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Abstract

The Artificial Recognition System (ARS) project uses a unitary cognitive process model to con-
struct a cognitive architecture. This thesis provides a model to harness the ARS agent’s memory
for the support of perception. The associative character of the agent’s memory is thereby used for
associative activation-based memory retrieval. In designing a model of unconscious perceptual
categorization bottom-up and top-down aspects of perception are considered.

Following a subjective and functional approach of cognitive modeling a model for the val-
uation of a stimulus as a drive object is designed as the primary purpose of the ARS agent’s
unconscious perceptual categorization. As the agent’s bodily needs are represented as drives,
this model is called drive object categorization, which is an exemplar model that uses the agent’s
concrete memory to categorize perceived objects as drive objects.

Following an integrated and holistic approach drive object categorization considers the in-
tegration of subjective influences. These influences are used to support perception by reducing
uncertainty in choosing the most appropriate exemplars to base drive object categorization on.
The integration of influencing factors into drive object categorization is inspired by the bionic
concepts of top-down perception, particularly by the concept of memory-triggered expectations,
and priming. Examples for such subjective influences are expected drive objects, which reflect
affective priming in the ARS agent, or expected contextual objects which reflect semantic prim-
ing in the ARS agent. The former is considered in detail in this thesis.

To integrate the concept of expectation in drive object categorization, it is transformed to
a categorization criterion by using activation-based criteria application. Together with the ob-
jective criterion of perceptual similarity, which represents bottom-up aspects of perception, sub-
jective expectation-based criteria, which represent top-down aspects of perception, support the
reduction of uncertainty in drive object categorization. A generic activation-based framework
is designed to integrate these criteria. The usage of this activation-based framework enables
directed memory retrieval and a considerable reduction of the search space.

Simulations of the model show different categorization results depending on the interplay of
dynamic parameters. An evaluation of the simulations shows that the similarity criterion is more
significant and more reliable to reduce uncertainty and that the expectation-based categorization
criterion is only significant if appearance is weak or ambiguous.

The overall process represents the transformation of a stimulus with objective features to
a subjective drive object. Additionally it provides information for top-down saliency by deter-
mining the perceived object’s pleasure potential, which indicates the object’s importance for the
agent’s actual needs.
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Kurzfassung

Im Rahmen des Projektes ARS (Artificial Recognition System) wird ein autonomer kogniti-
ver Agent für eine Artificial-Life-Simulation entwickelt. Dabei wird deutlich, dass nicht die
rationalen Prozesse der menschlichen Informationsverarbeitung die entscheidenden Hindernisse
für eine effektive kognitive Architektur darstellen, sondern jene Informationsprozesse, die der
Mensch unbewusst vollführt. In dieser Arbeit wird ein Modell zur assoziativen aktivierungs-
basierten Nutzung der Erinnerungen des ARS-Agenten zur Unterstützung der Wahrnehmung
vorgestellt.

Einem subjektiven und funktionalen Ansatz der kognitiven Modellierung folgend wird da-
bei als primärer Zweck der unbewussten Wahrnehmungskategorisierung auf die Erkennung der
Objektwirkung auf die körperlichen Bedürfnisse des Agenten fokussiert. Da in ARS die körper-
lichen Bedürfnisse des Agenten als Triebe repräsentiert sind, wird das Modell dieser Arbeit Trie-
bobjektkategorisierung genannt. Dieses verwendet ein Exemplar-Modell, um wahrgenommene
Objekte als Triebobjekte zu kategorisieren. Einem integrierten und ganzheitlichen Ansatz fol-
gend berücksichtigt die Triebobjektkategorisierung die Integration von subjektiven Einflüssen.
Diese werden im Modell verwendet, um die Kategorisierung durch Verringerung der Unsicher-
heit bei der Auswahl der geeignetsten erinnerten Exemplare zu unterstützen. Die Integration von
Einflüssen in die Triebobjektkategorisierung ist durch die bionischen Konzepte der Top-down
Wahrnehmung und Priming inspiriert. Insbesonders ist dies die Verwendung von unbewussten
Erwartungen und die assoziative Erinnerungsaktivierung. Beispiele für subjektive Einflüsse sind
erwartete bzw. gewünschte Triebobjekte und erwartete kontextuelle Objekte.

Für die Integration von Erwartungen werden diese als Kategorisierungskriterien spezifi-
ziert. Zusammen mit dem objektiven Kriterium der Objektähnlichkeit unterstützen erwartungs-
basierte subjektive Kriterien die Reduktion der Unsicherheit in der Triebobjektkategorisierung.
Mittels eines aktivierungsbasierten Multi-Kriterien Ansatzes wurde ein generisches Framework
entwickelt, um unterschiedliche Kriterien in die Triebobjektkategorisierung zu integrieren.

Die Simulation des Modells zeigt, dass das Ähnlichkeitskriterium zuverlässiger und signi-
fikanter für die Triebobjektkategorisierung ist, insbesondere für die Reduzierung der Unsicher-
heit. Das erwartungsbasierte Kategorisierungskriterium ist nur bei schwacher oder mehrdeutiger
Objekt-Erscheinung relevant. Der gesamte Prozess repräsentiert die Transformation eines Wahr-
nehmungsobjekts mit objektiven Eigenschaften in ein subjektives Triebobjekt. Zusätzlich bietet
das vorgestellte Modell die Unterstützung der selektiven Aufmerksamkeitssteuerung durch die
Bestimmung eines Lustpotentials von wahrgenommenen Objekten. Dieses repräsentiert die Be-
deutung der Wahrnehmungsobjekte für die körperlichen Bedürfnisse des Agenten.
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Acronyms
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CHAPTER 1
Introduction

Cognitive Architectures represent formal models of cognitive processes. They are implemented
in software- or hardware agents (i.e. robots). In this case these agents are called cognitive agents.
Different approaches for cognitive architectures exist. However, most of them do not follow a
consistent and unitary cognitive model. Prominent examples therefor are SOAR [LNR87] and
ACT-R [ABB+04].

As opposed to such approaches the Artificial Recognition System (ARS) project1 follows a
unitary cognitive model to construct a cognitive architecture. In following a bionic approach,
methods and patterns of human perception and decision making are evaluated and tested in an ar-
tificial life simulation. Therefore the principles of neuropsychoanalysis 2 are used. One principle
is the distinction between unconscious and conscious processes, in the context of psychoanalysis
called primary and secondary process.

Two of the challenges and key-areas in modeling the mind through such an approach are percep-
tion and the usage of memory therefore. The ARS project is a particular appropriate environment
to approach these areas as it uses a holistic approach. The mentioned areas of perception and
memory are the scope of this work, as they consider object categorization as a part of external
perception, particularly for visual perception.

1.1 Motivation

When constructing a cognitive architecture the human mind is the best source of inspiration.
Following a bionic human-inspired approach the ARS project emphasizes some key aspects

1http://www.ars.ict.tuwien.ac.at
2http://www.neuropsa.org.uk/
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in human information processing that are crucial for cognitive architectures, particularly for
perception, but are often neglected in cognitive systems. Some of those aspects, which also
motivate this work are discussed next.

In cognitive architectures - as in humans - two qualities of information processes have to be dis-
tinguished. In following a human-inspired approach of information processing they are called
unconscious and conscious processes. This distinction reflects a labor division that has evolved
as a result of our adaption to the world during our phylogenetic development. These two kinds
of processes operate under different rules and conditions. One of these conditions is the degree
of structure used in the two processes. As highly structured information processing is often used
in information processing, the rules of unconscious processing are often neglected in cognitive
architectures although it is claimed [BC99], [Kah11, p. 4] that the majority of mental processes
occur unconsciously. There are many possible ways to look at the distinction of unconscious
and conscious processes and its advantages. One is to focus on the automated essence of un-
conscious processes. In this regard one can observe that already known perceived situations
are processed automatically and hence with differing rules and under other conditions than new
and unknown situations, which are coped by more costly conscious processing (cf. the Global
Workspace Theory [Baa05]). Another perspective on this distinction is to interpret unconscious
processes as preparatory work for conscious processes. This distinction is clearly reflected in
perceptional processes. A good example therefore is the significance of top-down vision, which
is an unconscious process (see Section 2.1 ). The idea of top-down vision proposes the primacy
of memory in human vision. It claims that sensory information is only a secondary source of
information and prior knowledge being the primary source for vision [Fri07, p. 134]. One can
generally observe that memory and experience is a major factor in human problem solving. This
approach also reflects the significance of subjective experience for perception, which is another
aspect of the ARS approach that is often neglected in cognitive architectures.

The ARS model follows a subjective and functional approach of cognitive modeling. As opposed
to an allocentric and objective approach to cope with the world a subjective approach focus on
the subjective perspective of the agent (e.g. relative to the agent’s needs and experience). In
this regard perception is a mean to fulfill the agents needs and plans. An agent does not need
an objective image of reality to fulfill its needs, but only a subjective one. This circumstance
also reflects constructionist aspects of perception. But such a construction is a useful one that
helps the agent to fulfill its needs in the world [Fri07, p. 131]. Hence perception is a functional
and subjective process; it is only relevant that it works to support the agent’s functions and
needs in the world. In this regard one can say that the agent’s perception of the world follows
a model that is constructed to support fulfilling its needs and that works sufficiently therefore,
i.e. it is compliant with an objective reality. This approach implicitly focuses on the subjective
experience of an agent for perception. In this regard an agent is dependent on the use of its prior
knowledge for the categorization process as an important part of perception. With the agent’s
experience as a basis therefore and the fulfillment of its needs and plans as the top concern, a
holistic approach is needed.

Following a holistic approach, perception has to be integrated and has to interact with other
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processes of the cognitive architecture. Some of these processes are further inputs and influences
for the perception process. These influences support perception and may help to interpret the
perceived input and handle ambiguity and uncertainty. In this regard, the categorization process
as an important part of perception has multiple influences. In a subjective approach perceptual
categorization is primarily the interpretation of the perceived data in comparison with the agent’s
experience and relative to influencing internal and external factors. Such an interpretation leads
to subjective semantics of a perceived situation and object.

As already implied, the primary purpose of subjective perception is the categorization of per-
ceived objects regarding different influences of which the most important one is the agent’s
needs. The result of this semantic perception is recognizing the meaning of a perceived object
for the agent’s needs and concerns. This is a subjective and functional approach to the semantics
of a perceived object.

This subjective and functional approach can be mapped to the generic pattern of goal-oriented
dynamic problem solving that considers multiple aspects in an integrated and holistic fashion. In
such a processing pattern uncertainty and ambiguity are handled by a goal-centered, functional
and subjective approach by using domain-experience (= memory), context, needs and other in-
fluences. This in turn leads to goal-oriented semantics.

1.2 Problem Statement

The task of this thesis is to design a model that uses the agent’s memory to support perception.
The work has to comply with the requirements and rules of ARS, particularly the rules of the
primary process, and has to be integrated in the ARS architecture.

After an analysis of the given task in the scope of the ARS approach, a more detailed description
of the problem can be given. The prime goal of an agent, when perceiving an object, is to
value the object regarding its semantics for the agent’s needs. The question to be answered
in this regard is „What does the object mean for the agent’s needs? Is the object appropriate
to fulfill these needs?“. The agent uses its experience with similar objects to fulfill the task
of valuation and to answer these questions. This is a subjective and functional approach to an
object’s semantic and is part of the ARS primary process. As part of this process the agent
has to categorize the perceived object and has to decide which objects in memory are similar
to it and fulfill the agent’s actual needs. Hence the work of this thesis comprises the design
and implementation of object categorization for external perception in the primary process of
the cognitive architecture ARS. Following a neuropsychoanalytic approach the agent’s memory
should be used to categorize perceived objects. In the scope of this work, visual perception is
used representatively for perception.

After finding all similar objects in the agent’s associative memory it has to be decided which
object features of those objects should be used to extend the perceived object’s features. The
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result of this step is a constructionist entity that is associated to similar objects in memory and
leads to subjective semantics.

The result of this process supports the perception of an object’s semantics in various ways. First,
the consideration of the actual agent’s needs leads to a directed and dynamic categorization.
Second, the valuation of an object regarding its suitability to fulfill the agent’s needs leads to
functional categorization. Third, it constructivistically extends the object features which leads
to a better subjective understanding of an object.

In summary, the task is to design and integrate a bionic model of perceptual categorization
in ARS which follows the rules of the primary process. The implementation of the work is
evaluated by use cases in an Artificial-Life-Simulator.

1.3 The ARS Approach

The usage of bionic approaches and process models for the development of technical systems has
proved to be successful in the past. Unfortunately in information processing such an approach
has often been neglected. Especially in Artificial Intelligence (AI) researcher often develop task
models instead of process models. An appropriate inspiration for a process model of human
information processing is given by neuropsychoanalysis, which is used in the ARS project. On
the one hand neuropsychoanalysis merges insights from neurology with insights from psycho-
analysis, on the other hand it addresses the neurobiological background of mental processes.
The resulting theories and models are appropriate [Deu11, p. 4] for the application in cognitive
architectures, particularly for a holistic top-down approach.

The need for a top-down design approach derives from the insight that handling complex models
is not manageable with a bottom-up design approach [Deu11, p. 56]. The problems that are
caused by processing an immense amount of data, which are produced by a high number of
sensors, lead to this conclusion and reveal the need to find a new approach. Current technological
systems lack the ability to process huge sensor data in a goal-oriented way to find patterns
and decisions dynamically. This lack of current systems becomes obvious in an unobservable
or uncontrollable dynamic environment (as opposed to a controllable environment). In other
words: The skills that even human children show in everyday life, especially regarding situation
awareness and decision making, is not achieved by any technical system today.

To find an approach that addresses the lacks of conventional systems of AI, the ARS project
uses a bionic approach for modeling information processing of the human mind. After eval-
uating some models of the human mind, neuropsychoanalysis is used as the most appropriate
framework for ARS because it is the only model [Deu11, p. 4] that handles the mind in an
holistic and unitary fashion. Another important aspect is the top-down approach of the psycho-
analytic model described by Sigmund Freud [Fre23]. In this regard psychoanalysts use the term
metapsychology. Such a unitary approach ensures consistency in a model of the human mind,
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as opposed to the inconsistencies when trying to combine different psychological approaches,
which each focus on a specific topic.

As already mentioned, psychoanalysis is the only approach that fulfills the requirement for a
holistic, functional top-down model for the ARS project [Deu11, p. 4]. Using psychoanalysis,
a functional model of the mind is developed in the ARS project. With such a functional model
a generative approach is followed that describes the functions which generate behavior instead
of building a behavior model. This approach complies with the Artificial General Intelligence
(AGI) approach. For developing the functional model the second topographical model [Fre23]
of the human mind with the three abstract functional units Id, Ego and Superego is used as the
topmost layer and starting point in the top-down design approach. From there, a finer grained,
more detailed description of the functions in the ARS model is generated with each new layer of
description (see Section 2.5).

In the construction of the ARS agent it is emphasized that the basic processes in cognitive archi-
tectures has to resemble the unconscious processes in human information processing. Conven-
tional AI has neglected this aspect and focused on the logical and rational processes of the mind.
However different evidences show that a majority of human’s skills are not based on structured
and logical processes [BC99], [Kah11, p. 46]. That is one of the main reasons why a computer
is able to beat a chess champion but is not able to cope with situations that are unconsciously
coped with by human children.

In this regard the ARS project distinguishes unconscious and conscious processes. In follow-
ing a psychoanalytical approach these are called primary- and secondary processes. The two
processes follow different rules, priorities and principles. According to psychoanalysis, the pri-
mary process is structureless. That is, it does not consider logic or order, e.g. temporal and
spatial relations. The central principle the primary process follows, is the pleasure principle.
In psychoanalytic terms this represents the dynamics of drive wishes: psychic activity aims for
maximal pleasure gain along with avoidance of unpleasure. That is, the main goal in the primary
process is the maximal and immediate satisfaction of the agent’s needs, represented by drives.
The primary process does not consider any hurdles or negations in satisfying drives. Primary
and secondary processes also have different psychic contents. In ARS this means that the two
processes use different data structures (see Section 2.6).

Considering the distinction between primary and secondary process, the work of this thesis is
assigned to the former. This means that this work does not cover topics of the secondary process
and will not consider the rules of it. Regarding categorization, this is primarily the abstraction
and conceptualization of perceived objects. In this regard one has to distinguish the usage of
semantics in the secondary process, as addressed by concept-based models of semantic memory
and subjective semantics in the primary process, as addressed in this work (see Section 3.3). Re-
garding the embedding of this work in ARS, one can observe that it builds on the symbolization
of sensory input (see Section 2.5) and uses categorization to value perceived objects.

5



1.4 Thesis Overview

First the motivation of this thesis is given, where the need for an integrated, subjective and
functional approach for perception in a cognitive architecture is motivated.

After an analysis of the given task in the scope of the ARS approach, a more detailed description
of the problem is given and the purpose of perceptual categorization in the ARS primary process
is emphasized, namely to categorize a perceived object regarding the agent’s needs, which leads
to subjective semantics of an perceived object. Furthermore the input and output of perceptual
categorization is discussed and the most important requirements for fulfilling the problem are
mentioned, namely the usage of the agent’s memories and the consideration of the ARS rules.

An overview of the ARS approach summarizes the motivation of the ARS project and empha-
sizes the need for a bionic and unitary approach to cognitive systems. Additionally it discusses
the ARS design approach and shows why neuropsychoanalysis is used for cognitive modeling
in ARS.

Next a survey of the state of the art in those areas that are relevant for solving the problem of
this work is given. Additionally it is checked which approaches and methods are appropriate for
this work and fulfill its requirements. The central topic in this survey of the state of the art is
perceptual categorization. Top-down perception and priming are discussed as bionic methods of
influencing perceptual categorization in an holistic approach. After summarizing the details of
the ARS model that are central for this thesis a comparison and evaluation of the state of the art
is given.

The development of the model follows a requirements-driven methodology. To enable the in-
tegration of this thesis’ model into the ARS model, first the rules and conditions of the ARS
approach are analyzed with respect to the problem statement and conceptual requirements for
perceptual object categorization in ARS are derived. After discussing how specific high-level
concepts fulfill the conceptual requirements, the general approach of this work is presented,
which reflects this work’s conceptual model and considers all conceptual requirements. In this
regard not only the fulfillment of the single requirements is considered; the focus also lies in
the integration of all conceptual requirements to a consistent model. The general model gives
an overview of drive object categorization, i.e. the valuation of a perceived object regarding its
suitability as a drive object to satisfy the agent’s bodily needs. After that the details of the general
model are discussed. This includes the presentation of integrated multi-criteria categorization,
i.e. a generic framework for the activation-based integration of categorization influences into
perceptual categorization by transforming perceptual expectations into categorization criteria.
This leads to a consistent model of perceptual categorization in the primary process of ARS.

In developing a detailed model further requirements are handled. This leads to the implementa-
tion model, i.e. a model which can be used for implementation, without the inception of further
requirements.

6



After specifying the model, the documentation of its implementation is given. Thereby the
adaption and extension of existing system components and the introduction of new components
are discussed.

This thesis’ model is evaluated using use cases. By using different stimuli, memories and bodily
needs various scenarios are evaluated. The results gained from the simulation are summarized
and discussed.

Finally, the conclusion summarizes the contributions of this thesis and discusses the results and
possible future work.

7





CHAPTER 2
State of the Art

After introducing the topic of this thesis, next an overview of the state of the art in those areas that
are relevant for solving the problem of this work is given. Additionally appropriate approaches
and methods for this work will be analyzed and their fulfillment of this work’s requirements will
be examined.

When dealing with perceptual object categorization in a human-inspired cognitive architecture
the starting point for analyzing the state of the art has to be models of object categorization in
humans. On the one hand psychoanalytic requirements of ARS approach and introductory men-
tioned requirements in analyzing models of human object categorization have to be considered.
On the other hand the technical and formal realization of such models have to be considered.
As the basis of this work is an unconscious, subjective and functional approach to perception,
the discussion of the state of the art starts with discussing top-down and bottom-up perception.
After that categorization models and their technical implementation are described. Finally, prim-
ing, as a generic concept of perceptual influences, and its usage in the categorization process is
discussed.

2.1 Top-down and Bottom-up Perception

Perception, especially vision, can be regarded as a bottom-up process, with sensor-data as the
primary source for vision, or a top-down process 1, with prior knowledge as the primary source.
This distinction implicitly raises the question how an interface between perception and cognition

1Here the term „top-down“ is used to describe a process approach. The term is also used in this thesis to describe
a system design approach. To differentiate between the two, the former is called „top-down process“, the latter
„top-down design“.

9



may look like. Different opinions emphasize the primacy of bottom-up [Pyl99] or top-down
processes [HRP97], [Bar97].

In both approaches perception can be interpreted as building a model of the world. In a top-down
process the point of departure to build such a model is our prior knowledge, i.e. information from
our memory. The constructed model of the world is used to drive perception and the sensory
input is only used to „fill the gaps“ of the memory-based model of the world. The bottom-up
approach operates in an opposite direction. Here the construction of a model of the world is
build on the basis of sensory information, hence the model is the result of perception.

Helmholtz already recognized the significance of memory in vision over a hundred years ago
and coined the term „unconscious inference“ [Fri07, p. 41 ], [vH85, pp. 366-381]. It expresses
that vision can only be the result of making assumptions and conclusions from incomplete sen-
sory data, based on previous experiences. This reflects the significance of prior knowledge for
perception, but can still be considered as a bottom-up approach as the process starts with sen-
sory information, even if this opinion emphasizes that it is impossible to construct the perceived
environment from sensory information alone and that prior knowledge about the environment is
needed to interpret incomplete and ambiguous sensory information.

Since top-down perception starts with prior knowledge it emphasizes the role of subjective mem-
ory for perception more strictly than bottom-up perception. According to a top-down approach
of perception our brain constructs a transparent model of the world [Met09, p. 72-77], i.e. the
construction of this model happens actively and unconsciously. We recognize the model of the
world (as our subjective reality) but do not recognize the process of constructing the model, i.e.
the process of perception. That is, we have the impression of a direct, consistent and comprehen-
sive contact to the world. Only because of this circumstance we can live with a stable, consistent
perception and without uncertainty in perceiving the world. Particularly, the recognition that
we only perceive a model of the world would not bring an evolutionary advantage [Met09, p.
70-73]. These features of top-down perception emphasize the unconscious and subjective nature
of top-down perception.

