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Abstract

Surface-active ionic liquids based on imidazolium cations are promising targets for

micellar catalysis in aqueous solution, yielding enhanced rate constants compared to

surfactants based on n−alkyltrimethylammonium cations and exhibiting a pronounced

counterion dependence.1,2 Probably most relevant to that is the interplay of headgroup

hydration and counterion binding. To get more detailed information on these effects

aqueous solutions of 1-dodecyl-3-methylimidazolium ([C12MIM]) bromide, iodide

and triflate (TfO−) were investigated at 45 °C using broadband dielectric spectroscopy,

viscosity measurements and small-angle X-ray scattering experiments. Effective hydra-

tion numbers were determined and information on the location and mobility of the

condensed counterions, X−, was derived. It turned out that [C12MIM]-halide micelles
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were less hydrated than corresponding n-dodecyl-trimethylammonium ([C12TA]X) ag-

gregates. Together with their somewhat weaker counterion condensation this probably

explains their higher catalytic activity. Whilst [C12MIM]Br micelles remained roughly

spherical in the studied concentration range, rod-like aggregates were formed at high

concentrations of the iodide and in particular the triflate surfactant. It appears that the

much lower mobility of condensed TfO− counterions is the reason for the very low

catalytic activity of [C12MIM]TfO micelles.

Introduction

Since the discovery of ionic liquids (ILs) by Paul Walden in 1914,3 these compounds con-

tinue attracting the attention of chemists around the world. Defined as salts melting below

100 °C,4 their unique physico-chemical properties, such as negligible vapor pressure, high

thermal and chemical stability, low flammability and high charge density,5,6 have aroused

increasing industrial and fundamental interest. Possible applications of ILs range from

their use as alternative solvents in extraction/separation, electrochemical and catalytical

processes to materials engineering.5,7 Research into that direction is mainly focused on

pure ILs or on situations where these compounds are a major mixture component but also

dilute IL solutions are gaining increasing interest.8–10

Due to their structure, consisting of a hydrophobic residue —often an alkyl chain—

attached to a charged moiety, many ions used as building blocks of ILs are amphiphilic

and thus prone to self-association,11 including the formation of micelles in dilute aqueous

solution.9,12 Typical examples of such surface-active ionic liquids (SAILs), which form

micelles for n ≥ 8, are 1-alkyl-3-methylimidazolium ILs, [CnMIM]X, where X is the anion

and n the number of carbon atoms in the alkyl chain.13–16 In that respect but also from

a structural point of view they resemble n-alkyl-trimethylammonium salts, [CnTA]X, a

classical family of cationic surfactants17 serving here as a convenient reference.

Recent studies revealed the outstanding performance of [C12MIM]X SAILs in mi-
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cellar extraction processes18,19 and for the micellar catalysis of Diels Alder reactions,1

oxidations20–22 and nucleophilic substitution (SN) reactions.2 In the latter case, a marked

influence of the anion on the reaction rate constant, k, of a model SN reaction was observed,

with k(Cl−) > k(Br−) > k(I−) > k(TfO−
) (TfO− - triflate, trifluoromethanesulfonate). For

charged micelles to be stable counterions have to condense on their surface, reducing thus

Coulomb repulsion between the surfactant headgroups.23 Therefore, it is reasonable to

assume that the anion effect observed for k is related to the extent and also the strength of

counterion binding on the micellar surface. For the latter not only the Coulomb interac-

tions between the anions and the cationic surfactant headgroups are relevant but also the

hydration of both.

Broadband dielectric relaxation spectroscopy (DRS) probes the interaction of the sample

with a small-amplitude electromagnetic field and thus provides information on the struc-

ture and collective dynamics of the studied system.24 This technique has proven to be a

very useful tool for the investigation of solute-solute, solute-solvent and solvent-solvent in-

teractions in systems ranging from pure dipolar fluids25 to electrolyte solutions.26,27 In the

case of ionic surfactant systems DRS allows the determination of effective hydration num-

bers and —via micelle-specific modes— yields insights into the location and mobility of

condensed couterions.28–33 Accordingly, we present in this contribution a dielectric study

of aqueous solutions of the SAILs 1-dodecyl-3-methylimidazolium bromide ([C12MIM]Br),

1-dodecyl-3-methylimidazolium iodide ([C12MIM]I) and 1-dodecyl-3-methylimidazolium

trifluoromethanesulfonate ([C12MIM]TfO) at 45 °C to elucidate the impact of different

counterions on the dynamics and hydration of the formed micelles. Measurements cov-

ered the concentration range cmc < c < 250 mM (i.e. 10−3 mol/L) where cmc is critical

micellar concentration (Table 1). The triflate counterion was chosen as it exhibited the

lowest reaction rate constant in the investigation of Cognigni et al.2 on micellar catalysis.

Although the Br− ion yielded only the second fastest rate in the latter study, it was preferred

over Cl− for the present investigation as dielectric data for dodecyl-trimethylammonium
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bromide ([C12TA]Br) were available for comparison.28,29,32 The rate constant for I− was

intermediate to those of Br− and TfO−. Additionally, dielectric measurements of selected

samples were performed in the temperature range of (25 to 65) °C to determine Eyring

activation enthalpies and entropies of the observed relaxation processes.34 These investi-

gations were complemented by viscosity measurements and small-and-wide-angle X-ray

scattering (SWAXS) experiments to gain further information on the aggregation behavior.

Experimental

Materials. Except for 1-bromdodecane, which was distilled at 170 °C under reduced pres-

sure (55 mbar), all chemicals required for the synthesis of the surfactants were used as re-

ceived. The halide-based imidazolium ILs were synthesized by reacting 1-methylimidazole

(Carl Roth, ≥ 99%) with a slight molar excess (1.2 equivalents) of the appropriate 1-halo-

dodecane (Sigma-Aldrich, > 97%).35 After the reaction [C12MIM]Br was recrystallized

three times from ethyl acetate (Acros Organics, 99.97%), whereas toluene (VWR Chemicals,

≥ 99.5%) was used to recrystallize [C12MIM]I thrice. The latter compound was subse-

quently washed three times with n-hexane (VWR Chemicals, 99%). In both cases colorless

crystalline solids were obtained which were then dried at room temperature under re-

duced pressure (p ≤ 2 ⋅ 10−6 bar) over P2O5 (Siccapent, Merck) as a desiccant for four days.

The water content determined by Karl Fischer titration was found to be < 370 ppm for

[C12MIM]Br and < 70 ppm for [C12MIM]I.

[C12MIM]TfO was prepared according to ref. 2. The required chemicals methyl tri-

flouromethane sulfonate and dichlormethane were acquired from Carbolution Chemicals

(97 %) and Acros Organics (> 99.8%) respectively. N-dodecylimidazole was synthesized

as described by Souza et al.36 and subsequently distilled at 140 °C under 3 ⋅ 10−5 bar. The

freshly synthesized [C12MIM]TfO was washed four times with n-hexane (VWR Chem-

icals, 99%) to give a colorless solid which was subsequently dried under high vacuum
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(p ≤ 10−8 bar) at 45 °C for four days. The water content of the final product was < 260 ppm.

