
2

(4.116)
=

‖g‖2
σ2
n

P ′
0

σ2
h + P ′

0

,(4.119)where in step (a) we used the derivation in (4.111) forD = D∗ (i.e., d1 = d∗1).In step (b) we insert (4.102) for σ2
1 = σ∗

1
2 into d∗1.
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al Channels: In that 
ase, we assume that all individual 
hannelmatri
esHi for all i are identi
al and espe
ially invertable, i.e.,H , Hj = Hifor all 1 ≤ i, j ≤ L and it exists H−1. Then, the 
onstraint fun
tion t (·)from (4.104) yields
t (U,Σ,V) =

L∑

i=1

(
VΣTUT

(
HiH

T
i

)−1
UΣVT

)
i,i

=

L∑

i=1

(
VΣTUT

(
HHT

)−1
UΣVT

)
i,i

= tr{VΣTUT
(
HHT

)−1
UΣVT

}

= tr{(HHT
)−1

UΣΣTUT
}
= t (U,Σ) ,

(4.120)
where in the last step, we used the 
y
li
 property of the tra
e operator [8℄and the fa
t that VTV = I. Thus, (4.105) yieldsmaximize

U,Σ,V
gTVDVTgsubje
t to tr{(HHT

)−1
UΣΣTUT

}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0,

UUT = UTU = I,

VVT = VTV = I.

(4.121)
Note that the 
onstraint (C2-t) in (4.121), now depends also on the unitarymatrix U, the left singular ve
tors of Ã.In what follows, we will solve (4.121) sequentially, by determining �rstthe optimum V and then the optimum U. A ne
essary 
ondition for V tobe optimum in (4.121) 
an be obtained by �xing U and Σ. For a �xed U′and Σ′, the optimum V has to solve the problemmaximize

V

gTVD′VTgsubje
t to tr{(HHT
)−1

U′Σ′Σ′TU′T
}
≤ P ′

0/σ
2
n, (C2-t)

Σ′Σ′T ≥ 0,

U′U′T = U′TU′ = I,

VVT = VTV = I.

(4.122)
where D′ is obtained from (4.101) by inserting Σ′ for Σ. A V is optimumfor (4.122) if and only if it is optimum formaximize

V

gTVD′VTgsubje
t to VVT = VTV = I,
(4.123)
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an be veri�ed easily. Problem (4.123) is exa
tly the same as (4.108),whi
h we have already solved. Denoting again, the orthonormal 
olumnve
tors of the unitary matrix V by vj for 1 ≤ j ≤ L. Then, sin
e d′j for all
j (the diagonal elements in D′) are assumed to be ordered de
reasingly, weobtain the optimal V for (4.123) and thus also for (4.121) by 
hoosing the�rst 
olumn ve
tor v1 as in (4.110). The remaining (L− 1) 
olumn ve
torsof the optimal V, i.e., vj for 2 ≤ j ≤ L 
an again be 
hoosen arbitrarily su
hthat the set {vj , 1 ≤ j ≤ L} forms an orthonormal basis, i.e., V is unitary.After having determined the optimal V for (4.121), we will now 
hara
-terize the optimum U for (4.121). To that end, we insert �rst the optimal
V into (4.121), yielding:maximize

U,Σ
‖g‖2 d1subje
t to tr{(HHT

)−1
UΣΣTUT

}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0,

UUT = UTU = I,

(4.124)where we used exa
tly the derivation in (4.111). If U∗ is optimal for (4.124),then it is also optimal for (4.121), as 
an be veri�ed easily.Let us 
onsider an optimal pair (U′,Σ′) solving (4.121) or, equivalently,(4.124). We will now show that ne
essarily U′ has to be a minimizer of the
onstraint fun
tion t (U,Σ), given in (4.120), for the spe
i�
 
hoi
e Σ = Σ′,i.e.,
U′ = arg minimize

U

t
(
U,Σ′

)
= tr{(HHT

)−1
UΣ′Σ′TUT

}subje
t to UUT = UTU = I,
(4.125)Indeed assume that there is another unitary matrixU′′ su
h that t (U′′,Σ′) <

t (U′,Σ′). It follows that also U′′, Σ′ is a feasible pair, sin
e U′′ is unitaryand
t
(
U′′,Σ′

)
< t

(
U′,Σ′

)
≤ P ′

0/σ
2
n. (C2-t). (4.126)We 
an now 
onstru
t another Σ, i.e., Σ = Σ′′ by Σ′′ ,

√
cΣ′, where c > 1.Sin
e, as 
an be veri�ed easily, t (U,

√
cΣ) = c · t (U,Σ), we 
an 
hoose csmall enough su
h that

t
(
U′′,Σ′′

)
= c · t

(
U′′,Σ′

)
≤ P ′

0/σ
2
n (C2-t),due to (4.126) implying that also (U′′,Σ′′) is feasible. However, a simple
omputation shows that for the feasible pair (U′′,Σ′′) the obje
tive in (4.121)is stri
tly larger than for (U′,Σ′). A 
ontradi
tion to the assumption that

(U′,Σ′) is optimal.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 65Theorem 4.4.19 Let A and B are two real symmetri
 (s×s)-matri
es anddenoting λi (A) and λi (B) as the ith eigenvalue of A and B, respe
tively.Assuming the eigenvalues λi (A) and λi (B) are arranged in de
reasing order,i.e., λ1 (A) ≥ λ2 (A) ≥ ... ≥ λn (A) ≥ 0 and λ1 (B) ≥ λ2 (B) ≥ ... ≥
λn (B) ≥ 0. Then

n∑

i=1

λi (A)λs−i+1 (B) ≤ tr {AB} ≤
s∑

i=1

λi (A)λi (B) . (4.127)Proof. Cf. [14, Theorem II-1℄.So, we 
an determine the optimal U for (4.121) by solving (4.125), wherethe optimalU is given byU∗ = U′. An appli
ation of Theorem 4.4.19 revealsthat the optimal U is given by the eigenve
tors of (HHT
)−1 or HHT , inthe order of in
reasing eigenvalues of (HHT

)−1 or de
reasing eigenvalues of
HHT , respe
tively. Thus, with eigenvalue de
omposition (EVD) HHT =
UhΛhU

T
h , where the unitary Uh 
ontains the eigenve
tors, and the diagonal

Λh 
ontains the positive eigenvalues of HHT , denoted by λhj for 1 ≤ j ≤ p,in de
reasing order, i.e., λh1 ≥ λh2 ≥, . . . ,≥ λhp > 0, we obtain optimal Uby
U∗ = Uh, u∗

j = uhj for 1 ≤ j ≤ p, (4.128)where the ve
tors uj and uhj denote the jth 
olumn ve
tors of U and Uh,respe
tively.So far, we have determined the optimal U and V for (4.121). It remainsto determine the optimal Σ for (4.121). To that end, we insert U∗ into(4.124) an together with d1 from (4.102) in turn leads tomaximize
Σ

‖g‖2 σ2
1

σ2
h

σ2
n
+ σ2

1subje
t to tr {Λ−1
h ΣΣT

}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0.

(4.129)We now a

ept the notation s =
(
s1, s2, . . . , sL

)T
,
(
σ2
1, σ

2
2 , . . . , σ

2
L

)T ∈ R
+was for the last 
ase, where we 
onsidered orthogonal 
hannels, in turn: s � 0.Comparing (4.129) with (4.112), we re
ognize that only the 
onstraint (C2-t)di�ers - the obje
tive in both problems are equivalent. Writting (4.129) interms of sj for 1 ≤ j ≤ w, we thus 
an use (4.114), whereby the 
onstraintis still to be adapted a

ordingly. In the 
urrent 
ase, the 
onstraint (C2-t)in terms of s 
an be written as tr {Λ−1

h ΣΣT
}
=
∑w

j=1 sj/λhj ≤ P ′
0/σ

2
n and



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 66thus, (4.129) in terms of sj for 1 ≤ j ≤ w �nally yieldsmaximize
s

s1subje
t to w∑

i=1

sj
λhj

≤ P ′
0/σ

2
n, (C2-t)

sj ≥ 0 for 1 ≤ j ≤ w,

(4.130)whi
h 
an be easily solved by
s∗1 =

P ′
0λh1

σ2
n

and s∗j = 0 for 2 ≤ j ≤ w, (4.131)and therefore, with σj =
√
sj , we �nally obtain the optimal Σ for (4.121) as

(Σ∗)j,j = σ∗
j =

{√
P ′
0λh1

σ2
n

for j = 1

0 else. (4.132)After having determined the optimal V, U and Σ for (4.121), we arenow able to 
ompute optimal Ã as
Ã∗ = U∗Σ∗V∗T =

w∑

j=1

σ∗
jujv

∗
j
T (4.132)

=

√
P ′
0λh1

σ2
n

u∗
1v

∗
1
T (a)

=

√
P ′
0λh1

σ2
n ‖g‖2

uh1g
T ,(4.133)where in step (a) we inserted (4.110) and (4.128). It remains to determinethe optimal lo
al sensor ve
tors ai for 1 ≤ i ≤ L, whi
h 
an be obtainedwith ai = H−1

i Ãei = H−1Ãei as
a∗i = H−1Ã∗ei

(4.133)
=

√
P ′
0λh1

σ2
n ‖g‖2

H−1uh1g
T ei =

√
P ′
0λh1

σ2
n ‖g‖2

gi
1

σh1
vh1 (4.134)for 1 ≤ i ≤ L, where in step (a) we used, with SVD on H = VhΣhU

T
h ,the derivation H−1uh1 = VhΣ

−1
h UT

huh1 = VhΣ
−1
h e1 = 1

σh1
vh1, where σh1denotes the �rst singular value of H - whi
h in turn is the largest one interms of magnitude - and vh1 denotes the �rst 
olumn ve
tor of Vh - the
orresponding �rst right singular ve
tor ofH. The s
alar gi = gT ei in (4.134)denotes again the ith element of g. Note that σh1 6= 0, sin
e we assumedthat H is invertable. Writting1 σh1 = sign (σh1) |σh1| and using the relation

λh1 = |σh1|2, we 
an reformulate (4.134) as
a∗i = sign (σh1)√ P ′

0

σ2
n ‖g‖2

givh1, (4.135)1The signum fun
tion sign (a) on a ∈ R returns 1 for a ≥ 0 and −1 for a < 0.
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ognize that a∗i does not depend on the magnitude of σh1 or λh1.Hen
e, we have determined optimal LO′
i for a 
oherent MAC, where all

Hi for 1 ≤ i ≤ L are assumed to be identi
al - for the equivalent model withs
alar observation. Finally, we give the optimal FI Jz, that follows for anoptimal LO′
i. To that end, we a

ept the steps in (4.119) - ex
ept the laststep, where we used instead of (4.116), (4.132), i.e., we obtain

J∗
z =

‖g‖2
σ2
n

P ′
0

σ2
h/λh1 + P ′

0

. (4.136)4.4.3.3 Optimal Power S
heduling for an Orthogonal MACLet us now study an optimal power s
heduling strategie, espe
ially for theorthogonal MAC 
ase. To that end, we still 
onsider the equivalent modelwith s
alar observation and suppose optimal lo
al sensors LO′
i for all i as al-ready determined in 
losed-form (
f. (4.97)). Then, we have already derivedthe optimal, resulting FI J∗

z shown in (4.99) - for both 
onstraints (C1-s)and (C2-s). Let us �rst 
onsider (C1-s). It raises the question of how a giventotal power P0 =
∑L

i=1 P0,i should be allo
ated optimally to the individualsensors. Similar holds, when we 
onsider 
onstraint (C2-s), i.e., how a giventotal varian
e P ′
0 =

∑L
i=1 P

′
0,i should be allo
ated optimally to the individualsensors.We assume the 
ase in whi
h σ2

ni
> 0 and thus gi > 0 for all i. Let usre
all the FI J∗

z from (4.99), whi
h 
an also be written as
J∗
z =

L∑

i=1

b
(1)
i

Pi

b
(2)
i + b

(3)
i Pi

,where b
(1)
i , g2i h

2
imax,

b
(3)
i , σ2

ni
h2imax,

b
(2)
i ,

{
σ2
hi

(
(giθ)

2 + σ2
ni

) (C1-s)i
σ2
hi
σ2
ni
, (C2-s)i

Pi ,

{
P0,i (C1-s)i
P ′
0,i. (C2-s)i

(4.137)
Before we de�ne the optimal power s
heduling problem, we �rst treat the
ase of an uniform power s
heduling strategie, in order to obtain a perfo-man
e ben
hmark for the optimal power s
heduling. To that end, we usethe notation of (4.137) and still intrudu
e

