
Automation of cut-elimination in
proof schemata

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Tsvetan Chavdarov Dunchev
Matrikelnummer 0827680

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.phil. Alexander Leitsch

Diese Dissertation haben begutachtet:

(Univ.Prof. Dr.phil. Alexander Leitsch) (Dr. Nicolas Peltier)

Wien, 15.11.2012
(Tsvetan Chavdarov Dunchev)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Automation of cut-elimination in
proof schemata

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Tsvetan Chavdarov Dunchev
Registration Number 0827680

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr.phil. Alexander Leitsch

The dissertation has been reviewed by:

(Univ.Prof. Dr.phil. Alexander Leitsch) (Dr. Nicolas Peltier)

Wien, 15.11.2012
(Tsvetan Chavdarov Dunchev)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Tsvetan Dunchev
Favoritenstrasse 9-11, 1040 Wien.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbil-
dungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

ii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Language for propositional schemata 3
2.2 Language for first-order schemata 7
2.3 Sequent calculus LKS for first-order proof schemata 9
2.4 Resolution calculus for first-order proof schemata 15
2.5 The method CERES . 24

3 The method CERESs 27
3.1 Schematic characteristic clause-set 36
3.2 Schematic proof projections 42
3.3 Schematic ACNF . 46

4 The GAPT System 49
4.1 Layers of abstraction . 52

4.1.1 λ-calculus layer . 53
4.1.2 Higher-order logic layer 58
4.1.3 First-order logic layer 62
4.1.4 First-order schemata layer 63
4.1.5 Higher-order functions 64

5 The language SHLK 67
5.1 A Grammar for SHLK . 68
5.2 The Auto-propositional mode 72
5.3 Propositional proof compression 76

6 Algorithms for proof schemata transformation 81
6.1 Computing relevant configurations 81
6.2 Extracting the characteristic term 85
6.3 Computing the characteristic projection term 87

iii

iv CONTENTS

7 Experiments 91
7.1 The schematic EXP Proof . 91

Kurzfassung

Die Schnittelimination von Gentzen [Gen35] ist eine der bekanntesten Meth-
oden zur Beweistransformation, die eine grundlagende Rolle in der automa-
tischen Analyse mathematischer Beweise spielt. In einem Beweis haben die
Schnittformeln die Bedeutung der Lemmata. Ein Beweis ohne die Schnit-
tformeln entspricht der Elimination der Lemmata. Man sagt, dass ein Be-
weis ohne Lemmata eigentlich ein analytischer Beweis ist, wenn alle Formeln
des Beweises inm Endsequent vorkommen. Eine Verbesserung der Meth-
ode von Gentzen ist die Methode CERES (Schnittelimination durch Res-
olution) [BL00]. Die ist eine Methode für Schnittelimination in der Logik
erster Stufe, die die Teile des Beweises mit Schnittregeln analysiert. Diese
Information ist besonderes wertvoll für die Konstruktion einer Menge von
Klauseln, die immer unerfüllbar ist. Deren Widerlegung unterliegt theoretis-
chen und praktischen Einschränkungen. Man kann zum Beispeil CERES
nicht anwenden, wenn der Beweis eine Induktionsregel beinhaltet. Wenn
das Beweis zu gross wird, dann finden die besten Theorembeweisern (derzeit
Prover9 und Vampire) kein Ergebnis mehr. Eine Lösung des ersten Problems
ist durch die Erweiterung von CERES auf CERESs gegeben. Die Methode
CERESs ist eine Methode für Schnittelimination auf den Schemata erster
Stufe. Schemata dienen dazu, unendliche Folgen von Beweisen darzustellen;
diese Schemata bezeichnen wir als Beweisschemata. Die Methode CERESs ist
nur teilweise automatisierbar, weil die Resolution einer Menge von schema-
tischen Klauseln erster Stufe nicht entscheidbar ist.

In dieser Dissertation beschreiben wir die Methode CERESs und präsen-
tieren die Algorithmen und Werkzeuge des GAPT-Systems [LWWP+] für
automatische Analyse schematischer Beweise erster Stufe.

v

vi CONTENTS

Abstract

Cut-elimination introduced by Gentzen [Gen35] is the most prominent form
of proof transformation in logic and plays a key role in automating the anal-
ysis of mathematical proofs. The removal of cuts corresponds to the elim-
ination of intermediate statements (lemmas) used in proofs. The result is
a proof which is analytic in the sense that all statements in the proof are
subformulas of the result. An improvement of the Gentzen’s method is the
method CERES (Cut Elimination by Resolution) [BL00]. It is a method of
cut-elimination in first-order logic which analyzes the parts of the proof used
in cut inferences. This information is used to construct a set of clauses which
is always unsatisfiable. The refutation of this clause-set serves as a skeleton
of a proof with at most atomic cuts. The method CERES has some limita-
tions from a theoretical and practical point of view. For example, CERES
is not applicable in the presence of induction. Furthermore, for large proofs
the clause-sets cannot be refuted because automated theorem provers (such
as Prover9) fail. A solution for the first problem is obtained by extending
CERES to CERESs - a method for cut-elimination in first-order schema.
The concept of schemata allows us to represent an infinite sequence of proofs
as a singe object called proof schemata. Nevertheless, the whole process is
not fully automatable, because the problem of finding a resolution refutation
for the set of first-order claus schemata is not semi-decidable.

In this thesis we describe the method CERESs and present algorithms and
tools which are used by the GAPT framework [LWWP+] for (semi)automated
analysis of first-order proofs and proof schemata.

vii

viii CONTENTS

Acknowledgements

I would like to express my deep gratitude to Prof. Alexander Leitsch for
giving me the opportunity to join one of his interesting and challenging in-
ternational research projects. During the four years as his PhD and Master
student I learned a lot from him both as a scientist and a person. I am very
thankful to the rest of the members of Alex’s project: Daniel Weller, Mikheil
Rukhaia and David Cerna as well as to our partners from the University
of Grenoble: Nicolas Peltier (coordinator and my second adviser), Vincent
Aravantinos (who joined our team for one year), Abdelkader Kersani and
Thierry Boy de la Tour. The cooperation and the regular joint project meet-
ings in Vienna and Grenoble played a significant role for finding solutions to
crucial problems. I would like also to say many thanks to Tomer Libal who
gave me much software-engineering advise and contributed a lot to the im-
plementation of the GAPT framework. Many thanks also to Martin Riener
and Stoiko Ivanov who revealed to me many of the secrets of GNU /Linux .
I also would like to thank the other current and former PhD students of
Alex: Martin Riener, Mikheil Rukhaia, David Cerna, Giselle Machado N.
Reis, Bruno Woltzenlogel Paleo, Daniel Weller and Stefan Hetzl. With each
of them I had many valuable discussions related with my work. Many thanks
to David Cerna. Being that his native language is english, he was able to
edit many parts of my thesis. Last but not least, I would like to thank my
colleagues and friends from the Theory and Logic Group of TU Wien: Paolo
Baldi (who taught me italian and showed me south Italy), Lara Spendier,
Christoph Roschger, Eugen Jiresch and Florian Schweikert. From each of
them I learned something and had many nice moments during my stay in
Vienna.

ix

x CONTENTS

Chapter 1

Introduction

An important method in the development of mathematics is the analysis of
proofs. Indeed many mathematical concepts such as the notion of group or
the notion of probability were introduced by analyzing existing arguments.
In some sense the analysis and synthesis of proofs form the very core of
mathematical progress. Cut-elimination introduced by Gentzen [Gen35] is
the most prominent form of proof transformation in logic and plays a key
role in automating the analysis of mathematical proofs. The removal of cuts
corresponds to the elimination of intermediate statements (lemmas) from
proofs resulting in a proof which is analytic in the sense that all statements
in the proof are subformulas of the result. Therefore, the proof of a com-
binatorial statement is converted into a purely combinatorial proof. The
development of the method CERES (cut-elimination by resolution) [BL00]
was inspired by the idea to fully automate cut-elimination on real mathe-
matical proofs, with the aim of obtaining new interesting elementary proofs.
While a fully automated treatment proved successful for mathematical proofs
of moderate complexity (e.g. the “tape proof” [BHL+06] [AZ99] and the “lat-
tice proof” [HLWWP08b]), more complex mathematical proofs required an
interactive use of CERES . This way, Fürstenberg’s proof of the infinitude
of primes (using topological arguments) was successfully analyzed [BHL+08].
The resulting cut-free proof contains Euclid’s construction of primes. Fürsten-
berg’s proof was formalized as an infinite sequence of LK-proofs. Even in
its interactive use CERES proved to be superior to reductive cut-elimination
due to additional structural information provided by the characteristic clause
set. Like the reductive cut-elimination method, CERES is also not applicable
in the presence of induction. This was one of the motivating reasons CERES
to be extended to CERESs , a cut elimination method for schematic proofs.
A schematic proof is a way of finitely representing an infinite sequence of
proofs. Such a concept is capable of doing cut elimination in presence of

1

2 CHAPTER 1. INTRODUCTION

implicit induction. Furthermore, the analysis of the Fürstenberg’s proof of
the infinitude of prime numbers revealed that the most famous automated
theorem provers, such as Prover9 and Vampire, fail to refute the clause set
of the proof for more than three primes. This was also a motivation for
searching another approach and developing CERESs .

CERES is a cut-elimination method based on resolution. The method
roughly works as follows: from the input proof ϕ of a sequent S a clause
term is extracted and evaluated to an unsatisfiable set of clauses CL(ϕ), the
characteristic clause set. A resolution refutation γ of CL(ϕ), which is ob-
tained using a first-order theorem prover, serves as a skeleton for an (atomic
cut normal form) ACNF - a proof of S which contains at most atomic cuts.
CERESs is based on a similar concept. The advantage of the latter in this re-
spect is that it extracts a schematic clause set of constant length. In contrast,
if for a concrete instance of the proof we apply CERES we get clause sets
with different length (even with an exponential growth). The computation
of the ACNF in CERESs is done semi-automatically because of the unde-
cidability of the unification problem for the schematic first order logic. The
method CERESs has been implemented in the GAPT framework [LWWP+]
and is a useful tool in automated proof mining, thus contributing to an ex-
perimental culture of computer-aided proof analysis in mathematics. The
thesis is organized as follows. The second chapter contains the preliminar-
ies. The language for first-order schemata is defined and the calculus LKS
for first-order schemata is presented. Then, the formal description of the
method CERES is explained. The third chapter is devoted to the method
CERESs . The fourth chapter is devoted to the GAPT framework and,
more specifically, to the subset which is related with the implementation of
the method CERESs . Also a detailed description of the general architecture
and the data-structures is given. In the fifth chapter the grammar of the
proof schemata input language SHLK is defined and an algorithm for gen-
erating propositional proof schemata. The main contribution of this thesis
is presented in chapter 6. Several key algorithms are described. The out-
come of the algorithms is presented in chapter 7 where we show the whole
automation process in detail.

Chapter 2

Preliminaries

Before going deeply into the method CERESs and the algorithms used for
its automation, we give some basic definitions and notations.

2.1 Language for propositional schemata

The aim of this section is to introduce a notion of schemata for proposi-
tional formula [ACP09], a key notion needed to introduce propositional proof
schemata. We start by first introducing the syntax. The main goal is to de-
fine formally a language that can specify an infinite sequence of first-order
formulas by a finite term. In order to make clear the difference, we partition
the universe of objects by using a 3-sorted logic. The sorts are ω, ι and o.
They are also called basic types. Types are objects of a syntactic nature that
are assigned to lambda terms. We create types as usual : if τ1, τ2 are types,
then τ1 → τ2 is a type. We use left associativity, i.e. τ1 → τ2 → · · · → τn
means τ1 → (τ2 → (· · · → τn))). Objects of type o are called boolean indi-
viduals, objects of type ω are called arithmetical individuals and objects of
type ι are called first-order individuals.

We assume countably infinite and pairwise disjoint sets Va of index vari-
ables of type ω (intended to be interpreted over N), V1 of first-order variables
of type ι, V2 of second-order variables of type ω → ι and a countably infi-
nite set of propositional symbols of type ω → o. As we will see later in this
section, index variables can be free or bound. Free index variables are called
parameters. For the sake of readability we will use k,m, n as parameters,
i, j as bound index variables, the greek letters α, β as natural numbers and
a, b, . . . as linear arithmetic expressions.

Definition (arithmetic expression) An arithmetic expression is a term of

3

4 CHAPTER 2. PRELIMINARIES

finite type ω built as usual on the signature {0, s,+} ∪ Va, where s is inter-
preted as a successor function which has type ω → ω and there is at most
one index variable in the term. If an arithmetic expression a does not con-
tain variables it is called ground. The binary symbol ”+” is interpreted as
a usual arithmetical addition which has a type: ω → ω → ω. The numerals
0̄, 1̄, 2̄, . . . denote the terms 0, s(0), s(s(0)), . . . respectively and they repre-
sent the natural numbers.

Definition (regular arithmetic expression) Let t is a linear arithmetic ex-
pression. If t is equivalent (Presburger arithmetic) to an expression of the
form sα(k), where k ∈ Va ∪ {0}, α ∈ N, then t is called a regular arithmetic
expression.

Example: k + α is a regular arithmetic expressions, but n + i, 2.k + α
and s(n) + s(s(i)) are not considered as regular arithmetic expressions.

We make use of the standard term-rewriting system for arithmetic expres-
sions:

• a+ 0→ a

• a+ s(b)→ s(a+ b)

It is known to be confluent and terminating for arithmetic expressions. For
simplicity we will identify such expressions with their normal forms sα(k),
where k is a parameter or 0.

Definition (Indexed proposition) An expression of the form Pa, where a
is an arithmetic expression of type ω and P a propositional symbol of type
ω → o, is called a (linear) indexed proposition. If a is a regular arithmetic
expression, then Pa is called a regular indexed proposition

Example: Pn+3̄ is a linear indexed proposition, but Pn+k is not, where
n, k ∈ Va

Definition (propositional formula schemata) We define formula schemata
inductively in the following way:

• An indexed proposition is a formula schema.

2.1. LANGUAGE FOR PROPOSITIONAL SCHEMATA 5

• If φ1 and φ2 are formula schemata, then so are φ1 ∨ φ2, φ1 ∧ φ2 and
¬φ1.

• If φ is a formula schema, a, b are arithmetic expressions and i is an
index variable not bound in φ, then

∧b
i=a φ and

∨b
i=a φ are formula

schemata such that i is bound in both formula schemata.

The binary connectives ∨,∧,→ are are interpreted as a constants of type
o → o → o. The ¬ is of type o → o, the iterations

∧
and

∨
are of type

ω → ω → (ω → o) → o. We denote formula schemata by A,B, The
notation A(k) is used to indicate a parameter k in A. Then A(a) denotes
A {k ← a}.

Definition (Iterated schemata) A formula schema which has as bounds reg-
ular arithmetic expressions over the same parameter k is called an iterated
schema.

Remark: From now on when we say a formula schema we mean an it-
erated formula schema.

Example: P0 ∨
∧k+1
i=0 (Pi → Pi+1) is a formula schema with a parameter

k, but
∧k+n
i=1 Pi is not (because the upper bound is not a regular arithmetic

term).

Definition (Semantics) An interpretation of the schema language is a func-
tion I mapping an element of Va to value in N and each indexed proposition to
{true, false}. I is extended as usual into a function mapping all arithmetic
expressions to natural numbers. The semantics [ϕ]I of a formula schema ϕ
under the interpretation I is defined inductively:

• [Pk]I = PI(k)

• ¬[ϕ]I = true iff [ϕ]I = false

• [ϕ1]I ∨ [ϕ2]I = true iff [ϕ1]I = true or [ϕ2]I = true

• [ϕ1]I ∧ [ϕ2]I = true iff [ϕ1]I = true and [ϕ2]I = true

• [
∨b
i=a ϕ]I = true iff there is an integer α, s.t. I(a) ≤ α ≤ I(b) and

[ϕ]I{i/α} = true

• [
∧b
i=a ϕ]I = true iff for every integer α , s.t. I(a) ≤ α ≤ I(b) and

[ϕ]I{i/α} = true

6 CHAPTER 2. PRELIMINARIES

Definition A substitution σ is a function mapping every free index variable
to an arithmetic expression. We write [a1/i1, . . . , ak/ik] for the substitution
mapping respectively i1, . . . , ik to a1, . . . , ak . The application of a substi-
tution σ to a schema (or arithmetic expression) a is defined as usual and
denoted by aσ. Notice that if a is an arithmetic expression and σ a substitu-
tion mapping every variable in a to a ground term (i.e. a term with no index
variable) then aσ is a ground numeral.

Definition (Satisfiable) A formula schema ϕ is satisfiable iff there exists
and interpretation I, s.t. [ϕ]I = true.

The condition of having at most one index variable in the linear arithmetic
expressions is very restrictive. As we will see later, it plays a key role of
the definition of schematic proofs. On other hand, if we want to guarantee
a decidability of the satisfiability problem for the propositional fragment of
formula schemata we need stronger restrictions, namely we need the notion
of regular schemata [ACP11]. The undecidability of the satisfiability prob-
lem for non-regular schemata can be shown by a tricky reduction [Coo04]
to the Post correspondence problem. On the other hand, analyzing interest-
ing mathematical schematic proofs requires more indices in the propositional
case or at least first-order logic with at least one index. In this thesis we will
not consider regular schemata because it is not essential for the definition of
the method CERESs .

Definition (Sequent) Let Γ and ∆ are multisets of propositional formula
schemata. Then Γ ` ∆ is called sequent and has the meaning of the formula
A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm, for Ai ∈ Γ and Bj ∈ ∆, where i = 1, . . . , n
and j = 1, . . . ,m. A sequent is called atomic if all elements of Γ and ∆ are
indexed propositions (or atoms in the case of first-order logic).

Definition (Clause) Let Γ ` ∆ is a sequent. If Γ and ∆ are multisets
of indexed propositions , then Γ ` ∆ is called a clause.

Definition (p-Sequent) Let S be a sequent such that n : ω, x1 : ι, . . . , xα : ι
are the only free variables which occur in it, for α ≥ 0. Then S is called a
p-sequent and it is denoted by S(n, x1, . . . , xα).

Definition (Simple sequent) Let S be a sequent such that n : ω is the only

2.2. LANGUAGE FOR FIRST-ORDER SCHEMATA 7

free-variables which occur in it. Then S is called a simple sequent and it is
denoted by S(n).

Definition (Composition) Let C = Γ1 ` ∆1 and D = Γ2 ` ∆2 are clauses.
Then C ◦D = Γ1,Γ2 ` ∆1,∆2.

2.2 Language for first-order schemata

In order to investigate interesting and non-trivial sequences of uniform math-
ematical proofs, we have to extend the current formalism to first-order logic,
but we still restrict it to a schema with one free index variable (parameter).
This restriction comes also from another reason, namely the extraction of
a schematic clause set (a set of clauses which contain specific information
for the cut formulas) from a proof derivation. It is not yet clear how its
extraction is performed in the case of more than one parameter. As in the
propositional case, its main purpose is to allow a specification of an infinite
set of first-order formulas by finite terms.

Let V1 be a set of first-order variables of type ι, V2 be a set of second-order
variables of type ω → ι, Fn a set of n-ary function symbols. Let Fna be a
set of (n + 1)-ary defined function symbols. We denote Fa =

⋃Fna . Over
the defined symbols we assume a strict ordering < in order to guarantee
termination. For every defined symbol f ∈ Fna we assume that its type is
ω → τ1 → · · · → τn → ι.

Definition (s-term) The s-terms are defined inductively as follows:

• 0̄ is a term (of type ω)

• variables from V1 are terms (of type ι)

• index variables from Va are terms (of type ω)

• if t is a term of type ω, then s(t) is a term (often written t+ 1) of type
ω, where s is of type ω → ω

• if g ∈ Fn and ti are terms, for i = 1, . . . , n, then g(t1, . . . , tn) is a term

• if f ∈ Fn+1
a is a defined symbol, ti are terms, for i = 1, . . . , n, and a

is an arithmetic expression, then f(a, t1, . . . , tn) is a term. Always we
associate such f with a term-rewriting system:

8 CHAPTER 2. PRELIMINARIES

– f(0̄, x1, . . . , xn)→ s

– f(k + 1, x1, . . . , xn)→ t[f(k, x1, . . . , xn)],

where s is a term with variables in {x1, . . . , xn} and t is a term
with variables in {k, x1, . . . , xn} and for any defined term g(a,~t)
occurring in t, either g = f, a = k and ~t = x1, . . . , xn, or g > f .

To denote that an expression t rewrites to an expression s in finitely many
steps we write t � s. Since this definition has a primitive recursive nature,
each term has a unique normal form.

Definition (first-order formula schemata) First-order schemata are built in-
ductively over the set of s-terms using a set of predicate symbols, the standard
logical connectives ¬,∨,∧ and →, the quantifiers ∀ and ∃ and the iterative
connectives

∨b
i=a and

∧b
i=a.

Remark: We do not allow quantification over variables of type ω.

The semantics of the first-order schemata is defined in the following way:
interpretation I is defined as usual, with the additional constraint that the
terms of type ω are interpreted as natural numbers, and extended to schemata
of formulas as in the propositional case.

Having defined symbols in our language increases its expressivity because we
can easily formalize primitive recursive functions. On other hand this results
in some limitations such that we loose the decidability of the term unification
problem. The rewriting rules which define the s-terms give us a language for
the primitive recursive functions. The programs over this language are called
LOOP2 programs [BL74]. It is well known that such a programs always halt.

Theorem. The unification problem of s-terms is undecidable.

Proof: We reduce the unification problem of s-terms to the Halting prob-
lem [Tur36]. The functions computable with LOOP2 programs for which
there exists a primitive recursive enumeration ψ : N→ N are called elemen-
tary. That means that:

ψ(n,m) = result of LOOP-2 program nr. n on input m.

By En
k we are denoting the elementary functions Nn → Nk. It can be shown

that there is a universal Turing machine such that its halting predicate

2.3. SEQUENT CALCULUS LKS FOR FIRST-ORDER PROOF SCHEMATA 9

T (n,m, k) is elementary [BL74]. T (n,m, k) = true iff the program num-
ber n stops on input m in less than k steps. Let f ∈ E2

1 . Then there exists
a primitive recursive function h s.t.

ψ(h(n),m) = f(n,m) for all n,m ∈ N.

Now we define a function g : N× N→ N by:

g(n, k) = k + 1 if ¬T (n, n, k)

= 0 otherwise.

Hence, g ∈ E2
1 . By definition of g we obtain:

n ∈ K̄ ↔ ∀k.¬T (n, n, k)↔ ∀k.g(n, k) 6= 0

where K is the halting problem, i.e. the set:

{(n, n)| the program nr. n will stop on input n}

As ψ is a primitive recursive and effective enumeration of E1
1 there exists a

primitive recursive function h s.t. ψ(h(n), k) = g(n, k) for all n, k ∈ N, such
that:

n ∈ K̄ ↔ ∀k.ψ(h(n), k) 6= 0̄.

Now let fψ ∈ F 1
s the representation of ψ, fh ∈ F 0

s that of h. Then deciding
the unification problems ∃y.ψ(m̄, y) = 0̄ for number constants m̄ and n ∈ N
is equivalent to the equivalence:

∃y.fψ(fh(n̄), y) = 0̄↔ n ∈ K

This way we obtained a decision procedure for K, which obviously does not
exists, because K is undecidable.

2.3 Sequent calculus LKS for first-order proof

schemata

After defining the notions of schematic terms and formulas, now we are ready
to define the notion of proof schemata, so that we can interpret the schematic
first-order language and state a soundness result. The notion of schematic

10 CHAPTER 2. PRELIMINARIES

proof is based on the usual classical sequent calculus LK : it is a finite
derivation tree of sequents which are formed according to the rules of the
proof system LKS. The sequent calculus for first-order proof schemata ex-
tends the Gentzen’s sequent calculus LK in two ways. First, rules that
iterate over formula schemata were defined. Still the length of the sequent
in a schematic proof remains constant. This is essential for keeping track on
the cut-ancestors as we will see later. Second, we have a rule which oper-
ates in a term level within a formula - it applies finitely many reductions to
all s-terms according to the given confluent and terminating term-rewriting
systems. The axioms may be sequents which contain atoms or indexed pred-
icates only. We assume that the lower and upper bounds of the iterations

∧

and
∨

are always 0 and n+ α, respectively. The inference rules are:

1.Logical rules:

• ∧ introduction:

A,Γ ` ∆ ∧ : l1
A ∧B,Γ ` ∆

B,Γ ` ∆ ∧ : l2
A ∧B,Γ ` ∆

Γ ` ∆, A Π ` Λ, B ∧ : r
Γ,Π ` ∆,Λ, A ∧B

• ∨ introduction:

A,Γ ` ∆ B,Π ` Λ ∨ : l
A ∨B,Γ,Π ` ∆,Λ

Γ ` ∆, A ∨ : r1
Γ ` ∆, A ∨B

Γ ` ∆, B ∨ : r2
Γ ` ∆, A ∨B

• Equivalences: A0 ≡
∨0
i=0 Ai and (

∨n
i=0Ai) ∨ An+1 ≡

∨n+1
i=0 Ai.

Analogously
∧

is defined.

