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Abstract

Seeing frontal human faces - a topic of computer vision - requires three dimensional information.
The perception of a face is natural to us, whereas for a computer, a noisy array of numbers needs
to be processed. For stereo vision, that is part of computer vision, this task is challenging, as
the skin of a face is low-textured and therefore general approaches are prone to errors. Some
applications, that may use such depth information, are computer games or animated movies.

In this thesis, we will focus on finding overall satisfying depth maps or disparity maps,
which encode the 3D data, for such applications. We will describe our ideas of a wholly passive
approach with consumer video cameras of a correlation-based, local stereo matching method.
Despite the fact, that active methods are currently the best methods to recover face geometry,
some work [BHPS10, BBB+10b] proved that passive methods can be on the same level, which
serves as motivation for our work. We developed a simple approach with minimal user input,
that accepts images in high definition (HD) resolution, in order to overcome the problems of
low-texturing.

We will evaluate our approach under different lighting conditions, baselines and structural
information of the face. Further, we will show where the main difficult areas of the face are.
Therefore, an own lighting environment was built and, for the evaluation, synthetic ground truth
data were modeled.

The quantitative evaluation demonstrates for a baseline of 0.5 in Blender units a percentage
of 43% of erroneous pixels at depth discontinuities. In textured areas, not at depth discontinu-
ities, 9% was measured. In textureless regions a percentage of 13% was reached. These results
are retrieved by comparing a sparse disparity map with a synthetic ground truth. Experiments
revealed that the most inaccurate areas of the face are the eyes and the nose. Further, one has to
pay attention to the baseline’s width, because it shoudn’t be too big.
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Kurzfassung

Das Sehen von menschlichen Gesichtern - ein Thema des Maschinellen Sehens - benötigt dreidi-
mensionale Daten. Die Wahrnehmung eines Gesichtes ist für die meisten Lebewesen natürlich,
wohingegen ein Computer ein verrauschtes Zahlenfeld verarbeiten muss. Im Falle des Stereosko-
pen Sehens, welches Teil des Maschinellen Sehens ist, ist diese Aufgabe eine Herausforderung,
da die Haut eines Gesichtes wenig Textur hat. Aus diesem Grund sind Versuche, welche diese
Probleme angehen, fehleranfällig. Einige Beispiele für Anwendungen, welche Tiefeninforma-
tionen nützen, wären Computerspiele und animierte Filme.

Diese Diplomarbeit konzentriert sich auf das Auffinden von Tiefenkarten oder Disparitäts-
karten. Sie enthalten dreidimensionale Information für die oben genannten Anwendungen. In
meiner Arbeit wird ein völlig passiver Ansatz mit der Verwendung von gewöhnlichen Videoka-
meras beschrieben. Er ist korrelationsbasiert und arbeitet mit lokalen Vergleichsmehoden. Trotz
der Tatsache, dass aktive Verfahren zur Zeit am besten geeignet sind für das Wiedergewinnen
von 3D Informationen eines Gesichtes, existieren Arbeiten [BHPS10,BBB+10b], die beweisen,
dass auch passive Methoden hochqualitative Resultate liefern. Dies dient als Motivation für die
eigene Arbeit. Ich habe einen einfachen Ansatz entwickelt, welcher minimale Benutzereingaben
verlangt. Er arbeitet mit Bildern in HD-Auflösung, um das Problem der wenigen Textur zu lösen.

Das Verfahren wird unter verschiedenen Lichtbedingungen, Basislängen und strukturellen
Informationen des Gesichtes evaluiert. Weiters wird gezeigt, wo die schwer zu berechnenden
Bereiche des Gesichtes liegen. Es wurde eine eigene Beleuchtungsumgebung gebaut und eine
synthetische Ground Truth wurde durch Modellierung erzeugt.

Die quantitative Evaluierung zeigt, für eine Basislänge von 0.5 in Blender-Einheiten, dass
der Anteil an fehlerhaften Pixel bei 43% liegt, wenn Tiefen-Unstetigkeitsstellen betrachtet wer-
den. In texturierten Regionen, fern von Tiefen-Unstetigkeitsstellen, wurde ein Fehleranteil von
9% gemessen. In weniger texturierten Regionen wurden 13% an fehlerhaften Pixeln erreicht.
Diese Resultate basieren auf schwach besetzten (engl. sparse) Disparistätenkarten im Vergleich
mit der synthetischen Ground Truth. Weitere Versuche zeigen, dass die schwer zu berechenbaren
Bereiche des Gesichtes in den Augen- und in der Nasenregion vorzufinden sind. Die Basislänge
sollte möglichst eng gewählt werden.
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CHAPTER 1
Introduction

1.1 Problem Description

Computer vision transforms input - some kind of data, for instance from a camcorder - into either
a decision or a new representation [BKSA]. The decision might be “there is a face in this scene“,
whereas the representation might be receiving a depthmap [BKSA]. In fact, seeing is natural to
a human being. Our brain automatically identifies, in a task-dependent way [BKSA], faces or
other objects in an image, while ignoring other irrelevant parts. This ability builds upon years
of experiences during a human lifetime. Unfortunately, little is understood from this natural
process till now. However, when a computer system aims to see as a human being, only an array
of numbers from a sensor is given. Often noise disturbs digital data. The experiences and all the
other process involved in the human vision system lack when imitating the act of seeing with a
computer [BKSA].

Our task is to transform this noisy array of numbers into a perception: “face“. In fact, till
now, there is no consistent solution found to this problem [BKSA].

The act of seeing faces requires three dimensional information. Working with images, as
in computer vision, leads to the need of dealing with the loss of the third dimension due to the
image formation process.

Facial three dimensional information is of interest for several applications, like human com-
puter interaction, in which the computer should be able to understand the facial expression of
the user. In computer surveillance, this information can be used to recognize a person respon-
sible for a criminal act. Further, in teleconferencing, the presentation of a remote person can
be improved using three dimensional information. Finally, development is done in the fields
of entertainment like computer games, realistic-looking face modeling like plastic surgery and
animation like the movie industry [LZSA].

The use of 3D data for face recognition and face modeling is an active research topic and
there are many approaches recovering the face geometry. The choice depends mainly on the
application. For model-based video coding, simpler methods are the choice, whereas for recog-
nition and identification, accurate methods are required [OTRT05].
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In this thesis, we will focus on overall satisfying 3D data, like used for simpler face models.
Some applications, that may use our depth information, are computer games or animated movies.

In general, one distinguishes between active and passive methods. Often active methods
for 3D measurement with structured illumination or laser scanning are employed, as they tend
to give accurate 3D facial information. Obviously, expensive equipment for active methods
is a major problem. Using passive methods implicates working with passive sensors, such as
ordinary video or CCD cameras.

There are several cues to recover the third dimension of a single image. Some examples are
the point of view, shading or texture. Using these cues results in methods, known as “Shape from
X“ techniques [SW06]. Taking more than one image from the same face results in techniques
that yield 3D data driven by different views, like multi view stereo, different instants of time,
like structure from motion, or different focal points, like depth from focus [SW06].

Stereo vision is a popular passive approach. The major drawback is its low quality and accu-
racy of captured 3D information in the past. Therefore, few research work is done in the fields
of reconstructing facial 3D information, because it is challenging to work with low-textured
surfaces. As a consequence, conventional stereo matching techniques with intensity correlation
produce noisy 3D information due to ambiguity.

1.2 Goals

The focus of my master thesis lies on the development of a method for computing 3D depths of
a frontal human face, which is the core step in reconstructing the face geometry. The matching
of pixels in different images to find correspondences is the key problem. Therefore, the main
object is obtaining good correspondence results with a good image acquisition and matching
technique. This thesis concentrates on the use of two views at an instant, whereby two pairs are
used.

The goal is to develop a simple method for automatic face reconstruction, therefore a com-
pletely passive approach with passive sensor, such as consumer high definition videos will be
used. For the stereo vision system two cameras will be placed horizontally and calibrated care-
fully.

First, the correspondence-problem for two images of scene points is solved - also known
as the image matching step [CM01] - iteratively with a correlation-based method. Then, the
two rays passing through the cameras’ projection centers and the corresponding pixels are inter-
sected [CM01], resulting in the 3D scene point - also known as the reconstruction step. Extra
knowledge of the head’s shape is minimized as easy user input.

In this work, it is assumed that the lighting conditions are controlled, therefore we will
propose a simple image acquisition technique.

For the development the framework OpenCV [The00] in C++ was used as it has several
routines already implemented and offers a good framework to work with cameras and to perform
mathematical operations. Further, we parallelize the algorithm by using the Boost C++ library
[Boo12].
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The motivation behind the proposed method is to investigate how the combination of several
matching approaches affects the result when compared with a synthetic ground truth.The model-
ing of the face mesh was done with Blender 2.34 and 2.63. Further, experiments with real-world
datasets were realized. Besides developing a simple method with minimal user-input, our main
goals are to show

• where the most inaccurate regions of the face are to be found and

• how the proposed correlation-based method behaves with varying parameters and under
the following difficult circumstances

– different baselines

– different lighting

– more structure/ less structure in the face

1.3 Structure of the Thesis

The thesis is divided into seven chapters. In the first chapter, we give an introduction to the topic
by a problem description and by describing the motivation and the goals of the thesis. In the sec-
ond chapter, we present some of the most important approaches for solving the correspondence-
problem and the reconstruction step. Some related work, that mainly deals with correlation-
based methods, is outlined. Further, the fundamental concepts of stereo vision are presented in
the third chapter. On the basis of the third chapter, the fourth chapter introduces the own deci-
sions and approaches. The fifth chapter outlines the image data and calibration data acquisition,
the lighting setup, and describes the setup configuration, as for instance the used libraries and
the optimization. The sixth chapter presents an evaluation of the results, whereas the acquisition
of the ground truth is also described. The seventh chapters gives a conclusion of the work.
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CHAPTER 2
Overview of Approaches

Approaches can be subdivided into active and passive methods. Active sensors hold this name
as they actively project rays, e.g. light, on the face, as opposed to passive methods, that use
existing light. The focus of this work lies on a passive method, stereo vision, that is classified
in local and global methods. Related work to our approach will be presented at the end of the
chapter.

2.1 Active and Passive Methods

For facial geometry reconstruction, active methods are preferred, as they tend to produce clean
data. Such methods yield 3D information using active light, like structured illumination (e.g.
[Mar96]) or laser scanner (e.g. [Yue95]).

Obviously, the expensive equipment is a major drawback. Further, they lack accuracy in
high-textured regions. But they are not that sensitive to different lighting conditions and produce
very accurate point measurements in low-textured regions [3dM, YTCA10].

Using structured light may be irritating to the person in front of the camera, because the
pattern is projected onto the face. Moreover, trying to reconstruct fine-scaled details, like facial
hair, fails, because the pattern is not visible [Dim].

When using laser scanners, the model needs to hold still for a few seconds, which may be
unnatural. Moreover, they fail on shiny surfaces like oily skin or dark surfaces like dark skin and
hair. Resulting 3D data of face scans do not tend to be smooth, due to holes and spikes [LZSA].

Using passive methods implicates working with passive sensors, such as ordinary video or
CCD cameras. Some passive techniques, yielding 3D information, use multi stereo vision
(e.g. [BHPS10]) or just stereo vision (e.g. [CM01]), two orthogonal views (e.g. [IY96]) or a sin-
gle view (e.g. [KSB11]). Further, one distinguishes between shape from shading (e.g. [KSB11]),
shape from silhouettes (e.g. [LMPM03]) and shape from motion (e.g. [LZJC00]).