P ,

{
P0 (C1-s)i
P ′
0, (C2-s)iso that both 
onstraints to be addressed simultaneously in what follows.
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heduling Suppose all sensors use the same transmitpower/varian
e, i.e., Pi = P/L (L ≥ 1). Then, (4.137) yields
Jz,u (P ) , J∗

z =
L∑

i=1

b
(1)
i

P/L

b
(2)
i + b

(3)
i P/L

=
L∑

i=1

b
(1)
i

P

b
(2)
i L+ b

(3)
i P

, (4.138)where we introdu
ed Jz,u (P ) - the FI J∗
z from (4.137) as a fun
tion on thetotal power/varian
e P for a uniform power s
heduling strategie. We nowanalyse the asymptoti
 behaviour of Jz,u (P ) for P → ∞. It is easy to verifythat

Jz,u (P → ∞) = lim
P→∞

L∑

i=1

b
(1)
i

P

b
(2)
i L+ b

(3)
i P

=

L∑

i=1

b
(1)
i

b
(3)
i

=

L∑

i=1

gi
σ2
ni

, (4.139)the same result for both 
onstraints. Sin
e, Jz,u (P ) is a monotoni
 fun
tionin P , we have that
Jz,u (P → ∞) > Jz,u (P ) ,for all P ∈ R

+. Thus, (4.139) is an upper bound for Jz,u (P ).Optimal Power S
heduling We assume at �rst that h2imax > 0 for all i,i.e., we ex
lude the 
ase when Hi = 0. Now we 
onsider an optimal powerallo
ation strategy, whereby transmit power is optimally s
heduled amongsensors to a
hieve the best estimation performan
e. We study the followingproblem under a total power/varian
e 
onstraint:maximize
P0,P1,...,PL

L∑

i=1

b
(1)
i

Pi

b
(2)
i + b

(3)
i Pisubje
t to L∑

i=1

Pi ≤ P,

Pi ≥ 0 for 1 ≤ i ≤ L,

(4.140)
i.e., maximizing the FI from (4.137) for a given total power/varian
e P =∑L

i=1 Pi (
onstraint), w.r.t. Pi ≥ 0 for 1 ≤ i ≤ L. We �rst, reformulateproblem (4.140) equivalently into standard form [15℄ asminimize
P0,P1,...,PL

−
L∑

i=1

b
(1)
i

Pi

b
(2)
i + b

(3)
i Pisubje
t to L∑

i=1

Pi − P ≤ 0,

Pi ≥ 0 for 1 ≤ i ≤ L,

(4.141)
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h is equivalent to problem (A.1) in Appendix A for xk = Pi, c(1)k = b
(1)
i ,

c
(2)
k = b

(2)
i , c(3)k = b

(3)
i , K = L, P = P . The resulting optimum P ∗

i for
1 ≤ i ≤ L, 
an be obtained by a so 
alled "water-�lling" pro
edure and 
anbe expressed as

P ∗
i = max0,

√√√√b
(2)
i b

(1)
i

(b
(3)
i )2

1

ν∗
− b

(2)
i

b
(3)
i



 , (4.142)and

L∑

i=1

max0,

√√√√b
(2)
i b

(1)
i

(b
(3)
i )2

1

ν∗
− b

(2)
i

b
(3)
i



 = P. (4.143)The optimal Pi for 1 ≤ i ≤ L for (4.141) and also for (4.140) 
an not be
omputed in 
losed-form. First, we have to determine the optimal variable

ν from (4.143). Subsequently, the optimal Pi for 1 ≤ i ≤ L 
an then be
omputed using (4.142). This 
an be done by a so 
alled "water-�lling"algorithm (Cf. Algorithm A.1).In Subse
tion 5.1.1, we will analyse the optimal power s
heduling versusthe uniform power s
heduling performan
e in some numeri
al experiments.4.4.3.4 Implementation of an Optimal Lo
al SensorSo far, we have solved (P-II-s) for an orthogonal MAC without any restri
-tion. For the 
oherent MAC we modi�ed (P-II-s) 
on
erning the 
onstraint,we 
onsidered a total power 
onstraint (C1-t) and (C2-t) instead of (C1-s)and (C2-s), where we then have determined the optimal lo
al sensor ruleLO′
i for (C2-t) and for 
ertain spe
ial 
ases on the 
hannel matrix Hi for all

i. However, we have solved the lo
al sensor rules LO′
i for the equivalentmodel with s
alar observation, i.e., LO′∗

i =
(
a∗,C′∗

li
= 0

). A

ording toCorollary 4.4.17, we �nally obtain the optimal lo
al sensor rule LOi for ouroriginal model asLO∗
i ⇔ LO′∗

i :

A∗
i = a∗i g̃

T
i , where g̃i =





C
†
nigi gi ∈ R (Cni

) \ {0}
g′
i⊥ g′

i⊥ 6= 0

0 gi = 0,

C∗
li = C′∗

li = 0,

(4.144)where g′
i⊥ is de�ned in (4.37). Let us now, summarize all main results for as
alar parameter.
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all (4.97) - the optimal lo
al sensor ve
tor
ai for sensor i, when we 
onsider an orthogonal MAC. In what follows, we
onsider only the 
ase, when gi > 0 and σ2

ni
> 0 - the trivial 
ase, when gi = 0and σ2

ni
= has no optimal solution, sin
e Jz = 0 for 
hoi
es of a - for the
ase, when gi > 0 and σ2

ni
= 
f. dis
ussion in Subsubse
tion 4.4.3.1. Withthe already known solution C∗

li
= 0, we obtain the optimal LOi, a

ordingto (4.144), asLO∗

i : (
A∗

i = c∗i eimaxg̃T
i , C∗

li = 0
)
,where c∗i =





√
P0,i

(giθ)
2+σ2

ni

(C1-s)
√

P ′
0,i

σ2
ni

, (C2-s) (4.145)where g̃i is given in (4.144). The unit ve
tor eimax 
orresponds to the largestdiagonal entry ofHT
i Hi, so h2imax. The model parameter gi and σni

are givenin (4.63). An implementation is illustrated in Fig. 4.6, whi
h 
an be regardedas a three stage implementation.
yi g̃i

T eimax si

c∗i

Mat
hed Filter
Channel Diag.

Power Mat
hing
Figure 4.6: Optimal LOi implementation for a s
alar parameter and orthog-onal MAC.The �rst stage in Fig. 4.6, 
an be regarded as a Mat
hed Filter, i.e.,an optimal pre�ltering (mat
hing) in a

ordan
e with the lo
al observationmodel (gi,Cni

). The Channel Diagonalization stage, for
es the optimal di-re
tion for the transmit data si onto the strongest transmission path of thegiven 
hannel Hi. Finally, the task of the ampli�
ation stage is, to attain themaximum available power for the transmit data si, i.e., a Power Mat
hingfor si. Here, the gain is given by (4.96) and depends on the 
onstraint (C1-s)or (C2-s), respe
tively.Let us �nally 
onsider the implementation of an optimal LOi for 
on-straint (C1-s) in more detail. As already mentioned and as 
an be seen in(4.96), the optimal solution for an LOi depends on the unknown paramter θ.At �rst glan
e, the sensor thus 
an not be implemented optimally. However,only the third stage in Fig. 4.6, i.e., only the optimal ci denpends on θ. Theoptimal value of ci o

urs, when the power of si, i.e., E {sTi si} rea
hes the
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onstant P0,i. Thus, we 
an implement the optimal lo
al sensor LO∗
ifor 
onstraint (C1-s) as follows: Choosing the �rst two stages of Fig. 4.6 asusual, i.e., a mat
hing and the 
hannel diagonalization, whi
h do not dependon θ. The third stage 
an be implemented by means of a 
ontrol loop as illus-trated in Fig. 4.7. Starting with an arbitrary initial value ci = csi , a 
ontrollerC in
reases the fa
tor ci until the deviation d = P0,i − E {sTi si} = 0, i.e.,unitl the steady state is rea
hed. After the steady state has been rea
hed,the power on si yields E {sTi si} = P0,i and we have determined the optimal

ci = c∗i and thus the optimal Ai for (C1-s).
yi g̃i

T eimax si

P0,i
d

E{
s
T
i si

}C -ci = csi

Mat
hed Filter
Channel Diag.

Power Mat
hing
Figure 4.7: Optimal LOi implementation for a s
alar paramter - 
onsideringan orthogonal MAC and 
onstraint (C1-s). A 
ontrol loop with an 
ontrollerC is implemented to obtain maximum transmit power for si in the steadystate.Coherent MAC: Let us �nally, give the optimal LOi for the 
oherentMAC 
ase. To that end, we re
all the optimal lo
al sensor ve
tor ai for LO′

i,given in (4.118) for the 
ase of orthogonal individual 
hannel matri
es Hi for
1 ≤ i ≤ L, and in (4.135) for the 
ase of identi
al and invertable individual
hannel matri
es H = Hi for 1 ≤ i ≤ L. With the already known solution
C∗

li
= 0, we obtain the optimal LOi for the orthogonal individual 
hannel
ase, a

ording to (4.144), asLO∗

i : (
A∗

i =

√
P ′
0

σ2
n ‖g‖2

gih
r
i 1g̃

T
i , C∗

li = 0

)
. (4.146)and for the identi
al individual 
hannel 
ase asLO∗

i : (
A∗

i = sign (σh1)√ P ′
0

σ2
n ‖g‖2

givh1g̃
T
i , C∗

li = 0

)
. (4.147)The ve
tor g̃i in (4.146) and (4.146), is again given in (4.144). Note that forthe 
oherent MAC we only 
onsidered the �rst 
ase for g̃i in (4.144), i.e.,
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) \ {0}. The ve
tor hr

i 1 in (4.146) denotes the �rst row-ve
tor of the unitary Hi. The ve
tor vh1 in (4.147) denotes the largest rightsingular ve
tor of H = Hi for all i, whi
h 
orresponds to the largest singularvalue σh1 of H (in terms of magnitude). The model parameter gi and σniare given in (4.63). Note that in the 
oherent MAC 
ase, we assumed gi > 0and σ2
n = σni

> 0. Finally P ′
0 denotes the total varian
e power in
luding allsensors.The implementation of the optimal LOi for both 
ases is similar toFig. 4.6. Only the se
ond stage di�ers in 
hoosing hr

i 1 or vh1 instead of
eimax, respe
tively.4.5 Ve
tor Parameter CaseLet us now 
onsider the general 
ase of a ve
tor parameter θ ∈ R

n. Here, weex
lusively use the standard model (
f. De�nition 4.3.14), i.e., we 
onsideronly the 
ase of an orthogonal MAC - the observation and 
hannel noise areiid - the 
hannel matrix Hi is diagonal for all i. Thus, we des
ribe the ithobservation noise 
ovarian
e matrix by Cni
= σ2

ni
I and the ith 
hannel noise
ovarian
e matrix by Chi

= σ2
hi
I, where σ2

ni
> 0 and σ2

hi
> 0. The assumeddiagonal 
hannel matrix Hi, 
an thus be written as

(H)k,l =

{
hl l = k

0 k 6= l
for 1 ≤ k ≤ pi and 1 ≤ l ≤ qi. (4.148)So far, we have already solved the basi
 optimization problem (P-I) w.r.t.