• ¬ introduction:

Γ ` ∆, A ¬ : l¬A,Γ ` ∆

A,Γ ` ∆ ¬ : r
Γ ` ∆,¬A

2.3. SEQUENT CALCULUS LKS FOR FIRST-ORDER PROOF SCHEMATA 11

2. Structural rules:

• Weakening :

Γ ` ∆
w : l

A,Γ ` ∆
Γ ` ∆ w : r

Γ ` ∆, A

• Contraction:

A,A,Γ ` ∆
c : l

A,Γ ` ∆

Γ ` ∆, A,A
c : r

Γ ` ∆, A

3. Cut rule:

Γ ` ∆, A A,Π ` Λ
cut

Γ,Π ` ∆,Λ

4. Quantifier rules:

• existential:

A{x← α},Γ ` ∆
∃ : l

(∃x)A,Γ ` ∆

Γ ` ∆, A{x← t}
∃ : r

Γ ` ∆, (∃x)A

• universal:

A{x← t},Γ ` ∆
∀ : l

(∀x)A,Γ ` ∆

Γ ` ∆, A{x← α}
∀ : r

Γ ` ∆, (∀x)A

6. Definition rule:

S[t] �
S[t′]

where t� t′.

12 CHAPTER 2. PRELIMINARIES

The first-order variable α of sort ι in the ∀ : r and ∃ : l rules is called eigen
variable. It should be free and it should not appear in Γ and ∆. We do not
allow quantification over parameters, i.e. over variables of sort ω. The term
t in ∀ : l and ∃ : r rules is an arbitrary term containing only free first-order
variables. The formulas A and B in the upper sequent(s) of an inference are
called auxiliary formulas. The formulas in the end-sequent of the inference
are called main formulas (Γ and ∆ are set of formulas, not formulas in this
sense).

Now we will define the concepts of a proof derivation (or simply proof).
We assume that there are infinitely many countable symbols for denoting
pairs of LKS-proofs ϕ, ψ, χ, φ, . . . which are called proof symbols and they
come with a pair of LKS-proofs. The first element of such a pair will be
called a base-case proof (denoted by π1, π2, . . .), the second element - a step-
case proof (denoted by ν1(k+1), ν2(k+1), . . .). We assume that < is a given
strict order between the proof symbols.

Definition (proof-link) Let t is a arithmetic expression and S(n, x1, . . . , xα)

be a p-sequent. Then the expression:
ϕ(t, a1, . . . , aα)

S(t, a1, . . . , aα)
is called a proof-link,

where ai is a free first-order variable of type ι, for i = 1, . . . , α and t is an
arithmetical term.

Definition (schematic proof) A binary tree is called a proof if each node
is a sequent obtained by applying LKS-rules from the leafs to the root. The
leafs must contain either atomic sequents (the sequent contains only atom-
s/indexed predicates) or proof-links.

Definition (proof schemata) Let ψ be a proof symbol and k is an integer
variable. Then a proof schema pair for ψi is a pair of proofs 〈ψi(0), ψi(k+1)〉,
where ψi(0) is a ground LKS-proof (called base-case) with end-sequent Si(0)
and ψi(k+ 1) is an LKS-proof (called step-case) with end-sequent Si(k+ 1).
The proof ψi(k + 1) may contain proof-links of the form:

• ψi(k, a1, . . . , aα)

Si(k, a1, . . . , aα)

• ψj(t, a1, . . . , aα)

Sj(t, a1, . . . , aα)
, where i < j and t is an integer term with a free

indexed variable k.

2.3. SEQUENT CALCULUS LKS FOR FIRST-ORDER PROOF SCHEMATA 13

Intuitively speaking, the proof-link can be thought of as a subproof. In-
deed, for a given evaluation I, the term I(t) is a ground term and the proof
ϕ(I(t)), where k is a free indexed variable in t, is a ground (sub)proof with
end-sequent [S]I . Note that a ground proof may contain the iterations

∧

and
∨

which lower and upper bounds are ground.

As the reader has already noticed, the first kind of proof-links refers to
the proof itself with an index which is always smaller then the current one.
Whereas the second proof-link refers to another proof whose proof symbol is
strictly bigger than ψi with respect to the proof symbol ordering <. Never-
theless, in the second case we do not require a restriction over the parameter
of the called proof. The conditions in the above definition are crucial for
defining the notion of the proof schema as a primitive recursion of schematic
proofs. Furthermore, they guarantee that no looping is possible, i.e. the
mutual recursion does not take place.

For a proof schemata ψ we assume an identification between formula oc-
currences in the end-sequents of ψ(0) and ψ(k + 1) so that we can speak of
occurrences in the end-sequent of ψ. This will allow us to define some crucial
for the method CERESs relations between the formula occurrences of the
proof-tree such as the ancestor relation which is formally defined in the next
chapter.

Example: Let Ψ = 〈ψ1, ψ2〉 is a propositional proof schema, where ψi is
the pair (πi, νi(k+ 1)) for i = 1, 2, where the pair for ψ2 is defined as follows:

• π2:

p0 ` p0 ≡ : l∨0
i=0 pi ` p0 ≡ : r∨0

i=0 pi `
∨0
i=0 pi

• ν2(k + 1):

(ν2(k))
∨k
i=0 pi `

∨k
i=0 pi pk+1 ` pk+1 ∨ : l∨k

i=0 pi ∨ pk+1 `
∨k
i=0 pi, pk+1 ≡ : r∨k

i=0 pi ∨ pk+1 `
∨k+1
i=0 pi ≡ : l∨k+1

i=0 pi `
∨k+1
i=0 pi

and the pair for ψ1 is defined as follows:

14 CHAPTER 2. PRELIMINARIES

• π1:

p0 ` p0 ¬ : l¬p0, p0 ` p1 ` p1 ∨ : l
p0,¬p0 ∨ p1 ` p1

• ν1(k + 1):

(ν1(k))

p0,
∧k
i=0(¬pi ∨ pi+1) ` ∨k+1

i=0 pi

(ν2(k + 1))
∨k+1
i=0 pi `

∨k+1
i=0 pi

w : l
¬pk+1,

∨k+1
i=0 pi `

∨k+1
i=0 pi pk+2 ` pk+2 ∨ : l∨k+1

i=0 pi,¬pk+1 ∨ pk+2 ` pk+2,
∨k+1
i=0 pi

cut
p0,

∧k
i=0(¬pi ∨ pi+1),¬pk+1 ∨ pk+2 `

∨k+1
i=0 pi, pk+2 ∧ : l

p0,
∧k+1
i=0 (¬pi ∨ pi+1) ` ∨k+1

i=0 pi, pk+2 ≡ : r
p0,

∧k+1
i=0 (¬pi ∨ pi+1) ` ∨k+2

i=0 pi

Remark: The unary inference rules ≡l and ≡r which are used above are not
formally in the calculus. We define them as macro-rules in order to improve
the readability. For an indexed proposition Ci and arithmetical terms a, b
where a < b, the rules are defined as follows, respectively:

Ca,
∧b
i=a+1 Ci,Γ ` ∆

∧ : l1
Ca ∧

∧b
i=a+1 Ci,

∧b
i=a+1 Ci,Γ ` ∆

∧ : l2
Ca ∧

∧b
i=a+1 Ci, Ca ∧

∧b
i=a+1 Ci,Γ ` ∆

c : l∧b
i=a Ci,Γ ` ∆

Γ ` ∆, Ca,
∨b
i=a+1 Ci

∨ : r1
Γ ` ∆, Ca ∨

∨b
i=a+1 Ci,

∨b
i=a+1 Ci

∨ : r2
Γ ` ∆, Ca ∨

∨b
i=a+1 Ci, Ca ∨

∨b
i=a+1 Ci

c : r
Γ ` ∆,

∨b
i=a Ci

In the example above we have ψ1 < ψ2. In the step-case of ψ1 we see the
two kinds of proof-links : the one which refers to ν1(k), i.e. to itself, and
the one which refers to ν2(k + 1). The formulas in red are cut-ancestors.
None of them comes from the weakening rules and therefore, according to
the subformula property of LK it follows that these formulas are propagated
somehow in the proof-links. How exactly this is done is a central topic of the
next chapter. As it is also seen from the example we do not have positions of
the formula occurrences in the sequent, i.e. the antecedent and the succedent
parts of the sequent are multisets of formula occurrences. However, we have
a positions in the proof derivation:

Definition (ancestor relation) Let ϕ be a proof and ζ is a node in the proof.
Then ϕ.ζ denotes the subproof of ϕ with root ζ. A proof node µ is called
immediate successor of ζ if µ is the occurrence of a premise of an inference

2.4. RESOLUTION CALCULUS FOR FIRST-ORDER PROOF SCHEMATA 15

rule ρ in ϕ with conclusion ζ. Let ρ1 and ρ2 be arbitrary unary and binary
inference in an LKS proof:

Π1,Γ1 ` ∆1,Λ1 ρ1
Π,Γ1 ` ∆1,Λ

Π1,Γ1 ` ∆1,Λ1 Π2,Γ2 ` ∆2,Λ2 ρ2
Γ1,Γ2,Π ` ∆1,∆2,Λ

where Πi,∆i (Π,∆) denote the auxiliary formulas in the premise (principal
formulas) in the conclusion. We define a relation R such that v ∈ Γi, w ∈ ∆i

are positions of a formula f in the premise and v′ ∈ Γi, w
′ ∈ ∆i are posi-

tions of the same formula in the conclusion of the inferences. Then we define
vRv′, wRw′. Let v′1 ∈ Π be the principal formula of ρ1 (ρ2) and v1 (v1, v2) is
(are) the auxiliary formula(s) of ρ1 (ρ2). Then v1Rv

′
1 (v1Rv

′
1, v2Rv

′
1). R does

not have other pairs of formula occurrences other than those mentioned. The
reflexive and transitive closure of R is called ancestor relation in ϕ.

Remark: We can think of a formula occurrence as an object which is a
formula in the antecedent or succedent part of the sequent together with its
ancestors. This difference will be exploited in the next chapters where we
describe the algorithms and the datastructures in the system CERESs . When
we talk about a formula in a proof, we usually mean a formula occurrence.

2.4 Resolution calculus for first-order proof

schemata

In this section we define a very strong calculus for resolution schemata which
is capable to deal with a schematic description of a sequence of clauses. In
the previous section we introduced the set V2. The need to use such variables
appears, because we need to construct somehow an enumeration for the first-
order index variables which plays a role when the parameter is instantiated
with a concrete instance.

Definition (clause) Let p1, . . . , pα and q1, . . . , qβ be schematic atomic for-
mulas; then p1, . . . , pα ` q1, . . . , qβ is called a clause. A clause is called arith-
metically ground (shorthand:a-ground) if it does not contain arithmetic vari-
ables. An arithmetically ground clause is in normal form if it is irreducible
under the defining rewrite rules. The set of clause schemata is denoted by CS.

16 CHAPTER 2. PRELIMINARIES

We introduce clause symbols and denote them by c, c′, c1, c2, . . . for defin-
ing clause schemata. Each clause symbol is associated with a unique arity.
The type of the first argument is always an arithmetic expression. Clause
variables are denoted by X, Y,X1, Y1, . . . and the set of all clause variables is
denoted by Vc.

Definition (clause schema)

• Clauses and clause variables are clause schemata.

• If C1 and C2 are clause schemata then C1 ◦ C2 is a clause schema.

• Furthermore, let c be a clause symbol of arity β+γ+1, a an arithmetic
term, x1, . . . , xβ ∈ V2 andX1, . . . , Xγ ∈ Vc. Then c(a, x1, . . . , xβ, X1, . . . , Xγ)
is a clause schema w.r.t. the rewrite system R(c), where R(c) is of the
form:

c(0̄, x1, . . . , xβ, X1, . . . , Xγ) → C

c(k + 1, x1, . . . , xβ, X1, . . . , Xγ) → c(k, x1, . . . , xβ, X1, . . . , Xγ) ◦D

where C is an arithmetically ground clause schema such that V (C) ⊆
{x1, . . . , xβ, X1, . . . , Xγ} and D is a clause with V (D) ⊆ {x1, . . . , xβ, k}.

Example: Let σ ∈ F 3
s , g ∈ F 1, x ∈ V2, l ∈ Va, X ∈ Vc with the correspond-

ing rewrite rules R(σ):

σ(0̄, x, l) → x(l)

σ(k + 1, x, l) → g(σ(k, x, l))

and let c(n, x,X) be a clause schema for R(c) consisting of the rules:

c(0, x,X) → X ◦ (` P (σ(0̄, x, 0̄)))

c(k + 1, x,X) → c(k, x,X) ◦ (` P (σ(k + 1, x, k + 1)))

The normal forms of c(n, x,X) for {n← α} are just the clause schemata:

X ` P (x(0)), P (g(x(1))), . . . , P (gα(x(α)))

2.4. RESOLUTION CALCULUS FOR FIRST-ORDER PROOF SCHEMATA 17

Definition (c-substitution) A c-substitution is a mapping with a finite do-
main which maps variables from Vc to clauses in CS.

Definition (semantics of clause schema) Let C be a clause schema. Let ϑ be
an arithmetically ground s-substitution with Va(C)∪V1(C) ⊆ dom(ϑ) and λ
be a c-substitution without clause variables in the range and Vc(C) ⊆ dom(λ).
We define the interpretation of C under (ϑ, λ) as:

vc(ϑ, λ, C) = ((Cλ)ϑ) ↓

where ↓ means normalization.

Example: let c(n, x,X) be the clause schema from the previous example,
ϑ = {n← α} and λ = {X ← Q(x(n))}. Then:

vc(ϑ, λ, C) = Q(x(α)) ` P (x(0)), P (g(x(1))), . . . , P (gα(x(α)))

The notion of the clause schema makes it possible to describe a sequence
of clause sets CL(ϕ1), . . . , CL(ϕn) for a given instance of the parameter n.
In order to guarantee the growing length of this sequence (i.e. adding new
clauses to a set), we will introduce clause-set variables ξ1, ξ2, . . . over finite
sets of clauses. The set of all clause-set variables is denoted by Vclset. The
set CST of clause-set terms is defined inductively as follows:

Definition (clause-set term)

• if ξ ∈ Vclset, then ξ ∈ CST

• if C ∈ CS , then [C] ∈ CST

• if t1, t2 ∈ CST, then t1 ⊕ t2 ∈ CST and t1 ⊗ t2 ∈ CST

Definition (clause-set term evaluation) Let t be a clause-set term s.t. Va(t)∪
Vc(t) ∪ Vclset(t) = ∅. Then we define the evaluation of t to a set of clauses in
the standard way, where ∪ and × are the set-theoretical union and cartesian
product:

• If t = [C], then |[C]| = {C}

18 CHAPTER 2. PRELIMINARIES

• If t = t1 ⊕ t2, then |t| = |t1| ∪ |t2|

• If t = t1 ⊗ t2, then |t| = |t1| × |t2|

As we will see later, the characteristic clause term - a structure which is the
skeleton of the computation of the characteristic clause set, corresponds to
the clause-set term . The evaluation of the clause term is exactly the clause
set as one can notice this connection by looking at its semantics:

Definition (semantics of clause-set terms) Let t be a clause-set term with
Vc(t) = {X1, . . . , Xα}, Vclset(t) = {ξ1, . . . , ξβ} and Va(t) = {n}. Let C1, . . . , Cα
are clauses, ϑ = {n← γ}, λ = {X1 ← C1, . . . , Xα ← Cα} and
µ = {ξ1 ← s1, . . . , ξβ ← sβ} (for clause-set terms s1, . . . , sβ not containing
clause-set variables). Then we define a semantic function vcst by:

vcst(ϑ, λ, µ, t) = |(tµλϑ) ↓ |

where |.| is from the previous definition.

Example: Let c be the clause symbol from the previous example. Then

t : ([c(n, x,X)]⊗ [` P (x(n))])⊕ ξ

is a clause-set term. Let ϑ = {n← α}, λ = {X ← `} and
µ = {ξ ← [P (σ(n, x, n)) `]}. Then the evaluation vcst(ϑ, λ, µ, t) is:

{P (gα(x(α))) `} ∪ {` P (x(0)), P (g(x(1))), . . . , P (gα(x(α))), P (x(α))}

Definition Let t be a clause-set term, ξ1, . . . , ξα in Vclset, and s1, . . . , sα
objects of appropriate type. Then t{ξ1 ← s1, . . . , ξα ← sα} is called a clause-
set term over {s1, . . . , sα} (note that every ordinary clause set term is also a
clause set term over any set {s1, . . . , sα}).

Example: Let t be the clause-set term:

t : ([c(n, x,X)]⊗ [` P (x(n))])⊕ ξ

from the previous example and s be an object of the type of CST. Then

t′ : ([c(n, x,X)]⊗ [` P (x(n))])⊕ s

2.4. RESOLUTION CALCULUS FOR FIRST-ORDER PROOF SCHEMATA 19

is a clause-set term over {s}.

Having defined the clause-set term, we can now define the clause-set schemata.
As we will see later, this is essential for the definition of our notion of
schematic resolution deduction.

Definition (clause-set schema) The symbols d0, d1, . . . will be reserved for
denoting clause-set schemata. A clause-set schema is a tuple ∆: (d1, . . . , dα)
together with sets of rewrite rules R(d1), . . . ,R(dα) such that for all i =
1, . . . , α we define R(di) as:

di(0̄, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ) → tbi
di(k + 1, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ) → tsi

where tbi is clause-set term over {dj(rj) | i < j ≤ α} for some rj ∈ CST and
tsi is a clause-set term over {dj(sj) | i < j ≤ α} ∪ {di(k)} for some sj ∈ CST
and:

• V (tbi) ⊆ {x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ}

• V (tsi) ⊆ {x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ, k}

Definition (semantics of clause-set schemata) We extend vcst to a function
v∗cst. Let ∆: (d1, . . . , dα) be a clause set schema, ϑ a substitution on Va(∆),
λ a substitution on Vc(∆) and ξ be a substitution on Vclset(∆). We define:

v∗cst(ϑ, λ, ξ, dα(0̄, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ)) = vcst(ϑ, λ, ξ, t
b
α)

v∗cst(ϑ, λ, ξ, dα(k + 1, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ)) = v∗cst(ϑ, λ, ξ, t
s
α)

Note that tbα is a clause-set term. For 1 ≤ i < α we define:

v∗cst(ϑ, λ, ξ, di(0̄, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ)) = v∗cst(ϑ, λ, ξ, t
b
i)

v∗cst(ϑ, λ, ξ, di(k + 1, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ)) = v∗cst(ϑ, λ, ξ, t
s
i)

The clause set schema defined by ∆ w.r.t. (ϑ, λ, µ) for dom(ϑ) = {n} is then
defined as:

v∗cst(ϑ, λ, ξ, d1(n, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ))

20 CHAPTER 2. PRELIMINARIES

A clause-set schema is called unsatisfiable if there exist λ and ξ such that for
all α and ϑα : {n← α} the clause set:

v∗cst(ϑα, λ, ξ, d1(n, x1, . . . , xδ, X1, . . . , Xβ, ξ1, . . . , ξγ))

is unsatisfiable.

Example: Let σ be defined by:

σ(0̄, x, l) → x(l)

σ(Sk, x, l) → g(σ(k, x, l))

where c(n, x,X) is the previous example and σ′ ∈ F 1
s with the rewrite rules:

σ′(0̄) → a

σ′(Sk) → g(σ′(k))

Note that σ′(n) ↓α evaluates to gα(a). Furthermore we define the clause set
schema ∆ = (d1, d2) by:

• R(d1):

d1(0̄, x,X) → (d2(0̄, x,X)⊕ ξ)
d1(k + 1, x,X) → d2(k + 1, x,X)⊕ [c(k + 1, x,X)]

• R(d2):

d2(0̄, x,X) → [P (a) `]

d2(k + 1, x,X) → (d2(k, x,X)⊕ [P (σ′(k + 1)) `]

Let ϑ = {n ← α}, λ = {X ←` } and µ = {ξ ← [c(0̄, x,X)]}. Then we
have:

v∗cst(ϑ, λ, µ, d1(n, x,X)) = { ` P (x(0)), . . . , P (gα(x(α))); P (a) ` ; . . . ;P (gα(a)) ` }

Remark: On contrary to the usual convention, as a separator between the
elements of a set of clauses we use ”;” instead of ”,” in order to avoid a

2.4. RESOLUTION CALCULUS FOR FIRST-ORDER PROOF SCHEMATA 21

confusion, because ”,” is already used to separate the formulas in the an-
tecedent/succedent part of a sequent.

So far we have defined the notion of a schema clause and a clause-set schema
which describes a sequence of set of clauses. The next step is to find a de-
ductive formalism which can handle the clause-set schemata and to produce
a resolution refutation out of it under some conditions. In general this prob-
lem is not trivial, because the set of values for the parameter is infinite and
verifying that for each value of the parameter the set of leafs of the deduc-
tion tree is a subset of the schematic clause set for the same instance of the
parameter, is a very hard task without having the notion of induction.

We continue with the description of a schematic resolution proof which is
built over the notion of resolution term.

Definition (resolution term)

• clause schemata are resolution terms.

• Let s1 and s2 be resolution terms w.r.t. R1 and R2, and P be an
indexed atom. Then r(s1; s2;P) is a resolution term w.r.t. R1 ∪R2

Resolution terms define resolution deductions only if appropriate substi-
tutions are applied to the clauses unifying atoms in clauses.

Definition (V2-substitution schema) Let x1, . . . , xα ∈ V2 and t1, . . . , tα be
s-terms such that Va(ti) ⊆ {n, k} for i = 1, . . . , α then:

θ : {x1 ← λk.t1, . . . , xα ← λk.tα}
is called a V2-substitution schema (note that the terms ti may contain arbi-
trary variables in V2).

Every V2-substitution schema evaluates to sequences of ”ordinary” second
order substitutions under an assignment for the parameter n. Indeed, if
ϑ = {n← β}, then:

θβ = θϑ = {x1 ← λk.(t1) ↓β, . . . , xα ← λk.(tα) ↓β}
Note that the (ti) ↓β contain only k as arithmetic variable.

Definition (resolvent) Let C : C1 ` C2, D : D1 ` D2 be clauses with Va({C,D}) =
∅ and Vc({C,D}) = ∅; let P be an atom. Then:

res(C,D, P) = C1, D1 \ P ` C2 \ P,D2

22 CHAPTER 2. PRELIMINARIES

where C \ P denotes the multiset of atoms in C after removal of all occur-
rences of P . The clause res(C,D, P) is called a resolvent of C1 and C2 on
P . In case P does not occur in C2 and D1 then res(C,D, P) is called a
pseudo-resolvent (note that inferring res(C,D, P) from C and D is sound in
any case).

Definition (resolution deduction) If C is a clause then C is a resolution
deduction and ES (C) = C, where ES is the end-sequent of the deduction.
If γ1 and γ2 are resolution deductions and ES (γ1) = D1, ES (γ2) = D2 and
res(D1, D2, P) = D, where res(D1, D2, P) is a resolvent, then r(γ1, γ2, P) is
a resolution deduction and ES (r(γ1, γ2, P)) = D.

Definition (refutation) Let t be a resolution deduction and C be the set
of all clauses occurring in t. Then t is called a resolution refutation of C if
ES (t) = `.

A resolution deduction can be straightforwardly transformed to a tree:

Definition (to tree transformation) Any resolution deduction can easily be
transformed into a resolution tree by the following transformation T :

• If γ = C for a clause C then T (γ) = C.

• If γ = r(γ1, γ2, P), ϕ1 = T (γ1), ϕ2 = T (γ2), ES (ϕ1) = C1,
ES (ϕ2) = C2 and res(C1, C2, P) = C, then T (γ) is:

(ϕ1)

C1

(ϕ2)

C2

C

The length of T (γ) is polynomial in the length of γ as can be proved easily.

Example: Let γ is the resolution term:
r(r(` Q0(x), P0(x), P1(x);P1(x) `;P1(x));Q0(x), Q1(x) `;Q0(x))

T (γ) is the resolution tree:

` Q0(x), P0(x), P1(x) P1(x) `
` Q0(x), P0(x) Q0(x), Q1(x) `

` P0(x), Q1(x)

2.4. RESOLUTION CALCULUS FOR FIRST-ORDER PROOF SCHEMATA 23

We define a notion of resolution proof schema in the spirit of LK-proof
schemata.

Definition Let t be a resolution term, X1, . . . , Xα in Vc, and s1, . . . , sα
objects of appropriate type. Then t{X1 ← s1, . . . , Xα ← sα} is called a
resolution term over {s1, . . . , sα}.

Definition (resolution proof schema) A resolution proof schema over the
variables x1, . . . , xα ∈ V2 andX1, . . . , Xβ ∈ Vclset is a structure ((ρ1, . . . , ργ),R)
with R : R1 ∪ . . . ∪Rγ, where the Ri (for 0 ≤ i ≤ γ) are defined as follows:

ρi(0, x1, . . . , xα, X1, . . . , Xβ) → tbi
ρi(k + 1, x1, . . . , xα, X1, . . . , Xβ) → tsi

where:

• tbi is a resolution term over terms of the form ρj(aj, s1, . . . , sα, C1, . . . , Cβ)
for 1 ≤ i < j

• tsi is a resolution term over terms of the form ρj(aj, s1, . . . , sα, C1, . . . , Cβ)
and ρi(k, s

′
1, . . . , s

′
α, C

′
1, . . . , C

′
β) for 1 ≤ i < j

Definition (semantics of resolution proof schemata) A resolution proof schema
R is called a resolution deduction schema from a clause-set schema ∆ if there
exist substitutions λ for Vc and µ for Vclset and a V2-substitution schema θ
s.t. for every ϑβ of the form {n← β} (ρ1(n, x̄,X1, . . . , Xα)λθϑβ) ↓ is a reso-
lution deduction tβ from v∗cst(ϑβ, λ, µ, d1(n, x̄, Y1, . . . , Yγ, ξ1, . . . , ξδ)). If for all
β ES (ρ1(β, x̄,X1, . . . , Xα)) = `, then we call R a resolution refutation of ∆.

