Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

] ] TECHNISCHE

B . .. UNIVERSITAT
institute of WIEN
. . - telecommunications Vienna University of Technology

Diplomarbeit

Channel Aware Inference Based on the

Fisher Information

ausgefithrt am
Institute of Telecommunications (E 389)
der Technischen Universitat Wien

unter der Leitung von

Dipl.-Ing. Dr. techn. Alexander Jung
Ao. Univ.-Prof. Dipl.-Ing. Dr. Franz Hlawatsch

von
Bernhard Kausl

Traisenbachstrafle 2
A-3184 Tiirnitz

Wien, Oktober 2012







Acknowledgements

I would like to express my very great appreciation to my supervisor Dr.
Alexander Jung for his valuable and constructive suggestions. His willingness
to give his time so generously has been very much appreciated.

Thanks also to Prof. Franz Hlawatsch for his support and that he gave me
the opportunity, as part of his research group, to write a thesis.

I would like to express my thanks to my parents. Their support made my
study of electrical engineering possible.






Abstract

We consider a resource constrained wireless sensor network, where a set
of distributed sensors and a fusion center (FC) collaborate to estimate an
unknown vector source. The basic question is, how should a sensor encode
and/or compress the locally observed data before transmitting it over an
imperfect channel to the FC. This encoding should be such that the FC
can estimate the unknown vector source most accurately under the given
bandwidth and power constraints for the data transmission. In this thesis,
we focus our discussion on linear systems, where each sensor linearly encodes
its local observed data and also the FC applies a linear mapping in order to
estimate the unknown vector source, based on its received data. We adopt
the Fisher information as our performance metric, which is motivated by
their relation to the Cramér—-Rao lower bound. We investigate two types of
channel usage between sensors and FC, an orthogonal (i.e., non—interfering)
and a coherent multiple access channel (MAC). For the case when the source
is scalar—valued, we derive the optimal local sensor rule, when the channels
between sensors and FC are orthogonal. We also derive an optimal power
scheduling strategy, when a given total power is optimally scheduled among
sensors. Simulations show that the proposed power scheduling performs
much better than that for the uniform power scheduling. For a scalar—valued
source, we also study the coherent MAC under a total power constraint and
derive optimal local sensor rules in closed form for certain assumptions on the
channel states. We also show in simulation that the asymptotic performance,
when the number of sensors increases, critically depends on the different
multiple access schemes. For the general case, when the source is vector—
valued, we consider only the case of an orthogonal MAC. We derive optimal
local sensor rules for certain assumptions on the channel states in closed
form.






Zusammenfassung

Wir betrachten ein drahtloses Sensornetz mit begrenzten Ressourcen, in dem
die Sensoren ihre lokalen Beobachtungen an einer unbekannten, im allge-
meinen vektorwertigen Quelle, einem so genannten Fusion Center (FC) iiber-
mitteln. Vor allem in drahtlosen Sensornetzen ist die Bandbreite limitiert
und Energieeffizienz von grofer Bedeutung. Aus diesem Grund sollte jeder
Sensor seine Beobachtungen (Messdaten) komprimiert und/oder codiert zum
FC iibertragen. Das Codieren soll dabei in einer Art und Weise geschehen,
damit das FC die unbekannte Quelle mdglichst genau (optimal) schétzen
kann, fiir eine vorgegebene maximale Bandbreite und Sendeleistung. Im
Rahmen dieser Diplomarbeit beschrénken wir uns auf lineare Systeme, wo
die Codiervorschrift am lokalen Sensor (Sensor-Regel) als auch die Schitz-
funktion am FC mit einer linearen Transformationen beschrieben werden.
Als Performancekriterium verwenden wir die Fisher Information, motiviert
durch ihre Beziehung zur Cramér-Rao-Schranke. Wir betrachten einer-
seits einen orthogonalen (d.h. ohne Nachbarkanal-Interferenzen), anderer-
seits einen koherdnten Mehrfachzugriffskanal (MZK) zwischen den Sensoren
und dem FC. Fiir den Spezialfall einer skalarwertigen Quelle und der An-
nahme eines orthogonalen MZKs geben wir die optimale Codiervorschrift
am lokalen Sensor an; eine optimale Leistungs—Verteilungsstrategie, wenn
eine vorgegebene maximale Gesamtleistung im Sensornetz auf die einzelnen
Sensoren optimal aufgeteilt werden soll, sodass die maximale Systemperfor-
mance resultiert. Durch Simulationen wird gezeigt, dass dadurch ein sig-
nifikanter Performance-Gewinn resultiert, gegeniiber der einer gleichverteil-
ten Verteilungsstrategie. Fiir einen koherdnten MZK und einer skalarwerti-
gen Quelle werden optimale Codiervorschriften unter einer Gesamtleistung-
begrenzung und fiir gewisse Spezialfille an das Kanalmodell gezeigt. Fiir den
allgemeinen Fall einer vektorwertigen Quelle wird im Rahmen dieser Diplo-
marbeit nur der orthogonale MZK Fall studiert, wobei unter bestimmten An-
nahmen an den Kanalzustinden optimale Codiervorschriften in geschlossener
Form gezeigt werden.
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Chapter 1

Introduction

1.1 Motivation — Wireless Sensor Networks

Consider a distributed wireless sensor network (WSNI), where sensors ob-
serve data from a vector source and transmit it, possibly after performing
some preprocessing, to a fusion center (FCl) over an imperfect channel. An
example could be a target tracking scenario, where several sensors track
the movement of a target object and transmit their observations to a cen-
tral unit. Cooperative communications between sensors would cost much
more local energy and in addition increase the system complexity. There-
fore, distributed schemes (i.e., non—cooperative locally) are of more practical
importance. The [F(Jreceives the transmitted data set from the different sen-
sors, which are in general affected by the channel more or less, and based
on the received data, it generates a final estimate on the unknown source
for a specific signal processing task. We investigate two types of channel
usage between sensors an [FCt an orthogonal and a coherent multiple access
channel (MAC]). For the case of an orthogonal [MAC] the sensors have their
independent non-interfering channels to the [FCl As for a coherent [MAC],
we allow all sensors transmit simultaneously, by assuming that all transmit
messages reaches the [FC]in a coherent sum.

However, communications between sensors and [F(]is costly, as is the case
in WSNE. Especially in such networks is an important fact, energy efficiency
of their operation. E.g., battery capacities may be small and their replace-
ment unfeasible. There can be significant power savings, if less information
is transmitted to the [FC|, without degrading the overall performance. The
basic question is, how to encode and/or compress the locally observed data
before transmitting it over the channel to the [ECl This encoding should
be such that the [FC| can estimate the parameter of interest most accurately
under the given bandwidth and power constraints for the data transmission.
There are at least two approaches in which the finite bandwidth constraint
can be modeled. On the one hand, we can limit the number of binary bits
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that each sensor transmit to the [EC| per observation period (source coding).
This bandwidth measure is from a digital communications point of view. On
the other hand, we can limit the number of real-valued messages that each
sensor transmit to the [EC] per observation period, which is directly propor-
tional to the physical frequency bandwidth in the system. This approach is
suited for analog transmission schemes. Throughout this thesis, we adopt
the second bandwidth measure, i.e., we consider analog transmission of real—-
valued sensor messages (cf. intro of [I]). The power constraint in contrast
limits the strength of the transmit signals.

In this thesis, we discuss the joint estimation of a vector parameter by a
sensor network with a[FC|l The transmission between sensors and [FClis sub-
ject to bandwidth and power constraints. We focus our discussion on linear
systems, where encoding functions at the local sensors and the fusion func-
tion at the [FC| are all linear. The reason behind restricting to linear models
is tractability. For non-linear models, there are often numerical/iterative
techniques necessarily, which in particular often converges only to local op-
timum solutions. As a consequence of considering linear models, we can
describe our local sensor rule by some sensor matrix and additive systematic
noise. The power constraint limits the strength of each transmitted data,
while the bandwidth constraint limits the number of real-valued transmit-
ted symbols (messages) per observation period. Under a Cramér-Rao lower
bound (CRLB) criterion, we design the optimal local sensor rule, based on
the channel states and the second order statistics of the local observation.

1.2 State of the Art

Similar questions were addressed by the authors of [I] and [2]. They de-
signed optimal local sensor rules under the mean square error (MSE]) crite-
rion and considered a Bayesian setting in contrast (minimum mean square
error (MMSE]) estimator).

In [I], they designed optimal local sensor rules by assuming non—orthogonal
channel usage (the orthogonal channel usage has been studied in [3] before),
subject to bandwidth and/or power constraints, for cases where the param-
eter of interest and local sensor observations are scalars or vectors.

For the scalar case, they used solutions for the optimal local sensor rules
from [3] and derived an optimal power scheduling strategy, i.e., where a
given total transmit power is optimally scheduled among all sensors such
that the achieved is maximized. Simulations show that the proposed
power scheduling strategy significantly improves the [MSE] performance when
compared to an uniform power scheduling (i.e., all sensors use the same
transmit power). They have also shown that the [MSE] performance critically
depends on the different multiple access schemes (orthogonal and coherent
[MAC]), which has in particular significantly different asymptotic behaviours



CHAPTER 1. INTRODUCTION 3

(in the sense when the number of sensors increases). When the parameter
of interest and local sensor observations are vectors, they derived a closed—
form solution of an optimal local sensor rule for a noiseless channel (i.e.,
neglecting the additive channel noise). For a noisy channel, the problem
can be efficiently solved by a numerical method (semi-definite programming
(SDE).

In [2], they differentiate between uncorrelated and correlated local sen-
sor observations, i.e., whether the local sensor observations are uncorrelated
among different sensors or not. They considered the case of estimating a vec-
tor parameter and analyzed the[MSEl performance for a system setup with an
orthogonal [MAC] For correlated sensor observations, they derived a closed—
form [MSE] optimal local sensor rule and showed an optimal power scheduling
strategy in a waterfilling-like manner so as to balance channel strength and
additive channel noise variance. For correlated sensor observations, they
further developed an iterative algorithm with guaranteed convergence to at
least a stationary point of the [MSEl-cost.

By contrast, we consider a classical estimation problem, where the pa-
rameter vector is modeled as unknown deterministic and use the Fisher in-
formation (EI)) as the performance metric. The motivation for using the [F]l
is based on its relation to the

1.3 Organization of this Thesis

The rest of this thesis is organized as follows. In Chapter 2] we review some
elementary concepts of classical estimation theory. In particular, we intro-
duce the concepts of the[CRLB], the Fisher information matrix (FIM]) and dis-
cuss their properties. We then specialize to the linear Gaussian model (LGM])
which will be used throughout the thesis. In Chapter B, we give a general
problem formulation for our system model. The [ET] performance metric and
power constraints are derived in terms of the local sensor rules. We also
discuss some fundamental notions of the optimal experiment design. In par-
ticular, we introduce various optimality criteria which can be used in the case
of a vector-valued parameter. Then, we formulate the basic design problem
in the most general form, in order to obtain the optimal local sensor rule. In
Chapter @ we show the main results of this thesis. We solve the basic design
problem for certain special cases, first, for the special case of a scalar pa-
rameter, afterwards, for the general case of a vector parameter, where in the
latter, we are particularly interested in two optimality criteria. For the scalar
parameter, we also show an optimal power scheduling strategy. Finally, in
Chapter Bl we show numerical experiments, first, for the scalar parameter,
where we are interested in the optimal power scheduling performance gain.
For a vector parameter, we compare the two cases of optimal designs with
regard to the performance in a single sensor setup.
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1.4 Symbols and Notations

Throughout this thesis we adopt the following notations: A lower/upper case
letter a/A denotes a real scalar, a boldface/lowercase letter a denotes a vector
and a boldface/uppercase letter A denotes a matrix; R denotes the set of real
numbers, RT denotes the set of positive real numbers including 0, R\ {0} de-
notes the set of real numbers excluding 0, R™\ {0} denotes the set of positive
real numbers excluding 0, R™ denotes the set of all real vectors of dimension
m, RT™ denotes the set of all real vectors with positive elements; {/- denotes
the positive square root; | - | denotes the absolute value; sign (-) denotes the
signum function (returns 1 or —1 depending on the sign of the argument); (-)*
denotes an optimum; min {aj,as,...,ax} and max{ay,as,...,ax} denote
the minimum and maximum of the set {a1,a9,...,ax}.

Matrix and Vector Analysis: The notations AT, A=1, A= AT mean
the transpose, the matrix—inverse, the matrix—inverse—transpose and the
pseudo—inverse of a matrix A; I denotes the identity matrix; 1 denotes a
vector of ones; 0 denotes a vector of zeros. The ith element of a vector a is
denoted by a;, the element of the ith row and jth column of A is denoted
by (A), ;, the ith column vector of A is denoted by a;, the ith row vector of
A is denoted by a]. We denote the set of all real (k x k)-symmetric matri-
ces by Sym (k), —positive semi—definite matrices by NND (k) and —positive
definite matrices by PD (k). Let A,B € Sym (k), then the relations A > B
or B < A means that A — B € NND (k), similarly, A > B or B < A
means that A — B € PD (k) (Loewner ordering among symmetric matri-
ces). The relation ’>=’, <’ ’>=" and '<’ denote the corresponding element—
wise inequalities for vectors. The notation R (A) £ {Av € R™ : v = 0} and
N(A) 2 {v € R": Av = 0} mean the range and the nullspace of the matrix
A € R™*". The notation rank (A) means the rank of the matrix A. The
vector e; denotes the ¢th unit vector. The notation 1 < 4,7 < N means
that 4,5 € {1,2...,N}. diag{x1,z9,...,zx} denotes a diagonal matrix
with entries z; for 1 <7 < K. tr {A} and det {A} denote the trace ad the
determinant of a matrix A, ||-|| denotes the Euclidean norm (lo—norm).

Statistical Signal Processing: The notations C, and p, mean the auto—
covariance matrix and the mean of the random vector a; a ~ N (u,, C,)
means that a is Gaussian distributed with mean p, and covariance matrix
C,; var {a} and cov {a} mean the variance and the auto—covariance matrix
(equivalent to the notation C,) of a; cov{a, b} means the cross—covariance
matrix between a and b; E{-} denotes the expectation operator.

Abbreviations: "Fig.", "w.r.t.", "w.l.o.g." denote "Figure", "with respect
to", "without log of generality"; "iff" means "if and only if"; "cf." means

"confer"; "ev.", "p.", "ftn." stand for "evaluated", "page", "footnote".



Chapter 2

Basic Concepts of Classical
Estimation Theory

In this chapter, we will introduce the Cramér—Rao lower bound (CRLBI)
and the Fisher information matriz (EIM) for the general case of a vector
parameter, which is a fundamental result in classical estimation theory. The
[CRLBlis a lower bound on the variance of any unbiased estimator and is
practically useful since it provides a benchmark against which we can com-
pare the performance of any unbiased estimator. In certain cases, it even
allows us to find the minimum variance unbiased (MVU]) estimator. Before
we go into details of the and the [FIM] we review some basic concepts
of classical estimation theory.

2.1 The Estimation Problem

Let us consider an unknown, deterministic parameter vector 8 € R™. A so
called fusion center (EC]) receives the data z and estimates the parameter
vector @, based on the observed data z. It should be noted that the [EC|
has no prior information about the parameter vector 8, i.e., we consider the
classical estimation setting in contrast to the Bayesian setting, where the
parameter vector is modeled random with a known prior probability density
function (pdf). The dependence of the observed data z and 6 is described

by the family of [pdik
f(z0), (2.1)

i.e., the notation in (21) means, that the[pdf]of z is parameterized (indexed)
by 6. For an estimator 6 (z) the estimation error e is defined as

e=20(z) 0. (2.2)
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The mean square error (MSE) of an estimator 6 (z) is given by
MSE {6 ()} = g {llell*} @1y, Hé (z) — 0H2
n n

_1/
-/

It is important to note that the expectation in (23] is only with respect to z,
since @ is non-random. As the notation in (2.3]) suggests, the [MSEl depends
on thi parameter vector 8 in general. The [MSE]can be decomposed into two
termd!):

MSEg {é(z)} - % ‘

-~ 2
0 (z) —0” f(z:0).

biasg {é (Z)}H2 + varg {é (z)} , (2.4)

where the bias of  (z) is defined as the expectation of the estimation error
e, ie.,

biaso {6 ()} £ Eo {e} 22 g, (0@ -0} =Fo{6(n)} -0, (25)

and the variance of the estimator 6 (z) is given by

varg {0 (z)} = %Eg {Hé (2) — Eq {é(z)}HQ}. (2.6)

As the [MSE] also the bias and the variance of an estimator depend on 6 in
general.

Definition 2.1.1 An estimator 0 (z) is said to be unbiased iff
biase {é (z)} = Egle} =0 for all 6. (2.7)
As can be verified easily, for an unbiased estimator  (z) it holds that
Eo {é(z)} —9 foralf
(cf. (23)) and moreover, by (2.4]), we have
MSEg = varg {é (Z)} .
We also define the covariance matrix of 6 (z) by

cove {é (z)} — Ep {(é (z) — Eg {é (z)}) (é (z) — Eg {é (z)})T} . (28)

!The decomposition is only valid in the classical context, i.e., if @ is modeled as deter-
ministic.
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If O (z) is unbiased, i.e., Eg {é (z)} = 0 for all 8, the covariance matrix of
6 (z) from (Z8) equals the "MSE-matrix" Eg {ee }:

cove {0 (z)} = o {(é (2)-0) (0(2) - e)T} %D B {ee”) .

Furthermore, covg {9 (Z)} = covg {9 (z) — 0} = covg {e} since 0 is deter-
ministic. Note that the kth diagonal element of covg {9 (z)} equals the vari-
ance of the kth estimator component 6y, i.e., varg {Hk} = (cove {0 (z)})kk,

and thus it equals the of 0, if @ (z) is unbiased. In particular, the
of 6 (z) is obtained as the arithmetic mean of all individual [MSEk of
6, for 1 < k < n. Hence, the is also given by the trace of the "MSE-
matrix" /error covariance matrix/covariance matrix of an unbiased estimator

~

0 (z), divided by n:
MSEq — %tr [Ep {ec’}) = %tr{cove {e}} = %tr {eovo {0(2)}}. (29)

2.2 The Cramér—Rao Lower Bound

Given an observation z and an estimator 6 (z), it is desirable to quantify
how good the estimator performs, e.g., by comparing it against some bench-
mark. We now introduce our central performance benchmark for the set
of all unbiased estimators for a classical estimation problem, which is re-
lated to the Cramér—Rao lower bound (CRLBI) and the Fisher information

matriz (ETM).

2.2.1 The Fisher Information Matrix

In the following, we assume that %ln f (z;0) and %ﬁ?)elln f (z;0) exist and
are absolutely integrable with respect to z. Consider an estimation problem
based on the observation vector z, whose pdf f (z;0) is parametrized by the
parameter vector @, which we would like to estimate. We can then define

the corresponding [FIM]| as

J,(0) £ Eq { [%m f(z;G)] [a%ln f(z;e)r}. (2.10)

The [FIM] is a square matrix of size n x n, where n is the dimension of the
parameter vector 6. It should be noted that J, (8) depends on the parameter
0 in general. The elements of J, (@) are thus given by

@ O)s= [ |50 7 @0 | g £ @0)] o) dn (200
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We can write (2.10) and (Z.I1)) also in the more compact form as
J,(0)=-E —gln f(z;0) (2.12)
2T 0 06 00 ’ ‘
and
2
(320))g = T { 5t 1 3:6) ). (213)

The [FIM] is symmetric, i.e., J,(8) = JL (8) € Sym (n) and positive semi-
definite, i.e., J, € NND (n). For the set of symmetric matrices, we can define
a partial ordering to be able to compare two or more [FIME [4].

Definition 2.2.2 The partial ordering >, is defined on Sym (s), by
A>B < A-B>0 <= A-Be&eNND(s),

which is known as the Loewner ordering of symmetric matrices. Note that
the notation B < A is equivalent to A > B. We also define the closely
related variant >, by

A>B <= A-B>0 <= A-BePD(s).

In the scalar case, i.e., for s = 1, the Loewner ordering reduces to the
familiar total ordering on the real line R. Or, the other way around, the total
ordering of the real line R is extended to the partial ordering of the matrix
spaces Sym (s), with s > 1. In Chapter Bl we will define our basic design
problem, which is based on the Loewner ordering among [FIMk. Another
important property holds, if the data z; are statistically independent for all
1 <k <n. Then, the [FIM| can be written as

J,(0) = Zn: 3. (0), (2.14)
k=1

where J, (0) is the [EIM for the zith data. This property can be easily
verified since for independent data zy, the [pdi] f (z;0) can be factored into
the form

f(z:0)=]]f(2:0).
k=1

2.2.2 The Cramér—-Rao Lower Bound

If the [FIMl J, (@) is non-singular, i.e., the inverse J ! (@) exists for all 0,
it can be shown that the [MSE] matrix/error covariance matrix/covariance
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matrix of any unbiased estimator 6 (z) is bounded below by the inverse [FIM]

J.(6) 3],
Eg {ee’} = covg {e} = covg {é (z)} >J-1(0). (2.15)

The inequality ([2.I5) is referred to as the Cramér—Rao lower bound (CRLBJ).
Throughout this thesis we only consider estimation problems where the [FTM]
J, (0) is non-singular. However, there are also generalizations of the [CRLBI
to situations where the is singular [6].

2.2.3 Efficient Estimators

If the covariance matrix covg {9 (z)} of an unbiased estimator 6 (z), i.e.,

Eo {9 (z)} = 0 for all 0, attains the [CRLB] i.e.,

covg {(2)} = 371 (6),

then such an estimator is called efficient, denoted by @er (z). An efficient
estimator exists if and only if 8%ln f (z;0) can be written as

2 £ (5:0) =K (0) [g (0) - 6], (2.16)

with some n x n matrix K (8) and some function g (0) [5]. This estimator
is then given by

O (z) =g (2), (2.17)
and its covariance matrix is given by
cove {éeg (9)} —J- 1) =K' (9), (2.18)

i.e., the[FIM|J, () = K (0). If an efficient estimator exists, it coincides with
the estimator and the maximum likelihood (ML) estimator.

In the following, we will define the [CRLBl and the for the special
case of a Gaussian distributed observation z. Furthermore, we specialize
it to a linear observation model, i.e., when observation z (@) is linear in 0,
because we will consider only that system model exclusively throughout this
thesis.

2.2.4 The Gaussian Case

For the case of a Gaussian distributed observation, i.e., we assume z ~
N (p, (0),C, (0)), where C, is non-singular, it can be shown [5] that

_ [0, (6) T op (0)
(J2 (0))k,l = [ a0, ] C. (0) [ 00, ] * (2.19)
1 aC. (9) 0C: (9) |

§tr{CZ1(0) 26, c; (o) 20, }
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2.2.5 The Linear Gaussian Model

We now consider the LGM] i.e., the observation z can be written in the form
z =HO + v,

where H is a deterministic matrix of size p x ¢, with p > ¢ and full column-
rank, i.e., rank (H) = ¢. The random vector v is Gaussian distributed with
mean p, and the non-singular covariance matrix C,, i.e., v.~ N (u,, C,).
The is a special case of the general Gaussian model with mean pu,,
and covariance matrix C,. Therefore, we obtain the of the by

specializing (2.19)) as

3, = (01 o _greog (2.20)
== \00 ) = 8 vt ‘

An important property of the LGM]is that the [FIM]J, from (2:20) does not
depend on 0. Furthermore, it can be shown [5] that for a LGM]

e there always exist an efficient estimator given by

b (z) = (HTC,'H) 'H'C, (z — ), (2.21)

e the estimator is unbiased, E {9 (z)} = 6 for all 8, and its covariance
matrix is given by

-1 T ~—177) L
Céeg(z) =J, = (H C, H)
and does not depend on 6,

o the efficient estimator @eg (z) is Gaussian distributed, i.e.,

Oot ~ N (0, (HTC;1H)*1> ,

e the estimator Og (z) coincides with the [MVU] the [MI] and the best
linear unbiased estimator (BLUE]).



Chapter 3

Problem Formulation and
System Model

In the last chapter, we introduced the and the for a classical
estimation problem. Since the [CRLB]is a lower bound on the [MSE] ma-
trix/error covariance matrix/covariance matrix of any unbiased estimator, it
can be used as a performance benchmark for this class of estimators. As al-
ready indicated in Chapter [0, our goal is to design optimal local sensor rules,
in order to obtain maximal overall performance for estimating the unknown
deterministic parameter at the [FC|, subject to bandwidth and/or power con-
straints of the transmit signals. It is close therefore to use the [FIM] based
on the final observation at the [FC] as a performance indicator, due to their
relation to the (cf. ([2I3)). In what follows, we setup the system
model and problem statement that will be considered.

3.1 System Model

Suppose, there are L > 1 sensors, each making an observation y;, € R™
about an unknown source, which is described by a parameter vector 8 &€
R"™. We assume that @ is deterministic, i.e., we have no prior information
available. The relation between the sensor observation y; and the parameter
vector @ is fully described by the parametrized [pdf] f (y;; 0). The local sensors
communicate to a[FC] which computes a final estimate on 6.