A popular passive approach is the employment of a stereo vision system. Few research
work is done in the fields of face geometry reconstruction with this method, as it is challenging
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to reconstruct the low-textured surface of a face. As a consequence, conventional intensity
correlation-based methods (e.g. [FM98]) of stereo images produce noisy 3D data. However, one
can work with high resolution images to profit from textural information like skin pores, freckles,
scars, wrinkles etc. Moreover, they are sensitive to bad lighting and occlusion. Therefore, one
needs to control the acquisition setup. Some techniques require manual input (e.g. [LZJC00]),
marker (e.g. [GGW+98]) or special make-up (e.g. [Wil90]). But usually these approaches lack
accuracy. Often, extensive databases of faces are used (e.g. [KSB11]) to build a generic face.

Passive stereo vision is advantageous as it just needs a single shot to capture the underlying
image data for 3D reconstruction with a low-cost system. The nature of passive methods is that
there is a correspondence for every pixel in the first camera image with another pixel in the
second camera image [Dim], except for ambiguities and occlusion. Moreover, it is possible to
develop a fully automatic system.

2.2 Local and Global Methods

The matching process of stereo vision is categoriezd into local and global methods. Traditional
local methods constrain the matching process in the local neighborhood, whereas global meth-
ods constrains the process globally through the whole image or on scan-lines [BBH03]. As a
consequence, global methods are less sensitive to ambiguities, in contrast to local methods, but
they are computationally costly. Local stereo methods usually use aggregated intensity differ-
ences over a small area of the image, a so-called window, while global methods work pixel-
wisely [HS07]. At discontinuities, window-based local methods have problems to be accurate,
because the pixels in a window are constraint to have the same depth. The foreground fattening
problem occurs as the smoothness assumption over a window is violated. Conversely, global
methods can produce good results, when their smoothness assumption is formulated cleverly.

Some popular approaches for local methods are block matching, gradient-based techniques
or feature matching and for global methods dynamic programming, graph cuts or belief prop-
agation [BBH03]. Global methods appear to be very rarely employed for face reconstruction,
probably because they are computationally expensive. Local methods can find correspondences
accurately, as they are globally independent.

Currently, popular local methods are seeds-growing algorithms. At first step, points of inter-
est are matched and then, picking the ones with best similarity measure, initial seed points are
defined. Next, they are sorted by the similarity measure. At every iteration, the best matches
from the sorted list of seed points are chosen, while new seed points are collected from the adja-
cent areas of the current seed point. The algorithm terminates, as only points that have not been
collected before are selected for the list of seed points. This method is extended in (e.g. [DS11])
by a threshold, that rejects best matches with low similarity measure. False matches are excluded
through the left/right consistency check. In a second step, piecewise dynamic programming is
applied, such that scan-lines are divided, according to the set of high confidential matches, into
smaller sections. The result is a smooth and dense point cloud of the face.

6



2.3 Related Work

In our approach, we require equipment, that is low-cost and provides simple capturing. No active
light, like structured light or laser-scanned model, should be used. Semi-automatic reconstruc-
tion should be possible without the need of geometry scans or extensive user-input. The method
should work fully without markers, face paint or fluorescent makeup. For that purpose, a sim-
ple, passive and local method is applied. Further, the own approach works with block-matching,
therefore it is window- and correlation-based.

Despite the fact, that active methods are recently the best methods for recovering face ge-
ometry, some research work [BHPS10,BBB+10b] proved that passive methods are on the same
level. In the following, we describe approaches that implement window-based, correlation-based
passive stereo vision matching methods, because they are most relevant for the own topic.

In 1998 and 1999, Fua and Miccio [FM98] developed a fast and simple system to fit an ani-
mated face model to noisy stereo data. Their acquisition system consisted of a simple video.
They used successive, gray-scale images from the video sequence as a stereo pair and assumed
that intrinsic and extrinsic parameters were known beforehand. To reconstruct the face geom-
etry, including hair and ear, they used the stereo method described in [Fua93]. In detail, they
proposed a correlation-based approach that produces depth maps with holes. A block-matching
for every pixel with normalized mean-squared differences along an “epipolar band“ was used.
They stated that the final result, using the normalized mean-squared difference, was similar to
using a normalized cross correlation. Further, many false matches were rejected by the left/right
consistency check. The holes were closed with interpolation that preserves image features. They
proved that their method is suitable for faces but admitted that computational time is not optimal.
In fact, they used a hierarchical approach, but only to increase the density of the disparity map
and not to reduce the search area from coarser to finer images.

In 2001, Chen et al. [CM01] built a stereo system with two consumer digital cameras for re-
constructing the geometry of frontal human faces. The calibration process was skipped, because
the fundamental matrix was computed automatically. The images were rectified, thus, the verti-
cal scale was distorted. In a second step, the horizontal scale was handled. The correspondence
problem was solved by translating it into a global optimization problem, where a 3D correla-
tion volume was built, depending on the pixel position and the disparity. The disparity values
were gained through extracting the maximal disparity surface, that was formed by seed vox-
els, which are likely to be correct matches in the volume. For similarity measure a normalized
cross-correlation was applied. Outliers were removed by the left/right consistency check and
disparities, with a difference higher than one pixel in the left and right neighborhood, were re-
moved. Holes were closed by diffusion from the nearest neighbors. Their method makes use of
local and global advantages. However, manual correction for the hair and intensive computa-
tional work was necessary.

In 2010, state-of-the-art work is described by Beeler et al. [BBB+10b, BBB+10a] and Bradley
et al. [BHPS10]. Both described a passive multi-view stereo vision system for recovering the
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3D geometry of faces using correlation-based methods. Their research work demonstrates that
passive stereo systems, using correlation methods, are suitable for accurate reconstruction of
faces. Impressive work was done by Beeler et al., as they captured mesoscopic geometry like
pores of static faces, whereas Bradley et al. lack these details and also do not deal with “ex-
pressive motions“ [BHB+11]. Reversely, Bradley et al. implemented a method, that provides
fully-automatic reconstruction for 30 frames per second.

In [BHPS10], Bradley et al. described an acquisition system with seven stereo pair HD video
cameras. For capturing details, the cameras were zoomed-in, thus, they captured a patch of the
face, such that each pair had an overlap of the face surface. Illumination was controlled by nine
LED light fixtures, resulting in evenly bright illumination. The binocular camera setup was cali-
brated by a method that used the rectification error instead of the reprojection error [BH10]. The
correspondence matching step was solved by rectification and block-matching based on normal-
ized cross correlation (NCC), as described in [BBH08]. This was done iteratively, whereas for
every iteration a depth constraint was used to restrict the matching process further. Therefore,
an over-smoothed depth image of the current one was used, resulting in per-pixel constraints.
The process needed only three iterations to gain sufficient reconstruction. A scaled-window
matching method was applied that reduces horizontal distortions. Finally, the resulting 3D data
were merged. In the post-processing, the face mesh was smoothed, but this is not part of the
reconstruction step any longer.

Beeler et al. used, among others, an acquisition system of SLR cameras with indirect illumi-
nation. They developed a calibration method with a calibration sphere, that had randomly dis-
tributed fiducials on its surface, as opposed to the traditional method with a calibration checker-
board plane. The method is suitable for faces, as it is similar sized to human heads and one
can place it at a position where the person in front of the camera is to be expected. Pictures
were taken in a single-shot with standard light, in contrast to other state-of-the-art methods that
work with active light. The captured images were in a 12 bit RAW format, they were gray-
scaled and rectified. The correspondence problem was solved by a pairwise stereo matching
under a pyramidal approach by two rounds for each layer. A block matching with normalized
cross-correlation (NCC) was applied. In the first round, matches were computed for all pixels ac-
cordingly to the preceding layer. In the second step, the primarily computed pixels were checked
accordingly to the smoothness, uniqueness and ordering constraints and, if the constraints were
violated, they were re-matched accordingly to the valid pixels in the neighborhood. For the final
result, they performed a surface refinement in “continuous“ 3D and model skin pores and wrin-
kles in an extra step to obtain realism. One problem that had to be coped with was specularity,
for instance, on the nose tip, as it disturbed the results. The work bases on [FP10], that describes
a new method for MVS reconstruction with a “match, expand and filter procedure“.

Both research groups demonstrated that passive stereo vision systems can reach quality alike
as active systems. In both approaches the eye and eyelash geometry as well as the eye-brows
and other facial hair are not fully realistically reconstructed. They argued that the brightness
constancy assumptions was often violated in these areas.

In [BHB+11], research work was done by contributions of both parties. However, the corre-
spondence problem was solved by the method of Beeler et al., as described in [BBB+10a]. They
proposed to improve the method by zooming-in, like in [BHPS10], to gain more detail.
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A commercial solution, that reconstructs 3D information with a multi-view passive stereo sys-
tem, is Dimension Imageing 3D [Dim], which works with high-resolution images. The recon-
struction process involves correlation-based methods.
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CHAPTER 3
Background

3.1 Preliminaries

To relate world, camera and image some conceptual definitions need to be done.
For the reconstruction of 3D data just a small segment of the world is relevant, the so called

scene. In the following the term scene will be used throughout. In a scene several scene points
are considered for the reconstruction and they are described by coordinates in several coordinate
systems.

Coordinate Systems

A coordinate system is used for the determination of positions in space. Thus, the position of a
point is uniquely defined by specifying coordinates in space. The projection of coordinates of a
system to a different coordinate system is done by a coordinate transformation [Tönny], whereas
the positions of the scene points remain the same. Therefore, through the definition of different
coordinate systems for scene, camera and image, these systems can be related to each other.

The image coordinate system (ICS) [Moy00] determines the position of an image point
Pi = (xi, yi) in the image plane. It has two axes Xi and Yi, as the image has two dimensions,
with the origin Oi positioned at the top left corner of the image. The coordinates along the axes
are specified as real numbers, so called image coordinates, and when using integers, they are
rounded off to so called pixel coordinates pi = (ui, vi) with the axes u and v.

The camera coordinate system (CCS) [Moy00] determines the position of a camera point
Pc = (xc, yc, zc). It is an orthogonal coordinate system with three axesXc, Yc and Zc. The CCS
depends on the camera’s position and orientation and, thus, Xc and Yc are parallel to the axes of
the ICS. The origin Oc is the optical center of the camera and Zc is the optical axis, orthogonal
to the image plane. The intersection of the optical axis and the image plane is referred to as the
principal point, with its coordinates x0 and y0, typically at the center of the image plane.
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The description of the 3D scene and its scene point Ps = (xs, ys, zs) is done in the world
coordinate system (WCS) [Moy00]. It is also an orthogonal coordinate system with three axes
Xs, Ys and Zs as well as with the origin Os.

Os

Zs

Xs

Ys

Oi

Yi

Xi

Oc Xc

Yc

Zc

x0

y0

u
v

Figure 3.1: The three coordinate systems, ICS, CCS and WCS, are shown in relation to each
other. Further, the principal point and the rounding off of the pixel coordinates is illustrated.

The subscripts of x, y and z, used throughout this thesis, will define the relation to the
respective axis.

A coordinate transformation can be achieved through a projective transformation. A projec-
tive transformation transforms points in n-space to points in m-space, whereas m is inferior to
n [JDFHSA]. In our scenario, this means that scene points are projected to image points through
a projective transformation.
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Projective Transformation

First of all, we need to understand the concept of the projective space and projective geometry,
which describes the invariant properties under projective transformation. In fact, we perceive
our world in Euclidean 3D space and its geometry is a subset of projective geometry. Therefore,
Euclidean geometry is more structured than projective geometry. In between projective and
Euclidean geometry we have affine geometry [Bar08] as follows

Projective→ Affine→ Euclidean.