Example: Let ∆ be the clause-set schema defining the sequence of clauses:

Cα = { ` P (x0), . . . , P (gα(xα)); P (a) ` ; . . . ;P (gα(a)) ` }

Let (ρ,R) be a proof schema with clause variable X defined by the following
rewrite system R:

ρ(0, x,X) → r(` P (σ(0̄, x, 0̄)) ◦X;P (σ′(0̄)) `;P (σ(0̄, x, 0̄)))

ρ(k + 1, x,X) →

24 CHAPTER 2. PRELIMINARIES

r(ρ(k, x,` P (σ(k+1, x, k+1))◦X);P (σ′(k+1)) `;P (σ(k+1, x, k+1)))

Then (ρ,R) is a refutation schema for ∆; indeed, for λ = {X ←` },
µ = {ξ ← [c(0̄, x,X)]} and θ = {x ← λk.a}, we get for all ϑα = {n ← α}
that:

(ρ(n, x,X)λθϑα) ↓
is a resolution refutation of v∗cst(ϑα, λ, µ, d1(n, x,X, ξ)), which is just Cα.

2.5 The method CERES

Before introducing the method CERESs we conclude the chapter with a brief
presentation and example of the first-order method CERES . Cut-elimination
is a transformation which was first introduced by Gentzen [Gen35] in 1935
in his famous ’Hauptsatz’. Its main goal is the elimination of the cut-rule in
an LK proof. Removing the cut rules, i.e. the cut formulas (which can be
thought of as lemmas), results in a proof which is analytic in the sense that all
statements in the proof are analytic due to the subformula property, i.e. all
formulas except the cut-ancestors are presented as formulas or subformulas
in the end-sequent of the proof. The process of cut-elimination by Gentzen
is constructive. It consists of the following steps:

• selection of an uppermost cut

• reduction of the rank and the grade

• decomposition of the cut formulas

The Gentzen’s reductive method of cut elimination has two main disad-
vantages, which makes it hard to be used in the practice : it is very slow
and weak in detecting redundancy. The method CERES [BL00] is superior
to the Gentzen’s method. It extracts and analyzes a proof structure which is
called characteristic clause set which contains objects from the axioms only
and is always unsatisfiable. The resolution refutation of the clause set serves
as a skeleton for the analytic variant of the proof. It is obtained by mapping
each element of the clause set to a proof called proof projection [BL00]. It is
an object obtained from the original proof by skipping all inferences which
operate on cut-ancestors. Finally, inserting the ground projections into the
resolution refutation , we get a proof with atomic cuts which we call ACNF

2.5. THE METHOD CERES 25

- atomic cut normal form of the original proof. Here is an example:

Example: Let ϕ is the LK proof with a non-atomic cut formula
B ∨ C:

A ` A ¬ : l¬A,A ` B ` B
∨ : l

A,¬A ∨B ` B
∨ : r1

A,¬A ∨B ` B ∨ C
B ` B C ` C ∨ : l
B ∨ C ` B,C

cut
A,¬A ∨B ` B,C

Let ν be an inference rule in ϕ. The characteristic clause set is extracted
inductively according to the following rules.

• if ν is an axiom S, then CL(ν) = {S ′}, where S ′ ⊆ S contains cut-
ancestors only

• if ν is a unary rule, then CL(ν) = CL(ν ′), where ν ′ is the upper
inference rule.

• if ν is a binary rule with premises ν1 and ν2, then:

– if the auxiliary formulas of ν are cut-ancestors, then:
CL(ν) = CL(ν1) ∪ CL(ν2)

– otherwise:
CL(ν) = CL(ν1)× CL(ν2)

If ν0 is the root inference of a proof ϕ, then CL(ν0) is the clause set of ϕ.
In our example CL(ϕ) = { ` B ; B ` ; C `}, which has a resolution refuta-
tion R:

` B B ` cut`

The proof projections are computed in the following way. Again let ν is an
inference rule in ϕ.

• if ν is an axiom S, then:

– if all formula occurrences in S are cut-ancestors, then PRν(ϕ) = ∅
– PRν(ϕ) = {S}, otherwise

26 CHAPTER 2. PRELIMINARIES

• if ν is a unary rule in ϕ with immediate predecessor ν ′ and
PRν′(ϕ) = {ψ1, . . . , ψn}, then:

– if ν ′ operates on cut-ancestors, then PRν(ϕ) = PRν′(ϕ)

– PRν(ϕ) = {ν(ψ1), . . . , ν(ψn)}, otherwise

• if ν is a binary rule with premises ν1 and ν2, then:

– if the auxiliary formulas of ν are cut-ancestors, then:
PRν(ϕ) = PRν1(ϕ)Γ2`∆2 ∪ PRν2(ϕ)Γ1`∆1

– otherwise:
PRν(ϕ) = PRν1(ϕ)×ν PRν2(ϕ),

where Γi ` ∆i, for i = 1, 2 is the subsequent of the conclusion of
the inference νi which contains non-cut-ancestors. If Q is a set of
LK proofs, then QΓ`∆ is the set {ψΓ`∆|ψ ∈ Q}, where ψΓ`∆ is ψ
followed by weakening rules such that the conclusion of the root of
the new derivation is S ◦ (Γ ` ∆), where S is the end-sequent of
ψ. The meaning of ×ν is the following: if P,Q are LK proofs, then
P ×ν Q = {ν(ψ, χ)|ψ ∈ P, χ ∈ Q}. If ν0 is the root inference of an LK
proof ϕ, then PRν0(ϕ) is the set of projections for ϕ.

Let for each clause C in the clause set ϕ[C] be the proof projection for
C. In our example the projections ϕ[` B] and ϕ[B `] are respectively:

A ` A ¬ : l¬A,A ` B ` B
∨ : l

A,¬A ∨B ` B
w : r

A,¬A ∨B ` B,C
w : r

A,¬A ∨B ` B,C,B

B ` B w : r
B ` B,C

w : l¬A ∨B,B ` B,C
w : l

A,¬A ∨B,B ` B,C

In this example the refutation did not provide a non-empty substitu-
tion and we do not have to ground the projections because they are already
grounded. The ACNF of ϕ is:

PR(` B)

A,¬A ∨B ` B,C,B

PR(B `)

A,¬A ∨B,B ` B,C
cut

A,¬A ∨B,A,¬A ∨B ` B,C,B,C
c∗ : l, c∗ : r

A,¬A ∨B ` B,C

Chapter 3

The method CERESs

Cut-elimination was first introduced by Gentzen [Gen35] and it turned out
to be crucial for the analysis of mathematical proofs. The cut formulas
(shortly cuts) correspond to the lemmas in a proof. Removing the cuts from
a proof results in a proof without intermediate statements. Hence, due to
the subformula property, we obtain a proof which is purely analytic, i.e. all
of the axioms occur in the end-sequent as (sub)formulas. Gentzen’s method
of cut-elimination is not the only way cut-elimination can be performed.
Gentzen developed a reductive cut-elimination method which is essentially a
proof-transformation. On the other hand, the CERES method performs cut-
elimination using resolution [BHL+06]. It is well known that cut-elimination
has non-elementary complexity [Ore82] and in spite of these results CERES
is complexity-wise superior to Gentzen’s reductive cut-elimination method
in many cases. Due to the complexity of its resolution refutation, and the
fact that CERES reduces all cuts simultaneously to atomic cuts, it has non-
elementary speed-up in its performance compared to the Gentzen method.
In the case of proof schemata the CERES method is still applicable. Given
an instance of the parameter, one can unfold the proof schemata and obtain
a usual LK proof, then the CERES method can be applied. On the other
hand, doing this for each instance is very expensive and possible only for
a few instances. For example, experiments on the prime proof have shown
that even for the instance with only three primes, the transformation with
CERES was not applicable in practice due to the failure of the resolution
provers such as Prover9 [McC10] to refute the extracted characteristic clause
set. Furthermore, without an automated proof assistant the analysis of the
clause set by humans is a very hard task and it may take weeks until a
mathematician finds a refutation. This and many other obstacles, as we
will see later, can be overcome by the method CERESs , because it gives a
schematic description of all cut-free proofs for a given parameter n. The

27

28 CHAPTER 3. THE METHOD CERESS

method CERESs is an extension of the method CERES [BL06] which is
a method for cut-elimination in first-order logic. Given an LKS proof the
CERES method is not applicable because it is not clear how the cuts will ap-
pear through the proof-links. The CERESs method gives a solution to these
problems. Now we can discuss the details starting with the main features of
CERES which are essential for CERESs .

Here we list the main components of CERES which will be extended to
CERESs :

• skolemization of the proof

• extraction of the characteristic clause set

• computation of the proof projections

• constructing the atomic cut normal form (ACNF)

The skolemization is a transformation which removes the strong quanti-
fiers in a sequent. A proof derivation which has a skolemized end-sequent
is called a skolemized proof. The skolemization is essential for the method
CERES because if a proof is not skolemized we may get unsound proof pro-
jection. This is possible, because the proof projections are constructed such
that some inferences in the original proof are skipped. In advance we will say
that for the CERESs method we assume that the LKS-proof corresponding
to the smallest proof symbol w.r.t. the order < (see page 13) is skolemized.

The characteristic clause set (ccs) encodes in some sense the structure
of the proof, namely the essence of the cut formulas used in the proof. It
is obtained by analyzing which axioms go into a cut and which go into the
end-sequent. The ccs is always unsatisfiable [BL00]. Its elements in the case
of CERES are clauses. In the case of CERESs the ccs for a proof schema is
computed via the ccs′s for the schematic proofs in this proof schema. Hence,
it is a more complex object because its extraction depends on the proof-links
in the step cases of the schematic proofs. We do not know in advance the
structure of the clause set in the proof-links of a schematic proof, so we use a
special clause symbol to ”encode” the information such as proof name, index
and cut-formulas in the end-sequent. This will be explained in details later
in this chapter.

A proof projection is a cut-free LK(S) proof which is computed for each
clause C ∈ ccs by omitting all inferences with auxiliary formulas which go

29

into a cut. The same idea for defining proof projections is used also in the
definition of CERESs . Like in the extraction of the ccs, we again introduce
a special symbols, called projection symbols , which encodes the projections
in the proof-links. Furthermore, we introduce a projection term - an object
which is more convenient to work with rather then the set. The projection
term contains projection symbols and can be unfolded to a ground projec-
tion term (without projection symbols) for a given instance of the parameter
which represents a set of ground LK(S) proofs.

The ACNF (atomic cut normal form) of the CERES method is obtained
by mapping the resolution refutation of the ccs to the proof projections and
creating a proof with at most atomic cuts out of it. In the CERESs method
the approach is similar : given a schematic clause set we define a resolution
proof schemata and verify the unsatisfiability of the clause set. Then the
resolution proof is mapped to the proof projections for the same instance
of the parameter. Finally, we combine the projections in a resolution proof
which looks like an LK proof with (at most atomic) cuts and contractions
only. The resulting derivation is the ACNF .

So far we have shown the basic differences between the methods CERES
and CERESs . Still one may ask, are there another differences. Apart
from the proof-links, there is an important difference in a technical aspect
- CERESs is applicable in the presence of implicit induction whereas the
CERES and the Gentzen’s methods are not. Hence, CERESs is more power-
ful than they are, because first an LKS proof represents an infinite sequence
of LK proofs and second, if we consider Peano arithmetic (PA) and add to
the calculus the induction axiom:

Γ, A(α) ` ∆, A(s(α))
ind

A(0̄),Γ ` ∆, A(t)

where α is an eigenvariable not occurring in A(0̄),Γ,∆, we see that CERESs

is superior over reductive cut-elimination. This can be seen in the following
example. Consider the sequent S:

Def(f̂), ∀x(P (x)→ P (f(x))) ` (∀n)(∀x)((P (f̂(n, x))→ P (g(n, x)))→ (P (x)→ P (g(n, x))))

where g ∈ F 2 , f ∈ F 1, f̂ ∈ F 2
s such that Def(f̂) is:

(∀x)f̂(0̄, x) = x

(∀n)(∀x)f̂(s(n), x) = f(f̂(n, x))

30 CHAPTER 3. THE METHOD CERESS

Obviously, S can not be proven without induction. The reason is that if
we delete the ∀ : r inference in ψ, then we can not eliminate the formula
∀x(P (x)→ P (f̂(β, x))) because we can not cross the induction rule. In fact
we need an inductive lemma, for instance:

Def(f̂),∀x(P (x)→ P (f(x))) ` (∀n)(∀x)(P (x)→ P (f̂(n, x)))

A proof ψ of this inductive lemma could be:

(ψ1)

(∀x)f̂(0̄, x) = x ` ∀x(P (x)→ P (f̂(0̄, x)))

(ψ2)

Γ, ∀x(P (x)→ P (f̂(α, x))) ` ∀x(P (x)→ P (f̂(s(α), x)))
ind

Γ, ∀x(P (x)→ P (f̂(0̄, x))) ` ∀x(P (x)→ P (f̂(γ, x)))
∀ : r

Γ, ∀x(P (x)→ P (f̂(0̄, x))) ` (∀n)(∀x)(P (x)→ P (f̂(n, x)))
cut

Def(f̂), ∀x(P (x)→ P (f(x))) ` (∀n)(∀x)(P (x)→ P (f̂(n, x)))

where Γ is the context (∀n)(∀x)f̂(s(n), x) = f(f̂(n, x)), (∀x)(P (x)→ P (f(x)))

The proofs ψ1 and ψ2 are easily defined, but some simple equational rea-
soning is required. Thus, to avoid the use of equality rules, we admit an
atomic equality axiom on the leaves. The axiom has the following form:
P (s), t = s ` P (t) and ` s = s. Then ψ1 is:

P (u), f̂(0̄, u) = u ` P (f̂(0̄, u)) → : r
f̂(0̄, u) = u ` P (u)→ P (f̂(0̄, u))

∀ : l
(∀x)f̂(0̄, x) = x ` P (u)→ P (f̂(0̄, u))

∀ : r
(∀x)f̂(0̄, x) = x ` ∀x(P (x)→ P (f̂(0̄, x)))

and ψ2 is:

P (u) ` P (u)

P (f̂(α, u)) ` P (f̂(α, u)) P (f(f̂(α, u))), f̂(s(α), u) = f(f̂(α, u)) ` P (f̂(s(α), u))
→ : l

P (f̂(α, u))→ P (f(f̂(α, u))), f̂(s(α), u) = f(f̂(α, u)), P (f̂(α, u)) ` P (f̂(s(α), u))
∀ : l∗

Γ, P (f̂(α, u)) ` P (f̂(s(α), u))
→ : l

P (u),Γ, P (u)→ P (f̂(α, u)) ` P (f̂(s(α), u)) → : r
Γ, P (u)→ P (f̂(α, u)) ` P (u)→ P (f̂(s(α), u))

∀ : l
Γ,∀x(P (x)→ P (f̂(α, x))) ` P (u)→ P (f̂(s(α), u)))

∀ : r
Γ, ∀x(P (x)→ P (f̂(α, x))) ` ∀x(P (x)→ P (f̂(s(α), x)))

Finally, we define ϕ as (to save some space, the cut-formula:
(∀n)(∀x)(P (x)→ P (f̂(n, x))) is denoted with C):

31

(ψ)

Def(f̂),∀x(P (x)→ P (f(x))) ` C
(χ)

C ` (∀n)(∀x)((P (f̂(n, x))→ P (g(n, x)))→ (P (x)→ P (g(n, x))))
cut

Def(f̂), ∀x(P (x)→ P (f(x))) ` (∀n)(∀x)((P (f̂(n, x))→ P (g(n, x)))→ (P (x)→ P (g(n, x))))

where χ is an induction-free proof of the form:

P (u) ` P (u)

P (f̂(β, u)) ` P (f̂(β, u)) P (g(β, u)) ` P (g(β, u))
→ : l

P (f̂(β, u))→ P (g(β, u)), P (f̂(β, u)) ` P (g(β, u))
→ : l

P (u), P (f̂(β, u))→ P (g(β, u)), P (u)→ P (f̂(β, u)) ` P (g(β, u)) → : r
P (f̂(β, u))→ P (g(β, u)), P (u)→ P (f̂(β, u)) ` P (u)→ P (g(β, u)) → : r

P (u)→ P (f̂(β, u)) ` (P (f̂(β, u))→ P (g(β, u)))→ (P (u)→ P (g(β, u)))
∀ : l∗

(∀n)(∀x)(P (x)→ P (f̂(n, x))) ` (P (f̂(β, u))→ P (g(β, u)))→ (P (u)→ P (g(β, u)))
∀ : r∗

(∀n)(∀x)(P (x)→ P (f̂(n, x))) ` (∀n)(∀x)((P (f̂(n, x))→ P (g(n, x)))→ (P (x)→ P (g(n, x))))

Performing Gentzen’s reductive cut-elimination, we locate the place in the
proof, where (∀n) is introduced. In χ, (∀n)(∀x)(P (x) → P (f̂(n̄, x))) is ob-

tained via ∀x(P (x) → P (f̂(β, x))) by ∀ : l. In the proof ψ we may delete
the ∀ : r inference yielding the cut-formula and replace γ by β. But in the
attempt to eliminate ∀x(P (x) → P (f̂(β, x))) in ψ we get stuck, as we can-
not “cross” the ind rule. The ind rule can not be eliminated, because of the
variable β. In fact, if we instead had ∀x(P (x) → P (f̂(t, x))) for a closed
term t over {0̄, s,+, ∗} we could prove PA ` t = n̄ and also:

Def(f̂),∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f̂(0̄, x))) ` ∀x(P (x)→ P (f̂(n̄, x)))

without induction (by iterated cuts) and cut-elimination would proceed. This
problem, however, is neither rooted in the specific form of ψ, nor in the ind
rule. Even if we had used binary induction rule:

Γ ` A(0̄) ∆, A(α) ` A(s(α))
ind

Γ,∆ ` A(t)

the result would be the same. In fact, there exists no proof of S with only
atomic cuts – even if ind is used. In particular, induction on the formula
(∀n)(∀x)((P (f̂(n, x)) → P (g(n, x))) → (P (x) → P (g(n, x)))) fails. In order
to prove the end-sequent an inductive lemma is needed (something which

implies (∀n)(∀x)(P (x)→ P (f̂(n, x)))) and can not be eliminated.

While there are no proof of S in PA with only atomic cuts, the sequents
Sn:

Def(f̂),∀x(P (x)→ P (f(x))) ` ∀x((P (f̂(n, x))→ P (g(n, x)))→ (P (x)→ P (g(n, x))))

do have such proofs for all n. They can be proved even without induction.
Instead of a unique proof ϕ of S we get an infinite sequence of proofs ϕn

32 CHAPTER 3. THE METHOD CERESS

of Sn, which have cut-free versions ϕ′n (henceforth “cut-free” means that
atomic cuts are admitted). This kind of “infinitary” cut-elimination only
makes sense if there exists a uniform representation of the sequence of proofs
ϕ′n. We will illustrate below that the method CERES has the potential
of producing such a uniform representation, thus paving the way for cut-
elimination in the presence of induction.

Let Sn be the sequent:

∀x(P (x)→ P (f(x))) ` ∀x((P (f̂(n̄, x))→ P (g(n̄, x)))→ (P (x)→ P (g(n̄, x))))

where n is a number variable, henceforth called a parameter. For the symbol
f̂ we add the reduction rules:

f̂(0̄, x) → x

f̂(s(k), x) → f(f̂(k, x))

First we define a proof schema ψn playing the role of ψ in the inductive
proof above. Let ψ0 be:

P (f̂(0̄, x0)) ` P (f̂(0̄, x0))
�

P (x0) ` P (f̂(0̄, x0)) → : r
` P (x0)→ P (f̂(0̄, x0))

∀ : r
` (∀x)(P (x)→ P (f̂(0̄, x)))

w : l
∀x(P (x)→ P (f(x))) ` (∀x)(P (x)→ P (f̂(0̄, x)))

and ψk+1 be:

(ψk)

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f̂(k, x))) (1)
cut, c : l

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f̂(s(k), x)))

where (1) is:

P (xk+1) ` P (xk+1)

P (f̂(k, xk+1)) ` P (f̂(k, xk+1))

P (f̂(s(k), xk+1)) ` P (f̂(s(k), xk+1))
�

P (f(f̂(k, xk+1))) ` P (f̂(s(k), xk+1))
→ : l

P (f̂(k, xk+1)), P (f̂(k, xk+1))→ P (f(f̂(k, xk+1))) ` P (f̂(s(k), xk+1))
∀ : l

P (f̂(k̄, xk+1)),∀x(P (x)→ P (f(x))) ` P (f̂(s(k), xk+1))
→ : l

P (xk+1), P (xk+1)→ P (f̂(k, xk+1)), ∀x(P (x)→ P (f(x)))→ P (f̂(s(k), xk+1)) → : r
P (xk+1)→ P (f̂(k, xk+1)), ∀x(P (x)→ P (f(x))) ` P (xk+1)→ P (f̂(s(k), xk+1))

∀ : l
∀x(P (x)→ P (f̂(k, x))), ∀x(P (x)→ P (f(x))) ` P (xk+1)→ P (f̂(s(k), xk+1))

∀ : r
∀x(P (x)→ P (f̂(k, x))), ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f̂(s(k), x)))

33

Instead of Sn we construct the skolemized version S ′n:1

∀x(P (x)→ P (f(x))) ` (P (f̂(n, c))→ P (g(n, c)))→ (P (c)→ P (g(n, c)))

and define ϕn:

(ψn)

∀x(P (x)→ P (f(x))) ` C
(χn)

C ` (P (f̂(n, c))→ P (g(n, c)))→ (P (c)→ P (g(n, c)))
cut

∀x(P (x)→ P (f(x))) ` (P (f̂(n, c))→ P (g(n, c)))→ (P (c)→ P (g(n, c)))

where C = ∀x(P (x)→ P (f̂(n, x))) and (χn) is:

P (c) ` P (c)

P (f̂(n, c)) ` P (f̂(n, c)) P (g(n, c)) ` P (g(n, c))
→ : l

P (f̂(n, c))→ P (g(n, c)), P (f̂(n, c)) ` P (g(n, c))
→ : l

P (c), P (f̂(n, c))→ P (g(n, c)), P (c)→ P (f̂(n, c)) ` P (g(n, c)) → : r
P (f̂(n, c))→ P (g(n, c)), P (c)→ P (f̂(n, c)) ` P (c)→ P (g(n, c)) → : r

P (c)→ P (f̂(n, c)) ` (P (f̂(n̄, c))→ P (g(n, c)))→ (P (c)→ P (g(n, c)))
∀ : l

∀x(P (x)→ P (f̂(n, x))) ` (P (f̂(n, c))→ P (g(n, c)))→ (P (c)→ P (g(n, c)))

As a next step we define characteristic clause set schema of ϕn, CL(ϕn),
inductively: CL(ϕ0) is { ` P (c); P (f̂(0̄, c)) ` } and CL(ϕn+1) is:

{P (f̂(0̄, x1)) ` P (f̂(s(0̄), x1)); · · · ; P (f̂(n̄, xn+1)) ` P (f̂(s(n̄), xn+1));

` P (c) ; P (f̂(n̄+ 1, c)) ` }

Now, if we apply the reduction rules for f̂ to the clause
P (f̂(0̄, x1)) ` P (f̂(s(0̄), x1)), we get P (x1) ` P (f(x1)) and the clause set
boils down – via term-rewriting followed by subsumption to:

CL(ϕn)′ = {P (x1) ` P (f(x1)); ` P (c); P (f̂(n̄, c)) ` }

A sequence of resolution refutations of CL(ϕn)′ is given by δn:

(ηn)

` P (f̂(n, c)) P (f̂(n, c)) `
`

where η0 is ` P (c) and ηk+1 is:

1Skolemization is vital for CERES but the situation in the inductive proof above re-
mains the same – we get c instead of β and again the same argument applies that the cut
cannot be eliminated.

34 CHAPTER 3. THE METHOD CERESS

(ηk)

` P (f̂(k, c)) P (xk+1) ` P (f(xk+1))
xk+1 ← f̂(k, c)

` P (f̂(k + 1, c))

Here P (f̂(k + 1, c)) rewrites to P (f(f̂(k, c))), where ` P (f(f̂(k, c))) is the
end-sequent (clause) of ηk+1.

