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Kurzfassung

In der vorliegenden Arbeit wird ein Lorentzkraft erregter Kragbalken beschrieben. Die-

ser wird als Magnetometer zur Detektion sowohl von statischen Magnetfeldern als auch

magnetischer Wechselfelder verwendet. Das Bauelement ist in SOI-Technologie gefertigt,

wobei die Form des Kragbalkens einem U entspricht. Der einkristalline Signalwandler be-

findet sich in einer Vakuumkammer, das durch ein Spulenpaar, welches als Helmholtz-Spule

das Magnetfeld erzeugt, umgeben ist. Auf den Teststrukturen befindet sich eine Goldleiter-

bahn, welche durch einen sinusförmigen Wechselstrom durchflossen ist. Der Kragbalken

wird durch die Lorentz-Kraft erregt, wobei die Auslenkung des Balkens ein Maß für die

magnetische Flussdichte darstellt. Im Falle eines sinusförmigen magnetischen Flussdich-

te, enthält die daraus resultierende Lorentzkraft zwei alternierende Terme, welche sowohl

Summen- als auch Differenzfrequenzen des Wechselstrom und des magnetischen Wechsel-

feldes enthalten. Der in Resonanz betriebene Kragbalken wird dabei als Mischer in einer

Heterodynen-Konfiguration zur Detektion für magnetische Wechselfelder mit variabler Fre-

quenz verwendet. Dabei tritt Resonanz nur auf, wenn eine dieser Mischfrequenzen in der

Nähe der mechanischen Resonanzfrequenz liegt, welche auch die Auswahlregel der Feld-

konfiguration erfüllt. Der Schwerpunkt wird im resonanten Betrieb auf der Untersuchung

der ersten symmetrischen, der ersten antisymmetrischen und der zweiten symmetrischen

Schwingungsmode gelegt. Hierbei ist die Schwingungsamplitude proportional der zur mes-

senden Vektorkomponente des Magnetfeldes. Die Empfindlichkeit eines Resonators wird

dabei sehr stark vom Gütefaktor Q bestimmt. Die Ursachen des Gütefaktor Q sind jedoch

derart vielseitig, daß der mechanischen Gütefaktor Q bei kontrolliertem Umgebungsdruck

im Bereich von 0,01 Pa bis 100 Pa analysiert wurde. Die experimentellen Ergebnisse wur-

den mit bestehenden Theorien verglichen, wobei der Vergleich eine Unterbewertung der

Dämpfungsparameter für den Knudsen-Bereich von Kn = 0,1 bis 10 zur Folge hatte. Das

hier präsentierte Dämpfungsmodell berücksichtigt sowohl Quetschfilm-Dämpfung durch

freie molekulare Strömung als auch gaskinetische Dämpfung für den quasi-molekularen

Bereich. Die Berechnung des Dämpfungskoeffizienten wurde unter Annahme einer frei-

en molekularen Strömung durchgeführt. Der darauf aufbauende Algorithmus basiert auf

einem Random-Walk-Modell, welches in Modellen der Direkten Monte Carlo Simulati-

on Verwendung findet. Mit diesem Ansatz wurde die Güte eines Quetschfilm-gedämpften

Kragbalkens im quasi-molekularen Bereich hergeleitet. Die daraus resultierenden Ergeb-

nisse wurden mit aktuellen stochastischen Modellen verglichen. Die theoretischen Vorher-

sagen und die experimentellen Untersuchungen zeigen dabei markante Unterschiede der

Knudsen-Zahlen bis 10. Eine Überlagerung beider Dämpfungsmechanismen, der gaskineti-

schen und Quetschfilm-Dämpfung, zeigt jedoch eine zufriedenstellende Charakterisierung

des Dämpfungsverhaltens eines schwingenden Kragbalkens im quasi-molekularen Bereich

mit Knudsen-Zahlen von 0,02 bis 10. In dieser Arbeit wurden die Oszillationen des Krag-

balkens sowohl mit einem dafür eigens entwickelten, kapazitiven Detektionsverfahren als

auch mit einem kommerziellen Laser-Doppler Vibrometer gemessen. Durch die Änderung

des Leiterbahnstromes kann der Messbereich des Magnetometers von ein paar hundert nT

bis ca. 10mT variiert werden. Dabei bleibt die Empfindlichkeit mit einer Unsicherheit von

weniger als einem Prozent für alle drei Schwingungsmoden konstant. Höhere magnetische

Flußdichten, wurden mit Permanentmagneten erzielt (max. ca. 300mT). Das Funktionsprin-

zip dieses Prototyps ermöglicht eine weitere Miniaturisierung. Die räumliche Auflösung

der Magnetfelder ist dabei nur durch die Größe des Kragbalkens bestimmt. Außerdem eig-

net sich das Heterodyne-Detektionsverfahren mit MEMS, hohe AC-Ströme berührungslos

durch Messung der damit verbundenen AC-Magnetflussdichten zu bestimmen.
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Abstract

A Lorentz-force actuated cantilever used as a magnetometer detecting both static and

alternating magnetic fields is described. The device consists of a U-shaped single-crystal

silicon cantilever manufactured in silicon-on-insulator (SOI) technology. The cantilever is

placed in a vacuum chamber surrounded by a pair of coils configured as Helmholtz coil

which generates the magnetic field. The test structures are harmonically excited by the

Lorentz force acting on the gold lead at the top surface of the cantilever carrying an alter-

nating current, where the deflections of the cantilever are a measure of the magnetic flux

density. In the case of a sinusoidal magnetic flux density, the resulting Lorentz force con-

tains two alternating terms including the sum and difference of current and field frequencies.

Therefore, the resonating cantilever is used as mixer in a heterodyne detector for alternating

magnetic fields with variable frequency. Resonant excitation only occurs if one of these

frequencies is close to a mechanical resonance that satisfies the selection rule imposed by

the field configuration. In the experiments, emphasis is laid on the investigation of the first

symmetric, the first antisymmetric mode and the second symmetric vibration mode, where

the amplitude of the vibration is proportional to the exciting vector component of the mag-

netic field. The sensitivity of a resonator is most affected by the quality factor Q. Since

the reasons of the quality factor Q are versatile, especially in rarefied gas regimes, mechan-

ical quality factors Q were analyzed at controlled ambient pressures in the range of 0.01

Pa to 100 Pa. The experimental results were compared with existing theories revealing an

underestimate of the damping parameter for the Knudsen range Kn = 0.1 to 10. So far,

squeeze-film damping by free molecular flow and kinetic damping were taken into account

in damping models for the quasi-molecular regime. However, the measurements indicate

that also the ongoing molecular flow around the test structures has to be considered. Hence

the damping coefficient has to be calculated with methods of the free molecular aerody-

namics. Thus, we used an algorithm based on the random walk model that allows the usage

of already available knowledge in the field of Direct Simulation Monte Carlo. With this

approach the quality factor of a squeezed-film damped cantilever in the quasi-molecular

regime was derived. The results were compared with the most recent stochastic model,

where the theoretical predictions and the experimental investigations indicate significant

squeezing up to a Knudsen number of 10. In a superposition of both damping mechanisms,

kinetic and squeeze-film damping, a satisfactory characterization of the damping behavior

of an oscillating cantilever in the quasi-molecular regime with Knudsen numbers in the

range of 10 down to 0.02 was achieved. For this work the harmonic deflection of the can-

tilever was measured with a capacitive readout system and additionally, with a laser-Doppler

vibrometer. By changing the drive current, the operating range of the magnetometer can be

varied from a few hundred nT up to approx. 10mT, whereas the sensitivity remains con-

stant with an uncertainty of less than one percent, valid for all three vibration modes. For

higher magnetic flux densities, a sample of appropriate permanent magnets was used, so

that the achieved maximum flux density was around 300mT. The operation principle of this

prototype allows a further miniaturization leading to a spatial resolution of the magnetic

field detection determined by the size of the cantilever. It is worth mentioning that the het-

erodyne detection method with the MEMS device is also suited to measure AC high current

flows contactlessly measuring the related AC magnetic flux density.
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CHAPTER 1
Introduction

Overview

The recent work deals with the design, fabrication and implementation of a resonant magnetic

field sensor. Due to the large number of magnetic measuring principles and techniques, it is

necessary to give an overview, to summarize the state of the art and to explain the pros and cons

of used commercial sensors.

1.1 Progression of Magnetism and their Detection Techniques

The dynamic effect of magnetite1 was already described by Thales of Miletus in the ancient

Greece in the 6th century B.C. [1]. The name magnet is due to the location of Magnesia, an

anient Greek city. In the 3rd century before Christ the first compass was developed in China [2].

This technical achievement represents the first magnetic field sensor interacting with the earth’s

magnetic field. Obviously a compass is a navigational instrument, representing one of several

possible applications of magnetic field sensors. A spoon carved from magnetite provides the

magnetic compass. This rotatable spoon was placed on a smooth plate made of bronze whose

handle always adjust to the south, which denotes Si’Nan in Chinese (Fig. 1.1).

Between the 4th and 10th centuries A.D. the Si’Nan was replaced by iron objects, e.g. by a

needle. With the improvement on the functionality of the device, e.g. with a buoyant compass

needle, the knowledge of the remanence of iron-made components was discovered. Remanence

means that the device made of iron becomes a magnet if it is rubbed at a magnetide or heated up

to red heat and then quickly cooled down. In Europe the buoyant compass needle was first men-

tioned by the English scholar Alexander Neckam in 1187 [4]. In 1492 Columbus discovered

the magnetic declination, which means the deviation between the geographical and the mag-

1Magnetite is an iron oxide mineral ordered in the cubic crystallization system with the chemical formula

Fe2+(Fe3+)2O3.

3
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Figure 1.1: The device described in this figure is considered to be the earliest form of a magnetic

compass [3].

netic north direction. The magnetic inclination2 was first described by Georg Hartmann from

Nürnberg in 1543 [5].

Systematic studies of William Gilbert, such as with a spherical magnet, which he called "ter-

rella" resulted in his magnum opus with the title "De Magnete, Magnetisque Corporibus, et de

Magno Magnete Tellure" (1600 A.D.). For two centuries it was the most important systematic

study regarding magnetism and it tooks a long time to recognize that magnetism and electricity

are related phenomena, but of different origin since magnetism represents another manifesta-

tion of electricity. The magnetic effect of an electric current to a magnetic needle was shown

experimentally by Hans Christian Oersted in 1820. He demonstrated the movement of the com-

pass needle nearby a current carrying conducter loop. The primary law, which describes the

connection between electric current and magnetism, is the Biot-Savart law discovered in 1820.

André-Marie Ampère describes the reason of solid state magnetism using microscopic ring cur-

rents. In 1831 Michael Faraday discovered the law of induction (Faraday’s law). The definite

formulation of the electromagnetic interaction was established by James Clerk Maxwell in the

year 1862.

The microscopic explanation of the magnetism kept the best known physicist of the early

20th century busy, such as Albert Einstein (special relativity and magnetism), Paul Langevin,

Pierre Curie und Pierre Weiss (theory of Para-, Dia- und Ferromagnetism). With the help of

quantum mechanics, George Uhlenbeck and Samuel Goudsmit (hypothesis of the angular mo-

mentum of an electron, the so-called "‘Spin"’), Werner Heisenberg (theory of spin-spin inter-

action, a quantum mechanical explanation of the magnetic order in magnetic materials) and the

systematic studies of antiferromagnetism by L. Néel completed the theory of magnetism.

Parallel to the fundamental research of the phenomenon magnetism, many physical effects

which are of great importance for the operating mode of magnetic sensors were discovered.

The working principle of magnetic field sensors is based on the effect of the magnetic field on

hard or soft magnetic materials or other solids, like semiconductor or resistance films (Fig. 1.2).

Technically relevant sensors for medium-sensitivity applications are magneto-resistive sensors

2This is the incline of the geomagnetic field to the horizon sphere.
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(XMR-thin-film sensors), Hall sensors and induction driven magnetic field sensors. Magne-
toresistive sensors (AMR-sensors) change their electrical resistance due to the influence of the

magnetic flux density. Magnetoresistance was first described by William Thomson3 in 1856.

R = R0 ·
[
1 + cos2θ(H)

]
, (1.1)

whereR0 is the electric resistance without an ambient magnetic field,H is the magnetic field and

θ is the angle between the electric field and the electrical current density through the specimen.

Magnetic Field 
Sensors

Magnetometers Gaussmeters

Vector Scalar

•Hall Effect
•Magnetoresistive
•Magnetodiode
•Magnetotransistor
•NMR
• Rotating Coil

• Fluxgate
• SQUID
•Magnetoresistive
• Fiber-Optic
• Search Coil

•Nuclear Precession
•Optically Pumped

Figure 1.2: Magnetic field sensors can be separated depending on their field strength and their

measurement range: magnetometers measure low fields whereas gaussmeters are able to mea-

sure high fields [6, 7].

The Hall sensor, often addressed as Hall probe is a totally different type of sensor regarding
its working principle. If a current flows through a Hall probe while a magnetic field vertically

to the current flow passes the sensor, the device delivers an output voltage across the probe, per-

pendicular to the electrical current density which is proportional to the product of the magnetic

field strength and the electrical current. If the value of the current is known, the magnetic field

strength is directly proportional to the measured Hall voltage. This is the so-called Hall effect,

where Hendrik A. Lorentz gave an explanation for the voltage due to the movement of the charge

carriers in the magnetic field (Lorentz-force). The macroscopic effect of the Lorentz force on a

current carrying conductor with the length l in a magnetic field leads to

�FL = l ·�i× �B , (1.2)

3Better known as Lord Kelvin.
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Figure 1.3: Schematic of the load acting on a current carrying clamped-clamped beam, due to

the Lorentz force acting on the lead on the top of the structure.

where i is the electrical current in the lead on the top of the structure and B the magnetic flux

density (Fig. 1.3). This linear relationship makes the Hall probe an ideal candiate for a magnetic

sensor. However, there exist two severe drawbacks. Firstly, the temperature dependence of

the Hall voltage due to the charge carrier density of doped semiconductors and secondly the

offset voltage. The latter varies with temperature and time, which is vulnerable to different

drift mechanisms that can completely mash the measurement effect. Many applications are not

accessible to AMR and and Hall sensors because they are not as sensitive as Fluxgate sensors

and SQUID’s4 due to their inherent noise level. SQUID’s consist of two superconductors (e.g.,

niobium) that are separated by a thin insulating layer of approximately 1 nm, like aluminum

oxide (Josepheson junction). If the temperature of the junction is decreased below the critical

temperature, a superconductor current will flow through the junction. The magnitude of the

current through the tunnel effect is a periodic function of the magnetic flux. One disadvantage

of SQUID’s is that up to now they depend to low temperatures due to the used tunnel effect

through superconductivity. Although SQUID magnetoemeters are most sensitive instruments in

measuring magnetic fields, they only detect the change of the magnetic field and not its absolute

value [6].

Induction driven magnetic field sensors like search coils, rotating coils or Fluxgate sensors
are based on the Faraday induction law

Ui = N
dΦ

dt
, (1.3)

where Ui is the induced voltage in a coil with N windings, due to the temporal change of the

enclosed magnetic flux Φ. Equation (1.3) can be rewritten as

Ui = N
d(B ·A)

dt
= N

d(μ0μrH ·A)
dt

, (1.4)

and

4Abbr. for Superconducting QUantum Interference Device.
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Figure 1.4: Typical measurement range of different magnetic field measurement methods [6, 8].

Ui = NAμ0μr · ∂H

∂t︸︷︷︸
Search coil

+Nμ0μrH · ∂A

∂t︸︷︷︸
Rotating coil

+NAμ0H · ∂μr

∂t︸︷︷︸
Fluxgate

, (1.5)

where H represents the magnetic field to be measured, A is the cross section of the coil and μr

describes the relative permeability. Search coils would provide a wide measurement range, but

are limited to magnetic AC fields (see Eq. (1.5)). Fluxgate sensors consist of magnetically soft

cores5 (e.g., nickel-iron alloy), which are surrounded of two detecting coils (primary and pick-

up coil). There are several fluxgate magnetometer architectures, e.g. residence times difference

fluxgates-RTD and second harmonic fluxgates [9, 10].

Second harmonic fluxgate detect the second harmonic of the output voltage in the pick-up coil.

A periodic driving current (e.g., sine, pulse, triangular waves) is applied in the primary coil,

wound around the core and generates a periodic magnetic excitation field. The pick-up coil

senses the flux change according to Faraday’s law. In the case of an external magnetic field the

core permeability alternates from a low value to a high value and produces voltage pulses at the

pick-up coil, where the frequency of the signal is twice of the primary drive frequency since the

transitions due to saturation occurs twice in each excitation period [6]. The amplitude of the

5Abbr. cores with a abrupt hysteresis curve with a very high permeability, so that the probe reacts to smallest

changes particularly sensitively.
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output signal is proportional to the magnitude of external magnetic field, whereas the phase is a

measurand for the direction of the field.

Residence times difference fluxgates detect the time difference of two successive peaks in the

pick-up coil. The time difference represents the time spent by the core magnetization in the two

stable steady states. In the absence of an external magnetic field the time difference is zero. In

the presence of an external magnetic field the hysteresis loop skew, and the time positions of the

stable states vary.

1.2 Micro Electro-Mechanical Systems

Microelectromechanical systems (MEMS) are compact integrated systems that combine electri-

cal and mechanical components. Their size can vary over a wide range from the sub micron up

to the millimeter level. Furthermore, there can be any number, from a few to several millions,

in a particular system. MEMS technology uses not only the fabrication techniques that were

developed for the semiconductor industry but also adds mechanical elements such as beams,

gears, and diaphragms to the devices. There are various examples of MEMS device applications

including inertial sensors, micromirrors, microactuators, optical scanners, fluid pumps, pressure

and flow sensors, and many more. The development of new applications is closely linked to

the miniaturization and integration of conventional devices. These systems are able to sense,

control, and activate mechanical processes on the micro scale, but also to generate effects on the

macro scale. Micromachined devices often perform individually simple tasks, but in combina-

tion with each other they can achieve sophisticated functions. MEMS are neither defined by a

single fabrication process, nor they are limited to a few materials. They are a result of a fabri-

cation approach using the advantages of miniaturization and integration of multiple components

and microelectronics. Hence, MEMS can have a significant impact on commercial markets, e.g.

for mobile communications. Since the mid 1970’s, the complexity of integrated circuits (ICs)

has doubled every one and a half year. The dimension of manufactured devices and assembled

in an IC has decreased from 20 microns down to currently 22 nm, where the leading-edge tech-

nology enables the fabrication of more than 1.4 billion transistors on a chip (Intel, Ivy Bridge

processor-2012). Especially IC fabrications for mobile communications are the driving force

for the development upon sensors and are responsible for their mass production. Similarly, con-

trol systems need actuators to accomplish their desired functions. In summary, there are three

characteristics featured by MEMS’s fabrication technologies: miniaturization, multiplicity, and

microelectronics.

Micromachined Resonant Sensors

Independent of the working principle of the sensor, one has to distinguish between passive (e.g.,

magnetoelastic sensors) and active sensors, depending wether the sensor needs an external en-

ergy supply or not. If an external energy source is necessary for the conversion of the measurand,

it is a so-called modulating sensor because the output signal depends both on the power supply

and on measurand itself (e.g., Hall probe).
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Assuming the property of the sensor is to provide an electrical output signal, containing the

information of the measurand or rather his change, it is obvious that this direct conversion is

only one aspect of the measurement problem. But usually the sensor principle consists of a

multi-stage conversion from the input quantity to the output signal. As a result, more than only

one quantity is involved during the conversion process. A typical quantity is the mechanical

eigenfrequency of a vibrating structure. Sensors that detect the natural frequency or its change

are called resonant sensors [11]. Thereby, the measurand is represented as a change or shift of

the resonance frequency. Compared to other analog quantities, the frequency as output signal

provides many advantages. A usual way to measure the quantity frequency is to count the

number of cycles per unit time, which can be easily digitized, providing easy access to modern

techniques of digital signal processing. Additionally, the frequency is directly attributed to the

base item time and thus accessible with an excellent accuracy. The degradation of the resolution

during the conversion, e.g. from a mechanical to an electrical signal are minimal, wherein the

transmission reliability of an analog frequency signal from the sensor to the electronics is high.

Simultaneously, these output signal is nonsensitive due to fluctuations of the signal amplitude

and the drift of the reference potential. Beside the frequency, resonant sensors additionally offer

many possible measuring quantities, such as amplitude, phasing, damping and individual signal

shape. In general, these quantities include a different, but very important information about the

measurement system, which contributes to a deeper understanding of the complex systems. One

big disadvantage of resonant sensors is their limited time resolution because of their dependence

due to the time constant τ of the oscillation and the quality factor Q.

Micromachined resonant sensors may work like tuning forks. Natural frequencies of the

resonators are well-reproducible. Depending on the design of the sensor the structure can vibrate

in different modes. This often results in a specific detection method. The kind of clamping and

the shape of the resonator must be selected carefully, so that undesirable modes of vibration

and its harmonics are either suppressed or have a frequency, which is far enough away from the

desired resonant frequency. Beside the selected sensitivity, several different influences have to

be considered in the design process. Regarding to the resonance frequency and according to

the measurand, influences of the ambient like temperature changes or the change of the ambient

pressure have to be considered for the design. Therefore all couplings of the sensing element to

the environment that can influence the vibration that must be of interest for the applications of

micromachined resonators. Due to the miniaturization of the sensor, a low mechanical energy is

stored in the vibration mode, where various types of energies (e.g., thermal, acoustic, etc.) can

be of the same order of magnitude. Hence, a insufficient signal-to-noise ratio of oscillations can

result if the design of the sensor is not done carefully [12].

Both the excitation and the detection of oscillations can be realized electrostatically, mag-

netically, piezoresistively, piezoelectrically, thermally or optically, wherein the micromachined

resonators can exhibit functional thin-film layers. Micromachined resonant sensors are used as

force, inertial and pressure sensors, whereas the resonator oscillates and the measurand changes

the resonance frequency, the amplitude or phase. The great advantage of resonators is the res-

onance amplification if the exciting frequency and natural frequency are close together. Such

sensors respond much more sensitive to harmonic excitations than an equivalent broadband sen-

sors (see Chapter 2.1).
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Another possible description of a mechanical resonator is that a propagating mechanical

wave through a geometrically limited structure creates a stationary wave, whose resonant fre-

quency is simultaneously determined by the propagation speed of the wave and the geometric

dimension of the structure itself. Accordingly, the resonance frequency can be influenced only

in two ways: Firstly, the change of the propagation velocity of the wave (e.g., possible modes)

or secondly, by a change of the material or by the structure itself.

Technically, micromachined resonant sensors, acoustic microsensors and ultrasonic sensors

are of most importance. Micromechanical sensors are often fabricated with single-crystalline

silicon, which has superior mechanical properties with regard to elastic parameters. These prop-

erties permit reproducibility and long-term stability better than other materials [13]. Further-

more, silicon-based production enables an integration of microelectronic and micromechanical

components. Beside the mechanical characteristics of single-crystalline silicon, the high thermal

conductivity (see Table 4.1) and the ability to manipulate electrical conductivity through doping

enables a wide field of application [14].

1.3 Resonant Magnetic Field Sensors

The use of micromachined, resonant magnetic field sensors is adequately described in litera-

ture [15–25]. Nevertheless, these studies differ both in the sensor concept and in the detection

method, which is summarized in Table 1.1. The most important part of a MEMS resonant sen-

sor is the oscillating mechanical structure, which directly affects the characteristics of the sensor

itself, such as accuracy and fabrication complexity.

Mechanical Design

In recent years, various resonator designs have been proposed, tested, and manufactured. They

can be classified by their basic mechanical design: cantilevers, bridges and comb structures.

• Cantilevers represent the simplest structure in terms of manufacturing and function (see

Fig. 1.5). The beam is fixed at one end to the substrate while the other end is free to

move. If the cantilever is actuated, the free end oscillates in a mode depending on the

eigenfrequencies of the structure. Therefore out-of-plane, in-plane and torsional mode

shapes are possible. Because of the simplicity of such a design, it has several advantages

for the engineer: Firstly, a simple mechanical design normally results in a simple fabrica-

tion process, which in turn leads to low production costs. Secondly, since one end of the

beam is not anchored to the substrate, the possibility to introduce residual stresses into the

structure during manufacturing is negligible. At last, due to the simple geometry the mode

shapes can be characterized analytically using elementary beam bending theory, where the

vibrations of cantilevers have been extensively studied.

• The U-shaped structure is a kind of folged bridge, but without tensile stresses. This

shape provides a larger width to stiffness-ratio than standard cantilevers, making such

devices more compliant to forces applied to its base.
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(a) Cantilever (b) U-shaped Cantilever

(c) Torsional plate (d) Comb structure

Figure 1.5: Schematics of principle mechanical resonator designs regarding magnetic field sen-

sor with electromagnetic actuation used in literature.

• A clamped-clamped beam resonator is a structure, where the vibrating mass fixed at two

points. This architecture is very flexible due to the mechanical layout and functionality,

and results in many variations of this basic structure, e.g. U-shaped cantilevers. Usually

the oscillation is laterally and in an antisymmetric (AS) mode.

• The fourth fundamental MEMS resonators design is the comb structure architecture.

