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Kurzfassung

Diese Dissertation stellt ein neues, fehlertolerantes éildir verteile Datenverarbeitung in
Echtzeitsystemen vor, das sowohl die Perspektive derikidsm verteilten Datenverarbei-
tungsmodelle als auch die der Echtzeitsystemforschungcksichtigt. Ublicherweise wird
bei der Analyse von verteilten Algorithmen die vereinfaatie Annahme getroffen, dass Re-
chenschritte in Nullzeit durchgefiihrt werden. Unser Mbthakiert auf den bisher gangigen
Modellierungstechniken verteilter System, lasst jedanhUnterschied dazu die Nullzeitan-
nahme fallen. Diese Vorgehensweise erlaubt groltmdoghetederverwendbarkeit existie-
render Ergebnisse, eroffnet jedoch auch die bisher vaeyrssbhe Moglichkeit, Scheduling-
Analysen durchzufihren. Mit Hilfe der in dieser Arbeit vesjellten Transformationsalgo-
rithmen untersuchen wir die Beziehung zwischen dem klelssis synchronen Systemmodell
und unserem Echtzeitmodell: Wir zeigen, wie Algorithmemanem in das andere Modell
Ubergefuhrt werden kdnnen und welche Eigenschaften e@uerputersysteme durch die
Nullzeitannahme bisher nur verfalscht wahrgenommen wurde

Um diesen Unterschied anhand eines konkreten Beispiel®mowuistrieren, untersuchen
wir das Problem der deterministischen Uhrensynchromigatin fehlerfreien Systemen mit
perfekter Ganggenauigkeit und zeigen, dass — in unseremzéirthodell — kein Algorithmus
existieren kann, der optimale Synchronisationsgenaitikékonstanter Laufzeit sicherstellt.
Da jedoch ein solcher Algorithmus im klassischen Systemathdkannt ist, haben wir hier
ein Beispiel, bei dem die klassische Analyse zu optimisgsErgebnisse liefert. Wir zeigen,
dass das Erreichen optimaler Synchronisationsgenatigikein Zeitaufwand vof(n) erfor-
dert und présentieren einen dazu passeriden-Algorithmus.

Allgemein gilt, dass bei diesem Synchronisationsprobléen/fshzahl der Nachrichten, die
von einem Algorithmus bendétigt werden, in Abhéngigkeit vdgr Synchronisationsgenau-
igkeit steht. Dieses Ergebnis fuhrt uns einerseits zu den@wahnten Schranke vé(n)
fir optimale Genauigkeit, erlaubt jedoch auch Aussagem dbe nicht-optimalen Fall: Es
Zeigt sich, dass nicht-optimale Synchronisationsgekaitiquch von einem Algorithmus mit
konstanter Laufzeit erreicht werden kann, allerdings namrg wenn das darunterliegende
Netzwerksystem Broadcasts in konstanter Zeit erlaubt.

Auch die Synchronisation von Uhren mit Gangabweichung wirdieser Arbeit unter dem
Echtzeitaspekt behandelt. Konkret untersuchen wir daproeiem, den aktuellen Wert ei-
ner auf einem anderen Computersystem befindlichen Uhr saugeie moglich zu schatzen,
prasentieren einen Algorithmus, der dieses Problem |@st, heweisen, dass keine bessere
Schatzgenauigkeit erzielt werden kann. AbschlieRendereiwgir, wie diese Schatzmethode
mit einer optimalen Konvergenzfunktion in einem hochpséni fehlertoleranten Uhrensyn-
chronisationsalgorithmus kombiniert werden kann.






Abstract

This work introduces a fault-tolerant real-time distriedtcomputing model for message-
passing systems, which reconciles the distributed comgwnd the real-time systems per-
spective: By just replacing instantaneous computing stéffscomputing steps of non-zero

duration, we obtain a model that both facilitates real-tsnbedulability analysis and retains
compatibility with classic distributed computing analyséchniques and results. We provide
general simulations and validity conditions for transfoerghalgorithms from the classic syn-

chronous model to our real-time model and vice versa, aresiiyate whether/which proper-

ties of real systems are inaccurately or even wrongly cagtwhen resorting to zero step-time
models.

We revisit the well-studied problem of deterministic driftind failure-free internal clock
synchronization for this purpose, and show that no cloclckganization algorithm with con-
stant running time can achieve optimal precision in our-teaé model. Since such an al-
gorithm is known for the classic model, this is an instanca gfoblem where the standard
distributed computing analysis gives too optimistic resule prove that optimal precision
is only achievable with algorithms that tak&n) time in our model, and present a matching
O(n) algorithm.

As a more general result, we provide a lower bound on the nuwfheaessages required to
obtain a certain clock synchronization precision. In theecaf optimal precision, this leads
to the aforementioned bound ©X(n). With respect to non-optimal precision equal to the
message delay uncertainty, our result implies that cohsitae complexity is possible if, and
only if, the system allows for constant-time broadcasts.

As a first step towards worst-case optimal deterministickckynchronization with drifting
clocks in real-time systems, which is an open problem everaissic distributed computing,
we define and prove correct an optimal remote clock estimadilgorithm, which is a piv-
otal function in both external and internal clock syncheation, and determine a matching
lower bound for the achievable maximum clock reading eridoreover, we show how to
combine our clock estimation method with an optimal congamg function, resulting in a
high-precision fault-tolerant clock synchronization @ighm.

This work has been supported by the Austrian Science Foiamd@WF) under grants P17757 and P20529.
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1. Introduction

The first part of this thesis, starting with Chapter 2, wikpent a novel framework for model-
ing executions of algorithms in distributed real-time gyss§. In the second part, starting with
Chapter 7, the usefulness of this model is demonstrated plyiag it to some well-known
clock synchronization problems and comparing the restittstivose obtained by classic mod-
eling techniques. Hence, some knowledge in the areas aibdigtd computing, real-time
systems and clock synchronization is vital to the undedstanof this thesis.

This introductory chapter shall familiarize the readerhithie required basics of these lines
of research, outlines the structure and the results of ki@sis and compares them to similar
approaches in dedicatedlated worksections.

1.1. Computing Models

A distributed systengonsists of a set of individuglrocessorsapable of exchanging infor-
mation. Thedistributed computindine of research is concerned with the study of algorithms
solving a giverproblemin such a distributed system, preferably in an efficient neann

Distributed State Machines

Obviously, lots of abstraction and simplification are neeeg to reduce an arrangement of
CPUs, network controllers and transmission media to a madltieal model that allows to
reason about generic results in distributed computing.

ProcessorgCPUs, or computers in general) are representestdig machinesGiven a set
of variable names (e.dparticipants, free_places}), astatecan be seen as values assigned
to these variables; for examplgparticipants = {PeterMartin}, free_places = 3} would
be a valid state. The processor can perfatate transitionsi.e., it changes from one state
to another. In general, the processor cannot make arbistatg transitions, but rather runs
some kind ofalgorithm The algorithm specifies the initial state (e.§participants =
{}, free_places = 5}) and thestate-transition functionwhich can be seen as a set of rules
describing which state transitions are allowed, formalias a function mapping a state and,
possibly, some kind oifhput, to a new state and, possibly, also to some kindutbut For
example, a state transition function representing the code

upon receiving "subscribename™:
if free_places > 0 andname ¢ participants:
free_places— free_places — 1
participants—participants U {name}
send " subscription confirmed"
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would map {participants = {Daniel}, free_places = 4}, “subscribe Josef”) to the new
state{participants = {Daniel Jose}, free_places = 3} and to the output “subscription
confirmed”.

A distributed systengonsists of a set of such processors and some means of cooamuni
tion. Thus, the distributed system also specifies how pemegeceive their input and what
happens to their output. Common examples include

e a message bugOnce a processor outputs some message, all other progesseive
this message as input some time later.

e shared memory All processors can read and modify a common pool of register
changes by one processor can be seen by all other procassoesliately.

e point-to-point communicatiorSome processors are connected through communication
links. The output of the transition function consists of sages sent over specific links,
e.g., “send message A to procesg@nd message B to processgor

In this thesis, we will restrict our attention to messagsdubpoint-to-point communication in
fully-connected networkdg-ully-connectedneans that every processor can send a message to
every other processor.

An executionor run of an algorithm in such a distributed system can be visudla® a
space-time diagramsuch as the ones found in Figures 1.1 and 1.2. A horizomtalrgpre-
sents a processor and arrows symbolize messages beingnset¢lavered. With respect to
state transitions (also known aemputing steps “ticks” stand for atomic, immediate state
transitions at this exact time, whereas boxes (e.g. in FR(c)) more generally specify that
some code is being executed, with the exact times of statsiti@ns unknown. Note that
messages are always sent during a computing step.

When processors deviate from their specified behavior, #reyconsideredaulty. The
following list contains a few well-known examples of waysahich a processor can fail:

e Clean crash A processor eventually stops working, i.e., after somepivi time, no
more computing steps occur on this processor.

e Unclean crash A processor crashes in the middle of a computing step,atespme
point in time, the processor executepat of a computing step and then stops working
completely. This case is more difficult to tolerate, sinca@pssor might only send a
subset of its outgoing messages while crashing—contrdtyetalean crash case, where
a computing step is either completed in full or does not oedtail.

e Byzantineor arbitrary faults: A Byzantine faulty processor can behave arbityaits
computing steps do not have to conform to the algorithmtegtansition function. For
example, it can send out messages with arbitrary, mislgadiormation, manipulate
messages while forwarding them or just stop working likeha trash failure case.
This failure model applies to “broken” processors sendingrmnsensical data as well
as to malicious processors deliberately trying to previeatdistributed algorithm from
reaching its goal.
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MM: TTTT
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(a) Lock-step Rounds (b) Asynchronous

Figure 1.1.: Lock-step Synchronous and Asynchronous Model

A fault-tolerant algorithmis an algorithm which solves a given problem despite a aertai
number of processors being faulty.

Classic Distributed Computing Models

Since the algorithm specifies the state transitions thegssmr may carry out, the question
remains as tevhenthese transitions are performed. Together with timing lisupn message
transmission, the answer to this question determinesyhehronyof the computing model.
To understand the wide variety of models available, let wk lat the two extreme cases
[Lyn96, AWO04]:

e The synchronous lock-step modgtigure 1.1(a)) splits the execution intounds In
every round, (1) one message can be sent from every proc@sewery neighbor, (2)
all these messages arrive, and (3) each processor makete aratssition using the
received messages as input. Note that, in the figure, the samuting step performs
the state transition for rounklas well as the message sending for roghd- 1).

e Atthe other end of the spectrum, there is #&ynchronous modéFigure 1.1(b)), which
does not bound (neither relative nor absolute) procesgiegds or message transmis-
sion times in any way. The only restriction is that every naggeseventually gets deliv-
ered and every processor takes an infinite number of compstaps.

Both models have their advantages and their drawbacks: tidregsassumptions of the syn-
chronous lock-step model make it easy to design algorithfhg: developer can be sure that
during some processor’s routkccomputing step, all other processors have already perfibrme
their round(k — 1) steps and all roun¢k — 1) messages have already arrived. However, there
are lots of real-world systems where these assumptionsdjustot hold. The assumptions
of the asynchronous system, on the other hand, are so weiathélyaare easily satisfied by
real-world computer systems. At the downside, many wedivikim problems are very hard or
even impossible to solve in the asynchronous model [FLP85].

There is a wide range g@fartially synchronousnodels, which attempt to find a compromise
between these two extreme cases: They bound, for exampleglttive processing speeds of
processors (that is, between two computing steps of onegsoc, another processor may not
perform more than: computing steps) or the message transmission delay (thad imessage
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transmission may take less thamr more thare time units). A few examples from literature
will be outlined in therelated worksection below.

However, these models still suffer from one common probletnich we will illustrate by
comparing a real-world execution with its simplified reetation in one of the “classic” dis-
tributed computing models. Figure 1.2(a) gives an (alreamhsiderably simplified) glimpse
of what happens in a real-world system. Consider the secasbage arriving at processor
p. This message triggers the scheduler, requiring some CRthesad (= the gray box) for
switching to the correct task responsible for processimag tiiessage. This task starts a job (=
the white box), which performs some computations and eadigtaends out a few messages
via some communication medium. This sending causes somi meckss control overhead
(= themac box), which might very well occur in parallel to the CPU, if MAis performed by
a separate network controller. The first message sent byahdt m3) eventually arrives at
processoyg, which is currently busy with processing;; thus,ms is enqueued (= the coiled
arrow) until the scheduler of decides that the CPU is ready to process it.

Figure 1.2(b) shows the same situation, usingriessage-driven synchronous (non-lock-
step) system modeThe execution of the distributed algorithm is represetutgd sequence of
atomic computing steps that are triggered by an incomingsaggsand executed in zero time.
All timing-related factors that occur in the real-world 3%, such as scheduling overhead,
processing time, queuing time or network delays are endatesliin theend-to-end delgy
i.e., in the time between the zero-time action sending a agesand the one receiving it. With
respect to timing assumptions, the synchronous model asstimat these end-to-end delays
are bounded: There is a constant lower boufid) @s well as a constant upper bound ).

With this assumption, it does not make a difference, for gdamwhether messages ar-
rive at a processor simultaneously or nicely staggeredne:tithe messages are processed
instantaneously when they arrive. The zero step-time attgin is, hence, very convenient
for analysis, and a wealth of distributed algorithms, ingdoitity results and lower bounds
have been developed for models that employ this assumptyo®6].

Scheduling Theory

In real systems, however, computing steps are neitherritasstaous nor arbitrarily preempt-
able: A computing step triggered by a message arriving imtiulle of the execution of some
other computing step is usually delayed until the currembatation is finished. This results
in queuing phenomenons, which depend not only on the acteabage arrival pattern but
also on the queuing/scheduling discipline employed.

Traditionally, such problems are the central topic of a safedline of research, devoted to
real-time systems [But97]. Letjab be defined as a small unit of work to be performed by a
CPU, characterized by (at least)

e anarrival time, the time by which this job is ready for execution,

e acomputation timgalso known asvorst-case execution tirjiehe time span required
to execute this job on the CPU, and

¢ adeadline the latest time by which this job must have finished.
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(a) “Real” event-driven execution
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Figure 1.2.: Modeling distributed system executions
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The goal ofuniprocessor real-time schedulingto create &chedulewhich assigns these jobs
to a processor in a way such that all jobs meet their deadlir@sexample, consider the job
set{(A:1,3,7);(B : 2,2,5)}, with the numbers denoting the arrival time, the computatio
time and the deadline, respectively. Figure 1.3 shows (apailble schedule, in which both
jobs meet their deadlines, and (b) an infeasible schedul@hich job B misses its deadline.

If the jobs cannot be interrupted, it is plain to see that ¢ahe only solution. Otherwise, if

preemptionis permitted, other assignments, such as (c), are posdilibee advanced exam-

ples includegprecedence relatiorsmong jobs, e.g., some jecbmust be (completely) executed
before jobB may start, orshared resources.g.,A and B may require exclusive access to
the same resource, possibly causing schedules such asdha &igure 1.3(c) to become

infeasible.

| | B lAl | | lAl B | | | A B A | |
I I 1 T 1 T T 1 I I 1 T T 1 T 1 I I I 1 1 T 1 T 1 I I
0O 1 2 3 4 5 6 7 8 0O 1 2 3 4 5 6 7 8 0O 1 2 3 4 5 6 7 8
(a) Feasible schedule (b) Infeasible schedule (c) Feasible preemptive schedule

Figure 1.3.: Real-time schedules

Usually, jobs are not declared individually but rather suaniaed intotasks A task consists
of an infinite sequence of jobs, all having the same exectitioe and relative deadline (= the
time span between (absolute) arrival and (absolute) degdliThe arrival time of the jobs
is specified by tharrival pattern of the task: The jobs of periodic task arrive at regular,
constant intervalssporadictasks release their jobs irregularly, but with some minintinre
(sporadicity interval in between job arrivals; andperiodictasks do not specify any arrival
restriction.

Determining whether a feasible schedule exists or not casupgrisingly difficult: For
example, the gener&asibility analysigroblem is NP-hard, even in the case of only periodic
task sets (with arbitrary deadlines) [BHR90]. Thus, margigsis techniques are pessimistic
(sufficient but not necessary) and/or only apply to specakes (such as relative deadlines
being equal to the period) [SA204]. Worst-case response time analyisia generalization of
feasibility analysis: Rather than finding out whether atiganeet the a-priori given deadline,
the worst-case difference between the arrival of some quaati job and its completion is
determined.

Multiprocessor real-time schedulinig a natural generalization: Instead of only one CPU,
jobs can be scheduled to multiple processing units in paralAlthough multiprocessor
scheduling is not yet as well understood as the uniprocessar, a lot of results and heuristics
do exist (again, cf. [SAA04] for an overview).

Unfortunately, real-time scheduling in loosely-couplésitiibuted systems, i.e., scheduling
involving multiple processors connected through a netwbas only been addressed for very
restricted types of problems: Informally speaking, thecaapt of tasks with a-priori known
arrival patterns has been extendedhtformation flowsstarting at some processor (again, with
some known arrival pattern) and then traveling through thevork in a linear fashion. For
example, some external signal could arrive at procegsoausing a job to be executed, then
travel to processog over a communication link, again causing a job executiow, famally
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arriving at processor, initiating the last job. Holistic scheduling TC94] or thetrajectory
approach[MMGO04] allow to determine the overall worst-case respotise of such a flow.
Nevertheless, many problems in distributed computing daerbibit such a linear flow of
information, starting with some sensor and ending in sontgador or data aggregation node.
In particular, fault-tolerance often requires a set of “@gyrocessors exchanging messages
on a regular basiggundg—well-known examples are distributed agreement prob)esuash
as Byzantine consensus or non-blocking atomic commitnagnt,synchronization problems,
such as tick synchronization or clock synchronization. Hese cases, the arrival patterns of
messages might not be known in advance; often, there is evaowar dependency: The
arrival pattern of some round messages determines the queuing delays, which in turn in-
fluence the time at which roun@: + 1) messages are sent, and thus, the arrival pattern of
these messages. Although the approaches mentioned algoageomising start for extend-
ing schedulability analysis to loosely-coupled distrdmlisystems, so far, no suitable generic
modeling framework for analyzing queuing effects of diatted algorithms exists.

Related Work

We are not aware of much existing work in the distributed cotimg area of research that also
addresses real-time aspects. Somewhat an exception iotkdwNeiger & Toueg [NT93],
which identifies general problems and conditions that puesthe correctness of a solution
based on perfectly synchronized clocks when logical claresused instead. The underly-
ing model assumes non-zero step times, but considers thificienily small to completely
ignore queuing effects. Moreover, in contrast to our wohleytrestrict their attention only to
problems whose specification can be written in a way whictsdud refer to real time. An-
other example of a non-zero step time model is the remote meraterence (RMR) model
for shared-memory systems [AY96, AKHO3] by Anderson et.lessumes computing step
times which depend on the number of conflicting shared meraorgsses. The RMR model
has been used for deriving several algorithms, e.g. for atuxclusion, and related lower
bounds. Since it is not applicable to message-passingnsgsteowever, our results are not
comparable.

Another branch of research where distributed computingraatitime systems issues are
combined are modeling frameworks [AD94, LV95, LV96, MMTRBGSAL98, KLSV03].
Such frameworks allow formal modeling and analysis of camplistributed real-time sys-
tems. A representative example are Timed I/O Automata (NI@PASVO03], which can
change state both via ordinary discrete transitions anccetdginuous trajectories. TIOAs
facilitate hierarchical composition, abstraction, andqfs of safety and liveness properties.
However, none of the above modeling frameworks supportszeon step times and thus real-
time schedulability analysis of distributed algorithmsg @ntrast, our work addresses exactly
this issue.

Apart from those lines of research, we are not aware of tooynstributed computing
papers that incorporate real-time scheduling issues:atrglHLLO02], for example, Hermant
and Le Lann demonstrate the power of such an integrated agpiuy introducing fast failure
detectors, which facilitate very fast detection times dngstquickly terminating asynchronous
consensus algorithms.
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Turning our attention to distributed system models, theaiglr synchronous DLS model
[DDS87, DLS88] extends the asynchronous model by addingyaalate upper boundk on
message transmission delays and an upper bduad the relative computing speed of any
two processors. Formally, it is assumed that every procdakes at least one and at mdst
computing steps during any real-time interval of duratimmote that the unit of real-time is
actually the computing step time of the fastest processthreisystem here. A send step sends
one message to one recipient, a receive step makes somegewts arrived so far available
to the processor. A single computing step can be either astepdor a receive step, but not
both. Hence, receiving a message and sending a responsepsessible in zero time here.
Additionally, sender queuing (but not receiver queuingh&eled explicitly by allowing only
one message per send step.

The semi-synchronous model [ADLS94, Mav92, PS92] uses #asiapproach; however,
there is no need for separate send and receive steps, andtiogrgieps can send out multiple
messages at once. [ADLS94] does not normalize the real tinitg to the speed of the fastest
processor, i.e., the real time between two consecutives gibpne processor is within some
fixed intervallcy, co]. [Mav92] assumes that = 1, i.e., the slowest processor determines the
time base.

Both the DLS model and the semi-synchronous model convéiyiabstract away queuing
effects at the receiving processor, since a single receieatdDLS model) or a single com-
puting step (semi-synchronous model) can process all messaceived so far. As Chapter 7
of this thesis will show, this issue can make an importarfedifhce. Moreover, both models
lack a lower bound on the message transmission delay. Inathiext of clock synchroniza-
tion, this is an important difference to our model: In theeca$ drifting clocks, not only the
message delay uncertainty but also the absolute bounds ssagetransmissions affect the
achievable precision (cf. Chapter 8).

The partially synchronous Theta model [LLS03, WLLS05, H\&P&s well as the Asyn-
chronous Bounded-Cycle model (ABC model) [RS08] are mastichere, since they provide
an additional motivation for our line of research. Both migdere based on the assumption
that, due to the dynamic nature of distributed algorithmd e corresponding queuing ef-
fects, it is not feasible to assume fixed a-priori bounds enehd-to-end delay of messages.
They retain the zero step-time assumption but baatids, either on the end-to-end delay of
messages simultaneously in transit (Theta model) or ondh#er of forward and backward
edges in certain message chain cycles (ABC model). Clesulsh assumptions only hold
if there is a strong relationship between the queuing delayifferent parts of the system,
either at the same physical instant of time (in case of thaaltredel) or within a “causally
related” region of the space-time diagram (in case of the Amdtlel). Due to lack of appro-
priate analysis techniques, the claim that this relatignkblds in real systems has only been
verified experimentally [AIbO5]. We believe that the remhé¢ distributed computing model
presented in this thesis is a mandatory prerequisite forastieynpt to verify this assumption
analytically.

There are also a few approaches in the real-time systems aaitynthat aim at an in-
tegrated schedulability analysis in distributed syste@se notable example combining lo-
cal processor scheduling with network communication issigénolistic scheduling intro-
duced in [TC94]: Assuming synchronized clocks, end-to-dathy bounds of “information
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flows” across a shared network bus can be derived by meanswifreace relations based
on the (a-priori known) bounds on the worst-case frequericglidasks and messages. In
[PGGGGH98], this work is extended by adding a best-caseysisaimproving the accuracy
of the estimated jitter. However, contrary to the modeliaguirements of many distributed
algorithms, they assume a strictly linear sequence of a&tin the system, i.e., within one
flow, every computing action on a processor sends a messagientost one other destina-
tion processor. Thiajectory approacHMMGO04] provides bounds on the end-to-end delays
which are less pessimistic; however, they also model a floavfa®d, linear path through the
network.

The Gap

This brief overview demonstrates that the distributed cotimg view on system models on
one hand and the scheduling results obtained by the real¢ommunity on the other hand
operate at entirely different levels of abstraction andadalifferent problems: Whereas the
former is concerned with the correctness of algorithmsallgexpressed by some predicate
on the internal state of the processors involved, the latenly interested in the ability of an

algorithm to meet some a-priori defined deadlines.

However, as we show in the second part of this thesis by meathe @lock synchroniza-
tion problem, queuing issuasn berelevant for the correctness of an algorithm and/or the
tightness of a lower bound. Bridging this gap and analyzhegse effects requires a model
which,

e on the one hand, is “compatible” with the classic distributemputing models, such
that the wealth of existing results can be reused, but,

e on the other hand, explicitly models queuing effects, thglowing us to incorporate
real-time scheduling issues and to perform a worst-cag®mnse time analysis.

Consequently, the first part of this thesis introduces atigad distributed computing model
for message-passing systems, which reconciles the ditstdbcomputing and the real-time
systems perspective: By just replacing the zero step-tgaeraption with non-zero step times,
we obtain a real-time distributed computing model that dadm@al-time analysis without in-
validating standard distributed computing analysis tépies and results.

Consider the example in Figure 1.2(c): Introducing the pssing delay as an additional
system parameter allows us to split the end-to-end delay int

e the message delay (= the arrow),

e the queuing delay (= the distance between the arrow headhanstart of the corre-
sponding box), and

e the processing delay (= the box).

This model hence enables us to demonstrate the impact ofrguefiects on distributed al-
gorithms (in particular, on clock synchronization), whikkeeping most of the mathematical
simplicity of the classic distributed computing abstraot{Figure 1.2(b)).
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Thus, in the resulting real-time computing model, a systamie specified by bounding the
message and the processing delay; the queuing delay, hpugevet a system parameter here
but rather depends dynamically on the message pattern @lglogithm and thescheduling
policy, i.e., on the order, in which queued messages are processddct, this is a major
advantage of our approach: In the classic computing modehparing algorithms running
in “the same system”, i.e., with the same bounds on the ematdiodelay, can be misleading,
since it ignores the fact that the message pattern of theitgoitself influences the queuing
delays, and, thus, the end-to-end delays.

1.2. Clock Synchronization

Apart from making distributed algorithms amenable to ke analysis, our model also
allows us to address the interesting question whetherlwioperties of real systems are in-
accurately or even wrongly captured when resorting to alassro step-time models. In the
second part of this thesis, we revisit the well-studied fobof deterministic clock synchro-
nization for this purpose.

The termclock synchronizatiorspans a wide range of distributed computing challenges.
All of these try tosynchronizeactions on processors in a distributed systems, since added
synchrony allows a lot of distributed computing problemsbtsolved in a much simpler
way. Clock synchronization does not necessarily requiat ¢cks: For example, Lamport
clocks [Lam78] or vector clocks [Fid88, Mat88] use integatues, messages tagged with
these values and a simple maximum function to obtain an inglef events in an execution,
which is applicable even in completely asynchronous systeththere is some degree of
synchrony already present in the system, more sophisti¢etie synchronizatioralgorithms
[ST87, Mav92] can be used, which cause the processors inréodisd system to increment
their counter variables “as simultaneously as possible”.

In this thesis, however, we are mainly interested in “cla’ssiock synchronization, in sys-
tems where the processors are equipped with local, possitpgrfecthardware clocks. Im-
perfect clocks exhibit some kind afrift, meaning that they do not run at the same rate as
real time but rather a bit slower or a bit faster. The goal iadgust the local clock values of
different processors to satisfy some clock synchronipationdition. In particulargxternal
clock synchronizatiofis concerned with minimizing the difference between theusidid local
clocks and some external reference clock such as GPS tira# patints in time. In contrast,
internal clock synchronizatiodoes not assume access to an external time source but rather
aims at minimizing the difference between the adjusted!Ilclcgks of any pair of processors
(for all possible pairs, at all points in real time)These adjusted clocks must satisfy some
progresscondition, usually requiring the clocks to stay within agiar envelope of real time.

170 ease presentation, we will use the well-established peetisionfor this difference, although we are aware
that “imprecision” would be more appropriate, technicallynus, we will try to avoid misleading phrases such
as “high precision” (usually referring to a small differe)and “low precision” (usually referring to a large
difference) in the formal parts of this work and use unambiguterminology instead.

2Interestingly, only requiring the adjusted clocks to irmse without bound is not sufficient, since it allows for
impractical solutions such as logarithmically increasitacks (Theorem 1 of [DHS86])).
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Like many other works in this area of research, much of theésithbuilds on the foundations
laid by Lundelius and Lynch [LL84b]. They established a tipbund of (1 — %)g on the
achievable clock synchronization precision in a drift- #adlt-free scenario, witlh denoting
the end-to-end delay uncertainty (i.e., the differencavbenh maximum and minimum end-
to-end delay) and the number of processors. Their work, which assumes a @dhnected
network in which every processor can directly communicaith @wvery other processor, was
later generalized to arbitrary networks [HMM85], with [BW|providing closed-form upper
and lower bounds for some specific topologies. In ChaptereAyi examine the problem of
drift- and fault-free internal clock synchronization in @lf-connected network in our real-
time distributed computing model.

With respect to fault-tolerance, it should be noted thagrmal clock synchronization is
unsolvable if at least one third of the processors is Bymanfaulty [DHS86]; recall that a
Byzantine faulty processor can behave arbitrarily, inipatar, it may lie about its current
clock value. In general, optimal-precision clock synclization with drifting clocks is an
open problem even in classic distributed computing: Opgtireaults are only available in
case of a-priori given message patterns (“passive” clockponization) [PSR94, OPS99];
unfortunately, optimal message patterns and hence optiagsive” clock synchronization
algorithms cannot be inferred from this research.

Interestingly, existing drift- and fault-tolerant intexirclock synchronization algorithms can
be reviewed in terms of a generic structure [Sch86]: Petalt, the algorithm detects the
need for resynchronization. Then, information is gatherledut the clock values of the other
processors, usually by exchanging messages. After thishdet been collected, a new local
clock value is calculated based on soomvergence functionTo our surprise, the second
step—a problem known aemote clock estimatierhad not been solved optimally yet. In
Chapter 8, we present a tight bound on the achievable estimatror, again using our real-
time computing model.