Now we can start with the formalization of the method CERESs for first-
order schemata. Our goal is to give a schematic description of all cut-free
proofs for a parameter k. We stress again that by Gentzen’s method this
is impossible because of the presence of proof-links, i.e. moving the cuts
through the proof-links is not clear. With CERESs we overcome this problem
- we analyze globally the proof schema and provide the desired description
of sequences of cut-free proofs. First, let us consider the following example
which will be the running one until the end of this chapter: a schema Ψ =
〈(π1, ν1(k + 1)), (π2, ν2(k + 1))〉, where σ and ϕ are schematic proof symbols
corresponding respectively to the pairs of LKS-proofs (π1, ν1(k + 1)) and
(π2, ν2(k + 1)), such that σ < ϕ. We fix a term-rewriting system, where
g ∈ F 1

a , f ∈ F 1, k ∈ Va and x ∈ V1:

g(0̄, x) → x

g(k + 1, x) → f(g(k, x))

The two base-case proofs π1 and π2, and the two step-case proofs ν1(k + 1)
and ν2(k + 1) in Ψ are defined as follows:

The proof π1 is:

P (a) ` P (a) P (g(0̄, a)) ` P (g(0̄, a))
→ : l

P (a), P (a)→ P (g(0̄, a)) ` P (g(0̄, a)) P (h(0̄, a)) ` P (h(0̄, a))
→ : l

P (a), P (a)→ P (g(0̄, a)), P (g(0̄, a))→ P (h(0̄, a)) ` P (h(0̄, a))
→ : r

P (a)→ P (g(0̄, a)), P (g(0̄, a))→ P (h(0̄, a)) ` P (a)→ P (h(0̄, a))
∀ : l

P (g(0̄, a))→ P (h(0̄, a)), ∀x(P (x)→ P (g(0̄, x))) ` P (a)→ P (h(0̄, a))
∀ : l

∀x(P (x)→ P (g(0̄, x))), ∀x(P (g(0̄, x))→ P (h(0̄, x))) ` P (a)→ P (h(0̄, a))

The proof χ is:

P (a) ` P (a)

P (g(k + 1, a)) ` P (g(k + 1, a)) P (h(k + 1, a)) ` P (h(k + 1, a))
→ : l

P (g(k + 1, a)), P (g(k + 1, a))→ P (h(k + 1, a)) ` P (h(k + 1, a))
→ : l

P (a), (P (g(k + 1, a))→ P (h(k + 1, a))), P (a)→ P (g(k + 1, a)) ` P (h(k + 1, a))
→ : r

P (g(k + 1, a))→ P (h(k + 1, a)), P (a)→ P (g(k + 1, a)) ` P (a)→ P (h(k + 1, a))
∀ : l

P (a)→ P (g(k + 1, a)), ∀x(P (g(k + 1, x))→ P (h(k + 1, x))) ` P (a)→ P (h(k + 1, a))
∀ : l∀x(P (x)→ P (g(k + 1, x))), ∀x(P (g(k + 1, x))→ P (h(k + 1, x))) ` P (a)→ P (h(k + 1, a))

35

The proof ν1(k + 1) is:

(ν2(k))

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k, x))))

χ �
∀x(P (x)→ P (f(g(k, x)))), ∀x(P (g(k + 1, x))→ P (h(k + 1, x))) ` P (a)→ P (h(k + 1, a))

cut
∀x(P (x)→ P (f(x))), ∀x(P (g(k + 1, x))→ P (h(k + 1, x))) ` P (a)→ P (h(k + 1, a))

The proof π2 is:

P (a) ` P (a)

P (f(g(0̄, a))) ` P (f(g(0̄, a)))
�

P (f(a)) ` P (f(g(0̄, a)))
→ : l

P (a), P (a)→ P (f(a)) ` P (f(g(0̄, a)))
→ : r

P (a)→ P (f(a)) ` P (a)→ P (f(g(0̄, a)))
∀ : l

∀x(P (x)→ P (f(x))) ` P (a)→ P (f(g(0̄, a)))
∀ : r

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(0̄, x))))

The proof τ is:

P (zk+1) ` P (zk+1)

P (g(k + 1, zk+1)) ` P (g(k + 1, zk+1))
�

P (f(g(k, zk+1))) ` P (g(k + 1, zk+1)) P (f(g(k + 1, zk+1))) ` P (f(g(k + 1, zk+1)))
→ : l

P (f(g(k, zk+1))), P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))) ` P (f(g(k + 1, zk+1)))
→ : l

P (zk+1), P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))), P (zk+1)→ P (f(g(k, zk+1))) ` P (f(g(k + 1, zk+1)))
→ : r

P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))), P (zk+1)→ P (f(g(k, zk+1))) ` P (zk+1)→ P (f(g(k + 1, zk+1)))
∀ : l

P (zk+1)→ P (f(g(k, zk+1))), ∀x(P (x)→ P (f(x))) ` P (zk+1)→ P (f(g(k + 1, zk+1)))
∀ : l∀x(P (x)→ P (f(g(k, x)))), ∀x(P (x)→ P (f(x))) ` P (zk+1)→ P (f(g(k + 1, zk+1)))

The proof ν2(k + 1) is:

(ν2(k))

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k, x))))

τ ∀ : r∀x(P (x)→ P (f(g(k, x)))), ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))
cut

∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))
c : l∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))

Remark: Note that the proofs χ and τ are not elements of a pair in the
proof schemata Ψ , although they are LKS proofs. Neither of them have
proof links, nor they are ground. For the sake of readability only, the step
cases of σ and ϕ were divided into two parts. This does not affect the ex-
traction of the ccs and the projections. In fact for the method CERESs the
proofs χ and τ are ”invisible”.

36 CHAPTER 3. THE METHOD CERESS

3.1 Schematic characteristic clause-set

At the heart of the CERES method lies the characteristic clause set, which
describes the cuts in an LK proof. It consists of the subsequents of the
axioms whose formula occurrences go into a cut. The connection between
the cut-elimination and the characteristic clause set is that any resolution
refutation of the characteristic clause set can be used as a skeleton of a proof
containing only atomic cuts.

The characteristic clause set can either be defined directly [BL00] or
it can be obtained via a transformation from a characteristic clause term
[BL06]. We will use the second approach here. The reason is that the clause
term is closed under the rewriting rules (defined below) that we have given
for the clause term symbols, while the notion of the clause set is not closed.
Therefore, it is much easier to work with a single object (the schematic clause
term). In order to obtain the schematic clause set from the schematic clause
term we apply a transformation called clausification which is described later.

Our main aim is to extend the usual inductive definition of the charac-
teristic clause term to the case of proof links. This will give rise to a notion
of schematic characteristic clause-set term. As usual, a clause-set term is a
term built inductively from clauses and the binary symbols ⊗,⊕. The usual
definition of the characteristic clause term depends on the occurrences of the
cuts in a proof (i.e. whether a given formula occurrence is a cut-ancestor
or not). In the method CERESs the extraction of the clause set changes
due to the presence of proof-links. Therefore, cut-ancestor in the proof-link
can generate new cut-ancestors when the proof schema is unfolded for a con-
crete instance of the parameter. That means that in a schematic proof some
of the formula occurrences in the end-sequent are potential candidates for
cut-ancestors. Therefore, we need some machinery to track the cut-status of
the formula occurrences through the proof-links. We call a set Ω of formula
occurrences from the end-sequent of an LKS-proof π a configuration for π.

We will represent the characteristic clause term of a proof link in our
object language: For all proof symbols ψ and configurations Ω we assume
a unique indexed proposition symbol clΩ,ψ called clause term symbol. The
intended semantics of clΩ,ψa is “the characteristic clause set of ψ(a), with the
configuration Ω”.

In the example above all cut-ancestors of the LKS proofs ν1(k + 1) and
ν2(k+ 1) are marked with red color. The formula occurrences which after an

3.1. SCHEMATIC CHARACTERISTIC CLAUSE-SET 37

instantiation of the parameter and unfolding the proof became cut-ancestors
are marked with blue color. More precisely speaking, consider the proof
ν2(k + 1). It has only one cut-inference and the cut-formula (in red) is:

∀x(P (x)→ P (f(g(k, x))))

The formula occurrence corresponding to that formula is in the succedent
part of the end-sequent of the left part of the inference. The left part of
the inference contains only a nullary rule - a proof-link to ν2(k) (informally
we can think of axioms and proof-links as nullary rules). That means that
the formula occurrence ∀x(P (x) → P (f(g(k, x)))) and all its ancestors in
the proof ν2(k) will became cut-ancestors after the instantiation of the pa-
rameter k. Therefore, the red cut-ancestors are propagated upwards in the
derivation and possibly new configurations appear. Finally, the propagation
of the cut-ancestors goes through the base-case of the schematic proof.

Let ψ be a proof symbol corresponding to the pair of LKS-proofs 〈π, ν(k+1)〉.
A (cut-)configuration Ω for ψ will be denoted as (A1, . . . , An | B1, . . . , Bm),
where m,n ∈ N and Ai, for i = 1 . . . n, are formula occurrences in the an-
tecedent part of the end-sequent of the step-case proof ν(k + 1) and Bi, for
i = 1 . . .m, are formula occurrences in the succedent part of the end-sequent
of ν(k + 1). To be absolutely precise the configuration has formally to be
defined as a coding of the formula occurrences in a sequent which depends
on the parameter n. This is possible, because the uniqueness of the ancestor
relation. However, we will not do it here, because the correspondence be-
tween a formula and a formula occurrence according to the notation above
is clear enough for the reader. In our running example we have the following
cut configurations:

• for σ:

– Ω1 = ∅

• for ϕ:

– Ω2 = (| ∀x(P (x)→ P (f(g(k, x))))

Note that in the proof ϕ(k + 1) the blue formula occurrences, i.e. the prop-
agated cut-ancestors, do not generate new configurations. In general this is
not the case as we will see some interesting examples in the last chapter.

Definition (characteristic clause-set term) Let π be an LKS-proof and Ω a

38 CHAPTER 3. THE METHOD CERESS

configuration. In the following, by ΓΩ,∆Ω and ΓC ,∆C we will denote multi-
sets of formulas of Ω- and cut-ancestors respectively. Let ρ be an inference
in π. We define a clause-set term Θρ(π,Ω) inductively:

• if ρ is an axiom of the form ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆, then
Θρ(π,Ω) = [ΓΩ,ΓC ` ∆Ω,∆C], where ∆ contains no Ω- or cut-ancestors.

• if ρ is a proof-link of the form
(ψ(a, x1, . . . , xα))

ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆
then define Ω′

as the set of formula occurrences from ΓΩ,ΓC ` ∆Ω,∆C and
Θρ(π,Ω) = clΩ

′,ψ
a,x1,...,xα

• if ρ is an unary rule with immediate predecessor ρ′, then
Θρ(π,Ω) = Θρ′(π,Ω).

• if ρ is a binary rule with immediate predecessors ρ1, ρ2, then

– if the auxiliary formulas of ρ are Ω- or cut-ancestors, then
Θρ(π,Ω) = Θρ1(π,Ω) ⊕ Θρ2(π,Ω),

– otherwise Θρ(π,Ω) = Θρ1(π,Ω) ⊗ Θρ2(π,Ω).

Finally, we define Θ(π,Ω) = Θρ0(π,Ω), where ρ0 is the last inference of π,
and Θ(π) = Θ(π, ∅).

A characteristic term in our running example (remember σ < ϕ) has a binary
tree representation:

• Θ(ν1(k + 1), (|∀x(P (x)→ P (f(g(k, x))))))

⊕

cl
ϕ,(|∀x(P (x)→P (f(g(k,x)))))
k

⊕

P (zk+1) ` P (zk+1) ⊗

P (g(k + 1, zk+1)) ` ` P (f(g(k + 1, zk+1)))

• Θ(π1, (|∀x(P (x)→ P (f(g(k, x)))))):

3.1. SCHEMATIC CHARACTERISTIC CLAUSE-SET 39

⊗

P (a) ` ` P (f(g(0̄, a)))

• Θ(ν2(k + 1), (|)) :

⊕

cl
ϕ,(|∀x(P (x)→P (f(g(k,x)))))
k

⊕

` P (a) ⊗

P (g(k + 1, a)) ` `

• Θ(π2, (|)) :

`

We say that a clause term is ground if it does not contain index variables
and clause term symbols. Analogously to proof schemata, we define a notion
of evaluation of characteristic clause terms:

Definition (evaluation) We define the rewrite rules for clause term sym-
bols for all proof symbols ψβ and configurations Ω:

cl
Ω,ψβ
0,x1,...,xα

→ Θ(πβ,Ω)

cl
Ω,ψβ
k+1,x1,...,xα

→ Θ(νβ(k + 1),Ω)

for all 1 ≤ β ≤ α. Next, let γ ∈ N and let clΩ,ψβ ↓γ be the normal form of
clΩ,ψβγ,x1,...,xα

under the above rewriting system. Then define Θ(ψβ,Ω) = clΩ,ψβ

and Θ(Ψ,Ω) = Θ(ψ1,Ω). Finally, we define the schematic characteristic
clause term Θ(Ψ) = Θ(Ψ, ∅).

Let us compute Θ(Ψ) for instance k = 1:

Θ(Ψ) ↓2= Θ(Ψ ↓2, ∅) = Θ(σ(2), ∅) =

= ` clϕ,(|∀x(P (x)→P (f(g(1̄,x)))))
1 ⊕ (` P (a) ⊕ (P (g(2̄, a)) ` ⊗ `)) =

40 CHAPTER 3. THE METHOD CERESS

= ` clϕ,(|∀x(P (x)→P (f(g(1̄,x)))))
1 ⊕ ` P (a) ⊕ P (f(f(a))) `

cl
ϕ,(|∀x(P (x)→P (f(g(1̄,x)))))
1 → Θ(ϕ(1), (|∀x(P (x)→ P (f(g(1̄, x))))))

Θ(ϕ(1), (|∀x(P (x)→ P (f(g(1̄, x)))))) =

= ` clϕ,(|∀x(P (x)→P (f(g(0̄,x)))))
0 ⊕ P (z1) ` P (z1) ⊕

(P (g(0̄, z1)) ` ⊗ ` P (f(g(1̄, z1))) �

� ` clϕ,(|∀x(P (x)→P (f(g(0̄,x)))))
0 ⊕ P (z1) ` P (z1) ⊕ P (z1) ` P (f(f(z1)))

cl
ϕ,(|∀x(P (x)→P (f(g(0̄,x)))))
0 → Θ(ϕ(0), (|∀x(P (x)→ P (f(g(0̄, x)))))) =

= P (a) ` ⊗ ` P (f(g(0̄, a))) � P (a) ` ⊗ ` P (f(a))

Remark: Here � means term-rewriting and should not be confused with
the LKS-rule � defined in chapter 2.

Hence, Θ(Ψ) ↓2= (P (a) ` ⊗ ` P (f(a))) ⊕ P (z1) ` P (z1) ⊕
P (z1) ` P (f(f(z1))) ⊕ ` P (a) ⊕ P (f(f(a))) `

The next step is to transform the clause-set term to sets:

Definition (cartesian product of sequents) Let Γ ` ∆ and Π ` Λ be ar-
bitrary sequents, then we define Γ ` ∆ × Π ` Λ = Γ,Π ` ∆,Λ. We extend
this relation to sets of sequents P,Q in a natural way: P ×Q = {SP × SQ |
SP ∈ P, SQ ∈ Q}.

Definition (characteristic clause sets) Let Θ be a clause term. Then we
define a clause set |Θ| in the following way:

• |[Γ ` ∆]| = {Γ ` ∆}

• |Θ1 ⊗Θ2| = |Θ1| × |Θ2|

• |Θ1 ⊕Θ2| = |Θ1| ∪ |Θ2|.

3.1. SCHEMATIC CHARACTERISTIC CLAUSE-SET 41

For an LKS-proof π and configuration Ω, CL(π,Ω) = |Θ(π,Ω)|. We define
the standard characteristic clause set CL(π) = CL(π, ∅) and the schematic
characteristic clause-set CL(Ψ,Ω) = |Θ(Ψ,Ω)| and CL(Ψ) = CL(ψ1, ∅).

Going back to our running example we have:

CL(Ψ ↓2) = |Θ(Ψ) ↓2 | =

= ({P (a) `}×{` P (f(a))}) ∪ {P (z1) ` P (z1)} ∪ {P (z1) ` P (f(f(z1)))} ∪
{` P (a)} ∪ {P (f(f(a))) `} =

= {P (a) ` P (f(a))} ∪ {P (z1) ` P (z1)} ∪ {P (z1) ` P (f(f(z1)))} ∪
{` P (a)} ∪ {P (f(f(a))) `} =

= {P (a) ` P (f(a)) ; P (z1) ` P (z1) ; P (z1) ` P (f(f(z1))) ;
` P (a) ; P (f(f(a))) ` }

In order to build a bridge to the next section, we give the resolution refuta-
tionR of CL(Ψ ↓2) which will be a skeleton for building the proof projections:

P (z1) ` P (f(f(z1))) ` P (a)
cut, {z1 ← a}` P (f(f(a))) P (f(f(a))) `

cut`

We conclude this section with the following results showing that the no-
tion of the characteristic clause term is well defined and the commutativity
between the clause term and the clause set:

Lemma. Let γ ∈ N and Ω be a configuration, then Θ(ψβ,Ω) ↓γ is a ground
clause term for all 1 ≤ β ≤ α. Hence Θ(Ψ) ↓γ is a ground clause term.

Proof: by induction in γ. Follows from the soundness of the LKS cal-
culus [Ruk12].

Lemma. Let Ω be a configuration and γ ∈ N. Then Θ(Ψ ↓γ,Ω) =
Θ(Ψ,Ω) ↓γ.

Proof: by double induction on γ and on the number α of proof-symbols

42 CHAPTER 3. THE METHOD CERESS

in Ψ [Ruk12].

Lemma. Let π be a ground LKS-proof. Then CL(π) is unsatisfiable.

Proof: By the identification of ground LKS-proofs with propositional LK-
proofs [BL00].

3.2 Schematic proof projections

The next step in the schematization of the CERES method consists of the
definition of schematic proof projections. The aim is, in analogy with the
preceding section, to construct a schematic projection term that can be eval-
uated to a set of ground LKS-proofs. As before, we introduce formal symbols
representing sets of proofs, and again the notion of LKS-proof is not closed
under the rewrite rules for these symbols, which is the reason for introducing
the notion of projection term.

For our term notation we assume for every LKS-rule ρ a corresponding
rule symbol that, by abuse of notation, we also denote by ρ. Given a unary
rule ρ and an LKS-proof π, there are different ways to apply ρ to the end-
sequent of π, because the choice of auxiliary formulas is free. Formally, the
projection terms we construct will include this information so that evaluation
is always well-defined, but we will suppress it in the notation since the choice
of the auxiliary formulas will always be clear from the context.

For every proof symbol ψ and a configuration Ω, we assume a unique proof
symbol prΩ,ψ. A projection term is a term built inductively from sequents
and terms prΩ,ψ(a), for some arithmetic expression a, using unary rule sym-
bols, unary symbols wΓ`∆ for all sequents Γ ` ∆ and binary symbols ⊕,⊗σ
for all binary rules σ. The symbols prΩ,ψ are called projection symbols. The
intended interpretation of prΩ,ψ(a) is ”the set of characteristic projections of
ψ(a), with the configuration Ω”.

Definition (characteristic projection term) Let π be an LKS-proof and Ω
an arbitrary configuration for π. Let ΓΩ,∆Ω and ΓC ,∆C be multisets of
formulas corresponding to Ω- and cut-ancestors respectively. We define a
projection term Ξρ(π,Ω) inductively:

• If ρ corresponds to an initial sequent S, then we define Ξρ(π,Ω) = S.

3.2. SCHEMATIC PROOF PROJECTIONS 43

• If ρ is a proof-link in π of the form:
(ψ(a, x1, . . . , xα))

ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆
then,

letting Ω′ be the set of formula occurrences from ΓΩ,ΓC ` ∆Ω,∆C ,
define Ξρ(π,Ω) = prψ,Ω

′
(a, x1, . . . , xα)

• If ρ is a unary inference with immediate predecessor ρ′, then:

– if ρ is a rewrite rule � or the auxiliary formula(s) of ρ are Ω- or
cut-ancestors, then Ξρ(π,Ω) = Ξρ′(π,Ω)

– Ξρ(π,Ω) = ρ(Ξρ′(π,Ω)), otherwise

• If σ is a binary inference with immediate predecessors ρ1 and ρ2, then:

– if the auxiliary formulas of σ are Ω- or cut-ancestors, let Γi ` ∆i be
the ancestors of the end-sequent in the conclusion of ρi, for i = 1, 2,
and define: Ξσ(π,Ω) = wΓ2`∆2(Ξρ1(π,Ω)) ⊕ wΓ1`∆1(Ξρ2(π,Ω))

– Ξσ(π,Ω) = Ξρ1(π,Ω) ⊗σ Ξρ2(π,Ω), otherwise

Define Ξ(π,Ω) = Ξρ0(π,Ω), where ρ0 is the root inference of π. We say that
a projection term is ground if it does not contain index variables and projec-
tion symbols.

Example: Consider again our running example above. Like in the cre-
ation of the clause term, for the two proof-links and the two configurations

Ω1 and Ω2, we have one projection symbol : pr
ϕ,(|∀x(P (x)→P (f(g(0̄,x)))))
k and four

projection terms - (two configurations and two proof symbols):

Ξ(ν2(k + 1),Ω2) = wS1(cl(prϕ,Ω2

k)) ⊕ wS2(∀l(P (zk+1) ` P (zk+1) ⊕
(�l (P (g(k + 1, zk+1)) ` P (g(k + 1, zk+1))) ⊗→l

(P (f(g(k + 1, zk+1))) ` P (f(g(k + 1, zk+1)))))))

Ξ(π2,Ω2) = ∀l(wS3(P (a) ` P (a) ⊕ wS4(�l (P (f(g(0̄, a))) ` P (f(g(0̄, a)))))))

Ξ(ν1(k + 1),Ω1) = wS5(prϕ,Ω2

k) ⊕ wS6(∀l(→r (wS7(P (a) ` P (a)) ⊕
wS8((P (g(k+1, a)) ` P (g(k+1, a))) ⊗→l

(P (h(k+1, a)) ` P (h(k+1, a)))))))

44 CHAPTER 3. THE METHOD CERESS

Ξ(σ(0̄),Ω1) is equal to the term representing σ(0).

The sequents S1, . . . , S8 in the weakening (sub)terms above are:
S1 = ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))
S2 = S6 = ∀x(P (x)→ P (f(x)))
S3 = P (f(a)) `
S4 = ` P (a)
S5 = ∀x(P (g(k + 1, x))→ P (h(k + 1, x))) ` P (a)→ P (h(k + 1, x))
S7 = P (a) `
S8 = P (g(k + 1, a))→ P (h(k + 1, a)) ` P (h(k + 1, a))

We now define the projection-set schema, which describes how the projection
symbols are to be replaced in a projection term:

Definition (projection-set schema) We define the rewrite rules for projection
term symbols for all proof symbols ψβ and configurations Ω:

prψβ ,Ω(0, x1, . . . , xα) → Ξ(πβ,Ω)

prψβ ,Ω(k + 1, x1, . . . , xα) → Ξ(νβ(k + 1),Ω)

for all 1 ≤ β ≤ α. Let γ ∈ N and let prψβ ,Ω ↓γ be the normal form of
prψβ ,Ω(γ, x1, . . . , xα) under the rewrite system just given extended with the
term-rewriting rules for defined function and predicate symbols. Then, de-
fine Ξ(ψβ,Ω) = prψβ ,Ω and Ξ(Ψ,Ω) = Ξ(ψ1,Ω) and finally the schematic
projection term Ξ(Ψ) = Ξ(Ψ, ∅).

On the contrary to the clause term which unfolds to a set, the projection
term unfolds to a set of proofs, for a given instance of the parameter. We
use the following term-to-set transformation:

Definition (ground projection term) A projection term is called ground if
there are no parameters and projection symbols in it.

Definition (projection term evaluation) Let Ξ be a ground projection term.
Then we define a set of ground LKS-proofs |Ξ| in the following way:

• |A ` A| = {A ` A}

• |ρ(Ξ)| = ρ(|Ξ|) for unary rule symbols ρ

• |wΓ`∆(Ξ)| = |Ξ|Γ`∆

3.2. SCHEMATIC PROOF PROJECTIONS 45

• |Ξ1 ⊕ Ξ2| = |Ξ1| ∪ |Ξ2|

• |Ξ1 ⊗σ Ξ2| = |Ξ1| ×σ |Ξ2|, a for binary rule symbol σ

For a ground LKS-proof π and configuration Ω we define PR(π,Ω) = |Ξ(π,Ω)|
and the standard projection set PR(π) = PR(π, ∅). For γ ∈ N we define
PR(Ψ) ↓γ= |Ξ(Ψ) ↓γ |.