In most [WSNE, sensors only have limited battery power and limited com-
munication capability. For this reason, local data encoding/compression at
each sensor is of importance, to reduce communication requirement between
sensors and the [FCl Therefore, we introduce as discussed in Chapter [IJ,
bandwidth and power constraints on each transmit signal. We assume, that
the distributed sensors have no inter—sensor communication. The role of
each sensor is to encode/compress the observed local data y; to a transmit

11
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data s; by a mapping
LO; :y; —s; forl<i<L.

In what follows, we denote such an local sensor rule by writing LO. The
transmit data s; for 1 <4 < L are then transmitted over a [MAC] to the [EC]
which is due to the bandwidth constraint, limited by a finite dimension. The
[FC produces a final estimate 6 (z) of the true parameter vector by applying
some fusion rule, which is a deterministic estimator function to the received
vector z (cf. Fig. BI)). As already mentioned in Chapter [I we consider

] S1 ( )

0 [ ign® . MAC |2 0 (2)

‘©, —_—
7 yL lLOLJ 5L

Figure 3.1: System model for a sensor network with [FCl and [MAC

throughout this thesis a linear Gaussian setting, i.e., every block in Fig. B
corresponds to a matrix multiplication and addition of a Gaussian noise
vector.

Specifically, we assume the sensor observation y; € R™: are the linear
combination of @ corrupted by additive noise and can be described as

y: = G;0 + n,, (31)

where G; € R™*" is the known, deterministic observation matrix of sensor
1. The additive observation noise n; € R" is assumed to be zero—mean
and Gaussian distributed with fixed and known covariance matrix C,,, i.e.,
n;, ~ N (0,C,,). We assume that the observation noise vectors n; for all ¢
are uncorrelated across different sensors, i.e., the cross—covariance matrix

cov{n;,n;} = E{nin?} =0 for1<i,j<L, i#}.

The main task of the ith local sensor is to map the local observed data
y; to a trasmit data vector s; before transmitting over the channel to the
[FCl in order to maximize the overall performance. As already mentioned,
our performance indicator is based on the or the for the final
observation at the [EC] (already introduced in Chapter ). Since we have
assumed a linear and Gaussian setup, we describe the ith local sensor rule
LO; by a deterministic matrix A; € R%*™ and some additive systematic
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noise n;,, which we restrict to be zero-mean and Gaussian distributed with
covariance matrix Cy,, i.e., nj; ~ N (0, C;,). Both matrices A; and C;,, fully
describe our local sensor rule LO of the ith local sensor, i.e., LO; £ (A;, Cy;).
The LO; performs a linear transformation of y; and adds systematic noise
n;,, to generate the transmit data s;, which is given by

s =AGO+An;,+n;; forl<i<L, (3.2)

where we assume that n; is uncorrelated with n;; (also orthogonal, since
both are zero—mean) for all 7 and j, i.e.,

cov {ni,nlj} = E{ning} =0 forl1<i,j<0L.

Moreover, we also request that all systematic noise vectors n;, for all ¢ are
uncorrelated across different sensors, i.e.,

cov {nli,nlj} = E{nling} =0 forl1<i,j<L, i#}.

The bandwidth constraint on s; leads to dimensionality condition on A;,
ie., A; € R%*™i_ Te. the ith local sensor can transmit ¢; messages (real—
valued symbols) to the [FC] which is determined by the degrees if freedom
(dimension) of the channel from sensor i to the [FCland is potentially decided
by the channel bandwidth [I]. The power constraint on s; will be defined in
the next section.

Each sensor thus transmits their encoded and /or compressed data s; over
a channel to the[FCl Depending on the different multiple access schemes, we
investigate two cases for the between sensors and [EC], an orthogonal
and a coherent MAC [I]. For the case of an orthogonal MAC] we assume that
the sensors have their own separate non—interfering channel to the [FCl This
can be realized, e.g., by a time—division, code—division or frequency-division
multiple access scheme (TDMA/CDMA /FDMA). As for a coherent [MAC]
we allow all sensors transmitting simultaneously by using for example the
same frequency band or time slot. Here, we assume perfect synchronization
between sensors and [EC] i.e., the transmitted data from all sensors reaches
the [EC] in a coherent sum. In the following we complete our model system

for both multiple access schemes and derive the corresponding expressions
for the [FIM]

3.1.1 Orthogonal MAC

The orthogonal consists of L separate and non-interfering channels
between each local sensor and the [FCL The received vector z at the [FC] is
given by the concatenation of L individual receive vectors z; corresponding
to the local sensors (cf. Fig.[3.2). The signal z; received at the [EC| from the
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LO;

Figure 3.2: Linear decentralized estimation with orthogonal MAC.

ith local sensor, can be written as
z; = H;A,G;0 + H;An; + Hn;;, +np; for1 <i< L, (33)

where H; € RPi*% ig the known, deterministic channel matrix from sensor ¢
to the FC and nj, € RP is the additive channel noise, which is again assumed
to be zero-mean and Gaussian distributed with the known covariance matrix
Cy,, i.e., np, ~ N (0,C},). Here, we assume that the covariance matrix Cy,
is non-singular. Moreover, we assume that, firstly, nj, is uncorrelated with
n; for all ¢ and j, i.e.,

cov{np,n;j} =E {nhin]T =0 forl<i,j<L,

and secondly, np, is uncorrelated with ny; for all ¢ and j, i.e.,
cov {nhi,nlj} =E {nhing} =0 forl1<i,j<0L.

Additionally, we again request that all channel noise vectors ny, for all ¢ are
uncorrelated across different sensors, i.e.,

cov {nhi,nhj} = E{nhingj} =0 for1<i,j<L, i#j.

Further, we assume that z; from (B.3]) for all i are jointly Gaussian. Note
that the signal model in (B3] is an instance of the linear Gaussian model
(cf. Subsection 2.2.5)) with system matrix H = H; A;G; and noise covariance
matrix C,, = C,,, where

C., = H;A;C,, A{H] + H;C,H] + Cy,. (3.4)
Therefore, we can use the expression ([2.20)) for the [FIMl of a[LGM], to obtain

J, (0) = GTATHY (Cp, + H;C, HY + H;A,C,,, ATH?) "' H;A,G;, (3.5)
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since C,, (cf. ([B4)) is non—singular (i.e., invertible), due to the assumption
that Cp, for 1 < ¢ < L is non-singular. The estimation problem is fully
characterized by the joint [pdi] f (z1, 2o, ...,21;0) parametrized by 6. Note
that the joint [pdi] can be factored as

f(z1,22,...,21;0) = [ (21;0)- f (22:0) ... f (zL;6 Hf (zi;0), (3.6)

since all data vectors z; are statistically independent. This follows from our
assumption that all in the system occuring noise vectors are uncorrelated
to each other (thus cov{z;,z;} = 0 for 1 < 4,57 < L and ¢ # j) and the
assumed joint Gaussumlty of the data vectors z;. Hence, the for the
final observation z = {Z,} ., at the[FC| according to (Z.I0), can be obtained
as

T
E{ lnf Z1,%Z2, .. ,zL;H)} [aaeln f(zl,z2,...,zL;0)] }

| 0 L& 8. !
%hl il_[lf(zi;e)] [%IH Hf(Zi;e)]

o & 0 & ’
{ a—eglnf(zi;a)] [6_0;111 f(Zz‘;a)]
L

@ Z; {[—m zi;G)] L%ln f(zi;e)r}
o
B (3.7)

where J,, (@) has been already derived in (B5). The derivation in (37)
verifies the general composition property (Z.I4]) of the for independent
data. In step (a) of (B7), we used the linearity property of the operators
8% (-) and E{-}, respectively. Combining (3.5) with (3.1) yields

L

J,(0) =Y GTATHT (C), + HiC,HY + H;A,C, ATHT) ' H;A;G,.
=1

(3.8)

It is important to note that the J, (0), according to ([B.8]), does not

depend on the (unknown) parameter €, which is conceptually appealing.
One immediate question that arises here is, for which conditions on the

system model with an orthogonal exists at least one efficient unbiased
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estimator. The condition for the existence of an efficient estimator is given in
(2.16). Invoking [5, p.89], we can strictly follow the derivation of the efficient
estimator for a [LGM| model. With X; £ H;A;G;, the first derivative of
In f(z;;0) can thus be written as

2 ;0)=X/C.'2,—J,,(0)6
%nf(zia )_ i Yz Li T Zi( ) )
where J,, (@) is given in (3.5]) and since all z; are statistically independent
to each other (cf. (B:6) and the derivation in (B.7))), we obtain

In f(zi;0)

gl

@
Il
—_

%ln f(Z17Z27"' 7ZL;6) =

Xrc 'z, —J3, (0)60

Il
.Mh

i=1 (3.9)
“yz_J,0)6
©37, 0 [((3.(0) 7' Yz -6
=Klg(z) - 0],
where in step (a), we used (1) and introduced
Y £ [X{c ! xXic! ... XIc !l and
R O (3:10)

In step (b), we assumed that J, (0) is non-singular. In the last equation of
9) we introduced

L
K2 vx " Sox7cx, 2 g, (0)

i=1
and

L -1 /7
g(z) 2 (vX) " vz = (Z x;fc;lX@) (z XiTCZ_ilz@)
i=1

i=1
L
= J;1(0) (Z GiTAiTH;fFCZilzi> .
i=1
Comparing with (2.I0), we conclude the following:
e It exists an efficient estimator (cf. (2.I7)), which is given by

L
O (21,22, ...,21) =g (2z) =T, () (Z G?A?H?czilzi> , (3.11)
i=1
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and is simultaneously the [MVUl estimator. It exists iff J, (@) and C.,
for all ¢ are non—singular.

o The[FIMlis J, () = K; it does not depend on 6.

e The estimator Geq (z1,22,...,2z1) from (BII) is obviously unbiased,
Eo {9eff (21,22, ... ,zL)} = @ for all 8, and its covariance matrix (cf.
(21])) is given by

cove {éeﬁ(zl,zQ,...,zL)} —J71(0). (3.12)

This is the efficient estimator (MVUl estimator) for our system model with
an orthogonal [MAC] It exists if

J, is non—singular and (3.13)
C., is non-singular forall 1 <i <L, ’

where again, the last condition is guaranteed, to due our assumption that
Cj, is non-singular for all ¢.

3.1.2 Coherent MAC

As a second model for the link between local sensors and [FC], we consider
the case of coherent MAC. Here, the individual transmit signals s; of the
local sensors, add up at the [FC] in a_coherent sum (signals are perfectly
synchronized between sensors and [EKE) We also assume that all by the
channel corrupted trasmitted data vectors have the same length p = p; for
1 <i < L. Then, we can use the following observation model at the [FC] (see

Fig. B.3),

L L
7Z = Z H;s; + n, = Z (HZAZGZG + H;A;n; + Hinli) + ny, (314)
=1 =1

where again H; € RP*% is the known, deterministic channel matrix from
sensor ¢ to the [FC] and n;, € RP is the additive channel noise, which is
again assumed to be zero—mean and Gaussian distributed with the known
covariance matrix Cp, i.e., ny ~ N (0,Cp). As in the orthogonal MAC] case,
we assume that ny, is uncorrelated with n; for all j, i.e.,

cov{ny,n;} = E{nhnjr} =0 forl1<j<L,

Tn the orthogonal [MAC case, we only need to assume pair-wise synchronization be-
tween each sensor and the [FC] where synchronization among different sensors is not re-
quired.
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0 (2)

Figure 3.3: Linear decentralized estimation with coherent MAC

and further that nj, is uncorrelated with ny; for all j, i.e.,
cov {nh,nlj} = E{nhan]} =0 forl1<j<L.

Unless otherwise stated, we assume that the channel matrices H; for 1 <
i < L are of full column-rank and the noise covariance matrix C;, is non—
singular.

Let us introduce the shorthand

Ai = H,A,; € RP*Mi (315)
Due to our assumption, that H; has full column- rank implying p > ¢;, we

can reobtain A; from A; via A; = HTA Here H denotes the pseudo—

inverse of H; and is given by Hj = (HTH) "HT. We refer to A; as the
sensor—channel matrix of sensor ¢. Let us furthmore define

Aé[gl K.Q ;&L}, AGRpXka
G2[cT GI ... 67", GeRrbm, (3.16)
H:[H, H, ... HJ, HeR

where k = m1 +mo+ ---+myp and ¢ = g1 +¢2 + --- + q. Let us refer
to A and G as the total sensor-channel matrix and the total observation
matrix, respectively. Analog, we define the total observation noise and the
total systematic noise by

n<[nf nf .. nin]T, n € R¥, (3.17)
T .
n; = [nl{ nlg e nlﬂ , n; R

Using the notations in (.16) and (3.I7), we can write the observation z at
the [EC| given in (8.14]), in the form

z=AGO + An + Hn, + n,. (3.18)
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Note that the signal model in (3.I8) is again an instance of the linear Gaus-
sian model (cf. Subsection 2.2.5) with system matrix H = AG and noise
covariance matrix C,, = C,, where

C.=C,+HCH” + AC,A”. (3.19)

Therefore, we can use the expression ([2.20)) for the [FIMl of a[LGM], to obtain
- JUNRURIRE I
J,(6) = GTAT (ch +HCHT + AanT> AG. (3.20)

We can invoke (2.20)), since the covariance matrix C, (cf. (B.I9)) is non-
singular. This is guaranteed by the assumption that Cj is non-singular.
Note that the J, (0) in (B20) does not depend on the parameter 6.

As discussed at the end of Subsection BTl we will now analyze condi-
tions on our system model with a coherent [MAC| such that it exists at least
one efficient unbiased estimator. Now, it is much easier to find an efficient
estimator as in the orthogonal [MAC] since we can directly use the deriva-
tion for a simple in [5, p.89], and conclude that it exists an efficient
unbiased estimator (MYTU] estimator) iff the [FIMJ, (@) from ([B.20) and C,
from (3I9) are both non-singular. Then, we conclude the following:

e It exists an efficient estimator, which is given in ([22I)) for system
matrix H = AG (not be confused with H from (B.I6)) and noise
covariance matrix C,, = C,, where H has full column-rank n and C,,
is non-singular, i.e.,

O (z) = 3,1 () GTATC 'z, (3.21)

and is simultaneously the [MVU] estimator.

e The estimator O (2) from (F2I) is obviously unbiased, Eq {9eﬂr (z)} =
0 for all 8, and its covariance matrix is given by

cove {éeﬂ (z)} =J;1(0). (3.22)

This is the efficient estimator (MVUl estimator) for our system model with
a coherent It exists iff J, (@) and C, are both non-singular. Note
that we already assumed that the channel noise covariance matrix Cj, is
non-singular and thus C, is non—singular (cf. (3.19))).

Lemma 3.1.3 Consider matrices A € R™*"™ gnd B € R™"*P, then
rank (A) + rank (B) — n < rank (AB) < min {rank (A),rank (B)}.

Proof. see [T, Lemma 2.1, p.16]. O
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Let us finally derive conditions on the system matrices A and G, such
that it exists an efficient estimator (MVUlestimator), which is given in (Z.21).
This occurs iff the matrix product H = A G has full column-rank. According

to Lemma [3.1.3] we conclude that rank <;‘;G> = n when rank (G) = n and

n < rank <;‘;> < k. Hence, the conditions for the existence of at least one

efficient, unbiased estimator on our system model with a coherent [MAC] can
be summarized as follows:

n < rank <1~X) <k, rank(G)=n,

p>n, k=my+mg+---+mp>n, (3.23)
and

C, is non-singular,

where again, the last condition is guaranteed, to due our assumption that
C}, is non—singular.

So far, we have derived the [FIM]|J, (@) for both multiple access schemes.
In both cases, it is important to note that, due to the assumption on a[LGM],
the J, (0) does not depend on the parameter 8. Thus, we simply write
J, in what follows. Before, we define our optimization problem in detail, we
will now introduce the power constraint on the transmit data s; € R% for
1 < i < L, which seems in addition to the already mentioned bandwidth
constraint.

3.2 Power Constraint

Remember that our goal is to determine each LO; for 1 < ¢ < L, such
that the or, equivalently, the for the observation at the [EC|
is optimized. In [WSN| energy efficiency is highly desirable, e.g., due to
using battery powered devices and changing battery is not possible easily.
Hence, each local sensor has only limited power available for transmitting
the prepared data s; to the [FEC] over the channel. Therefore, we have to
introduce an appropriate power constraint for the transmitted data s;. On
the other hand, without considering such a power constraint, we can always
ensure ideal links between sensors and the [FC|, by scaling the sensor matrices
A, for 1 < ¢ < L, with an arbitrarily large factor. Throughout this thesis,
we consider two types of power constraints. The first, more natural power
constraint, is given by

Eeo {Hsi||2} <Py for1<i<L, (C1)

which is the mean power of the transmit data s;. The constant 4 ; denotes
the known, maximum power for s;, which we allow for sensor 7. The second
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power constraint reads
varg {s;} = Eo {Hsi — E, {si}HQ} <Py, forl1<i<I, (C2)

which consider in contrast to (CIJ), the variance of the transmit data s;.
The constant Pé’i denotes the known, maximum (variance) power for s;,
correspondingly. It is important to note that the expectation in (CIJ)) and
(C2) is only with respect to s;, since 6 is modeled as deterministic. The
subscript 0 in (CI)) and (C2)) indicates that the expectation of s; depends on
0 in general. Both power constraints have their justification. Note that the
constraint (C2) is equivalent to (CIl), if we choose

Py;=Po;— |Ee {si}|*, (3.24)
which follows directly from the identity
varg {s;} = Eg {sl's;} — |Eo {s:}||”. (3.25)

The optimum design for each local sensor with consideration to constraint
(1)), will in all likelihood depend on the unknown parameter vector 8, which
makes an implementation not practicable. However, we can estimate the
parameter 0, first locally, at each local sensor, i.e., for sensor 7, we compute
an estimate 9Lo With the estimate 9Lo , we are then able to design a, of
course, sub—optimum LO;. Note that the ith local sensor has to redesign
itself dynamically, according to the value of the estimate éLOi'

Let us now specialize the constraints ((CIl) and (C2)) to our specific system

model. The expected power of the transmit data s;, i.e., Eg {”SZHQ}, where

s; is given in (3.2), can be expressed as

Bo {Isil’} = Fo {ss:}
= Eg {(Asza + Aini + nli)T (AZGZO + Aini + nli)}
(i) Eg {GTGZTAZTAZGZO + nZTAZTAZnZ + nl?nli}
+Eo {6"GI AT A;n; + n] ATA;G;0 + n] An,
+9TGZTAZTI111. + nzTAzTnli + DZAZGZG}
b
(:) Eg {GTGZTAZTAZGZO} + E¢ {H?A?Alnl} + Eg {ngnli}
9 || AGiO|” + tr {A,C, AT} + 0 {CL} .
(3.26)

In step (a) and (b), we used the linearity of the expectation operator E {-}.
In step (b), we used the fact that observation noise n; and systematic noise
n;, have been accepted as zero-mean and uncorrelated to each other for all
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i, ie., cov{n;n,} =E {ninliT} =0 for 1 <i¢ < L. The second expectation
term in (a) is thus zero. In the last step (c), we obtain the final expression
for the expected power on s;. If we write HA,G:,HH2 = GTGiTAiTAiG,H, we
can reformulate the last equation of ([B.26) with the trace operator property
a = tr{a} for a € R [§], also in the more compact form as

Eo {HsiHQ} — tr {67GTATA,G:6) + tr {A,C,, AT} +tr {C,}

Dty {A:G,00TGTAT + A,C, AT} +tr {Cy} (3.27)
=tr{A; (G;00"G] + C,,,) AT} +tr{C;}

©r (AMATY 4+t {C,,},

where in step (a) we used the cyclic property and the linearity of the trace
operator tr{-} [8] and in step (b) we introduced the matrix

M; 2 G,00"G! +C,,.. (3.28)

The variance of s;, i.e., varg {s;}, can be directly obtained by inserting

the last equation of (B.:26]) into (B.23]), i.e.,
varg {si} = [|AiGi6|” + tr (A;C,,, AT) + tr {Cy,} — |[Eg {si}]|*
D || AG0]? + tr (A:C,, AT) + tr {C,,} — | A,G,0]> (3:29)
=tr {A,C,,, AT} +tr {C},},
where in step (a) we insert the mean of s;, as can be verified easily by
computing the expectation of s;, i.e., Eg{s;} = G;A;0. Note that from
(329), we conclude that the second power constraint (C2)) does not depend

on the parameter 8, which is indeed unknown.
Let us summarize both power constraints, (C1l) and (C2), by

Eo {Hsl-||2} = tr {A,MAT} 4 tr {C,} < Ry; for1<i<L, (Cl)
where M; is given in (3.28)), and
varg {s;} = tr {A;Cp, AT} +tr{C;,} < Pj; for1<i<L, (C2)

obtained from the last equations in (B.27) and (3:29]), respectively.

3.3 Problem Formulation

We are now able to define our basic design problem in a general form. In-
spired by the for the of the MVUl as discussed in the previous
chapter, we choose the local sensor rules LO; for 1 < ¢ < L, such that
the [CRLBI is minimized or equivalently the is maximized, w.r.t. the
Loewner ordering.
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3.3.1 The Loewner Optimality

Remember from Subsection 2.2.2] that the [CRLBIis the inverse of the [FIM]
(cf. 2I3)).

Corollary 3.3.4 Let A,B € PD (k), then
A>B & B'>Al
Proof. see [9, p.471, corollary 7.7.4] O

According to Corollary B34l we conclude that minimizing the
is equivalent to maximizing the [FIM] w.r.t. the Loewner ordering. Hence,
we can define our optimal LO;, in the sense of maximizing the J, or
minimizing the J L

Definition 3.3.5 A local sensor rule LO;, given by (A;, Cy,), is called
Loewner optimal, when the FIM J, (A;, Cy,) satisfies

J, (A;ka CZ) > Jy (A—Z7 Clz) )

or equivalently,
ng (A;k’ CZ) S ng (AZ, Cll) )

for all (A;,Cy,). The pair (Aj,CZ_), which satisfies the power constraint
(CI) or (C2), respectively, denotes the (Loewner) optimal LO; for sensor i,
denoted by LO} £ (AZ, Cp).

The question arises how to maximize a matrix valued in the sense
of Loewner optimality. For a scalar parameter, i.e., # € R and n = 1, the
reduces to a scalar function on LO; = (A;,C;,). In that case we have
to maximize a scalar real-valued function under the constraint (CI)) or (C2]).
For the general case, i.e., for n > 1, the focus includes all parameters to be
estimated. Such optimal designs are considered in [4], where they introduced
real-valued optimality criteria.

3.3.2 Real-Valued Optimality Criteria

In this subsection, we introduce real-valued optimality criteria, i.e., real—
valued functions, which measure (in some sense) the "largeness" of an in-
formation matrix. Thus, an optimality criteria is a real-valued function ¢
from the domain of positive semi—definite matrices (i.e., on the closed cone
NND(s)) into the real line,

¢ : NND (s) — R. (3.30)

The function ¢ should capture the idea of whether an information matrix (an
information matrix includes the class of [FIME as special cases, cf. [4, Chapter



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 24

3]) is large or small. It is important to note, that such a transformation from
the high dimensional matrix cone to the one dimensional real line, can only
retain partial aspects. Let C and D be two information matrices of size s X s.
The main properties, which have to be satisfied by those class of functions
are [4, Chapter 4]:

Isotonic: The main aspect of an optimality criterion ¢ is the ordering
among information matrices. They are isotonic relative to the Loewner
ordering, i.e.,

C>D>0< ¢{C}>¢{D}. (3.31)

Concativity, i.e.,

¢{1-a)C+aD}>(1-a)p{C}+ap{D}, (3.32)
for all « € [0;1], C,D > 0.
Positive homogeneity, i.e.,

¢ (6C) =66 (C) forall § >0, C> 0. (3.33)

Super—additive, i.e.,

p{C+D} >¢p{C}+¢{D} foral C,D >0. (3.34)

Non—negative, i.e.,

$»(C)>0 forall C>0, (3.35)
and positive, iff

¢ (C)>0 forall C>0. (3.36)

Thus, information can never be negative. Notice, that positive homo-
geneity ([B.33) implies that ¢ vanishes for the null matrix, ¢ (0) = 0,

because ¢ (0) = ¢ (2-0) = 2¢(0).

Non—-constant, i.e.,

p{C}=¢{D} <& C=D. (3.37)
Upper—semicontinuity, i.e.,

{¢>a} = {CcNND(s): ${C} > a} (3.38)

are closed, for all a € R.
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The most prominent optimality criteria are the so-called matriz means
(cf. []), which are denoted by ¢, for p € [—o0;1] (throughout this subsec-
tion, p denotes the paramater for matrix means; not be confused with the
dimension p of the observation vector z in our system model).