For calculating a new clock value based on the remote clotifhasons, an optimal con-
vergence function usinfault-tolerant averaginghas been presented by Fetzer and Christian
[FC95a, FC95b]. In a fully-connected system wittprocessors,f/ of which can be faulty,
the main idea of fault-tolerant averaging is, for each pssoep, to take alln clock readings
(as estimated by), discard thef largest and thgf smallest values, and then calculate the
arithmetic mean of the remaining interval [WL88]. THhéferential fault-tolerant midpoint
function of [FC95b] extends this approach by slightly modifying thigerval and bounding
the maximum correction value, resulting in an optimal cageece function. Chapter 9 of
this thesis provides a sample implementation that comhimeis convergence function with
our clock reading method in one algorithm.

Related Work

Lots of results already exist for external as well as inteaoback synchronization in classic
distributed computing models. A comprehensive summaryldvga far beyond the scope of
this work; [SLWL90] provides an exhaustive overview of famdental results in this area of
research, whereas [AP98] classifies existing clock symihation algorithms according to
their internal structure. A special issue of the Real-Tinyst&ms journal assembles results

11
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with a focus on global time in large scale distributed réalet systems [Sch97]. Many recent
discoveries can be found in the area of clock synchronigaitiowireless sensor networks
[SBKOS5].

The main results of the second part of this thesis are lowdrugpper bounds on clock
synchronization (or subproblems thereof) while consiugrine need to schedule message
processing steps. Actually, this is a known problem: In [\8],&or example, Welch and
Lynch mention that implementing their clock synchroniaatalgorithm in a real-world setting
required staggering the broadcast of messages (which vatlédwise be sent almost at the
same time), to avoid the situation that too many messagae aimultaneously at the same
processor. Still, this topic has not received much atteniiditerature. In fact, we are aware
of only two papers that consider deterministic clock syndiiration in connection with real-
time scheduling:

e Basu and Punnekkat [BPO3] propose simple variants of Stik&nToueg's tick syn-
chronization algorithm [ST87]. Their algorithms stop tleedl clock while the resyn-
chronization is in progress, thereby avoiding the problémas usually occur when the
clocks being synchronized are also used to schedule tadieaiily loaded real-time
systems.

e Mavronicolas [Mav92] provides a lower bound for the premisachievable in a “single-
shot” version of tick synchronization in the semi-synctoos model. This model dif-
fers in various significant ways from the one used in thisithé€Somputing step dura-
tion and clock drift are directly related, the lower boundtbe message transmission
delay is always zero, and, like in the partially synchronmadel of [DLS88], a single
computing step can process multiple incoming messages.utised in the previous
section, this last point conveniently abstracts away qugeigsues; however, as Chap-
ter 7 of this thesis will show, this issue can make an imparthiference. Thus, our
results are not directly comparable.

To the best of our knowledge, other papers dealing with ckyeichronization in real-time
systems do not incorporate queuing issues at all [MFNTCO8§ume a-priori given bounds
on the receiver queue length [VRC97], circumvent this peablby delegating the task of
timestamping or processing messages to special-purpastele! hardware [KO87, SL96,
SR87], or restrict the precision analysis to empirical eatibns [ZSSZ08].

The subproblem of remote clock estimation is handled/aeal\sub-optimally or abstracted
away entirely in the wealth of existing research on clockcéyanization: Most papers employ
trivial clock estimation algorithms only, based on a oneswa round-trip time-transfer via
messages [EK73], and provide a fairly coarse analysis #iatgst) incorporates clock drift
[Cri89] and clock granularity [SS97]. Alternatively, as JrRC95a, FC95b], remote clock
estimation is considered an implementation issue andnastrporated via the a-priori given
maximum clock reading error. Hence, to the best of our kndgée optimal deterministic
clock estimation has not been addressed in the existingtiites.

Since we are aiming at deterministic algorithms here, weat@onsider probabilistic clock
synchronization [Cri89, Arv94], statistically optimaltasations [EK73, MST99] and similar
topics. Likewise, gradient clock synchronization [FLO4W08], which analyzes the effect

12
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of the network graph diameter on the synchronization pigcibetween neighboring nodes,
is out of the scope of our work.

Clock Synchronization in the Real-Time Distributed Comput ing Model

As it turns out, clock synchronization is a particularly table choice for analysis under
our real-time distributed computing model, since the ackie synchronization precision
is known to depend on the end-to-end delay uncertainty.eSioa-zero computing step times
are likely to affect end-to-end delays, one may expect thatesresults obtained under the
classic model do not hold under the real-time model—if theresuch effects at all.

Our analysis confirms that this is indeed the case: We showettem in the drift-free case
no clock synchronization algorithm with constant runniimget can achieve optimal precision
in our real-time model. Since such an algorithm has beemdiwethe classic model [LL84b],
this is an instance of a problem where the standard distibabmputing analysis gives too
optimistic results. Actually, we show that optimal preoisis only achievable with algorithms
that take(2(n) time, even if they are provided with a constant-time broatipamitive.

Obviously, clock synchronization in the drift-free caseai®ne-shot problem: After the
clocks have been synchronized to a certain precision, ttagysynchronized forever. Thus,
time complexity does not really matter. However, since klddft is practically unavoidable,
the situation changes when generalizing these algoritbmsal systems. In the extreme case
of clocks with very high drift rates, a sub-optimal algorittwith low time complexity might
perform better than a drift-free-optimal algorithm withghitime complexity, since the former
algorithm can be executed more frequently.

Contrary to the drift-free case, we do not solve the probldéimternal clock synchroniza-
tion with drifting clocks in real-time systems conclusiyéh this work—recall that this is even
an open problem in the (probably easier) case of classicstepstime distributed computing
models. However, as a first step towards this goal, we exathaédeceptively simple) sub-
problem ofremote clock estimatioim the real-time computing model. Our results, consisting
of an algorithm and a matching lower bound, precisely qfattie effect of system parame-
ters such as clock drift, message delay uncertainty anddstiggtion on optimal remote clock
estimation.

Based on the classic round-based resynchronization s¢lvameee processors with drifting
clocks initiate a clock synchronization protocol every dirtheir clocks reach a multiple of
some predefined time span, denoted r®ynchronization periqdwe combine our remote
clock reading method with the optimal convergence functibfiFC95b] and determine an
upper bound on the precision achievable with this algorithm

1.3. Roadmap

This section explains the structure of this thesis and giMesef overview of each chaptér.

SPreliminary versions of this work have been published in (8], [MS06b], [MS08] and [Mos09].

13
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Computing Models

In Chapter 2, we formalize theassic computing modéi\1), based on the well-known syn-
chronous non-lock-step computing model for messageimgssistems (both point-to-point
and broadcast-based).

In Chapter 3, we define oueal-time computing modé€IM), which differs from M by just
providing atomic computing steps of non-zero duration. €amuences of this change, such
as the need for scheduling, queuing and admission conteotiscussed.

In Chapter 4, we introduce the conceptfaflure models This ensures a strict separation
between (a) generic validity conditions that every instan€ M or M has to satisfy, and
(b) specific failure models, which determine to what extémt $ystem has to adhere to its
specification.

In Chapter 5, we discuss the challenges of designing a famotation fordistributed comput-
ing problemsand present, as a solution, a framework for explicitly modgétate transitions
in the real-time computing model.

In Chapter 6, we analyze the relationship between the clasxi the real-time computing
model by providingtransformationsin both directions: We show that a system adhering to
some particular instance g# can simulate a system that adheres to some particular ggstan
of M (and vice versa). Consequently, certain distributed @lgmis designed for a classic
computing model can be run under the real-time computingahdor example.

Clock Synchronization

In Chapter 7, we revisileterministic internal clock synchronizati@m synchronous systems,
in the absence of failures and clock drift. It is known that ktcal clocks of: fully-connected
processors cannot be synchronized with precision less(thanl /n)e when using messages
with end-to-end delay uncertainty A constant time algorithm achieving this bound in the
classic computing model also exists [LL84b].

We show that this is not true in the real-time computing modetimal precision is only
achievable with algorithms that tak&n) time. On the other hand, achieving a sub-optimal
precision ofO(g) is achievable in constant time, if, and only if, a constamiet broadcast
primitive is available.

In Chapter 8, we provide an optimal solution for the probldraw to continuously estimate a
source processor’s clock in the case of drifting clocks. fi@mote clock estimatioalgorithm
is complemented by a matching lower bound on the achievahiémum clock reading error.

In Chapter 9, we give examples of how to apply this remotekcteading technique in external
as well as fault-tolerant internal clock synchronization.

In Chapter 10, we summarize our results and conclude withuloak on further work and
open issues.

14
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2. Classic Distributed Computing

In clock synchronization research [LL84a, BWO01, PSR94, AJRLL84b], system mod-
els are considered where the uncertainty comes from vanyiegsage delays, failures, and
drifting clocks. Denoted “Partially Synchronous Relidblereliable Models” in [SLWL90],
such models are nowadays called (non-lock-step) syncheonmdels in literature. In order
to solely investigate the effects of non-zero step-times,real-time computing model will
be based on the zero step-time synchronous model commaosdlyinslock synchronization
research, e.g., in [LL84b]. Here it will be referred to as dessic computing model

Note that the model described in this chaptemisssage-driveri.e., computing steps are
always triggered by messages [HWO05b, BWO06]. We do, howestin compatibility to time-
driven models through the concepttmher messagesvhich always arrive when the hardware
clock reaches a certain value.

2.1. Preliminaries

Let seq be a sequence whose elements are totally ordered by sontierrekf?. Within

this work, the notion otausal dependenayill be used for various elements (actions, jobs,
receive events, drop events, aj-events, st-events) of @wseguence. Every such element
has an associated procespooc(z). There can be two types of dependencies between these
elements (cfhappened beforeelation, [Lam78]).

e Message dependency éﬁ z'): One element: sends or inserts a message which is
received or processed hy. This is further formalized in the following sections.

1, seq
e Local dependencyz( —  z’): Both elements occur on the same processor and
. seq
appears before’ in the sequenceeq, formally: x L e proc(x) = proc(z') A
x <% g/,

Causal dependency: (—*¢ z') is defined as the transitive closure of both types of depen-
dency, i.e.,

seq

M L
Sy o —a VoS 2 v(@rt x5 At =),

xXr —

Definition 2.1. Some sequenceaptures message causalifythe ordering of its elements

(=%¢9) is consistent with the message dependency relation, fyrmér, 2’ € seq : @ M,
=z <% 1/,

Let seq’ be a reordering of some sequene®. seq’ is causally consistenith seq if the
order of causally dependent elements is maintained, foymel, 2’ € seq : z —% 2/ =
x <%ed o,
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Observation 2.2. If seq captures message causalibyq’ is a reordering ofseq and seq’ is
causally consistent witkeq, thenseq is also causally consistent witleq'.

2.2. System Model

We consider a network of processordI, which communicate by passing uniguaessages,
using either a unicast, multicast or broadcast primitivee Bystem-wide set of messages in
transit will be denotedniransit_msgs. Each processaop is equipped with a CPU, some
local memory, a hardware clock C),, and reliable, non-FIFO links to all other processors.
The hardware clockiC, : RT — RT maps dense real-timiéo dense clock-time; it can be
read but not changed by its processéfC), is hence not part of the local stateate,, but
considered separately.

The CPU is running aalgorithm A, which is specified as (a) a mapping from processor
indices to a set of initial states and (b) a transition funttiProcessags’s set ofinitial statesis
denoted/nit,(A). Thetransition functiontakes the processor indgxone incoming message
(taken from the currenintransit_msgs), receiver processqr's current local stateldstate
and hardware clock readind C,, as input, and yields a list of states ameéssages to be sent
e.g.[oldstate, msg, int.st.1, int.st.o, newstate], as output. The intermediate states.st.;
andint.st.o in our example, are usually neglected in the classic comgutiodel, as the state
transition fromoldstate to newstate is instantaneous anyway. We explicitly model these
states to retain compatibility with our real-time compagtimodel, where they will become
more important.

Formally, a notation such ad(m, oldstate, T') = [oldstate,...,newstate] will be used
to refer to the output of the transition function of algonth4 when a message: arrives on
a processor with statedstate at hardware clock tim&'. For ease of presentation, we will
omit the processor index since, in our model, it is implicitiontained in the message (cf.
Section 4.1).

Every message arrival (also called message reception)taineously causes the message
to be removed fromintransit_msgs and the receiver processor to change its state and send
out all messages according to the transition function (ljirapthose taintransit_msgs).
Such acomputing steffalso calledmessage processing s}epill be called anactionin the
following. The complete action (message arrival, proagessind sending messages) is per-
formed instantly, i.e., in zero time.

Actions can be triggered by three different types of messagedinary messages, timer
messages and input messadeslinary messageare transmitted over the links. Theessage
delays is the difference between the real-time of the action sentlie message and the real-
time of the action receiving the message. There is a lowendéu and an upper bound™
on the message delay of every ordinary message.

!Note that uniqueness is only required for analysis, cf. iSret.1.

2We assume that there is some dense Newtonian reference¢ifmeed to as real-time, which is of course only
available for analysis purposes.

35~ and$™ are called andv in [LL84b]. To disambiguate our notation, systems, paramsetlike message
delay bounds), and algorithms in the classic computing trer@erepresented by underlined variables (usually
5,807,807, A).
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Timer messageare used for modeling time(r)-driven execution in our mgesdriven set-
ting: Typical clock synchronization algorithms setup omenwre local timers in a computing
step, the expiration of which triggers the execution of Arottomputing step. A processor
setting a timer is modeled as sending a timer message (i) itsan action, and timer expira-
tion is represented by the reception of a timer message. tRatdimer messages do not need
to obey the message delay bounds, since they are receivadtivinéardware clock reaches
(or has already reached) the time specified in the timer rgessa

Input messagearrive from outside the system. These messages are exeonpttie re-
guirement of having been sent by some processor in the syateimeed not satisfy the delay
bounds. (As the send time is unknown, this could not be vdrdigyway.) Usually, the prob-
lem specification (see Section 5.2.4) will define restritdi@n input messages, e.g., which
types of input messages can arrive and their arrival pattern

Booting We assume that every procesgan the system is in some initial statetate, €
Init,(A) right from the system start, at real-timte= 0. Clearly, in our message-driven
setting, at least one input message is required to triggefitst action in an execution. For
simplicity, we assert that thedgorithmmay specify whether it requires only one such message
or one message for each processor. We will assume that hkkeéinit messagearrive within

a sufficiently short time interval, so that the initializati uncertainty does not significantly
affect the time complexity of our algorithms. On the othendhawe consider the initialization
uncertainty to be large enough to prohibit system-widdah#tynchronization.

2.3. Hardware Clocks

The hardware clock of any processostarts with some arbitrary initial valu& C,(0) and
then increases strictly, continuously and without boundep@&nding on the problem under
consideration, some additional restriction on the haréwaock is usually specified. For
example,

e in Section 6.3, we assume that the hardware clocks are abledsure some real-time
duration within a given intervdl.—, 1], i.e., we assume that there is some known value
i1, such that waiting fofi clock time units results in a real-time duration no shottemt
w1~ and no longer thap™;

e in Chapter 7, we study the problem of drift-free clock symstization and, thus, assume
that all clocks progress at the same rate as real time.

A common assumption, which we also use in Chapter 8, is thelt ebock HC), has a
bounded drift rate op,, i.e., ¢t real-time units correspond to at legdt— p,)t and at most
(1 + pp)t clock-time units. Formally, for alb, t > ¢ > 0:

(t=t)(1—pp) < HCy(t) — HCp(t) < (t — 1) (1 + pp)

With respect to the notation used in this work, when talkibhguw time units we mean
real-time units unless otherwise noted.
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2.4. Executions

An execution in the classic computing model is a sequencef actions and an associated
set ofn hardware clockd/ C** = {HC;*, HCg®, .. .}. An actionac occurring at real-time
at processop is a5-tuple, consisting of the processor inde»c(ac) = p, the received mes-
sagemsg(ac), the occurrence real-timéme(ac) = t, the hardware clock valug C'(ac) =
HC5*(t) and the state transition sequericens(ac) = [oldstate, . .., newstate] (including
messages). Latates(ac) be defined as the list (= sequence) of all statessand(ac) as the
list of all messages itrans(ac). The abbreviationsldstate(ac) andnewstate(ac) will be
used for the first and the last entry dtutes(ac).

As an execution is aequencenf actions, there is a well-defined total ordef* on ac-
tions. We will omit the superscripts 6k“* and HC* if the associated execution is clear

from context. A message dependenay (ﬂ> ac’) between two actionac and ac’ exists
if msg(ac’) € sent(ac). intransit_msgs(ac) denotes the set of messages in tranier
actionac has sent all its messages but before any following actién- ac in ex has had the
opportunity to send or process messages.

Formally, a valid execution of an algorithpd must satisfy the following properties:

EX1 ex must be a sequence of actions with a well-defined total ordér The sequence
must capture message causality (cf. Definition 2.1)t@nd (ac) must be non-decreasing.

EX2 Processor states can only change during an actionif tleere are two actionac < ac’
on the same processpand there is no action gnbetweeric andac’, newstate(ac) =
oldstate(ac’).

EX3 The first actioruc at every processqr must occur in an initial state (denotéedtate;”)
of A, i.e.,istates” = oldstate(ac) € Init,(A).

EX4 The hardware clock readings of actions must be congistith the hardware clock
associated with the execution, i.é1C(ac) = H Coroc(ac) (time(ac)). The hardware

clock readings must increase strictlyt(t',p : t < t' = HC*(t) < HC*(t')),
continuously and without bound.

EX5 Messages must be unique, i.e., there is at most one adiating some messageand
at most one action receiving it. Message sending and recgeiviust be in the correct
causal order. Messages can only be sent by and processed jiptessor specified in
the message.

EX6 Every non-input message that is received must have eggn s

Note that these properties do not require, for example,ahatrdinary messages obey the
message delay bounds or that all state transitions are amdarce with the transition function
of .A. These conditions will be specified by tf@lure model(see Section 4.2).
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2.5. Systems

A classic system = (n, [0, d7]) is a system adhering to the classic computing model defined
in Section 2.2, parameterized by the system siznd the intervald—, | specifying the
bounds on the message delay. The uncertaingydefined ag™ — 6.

In [MS06a] and [Mos09], the notion of-admissible executionwas used: An execution
is s-admissible w.r.t. some systesm= (n, [0, 7)), if the execution comprises processors
and the message delay for each ordinary message stays Viithifi"]. This definition was
useful for modeling failure-free executions; however,hie tontext of this work, it has been
replaced with the more powerful concept of “failure modelsiformally speaking, a failure
model specifies additional properties that an executiort saisfy, for example, “no message
takes more thai™ time units to be delivered”.

Claiming that an algorithmd solves a certain problerf? for a classic system under a
given failure modetC means that all possible executionsthat satisfyC must also satisfy
the properties required b (see Chapter 5). The task of finding such an algorithm can be
seen as providing a winning strategy to a player in an exegwtieation game against an
adversary, where the player provides the sets of initidestand the state transition function
and the adversary chooses one initial state and the hardauks for every processor and
controls the message delays (within the boufads 6] provided by the system) as well as
other factors permitted by the failure model. Note cargftiat it is the system/the adversary
and not the algorithm that determines the actual messaggslel the classic computing
model.
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3. Towards the Real-Time Computing
Model

At a first glance, zero step-time computing models appeaeta good choice for modeling
real-world systems, where message delays are often mublerhigan message processing
times. There are applications like high speed networks,evew where this is not the case.
Additionally, and more importantly, the zero step-timeuasption inevitably ignores message
gueuing at the receiver: It is possible, even in the casergélmessage delays, that multiple
messages arrive at a single receiver at the same time. Thseedhe processing of some
of these messages to be delayed until the processor is idla.aGommon practice so far
is to take this queuing delay into account by increasing thgeubounds™ on the message
delay. This approach, however, has two disadvantagest, Bigiori information about the
algorithm’s message pattern is needed to determine a pteanfahe system model, which
creates cyclic dependencies. Second, in lower bound prtteésadversary can choose an
arbitrary message delay withiid —, §7]—even if this choice is not in accordance, i.e., not
possible, with the actual message arrival pattern. Thisdclead to overly pessimistic lower
bounds.

It is, of course, not the goal of this work to explicitly modsl the phenomenons (receiver
gueuing, network queuing, scheduling overhead, ...) lishadden within some adversary-
controlled value. Rather, our aim was to find a suitable w#deetween model complexity
and model coverage. Explicitly modeling just non-zero dtepes and the resulting effects
turned out to be an appropriate choice. Other effects, whégend more on the underlying
hardware (e.g. network queuing) or which are unsuitabdeftetailed for meaningful lower
bounds (e.g. different processing times for different rages) are still abstracted away in
(overly conservative) system parameters and thus sulgjesappropriate exploitation by the
adversary.

3.1. System Model

The system model in our real-time computing model is the sasia the classic computing
model, except for the following change: A computing step irea-time system is executed
non-preemptively within a system-wide lower bound— and upper boung:™. Note that

we allow the processing time and hence the boujpds "] to depend on the number of
messages sent in a computing step. In order to clearly disgh a computing step in the

LIf processing of a message has started, this computing atepeither be interrupted nor preempted. It is pos-
sible to simulate interruptable execution in our model, Be&r, by splitting message processing into smaller
non-interruptable steps connected by “continue_prongssimers.
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Figure 3.1.: Real-time computing model

real-time computing model from a zero-time action in thessla computing model, we will
use the ternjob to refer to the former.

Interestingly, this simple extension has far-reachinglioapions, which make the real-time
computing model more realistic but also more complex. Inipaar, queuing and scheduling
effects must be taken into account:

Queuing We must now distinguish two modes of a processor at any poirgal-timet:

idle andbusy(i.e., currently executing a job). Since computing stepoé be interrupted,
agueueis needed to store ordinary, timer and input messagesragrivhile the processor is
busy. We assume that messages are stored in the queue idé¢nénarhich they have arrived.

Scheduling  When and in which order messages collected in the queue acegsed is
specified by somecheduling policywhich is, in general, independent of the algorithm. For-
mally, a scheduling policy is specified as an arbitrary maggiom the current queue state
(= a sequence of messages), the hardware clock readingheuedrrent local processor state
onto a single message from that message sequence. Thelgupgdlicy is used to select a
new message from the queue whenever processing of a job basbmpleted.

We assume that the scheduling policyn@n-idling when the processor is idle, processing
of an incoming message starts immediately. Similarly, wienprocessor finishes a job and
the queue is non-empty, a message from the queue is takenagabging of the correspond-
ing job starts without further delay.

Admission control In the classic zero step-time computing model, under ceftaiure
models, a faulty processor can send an arbitrary number s§ages with arbitrary content to
all other processors. This “arbitrary number”, which is aatissue when assuming zero step
times, could cause problems in the real-time model: It walllolw a malicious processor to
create a huge number of jobs at any of its peers. Consequesatinust ensure that messages
from faulty processors do not endanger the liveness of teri#thm at correct processors.
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3.1. System Model

Each node is equipped with admission controcomponent, allowing the scheduler to
drop certain messages instead of processing them. In sbmérdhe scheduling policy, the
admission control function is usually specific to the altori. For example, in round-based
algorithms, a policy such as “accept only the first rodnchessage from every processggr
could make sense. This separation of concerns betweenmhission control component and
the scheduling policy allows the scheduling policy to beirojted towards optimal perfor-
mance for messages from correct processors, without haviwgrry about overloads created
by faulty processors.

Scheduling/admission policy Formally, both the scheduling and the admission control
policy are represented by a single functjesi such that

pol(queue statalgorithm stateHC reading = (msg queue stat&")

with queue staté"’ C queue state; msg queue staté"; and

e MSsgeE queue state, representing the case where one messagehgelsied (and some
messages might be dropped), or

e msg= L and queue stat®" = (), representing the case where all messages in the queue
(if any) are dropped.

This function is used whenever a scheduling decision is miagle (a) at the end of a job
and (b) whenever the queue is empty and a new message jwsdamind causes msg to be
processed.

Since we assumaon-preemptivescheduling, a message received while the processor is
currently busy will be neither scheduled nor dropped uh@# turrent job has finished. “De-
laying” the admission control decision in such a way has theaatage that no intermediate
states can ever be used for admission control decisions.

Message delay The delay of a message is measured from the real-time oftdre of
the jobsending the message to the arrival real-time at the destinatocessor (where the
message will be enqueued or, if the processor is idle, imatel¢ causes the corresponding
job to start). Like in the classic computing model, messagjayd of ordinary messages must
be within a system-wide lower bourdd and an upper boundi. Like processing delays, the
message delays and hence the bouéidsé ™| may again depend on the number of messages
sent in the sending job.

It may seem counter-intuitive to measure the message dedaythe beginning of the job
rather than from the actual sending time, but this approasthskveral advantages: First, end-
to-end delays (= message delay + queuing delay) of suceassigsages can just be added up
to determine the duration of a message chain. Second, afmimvledge about the message
sending pattern of the algorithm (e.g. always at the beggfaiways at the end of the sending
job) can still be encoded in the message delay bounds. Andlasot least, no additional
parameters in the system model or in the transition fundi@required.
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3. Towards the Real-Time Computing Model

Hardware clock We assume that the hardware clock can only be read at thertiegin
of a job? This restriction in conjunction with our definition of megsadelays will allow
us to define transition functions in exactly the same way dherclassic computing model.
After all, the transition function just defines the “logitakmantics of a transition, but not its
timing.

State transitions  Contrary to the classic computing model, the state tramstildstate —

. — newstate in a single computing step need not happen at the same tinpéically, they
occur at different times during the job, allowing an intedize state to be valid on a processor
for some non-zero duration.

End-to-end delay  Figure 3.1 depicts an example of a single job at the sendeepsor

p, which sends one messageto receiverg currently busy with processing another message.
Part (a) shows the major timing-related parameters in thketime computing model, namely,
message delafp), queuing delayw), end-to-end delayA = § + w), andprocessing delay
() for the messagen represented by the dashed arrow. The bounds on the mesdageé de
and the processing delayare part of the system model, although they need not nedgdsar
known to the algorithm. Bounds on the queuing deleand the end-to-end delay, however,
are not parameters of the system model—in sharp contrast to theiclaesmputing model
(recall Chapter 2), where the end-to-end delay always sdqhalmessage delay. Rather, those
bounds (if they exist) must be derived from the system patersen, [6—,07], [u—, u™]),

the message pattern of the algorithm and the schedulinggadm policy, by performing a
real-time schedulability analysis.

Part (b) of Figure 3.1 shows the detailed relation betweessange arrival (enqueuing) and
actual message processing.

Note that messages dropped by the scheduler also have defieikkd end-to-end delay:
A = § + w, with w denoting the queuing delay until the message is droppedpfassed to
the queuing delay until the message starts being processbd}, A for a dropped message
is the time between the start of the job sending the messaptharidrop event”. Recall that
w need not be), since the decision to drop messages is only made whenearediding
decision is necessary.

3.2. Real-time Runs

This section formalizes the notion ofraal-time run(rt-run), which corresponds to an exe-
cution in the classic computing model. r&run ru consists of a sequence of receive events,
jobs and drop events, and of an associated setr@rdware clocks? C“.

A receive evenl? = (receive: p, m, t) for a message. arriving at processap at real-time
t consists of the processor indgxoc(R) = p, the messagewsg(R) = m, and the arrival
real-timetime(R) = t. Recall that is the enqueuing time in Figure 3.1(b).

2This models the fact that real clocks cannot usually be resittarily fast, i.e., with zero access time.
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A job J starting at real-time on processop is a6-tuple, consisting of the processor index
proc(J) = p, the message being processedg(.J), the start timebegin(J) = t, the job
processing time@uration(J), the hardware clock readingC(J) = HC,"(t), and the state
transition sequencigrans(J) = [oldstate, . .. ,newstate]. states(J), sent(J), oldstate(J)
andnewstate(.J) are abbreviations for parts 6fans(.JJ) and defined analogously to the clas-
sic computing model (see Section 2.4). ketl(J) be defined asegin(J) + duration(J).

A drop eventD = (drop : p,m,t) at real-timet on processop consists of the processor
index proc(D) = p, the messagewsg(D), and the dropping real-tim@me(D) = t. These
events represent messages getting dropped by the adméssitmol component rather than
being processed by a job.

Figure 3.1 provides an example of a rt-run, containing thiemeive events and three jobs
on the second processor. For example, the dashed job ondbedsprocessog consists of
(g, m,7,5, HC,(7), [oldstate, ... ,newstate]), with m being the message received during
the receive everfrreceive: ¢, m, 4). Note that neither the actual state transition times nor the
actual sending times of the sent messages are recordedhbinfgasuring all message delays
from the beginning of a job and knowing that the state tréomsst and the message sends
occur in the listed order at arbitrary times during the jobssially sufficient for algorithm and
complexity analysis. The more detailed notionstédite transition tracesvill be introduced
later in Section 5.2.2.

Clearly, not all sequences of receive events, jobs and drepte are valid real-time system
runs. Analogous to executions in the classic computing madé-run of some algorithrd
must satisfy the following properties:

RU1 ru must be a sequence of receive events, drop events and jdba wigll-defined total
order<"". The sequence must capture message causality, and theibeggsrbegin(J)
for jobs, time(R) andtime(D) for receive and drop events) must be non-decreasing.

RU2 Processor states can only change during a job.

RU3 The first jobJ at every processgs must occur in an initial state (denotéstate;") of
A, i.e.,istategu = oldstate(J) € Inity(A).

RU4 The hardware clock readings of jobs must be consistehtthe hardware clocks asso-
ciated with the rt-run. The hardware clock readings mugigiase strictly, continuously
and without bound.

RU5 Messages must be unique, i.e., there is at most one jalingesome message, at
most one receive event receiving it, and at most one job pedog it or drop event
dropping it. Message sending, receiving and processiogfdng must be in the correct
causal order. Messages must only be sent by and receivedfsed/dropped by the
processor specified in the message.

RUG6 Every non-input message that is received must have lmgn Every message that is
processed or dropped must have been received.

In addition, we require the following in the real-time model
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3. Towards the Real-Time Computing Model

RU7 Jobs do not overlap: If < J" andproc(J) = proc(J'), thenend(J) < begin(.J").