This concept is most complex, but offers a very flexible design. It offers the same stability

regarding the resonance mode as the clamped-clamped design.

Depending on the excitation of the mechanical structure three bending shapes are possible: If

the structure bends such that the plane of the loading is parallel to the axis of the beam passing

through its center of gravity, then the bending is known as in-plane bending. Otherwise it is

called out-of-plane bending, due to the effects of twisting and lateral forces perpendicular to the

plane of loading.

Actuation and Signal Transduction

The heart of a MEMS resonant sensor is a vibrating mechanical structure, but the structure do

not resonate spontaneously. An actuation mechanism is necessary, which sets the structure to

resonance, where a phase change occur. Several methods are possible, but in the MEMS field

most popular and widely used are capacitive, piezoelectric, thermal, photothermal and magnetic

techniques [28–34].
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Table 1.1: Overview of Lorentz-forced, resonant magnetic field sensors. Following abbrevations

are used: c− f . . . clamped-free, c− c . . . clamped-clamped.

Authors et al. Deflection Read-out Clamping Shape

Donzier (1991)[15] out of plane piezoresistive c− f cantilever
Eyre (1997)[16] out of plane piezoresistive c− c torsion/bridge
Kadar (1998)[26] out of plane capacitive c− c torsion/bridge
Emmerich (2000)[18] in− plane capacitive c− c comb
Leichle (2001)[27] out of plane capacitive c− f cantilever
Beroulle (2003)[19] out of plane piezoresistive c− f U− shape
Keplinger (2004)[20] out of plane optical c− f U− shape
Sunier (2006)[21] out of plane piezoresistive c− f U− shape
Bahreyni (2007)[22] in− plane capacitive c− c comb
Herrera (2009)[23] out of plane optical c− f cantilever
Choi (2011)[24] in− plane inductive c− c comb− disk
Herrera (2011)[25] out of plane piezoresistive c− f cantilever

Capacitive Actuation: Any electric charge is surrounded by an electric field and this electric

field applies a force to any other charged particle. The drawback of the electrostatic force is

that it decreases with the square of the distance between the two electric charges. In the MEMS

world however, at microscopic scale, the distances between structures are very small. As a result,

the electrostatic force can most efficiently affect the dynamic behavior of the resonator. Thus,

electrostatic actuation is often used in microresonators, switches, micromirrors, accelerometers,

and microactuators. An electrostatic force can be generated on a capacitor arrangement by

applying an electrical voltage. Neglecting stray fields, the force between two parallel plates is

F =
1

2

εA

d2
U2 (1.6)

where d is the equilibrium distance between the two plates, A is the area of the plates and U is

the applied DC-voltage. As a result of Eq. (1.6) the only design parameters of the electrodes are

the area A of the plates and the distance d between the electrodes.

Piezoelectric Actuation: Piezoelectric materials can be deformed in specific directions by

applying an appropriately oriented electric field. Through these inverse piezoelectric effect, a

conversion of electrical power into mechanical motion is achieved.

Piezoelectric materials are characterized by their piezoelectric coefficient, which quantifies the

volume change, when the material is exposed to an electric field or mechanical stress. If the

clamped piezoelectric material is stressed, the deformation of the lattice structure will cause a

separation of charges, which thus generate an electric field across the material. At the other

side a potential difference will generate a mechanical deformation through the material. This

working principle can be used to excite mechanical oscillations by applying a sinusoidal driving
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voltage to a piezoelectric material coupled to the resonator. If the piezoelectric layer on the

resonator expands and contracts harmonically the steady-state response of the resonator will also

be periodically. Like the capacitive method, piezoelectric devices can be used both as transducer

for the mechanical oscillations and driving actuator.

Magnetic Actuation: Typical implementations are flexible structures with a load on its sur-

face, which are placed in an external magnetic field. The current in the lead generates a Lorentz

force, which in turn provides a tunable form of actuation. The motion of a conductor through the

magnetic field, induces a response-dependent electromotive force (emf). This force can directly

be used to recover the response of the system, for e.g., feedback purposes, or as a basis for elec-

tromagnetically coupled oscillators. The magnetic actuation is not only limited to the Lorentz

force, it can also be realized by magnetostrictive materials. These materials change their shape

when they are exposed to magnetic fields (e.g., Nickel, Terfenol-D, etc.).

Read-out

An important aspect of any sensor design represents the applied read-out (see Table 1.1). In the

early publications of Donzier (1991), Eyre (1997), Beroulle (2003), Sunier (2006) and Herrera

(2011) [15, 16, 19, 21, 25] a piezoresistive read-out was used, where the sensor was, on the

one hand [15, 35] a simple cantilever and on the other hand [19, 21] a much more sophisticated

U-shaped cantilever. Furthermore, in the publications of Kadar (1994) and Emmerich (2000)

[17, 18], both authors chose a capacitive read-out, where Kadar et al. (like Eyre et al.) designed

a torsional brigde detecting the antisymmetric vibration modes of the excited structure.

Emmerich et al. [18] used a micromachined comb structure measuring in-plane displace-

ments. An optical read-out was only used by Keplinger et al. (2004) and Herrera et al. (2009)

[20, 23] detecting flexural vibration modes of the test structures. Bahreyni et al. (2007) and Choi

et al. (2011) introduced a totally different detecting concept, where the fundamental resonant

frequency of the structures is modified by a Lorentz force generated from the interaction of the

device and the ambient magnetic field [22, 36].

In this thesis, a U-shaped cantilever was addressed because this design provides a larger

width to stiffness ratio than plates, resulting in an increased sensitivity due to to external ex-

citing forces. The selected capacitive read-out system was designed to distinguish between

symmetric and antisymmetric modes. The advantage of this design is that simultaneously with

respect to the sensor position and orientation, two magnetic field components are detectable.

Additionally, the developed transduction and signal processing allows to detect both static and

alternating magnetic fields. In the case of alternating magnetic fields it has turned out that the

structure is suitable, e.g. to measure high AC currents contactless by measuring the related

AC magnetic flux density. In addition to the capacitive magnetic field transduction, the same

arrangement turned out to be an efficient actuation scheme for the micromechanical resonator.

It could provide large vibrations without direct physical contact between the resonating proof-

mass and the electrodes. If the resonator design is carefully optimized by reducing particularly

intrinsic damping mechanism (e.g., anchor losses, Chapter 2.3), high performance of the device

can be achieved.
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Table 1.2: Main characteristics of Lorentz-forced resonant magnetic field sensors based on

MEMS technology.

Authors et al. Bmin in μT Bmax in μT Sensitivity i in mA

Eyre (1997) 1000 30 000 20mV/T 10

Kadar (1998) 50 600 500mV/μ T 30

Emmerich (2000) 5 100 820V/T 0.072−0.93
Leichle (2001) 2000 100 000 − −
Beroulle (2003) 10 000 110 000 530mV/T −
Keplinger (2004) − 200 000 −
Sunier (2006) 1000 13 000 60 kHz/T −
Bahreyni (2007) 2500 25 000 48−87Hz/T 1−6
Herrera (2009) 500 30 000 530 nm/T 0.574

Choi (2011) 50 390 − −
Herrera (2011) 50 2000 1.94V/T 30

Table 1.2 lists literature dates of resonant magnetic field sensors. One can notice that the

achieved minimum and maximum detectable fields are either in the range of the earth’s mag-

netic field or much larger. In the last 20 years no researcher has characterized his sensor over

more than two orders of magnitude regarding the magnetic flux density. The Lorentz force FL

provides a linear scalability of the conversion efficiency. The magnitude of the structure deflec-

tion depends on the Lorentz force itself, which in turn is directly proportional to the current i
on the top of the structure and to the magnetic flux density B. Looking at Table 1.2, the exci-

tation current is already quite large and a further increase would promote a thermal damage of

the structure. Therefore, none of the presented structures seems to be suitable to detect smaller

magnetic fields than those of Emmerich et al. But Emmerich did not explain how he achieves the

lower bound of 5μT. He gives no explanation how he compensated the Earth’s magnetic field or

other low frequency magnetic field disturbances. The maximum reposted magnetic flux density

is 200mT, although the Lorentz-force actuated cantilever would provide a direct measurement

methode for high magnetic fields. Another important parameter is the frequency-quality factor-

product fr ·Q given in Table 1.3 because this quantity is a direct measure for the combined

action of all intrinsic damping mechanisms of the whole structure (see Chapter 2.3).

Parameters of a Resonator

The performance of a micromechanical resonator can be influenced by different parameters like

ambient pressure or temperature. These different physical conditions can interfere with the

natural vibration at resonance and may degrade the performance of the resonator. One of the

most important parameters for a resonator is its quality factor (see Chapter 2.1). The quality

factor Q can be influenced by several loss mechanisms, which can roughly be divided into

intrinsic and extrinsic damping mechanisms. Hence, the design and the placement of anchor

points will either improve or degrade the measured quality factor of the resonator. Especially,
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Table 1.3: Further characteristics of Lorentz-forced resonant MEMS-magnetic field sensors

(†atmospheric pressure).

Authors Resonance freq. Quality fr ·Q Ambient
et al. fr in kHz factor Q pressure in Pa

Eyre (1997) 2.5 10 25 ≈ 200

Kadar (1998) 2.5 700 1750 5

Emmerich (2000) 1.3 37 48.1 101

Leichle (2001) 1.218 − − −
Beroulle (2003) 8.97 59 529.2 −
Keplinger (2004) 4.82 − − atm†

Sunier (2006) 175 600 105 000 atm

Bahreyni (2007) 38.074 15 250 580 628 ≈ 2 Pa

Herrera (2009) 19.4 1.66 32.2 atm

Choi (2011) ≈ 1.5 − − −
Herrera (2011) 22.99 96.60 2220.8 atm

for resonators with a capacitive position transduction their quality factor is inversely proportional

to the motional resistance. Usually, the damping of this resonator should be small for an easier

impedance matching with other integrated circuit electronics.

Beside the quality factor of a resonator, the pressure dependence of the device can be of

interest, or how stable are the resonant frequency fr and the quality factorQ under varying pres-

sure. The performance of resonators with capacitive air gaps or air slits between the vibrating

structure and fixed surfaces will deteriorate with pressure variations due to air damping. With

an increasing collision frequency of air molecules, the resonator will be hindered during vibra-

tion. In the case of a diluted atmosphere, pressure stability of resonators is one of the essential

features. Therefore, a clear, physical understanding of the behavior of resonators under different

pressure regimes is of most importance (see Chapter 2.3).

A very important criterion for electromagnetic actuated resonators is power handling. How

much power the resonator can withstand before its operating deviates from its desired design.

These deviations in operation can lead to nonlinear regimes, where the nonlinearity of the res-

onator is associated with mechanical and electrical nonlinearities. Nonlinearities in continuum

mechanics can be found mostly for large deflections or in the structure’s geometry, whereas

electrical nonlinearities are mainly determined by the capacitive readout system.

A very critical item in the context of electromagnetic actuation are changes of the tempera-

ture resulting in corresponding changes of the elastic properties. This can lead to a drift of the

resonance frequency during the operation (see Chapter 4.3). Temperature stability is important

for all oscillator applications, where a stable reference frequency is required. For mechanical

reference oscillators a method for temperature compensation is necessary. On the other hand

this resonant frequency drift with temperature can be useful for some applications such as for

temperature sensors.
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Aim of this Work

This thesis explores the performance of a resonant flexural-mode magnetic field sensor (both

symmetric and antisymmetric modes). The performance of the device is analyzed with regard

to the following key parameters: quality factor, pressure stability, temperature stability and non-

linearity. Fundamentally, the overall performance of a resonator is mainly influenced by the

geometry of the resonator. Whether the resonator is used for sensor-, oscillator- or filter appli-

cations, an optimized geometry for high performance under various pressures and temperatures

is desireable. The focus of this work is on the quality factor in different pressure regimes,

where one can observe that losses through anchor supports are the main energy losses espe-

cially for intrinsic, e.g. high vacuum damping mechansims. Interestingly enough, two different

damping mechanisms dominate in the transition regime of the damping over ambient pressure

characteristic: gas-kinetic damping and squeeze-film damping (see Chapter 2.3). This work also

presents data concering the pressure and temperature dependence and nonlinearity of various

flexural-mode micromechanical resonators. Moreover, a new idea for a MEMS magnetic field

sensor characterization and a custom capacitive readout system will be presented. The following

chapters will be presented in a strict distinction between mechanical and electrical domains and

detection methods, shown in Fig. 1.6.
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Figure 1.6: Classification of a microelectromechanical system in mechanical sensor device, elec-

tromechanical transduction and sensing circuit.
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CHAPTER 2
Mechanical Fundamentals of

MEMS Sensors

Overview

This chapter deals with the mechanical description of the oscillations of MEMS resonant sen-

sors, as shown in Fig. 2.1. The measurement principle is described on basis of a force sensor.

Fundamental aspects are derived from well-known concepts, like the harmonic oscillator, where

fundamental limits of the system will be discussed.
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Figure 2.1: Typical structure of a microelectromechanical system. Hence, emphasis is laid on

the mechanical part.

2.1 Frequency-Selective Detection Method

Measurement Principle

Normally, vibration sensors work below their resonant frequency because in this range the sensor

signal is proportional to the quantity to be measured, whereat the deflection of the sensor is small

19



20

CHAPTER 2. MECHANICAL FUNDAMENTALS OF
MEMS SENSORS

compared to the amplitude of the vibration (see Fig. 2.2). A pronounced resonance enhancement

limits the proportional range of measurement and therefore, frequency components near the

resonance are filtered out.
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Figure 2.2: Vibration measurement principles demonstrated with Fig. (a) as broadband and

Fig. (b) as frequency-selective PT2-system.

The frequency-selective sensor operates in contrast to a broadband sensor exactly at his res-

onance. It filters out the frequency components of the excitation around its resonance frequency,

where the signal is amplified with the quality factor Q (see Fig. 2.2). Hence, the signal-to-noise

ratio (SNR) increases because of the resonance enhancement. Interfering signals with large

amplitudes beside the resonance are suppressed and do not overdrive the transducer.

Harmonic Oscillator

The study of cantilever oscillations is a rather extensive problem. In many cases the general

solution of the cantilever equation of motion can not be obtained in an analytical form. However,

if the deflections of the cantilever relating to the equilibrium position are small, Hooke’s law is

valid and the oscillations of the system can be described by basic theories, like the harmonic

oscillator of a spring pendulum

F = mẍ = −kx (2.1)

having a stiffness k and some effective massm. This is a simple differential equation, where the

equation of motion becomes

ẍ+ ω2
0x = 0 , (2.2)

where ω0 =
√

k/m is the oscillator’s angular eigenfrequency. For purposes of generality, the

equation in z
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z̈ +
k

mω2
0

z = 0 , (2.3)

represents a nondimensional presentation of a harmonic oscillator, with the nondimensional time

τ . If the natural angular frequency ω0 of the oscillating system should represent the frequency

unit, k/(mω2) is set to unity. The solution of Eq. (2.2) is

x(t) = Asin(ωt+ φ) , (2.4)

where A is the amplitude of the oscillator and φ is the phase between excitation and vibration

system. In the case of free oscillations, the amplitude and the phase are specified by the initial

conditions

A =

√
x2(0) +

ẋ2(0)

ω0
(2.5)

and

φ = arctan

(
− ẋ(0)

ω0x(0)

)
,

while the frequency of a natural undamped oscillation is a parameter of the oscillating system

[37]. In the case of free oscillations, where external forces are absent, natural oscillations are

due to Eq. (2.4) harmonic. The total energy

Etot =
1

2
mω2

0A
2 (2.6)

stored in the harmonic oscillator at the inital state t = 0 is conserved and only its kinetic and

potential energy parts vary over time.

Damped Harmonic Oscillator

In real systems dissipation of energy takes place, where the energy losses will damp the vibra-

tions. Until these losses are not compensated from outside with a force F the oscillations will

decay in time. These consideration leads to the simplest case of a damped harmonic oscillator

with following equation of motion

mẍ+Dẋ+ kx = 0 , (2.7)

where D denotes the damping parameter of a viscous medium. The solutions of this homoge-

neous linear differential equation for free vibrations with constant coefficients have an exponen-

tial form x = Cert. This general solution of Eq. (2.7) leads to the characteristic equation
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mr2 +Dr + k = 0 (2.8)

with the two roots

r1,2 =
1

2

⎡
⎣−D

m
±
√(

D

m

)2

− 4k

m

⎤
⎦ . (2.9)

In the case of a vanishing discriminant of Eq. (2.9) the Damping of the system achieves a critical

value

Dc = 2
√
km = 2mω0 (2.10)

the so called critical damping parameter Dc. The damping ratio D/Dc ≡ ζ denotes the dimen-

sionless damping factor. Hence, the relationship between the damping parameter D and the the

dimensionless damping factor ζ is

ζ =
D

2
√
mk

. (2.11)

With Eq. (2.10) the characteristic Eq. (2.9) can be rewritten to

r1,2 = −ζω0 ± ω0

√
ζ2 − 1 (2.12)

If ζ = 1 the critically damped oscillator attempts to return to its equilibrium position, without

any oscillations. The overdamped oscillator with ζ > 1 also returns to its equilibrium position,

but more slowly than in the critically damped case, which is shown in Fig. 2.3. In many MEMS

applications ζ is smaller than 1, but positiv and the solution of the underdamped oscillator in

Eq. (2.7) becomes

x = Ae−ζω0tsin

⎛
⎝ω0

√
1− ζ2︸ ︷︷ ︸
ωd

t+ φ

⎞
⎠ , (2.13)

where ωd denotes angular frequency of a damped system and φ is the phase angle. The damped

angular resonance frequency characterizes the frequency of the free vibration at which the oscil-

lator returns to its position of equilibrium and is therefore, often called natural angular frequency.

For a sensor with a resonant working principle the quality factor Q is of most importance to

quantify the energy losses due friction. TheQ-factor determines the sensitivity and the dynamic

behavior of the sensor. If the dimensionless damping parameter ζ < 1 in Eq. (2.13), there

is only a slight difference between the damped angular resonance frequency ωd and the the
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Figure 2.3: Free motion of a 1-DOF system for various damping parameters ζ.

eigenfrequency ω0. A descriptive mathematical method for the quality factor Q is to compare

the spring force to the damping force

Q =
kx0

Dω0x0
=

k

2ζmω2
0

=
1

2ζ
. (2.14)

For weak to moderate damping, the relationsship between the quality factor Q and the damping

ratio ζ simplifies to

Q =
mω0

D
=

1

2ζ
=

1

η
, (2.15)

where η is the loss factor.

Driven Damped Harmonic Oscillator

If a harmonic driving force F (t) = F sin(ωt) acts on a damped oscillator, the equation of motion

becomes

mẍ+Dẋ+ kx = F cos(ωt) (2.16)

or in complex notation

m˜̈x+D ˜̇x+ kx̃ = Feiωt (2.17)
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Figure 2.4: Simplified mechanical model of a single degree of freedom (1-DOF) system.

often called as single degree of freedom system (1-DOF) which is schematically shown in

Fig. 2.4.

Owing to the harmonic function of the right hand side of Eq. (2.17), the left hand side

should be in the steady state with the same frequency. Hence, the complex displacement x̃ can

be replaced by Ãeiωt, where the complex form of Eq. (2.17) becomes

Ãeiωt
(−mω2 + iωD + k

)
= Feiωt . (2.18)
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Figure 2.5: Frequency dependence of the mag-

nitude x and the phase φ of a simple oscillator.

Therefore, the complex displacement leads to

x̃ =
Feiωt

k −mω2 + iωD

=
F̃ /m

ω2
0 − ω2 + iω2α

, (2.19)

where F̃ = Feiωt, ω2
0 = k/m and α =

D/(2m). The real part of the steady-state dis-
placement of Eq. (2.19) is

x =
F

ωZ
sin(ωt+ φ) , (2.20)

where Z = k − mω2 + ωD. In the case of

a slight difference between the damped angu-

lar resonance frequency ωd and the the eigen-

frequency ω0 because of a small damping pa-

rameter ζ < 1 the amplitude of Eq. (2.19)

gets
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x0 =
F

2αmω0
. (2.21)

With Hooke’s Law F = k · xs the static displacement of the oscillator due to the load with the

magnitude F is at very low frequencies xs = F/k (see Fig. 2.2). Substituting D = 2αm in

Eq. (2.14), Q = ω0/(2α) and hence the amplitude becomes

x0 = Qxs , (2.22)

where Q acts as an amplification factor at resonance (ω = ω0 ≈ ωd). The phase angle φ of the

denominator of Eq. (2.19) becomes

φ = tan−1 2αω

ω2 − ω2
0

, (2.23)

representing the phase angle between the displacement x and the harmonic driving force F . The

frequency response of a linear harmonic oscillator for different quality factors Q is shown in

Fig. 2.5. Two important properties of the mechanical quality factor Q are:

• In contrast to an electronic amplification it requires no power supply, since no active com-

ponents are involved.

• Thermomechanical noise drops at resonance with 1/
√
Q [38]. Hence, the displacement

due to thermomechanical noise only raise with
√
Q, where the signal-to-noise ratio (SNR)

improves with
√
Q (see Chapter 4.3). However, the bandwidth of the sensor is simulta-

neously reduced by the amplification factor shown in Eq. (2.24). The decline of the SNR

can be increased by decresaing the spring constants, according to Eq. (2.60).

Determination of the Quality Factor

Bandwidth Method: For low loss systems there is a direct relationship between the damping

coefficient α and the width of the resonance peak. The denominator of Eq. (2.19) determines the

shape of the resonance, where its magnitude increases by a factor of
√
2 relative to its amplitude

at ω = ω0 and in the case of |ω − ω0| ≈ α [37]. Similarly the response decreases with the

same factor. Each of them represents a 3 dB half-width of the resonance curve, which is equal

to the damping coefficient α. Together the full-width Δω = 2α. Therefore, in the case of a

weakly damped system it is possible to determine the quality factor using the bandwidth of the

resonance

Q =
ω0

2α
=

ω0

Δω
≈ ωr

Δω
, (2.24)

where ωr is the angular resonance frequency and Δω the angular bandwidth. If damping is

small, the resonant angular frequency ωr is nearby to the angular eigenfrequency ω0 of the
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system, which is the angular frequency of the unforced vibration of the structure. The angular

bandwidth is the width of the frequency range (·2π) for which the energy is at least half its peak
value. For the determination of the bandwidth the structure has to be excited around its natural

frequency and the amplitude of the vibration of the structure has to be detected. If this is done

sufficiently slowly at moderate amplitudes a Lorentzian profile will be achieved. Usually, the

response is not exactly symmetric about the resonant frequency. When a slightly damped linear

oscillator with 2α2 � ω2
0 is excited with a driving angular frequency ω the oscillation amplitude

is typically approximated by a formula that is symmetric about the resonant frequency ω = ω0

x(ω) =
F/m√

(ω2
0 − ω2)2 + 4α2ω2

≈ F/2mω0

(ω0 − ω)2 + α2

with ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) and ω0 + ω � 2ω0 . (2.25)

The square of the deflection of Eq. (2.25) leads to

x2(ω) = x20
α2

(ω0 − ω)2 + α2
= x20

(Δω/2)2

(ω0 − ω)2 + (Δω/2)2︸ ︷︷ ︸
Lorentzian function

, (2.26)

where x0, the height of the peak is specified in Eq. (2.21).
Under the assumption of natural frequencies in the range of 10 kHz and an assumed resolution

of 10mHz, the maximum quality factor due to Eq. (2.24) should be 1 · 106.

Logarithmic Decrement Method: A common definition of the quality factor of a low damped

mechanical system using energy considerations is

Q =
2πEi

Ed
= 2π

E(t)

E(t)− E(t+ T )
, (2.27)

where Ei is the stored vibrational energy and Ed the dissipated energy per oscillation period T
[39].

Another possible method to determine the quality factor is to measure the decay time τ of the

oscillation, when the system is hit once and not driven. The total energy of a weakly linear

damped oscillator (with a damping force proportional to the velocity) decrease exponentially

E(t) = E0e
2t
τ , (2.28)

where E0 is the total oscillator energy at the moment t= 0 and τ = 1/α = 2m/D is the time

constant of the decay. Due to Eq. (2.27) the quality factor per period T becomes

Q = 2π
1

1− e
2T
τ

. (2.29)



2.1. FREQUENCY-SELECTIVE DETECTION METHOD 27

For τ � T and a series expansion of the exponential function in Eq. (2.29) the quality factor

changes to

Q =
ωτ

2
. (2.30)

Under the assumption of natural frequencies in the range of 10 kHz and a time constant of 1 s

the measurable quality factor is about 3 · 104. In conclusion, the bandwidth method and the

logarithmic decrement method are both appropriate to determine the quality factor for structures

with natural frequencies in the range of 10 kHz.
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2.2 Modelling

Analytical and Numerical Techniques

The design of micro mechanical components is usually carried out in the synthesis of single

simple geometric entities. The positions where these entities are connected together are called

nodal points. In the static case the analysis of the physical behavior of all jointed structures is

executed under the assumption of the equilibrium of forces in every nodal point and the com-

patibility of displacements of neighboring nodes. For those kinds of engineering problems a

fistful commercial as well as open source programs are suitable, like COMSOL Multiphysics,

ANSYS, Elmer or CalculiX. Finally, the possibilities of coupling different physical domains like

mechanics with electrostatics or magnetostatics often rules the application.