Cli , where the resulting optimum is given by C∗
li
= 0 (for all i) (
f. Se
-tion 4.1). We thus 
onsider the optimization problem (P-II) to determine thestill unknown sensor matrix Ai (for all i) φ-optimally. Let us �rst rewritethe FIMs Jzi

from (3.5) and Jz from (3.8) a

ording to the standard modelas
Jzi

= GT
i A

T
i H

T
i

(
σ2
hi
I+ σ2

ni
HiAiA

T
i H

T
i

)−1
HiAiGi (4.149)and

Jz =
L∑

i=1

GT
i A

T
i H

T
i

(
σ2
hi
I+ σ2

ni
HiAiA

T
i H

T
i

)−1
HiAiGi. (4.150)With these assumptions, we 
onsider further problem (P-II), where Jz isnow given in (4.150). In Se
tion 4.2, we have showed that for an orthogonalMAC and when the optimality 
riterion fun
tion φ is linear, we 
an solve anequivalent problem (P-III) in order to obtain the φ-optimal Ai for a spe
i�
sensor i. In what follows, we are interested on a T- and A-optimal designfor a lo
al sensor i.
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onsider the T�optimality 
riterion φ1, de�ned in (3.41). A T�optimal designed lo
al sensor rule LO∗
i φ1

maximizes the tra
e of the FIM Jz,while respe
ting the 
onstraint (C1) or (C2), respe
tively. Sin
e, the tra
eand thus φ1 is a linear fun
tion on NND (n) (
f. (3.42)), we 
an equivalentlysolve (P-III), where Jzi
is now given in (4.149), in order to determine theT�optimal lo
al sensor matrix Ai for sensor i. Thus, we 
onsider a single-sensor model, sin
e all L sensors 
an be determined independently of ea
hother optimally. In parti
ular, we treat only the 
ase with 
onstraint (C2).In the following, we let the index notation to address the ith sensor away,i.e., we set Gi = G, Ai = A, Hi = H, Cni

= Cn, Chi
, P0,i = P0, P ′

0,i = P ′
0,

pi = p, qi = q, mi = m. Hen
e, we 
an state the following optimizationproblem:maximize
A∈Rq×m

φ1 {A} =
1

n
tr{GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
}subje
t to tr {AAT

}
≤ P ′

0/σ
2
n, (C2) (4.151)where we introdu
ed the notation φ1 {Ai} = φ1 {Jzi

}. In what follows, wesolve (4.151) for 
ertain spe
ial 
ases, where we make assumptions on the
hannel matrix H. First, we assume an orthogonal 
hannel matrix. Thenwe generalized it to a re
tangular 
hannel matrix, where we suppose full
olumn-rank.4.5.1.1 Orthogonal ChannelHere we assume that the 
hannel matrix H is orthogonal (unitary), i.e.,
HTH = HHT = I. Implying that H is a squared matrix, i.e., p = q.Lemma 4.5.20 Any unitary matrix U has singular values equal to one.Proof. Cf. [16, Theorem 6.2, p. 173℄Sin
e, we assumed that the 
hannel matrix H is diagonal (standardmodel), we 
on
lude a

ording to Lemma 4.5.20 that the diagonal elements
hl (
f. (4.148)) are given by hl = 1 for 1 ≤ l ≤ q, whi
h in turn yields that
H = I. Thus, the obje
tive fun
tion φ1 (·) in (4.151), 
an be equivalently
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φ1 {A} =

1

n
tr{GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
}

H=I
=

1

n
tr{GTAT

(
σ2
hI+ σ2

nAAT
)−1

AG
}

=
1

n

1

σ2
n

tr{GTAT

(
σ2
h

σ2
n

I+AAT

)−1

AG

}

(a)
=

1

n

1

σ2
n

tr{GTVΣTUT

(
σ2
h

σ2
n

I+UΣVTVΣTUT

)−1

UΣVTG

}

=
1

n

1

σ2
n

tr{GTVΣTUTU

(
σ2
h

σ2
n

I+ΣΣT

)−1

UTUΣVTG

}

=
1

n

1

σ2
n

tr{GTVΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

ΣVTG

}

(b)
=

1

n

1

σ2
n

tr {GTVDVTG
}
, (4.152)In step (a) we performed the SVD A = UΣVT , with unitary matri
es

U ∈ R
q×q, V ∈ R

m×m and the re
tangular diagonal matrix Σ of size q×m,whi
h 
ontains the singular values σj for 1 ≤ j ≤ w , min {q,m} of Aon the main diagonal. We assume that the singular values σj are orderedde
reasingly (in terms of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw| ≥ 0. Instep (b) we introdu
ed the diagonal matrix
D , ΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

Σ, (4.153)whi
h is indeed squared and diagonal of size m×m. The m elements on themain diagonal are thus given by
dj , (D)j,j =





σ2
j

σ2
h

σ2
n
+σ2

j

1 ≤ j ≤ w

0 w < j ≤ m.

(4.154)As 
an be veri�ed easily, the diagonal elements dj are ordered de
reasingly,i.e., d1 ≥ d2 ≥ ... ≥ dm ≥ 0, as a result of the adoption order on the set
{|σj|}wj=1.The 
onstraint (C2) in (4.151), 
an also be written in terms of SVD
A = UΣVT astr {AAT

}
= tr {UΣVTVΣTUT

}

= tr {UTUΣΣT
}

= tr {ΣΣT
}
≤ P ′

0/σ
2
n, (C2) (4.155)
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y
li
 property of the tra
e operator [8℄ and thefa
ts that VTV = I and UTU = I.With the derivations in (4.152) (ex
luding 
onstants, 
f. p. 59 ftn. 1) and(4.155), the optimization problem (4.151) 
an thus be reformulated equiva-lently in terms of SVD A = UΣVT asmaximize
Σ,V

tr {GTVDVTG
}subje
t to tr {ΣΣT

}
≤ P ′

0/σ
2
n,

ΣΣT ≥ 0

VVT = VTV = I.

(4.156)Note that problem (4.156), does not depend on the 
hannel matrix H as a
onsequen
e that H is assumed to be unitary. Furthermore, problem (4.156)does not dependend on the unitary U - the left singular ve
tors of the sensormatrix A - so that an arbitrary orthogonal (unitary) U 
an be 
hosen, e.g.,
U = I.In what follows, we will solve (4.156) sequentially, by determining �rstthe optimum V and then the optimum Σ. A ne
essary 
ondition for V tobe optimum in (4.156), 
an be obtained by �xing Σ. For a �xed Σ′, theoptimal V has to solve the problemmaximize

V

tr {GTVD′VTG
}subje
t to tr{Σ′Σ′T

}
≤ P ′

0/σ
2
n

Σ′Σ′T ≥ 0

VVT = VTV = I,

(4.157)where D′ is obtained from (4.153) by inserting Σ′ for Σ. A V is optimumfor (4.158) if and only if it is optimum formaximize
V

tr {VD′VTGGT
}subje
t to VTV = VTV = I,

(4.158)as 
an be veri�ed easily, where we used againtr {GTVD′VTG
}
= tr{VD′VTGGT

}
.Let us denote the EVD of GGT by GGT = UgΛgU

T
g , with the unitarymatrix Ug ∈ R

m×m (
ontains the eingenve
tors of GGT ) and the diagonalmatrix Λg of size m×m, whi
h 
ontains the positive eigenvalues λgj for 1 ≤
j ≤ m of GGT on the main diagonal. We assume that the eigenvalues λgjare ordered de
reasingly, i.e., λg1 ≥ λg2 ≥ · · · ≥ λgm ≥ 0, sin
e the diagonal
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reasingly. Then, we have by Theorem 4.4.19that the optimal V, solving (4.158), is given by
V∗ = Ug, (4.159)where the 
olumn ve
tors of Ug 
orrespond to the eigenve
tors of GGT ,sorted de
reasingly1.After having determined the optimal V for (4.156), it remains to deter-mine the optimal Σ for (4.156). To that end, we insert the optimal V from(4.159) into (4.156), yielding:maximize

Σ

tr {ΛgD}subje
t to tr {ΣΣT
}
≤ P ′

0/σ
2
n,

ΣΣT ≥ 0,

(4.160)whi
h has to be solved for the optimal Σ, whi
h then yields together with
V∗ the solution for (4.156). Let us introdu
e the ve
tor notation s =

(s1, s2, . . . , sw)
T

,
(
σ2
1 , σ

2
2 , . . . , σ

2
w

)T ∈ R
+w, i.e., s � 0. Then, we 
anreformulate the optimization problem (4.156) equivalently in standard form[15℄ asminimize

s
−

w∑

j=1

λ′
gj

sj
σ2
h

σ2
n
+ sjsubje
t to 1T s− P ′

0 ≤ 0,

− s � 0,

(4.161)where
λ′
gj ,

{
λgj 1 ≤ j ≤ m

0 m < i ≤ w.
(4.162)The optimization problem (4.161) is equivalent to problem (A.1) in Ap-pendix A for xk = sj , c(1)k = λ′

gj , c(2)k =
σ2
h

σ2
n
, c(3)k = 1, K = w, P = P ′

0.The resulting optimum s∗j for 1 ≤ j ≤ w, 
an be obtained by a so 
alled"water-�lling" pro
edure and 
an be expressed as
s∗j = max0,

√
σ2
h

σ2
n

λ′
gj

ν∗
− σ2

h

σ2
n



 (4.163)and

w∑

j=1

max0,

√
σ2
h

σ2
n

λ′
gj

ν∗
− σ2

h

σ2
n



 = P ′

0. (4.164)1The eigenve
tors of a symmetri
 matrix are sorted de
reasingly/in
reasingly if the
orresponding eingenvalues are sorted de
reasingly/in
reasingly



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 77The optimal sj for 1 ≤ j ≤ w for (4.161) 
an not be 
omputed in 
losed-form. However, we 
an determine the optimal ν, �rst numeri
ally, a

ordingto (4.164). Subsequently, we 
an 
ompute the optimal sj for 1 ≤ j ≤ wusing (4.163). This 
an be done by a so 
alled "water-�lling" algorithm (
f.Algorithm A.1). With the optimal sj for (4.161), we 
an �nally 
ompute theoptimal singular values σj of A with σ∗
j =

√
s∗j for 1 ≤ j ≤ w, whi
h arethen arranged on the main diagonal of the optimal Σ in de
reasing order.After having determined the optimal V and Σ for (4.156), we are nowable to 
ompute the optimal lo
al sensor matrix A with U = I as

A∗ = Σ∗V∗T (4.159)
= Σ∗Ug. (4.165)Note again: the optimal Σ 
an not be expressed in 
losed-form - it has to bedetermined numeri
ally ("water-�lling" pro
edure); the unitary matrix Ug
ontains the eigenve
tors of GGT , sorted de
reasingly.Con
lusions Let us return to our original index notation that indi
ates the

ith sensor and re
all that C∗
li
= 0 for sensor i. For an orthogonal MAC with

L lo
al sensors, the T-optimal ith LO - for the standard model - 
onsidering
onstraint (C2) - assuming an unitary 
hannel matrix Hi - is given byLO∗
i φ1

: (
A∗

i = Σ∗
iUgi , C∗

li = 0
)
, (4.166)where the unitary matrix Ugi 
ontains the eigenve
tors of GiG

T
i sorted de-
reasingly, the diagonal Σ∗

i has to be determined in a "water-�lling" prin
iplein order to balan
e 
hannel noise and sensor observation states of sensor i.4.5.1.2 Invertible ChannelStill 
onsidering problem (4.151), we now allow for a general invertible 
han-nel matrix H, i.e., it exist H−1. That implies hl 6= 0 for 1 ≤ l ≤ q = p (
f.(4.148)).Introdu
ing
Ã , HA, (4.167)the obje
tive fun
tion φ1 (·) in (4.151), 
an then be equivalently reformulated
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φ1 (A) = tr{GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
}

=
1

σ2
n

tr{GT ÃT

(
σ2
h

σ2
n

I+ ÃÃT

)−1

ÃG

}

(a)
=

1

σ2
n

tr{GTVΣTUT

(
σ2
h

σ2
n

I+UΣVTVΣTUT

)−1

UΣVTG

}

=
1

σ2
n

tr{GTVΣTUTU

(
σ2
h

σ2
n

I+ΣΣT

)−1

UTUΣVTG

}

=
1

σ2
n

tr{GTVΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

ΣVTG

}

(b)
=

1

σ2
n

tr {GTVDVTG
}
. (4.168)In step (a) we performed the SVD Ã = UΣVT , with unitary matri
es

U ∈ R
p×p, V ∈ R

m×m and the re
tangular diagonal matrix Σ of size p×m,whi
h 
ontains the singular values σj for 1 ≤ j ≤ w , min {p,m} of Ã onthe main diagonal. We assume again that the singular values σj are orderedde
reasingly (in terms of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw| ≥ 0. Instep (b) we introdu
ed the diagonal matrix
D , ΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

Σ, (4.169)whi
h is indeed squared and diagonal of size m×m. The m elements on themain diagonal are thus given by
dj , (D)j,j =





σ2
j

σ2
h

σ2
n
+σ2

j

1 ≤ j ≤ w

0 w < j ≤ m,

(4.170)As 
an be veri�ed easily, the diagonal elements dj are ordered de
reasingly,i.e., d1 ≥ d2 ≥ ... ≥ dm ≥ 0, as a result of the adoption order on the set
{|σj|}wj=1.Consider the shorthand Ã from (4.167). Sin
e we assumed that H isinvertible, we 
an uniquely re
laim A from Ã with A = H−1Ã. The 
on-straint (C2) in (4.151), 
an thus be equivalently written in terms of SVD
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Ã = UΣVT astr {AAT

}
= tr{H−1ÃÃT

(
H−1

)T}

= tr{ÃÃT
(
H−1

)T
H−1

}

= tr{UΣVTVΣTUT
(
HHT

)−1
}

= tr{UΣΣTUT
(
HHT

)−1
}
≤ P ′

0

σ2
n

, (C2) (4.171)
where we used again the 
y
li
 property of the tra
e operator, the fa
t that
VTV = I and (H−1

)T
H−1 =

(
HT
)−1

H−1 =
(
HHT

)−1.With the derivations in (4.168) (ex
luding 
onstants, 
f. p. 59 ftn. 1) and(4.171), the optimization problem (4.151) 
an thus be reformulated equiva-lently in terms of SVD Ã = UΣVT asmaximize
U,Σ,V

tr {GTVDVTG
}subje
t to tr{UΣΣTUT
(
HHT

)−1
}
≤ P ′

0

σ2
n

,

ΣΣT � 0,

UUT = UTU = I,

VVT = VTV = I.