RUS8 Drop events can only occur when a scheduling decisionageni.e., immediately af-
ter a receive event when the processor is idle, or immedgiatiéér a job has finished
processing.

A message dependency éﬂ R) exists between a jold and a receive eveit if msg(R) €
sent(J). Clearly, RU5 and RU6 imply a local dependency between tbeive event receiv-
ing a message and the job processing or the drop event dmjppirhus, there is a (transitive)
causal dependency between a job sending a message and finegebsing that message.

A processop is busyat timet if there is some jobJ such thategin(J) < t < end(J);
otherwise, it igdle.

3.3. Systems

A real-time systens is a system adhering to the real-time computing model, perarzed
by the system size and two intervalgd—, 4 %] and [u—, u*], specifying the bounds on the
message delay and on the job duration.

Consideringg—, 1, u~ andu™ to be constants would give an unfair advantage to broadcast-
based algorithms when comparing some algorithms’ time dexity: Computation steps
would take betweem~ andp™ time units, independently of the number of messages sent.
This makes it impossible to derive a meaningful time comipfebower bound for systems
in which a constant-time broadcast primitive is not avdéabCorollary 7.17 will show an
example.

Therefore, the interval boundariés, 5, 4~ and ™ can be either constants or non-
decreasing function$0,...,n — 1} — R™, representing a mapping from the number of
destination processors to which ordinary messages aralggng that computing step to the
actual message or processing delay botind.

Example 3.1. During some job, ordinary messages to exactly three processe sent. The

duration of this job lies Within[u(‘g),yz;)]. Each of these messages has a message delay
betweertS(‘B) andézg)). The delays of the three messages need not be the same.

To be useful, these functions must satisfy some conditions:
_defi . s— + - +
¢ Intervals must be well-defined : 5@) < 5@) A gy < By

e Sending? messages at once must not be more costly than sending thesagee in
multiple steps. Formallyi, j > 1: fy;) < fu) + fi;) (for f =67, 6%, u~ andu™).

3As the message size is not bounded, we can assume that atmeasiessage is sent to the same processor in
a job. Hence, there is a one-to-one correspondence betwedigrary messages and destination processors in
each job.

5(*0) andé(*(‘)) are assumed to lebecause this allows some formulas to be written in a moreiseriorm.
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In addition, we assume that the message delay uncertaipty= 5&) — 6&) is also non-
decreasing and, thereforgy is the minimum uncertainty. This assumption is reasonasle,
usually sending more messages increases the uncertaimty than lowering it.

Similar to executions in the classic computing model, tleation of an rt-run can be seen
as a game of a player (the algorithm) against an adversayeirfarena” of a system, a
failure modelC (see next chapter) and a scheduling/admission pphéyFor example, when
using the failure model FAULT-FREE, the player providesssadtinitial states and the state
transition function, and the adversary can

o for every processor, choose an initial state from the satigeal by the player, hardware
clock parameters (such as initial value or drift, dependindghe hardware clock model
used) and the time at which the init message will arrive,

o for every ordinary message sent in a job, together Wwith1 other messages, choose a

value within[&&), 5&)] representing the sum of

— the time between the start of the job which sends the messabiha actual send-
ing time of the message, and
— the actual transmission delay of the message (until theévweeegent occurs),

e for every job sending ordinary messages, choose a value Witm@),u&)] for its
processing time (and associated overhead, e.g. for schgylul
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4. Admissibility of Executions and
Real-Time Runs

This chapter will formalize the notion of messageintroduce the concept dailure models
and provide definitions for the well-known FAULT-FREE;CRASH andf-BYZANTINE

failure models.

4.1. Messages

Formally, a “real message” sent or processed during an éracar rt-run, e.g.‘ordinary
message 14635 from p to g containing <Hellgs a tuple consisting of

1. some identifier which makes the message unique w.r.title@ gxecution or rt-run and

2. the “message template” specified in the transition fanct.g.‘ordinary message from
p to q containing <Hello>} which, in turn, is a data structure consisting of

a) the “message contentontent(m), e.g.“Hello” ,

b) the message type informatiogpe(m) € {ordinary messagémer messagenput
messagg and

¢) the delivery information, which depends on the type of sags:

e For some ordinary message,, this is the sending processeender(m,,)
and the receiving process@estination(m,,).

e For some timer message;, this is the processasroc(m;) and the desig-
nated arrival (hardware clock) time. Let C'(m,) denote the hardware clock
time for which the timer message; is set orH C'(ac)/HC(J) of the job set-
ting the timer, whichever is higher. This is the hardwarecklgalue by which
the timer is supposed to arrive.

e For some input message;, the delivery information contains the destination
processotestination(m;).

To ease presentation, we will just use the term “message’eirmessages, message tem-
plates and message contents, when it is clear from contaghyplart of the message is meant.
In addition, we will mix these types of messages without ieih) converting them. For
exampletrans(J) = A(msg(J),oldstate(J), HC(J)) will be used to denote that jolp's
transition sequence conforms to algorittdrs transition function. This notation is informal
sincetrans(J) contains real messages amdg(.J) is a real message, whereas the transition
function only specifies message templates.
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Note that the uniqueness of a real message is only requireghfdysis. Unigueness can
be guaranteed, for example, by referring to the unique (jalb $ent the message, destination
processor)-pair or by numbering messages sequentially.

4.2. Failure Models

“Conformance to a certain failure model” replaces the notid “s-admissibility” used in
previous works ([MS06a], [Mos09]). Formally, a failure medds a predicat€ on a (system,
algorithm, scheduling/admission policy, executioninty tuple. For example, in the classic
computing model and the real-time computing model with lomahdrift clocksC can be seen
as a characteristic functio®((n, [0,01]), A4, ex) or C((n,[6~,0%], [u™, uT]), A, pol, ru),
respectively, indicating whether:/ru is anadmissibleexecution/rt-run w.r.t. the given failure
model in the given system running the given algorithm or not.

To illustrate the concept of failure models, this sectiofi défine the well-known failure
models FAULT-FREE f-CRASH andf-BYZANTINE with bounded drift for the classic as
well as for the real-time computing model.

4.2.1. Prerequisites

For each executioar, we defineAC(ex) as the set of actions . Likewise, for each rt-run
ru, letR(ru), D(ru) andJ (ru) denote the sets of receive events, drop events and johs in
respectively. Let/ D(ru) = J(ru) UD(ru).

With respect to messages, Jet, (ex /ru) denote the set of ordinary messages A ex /ru)
the set of timer messagés.

Abbreviations

The failure models in this section will be presented as firgier logic predicates in the form
FAILURE-MODEL(ru) :< Vz : P(x) AVy: Q(y) A .... To ease presentation, we will

e write FAILURE-MODEL(ru) instead of FAILURE-MODELSs, A, pol, ru) and write
P(z) instead ofP(ru, z), likewise for failure models and predicates based on daassi
computing model executions,

e write Vac : ... and3ac : ... instead ofVac € AC(ex) : ... andJac € AC(ex) : ...,
with R, D, J, JD, m,, m; andp associated analogously with the s&6&-u), D(ru),
J(ru), ID(ru), Mo(ex/ru), M(ex/ru) andIl, respectively,

e avoid parentheses when the desired operator precedentmige€.g. from context or
from indentation).

'Formally,
Mo (ex) = {m : type(m) = ordinary msgA (Jac € AC(ex) : msg(ac) = m V m € sent(ac))},
Mo (ru) = {m : type(m) = ordinary msgA ((3R € R(ru) : msg(R) = m)V(IJ € J(ru) : m € sent(J)))}.
M (ex/ru) are defined analogously witlype(m) = timer message.
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Scheduling and admission control

The predicatesbeys_pol(R) andobeys_pol(J) will be used to refer to the scheduling and
the admission control policysbeys_pol(R)/(J) is satisfied, if

e at timetime(R), after R, if no job is currently running (in the case obeys_pol(R))
or

e at timeend(J), after J, if there are still messages that have been received but not
processed or dropped (in the casebfys_pol(J)),

a scheduling decision is made, causing messages to be drapgéor a job to be started
(according to the chosen poligyl).

4.2.2. FAULT-FREE

This is how a fault-free failure model with bounded drift isually defined:

FAULT-FREE,(ex) (classic computing modef}=

Vmy, : is_timely_msg(mey,0~,97) All ordinary msgs obey the message delay bounds.
A Ymy @ arrives_timely(my) All timers arrive in time.
A Yac : follows_alg(ac) All actions execute the algorithm.
A ¥p : bounded_drift(p, p) The drift of all hardware clocks is bounded py
FAULT-FREE,(ru) (real-time computing model}=>

Vmy, : is_timely_msg(mey, 6~ ,07) All ordinary msgs obey the message delay bounds.
A Ymy @ arrives_timely(m;) All timers arrive in time.

A YR : obeys_pol(R)

Scheduling/admission accordingpal.
A YJ : obeys_pol(J)

AYJ : follows_alg(J) All jobs execute the algorithm.
ANJ is_timely_job(J, =, u™) All jobs obey the processing delay bounds.
A Vp : bounded_drift(p, p) The drift of all hardware clocks is bounded py

In addition toobeys_pol, which is defined in the previous section, the following prates
are used in the definition of FAULT-FREE:

is_timely_msg(my, 8 ,67) & Jac,ac : m, € trans(ac) A m, = msg(ac’)

A time(ac') — time(ac) € [67,7]
arrives_timely(my) :< Jac,acd : my € trans(ac) Amy = msg(ac) N HC(ad) = sHC (my)
follows_alg(ac) :< trans(ac) = A(msg(ac), oldstate(ac), HC(ac))

is_timely_msg(my, 6~ ,07) 1< 3J, R : m, € trans(J) A m, = msg(R)
A time(R) — begin(J) € [67,8T]
arrives_timely(m;) < 3J, R : my € trans(J) A my = msg(R)

A (time(R) = max{HC !

proc(myg) (SHC(mt))7 end(J)})
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4. Admissibility of Executions and Real-Time Runs

follows_alg(J) < trans(J) = A(msg(J),oldstate(J), HC(J))
is_timely_job(J, u~,u™) & duration(J) € [u~, ut]

bounded_drift(p,p) <=Vt >t >0: (t—t')(1—p) < HCH(t) — HCH(t') < (t — ') (1 + p)

Note thatarrives_timely in the real-time computing model ensures that timer message
arrive either atsHC'(my) or at the end of the job sending the message, whichever happen
later. This allows for code lines such as “set timey for current_hc”, which cause a timer
message to arrive directly after the job containing thig livas finished, possibly triggering
another job right away (unless any other messages in theequrelpreferred by the scheduling
policy).

For ease of presentatioft, , 67, ,~ andu™ are treated as constants here; the generalization
to functions (cf. Section 3.3) is straightforward: The génegersion ofis_timely_job would
be defined aguration(J) € [,u(_g),,u&)]; likewise, is_timely_msg would becomed.J, R :
me € trans(J) Am, = msg(R) A time(R) — begin(J) € [5&),6&)]. In both cased, refers
to the number of ordinary messagessimt(.J).

4.2.3. f-CRASH

Other failure models can be derived from FAULT-FREE by addiceptions to certain parts
of the predicate. Consider, for example, a model in whichaig fprocessors may crash.
Intuitively, a crashed processor is a processor that eadiptatops making state transitions
and sending messages.

In the real-time computing model, we can model this elegabyl messages still arriv-
ing through receive events but jobs no longer being schddula the classic computing
model, however, message reception and processing isytightipled within a single action.
Thus, in the classic computing model, we will replace altestansitions after a processor
has crashed with the one-element “NOP transition sequergelith s := oldstate(ac) =
newstate(ac).

The notion of crashing defined below allows forclean crashes.e., the last action/job on
a processor might execute only part of its state transitamuence. Changes to FAULT-FREE
are underlined.

f-CRASH,(ex) (classic computing model=
JF:|F|= fAF CII
A Ymy, :is_timely_msg(mey,d~,8")
A Ymy @ arrives_timely(my)
A Yac : follows_alg(ac) V [proc(ac) € F A ((is_last(ac) A follows_alg_partially(ac))
V arrives_after_crash(ac))]

A Vp : bounded_drift(p, p)

f-CRASH,(ru) (real-time computing model}=
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JF:|F|=fAFCII
A ¥my, :is_timely_msg(mgy, 6~ ,0T)
A Ymy @ arrives_timely(my)
A YR : obeys_pol(R) V [proc(R) € F A arrives_after_crash(R) A drops_msg(R)]
A YJ :obeys_pol(J) V [proc(J) € F Ais_last(J) A drops_all_queued(J)]
A YJ : follows_alg(J) V [proc(J) € F ANis_last(J) A follows_alg_partially(J)]
A VJ :is_timely_job(J, u=, u™)
A ¥p : bounded_drift(p, p)

The following predicates are used in addition to those ddfinghe previous section, with
“suffix” denoting a possibly empty sequence of states andsages:

is_last(ac) = Vad : (ac < ad A proc(ac) = proc(ac’)) = trans(ac’) = [oldstate(ac)]
follows_alg_partially(ac) < 3suffix : trans(ac) + suffix = A(msg(ac), oldstate(ac), HC(ac))
arrives_after_crash(ac) < Jact®t : acl®! < ac A proc(ad®t) = proc(ac) Ais_last(acl®®t)

arrives_after_crash(R) = 3J1t : Jlast < R A proc(J't) = proc(R) Ais_last(J')
drops_msg(R) < 3D : time/proc/msg(D) = time/proc/msg(R)
is_last(J) = AJ' : proc(J) = proc(J YN J < J'
drops_all_queued(J"*) 1=
VR : [proc(R) = proc(J'%*) A (BJD : JD < J't Amsg(JD) = msg(R))]
= 3D : time(D) = end(J'**) A msg(D) = msg(R)
follows_alg_partially(J) < 3suffix : trans(J) + suffix = A(msg(J), oldstate(J), HC(J))

4.2.4. f-BYZANTINE

Another common extension of FAULT-FREE is a model witByzantine (i.e. arbitrary faulty)
processors. Note that the fact that all jobs need a receat edoes not reduce the power of a
Byzantine node since it can send an arbitrary number of timessages to itself.

f-BYZANTINE ,(ex) (classic computing mode}=
JF:|F|= fAF CII
A Ymy, is_timely_msg(mey,d~,8T)
A Ymy @ arrives_timely(my) V [proc(my) € F]
A Yac : follows_alg(ac) V [proc(ac) € F]
A ¥p : bounded_drift(p,p) V [p € F]

f-BYZANTINE ,(ru) (real-time computing model}=>
JF:|F|= fAF CII

A Ny, :is_timely_msg(mgy, 6~ ,6T)

A Ymy : arrives_timely(my) V [proc(my) € F]
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A VR :
ANV
ANV
ANV
A Vp:
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obeys_pol(R) V [proc(R) € F]
obeys_pol(J) V [proc(J) € F]
follows_alg(J) V [proc(J) € F)|
is_timely_job(J, u~,u™) V [proc(J) € F]
bounded_drift(p,p) V [p € F]




5. Problems, Algorithms and Proofs

This chapter defines what it means to prove that some algosthiives some given problem.
The aim of this chapter is to provide a formal framework foesifiying a problem in the same
way for the classic as well as for the real-time model. Théofaihg sections present two
suitable approaches.

5.1. aj-problems

Frequently, problems are specified as sets of executiofqmobjems éction/job-based prob-

lemg are a simple generalization of this technique. First, tadtructures of actions and
jobs are reduced to a common subset of attributes (cajledenty. A sequence of such aj-
events, corresponding to an execution or a rt-run, is calleaj-trace. Then, aj-problems can
be specified easily as sets of aj-traces.

Definition 5.1 (aj-events). The aj-eventev corresponding to actionc or to job J is a 4-
tuple, consisting of the processor indgxoc(ev) = proc(ac)/proc(J), the start real-time
begin(ev) = time(ac)/begin(J), the hardware clock valug/C(ev) = HC(ac)/HC(J)
and the state transition sequerieens(ev) = trans(ac)/trans(J).

The action/job event tracdaj-trace) of some execution or rt-run is just the sequence of
aj-events corresponding to the actions/jobs. Within aimaajetr, there is a total ordering”
on the aj-events, derived from the underlying executiort-oum.

An aj-problemis a set of aj-traces, usually characterized by a predicatiegaon some
aj-tracetr. In addition, an aj-problem may specify a restriction onuhmessages.

Note, however, that aj-problems do not restrict algorithessages. This makes them well-
suited for system model transformation proofs, since chnthe message that triggered
some computing step (for example, by encapsulating it immeasage of the simulation algo-
rithm) does not violate an algorithm’s capability to soleere particular aj-problem.

Example 5.2(Terminating (Drift-Free) Clock Synchronizatian).etis_lastevent(ev, p) be
true if ev is the last aj-event on procesgarFormally: is_lastevent(ev, p) 1< proc(ev) =
p A fev’ : ((ev < ev) A (proc(ev’) = p)).

¢ PreconditioR: Apart from the init messages, there are no input messages.

e Termination:All processors eventually terminate.
Vp : Jev : is_lastevent(ev, p)

!Note that this definition ofj-eventshas nothing to do witheceive eventsr drop eventsn rt-runs.
2The fact that hardware clocks do not drift is not a preconditiere. Thus, this problem can only be solved
under drift-free failure models.
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T : enters
p E
! : exits
q
: enters
P =

: exit
. I—'Tl XITS

Figure 5.1.: Example of a mutual exclusion violation in tkalftime computing model (top:
aj-trace, bottom: rt-run).

o AgreementAfter all processors have terminated, all processors hdjested clocks
(= hardware clock plus some local adjustment variatalg within + of each other.

Vp,q : Vevy, ev, € tr: (is_lastevent(evy, p) Ais_lastevent(evy,q)) = |HC (ev,)+
newstate(evy).adj—begin(ev,)—(HC (evy)+newstate(evy).adj—begin(evy))| <

This example reveals thaj-problemspecifications have some drawbacks: predicates can
only be defined for points in time where some event occurss iBlespecially inconvenient for
the definition ofdrifting clock synchronization (see Example 5.9 in Section 5.2raddition,
the usage of some distinguished state fikevstate is error-prone. Consider, for example, the
following mutual exclusion condition: a procesgomay only enter the critical section during
eventev, if Vq : newstate(last(q, ev)).in_cs = false, with last(q, ev) being the last event
on processok beforeev. In the classic computing model, this condition ensuresuadut
exclusion. In the real-time computing model, however, tivgation depicted in Figure 5.1
can occur. While the aj-trace gives the impression that alugMclusion is maintained, the
rt-run shows that this is not always the case. As the actas $tansitions can occur at any
time during a job (marked as ticks in the figure), it may hapibext, at a certain time (marked
as a dotted vertical line), has entered the critical section althoughas not left yet.

5.2. st-problems

While aj-problems are an obvious approach for specifyingpfams in the models presented
in this thesis, they do not provide an easy way to specifyipatels on “the global state of
the system at time”. This is straightforward in classic models, where an actisually
represents a single state transition. Actions and jobsepted in this work, however, also
involve intermediate states. This section presents a rddthoap executions to fine-grained
state transition sequences. This method is general enauigé &pplicable to rt-runs in the
real-time computing model as well, where the intermeditégestransitions within a job do
not necessarily occur at the same time.
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5.2. st-problems

5.2.1. Requirements

To provide an easy-to-apply tool for specifying problemsnedel based on the global state
should provide the following features:

Full time coverage  To allow safety properties to be defined in a natural way, {fstesn
should be in a well-defined state at every titheven if no state transition occurs at tirhe

Full state coverage  An obvious way to define a state model would be as a function
state(p, t) returning some well-defined (e.g. first or last) state of pesorp at timet. While
this approach is suitable for some types of problems, ittt that it is not appropriate for
the general case: Due to the fact that computing steps carztak time (both in the classic
computing model and in the real-time computing modelif = 0), multiple state transitions
can occur at the same point in timedif or§— = 0, itis even possible for causally dependent
state transitions on different processors to take placheasame real-timé. Therefore, the
model should somehow support more than one global state agthe real-time. Otherwise,
information could be lost and certain properties not besfiatl anymore.

Consider, for example, an execution of a mutual exclusigorihm in which processay's
state transitions (spread over multiple actiomghnt to enter— enter— exit — want to enter
always occur within zero time, so that the first and the lastesdfp at every timet is always
want to enter A function state(p, t) returning the first or last state pfat timet would always
returnwant to enter A liveness property ensuring thateventually enters the critical section
could never be proven correct, although the algorithm mégisfy this requirement.

Full causal coverage A function state(p, t) returning the set of all possible statespof
at timet would not suffice either. Consider the mutual exclusion gXanagain and assume
an execution where the following happensenters the critical sectior leaves the critical
section and sends a message;topon receiving the messageenters the critical section;
leaves the critical section. All of this happens at the séamet. Clearly, without information
on the causal dependency of the states at tinitds impossible to determine whether or not
the safety property that no two processors are inside thiealrsection simultaneously has
been violated.

It might seem strange to devise a system model where “simadiasly” is more fine-
grained than “at the same tim& However, being able to useé as the lower bound on
message transmission delays and message processing &mskdwn to be a valuable tool
in the analysis of distributed algorithms. Devising a magkere such behavior is forbidden
would invalidate such results and should hence be avoided.

5.2.2. State Transitions

As we will define formally in Section 5.2.3, thgtobal stateis composed of the local state of
every processos,, and the set of not yet processed messages. We consider $tinctitypes
of global state changes. Formally, each of these can besemter] by &tate transition event
(short: st-event ev with type(ev) € {process, send, transition, input}.

39



5. Problems, Algorithms and Proofs

e (process : t,p,m): At time time(ev) = t, processoproc(ev) = p starts processing
messagensg(ev) = m.

e (send : t,p,m): Attime time(ev) = t, processomproc(ev) = p sends message
msg(ev) = m.

e (transition : t,p,s,s’): Attime time(ev) = t, processoproc(ev) = p changes its
internal state fromvldstate(ev) = s to newstate(ev) = s'.2

e (input : t,m): Attime time(ev) = t, input messagensg(ev) = m arrives from an
external source.

In the classic computing model, every executianwith its associated hardware clocks
HCP® can be mapped to state transition tracéshort: st-trace ¢r, representing a sequence
of st-events, with associated hardware cloﬂé’g = HC,* (again, the superscript is omitted
if clear from context). A st-trace is created by followingimple transformation rule:

Definition 5.3. Each actionac at timet¢ on processop triggered by some message is
mapped taprocess : t,p, m), followed by (send : t,p,m’) or (transition : t,p,s,s’) for
every message and every state transitiotritns(ac) (in the correct order). Ifn is an input
message, there is(@nput : t, m) st-event immediately before the-ocess st-event. All of
these st-events carry the same titne

A message dependenogfv(i ev’) between two eventsy andev’ exists if type(ev) €
{send,input}, type(ev’) = process andmsg(ev) = msg(ev’). As the order of the orig-
inal execution is preserved, this definition implies thatseagje causality is captured in the
newly created st-trace, since every execution capturesagescausality (condition EX1, cf.
Section 2.4).

In the real-time computing model, the mapping of a real-tmmeto a st-trace is similar:

Definition 5.4. Each jobJ starting at timeg with durationd on processop triggered by some
messagen is mapped tqprocess : t,p,m), followed by (send : t', p,m’) or (transition :
', p, s, s') for every message and every state transitiofrims(J) (in the correct order). The
state transition and send time$) (must be within[¢, ¢ + d] and non-decreasing.

Receive events are only mapped to the st-trace if they aseday input messages. In that
case, the receive event is mapped#eput : t,m). A drop event at time on processop
triggered by message is mapped tdprocess : t,p, m).

In the st-trace, the st-events are ordered by their timeengriéserving the original order of
the rt-run as much as possible. The times®fd st-events (withir[¢, ¢ 4+ d]) must be chosen
such that message causality is captured.

3Although we will useoldstate(ev) andnewstate(ev) to refer to the states oftaansition st-event, note that
they do not necessarily match thkistate andnewstate of an action or job, asldstate andnewstate of a
st-event might, as well, be intermediate states in an actigob.

“This is automatically satisfied ¥f¢ : 6(}) > M&)-
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Any st-events occurring at the same timmean be reordered as long as the reordering is
causally consistent with the original st-trace (recallt®ec2.1). Every such reordering results
in another valid st-trace. Thus, for every execution, the@ne unique set of st-events, which
can be ordered into many st-traces. In the real-time comgutiodel, however, the set of
st-events corresponding to some real-time *uris usually not unique, even if all jobs occur
at different times, as the state transitions and messagis seithin some job can occur at
different times within the job processing interval.

Example 5.5. Assumej~ = 0, i.e., messages can be sent in zero time eledie an execution
ConSiSting of two actionsc (p7 Minit, thCp(t)v [Soldv S1,M, Snew]) andac’ (q7 m,t, HCq (t)v
(80,47 Smew))- Figure 5.2 shows the st-traces correspondingto

To ease presentation, the st-traces are presented initédmaa For example, the first table corresponds
to the following sequence(input : t, minit), (process : t,p,Minit), (transition : t,p, Soid, $1),
(send : t,p,m), (transition : t,p, 81, Snew ), (process : t,q,m), (transition : t,q, sS4, Snew)-

input
Minsit
p process transition send transition
Minit Sold, S1 m 51, Snew
q process transition
/ /
m Sold> Snew
input
Mingt
p process transition send transition
Minit Sold, S1 m 51, Snew
q process transition
/ /
m Sold> Snew
input
Minsit
p process transition send transition
Minit Sold, S1 m 51, Snew
q process transition
/ /
m Sold> Snew

Figure 5.2.: Example of three st-traces.

Note that rearranging these st-events is only possibleusedhey all occur at the same real-
time t. Due to the causal dependency between st-events on the sacesgor and between
the sendandprocessof messagen, no other st-traces correspondingetoexist.

5.2.3. Global States

Let the global statg be defined as atuple, s1, . .., s,, pending_msgs) containing the time
time(g) = t, the state of all processoss(g) . .. s,(g) and the set of unprocessed messages
pending_msgs(g) (i.e., messages in transit and messages that have beewvetebeit not
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processed or dropped yet). To achieve time coverage (sé®i$8&c2.1), we can annotate a
st-trace by adding (at most countably many) sets of (eitinerar continuum many) global
states:

e Atthe beginning
Insert a sef (¢, istateq, . .., istate,,{}) : 0 < t < t'}, with ¢’ being the time of the
first st-event andstate, being the initial state of processpr

¢ Between every two consecutive st-eventand ev’:

Insert a sef{ (¢, s1, - - . , Sn, pending_msgs) : time(ev) < t < time(ev’)} containing
the global state afterv but beforeev’. The effects of st-events on the global state are
as follows:

— (process : t,p, m) removesn from pending_msgs,
— (send : t,p,m) or (input : t,m) addsm to pending_msgs, and
— (transition : t,p, s, s') changes processpis state tos’.

o After the last st-eventw (if such an event exists)
Insert a sef{(¢, s1,...,sn,{}) : time(ev) < t} containing the global state after,
i.e., the final state.

The state sets are totally ordered by time.

Example 5.6. Figure 5.3 shows the first st-trace presented in Figure :8otated by the
generated state sets.

Note that this sequence of st-events alternating with dlsthgées bears a strong resemblance
with the hybrid sequences of Timed I/0O Automata [KLSVO03jj,ghe only trajectory is time
t here.

Let gstates(tr) denote the set of all global states appearing in the anmbtiteacetr.
The annotated st-trace implies a total ordéf on the set of all st-events and all global states,
i.e., on the setr U gstates(tr).

5.2.4. Problem Definitions

A state-based problergshort: st-problen) is defined as a set of st-traces. Usually it is spec-
ified as a predicate on some st-traceand its associated hardware clocﬂlﬁg of the form
“preconditions= safetyandlivenessproperties”. An algorithm solves a given st-problem if
all st-traces of all executions/rt-runs of this algorithatisfy this predicate (see Section 5.3
for details).

Example 5.7(Mutual Exclusion) We define the following predicates:

is_enter(ev) :& type(ev) = transition A oldstate(ev).in_cs = false
Anewstate(ev).in_cs = true,

is_want_to_enter(ev) :& type(ev) = input A content(msg(ev)) = “want to enter”,
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0 t "
S S . s
S?ld »T s S?ld , (input = t, Minat), Sfld , (process : t,p, Minit),
old old old
{} {} {minit}
t ¢ ¢
j/Old , (transition : t,p, Sold; $1), ;1 ,(send : t,p,m), ;1 7
old old old
{} {0 (m}
t t
(t?“ansition : tvpv S1, Snew)7 S7/l€w 5 (process : t7 q, 7’I’L)7 STILe’w ,
Sold Sold
{m} {}
t
(transition : t,q, sh,4, Shew)s Z/new o
new
{

Figure 5.3.: Example of an annotated st-trace, containgth st-events and global states

with is_exit(ev) andis_want_to_exit(ev) defined analogously. Then, mutual exclusion can
be specified as follows:

e Precondition I: For every processor, the st-events of psiinmessages form a (finite or
infinite) sequence starting with “init” and then alterngtinetween “want to enter” and
“want to exit” (starting with “want to enter”).

e Precondition II: Eventually, every processor will be totleave the critical section.
Formally, for every processar and every integef: If ¢r contains at least st-events
satisfyingis_want_to_enter onp and at least st-events satisfyings_enter onp, then
tr also contains at leasist-events satisfyings_want_to_exit onp.>

e Mutual Exclusion:There is always at most one processor in the critical section

Vg € gstates(tr) : [{p : sp(g).in_cs = true}| <1

e Liveness liIf a processor wants to enter the critical section, it wiketually be inside.

Vev € tr : is_want_to_enter(ev) = (3g = €v : Sproc(ev)(9)-in_cs = true)

®Note that the condition on theuter st-events is necessary: If this precondition just requineequal number of
want_to_enter andwant_to_exit st-events, an algorithm could wait for theint_to_exit messagdefore
entering the critical section. This is not desired behadorce it would allow the mutual exclusion algorithm
to force the duration of a critical section to be arbitrasiyall.
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e Liveness Il:If a processor wants to exit the critical section, it will etagally be
outside.