(a) Cantilever l=2mm, b=0.2mm
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(b) Cantilever l=2mm, b=0.2mm

(c) Cantilever l=b=2mm
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(d) Cantilever l=b=2mm

Figure 2.6: Two single-crystal cantilevers with the same length and height but with a mass ratio

of ten, a stiffness ratio of one-tenth and their resultant static displacement in meter due to gravity.

The abscissa in Fig. 2.6(b) and 2.6(d) represents the lateral coordinate at the tip of the cantilever.

Through the finite element method (FEM) design parameters can be optimized with a step by

step approximation. This e.g. can lead to an optimization of the sensitivity of a quantity to be

measured or in the suppression of higher vibration modes or to a low temperature dependence

of the device. With the help of the finite element method the analysis of a very large number of

equations in the particular nodal points is possible.
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For example the static deflection due to gravitational forces of a simple silicon cantilever

with the length of 2mm and the height of 20μm is 9 nm (see Fig. 2.6). As a first approximation,

the deflection is independent from the width of the cantilever, althouth the mass of the structure

in Fig. 2.6(c) is ten times higher than that in Fig. 2.6(a), but with a tenfold increase of the stiffness

ratio.

Notably, the two solutions in displacement due gravity are not identical in Fig. 2.6(a) and

2.6(c). Due to Fig. 2.6(b) and 2.6(d) it is a result of shear deformations in the cross-sectional area

of the plate, which is completely negligible in the cantilever. Vibrating cantilevers are described

with the Euler-Bernoulli beam (continuum) equation of motion neglecting the deformations due

to shear forces and the inertial resistance due to rotational acceleration of the cross-sectional

area of the beam. More detailed beam theories, especially for plates often termed Timoshenko

beam theories, lead to slightly different results especially for higher frequencies.
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Euler-Bernoulli Beam Theory

In the simplest case, the equation of motion of an undamped flexural resonator can be described

by the Euler-Bernoulli beam equation,

∂2

∂x2

⎛
⎜⎝ EJz(x)︸ ︷︷ ︸

bending stiffness

·∂
2Ψ

∂x2

⎞
⎟⎠+ ρA(x)︸ ︷︷ ︸

mass per unit length

·∂
2Ψ

∂t2
= q(x, t)︸ ︷︷ ︸

transverse loading

(2.31)

Figure 2.7: Contribu-

tions of Leonardo da

Vinci due beam bend-

ing theory in the Codex

Madrid I.

a partial differential equation of 4th order for the flexural deflection

Ψ = Ψ(x, t). The importance of stress and strain in vibrating struc-

tures has its reason in the dependence of the equation of motion of

the resonator due to the Young’s modulus E. This modulus describes

the tensile elasticity or the tendency of a structure to deform along an

axis when opposing forces are applied along that axis. The Young’s

modulus is defined as the ratio of the tensile stress to the tensile strain

with the dimension of a force per unit area.

Many historic mechanics textbooks appreciate Galileo’s analyt-

ical contributions towards beam theory like Timoshenko’s synopsis

in History of Strength of Materials [40]. However, one should be

aware that Leonardo da Vinci made very fundamental experimental

research and some theoretical contributions to Euler-Bernoulli beam

theory 100 years before Galileo. For example he explained the prod-

uct of the cross-sectional area A with the height h in proportion to the

length of the beam correctly [41]. Fig. 2.7 is a detail of folio 84 of

Codex Madrid I, a hardback of memos, drawings and paintings of da

Vinci in the National Library of Spain. Carlo Zammattio refers in [42]

to this detail, with following translation of Leonardo’s notes:

"Of bending of the springs: If a straight spring is bent, it is neces-

sary that its convex part becomes thinner and its concave part, thicker.

This modification is pyramidal, and consequently, there will never be

a change in the middle of the spring. You shall discover if you con-

sider all of the aforementioned modifications that by taking part ’ab’

in the middle of its length and then bending the spring in a way that

the two parallel lines, ’a’ and ’b’ touch at the bottom, the distance

between the parallel lines has grown as much at the top as it has di-

minished at the bottom. Therefore, the center of its height has become

much like a balance for the sides. And the ends of those lines draw as close at the bottom as

much as they draw away at the top. From this you will understand why the center of the height

of the parallels never increases in ’ab’ nor diminishes in the bent spring at ’co." In contrast to

Galileo Galilei, Leonardo Da Vinci correctly identifies the stress and strain distribution (in words

and not equations) along the deflection of a beam.



2.2. MODELLING 31

Modal Analysis of an Euler-Bernoulli Beam

Most vibration problems are related to resonance phenomena, where the applied dynamic loads

excite one or more modes of vibration. One characteristic of modes is that any forced or free

response of a structure can be reduced to a discrete set of modes, where the modal parameters are

the modal frequency, the modal damping and the mode shape. The modal parameters determine

a dynamic description of the structure, where the modes represent the dynamic properties of a

free structure. In the process of modal analysis all modal parameters are determined to formulate

mathematical dynamic model, where these parameters can be achieved either through analytical,

numerical or experimental techniques.

In Eq. (2.31) damping mechanisms are neglected. The solution of Eq. (2.31) in the frequency

domain for symmetric modes is [43]

ωi = γ2i
h

l2

√
E

12ρ
, (2.32)

where h is the height, l is the length, E is the Young’s modulus and ρ is the mass density of the

cantilever. The eigenvalues γi are solutions of the transcendental Eq. (2.33)

1 + cosγicoshγi = 0 , (2.33)

where i represents the numerical order of the higher symmetric mode shapes pictured in Fig. 2.8.

(a) S1 mode with γ1 = 1.875 (b) S2 mode with γ2 = 4.694 (c) S3 mode with γ3 = 7.855

Figure 2.8: Three symmetric mode shapes of an Euler-Bernoulli beam.

The validity of Eq. (2.32) requires that the maximum displacement of the cantilever is much

smaller than its length l and that the cross-sectional areaA remains constant. These assumptions

involve that the width b of an Euler-Bernoulli beam is ditto much smaller than it’s length l
(approximately two tenth of the length) and that Eq. (2.32) is only valid for uniaxial loads. In

the case of a cantilever made up by several layers the neutral axis of each layer does not coincide

with all others. Few exceptions allow a homogenization of the cantilever cross section, with one

resulting neutral axis.

Another problem arises, in the case of beams with large width. They are more rigid than

Eq. (2.32) indicates. This stiffening effect is taken into account by using the flexural rigidity of

the plate E/(1− ν2) instead of the Young’s modulus E in Eq. (2.32) for wide beams,
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ωi = γ2i
d

l2

√
E

12ρ(1− ν2)
, (2.34)

where ν is the Poisson’s ratio [44, 45]. If the deflections of the plate are small compared to

its thickness h, the assumption that there is no strain in the middle of the plate will be fulfilled

and linearity can be ensured. Otherwise the stress distribution of the plate has to be considered.

The solutions for Eq. (2.32) and Eq. (2.34) are in good agreement with FEM-simulations for the

natural frequency (S1).

U-shaped Cantilever

U-shaped cantilevers are more compliant than beams or plates, due to their smaller geometrical

moment of inertia. They can be modelled by two slim cantilevers with additional mass at the

end of both beams schematically shown in Fig. 2.9.

Figure 2.9: In the case of flexural vibrations U-shaped cantilevers can be modeled as simple

straight beams with an additional tip massmB.

Therefore, the lowest eigenfrequency of a U-shaped cantilever will be much smaller than of a

beam or plate with the same enclosed ground area and heigth. In the case of an Euler-Bernoulli

Beam, the analysis of Eq. (2.31) in the frequency-domain permits to consider

∂4Ψ

∂x4
+

ρA

EJz

∂2Ψ

∂t2
= 0 (2.35)

which is a simpler differential equation due to the constant coefficients.

Using the separation ansatz for Ψ(x, t) = q(t)Tw(x) and the constraints become w(0) =
w′(0) = 0, w′′(l) = w′′′(l) = 0 for a single-sided clamped beam with mass mB at the tip of the

cantilever Eq. (2.35) becomes

∂

∂x

(
EJz

∂2w

∂x2

) ∣∣∣∣
l

= mB

(
∂2w

∂t2

) ∣∣∣∣
l

, (2.36)
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where a harmonic ansatz (with q(t)i ∝ ejωit) permits an analytical solution of eq. (2.36). With

w(x)i = C1cos(βx)i +C2sin(βx)i +C3cosh(βx)i +C4sinh(βx)i , (2.37)

where β = ρAω2/ (EJz), results from the separation ansatz and the constraints it is possible to

determine the four unknown Ci=1 to 4 corresponding to the order of the differential Eq. (2.36).

(a) S1 mode with γ1 = 1.522 (b) S2 mode with γ2 = 4.147 (c) S3 mode with γ3 = 6.001

Figure 2.10: Three symmetric mode shapes of a U-shaped cantilever with a length of 2 mm, a

height of 20 μm, a width at the attachment of 70 μm (twice).

In a very similar way to the derivation of Eq. (2.33) following equation of eigenvalues

1 + cosγicoshγi − γi

(
mB

ρAl

)
[sinγicoshγi − cosγisinhγi] = 0 (2.38)

is a consequence of the ansatz of Eq. (2.37) and the constraints. Evidently, solutions of Eq. (2.38)

converges in the case of mB = 0 against the results of Eq. (2.33). If mB 	= 0 the resulting

eigenvalues are smaller than for a beam with an additional mass at the tip of the cantilever.

After a short auxiliary calculation the equation of eigenvalues for both Euler-Beams and U-

shaped cantilevers becomes

1 + cosγicoshγi
γi [sinγicoshγi − cosγisinhγi]

= ξ , (2.39)

where
(
mB
ρAl

)
≡ ξ is the nondimensional tip mass parameter in Fig. 2.11 and γi 	= 0. The

intersection points in Fig. 2.11 represents the eigenvalues of an Euler-Beam in the case ofmB 	=
0 and for two representative U-shaped cantilevers made of silicon. Usually, the eigenvalues

derived by the analytical models in Table 2.1 fit together with those obtained by FEM simulation

techniques (modes shapes shown in Fig. 2.10).

For flexural modes higher than S2 the difference between the analytical solutions and the results

of FEM simulation increases. This is a consequence of the influence of the tip of the cantilever,

which is analytically modeled as a lumped mass shown in Fig. 2.9. The differences for this mode

in Table 2.2 are always greater than 20 % except those for an Euler-Beam because additional

deflections of the cross-beam and the two main beams are neglected. For example, the deflec-

tions of the bar between both cantilevers in Fig. 2.10 is significant, but totally neglected in the

analytical solution for the S3-mode.
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ξb = 1.5 mm
ξb = 2.0 mm

Figure 2.11: Solutions for the first triple of eigenvalues γi for an Euler-Beam (1.875; 4.694;

7.855) and two typically U-shaped cantilevers made of silicon with a length of 2 mm, a height of

20 μm, a width at the attachment of 70 μm (twice) and a width at the tip of the beam of 1.5 mm

(1.487; 4.155; 7.223) and 2.0 mm (1.420; 4.111; 7.190).

Table 2.1: Typical eigenvalues of an Euler-Beam and two U-shaped cantilevers all with a length

of 2 mm, a heigth of 20 μm and made of silicon. The eigenvalues are calculated analytically and

are gained by FEM simulations.

γi 1st 1stFEM Deviation 2nd 2ndFEM Deviation

Euler− Beam 1.875 1.884 0.5 % 4.694 4.724 0.6 %
b = 1.5mm 1.487 1.522 2.3 % 4.155 4.147 1.9 %
b = 2.0mm 1.420 1.447 1.9 % 4.111 3.883 5.9 %

Table 2.2: Characteristic deviations of the S3-mode.

γi 3rd 3rdFEM Deviation

Euler− Beam 7.855 7.932 0.97 %
b = 1.5mm 7.223 6.001 20.4 %
b = 2.0mm 7.190 5.025 43.1 %
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Damped Euler-Bernoulli Beam

If the velocity for the harmonic motion of the beam is written in complex notation

ẋ = v = v0e
−iωt, the drag force F = Dẋ becomes also complex and the damping pa-

rameter D = β1 + iβ2 represents a complex constant. A typical structural damping model of a

vibrating beam describes the internal damping by

F = (β1 + iβ2) v , (2.40)

where β1 and β2 are real constants. For harmonic motion with the velocity v = v0e
−iωt, this

results in

F = β1v − iβ2
v̇

ω
, (2.41)

where the first term is proportional to the velocity v and the second term to the acceleration v̇
[46]. Due to the proportionality to the velocity this part of the drag is called dissipative term

because it leads to energy dissipation. While the acceleration part of Eq. (2.41) denotes the

inertial term [47]. Blom et al. presented in 1992 a damped Euler-Bernoulli beam equation,

EJ0
l4

∂4Ψ

∂ξ4
+ f1

∂Ψ

∂t
+ (ρA+ f2)

∂2Ψ

∂t2
= 0 , (2.42)

for a homogeneous beam with the normalized parameter ξ = x/l, f1 = β1/l the dissipative

drag parameter and f2 = β2/(ωl) the inertial drag parameter each per unit length. The damped

angular eigenfrequencies of Eq. (2.42) are

ωi =

[
γ4i

EJ0
(ρA+ f2)l4

− 1

4

(
f1

ρA+ f2

)2
] 1

2

, (2.43)

where the eigenvalues γi are solutions of the mode of resonance [46]. Neglecting damping mech-

anisms in the limit of f1 → 0 and ρA� f2, Eq. (2.43) becomes 2.32 the angular eigenfrequency

of an undamped Euler-Bernoulli beam.

With the help of the separation ansatz Ψ(x, t) = q(t)Tw(ξ) = w(ξ)eiωt and under the

assumption of a harmonic motion it is possible to determine the stored vibration energy

Ei = Ekin

∣∣∣∣
max

=

∫ 1

0

1

2
l (ρA+ f2)

∣∣∣∣
(
∂Ψ

∂t

)2 ∣∣∣∣
max

dξ

=
1

2
l (ρA+ f2)ω

2

∫ 1

0
w2(ξ)dξ , (2.44)

where w(ξ) represents the mode shape function. The the dissipated energy Ed per oscillation

period T
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Ed =

∫ T

0
F Ψ̇(ξ, t)dt =

∫ 1

0

∫ T

0
lf1

(
∂Ψ

∂t

)2

dtdξ , (2.45)

is given by the dragF and the velocity Ψ̇(ξ, t), with the period T = 2π/ω. Combining Eq. (2.44)

and 2.45 with Eq. (2.27) and the assumption of harmonic motion leads to

Q =
2πEi

Ed
= 2π

1
2 l (ρA+ f2)ω

2

∫ 1

0
w2(ξ)dξ

lf1ω2

∫ 1

0
w2(ξ)dξ

∫ T

0
cos2(ωt)dt︸ ︷︷ ︸
π/ω

, (2.46)

Hence the quality factor of a weakly damped cantilever with ρA� f2 becomes

QCantilever =
ρAω0

f1
, (2.47)

where ρ is the density of the beam material, A is the cross-sectional area and ω0 denotes the

angular eigenfrequency of the first symmetric mode [47]. It is remarkable that Q is very similar

to the quality factor of a 1-DOF system of Eq. (2.15) and can be calculated without knowing

the mode shape function w(ξ). Evidently, the quality factor increases if the dissipative drag

parameter decreases. To get rid of the fluid damping, the vibrating structure has to operate under

vacuum conditions.

Sensitivity of Resonant Sensors

A driven weakly damped harmonic oscillator provides an amplified response due to an excita-

tion source applied with a frequency equal to the resonant frequency of the structure, shown

in Eq. (2.22). This enhancement is a result by the efficient energy transfer from the excitation

source to the oscillator. Due to the measurement principle, the deflection x of the oscillator

is transformed into a capacitance change ΔC. The capacitance change ΔC results from the

deflection of the cantilever in respect to the equilibrium position

ΔC = C(Θ)− C(Θ = 0) , (2.48)

where Θ = 0 is the angle of deflection, which is schematically shown in Fig. 2.12.

If the deflections are small compared to the height of the cantilever, the electric field between the

electrodes can be assumed homogeneous without distortion and stray fields, where the capacity

becomes

C(Θ = 0) = ε0
Aeff

d0
(2.49)
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Figure 2.12: Schematic measurement principle of a capacitance change due to the deflection of

a loaded beam.

The effective ground areaAeff of the cantilever is a result of the deflection curve of the cantilever.

Assuming a harmonic oscillator with ω2
0 = k/meff and the natural frequeny of Eq. (2.32), the

effective massmeff of the moving cantilever becomes

meff =
3

γ41
ρlbh︸︷︷︸
m

= 0.243 ·m, (2.50)

where γ1 = 1.875 andm is the mass of the cantilever with the density ρ. Assuming a cantilever

with the same width b and height h, the effective length changes to

leff = 0.243 · l , (2.51)

where the product b · leff finally forms the effective area Aeff . To determine C(Θ 	= 0) the

infinitesimal part of the capacitor dC along the x-axis with the width ∂x at the position becomes

∂C = ε0
b

d(x)
∂x , (2.52)

where the shifting distance between the electrodes becomes in a linear approach

d(x) = d0 − xtan(Θ) . (2.53)

With the previous constraints l � b � d0 and small deflection angles Θ, the capacitor value

can be obtained by integrating along the effective length leff = 0.243 · l

C(Θ) = ε0

∫ leff

0

b

d0 − xtan(Θ)
dx = −ε0 b

tan(Θ)
log

d0 − xtan(Θ)

d0

∣∣∣∣leff
0

. (2.54)

Combining Eq. (2.49) and 2.54 gives the change in the capacity



38

CHAPTER 2. MECHANICAL FUNDAMENTALS OF
MEMS SENSORS

ΔC = −ε0 b

tan(Θ)
log

d0 − lefftan(Θ)

d0
− ε0

Aeff

d0
, (2.55)

obviously a nonlinear function due to the deflection angle Θ, shown in Fig. 2.13.
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Figure 2.13: Capacity change of the sensing electrode, with typical parameters of the cantilever

(leff = 0.243· 2mm, b=1.5mm) and different capacitor gaps d0.

But in the case of small signal analysis, the capacitance change behaves almost linear, which is

schematically shown in Fig. 2.14.

The total sensor sensitivity S is a product of several independent sensitivities terms like

S =
∂F̃

∂B
· ∂x̃
∂F̃

· ∂ΔC

∂x̃
,

with

S = SF̃ · Sx̃ · SΔC , (2.56)

where F̃ is the excitation force due to the external magnetic field B and Ĩ the current along the

gold lead of the structure. This current induces a voltage drop along the lead, which generates

in combination with the sensing electrode a electrostatic force

Fe =
1

2

∂C

∂x
Ũ2 , (2.57)

which is independent from the quantity B. This lowers the sensitivity regarding the magnetic

flux density B. In consequence the excitation current has to be minimized to detect a minimum
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Figure 2.14: Capacity change of the sensing electrode, with typical parameters of the cantilever

(l=2mm, b=1.5mm) and different capacitor gaps d0 in the limit of small signal analysis.

of the external magnetic field. However, the Lorentz force FL = ĨbB acting on the lead along

the tip, induces a torque M along the elastic axis l, which is dependent on the magnetic field B
and the current Ĩ . The derivative ∂F̃ /∂B becomes

SF̃ = Ib , (2.58)

where the sensitivity SF̃ is proportional to the excitation current Ĩ and b the width of the can-

tilever. Furthermore the deflection x̃ of the oscillator in Eq. (2.19) is a result of the applied

harmonic force F̃ at the tip of the cantilever

Sx̃ =
∂x̃

∂F̃
, (2.59)

where the sensititvity of the oscillator due to the deflection becomes at resonance

Sx̃ =
1

Dω0
=

Q

k
. (2.60)

From this result it is obvious that the sensitivity of the oscillator is most affected by the quality

factor Q. But the reasons of the quality factor Q are versatile. Consequently, this topic will be

discussed in a further chapter in more detail.
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Perturbation Analysis

The typically electrostatic excitation of micromechanical resonators with a capacitive gap is

realized with an ac source us along with polarization DC bias Up.

Fe =
1

2

∂C

∂x
(Up + us)

2 . (2.61)

This section will present how the mechanical resonator is modeled with electrical circuit com-

ponents, where the electro-magneto-mechanical system is modeled as a suspended mass-spring

resonator in Fig. 2.15, and described by an ordinary second-order differential equation

mẍ+Dẋ+ kx = F (x, ẋ, t) , (2.62)

where m is the mass of the movable structure in kg, D the damping coefficient in Ns/m, k the

stiffness in N/m and F the applied external force in N.

Force F

Damping D

Mass m

Stiffness k

Gap d0
without
charge

Equilibrium
gap d0 – x0
in the

presence of
charge

x
y

Figure 2.15: Schematic mechanical model of the time-varying MEMS capacitor.

Without the capacitive read-out system, the structure would only be deflected or harmoni-

cally excited by the Lorentz force FL, where Eq. (2.62) describes a harmonic oscillator

ẍ+ ω2
0x = f , (2.63)

where ω2
0 = k/m and f = (F − Dẋ)/m. If the nonlinearities of damping D and the driving

force F are negligible, the solution of Eq. (2.63) has the sinusoidal form x(t) = a ·sin(ω0t+ϕ),
where a is the amplitude and ϕ is the phase of the oscillation. In the case of small nonlinearities

compared to the left side of Eq. (2.63), the stationary solution will almost be the same of a

harmonic oscillator, but the oscillator will move with the exciting frequency.

Energy considerations allow a more fundamental aspect of the nonlinear origin of electro-

magneto-mechanical system [48]. The potential energy of the resonator is given by

Epot =
1

2
kmx

2 +
1

2

εA

(d− x)
(Up + us)

2 +mgd , (2.64)
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where km is the mechanical stiffness, ε the permittivity, A is the area of the parallel-plate ca-

pacitor, d = d0 − x0 is the electrode gap at rest, x is the vibration displament of the resonator,

Up+us is the voltage across the variable capacity and due to gravity, the potential energymgd of
the oscillator. The current through the lead of the cantilever is driven by an ac voltage uac which
combines with the polarization voltage Up. The ac voltage developed at the sense electrode us is
generated by the vibration of the cantilever and is dependent on the drop of the drive voltage uac.
In the presence of charge on the resonator or on the sense electrode, a new equilibrium position

d0 − x0 in Fig. 2.15 will be reached. In the case of perturbation analysis x � d and us � Up,

the potential energy Epot(x) along with the electrostatic force Fe = 1
2

εA
(d0−x0−x)2

U2
p acting on

the resonator can be expanded in a power series

Fe(x) =
1

2

εA

(d0 − x0)2
U2
p +

1

2

εA

(d0 − x0)3
U2
p · x (2.65)

+
3

2

εA

(d0 − x0)4
U2
p · x2 + 2

εA

(d0 − x0)5
U2
p · x3 +O(x4) ,

where the coefficient of the linear term is equivalent to the electrostatic stiffness ke. Clearly

arranged the homogeneous differential equation has the form

mẍ+Dẋ+

(
km − εA

(d0 − x0)3
U2
p

)
x+ βx2 + αx3 +O(x4)︸ ︷︷ ︸

h(x(t))

= 0 , (2.66)

where h(x(t)) in Eq. (2.66) represents a nonlinear function, vanishing if x → 0. Lifshitz and
Cross showed in 2010 that the terms βx2 + O(x4) can be replaced by ηx2ẋ, the nonlinear

damping term [48]. In small signal analysis, the linear term of Eq. (2.66) becomes

k = km − εA

(d0 − x0)3
U2
p︸ ︷︷ ︸

ke

, (2.67)

where the stiffness of the system becomes most affected on the polarization voltage Up, which

has to be considered in the calculation of the sensitivity (see Eq. (2.60)). In general, this cubic

equation leads to the well-known snap-in or pull-in effect published by Seeger et al. in 1995

[49]. Because of the nonlinear relationship between the polarization voltage Up and the gap

between the sens electrodes, a characteristic equilibrium distance always leads to mechanic in-

stabilities. This statement is consistent with the Earnshaw’s theorem. The theorem reveals that

any configuration of point charges cannot be retained in a stable stationary equilibrium only by

the electrostatic interaction of the charges, which is a result of Gauss’s law ("The divergence of

any possible electric force field is zero in free space"). In the equilibrium of forces, with a new

equilibrium position d0 − x0, the mechanical restoring force
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kmx0 =
1

2

εA

(d0 − x0)2
U2
p

where

x0 · (d0 − x0)
2 =

εA

2km
U2
p︸ ︷︷ ︸

y(x0)

, (2.68)
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Figure 2.16: Cubic equation to calculate the limit of the snap-in.

is equal to the electrostatic force, which leads to a cubic equation to determine the limit of the

possible stable equilibrium displacement (see Fig. 2.16). The solution of Eq. (2.68) becomes

x0 = d0/3. It is worth mentioning that this displacement is independent of the voltage and the

stiffness and therefore snap-in isn’t preventible in the stationary case until the limit is achieved.

Due to Eq. (2.67) it is obvious that unlike linear systems, nonlinear systems may vibrate in a

frequency other than their natural frequencies when they are perturbed from their equilibrium

position.