(4.172)
Note that the the unitary matrixU, the left singular ve
tors of Ã, now entersthe 
onstraint in (4.172) and thus has to be 
hosen optimally for (4.172).In what follows, we will solve (4.172) sequentially, by determining �rstthe optimal V and then the optimal U. A ne
essary 
ondition for V to beoptimum in (4.172), 
an be obtained by �xing U and Σ. For a �xed U′ and
Σ′, the optimal V has to solve the problemmaximize

V

tr {GTVD′VTG
}subje
t to tr{U′Σ′Σ′TU′T
(
HHT

)−1
}
≤ P ′

0

σ2
n

,

Σ′Σ′T � 0,

U′U′T = U′TU′ = I,

VVT = VTV = I,

(4.173)
where D′ is obtained from (4.169), by inserting Σ′ for Σ. A V is optimumfor (4.173), if and only if it is optimum formaximize

V

tr {VD′VTGGT
}subje
t to VVT = VTV = I,

(4.174)
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an be veri�ed easily, where we used againtr {GTVD′VTG
}
= tr{VD′VTGGT

}
.Note that problem (4.174) is exa
tly the same as (4.158), whi
h we havealready solved. Thus, optimal V for problem (4.174) is given by

V∗ = Ug, (4.175)where the 
olumn ve
tors of Ug 
orrespond to the eigenve
tors of GGT ,sorted de
reasingly, i.e., the EVD GGT = UgΛgU
T
g , where we assume thatthe eigenvalues λgj for 1 ≤ j ≤ m of GGT are ordered de
reasingly alongthe main diagonal in Λg.After having determined the optimal V for (4.172), we will now 
hara
-terize the optimal U for (4.172). To that end, we insert the optimal V from(4.175) into (4.172), yielding:maximize

U,Σ
tr {ΛgD}subje
t to tr{UΣΣTUT

(
HHT

)−1
}
≤ P ′

0

σ2
n

ΣΣT � 0

UUT = UTU = I.

(4.176)
If U∗ is optimal for (4.176), then it is also optimal for (4.172), as 
an beveri�ed easily. Invoking problem (4.124), we note that it has exa
tly thesame 
onstraint fun
tions and a fairly similar obje
tive. Where we haveshowed that the optimal U is determined by minimization of the 
onstraintfun
tion

t (U,Σ) , tr{UΣΣTUT
(
HHT

)−1
}
.We 
an 
losely follow the approa
h and re
ognize that this also applies to(4.176). Thus, we 
an determine the optimal U by solvingminimize

U

tr{UΣ′Σ′TUT
(
HHT

)−1
}subje
t to UUT = UTU = I,

(4.177)i.e., the optimal U will be a minimizer of the 
onstraint fun
tion t (U,Σ),for the spe
i�
 
hoi
e of Σ = Σ′. An appli
ation of Theorem 4.4.19 reveals,that the optimal U is given by the eigenve
tors of (HHT
)−1 or HHT , re-spe
tively, in the order of in
reasing eigenvalues of (HHT
)−1, or, de
reasingeigenvalues ofHHT . However, sin
eHHT and in turn (HHT
)−1 is diagonal,the eigenve
tors are given by the unit ve
tors {ek}pk=1. Moreover, sin
e theeigenvalues of (HHT

)−1 are the squared re
ipro
als of the diagonal values
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hj 6= 0 for 1 ≤ j ≤ p, we have that the kth 
olumn of U∗ is given by ejk ,where jk is the index of the kth largest main diagonal entry hjk (in termsof magnitude). Howerver, we have assumed that the diagonal entries are inde
reasing order in terms of magnitude w.l.o.g. Thus, the optimal U is givenby

U∗ = I, (4.178)So far, we have determined the optimal U and V for (4.172). It remainsto determine the optimal singular values σj for 1 ≤ j ≤ w. Inserting theoptimal 
hoi
es U∗ and V∗ in (4.172), yielding:maximize
Σ

tr {ΛgD}subje
t to tr {ΣΣTΛ−1
h

}
≤ P ′

0/σ
2
n,

ΣΣT ≥ 0,

(4.179)Let us a

ept the notation s =
(
s1, s2, . . . , sw

)T
,
(
σ2
1 , σ

2
2 , . . . , σ

2
w

)T ∈
R
+w as for the last 
ase, where we 
onsidered an orthogonal 
hannel matrix,in turn: s � 0. Further, we introdu
e the ve
tor b =

(
h−2
1 , h−2

2 , . . . , h−2
w

)Tand
λ′
gj ,

{
λgj 1 ≤ j ≤ m

0 m < i ≤ w.
(4.180)Then, we 
an reformulate (4.179) equivalently into standard form [15℄ asminimize

s
−

w∑

j=1

λ′
gj

sj
σ2
h

σ2
n
+ sjsubje
t to bT s− P ′

0 ≤ 0,

− s � 0,

(4.181)The only di�eren
e to problem (4.161) is that the one ve
tor 1 is now re-pla
ed by the ve
tor b in the 
onstraint fun
tion. However, we 
an reformu-late (4.181), by using s
aled variables s′i , bisi = sih
−2
i into an equivalentproblemminimize

s′
−

w∑

j=1

λ2
gj

s′j
σ2
h

h2
jσ

2
n
+ s′jsubje
t to 1T s′ − P ′

0 ≤ 0,

− s′ � 0,

(4.182)of whi
h we already know the solution for the optimal s′. The resultingoptimum s′j
∗ for 1 ≤ j ≤ w for (4.182), 
an be obtained by a so 
alled "water-�lling" pro
edure a

ording to (4.163) and (4.164). Thus, with s∗i = h2i s

′
i
∗,



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 82we �nally obtain the resulting optimum sj
∗ for 1 ≤ j ≤ w for (4.181) as

s∗j = max0, hj

√
σ2
h

σ2
n

σ2
gj

ν∗
− σ2

h

σ2
n



 (4.183)and

w∑

j=1

max{0,√ σ2
h

σ2
nh

2
j

σ2
gj

ν∗
− σ2

h

σ2
nh

2
j

}
= P ′

0, (4.184)respe
tively. A

ording to the "water-�lling" algorithm (
f. Algorithm A.1),we 
an 
ompute the optimal singular values of Ã numeri
ally. We 
an �nally
ompute the optimal singular values σj of A with σ∗
j =

√
s∗j for 1 ≤ j ≤ w,whi
h are then arranged on the main diagonal of the optimal Σ in de
reasingorder.So far, we have determined the optimum U, V and Σ for (4.172) andthus Ã∗ = U∗Σ∗V∗T . Now, we are able to 
ompute the optimal lo
al sensormatrix A for (4.151) as

A∗ = H−1U∗Σ∗V∗T (a)
= H−1Σ∗Ug. (4.185)where in step (a) we inserted the optimal 
hoi
es U∗ from (4.178) and V∗from (4.175). The 
hannel matrix H−1 is diagonal and 
ontains their diag-onal entries in de
reasing order (in terms of magnitude). The unitary Ug
ontains the eigenve
tors of GGT in de
reasing order and the diagona Σ∗
ontains the optimal singular values of Ã, whi
h has to be determined in a"water-�lling" like manner (
f. (4.183) and (4.184)).Con
lusions Let us again return to our original index notation that indi-
ates the ith sensor and re
all that C∗

li
= 0 for sensor i. For an orthogonalMAC with L lo
al sensors, the T-optimal ith LO - for the standard model -
onsidering 
onstraint (C2) - assuming an invertible 
hannel matrix Hi - isgiven byLO∗

i φ1
: (

A∗
i = H−1

i Σ∗
iUgi , C∗

li = 0
)
, (4.186)where the unitary matrix Ugi 
ontains the eigenve
tors of GiG

T
i sortedde
reasingly, the 
hannel matrix Hi is assumed to be diagonal in de
reasingorder without loss, the diagonal Σ∗

i has to be determined in a "water-�lling"prin
iple in order to balan
e 
hannel and sensor observation states and noiseof sensor i.
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onsider the A�optimality 
riterion φ−1, de�ned in (3.39). Notethat the A�optimality 
riterion φ−1 is not linear. Thus, we 
annot solvethe indidual sensor rules independendly, when we 
onsider an orthogonalMAC. Throughout this thesis, we only 
onsider a single sensor setup, i.e.,when L = 1. For this spe
ial 
ase, we no longer speak about multiple a

esss
hemes. Again, we let the subs
ript notation away and a

ept the samenotation as for the T�optimal design. A

ording to (3.40), an A�optimaldesigned lo
al sensor rule LO∗
φ−1 minimizes the tra
e of the inverse FIM

Jz
−1, whi
h is indeed the CRLB, while respe
ting the 
onstraint (C1) or(C2), respe
tively. Therefore, we introdu
e φ̃−1 {Jz} , 1/

(
1
nφ−1 (Jz)

) and
onsider the following optimization problem:minimize
A∈Rq×m

φ̃−1 (A) = tr{(GTATHT
(
σ2
hI+ σ2

nHAATHT
)−1

HAG
)−1

}subje
t to { tr {AMAT
}
≤ P0/σ

2
n (C1) ortr {AAT

}
≤ P ′

0/σ
2
n, (C2) (4.187)where M is given in (3.28). Note that the A�optimality 
riterion only appliesfor a non-singular FIM as 
an be easily seen. Thus we study the A�optimaldesign for the 
ase of a positiv de�nit FIM Jz. The 
onditions on H, G and

A 
an be obtained from (3.23), i.e., H, G and A must has at least rank n.4.5.2.1 Invertible System Matri
esLet us �rst assume that the observation matrix G, the lo
al sensor matrix
A and the 
hannel matrix H are all invertable. Thus, we 
onsider squaredmatri
es, where n = m = q = p. In parti
ular, that implies hi 6= 0 for 1 ≤
i ≤ p (
f. (4.148)), sin
e H is required to be invertible. In what follows, weassume that the diagonal entries hl for all l are ordered de
reasingly in termsof magnitude w.l.o.g. (
f. Se
tion 4.3), i.e., |h1| ≥ |h2| ≥ · · · ≥ |hn| > 0.The obje
tive φ̃−1 (A) of (4.187) 
an equivalently reformulated as
φ̃−1 (A) = tr{(GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
)−1

}

= tr{G−1A−1H−1
(
σ2
hI+ σ2

nHAATHT
)
H−TA−TG−T

}

= σ2
htr{(GGT

)−1
A−1H−1H−TA−T

}
+

σ2
ntr{(GGT

)−1
A−1H−1HAATHTH−TA−T

}

= σ2
htr{(GGT

)−1
A−1

(
HTH

)−1
A−T

}
+

σ2
ntr{(GGT

)−1
}
,

(4.188)
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y
li
 property of the tra
e operator. The se
ondterm of the last equation in (4.188) is 
onstant (i.e., it does not depend on
A) and 
an thus be negle
ted for solving (4.187). By ne
le
ting also theremaining 
onstant fa
tors, we 
an reformulate problem (4.187) equivalentlyas minimize

A

tr{(GGT
)−1

A−1
(
HTH

)−1
A−T

}subje
t to { tr{AMAT
}
≤ P0 (C1)tr{AAT

}
≤ P ′

0/σ
2
n. (C2) (4.189)We �rst solve (4.189) for 
onstraint (C1). The solution for 
onstraint(C2) 
an then be obtained, by setting M = σ2

nI and P0 = P ′
0, respe
tively.First, we introdu
e the matrix

Ã , HAM1/2, (4.190)where M, given in (3.28), is positive de�nite and thus also invertible for all
θ, sin
e we assumed the standard model, in whi
h σ2

nI > 0. Note that sin
ewe assumed H to be invertible, we 
an uniquely re
laim the sensor matrix
A from (4.190) by A = H−1ÃM−1/2. Inserting A = H−1ÃM−1/2 into theobje
tive fun
tion of (4.189) yieldstr{M1/2

(
GGT

)−1
M1/2Ã−1H

(
HTH

)−1
HT Ã−T

}

= tr{(G̃G̃T
)−1 (

ÃT Ã
)−1

}
,where we introdu
ed G̃ , M−1/2G, and into the 
onstraint fun
tion (C1)in (4.189) yieldstr {AMAT

}
= tr{H−1ÃM−1/2MM−1/2ÃTH−T

}

= tr{(HHT
)−1

ÃÃT
}
,sin
e M is symmetri
 and positive de�nite, i.e., it holds M = M1/2M1/2.We 
an equivalently reformulate problem (4.189), for 
onstraint (C1) asminimize

Ã

tr{(G̃G̃T
)−1 (

ÃT Ã
)−1

}subje
t to tr{(HHT
)−1

ÃÃT
}
≤ P0, (C1) (4.191)whi
h now has to be solved with respe
t to Ã. Using the SVD Ã = UΣVT ,where we assume that the singular values σi for 1 ≤ i ≤ n of Ã are or-dered de
reasingly (in terms of magnitude) on the main diagonal of Σ, i.e.,
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|σ1| ≥ |σ2| ≥ · · · ≥ |σn| > 0. Both unitary matri
es U and V, 
ontain the
orresponding left- and right singular ve
tors of Ã, respe
tively. Problem(4.191) 
an then be written in terms of SVD Ã = UΣVT asminimize

U,Σ,V
tr{(G̃G̃T

)−1
VΣ−2VT

}subje
t to tr{(HHT
)−1

UΣ2UT
}
≤ P0, (C1)

Σ2 ≥ 0,

UUT = UTU = I,

VVT = VTV = I.