Vev € tr :is_want_to_exit(ev) = (g = €V : Sproc(en)(9)-in_cs = false)
e Safety:Do not enter or exit the critical section without a reason.

Vp : Vg € gstates(tr) : count(is_enter,p, g) < count(is_want_to_enter,p, g)
A count(is_exit,p, g) < count(is_want_to_exit,p, g)

with count (P, p, g) denoting the number of st-events satisfyiRgn p beforeg.
Example 5.8(Terminating (Drift-Free) Clock Synchronization [LL84b]Note that this prob-

lem can only be solved under drift-free failure models. Wéirdeis_finalstate(g) :<
Vg > g : Vp : sp(g) = sp(¢’). Let theadjusted clock valuedC,(g) be defined as

HC] (time(g)) + sp(g).adj.
e Precondition: Apart from the init messages, there are notingessages.

Vev € tr : (type(ev) = input) = (content(msg(ev)) = “init" )

e Termination:All processors eventually terminate.

Jdg € gstates(tr) : is_finalstate(g)

e AgreementAfter all processors have terminated, all processors hdjeseed clocks
within ~ of each other.

Vg € gstates(tr) : is_finalstate(g) = (Vp,q : |[ACy(g9) — ACy(9)| <)
Example 5.9(Drifting Clock Synchronization [AW04]) AC,(¢g) is defined as in the previous
example.

e Precondition I: Adjusted clocks are initially synchrortzeithin B.
Vp,q : Vg € gstates(tr) : (Bg': ¢’ < g) = (|AC,(9) — ACy(g)| < B)
e Precondition II: All processors start processing at tilme
Vp : Jev € tr : type(ev) = process N time(ev) =0 A proc(ev) =
p A content(msg(ev)) = “init”
e Precondition Ill: Apart from the init messages, there arénpoit messages.
Vev € tr : (type(ev) = input) = (content(msg(ev)) = “init" )
o AgreementAll processors have adjusted clocks withimof each other.
Vp,q : Vg € gstates(tr) : |[ACy(g) — ACq(9)| < v
o Validity: Adjusted clocks stay within a linear envelopg) ©f their hardware clocks.

Vp,t: (HCY ()= HCY (0) 5 < ACy(t)—AC,(0) < (HCY (t)—HCy (0))(1+¢)
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5.2.5. Relationship to aj-problems

Using the following algorithm, a st-trace-*! can be reduced to an aj-tra¢e”: Every
process st-eventev! is mapped to an aj-event®’, such that

e proc(ev¥) = proc(evst)
e begin(ev¥) = time(ev®t)
o HC(ewvW) = HC;::C(evst) (time(evs!))

trans(ev®) can be derived from the sequencesefid andtransition st-events on this
processor before the nemtocess.

Thus, every aj-problem can also be specified as a st-probteraining exactly those st-
traces that

e can be mapped to one aj-trace in the aj-problem and
o satisfy the input message restrictions specified in theappm.

For this reason, all proofs in this thesis will be conductelely for st-problems.

5.3. Proofs

A problemP is either an aj-problem or a st-problem. We say that an ei@vlut-run satisfiesa
problem if all aj-traces/all st-traces ageP, i.e. if all aj-traces/all st-traces satisfy the predicate
that specifies the problem.

The notion offailure models(cf. Section 4.2) can be used to prove that some algorithm
solvessome problen in a certain system. In the classic computing model, we cdinale
correctness and impossibility in the usual way:

Definition 5.10 (Correctness) An algorithm A solves some probler? in some systens
under some failure modé€lif, and only if, for every executioax of A satisfyingC(s, A, ex),
ex also satisfied.

Definition 5.11 (Impossibility). A problemP is impossible to solve in some systenunder
some failure mode( if, and only if, for every algorithmA there exists an executian: of A
which satisfie€ (s, A, ex) but violatesp.

The definitions for the real-time computing model are anailsgy

Definition 5.12 (Correctness) An algorithm A solves some probler® in some systens
under some failure modél with scheduling/admission policyol if, and only if, for every
rt-run ru of A satisfyingC(s, A, pol, ru), ru also satisfie$.

Definition 5.13 (Impossibility). A problemP is impossible to solve in some systenunder
some failure mode&f with scheduling/admission poligyl if, and only if, for every algorithm
A, there exists an rt-runu of A that satisfie€ (s, A, pol, ru) but violatesp.
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5.4. Notation for Specifying Algorithms

Recall that, in both system models, an action/a job consfggetting a message (either from
the messaging subsystem or from the queue), reading thevairatlock, performing state
transitions and sending messages. Thus, the transitiatidanand the initial state of some
algorithm A can be thought of as a set of global variables (including tindial values) and
some procedured-process_message(msg, current_bajrying out the state transitions and
sending the messagesisg contains the message to be processedcandent hc contains
the hardware clock reading at the beginning of this actidm/jlf it is not obvious from the
code, an informal description is given as to which operatiane atomic, i.e., without an
intermediate state, and which are not.

5.5. Time Complexity

The time complexity of some terminating algorithm will be asered as the worst-case differ-
ence of the real-time of arrival of the last init message tortal-time when the last processor
has terminated.
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6. Transformations

In this chapter, we will show that the classic computing ni@hel the real-time computing
model are fairly equivalent from the perspective of solligbof problems: A real-time system
can simulate some particular classic system (and vice yexsd conditions for transforming
a classic computing model algorithm into a real-time cormgumodel algorithm (and vice
versa) do exist. As a consequence, certain impossibilitylewer bound results can also be
translated.

One direction (Section 6.3), simulating a real-time systemd—, 6], [, u™]) on top of
a classic systertn, [0, 57]), where the message delays of the real-time system match thos
of the classic system, is quite straightforward: It suffiteBnplement an artificial processing
delay, the queuing of messages arriving during such a stetifjab, and the scheduling/ad-
mission policy. This simulation allows to run any real-tirmemputing model algorithmd
designed for a systerfn, [6~, %], [u~, ut]) with 6= < §—, 6 > 5 on top of it, thereby
resulting in a correct classic computing model algorithm.

For the other direction (Section 6.2), it is possible to datria classic systeim, [§~,5"])
on top of a real-time systeitn, [0, "], [, uT]), where the end-to-end delays of the clas-
sic system match those of the real-time system,[de,5"] = [A~, A*]. Recall that the
end-to-end delay bounds are equal to those of the messaaye idethe classic, but not in
the real-time computing model, since the end-to-end dedaglitionally depend on queuing
effects in the latter. Thus, this direction is more trickyirsk, because of the uncertainty re-
garding when a job’s state transition is actually perfornthd transformed algorithm solves a
slightly different problem than the original algorithm. &&d, and more importantly, real-
time schedulability analysisiust be conducted in order to break the circular dependehcy o
algorithm 4 and end-to-end delays € [A~, A*] (and vice versa): On one hand, the classic
computing model algorithrd, run atop of the simulation, might need to know 8imulated
message delay bounés, 5*], which are just the end-to-end delay bourds , A*] of the
underlying simulation. Those end-to-end delays, on therdind, involve the queuing delay
w and are thus dependent on (the message pattetd af)d hence oy, 5*]. This circu-
lar dependency is “hidden” in the parameters of the classieputing model, but necessarily
pops up when one tries to instantiate this model in a reaényst

6.1. Problem Transformations
When running a real-time computing model algorithm in a siasystem (Section 6.3), the
st-traces of the simulated rt-run and the ones of the ackeaiugion are very similar: Ignoring

variables solely used by the simulation algorithm, it tuons that the same state transitions
occur in the rt-run and in the corresponding execution. @quoently, this transformation
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inherently preserves most correctness and impossibilipfs.

Unfortunately, this is not the case for transformationshie other direction, i.e., running
a classic computing model algorithm in a real-time systeec(i®n 6.2): The st-traces of
a simulated execution are usually not the same as the sisti@gfcthe corresponding rt-run.
While all state transitions of some actian at timet always occur at this time, the transitions
of the corresponding jold take place at some arbitrary time betweemdt + duration(J).
Thus, there could be algorithms that solve some st-probtethe classic computing model,
but fail to do so in the real-time computing model.

Fortunately, however, it is possible to show that if someatgm solves some st-problem
P in some classic system, the same algorithm can be used te sotariant of P, denoted
P*., in some corresponding real-time system. The followindisaawill formalize the exact
relationship betwee® andP;}.

6.1.1. Shuffles

Definition 6.1. Let tr be a st-trace. A" -shuffleof ¢r is constructed by:

1. moving send or transition st-events intr at mosty™ time units into the future (by
increasing their time value and changing their positionha sequence, if needed).
Every send or transition st-event may of course be shifted byd#ferent value v,
0<v<u".

If u* is a function{0,...,n — 1} — R rather than a number (cf. Section 3.3)saud
or transition st-eventev may be moved by at mom@) time units, with? representing
the number ofsend st-events sending non-timer messages between therastss
st-event< ev and the firstprocess st-event- ev. Intuitively, this corresponds to the
number of non-timer messages sent by the action or job inrigaal execution.

2. movinginput st-events intr arbitrarily far into the pastwithout changing their order
with respect to otheinput st-events.

None of these moving operations may violate causal depegdén., the st-trace must be
causally consistent with to be a validu*-shuffle oftr. Causal dependency could be violated
by changing the order of st-events occurring on the sameepsmt or by causing messages
to be processed before they have been sent (cf. SectionSridegstates(tr) is a function
of HC' andtr, gstates(tr) changes during shuffling. Note th&tC'" is not modified by
shuffling operations.

Let shufflegtr, u*) be the set of all,™-shuffles oftr.

Observation 6.2. The order of processor-local state transitions does nohgeaas otherwise
causal dependency would be violated.

For the purpose of the proof of Theorem 6.11, this conditian be weakened. Let’ be the event starting
the busy period (= period, whefe-ocess st-events are at mogt™ time units apart). As our model assumes
a non-idling scheduler, it suffices to allow theput st-eventev to be moved back to any time in the interval
[time(ev”), time(ev)].
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Observation 6.3. Lettr andtr’ € shuffleétr, u™) be st-traces. Ley be a global state in
gstates(tr) andp be a processor. There is a global statein gstates(tr’) with time(g) <
time(g') < time(g)+p* such thats,(g) = s,(¢’). Informally, this means that if a processor
is in a certain state in a st-trace, it will be in the same stiata shuffled st-trace, but this state
might be delayed by up fo" time units.

The same holds the other way round: If a processor is in a oegate ingstates(tr'), it
will be in the same state igstates(tr), but maybe up ta* time units earlier.

Definition 6.4. Let P be a st-problem, represented as a set of st-traces. 7P}f;|1eﬁs defined

asJ,.cp shufflegtr, ). Informally speaking,P;+ is equivalent tgP with the exception
that the problem is still solved if an arbitrary number of isege sends and state transitions
may happen up ta™ time units later (without violating causality) and extdrivguts arrive
earlier.

Note that, a$” is a subset o‘P;}, P>, is a weaker problem thaR, i.e., if some algorithm
solvesP (in some system under some failure model), it also soﬂ;és (in the same system

under the same failure model). In fact, for some st-probléteven holds thatu™* : P*, =
P. We will call such st-problemshuffle-compatible problemeghich informally means that
they are invariant against time shifts.

6.1.2. Simulation-Invariant Extensions

Sometimes, it can be necessary to run an algorithm withinegome-preservingimulation:
The algorithm’s state transitions are the same and occureasdme time, but the simulator
needs to add its own variables. In addition, transmissicalgdrithm messages might be han-
dled by the simulator instead (e.g., by wrapping them wittitt@hal information or receiving
them earlier and queuing them). One such simulation willtesented in Section 6.3. In that
case, we will restrict our attention ®imulation-compatible problemsvhich do not impose
any restrictions on messages (except the arrival of inpgsamges) and that are only concerned
with “their own” variables.

Let tr be a st-trace and be a set of variable names. Formallysianulation-invariant
V-extensiorof ¢r is constructed in the following way:

e Every state occurring in the st-trace, i.eldstate andnewstate of everytransition
st-event, may be extended by variables frortand their valuations).

e An arbitrary number ofprocess and send st-events may be inserted, modified or re-
moved.

e transition st-events may be inserted as long as they do not modify amgblas other
than those in/.

e The result must be a valid st-trace, e.g., every messagegsed must have been sent by
asend st-event or must originate from anput st-event, and evemyewstate(ev) must
correspond t@ldstate(ev’) of the following st-event on the same processor. Formally,
someezx (satisfying EX1-EX6) oru (satisfying RU1-RU8) must exist which can be
mapped tdr using Definition 5.3 or 5.4.
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A simulation-invarianty-extensiorof some problenfP, denotedP§ , is defined as the set
of all simulation-invarianty-extensions of all st-traces iR. For simplicity, we assume that
V only contains variables that are not already referencedicithpin 7. A problem” where
P = Py; for all V will be calledsimulation-compatible

6.1.3. Examples

All examples in this section are simulation-compatible.

7 gap Mutual Exclusion Let P be the3-second gap mutual exclusignoblem, defined
by the properties in Section 5.2.4 and the additional reguént (‘3s-gap) that all processors
must have left the critical section for more than 3 secondsrbehe critical section can be
entered again by some processgev, ev’ € tr : (is_exit(ev) A ev < ev’ A time(ev') <
time(ev) + 3) = —is_enter(ev’).

We claim that an algorithm soIvin@;+ with 4™ = 3 seconds also solvesecond gap
mutual exclusior{defined analogously). Looking ahead to Theorem 6.11, tkdans that a
3-second gap mutual exclusiatgorithm designed for a classic system can be used to solve
the 0-second gap mutual exclusigmoblem in some real-time system with™ = 3 and the
other parameters determined by the feasible assignmer&écfion 6.2).

Proof. We will show by contradiction that an algorithm solvi@+ solves the 0-gap mutual

exclusion problem. Assume that there exists a rtsrumvith st-tracetr’ satisfyingP;+ where
mutual exclusioror 0s-gapis violated, i.e., there is some tintdn which two processorg
andgq are inside the critical section. This can happen either hif being inside the critical
section in the same global state, thus violating the clabsiatual exclusiortondition, or by
a zero-time st-event sequeneeit,, . . ., enter, (W..0.9.), thus violatingds-gap

As ru satisfiesPr, tr' e P By the definition ofP7, , this means that’ is a 3-second
shuffle of some st-trace- € P. Thus, intr, ¢ is in the critical section at some time within
[t — 3s,t] andp is in the critical section at some (maybe other) time withir 3s, ] (recall
Observation 6.3). Ip andq are in the critical section at the same global statesitutes(tr),
mutual exclusions violated. Otherwise, one of them exits and the other onergncausing
the 3s-gapcondition to be violated. Both cases contradict the assiomphat” solves3-
second gap mutual exclusion

Liveness l/llandsafetyin P*_ follow directly from the same property iF, asenter and
exit st-events as well as local states are only moved forward. w:r(again, cf. Observa-
tion 6.3), whereasvant_to_enter andwant_to_exit st-events are only moved backwards
W.IL tr. O

Causal Mutual Exclusion Let P be thecausal mutual exclusioproblem, defined by
the properties in Section 5.2.4 and the additional requiérgnthat every state transition in
which a processor enters a critical section must causalbenié on the last exit, formally
Vev,ev' € tr: (ev = last(is_exit,ev’) A is_enter(ev')) = (ev — ev'), with last(P, ev)
denoting the last st-event’ satisfying P with ev’ < ev (or L, if no such st-event exists).
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6.2. Reusing Classic Computing Model Algorithms

In this caseP*, = P, i.e., causal mutual exclusion is a shuffle-compatible igroband
the same algorithm used for some classic system can alsceldrua real-time system with
a feasible assignment.

Proof. As an algorithm solving® always solve§>;+, we just have to show the other direction,
i.e., that an algorithm solvin@*, solves causal mutual exclusion, to prove the equivalence.
As in the previous exampléiveness l/llandsafetyare unaffected by the shulffle.

In P, the newexit-enter causalityondition and thenutual exclusiorcondition imply that
there is a causal sequenoéer, — exit, — enter, — exit, — --- containingall enter and
exit st-events. Since shuffles must be causally consistghttiae original st-tracegnter, <
exit, < entery < exit, < --- still holds for all st-traces irP;}, guaranteeing (a) thatutual
exclusionis not violated irﬂ?;+ and (b) thatast(is_exit, ev’) returns the same exit st-event
in tr andtr’ for each enter st-eventy’. Since shuffles neither change the processor-local
order of st-events nor modify the messages, all causal depeies (cf. Section 2.1) still exist
in 73;+. Thus,exit-enter causalitylso holds inP;}. O

Terminating Clock Synchronization Let P be theterminating clock synchronization
problem, defined by the conditions in Section 5.224is a shuffle-compatible problem.

Proof. As terminationis guaranteed in every st-trace Bf every ;" -shuffle of that st-trace
terminates at most™ time units later.

Assume by contradiction thaigreements violated in some:™-shuffletr’ of a st-tracetr
of P. Let g be the first global state in which agreement between someegsocyp andq is
violated. Clearlyg must be after termination. Thus, the adjustment valugsasfdq must be
the same as the ones in all terminated states.oHowever, as bothr andtr’ reference the
same hardware clocks, this is a contradiction. O

aj-problems  Every aj-problem can be specified as a st-problem with @&tris solely on
process andinput st-events (cf. Section 5.2.5) and on the local ordepreicess, send and
transition st-events (specified asans(ac)). As process st-events are not changed by
shuffles and the local order of the aforementioned st-edds not change, every aj-problem
whose input message restrictions are not violated by sbiftkput st-events backwards in
time is a shuffle-compatible problem.

6.2. Reusing Classic Computing Model Algorithms

In this section, we will show how to simulate a classic systen{d—,d*]) on top of a real-
time system(n, [6—,61], [u~, uT]) if the end-to-end delays bounds~ andA* of the real-
time system equal the message delay boundsind §* of the simulated classic system.
Thereby, we provide a transformation of a classic computiragiel algorithm solving some
problemP into a real-time computing model algorithm solvif%r (cf. Section 6.1.1).
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6.2.1. Feasible Assignment

The key to this transformation is a very simple simulatioecRll that an algorithm is specified
as a mapping from processor indices to a set of initial statesa transition function, and that
the transition function is defined identically for the cliasand the real-time computing model.
LetS 4 be an algorithm for the real-time computing model, compgsexactly the same initial
states and transition function as a given classic computtiaodel algorithmA. From a more
practical point of viewS 4 can be expressed as given in Figure 6.1.

< global variables ofA>

1
2
3 procedure S 4—process_message(msg, current_hc)
4 A—process_message(msg, current_hc)

Figure 6.1.: Simulation algorithn§ 4 (classic computing model atop of real-time computing
model)

The major problem here is the circular dependency of theriltgo .4 on the real end-to-
end delays and vice versa: On one hand, the classic computidgl algorithmA run atop of
the simulation might need to know tismulatedmessage delay bounds™, 5], which are
just the end-to-end delay bounfs—, A™*] of the underlying simulation. Those end-to-end
delays, on the other hand, involve the queuing delayd are thus dependent on (the message
pattern of)A and hence ofy—, 5 1.

Clearly, the end-to-end delay bounds&jf are the result of some real-time schedulabil-
ity analysisf of runningS 4 with some scheduling/admission polipyl under some failure
modelC:

[A™ A1) = f(n, [67,6T], (1, /ﬁ],SA,pol,C). (6.1)

In turn, these end-to-end delay bounds specify the systeameders of the simulated classic
system:
670" =[A7, AT

SinceS 4 depends o4 and.A might need to know the systems bourids, 7], this leads to
a circular dependency with respect[tv—, A*] in eq. (6.1).

This dependency can be broken as follows: Given some clessiputing model algorithm
A with assumed message delay boufiiis 6], considered as unvalued parameters, a real-
time schedulability analysis of the transformed algoritSpp must be conducted. This pro-
vides an equation for the resulting end-to-end delay bo{fads A*] in terms of the real-time
systems paramete(s, [0, 0], [u~, x*]) and the algorithm parametefg~ = A=, 6" =
AT], i.e., a functionF satisfying

A, AT =F(n,[67,6%], [u ", pnt],[A7,AT]). (6.2)

We do not want to embark on the intricacies of advanced eed-schedulability analysis
techniques here, see [SAR4] for an overview. For the purpose of this work, quite siepl
considerations are sufficient: A trivial end-to-end delaywér boundA~ is 5(*1). An upper
boundA™ can be obtained easily if, for example, there is an upper damthe number of
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6.2. Reusing Classic Computing Model Algorithms

messages a processor receives in total. This techniqueedsinsChapter 7, whereas Sec-
tion 8.2.3, on the other hand, presents a more complex exdimpdieterminingA ™.

Anyway, if eq. (6.2) provided by the real-time scheduldbilanalysis can be solved for
[A~, AT], resulting in meaningful bound&~ < A, they can be assigned to the algorithm
parametergs—, 5]. We will call such an assignmefeasible Any feasible assignment of
[6~, 0] results in a correct implementation of the real-time corimgumodel algorithms 4,
since it ensures that both and the end-to-end delays are within their specificationeh&
feasible assignment may not exist for some (real-time mystdgorithm, scheduling/admis-
sion policy, failure model) tuples.

6.2.2. Scheduling/Admission Policy

Contrary to the classic computing model, running an algaritn a real-time system requires a
scheduling/admission poliggf. Section 3.1), which not only determines the processimigr

of incoming messages but also allows messages to be droppedunningsS 4, this policy
pol can be arbitrary, as long as the following two conditionssatisfied:

¢ Only “irrelevant” messages are dropped when runrgwith pol in systems. More
specifically, only messages that would have caused d jafth a NOP state transition
(trans(J) = |oldstate(J)]) are allowed to be dropped. For example, in round-based
algorithms, this could be messages from previous roundswrdk messages from a
processor from which such a message has already been k¢eidicating a link or
processor fault).

Formally, pol and A must satisfy the following condition: [fol drops a message at
hardware clock tim@ on a processor with statg(i.e., if 3Q, Q’, next : pol(Q, s, T) =
(next,@Q) Am € Q Am # next Am ¢ Q'), thenA(m, s, T) = [s].

e Input messages must be processed in FIFO order. Formaihgut messages:; and
mg are in the queue ang; has been received beforne,, thenmsy must not be dropped
or processed before; has been dropped or processed.

6.2.3. Transformation Tx_.c

As shown in the outline (Figure 6.2), the proof works by tfansiing every rt-run ofS 4
into a corresponding execution gf. By showing that (a) this execution is a valid execution
of A and (b) the execution and the rt-run have (roughly) the saate sransitions, the fact
that the rt-run satisfie@;+ can be derived from the fact that the execution satisfied his
transformationez = Tr_.c (ru), works by

e mapping each joby in ru to an actioruc in ex:

proc(ac) «— proc(J) time(ac) < begin(J) trans(ac) < trans(J)

msg(ac) «— msg(J) HC/(ac) — HC(J)
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Given an aIgorithmA\ that solves problerﬁ? in systemiunder failure modeg\,

simulation problem feasible failure model
algorithm transformatior) | assignmen transformation
(Fig. 6.1) (Sect. 6.1.1)| | (Sect. 6.2.1) (Sect. 6.2.4)

\/
we show that algorithrgA solves problen‘P;+ in systen% under failure modgi.

Let A be an algorithm solving in s under failure modef.

—

m

For each admissible rt-rur: of S 4 in
s under failure modet’:

— A, —

¢ Create a corresponding executianof A in s.

)

)

—20,, —

e Show thatex conforms to failure modef.
= ex satisfiesP.
e Show that every st-trace of: is au™-shuffle of a st-trace ofx.

=1rU satisfieSP;+.

= S solvesP, in s under failure modef.

Figure 6.2.: Transformation outline (Theorem 6.11)

e mapping each drop ever? in ru to a NOP actioruc in ex, with state denoting the
newstate of the last job finishing op = proc(D) before D (or istate;", if there is no
such job), and” being defined a#l C}" (time(D)):

proc(ac) < proc(D) time(ac) < time(D) trans(ac) «— [state]

msg(ac) < msg(D) HC(ac) T
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e settingHCy® = HC)" for all p.

Receive events inu are ignored.
Lemma 6.5. If ru is a valid rt-run ofS4, ex = Tr—.c(ru) is a valid execution ofd.

Proof. EX1-6 (cf. Section 2.4) are satisfied én: EX1 follows from RU1 by ordering the
actions like their corresponding jobs and drop events. EXgws from RU2 and the fact that
the order of jobs imu corresponds to the order of actionsein, that the transition sequence
is not changed and that the “correct” state is chosen foomsttorresponding to drop events.
EX3 is a direct consequence of RU3 and the fact that batandex run the same algorithm
(i.e. use the same initial state). Sineeandex use the same hardware clocks, RU4 suffices
to satisfy EX4. EX5 follows directly from RU5, and EX6 foll@eMrom RU6. Thusez is a
valid execution ofA. O

Lemma 6.6. For every message: in ex, the message delay,, is equal to the end-to-end
delayA,, of its corresponding message in ru.

Proof. By construction okz, the sending time of every message stays the same: (ac) =
begin(J), with ac and.J being the sending action/job; recall that message delaysaasured
from the start of the sending job rather than from taed st-event). For dropped messages,
the drop time inu equals the receiving/processing timesin(time(ac) = time(D), with ac
being the processing action aitibeing the drop event). For other messages, the processing
time in ru equals the receiving/processing timeein (time(ac) = begin(J), with ac being

the processing action antlbeing the processing job). O

6.2.4. Failure Model Compatibility

Since the failure model is dependent on the system modelsjclar real-time), we need to
establish a relationship between two failure mode&ndC, such that the following holds:

Definition 6.7. A failure modelC is calledTr_.c-compatibleto C, if the following holds for
every rt-runru of some algorithnS 4 in some system under failure modet’ with a schedul-
ing/admission policy only dropping irrelevant messagés3ection 6.2.2)ez, the execution
created by applying transformatidrgk_.~ to ru, conforms to failure model in systems, with

s containing a feasible assignment w..,t.A and the chosen scheduling/admission policy.

This relationship needs to be shown for every (classic failonodel, real-time failure
model)-pair used in the transformation. As an example, wieprnave compatibility for some
variants of bounded-drifff-CRASH andf-BYZANTINE (and, thus, for FAULT-FREE=
0-CRASH= 0-BYZANTINE).

f-CRASH

First, we define two variants gFCRASH. Differences t¢-CRASH,(ex) and f-CRASH, (ru)
(cf. Section 4.2.3) are underlined.
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f-CRASH,+latetimerg (ex) (classic computing model}
JF:|F| = fAF CII
A Ymy, :is_timely_msg(mey,d~,8T)
A Ymy : arrives_timely(my) V is_late_timer(my, o)
A Yac : follows_alg(ac) V [proc(ac) € F A ((is_last(ac) A follows_alg_partially(ac))
V arrives_after_crash(ac))]

A Vp : bounded_drift(p, p)

f-CRASH,+precisetimers(ru) (real-time computing model}=
JF:|F| = fAF CII
A Ny, :is_timely_msg(mgy,6~,6T)
A Ymy : arrives_timely(my)
A YR : obeys_pol(R) V [proc(R) € F A arrives_after_crash(R) A drops_msg(R)]
A YJ :obeys_pol(J) V [proc(J) € F Nis_last(J) A drops_all_queued(J)]
A YJ : follows_alg(J) V [proc(J) € F Nis_last(J) A follows_alg_partially(J)]
A NJ is_timely_job(J, =, ut)
A Ymy : gets_processed_precisely(my, «)
A ¥p : bounded_drift(p, p)

is_late_timer(my, ) < Jac, ac’ : my € trans(ac) A my = msg(ac’)
Atime(ad) € HC ! (sHC(m¢)) + [0, o

proc(mg)

gets_processed_precisely(my, ) =

3JD : msg(JD) = my; Atime(JD) € HC!

proc(my) (SHC(mt)) + [0, a]

As a reminder;f-CRASH,(ex) and f-CRASH, (ru) require every timefn, to arrive at the
designated hardware clock tisé? C'(m;) (= the time for whichm, is set or the hardware
clock time at the beginning of the job setting the timer) ottet hardware clock time at the
end of the job settingn,;, whichever happens later (cf. Section 4.1). In the classioput-
ing model, they must be processed immediately; in the read-tomputing model, they are
allowed to be queued.

J-CRASH,+precisetimers(ru) requiresthat timersstart processingat mosta time units
after their designated time. On the other hafidRASH,+latetimers, (ex) allowstimers to
arrive up to« real-time units later than their designated time.

Note that for allrv and alla > 0, f-CRASH,+precisetimersg(ru) = f-CRASH,(ru),
and that for allex and alla > 0, f-CRASH,(ex) = f-CRASH,+latetimerg (ex).

The following lemma shows that a classic computing modedritiyn designed for the -
CRASH failure model with bounded drift and tolerating lait@dr arrival by at mostx can
be used in a real-time system under the condition that qgesffects delay the processing of
timers by at mostv time units.
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Lemma 6.8. f-CRASH +latetimers, (ex) is Tr—.c-compatible tof -CRASH+precisetimers (ru).

Proof. Let ' denote the same set of processors in BRASH,+latetimers, (ex) and f-
CRASH,+precisetimerg(ru). We can show thatx = Tr_.c(ru) (according to Defini-
tion 6.7) satisfiey-CRASH,+latetimers, (ex), if ru satisfiesf-CRASH,+precisetimers(ru).

o |[Fl|=fAFCTI

Follows from the existence of such a gein f-CRASH,+precisetimers(ru).

o Vm, : is_timely_msg(mey, 0~ ,07)

Follows from Lemma 6.6 and the fact that Definition 6.7 asssimfeasible assignment
(ile.[67,6T] = [A—,AT)).

o Vmy : arrives_timely(my) V is_late_timer(my, )

Lett denoteHC, . (sHC(my)),i.e., the real time by which timen, should arrive.
gets_processed_precisely(my, ) ensures that the job or drop event taking carepf
starts at mosty real time units aftet. Due to the transformation rules @f;_. ¢, this
job or drop event is transformed into an actiea receiving and processing:; and
occurring at the same time as the job or drop event. Thusate_timer(my, a) is

satisfied.

e Yac : either
(@) follows_alg(ac) or
(b) proc(ac) € F Nis_last(ac) A follows_alg_partially(ac) or
(c) proc(ac) € F A arrives_after_crash(ac)

Let I’ C F be the set of processors actually crashing (or terminatingy, i.e., the set
of processorg for which some johJ\*s* with is_last(J.*") exists.