Let us compute PR(Ψ) ↓1, i.e. for k = 0:

PR(Ψ) ↓1= | Ξ(Ψ) ↓1 | =
| w(prϕ,Ω2

0) ⊕ w(∀l(→r (w(P (a) ` P (a)) ⊕ w((P (g(1̄, a)) ` P (g(1̄, a))) ⊗→l

(P (h(1̄, a)) ` P (h(1̄, a))))))) |

We have : prϕ,Ω2

0 → Ξ(ϕ(0),Ω2)

Also we have CL(Ψ) ↓1= CL(σ(1),Ω1) =

= {P (a) ` P (f(g(0̄, a))) ; ` P (a) ; P (g(1̄, a)) ` }

and we map its clauses to the LKS-proofs:

PR(ϕ, P (a) ` P (f(g(0̄, a)))) :

P (a) ` P (a)

P (f(g(0̄, a))) ` P (f(g(0̄, a)))
�

P (f(a)) ` P (f(g(0̄, a)))
→ : l

P (a), P (a)→ P (f(a)) ` P (f(g(0̄, a)))
→ : l

P (a), ∀x(P (x)→ P (f(x))) ` P (f(g(0̄, a)))
w : l

∀x(P (g(1̄, x))→ P (h(1̄, x))), P (a), ∀x(P (x)→ P (f(x))) ` P (f(g(0̄, a)))
w : r

∀x(P (g(1̄, x))→ P (h(1̄, x))), P (a), ∀x(P (x)→ P (f(x))) ` P (f(g(0̄, a))), P (a)→ P (h(1̄, a))

PR(ϕ, P (a) `) :

P (a) ` P (a)
w : l

P (a), P (g(1̄, a))→ P (h(1̄, a)) ` P (a)
w : r

P (a), P (g(1̄, a))→ P (h(1̄, a)) ` P (a), P (h(1̄, a))
→ : r

P (g(1̄, a))→ P (h(1̄, a)) ` P (a), P (a)→ P (h(1̄, a))
∀ : l

∀x(P (g(1̄, x))→ P (h(1̄, x))) ` P (a), P (a)→ P (h(1̄, a))
w : l

∀x(P (x)→ P (f(x))), ∀x(P (g(1̄, x))→ P (h(1̄, x))) ` P (a), P (a)→ P (h(1̄, a))

PR(ϕ, ` P (g(1̄, a))) :

46 CHAPTER 3. THE METHOD CERESS

P (g(1̄, a)) ` P (g(1̄, a)) P (h(1̄, a))→ P (h(1̄, a))
�

P (g(1̄, a)), P (g(1̄, a))→ P (h(1̄, a)) ` P (h(1̄, a))
w : l

P (a), P (g(1̄, a)), P (g(1, a))→ P (h(1, a)) ` P (h(1, a))
→ : r

P (g(1̄, a)), P (g(1̄, a))→ P (h(1̄, a)) ` P (a)→ P (h(1̄, a))
∀ : l

P (g(1̄, a)), ∀x(P (g(1̄, x))→ P (h(1̄, x))) ` P (a)→ P (h(1̄, a))
w : l

∀x(P (x)→ P (f(x))), P (g(1̄, a)), ∀x(P (g(1̄, x))→ P (h(1̄, x))) ` P (a)→ P (h(1̄, a))

The formulas in blue color will appear as atomic cuts in the construction of
the ACNF in the next section.

3.3 Schematic ACNF

To produce an Atomic Cut Normal Form, we need to transform the reso-
lution refutation into an LKS-proof skeleton. The ACNF is produced by
substituting each clause at the leaf nodes of this skeleton by the correspond-
ing projections and appending necessary contractions at the end of the proof.
A ground resolution term can be transformed into a tree straightforwardly:

Definition (resolution term to tree) Let % be a ground resolution refuta-
tion. Then the transformation T (%) is defined inductively:

• if % = C for a clause C, then T (%) = C

• if % = r(%1; %2;P), then T (%) is:

(T (%1))

Γ ` ∆, P, . . . , P
c : r∗

Γ ` ∆, P

(T (%2))

P, . . . , P,Π ` Λ
c : l∗

P,Π ` Λ
cut

Γ,Π ` ∆,Λ

Example: In order to compute the ACNF of the proof schema Ψ, first we
should give a resolution refutation schema for the schematic characteristic
clause set CL(Ψ) defined above. Since the resolution schema is not con-
structable, i.e. we do not have an effective way how to construct it from the
schematic clause set before the instantiation of the parameter. Therefore, we
have to specify it by ourselves by looking at some instances of the schematic
clause set:

CL(Ψ) ↓0= CL(π1,Ω1) = { ` }

3.3. SCHEMATIC ACNF 47

CL(Ψ) ↓1= CL(ν1(1̄),Ω1) = CL(π2,Ω2) ∪ { ` P (a) ; P (g(1̄, a)) ` } =

= {P (a) ` P (f(g(0̄, a))) ; ` P (a) ; P (g(1̄, a)) ` }�

� {P (a) ` P (f(a)) ; ` P (a) ; P (f(a)) ` }

CL(Ψ) ↓2= CL(ν1(2),Ω1) = CL(ν2(1),Ω2) ∪ {` P (a) ; P (g(2̄, a)) ` } =

= CL(π2,Ω2) ∪ {P (z1) ` P (z1) ; P (g(1̄, z1)) ` P (f(g(1̄, z1))) ;
` P (a) ; P (g(2̄, a)) ` } =

= {P (a) ` P (f(g(0̄, a))) ; P (z1) ` P (z1) ; P (g(1̄, z1)) ` P (f(g(1̄, z1))) ;
` P (a) ; P (g(2̄, a)) ` } =

= {P (a) ` P (f(a)) ; P (z1) ` P (z1) ; P (f(z1)) ` P (f(f(z1))) ;
` P (a) ; P (f(f(a))) ` }

Let R = ((%, δ),R), where R is the following rewriting system:

%(0̄, x) → r(δ(0̄, x) ; P (a) ` ; P (a))

%(k + 1, x) → r(δ(k + 1, x) ; P (f(g(k, zk))) ` ;P (f(g(k, zk))))

δ(0̄, x) → ` P (a)

δ(k + 1, x) → r(δ(k, x) ;P (g(k, zk)) ` P (f(g(k, zk))) ;P (g(k, zk)))

Computing δ(1, x) and transforming the resulting ground term to a tree we
see indeed that it is a resolution refutation R of Ψ for instance k = 0:

` P (a) P (a) ` P (f(g(0̄, a)))
cut` P (f(g(0̄, a))) P (g(1̄, a)) `

cut,�`

Mapping the proof projections computed above to R and considering the
term-rewriting system for g we obtain the ACNF of Ψ for k = 0. The cuts
are marked with red color and they are all atomic:

48 CHAPTER 3. THE METHOD CERESS

PR(P (a) `)

A ; B ` P (a) ; C

PR(P (a) ` P (f(g(0̄, a))))

A ; P (a) ; B ` P (f(g(0̄, a))) ; C
cut

A ; B ; A ; B ` P (f(g(0̄, a))) ; C

PR(` P (g(1̄, a)))

A ; P (g(1̄, a)) ; B ` ; C ; C
cut,�

A ; B ; A ; B ; A ; B ` C ; C ; C
c : l∗, c : r∗

A ; B ` C

where A ≡ ∀x(P (x) → P (f(x))) , B ≡ ∀x(P (g(1̄, x)) → P (h(1̄, x))) and
C ≡ P (a)→ P (h(1̄, a)).

Chapter 4

The GAPT System

The GAPT system (General Architecture for Proof Theory) is a proof the-
ory framework that aims at providing data structures, algorithms and user
interfaces for analyzing and transforming formal proofs. GAPT was cre-
ated to replace and expand the scope of the CERes system [BHL+05]. The
CERes system was defined mainly for cut-elimination by resolution in first-
order logic [BL00]. Through a more flexible implementation based on basic
data structures for simply-typed lambda calculus and for sequent and reso-
lution proofs, implemented in the hybrid functional object-oriented language
Scala [OSV10], GAPT has already allowed the generalization of the cut-
elimination by resolution method to proofs in higher-order logic [HLWWP08a]
and to proof schemata [Ruk12]. Furthermore, methods for structuring and
compressing proofs, such as cut-introduction [HLW12] and Herbrand sequent
extraction [WP08] have recently been implemented.

So far the development of the GAPT system has led to a general pur-
pose experimental tool, rather than just an implementation of the CERES
method. It contains an implementation of various data structures and data
types required for various algorithms, parsers, proof transformations, theo-
rem provers, graphical user interface as well as a command line interface (for
the advanced UNIX users) and another components which are very useful in
the automated analysis of proof theoretic constructions.

GAPT contains datastructures which implement the languages of first-
and higher-order logic as well as the regular schematic logic [ACP09]. All
of them are contained in the corresponding types in order to model the
mathematical theory in a sound way. Several Gentzen-type calculi were im-
plemented such as LK for first-order logic and Robinson resolution [Rob65]
for proving unsatisfiability. Furthermore, several new calculi were developed

49

50 CHAPTER 4. THE GAPT SYSTEM

and implemented such as LKsk [HLWWP08a] and LKskc - for higher-order
logic, LKS - for first-order regular schemata [Ruk12]. The algorithms im-
plemented within GAPT cover the standard set of proof theoretic concepts
used in automated deduction such as unification, subsumption, skolemiza-
tion, normalization, term-rewriting, matching, auto-propositional mode for
proving propositional tautologies, etc. Some of the algorithms, such as the
higher-order unification algorithm of Huet [Hue02], require an interactive
mode because, as it is well known, this problem is undecidable.

Several parsers are implemented to make the use of the algorithms and
transformations easier for the end user. The input format for all objects such
as first-, higher- or schematic formulas, sequents, proof derivations, term-
rewriting systems, etc. is very intuitive and easy for typing in a .txt file. A
language called SHLK has been described and implemented for parsing LKS-
proofs. A language for parsing resolution proofs and clause schemata has
also been implemented. The latter is absolutely necessary for the CERESs

method, because the user should provide the corresponding rewrite systems
for obtaining the ACNF as it was shown in the previous chapter.

The core of the system has several transformations on proof derivations.
The most prominent transformation is the one that automates the CERES
method. Such transformations exist for CERESs and CERESω [HLWWP08a],
Gentzen’s reductive cut-elimination method, and Herbrand sequent extrac-
tion as well. From now on we will focus our attention on the automation of
CERESs method which is the main contribution of the this thesis. As a part
of the automation, a parser was implemented for the input language. The
basic theoretical backbone of CERESs such as the schematic characteristic
clause set, schematic proof projections and the construction of the ACNF , as
well as all the term-rewriting machinery has also been implemented. Finally,
this process was built into the graphical user interface ProofTool [DLL+12b]
and presented to the user in a human readable format.

The resolution prover TAP has been integrated into the GAPT system
and was extended to support proof replaying. It turned out to be very use-
ful in analyzing of mathematical proofs such as the ”Tape proof” [DLL+12a].
Proof replaying increases the comprehensibility of the output for mathemati-
cians. The proofs obtained using Prover9 [McC10] tend to be illegible for
untrained users. Namely, TAP unfolds some complex inferences, recomputes
the unifiers and translates Prover9’s inference rules to predefined correspond-
ing sequences of resolution and paramodulation steps. A good example for
that is the rewrite inference [McC10] of Prover9.

51

All of the features which have been just mentioned are integrated into a
graphical user interface called ProofTool . With its navigation, buttons and
pop-up menus it is a user-friendly environment for loading and displaying
proofs and transformations which were applied on them. Also it has a func-
tionality such as the marking of cut-ancestors up to the axioms and hiding
branches of the proof derivation order to help visualize big proofs. It also has
features for searching a formula in the proof. Furthermore, it can visualize,
in a nice format, the characteristic clause and projection terms. Finally, each
object can be exported to a LaTeX or PDF format and plugged into a paper,
presentation, etc.

Now we go deeper into the construction of the GAPT system and take
a more engineering point of view. The programming language of choice was
Scala [OSV10]. There are several reasons for this choice. The most important
one is that Scala is a multi-paradigm programming language. On one hand,
it is considered as a ”better Java”, i.e. it has all the benefits that object-
oriented programming provides : defining (algebraic) objects and types, ab-
straction over datastructures, encapsulation, modularity, polymorphism, in-
heritance. For example, the polymorphism allows the application of some
design patterns. The benefit of applying design patterns is that they reveal
relationships and interactions between classes or objects, without specifying
the final application classes or objects that are involved. For example, such
a design-pattern is the ”Visitor design pattern” which could be integrated in
the algorithms which traverse the proof tree. This will be explained in details
in the next chapter. Another benefit of using Scala is that, as a Java-based
language, it is built on top of a virtual machine which allows the GAPT
system to be installed on any operating system. The handling of exceptions
and the garbage collector decrease the number of possible bugs in the system.
Due to the complex algorithms, this was one of the main problems with the
predecessor of GAPT - the old system CERes [HLWWP08d].

On the other hand, Scala also allows the use of the functional program-
ming paradigm which treats computation as the evaluation of mathematical
functions. Functional programming has its roots in the λ-calculus - a formal
system developed in the 1930s to investigate function definition, function ap-
plication and recursion. This perfectly fits into our needs, because almost all
of the objects in the language as well as in the calculi used in Proof theory
are defined via recursion/induction. Therefore, the implementation follows
the theory. This does not only support the creation of a correct code, but
also makes the implementation of the algorithms straightforward. It also al-

52 CHAPTER 4. THE GAPT SYSTEM

lows the application of higher-order functions which are very efficient when a
certain operation/function is applied on objects of the same type. The result
of its application can be either an object or again a function. For example,
imagine that we want to apply a function on a proof derivation which con-
tains as a parameter a function which is applied only on the cut-ancestors of
each node of the proof derivation.

Now we will focus on the different levels of abstraction on top of which
are implemented the corresponding languages, calculi, algorithms and trans-
formations.

4.1 Layers of abstraction

The GAPT system has the following general architecture:

λ-calculus

Higher-order logic

First-order logic First-order schema

Propositional schema

As it is shown in the picture, on the top of the hierarchy is the λ-calculus. It
forms the kernel of the whole system. On one hand this formalism is strong
enough to describe all computable functions, on other hand the implemen-
tation of the calculus is straightforward. Also the recursive definition of the
terms uses the full power of the functional programming style where every
object is an expression. Since we use the typed λ-calculus, the corresponding
type is attached to each expression.

On the base of the λ-calculus the language for higher-order logic is built.
For example, atoms and functions are represented as applications. The dif-
ference between the two concepts is their types - the atoms have type τ → o,
whereas functions have type τ → ι, where τ, o and ι are the standard types

4.1. LAYERS OF ABSTRACTION 53

introduced in chapter Preliminaries.

The first order schema logic layer is based on the layer of higher-order
logic. This allows us to define second-order variables which are applied on
a ground indexed expression and the resulting object serves as a (indexed)
first-order variable. Another reason is that in schema language we have the
special constants for

∨
and

∧
. The details will be explained in the following

sections.

4.1.1 λ-calculus layer

The λ-calculus is a formal system in mathematical logic for expressing com-
putation with variable binding and substitution. It was first formulated by
Alonzo Church as a way to formalize mathematics through the notion of
functions, in contrast to the field of set theory. The λ-calculus found a big
successes in the area of computability theory and computer science. It is also
the basis of the functional programming paradigm. The λ-calculus consists
of a language of lambda terms along with an equational theory. Since the
names of functions are largely a maner of convenience, the lambda calculus
has no means of naming a function. Furthermore, since all functions expect-
ing more than one argument can be transformed into equivalent functions
accepting a single input (via Currying), the lambda calculus has no need to
create a function that accepts more than one argument. Finally, since the
names of arguments are largely irrelevant, the notion of equality on λ-terms
is α-equivalence. The λ-terms are:

• all variables x of type ι or ω

• if t is a λ-term of arbitrary type τ and x is a variable τ1 ∈ {ι, ω}, then
λx.t is a λ-term of type τ1 → τ (λ-abstraction)

• if t and s are λ-terms of type τ1 → τ2 and τ1 respectively, then ts is a
λ-term of type τ2 (λ-application)

The variable x in the second case is called a bound variable. Associating to
each term a corresponding type is crucial for the termination. Otherwise,
we can end up in the following case : (λx.x)(λx.x) which is a loop. In the
GAPT system we define the notion of λ-expression in the following way:
trait LambdaExpression extends LambdaFactoryProvider w i t h Ordered[LambdaExpression] {

def type : TA

54 CHAPTER 4. THE GAPT SYSTEM

def getFreeAndBoundVariables() : Pair[Set[Var],Set[Var]]

def noUnboundedBounded : Boolean

def variant

...

}

The meaning of the declaration above is the following : an abstract type
LambdaExpression is defined. It has components exptype which associates a
type to this object and a function getFreeAndBoundVariables which returns
a pair of sets containing the free and the bound variables respectively. For
the types we also have the following declaration:

abstract class TA {
def →(this:TA)

}
abstract class TAtomicA extends TA

abstract class TComplexA extends TA

case class Tindex() extends TAtomicA {override def toString = ”ω”}
case class Ti() extends TAtomicA {override def toString = ”ι”}
case class To() extends TAtomicA {override def toString = ”o”}
case class →(in:TA, out:TA) extends TComplexA {override def toString = ...}

We see that this declaration defines the abstraction for the three types ι, ω
and o which are atomic types (TAtomicA) exactly as they were defined in
chapter Preliminaries. We also see the definition the constructor→ for com-
plex types (TComplexA). Both the atomic type objects and the complex type
one are wrapped by the abstract class TA (abbreviation from TypeAbstract).
This wrapping of all types into one is necessary because the algorithms do
not know in advance the concrete type of the objects they work on. The
objects are decomposed during runtime.

Having the types, we can now show how the λ-terms are defined in GAPT:

class Var protected[typedLambdaCalculus](name: SymbolA, exptype: TA, dbInd: Option[Int])

extends LambdaExpression {
val dbIndex: Option[Int] = dbInd // represents a bound variable and its de Bruijn index

override def equals(a: Any) // alpha equals as ignores bound variable names

def isFree = dbIndex == None

def isBound = !isFree

. . .

}

4.1. LAYERS OF ABSTRACTION 55

We see that a variable is described by its name, type and de Bruijn in-
dex which is a very nice solution to distinguish the nested bound variables
in a λ-term. De Bruijn indices will be described later. We also see that
the object representing a variable has a function which answers the question
whether it is free or bound. There is also an implementation of the α-equality.

class Abs protected[typedLambdaCalculus](variable: Var, expression: LambdaExpression)

extends LambdaExpression {
require (variable.isFree, ”Cannot abstract over a bound variable!”)

def exptype: TA = →(variable.exptype, expression.exptype)

override def equals(a: Any)

def syntaxEquals(e: LambdaExpression)

override def toString() = ”Abs(” + variableInScope + ”,” + expressionInScope + ”)”

def variant

def createDeBruijnIndex(Var, LambdaExpression, nextDBIndex): LambdaExpression

. . .

}

We see that the description of the λ-abstraction is characterized by a variable
and a λ-expression. It has a constructor → which makes the corresponding
type. It has also a requirement that the variable which we abstract over must
not be already bounded. It also has a function for computing the de Bruijn
index of the variable we abstract over. We will explain these construction in
details later.

Finally, we show the declaration of the application:

class App protected[typedLambdaCalculus](function: LambdaExpression, argument: LambdaExpression)

extends LambdaExpression {
require(. . .) //Correct types for constructing the application function(argument)

def variant

def exptype: TA

override def equals(a: Any)

def syntaxEquals(e: LambdaExpression)

override def toString() = ”App(” + function + ”,” + argument + ”)”

. . .

}

Like the previous two λ-terms, the application also has a type. It also has
a requirement which checks whether the construction of the object is sound,

56 CHAPTER 4. THE GAPT SYSTEM

namely whether the corresponding types of the objects fit. Furthermore,
there is a function which returns a variant of the resulting term.

The λ-terms in the GAPT system are created via a design pattern called
Abstract factory . The pattern separates the details of implementation of a
set of objects from their general usage. It defines a functionality via a generic
interface which is specified in each level in the hierarchy, i.e. for the layers
for first-order logic, higher-order logic and first-order schema. Exactly here
we employ the object-oriented paradigm of Scala. Here is how the abstract
interface looks like:

t r a i t LambdaFactoryA {
def createVar(name: SymbolA, exptype: TA, dbInd: Option[Int])

def createAbs(variable: Var, exp: LambdaExpression)

def createApp(fun: LambdaExpression, arg: LambdaExpression)

}

Each object of a language from each layer is created by using this inter-
face. It has only three functions, namely the ones who create the λ-terms.
In the layer for λ-calculus we define the interface and give it a meaning, i.e.
we construct the real objects/terms:

o b j e c t LambdaFactory extends LambdaFactoryA {
def createVar(. . .) : Var = new Var(name, exptype, dbInd)

def createAbs(. . .) : Abs = new Abs(variable, exp)

def createApp(. . .) : App = new App(fun, arg)

}

An interesting question from a software engineering point of view is how
in GAPT we distinguish between (nested) bound and free variables in a
λ-term. They are many possibilities, but the most efficient so far is the one
suggested by Dutch mathematician Nicolaas de Bruijn. He assigns to a vari-
able an index which makes the λ-term invariant under α-conversion. Hence,
the check for α-equivalence is the same as the check for syntactic equality.

Definition (de Bruijn index) A de Bruijn index is a natural number that
represents an occurrence of a variable in a λ-term and denotes the number of
binders that are in the scope between that occurrence and its corresponding
binder. The definition of a de Bruijn indexed λ-term is:

• n, where n ∈ N and

4.1. LAYERS OF ABSTRACTION 57

– n is an index of a bound variable, if it is in the scope of at most
n binders

– n is an index of a free variable, otherwise

• if M and N are de Bruijn indexed λ-terms, then MN is also a de Bruijn
indexed λ-term

• if M is a de Bruijn indexed λ-term, then λM is also a de Bruijn indexed
λ-term

Example: Consider the K-combinator λx.λy.x. Its de Bruijn indexing is :
λ.λ.2. That means that the index of x is 2, i.e. the second binder which x is
in the scope of, starting counting from the occurrence of x to the left. In the
term there is no variable y, although there is a binder for y. Therefore, we
have only one de Bruijn index in this term. Another example, consider the
S-combinator λx.λy.λz.xz(yz). Its de Bruijn indexing is : λ.λ.λ. 3 1 (2 1).
That means that x, y and z have de Bruijn indices 3, 2 and 1, respectively.
Starting from the occurrence of x to the left there are 3 binders is scope;
starting from the occurrence of y to the left there are 2 binders in scope, etc.

A free-variable in a λ-term has a de Bruijn index which is an arbitrary num-
ber bigger then the depth of the deepest nesting of binders. For example, in
the term λx.yx we have that x has a de Bruijn index 1 and y has a de Bruijn
index 2. When β-reduction is applied to a λ-term, the de Bruijn indices of
all variables should be recomputed. This is done as follows:

• find all variables n in M that are bound in M

• decrease the free variables of M to so that they are still bigger then the
number of the binders in scope

• replace n in M with N and, if necessary, increasing the free variables
so that they are still bigger then the number of the binders in scope

Example: Consider the λ-term (λx.λy.zx(λu.ux))(λx.wx). Its de Bruijn
indexing before the application of the β-reduction is:

(λλ 4 2 (λ 1 3)) (λ 5 1)

After one step of β-reduction we obtain the λ-term : λy.z(λx.wx)(λu.u(λx.wx))
which corresponds to the term λ 3 (λ 6 1) (λ 1 (λ 7 1)).

58 CHAPTER 4. THE GAPT SYSTEM

So far we described the kernel of the GAPT system. We continue with
the next layer which defines the higher-order logic on top of the λ-calculus.

4.1.2 Higher-order logic layer

In the GAPT system the layer for higher-order logic (HOL) is divided in
two parts - a language and a calculi module. In the language module the
data structures representing HOL-terms are defined . The abstractions for
HOL-constants and HOL-variables are built on top of the definition for Var
in the λ-calculus layer. The difference comes from the additional data which
specifies whether the name of the object is of type constant symbols or vari-
able symbols:

class HOLVar protected[hol] (name: VariableSymbolA, exptype: TA, dbInd: Option[Int])

extends Var(name, exptype, dbInd) with HOLExpression {
. . .

}
class HOLConst protected[hol] (name: ConstantSymbolA, exptype: TA)

extends Var(name, exptype, None) with Const with HOLExpression {
. . .

}

Due to the polymorphism the datastructures HOLVar and HOLConst in-
herit all features which the objects of type Var have. That means that both
of them have a type associated. In contrast to the HOL-variables, the HOL-
constants do not have a de Bruijn index as it is seen from the code above -
in the first case we have dbInd, in the second we have None (in bold).

The functions and the atoms are defined as λ-application. An HOL-variable
or an HOL-constant with the corresponding type are applied to a list of
arguments with the corresponding type. The difference between the two ap-
plications is that in the case of an atom we construct an object of type o,
whereas in the case of function we construct an object of type ι. For the
construction of the application we use again a factory, namely HOLFactory,
which is similar to the LambdaFactory, but with additional information:

object HOLFactory extends LambdaFactoryA {
def createVar(name: SymbolA, exptype: TA, dbInd: Option[Int]) : Var =

4.1. LAYERS OF ABSTRACTION 59

name match {
case a: ConstantSymbolA =>

if (isFormula(exptype))

new HOLConstFormula(a)

else

new HOLConst(a, exptype)

case a: VariableSymbolA =>

if (isFormula(exptype))

new HOLVarFormula(a, dbInd)

else

new HOLVar(a, exptype, dbInd)

}
def createApp(fun: LambdaExpression, arg: LambdaExpression) : App = {. . . }
def createAbs(variable: Var, exp: LambdaExpression) : Abs = {. . . }
def isFormula(typ: TA): Boolean = {. . . }
. . .

}

Having defined the atoms, the next step is to define the datastructures for
formulas in the language. This is done by using predefined constants - for
each unary or binary logical connective there is a constant variable of the
corresponding type. For example, the constants are defined as follows:

case object NegC extends HOLConst(NegSymbol, ”(o→ o)”)

case object AndC extends HOLConst(AndSymbol, ”(o→ (o→ o))”)

. . .

The constructors of the corresponding applications are defined below. The
arguments respect the type of the corresponding logical connective:

object Neg {
def apply(sub: HOLFormula) = App(NegC,sub).asInstanceOf[HOLFormula]

. . .

}
object And {

def apply(left: HOLFormula, right: HOLFormula) = (App(App(AndC,left),right)).asInstanceOf[HOLFormula]

. . .

}

For the quantifiers we also have predefined logical connectives:

60 CHAPTER 4. THE GAPT SYSTEM

class ExQ protected[hol](e:TA) extends HOLConst(ExistsSymbol, →(e,”o”))

class AllQ protected[hol](e:TA) extends HOLConst(ForallSymbol, →(e,”o”))

and the corresponding constructors of the quantified formulas are:

object Ex {
def apply(sub: LambdaExpression) = App(new ExQ(sub.exptype),sub).asInstanceOf[HOLFormula]

. . .