(4.192)
In what follows, we will solve (4.192) sequentially, by determining �rst theoptimal V and then the optimal U. A ne
essary 
ondition for V to beoptimum in (4.192) 
an be obtained by �xing U and Σ. For a �xed U′ and
Σ′, the optimum V has to solve the problemminimize

V

tr{(G̃G̃T
)−1

VΣ′−2
VT

}subje
t to tr{(HHT
)−1

U′Σ′2U′T
}
≤ P0, (C1)

Σ′2 ≥ 0,

U′U′T = U′TU′ = I,

VVT = VTV = I,

(4.193)
A V is optimum for (4.193) if and only if it is optimum forminimize

V

tr{(G̃G̃T
)−1

VΣ′−2
VT

}subje
t to VVT = VTV = I.

(4.194)A

ording to Theorem 4.4.19, the optimal V, solving (4.194) is given by thematrix Ug̃, 
ontaining the eigenve
tors of G̃G̃T , sorted in
reasingly. So,the EVD G̃G̃T = Ug̃Λg̃U
T
g̃ , where the eigenvalues λg̃i for 1 ≤ i ≤ n of

G̃G̃T are ordered in
reasingly along the main diagonal in Λg̃. Note that(
G̃G̃T

)−1
= Ug̃Λ

−1
g̃ UT

g̃ and thus the eigenvalues of (G̃G̃T
)−1 are nowordered de
reasingly along the main diagonal of Λ−1

g̃ , due to the inverseoperation. Thus, the optimalV for problem (4.194) and thus also for (4.192),is given by
V∗ = Ug̃, (4.195)where the 
olumn ve
tors of Ug̃ 
orrespond to the eigenve
tors of G̃G̃T ,sorted in
reasingly.
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hara
-terize the optimum U for (4.192). To this end, we insert the optimal V into(4.192), yielding:minimize
U,Σ

tr{Λ−1
g̃ Σ−2

}subje
t to tr{(HHT
)−1

UΣ2UT
}
≤ P0, (C1)

Σ2 ≥ 0,

UUT = UTU = I.

(4.196)If U∗ is optimal for (4.196), then it is also optimal for (4.192), as 
an beveri�ed easily.Invoking problem (4.124), we note that it has the same 
onstraint fun
-tion (more spe
i�
ally, the pseudo-inverse spe
ializes now to the matrix in-verse) and a fairly similar obje
tive. Where we have showed that the optimal
U is determined by minimization of the 
onstraint fun
tion

t (U,Σ) , tr{UΣΣTUT
(
HHT

)−1
}
.We 
an 
losely follow the approa
h and re
ognize that this also applies to(4.196). Thus, we 
an determine the optimal U by solvingminimize

U

tr{(HHT
)−1

UΣ′2UT
}subje
t to UUT = UTU = I,

(4.197)i.e., the optimal U will be a minimizer of the 
onstraint fun
tion t (U,Σ),for the spe
i�
 
hoi
e of Σ = Σ′. An appli
ation of Theorem 4.4.19 reveals,that the optimal U is given by the eigenve
tors of (HHT
)−1 or HHT , re-spe
tively, in the order of in
reasing eigenvalues of (HHT
)−1, or, de
reasingeigenvalues ofHHT . However, sin
eHHT and in turn (HHT
)−1 is diagonal,the eigenve
tors are given by the unit ve
tors {ek}nk=1. Moreover, sin
e theeigenvalues of (HHT

)−1 are the squared re
ipro
als of the diagonal values
hj 6= 0, we have that the kth 
olumn of U∗ is given by ejk , where jk is theindex of the kth largest main diagonal entry hjk . Sin
e, we assumed thatthe diagonal entries of H are in de
reasing order (in terms of magnitude),the optimal U is given by

U∗ = I, (4.198)So far, we have determined the optimum U and V for (4.192). It remainsto determine the optimal singular values σi for i = 1, . . . , n. Inserting theoptimal 
hoi
es U∗ and V∗ into (4.192), yields to the optimization problem
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s

f (s) ,

n∑

i=1

1

λg̃isisubje
t to g1 (s) , bT s− P0 ≤ 0

g2 (s) , −s ≺ 0,

(4.199)with the new introdu
ed obje
tive fun
tion f (s), where the ve
tor s, 
ontainsthe squared singular values of Ã, i.e., s = (s1, s2, . . . , sn)T ,
(
σ2
1 , σ

2
2 , . . . , σ

2
n

)T ∈
R
+n, i.e., s � 0. The new introdu
ed ve
tor b in (4.199) 
ontains the re-
ipro
als of the squared diagonal entries of H, i.e., b ,

(
h−2
1 , h−2

2 , . . . , h−2
n

),sin
e H is assumed to be diagonal in de
reasing order. Note that λg̃i > 0and h2i > 0 for all i, due to our assumption that G, H and in turn G̃ areinvertible.We �rst verify, that (4.199) is a 
onvex optimization problem. We 
anwrite the obje
tive f (s) of problem (4.199) as
f (s) =

n∑

i=1

fi (si) , (4.200)with fi (si) ,
1

λg̃i
si
. The �rst two derivatives of fi (si) are given by

f ′
i (si) ,

∂

∂si
f (si) = − 1

λg̃is
2
i

(4.201)and
f ′′
i (si) ,

∂2

∂s2i
f (si) = 2

1

λg̃is
3
i

> 0, (4.202)and therefore fi (si) is 
onvex. Sin
e by (4.200), the obje
tive is a sum of
onvex fun
tions [15℄, we 
on
lude f (s) is 
onvex. The 
onvexity of the
onstraint fun
tions g1 and g2 are obvious, sin
e both are linear in s. Hen
e,problem (4.199) is a 
onvex optimization problem [15℄.The Karush�Kuhn�Tu
ker (KKT) 
onditions (
f. [15℄) for a solution s∗to the optimization problem (4.199) and 
orresponding Lagrange multipliers(
f. [15, p.244℄), i.e., ν∗ for the inequality 
onstraint g1 (s) ≤ 0 and λ∗ ∈ R
n
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onstraint g2 (s) ≺ 0, are given as
bT s∗ − P0 ≤ 0

s∗ ≻ 0

ν∗ ≥ 0

λ∗ = 0

ν∗
(
bT s∗ − P0

)
= 0

λ∗
i s

∗
i = 0, i = 1, 2, . . . , n

− 1

λg̃is
∗
i
2 + ν∗ − λ∗

i = 0, i = 1, 2, . . . , n.

(4.203)
Combining the 4th and the last 
ondition of (4.203), i.e., with λ∗

i = 0 for all
i = 1, . . . , n, yields

ν∗ =
1

λg̃is
∗
i
2 > 0 ⇒ s∗i =

+

√
1

λg̃iν
∗
> 0 for i = 1, . . . , nand by the 5th 
ondition of (4.203), i.e., bT s∗ = P0, sin
e ν∗ 6= 0, we obtain

ν∗ =

(∑n
i=1

1
h2
i

+
√

λg̃i

)2

P 2
0

.Therefore,
s∗i =

P0∑n
j=1

1

h2
j

+
√

λg̃j

+

√
1

λg̃i

for i = 1, . . . , n (4.204)and �nally, we obtain the optimum singular values of Ã with (Σ∗)i,i = σ∗
i =√

s∗i , i.e., the optimal Σ 
an be 
omputed in 
losed-form with
c∗(C1) ,√√√√ P0∑n

j=1
1

h2
j

+
√

λg̃j

, (4.205)as
Σ∗ = c∗(C1)Λ−1/4

g̃ . (4.206)So far, we have determined the optimum U, V and Σ for (4.192) andthus optimum Ã for (4.191), i.e., Ã∗ = U∗Σ∗V∗T . The unitary matrix
U∗ = I (
f. (4.198)), sin
e the diagonal H is assumed to be in de
reasingorder. The unitary matrix V∗ = Ug̃ (
f. (4.195)), where Ug̃ 
ontains theeigenve
tors of G̃G̃T , in in
reasing order and Σ∗ = c∗(C1)Λ−1/4

g̃ (
f. (4.206)),



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 89where the eigenvalues of G̃G̃T in Λg̃ are ordered in
reasingly. From (4.190),we obtain the optimal A by
A∗ = H−1U∗Σ∗V∗TM−1/2 = c∗(C1)H−1Λ

−1/4
g̃ Ug̃

TM−1/2and in turn with the already known solution C∗
l = 0, the optimal LO∗

φ−1
=

(A∗, C∗
l ) is thus given byLO∗

φ−1
: (

A∗ = c∗(C1)H−1Λ
−1/4
g̃ Ug̃

TM−1/2, C∗
l = 0

)
φ−1for 
onstraint (C1), c∗(C1) is given in (4.205),EVD: G̃G̃T = Ug̃Λg̃U

T
g̃ ,where Λg̃, Ug̃ are sorted in
reasingly,

H is sorted de
reasingly. (4.207)
Let us re
all M, given in (3.28), i.e., with Cn = σ2

nI it follows M =
GθθTGT + σ2

nI. Thus, the optimal LOφ−1 for 
onstraint (C1), dependson the parameter θ, whi
h is indeed unknown.Note that we have determined the optimal LO∗
φ−1

for the 
onstraint (C1).As already mentioned, we 
an determine the optimal LO∗
φ−1

for 
onstraint(C2), if we set M = σ2
nI, P0 = P ′

0 and 
onsequently G̃ = G in (4.207), i.e.,with
c∗(C2) ,√√√√ P ′

0/σ
2
n∑n

j=1
1

h2
j

+
√

λgj

, (4.208)as LO∗
φ−1

: (
A∗ = c∗(C2)H−1Λ−1/4

g Ug
T , C∗

l = 0
)
φ−1

,for 
onstraint (C2), c∗(C2) is given in (4.208),EVD: GGT = UgΛgU
T
g ,where Λg, Ug are sorted in
reasingly,

H is sorted de
reasingly. (4.209)
However, sin
e we have found a 
losed-form solution for the A-optimal

ith LO, we 
an still spe
ify the resulting FIM J∗
z. To that end, we insert

A∗ from (4.207) into (4.149) (without the subs
ript notation) for A = A∗,
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onstraint (C1):
J∗
z = GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG

(a)
=

(
c∗

2(C1)G̃TUg̃Λ
−1/4
g̃

(
σ2
hI+ σ2

nc
∗2(C1)Λ−1/4

g̃ Ug̃
TM−1Ug̃Λ

−1/4
g̃

)−1
·

·Λ−1/4
g̃ Ug̃

T G̃
)

(b)
= Vg̃Σg̃Λ

−1/4
g̃

(
σ2
h

c∗
2(C1) I+ σ2

nΛ
−1/4
g̃ Ug̃

TM−1Ug̃Λ
−1/4
g̃

)−1

Λ
−1/4
g̃ Σg̃V

T
g̃ ,(4.210)where in step (a), we inserted A = A∗ from (4.207) and also G̃ = M−1/2G;in step (b), we performed the SVD G̃ = Ug̃Σg̃V

T
g̃ - sorted in
reasingly interms of magnitude, a

ording to the EVD G̃G̃T = Ug̃Λg̃U

T
g̃ . Analog, we
an still spe
ify the resulting FIM J∗

z for 
onstraint (C2) with SVD G =
UgΣgV

T
g (sorted in
reasingly):

J∗
z = VgΣgΛ

−1/4
g

(
σ2
h

c∗
2(C2) I+ σ2

nΛ
−1/4
g Λ−1/4

g

)−1

Λ−1/4
g ΣgV

T
g .