— Non-faulty processorsForp ¢ F’, all jobs inru on p adhere to the algorithm.
The corresponding actions ix occur at the same hardware clock time, pro-
cess the same message and have the same state transitiencgeqiihus, (a),
follows_alg(ac), holds for them as well.

W.r.t. drop events, we defined, for the purposes of this faangation, that only
messages that would have caused a NOP state transition norgfyeed bypol
(cf. Section 6.2.2). Due to theR/J : obeys_pol(R)/(J) conditions and RUS,
drop events occurring on non-faulty processors must camftur pol. “Would
have caused a NOP state transition” means that the algorétums a NOP state
transition for the current (message, hardware clock, stafge. Thus, the action
ac corresponding to this drop event satisfies (@ylows_alg(ac).

— Before the processor crasheBor p € F’, the same arguments hold for all jobs
J < J},“St on p and all drop events befonéé“st. Thus, (a) also holds for their
corresponding actions.
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— During the crash:ForJ = J},‘”t, the definition off ollows_alg_partially(ac)/(J)
directly translates to the corresponding actimjfst. Since there are no jobs
J > J},“St on p, only actions based on drop events can occup 'H{ftel‘acé,‘”t,
causingacl®* to satisfyis_last(acl®s"). Thus,acl's" satisfies (b).

— After the processor crashe8y definition ofis_last(.J), no jobs occur inu af-
ter a processor has crashed. Drop events occurring aftercagsor has crashed
need not (and usually will not) obey the scheduling policyeddages received
and queued before the last job are dropped directly after jtia(see predi-
catedrops_all_queued(J)), and messages received afterwards are dropped im-
mediately (see predicaterrives_after_crash(R)). Sinceacﬁ,“st < ac holds
for all actionsac corresponding to such drop events (on some processdc),
arrives_after_crash(ac), is satisfied.

e Vp : bounded_drift(p, p)

Follows from the equivalent condition iff CRASH,+precisetimers(ru) and the fact
thatTr.c ensures thatl C;* = HC for all p. O

Basically, the choice of allows to put the burden either on the scheduler in the iesd-t
system (lowq, timers must be scheduled early) or on the algorithm of tlessit system
(high «, the algorithm must tolerate delayed timers). Note thatate_timer(m;,0) =
arrives_timely(m;), and, thus f-CRASH,+latetimerg(ex) = f-CRASH,(ex). Likewise,
we can extend the domain ef with co by definingis_late_timer(m;, o) < true and
gets_processed_precisely(my, 00) < true. Thus, f-CRASH,+precisetimerg (ru) = f-
CRASH,(ru), and it is plain to see that Lemma 6.8 still holds foe= co.

Observation 6.9. f-CRASH(ex) is Tr_.c-compatible tof-CRASH+precisetimers(ru),
and f-CRASH+latetimers, (ex) is Tr_.c-compatible tof-CRASH (ru).

f-BYZANTINE

We definef-BYZANTINE ,+precisetimers(ru) and f-BYZANTINE ,+latetimerg, (ex) anal-
ogous to their crash failure counterparts:

[-BYZANTINE ,+latetimers, (ex) (classic computing model}
JF:|F|=fAFCII
A Ymy, :is_timely_msg(mey,d~,87)
A Ymy @ arrives_timely(my) V is_late_timer(my, o) V [proc(my) € F]
A Yac : follows_alg(ac) V [proc(ac) € F]
A ¥p : bounded_drift(p,p) V [p € F]

f[-BYZANTINE ,+precisetimers(ru) (real-time computing model}=-
JF:|F|=fAFCII

A Ny, :is_timely_msg(mgy,6~,6T)

A Ymy : arrives_timely(my) V [proc(my) € F]
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A VR : obeys_pol(R) V [proc(R) € F]

A YJ : obeys_pol(J) V [proc(J) € F]

A YJ : follows_alg(J) V [proc(J) € F)|

A NJ is_timely_job(J, =, u™) V [proc(J) € F]

A Ymy : gets_processed_precisely(my, ) V [proc(my) € F]
A ¥p : bounded_drift(p,p) V [p € F]

Lemma 6.10. f-BYZANTINE+latetimers, (ex) is Tr_c-compatible to failure modef-
BYZANTINE+precisetimers (ru).

Proof. Let F' denote the same set of processors in bptBYZANTINE ,+latetimers, (ex)
and f-BYZANTINE ,+precisetimerg(ru). It can be shown thatr, theTr_.¢ transformation
of ru according to Definition 6.7, satisfig&BYZANTINE ,+latetimers, (ex), if ru satisfies
f-BYZANTINE ,+precisetimers(ru).

o |[F|=fAFCI
Follows from the existence of such a getn f-BYZANTINE ,+precisetimersg(ru).

o Vm, :is_timely_msg(my,d~,07")
Follows from Lemma 6.6 and the fact that Definition 6.7 asssimfeasible assignment
(ile.[67,6T] = [A~,AT)).

o Vmy : arrives_timely(my) V is_late_timer(my, «) V [proc(my) € F
For proc(my) € F, this condition is satisfied trivially. For timer messagesamrrect

processors;s_late_timer(my, «) follows from gets_processed_precisely(my, o) by
the same reasoning as in Lemma 6.8.

e Yac: follows_alg(ac) V [proc(ac) € F|
Again, for proc(ac) € F, this condition is satisfied trivially; for correct process,
the proof follows the same line of reasoning as the “nontjaplocessors” part of
Lemma 6.8.

e Vp : bounded_drift(p,p) V [p € F]

This follows from the equivalent condition ifi-BYZANTINE ,+precisetimers(ru)
and the fact thal'’z ¢ ensures that/ C* = HC for all p. O

6.2.5. Transformation Proof

Theorem 6.11.Lets = (n, [6~,"], [u, uT]) be areal-time systemol be a scheduling/ad-
mission policy and® be a problem. If

e there exists an algorithrod for solving P in some classic system = (n,[07,5"])
under some failure modél [A1]?,

2To aid the reader in following the arguments of this proof, wiél label assumptions, definitions and lem-
mas used solely in this proof in bold face, e.pA1]/[D1]/[L1], and reference them in parenthesis, e.g.
(AIDADID/AILLD).
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e s contains a feasible assignment w.&l, s andpol (cf. Section 6.2.1)A2],

e scheduling/admission poligyl only drops irrelevant messag@a3] and ensures that
input messages are processed in FIFO orfket] (cf. Section 6.2.2), and

e CisTgr_.c-compatibleto some real-time failure modél(cf. Section 6.2.4)A5],

thenS 4 given in Figure 6.1 solve@;+ in s under failure modeC with scheduling/admission
policy pol [GOAL].

Proof. Letru be an rt-run ofS 4 in s under failure model with scheduling/admission policy
pol [D1]. By Lemma 6.5¢x = Tr_.c(ru) is a valid execution ofd [L1]. SinceC is Tr—.c-
compatible taC ([A5]), s contains a feasible assignmefiZ]) andpol only drops irrelevant
messagegA3]), Definition 6.7 ensures that: conforms to failure modef in s [L2].
As A is an algorithm solving in s under failure modef ([A1]) andex is a valid execution
of A ([L1]) conforming to failure model in s ([L2]), ex satisfiesP (cf. Definition 5.10)[L3].
To show thatu satisfieSP;}, we must show that every st-trat€ of ru is au™-shuffle of

a st-tracer of ex. Lettr’ be a st-trace ofu [D2]. We can construat- from ¢’ as follows:

e Move the time of evergend andiransition st-event back to the time of their corre-
spondingprocess st-event. Thesend andtransition st-events belonging to the same
job should directly follow theiprocess st-event and the order of thegeocess, send
andtransitions st-events must not change (of course, the order w.r.t.esttevof other
jobs will change)tr is still causally consistent with-’ (see Sections 2.1 and 5.2.2), as
the processor-local order of st-events is not changed;ess st-events are not moved
andsend st-events are only moved backwards in time.

e Move the time of everynput st-event forward so that it has the same time as its cor-
respondingprocess st-event processing the input message. #heut st-event must
directly precede therocess st-event. Clearly, this does not violate causal consigtenc
with ¢r’ either.

Sincepol ensures that input messages are processed in FIFO ¢#déy, the above op-
erations are an inverse subset of the-shuffle operations (see Definition 6.1); thus, is a
pt-shuffle oftr [L4]. Still, we need to show that is a st-trace otz (cf. Definition 5.3):

e Every action irex is correctly mapped to st-eventstirt Every job.J in ru is mapped
to an actionac in ex and a sequence of oneocess, multiple send/transition and
at most oneinput st-event intr. Following Definitions 5.3 and 5.4, there are two
differences in the mapping of some jobto st-events and the corresponding actien
to st-events:

— Theprocess, state andtransition st-events all occur at the same timiewe(ac)
when mapping an action. The constructionoensures that this is the case.
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6.3. Reusing Real-Time Computing Model Algorithms

— If msg(ac) is an input message, the correspondingut st-event occurs at the
same time as thgrocess st-event processing it. Sinee; satisfies RU6, there is
also such annput st-event intr’, and, thus, irtr. The construction ofr ensures
that thisinput st-event has the correct positiontin

Every drop evenD in ru is mapped to a NOP actiat, i.e., an action withirans(ac) =
[s], s := oldstate(ac) = newstate(ac), in ex. Both D andac get mapped to the same
single process st-event, without any followingend or transition st-events. If the
dropped message was an input message, the same reasonayasaplies w.r.t. the
input st-event.

e Every st-event inr belongs to an action imxz: Every st-event intr’ (and, thus, every
corresponding st-event i) is based on either a job, an input message receive event or
a drop event inrru. By construction okzx, every job and every drop event is mapped
to one action, requiring the same amounipebcess, send andtransition st-events.
Every input message receive eventinresults in annput st-event. By Definition 5.3,
this input st-event belongs to the action processing it.

Thus, we can conclude that is a st-trace okx [L5]. As A solvesP in s under fail-
ure modelC ([A1]) andex is an execution of4 in s underC ([L2]), this (L5]) implies that
tr € P (cf. Definition 5.10)[L6]. Sincetr’ is a u*-shuffle oftr ([L4]) andtr € P ([L6]),
Definition 6.4 states thdt’ ¢ P IL7].

As this (L7]) holds for every st-tracér’ of every rt-runru of S4 in s under failure model
C with scheduling/admission poligyol ([D1, D2]), Definition 5.12 states thal 4 soIvesP:+
in s under failure modef with scheduling/admission poligy! ([GOAL]). O

6.3. Reusing Real-Time Computing Model Algorithms

As the real-time computing model is a generalization of thesic computing model, the set
of systems covered by the classic computing model is atjstibset of the systems covered
by the real-time computing model. More precisely, everyteysin the classic computing
model (n,[6,57]) can be specified in terms of the real-time computing mdde[é~ =
07,0 = 48", [u~ = 0,u™ = 0]). Thus, every result (correctness or impossibility) for gom
classic system also holds in the corresponding real-tiseay with the same message delay
bounds#(}) = M& = 0 for all £, and an admission control component that does not drop any
messages. Intuition tells us that impossibility resulsodiold for the general case, i.e., that
an impossibility result for some classic systém [6—,6"]) holds for all real-time systems
(n,[6= <d7,8% > 487, [u~, u")) for arbitrary u =, u* as well, because the additional delay
does not provide the algorithm with any useful information.

For simulation-compatible problems (recall Section 6.1t#s conjecture is true, unless
the system has a very inaccurate hardware clock and thereryslittle uncertainty in the
processing delay, i.eu™ — p~ is very low. In that case, timing information might be gained
from the processing delay, for example, by increasing d lesndable by(y~ + p ) /2 during
each computing step. If the precision of this logical clogkezds the one of the hardware
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clock, algorithms might in fact benefit from the processimdagt as opposed to the zero step-
time situation. Thus, this section will concentrate on eyt where this cannot happen. In
particular, we will assume that the hardware clock is “aateienough” to estimate a real-time
value within[n—, pt].

We will provide a formal general transformation of imposkiyp results from the classic to
the real-time computing model by using yet another simogtthis time in the other direc-
tion. Although the simulation algorithm is slightly moreroplex than the one in the previous
section, we do not require a schedulability analysis toiat#deasible assignment here (since
both[6—, %] and[6—, "] are system parameters), and the problem transformatien Py
is much less restrictive thaf — 73;+.

1 var queue—empty

2 var idle —true

3 <local state (= global variables ofl)>

4

5 procedureS; 4 ., —Process_message(msg, current_hc)

6

7 if msg# (FINISHED-PROCESSING /x type (a), (b) and (e}/
8 queue.add(msg)

9

10 if idle or msg = fINISHED-PROCESSING Ix type (a), (c), (d) and (e)/
11

12 var next; kA apply scheduling/admission policy/

13 (next, queue}- pol(queue<local state>, current_hc)

14

15 if next =1 /% type (d) and (e)«/
16 idle «— true

17 else /% type (a) and (c)*/
18 idle — false

19 A—process_message(next, current_hc)

20 {<—number of ordinary messages sent Ay

21 set timer FINISHED-PROCESSINGfor current_hc i

Figure 6.3.: Simulation algorithn§; 4 ,,,; (real-time computing model atop of classic com-
puting model)

6.3.1. Algorithm

Figure 6.3 provides an algorithd; 4, designed for the classic computing model, which
allows us to simulate a real-time system, and, thus, to uselgorithm .4 designed for
the real-time computing model to solve problems in a clasgigtem. The algorithm es-
sentially simulates queuing, scheduling, and executioreaktime model computing steps
(jobs) of (hardware clock time) duratigih, and can hence be parameterized with some func-
tion o : {0,...,n — 1} — RT, some real-time computing model algorith#h and some
scheduling/admission poligyl. We define that;, 4, has the same initial states.dswith
additionallyqueue = empty andidle = true.

Figure 6.4 outlines the five main types of state transiti@)s(€) in the simulation algo-
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idle busy

()
dropped wait for message—— process mess
msg.(e)

wait for timeout
(b) enqueue incoming messages

Yes(d)

gueue empty No (c)

Figure 6.4.: State diagram (algorithm in Figure 6.3)

rithm: At every point in time, the simulated processor iseitidle (local variableidle =
true) or busy(idle = false). Initially, the processor is idle. As soon as the first aiton
messagearrives [type (a) action], the processor becomes busy atits fea fie) hardware
clock time unité (unless the message gets dropped by the scheduling/admijsslicy imme-
diately [type (e) action], which means that the processayssidle). All algorithm messages
arriving while the processor is busy are enqueued [typectymal. After thesegi(,) hardware
clock time units have passed (modeled asI8I6HED-PROCESSING timer message arriv-
ing), the queue is checked and a scheduling/admissionicieégsmade (possibly dropping
messages). If itis empty, the processor returns to its tdie $type (d) action]; otherwise, the
next message is processed [type (c) action].

Note that this transformation requires the hardware cldokbe “sufficiently accurate”,
i.e., waiting forzi,) hardware clock units must always result in a (possibly vagyreal-time
delay between,, andp&). Formally:

Definition 6.12. Let d~ andd™ (d~ < d™) be real-time durations, and I1& be a hardware
clock time duration. A hardware clocK C, can “estimate[d—,d "] by D", if it holds that
VT : HC, (T + D) — HC,Y(T) € [d~,d"]. In particular, we say that a hardware clock
HC, can‘estimateyu—, u*] bya”, if, forevery £,0 < ¢ < n—1, HC, can estimat@(;),y&)]

by fie)-

6.3.2. Failure Model Requirements

Due to its extreme simplicity, the simulation algorithm #¢_.c (S4, see Section 6.2) did not
impose any restrictions on the failure model. This allowsdaipursue a “modular approach”
and describe most of the proof as generally as possiblei¢Bed.2.3 and 6.2.5), with only a
small part dependent on the specific failure model (Sectigrth

3In this section, we will split the set of messages into “alfjon messages” (sent because they are specified in
algorithm.4) and EINISHED-PROCESSING messages (required internally by the simulation algor)th
4¢ being the number of ordinary messages sent during that cimgpstep, cf. Section 3.3.
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With respect to the transformatiohc—.r presented belows; 4 ., (see Figure 6.3) is
non-trivial and simulates the CPU, the scheduler and theissilom control component of
a real-time system. Note, however, that some parts of thgery are always assumed to
be fault-free in a real-time system as defined in Chapter 3:ekample, in a valid rt-run,
messages are not allowed to “appear out of nowhere” (= dondRU6), independent of the
failure model; in addition, state transitions are only a#al during jobs (= condition RU2).
In S; 40 hOWever, an execution in which some message appearseire which has not
been received, or an execution in which some algorithwariable changes during a type (e)
action (which is not mapped to a job, see below) would bothdyéeptly valid executions in
the f-BYZANTINE failure model. Nevertheless, the correspordgsimulated rt-run would
not be a valid rt-run, since it violates RU2 or RU6.

Thus, for this transformation, we assume tfatthe failure model in whichﬁﬁApol is
executed, is at least as restrictive as FAULT-FREE), and thatp is small enough (in other
words: the processing delay uncertainty is large enougtt) tat some value withifu—, ;]
can be estimated. The following lemma generalizes theioektip between clock drift and
the ability to estimate values:

Lemma 6.13. Letd~ andd™ (d— < d*) be real-time durations, and leb be a hardware
clock-time duration. If

dt —d- dtd-
< — D=2——
@ P=ar v and (b) dt +d-’
then all hardware clocks whose drift is bounded dbgstimate[d—,d"] by D (according to
Definition 6.12).

Proof. Let HC), be a hardware clock with bounded drift By definition ofbounded_dri ft
(cf. Sec. 4.2.2),

(6.3)

HC,(t) — HCy(t')
t—t

Since hardware clocks in executions and rt-runs are strintfreasing, continuous and un-

boundedH C), is an invertible function and this can be rewritten as

1 <HCI;1(T)—HCI;1(T’)< 1

(1+p) > >(1—-p) Vt>t' >0

VT >T' > HC,(0);

l+p~ T-T ~1—p
in particular,
L<HC*1(T+D)—HC*1(T)<L VT > HC,(0)
l+p =777 P T 1=y R
Applying part (b) and then part (a) of eq. (6.3) results in
2 ch:Ld’ 2 (i‘f'd* 2 (frd’ 2 lefdf
dt+d- dt+d- -1 -1 dt+d- dt+d-
— < <HC, (T+D)—HC, (T) < < -,
dt—d-— — - p p - _ - dt—d
1+ dF+d- L+p L=p L= dt+d-
which can be simplified to
d~ <HC,'(T'+D)-HC,\(T) <d*. O
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+ - + =
By — 1 ~ TN

Corollary 6.14. If, for all £, p < —2—L and fi(,) := 22—, then all hardware clocks
ORE) ORI

whose drift is bounded hyestimatey—, ] by ji.

Note that FAULT-FREE(ex), i.e., a failure model with “bounded-drift clocks”, has bee
chosen for ease of presentation. In fact, any other type wiwse clock guaranteeing that
there exists somg,y such that Definition 6.12 is satisfied is sufficient.

6.3.3. Algorithm Properties

All actions occurring within an executiane of S, 4 ., under failure model FAULT-FREfex)
fall into one of the five groups illustrated in Figure 6.4:

(a) algorithm message arriving which is immediately preees

(b) algorithm message arriving which is enqueued,

(c) (FINISHED-PROCESSING timer message arriving, causing some message from thequeu

to be processed,

(d) (FINISHED-PROCESSING timer message arriving when no messages are in the queue

(or all messages in the queue get dropped),
(e) algorithm message arriving which is immediately drappe
The following can be asserted for every such execution:

Observation 6.15. Every type (c) action has a corresponding type (b) actionrevitiee al-
gorithm message being processed in the type (c) action (9és enqueued (Line 8). More
generally, every message removed frgnzue by pol in a type (c) or (d) action has been
received before by a corresponding type (b) action.

Observation 6.16. Every type (a) and every type (c) action sendirggdinary messages also
sends on€FINISHED-PROCESSING timer message which arrives, hardware clock time
units later (Line 21).

Lemma 6.17. Initially and directly after executing some actiaia, processomp = proc(ac)
is in one of two well-defined states:

e State 1(dle): newstate(ac).idle = true, newstate(ac).queue = empty, there is no
(FINISHED-PROCESSING timer message tp in intransit_msgs(ac)®,

e State 2usy): newstate(ac).idle = false, there is exactly on€FINISHED-PROCESSING
timer message tp in intransit_msgs(ac).

®Recall from Section 2.4 thattransit_msgs(ac) denotes the set of messages in transit aftdras completed.
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Proof. By induction. Initially (replaceiewstate(ac) with istate;” andintransit_msgs(ac)
with the empty set), every processor is in state 1. If a messagceived while the processor is
in state 1, it is added to the queue. Then, the message is ditiped, causing the processor
to stay in state 1 [type (e) action], or the message is predesdle is set tofalse and a
(FINISHED-PROCESSING timer message is sent, i.e., the processor switches ® 2type
(a) action]. If a message is received during state 2, one otiimgs can happen:

e The message is &INISHED-PROCESSING timer message. If the queue was empty or
all messages got dropped (Line 15; recall thatt = L implies queue = empty due
to our non-idling assumption, cf. Section 3.1), the prooceswitches to state 1 [type (d)
action]. Otherwise, a newr[NISHED-PROCESSING timer message is generated. Thus,
the processor stays in state 2 [type (c) action].

e The message is an algorithm message. The message is addeddoetue and the
processor stays in state 2 [type (b) action]. O

The following observation follows directly from this lemraad the design of the algorithm:

Observation 6.18. Type (a) and (e) actions can only occur in idle state, type (@)and (d)
actions only in busy state. Type (a) and (d) actions changestate (from idle to busy and
from busy to idle, respectively), all other actions keepdfade (see Figure 6.4).

Lemma 6.19. After a type (a) or (c) actioruc sending/ ordinary messages occurred at
hardware clock timé&” on processop in ez, the next type (a), (c), (d) or (e) action grcan
occur no earlier than at hardware clock tin# + fi(,), when the(FINISHED-PROCESSING
message sent hy: has arrived.

Proof. Sinceacis atype (a) or (c) actiomewstate(ac).idle = false, which, by Lemma6.17,
cannot change until no morel{liISHED-PROCESSING messages are in transit. By Observa-
tion 6.16, this cannot happen earlier than at hardware dioo& 7" + fi(,). Lemma 6.17 also
states that no secondiflISHED-PROCESSING message can be in transit simultaneously.
Thus, betweeld” andT' + [, idle = false and only algorithm messages arriverat
which means that only type (b) actions can occur. O

6.3.4. Transformation T-_p

As shown in the outline (Figure 6.5), the proof works by tfansing every executiorx of
Sji, A pol INt0 @ corresponding rt-run ofl. By showing that (a) this rt-run is a valid rt-run of
A and (b) the execution and the rt-run have (roughly) the saate sransitions, the fact that
the execution satisfiB;; can be derived from the fact that the rt-run satisfies

The transformationu = Tc—, g(ex) constructs a rt-rumu. We setH C;* = HC,* for all
p, such that botlez andru have the same hardware clocks. Depending on the type ohactio

a corresponding receive event, job and/or drop eventiis constructed for each actian:

e Definitions:
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Given an aIgorithmA\that solves problerﬁP\in systems under failure mode(,

simulation problem failure model
algorithm transform. [5&),5&)] C[67,8%] | | transformation

(Fig. 6.3) (Sect. 6.1.2) (Sect. 6.3.7)

3 3 \ \
we show that algorithng; 4 ,,; Solves problen;; in systems under failure modet.

Let A be an algorithm solving in s under failure modef.

mi\ Mo
For each admissible executiem of \T \T T T

Sii. A pol in s under failure modeC:

(FIN.PROC) (FIN.PROC)

e Create a corresponding rt-rum of A in s.

\lml\ ma

e Show thatrv conforms to failure modef.
= ry satisfiespP.

=

e Show that every st-trace ef: is a simulation-invarian¥’-extension of a st-trace g
Tu.

= ex satisfiesPy;.

:>§[L.Apo

; solvesPy in s under failure modef.

Figure 6.5.: Transformation outline (Theorem 6.23)

— trans*(ac): Let trans*(ac) containtrans(ac) (1) without the simulation algo-
rithm variablesjueue andidle, (2) without state transitions only involving simula-
tion variables and (3) without any sending BfNISHED-PROCESSING messages.

— p(ac): Let pu(ac) of a type (a) or (c) actiomc be the real-time interval between
time(ac) and the arrival of theRINISHED-PROCESSING message sent e (cf.
Observation 6.16). Note that(ac) denotes a real-time interval, whereag) is
defined in hardware clock time units.

e Type (a): This action is mapped to a receive evRrand a subsequent jebin ru.

proc(R) « proc(ac) proc(J) « proc(ac) duration(J) «— p(ac)
msg(R) < msg(ac) msg(J) < msg(ac) HC(J) < HC(ac)
time(R) « time(ac) begin(J) < time(ac) trans(J) < trans*(ac)

67



6. Transformations

e Type (b): This action isisually’ mapped to a receive eveRtin ru:

proc(R) < proc(ac) msg(R) « msg(ac) time(R) « time(ac)

e Type (c): This action is mapped to a jobn ru. Letm be the algorithm message of the
corresponding type (b) action (cf. Observation 6.15), thee message chosenraxtin

Line 13.
proc(J) < proc(ac) begin(J) < time(ac) HC(J) «— HC(ac)
msg(J) < m duration(J) «— u(ac) trans(J) < trans*(ac)

In addition, for every message removed fromyueue but not chosen asext in Line 13
(if any), a drop evenD is created right beford:

proc(D) « proc(ac) msg(D) «— m time(D) «— time(ac)

e Type (d): Similar to type (c) actions, a drop evdntis created for every message
removed fromgueue in Line 13 (if any):

proc(D) « proc(ac) msg(D) «— m time(D) < time(ac)

e Type (e): This action is mapped to a receive evRrand a subsequent drop eventin
ru, both with the same parameters:

proc(R/D) «— proc(ac) msg(R/D) «— msg(ac) time(R/D) «— time(ac)

To illustrate this transformation, Figure 6.5 shows an egiamwith actions of types (a), (b),
(c) and (d) occurring irez (in this order) and the resulting rt-runu.

Lemma 6.20. There is a one-to-one correspondence betweanSHED-PROCESSING mes-
sages inex and jobs inru: A job J exists inru if, and only if, there is a corresponding
(FINISHED-PROCESSING messagen in ex, with begin(J) = time(ac) of the actionac
sendingm andend(J) = time(ac’) of the actionac’ receivingm.

Proof. (FINISHED-PROCESSING — job: Note that fINISHED-PROCESSING messages iax
are only sent in type (a) and (c) actiorisc_. gz ensures that for both kinds of actions a job
exists inru which ends exactly at the time at which theNISHED-PROCESSING message
arrives inex (recall the definition ofu(ac)).

job — (FINISHED-PROCESSING: Follows from the fact that, due to the rules Bf_. g,
jobs only exist in-u if there is a corresponding type (a) or (c) actiorein These actions send
(FINISHED-PROCESSING messages, and the definition ofac) ensures that these messages
do not arrive until the job has completed. O

®There is one special case in whithne(R) is set to a different value, see below for details.
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6.3.5. Special Case: Timer Messages

As explained in Section 4.2.2, there is a subtle differerate/ben the classic and the real-time
computing model with respect to therives_timely(m,) predicate of FAULT-FREE: In a
rt-run, a timer messager; sent during some jol arrives at the end of the jolexd(J)) if
the desired arrival hardware clock timeH C(m;)) occurs whileJ is still in progress. On the
other hand, in an execution, the timer message always aiva? C (m;).

For T¢_, i this means that the transformation rule for type (b) acticmenges: If the type
(b) actionac for timer messagen; = msg(ac) occurs at some time= time(ac) while the
(FINISHED-PROCESSING message corresponding to the simulated job that:gernig still in
transit (cf. Lemma 6.20 and note that this lemma is unaftebiethis change of -_. ), then
the corresponding receive eveRtdoes not occur at but rather at’ = time(ac’), with ac’
denoting the type (c) or (d) action where tleN|SHED-PROCESSING message arrives. Still,
R < JandR < D shall hold, for any job/ or drop eventD created by transformingc’ with
TCHR-

This change ensures that the receive event in the simulatad occurs at the correct time,
i.e., no earlier than at the end of the job sending the timessage. One inconsistency still
remains, though: The order of the messages in the queue diftgrtbetween the simulated
gueue in the execution (i.e., varialalecue) and the queue in the rt-run constructedyy . :

In the executionn, is added taqueue at timet, whereas in the rt-runy; is added to the
real-time queue at tim&. This could make a difference, for example, when anotheisamgs
arrives betweemn andt’.

SinceS;; 4y “knows” about.A, it is obviously possible for the simulation algorithm to
detect such cases and reordeeue accordingly. We have decided not to include these details
in Figure 6.3, since the added complexity might make it mdffecdlt to understand the main
structure of the simulation algorithm. For the remaindeGettion 6.3, we will assume that
such a reordering takes place.

6.3.6. Validity of the Constructed Rt-run

Lemma 6.21. If ez is a valid execution of

B, 4o Under failure model FAULT-FRERex),
ru = To_,r(ex) is a valid rt-run of A.