}
object All {

def apply(sub: LambdaExpression) = App(new AllQ(sub.exptype),sub).asInstanceOf[HOLFormula]

. . .

}

Until now we explained the datastructures for the HOL-language. In the
GAPT system we also support different calculi such as LK, LKS, LKω,
etc. Now, we describe how a derivation in GAPT looks like. In our case
all derivations (LK, Robinson Resolution, etc) are trees containing sequents
and some additional information in the nodes, for example the auxiliary and
principal formulas, the type of the inference rule, etc. We have the following
abstractions for a tree:

trait Tree[V] extends AGraph[V] {
require {isTree}
private[trees] def isTree: Boolean

val vertex: V

def name: String

. . .

}
class LeafTree[V](override val vertex: V) extends LeafAGraph[V](vertex) with Tree[V] {

. . .

}
class UnaryTree[V](override val vertex: V, override val t: Tree[V])

extends UnaryAGraph[V](vertex, t) with Tree[V] {
. . .

}
class BinaryTree[V](override val vertex: V, override val t1: Tree[V], override val t2: Tree[V])

extends BinaryAGraph[V](vertex, t1, t2) with Tree[V] {
. . .

}

4.1. LAYERS OF ABSTRACTION 61

The three data structures above are a basis for describing the nullary (axioms
and proof-links), unary and binary inference rules in all calculi in GAPT.
We now describe the notion of a proof in the system : this is a tree with a
root, inference rule and subproof(s):

traitProof[+V] extends AGraph[V] {
def root = vertex

def rule: RuleTypeA

. . .

}
trait NullaryProof[+V] extends LeafAGraph[V] with Proof[V] {

. . .

}
trait UnaryProof[+V] extends UnaryAGraph[V] with Proof[V] {

def uProof = t.asInstanceOf[Proof[V]]

. . .

}
trait BinaryProof[+V] extends BinaryAGraph[V] with Proof[V] {

def uProof1 = t1.asInstanceOf[Proof[V]]

def uProof2 = t2.asInstanceOf[Proof[V]]

. . .

}

Merging the above abstractions in a suitable way, we obtain the descrip-
tion of a proof-tree with still not specified vertex of type V:

trait NullaryTreeProof[V] extends LeafTree[V] with NullaryProof[V] with TreeProof[V]

trait UnaryTreeProof[V] extends UnaryTree[V] with UnaryProof[V] with TreeProof[V]

trait BinaryTreeProof[V] extends BinaryTree[V] with BinaryProof[V] with TreeProof[V]

The specification depends on the type of the calculus. For LK, for example,
the vertex of a proof-tree is a sequent (pair of multisets of formulas) and an
LK-proof is described as follows:

trait LKProof extends TreeProof[Sequent] with Tree[Sequent] {
. . .

}
trait NullaryLKProof extends LeafTree[Sequent] with LKProof with NullaryTreeProof[Sequent] {

. . .

}
trait UnaryLKProof extends UnaryTree[Sequent] with LKProof with UnaryTreeProof[Sequent] {

62 CHAPTER 4. THE GAPT SYSTEM

override def uProof = t.asInstanceOf[LKProof]

. . .

}
trait BinaryLKProof extends BinaryTree[Sequent] with LKProof with BinaryTreeProof[Sequent] {

override def uProof1 = t1.asInstanceOf[LKProof]

override def uProof2 = t2.asInstanceOf[LKProof]

. . .

}

Finally, the last feature needed for defining the object of an LK-proof is
the datastructures for auxiliary and principal formulas. With their help we
create the inference rules. For example, the cut rule:

object CutRule {
def apply(s1: LKProof, s2: LKProof, term1oc: Occurrence, term2oc: Occurrence) = {
. . .

new BinaryTree[Sequent](sequent, s1, s2) with BinaryLKProof with AuxiliaryFormulas {
def rule = CutRuleType

def aux = (term1::Nil)::(term2::Nil)::Nil

override def name = ”cut”

}
. . .

}

All other inference rules of all other calculi which the GAPT system sup-
ports are implemented in a similar way.

4.1.3 First-order logic layer

The first-order logic layer is built on top of the higher-order logic layer,
because its specification is less general. That means that the creation of
first-order formulas can be done like the creation of a second-order formu-
las with additional restrictions, namely the first-order terms should be of
type ι. Therefore, analogously to the previous section, we have to define
a first-order factory which creates the elements of the first-order language.
This construction is analogous to the ones showed previously and we will not
show it here. We will present only the abstraction for first-order term and
the type of first-order variable which is in fact a higher-order variable of type
ι:

4.1. LAYERS OF ABSTRACTION 63

trait FOLTerm extends HOLExpression with FOL {
require(exptype == ι)

. . .

}
class FOLVar (name: VariableSymbolA, dbInd: Option[Int])

extends HOLVar(name, ι, dbInd) with FOLTerm {
. . .

}

4.1.4 First-order schemata layer

First-order schemata layer is based on HOL, because it goes beyond the FOL.
In this section we look at some software solutions for schemata. Again, we
have a special factory for creating schema expressions:

trait Schema extends HOL {
override def factory: LambdaFactoryA = SchemaFactory

}
trait SchemaExpression extends HOLExpression with Schema

Here we define the abstraction for an integer term of type ω. Having this,
we can define a schema formula, arithmetic term, schematic term, etc:

trait SchemaFormula extends SchemaExpression with HOLFormula

object aTerm {
def apply(name: HOLConst, ind: IntegerTerm): IntegerTerm = {

SchemaFactory.createApp(name, ind).asInstanceOf[IntegerTerm]

}
}
object sTerm {

def apply(f: String, i: IntegerTerm, x: HOLExpression): HOLExpression = {
val func = HOLConst(new ConstantStringSymbol(f), →(ω , → (ι, ι)))

return HOLApp(HOLApp(func, i), x).asInstanceOf[HOLExpression]

}

The schema iterations
∨

and
∧

are defined as higher-order constants of
type ((ω → o)→ (ω → (ω → o))):

64 CHAPTER 4. THE GAPT SYSTEM

 trait LambdaFactoryProvider Ordered[LambdaExpression]

trait LambdaExpression

class Var
class Abs

class App

trait HOLExpression

trait HOL

trait Const

trait Formula

trait HOLFormulaclass HOLVarclass HOLConst

class HOLVarFormulaclass HOLConstFormula class HOLApp

class HOLAppFormula

class HOLAbs

class NegC
class AndC
class Orc
class ImpC
class ExQ
class AllQ

trait LambdaFactoryA

object LambdaFactory object HOLFactory object FOLFactory object SchemaFactory

trait Schema

trait SchemaExpression

trait IntegerTerm

class IntConst class IntVar class SchemaAppclass SchemaAbs

trait SchemaFormula class indexedFOVar

Figure 4.1: Class hierarchy

case object BigAndC extends HOLConst(BigAndSymbol, → (→ (ω, o),→ (ω,→ (ω, o)))) with Schema

case object BigOrC extends HOLConst(BigOrSymbol, → (→ (ω, o),→ (ω,→ (ω, o)))) with Schema

The last datastructure which will be presented here is that for an indexed
first-order variable. This is an object which is in fact a higher-order variable
of type ω → ι:
class indexedFOVar(override val name: VariableStringSymbol) extends HOLVar(name, ω → ι) {
. . .

}

In the GAPT system we have extended LK with new inference rules for
the LKS calculus which are defined in a similar fashion to the ones in LK,
so we will not describe them here. Instead, we will give a part of the class
hierarchy showing the connection between the layers:

4.1.5 Higher-order functions

One of the biggest benefits of using the functional programming paradigm
are the higher-order functions. These are functions that take another func-
tions as an argument or they return a function as a result. For example, the

4.1. LAYERS OF ABSTRACTION 65

Map function is a higher-order function. It takes as arguments a function f
and a list of elements, and as result, returns a new set with f applied to each
element from the list. For example, let f : ω → ω be the square function
λx.x ∗ x and S = {1, 2, 3} be a set of elements of type ω. Then, the function
Map : (ω → ω,N)→ N on input (f, S) gives {f(1), f(2), f(3)} = {1, 4, 9}.

Another important higher-order function is Fold (also know as accumula-
tor). It takes as arguments a binary higher-order function g, an initial value
init of the type of Range(g) and a set S of elements of the type of Range(g).
For example, if g : ω → ω → ω is defined as λxλy.x + y, init = 0 and
S = {1, 2, 3}, then Fold(g, init, S) returns (((3 + 2) + 1) + 0) = 6 which is
the sum of the elements of S.

In the GAPT system we use the higher-order functions in many cases, for
example to construct the type of the higher-order constant h for the s-term
h(k + 1, x), where k + 1 is an arithmetic expression of type ω, x : ι, we have
to create a higher-order constant h : ω → ι→ ι. This we do as follows:

Fold(→, ι,Map(getType, {k + 1, x})

and the result of it, i.e. the type of h, is: ω → ι → ι, where → is the
constructor for types in λ-calculus.

Remark: The higher-order functions in Scala are defined in such a way
that they can be applied to objects of different type. But it is important that
there is a type matching of the corresponding types.

In GAPT the following piece of code corresponds to the last example above:

{
. . .
val type = args.map(x => x.exptype).foldRight(ι)((x,t) => →(x, t))
val h = HOLConst(”h”, type)
. . .

},

where args is a list of arguments, exptype is the type of the expression x
and h is the higher-order constant that we want to create.

66 CHAPTER 4. THE GAPT SYSTEM

Chapter 5

The language SHLK

SHLK is a language for fast and convenient typing of LK-style proofs. It is a
successor of the language handy LK (HLK) [HLWWP08c]. SHLK is invented
mainly for the needs of the system CERESs , but it can be used also in every
system which works with LK and LKS calculi. Also a subset of it can be used
by any system which works with higher-order formulas or first-order regular
schemata. In the GAPT system an LL-parser is implemented which parses
the grammar of the language SHLK . SHLK is superior to its ancestor HLK
in several ways. First, it is more expressive than HLK , because it handles
schematic definitions in a suitable way. Second, the user has a better control
on the inferences. For example, HLK does automatically some structural
inferences which may change the ancestor relation in a way that it differs
from the proof which was meant by the user. Third, in SHLK the sequents
are pairs of multisets. That eliminates the need for permutation rules which
were part of HLK . Fourth, looking from the software engineering point of
view, the parser of SHLK creates objects directly and datastructures defined
in the logical layers which we explained in the previous chapter. Therefore,
the GAPT system can directly use these objects in its transformations. On
the contrary, the output of HLK was an intermediate .xml file which later
was parsed from the former system CERes . Fifth, the parser for SHLK can
be and is integrated directly in the new ProofTool which makes the whole
automation process, from writing the input file to loading it and displaying
the proofs, more transparent and user-friendly.

67

68 CHAPTER 5. THE LANGUAGE SHLK

5.1 A Grammar for SHLK

The proof input format is designed to write LKS-proofs in a machine read-
able form using ASCII characters. It extends the input format of the RegSTAB
system [ACP10]. Below we define a formal grammar of SHLK . We use the
Kleene’s concept of regular expressions:

〈lks file〉 ::= [〈lks statement〉]∗
〈lks statement〉 ::= 〈definition〉

::= 〈proof〉
〈definition〉 ::= 〈formula〉 := 〈formula〉

〈proof〉 ::= proof 〈proof name〉 proves 〈sequent〉
::= base {inference list}
::= step {inference list}

〈proof name〉 ::= [\]∗[a− z, 0− 9]+

〈sequent〉 ::= [〈formulaList〉] |− [〈formulaList〉]
〈formulaList〉 ::= 〈formula〉

::= 〈formula〉, 〈formulaList〉
〈inference list〉 ::= [〈inference〉]+
〈inference〉 ::= 〈id〉 : 〈rule〉

::= 〈root〉 : 〈rule〉
〈id〉 ::= [0− 9, a− z]+

〈predicateName〉 ::= [A− Z]+[a− z, 0− 9]∗

〈indexedPredicate〉 ::= 〈predicateName〉(〈aTermList〉)
〈atom〉 ::= 〈foAtom〉

::= 〈sAtom〉
〈foAtom〉 ::= 〈foAtomName〉(〈foTermList〉)
〈sAtom〉 ::= 〈sAtomName〉(〈aTerm〉, 〈foTermList〉)
〈atom〉 ::= 〈foAtom〉

::= 〈sAtom〉
〈foAtom〉 ::= 〈foAtomName〉(〈foTermList〉)
〈atom〉 ::= 〈foAtom〉

::= 〈sAtom〉

5.1. A GRAMMAR FOR SHLK 69

〈atom〉 ::= 〈foAtom〉
::= 〈sAtom〉

〈foAtom〉 ::= 〈foAtomName〉(〈foTermList〉)
〈sAtom〉 ::= 〈sAtomName〉(〈aTerm〉, 〈foTermList〉)
〈aTerm〉 ::= 〈aV ar〉 + 〈aConst〉

::= 〈aConst〉
::= 〈aV ar〉

〈indexedFOvar〉 ::= 〈indexedFOvarName〉(〈aTerm〉)
〈foTerm〉 ::= 〈foV ar〉

::= 〈foConst〉
::= 〈indexedFOvar〉
::= 〈foTermSymbol〉(〈foTermList〉)
::= 〈foTermSymbol〉(〈sTermList〉)

〈foConst〉 ::= [a, b, c, d][0− 9]∗

〈foV ar〉 ::= [x, y][0− 9]∗

〈aV ar〉 ::= [i, j, k, l,m, n]+[0− 9]∗

〈aConst〉 ::= [0− 9]+

〈indexedFOV ar ::= [z][0− 9]∗

〈foTermList〉 ::= 〈foTerm〉
::= 〈foTerm〉, 〈foTermList〉

〈aTermList〉 ::= 〈aTerm〉
::= 〈aTerm〉, 〈aTermList〉

〈sTerm〉 ::= 〈sTermName(〈aTerm〉, [〈foTermList〉]∗, [〈aTermList〉]∗)
〈term〉 ::= 〈foTerm〉

::= 〈sTerm〉
〈formula〉 ::= 〈indexedPredicate〉

::= ∼ 〈formula〉
::= 〈atom〉
::= 〈formula〉/\〈formula〉
::= 〈formula〉\/〈formula〉
::= 〈formula〉− > 〈formula〉
::= 〈iteration〉〈formula〉

70 CHAPTER 5. THE LANGUAGE SHLK

〈iteration〉 ::= 〈iterSymbol〉(〈aV ar〉 =

〈arithmExpr〉..〈arithmExpr〉)
〈iterSymbol〉 ::= BigAnd

::= BigOr

〈arithmExprList〉 ::= 〈arithmExpr〉
::= 〈arithmExpr〉, 〈arithmExprList〉

〈arithmExpr〉 ::= 〈aV ar〉
::= 〈aConst〉
::= 〈aV ar〉+ 〈aConst〉

〈rule〉 ::= ax(〈sequent〉)
::= pLink((〈proof name〉, 〈index〉) 〈sequent〉)
::= negL(〈id〉, 〈formula〉)
::= negR(〈id〉, 〈formula〉)
::= andL1(〈id〉, 〈formula〉, 〈formula〉)
::= andL2(〈id〉, 〈formula〉, 〈formula〉)
::= andL(〈id〉, 〈formula〉, 〈formula〉)
::= impR(〈id〉, 〈formula〉, 〈formula〉)
::= impL(〈id〉, 〈id〉, 〈formula〉, 〈formula〉)
::= andR(〈id〉, 〈id〉, 〈formula〉, 〈formula〉)
::= orL(〈id〉, 〈id〉, 〈formula〉, 〈formula〉)
::= orR1(〈id〉, 〈formula〉, 〈formula〉)
::= contrL(〈id〉, 〈id〉, 〈formula〉)
::= contrR(〈id〉, 〈id〉, 〈formula〉)
::= orR2(〈id〉, 〈formula〉, 〈formula〉)
::= orR(〈id〉, 〈formula〉, 〈formula〉)
::= weakL(〈id〉, 〈formula〉)
::= weakR(〈id〉, 〈formula〉)
::= arrowL(〈id〉, 〈formula〉)
::= arrowR(〈id〉, 〈formula〉)
::= andEqL1(〈id〉, 〈formula〉, 〈formula〉)
::= andEqR1(〈id〉, 〈formula〉, 〈formula〉)
::= andEqL2(〈id〉, 〈formula〉, 〈formula〉)
::= andEqR2(〈id〉, 〈formula〉, 〈formula〉)

5.1. A GRAMMAR FOR SHLK 71

::= andEqL3(〈id〉, 〈formula〉, 〈formula〉)
::= andEqR3(〈id〉, 〈formula〉, 〈formula〉)
::= orEqL1(〈id〉, 〈formula〉, 〈formula〉)
::= orEqR1(〈id〉, 〈formula〉, 〈formula〉)
::= orEqL2(〈id〉, 〈formula〉, 〈formula〉)
::= orEqR2(〈id〉, 〈formula〉, 〈formula〉)
::= orEqL3(〈id〉, 〈formula〉, 〈formula〉)
::= orEqR3(〈id〉, 〈formula〉, 〈formula〉)
::= autoprop(〈id〉, 〈sequent〉)

For better understanding of the calculus and the grammar described above,
we illustrate it with simple example. Consider the following proof schema
Ψ = 〈(ψ(0), ψ(k + 1))〉 of a sequent P0,

∧k
i=0(¬Pi ∨ Pi+1) ` Pk+1, where ψ(0)

is:

P0 ` P0 ¬ : l¬P0, P0 ` P1 ` P1 ∨ : l
P0,¬P0 ∨ P1 ` P1 ≡ : ∧ 3

P0,
∧0
i=0 ¬Pi ∨ Pi+1 ` P1

and ψ(k + 1) is:

(ψ, k)

P0,
∧k
i=0(¬Pi ∨ Pi+1) ` Pk+1

Pk+1 ` Pk+1 ¬ : l¬Pk+1, Pk+1 ` Pk+2 ` Pk+2 ∨ : l
Pk+1,¬Pk+1 ∨ Pk+2 ` Pk+2

cut
P0,

∧k
i=0(¬Pi ∨ Pi+1),¬Pk+1 ∨ Pk+2 ` Pk+2

∧ : l1,∧ : l2, c : l
P0,

∧k
i=0(¬Pi ∨ Pi+1) ∧ (¬Pk+1 ∨ Pk+2) ` Pk+2 ≡ : ∧ 1

P0,
∧k+1
i=0 (¬Pi ∨ Pi+1) ` Pk+2

The sequence of inferences ∧ : l1,∧ : l1, c : l can be thought of as a single unary
rule ∧ : l which is not formally in the LK calculus. Then this proof can be
written in our grammar in the following way:

72 CHAPTER 5. THE LANGUAGE SHLK

proof \psi proves P(0), BigAnd(i=0..k) (∼ P(i) \/ P(i+1)) |- P(k+1)
base {

1: ax(P(0) |- P(0))
2: negL(1, P(0))
3: ax(P(1) |- P(1))
4: orL(2, 3, ∼ P(0), P(1))
root: andEqL3(4, (∼ P(0) \/ P(1)), BigAnd(i=0..0) (∼ P(i) \/ P(i+1)))

}
step {

1: pLink((\psi, k) P(0), BigAnd(i=0..k) (∼ P(i) \/ P(i+1)) |- P(k+1))
2: ax(P(k+1) |- P(k+1))
3: negL(2, P(k+1))
4: ax(P(k+2) |- P(k+2))
5: orL(3, 4, ∼ P(k+1), P(k+2))
6: cut(1, 5, P(k+1))
7: andL(6, BigAnd(i=0..k) (∼ P(i) \/ P(i+1)), (∼ P(k+1) \/ P(k+2)))
root: andEqL1(7, (BigAnd(i=0..k) (∼ P(i) \/ P(i+1)) /\ (∼ P(k+1) \/ P(k+2))),

BigAnd(i=0..k+1) (∼ P(i) \/ P(i+1)))
}

5.2 The Auto-propositional mode

The auto-propositional mode is an option integrated in the parser for SHLK .
It is a complete algorithm for generating propositional cut-free LK(S)-proofs.
As input the algorithm takes a sequent which is a propositional tautology.
The output is a proof derivation of that sequent. The axioms of the leafs
of the derivation in the current implementation is required to be atomic,
i.e. sequents of the form A ` A, where A is either an atom or an indexed
proposition. We make use of the well known fact that an LK-proof has the
subformula property . Furthermore, taking into account that the derivation
is cut-free, all of the formulas in the axiom appear in the end-sequent of the
proof. Intuitively it works as follows : assume that the input is not an atomic
sequent. Then at each step the algorithm chooses a non-atomic formula from
the antecedent or succedent part of the sequent. Then, the algorithm is ap-
plied recursively to the obtained sequent(s) with the decomposed subformula
and the duplication, if necessary, of the rest of the context of the sequent.
The duplication is required in all cases of binary rules and in some cases of

5.2. THE AUTO-PROPOSITIONAL MODE 73

unary rules. After each recursive call we apply the corresponding contraction
inferences if before that there was a duplication. Decomposing the sequent
in such a way will end up with a sequent S containing atoms only. Then we
find the subsequent S ′ of S which is an atomic axiom and apply as many
left or right weakening inferences as it is needed to derive the sequent S.
Since during the decomposition of the formulas we duplicate the context of
the current end-sequent in the upper subproof(s), the algorithm is complete.
The duplications are removed by contractions, as it was already mentioned.
Here we give an example (the auxiliary formulas of each inference are marked
with red):

A ` A
w : r

A ` A,B
w : r

A ` A,B,C → : r
` A→ C,A,B

A ` A
w : l

A, C ` A
w : r

A,C ` A,C → : r
C ` A→ C,A

→ : l
B → C ` A→ C,A,A→ C,A

c : r
B → C ` A→ C,A,A→ C

c : r
B → C ` A→ C,A

B ` B
w : r

B ` B,A→ C

C ` C
w : l

C,A ` C
w : l

B, C,A ` C → : r
B,C ` A→ C

→ : l
B,B,B → C ` A→ C,A→ C

c : l
B,B → C ` A→ C,A→ C

c : r
B,B → C ` A→ C

→ : l
A→ B,B → C,B → C ` A→ C,A→ C

c : r
A→ B,B → C,B → C ` A→ C

c : l
A→ B,B → C ` A→ C

The formulas A,B and C are arbitrary atoms. The derivation shows clearly
how the ideas of decomposing a non-atomic formula and duplication of the
context have been used. The proof derivation has 23 nodes. This fact shows
that the integration of the auto-propositional mode in the parser for SHLK
is of considerable help in typing or creating propositional derivations. In
the case of a sequent with ground schematic formulas the procedure applies
straightforwardly. In this case we just have first to decompose the formula
in such a way : if we have

∧3
i=1Ai, then we apply the equivalence rules and

get the formula A1 ∧
∧3
i=2Ai and we proceed as in the example above. Let

us show a few steps of the auto-propositional mode which takes as input the
sequent:

S = A→ B, B → C ` A→ C

and returns a proof derivation ρ of S.

We see that both antecedent and succedent part of S contain non-atomic
formulas only. We start to decompose each one of them. The first one
to be decomposed is A → B on the left side. It was introduced by a bi-
nary rule →l. Hence, we conclude that it is obtained after applying →l

to two subproofs ρ1 and ρ2 with the following end-sequents, respectively:
S1 = B → C ` A→ C, A and S2 = B, B → C ` A→ C. Applying →l to
ρ1 and ρ2 gives a proof ρ′ with end-sequent:

74 CHAPTER 5. THE LANGUAGE SHLK

S ′ = A→ B, B → C, B → C ` A→ C, A→ C

Applying to ρ′ two contractions, namely c : l and c : r, we obtain a proof with
end-sequent S. The algorithm is applied recursively to ρ1 and ρ2.

Now we give a formal definition of the algorithm for auto-propositional proof
generation in pseudocode:

formulas: A,B
formula multisets: Γ,∆
sequent: S
proof variables: ϕ, ϕ1, ϕ2, ϕ3

function: AutoProp
input: sequent //propositional tautology
output: arithmetically ground SLK-proof

1: if S = Γ, A ` A,∆ then
2: WeakeningsLeftRight(S)
3: else
4: if S = A→ B,Γ ` ∆ then
5: ϕ1 := AutoProp(Γ ` ∆, A)
6: ϕ2 := AutoProp(B,Γ ` ∆)
7: ϕ3 := ImpLeft(ϕ1, ϕ2, A,B)
8: return ContractionsLeftRight(ϕ3,Γ ` ∆)
9: else

10: if S = Γ ` ∆, A ∧B then
11: ϕ1 := AutoProp(Γ ` ∆, A)
12: ϕ2 := AutoProp(Γ ` ∆, B)
13: ϕ3 := AndRight(ϕ1, ϕ2, A,B)
14: return ContractionsLeftRight(ϕ3,Γ ` ∆)
15: else
16: if S = A ∨B,Γ ` ∆ then
17: ϕ1 := AutoProp(A,Γ ` ∆)
18: ϕ2 := AutoProp(B,Γ ` ∆)
19: ϕ3 := OrLeft(ϕ1, ϕ2, A,B)
20: return ContractionsLeftRight(ϕ3,Γ ` ∆)
21: else
22: if S = Γ ` ∆, A→ B then
23: ϕ := AutoProp(A,Γ ` ∆, B)
24: return ImpRight(ϕ,A,B)
25: else

5.2. THE AUTO-PROPOSITIONAL MODE 75

26: if S = ¬A,Γ ` ∆ then
27: ϕ := AutoProp(Γ ` ∆, A)
28: return NegLeft(ϕ,A)
29: else
30: if S = Γ ` ∆,¬A then
31: ϕ := AutoProp(A,Γ ` ∆)
32: return NegRight(ϕ,A)
33: else
34: if S = Γ ` ∆,

∨b
i=aAi then

35: ϕ := AutoProp(Γ ` ∆, Aa ∨
∨b
i=a+1Ai)

36: return OrEquivalenceRight(ϕ,
∨b
i=aAi)

37: else
38: if S =

∧b
i=aAi,Γ ` ∆ then

39: ϕ := AutoProp(Aa ∧
∧b
i=a+1Ai,Γ ` ∆)

40: return AndEquivalenceLeft(ϕ,
∧b
i=aAi)

41: else
42: if S = A ∧B,Γ ` ∆ then
43: ϕ1 := AutoProp(A,B,Γ ` ∆)
44: return AndLeft(ϕ1, A,B)
45: else
46: if S = Γ ` ∆, A ∨B then
47: ϕ1 := AutoProp(Γ ` ∆, A,B)
48: return OrRight(ϕ1, A,B)
49: end if
50: end if
51: end if
52: end if
53: end if
54: end if
55: end if
56: end if
57: end if
58: end if
59: end if

Remark: The input of the AutoProp function should be an arithmetically
ground sequent. Otherwise the unfolding of a schematic formula is not pos-
sible.