After building the model of the world, in a top-down approach it is primarily used for perception
via prediction [Bar09b]. Hence a top-down approach of our perception uses memory to predict
which objects or situations to expect. In a memory-driven top-down approach memories trigger
prediction by activating associated representations [Bar09b]. It is even claimed that the concept
of predictions triggered by associated memory is a universal principle in the operation of the
human brain [Bar09a]. These associations may be based on different similarities, e.g. percep-
tual, conceptual or functional similarities. In this regard, the perception of an object triggers
the expectation of associated representations. This approach of triggering expectations based on
the activation of associations with past experience and memories complies with the concept of
„memory of the future“ [Ing85], [Bar09b]. In this regard a top-down approach of perception is
based on the associative character of memory.
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2.2 Perceptual Categorization

Different approaches exist that try to describe the process of perceptual object categorization. In
the scope of this discussion of the state of the art that is, given sensory information in a symbolic
form, i.e the stimulus, how do humans use this information to reduce it to a higher-level label,
i.e. its category, which subsumes the sensory information by comparing it to their memory
(i.e. exploiting regularities between experiences). This process supports object understanding; it
particularly helps to understand what the agent may do with the categorized object by evaluating
former objects of that category. In this regard perceptual object categorization is a prerequisite
to be able to assign non-perceptual, e.g. functional, object features to a perceived object.

Categorization includes category recognition and conceptualization. Since the scope of this
work is perceptual categorization in the primary process of the ARS agent, the focus lies in the
former, i.e. recognizing the category of an perceived object. Hence, in the remainder of this
thesis the term category recognition is used interchangeably with categorization.

Based on category recognition further cognitive processing leads to the conceptualization of the
recognized object. This is a hierarchical, abstract and relational (to other categories) view on the
categorized object and leads to high-level semantics. In the ARS model these kind of processes
occur in the secondary process. An example for such conceptualization is shown in [MR03].
Here a conceptualized representation, modeled by a semantic net, is used to reason about object
properties and relations to other objects for semantic cognition. Such methodology follows
a rule-based approach of hierarchical and abstract reasoning, which can be used for category
recognition and conceptualization. This reflects the possibility to consider categorization as a
reasoning or comparison process.

Following the rules of the primary process the focus of this thesis lies on a memory-based ap-
proach to category recognition as a comparison process. Such an approach uses an agent’s
memory to solve the problem of object categorization. Hence, in the remainder of this chap-
ter the focus lies on memory-based categorization models. In such similarity-based processes
categorization requires the comparison of the perceptual representation of an object with some
representation of stored knowledge and can be seen as a function of the similarity of a per-
ceived object to stored objects [PG04]. In this regard prior knowledge is represented as the
agent’s memory, particularly the representation of categories. Most similarity-based categoriza-
tion models use a multidimensional psychological space [PG04] with using a dimension for
every object feature. In such models similarity between objects is calculated as a function of
distance. In the scope of perceptual categorization the most significant factor for similarity is
the object’s structure.

In a structured sense „... a model of categorization specifies three things: (1) the content and
format of the internal categorical knowledge representation, (2) the process of matching a to-
be-classified stimulus to that knowledge, and (3) a process of selecting a category (or other
response) based on the results of the matching process“ [Kru08, p. 269].
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Since this work considers object categorization in the ARS agent, the basic knowledge repre-
sentation is given by the ARS information representation (see Section 2.6). Still, a detailed
representation of a category is not defined and is flexible. Regarding category representation,
different approaches to represent a category also reflect different approaches of object catego-
rization. For instance in prototype models a category is represented by a single prototype repre-
sentation whereas in exemplar models a category is represented by all objects that are members
of it.

Aspects of Categorization Models

Before discussing different categorization approaches, some aspects of perceptual object catego-
rization that these approaches, if at all, address in different ways, are listed. Besides the already
mentioned representational aspect there are other important aspects one has to consider when
dealing with perceptual categorization. These aspects are often interdependent and associated.
The following list is inspired by some aspects mentioned in [PG04], [Kru08], [Mur02], [MR03].

• The focus and goal of the categorization model. E.g. it may be a category recognition or
conceptualization.

• The definition of categorization criteria: On which criteria is category membership based?

• Similarity measures: the calculation of similarity.

• The consideration of typicality.

• Identification and categorization/recognition and generalization: Are these handled as sep-
arate processes? Do they have separate representations?

• Levels of categorization: Is abstraction and hierarchy considered? Is (graded) multiple
category membership considered?

• Borderline cases: How are objects categorized that are equally similar to multiple cate-
gories?

• Basic and entry level: What is the first level of categorization that a perceived object is
categorized in?

• Top-down or bottom-up Categorization: Does the categorization process (and the category
formation) starts with general categories or specific ones?

• Attention: Task-specific, selective attention of relevant feature-dimensions.

Overall, the key aspects of perceptual categorization are „... the representations and transfor-
mations that link the input and response representations“ [Kru08, p. 269]. When considering
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these key aspects one can distinguish exemplar, prototype, rule-based and theory categorization
models [Kru08]. Rule models build on a classical definitional view on categorization (initiated
by Aristotle [Mur02, p. 11]) that specifies sufficient and necessary properties for membership
in a category [Kru08]. In this case categories are mentally represented as definitions. This
„classical view argues that every object is either in or not in the category, with no in-between
cases“ [Mur02, p. 15]. Since for many categories it is very difficult to specify the necessary
and sufficient features and many objects are not clearly in or out of a category the classical view
is not applicable for common categorization [Mur02, p. 16]. The classical, rule-based, view
was challenged by the idea of using typicality to categorize objects. This idea leads to the pro-
totype approach. A prototype is the best example of a category. Objects that are very similar
to the prototype are categorized as being very typical or good members [Ros75], [Mur02, p.
28]. A prototype can also be interpreted as a summary representation, which is a description
of a whole category, rather than describing a single, ideal member [Mur02, p. 42]. Of course
such prototype representations of a category are rarely real-world examples. Opposed to that, in
exemplar models a category is represented by all members of the category [Kru08]. In this case
category-membership is a function of similarity of an object to all known exemplars.

As already mentioned, the current information representation in ARS and the rules of the primary
process favor a similarity-based categorization model. Hence, in the next sections prototype and
exemplar models, which follow the similarity-based approach, are discussed in detail.

Prototype Models

The usage of the concept of typicality to decide category-membership led to the prototype ap-
proach [Ros75], [Mur02, p.35 ]. There are different interpretations how a category representa-
tion, i.e. a prototype, should look like and how typicality should be defined. A prototype could
be defined either as the most frequent instance or as a derived stimulus that is a combination of
all the most frequent features [Kru08]. The most frequent definition of a prototype is a summary
representation of a category, as opposed to an ideal best example [Mur02, p. 42].

When using typicality to decide category-membership one has to define what makes objects
typical. The simplest determinant would be the frequency of perceiving an object. But this is
not an appropriate determinant for typicality [Mur02, p. 31]. Rosch and Mervis [RM75] use
family resemblance for typicality and define:

„...members of a category come to be viewed as prototypical of the category as a whole in
proportion to the extent to which they bear a family resemblance to (have attributes which over-
lap those of) other members of the category. Conversely, items viewed as most prototypical
of one category will be those with least family resemblance to or membership in other cate-
gories“ [RM75, p. 575], [Mur02, p. 32].

That is, typical items tend to have the same properties of category members but tend not to have
properties of members of other categories. Therefore each feature is weighted by the number of
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objects it occurred in - in relation to non-occurrence in members of other categories. Hence, the
more frequent a feature appears in a category and does not appear in other categories, the higher
its weight is. Finally, the overall score for the object is calculated as the sum of its feature’s
weights. This feature score is highly predictive of typicality [RM75], [Mur02, p. 35]. That is,
items that are typical have features that are common in the category and less common in different
categories.

Barsalou [Bar85] found following determinants of typicality: central tendency, frequency of
instantiation and ideals [Mur02, p. 35]. Central tendency is similar to the idea of family-
resemblance of Rosch and Mervis (see above). Frequency of instantiation is the frequency
with which an object is categorized as a member of the category. Ideals reflect the degree to
which each object fulfills the primary goal of a category. The last determinant is a functional
and goal-oriented one and indicates the degree to which an object fulfills the primary function
of a category.

As implied by the principle of family-resemblance, in prototype models a category is represented
as a list of weighted features that are usually found in the category members. The categorization
task is represented by a comparison of such a feature list with the stimulus object. Each feature
the stimulus has in common with the feature list increases the feature’s score. Otherwise the
score for that feature decreases. This is also the case if the stimulus has a feature that is not
represented by the prototype’s feature list. After going through all features the next step is to
check if the score is above a critical value (i.e. the categorization criterion) and decide if the
stimulus is a category member [Mur02, p. 44].

One concern about such a feature list is that it does not represent any of the relations between
the features [Mur02, p. 50]. Hence, feature lists are an unstructured way to represent categories.
Based on the prototype approach schemata are introduced to consider a more structured view
on category formation [RO77]. „A schema is a structured representation that divides up the
properties of an item into dimensions (usually called slots) and values on those dimensions
(fillers of the slots). The slots have restrictions on them that say what kinds of fillers they can
have. Furthermore, the slot may place constraints on the specific value allowed for that concept.
The fillers of the slot are understood to be competitors“ [Mur02, p. 47].

Exemplar Models

In exemplar models perceived objects are categorized by comparing them to stored exemplars
whose categories are already known. A category is represented by the set of all stored exemplars
of that category. As opposed to other category models there is no explicit category representation
or real concept as there is no summary representation [Mur02, p. 49].

In exemplar models a perceived object is categorized according to the similarity to stored exem-
plars. The higher the similarity of the object to exemplars in a given category, the more likely
it is to be categorized into that category. Basically the number of similar exemplars and the de-
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gree of similarity determine how a stimulus is categorized. Hence, similarity calculation is the
key determinant of category membership in exemplar models. As opposed to additive similarity
calculation, as in prototype models, standard exemplar models use a multiplicative rule (see be-
low) [MS78], [Mur02, p. 51]. The process of similarity calculation includes the comparison of
the object’s features with every exemplar’s features. A part of this process is the decision about
the degree of similarity and the importance of the feature for every matching and mismatching
feature [Mur02, p. 52]. The next step is to multiply the scores for each feature which leads to
the overall similarity score between the stimulus and the exemplar. Finally the similarity scores
for each exemplar in a category are added up and the stimulus is categorized to the category with
the most similarity to it.

Regarding typicality it can be observed that the degree of typicality correlates with the similarity
to category members and the quantity of similar category members [Mur02, p. 50] „Typical
items would be categorized faster than atypical ones, because they are very similar to a large
number of category members, and so it is very easy to find evidence for their being members.“
[Mur02, p. 50].

When addressing exemplar models one has to define what an exemplar is. This is not a feature
of exemplar models per se, but rather depends on memory formation, respectively the storage of
exemplars. The main question is if every encounter of the same object should be stored as an
distinguished exemplar. As the quantity of stored exemplars have an impact on the categorization
decision, this can be an important factor for exemplar models.

Exemplar models are first proposed by Medin and Schaffer with the presentation of their Context
Model [MS78], [Mur02, p. 65]. This model is adapted by the General Context Model (GCM)
[Nos86], which is the most influential exemplar model [Mur02, p. 65]. Before discussing exem-
plar models further, the GCM will be presented, as it is the most dominant one [Kru08]. In the
GCM the categorization process can be structured in three parts. First, the distance between the
stimulus and every stored exemplars is calculated. Second, the calculated distance is scaled with
the result of weighting close similarity much more than moderate similarity. Finally category
membership of the object is decided [Mur02, p. 65].

The distance between two objects is a function of how far apart they are on each of their di-
mension, where a dimension may be a feature or an adaption of features. The calculation of the
distance d between an stimulus x and an exemplar y is given by following formula [Mur02, p.
66]:

d(x, y) =

√∑
m

wm ∗ (|xm − ym|)2, (2.1)

where m is the dimension and wm is the weight of a dimension. The weights are free parameter,
i.e. they are calculated from the data (the exemplars) and are not specified beforehand.
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The next step of the GCM is the derivation of similarity from the distance score. Experiments
[She87] give evidence that „behavioral similarity between items is an exponentially decreasing
function of their psychological distance“ [She87], [Mur02, p. 68]. Basically this is just another
form of the multiplicative rule. The similarity calculation is given by following formula:

s(x, y) = exp(−c ∗ d(x, y)) (2.2)

Hence in the GCM the distance is calculated on dimension-level (i.e. for every dimension) and
the similarity on stimulus-level. The variable c basically modulates the effect of distance by
determining the spread of similarity. A high value for c requires an item to be identical to a
known exemplar to be used for comparison. If c is very low, the similarity to all items is used.
Usually, c is a parameter estimated from the training data.

The last step of the categorization process in the GCM is deciding category membership. This
is calculated by the ratio of a stimulus’ similarity to a category relative to the similarity to the
other categories. The following equation calculates the probability that the stimulus x will be
placed into category J with consideration of the other categories K.

P (x|J) =

∑
y∈J

s(x, y)∑
K

∑
k∈K

s(x, k)
(2.3)

The GCM is a powerful exemplar model that considers various aspects of categorization models
but it assumes that a stimulus is represented as a point in a multidimensional interval-scaled
space. Other scales are not considered by the formulas above. Additionally one has to consider
that in the GCM similarity is affected by differences not by commonalities between dimensions
[Kru08]. That is, if two stimuli have no differences, their similarity is 1.0. Finally one has to
consider that in GMC-like exemplar models the number of matching dimensions has no impact
on the similarity score. For such models it is not relevant if similarity is based on ten dimensions
or one hundred dimensions.

Adaptive Models of Categorization

Recent categorization models try to follow a more flexible and adaptive way of category repre-
sentation. An example therefore is SUSTAIN (Supervised and Unsupervised STratified Adap-
tive Incremental Network) [LMG04], [Kru08]. SUSTAIN is a categorization model that expects
multivalued nominal features and is sensitive to the number of matches, but only if at least one
mismatch is present. Instead of fixed representations, category representation follows the prin-
ciple of adaptive clustering [MG11]. That is, similar exemplars form a cluster, which reflects a
single representation of these exemplars. This allows a flexible form of category representation,
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which may act as an exemplar- or prototype representation. Hence in SUSTAIN, as opposed to
classical exemplar- and prototype models, different categories may be represented in different
ways. Different factors and configurable parameters determine how abstract or specific clusters
are.

SUSTAIN can be used as a model of category formation. After the first categorization process
(the encounter with the very first stimulus) a cluster is constructed, which is represented by the
first stimulus [MG11]. When confronted with further target stimuli, the model tries to assign
each stimulus to an appropriate existing cluster by comparing it with the stored clusters. When
a new stimulus is assigned to a cluster, the cluster’s representation changes to reflect the central
tendency of the items that formed the cluster. That is, the cluster indicates the proportion of each
feature. When the new stimuli does not fit in a cluster, a new cluster is created. Additionally to
this unsupervised way of cluster creation a cluster may also be created by supervision in response
to a misclassification. This procedure gives potential to various forms of category representation.
Additionally to the already mentioned consideration of exemplar and prototype representation,
clusters may belong to one or more categories and categories may be represented by one or more
similarity-based clusters [MG11].

2.3 Classification Techniques for Perceptual Categorization

Computer science has developed different techniques to implement object categorization. They
are called supervised machine learning techniques since they learn from previous data how to
classify new input data.

The goal of most supervised machine learning techniques is to build a model of a domain using
training data, i.e. already classified data, to be able to predict the class of new unclassified data.
In such a model-based approach the training data is processed once to build a model (the so
called training phase), which will be further used as a classifier. Such methods are also called
parametric, since the goal is to learn parameters (from the training data) which are used to build
a model. Wide used model-based classifier are decision trees, ANN (Artificial Neural Networks)
and SVM (Support Vector Machines).

Another class of machine learning methods follows an instance-based approach. In that case, as
opposed to a model-based approach, no training phase is necessary, because no learning of pa-
rameters is necessary since no model of the underlying data is built to predict an unknown stim-
ulus. Instead, the stimulus is compared to every instance of the training data to decide its class
membership. Instance-based machine learning methods are also called lazy, since the general-
ization process is made on-demand, i.e. it is delayed until classification is performed [Kot07].
That is, generalization is not a result of a training phase, as in model-based approaches. Lazy
methods follow a problem-centered (i.e. stimuli-centered) approach to access and select expe-
rience (i.e. the training data) [dMA98]. This procedure results in an more costly classification
process. On the other hand the costly training phase is omitted. It is quite obvious that instance-
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based classifiers correspond to similarity-based categorization models. The model-based ap-
proach basically follows the classical rule-based theory of categorization [Gag09]. Therefore
instance-based classifiers will be discussed in detail.

The most prominent instance-based classification algorithm is the nearest neighbor algorithm,
where the most similar (i.e. nearest in an multidimensional space) instance is considered for
classifying a stimulus. An extension thereof is the kNN (k-Nearest Neighbor) algorithm, where
the classification is based on the k-nearest instances. The nearest neighbor algorithm (or 1NN)
corresponds to prototype models and the kNN to exemplar models; the instances would cor-
respond to prototypes and to exemplars, respectively [Gag09]. The kNN algorithm is quite
straight-forward: it chooses the k nearest instances to a stimulus according to a distance metric,
identify the most frequent class label of them, and use it to classify the stimulus. Obviously the
key factor in kNN is the calculation of distance. The distant metric should minimize the distance
between two similar instances and maximize it between instances of different classes [Kot07].
An example for the distance calculation between two items, x and y, is the Manhatten met-
ric [Kot07], which accumulates the absolute distance d of every dimension i:

d(x, y) = (
∑

i=1∈m
|xi − yi|r)(1/r) (2.4)

As in similarity calculation in exemplar models one can distinguish the scale of the object fea-
tures. After calculating the distance the final step of the kNN algorithm is to decide the most
probable class cj of the stimulus. That is, a stimulus e is classified such that

kNN(e) = maxcj∈JP (cj |e), (2.5)

where

P (cj |e) =

∑
X∈Ke

1(xc = cj) ·K(d(x, e))∑
X∈Ke

K(d(x, e))
(2.6)

where Ke is the set of e’s nearest neighbors, 1(x) is a function that results in 1 iff its argument is
true, and K is a kernel function and usually the inverse of the distance function [dMA98].

kNN is a powerful and accurate classification algorithm [Kot07], [ZBMM06] and appropriate
for various domains. Additionally it is a stable learning method. That is, small changes in
the training set do not result in large changes in classification [Kot07]. Nonetheless the perfor-
mance in kNN, particularly the accuracy is sensitive to the similarity function and the selection
of k [Kot07]. Another disadvantage is the large storage requirement and performance issues
since the procedure needs to process all instances for classification. Cross-validation or similar
techniques to find the best value for k may increase computational costs further [Kot07]. It is
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also shown [Kot07], [OY03] that the accuracy of kNN can be considered as a function to some
domain characteristics, such as „... the number of training instances, the number of relevant
and irrelevant attributes, the threshold number in the target concept, the probability of each
attribute, the noise rate for each type of noise, and k“ [OY03, p. 207]. [ZBMM06] emphasizes
that the nearest neighbor approach - when using the right distance function - has outperformed
other approaches for the most well-studied visual recognition datasets. Some reasons therefor
are (1) that kNN does not need to construct a feature space, which may become intractable,
(2) the effortless consideration of the multi-class nature of visual object recognition, and (3) an
optimal error-rate, given a big training set [ZBMM06]. The last point implicitly also mention a
significant disadvantage of kNN, namely high variance if the training data only provides limited
instances.

Methods to reduce the disadvantages of kNN include feature selection, feature weighting and
data reduction. Feature selection is a general method in machine learning with the goal to
remove irrelevant and redundant features to get the algorithm to run faster and more effectively
[Kot07]. Since kNN is very sensitive to irrelevant or noisy features this may be a crucial factor
to consider [Kot07]. A more fine grained method to consider this factor is feature weighting,
which leads to a more reliable distance metric.

Data Reduction

Data reduction methods try to reduce the instance set without losing significant information.
One approach is using different kinds of filter mechanisms to identify and remove redundant
and irrelevant instances [Kot07]. The basic idea of such approaches is that some instances may
be very similar and do not add extra information. Other methods replace the instances using a
model-based approach. That is, they construct abstracted representations (i.e a model) which
should pertain all significant information of the original instances [GWB+03]. Such approaches
may lead to prototype models or cluster-models (cf. SUSTAIN, see Section 2.2). In using such
approaches the risk of getting high variance increases if the remaining instances do not pro-
vide enough information [ZBMM06]. In that case more training data may solve the problem.
Another possibility to handle this disadvantage (e.g. if the relevant subset of the training data
cannot be increased) is to train a SVM on the k nearest neighbors and use the kNN’s distant func-
tion as the SVM’s kernel if the k nearest neighbor do not have all the same class [ZBMM06].
The essential idea of this approach is to use a nearest neighbor classifier to provide a smaller
but more relevant training set for a SVM. To speed up kNN [ZBMM06] uses a further prun-
ing method before the usage of a SVM. Therefore two distance functions in the kNN algorthm
are used: One distance function with a computationally lower cost to omit the instances with
a high distance to the stimulus and a more precise distant function, which only has to consider
the instances left over from the first distance function. This procedure of coarse and quick dis-
crimination, extended by successive finer but slower discrimination conforms with findings from
psychophysics [ZBMM06], [TFM96].
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2.4 Priming

„Priming is a nonconscious 2 form of memory that involves a change in a person’s ability to
identify, produce or classify an item as a result of a previous encounter with that item or a
related item“ [SDS04, p. 853]. In this regard the target item is primed by the the prime, i.e. a
previous encounter with that item or a related item.

As opposed to explicit memory tests, priming is experimentally assessed using indirect or im-
plicit tests in which the task is to identify briefly flashed stimuli, to complete word stems, to
classify words or objects, or to produce a category-example in response to a category cue. Pre-
vious perception of the target object improve performance on such tasks, even though subjects
are not asked to recall the target items [SDS04].

Different forms of priming can be distinguished, among them perceptual, conceptual, associative
and affective priming. In conceptual priming items with a similar meaning are primed. An
example therefor is when objects prime other objects from the same category. A general form of
conceptual or semantic priming can be described by associated priming. In this case, items that
are associated in memory prime each other. A model often used for the representation of such
form of priming is spreading activation, [CL75], [And83], where activation is spread through
associated items.