Proof. Letred(s) be defined as statewithout the simulations variablegieue andidle. We
will show that RU1-8 defined in Section 3.2 are satisfied:

RU1 Since the transformation rules @%_.r only create items inu whose begin times
match those of their corresponding actions, RU1 (non-@eing begin times) follows
from EX1 by applying these transformation rules sequdgttal all ac in ex. RU1 also
requires message causality: Sincet(ins(.J) of every job.J corresponds to a subset
of trans(ac) of some actioruc occurring at the same time and (@)sg(R) of every
receive evenf? corresponds to some messageg(ac) of some actioruc occurring at
the same time, it is not hard to see that a messagéolating message causality (by
being sent after being received) can only exist-inif a corresponding message’
already existed imx, which is prohibited by EX1.
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RU2

RU3

RU4

RUS5
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Assume by contradiction that there are two subsequéstj@nd.J’ on the same pro-
cessop such thatewstate(J) # oldstate(J'). According to the transformation rules
of Tc— g, J corresponds to some type (a) or (c) actionandred(newstate(ac)) =
newstate(J). The same holds fod’, which corresponds to some type (a) or (c) ac-
tion ac’ with red(oldstate(ac’)) = oldstate(J"). Sincenewstate(J) # oldstate(J'),
red(newstate(ac)) # red(oldstate(ac’)). As EX2 holds inez, there must be some
actionac” in betweeruc andacd’ such thated(oldstate(ac”)) # red(newstate(ac”)).
This yields two cases, both of which lead to a contradictidn:ac” is a type (a) or (c)
action. In that case, there would be some corresponding/jolith J < J” < J'in
ru, contradicting the assumption thétand.J’ are subsequent jobs. (2)” is a type
(b), (d) or (e) action. Since, in our fault-free failure mgdbese kinds of actions only
changejueue andidle, this contradictsed(oldstate(ac”)) # red(newstate(ac”)).

On every processer, oldstate(.J) of the firstjob.J onpin ru is equal tared(oldstate(ac))
of the first type (a) or (c) actionc onp in ex. Following the same reasoning as in the
previous point, we can argue thetd(oldstate(ac)) = red(oldstate(ac’)), with ac’
being the first (any type) action gnin ex. Since, by definition ofS; 4, the set
of initial states ofS; 4, equals the one afl (extended withjueue = empty and
idle = true), RU3 follows from EX3.

Follows easily fromH C}* = HC;*, the transformation rules df_. g and the fact
that EX4 holds irez.

At most one job sending:nfrollows from the fact that every actiare is mapped to at
most one jobJ, sent(.J) is a subset ofent(ac), and EX5 holds irez.

At most one receive event receiving RFollows from the fact that every actiai: is
mapped to at most one receive evéhin ru receiving the same message and EX5
holds inex.

At most one job processing m or drop event droppindgSince EX5 holds irex, every
message received ifi; 4, is unique. Thus, every message gets put ipteue at

most once and, singe! is a valid scheduling/admission policy afg 4 ., is executed
fault-free, every message is removed fromeue at most once. Transformatidfi-_.

is designed such that a job or drop event withg(.JJ/D) = m is created in-u if, and

only if, m gets removed fromgueue in the corresponding action.

Correct causal orderThe correct order of message sends and receive eventsasalr
ensured by RU1. W.r.t. jobs and drop events, consider thaliiferent types of actions.
Type (a):J is created right afteR. Type (b): No job or drop event is created. Type (c)
and (d): By Observation 6.15, every message removed frome (= every message
for which a job or drop event is created By:_.r) has been received before by a type
(b) action. ByT¢_. g, a receive event has been created for this message. TypP (g):
created right afteR?.

Correct processor specified in the messagellows from the fact that EX5 holds in
ex and thatT~_. p does not change the processor at which messages are seiedec
processed or dropped.
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RU6 T¢o_. g ensures that all message sends, exceptHon§{HED-PROCESSING, are trans-
ferred intorwu (recall the definition oftrans*). Likewise, all receptions of such algo-
rithm messages (type (a), (b) and (e) actions) are tramesfénto corresponding receive
events inru. No new messages (i.e., messages not presem iare introduced inteu
by Tc_. g. Thus, RUG6 follows from EX6.

RU7 Consider two jobs/ < J’ on the same processproc(J) = proc(J') = p. To—r
ensures that there is a corresponding type (a) or (c) aabiosvery job inru. Letac and
ac’ be the actions corresponding foand.J’ and note thatime(ac) = begin(J) and
time(ac’) = begin(J'). Lemma6.19 implies thatc’ cannot occur until thef{NISHED-
PROCESSING message sent byc has arrived. Sincduration(J) is set tou(ac) in
Tc— g, the definition ofu(ac) ensures thaf” cannot start beforg has finished.

RU8 Drop events occur inu only when there is a corresponding type (c), (d) or (e) action
in ex. Type (c) and (d) actions are triggered byrRaIN(SHED-PROCESSING message
arriving; thus, by Lemma 6.20, there is a jobrin finishing at that time. W.r.t. type
(e) actions, Observation 6.18 shows thpas idle in ex when a type (e) action occurs,
which, by Lemma 6.17, means that roNISHED-PROCESSING message is in transit
and, thus, by Lemma 6.20, there is no job active-in Thereforep is idle inru and
Tc_. g €nsures that a receive event occurs at the time of the ty@e(en. O

6.3.7. Failure Model Compatibility

Lemma 6.22. Letex be an execution of some algoriti®y 4 ., in some system= (n, [§, )
under failure model FAULT-FREfex). Lets = (n,[67,67],[n~, uT]) be a real-time sys-

+ —
7 i aOL0! _ ~ - 5t +
tem, and lefi, be defined aQM&)W(_@. If, forall ¢ € {0,...,n — 1}, 5(4) <9 ,6(4) >0

+ o
andp < % thenru, the rt-run of.A created by applying transformatidf>_, i to ez,
0 THw
conforms to failure model FAULT-FREEu) in systems with scheduling/admission policy

pol.

Proof. Lemma 6.21 has shown that is a valid rt-run of.A. Thus, we need to show that
satisfies FAULT-FREE ru):

o Vmy, : is_timely_msg(mey, 6 ,6T)

All actions that receive algorithm messages (types (a)afl) (e)) are mapped to re-
ceive events occurring at the same real-time as the actidinactions possibly send-
ing algorithm messages (types (a) and (c)) are mapped tosj@ising at the same
real time as the action. Sino%&) < § and 5&) > 47 for all ¢, the required de-

lay condition forrw follows directly from the fact that FAULT-FREex), and, thus,
Vm, : is_timely_msg(m,,d~,5") holds inex.
o Vmy : arrives_timely(m;)

Algorithm timer messages iex: sent for some hardware clock valdléon some pro-
cessorp cause a type (a), (b) or (e) actien: at some timet with HC(ac) = T
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when they are received. As all of these actions are mappeec&ive eventR with
msg(R) = msg(ac) andtime(R) = t (or time(R) = end(J) of the job.J sending
the timer, see Section 6.3.5), and the hardware clocks arsaime in-u andex, timer
messages arrive at the correct time-in

VR : obeys_pol(R)

Observe that, due to the design&®f 4 ,,, andTc— g, variablequeue in ex represents
the queue state ofu. Every receive event inu occurring while the processor is idle
corresponds to either a type (a) or a type (e) action. In esech action, a scheduling
decision according tpol is made (Line 13) and-_. p ensures that either a drop event
(type (e) action) or a job (type (a) action) according to tlepat of that scheduling
decision is created.

VJ : obeys_pol(J)

The same reasoning as in the previous point applies: Evérinjou finishing corre-
sponds to a type (c) or (d) action éa: in which the FINISHED-PROCESSING message
representing that job arrives. Both of these actions cagsheduling decision (Line 13)
to be made oueue (which corresponds tou’s queue state), and corresponding drop
events and/or a corresponding job (only type (c) actionscegated by ~_. .

VJ : follows_alg(J)

Let ac be the type (a) or (c) action corresponding/toac executes all state transitions
of A (Line 19) for eithermsg(ac) (type (a) action) or some message from the queue
(type (c) action) and the current hardware clock time, plume additional operations
which only affect variablegucue andidle and FINISHED-PROCESSING messages.
Thus, T r's choice of HC(J) andmsg(J) as well as the definition af-ans* ensure
thattrans(J) conforms to algorithmA.

VJ :is_timely_job(J, u~, u™)

By definition of T, g, duration(J) = p(ac), with u(ac) denoting the transmission
time of the EINISHED-PROCESSING message sent by the actiam corresponding

to job J. Sincearrives_timely(m;) holds for FINISHED-PROCESSING messages
m in ex, there are exactlyi, hardware clock time units between the sending and
the reception of the{NISHED-PROCESSING message sent byc (see Line 21 of
S; Apo)- By Corollary 6.14, this corresponds to some real-timerval ;(ac) within
[M&?{ u&f]. Sinceé equals the numbgr of ordinary messages seqi (Beg Line 20
of the algorithm and the transformation rules for type (ajl &) actions inT¢_,g),
is_timely_job(J, u~, u™) holds.

Vp : bounded_drift(p, p)

Follows from the definition that/C}* = HC,* and the fact that the corresponding
bounded_dri ft condition holds irezx. O



6.3. Reusing Real-Time Computing Model Algorithms

6.3.8. Transformation Proof

Theorem 6.23.Lets = (n, [0, d1]) be a classic system arel be a problem. If

e there exists an algorithrod which solves problen® in some real-time system =
(n,[67,6%], [, ut]) with some scheduling/admission poljay under failure model
FAULT-FREE (ru) [A1],

o Vi, <4 andé(*;) > 5+ [A2], and

i =g
o V0:p< 0 —OIA3),
FeyTH )

+ —
thenS; 4,0 given in Figure 6.3 withyi,) = 2% [D1] solvesPy; in s under failure

HioTHe
model FAULT-FREK ex), with V = {queue, idle} [GOAL].

Proof. Letex be such an execution & 4., in s under failure model FAULT-FREKex)
[D2]. By Lemmas 6.21 and 6.22 (in conjunction wie], [A3] and[D1]), ru = To—g(ex) is
a valid execution of4 in s with scheduling/admission poligy! under failure model FAULT-
FREE,(ru) [L1].

As A'is an algorithm solving in s with policy pol under failure model FAULT-FREEu)
([A1]) andru is a valid rt-run of A in s with policy pol conforming to failure model FAULT-
FREE,(ru) ([L1]), ru satisfiesP (cf. Definition 5.12)[L2] .

To show thatex satisfies7?5 , we must show that every st-tra¢e of ex is a simulation-
invariantV-extension of a st-trace- of ru (cf. Section 6.1.2). Letr’ be a st-trace ofx [D3].
We can constructr from ¢’ by sequentially performing these operations:

1. Remove the variableg.cue andidle from all states.

2. Remove anyransition st-events that only manipulategeue and/oridle. Note that,
due to the previous step, these st-events satistigtdate = newstate.

3. Letac be atype (b) action receiving some message

a) If there is a corresponding type (c) actierf in which m gets processed by call-
ing A-process_message( current_hc) (cf. Observation 6.15), ket andev’ be
the process st-events corresponding ta: andac’. Removeev and modifyev’
such thatmsg(ev') = msg(ev), i.e., thatev’ processes the message originally
processed imv, rather than afiNISHED-PROCESSING message.

b) If there is a corresponding type (c) or (d) actiati in which m gets dropped, i.e.,
m gets removed fromueue in Line 13 without being chosen agxt, let ev and
ev’ be theprocess st-events corresponding t@ andac’. Move ev into the future
such thatime(ev) = time(ev’) andev is right beforeev’.

4. Remove alprocess andsend st-events that are (still) processing or sendinig (SHED-
PROCESSING messages.
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Since all of the operations used to constrtictan be reverted by using the rules outlined
in Section 6.1.2¢r’ is a simulation-invarian¥-extension oftr [L3]. We now need to show
thattr is a st-trace of-u.

74

e Every job inru is correctly mapped to st-eventsiin: Every jobJ in ru is based on

either a type (a) or a type (c) actiar in ex. Following Definitions 5.3 and 5.4, the
st-events produced by mapping are the same as the st-events produced by mapping
J, with the following differences:

— The st-events mapped lay contain the simulation variables. However, they have
been removed by the transformation frem to ¢r.

— If acis atype (c) action, itprocess st-event processes®I{ISHED-PROCESSING
message rather than the algorithm message received inttesgonding type (b)
action. The creation ofr (step 3a) also ensures that the correct message is used
intr.

— If acis a type (a) action anghsg(ac) is an input message, there is an additional
input st-event before thgrocess st-event. By construction ofu, however, there
is a receive event at the time of the type (a) action corredipgnto theinput
st-event intr.

Every drop event inu is correctly mapped to arocess st-event intr: Every drop
eventD in ru is based on a type (c), (d) or (e) actienin ex.

With respect to type (c) or (d) actionsg_. g ensures that drop events are created only
for messages that are removed frgmeue without being chosen asext during that
action. The creation ofr (step 3b) ensures that a correspondimgcess st-event év)

is present irtr.

With respect to type (e) actions, note that no messages matrevith this kind of action
(i.e., there are naend st-events) and that the creation tfremoves alltransition
st-events corresponding to that action (steps 1 and 2)jniganly theprocess st-event
corresponding to the drop eventiia.

Every input message receive eventdins correctly mapped to amput st-event intr:
Every receive event inu is based on either a type (a), (b) or (e) action. All of themehav
a correspondingnput st-event intr’ if the received message was an input message. By
construction ofr, theseinput st-events still exist irr.

Every st-event inr corresponds to a job, input message receive event or draft @ve
ru: Every st-event irtr’ is based on an actiar: in exz—in the natural way, as specified
in Definition 5.3. Since the transformatian’ — t¢r does not add any st-events, every
st-event intr is based on an actiotc in ex as well. Consider the different types of
actions:

— Type (a): The st-events i’ contain thesend and thetransition st-events ofA-
process_message(msg, current_hc) and additional stegs by the simulation
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algorithm. The transformation fromr’ to tr ensures that these additional steps
(and only these) are removed. Thus, the remaining st-ewertiscorrespond to
the job.J corresponding tac. If the message received by was an input message,
theinput st-event corresponds to the receive event created withithe; rule for
type (a) actions.

— Type (b): This type of action only performs state transisionr.t. simulation vari-
ables and does not send any messages (i.e., there are ngpootagsend st-
events). In the transformation from' to tr, all transition st-events of this action
are removed during steps 1 and 2. Thecess st-event is either removed (dur-
ing step 3a, if the message gets processed later) or condso the drop event
dropping the message (see step 3b), which is inserted-intyy the T-_. i rule
for type (c)/(d) actions. The only st-event left based os tipe (b) action is one
input st-event, if the received message was an input messageinphisst-event
corresponds to the receive event created byithe i rule for type (b) actions.

— Type (c): As in type (a) actions, the transformation frarhto ¢r ensures that only
the send and thetransition st-events ofAd-process_message(msg, current_hc)
are left, withmsg being the message received in the corresponding type (opact
The transformation front’ to ¢r ensures that therocess st-event intr contains
msg as the received message. Thus,thecess st-event and the followingend
andtransition st-events match exactly with the job created inThe,  rule for
type (c) actions.

— Type (d): Only state transitions involving simulation \&bies are performed. All
of thesetransition st-events are lost during the creationtef As theprocess
st-event processes BAIISHED-PROCESSING message, it is removed as well.

— Type (e): This kind of action gets mapped to the followingegents: Anminput
st-event, ifmsg(ac) was an input message,paocess st-event and one or more
transition st-events only modifying simulation variables. The latiex removed
by the transformation fromy’ to ¢tr, theinput st-event corresponds to the receive
event and therocess st-event to the drop event created By_. i for type (e)
actions.

Thus, we can conclude that is a st-trace ofu [L4]. As A solvesP in s with policy pol
under failure model FAULT-FREKru) ([A1]) andru is a rt-run of A in s with policy pol
under failure model FAULT-FREFru) ([L1]), this (L4]) implies thattr € P (cf. Defini-
tion 5.12)[L5]. Sincetr’ is a simulation-invarianv-extension ofr ([L3]) andtr € P ([L5]),
tr’ € Py; (cf. Section 6.1.2JL6].

As this (L6]) holds for every st-trace”’ of every executiorz of S5, A pol IN s Under failure
model FAULT-FREE(ex) ([D2,D3]), Definition 5.10 states th&; ., SolvesPy; in s under
failure model FAULT-FREE(ex) ([GOAL]). O

6.3.9. Generalization

We finally note that the bound}, < §~ andé&) > §* for all £ in Theorem 6.23 is overly
conservative. The following bound suffices.
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Figure 6.6.: lllustration OQ’MS’A’pOl

Theorem 6.24.Lets = (n,[0,01]) be a classic system arel be a problem. If

e there exists an algorithrod which solves problen® in some real-time system =
(n,[67,6%], [u~, ut]) with some scheduling/admission poljay under failure model
FAULT-FREE(ru),

e 0,

L andéf, > 46", and

e

- + st o
wh —p (5% ~5 ) ~(67~573))

o V:p< 0 Wandp < B W @O W
Koy The) Ol =9(1))+0@=0q))

i b . (65 ~64)(6 ~571))
thenS’_ =, With fi¢y = 2059 and§, = 2@ W00
S Aot Wt o T = 260 00+~
failure model FAULT-FREFKex).

solvesPy; in s under

Proof. Since aIgorither’w,A,pol and its proof are very similar t8; 4 1,
description is given as follows: First, note t >6t eVl 6l > 46", duetod, being
non-decreasing with respect £qcf. Section 3.%). Thus, the extended simulation algorithm

mainly aIIowsé(‘é) to be greater thaa~ for £/ > 1. However, since ) > ;) (again, see
although

Section 3.3), we can ensure that the simulated messagesdielayithin 5(;) andé&),
the real message delay might be smaller tﬁ@p by introducing an artificial, additional
message delay withii&&) — 5(*1 ,6&) — 5(+1 | upon receiving a message sent by a job sending
£ ordinary messages in total. }\Iote that Lemma 6.13, the céistionp and the definition of
4 ensure that such a delay can be estimated. by

Of course, being able to add this delay implies that the @lgormessage is wrapped into

a simulation message that also includes the vallkggure 6.6 illustrates the principle of this
algorithm and the transformation of an executior@()ﬁ 5. A pol into an rt-run. O

only an informal
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7. Optimal Drift-Free Clock
Synchronization

This chapter analyzes thierminating clock synchronizatigoroblem in the drift- and failure-
free case. This problem, which was already presented inddebt2.4 as an example, is
defined as follows:

Definition 7.1 (Terminating Clock Synchronization to withiy). Let theadjusted clock value
ACy(g) be defined agl C}' (time(g)) + sp(g).adj.

e Precondition: Apart from the init messages, there are notinfessages.

Vev € tr: (type(ev) = input) = (content(msg(ev)) = “init" )

e Termination:All processors eventually terminate.

Jg € gstates(tr) : is_finalstate(g)*

e AgreementAfter all processors have terminated, all processors hdjested clocks
within ~ of each other.

Vg € gstates(tr) : is_finalstate(g) = (Vp,q : |[ACy(g9) — ACy(9)| <)

In the classic computing model, a tight bound(df— %)g has been proved in [LL84b] as
the best achievable clock synchronization precision. iitamh, an algorithmA(n,é6,67)
has been given, which guarantees this optimal precisioneryeclassic systenn, [§~,67])
with e = 6T — §~. The algorithm works by sending one timestamped message dx@ry
processor to every other processor, and then computingvitage of the estimated clock
differences as a correction value. Every processor brasides timestamped message as
soon as its init message arrives.

The transformations provided in the first part of this work @ used to generalize these
results to the real-time computing model, resulting in apardound of(1 — %)(a(n,l) +
Pn_yy + (n=2) - pu ) and a lower bound ofl — ;) for the achievable precision:

Theorem 7.2.1n the real-time computing model, clock synchronizatiowittin (1—%)(g(n_1)+
M(+n—1> +(n-2)- %)) is possible.

Proof. The existence of a real-time computing model algorithm exghi this precision will
be shown by applying Theorem 6.11 to the classic computindeialgorithm of [LL84b]

Yis_finalstate(g) <= Vg’ = g:VYp: sp(g) = sp(g")
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(henceforth called “algorithn£ £”). As outlined in Section 6.1.3, terminating clock synchro
nization is a shuffle-compatible problem. For the real-tigystem, we choose some arbi-
trary non-idling scheduling/admission poligyl which does not drop any messages. Algo-
rithm ££ has been shown to be correct with respect to failure modellHAEREEy(ex) in
[LL84b]. Since the algorithm does not use any timer messtugejmplies correctness in the
more relaxed modgl := FAULT-FREE,+latetimers, (ex) (= 0-CRASHy+latetimers, (ex),

as defined in Section 6.2.4). For the real-time computing ehosle choose failure model
C := FAULT-FREEy(ru) (= 0-CRASH)(ru) = 0-CRASH, + precisetimers,). By Obser-
vation 6.9, these choices 6fandC areTr_.c-compatible.

Thus, the only thing left to show is that there exists a fdasitssignment such that =
A~ andét = A*. We can determine general bounds and A+ with some simple ob-
servations: Since, i£L (and, thus, inSz.), all messages are sent as broadcasts o1
recipients, A~ = 5(‘%1). With respect taA™, note that every processor receives exactly one
message from every other processor. The worst-case sodoathe end-to-end delay hence
occurs if alln — 1 messages plus the one init message arrive simultaneouligr. delivery of
these messages (takiﬁgl_l)), the receiver's own broadcast send step (talﬂ@gl)) as well

asn — 2 receive stepsP(zB ) must complete before the last receive step can start. Aerupp
bound on the end—to—enof delay of runni§g, in the real-time computing model is hence
AT =00+ ply + (0=2) pg.

Lets = (n,[07,0"],[u",u"]) be a real-time system in which we want to synchronize
clocks. We know thatL(n, A=, A*) will synchronize clocks to withiny = (1 — 2)(AT —

A7) in the classic systerfn, [~ = A~,6T = AT]). Theorem 6.11 shows th& ;. provides
clock synchronization to withifl — 1)(AT — A™) = (1 — l)(é(tl_l) + 'u'?;z—l) +(n—2)-

n

'u(JE)) - 6@_1)) =(1- %)(E(n—l) + 'u(tz—l) +(n—2)- ,uzro)) in s. O

As far as the time complexity of the above algorithm is conedr(cf. Section 5.5), we
observe that at moét(tl 1 time units after the last init message arrived all proces$awve
all n — 1 messages in their queue (or already processed). Due tadling-scheduling, this
implies a maximum time complexity mﬁax(éz;_l),yz;_l)) +(n—1) -,u(JB , which occurs if
all processors’ init messages arrive at the same time. Ipglmatrast to the classic computing
model, where the time complexity of this algorithm(g1), the worst-case time complexity

in the real-time computing model is henégn).

Likewise, we can use the other transformation to prove thatkcsynchronization closer
than(1 — %)5(1) is impossible in real-time systems. Note that the impobsilin a drift- and
fault-free environment (FAULT-FREfrw)) trivially implies the impossibility in any system
with drifting clocks and/or faulty processors.

Theorem 7.3. In the real-time computing model, no algorithm can synchrerthe clocks of
a system closer thafl — 1)ey).

Proof. Assume for a contradiction that there is some real-time aging model algorithm
A and some scheduling poligyw! which can provide clock synchronization for some real-
time system(n, [§~, 7], [, u"]) to within 5 < (1 — 1)e(;) under failure model FAULT-
FREE)(ru). Applying Theorem 6.24 would imply th@g,S,A,poz provides clock synchro-
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nization to withiny < (1 — 1)(6™ — 6™) for some classic system, [0~ = 6(*1),& = 5;;)]).
This, however, contradicts the well-known lower bound hestLL84b].

7.1. Algorithms

The comparison of Theorems 7.2 and 7.3 raises the obvioustiguneof whether the lower
bound of (1 — %)6(1) is tight in the real-time computing model. In this sectiong will
answer this in the affirmative: We show how the algorithm enéed in [LL84b] can be
modified to avoid queuing effects and thus provides optimratigion in a real-time sys-
tems = (n,[07,6"], [u",puT]). We will first present an algorithm achieving a precision
of (1— %)g(n,l) (which equalg1 — %)5(1) if a constant-time broadcast primitive is available)
and then describe how to extend this algorithm so that itexvelsi(1 — %)5(1) in every case.

7.1.1. Generalization of Existing Results

Two lemmas from [LL84b] can be generalized to our settingt Ae and A™ be the lower
and upper bound on the end-to-end delay.

Lemma 7.4. If ¢ receives a timestamped message fpowith end-to-end delgyuncertainty
ea = At — A7, ¢ can estimate’s hardware clock value within an error of at most.

Proof. (Similar to Lemma 5 of [LL84b].) We defin® := HC,(t) — HC,(t) to be the actual
difference between the hardware clockspandg (a constant, as clocks do not drift) afd
to be the estimated difference, as estimated.byhus, we have to show thatcan calculate
somekL such thalE — D| < .

Let ¢ be the time by whichy sends its clock value (more precisely: the start time of tie |
in which p sends its clock value) artdlbe the time by whicly starts processing this message.
Let A be the arithmetic mean between the lower and the upper bautiteend-to-end delay,
i.e., A = A~ 4=, Procesg calculates the estimate as follows:= HC),(t) - HCy(t')+ A,
where HC)(t) is the timestamp in the messadé(,(t') is the hardware clock reading of the
job processing the message ahdnust be known to the algorithm.

|E — D| =|HCy(t) — HC,(t') + A — D|

=|HC,(t) — HC,(t') + A| by definition of D
=t —t + A since clocks run at the same rate as real-time
=|A— (' —1)]

Ast’' —tranges fromA~ to AT, the expression\ — (¢’ — ¢) ranges fromA — AT = —<&

toA—A—:%A. O

2Recall that the end-to-end delay is defined as the time bettheestart of the job sending the message and the
start of the job processing the message.

81



7. Optimal Drift-Free Clock Synchronization

1 var estimates—empty

2 var adj

3

4 procedure process_message(msg, current_hc)

5 /% start alg. by sending SEND) to proc.0 =/

6 if msg = GEND)

7 send @[IME, current_hc) to all other processors
8 elseif msg = (rIME, remote_hc)

9 estimates .add(remote_hecurrent_hc +¥)
10 if estimates .count = ID
11 set timer GEND) for current_hc +max(é — 6~ + u+, ut)
12 if estimates .count =-pl
13 adj«— (3 estimates) /n

Figure 7.1.: Clock-synchronization algorithm to withip, ), code for processafD

Lemma 7.5. If every processor knows the difference between its ownaeelclock and the
hardware clock of every other processor within an error ofraist<”, clock synchronization
to within (1 — 1 )err is possible.

Proof. The proof can be obtained by a simple adaption of Theorem EL&4b] to a general
err. O

7.1.2. Optimality for Broadcast Systems

Note. As all jobs in the algorithm of Figure 7.1 send either zera erl messages, we will use

the abb_reviationé'—, &+, u—, pt andé to refer t08, 1y 1y 1) 1) @NDE(n 1),
respectively.

In the introduction of Chapter 7, the principle of algorithif [LL84b] has been described.

It can easily be modified to avoid queuing effects by “sezinfi” the information exchange,
rather than sending all messages simultaneously.

The madified algorithm, depicted in Figure 7.1, works asciwlt: Then fully-connected
processors have ID& ...,n — 1. The first processor0j sends its clock value to all other
processors. Processowaits until it has received the message from processot, waits for
anothemax(é — 6~ + pt, /ﬁ) time units and then broadcasts its own hardware clock value.
That way, every processor receives the hardware clock sadfiell other processors with
uncertaintye, provided that no queuing occurs (which will be shown beloW)is information
suffices to synchronize clocks to withjh — %)é. We assume here that only one init message
is sent (only to process®), as additional init messages could cause unwanted queffegis
and would hence necessitate a second round of message ggshan

Lemma 7.6. No queuing occurs when running the algorithm in Figure 7.1.

Proof. Note that processaronly broadcasts its message after it has received exaatlgs-
sages. As processor starts the algorithm and every processor broadcasts ordg,ahis
causes the processors to send their messages in the orderazding processor number. For
gueuing to occur, some processor must receive two messaties wtime window smaller
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than ;ﬁ. It can be shown, however, that the following invariant tsofdr all ¢: All receive
events up to time on the same processofa) occur in order of increasing (sending) processor
number (including the timer message frantself) and (b) are at Ieagztlr time units apart.

Assume by contradiction that some message from procgsser0 arrives on processor
1 at timet, although the message from procesgor 1 has arrived (or will arrive) at time
t'>t— ;ﬁ. Choose such that is the first time the invariant is violated.

Case 1j =1, i.e., the arriving message s timer message. This leads to a contradiction,
as due to Line 11, the timer message must not arrive earﬁmﬂh time units afterj — 1's
message, which has triggered the job sending the timer messa

Case 2 j # i. As j's broadcast arrived dt it has been sent no later than- 6'* Proces-
sorj’s broadcast is triggered by a timer message septdjpb startingmax (& — S~ +ut, /ﬁ)
time units earlier, i.e., no later than- 6~ — (¢ — 6~ +p+) = t — & — u+. The job sending the
timer message has been triggered by the arrivgl f1’s broadcast, which must have been
sent no later thah— & — M+ —6~.If j — 1 =i, we have the required contradiction, because
© must have received its timer message’at ¢t — & — /ﬁ -6 <t-— /ﬁ long ago (sinceé
can only send its broadcaatter receiving its own timer message). Otherwisej i 1 # 4,
processj — 1's broadcast arrived atno later thart — & — ;ﬁ — 0 46t =t— ;ﬁ, also
contradicting the assumption. O

Using this lemma, it is not difficult to show the following Tovem 7.7:

Theorem 7.7(Optimal broadcasting algorithm)he algorithm of Figure 7.1 achieves a pre-
cision of(1 — %)é, which is tight if communication is performed by a constimie broadcast
primitive, i.e., ife,_1) = (). It performs exactly: broadcasts and has a time complexity
that is at least2(n).