Definition 3.3.6 For positive semi—definite matrices, C € NND (s), the
matriz mean ¢, is represented by [4l, Sec. 6.7]

maX(C) b =00,
(%tr {Cp})l/p p € (—00,0)N (0,00),
(det {CH'*  p=0,
)\min (C) b= —0Q,

¢p (C) =

where Amax (C) and Amin (C) denote the largest- and smallest eigenvalue of
C, respectively.

For the parameter p € [—oo; 1], all stated properties (3.31)-([3.38) for an
optimality criterion function ¢ are satisfied [4, Sec. 6.7]. This family of
optimality criteria functions contain the well-known criteria termed D—, A,
E—- and T-optimality as special cases.

Let us now consider the A— and T—optimality criteria in more detail, since
throughout this thesis, we will consider only these two particular examples
of the ¢,~family, with parameter p = {1, —1}. In what follows, let C be a
of size s x s, i.e., C € NND (s) and furthermore C € Sym (s).

A—Criterion: The A—criterion (also known under the name average-variance
criterion) can be obtained for p = —1, i.e., ¢_1 (C) is defined by

¢_1(C) 2 etr {cl}> B : (3.39)

for a non—singular C. An A-optimal design minimizes the [MSE] of an efficient

unbiased estimator (cf. ([Z9), since C~! is the[CRLB]). Note that maximizing

the average-variance criterion ¢_; among information matrices is the same

as minimizing
1

¢-1(C)

= étr {c1}. (3.40)

T—Criterion: The T—criterion (also known under the name t¢race criterion)
can be obtained for p = 1, i.e., ¢1 (C) is defined by,

¢1(C) £ %tr{c}- (3.41)
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The usage of the T—optimality criterion has no direct practical justification.
However, the T—criterion has the appealing property of being linear, i.e.,

1
o1 (k1C1 + k2Co) = gtr {k1C1 + k2Cs}
1 1
=k gtr {Cl} + kzgtr {CQ} (3'42)
= k191 (C1) + k20 (C2) ,

where C; and Cs are two arbitrary and ki, ky € R*. Deriving the T—
optimal solution might give some intuition about the structure of the optimal
rules for different criteria, e.g., the A—optimality criterion.

With the introduction on optimality criteria, we are now able to define
our basic design problem.

3.3.3 The Basic Optimization Problem

In the previous subsection, we have introduced real-valued optimality cri-
teria, which enables us to measure information of [FIMk. Given such an
optimality criterion ¢, which is defined on NND (n), the basic optimization
problem then reads

maximize ¢ {J,}
L0;=(A;,Cy,)
1<i<L

subject to  J, satisfies (B.8]) or (3.20))
A, e RE*™Mi for1<¢ <L,
C, eR%:C;, >0 forl1<i<L,
(CI) or (C2) is satisfied, i.e.,
D) : tr {A;MA]} +tr{C},} < Py; for1<i<L,
[@2) : tr {A;Cp, A} +tr{C;,} < Pj; for1<i<L.

(P-T)

Definition 3.3.7 A local sensor rule, given by (A;, Cy;), which solves (P=)),
is said to be formally ¢-optimal and is denoted by LO% = (A;-k, CZ)QS.

The [FIM] J,, is given in ([3.8) for a system with an orthogonal and
in ([3.20) for a system with a coherent [MAC] respectively. This calls for max-
imizing information as measured by an optimality criterion ¢. For solving
(P=I), we assume that the[FClhas perfect knowledge of the observation model
and the channel states, i.e., the matrices {Gi,Cni,Hi}iLzl, moreover, the
channel noise covariance matrices {Chi}iL:1 (for the orthogonal [MAC] case)
and Cy, (for the coherent [MAC] case), are assumed to be known. This as-
sumption is reasonable for a quasi-static scenario, i.e., when {G;, C,,, HZ-}Z.L:1
and {Chi}iL:1 or Cy, respectively, change slowly in a quasi-static manner.
The optimization problem in the form (P=I)), with an optimality criteria ¢
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is the most general one and is also called ¢-optimization problem, since the
solution, i.e., LO;-*(zb = (A;*,CZ)¢ for 1 < ¢ < L depends on the choice of
the optimal design criterion ¢. Note that we do not necessarily require the
existence of an efficient estimator (cf. conditions in (B.I3]) or (B.23]), respec-
tively) - we also study cases, when the is singular, unless permitted by
the specific optimality criterion ¢, e.g., the T-optimality criterion.

After having formulated our basic optimization problem (P=I), we will
now present the solutions for (P-I|), separately for the case of a coherent
and an orthogonal [MAC] Within this work, we focus on solving (P-I) for the
orthogonal [MAC] case, first for a scalar parameter and afterwards for a vector
valued parameter, where we are interested on T- and the A-optimal designs.
For the coherent we consider only the case of a scalar parameter.
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Chapter 4

Optimal Local Sensor Rules

In this chapter we will solve (P-I)) for certain special cases. First we solve
(P-I) with respect to the systematic noise covariance matrix C;, and show
that the optimal C;; occurs with C; = 0, without any restriction on our
system model. From then on, we restrict our system model with C;; = 0
for 1 < ¢ < L. Furthermore, we will show that for an orthogonal and
in particular for the class of linear optimality criterion functions ¢, we can
determine each optimal LO; independently of each other, whereby we may
consider a single sensor setup. Afterwards, we will show that we can reduce
our original system model to an equivalent model, in which observation and
channel noise {n;,n;”,n’h, 1 <i< L} are beeing independent and identi-
cally distributed (iid)) and the channel matrices {H}, 1 <+ < L} (only for
an orthogonal [MAC]) have diagonal structure. This model reduction con-
cerning [iidl observation and channel noise, only occurs, when we consider
positive definite observation and channel noise covariance matrices in the
original system model, i.e., for {C,, > 0,Cp, >0,C;, >0, 1 <i < L}. Us-
ing this foundation, we first consider the special case of a scalar parameter
and afterwards the general case of a vector parameter.

4.1 Systematic Noise

Let us now consider the additive systematice noise n;, ~ N (0,C;, > 0) at
sensor 7, in particular. As a designer of C;, for LO;, we have to choose C;,
optimally for (P-I). The next theorem shows that the optimal C,;, occurs
with C} = 0, iL.e., neglecting the systematic noise n;, at sensors 1.

Lemma 4.1.8 Let A and B are real symmetric matrices of size s X s, then
A>B = TT'AT > TTBT,
for all T of size s x k. If k < s, we also have

A>B = TT'AT > TTBT,

29
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whenever T has rank k.
Proof. see [10, p.470, Observation 7.7.2]. O

Theorem 4.1.9 The optimal C;, for a local sensor rule LO; = (A;,Cy,)
with fized sensors matriz A; is optimal for (P=1) if and only if C; =0, for
an arbitrary optimality criterion function ¢.

Proof. We consider a given design for the ¢th LO, i.e., a sensor matrix A; and
a covariance matrix C;,, which satisfies the power constraint (CI) or (C2)),
respectively. Then, we will show that the LO; with same sensor matrix A;,
but covariance matrix C; = 0, will never result in a decrease of the
J, from (P=I) (w.r.t. to the Loewner ordering) or, equivalently, of ¢ {J,}
(cf. (E31)) from (P-). Finally, we will show that C; = 0 also satisfies the
power constraints (CI)) or (C2), respectively.

To that end, we recall the general expression of the [FIM]J,, first, for the
orthogonal case, given in ([B.8), i.e.,

L
J,=Y GJATH]C_'H;A;G,, (4.1)
j=1

where the covariance matrix C,; is given in ([3.4), i.e.,
C., =Cy, + H;C,H + H;A;C, ATH] for1<j<L. (4.2)

Let us first consider the covariance matrix C,, (sensor i) from ([£.2) for i = j.
It is evident that

Cy, + H,C, H! + H;A,C,, ATH! > C),, + H;A;,C,, ATH!

for all C;, > 0, since H;C;,H! > 0 (positive semi-definite) for all H;, since
x'H;C,H'x = yT'C,y > 0 for all x € RPi| y = Hx € R%. By Corollary
B34, we have that

1

(Ch, + H,C, AT + H;AC,, ATHT) ™ < (C), + H;A,C,, ATHT) ' (4.3)

for all C;, > 0. We now introduce T; £ H;A;G; € RPi*". With (£3) and
Lemma [£ 1.8 we conclude that
-1
T/ (Cp, + H;C,H! + H;A,C,,, ATH]) " T,

_ (4.4)
< Tz‘T (Chi + Hz‘AiCnl—AiTHZT) ! T; forall C;, > 0.

From (44), it is obvious that the [FIM| J, from (&I]) for any C;, > 0 (at
sensor i), is bounded above (for a variable C;;, but otherwise fixed system
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setup) by
L 1
J, = Z T} (Cu, + H;C,H] + H;A;C, ATH]) T,
j=1
Lo i R (4.5)
< Y. T](Cu +H;C H] + H;A;C, ATH]) T
j=Lj#i

+ TiT (ChiHiAiCniAiTHiT)il T; 273" for all C, >0.

Note that J? is equivalent to J, evaluated for C;i =0.
Let us now recall the system model with a coherent [MACI The general
expression for the FIM J, is then given in (3.20), i.e.,

J,=GTATC;'AG, (4.6)
where the covariance matrix C, is given in (3.19)), i.e.,
C.=C,+HCH” + AC,AT, (4.7)

and G, A, Cy,, C,,, C; are defined in BI6) and (3I7), respectively. Note
that C; has block-diagonal structure, whose block-diagonal entries are C,; for
1 <j <L (cf. (BID) and the assumption that all systematic noise vectors n;
are uncorrelated among different sensors), i.e., C; = diag {C;,, Cy,,...,Cy, }.

For a given (i.e., fixed) set {Clj }le i and variable covariance matrix C;, >
0 for sensor i, we have that

Cl = diag{Cll,...7Cli,...7ClL} > diag{Cll,...,Cgi = O,...,CIL} = C; (48)
for all C;, > 0, sinc

xTClx:deiag{Cll,O,...,O}x+---+XTdiag{O,...,Cli,...,O}x
+---+XTdiag{O,...,C1L}x
> x"diag {Cy,,0,...,0} x + --- + x" diag {0,...,C}, =0,...,0} x
+---+xTdiag{0,...,Cj, } x =x"Cix for all x € RY, C;, > 0.

Thus from (4.8]), we conclude that
T, X 17\ ! it1T | X 17\ !
(Ch+HClH +AC,A ) < <Ch+Hc;H +AC,A ) (4.9)

for all C;, > 0, since HC;H? > HC!H? for all H (cf. Lemma [LI8). We
now introduce T £ AG € RP*". With (£3) and Lemma LTS it is obvious

'The Loewner ordering A > B, where A, B € Sym (k), is equivalent to x” Ax > x” Bx
for all x € R* (cf. [4]).
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that the [FIM] J, from (48] for any C;, > 0, is again bounded above by

~ ~ —1
J, =17 (ch +HCHT + AanT> T
(4.10)
. ~ ~ —1 .
< T (C,+HC{H" + AC,AT) T2£J, forall G, >0.

Hence, for a variable covariance matrix C;; > 0 at sensor ¢, but otherwise
fixed system setup (orthogonal or coherent [MAC]), we have showed that the
J, is upper bounded by the Ji for the same system setup, but
covariance matrix C;i = 0, in the sense of the Loewner ordering. Since
any optimality criterion ¢ is isotonic, relative to the Loewner ordering (cf.
subsection B.32), it holds:

J, <3, & ¢(J,)<¢(J,) forall C, >0,

i.e., the objective function of (P-I)) is bounded above accordingly.

It remains to verify that the power constraint, i.e., (CI) or (C2)), which
is assumed to be satisfied for a given LO; with C;, > 0, is also be satisfied
when Cj = 0. Let us recall the ith constraint of (CI)). We conclude that
(CI)) is also satisfied for C]. = 0, since

tr {A,M;A] } +tr {C] =0} <tr {AM;A]} +tr{C;,} < Py,

because tr {0} = 0 and tr {C;,} > 0 for all C;, > 0 [§]. Analog, we recall the
ith constraint of (C2). We conclude that (C2)) is also satisfied for C; =0,

since
tr {A;Cp, AT} +tr{C] =0} < tr {A,C,, AT} +tr{C,,} < P},

again, because tr {0} = 0 and tr {C;,} > 0 for all C;, > 0.
Thus, we have showed that C; = 0 is the optimum for (B), i.e., Cj =
C, =0. O

We conclude from Theorem 1.9 that optimal C;, for 1 < ¢ < L for
([B-1), is given by C} = 0. Thus, we can reformulate the basic optimization

problem (P-I) as

maximize J
maximize ¢ {Jz}

subject to J, satisfies (B.8]) or (B.20])

ev. for C;, =0 for1<i<L,
A; e RE*™i for1<i<L, (P-11)
(CT) or (C2) is satisfied, i.e.,
1) : tr {A,M,AZT} < Py; for1<i<L, or
@) : tr{AC, AT} <Pj; for1<i<L.
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4.2 The Basic Optimization Problem for an Or-
thogonal MAC Reformulated

Consider the basic optimization problem (P-IIl) with an optimality criterion
¢ and for the case of an orthogonal [MAC], in particular. The J, is then
given in [B.8) for C;, = 0, i.e., it consists of the sum of all individual
J,, from ([B.5) for C;; = 0 and for all i, i.e.,

L
J,=> T,
=1

The next theorem shows that for the case of an orthogonal [MAC] we can
split the joint problem (P-II)) into L individual and independent problems,
if we suppose ¢ to be linear.

Theorem 4.2.10 Consider an optimality criterion ¢, which also is still
linem@. Then, an optimal A; for (P-II)), is also optimal for

maximize ¢ {Jz,}
A;

subject to J,, satisfies (B.35]) ev. for C;, = 0,
Ai c R%’X"ni’
(CT), or (C2), is satisfied, i.e.,
@)i ;o tr {AZMZAZT} < Poﬂ' or
@), : tr{AC, AT} <Py,

The notation (CIl), and (C2)); mean the ith constraint of (CIl) and (C2).
Conversely, an optimal A; for (P-II1)), is also optimal for (P-=I1)).

Proof. Let us first interpret J,, from (B3] as a function on Ay, for all k, i.e.,
Jz, = Ja, (Ak).

Let us start with the proof so that an optimal A; for (P-IT)) implies opti-

L

mality for (P-ITI). We consider a given (i.e., fixed) set {A; € qu'xmi} s

j=1,5#i

which satisfies the constraint in (P-IT). A sensor matrix A} is optimal for

(- iff
qﬁ{Jzi (A;) + Z Jz, (A;)}gqﬁ{.]zi (A}) + Z J, (A;.)} (4.11)

J=1.#i j=1#i

for all A; € R%*™i which satisfies the constraint in (P-IT)) (i.e., the ith power
constraint (CI)) or (C2))). Once we have accepted ¢ to be linear, (1T yields

(P-TIT)

L L
¢ {Js (A} + ¢{ oo, (A;)} <¢{3, (A))} + ¢{ > I, (AQ)}
J=1,j#i J=1,j#i

'An optimality criterion ¢ on NND (s) is linear iff ¢ {k1J1 + koJ2} = k1 {J1} +
koo {J2}, where J1,J2 € NND (s) and k1, k2 € RT.
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for all A; € R%*™i again which satisfies the constraint in (P-II)), implying
H{Jz (A))} < p{Jz, (A7)} forall A; € REX™i, (4.12)

which satisfies the constraint in (P-IT). Since both contraints from (P-I)

and (P-ITI) are identical, (ZI2) implies optimality of A¥ for (P=III).
Conversely, if A} is optimal for (P=ITI)), then it is evident that

H{Jz (Ai)} < p{Jz (A7)} forall A; € REX™i, (4.13)

which satisfies the constraint in (P-ITI). Without violating (EI3), we can
add on both sides of (£13)

J=1j#i j=1,j7#i

¢{Jz, (Ai)}+¢{ > I, (A}’)} < ¢ {J (A?)}+¢{ > I (AQ')} (4.14)

for all A; € R%*™i which satisfies the constraint in (P-ITI) and, for an

L
arbitrary, but fixed set {A;-’ € ]qu'xmi} g which satisfies the constraint
J=1,5#i
in (P-II), in particular. With the assumption that ¢ is linear, ({I4]) can also
be written as

L L
¢{ )+ > I, (A)) }qu{J )+ Y I, A”} (4.15)

J=1,j#i j=1,j%i

for all A; € R%*™i which satisfies the constraint in (P-ITIl). Again, since
both ith contraints from (P-IT)) and (P-ITI)) are identical, ([&IH) implies op-
timality of Af for (P-II). O

Supposing, an optimality criterion ¢ is linear and the system setup in-
cludes an orthogonal for solving (P-IT). Then, according to Theo-
rem 210l we can solve (P-II)) or, equivalently, (P-ITI)) for solving an opti-
mal LO;, i.e., the optimal sensor matrix A7. Note that this result clearly
holds for a scalar paramater, as a special case. Any optimality criterion ¢’
would be equivalent and especially linear, since ¢/ {k1 + ko} = ki + ko =
¢ {k1} + &' {ka} for k1, ke € R. Thus, for the remaining part of the thesis,
we will consider problem (P-ITI)) when we treat the special case of a scalar
parameter and furthermore, when we determine T-optimal local sensors for
a vector parameter, both, for a system with an orthogonal

4.3 Reduction to Standard Model

In Section A we have already solved (P:I), w.r.t. C,, for all 7, where we
have determined CZ_ =0 for 1 < ¢ < L. In what follows, we restrict our
original system model (for both multiple access schemes) with C;; = 0 for
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all 4. Let us rewrite both [LGME, first, for the orthogonal [MAC] case, i.e., the
final observation z; for all ¢ from (B3] as

z; = H;A;G,0 + H;An, +n,, forl<i<L, (4.16)
where, due to the [LGM], z; is Gaussian distributed with mean

p,, = H;A;G;0, (4.17)
and covariance matrix

C..=Cy +H;A,C, H AT (4.18)
For the coherent case, we rewrite the [LGM] i.e., the final observation

z from (BI8) as
z=AG6O+ An +ny, (4.19)

where again, z is Gaussian distributed with mean

p. = AGH, (4.20)
and covariance matrix

C.=C,+AC,AT. (4.21)

Note that the model parameters for the coherent IMAC| case, i.e., A, G
and n can be obtained from (B.I6]) and (317, respectively. The covariance
matrix C,, = diag {Cm}z‘L:p due to the assumption that the observation
noise vectors n; for all ¢, are uncorrelated among different sensors.

Definition 4.3.11 Two observations z1 and z9 are said to be equivalent,

iff z1 and zy have the same[pd] for every 0, i.e., f4, (2;0) = f4, (2;0).

The next theorem shows that we can reduce the original model, i.e.,
the for both multiple access schemes from ([I6]) and (£I9), into an
equivalent model by the observation- and channel noise vectors are beeing[iidl
w.l.o.g. Note that this applies only if we suppose non-singular observation-
and channel noise covariance matrices in the original system model. All other
assumptions we have made so far to our original system model (cf. Section
B.1) are also valid for the equivalent model.

Theorem 4.3.12 (Noise Whitening) Consider the original system model,
shown in ([EI0) and [EI9) for both multiple access schemes. Assuming non-
singular coariance matrices C,,, Cp, for 1 < i < L (thus C,) and Cy,
respectively. Then we can define an equivalent system model, according to
Definition [{.53.11], for the orthogonal [MAQ case as

1
2 = a_h/cflf (H/A/G/0 + H/An| +n},) 1<i<L, (4.22)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 36

where n} ~ ./\/'<0,0321>, n, -~ N(0,0‘i;l), H, £ Uh;C,:ilﬂHi, Al £
#A,C}L{Q and G} £ an;Cr_lil/QGi with 072% > 0 and 0121,1_ > 0. Here, we as-

sume that 0 is uncorrelated with ) for all i and j, i.e., cov{ni,nh.} =0
J
for all i and j. For the coherentm case, we can define

1 - -

2 = —Cl <A’G'0 + A’ + ng) , (4.23)
ap!

where n’ ~ N (0,021), nj, ~ N (0,0%1), AL %C;UQAJC;/Q and G' &

n/,
(3

Un/C;1/2G with 0’,21/ >0 and U,QL, > 0. Again, we assume that 0’ is uncorre-
lated with n},.

Proof. Let us start with the proof for the orthogonal [MAC] case. To that
end, we insert H;, A} and G/ into (£22)) yields

1
7= -yl (HAIGI0 + HiAI, + )
g0,/
= Mmoo VP, A, CL2C; G0
O-hio-n; i i 7 7
ot _ 1
+ —c*c; *H,A,CY ) + —C)/*n),
1 1
— H;A;G;6 + —H,;A,CY/*n] + —C}/*n], |
O-n; O'h/ ?

i

where z/ is Gaussian distributed, with mean

and covariance matrix
o2, o,
C, = —" H;A,CY2C/2ATHT + —* c}/*c
ooy ifiCon," G A Ha o+ T Op hi = hi (4.25)

= H;A;C,,ATH! + C},.,

due to our assumption that n} is uncorrelated with n;” for all ¢ and j.
Comparing (£24)) with (£I7) and (£25) with (£I8)), we conclude that z/
from ([@22) is equivalent to z; from (AI0) for 1 < ¢ < L, according to
Definition £3.T11] since both are Gaussian distributed random variables with
same mean and same covariance matrix.

Let us now consider the coherent MAC. To that end, we insert A’ and
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G’ into (£23)) yields

1
7z =

1/2 (X 10 N /
-G, (A'G'6 + A'n' + nj,)
Op'On/ 1/2 ~—1/27% -
= gt PAC) e, P Ge
h'On/

Uh/
+

1/2~—1/2K (~1/20 L ~1/2
C,/'°C AC —C
omon b Ch nn+ E— n;

~ 1+ 1
— AG6 + —ACY*n' + —C}/*n),

O o
where z’ is Gaussian distributed, with mean

p. = AGH, (4.26)
and covariance matrix

2
O

ACY2CY2AT 4 Th_cligl?
On/Opt Op'Opt (427)

=AC,AT + ¢y,

C, =

again, due to the assumption that n’ is uncorrelated with nj. Comparing

([@26) with (£20) and ([E27) with (£2I), we conclude that z’ from (£23)

is equivalent to z from (£I9]), according to Definition [L3.11] since both are
Gaussian distributed random variables with same mean and same covariance
matrix. O

According to Theorem [4.3.12] we can assume C,,, = 072”1 with = 0,2“ >0
and/or Cp, = 0,2”1 with 0,2” > 0 for our system model with an orthogonal

MAC. Otherwise, we can absorb anf_th.l/2 and 07:41 C,lf into the observation

matrix G; and the sensor matrix A;, respectively, and/or ah;Cglﬁ and
a;,_lC;L{ % into the channel matrix H, and the [FC] respectively, such that
we obtain an equivalent model in which C,, = o2 1 and/or Cu = o L
Similarly, we can assumme C,, = 021 with 02 > 0 anci Cy, = o7l with o} >l 0
for the system model with a coherent MAC, w.l.o.g. Otherwise, we again can
absorb ¢,/ C,, 1/2 and O';/IC}@/ 2 into the total observation matrix G and the
total sensor-channel matrix 11, respectively, and/or ahfc,;l/ % and ag,lC,ll/ 2

into the total sensor-channel matrix A and the [FC| respectively, such that
we obtain an equivalent model in which C,; = 021 and/or Cps = 02,1 (cf.
Fig. @.1).

Unless otherwise stated, we assume throughout the remaining part of this
thesis [lidl channel noise for both multiple access schemes w.l.0.g. The next
theorem shows that for the orthogonal case, we can assume diagonal
channel matrices H; for 1 <i < L, w.l.o.g.
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n~N(0,C,) n, ~N (0,Cp)
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Figure 4.1: Equivalence of two system models - (a) original model (b) equiv-
alent, noise whitened model. For the case of an orthogonal [MAC] we have
to index all model parameters (i.e., all occuring vectors and matrices, except
0) by an index i. Then, the figure illustrates sensor ¢ with an appropriate
observation- and channel model from sensor to the [FCl For the case of a
coherent [MAC] figure shows the whole system model, if we merge A with H
to obtain A = HA.

Theorem 4.3.13 Let us consider a system model with an orthogonal MAC,
shown in ([@I6). According to Theorem[{.3.13, we assume [izd channel noise
(zero-mean, Gaussian distributed) ny,, with covariance matriz Cp, = 012”1
(0}2” > 0), w.l.o.g. Then we can define an equivalent system model, according

to Definition [{.53.11] as
z, = Uy, (H,A/G.0 + H,Aln; +1y,) (4.28)

where Hj = %, and A} £ V[ A;. Uy, Xy, and Vy, follows from the

singular value decomposition (SVII) of the original channel matriz H; =
UhiEhiV%;, i.e., Uy, and Vy,, are both unitary and the diagonal matriz 3,
of size p; X q; contains the singular values of H; on the main diagonal. Note
that 0} is uncorrelated with n;Lj for all i and j as already assumed.
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Proof. Inserting H, and A/ into (£28)) yields
z; = Uy, (25,A[Gi0 + ), Ain; + ny,)
= U, 2, V] AG0 + Uy, 5, V] Ain; + Uy, (4.29)
=H;A;G;0 + H;A;n; + Up,ny,,
where z/ is again Gaussian distributed, with mean
p =HAG;6, (4.30)
and covariance matrix
C. = H;A;C,,ATH] + 0 U, U},
= H;A;C,,,ATH] + 07 1=H;A,C,, ATH] + C,,.
Comparing ([A30) with (£16) and (£31) with (£I8)) for Cj, = U%il, we
conclude that z] from (E28) is equivalent to z; from (LI6]) for n,, = 0,2”1

and for 1 < ¢ < L, according to Definition E3TT] since both are Gaussian
distributed random variables, with same mean and same covariance matrix.