Because of Eq. (2.19) it is obvious that the third significant sensitivity, ∂ΔC/∂x̃will become

nonlinear in the case of large deflections, e.g. due to huge external magnetic fields. In small

signal analysis it is reasonable to use the much simpler suspended mass-spring resonator. Then

the sensitivity ofΔC regarding the deflection x of the parallel-plate capacitor, becomes
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Figure 2.17: Sensitivity as a function of the external magnetic field, with typical parameters of

the cantilever (l=2mm, b=1.5mm, h=20μm, d=5μm) and two different polarization voltages

Up in the limit of small signal analysis.

SΔC =
∂ΔC

∂x
= ε0

Aeff

(d− x)2
= ε0

Aeff

(d0 − x0 − x)2

with

ΔC = C(x)− C(x = 0) = ε0A

(
1

d− x
− 1

d

)
, (2.69)

considering the influence of the polarization voltage Up on the new equilibrium distance d−x0.
Combining Eq. (2.58), 2.60 and 2.69 the total sensitivity due to Eq. (2.56), becomes for an

electrode gap with 5μm and a quality factor of 1 · 104 about 1 pF/T (Fig. 2.17). By comparison

of Fig. 2.17 and 2.18 the total sensitivity decreases, with an increasing electrode gap.

In the case of a decreasing stiffness, e.g. with a smaller width of the beam, the electrode

area will decrease too, and therefore the sensitivity will not benefit. But if the height of the

cantilever gets smaller, the stiffness will decrease and the sensitivity will increase, which is

shown in Fig. 2.19.
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Figure 2.18: Sensitivity as a function of the external magnetic field, with typical parameters

of the cantilever (l=2mm, b=1.5mm, h=20μm), two different polarization voltages Up and a

electrode gap of 20μm.
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Figure 2.19: Sensitivity as a function of the external magnetic field, with typical parameters of

the cantilever (l=2mm, b=1.5mm, h=10μm), two different polarization voltages Up, a electrode

gap of 20μm, but half the height of Fig. 2.18.
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General Dynamics, Stability, Nonlinearities and Chaos

Microcantilevers, especially in MEMS-applications possess several distinct eigenmodes and the

tip-sample interaction forces are under certain circumstances highly nonlinear. Therefore, can-

tilevers can vibrate in interesting, often unanticipated ways. Some of these states are detrimental

for the mechanical stability, while others may exploite the enhancement of M/NEMS perfor-

mance. A deeper insight of these phenomena can offer further improvements MEMS applica-

tions. Resonance of micromechanical components can result in vibration amplitudes that are not

negligible compared to characteristic lengths of the device. For large amplitudes the governing

equation of motion of the resonator becomes a non-linear character, which results in nonlin-

ear oscillations. A small signal analysis of the sensor provides only a limited insight into the

performance of the sensor. This chapter deals with the large signal behavior of the resonator.

Nonlinear dynamic behavior of the resonator can influence the quality of the measurement signal

substantially. The reasons of nonlinear behavior can be manifold, but the most important causes

are [50]:

Material nonlinearities are masked in the stress-strain relationships of the applied mate-

rials. This relationships include non-linear elasticity, plasticity and viscoelastic behavior (see

Chapter 2.3) plus nonlinearities of the B −H relation regarding electromagnetic actuation.

Geometric nonlinearities are dependencies of the deflection due changes in the stiffness of
the specimen, without violation against Hooke’s law. Some examples are the stress-stiffening

effect as well as a mechanical bumper and a bearing clearance. In an analogy, stationary, but not

isotropic electrostatic and magnetic forces can lead to similar effects.

Kinematic nonlinearities, where the motions of the moving components of the system have

a nonlinear relationship, e.g. connections between a piston and crank.

Inertia nonlinearities, where the kinetic energy of the system is the source, e.g. centripetal

and Coriolis acceleration terms. The nonlinear terms usually comprise velocities and/or accel-

erations in the equations of motion.

Nonlinear fluid damping, which is mainly determined by squeezing of the surrounding

fluid around the moving body. The effect is not only determined by the place, but also through

the velocity of the solid.

Nonlinear systems neither satisfy the principle of superposition nor of proportionality. If the

trigger function is a composition of several subfunctions, like different spectral components, the

system response can not be superimposed by calculating all individual responses. Neither leads

a scaling of the trigger amplitude an equivalent scale of the response amplitude. According to

the consequences of nonlinear terms in the equation of motion one has to distinguish between

weakly and strongly nonlinear effects on the oscillating system [51]. For weakly nonlinear

systems, no qualitative changes occur regarding the system response compared to the linear

system. The differences are simply of quantitative nature, e.g. the dependence of the amplitude

of the resonance frequency. Strong nonlinear effects usually include following phenomena:

• Hysteresis behavior and jumps in the amplitude of the system response

• Different eigenfrequencies with an integer ratio and resonances far away from the ex-

citation frequency (sub-harmonic resonance, super-harmonic resonance, and super-sub-

harmonic resonance)
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• Quasi-periodic, non-periodic and stochastic vibrations, despite periodic excitation

• Stationary self-oscillations and linear parametrically oscillations with finite amplitudes

For frequency-selective and frequency-analog micromechanical sensors these effects will

deteriorate the performance of the sensor. The following sections will deal with the question

whether the limits of the weakly nonlinear case are exceeded, and if the achievable sensor char-

acteristics in the weakly nonlinear case can be quantified.

Outgoing from an electromagnetic actuation with a capacitive sensing, Eq. (2.66)

mẍ+Dẋ+

(
km − εA

(d0 − x0)3
(Up + us)

2

)
x+ βx2 + αx3 +O(x4)︸ ︷︷ ︸

h(x(t))

= 0

mẍ+
(
D + ηx2

)
ẋ+

(
km − εA

(d0 − x0)3
(Up + us)

2

)
x+ αx3 = 0 , (2.70)

permits a quantification of weak and strong nonlinear effects, where the reason of nonlinearities

is the electrostatic force. One can easily determine different nonlinear regimes, even though

Eq. (2.66) is a result of small signal analysis (x� d).
If the nonlinear function h(x(t)) in Eq. (2.66) is negligible, Eq. (2.70) becomes

mẍ+Dẋ+

⎛
⎜⎝km − εA

(d0 − x0)3
(Up + us)

2︸ ︷︷ ︸
U2
p+2Upus+u2

s

⎞
⎟⎠x = 0 , (2.71)

where the coefficient of the linear term contains a time-dependent expression us [52]. In contrast
to the case of external excitations, in which a small excitation cannot produce a large response

unless the frequency of the excitation is close to one of the natural frequencies of the system, this

kind of (parametric) excitation can produce a large response, even if the frequency of excitation

is far away from the primary resonance. In the case of a harmonic parametric excitation, the

stiffness of the system becomes time-dependent with a characteristic 2ω dependence, through

the expanded term u2s . Hence, a small parametric excitation can produce a large response if the

frequency of the excitation is close to twice of one of the natural frequencies of the system [50].

Other possibilites for parametric excitation of a forced oscillating system are e.g. modulating

the moment of inertia or the length of a pendulum or a periodic shift of the center of mass, like

a child on a swing in Fig. 2.20 or a pendulum with a moving support.

Beside the simple but instructive approach to parametric excitation with the children’s swing,

many M/NEMS devices tend to parametric resonance, as described in literature [53–57]. In

the past century nonlinear behaviour in mechanical and electrical devices has been extensively

studied. Since the fundamental publication of Turner et al. in 1998, several applications of

M/NEMS devices like very-high frequency resonators, devices with respect to motion and mass

detection or up-converter amplifiers have been published, where nonlinear behavior plays an

important role [53, 58–64].
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Figure 2.20: The children’s swing as the simplest example of parametric resonance.

Additionally to the experimental investigations various profound theoretical publications

regarding nonlinear oscillators have to be mentioned, like the publications of Nayfeh &Mook or

the contributions of Lifshitz & Cross and DeMartini et al., and not least the very comprehensive

overview over the past decade by Rhoads et al. [48, 50, 65, 66].

Mathieu Equation

M. Faraday described in 1831 parametric resonance behavior, where he noticed that surface

waves in a fluid-filled cylinder exhibits a frequency under vertical excitation that is twice the

period of the excitation itself [67]. But it was E. Mathieu in 1868, where he described the

dynamic behavior of elliptical vibrations through membranes using differential equations [68].

In the case of an undamped system, without a polarization voltage (Up = 0), Eq. (2.71) becomes

mẍ+

(
km − εA

(d0 − x0)3
u2s

)
x = 0 . (2.72)

With a harmonic component us = ûs
√
2cosωt, Eq. (2.72) contains a characteristic 2ω depen-

dence. With the help of Eq. (2.67), where in contrast the electrical stiffness is determined by the

amplitude û2s and the normalization of ωt = τ and x/d = z, Eq. (2.72) becomes

z̈ +

⎡
⎢⎢⎢⎣Ω

2
m +Ω2

e

ω2︸ ︷︷ ︸
a

−
(
Ωe

ω

)2

︸ ︷︷ ︸
2q

cos(2τ)

⎤
⎥⎥⎥⎦ · z = 0 , (2.73)
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where Ω2
m = km/m and Ω2

e = ke/m. The standard presentation of a parametric forced system

is

z̈ + [a− 2q cos(2τ)] · z = 0 , (2.74)

the Mathieu equation, where a and q are the parameters of the differential equation and τ rep-

resents the normalized time. It is a linear, second order, homogeneous ordinary differential

equation with real periodic coefficients. The stability behavior of the Mathieu equation was an-

alyzed in detail by van der Pol and Strutt [69]. Only the homogeneous part of the differential

equation is responsible for the stability of the solutions of the Mathieu equation, even under

complex physical conditions. Stable solutions can be presented by periodic functions with the

period of π, which are explicit dependend on the parameters a and q. It is a characteristic of

the Mathieu equation with periodic coefficients that stable or unstable frequency bands alternate

with each other (see Fig. 2.21).
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Figure 2.21: Stability chart of the Mathieu Eq. (2.74). The stable (red) and unstable (white) re-

gions alternate with each other. On the transition (in stability) curves, there are periodic solutions

of the Mathieu equation.

Choosing the values of the parameters a and q arbitrarily, there are three possibilities of

evolution:

• Both the linearly independent solutions are periodic with frequencies incommensurate

with each other. Then the general solution is quasiperiodic and the a− q point belongs to
the stable region in the a− q parameter plane.
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• One linearly independent solutions grow and therefore the other decays exponentially in

time. The solution in general is unstable and the a−q point belongs to the unstable region.

• One solution is periodic (with period either 2π or 4π) and the other is linearly growing in

time. The corresponding a− q point lies on the stability boundary.

Parametric resonance occurs, due to Eq. (2.74) when the parameter changes twice during

one period, once during one period, twice during three periods, and so on, but the maximum

energy transfer to the vibrating system occurs when the parameter is changed twice during one

period of the natural frequency [70]. Another difference between parametric excitation and

forced vibration is the dependence of the growth of energy regarding the energy already stored

in the system. The increment of energy during one period in a forced system is proportional to

the amplitude of vibrations, which corresponds to the square root of the energy. Meanwhile the

increment of energy at parametric resonance is proportional to the energy stored in the system.

In the presence of a polarization voltage Up the situation becomes even worse. As long as

us � Up and us is harmonically, Eq. (2.70) is a kind of Hill equation1, with an additionally

time-dependent term. But with increasing excitation voltages, the amplitude of the resonator

will further increase, where the cubic term αx3 of Eq. (2.70) will play an important role. This

term is the so-called Duffing term, with the characteristic Duffing-parameter α.

Duffing Equation

Even neglecting the nonlinear characteristics of the modulated spring constants (k = km −
km) on the dynamic behavior of the resonator, leads to nonlinearities due to the cubic term of

Eq. (2.70). With increasing exciting voltages and without damping, Eq. (2.70) becomes

mẍ+

(
km − εA

(d0 − x0)3
(Up + us)

2

)
︸ ︷︷ ︸

k

x+ αx3 = 0

mẍ+ kx+ αx3 = 0 , (2.75)

the so-called Duffing equation, where k and α can suppose both positive and negative values.

Generally, in a nondimensional representation, Eq. (2.75) becomes

z̈ +
k

mω2
z +

d2α

mω2
z3 = 0 , (2.76)

where z = x/d and τ = ωt, the nondimensional time. If the natural frequency of the oscillating

system, should represent the frequency unit, k/(mω2) ≡ 1 and d2α/(mω2) ≡ ε. The parameter

ε respresents the degree of non-linearity of the differential equation

z̈ + z + εz3 = 0 . (2.77)

1The Mathieu equation is a special case of the Hill’s equation.
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In the limit of ε → 0, the normalized Duffing equation merge into the differential equation

of an undamped suspended mass-spring resonator. In the case of small non-linearities ε, the
solution can be obtained by a power series method. For large time scales (ετ > O(1)) this
approach lose his validity, as explained by Nayfeh and Mook in 1979 because of compounds

of algebraic and trigonometric terms [50]. To avoid mixed terms, Nayfeh and Mook introduce

different techniques, like the Lindstedt-Poincare technique, the method of multiple scales, the

variation of the parameters and the method of averaging. Starting from Eq. (2.67), the frequency

of vibration always decreases in the presence of exciting voltages (softening effect). The effect

of cubic nonlinearity on the other hand depends on its sign; for ε > 0 the frequency of vibration
increases (hardening effect) and for ε < 0 it decreases (softening effect), which leads to one

characteristic of the Duffing equation, the hysteresis effect.
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Figure 2.22: Frequency-response curve for the (slightly damped, but forced) Duffing equation

for a linear spring (black, ε = 0), a hardening spring (blue, ε > 0) and a softening spring (red,

ε < 0).

The ambiguity of the amplitude, due to a unique excitation frequency in the frequency–response

curve leads to the phenomena of hysteresis and jumps, illustrated in Fig. 2.23.

In a stability analysis of the solutions, it turns out that the solution on the lower branch (dashed

line in Fig. 2.24) of the peak is always unstable. Hence, the system can settle on two different

stable amplitudes at one unique excitation frequency. This depends on factors, like the initial

conditions of the system, which can be demonstrated in a frequency-sweep test. Exemplarily

this jump and hysteresis phenomena will be shown in Fig. 2.23(b). Sweeping ω from small

values to the maximum amplitude amax leads to a jump in the response to a lower value (AB),

where a further sweep of ω leads to a further decrease of the amplitude. Sweeping ω back from

large values leads to a jump to a higher amplitude (CD), but smaller than amax.

Similar phenomena occur in the case of Fig. 2.23(a). These jumps and hysteresis phenom-
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(a) Negative cubic nonlinearity.
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(b) Positive cubic nonlinearity.

Figure 2.23: Frequency–response curves of the harmonic forced Duffing equation near primary

resonance.

Figure 2.24: Nonlinear response and hysteresis effect for the Duffing equation, with small non-

linearity ε. The vertical dotted lines depict the transitions as the frequency is swept with a

constant exciting force.
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ena lead to serious consequences on the stability and reliability of oscillators and resonators.

Furthermore occur these jumps at bifurcation points, where the dynamic behavior can result for

growing amplitudes in chaotic oscillations of the resonator. That chaotic motions can occur in

a single degree of freedom system (1-DOF) possessing one unstable equilibrium and two stable

equilibra. This is result of a twin-well energy potential, due to the interaction of the quadratic

potential of the spring with the quadratic potential of the cubic nonlinearity in force [71].

Figure 2.25: Frequency-response curve as a function of the nondimensional exciting frequency

and the maximum nondimensional acceleration, where at large vibration amplitudes the response

shows hysteresis.

With the method of multiple scales (a perturbation technique), and assuming weak nonlin-

earity ε and forcing, the angular resonance frequency ωr can be approximated as

ωr = ω0 +
3ε

8ω0
a2max , (2.78)

where amax is the maximum amplitude response at ωr. This amplitude is obviously dependent on

the forcing of the system [50]. Equation (2.78) indicates that the maximum amplitude response

does not occur near the natural frequency ω0, but rather near the angular resonance frequency

ωr, which is called the nonlinear angular resonance frequency. This proposition is in contrast

to the properties of the Mathieu-equation, where stability problems of a linear system is in the

center of interest. The eigenfrequencies of the Duffing-equation depend on the amplitude of

the vibration. This frequency–amplitude interaction is a characteristic of nonlinear systems like

Eq. (2.76).

Generally, the (normalized) governing equation describing a 1-DOF system with capacitive driv-

ing force or sensing becomes
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z̈ + [a− 2q cos(τ)] · z + εz3 = 0 = 0 , (2.79)

where in the case of external excitation, the nonlinearity of the system surpass the response in

the instability tongue and makes it finite instead of infinite [72]. Nevertheless, the instability

tongue itself is not affected by the presence of the cubic nonlinearity.

Other characteristics of nonlinearities are the generation of higher harmonics of the funda-

mental oscillation (harmonic distortion). In the case of music instruments these higher harmon-

ics are the "overtones" of the specific instrument. Furthermore, nonlinearities can cause forced

oscillations at submultiples of the driving frequency and finally, nonlinearities can excite chaotic

oscillations.

Another nonlinearities than the Duffing term, can arise from nonlinear damping behavior

ηx2ẋ, where η represents the coefficient of nonlinear damping, a kind of damping that increases

with the amplitude of oscillation [48]. In an actual paper, the nature of nonlinear damping was

analyzed in nanotubes and graphene sheets [73]. To differentiate non-linear damping from other

reasons, it was assumed that the excitation voltage is always smaller than the unit of voltages

kBT/e, where kB is the Boltzmann constant, T is the temperature und e is the electron charge,

in order to prevent electronic nonlinear effects or local heating [38].

In summary one can say that the maximum linear vibration amplitude is limited by nonlin-

earity and the nonlinear effects. These effects represent the upper limit to the resonator dynamic

range, where the lower limit is set by stability or noise.
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2.3 Damping Mechanisms

Damping is often a superposition of various mechanisms, where the isolation of the specific

mechansim is important for classification and determination of the damping amount under cer-

tain conditions. Such damping mechanisms can have mechanical, electrical, optical or even

gravitational reasons. The two last mentioned reasons are in this work negligible. For example

electrical mechanisms can be classified into electromotive and electrostatic damping mecha-

nisms, just as mechanical mechanisms into intrinsic and extrinsic damping mechanisms [74]. A

detailed description of all relevant mechanisms is represented in this chapter.

Mechanical Damping

The basic principal of mechanical damping is an irreversible energy conversion process from

kinetic into heat energy. If somebody rub one’s hands when shivering under cold he generates

heat to warm up. This is a simple example of the thermodynamical result of friction. Generally

damping in structural systems is more complex, occurring in different characteristics. Com-

monly in literature it is categorized into intrinsic and extrinsic damping mechanisms. Usually

the damping effects are distributed over the whole volume or surface of the structure, but in case

of point forces or moments the damping mechanisms are strongly localized.

Intrinsic Damping

The cause of intrinsic damping is the material itself. If materials are subjected to stress σ they

undergo strain ε. Plotting stress against strain for different materials can lead to different graphs.

In the simplest case the material behaves linear elastic, stress and strain are related by Hooke’s

Law

σ(stress)

ε(strain)
= constant , (2.80)

where the constant is known as elastic modulus (see Eq. (2.80)). For normal stresses the constant

is known as Young’s modulus E. The validity of the Hooke’s Law has two constraints: Firstly,

predefined stress must have a strain equilibrium condition which is independent of previous

loads. No lasting deformation may appear. Secondly the Young’s modulus has to be time-

independent. That means that the balanced state has to adjust instantaneous, when a predefined

stress to the material specimen is applied. Because of the finite sound of velocity, there occurs

always a temporal delay to the state of equilibrium, where a phase shift between stress and strain

arises. As a result, a hysteresis loop in the stress-strain plot like Fig. 2.26 appears.

The enclosed area of the hysteresis loop is equivalent to the dissipated energy per unit volume

of the material and per stress cycle. Therefore, the hysteresis loop is consequently equivalent to

the cyclic motions like vibrations [75]. Possible reasons of intrinsic damping mechansims can

be microstructural defects, crystal grain boundaries, dislocations in metals or doped crystals,

chain motion in polymers and eddy currents in ferromagnetic media [36, 76–79]. The simplest

possibility to model hysteretic damping is to use a Kelvin-Voigt model
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Figure 2.26: The stress-strain plot due to intrinsic damping mechansim.

σx = E · ε︸︷︷︸
elastic term

+ E∗ · ∂ε
∂t︸ ︷︷ ︸

damping term

, (2.81)

where the term E · ε represents the elastic behavior of the material, which does not contribute

to the damping. On the other hand E∗ · ε̇ is responsible for damping effects, where E∗ is the

complex Young’s modulus. This complex modulus can be expressed in different ways up to the

used model. One common approach uses the following expression

E∗ = E · (1 + iη) , (2.82)

where η is the loss factor, the reciprocal quality factor Q of a vibrating system. The quality

factor Q is a dimensionless parameter describing how underdamped an oscillator or resonator

is. The application of the hysteretic model is reasonable, when a material is subjected to cycling

loads or if the system is not linear. If the response to a sinusoidal excitation is also sinusoidal

the loss factor is well defined. Otherwise η can not be determined that easily [39]. Then it is

necessary to restrict to the case where the stress cycles as well as the deformation responses are

harmonic. In this case, the strain can be expressed sinusoidal. As a result, the stress consists due

to Eq. (2.81) of two components. The elastic term is in phase with the strain, while the hysteretic

damping term will be delayed in time by a phase angle φ, where tanφ = η.
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An Excursion into Thermoelastic Damping: A very similar damping mechanism due to the

stress of a vibrating structure is thermoelastic damping. Thermoelastic damping represents the

energy transfer between the thermal and the mechanical domains of the resonator. The flexural

oscillations are modeled as acoustic modes interacting with the thermally excited phonons of the

vibrating structure. Through the interaction between the field of the mechanical stress and strain

and the temperature field of thermal phonons, energy can be dissipated [80, 81]. Starting point

of the thermal analysis is the linear one-way coupled heat-transfer equation

ρc
∂T

∂t
= λ∇2T︸ ︷︷ ︸

heat equation

− αT0
∂σx
∂t︸ ︷︷ ︸

thermoelastic term

, (2.83)

where ρ is the density and c is the specific heat capacity of the structure, λ is the thermal conduc-

tivity, α denotes the coefficient of thermal expansion and T0 is the nominal average temperature

(300K) [82]. The qualifier "one-way" implies that the stress field affects the temperature field,

but not vice versa because for most crystalline solids the relative temperature change resulting

from the thermoelastic effect is very small [83]. Both fields, the stress field σx(x, t) as well as the
temperature field T (x, t) can be modeled with a harmonic ansatz introduced in the Kelvin-Voigt

model of Eq. (2.81).
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Figure 2.27: FEM simulation of thermo-elastic damping (TED) in an U-shaped cantilever with

a length of 2 mm, a height of 20 μm and a width of one arm of 120 μm.

The FEM-simulation in Fig. 2.27 is a result of thermoelastic damping of a single-crystalline

silicon U-shaped cantilever with a loss factor η of 0.001 or more conveniently written with a

quality factor Q of 1000. Temperature differences in the range of 0.2K pictured in Fig. 2.27
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between the tip of the cantilever and the rigid suspension result in a length variation smaller

than 1 nm (due to the geometric shape of the structure). This change in length is negligible

due to the length of the cantilever in range of 2mm. In the frequency regime of its fundamental

resonances the influence of thermoelastic damping as measured by the total damping mechanism

is negligible. Due to the analysis of Zener in 1937 and Lifshitz in 2000, where he introduced the

quality factor of a thermoelastic damped beam

QTED =

(
Eα2T0

ρcp

)
·
(

6

ξ2
− 6

ξ3
sinh(ξ) + sin(ξ)

cosh(ξ) + cos(ξ)

)−1

with

ξ = b

√
ρcpω0

2λ
, (2.84)

where b is the width and ω0 the eigenfrency of the beam [80]. The physical constants are E the

Young’s modulus, α the coefficient of thermal expansion, T0 the nominal average temperature

(300K), ρ the density of the beam, cp and λ denotes the specific heat capacity and the thermal

conductivity of the structure. Due to Eq. (2.84) the quality factor of a thermoelastic damped

U-shaped silicon cantilever, with a length of 2mm and the width of one arm of 90μm would be

around 8 · 1010. Assuming an effictive mass of 30% of the computed oscillating mass of 24.5 ng

and a theoretical stiffness of 7.65N/m, the damping parameter D would be approximately 3 ·
10−15Ns/m. With the experimental investigations of Sandberg et al. in 2004, thermoelastic

damping is of no significance for eigenfrequencies below 100 kHz [84].