For all synthesized ILs purity was checked by 1H-NMR, 13C-NMR and elemental

analysis. The water used for sample preparation was purified with a Millipore Q-MILLI

purification unit and showed a specific electrical resistance of ≥ 18 MΩcm. Aqueous

[C12MIM]X solutions of solute molality, m (in mol⋅kg−1 solvent), were prepared gravimet-

rically without buoyancy correction.

Auxiliary Measurements. To obtain the molar solute concentration, c (in mol⋅L−1 =M),

of the sample of molality m solution densities, ρ, were determined with an Anton Paar

DMA 5000 vibrating tube densimeter having 5 ⋅ 10−6 g⋅cm−3 nominal uncertainty and

0.005 K temperature stability. Viscosities, η, of the micellar solutions were obtained with an

Anton Paar AMVn rolling ball viscometer having an uncertainty of 0.05 K in temperature,

T, and a relative uncertainty of 0.02 in η. The electrical conductivity, κ, of the samples used

for DRS was determined with the equipment described previously, having a temperature

uncertainty of 0.005 K and a relative uncertainty in κ of 0.015.37 The thus obtained data for

ρ, η and κ are summarized in Tables S1-S6 of the Supporting Information.

Additionally, the critical micellar concentration, cmc, of the three surfactants in water at

(45.0± 0.1) °C was determined by conductivity measurements with a WTW inoLab Cond

730 conductivity meter. The cmc was obtained from the intersection of the two straight

lines observed for κ(c) at c < cmc and c > cmc respectively (Figure S1 of the Supporting

Information). The obtained cmc values and the degree of counterion binding, β, estimated

from the ratio of the slopes above and below cmc,38 are presented in Table 1. As expected

for ionic surfactants,23 the cmc decreased with increasing β, i.e. decreasing headgroup

repulsion, yielding the anion sequence Br− > I− > TfO−. The obtained data for cmc and β

compare reasonably with literature values for 25 °C, except for the rather small β value

published for [C12MIM]TfO (Table 1).1

Small-and-wide angle X-ray Scattering. Small-and-wide-angle X-ray scattering (SWAXS)

is one of the most established methods to examine the mesoscale structure of soft matter.
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The instrumentation used for the present SWAXS measurements was described in details

elsewhere.39 The scattered intensities were recorded as a function of the magnitude of the

scattering vector, q = [(4π)/λ] × sin(θ/2), where λ is the wavelength of incident radiation

and θ the scattering angle. Quartz capillaries of 2 mm diameter were used as sample

containers. The usual corrections for the background (empty cell and detector noise) and

an intensity normalization, using a high-density polyethylene film as a standard, were

applied. Silver behenate in a sealed capillary was used to calibrate the scattering vector.

The experimental resolution was ∆q/q = 0.05. All measurements were performed at room

temperature. The FIT2D software40 was used for data analysis.

Table 1: Critical micelle concentrations, cmc, and degrees of counterion binding, β, of the
investigated SAILs at 45 ○C in comparison with literature data.

45 ○C 25 ○C

SAIL cmc / mM β cmc / mM β

[C12MIM]Br 10.03 0.64 10.29a 0.70a, 0.75b

[C12MIM]I 7.13 0.78 5.19a 0.84a, 0.85b

[C12MIM]TfO 3.58 0.80 3.31a 0.73a

a taken from Ref. 2; b taken from Ref. 41.

Dielectric Relaxation Spectroscopy. DRS probes the macroscopic polarization of a

sample induced by an applied electric field of frequency ν.24 This response is conveniently

expressed in terms of the generalized complex permittivity42

η̂(ν) = ε̂(ν) −
iκ

2πνε0
= ε′(ν) − i[ε′′(ν) +

κ

2πνε0
] (1)

In eq 1, ε′(ν) is the relative permittivity of the sample and ε′′(ν) the associated dielectric

loss; ε0 denotes the permittivity of vacuum. The last term in the equation describes energy

dissipation arising from the dc (ν = 0) conductivity, κ, of the sample whereas the complex

permittivity, ε̂(ν) = ε′(ν) − iε′′(ν), comprises all contributions that explicitly depend on
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frequency and thus provides information on the cooperative dynamics of the investigated

system.

The generalized permittivity was recorded in the frequency range of 0.02 ≤ ν/GHz ≤ 89.

For ν ≤ 50 GHz a frequency-domain reflectometer was used. This setup is based on an

Agilent E8364B vector network analyzer (VNA) in combination with two open-ended

coaxial dielectric probes, Agilent 85070E-20 (0.2-20 GHz) and 85070-50 (5-50 GHz),43 and a

coaxial cut-off cell for 0.02-1 GHz. For 60 ≤ ν/GHz ≤ 89 a waveguide interferometer with

variable-pathlength transmission cell was used. For all three surfactants ε̂(ν) was recorded

as a function of solute concentration in the range cmc ≲ c ≲ 260 mM at the temperature of

318.15 K. Additionally, for each SAIL one of these solutions ([C12MIM]Br: 0.1033 mol⋅kg−1,

corresponding to c = 99.2 mM at 318.15 K; [C12MIM]I: 0.1038 mol⋅kg−1/99.5 mM at 318.15 K;

[C12MIM]TfO: 0.0749 mol⋅kg−1/74.4 mM at 318.15 K) was studied as a function of tempera-

ture for 298.15 ≤ T/K ≤ 338.15. The temperature uncertainty of the dielectric experiments

was 0.05 K.

After concatenating the data obtained with the different instruments η̂(ν) was corrected

for dc conductivity to yield ε′′(ν). Where required, ε′(ν) was additionally corrected for

electrode polarization as described in ref. 24 (Fig. S2). For the thus obtained dielectric

spectra, ε̂(ν), the associated relaxation-time distribution function, P(τ), was determined

using Zasetzky’s method44 to restrict the number of relaxation models to be tested in

subsequent fits of ε̂(ν) with sums of n Havriliak-Negami equations.26 At c > cmc the

obtained P(τ) spectra, Figs. S3–S8, suggest the presence of four relaxations centered at

approximately 5 ps (corresponding to ∼30 GHz), 100 ps (1.5 GHz), 400 ps (0.4 GHz) and

1-3 ns (0.09-0.16 GHz) for all studied solutions. Subsequent testing of all possible models

with 2 ≤ n ≤ 5 assumed modes along the criteria described in detail previously25 revealed

that these spectra could be consistently fitted with a superposition of four Debye equations

ε̂(ν) =
4
∑
j=1

Sj

1+ i2πντj
+ ε∞ (2)
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In this D+D+D+D model Sj is the amplitude and τj the relaxation time of the modes

j = 1 . . . 4 resolved at increasing frequencies; ε∞ = limν→∞ ε′(ν) is the high-frequency per-

mittivity. The static relative permittivity of the sample is given as ε = ε∞ +∑Sj. Examples of

the dielectric spectra spectra and their fits are shown in Figs. 1-3. The obtained parameters

are summarized in Tables S7–S12.