= VgΣgΛ
−1/2
g Σg

(
σ2
h

c∗
2(C2) I+ σ2

nΛ
−1/2
g

)−1

VT
g

(a)
= VgΛ

1/2
g

(
σ2
h

c∗
2(C2) I+ σ2

nΛ
−1/2
g

)−1

VT
g ,

(4.211)
where in step (a), we used the fa
t that Λg = Σ2

g.4.5.2.2 Full Column�Rank Channel MatrixWe now 
onsider only 
onstraint (C2). Note that we already assumed thatobservation-, 
hannel- and sensor matrix G, H and A has at least rank n(
f. (3.23) in order to obtain a non-singular FIM Jz). In parti
ular, weassume that H is of full 
olumn-rank, implying p ≥ q and also hi 6= 0 for
1 ≤ i ≤ q (
f. (4.148)). In what follows, we assume that the diagonal entries
hl for 1 ≤ l ≤ q are ordered in
reasingly in terms of magnitude w.l.o.g. (
f.Se
tion 4.3), i.e., 0 < |h1| ≤ |h2| ≤ · · · ≤ |hq|. Finally, we assume that the
hannel input dimension is equal to the the parameter dimension, i.e., n = q.Again, we �rst substitude the lo
al sensor matrix A into the 
hannelmatrix H, i.e., we introdu
e

Ã , HA. (4.212)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 91Performing the SVD Ã = UΣVT , where we again assume that the singularvalues σi for 1 ≤ i ≤ w , min {p,m} of Ã are ordered de
reasingly on themain diagonal ofΣ (in terms of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw| ≥ 0.Both unitary matri
es U and V, 
ontain the 
orresponding left- and rightsingular ve
tors of Ã, respe
tively. Invoking the derivation from (4.168). We
an fully a

ept the derivation of the FIM
Jz = GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAGin terms of SVD Ã = UΣVT , i.e.,
Jz = GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG =
1

σ2
n

GTVDVTG,where D is given by
D , ΣT

(
σ2
hI+ σ2

nΣΣT
)−1

Σ, (4.213)whi
h is squared and diagonal of size m×m. The m elements on the maindiagonal are given by
di , (D)i,i =





σ2
i

σ2
h

σ2
n
+σ2

i

1 ≤ i ≤ w

0 else. (4.214)Hen
e, the obje
tive fun
tion φ̃−1 (A) of problem (4.187), 
an then beequivalently reformulated in terms of SVD Ã = UΣVT as
φ̃−1 (Σ,V) = σ2

ntr{(GTVDVTG
)−1
}

(a)
= σ2

ntr{Vg

(
ΣT

g U
T
g VDVTUgΣg

)−1
VT

g

}

= σ2
ntr{(ΣT

g U
T
g VDVTUgΣg

)−1
}
,

(4.215)where in step (a) we inserted the SVD G = UgΣgV
T
g . As 
an be seen, theunitary matrix Vg vanishes in (4.215), due to the 
y
li
 properity of thetra
e operator. Note that rank(Ã) = n, whi
h follows from our assumptionthat q = n and the 
onditions for a non-singular FIM Jz from (3.23). Thuswe 
an write (4.215) also in a partitioned form, with

UgΣg =
[
Ug,1 Ug,2

] [Σg,1

0

]
= Ug,1Σg,1,where Σg,1 is squared of size n×n, 
ontaining the n non-zero singular valuesof G and Ug,1 
ontains the 
orresponding n left singular ve
tors (submatrixof the unitary matrix Ug), and with

VDVT =
[
V1 V2

] [D1 0

0 0

] [
VT

1

VT
2

]
= V1D1V

T
1
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φ̃−1 (Σ,V) = σ2

ntr{(Σg,1U
T
g,1V1D1V

T
1 Ug,1Σg,1

)−1
}

= σ2
ntr{Σ−2

g,1

(
UT

g,1V1

)−1
D−1

1

(
VT

1 Ug,1

)−1
}
.

(4.216)Note that the n 
olumn ve
tors of Ug,1 are also the n eigenve
tors of GGT ,whi
h 
orresponds to the n non-zero eigenvalues of GGT , in parti
ular.The submatrix V1 of V, 
ontains the �rst n right singular ve
tors, whi
h
orresponds to the n non-zero singular values of A, already assumed to beordered de
reasingly. The diagonal D1 is the submatrix of D from (4.213),whi
h 
ontains the n non-zero diagonal entries di for 1 ≤ i ≤ n of D, inde
reasing order, as a 
onsequen
e of the order in Σ.We 
an rewrite the 
onstraint of (4.187) in terms of SVD Ã = UΣVT ,analog to (4.171), astr {AAT
}
= tr{UΣΣTUT

(
HHT

)†} ≤ P ′
0

σ2
n

, (4.217)where (HHT
)† denotes the pseudo inverse of HHT . In turn, the optimiza-tion problem (4.187) in terms of SVD Ã = UΣVT with (4.216) and (4.217)then yieldsminimize

U,Σ,V
tr{Σ−2

g,1

(
UT

g,1V1

)−1
D−1

1

(
VT

1 Ug,1

)−1
}subje
t to tr{UΣΣTUT

(
HHT

)†} ≤ P ′
0

σ2
n

,

ΣΣT ≥ 0,

UUT = UTU = I,

VVT = VTV = I,

V =
[
V1 V2

]
,

(4.218)
where we negle
t the 
onstant fa
tor σ2

n of the obje
tive fun
tion in (4.215).In what follows, we will solve (4.218) sequentially, by determining �rst theoptimum V and then the optimum U.Theorem 4.5.21 Let A be a n×n real matrix with singular values σ1 (A) ≥
σ2 (A) · · · ≥ σn (A) and B be a (n− k)× (n− k) submatrix of A obtained bydeleting a total of k rows and 
olumns from A, with singular values σ1 (B) ≥
σ2 (B) · · · ≥ σn−k (B), then

σj (A) ≥ σj (B) ≥ σ′
j+k (A) for j = 1, . . . , n,where

σ′
j (A) =

{
σj (A) j ≤ n

0 else..
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essary 
ondition for V to be optimum in (4.218) 
an be obtainedby �xing U and Σ. For a �xed U′ and Σ′, the optimum V has to solve theproblemminimize
V

tr{Σ−2
g,1

(
UT

g,1V1

)−1
D′

1
−1 (

VT
1 U

T
g,1

)−1
}subje
t to tr{U′Σ′Σ′TU′T

(
HHT

)†} ≤ P ′
0

σ2
n

,

Σ′Σ′T ≥ 0,

U′U′T = U′TU′ = I,

VVT = VTV = I,

V =
[
V1 V2

]
,

(4.219)
where D′ and thus D′

1, are obtained from (4.213) by inserting Σ′ for Σ. A
V is optimum for (4.219), if and only if it is optimum forminimize

V

tr{Σ−2
g,1

(
UT

g,1V1

)−1
D′

1
−1 (

VT
1 U

T
g,1

)−1
}subje
t to VVT = VTV = I,

V =
[
V1 V2

]
,

(4.220)Note that VT
1 V1 = I, but V1V

T
1 6= I. Let us introdu
e Z1 , UT

g,1V1 of size
n×n. It is easy to ver�y that Z1 is a submatrix of the unitary Z , UT

g V ofsizem×m (we assume n ≤ m). Performing the SVD Z1 = Uz1Σz1V
T
z1 , wherethe unitaries Uz1 and Vz1 
ontain the left- and right singular ve
tors and thediagonal Σz1 
ontains the singular values of Z1, on the main diagonal. Allsingular values of Z are equal to one a

ording to Lemma 4.5.20. InvokingTheorem 4.5.21, we thus 
on
lude that

0 < σj (Z1) ≤ 1 for j = 1, . . . , n, (4.221)where σj (Z1) denotes the singular values of the submatrix Z1. Hen
e, theobje
tive fun
tion of (4.220), 
an be bounded below bytr{Σ−2
g,1Z

−1
1 D′−1

1 Z−T
1

}
= tr{Σ−2

g,1Vz1Σ
−1
z1 U

T
z1D

′
1
−1

Uz1Σ
−1
z1 V

T
z1

}

(a)

≥ tr{Σ−2
g,1Vz1U

T
z1D

′
1
−1

Uz1Σ
−1
z1 V

T
z1

}

(b)

≥ tr{Σ−2
g,1Vz1U

T
z1D

′
1
−1

Uz1V
T
z1

}

= tr{(VT
z1Σ

−2
g,1Vz1

)(
UT

z1D
′
1
−1

Uz1

)}

(c)

≥ tr{Σ′−2
g,1 D

′
1
−1
}
= tr{Λ′−1

g,1 D
′
1
−1
}
,

(4.222)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 94where in step (a) and (b), we used �rst the 
y
li
 property of the tra
e-operator and se
ond the fa
t thattr {Σ−1
z1 X

}
=

n∑

j=1

σ−1
j (Z1) (X)j,j

(4.221)
≥

n∑

j=1

(X)j,j = tr {X} ,for all σj , whi
h satis�es (4.221) and for all X ∈ NND (n) and (X)j,j ≥ 0denotes the jth diagonal entry of X. Note that all diagonal entries of apositive semi-de�nite matrix are positive [9℄. The inequalities in (a) and(b) are satis�ed, sin
e it is evident that UT
z1D

′
1
−1

Uz1Σ
−1
z1 V

T
z1Σ

−2
g,1Vz1 > 0and VT

z1Σ
−2
g,1Vz1U

T
z1D

′
1
−1

Uz1 > 0. In step (
), we applied Theorem 4.4.19,where Σ′
g,1 
ontains the n non-zero singular values σgi in in
reasing order(in terms of magnitude). Note that we already assumed that the singularvalues σ′
i of Ã and in turn d′i (elements in D′), are ordered de
reasingly. Inthe last step, we introdu
ed the diagonal matrix Λ′

g,1, whi
h in parti
ular,
ontains the n non-zero eigenvalues of GGT , i.e, Λ′
g,1 is the n×n upper leftdiagonal submatrix of Λ′

g, whi
h follows from the EVD GGT = U′
gΛ

′
gU

′T
g ,where the eigenvalues are sorted in
reasingly. In fa
t, the eigenvalues in Λ′
g,1are thus ordered in
reasingly.Hen
e, the optimal V, solving (4.220), is given by V∗

1 = Ug,1, whi
h
ontains the �rst n eigenve
tors ofGGT , i.e., the �rst n orthonromal 
olumnve
tors of Ug, sorted in
reasingly. The remaining m− n singular ve
tors in
V2 for 
ompletition the optimalV, 
an be 
hosen arbitrary in order to obtaina unitary V (orthonormal basis). Moreover, the optimal V for problem(4.218) is also given by

V∗ = Ug, (4.223)where the 
olumns of Ug 
orrespond to the eigenve
tors of GGT , sortedin
reasingly.After having determined the optimal V for (4.218), we will now 
hara
-terize the optimal U for (4.218). To this end, we insert the optimum V in(4.218), yielding:maximize
U,Σ

tr{Λ−1
g,1D

−1
1

}subje
t to tr{UΣΣTUT
(
HHT

)†} ≤ P ′
0

σ2
n

,

ΣΣT � 0,

UUT = UTU = I,

(4.224)
If U∗ is optimal for (4.224), then it is also optimal for (4.218), as 
an beveri�ed easily.
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olumn-swapping permutation matrix or are�e
tion matrix is given by
Ξ ,




0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0




. (4.225)Invoking again problem (4.124), we note that it has exa
tly the same
onstraint fun
tion and a fairly similar obje
tive. Where we have showedthat the optimal U is determined by minimization of the 
onstraint fun
tion
t (U,Σ) , tr{UΣΣTUT

(
HHT

)†}
.We 
an 
losely follow the approa
h and re
ognize that this also applies to(4.224). Thus, we 
an determine the optimal U by solvingminimize

U

tr{UΣ′Σ′TUT
(
HHT

)†}subje
t to UUT = UTU = I,
(4.226)i.e., the optimal U will be a minimizer of the 
onstraint fun
tion t (U,Σ),for the spe
i�
 
hoi
e of Σ = Σ′. An appli
ation of Theorem 4.4.19 reveals,that the optimal U is given by the eigenve
tors of (HHT