Beside this theoretical results it is worth thinking of the microscopic reason of thermoelastic

damping in single-crystalline silicon. The lack of defects associated with grain boundaries gives

monocrystals unique properties. However, the small but not negligible coefficient of thermal

expansion of single-crystalline silicon require to take deviations from the linear law of force

between the lattice atoms into account. Thermal expansion is an effect of higher terms of the po-

tential between lattice atoms. They are responsible for the fact that for higher excited-states the

equilibrium distance between neighboring atoms increases. Hence, the lattice constant increase

with increasing temperature too. With the knowledge of anharmonicity one can explain the mi-

croscopic origin of thermoelastic damping in single-crystalline silicon as a result of a phonon

scattering processes, like Umklapp (phonon-phonon) scattering at room temperature with suf-

ficient acoustic phonon momentum. With increasing total phonon momentum p = �k the sum

of two interacting phonon wave vectors k1 and k2 may point outside the 1st-Brillouin zone. A

k-vector outside the first Brillouin zone is physically equivalent to vectors inside and can be

transformed into each other by the addition of a reciprocal lattice vector G. This process is

called Umklapp scattering, which cause a change in the total phonon momentum. It is respon-

sible for the limited thermal conductivity at high temperatures T for low defect crystals, with a

characteristic 1/T dependence.

Additionally, it is worth mentioning that thermoelastic losses can be reduced by the MEMS-

design. It was demonstrated by Candler et al. in 2006 using geometric techniques, like carefully

placed open areas on the structure minimizing thermoelastic losses [85]. This is obvious when

looking at Zener’s description of thermoelastic damping in 1937. His calculation was based
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on fundamental thermodynamic expressions for stored mechanical energy and thermal energy.

He used coupled thermal-mechanical relations for stress and strain, entropy and temperature.

Furthermore, he proposed that the strain and temperature solutions from uncoupled dynamical

solutions are sufficient. Zener calculated the eigensolutions of the mechanical equation and

separately from the uncoupled thermal equation. By applying these solutions to the coupled

thermodynamic relationsships he calculated the quality factor QZ of a thermoelastic damped

beam

Q−1
Z =

(
Eα2T0

ρcp

)
· ωrτ

1 + (ωrτ)
2 (2.85)

for the fundamental flexural vibration mode [78]. With the mechanical resonance frequency ωr

and the characteristic time constant τ for a given thermal mode, he assumed that only thermal

gradients across the beam width were significant. Hence, the characteristic time constant is

τ =
1

π2
· ρp
λ
· b2 , (2.86)

where λ and b are the thermal conductivity and the width of the beam, respectively.

Support and Surface Losses

Further dependencies of the quality factor on the geometry of the vibrating structure was subject

of systematic studies concerning support and surface losses [86–89]. Support loss, sometimes

called as anchor loss is a result of the elastic vibration of the chip carrier, where the vibration

energy of the beam resonator entering the support of the structure is lost. Judge et al. published

in 2007 the energy dissipation due to the support loss of a cantilever based on a two-dimensional

theory of elasticity, where the chip carrier is modeled as an semi-infinite elastic medium [90, 91].

During the flexural vibration of the beam, vibrating shear forces and moments will act on its

clamped end, where they excite elastic waves. This waves will propagate into the support,

absorbing some vibration energy of the cantilever. The support quality factor of a cantilever for

the first flexural vibration mode is

Qsupport = 3.226 · l
b

(
l

h

)4

, (2.87)

where l is the length, b is the width and h denotes the height of the cantilever, assuming a

Poisson’s ratio ν of 0.3. One important assumption of this model is that the vibration energy

of the cantilever entering its support propagates away to large distances. As a result no energy

is returned to the beam and the elastic wave in the support will not have an influence on the

resonant modes of the cantilever.

Another damping effect was introduced by Yang et al. in 2002, where the surface to volume

ratio of the cantilever plays an important role [87]. The surface to volume increases as the height
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h compared to the length l scales down. As a result, the surface loss increase, most affected by

the surface stress, which can be modified by absorbates or defects on the surface. The surface

dissipation is modeled with a hysteretic model introduced in Chapter 2.3, where the surface

quality factor of a cantilever becomes

Qsurface =
bh

2(b+ 3h)
· E

δEds
, (2.88)

where E is the Youngs’s modulus, b is the width and h denotes the height of the cantilever. The

parameter δ and Eds represents the thickness and the dissipative Young’s modulus of the surface

layer. In the case of a single-crystalline silicon cantilever, without an additionally surface layer,

Hao et al. estimated the term δEds = 0.81 with a best-fit to minimize the error between the

model and the experimental data [86].

A widely used quantity to determine the quality of the intrinsic damping mechnism is to

build the resonance-frequency-quality-factor product. Additionally to Eq. (2.27) and with the

knowledge of an acoustic wave propagating the solid, Landau and Lifshitz defined the sound

aborption coefficient α(ω) [44],

α(ω) =
1

2

Mean energy dissipated

Energy flux in the wave
, (2.89)

which is very similar to Eq. (2.27). The sound absorption coefficient is a measurable quantity

and describes the variation of the wave amplitude with continuously propagation distance. Due

to the strong relationship, the definition of Q and α(ω) are related through

Q = 2π
ωr

2α(ωr)c
, (2.90)

where c represents the the wave velocity and ωr is the resonance frequency of the structure [92].

Building the product fr ·Q leads to

fr ·Q =
ω2
r

2α(ωr)c
, (2.91)

which is a fundamental measure for intrinsic dissipation mechanisms like thermoelastic, phonon-

electron, and phonon-phonon interactions. The latter mechansim is the dominant intrinsic loss

mechanism in semiconducting specimen at room temperature.
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Extrinsic Damping

External damping results from boundary effects. An important form is structural damping. The

origin of structural damping is rubbing friction, which result in stick-and-slip contact or im-

pact. This can take place between structural components, which is often modeled by Coulomb

damping. This damping mechanism describes the energy dissipation of rubbing dry-friction.

Another important form of external damping is fluid damping. When a structure, surrounded

by air or water, moves in the fluid, a drag force appears. The energy dissipation due to this force

may happen through internal fluid mechanisms such as viscosity, convection or turbulence.

Conditions in Modeling Structural Damping

Structural damping has its origin usually in nonlinear damping mechanisms, like fluid damping.

If the interacting flow is turbulent the drag is nonlinear. On the other hand, structural damping

in semiconductors is very small, where the damping parameter D is much smaller than unity.

Therefore, the ambitious investigations to model structural damping result in simple damping

models, such as linear viscous damping or coulomb damping where the friction only depends

on the velocity and its sign. Nevertheless, all kinds of damping mechanisms attenuate resonance

effects. In the simplest case of a mass-spring system the equation of motion is linear and, there-

fore, mode superposition applies. These model-simplifications results in Rayleigh damping, a

special case of viscous damping.

Viscous Damping for Low-loss Systems

As musicians strike a single note with a tuning fork to reference to standard pitch, engineers

can excite micro mechanical components due to their natural oscillations. The oscillations or

modes are characteristic to the vibrating system itself and allow in addition to the static analysis

a description of the dynamic system. Besides the experimental characterization of the dynamic

behavior of oscillating bodies with e.g., Laser-Doppler vibrometry the eigenmodes of MEMS

components can be analyzed and displayed graphically with FEM. Crucial modes can be dis-

covered and eliminated by specific changes of the design of the components, e.g. by the choice

of the materials or by changing the stiffnesses. Additionally, modal analysis can afford a more

complex analysis of the structure as a starting point for a transient or harmonic analysis. Modern

finite element programs like COMSOL Multiphysics determines automatically during the anal-

ysis of the Jacobi matrix or the specified contraints whether it uses linear or nonlinear solvers

which e.g are necessary for problems of the fluid mechanics, described by the incompressible

Navier Stokes equation. Furthermore, the modal analysis of COMSOLMultiphysics permits the

integration of possible damping mechanisms such as Rayleigh damping.

Rayleigh Damping and Results of FEM-Simulations: This model describes the damping

matrix as a linear combination of the mass m and stiffness k matrices and is therefore often

called proportional damping. In the simplest case m and k represents scalars. A general as-

sumption of the Rayleigh damping model is that the damping parameter
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D = αm+ βk (2.92)

depends linear on the mass and the stiffness with α and β as the predefined constants. Rayleigh

damping is one of the simplest velocity dependent damping models. Velocity dependent damp-

ing models are so-called general viscous damping models, a special form of modal damping,

where a dimensionless damping factor

ζi =
α

2ωi
+

βωi

2
(2.93)

is defined for each mode featuring an angular eigenfrequency ωi. For weakly damped systems

hysteretic damping introduced in this chapter evolves convergently into viscous damping [39].

Rayleigh damping takes into account that modal (or generalized) mass participation decreases

as D will increase for higher modes. Although Rayleigh damping for 1-DOF system deals with

constants α and β, where the prediction for higher modes will surely not be realistic, Fig. 2.28

demonstrates some interesting results. For lower frequencies the mass term prevails and the

curve is nonlinear. While for higher frequencies the relationship becomes linear. In the case of

high quality factors this relationsship gets constant because as β decrease the quality factor Q
increases.
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Figure 2.28: Dependence of the damping parameter ζ on the resonance frequency and the damp-

ing constant β of the system (α=1).

In summary, modal damping can be neglected for vibrating structures with resonant frequen-

cies around 10 kHz and quality factors in the range of a few thousands. This independence of

the resonance frequency from weak modal damping is demonstrated in a parametrized FEM-

simulation for different geometries in Fig. 2.30, where one can recognize a characteristic cut off

for quality factors smaller than 500.
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In a more detailed simulation Fig. 2.31 one gets a geometry dependence of modal damping

for decreasing quality factors, where U-shaped cantilevers promise a proper functionality down

to Q-factors of 60. Therefore, only U-shaped cantilevers will offer resonant enhancement of

sensitivity close to atmospheric pressure, as the the quality factor decrease dramatically with

increasing ambient pressure. In Fig. 2.30 the resonance frequency of the vibrating structure

depending on the quality factor Q is depicted. For a lightly damped mass-spring system, the

quality factor Q represents the effect of viscous damping or drag. Combining Eq. (2.11) and

2.15 leads to

Q =

√
mk

D
, (2.94)

where the drag or damping force is proportional to the velocity of the body mass. Due to

Eq. (2.94) one has to know the mass and the stiffness of the cantilever. One possibility to

calculate the stiffness of a trapezoidal shaped cantilever is with the aid of the strain energy

1

2
Fxs =

1

2

∫ l

0

M2(x)

E Jz(x)
dx (2.95)

with

Jz(x) =
c h3

12
·
[
1 +
(a
c
− 1
) x

l

]
,
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Figure 2.29: A cantilever with constant height, but a linear shifting width b.

where F is the applied force and xs is the static displacement due to the load at the tip of

the cantilever, M denotes the bending moment and EJz(x) the bending stiffness schematically

shown in Fig. 2.29. After a short supplementary calculation the displacement uA becomes
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xs =
F l3

E J0
· c3

(a− c)3
·
[
1

2

(a
c

)2 − 2
a

c
+

3

2
+ ln

a

c

]
(2.96)

where

J0 =
c h3

12
.

With the help of l’Hospital’s rule it is possible to show that Eq. (2.96) merge into

lim
a→c

xs =
F l3

3EJ0
, (2.97)

the well known formula of the deflection of a simple loaded cantilever. So it is possible to get

the stiffness k with Hooke’s Law F = k · xs. Together with Eq. (2.94) a rough estimation of the

quality factor Q is feasible.

Figure 2.30: The resonance frequency of the flexural mode as a function of the quality factor for

three different geometries due to their different base length but of the same height h = 20μm.
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(b)

Figure 2.31: Extended quality factor over a wide pressure range due to the U-shaped cantilever.

Fig. (a) depict qualitiy factors of different shaped cantilevers, where Fig. (b) shows typical qual-

ity factor values of an U-shaped cantilever around standard pressure.

Eddy Current Losses

When a electrical conductive material is subjected to a time-varying magnetic field, eddy cur-

rents are generated in the conductor. This time-varying magnetic field can be induced either by

the movement of the conductor or by changing the strength of the source of the magnetic field.

Once the eddy currents are generated, they circulate in such a way that they induce a magnetic

field with opposite polarity as the applied field B (dependent on the shape of the conductor).

This induces a repulsive force. Due to the electrical resistance of the conducting material, the

induced currents will dissipate heat whereas the external force will be partly compensated.

In the case of a dynamic system, the conductive material is continuously moving in the

magnetic field sensing a continuous change in magnetic flux causing an electromotive force.

Furthermore, the induced currents causes a repulsive force that is proportional to the velocity of

the conductive metal. Since the currents are dissipative, power is drawn from the system, where

the magnet and the conductor acts like a viscous damper [93].

In the case of a moving highly doped cantilever with a maximum displacement uA und the

width b the structure encircles a magnitude change in flux Φ̇ = ωBbuA = Uind. The induced

voltage will dissipate into PE = U2
ind/R and

1/R = σ
hl

2b
, (2.98)

where σ is the electric conductivity, h the height, b is the width and l is the length of the can-

tilever. Owing to the high doped cantilever one can assume an ohmic behavior of the structure

and h � b. The assumption that the heat will dissipate through the whole length l of the can-
tilever is the worst-case scenario and scarcely thinkable. However, the power dissipation
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Figure 2.32: Schematic diagram of a cantilever passing through a magnetic field and the gener-

ation of eddy currents.

PE ≈ 1

2
σhblB2︸ ︷︷ ︸
DE

v2 = F · v = DEv · v (2.99)

allows an upper bound estimation of the viscous damping parameter DE due eddy currents.

For typically parameters like σ ≤ 1 · 104Ω−1m−1, h =20μm, b =1.5mm, l =2mm and a

magnetic field B =10μT of air-core coil, the damping parameter DE becomes at its maximum

3 · 10−11Ns/m. Additionally the driving frequencies are in the range of 10 kHz and amplitudes

less than 1μm. Hence, eddy current losses in single-crystalline silicon cantilevers are small, but

measurable [94]. In reality eddy current problems are very challenging from the mathematical

point of view due to the Helmholtz equation. A comprehensive introduction was represented by

Kriezis et al. in 1992 [95].

Fluid Damping

Beside structural damping, fluid damping mechanism are of most importance. The energy dis-

sipation of fluid damping may happen through internal fluid mechanisms such as viscosity,

convection or turbulence. Fluid damping tends towards nonlinearity if the interacting flow is

turbulent, where the drag force is nonlinear in the relative velocity. Generally fluid-structure

interactions can be classified either in internal or external, i.e. fluid-structure problems. Ex-

ternal fluid-structure interactions are, e.g. the flight of airplanes or birds and the swimming of

fish. Internal fluid-structure interactions govern, e.g. the flow through pipes or blood vessel and

sloshing of liquids in containers.

One of the simplest fluid-structure models deals with added masses. When somebody moves

his hands and arms in the air and afterwards in the water he will feel an additionally resistance.

In the case of an oscillating pendulum in the air and in the water, one can give an elementary

theory for the period of the pendulum motion. Stokes assumed in 1850 a pendulum with a solid

sphere with the radius r and the massm suspended by a string of the length l like Fig. 2.33. The
square of the angular eigenfrequencies becomes
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ω2
vacuum ≈ ω2

air =
g

l
(2.100)

ω2
water =

1

1 + α

g

l
, (2.101)

where g is the gravitational acceleration and α = ma/m with the added mass ma [96]. The

equation of motion under the approximation of small-angles (sinΘ � Θ ) is

Θ̈ +
1

1 + α

g

l
Θ = 0 (2.102)

where

lim
ma→0

α = 0 (2.103)

including a fluid drag mechanism with an added mass. In 1850 G.G. Stokes presented the effects

of the added mass,

α =

(
1

2
+

g

4νr

)
· ρfluid
ρsphere

, (2.104)
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Figure 2.33: A simple pendulum os-

cillating in a fluid. The string on

which the solid sphere swings is mass-

less and inextensible.

taking account the buoyancy, hence the densities of

the ρfluid and of the solid ρsphere and the kinematic

viscosity ν of the fluid, too. The effect of an added

mass results in a reduction of the system resonant fre-

quency. Although the added mass model neglects the

air stiffness, it helps to understand the physics of fluid-

structure interactions. In general, further refinements

are necessary, often leading in a challenging complex-

ity of the model.

The fluid–structure interaction of vibrating can-

tilevers immersed in a fluid has been extensively stud-

ied [47, 97, 98]. Essentially there are two ways of mod-

eling a flow field around the structure. Either from the

atomistic point of view, modeling the fluid as a collec-

tion of molecules, or phenomenolgical as a matter of

continuum. The atomistic models make use of proba-

bilistic methods, while the continuum approach deals

with macroscopic quantities like density, pressure, velocity, etc. which are defined for every

spatial and temporal condition of the fluid. Conservation principles lead to nonlinear partial

equations. The continuum approach covers the Navier-Stokes equations, applicable to numerous

flow situations. For rarefied gas flows near equilibrium, the Navier-Stokes equations are easier

to handle both analytically and numerically than the molecularly-based Boltzmann equation. As

a consequence, continuum models are used as long as they are applicable [99].
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To consider wether to use a continuum approach or an atomistic one, there are three di-

mensionless parameters which determine the flow regime: the Mach number M , the Knudsen

number Kn and the Reynolds number Re [100]. For typical MEMS applications two of them,

M ∝ Re� 1, are negligible because of subsonic vibration velocities. This leaves the Knudsen

number as the most important fundamental parameter,

Kn =
λ

b
=

kBT√
2πpσ2b

, (2.105)

where λ is the mean free path, kB is the Boltzmann constant, T is the ambient temperature, in

case of air, the diameter of molecules is σ = 4.19 · 10−10m and b denotes a characteristic

length of the vibrating structure [101]. For gases, the mean free path is the average distance

of a traveling gas molecule between successive collisions with other interaction partners. Due

to Eq. (2.105) the Knudsen number is a comparatively dimension and therefore scalability is

ensured. Rarefied gas flows are encountered as well as flows through small geometries like

MEMS devices or low-pressure applications such as high-altitude flying and high-vacuum appa-

ratus. The Knudsen number in the flow determines the quality of rarefaction effects, hence the

Knudsen numberKn is a quantitative criterion for the continuum approach.

At the lower bound, where Kn → 0 the time- and length-scales of molecular collisions are

infinitesimal small compared to those for the continuum flow. For example, each air molecule

experiences at standard conditions 10 collisions per nanosecond and travels thereby 1μm on the

average [102]. The velocity along the fluid dimensions instantaneously adjusts to the equilibrium

thermodynamic state. This equilibrium is appropriate to the local macroscopic properties of the

molecules moving through the flow field.

As Kn increases, rarefaction effects are more pronounced, where the continuum approach

breaks down. In the continuum regime, the gas molecules interact with the borders of the sur-

rounding structures, where the gas adjust to the ambient temperature. This adaption process is

called full momentum accommodation, due to fundamental relation between temperature and

movement of the molecules. This boundary condition is the challenge of rarefied gas flows. Due

to the small collision frequency of the molecules with the boundaries, a thermic jump between

the wall and the gas temperature can appear, hence a component of the gas-velocity tangential

to the wall occur, where the molecules can slip along the borders (without accomodation).

At the upper bound of Eq. (2.105), where Kn → ∞, the mean free path of the molecules

exceeds the characteristic length. Here the molecules moves ballistic, only interacting with the

boundary and molecular collisions become irrelevant. The different Knudsen number regimes

are determined empirically and listed in Table 2.3.

Both in the continuum and molecular regime the quality factor of a vibrating cantilever is

pressure independent [47]. The transition or quasi-molecular regime coincides with Knudsen

numbers in the range of 0.1 to 10, whereas at the lower bound the molecular flow enters into

the slip flow. The names molecular and quasi-molecular regime indicate that the conventional

equations of continuum theory are inappropriate to describe rarefied gas transport. Continuum

damping requires a sufficient particle density in the flow, which is not guaranteed in the transition

regime. The calculation of transition flows can only be carried out on the basis of the gas kinetic

theory, where the characteristic equation is the Boltzmann-equation.
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Table 2.3: Knudsen number regimes and their corresponding flow.

Characteristic flow regime

Continuum reg. 0 < Kn < 10−2

Slip-flow reg. 10−2 < Kn < 10−1

Transition reg. 10−1 < Kn < 10
Free-molecular flow reg. 10 < Kn < ∞

The dominant damping mechanisms in the transition regime are structure-molecular and in-

termolecular collisions. Analytical solutions of the Boltzmann equation in the quasi-molecular

regime do not exist, but several approximations like the Burnett equation are available. Rar-

efaction effects were incorporated by Veijola et al. into the linearized Reynolds equation using

an effective viscosity model, which permits the predictions of the flow in rarefied gases [103].

The Reynolds equation is a simplification of the Navier-Stokes equation. Hence, it stands for a

continuum approach that is adapted to the transition between the macroscopic and microscopic

description of rarefied gas flows [104]. But the Navier-Stokes equation in turn applies only to a

subset of problems covered by the Boltzmann equation. The latter ensures not only a complete

description of the free molecular flow, but implies also continuum flows as an approximation.

A numerical solution of the latter based on the DSMC (direct simulation Monte Carlo) method

was chosen by Alexeenko et al., and a promising analytical ansatz was introduced by Suijlen et

al. in 2009 [105, 106].

Gas Kinetic Damping in the Transition Regime

One possibility to get a better insight into the transition regime is to use the assumptions of

the free molecular flow and to compare the systematic deviations of the measurement results

with the analytical solutions of the free molecular flow. As an important precondition for the

experimental investigation, surrounding surfaces from the bulk silicon, the chip support and the

measurement chamber are sufficiently distant from the cantilever so that their influence on the

damping of the fundamental mode of the device can be neglected. This situation was treated first

by Drawin in 1962. The related dissipative drag parameter describes

f1 = kmbp , (2.106)

where km is the damping coefficient, b the width of the cantilever and p the ambient pressure

[107]. The idea of his derivation is based on a net difference of the particle density between the

top and the bottom side of the vibrating cantilever. In consequence, a nonzero molecular pressure

difference acts on the cantilever, which counteracts the propulsive forces. Several publications

have laid emphasis on the determination of the damping coefficient due impinging molecules,

but Martin et al. in 2008 has given an upper limit

km =
CD

c
= 3.9008/c , (2.107)



2.3. DAMPING MECHANISMS 69

with full momentum accommodation, where the damping coefficient is expressed in terms of the

most probable speed c (= thermal speed) and a damping parameter CD [47, 108, 109]. Thermal

effects, like thermic jumps are completely neglected, but the result of Eq. (2.107) is valid for a

wide range of MEMS cantilevers, where the height h is much smaller than the width b of the
beam. The minimum quality factor of a cantilever can be retrieved by combining Eq. (2.47),

2.106 and 2.107

Qkinetic =
ρhω

p

c

CD
, (2.108)

with a dominant damping mechanism due to structure-molecular collisions in the quasi-

molecular regime.

Squeeze-film Damping in the Transition Regime

In the range of Knudsen numbers Kn � 1 viscous damping mechanisms like squeeze-film

damping dominate the gas-structure interactions. Viscous squeeze-film damping is well known

and exactly analyzed [99, 110]. Due to flexural vibrations of the cantilever perpendicular to a

fixed wall the gas in between is compressed [110]. The gas can partially escape through air slits

between the moving cantilever and the fixed surface, which induces losses since compression

work is removed from the compartment and therefore not fully recovered.

Suijlen et al. proposed in 2009 a model of a squeezed-film damped beam in the molecular

regime [106]. The basic idea of this derivation is a variation of the particle density between

the vibrating cantilever and the fixed wall. The dynamic behavior of the beam counteracts the

random walk of the gas molecules which are forced to sustain a steady-state particle density in

the gap. For harmonic motion, this results in a complex-valued force, where the imaginary part

of the force is out of phase with the amplitude and in counter-phase with the velocity of the

moving cantilever. This results in an additional damping. But the gas will not move instanta-

neously through the gap, which contributes to the phase shift. The molecular diffusion maintain

to equalize the pressure differences in- and outside the gap, where the diffusion time

τ =
8

π3
· A

(dc̄)
(2.109)

of the gas molecules is calculated from the Brownian motion. In Eq. (2.109)A is the surface area

of the cantilever, d is the averaged distance between the moving cantilever and the fixed wall and

c̄ is the mean speed of the gas molecules (Maxwell–Boltzmann distribution). If 1/τ � ω the

real part of the of the complex-valued force is negligible. Hence the dissipative drag parameter

per unit length (of the cantilever) becomes

f1 =
pb

d

τ

1 + (ωτ)2
. (2.110)

In an earlier publication by Legtenberg et al. in 1995 it was already speculated that in the

quasi-molecular regime not only kinetic, but also squeeze-film damping lowers the quality factor

Q [111]. According to the calculations of [46, 47, 106] the quality factor of a squeezed-film

damped cantilever in the free molecular regime becomes
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Qsqueeze =
ρhdω

p
· 1 + (ωτ)2

τ
. (2.111)

In a superposition of both damping mechanisms, kinetic and squeeze-film damping, a satisfac-

tory characterization of the damping behavior of an oscillating cantilever in the quasi-molecular

regime with Knudsen numbers in the range of 10 down to 0.02 can be achieved.