Figure 1: Spectra of relative permittivity, ε′(ν) (▲), and dielectric loss, ε′′(ν) ( ), and
their fits with eq 2 (lines) of aqueous [C12MIM]Br solutions at 45 °C and concentrations
c = (0, 19.9, 49.4, 74.7, 99.2, 125.0, 173.8, 199.6 and 242.1) mM in arrow direction. For clarity
experimental data are only shown for selected samples.

For the three IL samples with c ≈ cmc mode j = 3 could not be resolved and also

S1 and S2 are very small and biased. Accordingly, the parameters of the D+D+D fit to

these spectra were not considered in the further analysis but their values are given in

Tables S7–S9 for completeness. Note that for higher concentrations the D+D+CC model,

i.e. two Debye functions for the micelle-specific modes and a symmetrically broadened

Cole-Cole function for the solvent, produced fits of a quality similar to the D+D+D+D

model. However, the derived hydration numbers were un-physical so that the D+D+CC

model was discarded.
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1

2

3

4

Figure 2: Dielectric loss, ε′′(ν) ( ), spectrum of 230.1 mM aqueous [C12MIM]I at 45 ○C and
associated fit with the D+D+D+D model (line). The shaded areas show the contributions
of the resolved modes, j = 1 . . . 4.

Results

Dielectric Spectroscopy

Assignment of Relaxation Modes. The dominating relaxation process at ∼ 30 GHz (τ3 ≈

5.4 ps) can be readily assigned to the cooperative (c) rearrangement of the H-bond network

of bulk-like water as for pure H2O at 45 ○C the corresponding relaxation time is τc =

5.33 ps45 and the present data for τ3 smoothly evolve from that value (Tables S7–S9).

Since the present spectra extend only to 89 GHz the fast (f) water mode (τf = 0.165 ps at

c = 0) could not be resolved but its presence is obvious from the obtained high-frequency

permittivity values (ε∞(c) ≈ 5) which significantly exceed the pure-water value (ε∞(0) =

2.78).

Upon surfactant addition a broad micelle-specific contribution appeared at c > cmc in

the 0.05 to 5 GHz region of the dielectric spectra (Fig. 1). This feature shifted to lower
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Figure 3: Dielectric loss, ε′′(ν) (symbols), spectra and their fits with eq 2 (lines) of aque-
ous solutions of 173.8 mM [C12MIM]Br ( ), 173.9 mM [C12MIM]I (▲) and 173.9 mM
[C12MIM]TfO (▼) at 45 °C.

frequencies when going from Br− to I− to TfO− (Fig. 3) and —as predicted by the theory

of Grosse46 for suspensions of charged colloids— was well described by two additional

Debye relaxations (Fig. 2). Accordingly, we assigned the lowest-frequency mode centered

at ∼ 0.1 GHz to fluctuations of the diffuse counterion cloud surrounding the micelles,

whereas the intermediate-frequency mode at ∼0.4 GHz was attributed to the hopping of

condensed counterions on the surface of the micelle.29,31

Only with the assumption of an additional weak mode, (S3, τ3), located between

the micelle-specific relaxations and the dominating contribution from bulk-like water

consistent sets of relaxation parameters as a function of concentration (Tables S7–S9) and

temperature (Tables S10–S12) could be obtained. Due to its small amplitude, S3 < 3, the

obtained parameters were very noisy and in some cases τ3 had to be fixed in the fit to get

reasonable S3 values. Despite the large variation of τ3 with the anion and (partly) with c

and T we assign this relaxation to retarded (slow) H2O molecules hydrating the micelles

for the reasons discussed below.
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The contribution of free SAIL cations to the dielectric spectra could be neglected as

their concentration is comparable to the cmc and thus very low.47 Also the contribution of

free triflate anions is negligible.48

Eyring Activation Parameters. The relaxation times, τj (j = 1 . . . 4), of the solutions

investigated as a function of temperature in the range 298.15 ≤ T/K ≤ 338.15 (Tables

S10–S12) were fitted to the Eyring equation34

ln(τj/s) = ln(
h

kBT
) −

∆S≠

R
+

∆H≠

RT
(3)

where the activation entropy, ∆S≠, and the activation enthalpy, ∆H≠, were assumed to

be independent of T; h, kb and R have their usual meaning. The obtained activation

parameters are summarized in Table 2; corresponding fits are shown in Figs. S9-S11. The

results for τ3 have to be taken with a grain of salt as the amplitude of this mode is very

small. Therefore, not only S3 but also the corresponding relaxation time is very sensitive to

experimental error. For some spectra values of τ3 (open symbols in Figs. S10 & S11) even

had to be fixed to get reasonable fits with eq 2, which obviously might bias ∆H≠ and ∆S≠.

In line with current understanding of water dynamics, which assumes jump reorienta-

tion via a triangular transition state,50 not only the activation enthalpy for the cooperative

water relaxation but also the corresponding entropy was found to be positive for the three

investigated SAIL solutions. Within experimental uncertainty ∆S≠(τ4) and ∆H≠(τ4) are

independent of the anion but both quantities are somewhat reduced compared to pure

water.51 Thus, all three solutes facilitate bulk-water reorientation to some extent. Almost

certainly, this is mainly due to the labile hydration shells of the present anions, Br−,52

I−,50,52 and TfO−,53 which cannot be distinguished from bulk water by DRS.26

Activation enthalpy and entropy of the slow-water mode strongly depend on the anion.

Both quantities decrease in the sequence Br− < I− < TfO−. Although other possible sources

for the pronounced change of τ3 with temperature, in particular for Br−, cannot be excluded
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Table 2: Eyring activation enthalpy, ∆H≠, and activation entropy, ∆S≠, of relaxation times,
τj(T) (j = 1 . . . 4), of the solutions investigated as a function of T.

system τj
∆H≠

kJ mol−1
∆S≠

J mol−1K−1

water τb
a 15.9± 0.2 20.4± 0.7

[C12MIM]Br τ1 20± 6 −8± 18
b = 0.1033 mol/kg τ2 20.6± 0.8 −2± 3
(99.2 mM at 45 °C) τ3 71± 10 174± 31

τ4 14.0± 0.4 14.1± 1.2
[C12MIM]I τ1 10± 3 −44± 8
b = 0.1038 mol/kg τ2 13.7± 0.8 −20± 3
(99.5 mM at 45 °C) τ3 19.8± 1.4 17± 4

τ4 14.0± 0.5 14± 2
[C12MIM]TfO τ1 15± 2 −38± 6
b = 0.0749 mol/kg τ2 15± 3 −21± 9
(74.4 mM at 45 °C) τ3 13± 3 −14± 10

τ4 13.6± 0.3 12.8± 1.1
a Ref. 49.

the data appear to be reasonable (see Discussion).

The activation parameters obtained for the two micelle-specific modes are not very

reliable but trends can be noted from Table 2. For both relaxation times, τ1 & τ2, the

sequence I− < TfO− < Br− was found for ∆H≠. On the other hand for bromide ∆S≠ is

negligible for both micelle relaxations whereas for the other two anions the activation

entropies are clearly negative and similar in magnitude, with ∆S≠(τ1) ≈ 2∆S≠(τ2).