Euclidean transformations preserve lengths and angles of objects. An Euclidean transfor-
mation is equivalent to a coordinate transformation from an orthogonal coordinate system to
another orthogonal coordinate system, mostly done by a rotation and a translation [Schny].

Affine geometry introduces the concept of parallelism and the ratio of distance that are in-
variant under affine transformations. Affine transformations change the form of an object, there-
fore scaling and shearing is possible. Lengths and angles may not be preserved after such an
affine transformation [Schny].

Projective geometry is more general than affine and Euclidean geometry. Therefore, more
transformation is possible. Lengths, the ratio of areas and parallelism are not necessarily pre-
served. However, projective transformations preserve the cross ratio of distances, the incidence,
whether a points lies on a line or plane, and the type, e.g. a line remains a line [Bar08].

The camera’s viewing process is similar to a human eye’s viewing process as both use similar
geometric properties. As our space is in 3D Euclidean space and the image plane is in 2D
Euclidean space, the image formation is done by projective transformation from 3D to 2D.

Essential to the projective space is the introduction of homogeneous coordinates. Homo-
geneous points will be noted by a tilde. An Euclidean point, for instance in 2D space, may
be p = (x, y). The same point in projective space is represented by homogeneous coordinates,
which means that it is extended by a further coordinate p̃ = (x, y, 1), usually by 1. Consequently,
points in the Euclidean space are translated to lines in projective space. As p̃ is equivalent to λp̃
∀ λ 6= 0, the direction and not the length of a vector is relevant in projective space. If we want
to transform p̃ back to the Euclidean space, a division through the last coordinate is necessary.
When the last coordinate of p̃ is 0, this point does not exist in the Euclidean space as the division
by 0 is forbidden. This results in a subspace of points lying at infinity, which only exists in pro-
jective space. The idea of homogeneous coordinates may be also expanded to higher dimensions
of vectors [Schny].

The projective space allows the mathematical description of the perspective projection, which
is a type of projective transformation [JDFHSA] from 3D to 2D. We will make the assumption
that the mapping of the scene on the image plane is done by the perspective projection.
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Perspective Projection

The projection of a space point on the image plane is the intersection of the straight line, that is
the connection from space point to optical center, with the image plane. All the points lying on
this straight line are projected on the same image point. Thus, the projection is a non invertible
transformation, as the information of the depth is lost. Moreover, the original appearance of
angles is also discarded. The distance from the optical center to the image plane is finite. After
the perspective projection, parallel lines in Euclidean space are no longer parallel in projective
space. Their intersection is the so called vanishing point. This point lies at infinity and does not
exists in Euclidean space [Schny].

When using homogeneous coordinates for the perspective projection, the projection is trans-
lated from a non-linear to a linear problem [Bar08].

A general perspective projection can be expressed by the following matrix
1 0 0 0
0 1 0 0
0 0 1 0
a b c d

 ,

which projects on the plane ax+ by + cz + d = 1 [JDFHSA].
A simple camera model, that may use the perspective projection for its image formation

process, is the pinhole camera.

Pinhole camera

In digital cameras, the image is formed on a sensor (CCD or CMOS). The light is translated to a
number and the array of numbers is equivalent to the digital image [Gal11]. In general, using the
pinhole camera a scene points Ps = (xs, ys, zs) traverse through an infinitesimal aperture, the
so called pinhole or the optical center. The light traverses through the pinhole and its intensity
is formed on the image plane as an image point Pi = (xi, yi). As the optical center is located
between image plane and scene, the image of a scene object is reversed and the size of the object
decreases, when its depth increases. The distance between the image plane and the pinhole is
called the focal length f , which is an important camera parameter. Figure 3.2 demonstrates the
projection of a point with a pinhole camera model.
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Oi

Oc

Ps = (xs,ys,zs)

f

Pi = (xi,yi)

Figure 3.2: A scene point is projected on an image plane, using the pinhole camera model,
whereas the pinhole lies in front of the image plane. Further, the focal length is illustrated.

Using an ideal, perspective projection of the scene on the image plane, the optical center
is located behind the image plane, which differs from a real camera or the eye [Schny]. This
is shown in figure 3.3. Again, the size of scene objects in the image varies inversely with
their depths. However, when using the perspective projection, we need to pay attention to the
reversion of the x-axis and y-axis, which we have already done in the ICS.
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Oi

Oc

Ps = (xs,ys,zs)

Pi = (xi,yi)

f

Figure 3.3: A scene point is projected on an image plane, using a perspective projection. There-
fore, the pinhole lies behind the image plane. Further, the focal length is illustrated.

The image coordinates are transformed, using the fact that xi/f = xs/zs and yi/f = ys/zs,
by

xi = fxs/zs and yi = fys/zs,

whereas xi and yi are inversely related to zs, so, when, for instance, zs increases, xi and yi
respectively decrease.
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Ps

yi

ys

f

zs

Figure 3.4: The fact that yi/f = ys/zs is illustrated by a pinhole camera model.

As the depth information is lost under perspective projection, the recovery of depth, the 3D
reconstruction, needs further information. For reconstruction, a second image of the same scene,
with a slightly different perspective, needs to be introduced. This image can be captured by the
same camera or by a second pinhole camera, both having a different position and/or orientation.
We will make the second assumption, introducing a second pinhole camera. Such a setup is
called a stereo vision setup.

Stereo Vision Setup

Having two perspective projections of the pinhole cameras, we will introduce the superscripts l
and r, respectively for the left and the right camera. Or, in a more general case, we will use the
subscripts 1 and 2 for the first and the second camera.

Both cameras view the same scene point Ps. We assume that the cameras are horizontally
aligned to each other. The projection lines go through Ps and the two optical centers, Ol

c and
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Or
c . The collisions of the lines with the image planes are P l

i and P r
i . The line connecting Ol

c

and Or
c is the so called baseline.

Oi

Oc

Ps 

Pi 

Oc

Pi 

l r

l

r

l

Oi
r

Figure 3.5: Stereo vision setup.

After traversing the projection line of the left camera from P l
i , to recover depth, we need

further guidance. The projection line represents potential scene points at increasing depth val-
ues. In contrast to a single perspective projection, the depth of Ps can be recovered. For the
reconstruction, the two projection lines need to be intersected. However, to intersect the lines,
the corresponding points P l

i and P r
i need to be known beforehand. Therefore, we need to relate

the two perspective projections with the so called epipolar geometry.

Epipolar Geometry

The epipolar plane is determined by the scene point and by the optical centers. The collisions
of the baseline with the image planes are the so called epipoles, el and er. The epipoles are the
projections of Ol in the right image plane and Or in the left image plane. They may also lie
outside of the image or lie at infinity, when the image planes are parallel to the baseline. The
intersecting lines of the epipolar plane with the image planes are called epipolar lines, ll and lr.
An epipolar line is the image of the projection line, for instance lr is the projection of the left
projection line onto the right image plane. If viewing another scene point, the plane will traverse
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differently. Thus, the epipolar lines will traverse differently in the image planes. However, every
epipolar line passes the epipole, as every projection line goes through the optical center.

Oi

Oc

Ps 

Pi 

Oc
l r

l

l

Oi
r

el er

Pi 
l Pi 

rPi 

ll lr

Figure 3.6: Epipolar geometry.

In fact, the epipolar geometry describes the property, that the right correspondence of the
left image point of a scene point lies on right epipolar line, respectively on the left epipolar line
for the right image point.

The process of finding two corresponding points is called the correspondence problem.

Correspondence and Reconstruction Problem

The correspondence problem is a complex problem in computer vision as it is still an active
research topic, and solving it is the main focus of this thesis.

Given P l
i in the left camera image, the correspondence problem is associated with finding the

point in the right image P r
i , that represents the same scene point. This is a 2D search problem

along lr, which is the projection of all possible scene points. Reversely, if P r
i is given, the

correspondence problem has to be solved along ll.
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Figure 3.7: Correspondence problem.

Given a pair of P l
i and P r

i , the reconstruction problem is associated with finding the depth
of the scene point. This may be solved by intersecting the projection lines.

With a point in the left and right image, after solving the correspondence problem, we can
compute the so called disparity. The disparity is the difference in x- and y-coordinates between
the left and right point and results in two disparity maps. Given the correspondence pair, one can
directly compute the 3D depth, which will be the result of solving the reconstruction problem.
The reconstruction problem may also be solved by taking the disparity value and by similar
triangles, since the disparity value is inversely proportional to depth.

Stereo matching methods

Stereo matching methods intend to find corresponding image points in a stereo image pair. Thus,
methods that solve the correspondence problem have a high computational complexity.

There are several classifications of stereo matching methods. Based on the strategy to match
the points, we can divide them into global and local methods. Local methods compare a small
template around a pixel in the first image, the so called matching window, with same sized
windows for every pixel on the epipolar line in the second image. The best match results in
a correspondence pair. It is assumed that the templates for the best matches have the same
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appearance. Global methods compute a cost function for the whole image or for scan-lines.
Global methods yield better matching results, but are computationally costly.

Local methods can be further subdivided into sparse and dense methods. Sparse methods
match only so called feature points, e.g. edges or corners, that have been found in an image.
Therefore, the saliency of a point is measured. Feature points are salient points. Sparse methods
produce a sparse disparity map or depth map. In contrast to them, dense methods aim to find a
corresponding point in the second image for every point in the first image, resulting in a dense
disparity map or depth map.

In this thesis, local methods, which result in a sparse depth map, will be applied due to their
simplicity and lower computational complexity. For these matching methods several assump-
tions, so called constraints, have to be made. Stereo matching methods differ by the constraints
that they are using and how they implement these constraints.

Constraints

In the following the constraints [Men97, BBB+10a], that are relevant for this thesis, are de-
scribed.

1. Photometric constraint: It assumes that corresponding pixels have the same intensity (or
color). This constraint holds when the Lambertian model for the surface of the scene
object is assumed. A surface is Lambertian, when the luminance is the same independent
of the viewing direction [Hal10]. This constraint may be violated due to noise or non
uniform illumination that may cause highlights on a surface.

2. Similarity constraint: Given, for instance, a line, the projections of the line should have
similar properties in all images. Therefore, a horizontal line in one image cannot be
matched with a vertical line in the second image. This constraint is violated, if, for in-
stance, the line is split into two parts or is occluded in the second image.

3. Smoothness constraint: Within a matching window, the pixels are supposed to have the
same disparity values. If a matching window overlaps a depth discontinuity or a surface
that is slanted, then this constraint is violated.

4. Epipolar constraint: The corresponding point of an image point has to lie on the same
horizontal scan-line in the other image. This is demonstrated in figure 3.8. Therefore, the
image planes are assumed to be parallel to the baseline. This is the fundamental geometric
constraint between the images. It may be violated when the camera’s parameters are not
known precisely.

5. Uniqueness constraint: Every point in the first image can have at most one point from the
second image. This constraint is violated when given an image with slanted or transparent
objects, as shown in figure 3.9.
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6. Ordering constraint: If a point is on the left side of another point in the same image, then
the ordering will be preserved on a second image. This constraint may be violated when
the points appear in the forbidden zone [Huq01], which is demonstrated in figure 3.10. It
does not hold, for instance, for thin foreground objects.

Figure 3.8: Epipolar constraint.

Figure 3.9: Violation of uniqueness constraint through a transparent object.
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Ps,1

Ps,2

Figure 3.10: Ps,1 and Ps,2 belong to two different objects in the scene. The forbidden zones
attached to Ps,1 are illustrated by the dashed lines. Ps,2 violates the forbidden zone constraint
and therefore the ordering of the two projection of the scene points is reversed when comparing
the left and right image plane.