Superposition of Damping Effects

Due to Eq. (2.27) the total quality factor of a cantilever is

Qtot =
2πEi

Ed
=

2πEi

Ed|int + Ed|ext
, (2.112)

where Ed|int and Ed|ext denotes the dissipative energy parts of Ed due to intrinsic and extrinsic

damping mechansims. Hence the quality factor Q can then be written as an inverse sum of an

intrinsic quality factor Qint and an extrinsic quality factor Qext

Qtot =

(
1

Qint
+

1

Qext

)−1

. (2.113)

Intrinsic damping mechanisms include thermoelastic and structural damping, support and sur-

face losses, while extrinsic damping mechanisms comprise gaskinetic and squeeze-film damp-

ing in rarefied gases, viscous damping mechanisms at the upper bound of the ambient pressure

regimes and eddy current losses. For driving frequencies in the range of 10 kHz, amplitudes

less than 1μm and Knudsen numbers Kn in the range of approximately 0.01 up to 10, viscous

damping, thermoelastic damping and eddy current losses are negligible. Therefore the most

important damping mechansims can be summarized to the total quality factor

Qtot =

(
1

Qsupport
+

1

Qsurface
+

1

Qkinetic
+

1

Qsqueeze

)−1

. (2.114)

Combining Eq. (2.87), 2.88, 2.108 and 2.111 enable the determination of the maximum total

quality factor according to the length l and ambient pressure p, whereas the height h and width

b of the cantilever are fixed, which is shown in Fig. 2.34. With decreasing ambient pressures the

quality factor increases. The maximum computed quality factors for cantilevers with a length

of at most 10mm is approximately 2 · 106, which is in the range of measured quality factors for

single-crystalline silicon structures in literature [112]. In practise, several constraints can lower

these maximums of the total quality factor, like the assembly of several layers of the vibrating

structure or of the chip carrier [113]. Another limitation results from the assumption of a semi-

infinite elastic medium of the chip carrier in contradiction to a finite mass ratio of the vibrating

structure to the support [89].

Nevertheless, the computed maxima of the total quality factors in respect to the length of

the cantilever and to the ambient pressures enable to determine intrinsic and extrinsic dominated

damping regimes, which is schematically shown in Fig. 2.35.
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Figure 2.34: The total quality factor Qtot as a function of the length l for cantilevers with the

same height h=20μm and width b=1.5mm.

The most important geometrical parameter for the quality factor are the length and the height

of the cantilever. In Fig. 2.36 both parameters are varied over a wide range, resulting in a typical

crest, which seperates the inctrinsic from the extrinsic damped dominated region.

To get a feeling what maximum quality factors can be found in literature see Table 2.4.
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Figure 2.35: A quantitative determination of intrinsic and extrinsic dominated damping regimes

at room temperature.

Table 2.4: Resonant frequency and quality factor of high-Q resonators reported in literature.

Resonator Res. freq. Quality fr ·Q Ambient Temp.
design fr in MHz factor Q pressure in Pa in K

Cantilever [114] 0.075 3.51 · 105 2.63 · 1010 Vacuum Room

temperature

Lamé-mode [115] 6.35 1.7 · 106 1.08 · 1013 5 · 10−3 n.s.

square

Wine glass [116] 5.4 2 · 106 1.08 · 1013 1.3 n.s.

disk

Lamé-mode [117] 4.126 5.49 · 106 2.27 · 1013 5 n.s.

square

Torsional [118] 0.0085 6.7 · 107 5.7 · 1011 n.s. 0.4

plate
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Figure 2.36: A 3D-view of the maximum of the total quality factor as a function of the length

and the height of the cantilever at constant ambient pressure of 0.01 Pa and at room temperature.





CHAPTER 3
Basics of

Microelectromechanical Systems

Overview

This chapter exclusively deals with the transducer properties of the MEMS resonant sensor,

shown in Fig. 3.1. Fundamental aspects are derived from the well-known concepts, like the

plate capacitor.

Smechanic

Damping
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Stiffness
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x

y Damping
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S

DG

us
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or
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Figure 3.1: Classification of a microelectromechanical system, where the emphasis is laid on the

electromechanical transducer.

3.1 Electrical Equivalent Model

One Port Configuration

Due to the electrostatic sensing the cantilever is set to a polarization voltage Up to provide the

bias for a capacitive detection. The polarization voltage Up = Uext − Ubias is a combination of

75
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the bias voltage Ubias of the sens electrode and the DC-part Uext along the cantilever. Owing to

the reciprocal quadratic dependence of the electrostatic force to the distance of the charges, the

driving force in Eq. (2.62) becomes nonlinear. The current through the lead of the cantilever is

driven by an ac voltage uac which combines with the polarization voltage Up. The ac voltage

developed at the sense electrode us is generated by the vibration of the cantilever and is depen-

dent on the drop of the drive voltage uac. The origin of the motional feedback is the product of

the DC polarization voltage Up and the ac sense voltage us. Hence the 1D-differential equation
describing the motion of a linear electro-mechanical system (neglecting the Lorentz force FL) is

mẍ+Dẋ+ (km − ke)x =
εA

(d0 − x0 − x)2
Upus (3.1)

where d = d0− x0 is the equilibrium distance. A source follower is assumed to be the amplifier

to sense the cantilever vibrations. At the sense electrode Us = Up + us is valid, and the current

is =
d

dt
(C · Us) = Us

∂C

∂t
+ C

∂us
∂t

(3.2)

is flowing through the sense electrode capacitance C(t) and is injected into the input node of the
source-follower. C(t) varies according to the motion of the cantilever. Apart from the possibility

to control the dynamic behavior of the cantilever through the polarization voltage Up, harmonics

with double frequency will occur, as a result of the quadratic dependence of the electrostatic

force.

S

D

G

Rs

Usupply

Uout

Current
source

Ubias

C(t)

Resonator

Uext

uac∼

Source follower

Voltage supply
of the cantilever

is

Us

Rf

Figure 3.2: Capacitive detection scheme for one sensing electrode used to detect the cantilever’s

vibration. With a capacitive decoupling, the voltage component Uext is kept constant throughout

the cantilever.
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Consequently the coefficient of ∂us/∂t in Eq. (3.2) can be approximated as a static capaci-

tance Ce = εA/(d0 − x0) of the new equilibrium position. In the case of Up � us the sensing
current is of Eq. (3.2) simplifies to

is =
d

dt
(C · Us) = Up

∂C

∂t︸ ︷︷ ︸
im

+Ce
∂us
∂t︸ ︷︷ ︸

ie

(3.3)

where electrical network theory can be applied. This step allows us to split the electro-mechanic

oscillating system into a mechanic domain and a therefrom separated electric domain [119].

Thus, the expression of the motional current simplifies to

im = Up
∂C

∂x

∂x

∂t
≈ Up

εA

d2
∂x

∂t
, (3.4)

which leads to an electromechanical coupling between the motional current and the velocity of

the resonator

∂x

∂t

∣∣∣∣
x�d

=
d2

εA
· im
Up

. (3.5)

This assumption allows to perform Eq. (3.1) into an equivalent electrical differential equation

d2

εAUp
mẍ+

d2

εAUp
Dẋ+

d2

εAUp
(km − ke)x = us

(
d2

εAUp
)2m︸ ︷︷ ︸

L

·∂im
∂t

+ (
d2

εAUp
)2D︸ ︷︷ ︸

R

·im + (
d2

εAUp
)2(km − ke)︸ ︷︷ ︸
1/C

·
∫

imdt = us . (3.6)

The resulting differential equation is the description of a RLC-serial resonant circuit. Using the

definition of an electromechanical coupling factor κ2 ≡ (εAUDC/d
2)2, an equivalent relation-

ship between elecrical and mechanical quantities can be specified to

L =
m

κ2
, R =

D

κ2
=

√
mk

κ2Q
and C =

κ2

km − ke
. (3.7)

One interpretation of the coupling factor κ could be the amount of energy conversion from

the electrostatic domain into mechanical energy. Typical values of these lumped parameters

in MEMS applications are L=40 kH, R=30 kΩ and C=10 fF, where Ce=1 pF. The capacitor Ce

builds a parallel-resonance, where the parasitic feedthrough capacitance can influence the mea-

sured signal. This can lead to a shift of the resonant peak level, where usually the peak becomes
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to small to evaluate the quality factor Q. In order to increase the system response, the elec-

tromechanical coupling factor κ2 can be increased by increasing the polarization voltage Up or

decreasing the equilibrium electrode gap d.

In summary, the motional current im is related to the velocity of the resonator and ie is the
electric capacitive current of the static capacitance Ce, schematically shown in Fig. 3.3. Both

current paths together build a so-called BVD (Butter-worth Van-Dyke)-resonator, which plays

an important role in the modeling of piezoelectric resonators [120, 121]. Starting from these

considerations it is possible to model the electromechanical system with an equivalent electri-

cal circuit composed of inductors, resistors, and capacitors. This electromechanical analogies

are the result of similarities of the differential equations that are suitable to describe both the

mechanical system and their electrical equivalent circuit.

Furthermore, is the motional current of most importance for the spectral dependence, due to

the sense voltage us. He generates a power dissipation through the characteristic high impedance

of the source follower, which is substituted by a high-resistance Rsub and a capacitor Csub

in parallel. A major difference between the electric current ie and the motional current im is

that ie is a purely capacitive current, whereas im contains a coupling to the equivalent of the

mechanical oscillation velocity of the resonator. Hence the losses of the resonator are covered to

the motional current and damping equivalent resistor. The power dissipation appearing through

the input impedance of the source-follower,

Ubias

im≙ẋm

R≙D C≙k-1 L≙m

Ce

BVD-resonator

ie≙ẋe

The voltages Uext & Uac
are dependent on the
position of the sense
electrode.

Rsub Csub

Equivalent circuit
of the test circuit
is

Figure 3.3: Equivalent schematic of the mechanical oscillating system modeled as a Butter-

worth Van-Dyke (BVD)-resonator for one sensing electrode.

Pim =

(
εA

d2
Up

)2

·
⎛
⎝ 1

1 + Rsub
XCsub

⎞
⎠2

·Rsub · ẋ
︸ ︷︷ ︸

Fim=De·ẋ

·∂x
∂t

(3.8)
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contains a characteristic electrostatic damping coefficient De. In consequence of a harmonic

approach, the electrostatic damping coefficient for a sensing electrode is

De = (
εA

d2
Up)

2 · Rsub

1 + (RsubωCsub)2
(3.9)

which is an additional damping mechanism beside intrinsic and extrinsic effects [122]. Hence

the electrostatic response to the dynamic behavior of the resonator is specified by the damping

force Deẋ, neglecting the influence of internal friction or possible support loss. The solution of

Eq. (3.1) with a harmonic approach leads to

x̂ =
F̂

ktot + jωDtot −mω2
(3.10)

where ktot andDtot implies the sum of overall mechanic and electrostatic stiffnesses and damp-

ing coefficients, respectively. Hence the analytical equivalent to the signal of a laser Doppler-

vibrometer is

v̂ =
jωF̂

ktot + jωDtot −mω2
, (3.11)

the peak velocity of the resonator.

Two Port Configuration

So far only a single electrode configuration was taken into account. As a result, only sysmmetric

modes can be detected. The possibilities of the sensor can consequently be improved with two

electrodes depicted in Fig. 3.4, but requires a deeper understanding of the electromechanical

system.

In the case of two sensing electrodes the treatment is a bit sophisticated, although any stray fields

have been neglected in the analytic derivation. The equation of motion becomes

mẍ+Dẋ+ (km − ke1 − ke2)x =
εA

d2
(Up1us1 + Up2us2) + FL , (3.12)

where Up1,2 = (Uext−Ubias1,2). The potentials Ubias1 and Ubias2 are a result of slightly different

electrical bias potentials of the independently sensing electronic assemblies connected to the two

sensing electrodes (see Fig. 3.5).

In the case of negligible mechanic damping mechanisms and negligible magnetic forces FL,

and balanced applied forces, Up1us1 +Up2us2 ≡ 0, where after a short auxiliary transformation

Uext becomes

Uext =
Ubias1us1 + Ubias2us2

us1 + us2
(3.13)
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Figure 3.4: 3.4(a) Enlarged schematic top view of the U-shaped cantilever and 3.4(b) schematic

cross section of the test device at the tip of the cantilever.
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Figure 3.5: Simplified electric scheme of the resonator with it’s capacitive read-out system of

two sensing electrodes.
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a mixing potential dominated by the two bias voltages. According to the equivalence of the ca-

pacitive read-out of one sensing electrode with a voltage divider schematically shown in Fig. 3.6,

the alternating voltage becomes

Rsub

uac1,2

Csub

Ce
us1,2 &

Up1,2

Figure 3.6: The voltage divider as a appropriated model for the electric signal through sensing

electrode.

us1,2 =
1 + jωRsubCsub

1 + jωRsub(Csub + Ce)
uac1,2 . (3.14)

Owing to Fig. 3.6 the sensing current is1,2(t) through the voltage divider generates the sensing

voltage

Us1,2 =
i1,2(t)

1
Rsub

+ jωCsub

(3.15)

at the first gate of the capacitive read-out system. The sensing current is a result of Eq. (3.3),

is1,2 =
εA

d2
v̂Up1,2︸ ︷︷ ︸
im

+
1 + jωRsubCsub

1 + jωRsub(Csub + Ce)
· jωCeuac1,2︸ ︷︷ ︸

ie

(3.16)

in the limit of small signal analysis.
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CHAPTER 4
Experiments and Results

4.1 Device Fabrication

The fabrication process for the device is based on the silicon-on-insulator (SOI) technology,

where two monocrystalline silica layers are separeted by a thin layer of silicon dixoxide (SiO2).

Compared to the use of simple silicon wafers this technology offers a defined etch stop due to the

large selectivity of the etching chemical between silicon (Si) and silicon dioxide. The thickness

of the device layer and the handle layer were 20μm and 350μm, where the surfaces of the SOI

wafer are passivated with silicon dioxide. The wafer was bought with a passivation of SiO2,

where coating of the device layer is completely removed by a plasma etching process.

Several physical and chemical processes are needed to produce the test devices. Fig. 4.1

depicts the sequence of these processes:

1. After the passivation, the lithography for the metal layer is performed. Metal lines are

evaporated and patterned with lift-off technique using an image reversal photoresist (AZ

5214), where the metal is removed except for areas where the metal is in a direct contact

with the silicon. Both the current-carrying leads and the bond pads consist of a 300 nm

thick gold layer and a 70 nm chromium layer acting as bonding adhesion to the waver

surface. The intrinsic mechanical stresses in the chromium and in the gold layer almost

compensate each other. Therefore, the structure remains nearly undeflected. This is es-

sential for the proper function of the capacitive readout. The lead has a width of 70μm.

2. Then flat 300 nm deep trenches for the expansion of the epoxy-based negative photoresist

(SU-8) are etched with a DRIE (Deep Reactive Ion Etching) process.

3. The device layer is etched from the top side towards the openings for the bonding process

and partially covered with a protective layer.

4. A lithography of the handle wafer will define the backside openings of the test struc-

ture. The passivation in those openings is removed by DRIE (Deep Reactive Ion Etching)
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Figure 4.1: Schematic of the fabrication process. The sequence of these processes steps are

explained in the text, whereas the numbering of the corresponding schematics is identical with

the paragraphs.
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process. Afterwards, the silicon wafer is etched anisotropically from the back side with

30wt% KOH (potassium hydroxide) solution at 75 °C. A thin SiO2 membrane, the insu-

lation between device layer and handle wafer remains. Afterwards, this membrane is dry

etched using a DRIE process from the top, which finally releases the cantilever.

5. The counterpart of the free vibrating planar structure, i.e. the sensing electrodes is fab-

ricated on a Pyrex glass-wafer. The lithography for the metal layer of the electrodes is

similiar to the silicon-wafer. However, titanium was used instead of chromium as bonding

agent.

6. Afterwards, a SU-8 layer is applied on the Pyrex glass-wafer, where a suitable mask allows

to expose two nested frames around the opposite openings of the silicon wafer to UV

radiation.

7. With a sacrificial Cu (copper) thin film the SU-8 can be removed. Only the cured frames

and the unexposed SU-8 between the frames remain after exposure.

8. A custom SU-8 bonding process on wafer level creates a 20μm high spacer, which is

equal to the equilibrium distance d of the sensing electrodes compared to the vibrating

structure.

9. The two wafers are mounted on top of each other.

10. The device was investigated in upside down orientation in order to enable an optical access

to the free vibrating cantilever additionally to the capacitive read-out. An electrical contact

between the two wafers is performed with a silver conductive paste.

The wafer is coated with a protection layer, where after wafer dicing the test devices are die-

bonded on printed circuit boards (PCB). The electrical connections from the chip to the PCB are

performed by gold wire-bonding, where the wire bonds can be protected by a two-part epoxy

resin. The geometrical parameters of the test device are summarized in Fig. 4.2, wherein the

height of the bar has been experimentally verified, which is depicted in Fig. 4.3.
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Figure 4.2: (a) Geometric dimensions of the U-shaped cantilever and (b) schematic cross section

of the test device.

20.05 µm20.05 µm

Figure 4.3: Scanning electron micrograph of the fabricated cantilever. The dimension arrow

indicactes the height h of the cantilever.
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4.2 Experimental Setup

The test device is placed in a vacuum chamber to minimize extrinisic damping mechanisms

like gas damping. The chamber in Fig. 4.4 is surrounded by a pair of coils, configured as

Helmholtz coil. This configuration provides a homogeneous magnetic field around the device.

The Helmholtz coil generates either a static or alternating magnetic field.

Laser

Vacuum
system

Helmholtz
coil

Vacuum chamber
with coated
gauge-glass

(a)

Laser

Vacuum
system

Helmholtz
coil

Vacuum chamber
with coated
gauge-glass

(b)

Figure 4.4: (a) Vacuum chamber made of aluminum and (b) made of PEEK, both attached with

the Helmholtz coil.

Both designs of the vacuum chamber have been made by the same pattern and offer an optical

access through four glass windows. In order to use the vacuum chamber for AC-measurements,

the vacuum chamber of Fig. 4.4(b) is made of electrically insulating PEEK (Polyetheretherke-

ton). Additionally, the vacuum system is also connected to a nitrogen gas line. The nitrogen

pressure in the vacuum-chamber is measured with a high vacuum gauge (Pfeiffer IMR 265) and

maintained by a flow controller (MKS 50 sccm) at the high vacuum port of a turbomolecular

pump, enabling a dynamic equilibrium in the pressure range of 20mPa to 200 Pa. As a result

a fully automated control of the nitrogen atmosphere is established for interactions with the vi-

brating test structure. The homogeneity of the Helmholtz coil configuration was tested with a

search coil (point coil PKS 5, Magnet-Physik Dr. Steingroever GmbH), shown in Fig. 4.5.

The inductivity of the Helmholtz coil is 3.49mH, measured at a frequency of 120Hz (Agilent

LCR-Meter), whereas the resistance of the configuration is 5.71Ω. Three linear stages (micos,

PLS-85) controlled by a PC, move the search coil along the axial principle axis of the Helmholtz

coil configuration. Fig. 4.6 depicts a typical data set.

During operation under vacuum conditions, there are two possible configurations of the

Helmholtz coil, as seen in Fig. 4.4. Regarding to the orientation of the device in respect to the

external magnetic field, two different vibration modes will be favored, namely the symmetric

and the antisymmetric modes (see Fig. 4.7). In this section it is assumed that the magnetic field
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Figure 4.5: (a) Measurement setup to test the magnetic flux inside the Helmholtz coil configu-

ration. (b) Schematic setup for the characterization of the Helmholtz coil configuration.

Figure 4.6: Homogeneity of the Helmholtz coil field along the axis, tested with a sinusoidal

magnetic field, where icoil=100mA and f=256Hz.
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is homogeneous, due to the Helmholtz-coil and that only components in the x- or z-direction

exist. Therefore, field distributions do not need to be considered.

(a) (b)

Figure 4.7: Schematic views of different vibration mode shapes. (a) Depicts the symmetric

excitation mode and (b) the antisymmetric excitation mode in dependence of the acting Lorentz

force.

Thus, the pronounced excitation of two different vibration modes (S1 and AS1) is possible (see

Fig. 4.8).

Bx1mm

U-shaped
cantilever

icant

(a)

1mm

icant Bz

(b)

Figure 4.8: Micrograph of the MEMS structure for magnetic field detection. The small blures

are a result of the SU-8 bonding process. (a) Magnetic field orientations for the excitation of the

first symmetric (S1) and (b) a possible orientation to excite the antisymmetric mode (AS1) of

the cantilever.

Two different measurement principles were taken into account to characterize the out-of-

plane vibrations of the cantilever structure: Firstly, a scanning laser Doppler-vibrometer (Poly-

tec MSA400 Micromotion Analyzer) with displacement and velocity decoders, and secondly, a

custom-built capacitive read-out system. Laser Doppler-vibrometry (LDV) is a non-contact ve-

locity and displacement measurement technique, where the most important component is a laser
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beam focused on the tested structure. The oscillations of the device causes the Doppler effect

in the laser reflection. In the case of a proper reflection of the incident laser beam, it is possible

to calculate its displacement and velocity. Therefore, an optical interferometer is used to mix

the backscattered light coherently with the reference beam, where the intensity of the mixed

light is measured with a photodiode. Usually, a frequency shift is generated by a Bragg cell, or

acousto-optic modulator into reference beam. As a consequence, the output of the photodetector

is a frequency modulated signal, where the Bragg cell frequency is the carrier frequency and the

Doppler shift is the modulation frequency. Therefrom, the signal can be demodulated to derive

the velocity in the time domain of the oscillating test structure. The output signal of a Laser

Doppler-vibrometer is a continuous analog voltage that is directly proportional to the vibration

velocity of the vibrating surface. Because of the considerable broadband noise of the velocity

decoder, the vibrometer’s output signal is measured with a lock-in amplifier (Stanford Research

Instruments SR830). The output signal can also be analyzed with a spectrum analyzer that de-

liver without an additional effort the mechanical spectrum of the oscillation, but with the loss of

accuracy.

A programmable waveform generator excites the sinusoidal current through the lead, which

allows spectroscopy of the mechanical structure oscillations. The vibrometer’s digital signal

processor (DSP) and the Lock-in amplifier are synchronized at the fundamental frequency to

measure the vibrometer’s output signal. Because of the high intrinsic quality factor of 1 · 104 at
an ambient pressure of 0.2 Pa, the cantilever vibration may take several seconds to settle.

In the case of electrostatic sensing, depicted in Fig. 3.2, the cantilever is set to a polarization

voltage Uext to provide the bias for the capacitive detection. The sinusoidal current through the

lead is driven by an ac voltage uac, which combines with the voltage Uext and finally forms the

driving force of the cantilever (us � Up).

Therefore, the ac voltage at the sense electrodes us is generated by the vibration of the

cantilever. A sophisticated kind of source follower, which is capable of measuring changes in the

capacitance at frequencies up to 1MHz, is used as amplifier to sense the cantilever vibrations. To

ensure linearity of the electro-mechanical system, the amplitude of the cantilever vibration due

to the Lorentz-forced excitation is always much smaller than its thickness h and the equilibrium

distance d between the vibrating cantilever and the sensing electrodes.
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4.3 Stability and Noise Sources

Stability of Driven Damped Cantilevers

The problems caused by noise are well known: First a degradation of performance is observed

and second the deterioration of the output at the lower limit of the sensors or measurement

systems results [123]. Because of the miniaturization, the interaction of noise (energy) with

typical masses much less than a few μg can cause disturbance that will affect the performance

of the M/NEMS device [124]. The main influences affecting the stability of a resonator can be

categorized as follows, according to the publication of Walls et al. in 1995 [125]:

• temperature (both static and dynamic frequency vs. temperature; warmup and thermal

shock)

• acceleration (gravity, shock, acoustic noise, vibration effects) [126]

• temporal changes (short-term - phase noise, intermediate-term - environmental tempera-

ture fluctuations, and long-term stability - aging)

• electromagnetic fields, electronic switching power supply, load impedance in case of elec-

tromechanical interaction

• atmospheric pressure (altitude, air pressure fluctuations), humidity

Some of these interferences are easily determined by experiments but others are difficult to

quantify [127]. Cleland and Roukes presented in 2002 a self-contained formalism for describ-

ing the resonance and noise properties of micro- and nanomechanical resonators, based on the

Euler–Bernoulli beam bending theory [128]. With respect to phenomena of short-term stability,

the resonator will be limited by certain stochastic processes. These fundamental phenomena

comprises the thermomechanical noise generated by internal loss mechanisms in the resonator,

Nyquist–Johnson noise from the readout system, and adsorption–desorption noise from ambient

gas molecules around the resonator [125, 129–132]. It is worth mentioning that there is another

noise source due to temperature fluctuations caused by the finite thermal conductance of the

resonator [132]. These fluctuations are fundamental to any object (with finite heat capacity) and

have to be distinguished from environmental thermal drifts that can be monitored using a tem-

perature controlled chamber. Other physical limitations can be caused by particular transducer

implementations. For example, electrostatically detected (and driven) resonators suffer from

surface charge accumulation.

In this work the magnetic field sensor operates in a resonant condition (see Fig. 4.9), at

low ambient pressure to reduce extrinsic damping mechanisms like gas damping and to get

close to the cantilever’s fundamental frequency [39]. Therefore, vibration of the chip fixture,
caused, e.g. by the turbomolecular pump of the vacuum system, will contribute significant

acoustic noise. Another important cause of noise will result from short-term changes of the
magnetic field inside the Helmholtz coil, e.g. because of low frequency field fluctuations caused

by nearby subway DC supply lines, as well as magnetic noise produced by power lines. The third

important influence on the stability and drift of the MEMS magnetic field sensor will arise due
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Figure 4.9: Classification of a microelectromechanical system in mechanical sensor device,

where emphasis is laid on the stability and noise of the resonator.

to thermal expansion leading to lateral drift of the tip relative to the sense electrode and shifting

the resonance frequency. All three sources will mainly affect and deteriorate the sensitivity of

the sensor and decrease its linearity and accuracy.