Water Relaxation and Hydration Numbers. The amplitudes, Si, of relaxation pro-

cesses associated with the reorientation of molecular dipoles can be analyzed with the

equation
ε + Ai(1− ε)

ε
Si =

NAci
3ε0kBT

⋅ µ2
eff,i (4)

where ci is the molar concentration of the involved species, i, µeff,i its effective dipole

moment and Ai the associated cavity field factor; NA is the Avogadro constant.27 For
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water molecules the assumption of a spherical cavity, A = 1/3, is reasonable and for the

evaluation of solvent modes normalization to the pure state is convenient as it allows

elimination of µeff,i.

For water the fast jump reorientation of a molecule, probably associated with the

fast relaxation (τf = 165 fs at 45 °C), and the subsequent settling of the H-bond network

and waiting for the next jump, governed by τc = 5.33 ps, form a continuous sequence

of events and accordingly the sum of both amplitudes, Sb = Sc + Sf, has to be evaluated

with eq 4.27 This is also the case for solution spectra. Since no fast water mode was

resolved from the present solution spectra the amplitude of bulk water was approximated

as Sb(c) = S4(c) + ε∞(c) − ε∞(0).

Figure 4: Static permittivity of the solution, ε (▲), and corresponding contribution of
water, εw = ε − S1 − S2 (#), for aqueous [C12MIM]Br solutions at 45 °C. Also shown are the
corresponding amplitudes of bulk, Sb ( ), and slow water, S3 (▼). Lines are a guide to the
eye, with the dash-dotted line highlighting the linear increase of S3 at c ≤ 125 mM and the
vertical line indicating the cmc.

From Sb the concentration of bulk-like water, cb, can be obtained whereas S3 yields

the concentration of moderately retarded (slow) solvent, cs. These quantities then allow
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calculating the total effective hydration number, Zt = (cw − cb)/c (cw is the analytical

solvent concentration), and the number of retarded H2O molecules per equivalent of

solute, Zs = cs/c.26,27 The difference Zib = Zt −Zs gives the number of water dipoles which

are so strongly impeded (irrotationally bound, ib) in their rotation that they disappear

from the spectrum.

A problem with the direct calculation of Zt and Zs is that with decreasing solute

concentration their uncertainties strongly increase as the amplitude error remains constant

whereas (cw − cb) respectively cs get smaller and smaller. However, for all three SAILs

investigated Sb decreases linearly with solute concentration (Fig. 4). Additionally, S3

increases linearly over the entire range investigated for [C12MIM]I and [C12MIM]TfO. For

[C12MIM]Br this is only true for c ≤ 125 mM (Fig. 4). Since also solution density, ρ, and

conductivity, κ, exhibit straight lines over the entire concentration range it is convenient to

focus on the well-defined slopes of these quantities. To do so, eq 4 was rearranged to give

the c → 0 limit

Z0
t = lim

c→0
(

dcw

dc
) − lim

c→0
(

dceq
b

dc
) (5)

where

lim
c→0

(
dcw

dc
) = [lim

c→0
(

dρ

dc
) − M] /Ms (6)

with M and Ms as the molar masses of solute and solvent, and

lim
c→0

(
dceq

b
dc

) =
cw(0)
Sb(0)

× [lim
c→0

(
dSb

dc
) + ξ × lim

c→0
(

dκ

dc
)] (7)

In this approach the second summand in eq 7, with

ξ = p ×
ε(0) − ε∞(0)

ε(0)
×

τ(0)
ε0

(8)

corrects for kinetic depolarization assuming slip boundary conditions (p = 2/3) for ion

transport.54 Similarly, for linearly increasing S3 the low-c limit of the slow-water solvation
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number is given by

Z0
s = lim

c→0
(

dcs

dc
) =

cw(0)
Sb(0)

× lim
c→0

(
dS3

dc
) (9)

Obviously, for [C12MIM]Br at c > 125 mM values for Zs(c) had to be calculated directly as

described in detail in Ref. 27.

Figure 5: Total hydration number, Zt (broken line), and associated standard uncertainty
(shaded area) of [C12MIM]Br in aqueous solution at 45 °C. Also indicated is the correspond-
ing number of slow (retarded) H2O molecules per equivalent of solute, Zs, obtained with
eq 9 from the slope dS3/dc for c ≤ 125 mM (solid line; on top of Zt) and directly calculated
values ( ).

Table 3 summarizes the obtained Z0
t and Z0

s values. Figure 5 compares for [C12MIM]Br

the result obtained with eq 9 for c ≤ 125 mM with directly calculated Zs values for the entire

concentration range. For [C12MIM]Br up to 125 mM and for all [C12MIM]TfO solutions

Z0
t = Z0

s within experimental uncertainty. On the other hand, for [C12MIM]I Zib ≈ 6 at all

studied c and for [C12MIM]Br the number of strongly bound water molecules, Zib = Zt −Zs,

increases from zero at c ≤ 125 mM to ∼ 6 at 242 mM whilst the total hydration number
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Table 3: Effective total hydration numbers, Z0
t , and numbers of slow (moderately retarded)

water, Z0
s , of the investigated [C12MIM]X surfactants at 45 ○C and of comparable [C12TA]X

surfactants from the literature.

[C12MIM]X [C12TA]X

X− Z0
t Z0

s Z0
t Z0

s

Br− 10.4± 1.4 10.4± 0.6 22± 3 a 12± 2 a

21± 3 b 11± 2 b

I− 11.8± 0.7 5.8± 0.3
TfO− 10.2± 0.7 9.2± 0.4 11± 2 b not detectedb

a At 25 °C;28 b at c = 0.1 M and 45 °C.32

remains constant (Fig. 5).

Solute Relaxation. The micelle-specific relaxations 1 & 2 were analyzed using Grosse’s

theory for charged colloids.46 This model considers a dispersion of charged spherical

particles of radius, RG, and relative permittivity, εP, suspended in a medium of relative

permittivity, εM, and dc conductivity, κM. An infinitely thin conducting layer with surface

conductance λS, resulting from the lateral motion of condensed counterions, is assumed

to be located at the surface of the charged particle. The latter is surrounded by a diffuse

spherical cloud formed by the remaining dissociated (free) counterions and characterized

by its Debye length, which in this model is approximated as

χ−1 =

√
ε0εMD

κM
(10)

D is the diffusion coefficient of the free counterions.

Grosse showed that such a system exhibits two distinct dielectric relaxation processes

and for small particle volume fractions, φ ≪ 1, assuming RG ≫ χ−1, he obtained an-

alytical expressions for the amplitudes and relaxation times of both processes.46 The

lower-frequency mode, j = 1 of this study, arises from fluctuations of the diffuse ion cloud
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with relaxation time

τ1 ≈
R2

G
D

(11)

and amplitude

S1 =
9φεM (

2χλS
κM

)
4

16 [
2χλS
κM

(
2λS

κMRG
+ 1) + 2]

2 (12)

The higher-frequency mode, j = 2, is due to the tangential hopping motion, expressed

as surface conductance, λS, of condensed counterions on the surface of the particle, located

at RG. Its relaxation time is given by

τ2 =
ε0εM (

εP
εM

+ 2)

κM (
2λS

RGκM
+ 2)

(13)

and the corresponding amplitude is

S2 =
9φεM (

2λS
RGκM

−
εP
εM

)
2

(
εP
εM

+ 2) (
2λS

RGκM
+ 2)

2 (14)

The Grosse model assumes RG as the effective radius of the micelle, i.e. also the layer

occupied by the condensed counterions and the solvent therein is attributed to the micelle.