(4.31)

O
n, ~N(0,Cy,,) ny, NN(O,O'%LiI)
lyi: T : / /
0 @ A P VL R B o U f—
| |
N e — - -A_- /_ _____

Figure 4.2: Equivalent system model - channel diagonalization between sen-
sor i and [FCl

According to Theorem E3.13] we thus can assume a diagonal channel
matrix H; in the case of an orthogonal w.l.o.g. Otherwise, we can
absorb Uy, and VZZ,, which follows from the H, = UhiEhiVa into the
[FCland the sensor matrix A;, respectively, such that we obtain an equivalent
model in which H is diagonal, where the diagonal entries are the singular
values of H;. Note that the order of the diagonal entries, i.e., the singular
values of H; can be assumed arbitrarily. An illustration of the equivalent
model for a diagonalized channel matrix can be seen in Fig. The original
model is shown in Fig. for the orthogonal

Definition 4.3.14 (Standard Model) Assuming a system model with an
orthogonal [MACQ, that has observation noise vectors n; and [id channel
noise vectors ny, (zero-mean, Gaussian distributed) with covariance matrices
C,, = O’?LiI and Cyp, = 0}2“1 for 1 < i < L, and especially diagonal channel
matrices H; for 1 <i < L - is called the standard model.
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4.4 Scalar Parameter Case

In this section, we consider the special case of estimating a scalar parameter,
i.e., 0 € R. In that case, the J, and J,, are both scalar-valued, since
n = 1 - thus we us the notations J, and J,, in what follows and set J, = J,
and J,, = J;. In Theorem A.1.9] we have already showed that each LO,
can be restrict to the sensor matrix A;, since CZ_ =0for1<i<L,6ie., we
consider (P-II)) for solving optimal LO; - even for this special case. Note that
for a scalar parameter, we do not need any optimality criterion ¢ for solving
problem (P-II)), since ¢ {J,} = J, for J, € R - in that case all optimality
criteria are equivalent.

Unless otherwise stated, we do not especially assume[idl observation noise
n; for sensor i for the case of a scalar parameter. We take only the assumption
- which has already been made in Section 3] - that the channel noise ny,,
for the orthogonal case and, ny, for the coherent case are both
assumed to be[idl w.l.o.g., with covariance matrices Cp,, = O'}QLZ_I with 0’,2” >0
for all 4 and Cp, = O'}QLI with 0,21 > 0, respectively - that the channel matrices
H; are assumed to be diagonal w.l.o.g., for the case of an orthogonal [MAC|
Furthermore, we assume only for the coherent that g; € R(C,,) \ {0}
for all <. The reason for this particular assumption is explained later by
itself, when we consider the coherent case in Subsubsection [£.4.3.2]

Let us now customize the notations for our system model, especially for
the scalar parameter case. Since n = 1, the observation matrix G; € R7*!
for sensor 7 reduces to vector - thus we use the notation g; € R™ and set
G; = g; in what follows. Note that m; > 1. As a consequence, the notation
G € R**! from (BI8) reduces to a vector too - thus we use g € R an set
G = g, accordingly. Thus, g is in the form g = [ng gl ... g%]T. Both
deterministic vectors g; and g stands for the observation vector for sensor ¢
and for the total observation vector, respectively.

Let us first recall the J,, from (Z3) and J, from ([B.8), both eval-
uated for C;, = 0 and Cy, = 0}, I - for the orthogonal case. Adapted
to our notations for the scalar case, this means:

T, = gf ATHT (07 1+ H;A,C,, ATHT) ' HiA,g (4.32)
and thus
. 1
Jo=) &l ATH] (0} 1+ HiA,C,, ATH])  H,Aig:. (4.33)
i=1

For the coherent [MAC| case, we recall the [FIM] J, from B.20) for C; = 0
and C;, = U,%I, thus

~ ~ ~ -1 ~
J, = g'AT (a,%l +AC,AT ) Ag. (4.34)
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Note that the model parameters for (4.34]), are given in (3.16) and (BI7) for
G;=g;and G=g.

The remaining part of this section is organized as follows: Before we
solve the optimization problem (P-II) or (P-=III), especially for the scalar
parameter case, i.e., we consider problem (P-II) for J, = J, from (&33)) or
(@34), and problem (P=III)) for J,, = J,, from ([#32)) - we first show that for
the special case of a scalar parameter # € R, a local sensor rule LO; can be
reduced to an equivalent scalar observation model w.l.0.g. Subsequently, we
can solve a simplified, but equivalent optimization problem. Then we give an
optimal power scheduling strategie, where a given total power is optimally
scheduled among all sensors. Finally, we will show how we can implement
optimal local sensors.

4.4.1 Reduction to Scalar Observation

Let us consider the original observation model for a local sensor i, which
spezializes for a scalar parameter 6 to

yi = gif +n;, (4.35)

where g; € R™ is the known, deterministic observation vector os sensor
i and n; is again the observation noise vector, i.e., n; ~ N (0,C,,). The
observation model for sensor i is illustrated in Fig. L3l where the ith local
sensor rule LO; is also shown, even here with the additive systematic noise
n;,. Note that the following theorem considers n;, with some C;; > 0, even
though we already know how it is to be chosen optimally for (P-IT)). However,

LO;
n, T Ty
| |
N l
: S A o s
| |

Figure 4.3: Observation model for the ith local sensor for a scalar parameter.

y; from (£35) can be equivalently modeled as a Gaussian distributed random
variable, i.e.,

The next theorem shows an equivalence of two local sensor rules LOs,
where the equivalence is based on Definition 415 As a result, we conclude
that we can reduce our original observation model from ([€33]) - with a vector
observation y; - to an equivalent observation model, with an appropriate
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scalar observation 7;. To that end, we first decompose the observation vector
g; for sensor ¢ into

g =g +8& (4.37)

where g} denotes those components of g, which lies in the range of C,,,, i.e.,
g; € R(C,,) and g, denotes consequently those components of g, which
lies in the nullspace of Cy,,, ie., g, | €N (Cnl) Let us also define even the
equivalence of two LOs for an observation y = y;.

Definition 4.4.15 Two local sensor rules, LO' = (A’,C}) and LO" =
(A", C}) are equivalent, if and only if the corresponding outputs s’ and s”,
i.e., s = Aly+n' and 8" = A"y + 1’ have the same [pd] for every 6, i.e.,
fs (s:0) = fsr (s;0).

Exclusively for the next theorem we use the specific observation model

parameters (cf. ([£35), ([A306) and @37)): y =y, g = g (thus g’ = g/ and
g =g/ ), n=mn; and finally C,, = C,,.

Theorem 4.4.16 The set of local sensor rules LOs, given by

{A, Cl}AeRanHchO ) (438)

15 equivalent to the set of LOs given by

{A" = Aaya],C] = C; + AC, (4.39)

T
A }AGR"X’”,CLEO’

where ay, ag and C; are to be chosen as follows, depending on the observation
vector g and the observation noise covariance matrixz C,: For the first case
(casel), when g € R (C,)\ {0}, then

T

1
8 and Cj =2 ggT )
g'Crg g"Crg

al £ CLg, ag =

where C}, is the pseudo-inverse of C,. For the second case (case2), when g
has at least one component in N (C,,) or, equivalently, g'| # 0, then

A A g N
a =g, a=—5 and C; = C,.

181

The last case (case3) is the trivial one, when g = 0. Then, we can define
(where as could be chosen arbitrarily)

ai £ O, ao =S 0 and C; £ Cn

The equivalence of the sets [A38) and ([A39) is taken according to Defi-
nition [{.4.15. Note that C; has to be simulated/generated by some additive
Gaussian and zero-mean systematic noise nj. The structure (setup) of the
original- and the equivalent LOs are illustrated in Fig. [{.4)}

'Note that for a symmetric matrix C: {R.(C)}* = N(C).
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Figure 4.4: Equivalence of LOs (a) original LO model (b) equivalent LO
model.

Proof. Let us now consider the equivalent LO" model from Fig. where
we assume that nj is uncorrelated with the observation noise vector n and,
furthermore, with the systematic noise vector n;. As indicated in theorem,
we have to differentiate three cases, depending on how g and C,, is given:

1. We assume g € R(C,,)\ {0}, i.e., g has no component(s) in N (C,,).
Then, we set

a;=Clg. (4.40)

First, we note that the application of a] reduces the vector y to the
scalar random variable ¥, given by

y=aly=algh+aln= gTCLgH +n=g0+n, (4.41)
where g = gTCLg and

B~ N (0,52 — gTCLg> , (4.42)
because 2 = al C,a; = gTCLCnCLg = gTCL. Thus

y =ay+n, = ag’ Clgh + arm + n;, (4.43)

!The pseudo-inverse C], of the covariance matrix C, (symmetric, positive semi-
definite) is symmetric and positive semi-definite - both have the same eigenspace (eigen-
vectors), in particular.
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where nj ~ N (0, C;). Choosing

1
8= T (4.44)
we obtain
y =gl +n, (4.45)
where n’ ~ N (0,C’), with
C' = ay5?al 4 C]
@ig 1 toor 1 /
———gg' Cleg +C
g’Clg "o eTClg : (4.46)
1
= gg’ +Cj.
g’Clg

Note that ay from (A44]) is realizable, since gTCLg > 0, due to the
assumption that g is orthogonal to N (C,,) and g # 0. From (€40 it
is evident that the choice

1
C,=Cn 0l ————eg’, (4.47)
yields
{4.46) 1
Cc = o ggl 4+ C) = C,. (4.48)
g Lng

It can be argued that any noise n; with positive semi-definite covariance
matrix C; can be simulated/generated. Consequently, we now examine
whether XTCEX > 0 is valid for all x € R™. To that end, we decompose

x, analog to (37, into
x=x +x, (4.49)

where x' € R(C,) and x| € N(C,) = {R(C,)}*, i.e., C,x/| = 0.

Because of our assumption that g is orthogonal to N (C,,) and thus

g’'x/| =0, it follows that
EID)

xTex, "= xTc,x| —xT gelx =0—-0=0. (4.50)

TcT

g Lng

Thus, it remains to verify that x7Cjx’ > 0 for all X' € R(C,). In
what follows, we use the fact that

x' = Clx, (4.51)
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because R (CL) =R (C,). Thus,

xTcix' B30 \Tct ojchx

@ 1
x! (cT Cc,Cl —c! : ——gg’ CL>X

g'Cng
/2 1/
_ XTCTl/QCTl/Z TCTl/QCIL ggTCL +1/2
n n TCILl/2CLl/2 n
@ §T§—~Tg§ %
g g
g
= - &
gl
(4.52)
where in step (a) we introduced X 2 CJ, V2 and g 2 Cl, V2 g. Using
the Cauchy-Schwarz inequality, i.e.,
(&'8)" < I%I° 181 (4.53)

we can show that

/T //@ED % T
Cix I%1” - (x"&)" / g (454)

~2 ~02i=n2 g2 ~2 ~12
=1 = IIx[I" lell” / [[&gll” = lIx[I" = [Ix]| =0,

and thus x'7Cjx’ > 0 for all X' € R(C,,). Hence, C] is positive semi-
definite.

2. Now we consider the case, when g has at least one component in
N (C,). In that case, we set

=g. (4.55)

The application of al reduces the vector y again to the scalar random
variable y, given by

jy=ajy=afgf+ajn = gled+n=3g0+n, (4.56)

where § = g/l'g and 7 ~ NV (0,62 = g C, g =0) and thus can be
neglected, i.e., n = 0. Thus

y =aj+n; = axg gh+n (4.57)
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and by choosing
g

az = gfgﬁ_, (458)
we obtain
y =gf+n'. (4.59)

where n’ ~ N (0,C’) with C’ = C}. Thus, we can choose C; = C,,
such that C' = C,,, which is obviously positive semi-definite and thus
can be simulated /generated.

3. Last but not least, we now consider the trivial case, when g = 0.
Setting a; = 0, implies

7=aly=algh+aln=0=g0+7, (4.60)
where g = 0 and 7 = 0. It is evident that y’ = n] and thus we obtain
y =gbf+n, (4.61)

where g = 0 and n’ ~ N (0,C’) with C' = C]. We can again choose
C) = C,, such that C’ = C,,, which is obviously positive semi-definite
and thus can be simulated /generated.

Hence, we have verified the equivalence of LO and LO’ - the equivalence
of the sets (£38) and (439) - according to Definition Since for an
arbitrary observation vector g, we can determine deterministic vectors aj, ag
and a zero-mean, Gaussian distributed systematic noise n; with covariance
matrix C; > 0, accordingly, for obtaining equivalence between y and y’ and
thus also between s and s’ (cf. Fig. [£4). O

In Theorem [£4.16] we have showed that there always exist an equivalent
LO’ for a given original LO, if we consider a scalar parameter . Let us again
consider a specific observation model for sensor ¢ in our original notation.
As a corollary, we can design an equivalent local sensor rule, denoted by
L0}, also for an observation model according to (&4 (or ([#56) or ([Z60)).
In what follows, we thus consider a scalar observation model y; w.l.o.g., in
order to simplify the optimization problem later, i.e.,

yi = g0 +n;,  with n; ~ N (0,02)). (4.62)

For the first case, when g; € R (Cy,) \ {0}, the model parameters g; and o7,

for ([A62]), can be obtained according to (£41]) and (£42) as
9=g/ Clg,  on=8Cle: (4.63)

Note that for that case g; > 0 and O’?Li > 0 is guaranteed. For the second
case, when g; has at least one component in N(C,,), ie., g, # 0, the
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model parameters g; and o2 for [@62) can be obtained according to (50
forn =0 as

g =glgl, oa =0, (4.64)

where again g; > 0. Recently, the trivial third case, i.e., when g; = 0. Then
the model parameters are both zero, i.e.,

gi =0, o2 =0. (4.65)

Based on the assumption of non-correlation between the individual observa-
tion noise vectors n; for all 4 in our original system model, i.e., cov {n;,n;} =
0for 1 <1i,5 < L with i # j, we conclude that also n; from (£.62) for all ¢ are
uncorrelated across different sensors. Since n;, follows by a linear mapping of
n; onto the real line, i.e., in the form n; = alTni, where a; is a deterministic

vector (cf. Theorem [.4.16). However,
cov {aF{ni, agnj} =E {alTnin;fpag} =ajcov{n;,n;}as =0

for 1 <i,7 < L with i # j and for arbitrary deterministic vectors a; and as.

The equivalent local sensor rule LO,, based on the scalar observation
model y; from (£62)), can thus be described by linear mapping with a sensor
vector a; and additive systematic noise n_ (cf. Fig.[L3), i.e., LOj £ (a, C;Z)
The next corollary shows how we can determine the original LO; = (A;, Cy,)

Figure 4.5: Equivalent (scalar) observation model for the ith local sensor for
a scalar parameter.

from a given LO; = (a;, C}).

Corollary 4.4.17 Two local sensor rules LO; = (A;,C;,) and LO; =
(ai,Cfi) are equivalent iff it is of the form A; = a;al and C;, = C;w
where a; is defined in Theorem [[.4.10], i.e., a; = Cl.gi for the case, when

gi € R(Cy,)\ {0} - and a; = g}, when g; has at least one component in
N (Cy,), i.e., when g, # 0 - and finally a; = 0, when g; = 0.

Proof. The LO; = (A}, C;,) performs a linear mapping of y;, given in (£.35]),
to the transmit data s; as

si = A;gif+Am;+n;,, wheres; ~N (A;g0, A,C, AT +C},). (4.66)
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Analog, the LO, = (ai7 C;l) performs a linear mapping of y;, given in (4.62),
to the transmit data s as

S; = aigl-H + a;n; + Il;i. (467)
For the first case, i.e., when g; € R(C,,) \ {0}, (£67) with (463) yields
s; ~ N (aig;prLigiH, a;g] Cl, gial + C;Z) : (4.68)

According to Definition EZT5], LO; and LO} are equivalent iff s from (60))

and s’ from (Z68) have the same [pdf] for every 6 - equivalence follows with
—Cl .

a; = angz

A, = al-gl-TCILi = ajal and

C,, = a;g] C}, gia] +C| — A;C,,, AT

W ag7Cl C,,.Cl gial + C), — A;C,, AT (4.69)

= aiaF{CnialaiT + C;i - A,C,, AiT
= A,C,, Al +C| — A,C, Al =],

where in step (a) we used Cl,, = CILZ.C”Z.C,T%.. For the second case, i.e., when

g, #0, [E67) with (464) yields
s, ~ N (al-gﬁggjﬁ, C;Z) . (4.70)

Again, LO; and LO) are equivalent iff s from (£66) and s’ from (ET0) have
the same [pdf] for every 6 - equivalence thus follows with a; = g} :

A; =a,g] =aa] and

! T / T / 7 (@) (4'71)
Ci, = Cli —ACp A = Cli —a;g; Cn,g 8, = Clﬁ

where in step (a) we used C,,g;, =0, since g; | € N(C,,). Finally for the
case, when g; = 0, (L67) with (4.63) yields
si~N (0, Cy.). (4.72)

Again, LO; and LO) are equivalent iff s from (£66) and s’ from ([ET2) have
the same [pdf] for every 6 - equivalence thus follows with a; = 0:

A, =0=2a0 and

4.73
C, = Cj — A,C,,,Al =Cj. (4.73)

Hence, we have verified the equivalence of LO; and LO; for all (three) cases
of g. O
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4.4.2 System Model for the Equivalent Model Reformulated

Let us now consider the scalar observation model from (£62]) and the equiva-
lent local sensor rule LO/, for sensor ¢ in what follows. Note assuming a scalar
observation model, corresponds to the original system model with m; = 1
for all 5. We also recall that for the original LO;: the optimal systematic
noise covariance matrix Cj, = 0 for all i (cf. introduction of this section)
and since C]. = Cy, (cf. Corollary LLZTIT), we conclude that also C}* = 0,
as expected. Thus, we restrict our equivalent local sensor rule LO by the
sensor vector a; in what follows. Let us recall the transmit data vector s;
for the scalar observation model. The LO} performs a linear mapping of y;,
given in ([A62]), to the transmit data s; as

S; = a;Y;. (4'74)

Depending on the different multiple access schemes, we will now customize

the scalar-valued [Elk J,, and J,, given in ([A32), (A33) and ([A34) - espe-
cially to our equivalent model with scalar observation from (£.62) and to the
equivalent local sensor rule LO).

Orthogonal MAC: In that case, it is evident that the scalar-valued [FT
Jz, from ([@32)), then specializes to

le = gl THT (O'h I+ 0'2 H; i THT) Hiaia (475)

and thus, the [FT] J, from (£33)) yields
Jz = Z giai Hi ( 21']: + JiiHiaiaz‘THiT)il H;a;, (4.76)

where the parameters g; and o2, are given in [63), (@64) or [AL5), de-
pending on the given original observation model parameters g; and C,,,.

Coherent [MACE In that case, we customize, first, the notations to the
system model with scalar observation. We recall the shorthand (3.13]), which
specializes to a vector as

a; £ H;a;. (4.77)

Already made assumptions are, of course, also adopted for this special case,
so H; for all i are of full column-rank - thus p > ¢; for all i - we refer to a;
as the sensor-channel vector, accordingly. Note that we can reclaim a; from
a; as a; = Hjﬁi in a unique manner, since H; is of full column-rank. We
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also recall (BI6) and (BI7). Those variables, which are then used in the
following, specialize to

Aé(il as ... EL), ;&GRPXL,
g2 (g ¢ ... gr)', geRL (4.78)
n= (n1 ng ... nL)T, n e R”.

Remember that p = p; for all i. Note that n ~ N (0,C,}. Tt is evident that
the covariance matrix C,, = diag {J%i}le and is non-singular for the case,
when 072” = 0 for all 7, which follows when g; from the original observation
model for sensor ¢ ([A35]) holds: g; € R(C,,)\ {0} for all ¢ (for the coherent
[MAC] we have already restricted to this special case - cf. introduction of this
section). To that end, we assume [id] total observation noise for the scalar
observation model n w.l.o.g., i.e., C,, = 021 with 02 > 0. Otherwise, we can
define an equivalent model, in which C,, = 02,1 (cf. Theorem E312). It is

evident that the scalar-valued [F1 .J, from (£34]), then specializes to
~ -1~
J, = g"AT (o714 c2AAT)  Ag, (4.79)
where g and A are given in ([@78).

Power Constraint: Let us recall both constraints (CI) and (C2) evalu-
ated for C;; = 0 for all . For a scalar paramter and in particular, for the
scalar observation model, (CI) specializes to

Bo {lsil*} = laill” (9:6)> + 02 ) < Ry for1<i<L,  (Cls)
and (C2)) to
varg {s;} = ||la;|* 02, < P}, for 1<i<L. (C2-5)

Note that constraint (C2-5]) does not depend on the parameter 6, as expected.

Total Power Constraint for the Coherent MACE Later, when we con-
sider the case of a coherent [MAC|, we will simplify the optimization problem
(P-IT) by introducing a modified power constraint. Here, we will consider
a total power constraint - by which the total transmit power for all sen-
sors, i.e., the sum of all individual powers of s; for all ¢ is bounded above a
given constant total power Py = Zle Fy,; - i.e., especially adapted to the
equivalent model with scalar observation:

((9:0)> + 02) llai]* < P, (C1-t)
i=1
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Analog, we define the total variance constraint with P} = Z@'L:1 Py as

L
> llagll? < Py/on. (C2-t)
i=1

Note that for the coherent MAC| we have assumed C,, = 021 with o2 > 0
and thus O'?Li = o2 for all i.

4.4.3 Optimal Local Sensor Rules for a Scalar Parameter

So far, we have introduced an equivalent scalar observation model, in which
we restricted an equivalent local sensor rule LO} by the sensor vector a; -
since we set C). = 0 w.l.o.g. We have customized the [Tl .J, for both multiple
access schemes to the equivalent system model with scalar observation (cf.
([@76) and ([AT79))- especially, the [ETl J,, for the orthogonal [MAC] case (cf.
(A75)). Furthermore, we have also adapted both considered constraints (CT))
and (C2)) to the equivalent model - and deduced (CI=g) and (C2=).

Let us recall that an optimal sensor matrix A; solves (P-II)), where (P-II))
can be considered for both multiple access schemes. Adapted to our equiva-
lent model with scalar obervation, it specializes to:

maximize J,
a;, 1<i<L

subject to J, satisfies (70) or (£.79),

a, e R? forl1<i<IL,

([CI1=H) or (C25) is satisfied, i.e.,

€D« [l ((9:0)° +02,) < Pog for 1<i< L, or
@) : |lag||® 02, < Pj; for1<i<L,

(P-11-s)

where g; and o7 are given in ([Z63), ([£64) or (6], depending on the given
original observation model parameters g; and C,,.

In particular, we consider problem (P-ITI)) for determining the optimal
LO;, for the case of an orthogonal [MAC] (cf. Section [2]). For a scalar
parameter and especially for the equivalent model with scalar observation,

(P-ITI) specializes with (Z73) to

o -1
maximize .J,, = g’al H} (0,2”1 + J?LiHiaiaiTHZT) H;a;

a;
subject to a; € R?,

(Cl=s), or (C2-5), is satisfied, i.e., (P-II1-s)
€D, 5 Jaill® ((9:0)° +02,) < Pog or
CZs), : Jail* o, < Py
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The notation (Cl=sl); and (C2-§); mean the ith constraint of (Cl-s) and
([C24). In what follows, we first solve problem (P-III-§) - we consider the
orthogonal [MAC] case.