)† or HHT , re-spe
tively, in the order of in
reasing eigenvalues of (HHT
)†, or, de
reasingeigenvalues of HHT . However, sin
e HHT and in turn (HHT
)† is diagonal,the eigenve
tors are given by the unit ve
tors {ek}pk=1. Moreover, sin
e theeigenvalues of (HHT

)† are the squared re
ipro
als of the diagonal values
hj 6= 0, we have that the kth 
olumn of U∗ is given by ep−k+1 for 1 ≤ k ≤ p,sin
e we assumed that hj are ordered in
reasingly in terms of magnitude.Thus, the optimal U is given by

U∗ = Ξ, (4.227)where Ξ is de�ned in (4.225).So far, we have determined the optimal U and V for (4.218). It remainsto determine the optimal Σ for (4.218). To that end, we insert the opti-mum 
hoi
es U∗ from (4.227) and V∗ from (4.223) into 4.218, yields to theoptimization problem in standard form [15℄ asminimize
s

n∑

i=1

1

λgisi
,subje
t to b′T s− P ′
0 ≤ 0,

− s � 0,

(4.228)
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(
s1, s2, . . . , sn

)T
,
(
σ2
1 , σ

2
2 , . . . , σ

2
n

)T ∈ R
+n, i.e., s �

0. The ve
tor b in the 
onstraint fun
tion of (4.228) is de�ned as b′ ,(
h′1

−2, h′2
−2, . . . , h′n

−2)T , where
h′j ,

{
∞ 1 ≤ j ≤ p− q

hp−j+1 p− q < j ≤ p.
(4.229)Note that hi 6= 0 for 1 ≤ i ≤ n ≤ q and σj = 0 for n < j ≤ w, sin
e Ã hasrank n and thus s and b′ has dimension n (
f. (4.228)). We re
ognize thatproblem (4.228) is equivalent to (4.199) for λg̃i = λgi , P0 = P ′

0 and b = b′.Hen
e, the optimal si of problem (4.228), is given by (4.204) for λg̃i = λgiand P0 = P ′
0. Therefore, we �nally obtain with

σ∗
i =

{√
s∗i for 1 ≤ i ≤ n

0 n < i ≤ w,the optimal Σ for (4.218) as
Σ∗ = c∗

[
Λ

−1/4
g,1 0

0 0

]
, (4.230)where

c∗ =

√√√√ P ′
0∑n

j=1
1

h′
j
2 +
√

λgj

. (4.231)So far, we have determined the optimum U, V and Σ for (4.218) and thusthe optimal Ã with Ã∗ = U∗Σ∗V∗T . The unitary matrix U∗ 
ontains theunit ve
tors {ei}pi=1, sin
eH is assumed to be diagonal. If we further assume,that the the diagonal H is in de
reasing order (in terms of magnitude), then
U∗ = I. The unitary matrix V∗ = Ug (
f. (4.223)), where Ug 
ontains theeigenve
tors of GGT , in in
reasing order and Σ∗ is given in (4.230), wherethe eigenvalues of GGT in Λg are ordered in
reasingly.Finally, with (4.212) and the fa
t that H is of full 
olumn-rank, we obtainthe optimal lo
al sensor matrix A as

A∗ = H†U∗Σ∗V∗T = c∗H†

[
Λ

−1/4
g,1 0

0 0

]
UT

g ,and in turn with the already known solution C∗
l = 0, the optimal LO∗

φ−1
=
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(A∗, C∗

l ) is thus given byLO∗
φ−1

: (
A∗ = c∗H†

[
Λ

−1/4
g,1 0

0 0

]
UT

g , C∗
l = 0

)

φ−1for 
onstraint (C2), c∗ is given in (4.231),EVD: GGT = UgΛgU
T
g ,where Λg, Ug are sorted in
reasingly,

Λg,1 is the n× n left upper submatrix of Λg,

H is sorted de
reasingly. (4.232)
However, sin
e we have found a 
losed-form solution for the A-optimal

ith LO, we 
an still spe
ify the resulting FIM J∗
z. To that end, we insert

A∗ from (4.232) into (4.149) (without the subs
ript notation) for A = A∗,yielding:
J∗
z =


VgΣ

T
g

[
Λ

−1/4
g,1 0

0 0

]
 σ2

h

c∗2
I+ σ2

n

[
Λ

−1/4
g,1 0

0 0

]2


−1

·

·
[
Λ

−1/4
g,1 0

0 0

]
ΣgV

T
g

)

= VgΣg,1Λ
−1/4
g,1

(
σ2
h

c∗2
I+ σ2

nΛ
−1/2
g,1

)−1

Λ
−1/4
g,1 Σg,1V

T
g

(a)
= VgΛ

1/2
g,1

(
σ2
h

c∗2
I+ σ2

nΛ
−1/2
g,1

)−1

VT
g ,

(4.233)
where in step (a), we used the fa
t that Λg,1 = Σ2

g,1.
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Chapter 5Numeri
al ExperimentsIn this 
hapter, we do some numeri
al experiments to study the performan
ebehaviour for optimal designed lo
al sensors. Supposing, we use an MVUestimator for our performan
e analysis. First, we use result for the spe
ial
ase of a s
alar parameter, where we 
ompare the optimal power s
heduling(
f. Subsubse
tion 4.4.3.3) versus the uniform power s
heduling performan
efor an orhtogonal MAC. Then, we restri
t our 
hannel model to the 
ases,where we also derived optimal solutions for the 
oherent MAC 
ase, wherewe then analyse the performan
e of orthogonal versus 
oherent MAC for anoptimal power s
heduling strategie (total power 
onstraint). Finally, we will
onsider the general 
ase of a ve
tor-valued parameter, where we will analysethe MSE performan
e for a single sensor setup (i.e., L = 1) for an T-optimalversus an A-optimal design.Assuming ideal 
hannel models, i.e., when the lo
al sensor observations
yi for 1 ≤ i ≤ L are dire
tly available to the FC, the FIM Jz is then givenby

Jz,0 , Jz =
L∑

i=1

GT
i C

−1
ni

Gi. (5.1)Note that here we assume that Cni
is non-singular for 1 ≤ i ≤ L. The FIM

Jz,0 is our 
entral performan
e ben
hmark for non-ideal 
hannel models andit is obvious, that it holds for both multiple a

ess s
hemes, i.e, for (3.8) and(3.20). Note, that the FIM Jz for both MAC s
hemes 
ould exist, even if Jz,0do not exist in that form. This fa
t results from the existen
e of the 
hannelnoise, and the assumption that the 
ovarian
e matrix is non-singular.Let us �rst re
all the MSE de�nition, given in (2.9). Sin
e the CRLB
J−1
z is the 
ovarian
e matrix of an e�
ient MVU, whi
h exists for a LGM inparti
ular (provided that the FIM Jz is not singular, 
f. Subse
tion 2.2.5),the MSE 
an be 
omputed by invoking (2.9) asMSE =

1

n
tr {J−1

z

}
, (5.2)99



CHAPTER 5. NUMERICAL EXPERIMENTS 100whi
h is the arithmeti
 average of the s
alar varian
es var{θ̂k} for 1 ≤ k ≤
n. Let us now introdu
e some additional de�nitions, whi
h are used in thefollowing numeri
al experiments. We denote the total 
hannel noise powerby

Ph ,

L∑

i=1

σ2
hi
, (5.3)and the signal to noise ratio (SNR) for 
onstraint (C1) bySNR , P0/Ph, with P0 ,

L∑

i=1

P0,i, (5.4)and the SNR for 
onstraint (C2) bySNR′ , P ′
0/Ph, with P ′

0 ,

L∑

i=1

P ′
0,i. (5.5)5.1 S
alar ParameterWe �rst 
onsider the s
alar parameter 
ase. In what follows, we will analysethe performan
e for the optimal power s
heduling 
ompared to the uniformpower s
heduling strategie and their asymptoti
 behaviour for an orthogonalMAC, i.e., on the one hand, when the total power/varian
e (P0 or P ′

0) in-
reases and on the other hand, when the number of sensors L in
reases. Notein simulations we 
onsider the equivalent model with s
alar observation atea
h lo
al sensor. Therefore, we 
onsider the observation model paramters giand σ2
i , respe
tively. For performan
e analysis of the 
hannel aware, we re-
all the 
entralized performan
e ben
hmark from (5.1), whi
h spe
ializes fora s
alar parameter and using the equivalent model with s
alar observationto
Jz,0 =

L∑

i=1

g2i
σ2
ni

, σ2
ni

6= 0. (5.6)For the following simulations and performan
e analysis, we will 
onsider only
onstraint (C2). Also, we adhere strongly to the simulations made by theauthors of [1℄ to �nally 
arry out a 
omparison.5.1.1 Optimal Power S
heduling for an Orthogonal MACAs dis
ussed in Subsubse
tion 4.4.3.3, we have found a "water-�lling" so-lution for the optimal power s
heduling (
f. (4.142) and (4.143)), i.e., for



CHAPTER 5. NUMERICAL EXPERIMENTS 101a given total transmit varian
e power P ′
0 - and assuming optimal LOi for

1 ≤ i ≤ L, we derived optimal power s
heduling among all L sensors, in or-der to a
hieve the best performan
e, i.e., the maximum FI Jz, whi
h is givenin (4.137) for optimal designed sensors. In 
ontrast, we also dis
ussed theuniform power s
heduling, where the total varian
e power P ′
0, are uniformlydistributed among all L sensors - the resulting FI Jz,u is given in (4.138).
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(b)Figure 5.1: Uniform power s
heduling vs. optimal power s
heduling, when
P ′
0 or SNR′ in
reases, for a �xed total number of sensors L = 15. As 
an beseen, both s
heduling strategies 
onverge to the 
entralized ben
hmark, whenSNR′ in
reases. The lower the SNR′, the more signi�
ant the performan
egain, due to optimal power s
heduling.We will now 
ompare both power s
heduling strategies in a simple numer-i
al experiment, where we 
ompare both the FI Jz and the CRLB (MSE ofthe MVU) by varying the total transmit varian
e power P ′

0, while the 
hannelnoise power is 
onstant (in simulation we used unit varian
e Ph = 1).



CHAPTER 5. NUMERICAL EXPERIMENTS 102In Fig. 5.1, we plot the 
urves for the FI Jz and the CRLB J−1
z versus theSNR′ = P ′

0/Ph (
f. (5.5)), under both uniform and optimal power s
hedules,where the total number of sensors is 
onstant with L = 15. Further, obser-vation noise varian
es σ2
ni

are uniformly taken from the real interval [1, 1.5]- the observation gains gi are uniformly taken from the real interval (0, 4].The squared 
hannel gain h2imax, i.e., the largest eigenvalue of HT
i Hi aretaken as h2imax = cg ·d−3.5, where d is uniformly taken from the real interval

[1, 10] and cg is a normalization 
onstant su
h that E {h2imax} = 1. In thesimulation, the simulated FI Jz or, equivalently, the CRLB, is averaged over
1000 realizations of the set {σ2

ni
, gi, h

2
imax : 1 ≤ i ≤ L

} and is a
tually theexpe
ted Jz and the expe
ted CRLB, respe
tively.As 
an be seen in Fig. 5.1, when the SNR′ in
reases, both uniform anoptimal power s
heduling 
onverges to the 
entralized ben
hmark, given in(5.6), i.e.,
Jz,o

(
P ′
0 → ∞

)
= Jz,u

(
P ′
0 → ∞

)
=

L∑

i=1

g2i
σ2
ni

, (5.7)when we denote Jz,o as the a
hieved FI for optimal power s
heduling (
f. red
urve in Fig 5.1) and Jz,u as the a
hieved FI for uniform power s
heduling(
f. blue 
urve in Fig 5.1 and (4.138)). Note that the asymptoti
 behaviourfor the uniform 
ase when P ′
0 in
reases, yields to (4.139), whi
h 
oin
ides of
ourse with the 
entral performan
e ben
hmark in (5.6). On the other hand,the optimal power s
heduling gain, i.e., the di�eren
e between uniform anoptimum power s
heduling in a logarithmi
 plot, be
omes more signi�
antas the SNR′ de
reases.We now �x the total transmission varian
e power P ′

0 su
h that we obtainan SNR′ = 15dB and varying the total number of sensors L. In Fig 5.2,we plot the 
urves for the FI Jz and the CRLB versus the total number ofsensors L under both, uniform and optimal power s
hedules. Again, in thesimulation, the FI Jz or equivalently the CRLB is averaged over 1000 real-isations of {σ2
ni
, gi, hi : 1 ≤ i ≤ L