Several matching problems appear when constraining the matching methods, due to viola-
tions.

Stereo Matching Problems

Local stereo matching methods generally fail when matching at homogeneous or low-textured
regions [Men97]. It is impossible to find a distinct, best match in the second image. The intensity
variation in the image pair is too low. Due to this problem, the uniqueness constraint may be
violated. Repetitive patterns also violate the uniqueness constraint as several best matches are
found along the epipolar line. Further, some points, that are visible in one image, may not be
visible in the other image due to occlusion. This leads again to a violation of the uniqueness
constraint and of the similarity constraint.
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Perspective distortion due to perspective projection is a problem, when the baseline between
the cameras is high. This violates the similarity constraint. Illumination variation leads to a
situation where the similarity constraint and the photometric constraint are violated again. This
may occur when the light is reflected differently, due to different views, and causes different
intensity values for the projection of the same scene points [Men97]. In case of highlights, this
problem is given.

If the matching window overlaps depth discontinuities, the smoothness constraint is violated.
This problem worsens when the matching window increases. In this case, the object/surface in
the background is measured to have the same disparity as the object/surface in the foreground.
This is the so called foreground fattening problem.

best match true match

L R

Figure 3.11: Foreground fattening problem. The gray area represents the foreground and
the white area represents the background. Background pixels close to discontinuities may be
matched to the foreground.
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Often the surfaces in the image are assumed to be fronto-parallel to the cameras. However,
given slanted surfaces, the matching may result in a n to m pixles-matching of the surfaces
because, given different views of the surfaces, the surfaces are sampled differently. Slanted sur-
faces violate the uniqueness constraint, the smoothness assumption and the similarity constraint.

The size of the matching window is critical [Men97], as there is no optimal solution. If the
window is too small the matches are unreliable, whereas, if the window is too big the foreground
fattening problem tends to occur. However, low-textured regions yield for big window size,
whereas reconstruction of fine details yields small window size. If the size of the matching
window is big, the window will easily overlap different surfaces, which violates the smoothness
assumption.

Finally, if the camera parameters are not accurately enough known, the epipolar constraint
is violated, as the epipolar lines do not traverse exactly through the corresponding points.

3.2 Depth from Stereo Vision

Stereo Camera Calibration

Throughout the process of stereo camera calibration, camera parameters, that mathematically
describe the relation from WCS to ICS, are gained. The relation between the scene points and
the image points, through the perspective projection, can be found. This is necessary for 3D
reconstruction.

For camera calibration, a known 3D structure of the scene is necessary. This can be achieved
if a special calibration pattern and known control points are captured by both cameras. With an
optimization process the camera parameters can be estimated [Schny].

For that purpose of stereo camera calibration, so called extrinsic and intrinsic parameters
need to be calculated.

The extrinsic camera parameters need to translate the first CCS to the second CCS. In detail,
they describe the external properties of the camera, the 3D position and orientation of the cam-
eras to each other. They consist of a single 3× 3 rotation matrix R and a 3× 1 translation vector
t, that relate the two cameras from the first to the second camera.

From this calibration data, we want to compute the rotation and translation for each camera
separately. We assume that the first camera system has always the orientation and position of
the WCS. This means that the rotation matrix of the first camera R1 is equal to the 3×3 identity
matrix and the translation vector t1 is set to zero for all coordinates. The second rotation matrix
R2 is equal to the rotation matrix of R, as the rotation goes from the WCS to the second CCS.
Similarly, the translation t2 goes from the WCS to the second CCS, therefore t2 is equal to t.
This can be written as

R1 =

1 0 0
0 1 0
0 0 1

 and t1 =

0
0
0


or as

R2 = R and t2 = t.
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Finally, a scene point needs to be rotated and then translated to be transformed in a specific
CCS with R1 and t1 or with R2 and t2. A scene point is transformed to a camera point by the
following equations: x1cy1c

z1c

 = R1

xsys
zs

 + t1 or

x2cy2c
z2c

 = R2

xsys
zs

 + t2.

Intrinsic parameters are necessary to carry out the transformation from CCS to ICS. In detail,
they describe the internal properties of a camera, how points of the camera system are mapped
to image coordinates. They consist of the already mentioned focal lengths fx and fy expressed
in pixels and the principal point with x0 and y0. Sometimes the skew is also considered but,
as we assume that the axes of a pixel are rectangular, it is set to 0. Further, the intrinsic pa-
rameters consist of four distortion coefficients (k1, k2, k3, k4) to model the lens distortion of a
real-world camera [The00]. k1 and k2 are radial distortion coefficients and k3 and k4 are tan-
gential distortion coefficients. This is different to the pinhole camera, which does not consider
lens distortion, as it describes an ideal perspective projection. The transformation [The00] goes
as follows, whereas it is assumed that zc 6= 0,

xi = fx(xc/zc) + x0 and yi = fy(yc/zc) + y0.

We can also rewrite the mapping [The00] in so called camera matrices K1 and K2, that
consists of the following intrinsic parameters:

K1 =

fx,1 0 x0,1
0 fy,1 y0,1
0 0 1

 and K2 =

fx,2 0 x0,2
0 fy,2 y0,2
0 0 1

 .

The rigid motions, rotation and translation in the Euclidean space, can be expressed in so
called matrices of extrinsic parameters E1 and E2:

E1 = [R1|t1] and E2 = [R2|t2].

Finally, the ideal perspective projection can be expressed as

sP̃i,1 = K1E1P̃s and sP̃i,2 = K2E2P̃s.

The transformation of CCS to ICS [The00] can be extended by the distortion coefficients as
follows:

x′ = xc/zc,

y′ = yc/zc,

26



r2 = x′2 + y′2,

x′′ = x′(1 + k1r
2 + k2r

4) + 2k3x
′y′ + k4(r

2 + 2x′2),

y′′ = y′(1 + k1r
2 + k2r

4) + k3(r
2 + 2y′2) + 2k4x

′y′,

xi = fx ∗ x′′ + x0 and

yi = fy ∗ y′′ + y0.

With this camera parameters the epipolar geometry can be expressed mathematically by the
fundamental matrix.

Fundamental Matrix

The relation between epipolar lines and epipolar plane is formulated by the fundamental matrix
expressed in pixels. Given R1, R2, t1, t2, K1 and K2, the fundamental matrix is computed as
follows.

First of all, the translation vector between first and second camera [MAP04], can be calcu-
lated by

t = R2(−RT
1 t1 +RT

2 t2).

This translation vector is estimated by the stereo camera calibration. Further, the vector product
matrix T [Schny] of the translation is built as

T =

 0 −tz ty
tz 0 −tx
−ty tx 0

 .

The rotation R between the first and the second camera [MAP04] is defined as

R = R2R
T
1 .

This rotation matrix is estimated by the stereo camera calibration. Finally, the fundamental
matrix F [MAP04], a 3× 3 matrix, is defined as

F = K−T2 TRK−11 .

This matrix depends on the intrinsic and extrinsic parameters. The equation for the epipolar
lines [Schny] are as follows:

l2 = FP̃i,1 and l1 = F T P̃i,2.
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For the epipolar constraint, we want to assume that the epipolar lines are parallel to each
other as the image planes are parallel to the baseline. In such a case, the fundamental matrix
[Schny] is defined by

F =

0 0 0
0 0 −1
0 1 0


such that

l2 = FP̃i,1 =

 0
−1
yi,1

 and l1 = F T P̃i,2 =

 0
1
−yi,2

 .

Given the definition of a straight line as ax + by + c = 0 with m = −a/b and d = −c/b
of the slope-intercept form y = mx + d, the gradient is m = 0, as a = 0, and the intercept
is d = yi,2 and d = yi,1 in both images. Therefore, both epipolar lines are horizontal with the
same y-coordinate in the image planes [Schny].

To fulfill the epipolar constraint the image planes need to be projected in a common plane.
This process is called rectification.

Rectification

This transformation is based on the camera parameters of the calibration process. After the
rectification, epipolar lines of first and second image are collinear and parallel to the Xi-axis.
Corresponding points lie on the same line, that goes from first to second image. Thus, it reduces
the search space for stereo matching from 2D to 1D, as we only need to find the x-coordinate
in the second image. Further, it reduces perspective distortion (in y-direction), that is caused by
the perspective projection of different camera views. Figure 3.12 illustrates two stereo images
with its corresponding rectified images. The epipolar lines no longer intersect in an epipole, as
the epipole is at infinity. An important property of rectification is that the optical center of both
cameras remain unchanged after rectification [Schny].
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Figure 3.12: Rectification.

Given a rectified pair of corresponding points, the correspondence problem can now be for-
mulated as

yi,2 = yi,1 and xi,2 = xi,1 − d,

whereas d is the disparity value along the Xi-axis. We can now apply a stereo matching method
on the stereo image pair.

Local Stereo Matching Methods

Local stereo matching methods use a technique known as block matching method. The similarity
of matching windows is compared. To measure similarity between left and right template several
metrics can be used. Two examples are intensity differences and correlation. For the purpose
of correlation, color or intensity of an image can be used. We will calculate the correlation
value on the basis of intensity values. The matching window is assumed to be an odd n × n
window. Further, with local stereo matching methods, we will assume that the neighborhood of
corresponding pixels remains constant, as stated by the smoothness constraints. Some popular
metrics [BBH03] are
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• sum of squared differences (SSD)

• normalized cross correlation (NCC)

With the SSD, the so called matching costs will be high, if the pixels differ a lot, or low, if
the pixels are similar. The next step is to aggregate the costs in the chosen matching window,
as defined for the first image I1 and the second image I2. SSD(yi,1, xi,1) can be formulated as
follows

n/2∑
p=−n/2

n/2∑
q=−n/2

(I1(yi,1 + q, xi,1 + p)− I2(yi,1 + q, xi,1 + p+ d))2.

In contrast to SSD, with NCC, we have low cost if the pixels differ a lot and high cost if the
pixels are similar. NCC(yi,1, xi,1) can be formulated as follows

n/2∑
p=−n/2

n/2∑
q=−n/2

(I1(yi,1 + q, xi,1 + p)− Ī1) ∗ (I2(yi,1 + q, xi,1 + p+ d)− Ī2)√
n/2∑

p=−n/2

n/2∑
q=−n/2

(I1(yi,1 + q, xi,1 + p)− Ī1)2 ∗
n/2∑

p=−n/2

n/2∑
q=−n/2

(I2(yi,1 + q, xi,1 + p+ d)− Ī2)2

,

whereas Ī1 and Ī2 are, respectively, the means of pixel values in the corresponding regions.
SSD is simpler and therefore, computationally less expensive than NCC. However, NCC is

insensitive to radiometric gain and bias [BBH03] due to its normalization. There exist several
variation of SSD and NCC. An example is sum of absolute differences (SAD), that is computa-
tionally even more efficient than SSD. NCC may vary due to different normalization techniques.
An example is zero mean normalized cross correlation (ZNCC) [MR10].

With these measures, the cost aggregation for every point on the epipolar line is computed.
A winner-takes-all principle (WTA) is applied to find the best match of the matching cost. Often,
a threshold for the correlation value is set manually to reduce the risk of false matches.

However, this method relies on images having textured regions and fails in low textured
regions. The choice of size of the matching window is critical as the performance of the outcome
and the computational time depend on it. Moreover, depth discontinuities cause problems due
to the square window. Therefore, several alternatives have been proposed. An example is the
method of Hirschmüller [Hir01] that uses instead of one matching window for each pixel, several
sub-windows, and computes the correlation value by adding the values of the best sub-windows.