Interfering Mechanical Vibrations

One of the first theoretical considerations on noise in microsystems was published by Gabrielson

in 1993 [129]. He discussed various effects of mechanical–thermal noise for MEMS, where

he reviewed several techniques for calculating the mechanical–thermal noise in simple MEMS

structures, such as a mass-spring accelerometer. In an analog to the Johnson noise of electrical

resistances, the Nyquist’s relation gives the spectral density of the fluctuating force related to

the mechancial resistance of the device. According to this paper the noise is at any frequency

ω � ω0

Pnoise = 4kBT
Δfω0

mQ
, (4.1)

where kB is the Boltzmann constant, T is the ambient temperature, Δf is the measurement

bandwidth, ω0 is the natural frequency, m is the oscillatory mass and Q is the quality factor of

the device. Equation (4.1) indicates that the SNR can practically be improved by increasing the

quality factorQ, reducing the natural frequency ω0, or increasing the massm of the 1-DOF. The

latter also lowers the natural frequency of the system.

Increasing the mass of the system is usually contradictory to the miniaturization of the sys-

tem. Lowering the natural frequency of the system, as far to be within the band of expected

signals can cause a nonlinear phase into the system response. In the end, one can increase the

quality factor Q, always be aware that out-of-band amplitudes in nonlinear systems will also be

magnified (with the magnification factor Q). Additionally, the mechanical system must be able

to handle these large movements to guarantee a large dynamic range. Furthermore, the vibra-

tions of a mechanical system with high Q may take several seconds to settle. Assuming that

thermo-mechanical noise is a fundamental limit of the noise level for this device, the accelerom-

eter resolution within a bandwidth of 1Hz is given by
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〈a〉 ≈
√

4kBTω0

mQ
. (4.2)

Externally induced vibrations of the MEMS chip, like acoustic couplings due to the turbo-

molecular pump essentially determined the noise floor during the device characterization at low

ambient pressures. They add an acceleration related signal to the elelctromagnetically gener-

ated vibration. However, if a resonator is excited externally, the time dependent acceleration

can change the oscillation of the device, too. Even in the simple case of a harmonic chip ac-

celeration with the frequency f1, the frequency will be modulated at the rate of f1 [126]. For a
small modulations resonator motion, a sinusoidal vibration produces spectral lines at ±f1 (=vi-
bration frequency) from the natural frequency f0. Most of the energy is in the fundamental

frequency f0, but a small amount is in the first spectral line pair, where the higher order spec-

tral lines are negligible in case of weak nonlinearity of the system. In the case of a random

vibration, a massive increase of the phase noise can occur. Another vibration effect results from

acoustic sounds, where this kind of vibration can produce significant oscillations similar to that

produced by mechanically transmitted vibrations. In contrast to mechanical vibrations of the

ambient, pressure fluctuations of the acoustical noise directly hit the mechanical resonator. The

(broad-band) response of the MEMS structure extends towards low frequencies due to the dif-

ferent mechanical transmission process. The acoustic noise modulates the oscillation, where the

modulation depends on the vibration amplitudes, their directions and their frequencies.

Experimental Analysis of the Influence of External Vibrations: A scanning laser Doppler-

vibrometer (Polytec MSA400 Microsystem Analyzer, shown in Fig. 4.10) comprising displace-

ment and velocity decoders is used to characterize the out-of-plane vibrations of the cantilever

structures. The vibrometer output signal is measured with a spectrum analyzer (Stanford,

SR780), schematically shown in Fig. 4.11).

A waveform generator excites the vibrating structure around its natural frequency (S1) or

at higher harmonic modes (AS1 or S2) in a static magnetic field. The waveform generator

provides the sinusoidal current in the lead on the top of the cantilever. This causes a harmonic

oscillation due to the Lorentz force. Owing to high intrinsic quality factors in vacuum, the

cantilever vibration may take several seconds to settle (Fig. 4.4).

The measurements in Fig. 4.12 were done with minimal exciting current icant = 6.19μA at

resonance fr0 = 4.359 kHz. The device is a U-shaped cantilever with capacitive read-out, where
deflection data were both taken by the vibrometer at the middle of the tip on the U-frame and on

the chip carrier (see red dots points 1) & 2) in Fig. 4.11). Fig. 4.12 depicts the frequency spectra

of the chip carrier vibrations (black line) and the cantilever movement (red line) during excitation

of the device. At the lower bound of the frequency spectrum, the response to turbomolecular

pump vibrations dominates.

These vibrations can be attributed to the turbomolecular pump switching off the pump and ob-

serving the frequency decay of the respective lines of the spectrum. The spectra in Fig. 4.13,

4.14 and 4.15 only differ in the operation of the turbomolecular pump, while the backing pump

is running. In the case of the black spectra the turbomolecular pump operates at its maximum
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Figure 4.10: Schematic setup for the characterization of the influence of the noise due to external

vibrations on the vibration of different mode shapes.
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Figure 4.11: The optical measurement setup, where the red dots depicted in the figure denotes

the measurement points of the incindent laser beam on the cantilever (1) and the chip frame (2).
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Fundamental mode S1

at f = 4.359 kHz res

a) Chip carrier

b) Cantilever

Peaks generated by 
the Turbomolecular 

Figure 4.12: Measured vibration spectra (arbitrary units) of (a) the chip carrier (black line)

and (b) the test structure (red line) at resonance. The cantilever current amounts 6.19μA and

the related ambient magnetic field component is 48μT, without compensation of any magnetic

disturbances.

rotational speed approximately 60,000 rpm, while the red data was taken with a running down

pump (but with sufficiently low gas damping). By switching on and off the turbomolecular

pump it is possible to determine the quality of the disturbances. If they are purely electrical they

should disappear immediately after shutdown the pump. But in the experiment, the frequencies

of the disturbances varied according to the rotational speed of the down-running turbomolecular

pump. Furthermore, it was found experimentally that switching off the backing pump has no

effect on the noise.

Fig. 4.13 and 4.14 indicate that the vibration noise of the pump dominates for resonance

frequencies between 4 to 12 kHz, while Fig. 4.15 shows a moderate modulation effect of the

pump on the second symmetric mode (S2) of the cantilever. As a result, S2, was taken for very

sensitive magnetic field measurements.

Summing up, the acoustical interferences have a severe influence on the oscillations of the

test device, wherein the performance and the detection limit of the sensor is determined by the in-

terfering signals related to the turbomolecular pump. With Eq. (4.2) the calculated thermal noise

for the device under test (DUT) with a Quality factor Q of 1·104 in vacuum would be around

0.1μgearth/
√
Hz [38]. Experimentally, the noise floor measurements were taken at specific res-

onant modes (S1, AS1 and S2) by laser Doppler vibrometry over a time period of 280 seconds.
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Fundamental mode S1

at f =4.359 kHz res

a) With turbomolecular pump
b) Free running down turbomolecular pump

Figure 4.13: Frequency response of the test structure around the first symmetric mode S1, with

the turbomolecular pump switched a) on and b) off, but free running down with icant= 6.19μA
and 48μT.

The measurement points were choosen by their maximum vibration deflection at an electric

current in the lead of 6.19μA. During the measurement, the custom automated magnetic field

compensation system was switched on. With the help of Lock-in measurement technique, it was

possible to determine the noise level for every vibration mode during vacuum operation of the

turbomolecular pump (see Fig. 4.17). Multiplying these amplitude related data with the square

of the specific angular resonance frequency, it was possible to obtain equivalent acceleration

noise values. Hence, for the first symmetric (S1) mode the measured values were typically in

the range of 1mgearth/
√
Hz, whereas for the first antisymmetric mode (AS1) it is approximately

0.25mgearth/
√
Hz and for the second symmetric mode (S2) around 50μgearth/

√
Hz. Therefrom

it is obvious that the superposition of excess system noise deteriorates the resolution of this

magnetic field measurement method significantly.
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First antisymmetric mode AS1

at f =11.314 kHz res

Vibrations of the pump

a) With turbomolecular pump
b) Free running down turbomolecular pump

Figure 4.14: Frequency response of the test structure around the antisymmetric mode AS1, with

the turbomolecular pump switched a) on and b) off, but free running down with icant = 561μA
and 48μT.

Thermal Influences on the Eigenfrequency of Cantilevers

Due to the sensor principle, where a current passes through the lead on the top surface of the

cantilever, a certain amount of heat is generated. This can affect the operation of the sensor

in various ways. First of all, a stress is developed inside the cantilever. Secondly, the material

properties, like the resistivity, the specific heat, the thermal expansion coefficient, the thermal

conductivity and especially the Young’s modulus, will change with temperature, e.g. the tem-

perature coefficient of the Young’s modulus is −60 ppm/K [133]. A further source of resonant

frequency shifts of MEMS structures results from the thermal expansions of the applied materi-

als. Therefore, the change in the length has also to be considered. In Table 4.1 the most relevant

materials are compiled.

Thin metallic films, employed for electrical leads, exhibit large coefficients of thermal expan-

sion and thermal conductivity. Silicon has a comparable large thermal conductivity like metals

as gold. Owing to the small cross-section the contribution of the thin metallic leads is negligible

compared to the thermal conductance of the silicon beam. However, the silicon beam is able

to transport a remarkable amount of heat per cycling period. Thermal influences of clamped-

free plates are insignificant, due to the excellent heat conductivity of silicon through the large

suspension area of the silicon beam. In order to achieve a high sensitivity to magnetic fields,
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Second symmetric mode S2

at f =32.077 kHz res

Vibrations of the pump

a) With turbomolecular pump
b) Free running down turbomolecular pump

Figure 4.15: Frequency response of the test structure around the second symmetric mode S2,

with the turbomolecular pump switched a) on and b) off, but free running down and compensa-

tion of magnetic field disturbances with icant = 561μA and 48μT.

Table 4.1: Typical materials applied in microfabrication and their thermal properties [14].

Material Thermal conductivity λ Therm. expansion coeff. α
in Wm−1K−1 in 10−6K−1

Silicon(single-crystalline) 157 2.3
SiO2 2.1 0.5
Cr 93.9 4.9
Ti 21.9 8.6
Si3N4 18 3.0
Au 318 14.2
Al 236 23
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U-shaped cantilever with small cross section dimensions are desireable that operate in vacuum

and therefore, the relative influence of the thermal conductance increases. In consequence of the

increasing temperature the length along the elastic axes of both arms of the U-shaped cantilever

get longer as well as the cantilever thickness. According to Eq. (2.32) the total change of the res-

onant frequency includes the temperature dependence of the density � end the Young’s modulus

E.

The right hand side (rhs) of equation Eq. (2.32) can be converted into

ωi = γ2i
h

l2

√
E

12ρ
= γ2i

√
bE

12m

(
h

l

)3

, (4.3)

where h is the height, l is the length, b is the width, E is the Young’s modulus,m is the mass of

the cantilever and γi are the eigenvalues. The expansion of Eq. (4.3) with respect to T yields

ωi (T +ΔT ) = ωi

√
(1 + α) (1 + TCE)ΔT , (4.4)

with the temperature coefficient of Young’s modulus TCE = 1/E · (∂E/∂T ). According to

Eq. (2.32) the relative change of the resonance frequency amounts

TCωi =
ωi (T +ΔT )− ωi (T )

ωi (T )ΔT
=
√

(1 + α) (1 + TCE)− 1 . (4.5)

In view of the small values of α and TCE, a first order Taylor expansion of the rhs of Eq. (4.5)

is appropriate which results in

TCωi
∼= α

2
+

TCE

2
. (4.6)

From Table 4.1 α/2 = +1.15 ppm/K is obtained, whereas a review of the literature data on

the temperature coefficient of the Young’s modulus of silicon at room temperature results in

TCE/2 = −30 ppm/K. Hence the temperature coefficient of the resonance frequency is mainly

determined by the softening of the silicon lattice with increasing temperature.

From experiment one can deduce a dependence of about -10 ppm/K with respect to the cal-

culated temperature difference at the mid plane of the U-shaped cantilever. This is not in contra-

diction with Eq. (4.6) considering the non-uniform temperature distribution along the cantilever.

The excess temperature of the cantilever follows from heat balance considerations. Starting from

the symmetry plane of the U-shaped cantilever, the heat flux along the cantilever axis, QH (x)
grows toward the clamped end from zero according to

QH = P
x

l
, (4.7)

where x denotes the distance along the cantilever axis and P the averaged dissipated power.

Equation (4.7) assumes uniform heat generation along the cantilever of sidelength l and thus

ignores the 90°corner effects. For a stable temperature distribution,QH (x)must be balanced by

heat conduction, i.e.

QH (x) = −Aλ∂T (x)
∂x

= − l

Rth

∂T (x)

∂x
, (4.8)
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where A is the cross-sectional area through which the heat is flowing and Rth is the thermal

resistivity. Hence, ∂T (x)/∂x = −PxRth/l
2 and

T (x) = −PRth

2l2
x2 + const. (4.9)

The boundary condition T (x = l) = 0 yields

const. =
1

2
PRth , (4.10)

and the average excess temperature along the cantilever is computed from

Tmean =
1

L

∫ l

0
T (x) dx =

1

3
PRth . (4.11)

���������	

Figure 4.16: The change in length due to an increase of temperature byΔT=5 K.

In an actual publication, the dependence of the resonance frequency due to the temperature

coefficient of the Young’s modulus was analyzed [134]. The prediction of the temperature char-

acteristics in this paper for a single-crystal silicon resonator is −28.7 ppm/K, while their mea-

surements indicate −20 ppm/K. From Fig. 4.18 the temperature coefficient yields −27 ppm/K.

The uncertainty of the data in Fig. 4.18 especially for small changes in the current has its origin

in the experimental method. The mechanical resonance of the cantilever was detected by Laser-

Doppler vibrometry, while the frequency was swept with a waveform generator (Fig. 4.17).

With each current level the actual resonance frequency was found by decreasing the generator

frequency manually. One reason of the deviations from the icant-parabolic dependence in the

small-current regime is due to the small Lorentz-force in the earth magnetic field. One possibil-

ity to avoid small deflections is to analyze the frequency response of the cantilever with reduced

AC voltage (current) but in a higher ambient magnetic field, like that of a Helmholtz-coil.

Another thermal influence on the length of the cantilever originates from the gold layer of

the lead, where a temperature change can induce a mechanical displacement. If the values of
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Figure 4.17: Schematic setup for the characterization of the test structure.

Figure 4.18: Temperature dependence of the natural frequency due to electric heating of a U-

shaped Cantilever geometry with a length of 2mm, a width of one arm of 120μm and a heigth

of 20μm, Bext = Bearth.
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Poisson’s ratio ν differ for the two materials, there will be a change in length [45]. But the

curvature of a bimetallic beam depends on the height of both materials. Due to hAu � hSi this
effect is negligible. Summing up, the temperature-dependent frequency shift for cantilever of

this size can be neglected up to excitation currents of 3mA.
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Magnetic Field Instabilities

Besides mechanical vibrations, acoustic disturbances and thermal influences, there are mainly

electromagnetic interferences that deteriorate the performance of the resonant magnetic field

sensor. The characterization of the sensor depends on the place of the measurement setup.

With an appropriate magnetic field compensation system this spatially dependent disturbances

can be reduced for a MEMS environment. For the design of the compensation coil system,

several magnetic field measurements in the laboratory using a fluxgate sensor from Stefan Mayer

Instruments1 were performed. The triaxial fluxgate sensor FLC3-70 offers a measurement range

of±200μT, from DC to 1 kHz with an accuracy down to the nanotesla level (see Fig. 4.19). This

sensor has always been applied, whenn the sensitivity and stability of, e.g. Hall sensors was too

low or for measurements of disturbances in the range of a few nT close to the test device.

Triaxial
fluxgate
sensor

MSA400
Microsystem
analyzer

Vacuum
chamber

(a)

Triaxial
fluxgate
sensor

Helmholtz
coil

Vacuum
chamber

(b)

Figure 4.19: Long-term measurement setup for ambient magnetic fields with a triaxial fluxgate

sensor close to the test structure.

Fig. 4.20 shows the scatter of the magnitude of the magnetic flux density in all three direc-

tions in space, where the sensor was oriented parallel to the maximum value of �Bearth. Firstly,

the absolute value for each measured data was computed and secondly these values were av-

eraged over a period of half a minute. Similarly, the standard deviation of the magnitude is

depicted in Fig. 4.21, which is representative of the average disturbance close to the test device.

The 30 second-averaged magnitudes scatter over a time period of more than 16 hours in the

range from 70 nT up to 700 nT. In a sharply defined time interval from 00:36 until 05:20AM the

scatter decreases down to 20 nT to 40 nT, where the time period corresponds with the nighttime

break of subway operation during working week.

Due to the measurement result depicted in Fig. 4.21, the assumption that most of the mag-

netic disturbances originate from the subway seems reasonable. In a rough estimation the mag-

1www.stefan-mayer.com
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Figure 4.20: The shaded area indicates the period without subway traffic.

Figure 4.21: Standard deviation of the averaged fluxgate-signal (absolute value) over a time

period of more than 16 hours. The averaged maximum values comprises 700 nT.
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netic field can be calculated by the relationship H = I/l of a long straight current-carrying

conductor. The subway is located approximately 100m near the laboratory, where typical elec-

trical parameters of the subway are a 750V supply voltage at a maximum power of 1MW. This

leads to a current of around 1 kA with a magnetic flux density of approximately 2μT at the

specified distance.

Figure 4.22: Stabilization of the vibration’s amplitude of the U-shaped cantilever during a period

over 80 minutes in the afternoon. The vibration amplitude of the cantilever without the three-axis

compensation system is 298 nm at resonance of S1.

For the cancellation of unwanted external magnetic fields a cube-shaped frame was built

around the measurement setup, with an edge length of about 0.8m (Fig. 4.23). Three pairs of

coils are attached at the frame, where the inductivity of one pair is around 5.5mH, measured at

1 kHz. Opposite coils of the cube are connected in series and controlled by a custom electronic

circuit. Each pair is driven by a power supply, which zeros the field measured by a corresponding

commercial fluxgate sensor [135]. The correction signal is generated outside the Helmholtz coil,

but near to the measurement probe, which is located in a spatially well-defined vacuum chamber.

Each pair of coils is part of a control system, consisting of a PI-feedback circuit and a digital

interface. The parameters of each system were specified by empirical trials.

This magnetic field compensation system has been designed to suppress external field dis-

turbances and to permit a characterization of the sensor at small interfering magnetic fields at

DC and low frequencies. Because of the large intrinsic mechanical quality factors (Q ≈ 104) of
the test structures the response time of the MEMS oscillator increases to several seconds. In this

regime, the transducer cannot resolve transient magnetic field disturbances (≈ 10 s) during sub-

way acceleration. Therefore, only steady-state and low-frequency magnetic field disturbances

can be compensated or stabilized using the custom magnetic field compensation system. The

magnetic field compensation unit from Fig. 4.23 can reduce and stabilize the vibration ampli-

tude from an initial value of 298 nm±4 nm down to 1.2 nm±0.5 nm (Fig. 4.22). Assuming that

298 nm corresponds to approximately 48μT (and neglecting influences due to vibration noise),

the vibration amplitude of 1.2 nm represents 193 nT. The remaining noise at S1 are primarily
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Triaxial magnetic field
compensation coils

Compensation
electronics

Vacuum
chamber

MSA-400

Three axis
fluxgate sensor

Figure 4.23: Triaxial magnetic field compensation unit surrounding the test structure.

caused by the turbomolecular pump. Experimentally, these disturbances have been minimized

by measuring at the higher symmetric resonance S2.
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4.4 Sensing Circuit

This chapter deals with the basic properties of the sensing ciruit, sketched in Fig. 4.24. How-

ever, the standard sensing circuit to convert capacitive currents, is a current to voltage converter

or transimpedance amplifier. Ideally, the input of the inverting amplifier in Fig. 4.25(a) has neg-

ligible impedance, where the input signal is, e.g. a capacitive current. In a first step the kind of

circuit was equipped with Rin = 10 kΩ, which is schematically shown in Fig. 4.25(a). Because

of the static capacitance in the range of a few pF and mechanical eigenfrequencies in the range

of 10 kHz, the impedance of the sensing capacitor is in the range of 10 to 100MΩ. The inverting
amplifier of Fig. 4.25(a) acts practically like a short circuit, as a current to voltage converter will

do. Hence, large reaction forces were generated by the circuit that act on the resonator in case

of a DC-voltage at the sensing capacitor. It wasn’t possible to get rid of nonlinear effects like

Duffing behavior, even at mV bias and with Rin of 100 kΩ.
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Figure 4.24: Classification of a microelectromechanical system, where the emphasis is laid on

the sensing circuit.

Therefore it was clear that other established methods, such as a charge amplifier cannot be con-

sidered. If the influence of the reaction forces have to be minimized, the ratio of the voltage Us

at the sense electrode and the average distance d between the cantilever and the sense electrode

must be kept constant (Fe ∝ Us/d = const.). From the fundamental relationship C = Q/Us

directly follows that Q ∝ Us/d = const., which leads to a high-impedance solution. Assuming

zero bias current and a finite input resistance of the amplifier, the feedback circuit of Fig. 4.25(b)

ensures that the bias voltage of Uext applies directly to the variable capacitor.

Another possibility to sense the cantilever vibrations and to detect the very small capacitance

variations at low frequencies in the range of a few fF is by modulating a high frequency carrier

signal. This method would be a viable alternative to currently used techniques, but this option

was not implemented so far. Especially with an improved design of the resonator and the sensing

electrodes, this option seems to have great potential for the future. This kind of circuits has a high

resolution and allows the filtering of superimposed low-frequency signals from the electrostatic

excitation signal. By using different carrier frequencies, the signal of several electrodes can

be detected. The evaluation is then carried out by using a bandpass filter for each electrode,

where only signals close to the carrier frequency will pass. At the output of the preamplifier the

carrier signal will appear, where the amplitude is modulated by the low-frequency signal. The
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Figure 4.25: (a) Configuration as inverting amplifier that becomes a transimpedance amplifier

when Rin → 0. (b) Possible, but not suitable configuration of a charge amplifier because in this

case Cf � C(t).

amplitude of the modulated signal is proportional to the deflection of the resonator, whereas an

additional demodulation unit is required to eliminate the carrier frequency.

This work, as explained in Chapter 3.1, focuses on a sophisticated kind of source fol-

lower (see Fig. 3.2). Because of the troubles with reaction forces of circuits with small input

impedance, a high-impedance solution was considered. The input impedance should be sig-

nificantly higher than the impedance of the measuring capacitor (=resonator), which is in the

range of 100MΩ. Hence, the measurements can be done with negligible nonlinearity due to

the operating DC-voltage of the sensing circuit. To explain the functionality of the circuit, the

essential components and their operation will be discussed separately. The custom circuit has

two special features: firstly, the input impedance is massively increased by bootstrapping. Due

to almost identical ac-signals at the two (red) nodes shown in Fig. 4.26(a), the current through

the feedback resistor Rf is almost zero, and the impedance tends to infinity. But non-negligible

input capacities Cin, especially between the gate and drain, reduce this magnitude. From the low

cutoff frequency of this sensing circuit a value of 5 · 1010Ω could be determined.

Secondly, the bandwidth was improved by a sophisticated kind of bootstrap circuit with a

positive feedback. Through this trick, the input transistor’s drain-gate voltage is kept nearly

constant during operation. This technique minimizes the capacitive currents and makes the cir-

cuit capable to measure changes in the capacitance up to the high cutoff frequency of 1MHz,

whereas the limit at the lower bound is about 10Hz. The raise at the lower bound is approxi-

mately +20 dB/decade, whereas the roll-off is around -40 dB/decade.

With the help of Fig. 4.27, 4.28 and a dummy capacitance of 0.25 pF it is possible to deter-

mine the electrical parametersRsub and Csub of the sensing circuit. Due to the offset of -13.6 dB

between input and output voltage, an equivalent ratio
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Figure 4.26: (a) Bootstrap technique to improve the input impdedance. (b) Shows a similar

bootstrap technique configured as positive feedback.
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Figure 4.27: Determination of the lower fc1 and upper fc2 cut-off frequency for the calculation

of the input impedance of the sensing circuit.
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Figure 4.28: (a) Simplified test circuit, for determining the input capacitance Csub (Rsub →
∞). In the case of low frequencies the circuit acts as high pass, where Fig. 4.28(b) shows an

equivalent circuit to determine the input impedancede Rsub.

−13 dB = 20 log
Uout

Uin

where
Uout

Uin
= 0.22 (4.12)

could be determined for the voltage ratio. This is very useful in case of the capacitive voltage

divider

Uout

Uin
=

Xsub

Xsub +XC
=

1/Csub

1/Csub + 1/250 fF
= 0.22 (4.13)

that is observed in the flat region of the transfer characteristics, shown in Fig. 4.28(a), where

X represents the impedance of the specific electric component. Equation (4.13) implies that

the input capacitor of the sensing circuit Csub = 0.886 pF, which is in the range of the static

capacitance C0 of the device, as explained in Chapter 3.1. In the case of low frequencies, it

is possible to determine Rsub with the equivalent circuit of Fig. 4.28(b). The lower cut-off

frequency fc1 is 9.4Hz, where

2 π fc1 =
1

RsubC
(4.14)

is valid, due to the bandwidth convention ωτ = 1. The time constant τ of the low pass is deter-

mined by the product RsubC. From Eq. (4.14) follows the input resistance with Rsub=67.7GΩ,
showing that the custom sensing circuit greatly increases the real part of the input impedance.