} for 1 ≤ L ≤ Lmax = 45, and is a
tuallythe expe
ted Jz and the expe
ted CRLB or MSE, respe
tively. As 
an beseen, the optimum power s
heduling gain in
reases, as the total number ofsensors L in
reases.5.1.2 Optimal Power S
heduling for an Orthogonal MACand a Coherent MACLet us now 
ompare the performan
e of orthogonal MAC and 
oherent MACunder an optimal power s
heduling startegie. We restri
t our numeri
alexperiment by assuming orthogonal 
hannel matri
es Hi for all i, sin
e forthis spe
ial 
ase we derived an optimal lo
al sensor rule for the 
oherentMAC 
ase (
f. Subsubse
tion 4.4.3.2).
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(b)Figure 5.2: Uniform Power S
heduling vs. Optimal Power S
heduling, when
L in
reases for SNR′ = 15dB.For a unitary 
hannel matrix Hi, all eigenvalues of HT

i Hi are equal toone, thus h2imax = 1. In the following simulation we take the same settingfor observation parameters gi and σ2
ni

as before - the 
hannel noise power isagain assumed to have unit varian
e, i.e., σ2
h = 1. In Fig. 5.3, we plot the
urves of the FI Jz and the CRLB versus the total number of sensors L forthe orthogonal MAC 
ase, as before, and in addition the 
oherent MAC 
ase.Again, we �xed the SNR′ = 10dB. Note that sin
e we solved the otpimumLOi for the 
oherent MAC 
ase with respe
t to a total power 
onstraint, theobserved FI Jz and the 
orresponding CRLB or MSE 
an be per
eived asan optimal power s
heduling solution. In the simulation, the FI Jz and theCRLB is again averaged over 1000 realisations of {σ2

ni
, gi : 1 ≤ i ≤ L

} for
1 ≤ L ≤ Lmax, and is a
tually the expe
ted Jz and the expe
ted CRLB orMSE, respe
tively.
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(b)Figure 5.3: Uniform power s
heduling vs. optimal power s
heduling, when
L in
reases for SNR′ = 10dB.We per
eive that for an orthogonal MAC with �nite amount on P ′

0, theoverall CRLB or MSE does not de
reases to zero, even if L, the total numberof sensors, aproa
hes in�nity. This fa
t results from the orthogonality ofea
h link from sensor to the FC, whi
h leads to L di�erent and independent
hannel noise ve
tors nhi
for 1 ≤ i ≤ L. Therefore, the 
orruption of 
hannelnoise 
annot be eliminated even when L goes to in�nity. In the 
oherentMAC 
ase, only one 
hannel noise nh is generated per transmission unit. Asa result of the 
oherent 
ombination, the SNR for the re
eived data s
aleswith L, sin
e all transmitted data ve
tors are 
orrelated to ea
h other, eventhough when P ′

0 is �nite.



CHAPTER 5. NUMERICAL EXPERIMENTS 1055.1.3 Comparison to Existing ResultsIn 
on
lusion, we show a 
omparison between our simulation results for theoptimal powers s
heduling performan
e and the simulations results by theauthors of [1℄. In Fig. 5.4 are illustrated the optimal power s
heduling gains
ompared to the uniform power s
heduling for both multiple a

ess s
hemes.As already mentioned they 
onsidered a Baysian setting, where they mini-mized the MSE of the MMSE estimator. However, the performan
e results,with regard to asymptoti
 behaviours are basi
ally the same insights.

Figure 5.4: MSE performan
e 
omparision between orthogonal and 
oherentMACs [1℄.5.2 Ve
tor ParameterIn what follows, we analyse the performan
e for the ve
tor paramter 
ase,where T- and A-optimal designed lo
al sensors (designed for 
onstraint (C2)),will be 
ompared with regard to the MSE performan
e - the MSE of ane�
ient MVU is given in (5.2). We 
onsider the standard model in oursimulation setup (
f. De�nition 4.3.14).5.2.1 T�Optimal and A�Optimal MSE Performan
eIn the following simulation we used a system setup, where observation- and
hannel matrix are both invertable. An A-optimal LO is given in 
losed-form- the T-optimal LO has to be 
omputed in a water-�lling like manner. Sin
e,the A-optimal design minimizes the MSE of an e�
ient unbiased estimatorMVU, we expe
t a signi�
ant performan
e gain against the T-optimal design.We suppose a single sensor setup, i.e., L = 1. In Fig. 5.5, we plot the 
urvesfor the MSE of the MVU versus the SNR′ from (5.5), for a T- and a A-optimaldesign.
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Figure 5.5: MSE-performan
e for a T- and A-optimal design over SNR′ in asingle sensor setup, L = 1.In the simulation, we used 
onstant eigenvalues of observation matrix
GTG, i.e., λgi = 1 for all i - a Chi-squared (degree 1) distributed varian
e
σ2
n and the eigenvalues for HHT are uniformly taken from the real interval

[0.5, 1]. For the 
hannel noise 
ovarian
e, we set σ2
h = 1. Again, we averagedover 1000 realisations on the set {σ2

n, hi : 1 ≤ i ≤ L
}, and is a
tually theexpe
ted MSE.As 
an be seen, a design under the A-
riteria, performs better than thatunder the T-
riteria, in terms of the MSE. Consider the asymptoti
 be-haviour of both designs for in
reasing SNR′. We 
on
lude that both 
on-verges to the 
etralized ben
hmark, i.e., to the minimum a
hievable MSE,wi
h results for an ideal 
hannel. On the other extrema, when SNR′ goesvery small, then the di�eren
e between A- and T-optimal performan
e getslarger. Hen
e, a T-optimal design is quite su�
ient, just when the SNR′ islarge enough.



Chapter 6Con
lusionsWe 
onsidered a WSN, where sensors and a FC 
ollaborate to estimate anunknown deterministi
 ve
tor parameter. Due to bandwidth and/or powerlimitations, ea
h lo
al sensor has to en
ode and/or 
ompress (lo
al sensorrule) their measurement data of the unknown parameter �rst, before trans-mitting it over an imperfe
t 
hannel to the FC. This en
oding should be,su
h that the FC 
an estimate the parameter of interest most a

urately. Weused the FI as our performan
e metri
, due to their relation to the CRLB.We 
onsidered a linear Gaussian setup, where ea
h lo
al sensor rule and thefusion rule (estimator fun
tion at the FC) are des
ribed by linear mappings.We investigated two types of 
hannel usage, an orthogonal and a 
oherentMAC. The main goal of this thesis was to determine optimal lo
al sensorrules, in the sense of maximizing the FI, subje
t to bandwidth and/or power
onstraints of the transmit signals.First we have des
ribed our lo
al sensor rule more generally by a lineartransformation and additive systemati
 Gaussian noise, whereby we haveshowed that the systemati
 noise 
an be negle
ted.For the s
alar 
ase, we have shown that we 
an redu
e our system modelto an equivalent model in whi
h all lo
al observations are s
alar-valued.Based on this equivalent model, we derived optimal lo
al sensor rules for anorthogonal MAC in 
losed form. We also studied the 
oherent MAC 
ase andderived optimal lo
al sensor rules under a total power 
onstraint for 
ertainspe
ial 
ases of the 
hannel states. Based on these optimal lo
al sensor rules,we have 
onsidered the optimal power allo
ation among sensors. We deriveda water-�lling based solution for the optimal power s
heduling under a giventotal power 
onstraint for the orthogonal MAC 
ase. Simulations showedthat the proposed power s
heduling strategy signi�
antly improves the per-forman
e when 
ompared to the uniform power s
heduling. We have alsoshown that the performan
e has signi�
antly di�erent asymptoti
 behaviorswhen the number of sensors L is large for orthogonal and 
oherent MACs.For a ve
tor parameter, we �rst dis
ussed some fundamental notions107



CHAPTER 6. CONCLUSIONS 108of optimal experiment designs. In parti
ular, we introdu
ed the T- andA-optimality 
riteria, whi
h we then used for a ve
tor-valued parameter.We derived T- and A-optimal lo
al sensor rules for 
ertain spe
ial 
ases of
hannel states. A �nal simulation showed a MSE-performan
e 
omparisonof these two optimal designs.



Appendix AA Convex OptimizationProblemA.1 Water��lling SolutionIn solving the optimal power s
heduling for a s
alar paramter in the orthog-onal MAC 
ase (
f. Subsubse
tion 4.4.3.3), and for solving the T-optimalDesign of a lo
al sensor LOi in the ve
tor parameter 
ase (
f. Subse
tion4.5.1), we have to solve an equivalent optimization problem in the form:minimize
x

f (x) ,= −
K∑

k=1

c
(1)
k

xk

c
(2)
k + c

(3)
k xksubje
t to g1 (x) , 1Tx− P ≤ 0

g2 (x) , −x � 0,

(A.1)where the ve
tor x =
[
x1 x2 . . . xK

]T ; We assume that the 
onstants
P ≥ 0, c(1)k ≥ 0, c(2)k ≥ 0 and c

3)
k > 0. First, we verify that (A.1) is a 
onvexoptimization problem. We 
an write the obje
tive f (x) of problem (A.1) as

f (x) =

K∑

k=1

fk (xk) , (A.2)with fk (xk) , −c
(1)
k

xk

c
(2)
k

+c(3)xk

. It 
an be veri�ed easily that the �rst twoderivatives of fk (xk) are given by
f ′
k (xk) ,

∂

∂xk
f (xk) = − c

(1)
k c

(2)
k(

c
(2)
k + c

(3)
k xk

)2 (A.3)
109
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f ′′
k (xk) ,

∂2

∂x2k
f (xk) = 2

c
(1)
k c

(2)
k c

(3)
k(

c
(2)
k + c

(3)
k xk

)3 ≥ 0, (A.4)and therefore fk (xk) is 
onvex. The 
onvexity of the 
onstraint fun
tions
g1 (·) and g2 (·) is obvious, sin
e both are linear in x. Hen
e, problem (A.1)is a 
onvex optimization problem [15, Chapter 4.2.1℄.The KKT 
onditions (
f. [15℄) for a solution x∗ to the optimizationproblem (A.1) and 
orresponding Lagrange multipliers (
f. [15, p.244℄), i.e.,
ν∗ for the inequality 
onstraint g1 (·) ≤ 0 and λ∗ ∈ R

K for the inequality
onstraint g2 (·) � 0 are given as
1Tx∗ − P ≤ 0

x∗ � 0

ν∗ ≥ 0

λ∗ � 0

ν∗
(
1Tx∗ − P

)
= 0

λ∗
i x

∗
k = 0, k = 1, 2, . . . ,K

−c1k
c
(2)
k(

c
(2)
k + c

(3)
k x∗k

)2 + ν∗ − λ∗
k = 0, k = 1, 2, . . . ,K.

(A.5)
The resulting optimum x∗ 
an be obtained by a so 
alled "water-�lling"pro
edure. We note that the problem (A.1) is identi
al to the problem 
on-sidered in [15, Ex.5.2℄, ex
ept for the obje
tive fun
tions fk (xk). Therefore,we 
an 
losely follow the method in [15, Ex.5.2℄ to solve the KKT 
onditions(A.5). In parti
ular, we obtain the following "watter-�lling". The optimalvalues xk 
an be expressed as

x∗k = max0,

√√√√c
(2)
k c

(1)
k

(c
(3)
k )2

1

ν∗
− c

(2)
k

c
(3)
k



 , (A.6)and

K∑

i=1

max0,

√√√√c
(2)
k c

(1)
k

(c
(3)
k )2

1

ν∗
− c

(2)
k

c
(3)
k



 = P. (A.7)Hen
e, the optimal xk for 1 ≤ k ≤ K for (A.1) 
an not be 
omputedin 
losed-form. First, we have to determine the optimal variable ν from(A.7). Subsequently, the optimal xk for 1 ≤ k ≤ K 
an then be 
omputeda

ording to (A.6). This 
an be done by a so 
alled "water-�lling" algorithm(Cf. Algorithm A.1).
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Algorithm 1 Water-�lling Algorithm
P, c

(1)
k , c

(2)
k , c

(3)
k given for all k

tol = 1e− 5
wline = 0 %wline = 1/ν

Ptot =
∑

k max(0,

√
c
(2)
k

c
(1)
k

(c
(3)
k

)2
wline− c

(2)
k

c
(3)
k

)

z = 0while abs(xk − Ptot) > tol && z < 10000 do
wline = wline+ (xk − Ptot)/300

Ptot =
∑

k max(0,

√
c
(2)
k

c
(1)
k

(c
(3)
k

)2
wline− c

(2)
k

c
(3)
k

)

z = z + 1end while
x∗k = max(0,

√
c
(2)
k

c
(1)
k

(c
(3)
k

)2
1
ν∗ − c

(2)
k

c
(3)
k

)
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