Proof. On each processor, thestimatesset contains the estimated differences between the
local hardware clock and the hardware clocks of the othergssors. As no queuing occurs
by Lemma 7.6, the end-to-end delays are just the messaggsdélae 9 in the algorithm of
Figure 7.1 ensures that the estimate is calculated as skitifihe proof of Lemma 7.4. Thus,
the estimates have a maximum error%ofAccording to Lemma 7.5, these estimates allow the
algorithm to calculate an adjustment value in Line 13 thatrgatees clock-synchronization
to within (1 — 1)z,

With respect to message and time complexity, the algoritbmowisly performs exactly:
broadcasts, and the worst-case time between two subsdujeanicasts isax(6+, 2¢) + u+
(= the timer delay plus one message delay). Thus, the timglexity is at least linear im,
and depends on the complexny&%, andu( 0 W.r.t. /. O

7.1.3. Optimality for Unicast Systems

Note. As all jobs in the algorithm of Figure 7.2 send either zerom messages, we will use
the abbreviations—, 6+, W ;ﬁ andé to refer toé(*), 5(1) (1)’ M(1) ande ), respectively.

i @ j andi © j are defined a$; + j mod n) and (i — j mod n), respectively. These
operations will be used for adding and subtracting proaesslices.
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7. Optimal Drift-Free Clock Synchronization

var estimates— empty
var adj

1
2
3
4 procedure process_message(msg, current_hc)
5 /= start alg. by sending SEND, 1) to proc.0 */
6 if msg = GEND, target)
7 send (IME, current_hc) to target
8 if target + 1 mod n# ID
9

set timer GEND, target + 1 mod n) for current_hc;ji+

10 elseif msg = (TIME, remote_hc)

11 estimates .add(remote_hecurrent_hc +‘57J2“5+)

12 if estimates .count = ID

13 set timer GEND, ID +1 mod n) for current_hc tax(¢é — 6~ + 2u+, ut)
14 if estimates .count =-Al

15 adj«— (3 estimates) /n

Figure 7.2.: Clock-synchronization algorithm to withipy ), code for processafD

The algorithm of the previous section provides clock syoniration to Within(l—%)s(n,l).
However, unless constant-time broadcast is availapjewill usually be smaller tham,,_ ).
The algorithm can be adapted to unicast sends as followd-{gaee 7.2):

Rather than sending all — 1 messages at once, they are sentir 1 subsequent jobs
connected by “send” timer messages, each sending only ossage These messages are
timestamped with their corresponding HC value, e.g., thesage sent during the second job
will be timestamped with the hardware clock reading of tleisand job.

By the design of the algorithm, every processgoes though five phases. The only excep-
tions are processar, which starts at phase 3, and processor 1, which skips the second
receive phase.

1. First receive phasei receivestiIME messages from all processdf ... ,i — 1} in the
order of increasing processor number.

2. Wait phase After having received — 1's TIME message, Line 13 causet wait for
W :=max(é — 0~ + 2u*, ut) time units.

3. Send phasei sendsTIME messages to all processors (each in its own job, all ,jdbs
time units apart).

4. Second receive phaséreceivesTIME messages from all processdfis+ 1,...,n—1}
in the order of increasing processor number.

5. Terminated phaseNo more messages are receivétias terminated.

We will use the following abbreviations to label messaged te corresponding receive
events and jobs processing (not sending) theme,_. ; (TIME message fromto j), SEND; _.
(SENDtimer message occurring eninitiating the send of IME;_, ;) andwAIT; (= TIME;_1—;,
because it initiates the wait phase)egin(...) denotes the beginning of the correspond-
ing job processing the message. To ease analysis, we asstuingia” no-op job WAIT
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7.1. Algorithms

with begin timebegin(WAIT() = begin(SENDy 1) — W. (Recall thatlV, the wait time, is
max (¢ — 6~ +2ut, /fr).)

See Figure 7.3 for an example. Note that every processossxattly oneriME message
to every other processor.

\ TIME;—1—; = WAIT;
[ WAIT; | [SEND; —iy1] oo [SEND; —;1 TIME 1317

SEND; —i+1

TIME;—i+1 = WAIT ;1 TIME ;41—

TIME; —1—i+1
) TIME;_1_;
i+ 1 i—1—i+1

Figure 7.3.: Processon0 < i < n — 2) switching from first receive phase to wait, from wait
to send, and from send to second receive phase.

............ SEND 11, —si| oovrrerorenns

SEND;+1,—i+2

Lemma 7.8. If ;ﬁ > 0, the following invariant holds for all rt-runs of the algehim in Fig-
ure 7.2 under FAULT-FRE§ru): All messages received on some procegsue received in
the following order:(TIMEg_;, ..., TIME;_j_,; = WAIT;, SEND; _igp1, .- -, SEND; _ig(n—1)»
TIME;41—4,--., TIME,—1—;). All receive events on the same processor are at Iﬂésitime
units apart, which implies that no queuing occgrs.

The begin times o6END jobs on the same processor are exagily time units apart.
SEND; _.ig1 arrives atbegin(WAIT;) + W.

Proof. Let Ry be thek-th receive event in the rt-run. We will show by induction brthat
all receive events occur at the right time and in the righeardnd, thus, they are processed
immediately without queuing delay.

Initially, R; contains the init messag&ENDy .1, Which is the correct first message for
processof). Assume that the condition holds fé, ..., R;_; and consider the following
possibilities in whichRj (on processoi at timet) could violate the invariant by arriving too
early:

(TIMEQ—j, . . ., TIME;_1—; = WAIT;, SEND; i1, - - - y SEND; _ig(n—1)s TIME 415 - - - , TIME j,—1—4)

~~

1 2 3 4 1

1. First/second receive and wait phasAssume for0 < j < ¢ (first receive phase/wait
phase) oi+1 < j < n (second receive phase) tiame ;_.; arrives at < begin(TIME j_1_;)+
put. TIME —,; has been sent no later thar- 6~ by j's SEND; _,; job. As the invariant

3Forp+ = 0, it is obvious that no queuing occurs.
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holds for all previous receive events (asEND; _.; causally precedeBME ;_.;), the be-
gin times of the((: © 1) © j) previous send phase steps of proceéSEND; . ja1, - - -,
SEND;, 1) and SEND;,; are exactlyu™ time units apart, anavAIT ; starts at least
€ — 0~ + 2ut time units before the first send phase step. This means that

begin(WAIT ;) < t—6— —((i01)0f)ut —(E—6—+2ut) = t— (i) ut —é—pu™.
WAIT ; = TIME ;_;_.; has been sent during— 1's SEND;_; _.; job. Thus,
begin(SENDj_1 ;) <t — (i @j),zfr —¢— /ff — 5.

Clearly, SEND;_1 _.; refers to the firssEND job onj — 1. TIME;_;_,; is sent during
SEND;_1,—;, Which starts exactlyi © j)u* time units later:

begin(SENDj_1 ;) < t— (z'@j),zfr e (z’@j)/fr —t—c—pt—o-.
TIME j_;_,; arrives at mosd+ time units later,
begin(TIME j_1_,;) <t —¢& — pt — 6= 46+t =t — pt,
contradicting the assumption thak begin(TIME j_1_;) + ut

2. Wait— send phaseAssume thesEND; _.;q,1 timer message arrives@at- begin(WAIT ;)+
W. As theSEND; _;q1 timer is set inwAIT; to W, this is a contradiction.

3. Send phaseAssume fori # j andi # j@®1 thatSEND; _, g arrives at # SEND; _,;+
put. As theSEND; _, g1 timer is set iINSEND; _,; to i+, this is a contradiction.

4. Send— second receive phaséssume fori < n — 1 thatTIME;;; arrives att <
begin(SEND; _ig(m—1)) + pt (= begin time ofi’s last send jobrx ™). TIME; 1 .; was
sent duringseEND; 41,—.; = SEND; 11, (i+1)a(n—1), Which started no later than— 5.
As the invariant holds for all previous receive evelsBND; ;1)1 Started no later

thant — 6~ — (n — 2)ut. This means thalvAIT ;41 = TIME;_;4; started no later than
t—90- — (n—1)pt andTIME;_,;41 was sent (by jolsEND; _.; 1) no later than

begin(SEND; i) <t — 20— — (n— 1)+
As thesEND jobs are exactlyj+ time units apart,
begin(SEND; _ign-1)) <t — 20— — (n—Dpt + (n—2ut =t —20— — pt
which contradicts the assumption thiat begin(SEND; _g(n—1)) + ;ﬁ. O

We can apply Lemma 7.4 to the algorithm of Figure 7.2 as wedlulting in estimates with
a maximum error of§(2—1) rather thana("T‘l). Thus, by Lemma 7.5, clock synchronization to
within (1 — %)5(1) can be achieved. As all job durations and message delaysdepandent

of n this time 6;5) rather tharﬁ(f%l), etc.), the time complexity of this algorithm @&(n).
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7.2. Lower Bounds

In this section, we will establish lower bounds for messagg tane complexity of (close to)
optimal precision clock synchronization algorithms.

In particular, for optimal precision, we will prove that e’dst%n(n— 1) = Q(n?) messages
must be exchanged, since at least one message must be seavenyelink. This bound is
asymptotically tight, since it is matched by the algorithimshe previous section.

A strong indication for this result follows already from thverk of Biaz and Welch [BWO1].
They have shown that no algorithm can achieve better p(m:thhn%dmm(G) for any com-
munication networkG, with diam(G) being the diameter of the graph when the edges are
weighted with the uncertainties: In the classic computiraged, a fully-connected network
with equal link uncertainty can achieve no better precision thé@ whereas removing one
link yields a lower bound of. Thus, after removing one link, the optimal precisior{ bf %)g
shown by [LL84b] can no longer be achieved.

Unfortunately, the proof from [BWO01] cannot be used dingdtt our context to derive
the message complexity bound mentioned above: While thew #hat (1 — %)g cannot be
achieved if the system forbids the algorithm to use one systeosen link, we have to show
that if the algorithm is presented with a fully-connectedwegk and decides not to use one
algorithm-chosen link (which can differ for each executitnun) dynamically, this algorithm
cannot achieve optimal precision. A shifting argument Emio the one used in their proof
(Theorem 3 of [BWO01]) can be used, however.

Additionally, we will show that in the real-time computingoakel, the message and time
complexity of clock synchronization to within suboptimaépision also depends on the com-

plexity of 6&) and #Z}) with respect t/.

7.2.1. Shifting
A common technique in the classic computing model for prgyawer bounds for the clock
synchronization problem shifting Shifting an executionx of n processors byzg, ..., 2,—1)

results in another sequeneg’, where
e actions on process@; happening at real-timein ex happen at real-time— x; in ex/,

e the hardware clock of processpyris shifted such that all actions still occur at the same
hardware clock time as before, i.éI,C;f/(t) = HCJ¥(t) + 4,

Note that this sequence might not be a valid execution, asages could be received before
they are sent.

The same technique can be applied to the real-time compuotadgl: Shifting a rt-runmru
of n processors byzy, ..., z,_1) results in another sequence’, where

e receive events, jobs and drop events on procgssstiarting at real-time in ru start at
real-timet — z; in ru/,

¢ the hardware clock af; is shifted such that all receive events, jobs and drop e\stifits
occur at the same hardware clock time as before,Hé};j"(t) = HC}!(t) + ;.
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We assume that, just like in a valid rt-run, the receive evamnt jobs in a shifted rt-run are
ordered by their occurrence time and begin time, respdgtivgart from that, the reordering
must preserve the original ordering as much as possiblegiiicplar, if two elements’ and
b’ occur/start at the same timén r«’, anda < b holds for the corresponding elementsrim,

a’ < b must hold inru/.

Observation 7.9. ru/, the sequence created by shifting some valid rtsrunsatisfies proper-
ties RU1-RU8 except for the fact that message sends can lateuthan the message arrival,
thus violating message causality. It hence suffices to shateiery message is sent before it
is received to prove thatu' is a valid rt-run.

Lemma 7.10. If ru conforms to FAULT-FREE rv’ is a shifted rt-run of-u and all messages
in ru’ obey the message delay bound(s, 5], thenrv’ conforms to FAULT-FREE

Proof. Follows from the fact that all conditions of FAULT-FREEXcept foris_timely_msg
are unaffected by the shifting operation. O

7.2.2. Environment

Letc € RT be a constant angl = (n,[6~,d"], [, u"]) be a real-time system with >

2. Assume that4 is an algorithm running with some scheduling/admissioricgopol and
providing clock synchronization to withia € ;) in s under failure model FAULT-FREE Let

ru be a rt-run of4 with policy pol in s under FAULT-FREE where the message delays of all
messages are the arithmetic mean of the lower and upper bdtind, modifying the delay of
any message by« ,)/2 still results in a value within the system model bounds. Tinetion

of all jobs sending messages is,,. Since admission control is not needed in a fault-free

. ()
environment, we assume that no messages are dropped.by

7.2.3. Message Graph Diameter

Definition 7.11. Let the message graplof a rt-run ru be defined as an undirected graph
containing all processors as vertices and exactly thoks s edges over which at least one
message is sent ifu.

Lemma 7.12. The message graph of. has a diameter o2c or less.

Proof. Assume by contradiction that the message graph has a diamete2c. Letp andq
be two processors at distante LetIl; be the set of processors at distaddeom p. We can
constructru’ by shifting all processors ifil; by d - g(1)/2, i.e., all receive events and jobs on
some processor ifly happend - €(,)/2 time units earlier although with the same hardware
clock readings (see Figure 7.4 for an example). As procesedi, only exchange messages
with processors il 1, I1; andIl;, 1, message delays are changed-y,)/2, 0 or e /2.
Thus, by Lemma 7.10;v/ is a valid rt-run conforming to failure model FAULT-FREBE

Let A and A’ be the final (signed) differences between the adjusted slo€k andq in
ru andru’, respectively. As both rt-runs conform to FAULT-FREE&Nd A is assumed to be
correct,|A| < c- ey and|A'| < c- ey
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By definition of shifting, HC,(t) = HCy(t) and HCy(t) = HCy(t) + D - £1y/2. Thus,
A" = HCL(t) +adj, — (HCY(t) +adjy) = HCy(t) +adj, — (HCy(t)+D-£(1y/2+adjy) =
A—-D- 6(1)/2.

Letru” beru shifted by—d - £(,)/2. The same arguments hold, resultingiff = A+ D--
ey/2. As|A[, |A’] and|A”| must all be< ¢ - £(1), we have the following inequalities:

Al <c-eq
|A—|—D-6(1)/2| <c-eq
|[A=D-eu)/2 <c-eq

which imply thatc > D /2 and provide the required contradiction b > 2c. O

p€llp |

Shifted

Figure 7.4.: Shifting byl - £()/2 with ¢(;) = 4

7.2.4. Message Complexity

For clock synchronization to within some < ¢(;) (i.e., ¢ < 1), Lemma 7.12 implies that
there exists a rt-run whose message graph has a diame2ei.e., whose message graph is
fully connected, and, therefore, hég‘;—l) edges. This leads to the following theorem:

Theorem 7.13. Clock synchronization to within < £(;) has a worst-case message complex-
ity of 2(n?).

Section 7.1 presented algorithms achieving optimal pi@tisf (1 — %)5(1) withn(n—1) =
O(n?) messages. Theorem 7.13 reveals that this bound is asyoatiptight. A weaker
lower bound can be given for suboptimal clock synchronarably using the following simple
graph-theoretical lemma:

Lemma 7.14. In an undirected graph withh > 2 nodes and diameteb or less, there is at
least one node with degree °+Y/n.*

4A result with similar order of magnitude can be derived frdra Moore boundwhich states that an undirected
graph with maximum degre£and diameteD has no more thah+d +d(d—1) + - - - + d(d — 1)~ nodes
[GYO04].
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Proof. Assume by contradiction that all nodes have a maximum degfreeme non-negative
integerd < P*/n. Asn > 2,d = 0 ord = 1 would cause the graph to be disconnected,
thereby contradicting the assumption of bounded diamé&tars, we can assume that> 1.

Fix some node. Clearly, afterD hops, the number of nodes reachable frofincluding
p at distance)) cannot exceed 2 ' = =L < gD < pry/pPt — . As we cannot
reachn nodes aftetD hops, we have the required contradiction. O

Combining Lemmas 7.12 and 7.14 shows that there is at le@spatessor imu which
exchanges (= sends or receives) at léa&st{/n| messages. More general:

Theorem 7.15. When synchronizing clocks to withine(; in some real-time systesj there
is at least one FAULT-FREHt-run in which at least one processor exchan@ést/n| mes-
sages.

Corollary 7.16. When synchronizing clocks to withins 4, there is no constant upper bound
on the number of messages exchanged per processor.

It is, however, possible to either bound the number of rexbimmessagesr the number
of sent messages per processor: Section 7.3.1 presentgaithah synchronizing clocks
to within (;) where every processor receives exactly one message. Orthbehand, the
algorithm in Section 7.3.2 also achieves this precisiorbbouinds the number of sent messages
per processor by 3.

7.2.5. Time Complexity

Theorem 7.15 immediately implies a lower bound on the woaste time complexity of
any algorithm that synchronizes clocks to within €(;): Some procesp must exchange
m := | **%Y/n| messages, soneof which are received and the remaining ones are sent by
p. Recalllng(5+) < Eé(ﬁ) from Section 3.3, the algorithm’s time complexity must be at least
minf (k- it o 5(J;n_k)) 6 Clearly, k‘M(o) is linear ink, so the interesting term i&(*m_k)
leading to the following corollary:

Corollary 7.17. If multicasting a message in constant time is impossibtekcsynchroniza-
tion to within a constant factor of the message delay ungastacannot be done in constant
time.

In the case of optimal precisiom, processors need to send and process at Fé(%?lﬁ)
messages, so no algorithm can achieve a run time betterﬂ@bﬁr or better thartS(*n 1
(assuming optimal parallelism). This shows that the atgmlpresented in Section 7.1.3 is
not only tight regarding precision but also has asympttticgtimal time complexityO(n).

SNote thatzi;;) < £6(+1) follows directly from(S( ) < 5 y + 5<J)
5This bound cannot be reduced to the minimum of both extremes;ecounterexample,u(o) =2, 5 =

{3,6,6,6,9,12}: k = 2 is smaller thark = 0 or k = 6.
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©)

var adj
procedure process_message(msg, current_hc) (INiT)
/% start alg. by sendingI{IT) to some procs/ /

if msg = (NIT)
send current_hc to all other processors O O

adj«—0
else
- +
@)
@)

©)

0w ~NOO O WNPR

. 5 +6
adj — msg— current_hc +-n=t_ (=1

©

Figure 7.5.: Star Topology-based Clock Synchronizatiogofithm

7.3. Achievable Precision for o(n?) Messages

In some scenarios, a quadratic number of messages mightobeostly if a precision of
(1—%)5(1) is not required. Clearly, every clock synchronization aitdon requires a minimum
of n — 1 messages; otherwise, at least one processor would natipaté. Interestinglyp — 1
messages (plus one external init message) already suffigehteve a precision of(;) by
using a simple star topology-based algorithm, presentdkifiollowing subsection.

7.3.1. Algorithm With Least Number of Messages

Figure 7.5 is actually a simpler version of the algorithmsemted in Section 7.1: Rather than
collecting the estimated differences to all other processand then calculating the adjustment
value, this algorithm just sets the adjustment value to #tenated difference to one desig-
nated master processor, the one receiimgt). Lemma 7.4 shows that the error of these
estimates is bounded by:. Thus, setting the adjustment value to the estimated dfffez
causes all clocks to be synchronized to withip_,).

If 6=, 6%, p~ andp™ are independent from (i.e., if constant-time broadcasting is pos-
sible), e(,—1) = £(1) and the algorithm achieves this precision in constant timet( n).
Otherwise, the following modification puts the precisiomaioto (;) in the general case as
well:

e Do not send all messages during the same job but during sudsegpbs on the “mas-
ter” processor.

o Replacey,, ) + 5&71) in Line 9 with 4, + 56).

The algorithm still exchanges only— 1 messages and has linear time complexity w.r.t. n.
As Theorem 7.13 has showgy, is the best precision that can be achieved with less than
a quadratic number of messages. As Corollary 7.17 has shthimprecision cannot be
achieved in constant time in the general case.
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7. Optimal Drift-Free Clock Synchronization

7.3.2. Algorithm With Constant Bound on Number of Sent Messa ges
per Processor

This is an informal description of a proof-of-concept aifun showing that clock synchro-
nization to withine ;) is possible with a constant bound (3 messages) on the nurhbees
sages sent per processor.

All processors send their current hardware clock readingotoe designated processpr
This must be done in a serialized way to avoid queuing, ang, tiequires two sent messages
per processor (one messageytand another message to the next processor; depending on the
exact system parameters, additional local timer messaigs be required to avoid queuing).
After this is doneg knows the difference between its own hardware clock and ¢ndvware
clock of any other processor to within,). Clearly, this estimate can be used to calculate an
adjustment value fgy, which, when applied, causes the clockg ahdg to be synchronized to
within g1y /2. To inform the other processors about their adjustmenteglusends the array
of all adjustment values to some procesgpwhich passes them on the next processor and
so on (requires one message per processor) until all pracselave received their adjustment
values. These values are finally applied, resulting in anadhMelock synchronization precision
of €(1)-
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As a first step towards optimal-precision clock synchrotiigain real-time systems wittrift-
ing clocks, we direct our attention to a deceptively simple sablem of clock synchroniza-
tion, namely,remote clock estimationAs outlined in the introduction, any existing clock
synchronization algorithm can be reviewed in terms of a gersructure [Sch86], which
consists of (1) detecting the need for resynchronizatigheétimating the remote clock val-
ues, (3) computing a (fault-tolerant) clock adjustmentiealand (4) adjusting the local clock
accordingly. Our results on remote clock estimation arechgpivotal building blocks for
finding and analyzing optimal algorithms for both externad @ternal clock synchronization
in real-time systems.

In this chapter, we provide an optimal solution for the pewblof how to continuously
estimate a source processor's clock; the algorithm is cemphted by a matching lower
bound on the achievable maximum clock reading error. Ouilt®precisely quantify the
effect of system parameters such as clock drift, messagg delcertainty and step duration
on optimal clock estimation.

Since optimal remote clock estimation is trivially unsdil@in case of just a single crash
failure, we assume a failure-free two-processor systerh ditfting clocks. Note carefully,
however, that this does not restrict the applicability of oesults to fault-free distributed
clock synchronization algorithms: As outlined above, faalerance in clock synchronization
is usually maintained by choosing a fault-tolerant “cogegrce function”, which calculates
some correct new clock adjustment value despite some feartipte clock readings. In fact,
Chapter 9 will demonstrate how to incorporate our optimatklestimation method in existing
fault-tolerant clock synchronization algorithms.

8.1. Interval-Based Notation

A natural way to represent remote clock estimations would hele(value, margin), with
value representing the expected value of the remote clocknaacyin the absolute deviation
from the remote clock’s real value, i.egmote_clock € [value—margin,value+margin].
With non-drifting clocks, this works well [LL84b, MS06a]. divever, consider the two cases
in Figure 8.1, in whichp tries to guessrc’s value at timet,. by evaluating a timestamped
message with delag [6—, 4] and clocks with maximum drifps,.. andp,.

In the first casegrc is a processor with a slow clock and the message is fast; isebend
casesrc’s clock is fast but the message is slow. Thus, at timerc’'s hardware clock reads
HCse(ts) + 0~ (1 — psre) in the first andH Ci,(t5) + 67 (1 + psre) in the second case. In
the drift-free caseds,.. = 0), p can assume that-c's clock progressed b\fgf”;—‘S+ =0 +5
and add this value té7C,.(ts), which is contained in the message. This results in a good
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t, t,
» [
+
5 )
ts ts
Src
slow fast

Figure 8.1.:p receiving a timestamped message from.

estimation of HC,.(t,): It matches the expected value #fC;,.(t,), provided message
delays are uniformly distributed, with a maximum error margf +¢ /2.

In the drifting case, the arithmetic mean®f(1 — ps,.) (= the progress ofrc in the first
case) and ™ (1 + ps) (in the second case) & + 5(1 + psc), Which is larger thad— + .
Thus,p can either estimaterc’s clock to be

o HC(ts) + 6~ + 5(1 + psre), Which makes for a nice symmetric error margin of
(67 psre + 5(1 + psre)), OF

o HC.(ts) + 6 + 5, which is the expected value, but which has asymmetric error
margins[— (5 + 6~ psre), +(5 + 07 psre).

To avoid this problem, we assume thabutputs two valuesst~ andest™, such that
src’s real value is guaranteed to lee [est—,est™]. Since we want to prove invariants on
[est™, est™], although there might not be a computation event at everg tinwe define
est, (g) andest;;(g) at some global statgon processop as functions of the current hardware
clock reading,H C),(time(g)), and the current local statg(g) of p. Hence, the remote clock
estimation problem is formally defined as follows:

Definition 8.1 (Continuous clock estimation withif). Let src (sourcg andp be processors.
Eventually,p must continuously estimate the hardware clock valuerefwith a maximum
clock reading errorl". Formally, for all st-tracesr:

Jevstapie € 1 1 Vg = e€Vstaple -
HCyc(time(g)) € [est, (g),est (9)] A est) (g) — est, (g) <T

8.2. Estimating a Remote Clock

The clock estimation algorithm presented in this sectiolh nepeatedly send messages from
srctop as fast as possible.

8.2.1. System Model

The following parameters specify the underlying system:
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8.2. Estimating a Remote Clock

[6—,07]: Bounds on the message delay.

° [u(‘o),/%)]: Bounds on the length of a job processing an incoming messeigfeout
sending any (non-timer) messages. In the algorithm of Ge@&i2.2, all jobs om fall
into this category.

° [u(‘l),ua)]: Bounds on the length of a job processing an incoming messadjeending
one message to the other processor. In our algorithm, adl @hsrc fall into this
category; any such job is triggered by a timer message (an@ut imessage, in case of
the first job).

e p, andp,.: Bounds on the drift op andsrc, respectively. We assunte< p < 1, for
bothp = p, andp = pgyc.

To circumvent pathological cases, we also need to assurhe tha

:ua) > ,uzB)- (8.1)

Otherwise, the adversary could create an rt-run in which‘tbeeiving” computing steps at
p take longer than the “sending” computing stepsrat causingp’'s message queue to grow
without bound. Note that eq. (8.1) can also be interpretea laandwidth requirement: The
maximum data rate ofrc must not exceed the available processing bandwidgh(iatluding
communication).

Thus, in terms of the model introduced in the first part of thigk, we assume a real-time
system withn = 2 satisfying eq. (8.1) and a failure model FAULT-FREE ,,, which is
a natural extension of FAULT-FREEu) to the case of two different hardware clock drift
bounds!

8.2.2. Algorithm

Consider the algorithm in Figure 8.2, which lets: send timestamped messagep &s fast as
possible. Processprdetermines an estimate ferc’s clock by using the most recent message
from src: While the formula used for the lower error margint~ is straightforward €st—
increases witluge, but with a factor< 1 due top’s drift), the fact that the upper error margin
est™ stays constant as soon as the last messagedrorns older than(uzg‘2 + ua))(l — Pp)
might seem counter-intuitive, because it means that, amghenessage frormarc gets older,
the clock reading erragst™ — est™ of the estimate becomesnallerthan it was immediately
after receiving the message.

The explanation for this phenomenon is that, in a system reithble links, a lot of infor-
mation can be gained fromot receiving a message. As we will show in the next section, the
end-to-end delaw, i.e., the message delay plus the queuing delay, of evelgvaet” mes-
sage iss [6—,47"] in the model of Section 8.2.1. If the last messagérom src is ua) +

time units old (for some: > 0, plus;%) for processing on the receiver side, plus some drift

'Formally, the failure model specification of Section 4.Z2viodified such thatp : bounded_drift(p, p) is
replaced withbounded_dri ft(src, psrc) A bounded_drift(p, pp).
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Processorsrc

1 procedure process_message(msg, current_hc) = start alg. by sendingSEND NOW) to srcs/
2 send current_hc tp

3 set GEND Now) timer for current_hc  +# will arrive at end(current_job) */

Processorp
var rcv_hc «— —oo I+ local time of receptions/
var send_hc— —oo /% remote time of sending/

1

2

3

4 [x parameter current_hc of the following functions omitted forevity =/
5 function age = current_hc— rcv_hc

6 public function est™ =send_hc €1 — psrc) (6~ + age/(1+ pp))

7
8
9

public function est™ =send_hc 1 + psr.c) (5+ + min{uz;) + uzrl), age/(1 — pp)}>

procedure process_message(msg, current_hc)
10 var HCy. +— msg
11 if HCsr.>send_hc
12 rcv_hc «— current_hc; send_he- HC s, . /% one atomic stepx/

Figure 8.2.: Remote clock estimation algorithm

HCsrc Hcsrc
est™
est™
est™ ; est™
HC, HC,
(a) Naive estimation (b) Considering future messages

Figure 8.3.:p’s estimate ofrc’s hardware clock

factor), we know that this message cannot have had an eedealelayA,, of 5. Other-
wise, the next message’ from src should have arrived by now. Actually, we know thaf,
must be within[6—, 5" — =], which is much more accurate than our original assumption of
[6=,07]. Clearly, the quality op's estimate ofsrc’s hardware clock depends on how well
can estimate\,,,.

As can be inferred from Figure 8.3 and the definitionsgf™ andest™ in the algorithm, the
maximum clock reading error is reached when the messa(g%i)er ua))(l — pp) hardware
clock time units old:

P = maxest™ — est™} = (1+ pure) (5% + (ufy, + )1 = ) /(1= )

— (1= pare) (67 + (i + 1) (1 = pp) /(1 + py))

Note that(/%) +ua)) i;’z (1— psre) can be rewritten aSuZB) +/LZL1)) (1 — psre — 2pp) +,
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8.2. Estimating a Remote Clock
with
+ src
v =2y, + oy (8.2)

denoting a very small term in the order Of 1 p?),2 which is usually negligible. Thus, we
have a maximum clock reading error of

I'=¢+ psre(0 +07) +2(psre + Pp)(ﬂi%) + Na)) —V. (8.3)

8.2.3. Schedulability Analysis

Applying the system model restrictions from Section 8.2.1he algorithm allows us to make
some general observations:

Observation 8.2. Every timer set during some job starts processing at the drilad job.
Formally, for all timer messages:;: (m; € trans(J)) = 3J' : (begin(J') = end(J) A
msg(J') = my).