In perceptual priming items with a similar appearance are primed. One can observe that the
impact of priming increases with similarity between the stimuli and the primed item [WM98].
Hence, priming by repetition has the strongest effect. It has even been found that such prim-
ing remains over week-long delays [WM98]. Although the effects of priming decreases with
changes in an object’s exemplar, they are still considerable [WM98].

Another kind of priming is called affective priming. One form of its manifestation is the de-
creased time one needs to categorize a target as positive or negative when the process is primed
with an item of the same valence [HHRW02]. Another form is priming by mood-congruent
primes [SC08]. This reflects the influence of mood on a memory-based task. Typical studies
have shown that sad people tend to recall more negative events and happy individuals rather
recall more positive events [SC08]. One also has to consider the influence affects have on other
forms of priming. In this regard some studies have been conducted on the impact of affects on
semantic priming [SC08]. The results provide evidence that positive affects supports semantic
priming, but negative affects do not. That is, positive valued stimuli activate semantic associa-
tions and increase their accessibility.

As a main explanation for semantic and affective priming spreading activation, a mechanism

2Some researchers use the term nonconsious instead of unconscious.
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based on associated memory, has been used [SC08]. In such models activation spreads from
prime to associated targets, and hence activates those targets. Such activation of associated
memory is assumed to occur automatically and without intention for both semantic priming and
affective priming [SC08].

Activation-based memory retrieval is used by different cognitive architectures for the consider-
ation of various effects, amongst them priming-based processes such as recency and frequency-
effects (i.e. the impact of recent or frequent input on cognitive processes), but also for rep-
resenting capacity constraints in cognitive processing. Examples for cognitive architectures
that considers activation-levels in memory retrieval are ACT-R [AL98, p. viii], an extension
of Soar [Cho03] and 3CAPS (Capacity-constrained Collaborative Activation based Production
System) [JC92], which all use a model of spreading activation.

Spreading Activation

Models of spreading activation represent an approach to memory retrieval in a generic network
architecture [And83]. Particularly it models how activation spreads from a network-node to
associated nodes. Such a process is also called associated retrieval, [Cre97]. In most cases
semantic networks are used, but the principle is valid for all kind of associated networks, i.e.
„... a generic network of information items in which information items are represented by nodes,
and links express sometimes undefined and unlabeled associative relations among information
items“ [Cre97, p. 458]. One feature which is often used in such networks is weighting of
associations.

A spreading activation process can have multiple iterations, also called pulses, which can be
divided in three steps [Cre97] and are ended if a termination condition is reached.

1. Preadjustment

2. Spreading

3. Postadjustment

The pre- and postadjustment step is optional and may implement some form of activation reduc-
tion to regulate spreading. This may be used to discard nodes that are not continually activated
and to regulate the overall network activation [Cre97].

The spreading step begins with the calculation of the incoming activation from associated nodes
[Cre97] or with the initial activation, respectively. Thereby the association weights may be
considered:
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Ij =
∑
i

Oi ∗ wij , (2.7)

where
Ij is the total input of node j;
Oi is the output of unit i connected to node j;
wij is a weight associated to the link connecting node i to node j.

The input and weights may be binary or real-valued. After calculating the input value, the output
value, i.e. the node’s activation value, is computed. Therefore different activation functions may
be used, where the most common used is the threshold function. Here it is only considered if the
threshold is reached to decide if the node will be activated. Other wide used functions include
the sigmoid and linear function [Cre97]. As before, the output value may be binary, i.e only
indicating if the node is activated or not, or real, i.e. indicating the strength of activation.

After computing the node’s activation value, it spreads to all associated nodes, usually sending
the same value to each node. The next step includes a possible post-adjustment process, as men-
tioned above. Finally a termination condition is checked, e.g. the distance from the start-node.
If the condition is fulfilled, the algorithm stops, otherwise the next iteration of the spreading
activation process is processed. The result of the overall process is an assignment of activation
values to the activated network nodes. The activation value represents the significance of the
node for the information retrieval process.

2.5 ARS Model

As mentioned introductory, one result of the ARS project is the conclusion that psychoanalysis
is the most appropriate approach to fulfill the requirement of an holistic and functional top-
down model for constructing an cognitive architecture [Deu11, p. 4]. Using psychoanalysis, a
functional model of the mind is developed in the ARS project. With such a functional model
a generative approach is followed that describes the functions that generate behavior instead of
building a behavior model. In this regard the ARS project models a system with the top goal
of representing Artificial General Intelligence (AGI), i.e. broad human-like intelligence which
is able to cope with complex and dynamic situations rather than with narrowly well-defined
domains that are known at the design phase of the system. This enables the ARS agent to
operate in dynamically changing environments.

Overview

The ARS agent is following the generic architecture of an agent in AI [RN03, p. 33], i.e. an en-
tity that interacts with its environment through sensors and actuators. The ARS agent perceives
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Figure 2.1: Artificial Recognition System agent architecture [Zei10, p. 62]

from its inner world - the body - and its outer world - the environment. The agent’s decision unit
processes the perceived information and acts upon its environment or body (see Figure 2.1).

For developing the functional model of the decision unit Sigmund Freud’s second topographical
model of the human mind with three subsystems, called Id, Ego and Superego is used. It is used
as the topmost description-level and starting point in the top-down design approach in ARS (see
Figure 2.2). From there, a finer grained, more concrete description of the model is generated
with each new level of description. Id, Ego and Superego represent the three functional units in
the topmost level. After splitting these functional units in more concrete functions in a top-down
manner, they are resembled in the cognitive architecture of an autonomous agent in ARS.

The Id represents the ARS agent’s bodily needs, such as stomach tension, blood sugar, oxygen
saturation, etc [Deu11, p. 81]. The super-ego manages internalized rules in the form of prohibi-
tions and orders. The Ego is responsible for mediating between the possibly conflicting claims
of the other two instances, and the outside world. In this way it ensures the agent’s capacity to
act [DBMT09].

The ARS model, which is derived from the - above described - second topographical model
of psychoanalysis, deals with motivation, wish-generation, decision making, planning and exe-
cution. It fulfills this by mediating between different demands. The Id demands the immediate
satisfaction of the bodily needs. The reality demand represents possibilities and limitations of in-
ternalized knowledge about reality and external perception [DBMT09]. The superego demands
the compliance with socio-cultural rules and prohibitions.
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Figure 2.2: Artificial Recognition System functional model - first level [Zei10, p. 62]

ARS Functional Model

Following the top-down design approach, in the next step the three functional units Id, Ego and
Superego are further split into smaller functional units with a more concrete functionality. The
resulting second level of the functional model corresponds to the tracks shown in the overall
function model, which is illustrated in figure 2.3. For this thesis particularly the drive track and
perception track are relevant.

Drive Track

The drive track processes homeostatic data that is represented as drives. The concept of a drive
is a theoretical construct and is the psychic representation of a bodily need. The drive comprises
a drive source, a drive object and a drive aim. The drive source is the organ which signals the
bodily need; the drive aim is the satisfaction of the drive by an act; the drive object is the object
used in this act. Basically there are two kinds of drives: aggressive and libidinous ones. Every
drive source triggers one of each kind. An aggressive drive is satisfied by an aggressive drive
aim, a libidinous drive by a libidinous drive aim. After the triggering of a drive by a bodily
need, the drive is rated by a quota of affect, which reflects the drive tension, i.e. the tension of
the drive source. The higher the bodily need, the higher the quota of affect. The next step in
the drive track, called hallucinatory wish fulfillment, is the search for possibilities to satisfy the
drive, i.e. appropriate drive objects and drive aims (see Section 3.7). The agent uses its memory
to determine drive objects and drive aims that satisfied a similar drive according to the agent’s
experience.
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In this regard the drive track represents the central part of the agent’s motivational system, which
in further parts of the ARS model leads to desires and actions. The concept of the drive system
represents the influence of the body on the psychic apparatus. In this regard embodiment is
considered as a central factor of the ARS model.

Perception Track

The initial task of the perception track is the conversion of sensorial data to symbolic data that
can be processed by the psychic apparatus. Therefor it merges sensor signals to semantic sym-
bols in multiple steps. First the raw sensor data have to be converted into symbols in the sensor
interface of the ARS agent. This is done by using the concept of neurosymbolization [VB08].
This process is inspired by neuroscientific principles. It uses multiple layers of so-called neu-
rosymbols, which are the basic information processing units in neurosymbolization, and reflect
features of neurons and symbols [VB08]. That is, every node in a neurosymbolic net has sym-
bolic meaning. In this regard neurosymbols represent a layer between neural networks - the
hardware layer - and symbolic representation. The neurosymbolization layer considers multi-
modal perception and merges sensor information from different modalities (related to the human
five senses) to a multi-modal symbol by using a hierarchical concept of sensor fusion. As part
of this process the binding problem is solved, i.e. all perceived information are assigned to a
specific item. The result of the overall process is a symbolic item that is associated with its
symbolic features (e.g. a symbolic item with the symbolic features „red“, „round“, „shiny“).

The next step in the perception track, which is handled by this thesis, is to categorize and rec-
ognize the result of neurosymbolization, i.e. a symbol. In the scope of the ARS project this
is done by a memory-based approach. Hence the unknown symbol is compared to the agent’s
memory to identify and categorize it. As the ARS agent represents a thirty year old person,
it is assumed that the agent recognize all perceived objects based on its memory and does not
perceive completely unknown objects.

After identifying all perceived objects they are used to recognize the situation and activate sim-
ilar situations. After that they are forwarded to the subsequent functional modules of the ARS
model.

ARS Function Model - Fourth Level

After giving an overview of the two most significant parts of the ARS model for this thesis, next
the overall ARS model is shown in figure 2.3. This fourth level of the functional model is the
most detailed one and is reached after another two levels of model concretization. It is the point
of departure for the implementation in the ARS simulator. Figure 2.3 shows the assignment of
the functional modules to the three functional units of the second topographical and the sepa-
ration of the primary and secondary process, which follow different rules and principles (see
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Figure 2.3: Artificial Recognition System functional model - fourth level [dl]

Section 1.3). A detailed discussion of the functional model is out of the scope of this thesis. In
this regard the details of figure 2.3 are not relevant; only the track level (the arrows in the figure)
are of interest.

For this thesis two functional modules, which are highlighted in figure 2.3, are particularly rel-
evant, namely F14 and F57. The module F14 deals, amongst others, with object recognition.
This thesis work, i.e. perceptual object categorization, is also part of F14’s function. The sec-
ond important module is F57, which implements the psychoanalytic concept of hallucinatory
wishfulfillment (see Section 2.5 and 3.7).

2.6 Information Representation in ARS

An advantage of using psychoanalysis for a model of an cognitive architecture is its provision
of an abstract concept for memory structures, which is used for modeling the information repre-
sentation that is defined in the scope of ARS as follows:

Information representation summarizes the structural composition of data that is received by the
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internal and external sensor system and the information management system [Zei10, p. 9].

The central concept regarding information representation in psychoanalysis is the memory trace.
In the ARS project a memory trace is defined as „a psychophysiological concept of representing
memories in the psyche“ [Zei10, p. 49], [DFZB09, p. 424]. A memory trace is a pattern for
psychic data structures. Hence memory traces form the base for all psychic data structures but
are not themselves data structures [Zei10, p. 49]. Incoming perceptions are matched against
memory traces and activate them in case of a match. In case perceived information cannot be
matched, new memory traces are constructed and stored. The concept of a memory trace implies
that memory content is stored in a associated manner, with consideration of its co-occurrence,
similarity and accessibility [Mer98, p. 75], [Zei10, p. 49] .

Psychic data structures are separated in thing presentations, which are processed in the primary
process, and word presentations, which are processed in the secondary process. Their structure
follows the rules of the respective process. For instance, thing presentations are not associated
in structured form nor in any logical relation. The only associations used are co-occurrence and
similarity.

Since the task of this thesis primarily considers object representations in the primary process,
the remainder of this chapter will focus on them.

The psychoanalytically inspired technical concept of the data structures in ARS distinguish
atomic data structures and composed data structures [Zei10, p. 50]. The atomic data struc-
tures in the primary process are thing presentations and associations. Associations are weighted
connections between data structures. Regarding object representation a thing presentation (TP)
evolves out of neuro-symbols and hence represents sensory information in a symbolic form. It
is defined as „the psychic representation of an object’s sensorial characteristics in the form of
acoustic, visual, olfactory, haptic, and gustatory modalities“ [DFZB09, p. 426], [Zei10, p. 54].
The sensor modality type from which it originates and an attribute value is the minimal defini-
tion of a TP. Associated TPs form the most important composed data structure of the primary
process, a thing presentation mesh (TPM).

As it is assumed that every memory trace is created only once in memory [Zei10, p. 56], a TP
may be associated to different TPMs. In the scope of this thesis a TPM represents a physical ob-
ject, which is described by TPs that are associated through attribute associations. In this regard
class attributes are distinguished from instance attributes. The former are essential for the phys-
ical definition, the latter are individually different. Additionally to attribute associations with
TPs, a TPM may be attributed by TPMs. This is the case if a physical object has distinguishable
object parts, which are also represented as TPMs.

Different TPMs may be associated with each other through primary associations, which reflect
similarity and temporal associations, which reflect co-occurrence of objects. To distinguish
physical objects from other forms of TPMs that are irrelevant for this thesis, TPMs that form
representations of objects are called entities or entity-TPMs and TPMs that form representations
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Figure 2.4: Thing presentation mesh

Figure 2.5: Drive mesh

of object parts are called entity-parts or entity-part-TPMs.

A drive mesh (DM) is another composed data structure that is processed in the primary process.
It represent the psychoanalytic concept of a drive. As already mentioned, a drive is the psychic
representation of a bodily need and comprises a drive source, a drive object and a drive aim.
Technically the components of a drive are associated with the drive mesh by drive mesh associ-
ations (see Figure 2.5). As already mentioned the quota of affect reflects the drive tension in the
drive source. Regarding further processing of the drive mesh the quota of affect represents the
potential of drive satisfaction (i.e. reducing the drive tension in the drive source) by using the
drive object in the drive aim’s act. In case of a memorized DM the quota of affect reflects the
amount of pleasure the associated drive object has brought in using the associated drive aim. In
particular it represents the degree of reducing the according bodily need.
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2.7 Comparison and Evaluation of Existing Approaches

After describing approaches in those areas that are relevant for solving the problem of this the-
sis, next the key topics of perceptual categorization, top-down vision and priming are briefly
compared and evaluated with respect to the problem statement.

Top-down Vision and Priming

As this work is following a subjective approach and is located in the primary process, top-down
perception is particularly significant. But even when giving top-down perception considerable
relevancy, it is clear that perception of the world is not a self-fulfilling prophecy and bottom-up
processes must also be considered. That is also the case in unconscious processing, because the
expectations given by top-down processes can be revised by unexpected, but still known objects.
Hence in the scope of this work, perception can be considered as the result of top-down and
bottom-up processing working together. In this regard in perceptual categorization top-down
perception will be considered in the form of priming and bottom-up processes will be reflected
in the form of the consideration of symbolic object features that are based on the agent’s sensors.

One can observe that priming complies with top-down perception. Generally, priming can be
represented using an activation level in the agent’s memory. Hence it is a good example how
activated memory unconsciously influences and even may drive perceptual categorization .

Categorization

In the last decades the focus of research in human categorization was to emphasize the ad-
vantage of one categorization model and the disadvantages of others. This was particularly
the case with the comparison of exemplar and prototype models. Currently there is an emerg-
ing consensus that exemplar-based models or derivates of them underlie important aspects of
category representation [PG04]. Neurophysiological and empirical evidence support exemplar
models [PG04], [Kru08]. Hence, when using aspects of process models as comparison criteria,
exemplar models are favored by a significant amount of evidence. That makes them the most
well studied and a richly explored class of categorization models [MG11], [Kru08]. Since one
requirement of this work is the usage of a process model, exemplar models are favored in this
regard.

When considering aspects of task models as comparison criteria the difference between prototype-
and exemplar models decreases considerably. That is, both models make similar predictions in
most use cases [Mur02, p. 95]. The difference in their prediction is primarily based on the fact
that the feature list used in prototypes does not represent relations between the features [Mur02,
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p. 96]. This aspect is also reflected by the linear separability of prototypes. That is, prototypes
can be separated by a straight line in their according multidimensional psychological space.

Nonetheless exemplar models are inherently more powerful than prototype models [Mur02, p.
113]. They keep the representations of all the exemplars and hence have all the information about
a category that could possibly be used in the categorization process, e.g for comprehensive sim-
ilarity calculation [Mur02, p. 113]. In the process of constructing a summary representation,
prototype models lose relevant information, e.g. the co-occurrence of particular features. In
the end, exemplar models can always be used as a basis to build prototypes or other category
representations and can account for prototype effects as prototypes are quite similar to a number
of exemplars [Mur02, p. 114]. Additionally exemplar models can also account for advantages
of abstraction [PG04]. This is very comprehensible, as when learning a new category exemplar
information is the point of departure [Mur02, p. 114] (at least in unsupervised learning). The-
oretically, although counterintuitive, perfect memory of all exemplar can be used to generate
other category representations, even on the fly [Kru08].

Many intuitive arguments can be found against prototype- and exemplar models. On the one
hand it seems counter-intuitive that every single stored exemplar is processed in the categoriza-
tion process. But only because we do not consciously experience recalling every exemplar when
categorizing a stimulus it does not mean that we do not [Mur02, p. 50]. On the other hand
the idea that every category can be represented by a single prototype is questionable [Mur02, p.
43]. For example, it seems unlikely that a single prototype could represent all possibilities of
bird-features. Generally, information about the variability of a category cannot be represented
extensively by a single representation [Mur02, p. 41].

In summary, exemplar models can represent categories comprehensively and can account for
prototype effects, but also for exemplar effects, which cannot be represented by prototype mod-
els. For instance, some experiments give evidence that the category decision is often based
on apparently irrelevant perceptual information and/or on the reminding of a specific exem-
plars [Mur02, p. 86].

Instead of deciding the correctness of categorization models, recently some hybrid models where
presented, which consider multiple category representations. An example is the already de-
scribed SUSTAIN model [LMG04], which considers both exemplar and prototype representa-
tions. Other hybrid models use exemplar- and rule representations [AB01]. Still, such hybrid
models are not flexible enough in distinguishing the usage of different category representations.
The main reason therefor is that they do not follow an holistic approach and do not consider dy-
namic influences of the categorization process (which may be used to choose which categoriza-
tion representation to use). For example, in SUSTAIN basically the frequency of categorization
decides if an exemplar or prototype representation is chosen. Additionally, once a prototype for
a specific category is constructed, there is no possibility to use an exemplar representation for
this category in a future categorization process, i.e. in another situation.

In the end the decision which category representation to use is „... probably a variety of task
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and personal variables. That is, stating this debate as „prototype vs. exemplar models“ may
itself be an error. Perhaps the issue should be discovering when people form generalizations
and when they rely on exemplars, rather than deciding which model is correct and which incor-
rect“ [Mur02, p. 114]. This statement makes clear that a categorization model should consider
dynamic influences. That is, the categorization process should be flexible, particularly regarding
the factors and conditions that influence the decision about which category representation to use.

When considering the introductory mentioned functional and subjective approach and some of
its analyzed manifestations, particularly priming, top-down perception and unconscious percep-
tion, some influencing factors of the categorization process can be observed that prefer the usage
of exemplars. The avoidance of abstraction and conceptualization in the primary process favors
exemplars over the more structured and abstract prototypes. Regarding priming (as a form of
top-down perception) and activation-based memory retrieval, exemplar models provide more
flexibility and fulfill the conditions for priming better than prototype models [Mal89]. This is
particularly the case for perceptual and affective priming, which may be reflected by the influ-
ence of the agent’s bodily needs (see Section 3.7). As already mentioned, one can observe that
the impact of perceptual priming increases with similarity between the stimuli and the primed
item [WM98]. It is obvious that concrete exemplars tend to be more similar to a stimulus than a
prototype. Hence using exemplars in the categorization process is a prerequisite for perceptual
priming of objects. When considering affective priming and the impact of affects in unconscious
perception (the influence by drives in ARS, i.e. the pleasure principle) - and when assuming that
drives are especially effective on concrete memory traces - exemplars are better suited to account
for the role of affective priming in the categorization process. Hence the pleasure principle also
favors exemplars over prototypes.

Additionally the access and consideration of memory traces is a basic principle in psychoanal-
ysis and enable subjective valuation. Particularly the influence of drives can be considered in a
more flexible and precise way if exemplars are used. This is also reflected by the intrinsic con-
sideration of object identification in the categorization process, which also represents the impact
of concrete memory traces on the categorization process and the interplay between identification
and categorization.

Regarding semantic priming, the usage of exemplars does not seem to bring a significant ad-
vantage, compared to prototypes, although the flexibility regarding activation is better suited by
exemplars. It primarily makes a computational difference if one prototype or multiple exem-
plars are needed to activate a concept. This is also the case for spreading activation, where the
number of nodes correlates with the computational costs. But, of course, this is generally the
difference between processing exemplars and prototypes. Computational arguments are often
taken against the feasibility of exemplar models. In this regard one can observe that priming and
activation-based memory retrieval decrease computational cost by directing the categorization
process to the usage of a constrained set of relevant (i.e. activated) exemplars (see Section 3.5).
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CHAPTER 3
Concept and Model

Following a requirement driven methodology, a top-down approach is used for the identification
and analysis of the requirements. This leads to requirements in different levels of abstraction.

After analyzing and specifying the problem statement and recognizing the concrete topics that
influence the task, the state of the art is evaluated according to the requirements, which are
extracted from the problem statement. Next the rules and conditions of the ARS model are an-
alyzed with respect to the problem statement and conceptual requirements for perceptual object
categorization in ARS are derived. In the next chapters these conceptual requirements will be
approached with the result of finding high-level concepts that fulfill them. As the key topic in
this work is perceptual categorization, these requirements and concepts will be related to it.

After analyzing the conceptual requirements and high-level concepts, the general approach of
this work is presented, which reflects this work’s conceptual model and considers all conceptual
requirements. In this regard not only the fulfillment of the single requirements is considered; the
focus also lies in the integration of all conceptual requirements to a consistent model.

The next level of the top-down analysis is to find requirements and concepts for the implemen-
tation model, i.e. a model which can be used to implement the model without the inception of
further model requirements.