To improve the matching quality, the search space can be reduced by assuming an upper and
lower bound of depth or disparity. Sometimes, the epipole is taken to compute the lower bound.
However, having rectified images, this is not an option. Often, depending on the baseline and
on the distance of the scene objects, the search space is restricted manually. Thus, the possible
disparity value d will range from dmin to dmax.
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Reconstruction of Depth

Given the position and orientation of the cameras as well as their parameters, we can reconstruct
the projection lines. For each line and camera a projection of the pixel into the scene, Ps,1 and
Ps,2, can be computed. Getting the center of Ps,1 and Ps,2, we will receive the scene point Ps

and can take its zs as result.
First of all, we need to define the inverse projection from ICS to CCS. Therefore, we need

the inverse KI of a camera matrix as

KI =


1/fx 0 −x0/fx

0 1/fy −y0/fy
0 0 1
0 0 1

 .

KI can be applied for the first and second camera matrix, resulting in KI,1 and KI,2. Then, we
need to transform back into the WCS with an affine transformation

W =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 ,

whereas, the rotation from camera to scene, is defined as

RT =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 .

Further, the translation −RT t from camera to scene, is defined as

−RT t =

t1t2
t3

 .

W , RT and−RT t can be applied for the first and second camera, resulting in W1 and W2. With
KI,1, KI,2, W1 and W2 a pixel can be projected into WCS as

P̃ ′s,1 = W1KI,1P̃i and P̃ ′s,2 = W2KI,2P̃i,

which are scene points computed with lost depth information. However, as the projection lines
traverse through these points, we can define the directions of the projection lines with l1 =
P ′s,1 − t1 and l2 = P ′s,2 − t2, with t1 and t2 being equal to the projection center of the cameras.

Ps,1 and Ps,2 can be computed by

Ps,1 = t1 + s1l1 and Ps,2 = t2 + s2l2,

whereas s1 and s2 are defined as

d = t1 − t2,
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a = l1l2/(l1)
2,

b = dl1/(l1)
2,

vec = al1 − l2,

s1 = (bl1 − d) ∗ vec/(vec)2 and

s2 = as1 − b.

Finally, Ps can be computed by

Ps =

(xs,1 + xs,2)/2
(ys,1 + ys,2)/2
(zs,1 + zs,2)/2

 ,

whereas zs of Ps is the resulting depth.
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CHAPTER 4
Depth Reconstruction of Faces

4.1 Scene Description and Difficulties

For our scene we assume to see one frontal human face with the first camera. If several faces in
the scene appear, the largest will be reconstructed, if the images are not marked beforehand. The
expression of the face is assumed to be neutral but some expressions like smiling do not make a
difference for computing the depthmap. Further, we constrain that there is no rash movement in
the scene, such that motion blurring is avoided. The background should differ significantly from
the face, in specific from the skin color.

The reconstruction of faces is especially challenging as the the texture-variation is rarely
noticable. Therefore, often structured light, special makeup or markers are used to reconstruct
the geometry. When using HD resolution, fine-scaled details, like facial hair, wrinkles, blem-
ishes and so on may help to find automatically correspondences as they give a natural surface
texture of the face.

Figure 4.1: Natural texture of the skin with pores, wrinkles and other blemishes.
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Noise and other environmental aberrations may cause a lack of texture, that makes it difficult
to identify and reconstruct feature points. We have to pay attention to bad lighting, as it may
reduce textural information in the image pair. Especially, when reflections appear, one loses
important details. The tip of the nose and the eyes are prone to reflections when captured under
direct lighting.

Figure 4.2: Reflection in the eye, that are difficult to avoid.

One can avoid such occurrences by using make-up, special lighting or post processing. When
designing the lighting, one needs not only to cope with reflections, but also with shadows.

The age may be important for the quality of the reconstruction. With the advance of the age,
the skin becomes uneven and gains textural information. In fact, the reconstruction of facial hair,
eye geometry, including eyelashes and eyebrows, or even the teeth and the tongue would give
more realistic 3D results. However, our method is not designed for such a task.

The camera images are shot under special lighting conditions. For further information, see
the subsection 5.1.

4.2 Stereo Calibration

The first step, to reconstruct the image, is to apply a stereo calibration. For the stereo calibration
the already implemented method of OpenCV was used. Therefore, a checkerboard pattern, with
black and white squares attached to a planar surface, is held in front of the camera and recorded.
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Figure 4.3: Calibration pattern: a checkerboard pattern.

In general, any object with appropriate features can be used as a calibration object [BKSA].
However, it is much easier to deal with planar checkerboard pattern, as for instance with a 3D
calibration object.

For the checkerboard corners, we used a checkerboard pattern of 10× 7 fields which results
into 9×6 corner points (just counting the internal corner points). However, three corner points in
a known pattern would be sufficient to solve the problem. Generally, one needs 2NK ≥ 6K+4
[BKSA], whereas N are the corners and K are the images of the checkerboard pattern. Then
we have 6*K extrinsic parameters and 4 intrinsic parameters. Further, even though one image
would be, as stated before, sufficient, several images, under different orientation by moving the
plane, were taken for this thesis. In practice, considering for noise and numerical stability, we
took around 40 pairs of images for robustness, as this yields high-quality results.

First of all, feature points need to be detected in the image. This process involves a corner
detection by the Harris interest point operator [BKSA]. A further refinement is done by an
iterative subpixel localization with a gradient-based search, whereas the resulting grid corners
of the checkerboard pattern are advantageous for the subpixel localization [BKSA].
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Figure 4.4: Detected corner through the Harris interest point operator and after a refinement by
an iterative subpixel localization in the calibration pattern.

For the calibration method OpenCV uses Zhang’s method [Zha00] to solve for the focal
lengths and offsets. However, the distortion parameters are solved based on Brown’s method
[Bro71].

4.3 Preprocessing

Undistortion

During the calibration process radial and tangential distortion parameters are computed. There
are several other distortions that may occur in the picture taking process, but these are the typical
ones. Radial distortion arises as a result of the shape of the lens. Rays farther away from
the center of the lens are bent more than those which are closer to the center. This causes so
called barrel distortion, which is especially obvious in cheap web cameras. Tangential distortion
is caused by manufacturing defects, when the lens is not exactly parallel to the image plane
[BKSA].
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Lens

Scene

Image plane

Figure 4.5: Radial distortion, as rays farther from the center of a cheap lens are bent too much
[BKSA].

Lense CDD Ideal plane

Figure 4.6: Tangential distortion as the camera sensor is not fully parallel to the lens [BKSA].

37



With the distortion parameters, the images are transformed to compensate for lens distor-
tion with a method from OpenCV. The input camera matrix is changed for the distored image.
Bilinear interpolation is applied for filling in the holes.

Rectification

After distortion is compensated, the image needs to be rectified. Again a method of OpenCV is
consulted. There are many methods to rectify an image pair. OpenCV implements Bouguet’s
algorithm for the calibrated case, as it uses the rotation and translation parameters from two
calibrated cameras. As this method has never been published, only implemented in the Camera
Calibration Toolbox for Matlab [Jea], further details can be taken from [BKSA].

Spatial Restriction for the Reconstruction

To restrict the computational area of the correlation process, we have the option to mark the
interesting region by surrounding it with a black frame. The bounds are detected automatically.
Setting the frame may improve the computational time.

Figure 4.7: Interesting regions should be surrounded with a black frame.
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Further, if the frame is not set, OpenCV’s face detector is used. OpenCV implements a face
detection method [BKSA] similar to the work of Paul Viola and Michael Jones, also known as
the Viola-Jones detector [VJ01]. Later it has been extended by Painer Lienhart and Jochen Maydt
[BKSA], also known as the diagonal features [LM02]. In OpenCV this detector is called “Haar
classifier“ as it uses “Haar-like wavelets that consist of adding and subtracting rectangular image
regions before thresholding the result“ [BKSA]. During the detection process a rectangular
window of specific size is moved over the input image, while for each of these sub-areas the
Haar-like features are computed. The result is compared to a learned threshold that classifies
the object into a face or non-face. OpenCV offers pretrained object-recognition files for faces,
one for a frontal face and one for a profile face. We are using both in our implementation, as the
first camera sees the face in frontal position and the second and third cameras obliquely from the
side. The detection works sufficiently well on objects that are “consistently textured and mostly
rigid“ [BKSA].

In case of not finding the bounds, the whole image serves as input for the correlation phase.

Thresholding

Before we consider correlation, we need to compute the saliency of the image pixels for the left
image. The saliency may be defined as being inversely proportional to the probability of the
occurrence of the image feature [HLS02]. Mismatches during the correlation process, due to
noise or lack of texture, will result in uncorrelated noise in the 3D geometry. To reduce these
points the saliency is used. In the following description, pixels are processed depending on their
contained information. To avoid mismatches due to low textured regions the correlation process
will start with pixels, that are highly textured and will end with pixels that are less textured. In
specific, we will use the Sobel operator.

The Sobel operator is a linear filter used for edge detection. It computes an approximation
of the gradient of the intensity function of the image. A gradient is a vector that represents the
edge magnitude with its length and whose direction is orthogonal to the edge direction [Tönny].
Or in other words, the gradient represents the steepness and the direction of the slope.

The Sobel operator is defined in horizontal and vertical direction as follows:

Gx =

−1 0 1
−2 0 2
−1 0 1

 and Gy =

−1 −2 −1
0 0 0
1 2 1

 .

With this small and integer valued 3× 3 kernels, that gives the approximation of the derivatives
in horizontal and vertical direction, a convolution of the image can be computed. The result
gives the information of how abruptly or smoothly the image intensities change at a point. At
homogeneous regions the filter will result in zero [Tönny].
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The resulting gradient approximations of M bgr
x and M bgr

y are combined to give its edge
magnitude as

M =

√
(M bgr

x )2 + (M bgr
y )2,

whereas M bgr
x and M bgr

y are again combined for every color channel of the color space BGR,
that is used by OpenCV, as

M rgb
x =

√
(M b

x)2 + (Mg
x)2 + (M r

x)2 and

M rgb
y =

√
(M b

y)2 + (Mg
y )2 + (M r

y )2.

Figure 4.8: Combined gradient image from horizontal and vertical Sobel operator. The value
ranges from 0 to 255
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We receive a gradient magnitude for every pixel, which expresses the saliency of the image.
Further, the maximum is found and the minimum is set to 20. The threshold for every iteration
of the computation is calculated as follows

Listing 4.1: Threshold Computation
1 min = 20;
2 max = getMax(sobelFilterdLeftImage);
3 step = (max-min)/3;
4 for(i=1;i<4;i++)
5 threshold = min + step(3-i);
6 ...
7 end

When performing the thresholding, we receive three different results for the gradient mag-
nitude.

Figure 4.9: The salient pixels in the first iteration of the matching taken from the first image.
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Figure 4.10: The salient pixels in the second iteration of the matching taken from the first image.

Figure 4.11: The salient pixels in the third iteration of the matching taken from the first image.

4.4 User Input

For the local sparse stereo matching method user input is necessary. The idea is to reduce the
search space for the image matching step by defining a bounding area in space for the frontal side
of the face. Therefore, we need to tell the application, where the closest point and the farthest
point of the face are. With this information we can restrict the search space on a projection ray,
that goes through the image point and the optical center.
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Figure 4.12: The user input in the first image is marked in this example with red crosses.

Figure 4.13: The user input in the second image is marked in this example with red crosses.