4.4.3.1 Orthogonal MAC

Let us now consider the case of an orthogonal [MAClI Remember, that we
have already assumed for this case diagonal matrices H; for all ¢ w.l.o.g.,
i.e.,

(Hi)y,, =

)

0 k£l

where h;, for 1 < k < w are the singular values of H;, in particular (cf. The-
orem [.3.T3)). In that case, we consider especially the optimization problem
(P-ITI=H), for determining the optimal local sensor vector a; for LO}. Thus,
we consider the [E] J,, from ([@75) and take note that g; € R and o2 > 0.
Let us first treat the trivial third case, when g; = 0 and 0,2%, =0 (cf.
([@69)). Then, it is obvious that the [ETl J,, from (T3] yields J,, = 0 for
all a; € R%, since we assumed 0,2” > 0. Hence, for this special case, there
exist no optimal LO; for (P-IIT) and (P=IT-§) and thus no optimal LO; for
(B-I). For further proceed we distinguish the two remaining cases - 072” >0
or 0,2%, = 0. In what follows we assume g; > 0, which is guaranteed for both

cases (cf. (A63) and (£.53)).
1. Case - 02 #0: The[El J,, from ([@T5) then yields

-1
Iy, = gial HY (o7 1+ 07 Haa] HY ) Hiay

~ ~ =1~
@ g2ar (0,2”1 + afliaialr) a;

v (4.81)
g2 0'2 -
=2tal [ Zirtaal | & foro? >0,
On; On; ¢
where in step (a) we introduced the shorthand
52' = Hiai. (4.82)
We now introduce
1 -
Py 2 ——aa). (4.83)

== 2
Jail

Note that P 4, is the projection matri associated to the linear sub-
space A; = {ca;|c € R}. Furthermore, Pji = I — P4, is the pro-
jection matrix associated to the orthogonal complement linear sub-
space A of A;, i.e., A = {x eRPilal'x = 0} [5]. With the identity

' A projection matrix P is symmetric (P = P”) and indempotent (P? = P).
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I=Py + Pli7 (A1) can also be written in terms of P 4, and Pji as

g2 o2 o2 -1
Jo = 2T | &) + Pa +—2Ph | & (4.84)
UnZ ni O-ni

for 02, > 0. Invoking [11], we have the identity

1 1
<01PAi+02Pji> :aPAﬂrgPi’ (4.85)

for any ¢; € R\ {0} and ¢y € R\ {0}, since

1 1
(clPAi +cQPji> (—PAZ. 4 —Pji> _

= PP+ PAPAZ+ TPLP, +PAP) Wp, +PL =1,

where in step ( ) we used the fact that P4, Pl =Py (I-Py,) =
Py — Py = PA—PjZ_PA (I—PA):PjiPAi. Since
we assumed that O'h > 0 and 02 > 0, we can use [RG) for ¢; =
02 /02, >0 and ¢ = <||al-|| +o2, /072”> > 0 and thus, [@83) yields

2

~ 1 o2 _
Jz;, = g; aT —— Py, + 72“ Pji a;

T \G P T
1
2 2
9; 1 ~Tp = , 9 ~Tpl =
= U—;ﬁal P_Al.al' + J—;ai P.Aiai
"ozt [lal] hs (456)
ng
(g) gl-2 5?&125?5@
R O R,
R (1)
1
2 ~ 12
@l )
= 0—57 for oy, # 0,

h
where in step (a) we inserted (£83]) and used the fact that
_ G . - _
Pjiai = (I-Py)a;, = a—aala/|al|*=a—a=0.
Take note that a’a; = [|a,]%.

2. Case - 05, = 0: In that case, the [F1l .J,, from (L75)) yields

2
T = g2alHY (62 1) ' Hia, = L aTH Hia, for 02, = 0. (4.87)
o
hi
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Using the shorthand from (4.82)), (£.87) can also be written in the form

2
Ty, = 5—2 &[> for o2 = 0. (4.88)

i g
hi

Let us summarize both derivatives ([£86) and (£88), as follows:

97 &l
A o #0
2 .
Ju =3 oz, Hlail (4.89)
9; =12
o3 llaill on, =0,

i

which is in turn equivalent to (£.75). So we can replace the[ET J,, of problem
(P-ITLs) by (£89), without loss. It can be verified easily that the FI .J,;,

. . . . . . . . ~ 112 . . A
given in (£89), is a monotonic increasing function in ||a;||", since with x =
|&]|? and J,, = J,, (), the first derivation

2

9; 1 2
L 02 A0
8 U"i Gh- (3
! A — A
Sy (1) = o= g, (1) = o3,
ox 2
g; 0.2 =0
0,21 i ’

i

is strictliy positve for all z, i.e., J; (z) > 0 for all x. Therefore, we
can equivalently maximize |a;||> = al H  H;a; instead of J,, from (&89),
while respecting the constraint (Cl-g), or (C2-g),. The optimization prob-
lem (P-ITI-§) can thus be reformulated equivalently as

maximize al H! H;a;
a;€R%

((9:0)* +02) laul® < Po; (€T, or (4.90)
2

o, llaill* < Py Cx9),

Theorem 4.4.18 Consider a real symmetric maztriz A € Sym (s). Let

Amax denotes the largest eigenvalue and vipax the corresponding eigenvector
of A, i.e., Admax = AVmax- Then,

subject to

al’Aa < Ama ||a||>  for alla € R®.

Equality holds iff a = cvmax for any c € R.
Proof. Cf. [12], 6.2, p.110]. O

Let us recall that we assumed a diagonal channel matrix H; with diagonal
entries h;j, for 1 < k < w - the singular values of H; (cf. (£R0)). It is evident
that also H H; of size ¢; X ¢; is diagonal, where the w largest diagonal entries
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- the w largest eigenvalues of Hsz - are the squared singular values of H;,
ie., h?k for 1 < k < w. Let h?mm denotes the maximum value of the set

{h?k, 1<k< w}. Let us write the sensor vector a; in the form
a; = C;Vy, (4'91)

where ¢; = ||al| € R is the length and v; = a/¢; € R% denotes the nor-
malized vector of a (direction), i.e., |v;||* = 1. We can reformulate (E90)
equivalently as

maximize  c2v! HI H;v;
v;ER% | ¢;ER
l[vill?=1
4.92)
2 2 2 (
((%9) +Uni> c; <Py (Cls), or

2 2 /
Tn; G < B (C23),

Take note that only the objective function of ([#92)) depends on the nor-
malized vector v; - the constraints (CI-s)), and (C2-g), are not affected by
v;. For solving (92 w.r.t. v;, we can maximize the objective function of

([@392), without considering (CI=s)); or (C2-5),. According to Theorem E.4.18],
the objective function of (£92)), with ||v;|| = 1, is bounded above by

subject to

EvIHI Hv; < c2h? . for all v; € R%, where ||vi]| = 1, (4.93)
where equality (maximum) holds when v; = €;.y, since H] H; is diagonal.
The vector €;p,,, denotes those unit vector (eigenvector of H H;), which
corresponds to the largest eigenvalue hgmax of HZTHZ Hence, the optimal v;
for (A92)) can be obtained with

Vi = €imax- (4.94)
Inserting v; = €;may into (4£.92) yields

. . 2 2
maximize c;h;
CZGR 771 max

<(916?)2 + 0’12%> C? < POJ‘ mz or (495)
0-7211'622 < P(;,z mz

It remains to determine the optimal constant ¢; for (£.92)) or, equivalently, for
(@93)). Let us consider constraint (CI=s),. Then, for the case (9:0)* + ol =
0, the constraint is always fulfilled and ¢; could be chosen arbitrarily high
in order to maximize the objective function in (€93). Similar holds for
constraint (C2:-s)), when O’?Li = 0. However, both special cases can occur only
if 0'72” = 0. To remain mathematically correct in what follows, we exclude
the case 02 = 0. For the analysis we therefore use the limit value o2 — 0.

subject to
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So, we have to maximize ¢? in ([f05]), while respecting the constraint

([CI=d), or (C2-5),, respectively. Thus, it is obvious that optimal ¢; for (Z.95)
results when equality prevails in (CI=s)); or (C2=d),, in order to obtain maxi-

mal value of the objective c?h?max, i.e., for
Po,;
* (9:0)*+02, €T,
cf = - ‘ (4.96)

o7 (C2=s);.
In turn, optimal a; for problem (£90) can be obtained by inserting (4.96])
and ([A.94) into (A.91) as
Po,i
(9:0)*+02, L9,

Hence, we have determined optimal LO/ for an orthogonal [NAC] - for the
equivalent model with scalar observation. Finally, we give the optimal [E]
Jg,;, that follows for an optimal LO}. To that end, we insert a} from (Z97)
into (£82), i.e., af = H;a! = c'H;€jpax = ¢ Rimax€imax, Which in turn is

used in (@75, i.e.,

-1
* 2 %292 T 2 2 %272 T
le. = g;ic;°h; e <0hi1+0n¢0i h: €imax€; max) €imax

(4.97)

* ok *
a; =c;€max, Wherec; =

i max ~% max 7 max
2 %2712 1
= 9:6 hima,x 2
2 x272
Thoy 000,65 NG max

2 2
9i Poaih’i max 1
b — (),

(9i0)2+0'7%i o'ﬁ. +o2

n; 0\2 2 i ma
D S Ho0) hon; T (4.98)
9i PO,ihi max 1 m
p) 7 ;
On; 2 2 P00 v
! Uhi+0ni o%’_ hi max
1

212
95 1 max F0si m
U%i((9i9)2+0%i)+02 h? e F0.i ?
!

— ;i max f 2
= Bis or 0. # 0.
g; hi2max 5 P20,i M
, .
Oni Ok TR max 0 ¢

Note that (B98) only hold for the case when g; # 0 and o2, > 0. For the
trivial case, when g; = 0 and 62, = 0 (cf. (E8H)), we have already mentioned
that obviously J;. = 0.

Let us now analyze (£98)) the one remaining case (cf. (£64)), i.e., when
gi # 0 and 072” = 0, in more detail. Considering first the second constraint
(C2=5),, in particular. Here, we can use for the analysis, as already men-
tioned, the limit value 072” — 0. Then, the FI J; goes to inifity, since

: .
lim J; = oo. ([C2-4),
oni~>0



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES o7

This is at first sight strange, but quite explainable. The second constraint
([C2-d), bounds only the variance of the transmit data s; - which goes to zero,
when 072” — 0. Therefore, we could theoretically provide an arbitrarily large
power for sensor ¢ without violating the constraint (C2-g),, but this results in
an arbirtraly large [F1l J; . This is the reason why (CI-g); has more practical
relevance. Now, we consider the first constraint (CI=sl);. The optimal local
sensor rule a;, given in ([@97)), depend on the parameter 6. In practice,
the computation of the optimal ¢; from (396) for (CI=s));, has to be solved
with an estimate (locally) 0 (y;), since the true parameter 6 is unknown. In
this special case, so even when 072” = 0, then we can estimate the unknown
parameter without estimation error, since é(yz) = y;/g; and the estimation
error e = 0 (y;) — 6 = 0. Hence, at the local sensor we know the exact value
of the parameter 6. However, we are interested at the resulting [F1l J,, at the
[EC for an optimum LO),.
J* — hgma‘XP07i‘
Zi 90%1,

Both just been treated cases coincides with (A.98]) when we use the lim-
iting case 072” — 0. Last but not least, still indicate the total optimal [ET] .J,
from (Z76) for the orthogonal [MACE

L .
Jy =0 fgi=0and 02 =0
J;=3"Jz, where { “=" 9= L and on, (4.99)
P J,. is given in (£98) else,

which is the optimum in (P=IL§) and also the global optimum in (P=I)) for
the special case of a scalar parameter and considering the orthogonal [MAC]
with L local sensors, since C;* = 0 and in turn C} = 0.

4.4.3.2 Coherent MAC

Let us now consider the case of an coherent MACL In that case, we consider
especially the optimization problem (P-IL-d), in order to determine the opti-
mal local sensor vectors a; (i.e., LO}) for 1 <4 < L. Thus, we consider the
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[ET J, from (E79), which can also be written as
J="A" (71 + 2AA") " Ag
W oTveTUT (021 + o2USVIVETUT) ' UsVg
Y eTvsTuT (62007 + 02UssTUT)  UsvTg

= " VSTUTU (021 + 02537) ' UTUS VT g (4.100)
L et (%0 T o T

= —g"vsT (L1 33T) v
Un UTL

© 1
- U—%gTVDVT&

where in step (a) we performed the A = UXVT, with the unitary
matrices U € RPXP. V € RY*E and the (possibly rectangular) diagonal
matrix 3 of size p x L, which contains the singular values o; for 1 < j <
w £ min {p, L} of A on the main diagonal, i.e., (2);;=0ifor1<j<w. In
step (b), we used the fact that VV? =1 and UU” =1, since V and U are
unitary. Let us assume that the singular values |o;| are ordered decreasingly
(in turn of magnitude), i.e., |o1]| > |oa| > -+ > |oy|. Take note that, for the
coherent case, we assumed o2 > 0. In the last step (c), we introduced
the diagonal matrix

2 -1

D2yl (U—’;I + 22T> 3, (4.101)
n

which is squared and diagonal of size L x L. The L elements on the main

diagonal are thus given by

o2

I if1<j<w

02
di = (D);; =4 4+ (4.102)

0 else,

for 1 < j < L. Note that the diagonal elements d; are also ordered decreas-
ingly, i.e., diy > do > ...d;, > 0, that follows by adopting the order of the
set {|oj|} for 1 < j < w. As mentioned above, we consider for the coher-
ent [MAC] case especially, a total power/variance constraint (CI=tl) or (C2-1]),
respectively. Furthermore, we will treat only the case for constraint (C2-).
Let us recall the shorthand from (£77) and the notations from ([£T78). With
the assumption made that H; for all ¢ have all full column-rank, we can
uniquely reclaim a; with a; = H;-rﬁi. Thus, we can reformulate (C2-f]) with

a; = Hgﬁi = Hgl&ei (e; denotes the ith unit vector), in terms of A as

L L _
>l =Y [HlAe,
i=1 i=1

L
2 ~ ~
=Y elAT (HHT) Ae; < PY/o?, (4.103)
i=1
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T
where we used the fact (HZT)THI = (Hj) Hj = (HZHZT)T [13]. In terms
of SVD A = USV?, @I03) yields

L
t(U, 2, V)23 el veTuT (HH]) UsvTe

=1 (4.104)
(v="uT (mH]) UsVT) < B/ol,

1,1

Mh

=1

where we introduced the constraint function ¢(-). With the derivations

(£100) (exluding the constan) and (£I04), the optimization problem (P-IT-s])

can thus be reformulated equivalently as

maximize g! VDV'g

<y

L
subject to Y <V2TUT (H;HY) UEVT)' < PJek ()
i=1 (4.105)
»x7 > o,
vvl =vTv =1,

uu'=vTu=1

Solvmg (@T105) with respect to U, V, and ¥, further gives the optimal
A = UXVT, and in turn, the optimal a; = H]LAeZ for (P-II-g) (since H;
is assumed to be of full column-rank). In what follows, we solve (LI05]) for
two special cases, with assumptions on the individual channel matrices H;
for all 4.

Orthogonal Channels: In that case, we assume that all individual chan-
nel matrices H; for all ¢ are orthogonal (unitary), i.e., H;H} = H'H; = I
for 1 <4 < L -implying p = ¢; for 1 <+¢ < L. Then, the constraint functlon

t(+) from ([ALI04) yields

(v="u” (mE]) UnVT)

Mw

1,1
=1

(VETUTUEVY), = {VETUTUSVT} = & {75},

Mw

1:1

where we inserted HZHZT = I and used the cyclic property of the trace
operator [§], further, the facts that UTU = I and VIV = 1. In turn,

! Tt is common to omit the constant in the objective function, since it does not affect
the optimal solution.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 60

(A105) yields

. . T T
VDV
magimize g g
subject to tr {ETE} < Pj/oZ, (C2=)
»x7 > o,

vvl =vTv =1.

(4.106)

In what follows, we will solve (£I06) sequentially, by determining first
the optimum V and then the optimum 3. A necessary condition for V to
be optimum in ([@I06), can be obtained by fixing 3. For a fixed X', the
optimum V has to solve the problem

max\ifmize g'vD'vig
subject to tr {E’TE’} < Py/o, (CZH)

s’ >,
vvl =vTv =1,

(4.107)

where D’ is obtained from (LI0I) by inserting ¥’ for X. Accordingly, we
denote d;- for 1 < j < L as the elements of D’. Now consider the problem
(#I07) we recognize that it no longer depends on the unitary U - we thus
can choose an arbitrarily unitary U, e.g., U =1. A V is optimum for ({107
if and only if it is optimum for

maximize g VD'V'g
v (4.108)
subject to VVT =VTV =1,

as can be verified easily. Let us denote the orthonormal column vectors of
the unitary matrix V by v; for 1 < j < L. According to Theorem [4.4.18],
the objective function of ([@I08) is bounded above (g is given) by

g vD'Vig < ) |g|?, (4.109)

since we assumed that the diagonal entries d; for 1 < j < L in D’ are ordered
decreasingly. Equality in (£I09) (maximum) holds when v; = cg for any

constant ¢ € R. Since v; must has unit norm, i.e., [[vi|| = 1, the optimal v;
is given by
g
vi= S (4.110)
Igll

The remaining (L — 1) column vectors of optimum V, i.e., v; for 2 < j <
L can be choosen arbitrarily, such that the set {v;, 1 <j <L} form an
orthonormal basis, i.e., V is unitary.
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After having determined the optimal V for (AI06]), we will now charac-
terize the optimum X for (£I06). To that end, we first insert the optimal
V in ([@I06]), where the objective function then yields

L L

g’ V'DVTig=> gldivivi'g = (") di+>_ (g"v}) d; = llgll* da,
j=1 j=2

(4.111)

where in step (a) we inserted (LII0) and used the fact that gTv; = 0 for
2 <j < L,since g = ||g||vi (cf. (EII0)) and v; is obviously orthogonal
to each v; for 2 < j < L by definition (V is unitary). Hence, with d; from
(#102), (EI06) by inserting optimum V yields

maximize |[|g|* QL
= ot o?
on (4.112)
subject to tr {ETE} < Pj/oZ, (C2)
=x7 >o0.
. . T A 2 2 2 T
Introducing the vector notation s = (31, 89,y sw) = (01,02, . ,aw) €

R*+™, ie., it has to be: s > , the constraint (C2-f) can thus be written
by tr {272} =3 | s; =sT1 < PJ/o2, where 1 denotes a vector of ones.

n’

Thus, [@II2) can equivalently be written in terms of s; for 1 < j < w as

maximize [ (s1) £ — o1

S b+ 51

| L (4.113)
subject to s'1 < Py/os, (C2-))

s >0,

where we introduced the function f(s1). It is obvious that the function
f (s1) is a monotonic function in s, since the first derivation

1
ﬁ>0 for all s1 € R.
<Z_§+31>

Thus, we can equivalentely maximize sj, while respecting the constraint
(C2=). The optimization problem (ZII3]) can thus be reformulated equiva-
lently as

0
a—Slfsl (81) =

maximize S
S

subject to sT1 < P}/o?, (C2-1) (4.114)
s =0,

'For two vectors a and b, the relation a > b means elementwise inequality, i.e., a; > b;
for all 4, where a; and b; denote the ith elements of a and b, respectively.
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which can be easily solved by
= P}j/o? and s;=0for2<j<w, (4.115)
and therefore, with o; = | /5;, we finally obtain the optimal 3 for (L.I0€]) as

B i
(), = oF = {0 o2 fcl’r J=1 (4.116)
else.

After having determined the optimal V and X for (AI06), assuming
U = I (but could be an arbitrary unitary matrix), we are now able to
compute optimal A as

7 @I Fy

e|v
' o2 ||g|

A =3viT = Zaej +7 €8

7=1

/
0 T

_2 €18,
On

(4.117)

where again e; denotes the jth unit vector. Note that the first unit vector e;

n ([@I17) follows from the assumption that U = I. It remains to determine
the optimal local sensor vectors a; for 1 < ¢ < L, which can be obtained
with a; = Hi_l;;ei as

_ P
a = H 'A%, "2 | [0 pTe " . lehg"l (4.118)
o |lgll H

for 1 < ¢ < L, since H; is assumed to be unitary, i.e., = H!. The
vector h}, denotes the first row-vector of H; and g; = gle; denotes the ith
element of g (cf. ([@TR)). Note that h? has unit norm, i.e., ||hl,| = 1, since
H, is unitary.

Hence, we have determined optimal LO/ for a coherent [MAC], where H;
for all 4 are assumed to be orthogonal - for the equivalent model with scalar
observation. Finally, we give the optimal [FTl J,, that follows for an optimal
LO;. To that end, we insert V* and D* - where D*, with diagonal entries
d?, is obtained from ({I0I) by inserting 3* for ¥ - into (EI00), i.e.,

L1 DV HgH b lgl” o @m lgl® P
JZ = —2gTV D V 1 : 5 2 1 = ) 5 OP/’
On Un On 0—2 + 0'?2 On O, + 0

(4.119)

where in step (a) we used the derivation in (LII1) for D = D* (i.e., d; = dJ).
In step (b) we insert (EIN2) for o7 = o2 into di.
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Identical Channels: In that case, we assume that all individual channel
matrices H; for all 7 are identical and especially invertable, i.e., H £ H; = H;
for all 1 < i,j < L and it exists H~!. Then, the constraint function ¢(-)

from (LI04) yields

t(U,Z,V) =

%

M-

(v="UT (mH])  UsvT)
1

(2

Il
=
— =

<V2TUT (HHT) ™ UEVT) A (4.120)

0,0

KA
=tr

vs'u” (HR’) " usv? |

=tr

(HH") ' USETUT| = ¢(U,3),

where in the last step, we used the cyclic property of the trace operator [§]
and the fact that V'V = I. Thus, [@EI05) yields

maximize g/ VDVTg

3,
subject to tr { (HHT) "' USSTUT} < Pj/o?,  (C2D)
»>7 >0,
uu? =uvlu =1,
vvl =viv =1

(4.121)

Note that the constraint (C2-f]) in (£I21]), now depends also on the unitary
matrix U, the left singular vectors of A.

In what follows, we will solve (£I2I)) sequentially, by determining first
the optimum V and then the optimum U. A necessary condition for V to
be optimum in (£I2]) can be obtained by fixing U and 3. For a fixed U’
and X', the optimum V has to solve the problem

maximize g’vD'Vlg

subject to tr{(HHT)‘1 U'Z’E’TU’T} <PJo%, ()
vu’ =v'u =1
vvi=vTv =1
where D’ is obtained from (@I0I) by inserting 3’ for . A V is optimum
for (AI122) if and only if it is optimum for

maximize g VD'V'g
v (4.123)
subject to VVT =VTV =1,
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as can be verified easily. Problem (@I23]) is exactly the same as (£I08),
which we have already solved. Denoting again, the orthonormal column
vectors of the unitary matrix V by v; for 1 < j < L. Then, since d;- for all
j (the diagonal elements in D’) are assumed to be ordered decreasingly, we
obtain the optimal V for (4123) and thus also for (£I2I]) by choosing the
first column vector vy as in (AII0). The remaining (L — 1) column vectors
of the optimal V, i.e., v; for 2 < j < L can again be choosen arbitrarily such
that the set {v;, 1 < j < L} forms an orthonormal basis, i.e., V is unitary.

After having determined the optimal V for ([AI21]), we will now charac-
terize the optimum U for (£I21)). To that end, we insert first the optimal

V into (£I21]), yielding:

maximize ||g|?*d,

subject to tr{(HHT)f1 UEETUT} < PiJo?, ([C2H)
7 > o,
uul =vuTu =1,

(4.124)

where we used exactly the derivation in ([{I11]). If U* is optimal for (L124]),
then it is also optimal for ([{I2T]), as can be verified easily.

Let us consider an optimal pair (U’, ') solving ([{I2I)) or, equivalently,
([@E124). We will now show that necessarily U’ has to be a minimizer of the
constraint function ¢ (U, X), given in [@I20), for the specific choice ¥ = 3,
ie.,

U’ = arg minmize (U, ) = or{ (HAT) ' Ux'="UT}
U (4.125)
subject to UUT =UTU =1,

Indeed assume that there is another unitary matrix U” such that ¢ (U”, ¥') <
t (U, 3). It follows that also U”, ¥’ is a feasible pair, since U” is unitary
and

t(U", %) <t(U, ) < By/oy.  ([C2). (4.126)

We can now construct another ¥, i.e., ¥ = X" by " £ /e, where ¢ > 1.
Since, as can be verified easily, ¢ (U, /cX) = c¢- t (U, X), we can choose ¢
small enough such that

t(U", ") =c-t(U", %) < Pjjo? (C2),

due to (£I26) implying that also (U”,X") is feasible. However, a simple
computation shows that for the feasible pair (U”, ¥") the objective in (ZI21])
is strictly larger than for (U’,¥’). A contradiction to the assumption that
(U’, ) is optimal.
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Theorem 4.4.19 Let A and B are two real symmetric (s x s)-matrices and
denoting X\; (A) and \; (B) as the ith eigenvalue of A and B, respectively.
Assuming the eigenvalues \; (A) and \; (B) are arranged in decreasing order,
An (B) > 0. Then

D> Xi(A) A1 (B) < tr {AB} <) A (A) X (B). (4.127)
i=1 =1
Proof. Cf. [14, Theorem II-1]. O

So, we can determine the optimal U for (AI21]) by solving ([A.I125]), where
the optimal U is given by U* = U’. An application of Theorem LT reveals
that the optimal U is given by the eigenvectors of (HHT)f1 or HH” in

the order of increasing eigenvalues of (HHT)_1 or decreasing eigenvalues of
HHT7, respectively. Thus, with eigenvalue decomposition (EVD) HH? =
UhAhUF;C, where the unitary Uy, contains the eigenvectors, and the diagonal
A}, contains the positive eigenvalues of HH” | denoted by Apj for 1 < j <p,
in decreasing order, i.e., Ap1 > Apg >,..., > Ay, > 0, we obtain optimal U
by
U*=U;, uj=u,; forl<j<p, (4.128)

where the vectors u; and uy; denote the jth column vectors of U and Uy,
respectively.