After the model is implemented the results are evaluated in an Artificial-Life-Simulator by using
different use cases.
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3.1 Conceptual Requirements

The task of this work is to model and implement perceptual object categorization in the ARS
agent’s primary process by using the agent’s memories. The fulfillment of this task has to follow
the ARS approach. This aspect of the task is central, since an integration of a categorization
model in the ARS agent requires the consideration of the ARS approach. Hence, a successful
integration of this work in the ARS agent requires the analysis of the ARS approach and the
recognition of those requirements that must be considered by a model of perceptual categoriza-
tion. Only the consideration of these requirements enables the usage of this work in the ARS
project.

From an analysis of the ARS approach and ARS model some central high-level requirements are
extracted that have an significant impact on perceptual categorization. Next, these conceptual
requirements and their impact on perceptual categorization are presented.

Bionic

The initial motivation of the ARS project was to model technical control systems in a bionic
manner [DZBM09]. The motivation therefore is to find systems that cope with dynamic and
complex situations - in the successful way humans do. As already mentioned, the psychoanalytic
model is chosen as the most appropriate model of the human psychic apparatus. As showed
introductory, the ARS project uses a top-down design approach, starting with Sigmund Freud’s
second topographical model and breaking it down until the fourth level of the ARS functional
model. For many concrete domains the psychoanalytic model of the human mind only provides a
loose guideline and no concrete model. This is also the case for perceptual categorization, where
psychoanalysis provides a scaffold. In such cases models have to be found that comply with
psychoanalytic guidelines that are given by psychoanalytical advisers. Since the ARS project
follows a bionic approach, these models have to be bionic.

Rules of the Primary Process

As perceptual categorization in the primary process is modeled in this thesis, some requirements
in this regard have to be considered. According to psychoanalysis the primary process is „struc-
tureless“. That is, it does not consider logic or order. The central principle of the primary process
is the pleasure principle. In psychoanalytic terms this principle represents the dynamics of drive
wishes: psychic activity aims for maximal pleasure gain along with avoidance of unpleasure.
That is, the main goal in the primary process is the maximal and immediate satisfaction of the
agent’s bodily needs, which are represented by the psychoanalytic concept of drives. Since the
primary process uses primary data structures, additionally to the consideration of the primary
process’ rules, the available data structures have to be considered.
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Regarding categorization this requirement constraints the representation of categories as well as
the categorization process. A central requirement is the avoidance of reasoning processes. In
this regard the usage of deduction, abstraction and hierarchy is not allowed in the categorization
process. This requirement leads to the approach of categorization as an comparison process,
as opposed to categorization as an reasoning process (see Section 2.2). The most significant
requirement for perceptual categorization comes from the pleasure principle. In this regard
the recognition of an perceived object’s suitability as an drive object is the main purpose of
perceptual categorization in the ARS primary process.

Subjective and Functional

Subjectivity is a key factor in psychoanalysis. Hence the ARS model, particularly the primary
process, follows a subjective approach to cognitive modeling. In such an approach an agent’s
(subjective) experience is the basic source of information.

A subjective approach also induces a functional approach. In this regard functional refers to
the central scientific principle of cause and effect. In a subjective and functional approach the
effect on the subject lies in focus of the subject’s cognition. The recognition of something’s
function leads to its utility and meaning, i.e. its semantics. This also complies with the scientific
principle of evolution: From an evolutionary view something only „makes sense“ if its function
brings utility to the subject, i.e. it has a purpose for the subject, and hence supports its survival in
the world. That is, in an evolutionary sense, the concept of semantics refers to functional utility
for an subject. Hence, the recognition of function and its effect on a subject leads to subjective
semantics.

Regarding perceptual categorization this means that perceptual information is intrinsically re-
lated to subjective experience and to subjective needs. In this regard perception is a mean to
fulfill the agent’s needs. This approach again complies with the evolutionary principle. The
result of such semantic perception is the determination of an stimulus’ effect on the agent’s
needs.

Holistic and Integrated

One of the most significant advantages of psychoanalysis for a cognitive architecture is the
provision of a unitary and holistic functional model. On the one hand, this allows an abstract
perspective on holistic aspects of the function model, which can be mapped to concrete aspects.
On the other hand, it also considers different aspects of specific functions and the interplay with
other functions. Hence a holistic approach induces an integrated approach. In this regard a
function is not approached isolated, but integrated, with various influences.

For the function of perceptual categorization this means the integration of other significant in-
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fluences of the cognitive architecture. In a subjective and functional approach these primarily
are subjective influences that support the agent’s needs. These influences support perception to
handle ambiguity and uncertainty in recognizing an object, and help to interpret the perceived
input regarding their functionality for the agent’s need.

A holistic and integrated approach enables a dynamic system which considers the dynamic in-
terplay of different influences. In this regard psychoanalysis refers to the concept of psycho
dynamics.

Associative Memory

The psychoanalytic concept of memory traces and the derived technical data structures provide
concrete rules for the representation and processing of physical objects. The representation of
data structures in the primary process is already discussed in section 2.6. An important factor
in this regard is the associative nature of the ARS data structures. On the one hand an object
representation, in the ARS project represented as a TPM, is a associated mesh of its TPs (i.e. its
attributes). On the other hand different TPMs are associated with each other according to their
co-occurrence and similarity. Another important aspect of memory processing is their activation
as part of the retrieval process. Finally, the rules of the primary process, which restrict the
structure of TPMs and their processing also have to be considered.

Since the stimulus- and category representation are central aspects of a categorization model and
impose processing-techniques, the concept of data structures has a strong impact on a catego-
rization model in the ARS agent.

3.2 High-Level Concepts

After recognizing and analyzing the conceptual requirements and showing their impact on per-
ceptual categorization in the ARS agent, next those high-level concepts that are appropriate for
the mentioned requirements are presented. In this regard it is shown how those concepts fulfill
the conceptual requirements.

Top-down Perception

Top-down perception is particularly appropriate to fulfill the conceptual requirements. The most
significant feature of top-down perception in this regard is the central role of the concept of
expectations, which is intrinsically subjective. This factor is also reflected by the significance
of subjective memory in top-down perception. Expectations that are triggered by subjective
memory and by subjective needs are particularly appropriate for the perceptual categorization
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model in the ARS agent. Subjective needed expectations also reflect an functional aspect. Hence,
expectations may be triggered by the pleasure principle, i.e expected drive objects. But top-down
perception also follows an holistic and integrated approach, since expectations - in principle -
may be triggered by different sources. A central aspect of expectations in the scope of top-down
perception is their unconscious triggering and processing. Hence in the scope of the ARS project
it is located in the primary process. Finally, also the bionic requirement is fulfilled by top-down
perception, as emphasized by various sources of the state of the art (e.g. [Bar09b], [HRP97],
[Gre97], [OTCH03]).

But even when giving top-down perception considerable relevancy, it is clear that perception
of the world is not a self-fulfilling prophecy and bottom-up processes must also be considered.
That is also the case in unconscious processing, since the expectations given by top-down pro-
cesses can be revised by unexpected, but still known objects. Hence in the scope of this work,
perception can be considered as the result of top-down and bottom-up processing working to-
gether. In this regard in perceptual categorization top-down perception will be considered in the
form of priming and bottom-up processes will be reflected in the form of the consideration of all
sensorial object features.

Semantics per Valuation

Since this work is located in the primary process, perceptual categorization underly the pleasure
principle. In this regard the primary purpose of perceptual categorization is to recognize the
suitability of a perceived object as a drive object that fulfills the agent’s needs. This unconscious,
low-level valuation leads to the semantics of an perceived object in the primary process. That
is, the recognition of an object’s utility to satisfy the agent’s drives is equal to the recognition
of an object’s subjective semantic. Such semantic categorization is a subjective and functional
approach.

As opposed to the secondary process, categorization in the primary process does not use con-
ceptualization, hierarchical processing and reasoning. Hence, as mentioned introductory, the
categorization process focus on category recognition.

Exemplar Categorization

The rules of the primary process require categorization to be a comparitive process instead of an
reasoning process. The significance of memory traces in the primary process and the prohibition
to label objects make exemplar models the only possible approach for categorization in the
primary process.

Additionally, an exemplar model is the most flexible categorization model since it operates on
the most concrete level of object representation. This feature of exemplar models supports a
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holistic and integrated approach, since low-level object representation supports a flexible and
direct integration of processes that influence perceptual categorization. In this regard the con-
cerned object representations are directly affected from influencing processes. When consid-
ering an subjective and functional approach the usage of memory traces are more appropriate
than abstracted memory structures. One significant reason therefore is that drives are especially
effective on concrete memory traces. In this regard the usage of the pleasure principle favors an
exemplar model, since the influence of drives can be considered in a more flexible and precise
way if exemplars are used. Regarding the requirement for a bionic approach, exemplar mod-
els are supported by neurophysiological and empirical evidence [PG04], [Kru08]. Considering
aspects of memory formation, exemplar models comply with the data structures in the primary
process, i.e. particularly the concept of an exemplar complies with the concept of a thing presen-
tation mesh. Additionally, exemplar models favor activation-based memory retrieval and support
flexible memory activation.

Another significant aspect is the compliance of the central idea of exemplar models with the
psychoanalytic idea of grouping similar memories to represent a „topic“ [Fre98, p. 290]. In
exemplar models a category representation is formed by all members of the category. As the
category criteria in exemplar models are similarity-based, exemplars which are similar regarding
specific criteria form a category. A perceived stimulus would be compared to all exemplars and
finally assigned to the most similar category. Hence, in the scope of perceptual categorization
the „topic“ would be the category representation.

Priming

The search after a bionic form of a holistic and integrated approach to perceptual categorization
leads to the intensively studied concept of priming. The consideration of different influences on
perception is also considered in psychoanalysis, e.g. the influence by drives. Hence, the basic
idea of priming is compliant with psychoanalysis. Priming is used in this work as an generic
high-level concept for the integration of subjective expected objects in perceptual categorization.
Priming is a bionic concept, which is located in the primary process and enables the integration
of various influences in perceptual categorization in a generic form. This suffices holistic and
integrated aspects, but also supports subjective and functional aspects, since priming provides
a platform for the integration of subjective and functional influences, e.g. drives. Different
forms of priming reflect the integration of different influences. Semantic priming complies with
the significance of memory traces in the categorization process, i.e the influence of associative
memory. The principle of affective priming complies with the pleasure principle, particularly the
influence by drives. The single most important advantage of priming is its generic processing of
all these influences regarding perceptual categorization. The integration of these influences help
to handle ambiguity and uncertainty and reflect a dynamic categorization process. Regarding the
memory formation in the ARS agent one can observe that associative priming complies with the
concept of memory traces in psychoanalysis, particularly the activation of associated memories.
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Since priming is per definition a preliminary step - i.e. priming occurs before the central process
- it can be seen as configuring the categorization process. In this regard it operates as a bionic
heuristic of data processing (see Section 3.5).

As already mentioned, the concept of spreading activation can be used to model important as-
pects of priming. This is particularly the case for representing the impact of a prime on primed
entities. This is modeled by spreading of activation from the prime to its associated targets, i.e.
the primed entities.

Figure 3.1: High-Level Requirements and Concepts
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The conceptual requirements and their fulfillment by high-level concepts are summarized in
figure 3.1.

3.3 Different Categorization Processes in the ARS Agent

Even if exemplar models are favored in the primary process, this does not mean that they are
sufficient for categorization in the overall ARS model. An overall categorization model in the
ARS agent needs to consider categorization in the secondary process and integrate it with cat-
egorization in the primary process. This complies with the different usage of semantics in the
primary and secondary process. Since the scope of this work is the primary process, this aspect
will not be discussed in detail, but only mentioned for further work.

The distinction between categorization in the primary process and secondary process complies
with the distinction between categorization as a comparison process and categorization as a
reasoning process. The former follows a similarity-based approach. The latter follow a rule-
based approach and may arise from a similarity-based approach [Gol94]. This relation be-
tween similarity- and rule-based categorization considers aspects of grounding and induction.
A similarity-based approach considers a grounded category formation, based on concrete expe-
rience. In further processing an inductive process may form abstract category representation that
can be used in a rule-based categorization process [Slo03]. Additionally to an inductive category
formation process one may also consider an deductive categorization process in the secondary
process. This distinction also reflects two qualities of knowledge, namely experience-based un-
supervised knowledge and theory-based supervised knowledge.

As already implied, categorization as a perceptually-based comparison process, i.e. categoriza-
tion in the primary process, is not sufficient to consider all aspects of categorization [Gol94].
An inductive and deductive reasoning process in the secondary process has to extend similarity-
based categorization. One reason therefor is that many categories are organized around tasks,
goals or theories instead around perceptual similarity [Gol94]. Additionally to a perceptual
similarity-based approach, one has to consider situation- and goal-dependent categorization.
One example given in [Gol94, p. 133] is categorizing „things to retrieve from a burning house“.
In this regard it is obvious that categorization may have multiple similarity-criteria additional
to perceptual similarity, although the latter is still the most significant criterion [Gol94]. These
aspects also consider the role of analogical reasoning in categorization [Gol94].

In summary, similarity-based perceptual categorization form the basis of the categorization pro-
cess, particularly regarding aspects of induction and grounding. Or as [Gol94, p. 152] states:
„Similarity may not necessarily be sufficient for categorization, but similarity is sufficiently nec-
essary to categorization...“ Hence, low-level perception-based aspect of category recognition
should be extended by a high-level reasoning process of conceptualization. In a holistic and
integrated approach the distinction and interplay between categorization in the primary- and
secondary process has to be considered, but is not the scope of this thesis. Generally one can
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approach this topic by handling categorization in the secondary process as an extension of cat-
egorization in the primary process. That is, successful category recognition is extended by
conceptualizing the recognized object, e.g. further reasoning about its categories and functions.
This process leads to a hierarchical and abstract view on the categorized object and may provide
further object understanding. Thus, this process extend the recognition of low-level semantics,
i.e recognizing the similarity of an object, by high-level semantics, i.e. reasoning about the
recognized category to further understand the function and effect of an perceived object (e.g.
for abstract plans). Another aspect of the interplay of categorization in the primary- and sec-
ondary process is the corrective function of the secondary process, in case of wrong or uncertain
category recognition in the primary process.

3.4 Perceptual Categorization in ARS - The General Model

In the previous sections the conceptual requirements are analyzed and their impact on perceptual
categorization is shown. After that, high-level concepts are developed and their fulfillment of
the requirements is shown. Next, the general model is presented, by specifying the input and
output of perceptual categorization in the ARS agent and giving a definition of the categorization
process. After that it is shown how the high-level concepts fit in this definition in a consistent
form. In particular this includes the integration of the high-level concepts to a consistent model
of perceptual categorization.

Before presenting the model some basic terms need to be defined. A stimulus is a perceived
object. These two terms are used interchangeably. A exemplar is a stored entity-TPM. After the
stimulus is categorized it is used as a drive object.

Drive Object Categorization

In a subjective and functional approach to perceptual categorization the recognition of an per-
ceived object’s suitability as an drive object is the main task of perceptual categorization in the
primary process. Hence it is irrelevant to label a perceived object. For the agent in this stage of
the primary process it is only relevant to answer the questions „Which effect does a perceived ob-
ject have on the agent’s bodily needs; what does this object mean for the agent’s needs?“. These
two aspects of the question are correlated. When considering the first aspect of the question cat-
egorization can be described as functional categorization; the second aspect leads to semantic
categorization. That is, the recognition of an object’s utility to satisfy the agent’s drives is equal
to the recognition of an object’s subjective semantics. Hence a perceived object’s semantics in
the primary process is recognized through the valuation of the object regarding its suitability to
satisfy the agent’s bodily needs.

Definition: Drive object categorization is the valuation of a perceived object regarding its suit-
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ability as a drive object to satisfy the agent’s bodily needs.

The most important factors of a categorization model are the stimulus representation, the internal
category representation and the process of deciding category membership. In the ARS percep-
tual categorization model the stimulus representation is given by the result of the neurosymbolic
layer, which can be transformed to an entity-TPM; the category representation is given by the
agent’s experience, in the form of memorized entity-TPMs; and the category membership is
decided based on multiple categorization criteria, amongst them the perceptual similarity of the
stimulus to memorized TPMs. As already emphasized, such a model is called an exemplar or
instance-based model. In the scope of perceptual categorization in the primary process the stim-
ulus’ category membership represents its suitability as an drive object. That is, all memorized
entity-TPMs that served as a drive object for the satisfaction of a drive category form a drive
object category. A concrete example is given in figure 3.2.

A drive category is defined by the drive source and drive component. In particular, all drives
with the same drive source and drive component are member of the same drive category. A drive
object category represents a formation of memorized entity-TPMs that satisfied drives from the
same drive category.

In this regard a drive object category forms a psychoanalytic „topic“ [Fre98, p. 290], which
represents the grouping of similar memories (see Section 3.2). In case of a drive object category
the similarity refers to satisfying the similar drives.

Figure 3.2: Drive categories

As mentioned in chapter 2.6 a drive object, i.e. an entity-TPM, is associated with a DM. The
DM’s quota of affect reflects the potential for drive satisfaction when using the associated drive
object. Hence the quota of affect assesses the drive object regarding its potential suitability to
satisfy the drive. As already emphasized, this is the purpose of drive object categorization. In
this regard category membership in drive object categorization is graded. As a drive object
may be suitable to satisfy different drives, drive object categorization considers graded multiple
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category membership. Hence, the result of drive object categorization is the association of the
stimulus with drives from the according drive categories. The quota of affect of these drives
represents graded category membership to drive object categories. The result of this process
is the stimulus’ valuation regarding its potential as a drive object. In this regard drive object
categorization leads to the recognition of an stimulus’ semantics in the primary process. This is
particularly the recognition of a perceived object’s meaning for the agent’s bodily needs.

Exemplar Representation

When addressing exemplar models one has to clarify what an exemplar is. As already mentioned,
in drive object categorization a TPM is used as an exemplar. Since TPs are only stored once and
associated to entity-TPMs that are attributed by them, an entity-TPMs is defined by its TPs in a
unique way. That is, it is not possible to retrieve two TPMs with identical TPs. This is not the
most concrete level of object representation, since it is also possible to use every encounter of
the same object as a distinguishable exemplar. But for drive object categorization this level of
object representation would not bring any additional information, since the drive object category
of an entity-TPM is not dependent on the object’s context. That is, a drive object with identical
attributes do not satisfy a drive differently in different situations. For example, a slice of bread
is categorized in the same drive object category, if it is in the kitchen or in the bathroom.

In the primary process, following the pleasure principle, every perceived object is considered as
a drive object. In this regard the first step in subjective perception in the primary process is to
categorize the stimulus as a drive object. Therefore stored entity-TPMs are used. Following the
pleasure principle, in drive object categorization only the usage of a stored entity-TPM as a drive
object is considered. In further processing, particularly in the secondary process, entity-TPMs
may be additionally considered in other aspects (e.g. for planning). Hence, in the scope of drive
object categorization as an exemplar-based model an exemplar is a entity-TPM that represents a
stored drive object.

Deciding Category Membership

In exemplar models perceived objects are categorized by comparing them to stored exemplars
whose categories are already known. Basically the number of similar exemplars and the degree
of similarity determine category membership. In such models similarity is a sufficient criterion
to decide category membership. In an integrated and holistic approach the similarity criterion
is necessary but not sufficient to determine category membership. Additionally to similarity
further categorization criteria influence the category decision. Perceptually similarity represents
an objective categorization criterion, which is extended by subjective categorization criteria (see
Section 3.5). Hence, drive object categorization uses multiple categorization criteria to decide
category membership.
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The goal of conventional exemplar models is to find the most probable category by using the per-
ceptually most similar exemplars to decide the stimulus’ category membership. In this regard
the result of using multiple categorization criteria is finding the most appropriate exemplars to
decide the stimulus’ category memberships. This category appropriateness reflects how appro-
priate the exemplar’s category is to use it for categorizing the stimulus.

The category appropriateness of an exemplar reflects how appropriate it’s categories are to base
the stimulus’ drive object categorization on it. The appropriateness of an exemplar is determined
by multiple categorization criteria.

Drive object categorization has the goal to determine the suitability of a stimulus as a drive
object. After finding the most appropriate exemplars to base this decision on, the goal is to
determine graded category membership for the stimulus using all categories of the most appro-
priate exemplars (see Figure 3.3). In this regard the focus lies on grading the stimulus’ category
membership, i.e. to determine the potential quota of affect for every DM that the most appropri-
ate exemplars are associated with.

Regarding the number of categories, drive object conforms with a multi-label categorization
model. As opposed to conventional exemplar models, drive object categorization does not select
which categories of the most appropriate exemplars to use, but rather uses all categories and
decides graded category membership.

In terms of a kNN model, after the determination of the most appropriate exemplars, the first
goal is reached by taking the k most appropriate exemplars and calculating graded category
membership for every possible drive object category.

Identification and Generalization

In an exemplar model, the same object representation and the same process can be used for the
identification and generalization [PG04] of categories. This is considered in drive object catego-
rization. That is, an unambiguous full match with a specific exemplar lead to an identification of
an stimulus’ drive object categories. This is the case if an exemplar has the highest score for cate-
gory appropriateness, with a maximal score regarding at least one criterion and the highest score
for all other criteria. Theoretically it is not relevant which criterion gets the maximal score. Prac-
tically only the similarity criterion is significant to consider for reaching the maximal score (see
Section 5.3). This case is called appearance recognition, i.e. a full match regarding appearance
similarity. It must be emphasized that appearance recognition is not appearance identification,
but only the recognition of an object’s features, without considering object identification.

In case of such a drive object identification, the perceived object is categorized according to the
categories of the unique exemplar that is found during the categorization process. Hence, drive
object identification is concerned with identifying the drive categories and therefore includes
drive object categorization. In the scope of this thesis this case is called identified drive object
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Figure 3.3: Drive object categorization - overview

categorization. Regarding object representation there is no need to differ between the identified
perceived object and the according exemplar, since it would not be stored as a unique exemplar.
Hence the exemplar is used to represent the stimulus in further processing (see Figure 3.4).

As the premise of the ARS agent is that it only perceives already known objects, identified
drive object categorization should be the standard form of drive object categorization. But since
objects may be ambiguous regarding their objective categorization criteria, i.e. their appearance,
and subjective categorization criteria may not always reduce the uncertainty and ambiguity, the
categorization process has to consider generalized drive object categorization. That is, deciding
a perceived object’s categories by generalization of appropriate exemplars’ categories. In this
case the drive object categories of the most appropriate exemplars are used (see Figure 3.4).