When seen from the camera, the nose tip is assumed to be the closest point of the face. The
farthest point may be defined as a point on the right edge of the face of the input image. For
robustness reason the chin point is also required, as the input point serve as initial input for the
stereo matching method (see the next section 4.5). The bottom line is an input of six points
for each pair of input images. Therefore, we will have three inaccurate correspondences. With
these, three scene points, approximately lying on the face in WCS, can be calculated. As a face
has bilateral symmetry, its left and right side are symmetrical. Due to this property, three pairs
of corresponding points are sufficient. However, it is possible to increase the number of input
points.
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4.5 A Local Sparse Stereo Matching Method

Iterative process

There are three iterations over the left image to compute the depthmap. Depending on the
threshold, explained in section 4.3, an image pixel is considered for the local sparse stereo
matching method or is excluded. In the first iteration, the corresponding pixel is computed for
very salient pixels. The threshold of the pixel is decreased by every iteration. We have three
iterations, as experiments have shown that the algorithm performs well at three iterations.

Structure pixels

In general, the idea is to compute so called “structure pixels“. The initial input are three structure
pixels, as we have three pairs of corresponding pixels given by the user’s input. In principle, our
algorithm works as follows: for each currently selected pixel a viewing ray is built up with this
pixel and the optical center. It is traced back into the scene. As all points on this ray are potential
candidates for the projection onto the second image plane, a restriction needs to be formulated.
We take the scene point of the nose tip as the closest bound on the ray and the point selected
on the edge of the face as the farthest bound. These restrictions are further improved, when the
application is progressing, as more structure pixels are computed. The bounds are computed
from the closest structure pixel.

Figure 4.14: Example of structure pixels after the third iteration.
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Restriction of Search Space

Subsequently, depending on the depth z of the closest neighbors (our structure pixels) of a
currently selected pixel, the search space is restricted by [(1−λ)∗z, (1+λ)∗z]. The value of λ
is crucial for the performance of the matching method. The lower the value, the more restricted
is the search space and the more we assume that neighboring pixels have similar depths. This
may cause mismatches at depth discontinuities like on the transition between cheek to nose. In
contrast to this, if the value is chosen too high, mismatches are likely to appear as it is likely to
find a similar pixel in the neighborhood in the second image.

Further, with every iteration, the restriction of the search space is tightening up, as follows.

Listing 4.2: Tightening up of Restriction
1 for(i=1;i<4;i++)
2 ...
3 interval = λ/i;
4 minDepth = (1-interval)*z;
5 maxDepth = (1+interval)*z;
6 ...
7 end

This is necessary, as with every iteration more closer structure pixels are available. There-
fore, the accuracy of the neighboring depth is higher, which allows to restrict the search space
better.

With this method, the smoothness assumption is met better.

Normalized Mean-Squared Differences

When the bounds are fixed, we rasterize the viewing ray between the maximum depth and the
minimum depth, so every hundredth point is projected into the second image plane. Such a
projection in the second image plane is called a potential corresponding pixel. To find the best
correspondence, a correlation value needs to be computed. For every potential pixel a window
is centered around it and it is compared to a fixed template of the pixel in the first image.
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Figure 4.15: In the left image frame a fixed template and in the right image frame a shifting
window, depending on the position on the viewing ray, is presented.

The correlation value is computed by the fixed window in the first image and the shifting
window in the second one. Every step on the rasterized ray requires the computation of a corre-
lation value. In our approach, we take normalized correlation of intensity values, the so called
normalized mean-squared differences [Fua93], and compute the correlation value c by

c =

∑
i,j

((I1(y + j, x+ i)− Ī1)− (I2(y + dy + j, x+ dx+ i)− Ī2))2√∑
i,j

(I1(y + j, x+ i)− Ī1)2 ∗
∑
i,j

(I2(y + dy + j, x+ dx+ i)− Ī2)2
.

I1 and I2 are the first and the second image intensities. Ī1 and Ī2 are the average value over
the correlation window and dx and dy are the displacements along the epipolar line, which are
proportionally to our step size on the rasterized ray. In [Fua93], it is argued that this correlation
values are insensitive to linear transformation of the image. This may be caused by slightly
different settings of the cameras. Therefore, with this method, the similarity constraint is met
better.
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Variable Window Size

Further, in [Fua93] it is argued that the probability of mismatches decreases as the size of cor-
relation window increases. Therefore we do not use a fixed window size, but a varying size,
that depends on the saliency of the pixel in the first image. A combination that was often used
throughout the testing was the following: for the first iteration, the window size was set to 9, for
the second iteration a size of 15 was used and for the third 21 was used. For further details see
the section in the evaluation chapter 6.3. The size of the window is increasing as the saliency
of the pixel is decreasing. However, using large windows is problematical as the fine-detailed
geometric information gets lost, whereas small windows are not distinct enough for correlation.

Using this method, we try to avoid partially the foreground fattening problem and to gain
some fine-detailed structures in the depth map.

Considering the Neighboring Viewing Rays

An improvement, that we have implemented is not only to consider one pixel in the first image
for the stereo matching but to include several pixels from the adjacent area. Therefore, a distance
of +/− 1 for the pixel position was chosen.

Oc
l

Figure 4.16: The 4 neighbours in the first image that are also considered for stereo matching.
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As illustrated in figure 4.16, a bunch of viewing rays is traversed. Further, a common cor-
relation weight for every step on the central rasterized rays is calculated. The common weight
is simply calculated by the sum of weights. The correlation values from the neighborhood are
weighted by a Gaussian filter. Therefore, correlation values closer to the central pixel have more
influence on the common weight than pixels that are farther away. The best match is determined
by the minimal common correlation weight.

With this method, we try to implement an approach to partially fulfill the smoothness as-
sumption.

Left/Right Consistency Check

As the restriction of the search space may cause mismatches during the third iteration, due to
lack of saliency, we implemented a left/right consistency check, which can be considered as
a validity measure. Therefore, the roles of the images are reversed. Once a potential pair of
corresponding points is found, the same stereo correspondence process is applied for the found
pixel in the second image. For this pixel and its neighborhood, again the best matching pixel is
determined by the minimal common correlation value.

left-to-right disparity map right-to-left disparity map

match1

match2

Figure 4.17: The right-to-left disparity map points back to a pixel in the left image. This pixel
should point back to the outgoing point in the left-to-right disparity map. As it does not fulfill
this condition, the found match is invalid and will be ignored.
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The resulting depthmap is sparse, as the same initial pixel, for which the correspondence
is searched, has to be found again after the reversion. If it differs in the pixel position the
corresponding pair is rejected.

The left/right consistency check can be defined as follows: given a pixel Pi,1 in the first
image I1 and its neighborhood, after the stereo matching process, let Pi,2 be the potential cor-
responding point that was found in the second image I2. This match is valid, if and only if, the
reverse matching process with Pi,2 from I2 to I1 locates again the pixel Pi,1.

With this method, we try to fulfill the uniqueness constraint.

Calibration Imperfections

As for some calibration parameters, the course of the epipolar line lacks pixel accuracy as it
does not go exactly through the corresponding pixels, another improvement was implemented.
Instead of matching the template just with the pixel that lies on the epipolar line, we do the
same for three pixel above and three pixel below this pixel. This is easy to do, as the images are
rectified. Therefore, we reduce again the probability of mismatches.

With this method, we try to cope with the violation of the epipolar constraint.
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CHAPTER 5
Setup

5.1 Setup Configuration

Computer Vision Library and IDE

For our application we used OpenCV [The00], an open source computer vision library, that is
written in optimized C and C++ [BKSA]. It runs under several plattforms (Linux, Windows and
Mac OS X). Therefore, our source code is also written in C++.

In general, OpenCV is a collection of classes that gives support for image processing. It
consists of several functions for real-time calculation. OpenCV is structured into five main
components, one of it is “cv“ for image processing and vision algorithms. Moreover, it can take
advantages of multicore processors.

Its alpha release was published in 1999. Since then, OpenCV has been used in many appli-
cations and for several research work. The library contains over 500 routines that give solutions
for areas including camera calibration and stereo vision [BKSA].

OpenCV was used for this thesis, as it has many routines already implemented and offers a
good framework to work with cameras and to perform mathematical operations.

OpenCV was designed to be portable [BKSA] and it was written to compile for instance
with MSVC++. As a free version for students was available, we used the commercial product
Microsoft Visual Studio 2010 Ultimate as our integrated development environment (IDE). It
offers tools for developing and debugging of C++ code.

Optimization

As the execution time of our program was long, we decided to parallelize the core step in the
computation. We divided the salient pixel of the left image into several windows, whereas every
window was calculated in parallel to the other. Therefore, two arguments have to be given to the
program: d1 and d2. d1 divides the image in horizontal direction and d2 divides the image in
vertical direction, resulting in several windows.
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For our evaluation, d1 = 2 and d2 = 1 was chosen, which results only into two windows.
This weak parallelization was necessary, as we had just two cores on the testing machine.

Stereo System

For the stereo system we used three HD camcorder. In specific, we used Canon LEGRIA HF M
46. One of its benefits is the Canon HD CMOS Pro Sensor with a total pixel of 2.37 Megapixel.
The sensor uses a Bayer pattern filter. Moreover, it has a high-quality Canon HD Video lens
with 10x optical zoom and 40x/200x digital zoom. The focal length is 6.1 - 61.00 mm and the
maximum aperture is f1.8 to f3.0.

Camcorder and Lighting Setup

To receive images of faces that are brightly and uniformly illuminated, we built our own lighting
setup, shown in image 5.1 and 5.2, that is similar to a light dome.

First of all, a fundamental setup was built out of curved fiber board with the approximate
dimensions of 4 x 1 x 1 in meters. To keep its curved shape, we stabilized it with hooks and
a steel rope. To mount the three camcorders, we set up three small pedestals and carved three
round holes in the board. The camera’s field of view wasn’t narrowed down by this setup. The
baseline between the two camcorders was approximately 30 cm. The distance to the object was
about two meters, whereas the zoom was used to approach to the face. Finally, the lighting was
realized by twelve swiveling panel mounted light fixtures. For these, again several round holes
were carved in the board, whereas the positions were equally distributed. Further, two studio
light lamps were set up from above to lighten up the upper area. This setup provides high-
intensity light with uniform light distribution, like with a LED panel. Most of the reflections are
avoided, in spite of using directed light. Only reflections in the eye were not possible to avoid.
Another disadvantage of using regular light fixtures is the radiated heat.

For the camcorder in the center of this constellation, the depthmap is to be calculated, there-
fore it is equivalent to our first camera. The left and right camcorders are always equivalent to
the second camera. For the first stereo pair of images, the left camcorder is the second camera,
whereas for the second stereo pair the right camcorder is the second camera.
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Figure 5.1: The lighting setup with the cameras from the back.

Figure 5.2: The lighting setup with the cameras from above.
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5.2 Taking Images

Our three cameras are directed at the same scene in front of the cameras. Here it was a frontal
human face. However, several assumption are made before taking the images.

1. the camcorders should be identical

2. the focal length should be identical

3. the zoom level should be identical

4. the white balance of all camcorders should be set manually

5. the camcorders should be aligned horizontally to each other

6. the baseline should not be too wide, so that the field of view is similar

7. the object in front of the camcorder does no sudden movements, as to avoid motion blur-
ring

The camcorder was set to snapshot mode. Moreover, pictures were recorded in full HD
resolution of a capture image size of 1920 x 1080. Therefore, fine details like pores, wrinkles and
moles are visible in the images. The pictures were shot simultaneously with a remote controller
of the camcorders. The controller worked for all three camcorders at the same time.

Figure 5.3: The lighting setup with a model in front of the camera, while taking pictures.
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5.3 Calibration Process

For the calibration process the method by Zhang [Zha00] was used. For more details, see the
previous chapter 4. A checkerboard pattern of known dimensions needs to be held in front of the
camera and recorded by the camera. It is important that the background of the taken images is
uncluttered, otherwise the method will fail. The stereo calibration process provided by OpenCV
was used. As several pairs of images are necessary for the calibration process, the left and
middle camcorders are calibrated separately as well as the right and middle camcorders.