So far, we have determined the optimal U and V for (£12I]). It remains
to determine the optimal ¥ for (LI2I). To that end, we insert U* into
(#EI124) an together with dy from (£I02)) in turn leads to

2

maximize ||g|* it
> % 4 o2
on (4.129)
subject to tr {A;'E2T} < Pj/o2, ([C2)
7 > 0.
We now accept the notation s = (s1, sa, . .. ,SL)T £ (0},03,... ,O'%)T e Rt

as for the last case, where we considered orthogonal channels, in turn: s > 0.
Comparing (129) with (£I12), we recognize that only the constraint (C2-i])
differs - the objective in both problems are equivalent. Writting ([£129]) in
terms of s; for 1 < j < w, we thus can use (£I14)), whereby the constraint
is still to be adapted accordingly. In the current case, the constraint (C2-t])
in terms of s can be written as tr {A, 'EXET} = > i=18i/Anj < P} /o2 and
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thus, [@I29) in terms of s; for 1 < j < w finally yields

maximize S
S

w

subject to Y ;—J < Pijo?, ([CZD) (4.130)

i=1 "
s; >0 forl<j<uw,
which can be easily solved by

/
* POAhl
51 —

and s = 0 for 2 < j < w, (4.131)

On

and therefore, with o; = | /5j, we finally obtain the optimal 3 for (L.I21]) as
Forny f =1

(%), = ot = oz o (4.132)

0 else.

After having determined the optimal V, U and ¥ for (LI2I]), we are
now able to compute optimal A as

~ PiA | PjA
A — UurrviTl = ZU v «7 @I32) h1 T (a) g h12 wpg?,

(4.133)

where in step (a) we inserted (LIT10) and (£I2])). It remains to determine
the optimal local sensor vectors a; for 1 < ¢ < L, which can be obtained
with a; = H; 1Ael = 1AeZ as

o, @ [ F) [P
aj =H 'A%e o2 gl MoH uygle 22 gl hlggl Vm (4.134)

for1 <i< 1L, where in step (a) we used, with [S on H = VvV, %, U7,
the derivation H 'uy; = \30 Uhum = VhE e = o_hlvhl’ where op
denotes the first singular value of H - which in turn is the largest one in
terms of magnitude - and vp; denotes the first column vector of Vj, - the
corresponding first right singular vector of H. The scalar g; = g’ e; in (d134)
denotes again the ith element of g. Note that o, # 0, since we assumed
that H is invertable. erttln‘ op1 = sign (op1) |on1| and using the relation
Ani = |oni|?, we can reformulate (£134) as

) P}
a; = sign (op1) 270291‘%1, (4.135)
\ o2 lll

!The signum function sign (a) on a € R returns 1 for a > 0 and —1 for a < 0.
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where we recognize that a; does not depend on the magnitude of op,; or Ap;.

Hence, we have determined optimal LO/ for a coherent [MAC], where all
H, for 1 < i < L are assumed to be identical - for the equivalent model with
scalar observation. Finally, we give the optimal [F1l .J,, that follows for an
optimal LOj. To that end, we accept the steps in (EIT9) - except the last
step, where we used instead of (LI16), (£I32), i.e., we obtain

2 /
P
g — el 0 (4.136)

z o J}%/Ahl—}—Pé'

4.4.3.3 Optimal Power Scheduling for an Orthogonal MAC

Let us now study an optimal power scheduling strategie, especially for the
orthogonal case. To that end, we still consider the equivalent model
with scalar observation and suppose optimal local sensors LO); for all i as al-
ready determined in closed-form (cf. (£.97))). Then, we have already derived
the optimal, resulting [F J; shown in (#39)) - for both constraints (CI=d)
and (C2-§). Let us first consider (CI-=g)). It raises the question of how a given
total power Py = Z@'L:1 Fy,; should be allocated optimally to the individual
sensors. Similar holds, when we consider constraint ([C2-g), i.e., how a given
total variance P = Z@'L:1 Pé,i should be allocated optimally to the individual
sensors.

We assume the case in which 072” > 0 and thus g; > 0 for all . Let us
recall the [FT J; from (€99), which can also be written as

- (1) b
Jy = E bil ! ,
i=1 b§2) WP,

where bgl) £

(B)a 232
bi _Unihimax’ (4.137)

b A { 0;} <z(gz9)2 +o,) ),
OhiOn;> (C24),
p A {]P;gz [C1-3),
0, (C24),
Before we define the optimal power scheduling problem, we first treat the
case of an uniform power scheduling strategie, in order to obtain a perfo-

mance benchmark for the optimal power scheduling. To that end, we use
the notation of (AI37) and still intruduce

Pé, (m%

so that both constraints to be addressed simultaneously in what follows.
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Uniform Power Scheduling Suppose all sensors use the same transmit
power /variance, i.e., P, = P/L (L > 1). Then, (£137) yields

L ( p
S b\ , (4.138)
b(2) + b P/L Zl b2 L PP

L
1
Jou (P) 2 73 =30V

i=1
where we introduced J,,, (P) - the [Ell J; from (£I37) as a function on the
total power/variance P for a uniform power scheduling strategie. We now
analyse the asymptotic behaviour of J,,, (P) for P — oco. It is easy to verify

that

L L
_ (1) P U N9
T (17226 = i 1 " bPL b p Zl N 2 on, (1139)

the same result for both constraints. Since, J,, (P) is a monotonic function
in P, we have that
Jpu (P — 00) > Jyp (P),

for all P € RT. Thus, (£I39) is an upper bound for .J,,, (P).

Optimal Power Scheduling We assume at first that hl max > 0 for all 2,
i.e., we exclude the case when H; = 0. Now we consider an optimal power
allocation strategy, whereby transmit power is optimally scheduled among
sensors to achieve the best estimation performance. We study the following

problem under a total power /variance constraint:

maximize Zb NORES (3
Py,Py,...,Pr, P b _|_b

(4.140)
subject to ZP, < P,
i=1
P>0 for1<i<L,

i.e., maximizing the [F]] from (£I37) for a given total power/variance P =
ZZ‘L:1P2‘ (constraint), w.r.t. P > 0 for 1 < ¢ < L. We first, reformulate
problem (A.I40]) equivalently into standard form [I5] as

. (1) P
B!
i ; RENCR
L (4.141)
subject to ZP, — P <0,

i=1
P>0 forl1<i<L,
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which is equivalent to problem (A in Appendix[Alfor z; = P}, c,(;) bgl),

cl(f) = bl(-z), c,(j’) = bgg), K = L, P = P. The resulting optimum P; for
1 <4 < L, can be obtained by a so called "water-filling" procedure and can
be expressed as

p@ M) 4 p2

and
L 2),(1) (2
> max {0, bl b U p (4.143)
=1 (bz(s))z v b’f3)

The optimal P; for 1 < ¢ < L for ([@I4I) and also for ([@I40) can not be
computed in closed-form. First, we have to determine the optimal variable
v from (LI43). Subsequently, the optimal P; for 1 < i < L can then be
computed using (AI42). This can be done by a so called "water-filling"
algorithm (Cf. Algorithm [A]).

In Subsection E.1.1] we will analyse the optimal power scheduling versus
the uniform power scheduling performance in some numerical experiments.

4.4.3.4 Implementation of an Optimal Local Sensor

So far, we have solved (P-IT=) for an orthogonal [MAC] without any restric-
tion. For the coherent [MAC| we modified (P-IT-) concerning the constraint,
we considered a total power constraint (CI-=f]) and (C2-l) instead of (CI=)
and (C2-g), where we then have determined the optimal local sensor rule
LO); for ([C2-t]) and for certain special cases on the channel matrix H; for all
1.

However, we have solved the local sensor rules LOj for the equivalent
model with scalar observation, i.e., LO}* = (a*,CZ‘ = 0). According to
Corollary .4.17] we finally obtain the optimal local sensor rule LO; for our
original model as

LO; & LOY :
Cl.g g €R(Cp)\{0}

Af = ajgiT, where g; = ggl ggl #0 (4.144)
0 g, = 0,

G =cli=

where g/ | is defined in ([£37). Let us now, summarize all main results for a
scalar parameter.
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Orthogonal MAC: Let us recall ({97) - the optimal local sensor vector
a; for sensor 4, when we consider an orthogonal [MAC| In what follows, we
consider only the case, when g; > 0 and 072” > 0 - the trivial case, when g; =0
and afli = has no optimal solution, since J, = 0 for choices of a - for the
case, when g; > 0 and o2, = cf. discussion in Subsubsection E431 With
the already known solution C; = 0, we obtain the optimal LO;, according

to (AI44), as
LO;: (A} =cleima8!, C =0),

Py ; 4.145
Gorter, € (414)

Pl

2
T,

where ¢ =

where g; is given in (£.144)). The unit vector €;my,, corresponds to the largest
diagonal entry of H;TFHZ-, SO h?max. The model parameter g; and o,,, are given

in (£63). An implementation is illustrated in Fig.[£6], which can be regarded
as a three stage implementation.

Matched Filter Power Matching
roTTTTT T N roTTTTTTT N\ rTTTTETTON
| | | | | Q 1
: ! ! |
| | | ! | ¢ |

vi —={ g7 o e o @———
k ) k ) k )

Channel Diag.

Figure 4.6: Optimal LO; implementation for a scalar parameter and orthog-
onal [MACI

The first stage in Fig. 6] can be regarded as a Matched Filter, i.e.,
an optimal prefiltering (matching) in accordance with the local observation
model (g;, C,,). The Channel Diagonalization stage, forces the optimal di-
rection for the transmit data s; onto the strongest transmission path of the
given channel H;. Finally, the task of the amplification stage is, to attain the
maximum available power for the transmit data s;, i.e., a Power Matching
for s;. Here, the gain is given by ([£986]) and depends on the constraint (C1=)
or (C2-d)), respectively.

Let us finally consider the implementation of an optimal LO; for con-
straint (CI-g) in more detail. As already mentioned and as can be seen in
(#36), the optimal solution for an LO; depends on the unknown paramter 6.
At first glance, the sensor thus can not be implemented optimally. However,
only the third stage in Fig.[4.6] i.e., only the optimal ¢; denpends on 6. The
optimal value of ¢; occurs, when the power of s;, i.e., E {sl-Tsl-} reaches the
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given constant F;. Thus, we can implement the optimal local sensor LO;
for constraint (CI=g)) as follows: Choosing the first two stages of Fig. 6] as
usual, i.e., a matching and the channel diagonalization, which do not depend
on #. The third stage can be implemented by means of a control loop as illus-
trated in Fig. .7l Starting with an arbitrary initial value ¢; = ¢}, a controller
C increases the factor ¢; until the deviation d = Fy; — E {siTsi} =0, ie.,
unitl the steady state is reached. After the steady state has been reached,
the power on s; yields E {sszi} = Py; and we have determined the optimal
¢; = ¢ and thus the optimal A; for (CI-d).

Matched Filter Power Matching

S;

=
™
N
P
=)
o
i

Channel Diag.

Figure 4.7: Optimal LO; implementation for a scalar paramter - considering
an orthogonal [MAC and constraint (CI-s). A control loop with an controller
C is implemented to obtain maximum transmit power for s; in the steady
state.

Coherent MAC: Let us finally, give the optimal LO; for the coherent
case. To that end, we recall the optimal local sensor vector a; for LOZ,
given in (I8 for the case of orthogonal individual channel matrices H; for
1 <i<L,and in (AI35) for the case of identical and invertable individual
channel matrices H = H; for 1 < ¢ < L. With the already known solution
CZ_ = 0, we obtain the optimal LO; for the orthogonal individual channel

case, according to ({L.I44), as

Pl
LO}: (A;‘ = /27029@-11;‘1@?, C; = o) : (4.146)
a7, |Igll

and for the identical individual channel case as
P/

LO;: (A;‘:sign(ahl) 5 0
o gl

givimgl, Cf = 0) : (4.147)

The vector g; in (£140) and (£144), is again given in (£I44)). Note that for
the coherent [MAC] we only considered the first case for g; in (£I44), i.e.,
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when g; € R(C,,)\ {0}. The vector hf, in (£I46) denotes the first row-
vector of the unitary H;. The vector vy in (£147) denotes the largest right
singular vector of H = H; for all ¢, which corresponds to the largest singular
value oj,1 of H (in terms of magnitude). The model parameter g; and oy,
are given in ([£63)). Note that in the coherent case, we assumed g; > 0
and 02 = 0, > 0. Finally P} denotes the total variance power including all
Sensors.

The implementation of the optimal LO; for both cases is similar to
Fig. 6 Only the second stage differs in choosing h}, or vj; instead of
€imax, respectively.

4.5 Vector Parameter Case

Let us now consider the general case of a vector parameter 8 € R™. Here, we
exclusively use the standard model (cf. Definition 314, i.e., we consider
only the case of an orthogonal - the observation and channel noise are
[idl - the channel matrix H; is diagonal for all i. Thus, we describe the ith
observation noise covariance matrix by C,,, = J,%iI and the 7th channel noise
covariance matrix by Cp, = 012”1, where o2, > 0 and 012” > 0. The assumed

diagonal channel matrix H;, can thus be written as

b L=k
(H)M:{Ol Iy for 1 <k <p;and1<1<gq. (4.148)

So far, we have already solved the basic optimization problem (P=I)) w.r.t.
Cy;, where the resulting optimum is given by Cj, = 0 (for all i) (cf. Sec-
tion {.T)). We thus consider the optimization problem (P-II) to determine the
still unknown sensor matrix A; (for all i) ¢-optimally. Let us first rewrite
the J,, from (BX) and J, from (3.8)) according to the standard model
as

J,, =G/ATH] (o7 1+ afll_HilAinTHiT)’1 H;A,G; (4.149)
and
L 1
J. =) GIATH] (0} 1+ 0} HiA,ATH]) ™ H;AG,. (4.150)
=1

With these assumptions, we consider further problem (P-II), where J, is
now given in (LI50). In Section A2l we have showed that for an orthogonal
and when the optimality criterion function ¢ is linear, we can solve an
equivalent problem (P-ITI)) in order to obtain the ¢-optimal A; for a specific
sensor 4. In what follows, we are interested on a T- and A-optimal design
for a local sensor i.
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4.5.1 T-Optimal Design

Let us first consider the T-optimality criterion ¢1, defined in (3.41). A T-
optimal designed local sensor rule LO} ¢, Maximizes the trace of the[FIMIJ,,
while respecting the constraint (CIJ) or (C2), respectively. Since, the trace
and thus ¢; is a linear function on NND (n) (cf. (8:42)), we can equivalently
solve (P-ITI), where J,; is now given in ([@I49), in order to determine the
T-optimal local sensor matrix A; for sensor 4. Thus, we consider a single-
sensor model, since all L sensors can be determined independently of each
other optimally. In particular, we treat only the case with constraint (C2).
In the following, we let the index notation to address the ith sensor away,
i.e., we set Gz = G, Az = A, Hz = H, an = Cn; Chi, PQJ' = Po, P(;,z = PO/,
pi = p, ¢; = q, m; = m. Hence, we can state the following optimization
problem:

1 -

maximize ¢ {A} = —tr {GTATHT (U%I + J,ZLHAATHT) ! HAG}
AcRaxm n

subject to tr {AAT} < Pj/o2, (D)

(4.151)

where we introduced the notation ¢1 {A;} = ¢1 {J5,}. In what follows, we
solve (I5T) for certain special cases, where we make assumptions on the
channel matrix H. First, we assume an orthogonal channel matrix. Then
we generalized it to a rectangular channel matrix, where we suppose full
column-rank.

4.5.1.1 Orthogonal Channel

Here we assume that the channel matrix H is orthogonal (unitary), i.e.,
H"H = HH? = I. Implying that H is a squared matrix, i.e., p = q.

Lemma 4.5.20 Any unitary matriz U has singular values equal to one.
Proof. Cf. [16, Theorem 6.2, p. 173] O

Since, we assumed that the channel matrix H is diagonal (standard
model), we conclude according to Lemma that the diagonal elements
hy (cf. ([£I48)) are given by hy = 1 for 1 <[ < ¢, which in turn yields that
H = I. Thus, the objective function ¢ (-) in (£I5I), can be equivalently
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reformulated as
1 _
o1 {A) = _tr{GT ATHT (021 + o2HAATHT) 1HAG.}
n

11 -
Tt {GTAT (o1 + 02AAT) ' AG)
n

11 o3 -
= ——tr{ GTAT <—gI+AAT) AG

2
no, n

11 7 B
@ ——tr{GTVZTUT (ﬁHUEVTVZJTUT) UEVTG}

2 2
no; o

11 ; -
— —tr {GTvz:TUTU (U—gl + z:zzT) UTUZVTG}
no, n
11 Tyt (O T o T
= —5tr{G'VE <—’;I+22 ) v'G
no, n
11
Y- 4 {GTVDVTG),
no?

(4.152)

In step (a) we performed the A = UXVT, with unitary matrices
U € R?*?, V € R™™ and the rectangular diagonal matrix 3 of size ¢ x m,
which contains the singular values o; for 1 < j < w £ min{g,m} of A
on the main diagonal. We assume that the singular values o; are ordered
decreasingly (in terms of magnitude), i.e., |o1]| > |o2] > -+ > |oy| > 0. In
step (b) we introduced the diagonal matrix

2 -1
D2xT (U—gl + 22T) 3, (4.153)

n

which is indeed squared and diagonal of size m x m. The m elements on the
main diagonal are thus given by

o2
2 . 1< <w
dj £ (D). .= h+o] (4.154)

3, on
0 w<j<m.

As can be verified easily, the diagonal elements d; are ordered decreasingly,
ie, dy > do > ... > dy > 0, as a result of the adoption order on the set
{os 1.

The constraint (C2) in (£I5I), can also be written in terms of [SVDI
A=UXVT a5

tr {AAT} = tr {UDVIVETUT}
=tr {UTUED®"} (4.155)
= {Z%T} < Fi/od, @
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where we used again the cyclic property of the trace operator [8] and the
facts that VI'V =T and UTU =L

With the derivations in ([£.I52) (excluding constants, cf. p.[B9 ftn.[d) and
(#I55), the optimization problem (AI5]]) can thus be reformulated equiva-
lently in terms of SVDI A = UXV7 as

maximize tr {G’ VDV’ G}
IRV

subject to tr {ZZT} < P}/o2,
»=7 >0
vvl =vTvy =1.

(4.156)

Note that problem (ZI56]), does not depend on the channel matrix H as a
consequence that H is assumed to be unitary. Furthermore, problem (€I50])
does not dependend on the unitary U - the left singular vectors of the sensor
matrix A - so that an arbitrary orthogonal (unitary) U can be chosen, e.g.,
U=1L

In what follows, we will solve (£I56) sequentially, by determining first
the optimum V and then the optimum 3. A necessary condition for V to
be optimum in ([@I56), can be obtained by fixing 3. For a fixed X', the
optimal V has to solve the problem

maximize tr {G'VD'V'G}
\%

subject to tr {EIE,T} < Ry/o, (4.157)
7T >0

vvl =vTv =1,

where D’ is obtained from ([@I53) by inserting 3’ for X. A V is optimum
for (AI58) if and only if it is optimum for

maximize tr {VD'VTGGT}
v (4.158)
subject to VIV =VTV =1,

as can be verified easily, where we used again
tr {GTVD'VIG} = tr {VD'VIGG"} .

Let us denote the of GGT by GGT = UgAgUgT, with the unitary
matrix U, € R™*™ (contains the eingenvectors of GGT) and the diagonal
matrix Ay of size m X m, which contains the positive eigenvalues Ay, for 1 <
j < m of GGT on the main diagonal. We assume that the eigenvalues Ag;
are ordered decreasingly, i.e., A\, > Ag, > --- > A, > 0, since the diagonal
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values of D are olso sorted decreasingly. Then, we have by Theorem A.4.19]
that the optimal V| solving (£I58]), is given by

vV =U,, (4.159)

where the column vectors of U, correspond to the eigenvectors of GGT,
sorted decreasingl.

After having determined the optimal V for (£I56]), it remains to deter-
mine the optimal ¥ for ([LI56]). To that end, we insert the optimal V from

(#I59) into (EI50), yielding:

maxizmize tr {A,D}

subject to tr {EXT} < Pl /o2, (4.160)

7 > o,
which has to be solved for the optimal X, which then yields together with
V* the solution for (LI56). Let us introduce the vector notation s =
(51,82, ..., 80)" & (O‘%,O‘%,...,O‘Q)T € R*", ie., s = 0. Then, we can

w

reformulate the optimization problem (£I56) equivalently in standard form

[15] as

w
minimize  — Z )\;j g %
s - h
= =+ 5
G B (4.161)
subject to 17s — P} <0,
—s =0,
where
Ag, 1< <
R (4.162)
J 0 m <1 <w.

The optimization problem (£I6T]) is equivalent to problem (A1) in Ap-
2

pendix [Al for z;, = s, cl(:) = )\'gj, c,(f) = Z—Q, cl(f) =1, K =w, P = P

The resulting optimum s} for 1 < j < w, can be obtained by a so called

"water-filling" procedure and can be expressed as

2\ 2
s7 = max < 0, Th"95 _ h (4.163)

J 2 4% 2
oL v oz

v o2 N o2
D max 0,422 b — Py (4.164)
ot o5V o

'The eigenvectors of a symmetric matrix are sorted decreasingly/increasingly if the
corresponding eingenvalues are sorted decreasingly/increasingly

and
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The optimal s; for 1 < j < w for ([@I6I) can not be computed in closed-
form. However, we can determine the optimal v, first numerically, according
to (AI164)). Subsequently, we can compute the optimal s; for 1 < j < w
using ([£I63). This can be done by a so called "water-filling" algorithm (cf.
Algorithm [A.T]). With the optimal s; for (£I61]), we can finally compute the

optimal singular values o; of A with J}f =./5; for 1 < j < w, which are

then arranged on the main diagonal of the optimal 3 in decreasing order.
After having determined the optimal V and X for (£I56]), we are now
able to compute the optimal local sensor matrix A with U =1 as

A* = sy T G5 =*U,. (4.165)
Note again: the optimal 3 can not be expressed in closed-form - it has to be
determined numerically ("water-filling" procedure); the unitary matrix U,
contains the eigenvectors of GGT, sorted decreasingly.

Conclusions Let us return to our original index notation that indicates the
ith sensor and recall that C;. = 0 for sensor . For an orthogonal with
L local sensors, the T-optimal ith LO - for the standard model - considering
constraint (C2) - assuming an unitary channel matrix H; - is given by

LO*¢1: (A: = E:UQN CZ = 0) ) (4.166)

(2

where the unitary matrix U, contains the eigenvectors of G;G! sorted de-
creasingly, the diagonal 37 has to be determined in a "water-filling" principle
in order to balance channel noise and sensor observation states of sensor .

4.5.1.2 Invertible Channel

Still considering problem (AI51]), we now allow for a general invertible chan-
nel matrix H, i.e., it exist H~!. That implies h; # 0 for 1 <1 < g = p (cf.

E143)).

Introducing
A 2 HA, (4.167)

the objective function ¢; (+) in (@I51]), can then be equivalently reformulated
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as
é1 (A) = tr {GT ATHT (021 + o2HAATHT) ™ HAG}

1 SO SN G
= —tr{ GTAT <—gI+AAT> AG

2
On n

2
n On

S)

2 -1
@ L {GT veTu” (U—gl +UsvIvs? UT> UEVTG}

2 -1
= i?tr {GTVETUTU (J—gl - 22T> UTUEVTG}
Jn n
1 o? !
= —tr {GTVET (—’;H 22T> EVTG}
Jn n
1
Y 4 {GTVDVTG}.
Un

(4.168)

In step (a) we performed the A = UXVT, with unitary matrices
U € RP*P,V € R™ ™ and the rectangular diagonal matrix 3 of size p x m,
which contains the singular values o; for 1 < j < w = min {p, m} of A on
the main diagonal. We assume again that the singular values o; are ordered
decreasingly (in terms of magnitude), i.e., |o1| > |o2| > -+ > |ow| > 0. In
step (b) we introduced the diagonal matrix

2 -1
D2xT (U—’;I + 22T> > (4.169)

n

which is indeed squared and diagonal of size m x m. The m elements on the
main diagonal are thus given by

2
%5

2 1<j<w
dj £ (D);; =4 4+ (4.170)

Jd
0 w<j<m,

As can be verified easily, the diagonal elements d; are ordered decreasingly,
ie., dy > dy > ... > d, >0, as a result of the adoption order on the set
{logl}ey.