If the agent is not able to identify the stimulus’ drive object categories due to high uncertainty,
and hence generalized drive object categorization is needed, the most appropriate exemplar is
used to represent the stimulus. In that case the exemplar’s features are extended by those stim-
ulus features that are not part of the exemplar. Hence, constructivistic aspects are considered.
When using an exemplar to represent a non-recognized stimulus, the uncertainty of using the
exemplar as an adequate representation must be considered. That is, the exemplar must reflect
the degree of certainty of its usage as an adequate stimulus representation. The uncertainty in
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drive object categorization may be decreased by further processing in the secondary process.
In this regard uncertain drive object categorization is the primary process’ proposal that can be
revised by reasoning in the secondary process.

In case the stimulus does not has additional features to the most appropriate exemplar but dif-
ferent features, the exemplar can not be used for further stimulus representation. In this case the
stimulus representation is obtained and extended by the most appropriate exemplar’s features.

In summary, the stimulus is categorized using identified- or generalized drive object categoriza-
tion. This process is done by determining the category appropriateness of stored exemplars.
Multiple criteria determine an exemplar’s category appropriateness. After the stimulus is cate-
gorized, using the subjective information of stored exemplars, it is valuated as a subjective drive
object.

Figure 3.4: Generalized- and identified drive object categorization

3.5 Integrated Multi-Criteria Categorization - A Generic
Framework

In the last sections drive object categorization is introduced. Therefore the general model of
perceptual categorization in the primary process is described and the result of the process is
specified. This process considers subjective and functional aspects by using an exemplar model
and deriving an perceived object’s semantics by valuating its suitability as a drive object. Such
functional and semantic categorization suffice the rules of the primary process and the pleasure
principle.
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In an integrated and holistic approach perceptual categorization also has to consider various
influences and their integration. In this regard perceptual categorization is primarily the in-
terpretation of the perceived object in comparison with the agent’s experience and relative to
various influencing factors. In this thesis these influences are transformed to further categoriza-
tion criteria. To reach this goal two high-level concepts are used, namely top-down perception
and priming. After the description of the general framework of drive object categorization in
the previous sections, next the integration of holistic aspects is considered in drive object cate-
gorization. Hence, the next step is to bring together all mentioned high-level concepts to form a
consistent model of perceptual categorization in the ARS primary process.

Top-down Vision and Priming for a Holistic Integration of Infuences

The integration of influencing factors is inspired by the bionic concepts of top-down perception
and priming. The former is used to handle influences in a generic way, namely as unconscious
expectations, the latter is used to generically integrate these expectations for the configuration
of the categorization process.

In top-down perception, expectations and predictions guide the perception process. In the scope
of this thesis the concept of expectation in top-down perception is used to formulate a generic
representation for different influences of the categorization process. To integrate this concept
with the previously described exemplar model, categorization influences are represented by
expectations, particularly by expected exemplars. Expectations can be triggered by different
sources. For example, depending on the actual bodily needs the agent may expect certain drive
objects (i.e. exemplars) that satisfied the needs according to the agent’s experience. The generic
result of such influencing processes is a set of exemplars that have different levels of expectation.

The concept of priming in the scope of this thesis is used as a configuration process to generically
integrate various influences, i.e. expectations, in perceptual categorization. This is reached
by introducing an activation value in exemplars, which represents the degree of expectation.
Hence, a highly expected exemplar gets an higher activation value than a lower expected one. In
the course of the categorization process the activation value represents an exemplar’s category
appropriateness. Hence, the result of activation processes is filtering and ranking the set of
appropriate exemplars. To integrate the concept of expectation in the category decision process
of the exemplar-based model, they are transformed to categorization criteria.

The activation-process by expectations can be seen as a bionic heuristic. That is, a technique that
uses experience rather than explicit rules to solve ill-structured problems [SN58]. The problem
to be solved is finding exemplars that are appropriate to base drive object categorization on them.
The experience of the agent is reflected by choosing expected exemplars. Hence the heuristic
is: using expectations to reduce the set of exemplars, i.e. the search space, to only include those
exemplars that are expected, i.e. that are probable to be solutions. This heuristics speeds up the
process of finding a satisfactory solution and also helps to reduce ambiguity and uncertainty.
In this regard it guides the categorization process to find the most appropriate exemplars. This
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Figure 3.5: Exemplar activation

bionic heuristic handles a significant disadvantage of exemplar-based models, namely the big
search space. When using preferred exemplars, which represent the most appropriate exemplars,
only in the worst-case it is needed to process all exemplars.

The usage of priming and top-down perception handles ambiguity and reduces uncertainty in
determining the most appropriate exemplars by using the subjective concept of expectation and
activation (see Figure 3.6). Additionally it leads to data reduction, particularly search space
reduction, and follows a subjective and functional approach.

Exemplar Activation via Application of Categorization Criteria

The key factor in the overall categorization process is to determine the most appropriate ex-
emplars to base drive object categorization on. Various influences, which are represented as
expectations, may be considered in deciding the most appropriate exemplars. To integrate these
categorization influences in the categorization process they are transformed to categorization
criteria. This is done by translating an influence’s expectation to a criterion. Hence, the more
an exemplar is expected regarding a specific influence, the better it fulfills the criterion of this
influence.

Hence, multiple categorization criteria are used to decide the categorization process. The ap-
plication of these categorization criteria lead to the activation of exemplars. This activation
subsequently determine the category appropriateness of exemplars, which is the basis for drive
object categorization.

Categorization criteria in drive object categorization can be separated in objective and subjective
categorization criteria. Subjective criteria are based on information from the psychic apparatus.
Objective criteria are based on an perceived object’s information.

A significant objective categorization criterion is given by perceptual similarity, i.e. an exem-
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Figure 3.6: Integrated drive object categorization - overview

plar’s similarity to the stimulus’ appearance. Therefore the stimulus’ features are used as catego-
rization criterion. They are objective since they are the result of the neurosymbolic layer, which
is not part of the psychic apparatus. The similarity criterion is a significant categorization crite-
rion, since it influences the appropriateness of exemplars. In this regard the more an exemplar is
perceptual similar to a stimulus’ the more appropriate it is to base drive object categorization on
it.

Subjective categorization criteria are the result of influences from the psychic apparatus, which
are significant enough to be used as a categorization criterion. These influences are represented
as expectations. An integrated and holistic approach of categorization considers various such
influences. Considering the pleasure principle the most significant one is given by expectations
that are triggered from the agent’s actual bodily needs. Another significant categorization cri-
terion is the influence of previously categorized objects and their associated exemplars. Since
integrating influences in the categorization process is designed generically, every influence that
can be reflected in a level of exemplar expectation, respectively activation, can be considered as
a categorization criteria. The higher the expectation level of an exemplar, the more appropriate
it is to base drive object categorization on it.

In the scope of this thesis additionally to the objective categorization criterion of perceptual
similarity a subjective categorization criterion, namely the influence of the bodily needs, which
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reflects affective priming (see Section 2.4), will be considered. Another significant subjective
categorization criterion is the context criterion, which represents aspects of semantic- and per-
ceptual priming and is briefly discussed as future work in 7. This criterion uses internal context
to form expectations. It is particularly appropriate to represent the impact and advantages of
expectations and associative memory for perceptual categorization, but it is to extensive for a
detailed discussion in this thesis.

Objective Similarity Criterion

The central factor in conventional exemplar models is the calculation of similarity. In this thesis’
work perceptual similarity is only one categorization criterion amongst potential many. Never-
theless it is a necessary, although not sufficient, criterion to decide category membership.

The process of similarity calculation in exemplar models includes the comparison of the object’s
features with every exemplar’s features. This aspect of exemplar models is a significant disad-
vantage. For a big amount of exemplars it is not feasible to calculate the similarity between a
stimulus and every single exemplar. In technical terms, the search space would include all stored
exemplar-objects. The associative structure of the ARS agent’s memory enables the reduction
of the search space by only using those exemplars that are significant for the comparison with
the stimulus. Since a distinguishable feature, i.e. a TP, is stored only once, it can be associated
to multiple TPMs (cf. 2.6). The usage of appropriate TPs (i.e. those TPs that are similar to the
stimulus’ TPs) as a starting point for the search after similar exemplars, reduces the search space
to those entity-TPMs that are associated with them. Only those entity-TPMs are significant for
similarity calculation (see Figure 3.7).

Figure 3.7: Associative similarity activation

Regarding the scale of the exemplar-features the current ARS information representation uses
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symbolic features, i.e. TPs that represent qualities. Hence a quantitative comparison of two
TPs is not possible with the current ARS information representation; it is only possible to check
the absence or presence of a TP when comparing two entity-TPMs. In this regard it would
be advantageous to quantify qualities. An example therefor is to compare two colors or two
shapes. To calculate the similarity between two colors, a quantitative value for the colors is
needed. Different approaches (e.g. [CS93], [DK97]) to quantify symbolic features for the sake
of similarity calculation use inductive learning techniques to calculate distance tables (with real-
valued distances) from the training data. But such approaches do not comply with the ARS
approach and the ARS data structures. Nevertheless, the quantification of qualities is currently
not required in the ARS project, since the low number of possible objects enable their unique
separation by binary comparison of symbolic features. Hence, for calculating the perceptual
similarity between the stimulus and an exemplar only a nominal scale is used, since it is sufficient
for the needs in the ARS project.

Another important factor in similarity calculation is selective attention to features. Selective
attention is represented by feature weighting, which reflects the significance of a feature for the
description of an exemplar. In particular two different exemplars may have the same features
with different weights. This leads to more flexible and precise similarity calculation. In the
course of similarity calculation the feature weight determine the feature’s impact on the similar-
ity score. Exemplar models that consider weighted features primarily use learning mechanism,
e.g. gradient descent, to determine the weights [Kru93], [WAM97]. As learning mechanisms
are not considered currently in the ARS agent and the agent resembles a thirty-year old person,
the feature weights are already known and are represented by the attribute-associations’ weight.
Hence, local weights [WAM97] are used to determine the impact of a feature on the similarity
calculation. That is, the determination of the feature weights is handled on exemplar-level and
hence is a function of the exemplar.

One can observe that the activation of an exemplar by the similarity criterion also reflects aspects
of perceptual priming. That is, the activation of an exemplar via the similarity criterion increases
its category appropriateness for subsequent categorization processes.

Subjective Embodiment Criterion

A significant subjective categorization criterion in the primary process is the impact of expected
drive objects that satisfied the agent’s actual bodily needs according to its experience. In this
regard the expected exemplars are those that are likely to satisfy the agent’s actual bodily needs.
The better the quota of affect of those drives that the exemplar has satisfied (according to the
agent’s experience) match the actual drives’ quota of affect, the more it is expected. Regard-
ing the kind of priming, one can observe that this categorization criterion represents affective
priming.

Since the considerations of bodily needs represents the embodiment of the ARS agent, the in-
fluence of the agent’s needs on the categorization process is called embodiment categorization
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criterion.

A concrete example is given: If the agent is hungry and its experience proposes that apples
satisfy hunger, i.e. an apple is associated with the according DMs, the agent will expect an
apple. The level of expectation correlates with the DM’s quota of affect. That is, the better
the apple satisfied these drives according to the agent’s experience, the higher is the apple’s
expectation level.

The appropriateness of an exemplar regarding the agent’s actual bodily needs can be described
as follows. The more an exemplar has satisfied an actual significant drive according to the
agent’s experience, the more appropriate it is to base drive object categorization on it. Hence
the exemplar is appropriate as an actual needed drive object. On the one hand this is a very
subjective appropriateness, since it has no relation to a objective reality. That is, only because it
would be appropriate for the agent to perceive a drive object that would satisfy its bodily needs
(and hence the according exemplar would be appropriate to base drive object categorization on),
it does not mean that this influence would support the recognition of the stimulus’ real drive
object categories. On the other hand, since the agent’s drives co-determine the agent’s actions,
the probability of perceiving an object that satisfy the actual bodily needs is high. In this regard
the embodiment categorization criterion supports reducing uncertainty and ambiguity in drive
object categorization.

A concrete example therefor is given: The agent is very hungry, i.e the according actual drive has
a high quota of affect, and the agent perceives an ambiguous object that could be categorized as
a drive object that satisfies drives that represent hunger or a drive object object that do not satisfy
hunger. The high quota of affect indicates that the agent is hungry for quite some time. Since
the agent’s plans are co-determined by its bodily needs, the probability for the agent to be in an
environment with objects that satisfy its drives (e.g. the kitchen) is higher than the probability
to be in another environment.

Apart from considerations of category appropriateness the embodiment criterion primarily re-
flects the impact of the body on the agent. This can also impede the recognition of an object’s
objective categories. For example, if the agent’s drives are high and it is not in an environ-
ment with appropriate drive objects, the subjective impact of the drives impedes the recognition
of objective drive object categories. This complies with the psychoanalytic requirement of the
possibility to err („to err is human“).

But it must be emphasized that the advantage of considering various influences for categorization
is the reduction of the agent’s uncertainty in selecting appropriate exemplars. Hence, from
the agent’s subjective view it is not relevant if the reduction of the uncertainty in determining
appropriate exemplars is based in objective or subjective influences.

In summary, the purpose of using categorization criteria is to support the determination of ap-
propriate exemplars to base drive object categorization on. All criteria support the reduction
of uncertainty in this process. In a subjective approach, additional to objective criteria subjec-
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tive criteria are considered by using the concept of priming and top-down perception. Although
the categorization criteria are separated in objective and subjective, they are still all functional
criteria.

Activation-based Multi-Criteria Application

As showed in the previous sections, different categorization criteria determine the category ap-
propriateness of stored exemplars. To handle these criteria generically, the concept of activation
is used. The objective categorization criterion activates perceptually similar exemplars. The
subjective categorization criterion activates expected exemplars. The degree of activation re-
flects the degree of category appropriateness. Such multi-criteria activation is a generic way to
integrate multiple criteria, which may be based on subjective expectations or objective similarity,
into drive object categorization.

Hence, exemplars are activated by applying different categorization criteria. Such consideration
of multiple criteria to rank the appropriateness of exemplars pose a multi-criteria decision aiding
(MCDA) problem. The main task of such a problem is to evaluate exemplars regarding different
criteria and determine the impact of the individual criteria for the overall category appropriate-
ness of an exemplar. This leads to the integration and aggregation of all categorization criteria
for the overall ranking of appropriate exemplars. A widely used method for ranking alternatives
(i.e. exemplars in this thesis) in MCDA is the definition of a utility function for each criterion,
which determines a utility value for each alternative with respect to a criterion [ZD02]. In this
thesis the activation of an exemplar by the application of a criterion represents the criterion’s util-
ity function. That is, an exemplar’s fulfillment of a criterion is evaluated by an activation-based
approach.

To determine the category appropriateness of all exemplars regarding the single categorization
criteria, following steps are necessary. First, each exemplar has to be evaluated regarding every
categorization criterion by using the criterion’s utility function. In this thesis the utility function
is implemented as a criterion activation function. This step is done by applying the categoriza-
tion criterion on exemplars, i.e. by the activation of exemplars. Second, the activation values
of all criteria are aggregated for each exemplar by using a activation aggregation function. As
part of this step the impact factor of each criterion has to be determined. The aggregation of
all activation values results in the aggregated activation value of each exemplar. Third, the ex-
emplars are ranked with respect to their aggregated activation value, which reflects its category
appropriateness.

An aspect that has to be considered is the possible dependence between the different criterion
applications, i.e. activations, of an exemplar. In this regard two kinds of activations can be dis-
tinguished. The first kind is called unconditioned activation, because its application is not con-
ditioned on other activation values. This activation kind represents categorization criteria that
are independent from the application of other categorization criteria. The second kind is called
conditioned activation, because its application is conditioned on other activation values. That
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is, the calculation of the activation value is dependent on activation value of another criterion.
An example therefore is the application of the contextual categorization criterion (see Chapter
7). In this case an exemplar that is activated by the perceptual similarity criterion activates asso-
ciated exemplars by applying the contextual categorization criterion. In case of unconditioned
activation the order of applying multiple criteria is not relevant. Since in this thesis embodi-
ment activation is considered exemplary for subjective criteria, i.e. the contextual criterion is
not modeled in detail, only unconditioned activation is considered. Nevertheless, for the sake of
comprehensibility the contextual criterion is mentioned in figure 3.8.

Regarding weighting the impact of each categorization criteria, i.e. weighting each criterion
activation value, a dynamic weighting method is used and is separately defined for each catego-
rization criterion. Hence for every criterion a criterion activation function, which serves as the
criterion’s utility function, and a dynamic criterion weighting function, which is needed for the
aggregation of all criteria values, is defined.

Figure 3.8: Activation-based multi-criteria ranking

The transformation of the problem of integrated drive object categorization to a multi-criteria
decision problem and the usage of the criterion activation function as its utility function have
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various advantages. First, it provides a generic framework to integrate different categorization
influences as categorization criteria. Second, the usage of multiple categorization criteria sup-
ports the reduction of ambiguity and uncertainty in category decision. Third, the usage of the
concept of priming and activation for the criteria’s utility functions enables the reduction of
exemplar candidates that have to be considered for determining their category appropriateness.
This advantage is next discussed in detail.

In MCDA theoretically all stored exemplars would have to be evaluated regarding every cate-
gorization criterion to determine the most appropriate exemplars for drive object categorization.
This is particularly the case, if no point of departure exist that can be used to reduce the number
of exemplars that have to be evaluated, i.e. the number of exemplar candidates. In such a case all
stored exemplars are candidates. For example, the application of the similarity criterion would
involve the comparison of the stimulus with every exemplar, since the stimulus potentially may
be similar to any of the stored exemplars. As shown in section 2.2 conventional exemplar mod-
els and the k-nearest neighbor algorithm follow this procedure by considering all exemplars for
similarity calculation. By using the concept of activation, the number of exemplar candidates
is reduced. This is done by providing a point of departure, i.e. the activation sources, which
activate those exemplars that fulfill a criterion in any form. This is possible, because the activa-
tion sources define the criterion. That is, a criterion is usually comprised of multiple activation
sources (see Figure 3.11). Only those exemplars that get any activation from at least one activa-
tion source are considered as candidates. Subsequently the total amount of received activation
from multiple activation sources (see Figure 3.10) determine the category appropriateness of an
exemplar. An exemplar that gets the maximal amount of activation from all activation sources of
a criterion is fulfilling the criterion in the best possible way and hence gets the highest possible
criterion activation value, i.e. the highest category appropriateness regarding the criterion. In
this regard the process is called application (instead of evaluation) of a categorization criterion,
since the part of departure is the criterion’s source activations, which activates exemplars. In
the case of the similarity criterion - to continue the example given above - the stimulus’ features
are the point of departure (i.e. the activation sources which define the similarity criterion) for
the application of the criterion and the determination of the most similar exemplars; only those
exemplars are considered as candidates, which at least have one feature in common with the
stimulus, since only in this case they get any activation at all (cf. Section 3.5). Exemplars that
get the maximal amount of activation from all activation sources fulfill the criterion in the best
possible way and hence are most appropriate regarding the specific criterion. Since exemplars
from different drive object categories may get the maximal activation score, the determination of
the most appropriate exemplars regarding a criterion may lead to ambiguous results. By consid-
ering multiple criteria, ambiguity and uncertainty in determining the most appropriate exemplars
for drive object categorization are reduced.

Hence, the activation process on the one hand determines the exemplar candidates, which are
considered for determining the most appropriate exemplars for drive object categorization, and
on the other hand it is used for determining the most appropriate exemplars. This process is
called activation-based criteria application.
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Figure 3.9: Activation-based multi-criteria categorization

In summary, activation-based criteria application uses an activation-based approach to apply
a criterion and evaluate exemplars regarding a criterion. The overall process is summarized in
figure 3.9.

3.6 From Objective Features to a Subjective Drive Object - The
Overall Process

The overall process represents the transformation of an stimulus with objective features to a sub-
jective exemplar. This reflects the primacy of subjectivity in the ARS agent, where perceptual
information is intrinsically related to subjective experience and to subjective needs. In drive
object categorization subjectivity is considered in multiple forms. First, drive object categoriza-
tion focuses on the valuation of a stimulus regarding its suitability to satisfy the agent subjective
needs. Second, the agent uses its subjective concrete experience in a comparison-based process
to perform drive object categorization. Third, the stimulus’ representation in further processing
is based on the most appropriate exemplar. Fourth, subjective influences are considered in the
determination of the stimulus’ drive object categories.

Functional Categorization

The transformation from an objective stimulus to a subjective drive object follows a functional
approach. Hence, drive object categorization is a form of functional categorization. The purpose
of drive object categorization is not naming or labeling perceived objects, but to determine their
function as drive objects. In a subjective and functional approach the effect of perceived objects
on the subject lies in focus of the subject’s perception. In this regard perception is a mean to
fulfill the agent’s needs.

In the scope of the primary process in the ARS agent, recognizing a stimulus as a drive object
leads to its subjective semantics. That is, in an evolutionary sense, the concept of semantics
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refers to functional utility for an subject. Hence, the recognition of function and its effect on a
subject leads to subjective semantics. In drive object categorization the recognition which effect
the stimulus will have on the agent’s needs leads to object understanding in the scope of the
primary process.

Different categorization criteria are used to recognize an stimulus semantics and function. Al-
though the categorization criteria are separated in objective and subjective, they are still all
functional criteria.

Dynamic Categorization

As already analyzed in section 3.1 perceptual categorization in the ARS model has to be inte-
grated and must consider subjective influences. The integration of influencing factors is inspired
by the bionic concepts of top-down perception and priming. The former is used to handle in-
fluences in a generic way, namely as unconscious expectations, the latter is used to generically
integrate these expectations. The transformation of expectations into categorization criteria and
the integration with objective criteria by an activation-based multi-criteria approach enables dy-
namic categorization. It has to be emphasized that particularly subjective influences reflect
flexible categorization influences. Hence, on the one hand such an approach supports reducing
uncertainty in drive object categorization, on the other hand it enables different categorization
results depending on dynamic influences. For example, when considering perceiving an objec-
tively identical object in two different states of bodily needs, drive object categorization may
lead to different subjective results.

3.7 Activation-Based Multi-Criteria Categorization - The
Implementation Model

In this chapter the detailed model is presented. It is used subsequently as the implementation
model of this thesis, i.e. a model which can be used for implementation, without the inception
of further requirements. In designing the implementation model modeling requirements, i.e.
requirements that the implementation model have to fulfill, are recognized and their fulfillment
is shown.