Thus the corresponding volume fraction of micelles in the solution is given by

φ =
4
3

πR3
GNA ⋅

c − cmc
N

(15)

with N as the aggregation number. This view is supported by a recently published

combined DRS and SAXS study.55 The surface conductance can be directly linked to a

surface diffusion coefficient, DS, of the bound counterions by

DS =
4πkBTλSR2

G

βe2
0N

(16)
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where e0 is the elementary chargeand β was taken from Table 1.31

Using the experimentally acquired relaxation parameters (τ1, S1, τ2, S2) as input data

either all four equations of the Grosse model, eqs 11-14, or selections of them were si-

multaneously solved in a weighted fit (see Supporting Information for details) to yield

the micelle-specific parameters Grosse radius, RG, aggregation number, N, and surface

conductance, λS. In this procedure the conductivity of the medium, κM, was set equal

to the dc conductivity of the solution, i.e. κM = κ(c). For the relative permittivity of the

medium the value of pure water at 45 °C, εM = 71.523, was taken whereas εP = 2, typical for

pure liquid hydrocarbons was assumed.56 The diffusion coefficients of the free counterions,

of charge number z = −1, at 45 °C were calculated according to

D =
RT
F2 ⋅

λ∞

∣z∣
(17)

from their ionic conductivities at infinite dilution, λ∞, using published 25 °C values for

the anions56,57 scaled to 45 °C using Walden’s rule.58 In eq 17 F is the Faraday constant.

Obtained values for D are (3.32, 3.26 & 1.89)×10−9 m2s−1 for Br−, I− & TfO− respectively.

Table 4: Grosse radius, RG, aggregation number, N, surface conductance, λS, surface
diffusion coefficient, DS, of the condensed counterions, and ratio DS/D of the diffusion
coefficients of condensed and free counterions for the investigated [C12MIM]X micelles at
45 °C and for comparable [C12TA]X micelles from the literature.

.

surfactant
RG

10−9m
N

λS

10−9Ω−1
DS

10−9m2s−1 DS/D

[C12MIM]Br 1.83 29 3.59 1.40 0.42
[C12MIM]I 2.32 72 3.64 0.76 0.23
[C12MIM]TfO 2.88 180 2.05 0.26 0.14
[C12TA]Br 2.17a 47a 2.43a 0.64b 0.32b

2.26c 52c 3.00c 1.08c 0.37c

[C12TA]TfO 2.21c 55c,d 2.12c 0.45c 0.27c

a Ref. 29 and b Ref. 31, both for 25 °C; c Ref. 32 (45 °C); d N
fixed.
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Figure 6: (a) Experimental amplitudes, Sj, and (b) relaxation times, τj, of the micellar
relaxation processes j = 1 ( ) and j = 2 (▲) of [C12MIM]Br at 45 ○C. The correspondingly
colored lines represent the description with Grosse’s model when S1 is omitted in the fit.
The dash-dotted line gives the fit of S1 with adjusted Debye length, χ−1

emp.
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Figures 6, S12 & S13 show the outcome of these fits. For all three SAILs it turned out

that, similar to sodium dodecylsulfate (SDS) solutions,30 the Grosse model was not able

to capture S1 as the calculated amplitude had the wrong curvature. Additionally, τ1 was

largely overestimated when all four equations, eqs 11-14, were simultaneously solved,

see Fig. S12. Significantly better descriptions of τ1, τ2 and S2 were obtained when eq 12

was omitted. Since the Debye length only enters eq 12 and for SDS a good description

of S1 was obtained with an (albeit counter-intuitive) empirical modification30 of χ−1 it

is reasonable to assume that also for the present surfactants neither the conventional

expression58 for the Debye length nor Grosse’s modification, eq 10, is valid. Accordingly,

we focus the discussion on fits involving only eqs 11, 14 & 13, which yielded the Grosse

radii, RG, association numbers, N, and surface conductivities, λS, summarized in Table

4. However, note that with these RG, N and λS values also a good description of the

ion-cloud amplitude, S1, can be achieved if for the effective Debye length a concentration

dependence of the form

χ−1
emp = a0 + a1 × c (18)

is assumed (dash-dotted lines in Figs. 6, S12 & S13). The corresponding parameters, a0 &

a1, are summarized in Table S13.

In the case of [C12MIM]Br the amplitude S2 was well reproduced over the entire

concentration region (Fig. 6). However, for the other two surfactants S2 was systematically

overestimated at c ≳ 100 mM (Figs. S12 & S13). Similar deviations were found for [C12TA]X

solutions, albeit at significantly higher concentration.29 The relaxation time of the surface-

hopping mode, τ2, was always well met but in particular for the bromide the experimental

τ1 values exhibit a marked decrease with c, whereas the Grosse model predicts a constant

value.59 This contrasts the behavior of [C12TA]X and SDS solutions where the experimental

τ1 does not vary much.29,30,32
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Viscosity

Figure 7 reveals rather different rheological behavior of the three SAILs. The viscosity of

[C12MIM]Br solutions increases only weakly with concentration, whereas for [C12MIM]I

η considerably rises at c > 150 mM although the entire concentration range could still

be fitted with an exponential function. In contrast to that, the viscosity of [C12MIM]TfO

solutions rapidly takes off at c ≈ 30 mM, following a power law up to ∼ 100 mM but

then remains essentially constant. This suggest a gradual transition from spherical to

rod-like micelles for the iodide, whereas for the triflate this transition is much sharper and

apparently associated with a rapid growth of the average rod length.60 According to Kern

et al.61 the subsequent plateau of η indicates that for triflate the maximum rod length is

reached and orientational correlations among the micelles due to electrostatic interactions

now dominate rheology.

Figure 7: Viscosity, η, as function of solute concentration, c, of aqueous solutions of
[C12MIM]Br (▲), [C12MIM]I ( ) and [C12MIM]TfO (▼) at 45 ○C (lines as a guide to the eye,
with solid lines representing fits with exponential functions).
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Figure 8: Small-and-wide angle X-ray scattering spectra of aqueous (a) [C12MIM]Br, (b)
[C12MIM]I and (c) [C12MIM]TfO solutions at room temperature. I(q) is the absolute
SWAXS intensity. The contribution of water to I(q) was removed for clarity.