For this process, two persons are necessary. The first person is handling the checkerboard
pattern in front of the camcorders. The second person is handling the remote controller from
behind the camcorders. To achieve a satisfying calibration accuracy, about 40 pairs of images
from various distances need to be taken. Some examples are shown below.

Figure 5.4: The calibration pattern during the calibration process, seen from the first camera.
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Figure 5.5: The calibration pattern during the calibration process, seen from the second camera.

Calibration Correction

As the calibration method from OpenCV tends to inaccuracies, we implemented a method for
the correction of the epipolar line in y-direction, that is described in the following.

We are searching the function that gives us the difference to the correct location of the
corresponding pixel in the second image. It may be defined as

e(y) = a0 + a1y + a2y
2.

Therefore, we need to estimate a0, a1 and a2. This can be done by linear regression

Xβ = y,

whereas

X =


1 y1 y21
1 y2 y22

1
...

...
1 yn y2n

 , β =

a0a1
a2

 , y =


dy1
dy2

...
dyn


and n ≥ 3. (dy1, dy2, ..., dyn) are the differences to the correct solution in y-direction. They
need to be collected manually. Therefore, the user needs to select a pixel in the first image
and receives the epipolar line in the second image. Further, the user can take a closer look at
the course of the epipolar line. Through the selection of the correct pixel in the second image
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(usually close to the epipoal line), a feedback to the application is given. On that basis, the
differences are selected.

If a solution exists, we can solve the regression by Gaussian approximation

β = (XTX)−1XT y,

whereas (XTX)−1XT is the pseudo inverse of X . Finally, if we search for a corresponding
pixel in the second image, we need to add to every potential on the epipolar line the value of
e(y). This is defined as

y′ = y + e(y),

whereas y′ is our new y-coordinate for the pixel in the second image.
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CHAPTER 6
Evaluation

In the following, we will describe the quality metrics that will be used to evaluate the perfor-
mance of our stereo matching algorithm. Further, we will describe the techniques we used for
acquiring the image data set and the ground truth for this evaluation.

6.1 Ground Truth

To evaluate a stereo matching algorithm, a ground truth is necessary, as it yields the correct
solution to a given problem, in our case, to a stereo calculation. This appears to be a disparity
image of the horizontal displacement between the first and second image.

There are two commonly used ways for generating a ground truth. A real world ground truth
can be generated or a synthetic ground truth can be calculated.

Real world ground truth usually comes with some measurement errors. The ground truth
for real-world examples is not fully correct. Here, we need to differ between a controlled situ-
ation, for instance, with the lighting being controlled in an indoor situation or an uncontrolled
situation in an outdoor scene. Depending on the circumstances, errors may appear. In general,
it is necessary to apply a measurement technique that is superior to the own stereo matching
algorithm.

The typical stereo evaluation benchmark is the Middlebury Stereo Benchmark, that can be
found on the following website [Mid]. It provides accurate ground truths, gained from a struc-
tured light system. For this approach, different light patterns are projected onto the scene and
a high-quality disparity map is gained. In total one can choose from 38 image pairs, that are
varying in matching difficulty. Some of them are complex, such that algorithms can be evalu-
ated to their limits. A further example is the use of another active system, e.g. a laser scanner.
In [BBB+10a], the ground truth is obtained by scanning a physical mask by a laser scanner. Even
though laser scanners achieve high quality results, they also suffer from artifacts and therefore
aren’t true for hundred-percent. Finally, another technique exists, namely hand-labeled ground
truth. An example is the Tsukuba test set of the Middlebury ground truth disparity maps. How-
ever, this approach is extremely labor-intensive.
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In contrast to these real-world examples, a synthetic ground truth does not always reflect
real-world problems. For instance, the input of intrinsic and extrinsic parameters is usually
correct for the calculation of the stereo matching algorithm, which isn’t the case for real-world
calibration data. With two virtual cameras, disparities at occluded areas may also be calculated,
which differs from real-world ground truth.

Often the absence of a real-world ground truth to evaluate a stereo matching algorithm causes
a major problem in computer vision. For most problems, not a single ground truth solution exists.
Therefore, the ranking of stereo matching is not wholly possible and the progress in this field is
difficult to trace.

Unfortunately, the Middlebury Stereo Benchmark does not include the evaluation of human
faces for stereo matching algorithm. The second problem, that arises with the Middlebury Stereo
Benchmark, is the lack of the calibration data, which is necessary for the own approach. In
the absence of a real-world ground truth for the constructed lighting system, we decided to
generate a synthetic ground truth for our quantitative evaluation process. The advantages are the
correctness of the disparity map under artificial conditions. Moreover, we are able to test the
algorithm easily under different conditions, for instance different structural conditions.

For the aquisition of the ground truth, we decided to use Blender and a python-script taken
from [Ben], which was used in the following paper [BCC05]. Blender is a free and open-source
3D computer graphics software, that allows 3D modeling, UV unwrapping and texturing. The
python script is executable in Blender 2.34 under the precondition that the polygon mesh is based
on triangles.

Figure 6.1: The mesh of our head on the left side and the UV image on the right side.
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First of all, we built a mesh using Blender 2.63 with a poly-by-poly method out of quads, as it
is easier to model the mesh in comparison to older Blender versions. With this method, starting
from a quad polygon, more quads are extended from the edges. We used frontal and lateral
photographies as references. Afterwards seams were set and UV unwrapping and projection
was done. The UV map was textured with a real-world photography from our testing setup to
keep the texture more realistic in Adobe Photoshop CS3 Extended. The clone stamp tool and the
healing tool were used for the texturing. Finally, the quads were converted into triangles and the
mesh was exported in the object format to import it in Blender 2.34. To make some experiments,
an additional texture map was overlaid on the face, that should simulate blemishes of the skin.
Therefore, the standard random texture cloud was chosen. Further, a lighting source was set.
Varying conditions were built up with different parameters for the cloud texture and the lighting
source.

6.2 Quality Metrics

The quality of the computed correspondences needs to be evaluated in a quantitative way, in our
case with some quality metrics.

Generally stereo evaluation is done by computing error statistics based on a ground truth for
ranking reasons. The Middlebury Stereo Evaluation usually compares different stereo matching
algorithms by the following measurements:

• percentage of erroneous pixels in non-occluded regions

• percentage of erroneous pixels in total

• percentage of erroneous pixels near disparity borders

For this thesis, the following two metrics are computed, whereas both quality metrics are
computed between the disparity map and the ground truth map.

1. The error measurements, the root mean squared error RMSE [Hal10], is used, similar to
the Middlebury stereo website

RMSE = (
1

n

∑
(x,y)

|d(y, x)− dT (y, x)|2)
1
2 ,

whereas n is the total number of pixel that are found for the underlying amount of pixels
and dT represents the ground truth. Every pixel, that fulfills the conditions for the under-
lying amount of pixels, will contribute to the RMSE. A low level of RMSE means that
the accuracy of the calculated disparity map is high.
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2. The percentage of erroneous pixels PEP is defined as

PEP =
1

n

∑
(x,y)

(|d(y, x)− dT (y, x)| > σd),

whereas σd is the threshold of disparity tolerance. Wrong pixels are estimated in a first
step by the absolute difference between the own and the ground truth disparity map. If
the absolute disparity difference is larger than one pixel, this pixel is counted as an error.
Again, only pixels that belong to the underlying amount of pixels will contribute to the
PEP .

Similar to [SS02] and the Middlebury Stereo Evaluation [Mid], these metrics are applied to
four different kinds of areas in the image. Note that for all of the areas occluded regions are
included, as we do not have information about their position. Four segmentations on the basis
of the first image and the ground truth need to be done:

• textureless areas: areas where the squared intensity gradient, a combination of horizontal
and vertical direction calculated with the Sobel operator, over a square window of a given
size is below a given threshold. For the threshold the value 20− 80 was chosen, as salient
pixels are filtered with a threshold of 20 and the value range is defined as 1− 255.

• the whole reference image: only the pixels covered by a ground truth pixel value are
counted for the evaluation. Pixels at the borders, also computed by the matching algo-
rithm, are ignored.

• depth discontinuity areas: pixels are considered to be in this area, if they are not farther
away than 9 pixels from a disparity jump in the ground truth.

• textured areas not near depth discontinuities: pixels are considered to be in this area, if
they are farther away than 9 pixels from a disparity jump in the ground truth and if the
Sobel operator gives a value higher than 80.
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(a) (b)

(c) (d)

Figure 6.2: (a) textureless area, (b) the whole reference image, (c) depth discontinuity areas and
(d) textured areas not near depth discontinuities.

6.3 Experiments with Synthetic Dataset

For the following experiments, the central image pair has the following characteristics through-
out most of the experiments:

• a baseline of 0.5

• a noise filter, cloud, of noise size 0.096

• a lighting with sun of Blender with an energy of 1.0

• a window size of 9, 15, 21 is used

• a λ value of 0.5 is used

Baseline

To evaluate our stereo matching algorithm we need some datasets, that have a ground truth
disparity map. We have collected several datasets by rendering images of our face mesh in
Blender within different conditions. First of all, a sequence, consisting of three pairs of images,
was rendered with three different baselines: 0.25, 0.5 and 0.75. These baselines are given in
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Blender units. With these pairs we want to test the sensitivity of our algorithm to a varying
baseline.

Figure 6.3: Dataset of image pairs with ground truth of 4 different baselines: 0.25 for the first
row, 0.5 for the second row and 0.75 for the third row. The first column represents the first
image, the second column represents the second image and the third column shows the ground
truth.

Figure 6.4: Three second images from the dataset baseline overlayed in one image, whereas the
center of one image is marked by a red line.
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Results and Discussion

In the whole reference image, for a baseline of 0.25, 28% of correspondences from the whole
possible amount of relevant pixels were found. For a baseline of 0.5, 29% and, for 0.75, 25%
matches were found. So we have computed around 30% of the ground truth.

In the following figures it is obvious, that the baseline at 0.5 gives the best results. In total
we reach a percentage of erroneous pixels of 14% for a baseline at 0.5, whereas in area that
aren’t near depth discontinuities and that are salient we reach 9%.

The quality of our algorithm near depth discontinuities is low as we haven’t introduced any
measurements to cope with these areas. The main reason is also the bad lighting at the border
of the face. For a baseline of 0.5 we reach a PEP of 43%, whereas at 0.75, 98% matches are
incorrect at depth discontinuities. In textureless areas, a PEP of 13% was reached at a baseline
of 0.5, 18% at 0.25 and 74% at 0.75. Again, the results are quite satisfying for a baseline of 0.5.
Note that the textureless area is already filtered. Pixels that give very little structural information
in their neighborhood are ignored in the matching process.

The RMSE of a baseline at 0.5 in areas that aren’t near depth discontinuities and that have
edge information is about 0.4 and in total 0.94 is reached. The latter value results from the poor
disparity accuracy near depth discontinuities, that has a RMSE of 2.64.
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Figure 6.5: (a) RMSE and (b) PEP in the whole reference image.
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Figure 6.6: (a) RMSE and (b) PEP in the textureless areas.
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Figure 6.7: (a) RMSE and (b) PEP in regions near discontinuities.
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Figure 6.8: (a) RMSE and (b) PEP in regions not near discontinuities and in textured areas.