Consider the shorthand A from (#167). Since we assumed that H is
invertible, we can uniquely reclaim A from A with A = H 'A. The con-
straint (C2) in (EI5I), can thus be equivalently written in terms of



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 79

A=UxVT as
tr {AAT} = tr {H'AAT (H7)" |
— o {AAT (H7) H |
= tr {UEVTVETUT (aR”) "}

TyT 1 5
~w{uzz’U" (HE) | <L (@)
n

(4.171)

where we used again the cyclic property of the trace operator, the fact that
VIV =Tand (H ) H! = (HT) 'H! = (HHT) .

With the derivations in ([LI68) (excluding constants, cf. p.[B9 ftn.[d) and
(#1710, the optimization problem (AI5]]) can thus be reformulated equiva-
lently in terms of SBYDI A = UXV7 as

maximize tr {GTVDVTG}
U,x, vV

subject to tr {UEETUT (HHT)_l} <

:qto | o.ji

4.172
7 - o, ( )

uul =vuTu =1,
vvl =vTv =1.

Note that the the unitary matrix U, the left singular vectors of 1&, now enters
the constraint in ({I72) and thus has to be chosen optimally for (AI72).

In what follows, we will solve (£I72)) sequentially, by determining first
the optimal V and then the optimal U. A necessary condition for V to be
optimum in ([EI72)), can be obtained by fixing U and X. For a fixed U’ and
3, the optimal V has to solve the problem

maximize tr {GTVD/VTG}
v

7

subject to tr { US> 0" (HAT) '} < =5,
(o=

4.173
7 - o, ( )

vu’ =v'u =1,
vvl =vTv =1,

where D’ is obtained from (€I69]), by inserting ¥’ for . A V is optimum
for (AI73)), if and only if it is optimum for

maximize tr {VD'VTGGT}
v (4.174)
subject to VVT =VTV =1,
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as can be verified easily, where we used again
tr {G'VD'VI'G} = tr [VD'VIGG" }.

Note that problem (ZIT4) is exactly the same as (£I58), which we have
already solved. Thus, optimal V for problem (4.I74) is given by

V=1, (4.175)

where the column vectors of U, correspond to the eigenvectors of GGT,
sorted decreasingly, i.e., the GGT = UgAgU;‘?F, where we assume that
the eigenvalues Ay, for 1 < j < m of GGT are ordered decreasingly along
the main diagonal in A,.

After having determined the optimal V for ([AI72), we will now charac-
terize the optimal U for (£I72)). To that end, we insert the optimal V from

(EI75) into [EIT2), yielding:

maximize tr{A D}

)

. T{7T 1 B
HH <
subject to tr{UEZ U’ (HH") }_ = (4.176)
=2 =0

vu’=vuTu=1

If U* is optimal for ([AIT76]), then it is also optimal for (£I72), as can be
verified easily. Invoking problem ({I24]), we note that it has exactly the
same constraint functions and a fairly similar objective. Where we have
showed that the optimal U is determined by minimization of the constraint
function

t(U,s) £ o {ussU” (HET) .

We can closely follow the approach and recognize that this also applies to
(#I76). Thus, we can determine the optimal U by solving

minmize  tr {US'>"UT (HAT) "}
U (4.177)
subject to UUT =UTU =1,

i.e., the optimal U will be a minimizer of the constraint function t (U, X),
for the specific choice of ¥ = ¥’. An application of Theoremm reveals,
that the optimal U is given by the eigenvectors of (HHT)f or HH”', re-

spectively, in the order of increasing eigenvalues of (HHT)_l, or, decreasing

eigenvalues of HH”. However, since HH” and in turn (HHT) s diagonal,
the eigenvectors are given by the unit vectors {e,},_,. Moreover, since the

eigenvalues of (HHT)f1 are the squared reciprocals of the diagonal values
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hj # 0 for 1 < j < p, we have that the kth column of U* is given by e;,,
where jj, is the index of the kth largest main diagonal entry hj, (in terms
of magnitude). Howerver, we have assumed that the diagonal entries are in

decreasing order in terms of magnitude w.l.o.g. Thus, the optimal U is given
by

U* =1, (4.178)

So far, we have determined the optimal U and V for (£I72). It remains
to determine the optimal singular values o; for 1 < j < w. Inserting the
optimal choices U* and V* in (LI72), yielding:

maxizmize tr {A,D}

subject to tr {ZZTA,;I} < P}Jo2, (4.179)
»>7 > o,
: _ T a (2 2 o\T
Let us accept the notation s = (81,82,...,Sw) = (01,0'2,...,O'w) €
R*" as for the last case, where we considered an orthogonal channel matrix,
in turn: s = 0. Further, we introduce the vector b = (hl_Q, hy?,. .. ,h;2)T
and
Ao, 1<ji<m
R (4.180)
J 0 m <1< w.

Then, we can reformulate (£I79) equivalently into standard form [15] as

9j o2

w
S S
minimize  — E N oL
s - h | g
— S E)
J=1 o2 J

(4.181)
subject to bls — P} <0,
—s =0,

The only difference to problem (AI61]) is that the one vector 1 is now re-
placed by the vector b in the constraint function. However, we can reformu-
late (ZI81), by using scaled variables s; £ b;s; = s;h; 2 into an equivalent
problem

w /
e . 2 Sj
minimize  — E N ————
s’ 9i op /
=l w207 TS

soh (4.182)

subject to 178’ — P} <0,
- S/ j 07

of which we already know the solution for the optimal s’. The resulting
optimum 5;* for 1 < j < w for (£I82), can be obtained by a so called "water-
filling" procedure according to (EI63) and ([EI64). Thus, with s¥ = h2s/"

197 )
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we finally obtain the resulting optimum s;* for 1 < j < w for (EI8]]) as

2 52 2

s; =max ¢ 0, h; Th9 _ Th (4.183)

w 2 2 2

o7 Og. o
§ 0, 5t -2 — St b =, 4.184
= max{ ’ O'%h? ¥ O'%h?} 0 ( )

respectively. According to the "water-filling" algorithm (cf. Algorithm [A.T]),
we can compute the optimal singular values of A numerically. We can finally

and

compute the optimal singular values o; of A with a;f =, /s;f for 1 <j <w,

which are then arranged on the main diagonal of the optimal 3 in decreasing
order.

So far, we have determined the optimum U, V and ¥ for (£I72)) and
thus A* = U*E*V*T. Now, we are able to compute the optimal local sensor

matrix A for (£I5]) as

Ar=H U vT Y iy, (4.185)
where in step (a) we inserted the optimal choices U* from (£I78]) and V*
from (@ITH). The channel matrix H™! is diagonal and contains their diag-
onal entries in decreasing order (in terms of magnitude). The unitary U,
contains the eigenvectors of GG’ in decreasing order and the diagona X*
contains the optimal singular values of K, which has to be determined in a

"water-filling" like manner (cf. (AI83]) and (£I84).

Conclusions Let us again return to our original index notation that indi-
cates the ith sensor and recall that Cj, = 0 for sensor i. For an orthogonal
with L local sensors, the T-optimal ith LO - for the standard model -
considering constraint (C2) - assuming an invertible channel matrix H; - is
given by

L0}y (A} =H;'EU,, C} =0), (4.186)

where the unitary matrix Ug, contains the eigenvectors of GiGiT sorted
decreasingly, the channel matrix H; is assumed to be diagonal in decreasing
order without loss, the diagonal X7 has to be determined in a "water-filling"
principle in order to balance channel and sensor observation states and noise
of sensor 1.
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4.5.2 A-Optimal Design

We now consider the A-optimality criterion ¢_1, defined in ([339). Note
that the A—optimality criterion ¢_; is not linear. Thus, we cannot solve
the indidual sensor rules independendly, when we consider an orthogonal
[MAC| Throughout this thesis, we only consider a single sensor setup, i.e.,
when L = 1. For this special case, we no longer speak about multiple access
schemes. Again, we let the subscript notation away and accept the same
notation as for the T—optimal design. According to (3.40]), an A—optimal
designed local sensor rule LO*;_, minimizes the trace of the inverse
J, !, which is indeed the [CRLB] while respecting the constraint (CII) or
([C2), respectively. Therefore, we introduce ¢_1 {J,} £ 1/ (2¢_1(J,)) and
consider the following optimization problem:

~ _ -1
minimize  ¢_; (A) = tr { (GT ATH” (021 + o2HAATHT) ™ HAG) }
AeRqu

tr {AMA”T} < Py/o2 (CI) or

subject to
! {tr [AAT} < P/o?, (@)

(4.187)

where M is given in (3.28)). Note that the A—optimality criterion only applies
for a non-singular as can be easily seen. Thus we study the A—optimal
design for the case of a positiv definit J,. The conditions on H, G and
A can be obtained from (3.23), i.e., H, G and A must has at least rank n.

4.5.2.1 Invertible System Matrices

Let us first assume that the observation matrix G, the local sensor matrix

A and the channel matrix H are all invertable. Thus, we consider squared

matrices, where n = m = ¢ = p. In particular, that implies h; # 0 for 1 <

i < p (cf. [@II48)), since H is required to be invertible. In what follows, we

assume that the diagonal entries h; for all [ are ordered decreasingly in terms

of magnitude w.l.o.g. (cf. Section B3], i.e., |1 > |ha| > - > |hy| > 0.
The objective ¢_1 (A) of ([AI8T) can equivalently reformulated as

d_1(A) =tr { <GT ATHT (021 + o2HAATHT) ™ HAG) 1}
=tr {GTTAT'H ! (o3I + o, HAATH ) H TATTG™T}
_ 2 T\ A —1gy-193-T A -T
= ot {(GGT) AT H TA T} 4 iss)
o2tr {(GGT) ' AT'H 'HAATHTH"AT}
=i {(GGT) AT (HTH) AT+

o2tr { (GGT)*I} ,
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where we used again the cyclic property of the trace operator. The second
term of the last equation in (AI88) is constant (i.e., it does not depend on
A) and can thus be neglected for solving (AI8T). By neclecting also the
remaining constant factors, we can reformulate problem ([AI8T) equivalently
as

.. —1 _ —1 _
mlngmze tr{(GGT) Al (HTH) A T}
tr {AAT} < Pj/o2. (C2)

We first solve ([{I89) for constraint (CIl). The solution for constraint
(02) can then be obtained, by setting M = 021 and Py = P}, respectively.
First, we introduce the matrix

subject to {

A £ HAM'?, (4.190)

where M, given in (3.28), is positive definite and thus also invertible for all
0, since we assumed the standard model, in which 021 > 0. Note that since

we assumed H to be invertible, we can uniquely reclaim the sensor matrix
A from @I90) by A = H-'AM~'/2. Inserting A = H-'AM~'/2 into the
objective function of (AI89) yields

tr {M1/2 (GGT)*l MY2A-1H (HTH)—l HTA_T}
RCHRCONE
where we introduced G £ M~V 2G, and into the constraint function (CI))
in ([LIR9) yields
tr {AMAT} = tr {H—lgM—l/zMM—m gTH_T}
~w{ (un") " RAT),

since M is symmetric and positive definite, i.e., it holds M = MY/2MY/2.
We can equivalently reformulate problem (£I89), for constraint (1)) as

S aar) ' (AaTR)
m1ngmze tr{<GGT) (ATA) } (4.191)

subject to tr{(HHTf1 K;‘;T} <P, (CI)

which now has to be solved with respect to A. Using the [SVD] A :~UEVT,
where we assume that the singular values o; for 1 < ¢ < n of A are or-
dered decreasingly (in terms of magnitude) on the main diagonal of X, i.e.,
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lo1| > |o2| > --- > |on| > 0. Both unitary matrices U and V, contain the
corresponding left- and right singular vectors of A, respectively. Problem
(ET9I) can then be written in terms of SVD] A = UXVT as

minimize  ir { (ééT) - V22VT}
subject to  tr { (HHT) ™! U22UT} <P, (CI)
»* >0,
uul =vfu =1,
vvl =vTiv =1

(4.192)

In what follows, we will solve (£192) sequentially, by determining first the
optimal V and then the optimal U. A necessary condition for V to be
optimum in (£I92) can be obtained by fixing U and X. For a fixed U’ and
Y, the optimum V has to solve the problem

~ o~ —1
minimize tr{<GGT) V2’2VT}

subject to tr{(HHT)‘1U'2’2U’T}§PO, (CT)

4.193
2/2 Z 0’ ( )
uu’ =u'u =1
vvl =vTv =1,
A V is optimum for (A£I93) if and only if it is optimum for
~ ~ -1
minimize  tr { <GGT) VZ’_QVT}
v (4.194)

subject to VVT = VTV =1

According to Theorem {.4.19], the optimal V, solving (£I94) is given by the
matrix Ug, containing the eigenvectors of GGT, sorted increasingly. So,

the EVYD GGT = UgAgUng , where the eigenvalues Az for 1 < i < n of

GGT are ordered increasingly along the main diagonal in Az. Note that
~ ~ —1 - 1

<GGT> = UgA;Ufg and thus the eigenvalues of (GGT> are now

ordered decreasingly along the main diagonal of AZ', due to the inverse

operation. Thus, the optimal V for problem (£.194]) and thus also for (£192),

is given by

V= U;,

(4.195)

where the column vectors of Uy correspond to the eigenvectors of (~}(~}T,
sorted increasingly.
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After having determined the optimal V for (4192), we will now charac-
terize the optimum U for ([£192). To this end, we insert the optimal V into

(A192), yielding:

T 271717
HHT) ' Ux?U }gPO, (CT) (4.196)

mlnlmlze

—

subject to tr {
2

| \/

uu? :UTU:I.

If U* is optimal for ({I96]), then it is also optimal for (4I92), as can be
verified easily.

Invoking problem (AI24]), we note that it has the same constraint func-
tion (more specifically, the pseudo-inverse specializes now to the matrix in-
verse) and a fairly similar objective. Where we have showed that the optimal
U is determined by minimization of the constraint function

t(U,s) £ o {ussU” (HAT) .

We can closely follow the approach and recognize that this also applies to
(£196). Thus, we can determine the optimal U by solving

minmize ¢ { (HHT) "' UD?UT |
U (4.197)
subject to UUT =UTU =1,

i.e., the optimal U will be a minimizer of the constraint function ¢ (U, X),
for the specific choice of ¥ = ¥’. An application of Theorem IZEIQI reveals,
that the optimal U is given by the eigenvectors of (HHT) or HH” re
spectively, in the order of increasing eigenvalues of (HHT) 1, or, decreasing
eigenvalues of HH” . However, since HH” and in turn (HHT) s diagonal,
the eigenvectors are given by the unit vectors {ey},_,. Moreover, since the
eigenvalues of (HHT)f1 are the squared reciprocals of the diagonal values
hj # 0, we have that the kth column of U* is given by ej, , where jj, is the
index of the kth largest main diagonal entry hj, . Since, we assumed that
the diagonal entries of H are in decreasing order (in terms of magnitude),
the optimal U is given by

U* =1, (4.198)

So far, we have determined the optimum U and V for (4192]). It remains
to determine the optimal singular values o; for ¢ = 1,...,n. Inserting the
optimal choices U* and V* into (£192), yields to the optimization problem
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in standard form [15] as

n
1
.. A
minimize s) =
mize  f (s) E_; povs
. Z_T (4.199)
subject to g1 (s) =b's— P <0
g2 (S) £ _gs< 0,
with the new introduced objective function f (s), where the vector s, contains
the squared singular values of A, i.e., s = (31, 89,y sn)T = (0%, o3, ... ,O’%)T €

R*" ie., s = 0. The new introduced vector b in ([#I99) contains the re-
ciprocals of the squared diagonal entries of H, i.e., b £ (hf2, h52, ... ,h;2),
since H is assumed to be diagonal in decreasing order. Note that Ag, > 0

and h? > ( for all 4, due to our assumption that G, H and in turn G are
invertible.

We first verify, that (4.J99) is a convex optimization problem. We can
write the objective f (s) of problem (£I99) as

F(s)="_fi(si), (4.200)
=1

with f; (s;) £ 5=—. The first two derivatives of f; (s;) are given by

g; Si

0 1
(e & ) —
fi (si) 8sif (si) )@.s? (4.201)
and
0? 1
" Iy — 4.202
f’L (82) asgf( Z) )\ng? > 07 ( 0 )

and therefore f; (s;) is convex. Since by (4£.200), the objective is a sum of
convex functions [I5], we conclude f(s) is convex. The convexity of the
constraint functions g1 and g9 are obvious, since both are linear in s. Hence,
problem (ZI99) is a convex optimization problem [15].

The Karush-Kuhn—Tucker (KKT]) conditions (cf. [I5]) for a solution s*
to the optimization problem (£.199) and corresponding Lagrange multipliers
(cf. [I5], p.244]), i.e., v* for the inequality constraint g; (s) < 0 and A* € R"
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for the inequality constraint g, (s) < 0, are given as

bl's* — Py <0
s =0

I/*

A =0
v* (bls* — P)) =0

N =0,i=1,2,...,n

(4.203)

- +UF=X=0,¢=12,...,n.
>‘§i5;'k2 '

Combining the 4th and the last condition of ([203)), i.e., with A¥ = 0 for all
i=1,...,n, yields

vV=—=5>0 = s =1 >0 fori=1,...,n
A5 Ag, v

and by the 5th condition of [#E203)), i.e., b”s* = Py, since v* # 0, we obtain

2
S e
x =1 h? )‘ﬁi

v

P
Therefore,
P 1
s::%+A—~ fori=1,...,n (4.204)
2= ERY el
and finally, we obtain the optimum singular values of A with (2*)“ =o0; =

\/87, i.e., the optimal ¥ can be computed in closed-form with

(4.205)

as
B = clopA; (4.206)

So far, we have determined the optimum U, V and X for (£I192)) and
thus optimum A for (@191, ie., A* = U*S*V*T. The unitary matrix
U* =1 (cf. ([AI98)), since the diagonal H is assumed to be in decreasing
order. The unitary matrix V* = Uy (cf. (&I93)), where Uy contains the

eigenvectors of GGT, in increasing order and * = cE‘Cl)A;/4 (cf. (E204)),
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where the eigenvalues of GGT in Aj are ordered increasingly. From (£190),
we obtain the optimal A by
* —1ymeyxy*xIng—1/2 _ * —14—1/4 Tax—1/2
A =H'USVIM Y = ¢  H AU MY

and in turn with the already known solution C} = 0, the optimal LO;LI =
(A*, Cf) is thus given by

LOj (A" = cioyH AU M2, ¢ = 0)

for constraint (CI), (¢ is given in (E205),
EVD: GG = UzA;UYL,

—1

(4.207)

where Az, Uj are sorted increasingly,

H is sorted decreasingly.

Let us recall M, given in ([(3.28), i.e., with C, = 021 it follows M =
GoOTGT + 02I. Thus, the optimal LO,_, for constraint (CII), depends
on the parameter 8, which is indeed unknown.

Note that we have determined the optimal LOj,_ for the constraint (CIl).
As already mentioned, we can determine the optimal LO;_ , for constraint
([C2), if we set M = 021, Py = P} and consequently G = G in [@200), i.e.,
with

(4.208)

as

. _ —1A—-1/4 T _
LOj 0 (A" =i H AU, ¢ _0>¢71,
for constraint (C2), c{qy) is given in (E208),

EVD: GG" = UyA, U,

where A4, U, are sorted increasingly,

(4.209)

H is sorted decreasingly.

However, since we have found a closed-form solution for the A-optimal
ith LO, we can still specify the resulting [FIM| J%. To that end, we insert
A* from (£207) into (£I49) (without the subscript notation) for A = A*,
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yielding for constraint (CI)):

J; = GTATH” (o1 + c2’HAATHT) ' HAG

(@) +2

~ —1
@ <cz*é1)GTU§A;/4 (o314 o2eitny s U M gAY

—1/4 TN

A7 10T G)

® 7 B

—1/4 Oh 24 —1/4v- T r—1 —1/4 —1/4 T

= V;5A Y (C*TIJF%Ang MU MTUGAS /> i YA
(1)

(4.210)

where in step (a), we inserted A = A* from (£207) and also G =M"12G;
in step (b), we performed the SVDI G = UgEng - sorted increasingly in
terms of magnitude, according to the [EVDI GGT = UgAgUg. Analog, we
can still specify the resulting [EIM] J} for constraint (C2) with VDI G =
UgEng (sorted increasingly):

—1

02

J= V929A51/4 <_c*2h I+ aZA;1/4A;1/4 A;1/429V§.
(C2)

-1

_ o _

=V, 5,A, 2%, (C*Qh I+o2A,1% ) VI (4.211)
(C2)

(a) o2 -
9 a2 (T oiagte) VI
“(c2)

where in step (a), we used the fact that Ay = 23.

4.5.2.2 Full Column—Rank Channel Matrix

We now consider only constraint (C2). Note that we already assumed that
observation-, channel- and sensor matrix G, H and A has at least rank n
(cf. ([B323) in order to obtain a non-singular J.). In particular, we
assume that H is of full column-rank, implying p > ¢ and also h; # 0 for
1 <i<gq (cf. (£I4])). In what follows, we assume that the diagonal entries
hy for 1 <1 < q are ordered increasingly in terms of magnitude w.l.o.g. (cf.
Section E.3), i.e., 0 < |hq] < |hg| < --- < |hy|. Finally, we assume that the
channel input dimension is equal to the the parameter dimension, i.e., n = q.

Again, we first substitude the local sensor matrix A into the channel
matrix H, i.e., we introduce

A

(1>

HA. (4.212)
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Performing the A = UZVT, where we again assume that the singular
values o; for 1 < i < w £ min {p,m} of A are ordered decreasingly on the
main diagonal of ¥ (in terms of magnitude), i.e., |o1| > |oa| > -+ > |ow| > 0.
Both unitary matrices U and V, contain the corresponding left- and right
singular vectors of A, respectively. Invoking the derivation from (£I68]). We
can fully accept the derivation of the

J, = GTATH” (071 + c>HAATHT) ' HAG
in terms of SVDI A = UxvT e,

- 1
J, = GTATH” (671 + 02HAATH") " HAG = — GTVDV'G,

g

3

where D is given by
D237 (714 022%7) ' 3, (4.213)

which is squared and diagonal of size m x m. The m elements on the main
diagonal are given by

— 1<:<w
d; & (D);; = Sl (4.214)

0 else.

Hence, the objective function 5,1 (A) of problem ({LI8T), can then be
equivalently reformulated in terms of SVDI A = UXVT as

o1 (2. V) =c2u{(GTvDVTG) '}
Do {V, (SIUIVDVTU,%,) " VI (4.215)
= o2t { (ZTUTVDVTU,3,) "},

where in step (a) we inserted the SVD| G = UgEng. As can be seen, the
unitary matrix V, vanishes in ([£21I3), due to the cyclic properity of the

trace operator. Note that rank <A> = n, which follows from our assumption

that ¢ = n and the conditions for a non-singular [FIMl J, from (B8:23]). Thus
we can write (£215)) also in a partitioned form, with

3
971:| = U97129717

Uy3y = [Ug1 Uy [ 0

where X 1 is squared of size n x n, containing the n non-zero singular values
of G and U, ; contains the corresponding n left singular vectors (submatrix
of the unitary matrix U,), and with

D, o] [VlT

VDVT = [V; V] [ 0 o v

} =V,D, V¥
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as

b1(2.V) = o2tr { (£ UL, ViD1 VU, 5,,) ' |
y 3 (4.216)
= o2t {33 (UL, V1) D (VIU,.) '}

Note that the n column vectors of Uy ; are also the n eigenvectors of GGT,
which corresponds to the m non-zero eigenvalues of GG, in particular.
The submatrix V; of V, contains the first n right singular vectors, which
corresponds to the n non-zero singular values of A, already assumed to be
ordered decreasingly. The diagonal D is the submatrix of D from (£213),
which contains the n non-zero diagonal entries d; for 1 < ¢ < n of D, in
decreasing order, as a consequence of the order in X.

We can rewrite the constraint of (AI87) in terms of A =UxVT,

analog to (ELITI), as

/
tr{AAT} = tr {UESTUT (HHT)'} < )
077/

(4.217)

where (HHT)T denotes the pseudo inverse of HH”. In turn, the optimiza-

tion problem [@I87) in terms of SVDI A = UX VT with (@216) and @217)
then yields

minimize  tr {E;ﬁ (U£1V1)_1 D! (V{Ug,l)_l}

727

Pl
subject to tr {UEETUT (HHT)T} < —g,

O-TL
»xT > o0, (4.218)
uul =vuTu =1,
vvl =vTv =1,
V=[Vi Vy,
where we neglect the constant factor o2 of the objective function in (E2I5]).

In what follows, we will solve ({.2I8) sequentially, by determining first the
optimum V and then the optimum U.