SWAXS

Figure 8 shows the obtained SWAXS spectra of aqueous [C12MIM]Br (panel a), [C12MIM]I

(b) and [C12MIM]TfO (c) solutions, where the peak at 20 nm−1 associated with the O–O pair

correlation of the solvent was subtracted for clarity. Due to the limited sensitivity of the

instrument and the low scattering contrast of [C12MIM]Br micelles against H2O, no change

in the intensity compared to water was observed for [C12MIM]Br at the solute concentration

of 20 mM but at 96 mM two weak oscillations at q ≈ 2 nm−1 and (just detectable) ∼4.2 nm−1

were found. Similar oscillations were also observed for iodide and triflate but much

stronger and rapidly increasing with concentration. Such a scattering pattern is indicative

for scatterers consisting of a core-shell system with excess electron density in the shell.62–64

For the present [C12MIM]X micelles this observation reflects the high degree of counterion

condensation, in particular for I− and TfO− (Table 1).

For [C12MIM]I and [C12MIM]TfO a strong rise of the scattering intensity was observed

at q < 1 nm−1 when m exceeded 50 mM (Fig. 8b & c). This indicated formation of objects

larger than ∼ 5 to 10 nm. Their average radius clearly exceeded the radius of ∼ 2.1 nm
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expected for a spherical micelle of [C12MIM]+ ions from geometry.65 Due to the limited

q range of our instrument the region of constant I(q) at q → 0 was not reached and thus

an unambiguous determination of the characteristic parameters of the scatterers impossi-

ble. Nevertheless, the obtained data support the inference from rheology of a transition

from spherical to ellipsoidal or even rod-like micelles with increasing concentrations

of [C12MIM]I and [C12MIM]TfO.62–64 For [C12MIM]Br solutions the very low scattering

length density difference between micelles and solvent prevented detection of the charac-

teristic low-q pattern by SWAXS but the small-angle neutron scattering study of Kusano et

al.66 provided clear evidence for the transition from spherical to ellipsoidal micelles also

for this SAIL. However, with Rmax/Rmin < 1.8 the axis ratio remained small for [C12MIM]Br

micelles. The latter finding probably explains the only moderate increase of the present

viscosity data with c.

Discussion

Hydration. The results presented in Table 3 and Fig. 5 show that the total hydration

numbers of all three SAILs are essentially the same and independent of concentration for

c ≤ 250 mM. By definition DRS hydration numbers, Zi (i =t, s & ib), refer to one equivalent

of solute and for salts are thus the sum of cation and anion contributions, Z+
i & Z−

i . The

present finding, Zt ≈ 10 . . . 12, already suggests that the hydration of free anions might be

negligible. Indeed, it is well known that the present anions are only weakly hydrated50,52,53

Accordingly, previous DRS studies yielded Z−
t = 0 for Br− 26 and I−.67 To our knowledge no

DRS data are available for TfO− but Z−
t ≈ 0 can probably also be assumed for this ion.32,53

The effective hydration numbers of Table 3 can thus be safely attributed to the micelles,

more exactly: to the polar region formed by the cationic headgroups and condensed

counterions. Interestingly, the present data significantly exceed the value of Z+
t ≈ 2 found

for the [C4MIM]+ cation, which does not form micelles.68 This indicates a significant
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degree of cooperativity in the hydration of [C12MIM]+ micelles. With regard to the total

hydration number, Zt, this cooperative effect does obviously not depend on the condensed

anion. However, the amount of frozen water, expressed by Zib, varies markedly from

nil for the TfO− SAIL via increasingly relevant at c > 125 mM for Br− to permanently

present for I−. This clearly indicates that at least for the two halide SAILs bound water

molecules simultaneously interact with charged imidazolium headgroups of the micelle

and condensed counterions and thus get trapped.

In that context, it is interesting to note that according to MD simulations even at a molar

ratio of 1:200 of solute to solvent a significant fraction of the cations is still coordinated to

anions in aqueous [C4MIM]Br.69 In these solutions, where no micelles are formed, H2O

molecules act as a bridge between anion and cation. Indications for such cooperative

water binding by ion pairs also come from a Car-Parinello study70 of aqueous [C2MIM]Cl.

Additionally, the formation of ib water for [CnTA]-halide micelles was interpreted in

that way.28,32 Interestingly, however, the latter are much stronger hydrated than the

present imidazolium micelles, with Zt values of 20 to 27 and in particular Zib ≈ 10...14,

see Table 3. The large Zt values for [CnTA] halide micelles indicated penetration of H2O

molecules beyond the rather flexible headgroup layer,28,31 confirming thus information

from other methods on these surfactants.71–73 In contrast to that, Bhargava and Klein

found no water molecules and counterions inside the quasi-spherical cation aggregates

of [CnMIM]Br (n = 10, 12, 14, 16) forming spontaneously in their molecular dynamics

simulations.74 Apparently, the surface of [C12MIM]+ micelles is better “sealed” against

water penetration (and as a consequence presumably more rigid). A possible reason might

be π −π interactions among the planar imidazolium rings which were found to be relevant

for [C1MIM]Cl (albeit in the gas phase)75 and for [CnMIM]Br/p-xylene/water mixtures

with n = 12, 14 & 16.76 However, it must be noted that for binary aqueous [CnMIM]Br

solutions such interactions were only identified for n = 16.74

Interestingly, the Zt values of [C12MIM]TfO and [C12TA]TfO agree within error limits,
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Table 3. Based on information from various techniques, Lima et al. suggested that in the

case of [C12TA]TfO the slightly amphiphilic triflate anions insert into the headgroup layer,

leading to large disc-shaped micelles with a rather “sealed” surface in contact with the

solvent.32,33,77 Hydration is thus reduced here mainly for steric reasons. A similar situation

may apply also for [C12MIM]TfO although the observed rheology (Fig. 7) suggests rod-

like micelles for this surfactant. Obviously, DRS cannot directly monitor whether triflate

anions insert into the imidazolium layer but it is interesting to note that in contrast to the

other SAILs no ib water was found. Instead, the retardation factor, r = τ3/τ4 ≈ 18, for the

hydrating slow H2O molecules is rather large and independent of T and c. Their activation

enthalpy, ∆H≠(τ3), of this mode is similar to bulk water, thus the binding strength to

the micelle surface is similar to H2O-H2O interactions. On the other hand, the activation

entropy is definitely smaller than the bulk value, if not even negative (Table 2). This

suggests that —in contrast to the halide SAILs— for [C12MIM]TfO the large r value arises

from a shielding of the hydrating H2O against approaching new H-bond partners by the

micelles. Accordingly, τ3 is here dominated by the volume excluded to the rotation of

these water molecules.50

For the halide SAILs ∆H≠(τ3) > ∆H≠(τ4) (Table 2). Whilst for the iodide the activation

enthalpy of the slow-water relaxation exceeds the bulk-water value only by ∼40 % with

a moderate and roughly constant retardation factor of r ≈ 6, ∆H≠(τ3) is five times larger

for the bromide with a strongly T-dependent retardation factor, dropping from r ≈ 39

at 25 °C to ∼ 3.3 at 65 °C. For both SAILs the activation entropy of τ3 is clearly positive,

suggesting that the transition state for the rotation of these hydrating H2O molecules is less

“ordered”. Thus, hydrogen-bond breaking is probably involved in the rate-determining

step. Keeping in mind that, similar to aqueous [C4MIM]Br69 and [C2MIM]Cl,70 the

involved H2O molecules probably bind simultaneously to a cation in the headgroup layer

and a condensed anion sitting on top of that, this would also explain the high ∆H≠(τ3)

values. However, without detailed molecular-level information, e.g. from MD simulations
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or time-resolved vibrational spectroscopy, this remains speculation as does an answer to

the question why for I− ib water is observed over the entire concentration range whereas

for Br− this becomes detectably only for c > 125 mM. In any case, hydration seems to be a

“local” property of the micelle surface which does not reflect the apparently large variation

of micelle shape with c for [C12MIM]I and in particular for [C12MIM]TfO that is suggested

by the rheological behavior of these SAILs (Fig. 7).