The function WeakeningsLeftRight(S) from line 2 in the algorithm is trivial.
It applies weakening rules with auxiliary formulas each formula in Γ ` ∆.

76 CHAPTER 5. THE LANGUAGE SHLK

For example, if S = A,B,C ` A,D, then WeakeningsLeftRight(S) gives the
derivation:

A ` A
w : l∗

A,B,C ` A
w : r

A,B,C ` A,D

5.3 Propositional proof compression

The propositional proof which is obtained after applying the auto-propositional
mode to a propositional tautology is usually not optimal. This happens, be-
cause some of the formulas in the duplicated context (for example in →l)
may be introduced by weakening inferences. In this section we will describe
an algorithm that removes those weakenings whose principal formulas are
contracted downwards in the proof. Informally, the algorithm works as fol-
lows. The proof derivation is traversed bottom-up (i.e. from the root to the
leafs). Let ρ be an inference rule. Then

• if ρ ∈ {c : l , c : r}, then we check if both auxiliary formulas a1 and a2

are introduced by weakenings. If this is the case, then we remove one
of these weakenings. Otherwise, if only a1 is introduced by weakening,
then remove the weakening which introduces it. Otherwise we apply ρ.

• if ρ ∈ {w : l , w : r , cut , ∨ : l , → : r}, then we apply again ρ.

• if ρ ∈ {∨ : l , ∧ : r , → : l} (binary rules), then we check whether
some of the auxiliary formulas a1 and a2 is introduced by weakening.
If this is a1, then we remove the whole branch ρ2. Then we remove the
weakening which introduced a1. Then we apply weakenings to the last
proof to obtain the end-sequent of ρ. Otherwise, we apply ρ. (ρi is the
subproof where ai belongs, for i = 1, 2)

• if ρ ∈ {¬ : l , ¬ : r , ∧ : l1 , ∧ : l2 , ∨ : r1 , ∨ : r2 , ∀ : l , ∀ : r , ∃ : l , ∃ : r},
then we check if the auxiliary formula a is introduced by a weakening.
If this is the case, then we remove the weakening rule which introduced
a and then apply weakenings to obtain the end-sequent of ρ. Other-
wise, we apply ρ.

5.3. PROPOSITIONAL PROOF COMPRESSION 77

Example: Consider the propositional proof in the previous section. The
reader probably has already noticed that many formulas introduced by weak-
ening are contracted later. Applying the idea which we just explained infor-
mally, we obtain the following proof:

A ` A w : r
A ` A,C → : r

A ` A,A→ C
B ` B

C ` C
w : l

A, C ` C → : r
C ` A→ C → : l

B,B → C ` A→ C → : l
A→ B,B → C ` A→ C,A→ C

c : r
A→ B,B → C ` A→ C

The proof above has 10 nodes which is more then twice less of the size of
the one obtained by auto-propositional algorithm. This is not of major im-
portance, because it does not shrink the size of the characteristic clause set.
Nevertheless, it makes the extraction of the clause set a bit faster, because
the proof derivation is smaller. Now we describe formally the algorithm in
the pseudocode below:

auxiliary formulas: A,A1, A2

principal (main) formula: M
end-sequent: ES
inference rules: ρ, ρ1, ρ2

proof variables: ϕ, ϕ1, ϕ2, ψ
function: RemoveStructuralRules
input: inference rule in the proof
output: SLK-proof

1: if (ρ ∈ {w : l, w : r}, ρ1, A) then
2: p1 := RemoveStructuralRules(ρ1)
3: apply(ρ, p1, A)
4: else
5: if (ρ ∈ {c : l, c : r}, ρ1, A1, A2) then
6: ϕ1 := RemoveStructuralRules(ρ1)
7: if A1 and A2 are weakened in ϕ1 then
8: RemoveWeakeningOn(A2, ϕ1)
9: else

10: if A1 is weakened in ϕ1 then
11: RemoveWeakeningOn(A1, ϕ1)
12: else
13: if A2 is weakened in ϕ2 then

78 CHAPTER 5. THE LANGUAGE SHLK

14: RemoveWeakeningOn(A2, ϕ2)
15: else
16: apply(ρ, ES(ϕ1), A1, A2)
17: end if
18: end if
19: end if
20: else
21: if (ρ ∈ {∨ : l , ∧ : r , → : l}, ρ1, ρ2, A1, A2) then
22: ϕ1 := RemoveStructuralRules(ρ1)
23: ϕ2 := RemoveStructuralRules(ρ2)
24: if A1 is weakened in ϕ1 then
25: RemoveWeakeningOn(A2, ϕ1)
26: AddWeakenings(ϕ1, ES(ρ))
27: else
28: if A2 is weakened in ϕ2 then
29: RemoveWeakeningOn(A2, ϕ2)
30: AddWeakenings(ϕ2, ES(ρ))
31: else
32: apply(ρ, ES(ϕ1), ES(ϕ2), A1, A2)
33: end if
34: end if
35: else
36: if (ρ ∈ {¬ : l , ∧ : l1 , ∧ : l2 , ∀ : l , ∃ : l}, ρ1, A,M) then
37: ϕ := RemoveStructuralRules(ρ1)
38: if A1 is weakened in ϕ then
39: ψ := RemoveWeakeningOn(A1, ϕ)
40: apply(w : l, ES(ψ),M)
41: else
42: apply(ρ, ES(ϕ), A)
43: end if
44: else
45: if (ρ ∈ {¬ : r, ∨ : r1, ∨ : r2, ∀ : r, ∃ : r}, ρ1, A,M) then
46: ϕ := RemoveStructuralRules(ρ1)
47: if A1 is weakened in ϕ then
48: ψ := RemoveWeakeningOn(A,ϕ)
49: apply(w : r, ES(ψ),M)
50: else
51: apply(ρ, ES(ϕ), A)
52: end if
53: end if
54: end if

5.3. PROPOSITIONAL PROOF COMPRESSION 79

55: end if
56: end if
57: end if

The function RemoveWeakeningOn(A,ϕ) removes the weakening which
introduced the formula A. The function apply(ρ, ES(ϕ), A) applies the
unary inference ρ to the end-sequent of the proof ϕ with auxiliary formula A.
The binary inference case is analogous. The function AddWeakenings(ϕ,ES(ρ))
applies weakenings to the proof ϕ so that the obtained proof has end-sequent
like the end-sequent of ρ.

Remark: The algorithm works on formulas, not on formula occurrences.

The presented algorithm above removes all formulas which are introduced
by weakening and contracted later on. In the example above still there are
superfluous inferences. There is a contraction-right inference with auxiliary
formula A → C which contains a subformula C which was introduced by
weakening-right. Despite the fact that A → C is contracted, we can not
remove the weakening rule which introduces C. In order to avoid such a
situation we can make a better choice of the formula to be decomposed in
the auto-propositional algorithm. Namely, we first have to apply all possible
unary rules and then the binary rules. This will guarantee that the dupli-
cated context will be weakened at some point. I.e. the formula which will be
contracted is the one which which was introduced by weakening. Hence, the
proof will be shorter. In our example this is even the shortest proof:

A ` A
B ` B C ` C → : l
B → C,B ` C → : l

B → C,A→ B,A ` C → : r
B → C,A→ B ` A→ C

80 CHAPTER 5. THE LANGUAGE SHLK

Chapter 6

Algorithms for proof schemata
transformation

The automation of CERESs requires a development of specific algorithms
and datastructures. For example, such an algorithm is the one for comput-
ing all relevant configurations in a proof schemata. These are all reachable
from 〈ψ1, (|)〉 configurations, where ψ1 is the smallest proof symbol in a proof
schema. By cut-configuration or just a configuration (see p.43) we mean a
configuration (i.e. set of formula occurrences) which appears on the place of
the proof-link when the proof schema is unfolded for a specific instance of
the parameter. For the automated extraction of the schematic characteristic
clause set and the schematic projections this is crucial because it consid-
erably prunes the search space of all possible configurations. Furthermore,
shrinking the size of the schematic characteristic clause set makes it easier
to define a resolution proof which after instantiation refutes it. As we have
already said, full automation of the refutation is not possible because of the
undecidability of the unification problem for s-terms. Even if one restricts to
some decidable class of s-terms, the problem still remains undecidable.

6.1 Computing relevant configurations

Let as consider the following example. Let Ψ = 〈ψ, ϕ〉 be a proof schema,
where ψ = (π1, ν1(k + 1)) and ϕ = (π2, ν2(k + 1)) and ψ < ϕ. The base-case
proofs are skipped, because they are irrelevant for the computation of the
configurations.

81

82CHAPTER 6. ALGORITHMS FOR PROOF SCHEMATA TRANSFORMATION

• π2:

.

.

.
∧0
i=0 Ai `

∧0
i=0 Ai

• ν2(k + 1):

(ϕ, k)
∧k
i=0 Ai `

∧k
i=0 Ai Ak+1 ` Ak+1 ∧ : r∧k

i=0 Ai , Ak+1 `
∧k
i=0 Ai ∧ Ak+1

∧ : l1∧k
i=0 Ai ∧ Ak+1 , Ak+1 `

∧k+1
i=0 Ai ∧ : l2∧k

i=0 Ai ∧ Ak+1 ,
∧k
i=0 Ai ∧ Ak+1 `

∧k+1
i=0 Ai

c : l∧k+1
i=0 Ai `

∧k+1
i=0 Ai

• π1:

.

.

.

A0 ,
∧0
i=0 Ai → Ai+1 `

∧1
i=0 Ai

• ν1(k + 1):

(ψ, k)

A0 ,
∧k
i=0(Ai → Ai+1) ` ∧k+1

i=0 Ai

(ϕ, k + 1)

∧k+1
i=0 Ai `

∧k+1
i=0 Ai

Ak+1 ` Ak+1 Ak+2 ` Ak+2
→ : l

Ak+1 , Ak+1 → Ak+2 ` Ak+2
∧ : r∧k+1

i=0 Ai , Ak+1 , Ak+1 → Ak+2 `
∧k+1
i=0 Ai ∧ Ak+2

∧ : l2∧k+1
i=0 Ai ,

∧k
i=0 Ai ∧ Ak+1 , Ak+1 → Ak+2 `

∧k+2
i=0 Ai

c : l∧k+1
i=0 Ai , Ak+1 → Ak+2 `

∧k+2
i=0 Ai

cut
A0 ,

∧k
i=0 Ai → Ai+1 , Ak+1 → Ak+2 `

∧k+2
i=0 Ai ∧ : l1

A0 ,
∧k
i=0 Ai → Ai+1 ,

∧k
i=0 Ai → Ai+1 ∧ Ak+1 → Ak+2 `

∧k+2
i=0 Ai ∧ : l2

A0 ,
∧k
i=0 Ai → Ai+1∧ → Ak+2 → Ai+1 ,

∧k
i=0 Ai → Ai+1 ∧ Ak+1 → Ak+2 `

∧k+2
i=0 Ai

c : l
A0 ,

∧k+1
i=0 Ai → Ai+1 `

∧k+2
i=0 Ai

The formulas in red color are the (local) cut-ancestors in the step-case of
ψ. We see that the proof-links (ψ, k) and (ϕ, k) also contain cut-ancestors.
That means that, if the proof is unfolded for a given instance of the pa-
rameter, the ancestors of these red formulas in the upper subderivation will
be propagated also as cut-ancestors. For the proof-link (ϕ, k) these are the
formulas in magenta color in ν2(k + 1). The configuration in this case is
Ω1 = (

∧k+1
i=0 Ai |). Analogously, the proof-link (ψ, k) we have the config-

uration Ω2 = (| ∧k+1
i=0 Ai) and the propagated ancestors are the formulas

marked with blue color in ν1(k+ 1). Such cut-ancestors will be called global-

6.1. COMPUTING RELEVANT CONFIGURATIONS 83

or Ω-ancestors, because they are cut-ancestors relative to ν1(k + 2), but not
in ν1(k + 1). Having the local cut-ancestors (in red) and the global cut-
ancestors (in blue) in ν1(k + 1), we see that appears a third configuration
for the proof-link (ϕ, k), namely Ω3 = (

∧k+1
i=0 Ai |

∧k+1
i=0 Ai). We have also a

fourth configuration which is the trivial one, namely Ω4 = (|) for ν1(k+ 1).
In summary, the relevant configurations are in a certain order, i.e. one con-
figuration may generate a new one. They are computed iteratively. The
maximum number of the iterations is bounded by the length of the longest
end-sequent of a step-case proof in Ψ. Here is a formal description of the
algorithm in pseudocode:

Let Ψ = 〈ψ1, ψ2, . . . , ψα〉 be a proof schema, where α ∈ N. The function
below extracts the (relevant) configurations in Ψ. Its input is a set of pairs
〈ψi,Ω〉, where Ω is a configuration for the end-sequent of the step case for ψi
and i ∈ {1, . . . , α}.

sets of pairs 〈proof-symbol, configuration〉:
setOfPairs, tmpSetOfPairs, ResultSet

step-case proof for a proof symbol ϕ: ϕstep
arithmetical term: a
configurations: Ω,Ωϕ

initial: setOfPairs := {〈ψ1, (|)〉}, ResultSet := ∅

1: function ExtractRelevantCC(setOfPairs, ResultSet)
2: for all pairs 〈ϕ,Ωϕ〉 ∈ setOfPairs do
3: tmpSetOfPairs := ∅
4: cutAncSet := getCutAncestors(ϕstep)
5: omegaAncSet := getOmegaAncestors(Ωϕ)
6: ancSet := cutAncSet ∪ omegaAncSet
7: proofLinksSet := getProofLinksIn(ϕstep)
8: for all proof-links (ψ, a) ∈ proofLinksSet do
9: Ω := getCC((ψ, a), ancSet)

10: if 〈ψ,Ω〉 6∈ tmpSetOfPairs ∪ ResultSet then
11: tmpSetOfPairs := tmpSetOfPairs ∪ {〈ψ,Ω〉}
12: end if
13: end for
14: ResultSet := ResultSet ∪ {〈ϕ,Ωϕ〉}
15: setOfPairs := setOfPairs − {〈ϕ,Ωϕ〉}
16: setOfPairs := setOfPairs ∪ tmpSetOfPairs

84CHAPTER 6. ALGORITHMS FOR PROOF SCHEMATA TRANSFORMATION

17: end for
18: return ResultSet
19: end function

The iterative function ExtractRelevantCC works as follows. We start with
the set of pairs {〈ψ1, (|)〉} and we want to compute all reachable from it
configurations. For each pair ∈ setOfPairs we extract all reachable config-
urations and store the new of them in the set tmpSetOfPairs . That means
that in tmpSetOfPairs are added only those pairs which appear for first time.
Doing so we avoid redundancy, i.e. we do not recompute already computed
configurations. Then we remove pair from the set setOfPairs and add it to
the set ResultSet . The computed from pair reachable configurations we add
to the set setOfPairs . We iterate this steps until setOfPairs is not empty,
i.e. until no further reachable configurations is possible to be computed.
When the set setOfPairs is empty the iteration stops and we return the set
ResultSet which stores all reachable from 〈ψ1, (|)〉 configurations.

The function getCutAncestors(ϕ) returns the set of all cut-ancestors in
a proof ϕ, i.e. {f | f is a cut-ancestor in ϕ}. The function
getOmegaAncestors(Ωϕ) returns the set of all Ωϕ-ancestors. This set is
obtained in the following way : we take the union of the sets of all ancestors
of a given formula occurrence in Ωϕ in the proof ϕ, i.e.⋃
A∈Ωϕ

{B | B is ancestor of A in ϕ}. The function getCC((ψ, a), S) com-
putes the configuration for the a-th isntance of a proof-symbol ψ with respect
to the set S of formula occurrences, where a is an arithmetic term, i.e. only
the set of those formulas in the proof-link will be returned which are mem-
bers of S.

Example: Let us apply the algorithm above to extract the relevant con-
figurations of the proof schema Ψ = 〈ψ, ϕ〉 defined above. Let Sij be the set
of pairs which the algorithm returns at round i, iteration j. In the first round
ExtractRelevantCC(ψ, (|)) returns the set of pairs
S1

1 = {〈ψ, (|)〉 ; 〈ψ, (| ∧k+1
i=0 Ai)〉 ; 〈ϕ, (∧k+1

i=0 Ai |)〉}. Since |S1
1 | = 3

we have 3 iterations in the second round. The first iteration gives S2
1 = S1

1 .
The second iteration gives S2

2 = ExtractRelevantCC(〈ψ, (| ∧k+1
i=0 Ai)〉) =

{〈ψ, (| ∧k+1
i=0 Ai)〉 ; 〈ϕ, (∧k+1

i=0 Ai |
∧k+1
i=0 Ai)〉}. We see that a new configura-

tion for ϕ was generated, namely (
∧k+1
i=0 Ai |

∧k+1
i=0 Ai). The third iteration

gives S2
3 = ExtractRelevantCC(〈ϕ, (∧k+1

i=0 Ai |)〉 = {〈ϕ, (∧k+1
i=0 Ai |)〉}.

Hence, the second round of the algorithm gives the set S2 = S2
1 ∪ S2

2 ∪ S2
3 =

6.2. EXTRACTING THE CHARACTERISTIC TERM 85

= {〈ψ, (|)〉 ; 〈ψ, (| ∧k+1
i=0 Ai)〉 ; 〈ϕ, (∧k+1

i=0 Ai |)〉 ; 〈ϕ, (∧k+1
i=0 Ai |

∧k+1
i=0 Ai)〉}.

The third round of the algorithm does not generate new cut configurations,
because the configuration (

∧k+1
i=0 Ai |

∧k+1
i=0 Ai) in ϕ generates itselve. Hence,

S3 = S2. Therefore, S2 is the fixed point of the computation, i.e. the set of
all relevant configurations for the proof schema Ψ.

Remark: The worst case complexity of the algorithm is the case where all
configurations are configurations. This gives us a set of configurations of
length 2|ES(ν1(k+1))| + . . . + 2|ES(να(k+1))|, where Ψ = (ψ1, . . . , ψα) is the
proof schema, νi(k + 1) is the step case proof for ψi and |ES(νi(k + 1))| is
the size of the end-sequent of νi(k + 1), for i = 1, . . . , α.

6.2 Extracting the characteristic term

The notion of a characteristic term is similar to the notion of struct which
was introduced in [WP09] for the purposes related with the analysis of the
cut-elimination. It is a term of atomic formulas over ⊕ and ⊗ and which is
used as a compact way to store the cut-pertinent [WP09] information of an
LK proof. The characteristic clause-term which we defined in chapter 3 is
similar to the struct, but not identical. Whereas in an LK-proof the set of
all cut-ancestors is always known, this is not the case for an LKS-proof. As
it was shown in chapter 3, we encode the cut- and Ω-ancestors in the proof-
links with special symbols clϕ,Ω, where ϕ is a proof, Ω is a configuration and
~xi : ι (where xi : ι) is a vector of the free variables is ψ. Here we present an
algorithm in pseudocode for extracting the schematic struct, where ρ is an
inference in the step-case proof of ψ and Ω is a configuration. When it is
necessary we will indicate the auxiliary formula(s) of ρ with a subscript.

terms over ⊕ and ⊗ : t1, t2
(sub)proofs : ρ1, ρ2

configuration : Ω

1: function ExtractStruct(ψ, ρ,Ω)
2: if ρ is an axiom A ` A in ψ then
3: if A and A are cut- or Ω-ancestor in ψ then
4: [A ` A]
5: else
6: if A is a cut- or Ω-ancestor in ψ then

86CHAPTER 6. ALGORITHMS FOR PROOF SCHEMATA TRANSFORMATION

7: return [A `]
8: else
9: if A is a cut- or Ω-ancestor in ψ then

10: return [` A]
11: else
12: `
13: end if
14: end if
15: end if
16: else
17: if ρ is a binary rule in ψ with auxiliary formulas

A1 and A2 and subproofs ρ1 and ρ2, respectively then
18: if A1 and A2 are cut- or Ω-ancestors in ψ then
19: return ExtractStruct(ψ, ρ1,Ω)⊕ExtractStruct(ψ, ρ2,Ω)
20: else
21: return ExtractStruct(ψ, ρ1,Ω)⊗ExtractStruct(ψ, ρ2,Ω)
22: end if
23: else
24: if ρ is a unary rule in ψ with subproof ρ1 then
25: return ExtractStruct(ψ, ρ1,Ω)
26: else
27: if ρ is a proof-link (ϕ, a) in ψ with end-sequent Γ ` ∆ then
28: aSet := {A | A ∈ Γ and A is a cut- or Ω-ancestor in ψ}
29: sSet := {B | B ∈ ∆ and B is a cut- or Ω-ancestor in ψ}
30: Ω′ := (aSet | sSet)
31: return clϕ,Ω

′
a,x1,...,xα

32: end if
33: end if
34: end if
35: end if
36: end function

The algorithm above extracts the schematic struct for a given LKS-proof ψ.
In order to obtain the struct for the whole proof schemata Ψ, we have to
apply the algorithm on all pairs for ψ ∈ Ψ. Here is the point where the set
of relevant configurations plays a role. The struct for Ψ is a finite iteration
over the proof-symbols ψ ∈ Ψ and the corresponding to each ψ set Sψ of
relevant configurations:

6.3. COMPUTING THE CHARACTERISTIC PROJECTION TERM 87

⊕
ψi∈Ψ

⊕
Ω∈Sψi

((cl
(ψi,Ω)

0̄,x1,...,xα
` ⊗ ExtractStruct(πi, ρ

πi
0 ,Ω))

⊕

(cl
(ψi,Ω)
k+1,x1,...,xα

` ⊗ ExtractStruct(νi(k + 1), ρνi0 ,Ω)))

where ρπi0 and ρνi0 are respectively the root-inferences of the base- and step-
case proofs corresponding to the proof symbol ψi, for i = 1, . . . , α and
S =

⋃α
i=1 Sψi is the set of all relevant configurations computed in the previous

section. The resulting term is similar to the one which we have already seen
in chapter 3 where we extracted the schematic clause-set term which after
instantiation of the parameter and rewriting of the symbols cl

(ϕ,Ω)
a followed

by clausification [WP08], i.e. distributing ⊕ over ⊗, is transformed to the
clause set. A detailed example of the extraction of the characteristic term is
given in Chapter Experiments.

6.3 Computing the characteristic projection

term

The computation of the projection term is similar in a sense to the compu-
tation of the characteristic clause-set term. In both cases we use a special
symbols in the terms denoting the proof-links. In the case of proof projec-
tions this symbol pr(ϕ,Ω) will denote the set of proofs corresponding to the
proof-symbol ϕ and configuration Ω.

Nevertheless, there are some differences between the computation of the two
terms. The first one is that the projection term rewrites to a projection set-
schema which represents a set of proofs. The second one is that we take care
of the auxiliary formulas because we need them when we unfold the term
and construct the proof.