Blemishes

Next, a sequence, consisting of three pairs of images, was rendered under three different struc-
tural conditions. A standard noise texture cloud of Blender was used for that purpose. The first
pair has just the natural texture of a skin, without a noise texture. The second pair has a noise of
noise size 0.096, which is quite coarse. The third pair has a noise size of 0.012, which is fine.
With these pairs we want to test the sensitivity of our algorithm to a varying structure of the face
texture, that is equally to blemishes of the skin.

(a) (b) (c)

Figure 6.9: Zooming in of the different skin textures of our dataset. The images illustrate a skin
with (a) natural texture, (b) additional coarse noise and (c) additional fine noise.
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Figure 6.10: Dataset of faces with different texture. The cloud noise texture was used as follows:
for the first row no noise is visible, for the second row coarse noise is given and for the third row
fine noise is used. The first column represents the first image, the second column represents the
second image and the third column shows the ground truth.

Results and Discussion

With this dataset 29% − 44% of correspondences were found. With a very noisy image pair,
44% of the ground truth was found.

The following figures show that with increasing noise the PEP in total decreases. With no
noise the natural skin texture reaches a PEP of 15% and with coarse noise we reach a slightly
better result of 14%. With fine noise the percentage of erroneous pixels decreases at 8%. The
improvement from none to coarse noise is due to the better results in textureless areas.

The RMSE is quite varying, but shows in areas not near depth discontinuities and in tex-
tured areas, that the accuracy is increasing with increasing noise. However in total, the coarser
noise reaches the worst result, when considering the RMSE. This is due to bad results near
depth discontinuities.
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Figure 6.11: (a) RMSE and (b) PEP in the whole reference image.
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Figure 6.12: (a) RMSE and (b) PEP in the textureless areas.
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Figure 6.13: (a) RMSE and (b) PEP in regions near discontinuities.
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Figure 6.14: (a) RMSE and (b) PEP in regions not near discontinuities and in textured areas.

Lighting

A sequence, consisting of three pairs of image under different lighting conditions, was collected.
The first image reflects the lighting with a natural lighting source, namely the sun. The lighting
energy was set to 1.0. Under these conditions the skin texture was fully visible, except of the
border of the face, which is shadowed. For the second pair, a lamp lighting was chosen with
an energy of 2.94. Again, the border of the face is shadowed. Finally, a difficult situation was
created, namely reflection of the skin, whereas still some skin texture is visible. This was done
by six spot lamps with an energy of 1.96− 2.02. However, in contrast to the other two pairs, the
border of the face is lit well.
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Figure 6.15: Dataset with different lighting conditions: the first row shows the images under a
natural lighting, the second row shows the images under a lamp and for the third row images
with reflecting skin were created. The first column represents the first image, the second column
represents the second image and the third column shows the ground truth.

Results and Discussion

In total 29%− 49% of correspondences were found. The more energy for the lighting was used,
the more matches were found.

The PEP in total reflects that with the lamp and spot lighting the results are worse, both
reach 16%. However, when looking at the RMSE, it is obvious, that the lighting using the
spots gives the worst results, as it reaches 8.68, whereas for instance the lamp lighting reaches
0.61. It is noticeable that the RMSE of the spot lighting is very bad in regions with textured
areas and not near depth discontinuities. In contrast to that, from near depth discontinuities the
results are better than from the other two pairs. This may be caused by the better lighting at the
border of the face. This observation is also reflected in the PEP , as spot lighting reaches an
inaccuracy of 35% at depth discontinuities. sun and lamp result in a PEP of 43% and 42% near
discontinuities. In areas that are textured and not near discontinuities, sun has a PEP of 9%,
lamp has a PEP of 10% and spot has a PEP of 16%.
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Figure 6.16: (a) RMSE and (b) PEP in the whole reference image.
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Figure 6.17: (a) RMSE and (b) PEP in the textureless areas.

72



sun lamp spot
0

0.5

1

1.5

2

2.5

3

R
M

SE
 n

ea
r d

is
co

nt
in

ui
tie

s

lighting conditions

(a)

sun lamp spot
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

lighting conditions

PE
P 

ne
ar

 d
is

co
nt

in
ui

tie
s

(b)

Figure 6.18: (a) RMSE and (b) PEP in regions near discontinuities.
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Figure 6.19: (a) RMSE and (b) PEP in regions not near discontinuities and in textured areas.

Window

In this subsection, the difference between varying windows for the matching process will be
investigated. The first experiment will be done with windows size of 3, 9 and 15. The second
experiment will be done with windows size of 9, 15 and 21. The third experiment will be done
with windows size of 15, 21 and 27. The following pair and ground truth were used.
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Figure 6.20: Dataset for an experiment with different window size for the matching process.
The first column represents the first image, the second column represents the second image and
the third column shows the ground truth.

Results and Discussion

About 29% correspondences were found for the second pair of the dataset. For the first and third
pair around 35% matches were found.

The PEP was in total best for the windows 9, 15, 21, it results in about 14%. For the
windows 3, 9, 15, 15% was reached and for 15, 21, 27 18% matches were incorrect. On the one
hand, the RMSE reflects, that with increasing window size, the accuracy of the disparity value
increases. On the other hand, it is also obvious, when looking at the PEP , that with increasing
window size, the errors at depth discontinuities increase. This may be due to the foreground
fattening problem. In regions not near depth discontinuities and in textured areas the results of
PEP are best for the 9, 15, 21 combination: 9% for 9, 15, 21, 14% for 3, 9, 15 and 18% for
15, 21, 27. This can be caused by the fact that smaller windows lack distinction for correlation,
whereas bigger windows are affected by the foreground fattening problem. Finally, in textureless
areas, theRMSE reflects that the inaccuracy of 0.53 is best at 9, 15, 21. With smaller windows,
the accuracy decreases significantly to 1.2, whereas for bigger windows the RMSE is about
0.54, which is just slightly worse than the result with 9, 15, 21.
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Figure 6.21: (a) RMSE and (b) PEP in the whole reference image.

74



3,9,15 9,15,21 15,21,27
0

0.2

0.4

0.6

0.8

1

1.2

window size

R
M

SE
 in

 te
xt

ur
el

es
s 

ar
ea

s

(a)

3,9,15 9,15,21 15,21,27
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

PE
P 

in
 te

xt
ur

el
es

s 
ar

ea
s

window size

(b)

Figure 6.22: (a) RMSE and (b) PEP in the textureless areas.
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Figure 6.23: (a) RMSE and (b) PEP in regions near discontinuities.
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Figure 6.24: (a) RMSE and (b) PEP in regions not near discontinuities and in textured areas.

Lambda

For this experiment the same dataset was used as for the subsection 6.3. However, the goal
of this experiment is to test the sensitivity of λ, which restricts the viewing ray in space, and
therefore restricts the search space on the epipolar line.

Results and Discussion

Again, around 30% of correspondences were found in total.
The PEP is in total slightly better for λ = 0.5. The big difference is obvious in the regions

away from discontinuities and in textured areas. Here, we have for λ = 0.5 a PEP of 9%,
for λ = 0.25 a PEP of 15% and for λ = 0.75 a PEP of 16%. This is also reflected in the
RMSE of these areas. It results from the fact, that a too restricted search space prevents the
finding of matches, as the correct match is outside of the search space and a too wide search
space increases the possibility for mismatches. However, λ is different from setting to setting.
There exists no ideal value for all settings.
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Figure 6.25: (a) RMSE and (b) PEP in the whole reference image.
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Figure 6.26: (a) RMSE and (b) PEP in the textureless areas.
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Figure 6.27: (a) RMSE and (b) PEP in regions near discontinuities.
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Figure 6.28: (a) RMSE and (b) PEP in regions not near discontinuities and in textured areas.

6.4 Experiments with Real-World Datasets

In a second phase, we have done experiments with real-world datasets. These images were
recorded with the lighting setup, that is described in subsection 5.1, and with three volunteers.

As we do not have any ground truth data, we cannot quantitatively evaluate the resulting
disparity maps. The resulting interpolated depthmaps, out of the sparse depthmaps, are shown
in the following. Interpolation is done linearly.
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Figure 6.29: The first column shows the right camera images, the second column the middle
camera image and the third column the left camera image.

However, we can qualitatively evaluate the results. The results are quite poor in regions
near depth discontinuities. In fact, obvious errors appear near the nose areas. Further, due to
reflections, errors in depth information appear in the eye regions. The baseline is too big, as areas
near one side of the border of the face are not reconstructed correctly. Therefore, the algorithm
does not really work in occluded areas, which we already expected, as we haven’t implemented
any measurements for these areas.
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Figure 6.30: The first column shows the interpolated depthmap between middle and right camera
and the second column the interpolated depthmap between middle and left camera.
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Figure 6.31: The first column shows the error zones of the interpolated depthmap between mid-
dle and right camera and the second column the error zones of the interpolated depthmap be-
tween middle and left camera indicated with black circles.
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CHAPTER 7
Conclusion and Future Work

In this thesis, we have described a method to gain overall satisfying 3D data for the purpose of
simpler face models. The main idea of our algorithm is to develop a completely passive recon-
struction with passive sensors. Two cameras are aligned horizontally and calibrated carefully.
The focus of this thesis lies on the image matching step, solving the correspondence problem.
Therefore, the well known epipolar geometry was adapted. The first viewing ray and its neigh-
boring rays, outgoing from a pixel in the first image frame and its four neighboring pixels, are
restricted by a minimal and maximal depth. Then every hundredth scene point is projected in
the second image frame. A block matching with a winner-takes-all technique for the common
weight of the pixels is applied. We used varying windows size for the matching step and an
epipolar band, instead of a line, in the second image, to cope with calibration inaccuracies.
Further, a left/right consistency check is implemented, to fulfill the uniqueness constraint.

We built a synthetic dataset, as real-world ground truth data were missing, as well as a
real-world dataset for testing the own lighting environment, that gives uniform and bright illu-
mination. With this dataset the own algorithm was executed. The evaluation shows that special
measurements for depth discontinuities are necessary. For instance, for a baseline of 0.5 in
Blender units, a percentage of erroneous pixels of 43% was reached at discontinuities and in
textured areas not at discontinuities 9% was measured. In textureless regions 13% was reached.
These results are gained on the basis of a sparse disparity map with the synthetic ground truth.
Moreover, the evaluation showed, that with higher structure in the face, the accuracy increases,
and the brighter the lighting, the more correspondences are found. Shadows, especially at depth
discontinuities, are difficult to reconstruct. Reflection in a face leads to loss of information and
to inaccuracy in the disparity values. The most difficult areas to reconstruct are the eyes and
the nose. The baseline should be chosen closer than what we did in our real-world experiments.
Further problems, are low contrast and noise in the real-world image pair, as our algorithm
mainly bases on edge detection. For the window size and the λ value, one needs to find a good
balance. Fine-detailed matches need to be preserved. The foreground fattening problem needs
to be avoided. This is done partially by the left/right consistency check. On the one hand, the
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search area should not be too restricted and, on the other hand, too weakly restricted search areas
cause also problems.

For future work, we need to increase the accuracy by coping with above mentioned prob-
lems. Further, the optimization of the source code is necessary, because our code is mainly
unoptimized. Several operations could be easily implemented on the GPU. As a Sobel filter on
an area of 3×3 pixels is not very resistant to noise, one can improve the filtering of salient pixels
also. The images can be smoothed before submitting them to the Sobel filter, to avoid noise and
one can use histogram equalization to stretch the contrast. Finally, the depth information of the
two camera pairs can be combined to gain more accurate results.

We have fulfilled all of our goals. An approach for computing 3D depths of a frontal human
face was described. We developed a simple method with minimal user input, we evaluated it
with different lighting conditions, baselines and structural information of the face and showed,
where the main difficult regions of the face are.
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