As already emphasized, exemplars are activated by applying different categorization criteria.
The aggregation of these activations leads to the aggregated activation value of an exemplar,
which corresponds to its category appropriateness. Hence, the activation process supports the
determination of appropriate exemplars to base drive object categorization on. After determining
the most appropriate exemplars, category membership is decided.

Different factors have to be specified regarding the application of a categorization criterion and
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the determination of an exemplar’s category appropriateness. First, the criterion’s activation
sources have to be specified. Second, the criterion activation function has to be defined. The
specification of the activation sources lead to the definition of the criterion activation function,
which serves as the criterion’s utility function. Third, the construction of the activation aggrega-
tion function, which aggregate the various criterion activation values, has to be defined. As part
of this step a criterion weighting function has to be specified, which determines the impact of a
criterion to an exemplar’s aggregated activation value. After ranking the exemplars with respect
to their category appropriateness, the category decision is made.

Figure 3.10: Determination of an exemplar’s category appropriateness - overview

Application of Categorization Criteria - The Activation Process

Since a criterion usually consists of multiple activation sources, it has to be considered that the
application of a criterion may activate the same exemplar multiple times, if the application of
the criterion triggers multiple activation sources (e.g. if multiple drives activate the same drive
object) (see Figure 3.11). Hence, additionally to determining the impact of each criterion acti-
vation value for an exemplar’s aggregated activation value, the impact of each activation source
for every criterion activation value must be determined. In this regard two aggregation functions
are needed: One function to aggregate multiple source activation values from the same catego-
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rization criterion to one criterion activation value; and another function to aggregate multiple
criterion activation values to one aggregated activation value. That is, the overall activation of
an exemplar comprises of two aggregation functions. In the remainder of this thesis the for-
mer aggregation function is called source activation aggregation and the latter is called criteria
activation aggregation. Source activation aggregation is represented by the criteria activation
function and criteria activation aggregation is represented by the activation aggregation function.

Figure 3.11: Composition of a candidate’s activation value

Normalizing Activation Values

Since the activation values results from activation sources, which may have different scales,
normalization must be considered. Additionally, the aggregated activation value of different ex-
emplars may be grounded in different categorization criteria. For example, exemplar x may be
activated solely by the embodiment criterion, whereas exemplar y may be activated solely by the
similarity criterion. To aggregate values from different local scales, they have to be normalized
with respect to a global scale, which serves as the norm. In the scope of the ARS implementation
the global scale is [0,1]. Hence, the source activation values, criteria activation values and the
aggregated activation value all have to be normalized with respect to the global scale. The nor-
malization process has to be considered not only on a technical but on a conceptual level. That
is, normalization should always consider the conceptual content that it processes. In this regard
the choice of the normalization-procedure is dependent on the conceptual content. For example,
in the case of normalizing the criterion activation value one has to consider the conceptual state-
ment of the resulting value. That is, the criterion activation value should represent how well an
exemplar fulfills the criterion. An exemplar that gets the maximal amount of activation from all
criterion activation sources is fulfilling the criterion in the best possible way and hence gets the
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highest possible activation value, i.e. „1“. In summary, the normalization procedure is needed
for the comparability of values with different scales, but also is needed for the representation of
conceptual issues.

Criterion Activation Function

As already emphasized, in this thesis the criterion activation function is used as a criterion’s
utility function (in terms of MCDA). In this regard the criterion activation function’s output,
i.e. the criterion activation value, represents how well an exemplar fulfills the criterion. In
activation-based criteria application, besides the definition of the criterion’s activation sources,
it must be specified how an exemplar gets activated by these. This requires the definition of a
source activation function, which determines the calculation of the source activation value.

As already mentioned, the application of an categorization criterion can trigger multiple activa-
tion sources that activate the same exemplar. For example, two different drives may have the
same drive object, i.e. an exemplar. In this case the exemplar has two activation sources regard-
ing the embodiment criterion. In such case the source activation values have to be aggregated
to a criterion activation value, which represents the exemplar’s activation by this categorization
criterion. Both, the source activation value and the criterion activation value have to be normal-
ized to fit in the global scale [0,1]. It is assumed that the former is already done, since in ARS
all present significant values are normalized. The normalization should not be considered only
on a technical level, but rather should be consistent with the underlying conceptual content. For
example, it would be misleading and conceptually wrong to just use a absolute normalization,
which would lead to using the mean of all source activation values to aggregate them, since such
aggregation may distort the criterion activation value. A concrete example therefore is given: if
an exemplar is a drive object for a drive with a high quota of affect and also for a drive with a
low quota of affect, the usage of their mean for the embodiment criterion activation value would
not reflect the pleasure principle and the exemplar’s correct category appropriateness. Instead
the aggregation of multiple source activation values should be accumulative, but still must be
normalized. This requirement results from the purpose of the criterion activation value, namely
to provide the information of an exemplar’s category appropriateness, represented by its activa-
tion value. In this regard a criterion activation value is a relative value, which should represent
how well an exemplar fulfills the criterion.

To fulfill these requirements, first the criterion’s maximal activation value has to be determined.
That is the maximal activation score of the criterion’s activation sources and reflects the best
fulfillment of the criterion. Since this value is dependent on changing source activation values, a
dynamic calculation of this value is required. Second, the accumulated source activation values
have to be calculated, using the source activation function. The division of the accumulated
source activation values by the criterion’s maximal value would result in a relative value that fits
the global scale [0,1] and indicates a relative activation score, i.e. how well the exemplar fulfills
the criterion.
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c =

n∑
i=1

si

cmax
(3.1)

c ... criterion activation value
si... source activation value of the i-th activation source
n ... number of activation sources
cmax ... criterion’s maximal activation value

In summary, for every categorization criterion various factors have to be defined. First, the crite-
rion’s activation sources have to be specified. For example, in embodiment activation the actual
DMs represent the activation sources. In case of a criterion that represents a subjective influ-
ence theses sources represent the prime (see Section 2.4). For both, subjective- and objective
criteria, the direct or indirect association of activation sources to exemplars leads to the acti-
vation of these exemplars, which in case of a subjective criterion represents the primed target
items (see Section 2.4). This process is compliant with using the concept of spreading acti-
vation (see Section 2.4) to model the priming process. After specifying the activation sources
the source activation function has to be defined. This enables associative activation of exem-
plars and represents the activation-based application of a criterion. To determine how well an
exemplar fulfills a criterion the maximal criterion value has to be defined. The criterion activa-
tion function then relates an exemplar’s accumulated source activation values to the criterion’s
maximal criterion value, which is calculated dynamically. This leads to the determination of an
exemplar’s criterion activation value, i.e. its category appropriateness with respect to the crite-
rion. To determine an exemplar’s overall category appropriateness all criterion activation values
have to be aggregated. Therefor the criterion’s impact on the overall category appropriateness
has to be determined using the criterion’s weighting function.

Determining an Exemplar’s Category Appropriateness - The Aggregation Process

After activating the exemplar-candidates by applying the categorization criteria, the different
criterion activation values have to be aggregated to the exemplar’s aggregated activation value,
which represents the agent’s certainty of using an exemplar for drive object categorization. Every
criterion activation value represents the category appropriateness of an exemplar with respect to
a categorization criterion. In this regard the criterion activation value represents the certainty
the agent has regarding the respective criterion. The better the exemplar fulfills the criterion, the
higher its criterion activation value and hence the more certain the agent is to use this exemplar
regarding this criterion.

To reflect the agent’s objective or subjective certainty of using an exemplar to based drive ob-
ject categorization on, the criterion activation values have to be aggregated to the exemplar’s
aggregated activation value. The aggregation should reflect the impact of every single criterion
activation value on the exemplar’s aggregated activation value. This leads to the determination
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of an criterion’s impact on an exemplar’s category appropriateness. Particularly it may be the
case, that an exemplar has a high criterion activation value, but the criterion has a low impact on
the aggregated activation value.

The separation in objective and subjective categorization criteria has no influence on the deter-
mination of their impact on the agent’s certainty in choosing the most appropriate exemplars for
drive object categorization. This basically reflects an equal impact of top-down and bottom-up
perception on perceptual categorization. But one can observe that the prerequisite of appear-
ance recognition for identified drive object categorization (see Section 3.4) lead to the implicit
preference of the similarity criterion in case of drive object identification (see section 5.3).

One can observe that the criterion activation value implicitly fulfills these requirements for a
criterion’s impact factor partially. As already mentioned, the criterion activation value represents
the exemplar’s fulfillment of the criterion. The better an exemplar fulfills a criterion, the more
appropriate it is to base the category decision on it. That is, the better an exemplar fulfills
a criterion, the higher the criterion’s impact should be. Nevertheless, in case of a dynamic
categorization criterion for the determination of an criterion’s impact further consideration must
be done. That is, the concrete conditions for their fulfillment are dependent on dynamic factors.
The higher these factors, the higher the criterion’s impact on the aggregated activation value
should be. For example, in case of embodiment activation its impact should correlate with the
drives’ quota of affects. Hence a dynamic function is needed that determines the criterion’s
actual impact on the aggregated activation value.

After the determination of each criterion’s impact, the calculation of the weighted average leads
to the aggregated activation value aaggr.

aaggr =

n∑
i=1

wi ∗ ci
n∑

i=1
wi

(3.2)

aaggr ... aggregated activation value
ci... criterion activation value of the i-th criterion
wi ... criterion’s weight
n ... number of criteria

As already mentioned, every exemplar that gets any activation is considered as a candidate for
determining the most appropriate exemplars. Hence, the aggregated activation value is calcu-
lated for all candidates. After determining the aggregated activation value for all candidates,
they are ranked with respect to it.

In summary, the criterion activation value is used on the one hand to determine the most appro-
priate exemplars. On the other hand it represents the certainty of a criterion and its impact on an
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exemplar’s category appropriateness.

Embodiment Activation

The source of embodiment activation is a process called hallicunatory wishfulfillment. This is
a psychoanalytic concept, which states that the bodily needs, represented as drive candidates,
search after possibilities to be satisfied. A drive candidate is a bodily need that is not associated
to a drive object and drive aim yet. To find suitable drive objects and drive aims that satisfy
the bodily need the agent’s experience is consulted by searching after memorized drive objects
that satisfied a drive from the same drive category in the past. The result of this process is the
association of memorized drives, which belong to the same drive category and are associated
with a drive object and a drive aim, with the actual drive candidate.

Figure 3.12: Embodiment activation

Following the pleasure principle, the drive candidate is then associated to the drive object and
-aim of the memorized drive with the highest quota of affect. In summary, the drive candidate
searches after the drive object and -aim that, according to the agent’s memory, will satisfy the
drive best. In further processing the drive aim and -object is used as part of the agent’s decision
making and planning.

Besides finding the best drive object and -aim, embodiment activation of exemplars is another
result of the hallucinatory wishfulfillment (see Figure 3.12). Any memorized drive object, i.e.
exemplar, that may be used to satisfy at least one of the agent’s actual drives, is activated and
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used as a candidate for drive object categorization. The total activation reflects how well the
exemplar would satisfy the agent’s actual drives. As for other categorization criteria, the crite-
rion activation function must be defined. Therefor the activation sources, the source activation
function and the criterion’s maximal value function must be determined.

The condition for fulfilling the embodiment criterion is to satisfy the agent’s actual bodily needs.
The embodiment activation function evaluates an exemplar in this regard. If an exemplar is
associated with drives from every drive category and the quota of affect of those drives are the
same (or higher) as the actual drives’ quota of affect, the exemplar gets the maximal score (i.e.
„1“) for fulfilling the criterion. Hence, the activation sources are the agent’s actual drives.

To evaluate the exemplar regarding the criterion the embodiment activation function compares
every actual drive with the according associated drive of an exemplar. The source activation
value represents how much of the maximal possible activation value the exemplar gets. That is,
it represents how well the exemplar would satisfy the drive. For example, if an actual drive x
has a quota of affect of 0.8 and an exemplar has satisfied a drive from the same drive category
with a quota of affect of 0.6 (according to its memory), then the source activation value is
0.6
0.7 , i.e. the exemplar is suitable to satisfy 75% of the actual drive x. It must be considered
that different activation sources may have different impact on the criterion activation value.
Particularly, a possible satisfaction of a drive with a high quota of affect should have a higher
impact on the criterion activation value than a possible satisfaction of a drive with a low quota
of affect. Therefore the source activation values are weighted with the quota of affects of the
actual drives. Additionally it has to be considered that two exemplars may satisfy a actual drive
differently; particularly it has to be considered that their associated DM’s quota of affect is higher
than the actual drive’s quota of affect. Following the pleasure principle, these exemplars should
not get the same embodiment activation. Hence, the agent prefers the exemplar that brings the
highest pleasure, even if it exceeds the actual bodily need. Therefor the exemplar’s associated
drive’s quota of affect has to be considered as a additional weighting factor in calculating the
embodiment activation value.

Hence, the source activation function is

si =
pi
qi

(3.3)

si... source activation value of the i-th activation source (i.e. the actual drive)
qi ... quota of affect of the i-th activation source (i.e. the actual drive)
pi ... exemplars potential to satisfy the i-th actual drive

If si exceeds 1, it is rounded down.

The overall embodiment activation value c is then calculated as the weighted average of the
source activation values:
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c =

n∑
i=1

qi ∗ pi ∗ si
n∑

i=1
qi

(3.4)

The determination of an exemplar’s embodiment activation value is also appropriate for deter-
mining visual top-down saliency (see Section 3.7) by indicating how well the stimuli may satisfy
the agent’s needs.

Dynamic Local Criterion Weighting

The impact of the embodiment activation value on the aggregated activation value is dependent
on the actual drives’ quota of affect. Therefore a weighting function is defined. The first ap-
proach is to use the actual drives’ quota of affects to determine the impact of the embodiment
activation value. That is, the higher the drives’ quota of affects, the bigger their impact. But
when being precise only those drives that would be satisfied by an exemplar are relevant for the
calculation of the embodiment criterion’s impact on the exemplar’s aggregated activation value.
In this regard it is not possible to use the same weighting for the embodiment activation value of
every exemplar-candidate. Consider for instance an exemplar that is only used as a drive object
for one drive, i.e. it is a member of only one drive object category. Drives from other drive
categories should not have an impact on the embodiment criterion value. Hence the weighting
function is dependent on the exemplar and only considers the quota of affects of those actual
drives that are member of the same drive object category as the exemplar. The quota of affects
of other actual drives have no influence on the weighting function. Such a weighting function
is local, since it does not calculate a global weight that is used for determining the impact of
the embodiment criteria for all exemplar-candidates, but for every single candidate separately;
and it is dynamic, since it calculates the weight at every single categorization process due to the
dynamic character of the actual drives.

In constructing the weighting function the pleasure principle must be considered. In particular
the highest possible impact of the actual drives is not proportional to the sum of its quota of
affects. In this regard one drive with a high quota of affect is sufficient for a high impact of the
embodiment criterion. Additional drives increase the impact, but not proportionally.

This requirement is fulfilled by following weighting function. Considering the global scale [0,1],
the weighting factor’s maximal value is 1. Hence the initial range for the weighting factor is 1.
After considering the first actual drive’s quota of affect q1, the remaining range is (1− q1). The
increase of the weighting factor by the next drive’s quota of affect is only considered with respect
of the the remaining range. That is, the weighting factor at this stage of the function would be
q1+(1−q1)∗q1. Generally, the increase of the weighting factor comprises of the multiplication
of a actual drive’s quota of affect with the remaining range, and adding the result to the current
weighting value.
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wi+1 = wi + (1− wi) ∗ qi+1 (3.5)

wi .... current weighting factor (i.e. after the consideration of i actual drives)
wi+1..... weighting factor after the consideration of i+1 actual drives
(1− wi) ... current available range (i.e. after the consideration of i actual drives)
qi+1 ... quota of affect of the i+1th actual drive

Similarity Activation

As already mentioned, the associative memory structure in ARS allows for an activation-based
similarity calculation. This approach reduces the search space significantly. As opposed to
conventional exemplar-based models it does not have to consider all exemplars, but rather only
activate those exemplars that are similar to the stimulus. The first step of this process is the
conversion of the stimulus representation into a psychic data structure, i.e. an entity-TPM. After
that the stimulus’ TPs are used to activate similar TPs in the agent’s memory. In case of a
nominal scale, only a binary match is considered. The activation of the according memorized
TPs subsequently activates associated stored entity-TPMs (i.e. exemplars).

The goal of similarity activation is the evaluation of the similarity criterion. That is, evaluating
exemplars regarding their perceptual similarity to the stimulus. As already described, the appli-
cation of the criterion is done by an activation-based approach. In case of the similarity criterion
associative activation can be realized directly. This is possible due to the associative informa-
tion representation in ARS. Particularly, an exemplar’s features, which are represented by TPs,
are defined by its associations. As shown in figure 3.7 and figure 3.13, after transforming the
stimulus in a TPM, its TPs (i.e. its features) are used as activation sources. Due to the usage
of a nominal scale the source activation function comprises of a binary activation. In case of an
activation the source activation value is 1. To reflect the impact of a feature its weight, which is
represented by the according association weight, is used.

The criterion activation value is then calculated by following equation.

c =

n∑
i=1

wi ∗ si

cmax
(3.6)

si... source activation value of the i-th activation source (i.e. the TP)
wi ... association weight of the exemplar’s i-th TP
n ... number of stimulus’ TPs
cmax ... criterion’s max value
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This criterion activation function represents an conventional exemplar’s model similarity func-
tion. The summation of the weighted source activation values conforms with the similarity
function of the featural ALCOVE model [Kru08]. Due to normalization and the consideration
of weighted features, the summed weighted source activation values are related to the maximal
criterion activation value.

An important factor of similarity calculation is the direction of the procedure. That is, when
comparing the stimulus and an exemplar, one has to define the point of departure of the com-
parison. In activation-based categorization the point of departure in the comparison process is
the stimulus, since its features are used as activation sources. In such an approach the similarity
criterion value of 1 means that the exemplar is activated by all activation sources. But the ex-
emplar still may have additional features. This case is not considered in conventional exemplar
models, since they do not consider identification. This is sufficient for generalized drive object
categorization but not for identified drive object categorization (see Section 3.4). For the former,
similarity calculation has to consider the absence of exemplar-features in the stimulus. This
requirement results from the purpose of drive object categorization, namely to value a stimulus
regarding its suitability as a drive object. If the lack of an exemplar’s feature still may lead to
a full match (see Figure 3.13 d), identified drive object categorization would be distorted, since
the exemplar’s drive object categories are only valid for drive objects with the same features.
Moreover the usage of the exemplar as the stimulus’ representation in further processing (see
Section 3.4) would be incorrect. A first approach to fulfill this requirement is to use the exemplar
as the point of departure in the comparison process. That is, the unknown stimulus is searched
in the known exemplars. One can observe that the usage of the exemplar’s feature weights as
the criterion’s maximal activation value leads to such an approach. But this also leads to the
opposite case of feature absence in a full match. That is, the lack of a stimulus’ feature still
leads to a full match (see Figure 3.13 b).

To fulfill the described requirement and handle this lack of the similarity criterion’s activation-
based application, the criterion’s maximal activation value must be adapted. As already empha-
sized, the criterion’s maximal activation value reflects the best fulfillment of the criterion. In
case of the similarity criterion this is the case, if an exemplar and the stimulus have exactly the
same features (see Figure 3.13 c). This case is called appearance recognition and is a practical
requirement in the current ARS implementation for identified drive object categorization (see
Section 3.4). Therefore the criterion’s maximal activation value is represented by a combination
of the exemplar’s feature weights and the stimulus’ features weights. In particular in a subjective
approach the point of departure is the agent’s memory. Hence, the exemplar’s features weights
are preferentially used to define the criterion’s maximal activation value. Subsequently the cri-
terion’s maximal value cmax is extended by the weights of those stimulus-features that do not
occur in the exemplar.

cmax =

n∑
i=1

wi +

m∑
j=1

wj (3.7)
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n ... number of exemplar features
k ... number of stimulus features
wi ... i-th exemplar feature’s weight
wj ... j-th stimulus’ feature’s weight, with j ∈ m and m = |k − n|

Figure 3.13: Appearance recognition in similarity activation

Criterion Weighting

As already mentioned one can observe that the criterion activation value may already fulfill the
requirement for a criterion’s impact factor. That is, the better an exemplar fulfills a criterion,
the higher the criterion’s impact should be. This is particularly valid for the similarity criterion.
Additionally the number of stimulus features may be used to determine the impact of similarity
activation. In this regard it is presumed that the ARS agent consolidates its experience to deter-
mine how the number of object features influences the criterion’s impact. For example, if the
agent’s experience states that seven features is a high number of features for an object, a stim-
ulus with seven features would lead to a high impact factor for the similarity criterion. In this
regard appearance recognition of an stimulus with seven features leads to the maximal impact of
the similarity criterion. This approach is compliant with similarity calculations that consider the
number of matches [Kru08]. Due to the low number of stimulus features in ARS, the criterion
activation value’s implicit consideration of an impact factor is sufficient for current simulations
(see Section 5.1).
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Graded Category Membership

The aggregation of the criteria activation values of all exemplar candidates lead to the determi-
nation of their category appropriateness, which is the result of an activation-based associative
approach. That is, activation-based criteria application processes determine the category ap-
propriateness regarding every criterion. These values are combined to an exemplar’s aggregated
activation value, which represents its overall category appropriateness. In this regard drive object
categorization is a activation-based associative exemplar model.

The next step is to determine the most appropriate exemplars to base the stimulus’ drive object
categorization on. In terms of the kNN algorithm this step includes taking the k most appropriate
exemplars to determine the stimulus’ drive object categories. As opposed to conventional kNN
models, in drive object categorization the choice of k is dependent on the agent’s certainty in
determining the most appropriate exemplars. That is, the higher the category appropriateness
of the most appropriate exemplar candidate, the higher the certainty in deciding the drive object
categories and the lower k, i.e. the fewer exemplars are needed to base the stimulus’ drive object
categorization on. Particularly, in case of the highest possible certainty, i.e. in case of identified
drive object categorization (see Section 3.4) k is 1, i.e. the drive object categories of the single
most appropriate exemplar are used for categorizing the stimulus.