Here is a pseudocode of the algorithm. Here with ρ1 (ρ1, ρ2) we denote
the immediate upper inference(s) of ρ. We build the projection terms over
the set:
{ ⊕ , ⊗ρ , c : l , c : r , wΓ`∆ , ∧ : l1 , ∧ : l2 , ∧ : r , ∨ : l , ∨ : r1 , ∨ : r2 ,
→ : l , → : r , ¬ : l , ¬ : r , ∀ : l , ∀ : r , ∃ : l , ∃ : r } as follows:

88CHAPTER 6. ALGORITHMS FOR PROOF SCHEMATA TRANSFORMATION

1: function ProjectionTerm(ψ, ρ,Ω)
2: if ρ is an axiom S = A ` A then
3: return S
4: else
5: if ρ ∈ {¬ : l , ¬ : r , ∧ : l1 , ∧ : l2 , ∨ : r1 , ∀ : l , ∀ : r ,

∨ : r2 , w : l , w : r , c : l , c : r , ∃ : l , ∃ : r} then
6: t1 := ProjectionTerm(ψ, ρ1,Ω)
7: if auxiliary formula A is cut- or Ω-ancestor then
8: return t1
9: else

10: return ρA(t1))
11: end if
12: else
13: if ρ ∈ {∧ : r , ∨ : l , → : l , cut} then
14: t1 := ProjectionTerm(ψ, ρ1,Ω)
15: t2 := ProjectionTerm(ψ, ρ2,Ω)
16: if aux. f-las A1, A2 are cut- or Ω-ancestors then
17: S1 := RemoveCutOmegaAnc(ES(t2))
18: S2 := RemoveCutOmegaAnc(ES(t1))
19: return wS2(t1) ⊕ wS1(t2)
20: else
21: return t1 ⊗ρA1,A2

t2
22: end if
23: else
24: if ρ is a proof-link (ϕ, a) with end-sequent Γ ` ∆ then
25: antS:= {A|A ∈ Γ and A is cut- or Ω-ancestor in ψ}
26: sucS:= {B|B ∈ ∆ and B is cut- or Ω-ancestor in ψ}
27: Ω′ := (antS | sucS)
28: return prϕ,Ω

′
a,x1,...,xα

29: end if
30: end if
31: end if
32: end if
33: end function

In the algorithm above the immediate subproofs of ρ are denoted with ρ1 and
ρ1, ρ2 for the case of unary and binary inference, respectively. The auxiliary
formulas (more precisely formula occurrences) of ρ are denoted with A and
A1, A2 for the case of unary and binary inference, respectively. They are in-

6.3. COMPUTING THE CHARACTERISTIC PROJECTION TERM 89

dicated as a subscript of ρ. The function RemoveCutOmegaAnc(ES(t))
returns a subsequent of the end-sequent of the proof t which does not con-
tain cut- and Ω-ancestors. After instantiating the parameter and applying
the rewrite rules for the symbol prϕ,Ω

′
to the computed term followed by dis-

tributing ⊕ over ⊗, we get a ground term which represents the projection-
set schema. Straightforwardly, we can construct the set of projections which
in fact is a set of LK-proofs. A detailed example of the extraction of the
projection term is given in the next chapter.

90CHAPTER 6. ALGORITHMS FOR PROOF SCHEMATA TRANSFORMATION

Chapter 7

Experiments

In this chapter we will make an experiment which compares the two trans-
formations CERES and CERESs . In the graphic below the dashed branch
performs an instantiation of a proof schemata of LKS-proofs, unfolds the
proofs for ψ1 and apply the CERES method to the obtained LK-proof. On
other hand, the solid-line branch performs the CERESs method, namely we
compute the schematic characteristic clause-set term and the characteristic
projection term. Then we construct a resolution schema. Afterwards, for
a given instance of the parameter, we compute the ground clause set and
projections as well as a ground resolution refutation. Finally, we construct
the ACNF . We expect that the two ACNF s prove the same statement for
every instance of the parameter.

7.1 The schematic EXP Proof

Let Ψ = (ψ1, ψ2), where 〈πi, νi(k + 1)〉 is a pair of the base- and step-case
proofs for ψi, where i = 1, 2. We want to proof the following statement:

P (a),∀x(P (x)→ P (f(x))) ` P (f(g(k + 1, a)))

proof schema instantiation LK-proof>

>

CERESCERESs

instantiation ACNFACNF schema
>

>

Figure 7.1: Alternative approaches

91

92 CHAPTER 7. EXPERIMENTS

where the rewriting system for g ∈ F2
a (where z : ι) is:

g(0̄, z) → z

g(k + 1, z) → f(g(k, z))

For example, for α ∈ N we have g(α, z) = fα(z).

1 π1 is:

P (a) ` P (a)

P (f(g(0̄, a))) ` P (f(g(0̄, a)))
�

P (f(a)) ` P (f(g(0̄, a)))
→ : l

P (a), P (a)→ P (f(a)) ` P (f(g(0̄, a)))
∀ : l

P (a), ∀x(P (x)→ P (f(x))) ` P (f(g(0̄, a)))

ν1(k + 1) is:

(ψ2, k + 1)

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))

P (a) ` P (a) P (f(g(k + 1, a))) ` P (f(g(k + 1, a)))
→ : l

P (a), P (a)→ P (f(g(k + 1, a))) ` P (f(g(k + 1, a)))
∀ : l

P (a), ∀x(P (x)→ P (f(g(k + 1, x)))) ` P (f(g(k + 1, a)))
cut

P (a), ∀x(P (x)→ P (f(x))) ` P (f(g(k + 1, a)))

π2 is:

P (z0) ` P (z0)

P (f(g(0̄, z0))) ` P (f(g(0̄, z0)))
�

P (f(z0)) ` P (f(g(0̄, z0)))
→ : l

P (z0), P (z0)→ P (f(z0)) ` P (f(g(0̄, z0)))
→ : r

P (z0)→ P (f(z0)) ` P (z0)→ P (f(g(0̄, z0)))
∀ : l

∀x(P (x)→ P (f(x))) ` P (z0)→ P (f(g(0̄, z0)))
∀ : r

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(0̄, x))))

The proof χ is:

P (zk+1) ` P (zk+1)

P (g(k + 1, zk+1)) ` P (g(k + 1, zk+1))
�

P (f(g(k, zk+1))) ` P (g(k + 1, zk+1)) P (f(g(k + 1, zk+1))) ` P (f(g(k + 1, zk+1)))
→ : l

P (f(g(k, zk+1))), P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))) ` P (f(g(k + 1, zk+1)))
→ : l

P (zk+1), P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))), P (zk+1)→ P (f(g(k, zk+1))) ` P (f(g(k + 1, zk+1)))
→ : r

P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))), P (zk+1)→ P (f(g(k, zk+1))) ` P (zk+1)→ P (f(g(k + 1, zk+1)))
∀ : l

P (zk+1)→ P (f(g(k, zk+1))), ∀x(P (x)→ P (f(x))) ` P (zk+1)→ P (f(g(k + 1, zk+1)))
∀ : l∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f(g(k, x)))) ` P (zk+1)→ P (f(g(k + 1, zk+1)))

ν2(k + 1) is:

1The cut- and Ω-ancestors are marked with red and blue, respectively.

7.1. THE SCHEMATIC EXP PROOF 93

(ψ2, k)

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k, x))))

χ
∀ : r∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f(g(k, x)))) ` ∀x(P (x)→ P (f(g(k + 1, x))))
cut

∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))
c : l∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(g(k + 1, x))))

We fix an instance of the parameter k = 1. First we apply the usual CERES
method. We compute Ψ ↓1 and we obtain an LK-proof ν1(1), where:

94 CHAPTER 7. EXPERIMENTS

φ is:

P (z0) ` P (z0) P (f(z0)) ` P (f(z0))
→ : l

P (z0), P (z0)→ P (f(z0)) ` P (f(z0))
→ : r

P (z0)→ P (f(z0)) ` P (z0)→ P (f(z0))
∀ : l∀x(P (x)→ P (f(x))) ` P (z0)→ P (f(z0))
∀ : r∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f(x)))

P (z1) ` P (z1)

P (f(z1)) ` P (f(z1)) P (f2(z1)) ` P (f2(z1))
→ : l

P (f(z1)), P (f(z1))→ P (f2(z1)) ` P (f2(z1))
→ : l

P (z1), P (f(z1))→ P (f2(z1)), P (z1)→ P (f(z1)) ` P (f2(z1))
→ : r

P (f(z1))→ P (f2(z1)), P (z1)→ P (f(z1)) ` P (z1)→ P (f2(z1))
∀ : l

P (z1)→ P (f(z1)), ∀x(P (x)→ P (f(x))) ` P (z1)→ P (f2(z1))
∀ : l

∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f(x))) ` P (z1)→ P (f2(z1))
∀ : r

∀x(P (x)→ P (f(x))), ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f2(x)))
cut

∀x(P (x)→ P (f(x))) , ∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f2(x)))

ν1(1) is:

φ
c : l

∀x(P (x)→ P (f(x))) ` ∀x(P (x)→ P (f2(x)))

P (a) ` P (a) P (f2(a)) ` P (f2(a))
→ : l

P (a), P (a)→ P (f2(a)) ` P (f2(a))
∀ : l

P (a), ∀x(P (x)→ P (f2(x))) ` P (f2(a))
cut

P (a) , ∀x(P (x)→ P (f(x))) ` P (f2(a))

The clause set CL(ν1(1)) after tautology elimination is:

{ P (z0) ` P (f(z0)) ; P (f(z1)) ` P (f(f(z1))) ; ` P (a) ; P (f 2(a)) ` }

which after subsumption elimination becomes:

{ P (z0) ` P (f(z0)) ; ` P (a) ; P (f 2(a)) ` }

The resolution refutation R is:

` P (a) (P (z0) ` P (f(z0))){z0 ← a}
cut

` P (f(a)) (P (z0) ` P (f(z0))){z0 ← f(a)}
cut

` P (f(f(a))) P (f(f(a))) `
cut`

The projection PR(P (z0) ` P (f(z0))) is:

P (z0) ` P (z0) P (f(z0)) ` P (f(z0))
→ : l

P (z0) , P (z0)→ P (f(z0)) ` P (f(z0))
∀ : l

P (z0) , ∀x(P (x)→ P (f(x))) ` P (f(z0))
w : l

P (z0) , ∀x(P (x)→ P (f(x))) , ∀x(P (x)→ P (f(x))) ` P (f(z0))
c : l

P (z0) , ∀x(P (x)→ P (f(x))) ` P (f(z0))
w : l

P (a) , P (z0) , ∀x(P (x)→ P (f(x))) ` P (f(z0)) , P (f2(a))

The projection PR(` P (a)) is:

7.1. THE SCHEMATIC EXP PROOF 95

P (a) ` P (a)
w : r

P (a) ` P (a) , P (f2(a))
w : l

P (a) , ∀x(P (x)→ P (f(x))) ` P (a) , P (f2(a))

The projection PR(P (f 2(a)) `) is:

P (f2(a)) ` P (f2(a))
w : l

P (a) ` P (f2(a)) , P (f2(a))
w : l

P (a) , ∀x(P (x)→ P (f(x))) , P (f2(a)) ` P (f2(a))

Finally, the ACNF is:

PR(` P (a))

Γ ` ∆, P (a)

PR(P (z0) ` P (f(z0))){z0 ← a}
P (a),Γ ` ∆, P (f(a))

cut, c : l, r
Γ ` ∆, P (f(a))

PR(P (z0) ` P (f(z0))){z0 ← f(a)}
P (f(a)),Γ ` ∆, P (f2(a))

cut, c : l, r
Γ ` ∆, P (f(f(a)))

PR(P (f2(a)) `)

P (f2(a)),Γ ` ∆
cut

Γ ` ∆

where Γ = P (a), ∀x(P (x) → P (f(x))) and ∆ = P (f 2(a)). This com-
pletes the dashed branch of Figure 7.1

Now we apply to Ψ the transformation CERESs , i.e. the solid branch of
the Figure 7.1. We start with the extraction of the characteristic term for
each of the LKS-proofs in Ψ:

• Θ(π2, (| ∀x(P (x)→ P (f(g(0̄, z0)))))):

⊕

P (z0) ` ` P (f(g(0̄, z0)))

• Θ(π1, (|)):
`

• Θ(ν2(k + 1), (| ∀x(P (x)→ P (f(g(k, x)))))):

⊕

cl
ψ2,(| ∀x(P (x)→P (f(g(k,x)))))
k

⊕

⊗

` P (zk+1) P (zk+1) `

⊗

` P (f(g(k + 1, zk+1))) P (g(k + 1, zk+1)) `

96 CHAPTER 7. EXPERIMENTS

• Θ(ν1(k + 1), (|)):

⊕

cl
ψ2,(| ∀x(P (x)→P (f(g(k,x)))))
k+1

⊕

` P (a) P (f(g(k + 1, a)))) `

Combining the terms above we obtain a characteristic clause-term which af-
ter rewriting gives us the standard characteristic clause set CL(Ψ), where
C and D denote the clause sets for clψ2,(| ∀x(P (x)→P (f(g(k,x))))) and clψ1,(|),
respectively:

{
D(0)→ { ` } ;

D(k + 1)→ C(k + 1) ◦ { ` P (a) ; P (f(g(k + 1, a))) ` } ;

C(0)→ { P (z0) ` P (f(g(0̄, z0))) } ;

C(k + 1) → C(k) ◦ { P (g(k + 1, zk+1)) ` P (f(g(k + 1, zk+1))) }
}

For the instance k = 1 we apply the rewriting rules for the symbols cl and we
obtain (after tautology elimination) the characteristic clause set CL(Ψ) ↓1:

{P (z0) ` P (f(z0)) ; P (f(z1)) ` P (f(f(z1))) ; ` P (a) ; P (f(f(z1))) ` }

Let R = ((%, δ),R), where R is the following rewriting system (constructed
by hand, not automatically generated):

%(0̄, x) → r(δ(0̄, x) ; P (a) ` ; P (a))

%(k + 1, x) → r(δ(k + 1, x) ; P (f(g(k, zk))) ` ;P (f(g(k, zk))))

δ(0̄, x) → ` P (a)

δ(k + 1, x) → r(δ(k, x) ;P (g(k, zk)) ` P (f(g(k, zk))) ;P (g(k, zk)))

For the instance k = 1 and ground substitution {z0 ← a, z1 ← a} we com-
pute δ(2, x) and transform the resulting ground term after term-rewriting to
a tree which indeed is a resolution refutation R of Ψ ↓1:

` P (a) P (a) ` P (f(a))
cut

` P (f(a)) P (f(a)) ` P (f(f(a)))
cut

` P (f(f(a))) P (f(f(a))) `
cut`

The next step is to compute the proof projections. For Ξ(ν1(1), ∅) we have
the following projection term represented as a tree:

7.1. THE SCHEMATIC EXP PROOF 97

⊕

wP (a)`P (f(g(1̄,a)))

pr
ψ2,Ω1
1

wS1

⊕

w`P (f(g(1̄,a)))

P (a) ` P (a)

wP (a)`

P (f(g(1̄, a))) ` P (f(g(1̄, a)))

where the leaf prψ2,Ω1

1 rewrites to the term:

c : l

wS1

pr
ψ2,Ω1
0

wS1

∀ : l

⊕

wS2

P (z1) ` P (z1)

⊗→ : l

P (g(1̄, z1)) ` P (g(1̄, z1)) P (f(g(1̄, z1))) ` P (f(g(1̄, z1)))

and the leaf prψ2,Ω1

0 rewrites to the term:

∀ : l

⊗→l

P (z0) ` P (z0) �

P (f(g(0̄, z0))) ` P (f(g(0̄, z0)))

where:
Ω1 = (| ∀x(P (x)→ P (f(g(k, x)))))
S1 = ∀x(P (x)→ P (f(x))) `
S2 = P (g(k + 1, zk+1))→ P (f(g(k + 1, zk+1))) `

Since Ξ(ν1(1), ∅) is a ground term, we can compute the set of proof pro-
jections |Ξ(ν1(1), ∅)|. More precisely, we need only those projections which
are in the range of the mapping which maps a leaf from the ground resolution
refutation R to a (ground) proof projection from |Ξ(ν1(1), ∅)|.

The projection PR(` P (a)) is:

98 CHAPTER 7. EXPERIMENTS

P (a) ` P (a)
w : r

P (a) ` P (a) , P (f2(a))
w : l

P (a) , ∀x(P (x)→ P (f(x))) ` P (a) , P (f2(a))

The projection PR(P (z0) ` P (f(z0))) is:

P (z0) ` P (z0)

P (f(g(0̄, z0))) ` P (f(g(0̄, z0)))
�

P (f(z0)) ` P (f(z0))
→ : l

P (z0) , P (z0)→ P (f(z0)) ` P (f(z0))
∀ : l

P (z0) , ∀x(P (x)→ P (f(x))) ` P (f(z0))
w : l

P (z0) , ∀x(P (x)→ P (f(x))) , ∀x(P (x)→ P (f(x))) ` P (f(z0))
c : l

P (z0) , ∀x(P (x)→ P (f(x))) ` P (f(z0))
w : l

P (a) , P (z0) , ∀x(P (x)→ P (f(x))) ` P (f(z0)) , P (f2(a))

The projection PR(P (f(z1)) ` P (f(f(z1)))) is:

P (g(1̄, z1)) ` P (g(1̄, z1)) P (f(g(1̄, z1))) ` P (f(g(1̄, z1)))
→ : l

P (g(1̄, z1)) , P (g(1̄, z1))→ P (f(g(1̄, z1))) ` P (f(g(1̄, z1)))
∀ : l

P (g(1̄, z1)) , ∀x(P (x)→ P (f(x))) ` P (f(g(1̄, z1)))
w : l

P (g(1̄, z1)) , ∀x(P (x)→ P (f(x))) , ∀x(P (x)→ P (f(x))) ` P (f(g(1̄, z1)))
c : l

P (g(1̄, z1)) , ∀x(P (x)→ P (f(x))) ` P (f(g(1̄, z1)))
�

P (f(z1)) , ∀x(P (x)→ P (f(x))) ` P (f2(z1))
w : l, w : r

P (a) , P (f(z1)) , ∀x(P (x)→ P (f(x))) ` P (f2(z1)) , P (f2(a))

The projection PR(` P (f 2(a))) is:

P (f(g(1̄, a))) ` P (f(g(1̄, a)))
w : l

P (a) , P (f(g(1̄, a))) ` P (f(g(1̄, a)))
w : l

∀x(P (x)→ P (f(x))) , P (a) , P (f(g(1̄, a))) ` P (f(g(1̄, a)))
�

∀x(P (x)→ P (f(x))) , P (a) , P (f2(a)) ` P (f2(a))

Finally, the ACNF is:

PR(` P (a))

Γ ` ∆, P (a)

PR(P (z0) ` P (f(z0))){z0 ← a}
P (a),Γ ` ∆, P (f(a))

cut, c : l, r
Γ ` ∆, P (f(a))

PR(P (f(z1)) ` P (f2(z1))){z1 ← a}
P (f(a)),Γ ` ∆, P (f2(a))

cut, c : l, r
Γ ` ∆, P (f(f(a)))

PR(P (f2(a) `)

P (f2(a)),Γ ` ∆
cut

Γ ` ∆

This completes the solid branch of figure 7.1 and shows some of the advan-
tages of the method CERESs over the method CERES . Namely, for small
characteristic clause sets, the refutation can easily be constructed without
producing a potentially large input proof. A disadvantage of CERESs is that
it is not fully automatable because the mathematician has to provide a resolu-
tion schema. On the contrary, the method CERES requires an instantiation
of the proof schema which can be exponential in the size. The limitation in
this case comes also from the fact that the refutations of CL(ψ1 ↓n) get larger
with n and at some point the automated theorem prover fails to refute it.

Bibliography

[ACP09] V. Aravantinos, R. Caferra, and N. Peltier. A schemata calcu-
lus for propositional logic. In 18th International Conference
on Automated Reasoning with Analytic Tableaux and Related
Methods (Tableaux 2009). Springer, 2009.

[ACP10] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier.
RegSTAB: A SAT-Solver for Propositional Iterated
Schemata. In International Joint Conference on Auto-
mated Reasoning, pages 309–315, 2010.

[ACP11] V. Aravantinos, R. Caferra, and N. Peltier. Decidability and
undecidability results for propositional schemata. Journal of
Artificial Intelligence Research, 40:599–656, 2011.

[AZ99] M. Aigner and G. Ziegler. Proofs from THE BOOK. Springer,
1999.

[BHL+05] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens
Richter, and Hendrik Spohr. Cut-elimination: Experiments
with ceres. In Franz Baader and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR) 2004, volume 3452 of Lecture Notes in Computer
Science, pages 481–495. Springer, 2005.

[BHL+06] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens
Richter, and Hendrik Spohr. Proof transformation by ceres.
In Jonathan M. Borwein and William M. Farmer, editors,
Mathematical Knowledge Management (MKM) 2006, volume
4108 of Lecture Notes in Artificial Intelligence, pages 82–93.
Springer, 2006.

[BHL+08] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens
Richter, and Hendrik Spohr. CERES: An analysis of Fürsten-

99

100 BIBLIOGRAPHY

berg’s proof of the infinity of primes. Theoretical Computer
Science, 403:160–175, 2008.

[BL74] Walter S. Brainerd and Lawrence H. Landweber. Theory of
Computation. John Wiley & Sons, Inc., New York, NY, USA,
1974.

[BL00] Matthias Baaz and Alexander Leitsch. Cut-elimination and
redundancy-elimination by resolution. Journal of Symbolic
Computation, 29(2):149–176, 2000.

[BL06] Matthias Baaz and Alexander Leitsch. Towards a clausal
analysis of cut-elimination. Journal of Symbolic Computa-
tion, 41(3-4):381–410, 2006.

[Coo04] S.B. Cooper. Computability Theory. Chapman and Hall, 2004.

[DLL+12a] Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Mar-
tin Riener, Mikheil Rukhaia, Daniel Weller, and Bruno
Woltzenlogel-Paleo. System Feature Description: Importing
Refutations into the GAPT Framework. In David Pichardie
and Tjark Weber, editors, Second International Workshop on
Proof Exchange for Theorem Proving (PxTP 2012), volume
878 of CEUR Workshop Proceedings, pages 51–57, 2012.

[DLL+12b] Tsvetan Dunchev, Alexander Leitsch, Tomer Libal, Mar-
tin Riener, Mikheil Rukhaia, Daniel Weller, and Bruno
Woltzenlogel-Paleo. Prooftool: Gui for the gapt framework.
In UITP 2012, 2012.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische
Schließen I. Mathematische Zeitschrift, 39(1):176–210, dec
1935.

[HLW12] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Towards
algorithmic cut-introduction. In LPAR, pages 228–242, 2012.

[HLWWP08a] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno
Woltzenlogel Paleo. CERES in second-order logic. Technical
report, Vienna University of Technology, 2008.

[HLWWP08b] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno
Woltzenlogel Paleo. Herbrand sequent extraction. In
Serge Autexier, John Campbell, Julio Rubio, Volker Sorge,

BIBLIOGRAPHY 101

Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent
Computer Mathematics, volume 5144 of Lecture Notes in
Computer Science, pages 462–477. Springer Berlin, 2008.

[HLWWP08c] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno
Woltzenlogel Paleo. Proof analysis with HLK, CERES and
ProofTool: Current status and future directions. In Geoff Sut-
cliffe, Simon Colton, and Stephan Schulz, editors, Proceedings
of CICM Workshop ESARM’08, pages 18–41, 2008.

[HLWWP08d] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno
Woltzenlogel Paleo. Transforming and analyzing proofs in
the CERES-system. In Piotr Rudnicki, Geoff Sutcliffe, Boris
Konev, Renate Schmidt, and Stephan Schulz, editors, Pro-
ceedings of the LPAR 2008 Workshops, pages 77–91, 2008.

[Hue02] Gérard Huet. Higher order unification 30 years later. In
Theorem Proving in Higher Order Logics (TPHOLs) 2002,
volume 2410 of Lecture Notes in Computer Science, pages
241–258. Springer Berlin, 2002.

[LWWP+] Tomer Libal, Daniel Weller, Bruno Woltzenlogel-Paleo, Tsve-
tan Dunchev, Mikheil Rukhaia, and Martin Riener. Generic
Architecture for Proofs. http://code.google.com/p/gapt.

[McC10] W. McCune. Prover9 and mace4.
http://www.cs.unm.edu/ mccune/prover9/, 2005–2010.

[Ore82] V. P. Orevkov. Lower bounds for increasing complexity of
derivations after cut elimination. Journal of Mathematical
Sciences, 20(4):2337–2350, 1982.

[OSV10] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala: A Comprehensive Step-by-step Guide (2nd ed.). Ar-
tima Inc., 2010.

[Rob65] J. A. Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM, 12(1):23–41, 1965.

[Ruk12] Mikheil Rukhaia. CERES in proof schemata. PhD thesis,
Vienna University of Technology, 2012.

[Tur36] Alan Turing. In On computable numbers, with an application
to the Entscheidungsproblem, pages 230–265. London Mathe-
matical Society, Series 2, 42, 1936.

102 BIBLIOGRAPHY

[WP08] Bruno Woltzenlogel Paleo. Herbrand Sequent Extraction.
VDM-Verlag, Saarbruecken, Germany, 2008.

[WP09] Bruno Woltzenlogel-Paleo. A General Analysis of Cut-
Elimination by CERes. PhD thesis, Vienna University of
Technology, 2009.

Index

V2-substitution schema, 21
c-substitution, 17

ancestor relation, 14

cartesian product of sequents, 40
characteristic clause-set term, 37
characteristic clause-sets, 40
characteristic projection term, 42
Clause, 6
clause schema, 16
clause-set schema, 19
clause-set term, 17
clause-set term evaluation, 17
clause-set term over a set, 18
Composition, 7
configuration, 36, 81

de Bruijn index, 56

evaluation, 39

first-order formula schemata, 8

Indexed proposition, 4
Iterated schemata, 5

linear arithmetic expression, 3

p-Sequent, 6
projection-set schema, 44
proof schemata, 12
proof-link, 12
propositional formula schemata, 4

refutation, 22

regular arithmetic expression, 4
resolution deduction, 22
resolution proof schema, 23
resolution term, 21
resolution term over a set, 23
resolution term to tree, 46
resolvent, 21

s-term, 7
Satisfiable, 6
schematic proof, 12
Semantics, 5
semantics of clause schema, 17
semantics of clause-set schemata, 19
semantics of clause-set terms, 18
semantics of resolution proof schemata,

23
Sequent, 6
Simple sequent, 6
substitution, 6

to tree transformation, 22

103