But on the other hand, the imaginary part Csub is only slightly reduced.
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4.5 Electrical DC Measurements

The measurement setup depicted in Fig. 4.17, was used to characterize the resonant magnetic

field sensor. A sinusoidal current i = i0 · sin(2πf0t) is supplied to the lead on the top of the

MEMS structure. A programmable waveform generator produces the current, allowing spec-

troscopy of the mechanical oscillations. The vibrometer’s digital signal processor (DSP) and the

Lock-in amplifier are synchronized at the fundamental frequency to measure the vibrometer’s

output signal. Because of the high intrinsic quality factor in the range of 104 at an ambient

pressure of 0.2 Pa, the cantilever vibration may take several seconds to settle. In the case of

a static magnetic field the frequency f0 is equal to its mechanical resonance frequency fr. At

low ambient pressure, extrinsic damping mechanisms like gas damping are weak and fr is very
close to the cantilever’s fundamental frequency, i.e. in the S1 mode [39]. In the presence of a

static magnetic field component Bx perpendicular to the direction of the driving current at the

tip of the cantilever, the Lorentz force causes a flexural vibration at its fundamental frequency.

If the related deflections are small compared to the length of the cantilever, they are linearly

proportional to the drive current and to the applied external magnetic field. As explained in

Chapter 3.1, the device requires a dc polarization voltage and a small sinusoidal voltage to ex-

cite a sinusoidal resonance electrostatically. The polarization voltage can result in the possibility

of a mechanical instability (see Eq. (2.68)) and a lowering of the quality factor (see Eq. (3.7)

and Eq. (3.9)). Additionally, parasitics capacities of the electrostatically driven cantilever can

also lead to problems in the performance of the electromechanical system. The measurements in

Fig. 4.29 of the quality factor at resonant frequency as functions of the polarization voltage Up

were performed with a cantilever featuring a length of 2mm, a width of 1.5mm, and a thickness

of 20μm. Each data point in this section was taken at resonance with changing polarization

voltage at an ambient pressure around 0.3 Pa and an effective alternating current of 16.9μA.

From Fig. 4.29 it is obvious that the resonant frequency and the quality factor Q decrease as

the applied dc voltageUext changes around the minimum of the mixing potential (see Eq. (3.13)).

According to this figure, the drop of the quality factor Q due to the dc polarization voltage is

significant. As a result the minimum of the mixing potential must be found experimentally

to operate with low dc polarization voltages Up in order to obtain a low power dissipation in

the beam resonator. Fig. 4.30 is a clear reference of the mixing potentials minimum. The

electrical signal at this sensing port shows two minima in its response: one around 3V and the

second around 7V, whereas the vibrometer signal depicts only one minima at 7V. This is a result

of rather different electrical bias potentials of the independent sensing electronic assemblies

connected to the two sensing electrodes (see Fig. 3.5). In this figure, the DC-offset voltage of

this port coincides with the value of around 3V. Therefrom, the DC-offset voltage of the other

port must be well above 7V (around 10 to 11V). Consequently the oscillations must take a

minimum, which is clearly depicted in the vibrometer signal of Fig. 4.30.

A nice hint of the validation of Chapter 3.1 show Fig. 4.31 and 4.32. Due to Eq. (3.9) a

linear relationship between the reciprocal value of the quality factor Q

1/Q = De ∝ (
εA

d2
Up)

2 (4.15)
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Figure 4.29: Quality factor of the structure, measured with the vibrometer signal and the elec-

trical signal (always at resonance) in dependence of the polarization voltage.

Figure 4.30: The electrical signal comprises two minima: one due to the bias voltage at ap-

proximately 3V. The other minimum is located at approximately 7V, which coincides with the

maximum of the resonance frequency of the system (see Fig. 4.34). This minimum is a result

of the mixed potential Uext described in Eq. (3.13). The vibrometer signal only depicts one

minimum.
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and the squared polarization voltage Up is expected. Fig. 4.31 clearly shows this linear relation-

ship. According to Eq. (2.67), there must be a linear relationship between the squared resonance

frequency

ω2
r ∝ k = km − εA

(d0 − x0)3
U2
p , (4.16)

and the squared polarization voltage Up because of ω
2
r = k/m. Related measurement results are

depicted in Fig. 4.32. As expected from the negative electrostatic spring effect of Eq. (2.67), the

resonance frequency shift decreases with increasing polarization voltages Up. Fig. 4.33 depicts

the limit of the linear behavior of the oscillator in an electrostatic field, due to snap-in behavior

shown in Fig. 2.16.

Figure 4.31: The reciprocal value of the quality factorQ of the vibrometer signal in dependence

of the squared polarization voltage, where the minimum of the mixing potential is estimated

with 7.25V.

According to Eq. (2.67) and beside the fact of a mixing potential, a quadratic dependence

due to the polarization voltage Uext is expected. This relationship is shown in Fig. 4.34. It must

be noted that the maximum resonant frequency of the system coinces with the minimum of the

mixed potential. Experimentally, this minimum was found by measuring the phase response

of the vibrometer signal at the respective resonance. As Fig. 4.35 indicates, there is a rapid

change of phase around the mixing potential. Perhaps this is an indication of a change regarding

the capacitive behavior of the RLC-serial resonant circuit into an inductive behavior. Up to

now, there is no equivalent circuit model regarding the phase-behavior. But on the basis of

the comprehensive introduction of the electromechanical modelling in Chapter 3.1 it is possible

to predict on the one hand the quadratic behavior of the resonance frequency in dependence
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Figure 4.32: The squared resonance frequency of the vibrometer signal in dependence of the

squared polarization voltage, where the minimum of the mixing potential is estimated with

7.25V.
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Figure 4.33: The squared resonance frequency of the vibrometer signal in dependence of the

squared polarization voltage, where the nonlinearities due to a increasing equilibrium static de-

flection of the resonator become more important.



4.5. ELECTRICAL DC MEASUREMENTS 117

of the polarization voltage (see Fig. 4.36) and on the other hand the tendency of the vibration

amplitudes in dependence of the resonance frequency (see Fig. 4.37). Fig. 4.36 denotes that

the fit perfectly matches the data. Only at the lower bound of the polarization voltage Uext a

deviation is peculiar. One reason can be the growth of significant nonlinearity due to increasing

static deflections. At the upper bound there is a bias limit, which typically coincides with the

supply voltage of the sensing electronics. In order to exclude possible dependencies concerning

the polarity of the Helmholtz coil, the measurement regarding the resonance frequency for both

polarities was performed (see Fig. 4.38).

Figure 4.34: Dependence of the resonance frequency on the external polarization voltage Uext.

Beside the dependence the signal of the electromechancial system comprise two minima: one

minimum due to the DC-offset of port at approximately 3V. The other minima is located at

7.25V, which coincides with the maximum of the resonance frequency of the system. This

minimum is a result of the combined potential Uext described in Eq. (3.13).

The measurements related to Fig. 4.39 and 4.40 were performed with a U-shaped cantilever

featuring a length of 2mm, a base width of 90μm, and a thickness of 20μm, whereat the

two 2mm cantilevers are hold together by a 1.5mm long bar at the free moving ends. As

one can see in Fig. 4.39 and 4.40, there is a linear relationship (100μT to 6mT) between the

signal output, of both the vibrometer signal and the electrical signal, but below 100μT a kind of

saturation of the signal occurs. Due to Chapter 4.3 the influence of the turbomolecular pump on

the vibration masks efficiently the Lorentz force driven oscillations. At the fundamental mode

(S1), the measurement limit is approx 300 pm, whereas at the first antisymmetric mode (AS1),

this quantity is approximately 100 pm.

Only precision measurements at the second symmetric mode (S2) gave suffient results be-

low typical values of the earth magnetic field (with the help of the compensation unit and during

night). Both the vibrometer signal and the electrical signal in Fig. 4.41 and 4.42 indicate lin-

earity down to the sub-μT regime, even for both possibilities in polarity of the Helmholtz coil.
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Figure 4.35: Phase response of the vibrometer’s signal in dependence of the polarization voltage,

where every data point is measured at resonance.

Figure 4.36: The quadratic dependence of the resonance frequency due to the polarization volt-

age with a data fit according to Eq. (2.68) of. The model of the resonator is based on a cantilever

with a length of 2mm, a width of 1.5mm and a height of 20μm. The effective mass meff is

32 ng, a computed static capacitance C0 with 0.54 pF and a damping coefficientD of 1.3 · 10−6.
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Figure 4.37: Vibration amplitude of the analytical, electromechanical model and the data of

a c−f plate with a width of 1.5mm, a length of 2mm and a height of 20μm. The current

icant=16.9μA and the external magnetic flux is 280μT.

Figure 4.38: Resonance frequency measured by the vibrometer, in dependence of the polariza-

tion voltage, on both polarities of the Helmholtz coil configuration.
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Figure 4.39: Dependence of the vibration amplitude of the first symmetric mode (S1) on the

magnetic flux density down to the influence of the vibration of the turbomolecular pump. The

resonance is at frequency 4.360 kHz and the driving current is 6.19μA.

Figure 4.40: Dependence of the vibration’s amplitude of the first antisymmetric mode (AS1) on

the magnetic flux density with a resonance frequency of 11.313 kHz and the driving current is

561μA.
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Both linear fits show a similar offset of 8.7μT (optical) and 8.6μT (electrical), which is a result

of the behavior of the electrostatic force (quadratic dependence on the operating voltage) that

exceeds the small Lorentz force (linear dependence on the magnetic field). Hence, for suffi-

ciently small fields the electrostatic force dominates at the lower bound. Another limit arises

due to the decreasing vibration amplitude in the range of 20 pm at 32 kHz, which declines in

the acoustic noise of the turbomolecular pump at S2. The reliable minimum value of the flux

density measured with the second symmetric mode was 5μT.

Figure 4.41: Measurement of the dependency of the vibrometer output on the magnetic field

distribution to reveal any unsymmetries of the system. The resonance frequency is 32.079 kHz

and the driving current is 561μA.

As long as the behavior between the cantilever deflection and the magnetic field is linear (linear

regime), the uncertainty of the measured signal was estimated by averaging the fitted amplitudes

of five maxima and five minima data spectra. The resulting standard deviation has a confidence

interval of one sigma. Therefrom, the estimated uncertainty in the linear regime at the lower

bound of ambient magnetic fields is±7% of the optical signal and±6% of the electrical signal.

The calibration uncertainties of the measurement instruments, e.g. the uncertainty regarding the

measured amplitude of the

• microsystem analyzer is ± 3% and

• ± 1% for the Lock-in amplifier.

Compared to these nominal values the uncertainties of the applied waveform generator and the

multimeter are negligible. Hence, the dominant uncertainty in the linear regime arise from the

interfering signals, like the mechanical vibrations of the turbomolecular pump of the vacuum

system.
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Figure 4.42: Measurement of the dependency of the electrical signal on the magnetic field dis-

tribution to reveal any unsymmetries of the system. The resonance frequency is 32.079 kHz and

the driving current is 561μA.

Figure 4.43: Dependence of the vibrometer signal of the second symmetric mode (S2) on the

magnetic flux density down to 5μT.
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Due to the much larger deflections at higher magnetic fields, this measurement principle should

be applicable up to much larger magnetic flux densities beyond the capability of the Helmholtz

coil configuration (limited to approximately 10mT). One possibility to test the functionality

of the sensor at higher flux densities is to use permanent magnets. This permanent magnets

must be placed next to the sensor to keep the magnetic flux density constant, since magnetic

fields of permanent magnets decrease with ∼ 1/r3 and to guarantee a sufficient homogeneity

of the magnetic field along the lead at the tip of the cantilever. The strength of the permanent

magnet was choosen by the attraction force, which is specified by the distributor2. They are

based on neodymium iron boron (NdFeB), with a Ni-Cu-Ni-Au coating. The attraction force in

descending order is 5.8N, 8.0N, 13N and 17N. All of them have the same length of 10mm, but

different width’s with 4, 5 and 6mm. According to the normalization of the attraction forces,

linearity of the deflections is expected, which is depicted in Fig. 4.45.

Laser
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magnet

Vacuum chamber
with coated
gauge-glass

Helmholtz
coil

DUT

(a)

Permanent
magnetDUT

Delrin
holder

Stacked electronic circuit
for both electrodes
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Figure 4.44: Setup for the characterization of the device unter test (DUT) for magnetic flux

densities in the range of 100mT to 300mT.

2www.supermagnete.de (2012)
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Figure 4.45: Dependence of the vibration amplitude of the first symmetric mode (S1) on the

magnetic flux density in the range of 100mT to 300mT. The resonance is at frequency 4.360 kHz

and the driving current is 6.19μA

4.6 Alternating field Measurements

Alternating magnetic fields can be detected in a very similar way to DC-fields. In the case of

an additional harmonic magnetic field component, B0 + B1 · sin(2πf1t), the Lorentz force FL

becomes

FL = [B0 +B1sin(2πf1t)] · i0sin(2πf0t) , (4.17)

which can be rewritten as

FL = B0i0 · sin(2πf0t)
+B1

i0
2
· [cos(2π(f1 − f0)t)− cos(2π(f1 + f0)t)] . (4.18)

The product of two sinusoidal terms produces harmonic Lorentz forces at the sum and difference

frequencies [136]. Therefore, the vibrating structure will be, e.g in fundamental resonance if one

of the three resulting frequencies f0 and f1 ± f0 is close to the fundamental resonance fr1.

The designed sensor has a measured resonance frequency of 4.359 kHz for the first sym-

metric and 11.313 kHz for the first antisymmetric mode. Fig. 4.47 emphasizes impressively the

linear relationship between the deflections of the structure vibrating at the fundamental mode

and the alternating magnetic field B1 was supplied by the Helmholtz coil.

This linear relationship is valid over several orders of magnitude for an effective current

through the lead of the cantilever of 56.3μA. The fit is nearly zero-centered, if a linear plot of
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Figure 4.46: Schematic setup of the characterization of the test structures.

Figure 4.47: Dependence of the vibration amplitude of the fundamental mode (S1) on the mag-

netic flux density with a frequency of 60Hz and the driving current is 56.29μA.
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the results is performed. Suggesting proportionality down to a few nT, despite of the significant

acoustical vibrations caused by the turbomolecular pump of the vacuum system. In principle

these vibrations limit the detection of the amplitude of the first symmetric vibration mode (see

Fig. 4.47).

The minimum detected amplitude of the capacitive readout signal corresponds to a vibration

amplitude of 27 pm, the maximum amplitude was 9.4 nm. By contrast, the capacitive signal for

the first antisymmetric mode (Fig. 4.48) is less sensitive than for the first symmetric mode. This

is a consequence of smaller displacements of the cantilever, where the minimum detected am-

plitude of 5 pm is significantly smaller than in the case of the fundamental mode. Nevertheless,

the sensitivity is once again linear over a wide dynamic range [137, 138].

Figure 4.48: Dependence of the vibration amplitude of the first antisymmetric mode (AS1) on

the magnetic flux density with a frequency of 60Hz and the driving current is 56.29μA.

4.7 Exclusively Optical DC Measurements

Because of the influence of the electrostatic force, which is one of the responsibilities for the

limitations regarding the resolution of the sensor, exclusively optical measurements were per-

formed, too. This enables a much simpler construction of device, which is shown in Fig. 4.49.

For the cancellation of unwanted external magnetic fields the custom built compensation

unit was used (see Fig. 4.23). To get rid of the frequency band of acoustical noise emitted by the

turbo molecular pump of the vacuum system nearby to the fundamental mode (fS1=4.443 kHz),
a higher harmonic vibrational mode of the test structure was used. The designed sensor has

a measured resonance frequency of 32.705 kHz for the second symmetric mode (S2). From

Fig. 4.50 it is obvious that the deflections of the structure vibrating at the second symmetric
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Figure 4.49: 4.49(a) Enlarged schematic top view of the U-shaped cantilever and 4.49(b)

schematic cross section of the test device used for optical measurements.

mode show a linear increase with the magnetic field generated by the surrounding Helmholtz

coil. This linear relationship is valid over a wide range, but the shown fit is not exactly zero

centered. The calculated remaining magnetic field offset is in the range of 266 nT. The reasons

of this offset can be the limited resolution of the 12-bit ADC and the offset of the ADC itself

that was a part of the control loop used for external field compensation [139].
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Figure 4.50: Dependence of the vibration’s amplitude of the second symmetric mode on the

magnetic flux density. The electrical current in the lead on the top of the structure was 22.75mA

and the resonance frequency is 32.705 kHz.

4.8 Pressure Dependence of the Quality Factor in Rarefied Gases

As explained in Chapter 2.3 and 2.3, two damping mechanisms, namely kinetic and squeeze-film

damping, dominate in the pressure-dependent transition regime with low Knudsen numbers. In

order to obtain data with significant as well as negligible squeeze-film damping several identical

structures like the micrograph depicted in Fig. 4.51 are produced. In the case of testing ex-

clusively kinetic damping the PCB underneath the vibrating structure is partially removed (see

Fig. 4.52).

Otherwise a fixed wall is placed 350μm (which conforms to the thickness of the handle

wafer) below the test-structure. Usually the lateral air slit is 100μm, whereat the influence of

different slit widths on the quality factor is tested in the transition regime. The used measurement

setup is identical with Fig. 4.17, where the micromachined cantilevers featuring a length of

2mm, a width of 1.5mm and a thickness of 20μm. The experimental data shown in Fig. 4.53

are compared with analytical solutions of the Eq. (2.113) and 2.108 on the one hand and with

the most recent stochastic model by Okada et al. on the other hand [140].

From Fig. 4.53 it is obvious that the assumptions of the free molecular flow are no longer

valid for Knudsen numbers in the range of 0.1 or smaller. The intermolecular collision frequency

increases with decreasing Knudsen numbers, where in Fig. 4.53(a) the Knudsen flow evolves

into the pressure-independent viscous flow [47]. Compared to that, there is a stronger structure-

molecular dependence observable in the results in Fig. 4.53(b) due to the smaller air slit.

This structure-molecular dependence increases with a fixed wall below the vibrating struc-

ture. The experimental data shown in Fig. 4.54 are similarly compared with analytical solutions

of the Eq. (2.113) and 2.108, but additionally with Eq. (2.111) and 2.114 because of the fixed
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Figure 4.51: Micrograph of the top view

of a cantilever with a typical air slit width

of 100μm.

Figure 4.52: Micrograph of a bottom view

with removed fixed wall below the test

structure.
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(a) Air slit width of 100μm. (b) Air slit width of 10μm.

Figure 4.53: Experimental and theoretical results of the pressure dependence of the quality

factor due to intrinsic and kinetic damping mechanisms of a cantilever with a length of 2mm

and a width of 1.5mm, and with two different widths of the air slit.
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Figure 4.54: Comparison of analytical models with measurement results for a cantilever featur-

ing a length of 2mm, a width of 1.5mm, an air slit of 100μm, and a fixed wall about 350μm

below the cantilever.

wall below the cantilever. In Fig. 4.54 the uncertainty is mainly determined by the lack of

knowledge of the equilibrium distance d between the vibrating structure and the fixed wall. It

is assumed that this distance corresponds to the thickness of the handle wafer, which is 350μm

with an estimated uncertainty of 10%. The red dotted curve depticted in Fig. 4.54 represents

exclusively kinetic damping. Evidently, squeeze-film damping according to Eq. (2.111) is the

second dominant damping mechanism in the transition regime, where the modeled quality factor

Q perfectly matches the experimental data [122].



CHAPTER 5
Conclusion

The experimental focus of this thesis was the development of a resonant MEMS magnetic field

sensor featuring a capacitive readout. A Lorentz-force actuated cantilever used as a magnetome-

ter detecting both static and alternating magnetic fields has been designed, built, and charac-

terized. Therefore, a microsystem has been created, laying emphasis on both the optimization

of the sensitivity of the mechanical resonator and the characterization of the sensor over many

orders of magnitude. This sensor is a result of a novel hybrid design, realized with two inde-

pendent wafer (silicon and Pyrex), which are mounted on top of each other with a custom SU-8

bonding process. All processes steps are on wafer level, except the contacting with the silver

conductive paste.

The frequency-selective measurement method of mechanical oscillations provides an alter-

native to the common broadband measurement techniques. The transducer measures at reso-

nance, where it efficiently filters a certain spectral range of the excitation signal because of the

considerable resonant enhancement. A main advantage of this technique is the improvement of

the signal-to-noise ratio (SNR) due to the resonance enhancement. If the interfering frequency

components do not match the resonance frequency, they are effectively suppressed by the trans-

ducer. With a careful design, resonators made of monocrystalline silicon can reach remarkable

high quality factors of the order102 to 104. Thereby, possible loss mechanisms must be identi-

fied, analyzed and interpreted. To observe them apart from each other is one of the challenges of

this work, where emphasis was laid on the damping behavior in rarefied gases. A comprehensive

study of the damping of monocrystalline silicon cantilevers in different rarefied gas regimes is

presented and experimentally verified with the use of a micromotion analyzer. It was demon-

strated that two damping mechanisms, namely kinetic and squeeze-film damping, dominate in

the pressure-dependent transition regime with low Knudsen numbers in the range of 0.02 to 10.

Both damping mechanisms are derived from the assumptions of a free molecular flow, avoiding

a priori phenomenological presumptions.

The oscillation signal is measured optical as well as capacitive. The electrostatic force im-

posed by the sensing electrodes and acting on the effective mass of the oscillating cantilever

decreases the resonance frequency, where the stability of such structures is deteriorated by the
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occurrence of strong electrostatic softening mechanism. Besides fundamental properties such

as the resonance frequency or the band width of the resonance peaks, nonlinearities were an-

alyzed, to develop guidlines for the improvement of the transducer’s sensitivity. Ideally, the

resonance frequency is independent of the vibration’s amplitude, but in a nonlinear systems like

the cantilever with an amplitude-dependent electrostatic force, the resonant frequency depends

on the operating conditions and the amplitude response can exhibit hysteresis phenomena. Ad-

ditionally to the excitation of the mechanical structure at its natural resonance, higher modes

are also possible, allowing to suppress acoustic interferences. For the development of the whole

microelectromechanical system a comprehensive characterization of the structures is necessary.

The analog signal acquisition is based on the evaluation of the readout capacitor with a high

impedance source follower enabling low system nonlinearity. The operating range regarding the

magnetic flux density can be varied over several orders of magnitude.

Moreover, a magnetic field compensation system has been designed to suppress spurious ex-

ternal fields and to permit a characterization of the sensor at small disturbances of the magnetic

field at DC and low frequencies. The automatic triaxial compensation system enables a char-

acterization of the newly designed MEMS resonant magnetic field sensor at field comparable

with the lower bound of ambient magnetic fields. Finally, the sensor was characterized over a

range of seven orders of magnitude both by optical and by capacitive oscillation transduction.

Thereby, the sensitivity remains constant with an uncertainty of less than a few percent and keeps

its validity for both the fundamental and higher modes.

Table 5.1: Specifications of the Lorentz force actuated resonant MEMS-magnetic field sensor

(fr/S2=32.077 kHz, driving current: 561μA, ambient pressure: 0.2 Pa and TA=25 °C).

Parameter capacitive optical

Measurement range 5μT to ∼ 300mT

Resolution 300 nT

Linearity better than resolution

Temperature characteristics -27 ppm/K

Sensitivity 34mV/T 1μm/T

The test results are in good agreement with the thereby obtained theoretical knowledge. De-

viations are within the theoretically assessable uncertainties, where the most important reasons

are manufacturing tolerances and reasonable model simplifications. This thesis shows that the

capacitive read-out limits the achievable sensitivity of the system. The hypothesis was that if the

magnitude of external magnetic field densities is too small to detect, an increase of the current

on the lead will improve the deflection of the cantilever due to the Lorentz force. However,

this measurement strategy leads to an increase of the electric voltage drop, which finally causes

nonlinearities of the transducer, depending on the actual arrangement of the capacitive read-out

electrodes. These nonlinearities can reach any complexity, which restricts the sensitivity of the

sensor significantly. Another limitation arises through the dependence of the sensitivity of the

resonator on the mechanical quality factor. To minimize extrinisic damping mechanisms, like

gas damping, the device unter test is typically placed in a vacuum chamber. Acoustic coupling
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to the environment and vibrations of pumping system introduced are the main sources of noise

for the device. Further work should aim to improve the sensitivity without operating in rarefied

gas regimes and to minimize the complexity of the transducer, with the goal of a full integration

of the mechanics and the electronics.

One significant advantage of a single Lorentz force actuated resonant sensor compared to a Hall

sensor or a fluxgate sensor is the large dynamic range (see Table 5.1). This is a consequence

of the transducer principle, by adaptation of the current according to the external magnetic flux

density. However, the complexity of this capacitive detection method due to the electrostatic

reaction forces limits the applicability of this sensor in an industrial environment.
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