Hence, k is selected dynamically, i.e. in every categorization step. The more certain the agent
is about the category appropriateness of the ranked candidates, the lower is k. Two factors
influence this certainty. The first factor is the category appropriateness of the highest ranked
candidate. The second factor is the distribution of the candidates’ category appropriateness.
This factor reflects the agent’s certainty to distinguish the candidates and represents a scale for
ambiguity. In this regard the worst case would be, if all candidates have the same category ap-
propriateness. The second factor is not significant for selecting k in this thesis’ model because
of two reasons. First, it is assumed that the ARS agent does not encounter unknown stimuli. Of
course, ambiguity still may occur. This leads to the second reason, namely the remaining risk
of ambiguity is in most cases reduced by the application of weighted multi-criteria. The usage
of multiple parameters (i.e. multi-criteria and their impact factors) in determining the category
appropriateness reduces ambiguity. Nevertheless, in the worst case the usage of multi-criteria
may increase ambiguity. In the case of generalized drive object categorization the implication
of ambiguity is lower than in identified drive object categorization. That is, the consideration of
remaining ambiguity is particularly relevant for determining identified drive object categoriza-
tion. Hence, ambiguity that may remain after the application of multi-criteria is considered in
this thesis to separate identified- from generalized drive object categorization. In the former case
k is 1, in the latter case k is calculated by the function 3.8, which has the number of candidates
and the first ranked candidate’s category appropriateness (i.e. its activation value) as arguments.
This procedure is represented in figure 3.14. Hence, the higher the agent’s certainty, the lower
the number of candidates that are used as k-exemplars. If a criterion is able to provide maximal
certainty and no ambiguity occurs in choosing the most appropriate exemplar, identified drive
object categorization is chosen, otherwise generalized drive object categorization is chosen to
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reflect the remaining uncertainty.

k = (1− a) ∗ nc (3.8)

a ... activation value of first ranked candidate
nc ... number of candidates

Figure 3.14: Dynamic selection of k - UML activity diagram

After finding the k most appropriate exemplars, the goal is to determine graded category mem-
bership for the stimulus using all categories of the k most appropriate exemplars (the k-exemplars).
In drive object categorization the focus lies on grading the stimulus’ multiple category member-
ships. In conceptual terms this means to determine the potential quota of affect for every drive
category that the most appropriate exemplars are associated with. This leads to the valuation of
the stimulus as a drive object and to determining how well the stimulus potentially may satisfy
the agent’s bodily needs that are represented by drives. One can observe that the latter aspect
represents top-down saliency (see Section 3.7).

Drive object categorization includes the calculation of category membership to all drive object
categories that are assigned to the k most appropriate exemplars. That is, drive object categoriza-
tion corresponds to multi-label classification. In this regard the drive category decision do not
has to consider which drive object categories to use, but only the graded category membership
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to each of the k-exemplar’s drive object categories. Conceptually this grade represents how well
the drive object is expected to satisfy the according bodily need. The stimulus’ grade of cate-
gory membership is derived from the k-exemplars’ grade of category membership. This grade
is represented by the DM’s quota of affect. For example, if a k-exemplar is a member of a drive
object category x, this drive’s quota of affect reflects the graded category membership to the
drive’s category. Since different k-exemplars may be assigned to drives from the same category,
multiple quota of affects have to be considered in determining the drive object’s graded category
membership regarding a category (see Figure 3.15 and 4.7). The first approach to consider this
requirement is to use the arithmetic mean of all quota of affects to determine graded category
membership.

Figure 3.15: Graded category membership

The activation value of the k-exemplars, which reflects the exemplar’s category appropriateness,
represents the certainty the agent has in using their drive object categories as the stimulus’ drive
object categories. The higher an exemplar’s activation value, the more certain the agent is in
using its drive object categories as the stimulus’ drive object categories. Hence, dependent on
the exemplar’s activation value the drive object categories of the k-exemplars may have different
significance for the stimulus’ drive object categorization. To formalize this requirement the
arithmetic mean is not sufficient, hence a weighted average is used.

Cj =

n∑
i=1

ai ∗ qi
n∑

i=1
ai

(3.9)

Cj ... graded category membership in drive category j
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i .. i-th occurrence of drive category j, with i = 1...n
n ... number of k-exemplars in drive category j
qi ... i-th drive’s quota of affect
ai ... activation value (category appropriateness) of the k-exemplar that is assigned to the i-th
occurrence of drive category j

Pleasure Potential for Top-down Saliency

Another result of integrated drive object categorization is the provision of a basis for a visual
saliency map. The determination of an exemplar’s embodiment activation value is appropriate
for determining visual top-down saliency according to the pleasure principle by indicating how
well the stimuli may satisfy the agent’s needs, i.e. how much pleasure the stimuli may bring the
agent. In this regard it is not enough to consider an exemplar’s potential to satisfy drives. This
potential must be related to the actual drives and weighted by their quota of affect (see Section
3.7). Since the embodiment activation value is used for determining the potential satisfaction of
drives, in this scope it is called pleasure potential.

After deciding drive object categorization the activation values are stored in the exemplars. The
embodiment activation value indicates the importance of the exemplars, which at this stage
represent stimuli, for the agent’s actual needs. This subjective importance is a form of top-
down saliency, which uses the internal state to determine saliency [Tre03]. Another form of
visual saliency, which is not considered in this thesis, is given by bottom-up information, i.e.
information from the incoming sensory signals. Converging evidence show that the interaction
of bottom-up and top-down influences creates an integrated saliency map, which is used by an
agent to guide visual attention [Tre03].
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CHAPTER 4
Implementation

An important requirement in implementing this thesis’ model is the integration into the existing
ARS system architecture. Therefore a analysis of the according system components, particularly
the ARS data structures and information representation management must be done. To fulfill
this requirement the focus lies in adapting and extending existing components. Additionally,
new components are needed in implementing this thesis’ model.

4.1 Activation Framework

The introduction of an activation framework in drive object categorization comprises the exten-
sion of clsThingPresentationMesh by appropriate functions and variables. The class
clsCriterionActivation is defined to represent the activation variables (see Figure 4.1).
The enum-class eActivationType defines all valid types of activations; currently similarity-
and embodiment activation are used.

Different functions are needed for activating a TPM. Therefore clsThingPresentationMesh
is extended by the according functions (see Figure 4.1). These function are designed generically
and hence the same source- and criterion activation function can be used for different criteria
activation. A TPM may get activation from different sources. The activation is handled in the
activating function. That is, the TPM’s activation functions are called in the according func-
tion module. In case of embodiment activation the activating function is hallucinatory-
Wishfulfillment in F57 (see 4.3); in case of similarity activation the activating function is
associativeSearch (see Section 4.2), which is called by the search function in F14.

73



Figure 4.1: Criterion activation

4.2 Associative Search

In memory-based perceptual categorization memory access and memory search are key topics.
In integrated drive object categorization memory search is used in two key processes and in the
course of activation-based criterion application. In similarity activation the stimulus’ features
are used to find similar stored exemplars. In hallucinatory wishfulfillment and embodiment
activation the actual DMs are used to find similar memorized DMs with associated drive objects
and -aims.

An important requirement for the implementation is the integration into the existing ARS im-
plementation, respectively its system architecture. Hence, to implement activation-based asso-
ciative search, first the existing information representation management [Zei10, p. 80], i.e. the
system architecture of memory access, must be analyzed. After that the integration into the
existing system architecture is shown. This integration consists of adapting and extending the
existing information representation management.

Information Representation Management

The information representation management provides an interface to the information represen-
tation layer [Zei10, p. 80], i.e. the agent’s memory. The information management module is the
key part of information representation management and provides data search and -retrieval from
a persistent data storage. Due to the different structure of the ARS information representation the
module is divided in secondary data structure management (SDSM) and primary data structure
management (PDSM), which is further divided into the external perception management mod-
ule (EPM) and the homeostatic perception management (HPM) module. These modules provide
functions to compare the search patterns, i.e. the search query, to a set of stored data structures,
which form the search space. Currently a list search algorithm is implemented to provide this
functionality.

An overview of a search process in the course of the information representation management is
given in figure 4.2. Regarding the procedure-arguments an abstracted notation is used.
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Figure 4.2: Information representation management UML sequence diagram

Associative Search

Currently a list search algorithm is implemented to provide memory search. This complies with
a conventional instance-based algorithm that considers every item for similarity calculation.
Due to continuous changes in the ARS data structures and search patterns the search algorithm
provided rudimentary results. As mentioned in [Zei10, p. 133] the search algorithm should be
adapted to the data structures. This requirement is fulfilled by the activation-based associative
search algorithm that is used in similarity- and embodiment activation, where the associated
structure of the TPM and DM is harnessed. Such an activation-based associative approach on
the one hand follows an bionic approach, on the other hand enables goal-oriented search. That
is, only those objects from the search space that may be relevant for search are considered in
associative search.

To enable associative search, some adaptations in the ARS data structures and information repre-
sentation functions are necessary. Amongst them are adaptations in clsOntologyLoader to
consider associative search and a provision of association interfaces for the ARS data structures.
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Association Interfaces

An important prerequisite for the generic processing of data structures in the course of associa-
tive search is the specification of their associations. Every composed data structure (see Section
2.6) contains internal- and external associations. Internal associations represents associations
that are part of the data structure’s identification. In case of a TPM these are attribute associa-
tions to TPs. As already mentioned, a TPM is composed of TPs, which are associated to a TPM
through internal associations. In associative search only an data structure’s internal associations
are used to retrieve similar data structures. In this regard the search pattern consists of an data
structure’s internal associations. External associations do not identify a data structure and hence
are not used in the search process. An example therefor is a TPM that is associated to another
TPM via a similarity association.

To enable generic processing two interface-classes are specified that are implemented by data
structures with internal- and external associations, respectively (see Figure 4.3). Data structures
that implement the interfaces are guaranteed to support the respective functions.

Figure 4.3: Association interfaces in UML

These interfaces enable the generic processing of search patterns. That is, every data structure
that implements the interface itfInternalAssociatedDataStructure can be used
generically in the associative search algorithm. For example, clsThingPresentationMesh,
which is used in similarity activation, and clsDriveMesh, which is used in embodiment acti-
vation, implements the interface itfInternalAssociatedDataStructure.

Associative Search Algorithm

After analyzing and adapting the information representation management’s implementation, the
associative search function is integrated into the external perception management module (EPM)
and the homeostatic perception management (HPM) module. The algorithm harnesses the asso-
ciative structure of the ARS data structures to provide associated and directed search. Therefor
the internal associations are used as the query representation. The significant difference to a
list search is the provision of starting points for the search by using the internal associations.
This bionic method enables a significant decrease of the search space and is compliant with an
activation-based approach.
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The basic idea of activation-based associative search is discussed in the scope of similarity acti-
vation (see Section 3.7). Nevertheless the algorithm is designed generically for all data structures
that implements the interface itfInternalAssociatedDataStructure.

The algorithm is shown in 4.1 in abstracted form using pseudo-code. To enable a generic search,
the class clsDataStructurePA is used, which is the top-most class in the ARS data struc-
tures (see Figure 4.4).

Figure 4.4: ARS primary data structures in UML
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input : A unknown data structure unknownDS and returnType of associated data
output: A list of similar stored data structures similarDataStructures

1 if unknownDS instanceof itfInternalAssociatedDataStructure then

// To avoid multiple entries a set is used
2 searchFringe← newHashSet()

// Get internal associated data structures of unknownDS
(e.g. unknown TPM)

3

4 foreach intAssDS of unknownDS do

// Get matching data structures from search space
(e.g. TPs)

5 intAssMatchedDS← compareElements(intAssDS);

6 intAssDSBestMatch← getBestMatch(intAssMatchedDS);

// Get associated returntype (e.g. associated
entity-TPMs of found TPs)

7 returnType← unknownDS .getDataStructureType() ;
8 searchFringe .add(getAssociatedContent(intAssDSBestMatch,

returnType));
9 end

10 foreach fringeObject of searchFringe do
11 fringeObject .compareTo(unknownDS);

// Get associated returntype (e.g. associated DMs of
similar entity-TPMs)

12 similarDataStructures .add(fringeObject);
13 getAssociatedContent(fringeObject, returnType);
14 end
15 end

// If no associative search is possible, do list search
16 else
17 similarDataStructures← listSearch(unknownDS, returnType)
18 end

Algorithm 4.1: Associative search algorithm

4.3 Activation-Based Multi-Criteria Categorization

In figure 4.5 the communication between the concerned function modules is shown. After the
hallucinatory wishfulfillment and embodiment activation of exemplars, which is done in F57, all
drive representations are sent to F14. In this module similarity activation and integrated drive
object categorization is accomplished.
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Figure 4.5: Function modules communication diagram

Integrated Drive Object Categorization

The basic procedure of integrated drive object categorization is shown in figure 4.6 and discussed
in the following sections.

Figure 4.6: Drive object categorization - overview

Embodiment Activation

Embodiment activation is applied in the course of hallucinatory wishfulfillment in F57 (see
Section 3.7). In this process the agent uses its memory to determine appropriate drive objects
and -aims for every drive candidate. Following the pleasure principle those memorized drive
object and -aim are used that brought the best reduction of the drive’s quota of affect. After
associating a drive object and -aim the drive candidate is called a drive representation since it
comprises all components of a drive.

In the course of searching for drive objects, those exemplars that are appropriate as drive objects
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are also appropriate to base drive object categorization on, since they are expected, and hence get
embodiment activation. The source activation value corresponds to the search matching factor,
since the source activation function is considered in the drive mesh’s compareTo function.

The algorithm 4.2 shows the procedure in abstracted form using pseudo-code.

input : A list of drive candidates driveCandidates
output: A list of drive representations driveRepresenatations with activated drive

objects

1 foreach driveCandidate ∈ driveCandidates do
2 maxMatchFactor← 0;
3 maxMatchFactor← 0;

// Search for similar memorized DMs and return all
associated TPMs

4 memorizedDMs← search( driveCandidate);

5 foreach memorizedDM ∈ memorizedDMsdo
// Associate memorizedDm to driveCandidate

6 assSimilarDMs← generateAssociation(driveCandidate,
memorizedDM);

7 driveObject← memorizedDM .getActualDriveObject ();

// Embodiment activation. source activation value
complies with the matching factor

8 driveObject .applySourceActivation(eActivationType,
matchFactor);

// Take drive object and drive aim of best match, this
includes the highest QoA

9 if matchFactor > maxMatchFactor then
10 maxMatchFactor← matchFactor;
11 driveAim← memorizedDM .getActualDriveAim();
12 driveObject← memorizedDM .getActualDriveObject();
13 end
14 end

// Add to output
15 driveCandidate .setActualDriveObject (driveObject);
16 driveCandidate .setActualDriveAim (driveAim);
17 ← driveCandidate;
18 driveRepresenatations← ;

19 end
Algorithm 4.2: Embodiment activation and hallucinatory wishfulfillment
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Similarity Activation

To enable similarity activation first the stimulus’ features must be separated into external- and
internal features and associations. This is necessary because the stimulus is associated with
meta-features, e.g. its position and distance to the agent. These meta-features are not relevant
for similarity activation and distort its results. To separate these associations the enum-class
eEntityExternalAttributes is defined, which list those meta-features that do not iden-
tify the stimulus and hence are not used in the course of similarity activation. After transforming
the stimulus in an TPM, its associations are traversed to move those meta-features from internal-
to external associations.

Similarity activation is then accomplished in the course of associative search (see Section 4.2).

Determining Aggregation

Every exemplar that gets any activation is considered as a candidate for drive object catego-
rization. After all criteria activations are accomplished, for every stimulus its candidates-list
is processed to determine their aggregated activation value using the weighted average of their
criteria activation values (see Section 3.7).

Cloning

In the course of the activation processes of different perceived objects that are processed in
the same simulation-step, an exemplar may be activated as a candidate for different stimuli.
Hence, the candidates for every stimulus must be cloned to avoid cross-activation. Therefore the
cloning-function of clsThingPresentationMesh is adapted.

Since the interface data is cloned in ARS by default and activated exemplars from F57 have
to be considered as candidates in drive object categorization in F14, a merge of cloned objects
with the same ARS data structure ids (moDS_ID) has to be done in F14. This ensures that the
activation values of different java objects of the same exemplar are merged and enables their
aggregation.

Ranking

Before deciding which candidates to use for the stimulus’ drive object categories, the can-
didates must be ranked with respect to their aggregated activation value, i.e. their category
appropriateness. Therefor the class clsActivationComparator is specified that imple-
ments the java utlitiy-class Comparator. This class implements the compare - function,
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which uses an exemplar’s aggregated activation value to sort the candidates. After specifying
clsActivationComparator, the static sort function of the Collections class is used
to sort an candidate list using the implemented compare-function of
clsActivationComparator.

Selection of k

The basic procedure of determining k is already shown in figure 3.14.

Graded Category Membership

After the determination of the most appropriate candidates, category membership is decided.
Therefore all DMs of those candidates are traversed and graded category membership is decided
by calculating their quota of affect’s weighted average. The basic procedure is shown in figure
4.7, which also shows the detailed output of F14.

Figure 4.7: Calculating graded category membership

The following figure 4.8 gives an overview of the implemented functions in F14.
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Figure 4.8: Drive object categorization - UML seqeucence diagrame
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CHAPTER 5
Simulation and Evaluation

Integrated drive object categorization is evaluated by different use cases. The usage of different
stimuli, memories and bodily needs lead to different use case scenarios.

The ARS project uses the MASON simulation framework 1 for simulation purposes. The virtual
world that is used in simulation may comprise of different objects. An important purpose of the
simulation is to show how the agent satisfy its bodily needs. Therefore it is central to recognize
(1) for which drives categories perceived objects may be used as drive objects and (2) to which
degree they satisfy the agent’s current bodily needs. This part of the simulation is evaluated in
the next sections.

After the agent recognizes how the perceived objects would satisfy its bodily needs, the agent
heads towards the object that satisfies its needs best, i.e. the object with the highest pleasure
potential, and performs the according action, which is based on the associated drive aims. It has
to be emphasized that the pleasure potential considers the satisfaction of multiple drives by one
object.

Next, the use case is described that guides the evaluation of integrated drive object categoriza-
tion. After that it is shown how variations in the simulation lead to different use case scenarios,
which are handled by integrated drive object categorization in different ways. This also empha-
sizes the dynamic aspect of drive object categorization.

1http://cs.gmu.edu/ eclab/projects/mason/
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5.1 Use Case „Integrated Drive Object Categorization“

Integrated Drive Object Categorization is evaluated by a specified use case with different sce-
narios. The use case defines criteria that have to be fulfilled and evaluates the implemented
model by showing how the agent valuates perceived objects as drive objects. The agent uses its
experience with similar objects and its expectations to fulfill this task. In an subjective approach
categorization is primarily the interpretation of the perceived data in comparison with the agent’s
experience and relative to influencing internal factors. The uses case shows how uncertainty and
ambiguity in drive object categorization are handled by a functional and subjective approach by
using domain-experience (= memory) and expectations.

In summary, the use case shows how the agent uses perceptually similar objects and expectations
to fulfill the task of valuating perceived objects as drive objects.

Use Case Description

In this use case the agent perceives a fruit, a red apple or a red plum tomato. The agent has to
decide which stored exemplars to use for deciding the stimulus’ drive object categories. This
decision is based on the agent’s memory, i.e. the exemplars’ activation values, which are deter-
mined by similarity- and embodiment activation. Based on the agent’s certainty in choosing the
most appropriate exemplars, two kinds of drive object categorizations are distinguished, namely
identified- and generalized drive object categorization, which represents the two possible results
of the use case. That is, if the categorization criteria are not able to provide the certainty that is
needed for identified drive object categorization, generalization is used to value the stimulus as
a drive object.

By changing specific conditions different use case scenarios are possible. A scenario is defined
by conditions that lead to an alternative flow in the use case [Bal05]. These conditions are given
by the stimuli, the agent’s memory and actual bodily needs. Since drive object categorization
is memory-based, changes in the agent’s memory lead to different scenarios. The consideration
of the agent’s bodily needs as a categorization criterion also gives room for different scenarios.
The sum of possible scenarios reflects the use case.

After giving a narrative description, the use case is specified in structured form in table 5.1 using
a template from [Bal05, p. 68].
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Use Case „Integrated drive object categorization“
Goal Valuation of a stimulus as a drive object
Precondition Visual perception of a stimulus, memory formation, generation of actual

drives
Postcondition Graded valuation of a stimulus as a drive object
Actor ARS agent
Trigger event Visual perception of a stimulus
Description

1. Activate expected exemplars that would satisfy the actual drives

2. Activate exemplars that are perceptually similar to the stimulus

3. Determining criteria impact and aggregate criteria activation values

4. Selecting the most appropriate exemplars (k)

5. Deciding graded category membership

Alternatives

• 4 a Identified drive object categorization (k = 1)

• 4 b Generalized drive object categorization (k > 1)

Table 5.1: Use Case „Integrated drive object categorization“

Scenarios

As already mentioned, changes in the stimulus, in the agent’s memory and/or in the agent’s
actual bodily needs influence the categorization criteria and may lead to different scenarios. In
this regard the model is evaluated by specifying conditions that lead to different scenarios, which
are shown in figure 5.1. For the sake of comparability for every scenario the conditions, the
categorization criteria values and the category decision are shown. Figures to depict the process
of similarity- and embodiment activation are exemplary shown only for the first scenario.

Since the ARS agent does not perceive unknown objects, the focus in the simulation lies in
appearance recognition. Since the numbers of parameters that lead to different results impede
the evaluation of the model, some restrictions are made. To evaluate the model it is sufficient
to use objects with two features, shape and color. This evaluates the model in an exemplary
form. The features are all weighted with 1. When using a restricted number of object features
the consideration of an impact factor for similarity activation is irrelevant (see Section 3.7).
Hence in the following evaluations a similarity impact factor of 1 is used. For the consideration
of the actual bodily needs, drives with the stomach as drive source are used in all scenarios.
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As mentioned in section 2.5 a drive source triggers two kind of drives, i.e. an aggressive and a
libidinous one. The libidinous stomach drive is satisfied by an libidinous action, e.g. nourishing;
the aggressive stomach drive is satisfied by an aggressive action, e.g. biting.

Figure 5.1: Use case scenarios „Integrated drive object categorization“

Scenario I: Appearance Recognition

The first scenario evaluates drive object categorization with actual drives that have low to high
quota of affects, and without ambiguous stored exemplars. That is, expected exemplars get low
to high weighted embodiment activation but always maximal similarity activation. The agent
perceives a round and red stimulus (an apple) and tries to categorize it as a drive object (see
Figure 5.2). In this scenario it is presumed that the agent only knows plum tomatoes (i.e. no
round tomatoes). This ensures unique features for red apples and tomatoes and avoids ambiguity.
According to the agent’s memory an apple satisfies aggressive- and libidinous drives better than
a tomato.