Theorem 4.5.21 Let A be a nxn real matriz with singular values o1 (A) >
o9 (A)-+ >0, (A) and B be a (n—k) x (n— k) submatriz of A obtained by
deleting a total of k rows and columns from A, with singular values o1 (B) >
o9(B):-+ > 0,_ (B), then

0j(A)>0;(B) >0}, (A) forj=1,...,n,

UI-(A):{JJ(A) Jj<n

where

0 else.
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Proof. Cf. [17), Corollary 3.1.3, p. 149]. O

A necessary condition for V to be optimum in (£2I8) can be obtained
by fixing U and X. For a fixed U’ and X, the optimum V has to solve the
problem

minimize o {Z73 (U7, V1) Dy (VIUT,)

Pl
subject o tr {U's'="UT (HAT)'} < 2L,
Un

7" > o, (4.219)

vu’ =vu'u =1
vvl =vTv =1,
V= [VI V2] )
where D’ and thus D/, are obtained from ([2I3) by inserting ¥’ for X. A
V is optimum for ([£219), if and only if it is optimum for
o _ —1 -1 ~1
minimize tr {Egﬁ (UZ;JVl) D} (VF{UQTJ) }
subject to VVT = VIV =1, (4.220)
V=[Vi Vy,
Note that VIV =1, but V1 VI #£ 1. Let us introduce Z; £ UL,V of size
1 ’ 1 9,1

n x n. It is easy to verfiy that Z; is a submatrix of the unitary Z = UgTV of
size mxm (we assume n < m). Performing theSVDIZ; = U,, %, VL | where

210
the unitaries U, and V,, contain the left- and right singular vectors and the

diagonal 3, contains the singular values of Z;, on the main diagonal. All
singular values of Z are equal to one according to Lemma [£.5.20l Invoking
Theorem E.5.21] we thus conclude that

0<0j(Z1)<1 forj=1,...,n, (4.221)

where o (Z1) denotes the singular values of the submatrix Z;. Hence, the
objective function of ({220, can be bounded below by

v {220 D 7T = o {2tV s Ul D oL, sV
{z3v.ulpi o, BV
{z;3v.ulp U, VT (4.222)

—u{(VIz;2v.,) (VLD 'u,, )}
{

=Dy} = e {ap D,



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 94

where in step (a) and (b), we used first the cyclic property of the trace-
operator and second the fact that

tr {2 !X} = Za*l (Z1) (X)), > Z g =tr{X},

for all o;, which satisfies (Z221]) and for all X € NND (n) and (X);; > 0
denotes the jth diagonal entry of X. Note that all diagonal entries of a
positive semi-definite matrix are positive [9]. The inequalities in (a) and
(b) are satisfied, since it is evident that U"ZFID’flUZlZ;lVZl E;EVZI >0
and VI % *2V Ul D] 71Uz1 > 0. In step (c), we applied Theorem [ 419,
where 2' 1 contalns the n non-zero singular values 0,4, in increasing order
(in terms of magnitude). Note that we already assumed that the singular
values o} of A and in turn d} (elements in D’), are ordered decreasingly. In
the last step, we introduced the diagonal matrix A'g71, which in particular,
contains the n non-zero eigenvalues of GGT | i.e, A' 1 1s the n X n upper left
diagonal submatrix of Ay, which follows from the [EX D|GGT = U’gA’gU’gT,
where the eigenvalues are sorted increasingly. In fact, the eigenvalues in A o1

are thus ordered increasingly.

Hence, the optimal V, solving (£220), is given by Vi = Uy, which
contains the first n eigenvectors of GG, i.e., the first n orthonromal column
vectors of Uy, sorted increasingly. The remaining m — n singular vectors in
V5, for completition the optimal V, can be chosen arbitrary in order to obtain
a unitary V (orthonormal basis). Moreover, the optimal V for problem

([{218) is also given by
v* =U,, (4.223)

where the columns of U, correspond to the eigenvectors of GG, sorted
increasingly.

After having determined the optimal V for (A.218]), we will now charac-
terize the optimal U for ([A.2I8). To this end, we insert the optimum V in

([A218), yielding:
ma%i,rzr:lize tr {A;}D;l}

subject to tr {UEETUT (HHT)T} <

:thi | OFU\

(4.224)
»>7 > o,
uu’ =uTu =1,

If U* is optimal for ([{224]), then it is also optimal for (421, as can be
verified easily.
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Definition 4.5.22 A row- and column-swapping permutation matric or a
reflection matriz is given by

00 ..0°1
00 ...10

I IR (4.225)
01 ...00
10 ...00

Invoking again problem ({I124]), we note that it has exactly the same
constraint function and a fairly similar objective. Where we have showed
that the optimal U is determined by minimization of the constraint function

t(U,z) £ o {uzsTUT (HET)'}.

We can closely follow the approach and recognize that this also applies to
(#Z224)). Thus, we can determine the optimal U by solving

minmize  tr {US'STUT (HHT)'}
U (4.226)
subject to UUT =UTU =1,

i.e., the optimal U will be a minimizer of the constraint function t (U, X),
for the specific choice of ¥ = ¥/, An application of Theorem [£.4.19] reveals,
that the optimal U is given by the eigenvectors of (HHT)T or HH”, re-

spectively, in the order of increasing eigenvalues of (HHT)T, or, decreasing

eigenvalues of HH”. However, since HH” and in turn (HHT)Jr is diagonal,
the eigenvectors are given by the unit vectors {e},_,. Moreover, since the
eigenvalues of (HHT)T are the squared reciprocals of the diagonal values
hj # 0, we have that the kth column of U* is given by e, ;41 for 1 < k < p,
since we assumed that h; are ordered increasingly in terms of magnitude.
Thus, the optimal U is given by

U =

[

: (4.227)

where E is defined in (£225]).

So far, we have determined the optimal U and V for (£.21§). It remains
to determine the optimal ¥ for (£2I8). To that end, we insert the opti-
mum choices U* from ([@227)) and V* from ([@223]) into [A218]] yields to the
optimization problem in standard form [15] as

n

1
minimize
s i—1 )\gisi
i= (4.228)
subject to b'Ts — P} <0,

—s =0,

)
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. . T A T n .
again with s = (s1,82,...,8,) = (0%,03,...,02) € R™" ie, s =
A

0. The vector b in the constraint function of ([£228) is defined as b’

(h, 20,72, 02T, where

= " t=a=pd (4.229)
hp—jr1 p—q<j<p

NotethathiaéOforlSigngqandaj:Oforn<jgw,since;&has
rank n and thus s and b’ has dimension n (cf. ([£228)). We recognize that
problem (#228) is equivalent to (AI99) for A5 = Ay, Po = Py and b = b/,
Hence, the optimal s; of problem ([#22])), is given by ([#204) for A5 = A,
and Py = Pj. Therefore, we finally obtain with

g*:{’/sj forl1<i<n
A

0 n <1< w,

the optimal X for (AL.218) as

—1/4
> = o |Aan 0], (4.230)
0 o
where
Pl
= | (4.231)

n

So far, we have determined the optimum U, V and X for (£.218)) and thus
the optimal A with A* = U*S*V*T. The unitary matrix U* contains the
unit vectors {e; }}_,, since H is assumed to be diagonal. If we further assume,
that the the diagonal H is in decreasing order (in terms of magnitude), then
U* = 1. The unitary matrix V* = U, (cf. (£223))), where U, contains the
eigenvectors of GG, in increasing order and ¥* is given in (Z230), where
the eigenvalues of GG” in A, are ordered increasingly.

Finally, with (£.212]) and the fact that H is of full column-rank, we obtain
the optimal local sensor matrix A as

—-1/4

o o ¥

and in turn with the already known solution C; = 0, the optimal LOL1 =
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(A*, Cy) is thus given by

LOj_,: (A* = c*H

—1/4
Ag(,)l g] u?, ¢ :0)

for constraint (C2)), ¢* is given in (£231]),
EVD: GGT = U,A,UT, (4.232)

where A4, U, are sorted increasingly,

d—1

Ay 1 is the n x n left upper submatrix of Ag,

H is sorted decreasingly.

However, since we have found a closed-form solution for the A-optimal
ith LO, we can still specify the resulting [FIM| J%. To that end, we insert
A* from (£232)) into (£I49) (without the subscript notation) for A = A*,

yielding:

-1

2
—1/4 2 —1/4
_ T A 0 oy, 9 |A 0
el O ) o] EERRC Y o]
—1/4
A 0 2, Ve
0 (4.233)
o2 -1
—1/4 —-1/2 —-1/4
:vgzg,lAgvl/ (C*—gIJra,%Ag,l/) AQJ/ 2,1 VD

2 —1
(a) 12 ( 9 24 —1/2 T
Lv,Al <C*—21 +a2A,1*) VI

where in step (a), we used the fact that Ay, = 2371.
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Chapter 5

Numerical Experiments

In this chapter, we do some numerical experiments to study the performance
behaviour for optimal designed local sensors. Supposing, we use an [MVT]
estimator for our performance analysis. First, we use result for the special
case of a scalar parameter, where we compare the optimal power scheduling
(cf. Subsubsection LZ.3.3]) versus the uniform power scheduling performance
for an orhtogonal [MAC| Then, we restrict our channel model to the cases,
where we also derived optimal solutions for the coherent case, where
we then analyse the performance of orthogonal versus coherent for an
optimal power scheduling strategie (total power constraint). Finally, we will
consider the general case of a vector-valued parameter, where we will analyse
the [MSE] performance for a single sensor setup (i.e., L = 1) for an T-optimal
versus an A-optimal design.

Assuming ideal channel models, i.e., when the local sensor observations
y; for 1 < i < L are directly available to the [EC] the [FIM] J, is then given
by

L
J.023,=) GIC,'G,. (5.1)
i=1
Note that here we assume that C,,, is non-singular for 1 <+ < L. The
J,0 is our central performance benchmark for non-ideal channel models and
it is obvious, that it holds for both multiple access schemes, i.e, for (3.8) and
(B:20). Note, that the[FIM|J, for both [MAC] schemes could exist, even if J, ¢
do not exist in that form. This fact results from the existence of the channel
noise, and the assumption that the covariance matrix is non-singular.

Let us first recall the definition, given in ([2Z9)). Since the
J_1is the covariance matrix of an efficient [MVU] which exists for a[LGM]in
particular (provided that the J, is not singular, cf. Subsection [2.2.3)),
the can be computed by invoking (29) as

Ly
MSE = —tr {3}, (5.2)

99
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which is the arithmetic average of the scalar variances var {ék} for1 <k<
n.

Let us now introduce some additional definitions, which are used in the
following numerical experiments. We denote the total channel noise power
by

L
P2 o, (5.3)
=1

and the signal to noise ratio (SNR)) for constraint (CI)) by

L
SNR £ Py/P,, with Py 2 Z Py, (5.4)
=1

and the [SNR] for constraint (C2) by

L
SNR' & Pj/P,, with Pi2 Y P, (5.5)
=1

5.1 Scalar Parameter

We first consider the scalar parameter case. In what follows, we will analyse
the performance for the optimal power scheduling compared to the uniform
power scheduling strategie and their asymptotic behaviour for an orthogonal
MAC] i.e., on the one hand, when the total power/variance (Fy or P}) in-
creases and on the other hand, when the number of sensors L increases. Note
in simulations we consider the equivalent model with scalar observation at
each local sensor. Therefore, we consider the observation model paramters g;
and Jg, respectively. For performance analysis of the channel aware, we re-
call the centralized performance benchmark from (5.1I), which specializes for
a scalar parameter and using the equivalent model with scalar observation
to

L .2
Z 9i

JZ,O = 0—2, 0'72” 7’5 0. (56)
=1 T

For the following simulations and performance analysis, we will consider only
constraint (C2). Also, we adhere strongly to the simulations made by the
authors of [I] to finally carry out a comparison.

5.1.1 Optimal Power Scheduling for an Orthogonal MAC

As discussed in Subsubsection £4.3.3] we have found a "water-filling" so-
lution for the optimal power scheduling (cf. ([@I42) and ({£I43))), i.e., for



CHAPTER 5. NUMERICAL EXPERIMENTS 101

a given total transmit variance power P - and assuming optimal LO; for
1 <4 < L, we derived optimal power scheduling among all L sensors, in or-
der to achieve the best performance, i.e., the maximum [E1].J,, which is given
in ([@I37) for optimal designed sensors. In contrast, we also discussed the
uniform power scheduling, where the total variance power P, are uniformly
distributed among all L sensors - the resulting [Tl .J, , is given in (ZI38]).

10°

Jy (P — 00)
N channel
: aware
&3 -+ QOptimal Power Scheduling
—+~Uniform Power Scheduling
A -=-Centralized Benchmark
10t ower scheduling gain
-5 0 5 10 15 20 25 30 35 40
SNR’ (dB)
(a)
—-QOptimal Power Scheduling
\ —-Uniform Power Scheduling
107 \ ——Centralized Benchmark
&3 ‘\
n
= \
-
= AL
- \\
&}
107

s 0 5 10 15 20 25 30 3 40
SNR’ (dB)
(b)

Figure 5.1: Uniform power scheduling vs. optimal power scheduling, when
P} or SNR/ increases, for a fixed total number of sensors L = 15. As can be
seen, both scheduling strategies converge to the centralized benchmark, when
SNR’ increases. The lower the SNR’, the more significant the performance
gain, due to optimal power scheduling.

We will now compare both power scheduling strategies in a simple numer-
ical experiment, where we compare both the [E] J, and the (MSEI of
the [MVTU]) by varying the total transmit variance power P, while the channel
noise power is constant (in simulation we used unit variance Py, = 1).
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In Fig. 5.0l we plot the curves for the[FIl J, and the J; ! versus the
SNR’ = F}/P, (cf. (53)), under both uniform and optimal power schedules,
where the total number of sensors is constant with L = 15. Further, obser-
vation noise variances o2 are uniformly taken from the real interval [1,1.5]
- the observation gains g; are uniformly taken from the real interval (0,4].
The squared channel gain hl maxs 1-€-, the largest eigenvalue of HZTHZ are
taken as h?max =cg-d” 35 where d is uniformly taken from the real interval
[1,10] and ¢, is a normahzatlon constant such that E {hZ max} = 1. In the
simulation, the simulated [F1l.J, or, equivalently, the | is averaged over
1000 realizations of the set {U%i,gl,hfma 1<:< L} and is actually the
expected J, and the expected [CRLB respectively.

As can be seen in Fig. 5.1l when the SNR’ increases, both uniform an

optimal power scheduling converges to the centralized benchmark, given in

E8). ie..

l\')

Jz,0 (Py — 00) = Jpu (Py — 00) =

(5.7)

IIMh

when we denote J, , as the achieved [E]l for optimal power scheduling (cf. red
curve in Fig 5.1) and J,, as the achieved [ET for uniform power scheduling
(cf. blue curve in Fig[5.Iland (AI38])). Note that the asymptotic behaviour
for the uniform case when P increases, yields to (£I139), which coincides of
course with the central performance benchmark in (5.6]). On the other hand,
the optimal power scheduling gain, i.e., the difference between uniform an
optimum power scheduling in a logarithmic plot, becomes more significant
as the SNR’ decreases.

We now fix the total transmission variance power P such that we obtain
an SNR’ = 15dB and varying the total number of sensors L. In Fig 5.2
we plot the curves for the FI J, and the CRLB versus the total number of
sensors L under both, uniform and optimal power schedules. Again, in the
simulation, the [F1 .J, or equivalently the CRLB is averaged over 1000 real-
isations of {Jii,gi,hi 1< < L} for 1 < L < Lmax = 45, and is actually
the expected J, and the expected CRLB or MSE, respectively. As can be
seen, the optimum power scheduling gain increases, as the total number of
sensors L increases.

5.1.2 Optimal Power Scheduling for an Orthogonal MAC
and a Coherent MAC

Let us now compare the performance of orthogonal and coherent
under an optimal power scheduling startegie. We restrict our numerical
experiment by assuming orthogonal channel matrices H; for all 4, since for
this special case we derived an optimal local sensor rule for the coherent

MAC] case (cf. Subsubsection A.4.3.2]).
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Figure 5.2: Uniform Power Scheduling vs. Optimal Power Scheduling, when
L increases for SNR' = 15dB.

For a unitary channel matrix H;, all eigenvalues of H;‘FHZ are equal to
one, thus hfmax = 1. In the following simulation we take the same setting
for observation parameters g; and afli as before - the channel noise power is
again assumed to have unit variance, i.e., J,21 = 1. In Fig. B3l we plot the
curves of the [El J, and the versus the total number of sensors L for
the orthogonal case, as before, and in addition the coherent [MAC] case.
Again, we fixed the SNR’ = 10dB. Note that since we solved the otpimum
LO; for the coherent case with respect to a total power constraint, the
observed [F1l .J, and the corresponding or can be perceived as
an optimal power scheduling solution. In the simulation, the [ET .J, and the
is again averaged over 1000 realisations of {o2,g;: 1 <i < L} for
1 < L < Lpax, and is actually the expected J, and the expected CRLB or
MSE, respectively.
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Figure 5.3: Uniform power scheduling vs. optimal power scheduling, when
L increases for SNR' = 10dB.

We perceive that for an orthogonal MAC with finite amount on P, the
overall or [MSEl does not decreases to zero, even if L, the total number
of sensors, aproaches infinity. This fact results from the orthogonality of
each link from sensor to the [FC], which leads to L different and independent
channel noise vectors ny, for 1 <+ < L. Therefore, the corruption of channel
noise cannot be eliminated even when L goes to infinity. In the coherent
[MAC] case, only one channel noise ny, is generated per transmission unit. As
a result of the coherent combination, the SNR for the received data scales
with L, since all transmitted data vectors are correlated to each other, even
though when P is finite.
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5.1.3 Comparison to Existing Results

In conclusion, we show a comparison between our simulation results for the
optimal powers scheduling performance and the simulations results by the
authors of [I]. In Fig. 54 are illustrated the optimal power scheduling gains
compared to the uniform power scheduling for both multiple access schemes.
As already mentioned they considered a Baysian setting, where they mini-
mized the of the estimator. However, the performance results,
with regard to asymptotic behaviours are basically the same insights.

—— Coherent MAGC: Optimal power scheduling

—e— Coherent MAC: Uniform power scheduling
Orthogonal MAG: Optimal power scheduling i

|-~ Orthagonal MAG: Uniform power scheduling \ :

2

10° 10' 10
L

Figure 5.4: [MSE] performance comparision between orthogonal and coherent

NMACK [1].

5.2 Vector Parameter

In what follows, we analyse the performance for the vector paramter case,
where T- and A-optimal designed local sensors (designed for constraint (C2])),
will be compared with regard to the performance - the of an
efficient is given in (5.2). We consider the standard model in our
simulation setup (cf. Definition E3.14]).

5.2.1 T-Optimal and A-Optimal MSE Performance

In the following simulation we used a system setup, where observation- and
channel matrix are both invertable. An A-optimal LO is given in closed-form
- the T-optimal LO has to be computed in a water-filling like manner. Since,
the A-optimal design minimizes the of an efficient unbiased estimator
MV we expect a significant performance gain against the T-optimal design.
We suppose a single sensor setup, i.e., L = 1. In Fig. 5.5 we plot the curves
for the[MSE of the[MVUlversus the SNR/ from (5.5)), for a T- and a A-optimal
design.
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Figure 5.5: MSE-performance for a T- and A-optimal design over SNR’ in a
single sensor setup, L = 1.

In the simulation, we used constant eigenvalues of observation matrix
GTG, ie., Ag; = 1 for all i - a Chi-squared (degree 1) distributed variance
o2 and the eigenvalues for HH” are uniformly taken from the real interval
[0.5,1]. For the channel noise covariance, we set J,21 = 1. Again, we averaged
over 1000 realisations on the set {ag,hi 1< < L}, and is actually the
expected [MSEL

As can be seen, a design under the A-criteria, performs better than that
under the T-criteria, in terms of the [MSEl Consider the asymptotic be-
haviour of both designs for increasing SNR/. We conclude that both con-
verges to the cetralized benchmark, i.e., to the minimum achievable [MSE],
wich results for an ideal channel. On the other extrema, when SNR’ goes
very small, then the difference between A- and T-optimal performance gets
larger. Hence, a T-optimal design is quite sufficient, just when the SNR' is
large enough.



Chapter 6

Conclusions

We considered a [WSN], where sensors and a [EC] collaborate to estimate an
unknown deterministic vector parameter. Due to bandwidth and/or power
limitations, each local sensor has to encode and/or compress (local sensor
rule) their measurement data of the unknown parameter first, before trans-
mitting it over an imperfect channel to the [ECl This encoding should be,
such that the[FC|can estimate the parameter of interest most accurately. We
used the [FI] as our performance metric, due to their relation to the [CRLBL
We considered a linear Gaussian setup, where each local sensor rule and the
fusion rule (estimator function at the[FC|) are described by linear mappings.
We investigated two types of channel usage, an orthogonal and a coherent
[MACL The main goal of this thesis was to determine optimal local sensor
rules, in the sense of maximizing the [FT] subject to bandwidth and/or power
constraints of the transmit signals.

First we have described our local sensor rule more generally by a linear
transformation and additive systematic Gaussian noise, whereby we have
showed that the systematic noise can be neglected.

For the scalar case, we have shown that we can reduce our system model
to an equivalent model in which all local observations are scalar-valued.
Based on this equivalent model, we derived optimal local sensor rules for an
orthogonal MAC]in closed form. We also studied the coherent [MAC] case and
derived optimal local sensor rules under a total power constraint for certain
special cases of the channel states. Based on these optimal local sensor rules,
we have considered the optimal power allocation among sensors. We derived
a water-filling based solution for the optimal power scheduling under a given
total power constraint for the orthogonal case. Simulations showed
that the proposed power scheduling strategy significantly improves the per-
formance when compared to the uniform power scheduling. We have also
shown that the performance has significantly different asymptotic behaviors
when the number of sensors L is large for orthogonal and coherent [MACE.

For a vector parameter, we first discussed some fundamental notions

107
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of optimal experiment designs. In particular, we introduced the T- and
A-optimality criteria, which we then used for a vector-valued parameter.
We derived T- and A-optimal local sensor rules for certain special cases of
channel states. A final simulation showed a [MSElperformance comparison
of these two optimal designs.



Appendix A

A Convex Optimization
Problem

A.1 Water—filling Solution

In solving the optimal power scheduling for a scalar paramter in the orthog-
onal [MAC] case (cf. Subsubsection [£.4.3.3)), and for solving the T-optimal
Design of a local sensor LO; in the vector parameter case (cf. Subsection
[157]), we have to solve an equivalent optimization problem in the form:

K
minimize  f(x) £= — Z c,(gl) S
x (2) (3)
=1 (A (A1)
subject to g1 (x) 21Tx - P <0
g2 (x) £ _x=<0,
where the vector x = [acl To ... xK]T; We assume that the constants

P >0, c,(;) >0, cl(f) >0 and cz) > 0. First, we verify that (A is a convex
optimization problem. We can write the objective f (x) of problem (Al as

fx) =) frlz), (A.2)

gt

with fi (z3) £ —c,(cl)wi’“. It can be verified easily that the first two

c,(f)—l—c(?’)xk
derivatives of fi (zx) are given by
9 PROME)
Jilar) & 5 f (ap) = ——F—t—
O, (cff) + clgg)xk>

(A.3)
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and

2 (1) (2) (3)
i (x) %f(ﬂck) — 9k O O 5 >0, (A.4)
Tk <c,(f) + clgg)wk>

and therefore fi (zy) is convex. The convexity of the constraint functions
g1 (+) and g5 (+) is obvious, since both are linear in x. Hence, problem (A.])
is a convex optimization problem [I5, Chapter 4.2.1].

The [KKT conditions (cf. [15]) for a solution x* to the optimization
problem (AJ) and corresponding Lagrange multipliers (cf. [I5, p.244)), i.e.,
v* for the inequality constraint g; (-) < 0 and A* € R¥ for the inequality
constraint gs () < 0 are given as

1"x* - P<0
x>0
v >0
A* =0
v (17x* — P) =0 (A.5)
Nar=0,k=1,2,.... K
ge)

—cly, k s+ =N =0, k=1,2,... K.
k k k

The resulting optimum x* can be obtained by a so called "water-filling"
procedure. We note that the problem (A.T) is identical to the problem con-
sidered in [15], Ex.5.2], except for the objective functions f (zx). Therefore,
we can closely follow the method in [I5] Ex.5.2] to solve the [KKT] conditions
(AF). In particular, we obtain the following "watter-filling". The optimal
values xj can be expressed as

@0 | @

% % L _ G (A.6)
COSGN A

xj, = max < 0,

and
K (2) (1) (2)
Y max {0, %i - % —p (A7)
i=1 (Ck )2 v Ck

Hence, the optimal z; for 1 < k < K for (AJ) can not be computed
in closed-form. First, we have to determine the optimal variable v from
(A7). Subsequently, the optimal zj, for 1 < k < K can then be computed
according to ([AL6]). This can be done by a so called "water-filling" algorithm
(Cf. Algorithm [AT]).
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Algorithm 1 Water-filling Algorithm

P, c,(cl), c,(f), c,(:’) given for all k£

tol =1le -5
wline =0  %wline = 1/v

e ?
Ptot =, max(0, Py wline — CI(C—S))
z=0

while abs(xy, — Ptot) > tol && z < 10000 do
wline = wline + (z3, — Ptot) /300

FOROE. o)
Ptot =3, max(0, 4/ (‘Z<3)’;2 wline — ﬁ)
z=z+1 * *
end while

2 1 2
DO O

*
xy = max(0 - —
k 0, (@2 v T @
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