Micelle Properties. The estimated Grosse radii, RG, and aggregation numbers, N,

rise in the order of [C12MIM]Br < [C12MIM]I < [C12MIM]TfO (Table 4). The surface

conductivities, λS, of the bromide and iodide SAILs are practically the same but that of

the triflate is significantly reduced. This is compatible with the assumption that, similar to

[C12TA]TfO,32,33,77 also for [C12MIM]TfO micelles the condensed anions are inserted in

the headgroup layer. Compared to their bulk values the diffusion coefficients of the anions

on the micelle surface are always considerably reduced, with DS/D decreasing in the order

Br− > I− > TfO−.

Grosse theory46 assumes micelles to be spherical, with RG giving the location of the

center of the condensed counterions relative to the center of the micelles. The Debye length

should be negligible compared to RG and micelle-micelle interactions absent. Clearly,

these conditions are not really met by the present SAIL solutions. The observed rheology

(Fig. 7) and the SWAXS data (Fig. 8) suggest non-spherical micelles for the iodide and, in

particular, for the triflate. Additionally, in the covered concentration range RG < χ−1 in all

cases. Even more, almost from the cmc the average center-to-center distance, d, of (assumed

spherical) micelles with aggregation number N (Table 4) is smaller than 2(RG + χ−1) (Fig.

9). Thus, ion clouds overlap and therefore micelle-micelle interactions are present. This

probably explains why the ion-cloud amplitude, S1, cannot be reproduced with eq 10

or the conventional expression58 for χ−1 but also raises the question how relevant the

present Grosse parameters, Table 4, are. As discussed below, it turns out that indeed useful

information can be extracted from the analysis of the two micelle-specific modes.
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Figure 9: Characteristic lengths in aqueous [C12MIM]Br solutions assuming spherical
micelles of aggregation number N = 29: micelle center-to-center distance, d; Debye length
according to eq 10, χ−1, and empirical value derived from S1 with eq 12, χ−1

emp; effective
micelle diameters, 2(RG + χ−1) and 2(RG + χ−1

emp).

For [C12MIM]Br a number of literature data on micelle size and shape are available.

Using luminescence quenching Vanyur et al.78 and Wang et al.79 reported N = 44, whereas

Šarac et al.16 determined a value of 16.82 with conductivity measurements. According

to the MD simulations of Bhargava et al.74 [C12MIM]Br forms quasi-spherical but rather

open aggregates with a most probable aggregation number of N = 22 at c = 716 mM.

This contrasts the small-angle neutron scattering (SANS) results of Kusano et al.,66 where

micelles change from spherical (N = 85.96) at 42.5 mM to ellipsoidal at c ≥ 91.6 mM,

reaching an axis ratio of 1.74 and an aggregation number of 154.3 at 1040 mM. With

∼2.0 nm the minor radius of the ellipsoid found in that study remains practically constant

and is somewhat shorter than the length of a stretched cation, 2.10 nm,80 but significantly

larger than the present RG value of 1.83 nm. Cognigni et al. did not report aggregation

numbers but deduced an effective radius increasing from 2.24 nm at 25 mM to 2.57 nm at

100 mM with constant core radius, ∼0.97 nm, for the spherical core-shell model fitted to
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their SAXS data.2

Obviously, the aggregation number of [C12MIM]Br micelles is not well known. In part,

this certainly reflects that reported values were determined at different concentrations but

certainly more relevant is the applied method. On the other hand, there seems to be con-

sensus on the spherical shape of [C12MIM]Br micelles close to cmc. According to Kusano et

al.66 the aggregates get more and more ellipsoidal with rising surfactant concentration but

even at 1040 M the micelles are far from cylindrical shape. This explains why viscosity rises

only weakly with c for this compound (Fig. 7) despite expected micelle-micelle interactions

(Fig. 9). In the concentration range covered by the present investigation, c < 250 mM,

the axis ratio of the ellipsoidal micelles reaches ∼1.6 at maximum.66 Apparently, this is

close enough to spherical for the assumptions of Grosse’s theory46 as amplitude, S2, and

relaxation time, τ2, of the mode solely governed by micelle-specific parameters (N = 29,

RG = 1.83 nm, λS = 3.59× 10−9 Ω−1) are well described by eqs 14 & 13 at all c (Fig. 6).

Compared to the data for [C12TA]Br (Table 4) the present values for N and RG of

[C12MIM]Br are rather low. In Fig. 10 the corresponding effective volume fraction of

micelles, calculated with eq 15 is compared with the result

φ(c) =
cb(cmc) − cb(c)

cw(0)
(19)

obtained from the DRS-detected concentration of bulk-like water, cb.28 Except for the high-

est concentration the two independent approaches yield the same φ values for [C12MIM]Br

micelles. A similar agreement was previously obtained for the much better characterized

[C12TA]Br micelles,31 lending thus credit to the Grosse parameters of Table 4 and the

assumption of essentially spherical aggregates up to 250 mM for this imidazolium SAIL.
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Figure 10: Effective volume fraction, φ, of [C12MIM]Br micelles in aqueous solution
calculated from Grosse radius, RG, and aggregation number, N, with eq 15 (solid line), and
independently from the bulk water amplitude, Sb, via eq 19 ( ).

Further support for the present RG and N values of [C12MIM]Br comes from the

favorable comparison of the associated effective monomer volume, Vm
G = (4πR3

G)/(3N) =

0.855 nm3 (Table 5) with the volume of the bare, Vm
φ = Vmic

φ /NA, and the hydrated monomer

Vm
φ,hyd = [Vmic

φ +Zt ×V○(H2O)] /NA (20)

calculated from the apparent molar volume of the surfactant in the micelle, Vmic
φ , and

the molar volume of water at 45 °C, V○(H2O) = 18.193 cm3mol−1 (Table 5).81 Note that

for [C12MIM]Br the difference between Vm
G and Vm

φ,hyd corresponds to a single additional

hydrating H2O molecule, which is within the uncertainty of Zt for this surfactant.

To the best of our knowledge no numerical information on the size and shape of

[C12MIM]I and [C12MIM]TfO micelles is available in the literature. Also the present

SWAXS data (Fig. 8) did not allow reliable extraction of this information. Using isothermal

titration calorimetry, Šarac et al.16 obtained aggregation numbers of 17.6 for the first and of
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Table 5: Effective monomer volume in the micelle from Grosse’s model, Vm
G , and molecular

volumes Vm
φ and Vm

φ,hyd calculated from the apparent molar volume of the micelle without
and with taking micelle hydration into account, see text.