Figure 5.2: Use case scenario I

Table 5.2 summarizes the conditions of this scenario. Figures 5.3 and 5.4 show similarity- and
embodiment activation in this scenario. The result of integrated drive object categorization in
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this scenario is shown in table 5.3.

Stimulus Red round apple

Memories Red round apple, red oval tomato, other fruits

Exemplar categories

• Red round apple: stomach drive libidinous: 0.7, -
aggressive: 0.8

• Red oval tomato: stomach drive libidinous: 0.5, -
aggressive: 0.3

Actual drives Stomach drive libidinous: 0.2, -aggressive: 0.2

Table 5.2: Conditions scenario I

Figure 5.3: Appearance recognition - scenario I

In this scenario appearance recognition enables identified drive object categorization. The mem-
orized red apple is activated by similarity with 1.0. Since no other exemplar gets such a high
similarity activation and embodiment activation does not change the ranking, the stimulus is
categorized according to the red apple’s categories. One can observe that without additional
weighting of the source activation value by the memorized DM’s quota of affect the apple- and
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Figure 5.4: Embodiment activation - scenario I

Categorization variables Red round apple Red oval tomato

Category appropriateness 0.93 0.47
Similarity activation 1 0.5
Embodiment activation 0.75 0.4
Embodiment impact factor 0.36 0.36

k 1
Category decision Stomach drive libidinous: 0.7, -aggressive: 0.8

Table 5.3: Results scenario I

tomato-exemplar would get the same embodiment activation value, since they have satisfied the
according drives more than the actual drive’s quota of affect. But since the apple-exemplar’s
memorized DMs have a higher quota of affects than the tomatoes’ memorized DM’s (see table
5.2) the apple gets a higher embodiment activation value.
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Scenario II: Distorted Appearance Recognition

Simulations with different conditions show that in case of unique appearance recognition sim-
ilarity activation is sufficient for identified drive object categorization. Additional embodiment
activation does not affect the selection of appropriate exemplars until an exemplar’s weighted
embodiment value increases the aggregated activation value to a value that exceed a recognized
exemplar’s activation value. In this case identified drive object categorization based on appear-
ance recognition is distorted by embodiment activation. With the premise of an agent that does
not perceive unknown objects, in such a scenario the embodiment criterion may impede iden-
tified drive object categorization and generalized drive object categorization is chosen. Never-
theless, the additional embodiment activation in such a case is not sufficient for identified drive
object categorization that is based on embodiment activation. That is, when perceiving a tomato
the agent would not categorize it based on an memorized apple, even if the „worst case“ occurs
and the apple-exemplar gets the maximum weighted embodiment activation (see tables 5.4 and
5.5). This would only be the case if the stimulus is unknown or the similarity impact factor of
a recognized exemplar is lower than the embodiment impact factor of an expected exemplar. In
this scenario 0.9 is chosen as the maximal value for the memorized quota of affect that an apple
has reduced, since according to psychoanalysis only so-called „primal objects“, which are not
considered in this evaluation, can reduce a quota of affect of 1. Hence, the maximum weighted
embodiment activation in this thesis is 0.9.

It has to be considered that an exemplar that gets the maximum weighted embodiment activation
has to satisfy the maximum of all actual drives’ quota of affect. Only in this exceptional case
identified drive object categorization is distorted and generalized drive object categorization is
chosen. Only if an exemplar is a „perfect“ drive object for the agent’s actual drives, i.e. it gets
maximum weighted embodiment activation, the criterion’s impact factor can reach the maximum
of 1.

In the „worst case“ of maximum weighted embodiment activation, the thereby increased uncer-
tainty in choosing the most appropriate exemplar leads to generalized drive object categorization.
Such an scenario is shown in figure 5.5. In this scenario the agent perceives a plum tomato. After
activating the plum-tomato-exemplar by the similarity criterion, it is ranked highest, since ap-
pearance recognition is reached. Applying embodiment activation with maximal possible values
changes this ranking. The resulting uncertainty in choosing the most appropriate exemplar leads
to generalized drive object categorization.

The conditions of this scenario are summarized in table 5.4. The results are shown in table 5.5.

As shown in these tables only with a drive object that nearly reduces the maximum quota of
affect and with reaching an according gap between the embodiment activation of the apple-
and tomato-exemplar, generalized drive object categorization instead of identified drive object
categorization occurs.

In summary, the worst case of integrated drive object categorization of an agent that only per-
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Figure 5.5: Usce case scenario II

Stimulus Red oval tomato

Memories Red round apple, red oval tomato, other fruits

Exemplar categories

• Red round apple: stomach drive libidinous: 0.9, -
aggressive: 0.9

• Red oval tomato: stomach drive libidinous: 0.4, -
aggressive: 0.2

Actual Drives Stomach drive libidinous: 0.99, -aggressive: 0.99

Table 5.4: Conditions scenario II

Categorization variables Red round apple Red oval tomato

Category appropriateness 0.66 0.55
Similarity activation 0.5 1
Embodiment activation 0.82 0.1
Embodiment impact factor 0.99 0.99

k 1
Category decision Stomach drive libidinous: 0.67, -aggressive: 0.58

Table 5.5: Results scenario II

ceives known stimuli is generalized drive object categorization despite appearance recognition.
Therefore the maximum of actual drives’ quota of affect must be reached and the „distorting“
exemplar (e.g. the apple in scenario II) must be memorized as a nearly perfect drive object that
reduces the maximum quota of affect.
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It has to be emphasized that an exemplar that gets the maximum weighted embodiment activation
has to satisfy the maximum of all actual drives’ quota of affect. Only in this exceptional case
identified drive object categorization is distorted and generalized drive object categorization is
chosen.

Scenario III and IV - Ambiguous Appearance Recognition

As already mentioned, the ARS agent only perceives known objects. Nevertheless, in case of
perceiving an object that has the same features as different exemplars, ambiguity occurs. In
such a case ambiguous appearance recognition occurs. The agent needs additional information
to reduce its uncertainty in choosing an exemplar to base drive object categorization on. In inte-
grated drive object categorization multiple categorization criteria are used to reduce uncertainty.
An example therefore is the usage of the embodiment criterion.

In case of perceiving a red apple, two ambiguous exemplars with the same features exist in the
agent’s memory in scenario III and IV, a red round apple and a red round tomato. That is, these
two exemplars get the same similarity activation value. Hence, in these scenarios similarity acti-
vation alone does not enable identified drive object categorization. Dependent on the expectation
the agent has, one of the two exemplars gets a higher activation value. In case of embodiment
activation the degree of expectation of an apple is higher than a tomato. This is the case, since
according to the agent’s memory an apple satisfies the agent’s bodily needs better than a tomato.
Hence, using similarity- and embodiment activation the agent is able to accomplish identified
drive object categorization (see tables 5.6 and 5.7). In this regard the agent is able to identify
the according drive object categories. Of course, this is a subjective certainty. In case of the
perceived apple the categorization complies with an objective categorization; for the tomato this
is not the case. But in a subjective approach only subjective certainty in choosing exemplars for
drive object categorization is relevant.

Stimulus Red round apple

Memories Red round apple, red round tomato, red oval tomato , other fruits

Exemplar categories

• Red round apple: stomach drive libidinous: 0.7, -
aggressive: 0.8

• Red round tomato: stomach drive libidinous: 0.5, -
aggressive: 0.3

Actual drives Stomach drive libidinous: 0.3, -aggressive: 0.4

Table 5.6: Conditions scenario III
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Categorization variables Red round apple Red round tomato

Category appropriateness 0.91 0.76
Similarity activation 1 1
Embodiment activation 0.76 0.34
Embodiment impact factor 0.58 0.58

k 1
Category decision Stomach drive libidinous: 0.7, -aggressive: 0.8

Table 5.7: Results scenario III

When defining exemplar-ambiguity as exemplars having exactly the same activation value, the
embodiment impact factor, i.e. the quota of affect of the according actual drives, is not rel-
evant in scenario III. A slightly higher increase of one of the two exemplar’s activation val-
ues by embodiment activation is sufficient to reach a unique activation value. When defining
exemplar-ambiguity as having a certain distance to the activation value of the next ranked ex-
emplar, eliminating ambiguity is dependent on the embodiment impact factor. For instance, it is
comprehensible that a difference of 0.03 (see table 5.9)in the activation values of two exemplars
is not enough to reach the certainty that is needed for identified drive object categorization. An
example is given in the next scenario, where the agent’s actual drives are very low (see tables
5.8 and 5.9). This scenario leads to generalized drive object categorization, since the needed
distance of 0.1 to eliminate ambiguity cannot be reduced by embodiment activation.

Stimulus Red round apple

Memories Red round apple, red round tomato, red oval tomato , other fruits

Exemplar categories

• Red round apple: Stomach drive libidinous: 0.7, -
aggressive: 0.8

• Red oval tomato: Stomach drive libidinous: 0.5, -
aggressive: 0.3

Actual Drives Stomach drive libidinous: 0.05, -aggressive: 0.05

Table 5.8: Conditions scenario IV
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Categorization variables Red round apple Red round tomato

Category appropriateness 0.98 0.95
Similarity activation 1 1
Embodiment activation 0.75 0.4
Embodiment impact factor 0.097 0.097

k 1
Category decision Stomach drive libidinous: 0.6, -aggressive: 0.55

Table 5.9: Results scenario IV

5.2 Use Case „Pleasure Potential“

This use case briefly shows how the embodiment activation value may be used as an object’s
pleasure potential to determine top-down saliency (see Section 3.7). In this use case the agent
perceives an red apple and a tomato (see Figure 5.6). After deciding drive object categorization
the agent has to decide which perceived object would bring the best satisfaction of the agent’s
actual bodily needs. This decision is used to determine which object to approach from the
primary process’ view.

Figure 5.6: Use case „Pleasure potential“

As shown in 5.10 only the combination of different conditions, primarily the actual- and memo-
rized drives’ quota of affects, determine an object’s pleasure potential.

5.3 Discussion of the Results

The presented simulations show how the agent uses its memories and memory-triggered expec-
tations to reduce the uncertainty in choosing appropriate exemplars for drive object categoriza-
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Actual drives Drive object category Drive object category Pleasure potential
(libid. / aggr.) stomach libid. stomach aggr.

0.3 / 0.7 Apple 0.4 0.7 0.61
Tomato 0.5 0.3 0.24

0.7 / 0.3 Apple 0.4 0.7 0.37
Tomato 0.5 0.3 0.34

0.6 / 0.7 Apple 0.3 0.7 0.45
Tomato 0.6 0.5 0.47

Table 5.10: Use case „pleasure potential“ - conditions and results

tion. These simulations emphasize the need for two kinds of drive object categorization, namely
identified- and generalized drive object categorization. If the agent’s memory and expectations
provides enough information to reduce uncertainty sufficiently, identified drive object catego-
rization is accomplished. Otherwise the agent generalizes over the exemplars’ drive categories
to value a stimulus as a drive object. In this way the remaining uncertainty in the categorization
process after applying all categorization criteria is still considered.

The usage of multiple criteria for the decision of multiple graded category membership shows the
flexible and dynamic character of integrated drive object categorization. Dependent on various
conditions multiple scenarios and results of integrated drive object categorization are possible.
The interplay of these conditions leads to a variety of results. That is, given a stimulus, little
changes in different conditions can result in categorizing the stimulus differently. These condi-
tions are: the agent’s categorized exemplars, particularly their graded category membership, the
agent’s actual drives, particularly their quota of affects, the number of stimulus features and their
weights. One can observe that the category decision is dependent on all these conditions and
their interplay. This fact emphasizes the dynamic and flexible character of integrated drive object
categorization and gives an impression of the complexity of the interplay of determining condi-
tions and parameters. This complexity and the according categorization-possibilities would rise
with every additional criterion that is considered in integrated drive object categorization.

The restrictions of some conditions and the premise of perceiving only known stimuli enable
a comprehensible evaluation of the model. With this premise standard scenarios and border-
scenarios are simulated. Although the model does not prefer any criterion, the premise of per-
ceiving only known stimuli implicitly gives the similarity criterion more impact. But even with-
out this premise the similarity criterion would implicitly get more impact than the embodiment
criterion, since in the majority of scenarios similarity activation is higher and the impact factor
of the embodiment criterion is only considerable in exceptional scenarios. Hence the reduction
of uncertainty by the similarity criterion is significantly higher than by the embodiment crite-
ria. Simulations with different conditions show that in case of unique appearance recognition
similarity activation is sufficient for identified drive object categorization. Only in the case of
ambiguity in appearance recognition the embodiment criterion provides significant reduction of
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the agent’s uncertainty in drive object categorization. It has to be emphasized that in this case
the subjective uncertainty is reduced, which may not comply with the result of objective cate-
gorization. In summary, one can observe that the similarity criterion is more reliable to reduce
uncertainty and that an additional categorization criterion is only significant if appearance is
weak or ambiguous. When considering the similarity criterion as a bottom-up criterion and the
embodiment criterion as a top-down criterion, one can transform above statement. In this regard,
when using one top-down criterion, the bottom-up criterion is considerably more significant.

Besides reducing ambiguity in appearance recognition the embodiment criterion also may dis-
tort identified drive object categorization in exceptional scenarios and increase the uncertainty.
This results in generalized drive object categorization. Nevertheless, the additional embodiment
activation in such a case is not sufficient for identified drive object categorization that is based
on embodiment activation. In summary, the worst case of distorting integrated drive object
categorization by the embodiment criterion is generalized drive object categorization despite ap-
pearance recognition (which may be able to enable identified drive object categorization without
the embodiment criterion). With the premise of an agent that does not perceive unknown ob-
jects, generally one can observe that only appearance recognition enables identified drive object
categorization.

Besides the categorization as drive objects, the stimuli’s pleasure potential is determined via
the embodiment activation value. In this regard the simulations show that the combination of
different conditions, primarily the actual- and memorized drives’ quota of affects, determine an
object’s pleasure potential. In this regard the variety of combinations rises with the consideration
of additional drive categories.

97





CHAPTER 6
Conclusion

The given problem of using an agent’s memory to support perception in the ARS agent’s primary
process is analyzed and integrated drive object categorization is presented, which is a model of
perceptual categorization in the ARS agent’s primary process and is compliant with the ARS
approach. The model approaches the problem of memory-usage for the support of perceptual
categorization in various ways (see below).

After analyzing the ARS approach with respect to the problem statement, a model for the val-
uation of a stimulus as a drive object is designed as the primary purpose of the ARS agent’s
perception. In this regard perception in the ARS agent’s primary process is a means to support
the agent’s bodily needs. The agent uses its experience to fulfill the task of categorizing a stimu-
lus regarding its effect on the agent’s bodily needs. Such a functional categorization leads to the
recognition of subjective semantics.

Two opportunities of memory-usage for perceptual purposes, which are compliant with the ARS
approach, are modeled in this thesis. First, an exemplar model is defined, which uses the agent’s
memory to find similar exemplars to base a stimulus’ categories on. An exemplar-based model
is used instead of a prototype model due its better compliance with the rules of the primary
process. Additionally it is more compliant with the second form of memory-usage for perceptual
purposes, namely the concepts of top-down perception and priming. The former is used to
handle subjective influences of perceptual categorization in a generic way by using unconscious
expectations that are triggered from memory; the latter is used to generically integrate these
expectations by using the concept of associative activation. Examples for memory-triggered
expectations are expected drive objects, which reflects affective priming in the ARS agent, or
expected contextual objects, which reflects semantic priming in the ARS agent.

The central issue in integrated drive object categorization is the selection of appropriate memo-
rized exemplars to base a stimulus’ categories on. Two opportunities to reduce the uncertainty
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in choosing the most appropriate exemplars are modeled and integrated. The first follows a
bottom-up approach in using the similarity to the stimulus’ features to activate appropriate ex-
emplars. The second opportunity follows a top-down approach in using the agent’s expectations
to activate appropriate exemplars. These two forms of memory-access to reduce uncertainty in
selecting the most appropriate exemplars are transformed into categorization criteria to integrate
them in a consistent model of perceptual categorization.

A generic framework is designed to transform and integrate all categorization criteria, by using
an activation-based multi-criteria approach. Therefore a criterion is transformed into activation
sources, which activate direct or indirect associated exemplars. The activation value is deter-
mined by the criterion’s activation function. An exemplar that gets the maximal amount of
activation from all activation sources of a criterion is fulfilling the criterion best and hence gets
the highest possible criterion activation value. The multiple criteria activation values are then
aggregated with consideration of a criterion’s impact to an aggregated activation value, which
represents the category appropriateness of an exemplar. Hence an exemplar can be activated
from expectation-based subjective criteria and from a similarity-based objective criterion. That
is, an exemplar’s activation is dependent on how expected it is and how similar it is to the stim-
ulus.

The usage of activation-based criteria application enables the reduction of exemplar candidates
that have to be considered for determining appropriate exemplars. This represents a form of data
reduction by reducing the instance set. The provision of activation sources as starting points for
memory access enables activation-based and directed memory retrieval by reducing the search
space. This eliminates a significant disadvantage of conventional instance-based algorithms, i.e.
the big search space.

Simulations of the model show how the agent uses its memory and memory-triggered expec-
tations to reduce the uncertainty in choosing appropriate exemplars for drive object categoriza-
tion. These simulations emphasize the need for two kinds of drive object categorization, namely
identified and generalized drive object categorization, which are chosen based on the agent’s
certainty in selecting the most appropriate exemplars. That is, if the categorization criteria are
not able to provide the certainty that is needed for identified drive object categorization, gener-
alization is used to value the stimulus as a drive object. In this way the remaining uncertainty
after applying all categorization criteria is still considered.

One can observe that the category decision is dependent on various conditions, i.e. dynamically
changing parameters. The interplay of these changing parameters can lead to different cate-
gorization results. This fact emphasizes the dynamic and flexible character of integrated drive
object categorization and gives an impression of the complexity of the interplay of determining
parameters.

Simulations of the model with different conditions show that in case of unique appearance recog-
nition similarity activation is sufficient for identified drive object categorization. Only in the case
of ambiguity in appearance recognition the embodiment criterion provides a significant reduc-
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tion of the agent’s uncertainty. In this regard the evaluations show that exemplar-ambiguity
should be defined as two exemplars having similar but not ident activation values. It has to be
emphasized that in case of handling ambiguity by expectation-based criteria the subjective un-
certainty is reduced, which may not comply with the result of objective categorization. Besides
reducing ambiguity in appearance recognition the embodiment criterion also may distort iden-
tified drive object categorization in an exceptional scenario and increase the uncertainty. This
results in generalized drive object categorization.

Although the model per se does not prefer any criterion, the similarity criterion implicitly has
more impact on determining appropriate exemplars. Generally, one can observe that the simi-
larity criterion is more reliable to reduce uncertainty and that additional categorization criteria
are significant only if appearance is weak or ambiguous. When considering the similarity cri-
terion as a bottom-up criterion and the embodiment criterion as a top-down criterion, one can
transform above statement. In this regard, when using one top-down criterion, the bottom-up
criterion is considerably more significant. With the premise of an agent that does not perceive
unknown objects, in general one can observe that only appearance recognition enables identified
drive object categorization.

Besides the categorization as drive objects, the stimuli’s pleasure potential is determined by the
embodiment activation value. In this regard simulations of the model show that the combination
of different conditions, primarily the actual- and memorized drives’ quota of affects, determine
an object’s pleasure potential, which is an appropriate determinant for the agent’s selective at-
tention and can be used to support the agent’s decision making.

101





CHAPTER 7
Future Work

For future work it would be interesting to analyze the primary process’ interaction with the
secondary process regarding perceptual categorization (see Section 3.3).

Additional future work could be an investigation if the application of multiple expectation-based
criteria is able to reach the similarity criterion’s significance of reducing the uncertainty in drive
object categorization. Significant additional subjective influences which can be used as cate-
gorization criteria to support reducing uncertainty may be expectations that are triggered from
planing and associative memory formation. The latter reflects contextual considerations in per-
ceptual categorization and is discussed briefly next.

An important subjective categorization criterion is given by the associations of previously cate-
gorized objects’ representations to stored exemplars. As introductory mentioned, stored entity-
TPMs (i.e. exemplars) may be associated to co-occurent and similar objects. These associations
can be used to support the determination of an exemplar’s category appropriateness. If an ex-
emplar is associated to a previously categorized stimulus it is expected and hence its category
appropriateness increases. In this regard the subjective experience of co-occurent and similar
objects influence drive object categorization. This is particular comprehensible for co-occurent
objects, since co-occurent objects provide additional information about the stimulus. This sub-
jective categorization criterion is also reasonable from an objective perspective. That is, the
subjective co-occurrence association-strength reflect the objective co-occurrence probability of
the associated objects.

A concrete example is given: if two exemplars, e.g. a banana and an apple, have a strong
co-occurrence association, the agent has often perceived these two objects together. After the
correct categorization of the banana, the stored association to the apple increases its category
appropriateness. That is, after categorizing a banana, the expectation level of an apple is higher
than e.g. of a tomato (which may have a similar appearance).
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The usage of co-occurence associations to activate exemplars reflects semantic priming and con-
textual considerations. Since it uses associated content, i.e. internal context, it may be called
subjective context categorization criterion. In this regard the subjective endogenous context
that reflects co-occurence, i.e. the co-occurence associations of an exemplar, may be used for
considering objective exogenous context, i.e. contextual physical objects. This complies with
evidence that context consideration is the norm in object recognition [MBC11], and hence is
also an important aspect in perceptual categorization. Human object perception does not occur
isolated and contextual information provides a significant input for object recognition and cat-
egorization, especially when the object appearance is weak or ambiguous [MBC11]. Different
kinds of context may be considered, amongst them semantic context, which basically refers to
co-occurrence of objects and is the most valuable kind of context for object recognition [GB10].
Additionally, as opposed to other context types (e.g. spatial or scale context) the consideration
of semantic context complies with the rules of the primary process.

Semantic priming is a bionic, integrated and subjective form of context consideration. It con-
siders context by using context-based expectations, which is a bionic method to make object
recognition and categorization more efficient [Bar04]. This method of context consideration
complies with this thesis’ generic pattern of integrating subjective influences of perceptual cate-
gorization by using the top-down concept of expectations. In this regard the stronger an exemplar
is associated with previously categorized exemplars, the more an exemplar is expected, i.e. the
higher it’s category appropriateness.
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