.

surfactant
Vm

G
nm3

Vm
φ

nm3

Vm
φ,hyd

nm3

[C12MIM]Br 0.855 0.511 0.825
[C12MIM]I 0.726 0.532 0.889
[C12MIM]TfO 0.556 0.598 0.907

16.9 for the second SAIL but judging from the available data for the bromide surfactant,

see above, these numbers appear to be rather small. On the other hand, also the present N

and RG values (Table 4) for [C12MIM]I and in particular for [C12MIM]TfO are unrealistic

because only at low c the effective volume fraction of micelles, φ, derived from the bulk-

water amplitude, eq 19, agrees with that derived from the Grosse radius, eq 15. With

increasing concentration the values obtained from Sb grow considerably faster than those

calculated from the micelle relaxation (Figs. S14 & S15). By the same token, the effective

monomer volumes, Vm
G , calculated from RG and N are significantly smaller than the

Vm
φ,hyd values obtained from apparent molar volumes (Table 5). Since the Grosse model

also failed reproducing S2 at c > 75 mM for [C12MIM]I (Fig. S12) and c > 125 mM for

[C12MIM]TfO (Fig. S13), these observations are probably a consequence of the tendency

of these surfactants to form rod-like micelles, as suggested by their rheology (Fig. 7) and

SWAXS data (Fig. 8). Due to the limited data base no systematic study of the impact of

micelle shape on surface conductance, λS, and diffusion coefficient, DS, is possible yet but

almost certainly the values (Table 4) for [C12MIM]I and [C12MIM]TfO are unreliable at

c > 75 mM respectively 125 mM.

At 25 °C a linear correlation between the relative surface diffusion coefficient, DS/D,

and the degree of counterion dissociation, 1− β, was observed for [CnTA]X surfactants with

halide anions.31 Interestingly, the present data for [C12MIM]Br and [C12MIM]I together
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with those for [C12TA]Cl and [C12TA]Br at 45 °C32 form a straight line shifted parallel to

the room-temperature data (Fig. S16), whereas those for [C12MIM]TfO, [C12TA]TfO and

[C12TA]MS (MS: methylsulfate) are off, with both triflates in opposite directions. The in-

crease of DS/D with (1− β) appears reasonable as reduced counterion condensation means

more unoccupied and thus accessible binding sites for the hopping anions. [C12TA]TfO

micelles are disk-shaped with the triflate counterions inserted in the headgroup layer,73,77

whereas the present rheological data (Fig. 7) suggest rods for [C12MIM]TfO.60,61 This may

explain their opposing deviations in Fig. S16. In any case, for [C12MIM]TfO the surface dif-

fusion coefficient of the anion is significantly smaller than that of the two studied halides,

suggesting insertion of TfO− anions into the headgroup layer.

As already indicated, the ion-cloud amplitude, S1, cannot be reproduced with eq 10 or

the conventional expression58 for χ−1 (Figs. 6, S12 & S13). For micellar solutions of SDS it

was found that the assumption of a linearly increasing Debye length, eq 18, provided an

excellent description of S1 over the entire concentration range studied.30 This was also the

case for [C12MIM]Br, Fig. 6. For the two other SAILs the fit was excellent for c < 150 mM

but then the experimental S1 deviated from the prediction, Figs. S12 & S13. However, in

all three cases eq 18 predicts the correct concave curvature of the experimental data. The

intercepts, a0, and slopes, a1, obtained by fitting S1 with eq 12, using the RG and N values

of Table 4 as fixed input, are summarized in Table S13. Most noteworthy, this empirical

expression for χ−1 does not show the marked decrease with rising c expected from Debye

theory but a weak increase, reaching the values given by eq 10 only at c ≈ 200 mM (Fig.

9). As a consequence, the average separation, d, of the micelles exceeds the effective

micelle diameter, 2(RG + χ−1
emp), at c ≲ 100 mM for all three SAILs. At present, it cannot

be decided whether the need for eq 18 to describe S1 indicates a general failure of the

Grosse model or if at low c Coulomb screening is indeed much weaker for these micelles

than conventionally predicted. However, it should be noted that, based on surface-force

measurements between charged plates, a recent scaling analysis suggested that also for
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concentrated electrolyte solutions the characteristic length of charge screening, i.e. the

effective Debye length, increases linearly with concentration.82

Concluding Remarks

For the investigated [C12MIM]X SAILs the effective total hydration numbers, Z0
t (Table 3,

Fig. 5), determined from the bulk-water amplitude can be safely assigned to the micelles as

the free anions are only weakly hydrated and contributions of the free cations are negligible

because of the small cmc. All three surfactants bind approximately 10-11 H2O molecules

per imidazolium headgroup. However, there are differences in binding quality. Whilst

for the triflate SAIL all bound water is only retarded by a factor of r ≈ 18, approximately

half of the hydrating H2O is completely frozen (ib) for [C12MIM]I. The bromide SAIL is

intermediate as here ib water was detected only for c > 150 mM but for lower c solvent

retardation is very large (r ≈ 39) at room temperature. Counterion condensation is much

stronger for TfO− compared to Br− and I− (Table 1). At the same time, the surface diffusion

coefficient of triflate is much smaller (Table 4). Possibly, this suggests that, similar to

[C12TA]TfO,73,77 also for [C12MIM]TfO the condensed counterions are inserted into the

headgroup layer. Halide ions apparently sit on top of the micelles with ib water molecules

simultaneously binding to them and the imidazolium cations, comparable to the situation

for aqueous [C2MIM]Cl70 and [C4MIM]Br.69

Analysis of the two micelle-specific relaxations suggests that —within the sensitivity

of Grosse’s model— [C12MIM]Br micelles remain essentially spherical in the investigated

concentration range. Viscosity data (Fig. 7) but also Grosse radii and aggregation numbers

(Table 4), as well as volumetric data (Table 5) indicate that this is not the case for the other

two SAILs. In particular [C12MIM]TfO almost certainly forms rod-like micelles (Fig. 8).

Apparently for all three surfactants micelle-micelle distances are so small that Grosse’s

(but also the conventional) expression, eq 10, for the Debye screening length breaks down.
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Recently, some of us observed that micelles of [C12MIM]X SAILs were promising

catalysts for nucleophilic substitution reactions.2 However, at least for the chosen model

reaction of nitrophenyl diphenyl phosphate (PNPDPP, assumed to be solubilized in the

micelle) with acetaldoxime, the catalytic activity strongly depended on the counterion,

dropping from a 34-fold rate enhancement for Cl−, compared to the non-catalyzed reaction,

to only 2.3-fold for TfO−. At least for the halides it appears that the superior performance

of [C12MIM]X micelles is due to their weaker hydration compared to [C12TA]X (Table 3),

permitting thus easier access of the acetaldoxime anions dissolved in the aqueous phase

to the PNPDPP molecules sitting in the micelle. By the same token, due to the increasing

condensation of counterions and their simultaneously decreasing mobility (Tables 1 & 4)

the surface-charge density of the cationic [C12MIM] micelle becomes less positive and thus

less attractive for the aldoxime anion when going from Br− via I− to TfO− as the surfactant

counterion in the [C12MIM]X series.
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