Observation 8.3. src sends an infinite number of messagep.td he begin times of the jobs

sending these messages are betwe(épand M(+1) time units apart.

Given only FIFO links and a FIFO scheduling policy, a simptalgisis would show that
the end-to-end delag,,,, i.e., the message (transmission) delay plus queuing dslegthin
[6—,07], for all ordinary messages.. However, in the general setting with non-FIFO links
and arbitrary scheduling policies, it could, for example the case that a slow (message delay
5%) message is “overtaken” by a fast message that was senbladtarrives earlier. If this fast
message causes the slow one to be queued, the bourdisfexceeded. We can, however,
solve this problem by filtering (Line 11 of the algorithm) rétevant” messages, which have
been overtaken by faster messages and, thus, might havelbages end-to-end delay than
5.

Of course, one obvious solution would be to have the adnrissimtrol component filter
these irrelevant messages, thus preventing them from le#iggeued and allowing us to de-
rive the boundA,,, € [6~, 5] by some very simple observations. However, the remainder of
this section will demonstrate that this is not necessarystywing that the bound is satisfied
even if every message gets queued and filtering is done vitikialgorithm, we increase the
coverage of our result to systems without low-level admissiontrol. Formally, this means
that the scheduling/admission polipyl assumed in this proof can be arbitrary as long as no
messages are dropped.

Let : > 1 denote thei-th non-timer message sent frome (to p). We will show, by
induction ong, that a certain bound holds for all messages. This genetiadwill allow us
to derive the upper bound éf" for the end-to-end delay of relevant messages. First, we nee
a few definitions:

e J;: The sending job of messag¢on processokrc).

2\We usen™ = phy (= max{uz;), f1(1)}) andp = max{psrc, pp} @s abbreviations here.
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e J!: The processing job of messagéon processop).

o Fi:= {r : begin(J]) < begin(J!) Ar > i}: The set of fast’ messages > i, that
were processed (@) beforei. Informally speaking, this is the set of messages that have
overtaken message Note that these messages are not necessadbivedearlier than
1, but processeakarlier.

o f(i) = begin(J;)+0"+3 kg /‘{o)- This is an upper bound on théfishind real
time by which all messages i have been processep}go) denotes the actual processing
time € [M(I)),MZFO)] of messagg (= duration(J})).

Observe thaff (i) > f(i — 1), sincebegin(J;) increases by at Iea&l(‘l), whereas at most
one message (whose processing takes at mp)s)t“leaves” the setF; U {i}.

Lemma 8.4. For all i holds: No later thanf(i), all ij, 1 < j < 14, finished processing;
formally, end(J7) < f(i).

Proof. By induction. For the induction stait= 0, the statement is void since there is no job
to complete £(0) can be defined arbitrarily). For the induction step, we cauae that the
condition holds for — 1 > 0, i.e., that

Vi<j<i—1l:end(J;) < f(i—1) . (8.4)

Assume by contradiction that the condition does not hold foe., that there is somge< i
such thaend(J;) > f(i). Sincef(i) > f(i — 1), choosing somg < i immediately leads to
a contradiction with eq. (8.4). Thus,

end(J!) > f(i) . (8.5)

Assume thabegin(J]) < begin(J!_,). Sinceend(J}) < end(J/_;) < f(i—1) < f(i) by
eq. (8.4), this leads to a contradiction with eq. (8.5). Thagin(J!) > begin(J!_,).

Since J] starts later thary/_,, F;_1 C F; (sincei ¢ F;_, and, thus, allr € F;_j,

r > i— 1, are also inf;). PartitionF; into 7°'¢ = F;_; andF"* = F; \ F;_;. Note that
f@) = fi—1)+ N(E) + #%0) - #Ea)l + Zje}'"ew #{0)-

Lett = f(i) — M@ = 2 jerFnen N{O)- Note thatt > f(i — 1), which means that all
messagesfjf, j < i, and all messages F°¢ have been processed by that time, and that
t > begin(J;) + 6+, which means that messagbas arrived by time. There are two cases,
both contradicting eq. (8.5):

1. There is some idle period in betweemnd f(i): Sincei has arrived by time, this
means that has already been processed by tifi{é), due to our non-idling scheduler.

2. There is no idle period in betweerand f (). Thus, we have a busy period of length
fl)—t= pfo) +Zjef,ww p{o), which is only used to process messages fibfi* and
message (all other messages are done pfi — 1) due to the induction assumption).
This also implies that gets processed bg/(i). O

98



8.2. Estimating a Remote Clock

Src | n
F Max. i) 4

Figure 8.4.: Two consecutive messages fromto p

We calli a “relevant” message if; = (). Thus, the following follows immediately from
the previous lemma and the definition ffi):

Lemma 8.5. The end-to-end delas,,, of every relevant messageis € [6—,5"].

8.2.4. Proof of Correctness

Fix some rt-runru and st-tracetr and letevg e be thetransition st-event of the first
relevant message fromrc to p. Such a message must exist: Due to our non-idling scheduler,
the first message: arriving atp is also the first message being processeg.onhus, 7, =

() (otherwise, it could not be the first message being procgssdich makes it a relevant
message. It will be shown that after;q..., src’s hardware clock stays withip's values of
est” andest™.

Fix some global state = evgape: L€t m be the last relevant message frene to p fully
processed beforg, i.e., whoseransition st-event< g, with ¢; being the time that the job
processingn starts and, being the starting time of the job sending Sinceg > evgapie,
such a message must exist. Observe that Line 11 in the algorithm ensuretsathig relevant
messages cause a state transition thus, s, (g).send_hc = HCj,.(ts) andsy(g).rcv_hc =
HC,(t;). Likewise, as defined in Line 5 of the algorithrage,(g) = HC,(time(g)) —
HCy(t;).

Lett = time(g) andA,,, = t; — t, (cf. Figure 8.4). Note thaf\,,, corresponds td,,, the
message delay, plus any queuing delaynay experience. (For simplicity, Figure 8.4 shows
a case without queuing.) Due to Lemma 8.5, we know thatis bounded byé—,5]. In
addition, we define the followingrift factors

_ HG,(t) — HGy(t)
t—t;
Hcsrc(t) - Hcsrc(ts)

Arape = 8.6b
r r— (8.6Db)

dr, (8.6a)

3For ease of presentation, we assume that lines 9-12 of thethly are executed in one single atomic step, i.e.,
we assume that there is only ohensition st-event for every job at.
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Clearly,drsyc € [1 — psre, 1 + psre) @nddry, € [1 — pp, 1 4 pp]. These definitions allow us
to derive the following by applying eg. (8.6a) and the deifimitof A,,,:

HCsrc(t) = Hcsrc(ts) + (t - ts)drsrc
= HCsrc(ts) + ((t - tj) + (tj - tS))dTSTC

= HCsrc(ts) + <Hcp(t)d_ HCp(tj) + Am) drgre.
Tp

SinceH Cy,..(t) can never become less than the minimum of this expression,

HCo®) > min { HCwo(t) + <Hcp(t) — HC,y(t)) N Am> drm}
drp d’l“p

drsre

= HCyo(t) + (T 5 ) 1)

= sp(g).send_hc + (agep(9)/(1 + pp) +67) (1 — pere).

Hence, we have:
Lemma 8.6. HCY,.(t) > est, (g).

Doing the same for the maximum of the above expression yeekisilar result:
Lemma 8.7. HC,.(t) < sp(g).send_hc + (agey(g)/(1 — pp) + 1) (1 + psre)-

This value is still greater thanst™. Thus, we have to use a refined approach to prove our
upper bound o C,,... First, we note that the real time betwegrandt is bounded:
+ + +
Lemma8.8.t —t; <07 + 1) T 1y
Proof. We will again use the numbering of messages as in Sectio8.8Recall Figure 8.4

and assume by contradiction that m was sent earlier, i.e., that <t — 6+ — M?B) — ”?rl)'

Since the (real-time) delay between two consecutive messagd jobs onrc is at mosl;ua)

(cf. Observation 8.3, <t — 4§t — “(+0) holds fort/, the begin time of the job sendinigt 1.
Sincei is a relevant messagé;+ 1 must be processed later than

ConsiderF; 1, the set of messages sent after messagel but processed earlietF;, 1
might also bef), if i 4+ 1 is a relevant message. Léf,, be the job processing message
i+ 1andlety = Fi;1 U {i+ 1}. By Lemma 8.4 we know thatnd(.J; ;) < f(i+ 1) =
B+ 0" + X5 Moy

Let = be the first message 7 that will be processed at Clearly, x must be a relevant
message. Otherwise, there would be sgme x > i + 1 such that]z’J is processed before
Jy. However, ifbegin(J,) < begin(J,) < begin(J;,,), theny € J, contradicting the
assumption that is the first message 7 that will be processed. _

We know that all of7 have been processed befered(J; ;) < t, + 6% +> . 7 /‘%o) and

that processing all off takes at Ieaszjej /‘{o) time units. Thus, at, + §*, at least one of
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J starts processing, is currently being processed or haadireeen processed. Singgis
the first such jobbegin(J,) < t, +d*.

Recallingt!, < t—d0t — /%) from the beginning of the proof leadstiegin(J.) <t — /%).
Sincex is a relevant message and processingkes at mosp(*b) time units, itstransition

st-event is no later than at sortfe< ¢. This contradicts our assumption that= i is the last
relevant message fromrc fully processed by beforeg. O

Combining Lemma 8.8 with eq. (8.6b) results in

HCsrc(t) - HCsrc(ts)
drsrc

+ + +
and hence

HCpe(t) < HCspelts) + (67 + py + pyy ) drsre

< max {Hcsrc(ts) + (5+ + Mzro) + Ma))drsrc}

drsre
= HCsre(ts) + (07 + pigy + 11y) (L + psre)
= s,(g).send_hc + (61 + ,uEB) + ,ua))(l + psre)
which, combined with Lemma 8.7 and the definitioreef ™, yields the following result:
Lemma 8.9. HC,,.(t) < est,} (g).

Combining Lemmas 8.6 and 8.9 finally yields the followingdrem, which proves that
the algorithm in Figure 8.2 indeed solves the remote clotknagion problem according to
Definition 8.1.

Theorem 8.10. For all global statesy > evgiapie, Whereevgiqpe is thetransition st-event of

the first message fromrc arriving at p, it holds thatH C,,..(time(g)) € [est, (g), estf (g)].
The maximum clock reading errdr = max{est™ — est™} is

T =&+ porc(0” + 1) + 2pore + pp) (1) + 1) — v,

with the usually negligible term = O(u* p?) given by eq(8.2).

8.3. Lower Bound

In this section, we will show that the upper boundIodetermined in Theorem 8.10 is tight,
i.e., that the algorithm in Figure 8.2 is optimal with resptrthe maximum clock reading
error.
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8.3.1. System Model

For the lower bound proof, we assume a two-processor sysi@hardailure model FAULT-
FREE,,,.,, (analogous to the definition in Section 8.2.1). In additiwe,require that* (1 —

p) > 6 (1+ p)and thatu&)(l —p) = ppy(L+p), for£ € {0,1} andp € {psrc, pp}- These
lower bounds on the message and processing delay unciesginevent the processors from
using their communication subsystems or their schedutesgriulate a clock that has a lower
drift rate than their hardware clocks.

To simplify the presentation, we will make three additioaasumptions. In Section 8.3.3,

we will briefly discuss the consequences of dropping these.

1.7 > M(+())- This allows the adversary to choose a scenario whereend and/or
transition st-event in a job occurs earlier thaazg)(l — p) hardware clock time units
after the beginning of the job without violating the messdgpendency between the
send andprocess st-event of a message.

2. We assume that the algorithm knows when it has stabilized, thatp switches a
Boolean registektable (initially false) when the algorithm has stabilized. In thle
gorithm in Figure 8.2p would set itsstable register after completing the processing of
the first relevant message frasmc.

3. There is at least one message frerm arriving atp afterp has set itstable register.

8.3.2. Proof

Assume by contradiction that there exists some deterrigrasgorithm A together with some
scheduling/admission policyol that allows processags to continuously estimate processor
src’s hardware clock with a maximum clock reading erraax{est™ — est™} < T, with

L =c+psre(6™ +01)+2(psre + pp)(uzg) + ”?rl)) — v. Using an adaption of the well-known
shifting and drift scaling techniques to st-traces, whictechnically quite intricate due to the
multiple state transitions involved in a job, we show tharéhare indistinguishable rt-runs of
A that cause a clock reading error of at leBst

Definition 8.11. Since our proof uses an indistinguishability argument, vileuse the nota-
tion p : trleva, evo] = tr'[ev/y, evy,| to denote that, for processpr st-tracetr from st-event
evy 10 evq is indistinguishable from st-trade’ from st-eventev’, to evy,, whereev, evq,
ev’y andeuy, all occur on processar. Intuitively, this means that cannot detect a difference
between the two st-trace segments.

Let (evy, evs, ..., evy) and (ev),ev), . .. ,evg,) be the restrictions of st-traces andtr’
to send andtransition st-events occurring on processarbeginning withevy, = ev; and
ev’y, = ev, and ending withevg = ev, andev, = ev;?,. Indistinguishability means that
n = n andev; = ev, forall i,1 < i < 7, except for the real time of the events, i.e.,
time(ev;) = time(ev}) is notrequired. In fact, indistinguishability is even possilfi¢hie st-
trace segments are of different real time length, i.@yife(evg ) —time(eva) # time(evy,)—
time(ev'y). However, HCY (time(ev;)) = HCI (time(ev])) must of course be satisfied,
i.e., the hardware clock values of all matching st-eventstrba equal.
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The notationsr|t 4, evq], trleva, to] andtr(t 4, to] will be used as short forms for [ev 4, evq),
with ev4 being the first st-event withime(evs) > t4 andevq being the last st-event with
time(evq) < tq. Parenthesis are used to denatestead of<; for exampler|0, tq) would
contain only st-eventsv with 0 < time(ev) < tgq.

Likewise, global states are sometimes used as boundarigsi, . ..] andtr|..., gq| ac-
tually include the first st-event om succeedingy4 and the last st-event gmprecedinggq,.
Clearly, sp(g90) = sp(gn) f p:trl...,ga]l = tr'[..., g4

Note: Sinceest~ andest™ can be functions of the state pfind the current hardware clock
value, it does not suffice to show thgf(g1) = s,(g2) for some global stateg, and g, of
some indistinguishable st-traces andtr,. If we want to prove thatst~ andest™ are equal
in g1 and g2, we also need to show th&lC/" (time(g1)) = HC}™(time(g2)), which is
more difficult in our setting than in a drift-free environmnten

Let try be an st-trace of some rt-runi; of A where the adversary makes the following
choices:

e Both processors boot (i.e., receive an initial input messédgequired) at time = 0.
e HC,(0) =0, HCs(0) = 0.

e Every message fromrc takess™ time units.

e Every message torc takesi— time units.

e Every job sending message takeys&) time units.

e No transition or send st-event occurs earlier th JB)(I — p) hardware clock time
units after the beginning of the job & p, for p andp = ps,. for src).

e src’s clock has a drift factor of + p,...*
e p’s clock has a drift factor ot — p,,.

Since A is a correct algorithm, the execution will eventually beeostable. Letv, ; be
the transition st-event at whickp switches itsstable register intry. Let m be an arbitrary
message fromrc to p, sent by a job starting at tintg and arriving through a receive event at
timet,, with ¢, > time(evs,,1). By assumption (cf. Section 8.3.1), such a message exists.
Let tro be an st-trace of another rt-run; of A where the adversary behaves exactly as
specified fortr, with the following differences (cf. Figure 8.5):

e srchboots attimg = ¢ = 5+ — §~ (instead o).
e HCy(e) = 0 (instead ofH Cs,.(0) = 0).
e Every message fromrc takess— time units (instead of ).

e Every message terc takess™ time units (instead of ).

tr try .0
“Formally, ZCartW=HCLL() _ 1 4, forallt > t',i.e., the clock runs constantly at maximum speed.
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HC, =T
U eVsta.1 x {
1 HC -0 sta, t, — T1 —|
"ne=o
t=0
HC, =T
slow | fast™
U2 HC =0 €Vsta,2 ty — T2 —l
P | [ |_|
Src 0 =0
. : ts+ ¢
=€ fast| slow
Figure 8.5.:7u; andrus, (timer messages not shown); = /‘(+o) + M(ﬁ); =1 1;2”’

e Afterts + ¢, src’s clock has a drift factor of — pg.c.

e After t,, p's clock has a drift factor of + p,,.

e After t,., onp, every job sending messages takepﬁz - p” time units (instead Oﬁ&)).
Note thatu(z 1;2’ € [:“(z :“(z ] (cf Section 8.3.1). leewisesend andtransition St-
events occur no earlier thaqo) —2¢ time units (and hence no earlier thﬁ@) (1—-pp)

T+pp
hardware clock time units, as tml) after the beginning of their job.
Lemma8.12.p : tr1[0,t,] = tre(0,t,] andsrc : tri[0,ts] ~ trae, ts +€].
Proof. The lemma follows directly from the following observations
e The initial states are the samerin; andrus.

e All st-events within that time occur at the same hardwarelcliime and in the same
order (on each processor).

A formal proof can be obtained by induction on the st-everitswq or rus, using these
properties, or by adapting any of the well-known “shifting@ament” proofs. O

SIfthere is a jobJ startlng before but ending after, its duration is weighted proportionally, i.eyration(J) =
(H?},) x) + :c p” , With z = end(J) — t,.. The same is done with the minimum offset farnd and
transition St- events inajob.
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8.3. Lower Bound

Sincetime(evsta,1) < tr, this lemma also impliésthe existence of a corresponding st-
eventevg, o IN tro, in Whichp sets itsstable register.

Lemma 8.13. For all t1,ty > t, : HC" (t1) = HCJ ™ (t2) & to = (t1 — tr)};—;jﬁ +t,.

Proof. The proof follows directly from the drift factors gfin ¢rq andtry, i.e., for allt,, to >
ty HC;?"I (t1) = t1(1 — pp) anqu}i’"2 (t2) =t-(1 — pp) + (t2 — &) (1 + pp). O

Let g; andg, be defined as follows:

e ¢ is the first global state in- at timet, + “(+0) + p(ﬁ), i.e., the global state preceding
the first st-event (if any) happening tat+ “(+0) + u(ﬁ).

e g is the first global state it at timet, + (p(+0) + uzrl)) };ZZ

Clearly, by Lemma 8.13p’s hardware clock values at; and g, are equal (denoted and
represented by the dotted line in Figure 8.5).

Lemma 8.14.p : tr1[0, g1] = tr2]0, go].

Proof. By Lemma 8.12¢r; andtr, are indistinguishable fosrc until ¢; and¢,s + ¢, respec-
tively. Sincesrc starts a job of duratiopa) in ruy attimet,, a corresponding job is started in
rug attimet, + <. Both jobs send the same messagto p. Since our system model does not
allow preemptiongsrc’s next job sending a messagept@an start no earlier than af + ”?rl)

(tr1) and atts + ¢ + pa) (tr2). Thus, by the definition of message (transmission) delays i
ruy andrus, the earliest time that can receive another message frem (after the reception
of m)ist, + ,u?i (in bothtr; andtrsy, cf. Figure 8.5).

Thus, the on?y jobs occurring atin ru; andruo after the reception ofn (at timet,)
and before, + M+1 are jobs caused by timer messages, by message by messages that
have been received earlier. These messages, howevert ¢araak” the indistinguishability:
Since (a)p’s hardware clock is speeded up and (b) the processing tirh@gsoe onp are
shortened by the same factgf: z), the hardware clock times of all jobs (starting and ending
times) as well as all state transitions are equatrinandtry, as long as no new external
message reaches Since this does not happen befaret+ u(ﬁ), we can conclude that
andtr; are indistinguishable until hardware clock tirfié := HC}™ (¢, + u(ﬁ)), at which a
message might arrive iru, that did not yet arrive inrus (since, inrusg, only ¢, + ”?rl) };Zi
real time units have passed yet/). Thus,p : trq[0,t, + p(ﬁ)) ~ tra]0, b, + pa) };ZZ).

If a job (J; in try, Jo in try) which started beford” is still running at hardware clock
time 77, a message reception does not change any (future) stagitioas of that job, due
to no-preemption. Thus, the indistinguishability congswntilT” := HC}" (end(J1)) =
HC}™ (end(Jy)). (If no job was running at hardware clock tirié, let 7" := T”, cp. Fig-
ure 8.5.) At hardware clock tim&”, the schedulers afu; andrus might choose different

jobs to be executed next (since the message franarrived at different hardware clock times

5This could not be inferred that easily if the algorithm did know when it had stabilized.
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8. Optimal Remote Clock Estimation

in rup andrus). However, due to our assumption that the adversary callsgata transitions
to occur no earlier thanzg)(l — pp) hardware clock time units after the beginning of the job,

the state op is still equal inru; andrus until hardware clock tim&” + ;%)(1 — pp). As
T” > T', this corresponds to some real time of at least M?B) + ua) in tr, and at least

tr+ (MEFO) + ua))ﬁ—g in try. Sinceg; andg, are, by definition, the first global states at these

real times, no state transition breaking the indistingaiislity can have occurred yet. [

Lemma 8.15. HCUy(time(q1)) — HOa(time(g)) = & + pare(6~ + 57) + 2pure +
Pp)(N(JB) + Mzrl)) - v
Proof.
HOGL(time(g1)) = HOGL(te + pipy + 1)) = HOGHE + 67 + py + )
= (ts + 07+ py + 1)) L+ pore)
=ts + 67+ uly) + iy psrelts + 6+ ul) + )

. \ 1 -
HCYtime(g2)) = HOG: (1 4+ + )1 -2

1+ pp
_ 1—p
= HC2 <t8+8+5 +(’“‘(+0>+”<+1))1+pp>
p

T — 1-— 1%
= HCLEe) + Ut ) + (57 + Gy + )15 pﬁ) (1~ pue)
. 1— .
Again, (,uz[)) + p(ﬁ))ﬁ(l — psre) CaN be rewritten a(a%) + u(ﬁ))(l — psre — 2pp) +
with v, defined in eq. (8.2), denoting a small term in the orded@fi* p?). Thus,

HC2(time(gq)) =

src
ts+0 + uzg) + ua) + psre(ts — 07 — uzg) — ua)) — QPP(NZB) + ua)) +v. O
We can now prove our lower bound theorem:

Theorem 8.16. There is no clock estimation algorithp that allows processop to estimate
processorsrc’s clock with a maximum clock reading error of less tHan= ¢ + pg. (0~ +

%) + 2(psre + pp) (1) + 1) — V-
Proof. By the assumption thatl is a correct algorithm that allowsto estimatesrc’s hard-

ware clock with a maximum clock reading errar I, the following condition must hold:A
always maintains two valuest~ andest™ onp, such that

HCOYL(time(g1)) € [est™,est™] and  HCU2(time(go)) € [est™, est™]

src

with est™ — est™ < T.

Lemmas 8.13 and 8.14 have shown thatg1) = s,(g2) and thatHCI'L(time(g1)) =
HC!2(time(gs)). Sinceest™ andest™ onp are functions of the local state and the hardware
clock time, it holds thatst,, (1) = est,, (g2) andest.f (g1) = est;} (g2).

Lemma 8.15 reveals, however, thEtC"L (time(g1)) — HC2(time(g2)) = T, which

provides the required contradiction. O
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8.3. Lower Bound

8.3.3. System Model Reuvisited

In Section 8.3.1, three assumptions were introduced, wsiitiplify the lower bound proof.
In this section, we will briefly discuss the consequences@bping these assumptions.

1. In the rare casethats— > “EB) is not ensured, a potential message causality violation
(i.e., a message’srocess st-event occurring before iteend st-event) might force the
adversary to execute send or (preceding)ransition st-event no later thati— time
units after the beginning of the job. Thus, the precisiondowound for the general
Case i + Psrc(0 +07) + 2(psre + pp) (min{d ™, i)} + ) — v/, e, iy gets re-
placed bymin{s~, p(*b)}. Analogouslyy’ equals with p(*g)) replaced by this minimum
expression.

2. If the algorithm need not know when it has stabilized, weshpuove that one can al-
ways find two st-tracesr; andtry, wherep has stabilized beforg., recall Figure 8.5.
Informally, this can be guaranteed due to the fact that eventeal properties are al-
ways satisfied within bounded time in a closed model like eat-time model (where
all delays are bounded), see e.g. [RSO08].

3. There is at least one message frena arriving at p after p has set itstable register. If
this condition is not satisfied, we have two cases:

Case 1: After p has set itsstable register, no more messages are exchanged between
p andsrc. In that case, it is trivial to create an indistinguishalikeun in whichp has

a different drift rate. Since no messages are exchangethenginor src ever detects

a difference between the two rt-runs and we can choose algtdiag arbitrarily far

in the future to create an arbitrarily large discrepancyesinp’s estimate andrc's
hardware clock.

Case 2: After p has set itsstable register, only messages fromto src are sent. In
that case, the proof is quite similar to the one in Sectiorn28.Since onlysrc receives
messages here, ondy'c can detect a difference between two rt-runs with differetit d
rates. Consider Figure 8.5 with the labelsand src reversed. In complete analogy
to Lemma 8.14, we can argue thatc cannot detect a difference untit’, the second
message from, has arrived. Fop to change its estimate, this information needs to be
transmitted back tp.8 Therefore we have an addition@t for the message transmission
plus;%) (or 6—, see Assumption 1) required byuntil a state transition in response to
this message can be performed. Thus, detecting a changis icede takes at least
time units longer than in the case analyzed in Section &iBally leading to the same
contradiction.

"Recall thats~ andé™ are measured from the beginning of the job sending the messdiger than from the
send st-event. Therefore, these values include local procgsasitil the message is sent plus the message
transmission delay.

8Sincesrc detected a difference, the rt-runs are no longer indiststgable. Thus, messages fromt to p are
possible in this (shifted) rt-run.
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9. Examples of Fault-Tolerant Clock
Synchronization

In this chapter, we will move from the two-processor clockireation problem to its ap-
plication in external and internal clock synchronizatiovith drifting clocks and failures, in
contrast to Chapter 7).

Since the problems analyzed in this section involve mora tiag processors, a job may
send (non-timer) messages to more than one recipient. Weusijll also use subscriptg) on
the message delay bounﬁi@ andé(*z,) here, which give the number of recipients to which the

sending job sends a message. As detailed in Sectioﬁ(%.,?ﬁ&) as well ag () := 5&) — 5(‘[)
are assumed to be non-decreasing with respett to

9.1. External Clock Synchronization

In large-scale distributed systems such as the Interrerafchical synchronization algorithms
like NTP have proven to be very useful. With respect to smakgworks, our results indicate
that it pays off to minimize the dominant factey which is severely increased by multi-hop
communication. Thus, direct communication between thecgoand the “clients” will usually
lead to tighter synchronization.

For this section, let specify the number of processors in the system, the drift rate of
the source processor apgdthe drift rate of all other processors. The goal is for eaadtessor
p # srcto estimatesrc’s clock as close as possible. The maximum estimation esrcalied
accuracya here. Note that external clock synchronization obvioustplies internal clock
synchronization with precision = 2a.

Consider a variant of the algorithm presented in Sectionwtieresrc sends its hardware
clock value not only tg but to all of the othem — 1 processors, and the receiver uses the
midpoint of [est ™, est ™| as its estimation ofrc’s clock. Admission control is performed by
only accepting messages frame. An obvious generalization of the analysis in Section 8.2
shows that, ifsrc is correct, the worst case accuracy for any correct recgivera. = I'/2
with

I'= € + psrc(5(_g) + 5&)) + 2(psrc + P*)(MEB) + :U') -7,

(cf. Theorem 8.10), wherédepends on the broadcasting methads the transmission period
(see below), and = O(j1p?) refers again to a usually negligible term. The precisiorieactd
by any two correct receivers q is hencer =T..

In the real-time computing model, the required broadcgstian actually be implemented
in two ways:
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9. Examples of Fault-Tolerant Clock Synchronization

(a) src uses a single job with broadcasting to distribute its cloakig. In this case, the
duration of each of its jobs is [/‘(_nqyﬂaq)] and the message delay of each message

i — + _ 0t
is e [5(7%1),5(”71)]. Thus,! =n —1andj = Ity
(b) srcsends unicast messages to every client, in a sequemnce bfeparate jobs that send
only one message, i.€.= 1. This reduces the message delay uncertainty frgm,)
to £(1), but increases the perigdin which every processqgy receivessrc’s message

from ,u?;l_l) to(n—1)- ”a)-

9.2. Internal Clock Synchronization

As outlined in the introduction of Chapter 8, remote clockireation is only a small, albeit

important, part of the internal clock synchronization gesh. In [FC95b], Fetzer and Chris-
tian presented an optimal round- and convergence-funttas®ed solution to this problem.
They assume the existence of a generic remote clock readétigoah, which returns the clock
value of a remote clock within some symmetric error. Thuserding their work is a perfect

choice for demonstrating the applicability of our optimbzak estimation result in the context
of internal clock synchronization.

The algorithm of [FC95b] works as follows: Periodically, the same logical time at ev-
ery processor, the current clock values of all other clogksestimated. These estimates are
passed on to a fault-toleraobnvergence functigrvhich provides a new local clock value that
is immediately applied for adjusting the clock. Providedtthll clocks are sufficiently syn-
chronized initially and the resynchronization period i®shn sufficiently large, the algorithm
maintains a precision afA +4pr,q. +2p3, Wherer,,.,. denotes the resulting maximum real-
time round duration an@ the maximum difference in the resynchronization times tiedent
processorsA is the maximum clock reading error margin, i.&.= I'/2 in our setting.

In this section we present a detailed analysis of how to coebiir clock estimation method
with their convergence function, resulting in an internialc& synchronization algorithm that
tolerates up tg arbitrary faulty processors, far > 3f. The analysis includes a pseudo-code
implementation and a correctness proof, which just esthbéti conditions that guarantee the
preconditions of the proofs in [FC95b].

9.2.1. System Model

Since it is assumed that the local hardware clocks cannotdubfied, the(logical) clock of
round & is represented as the sum of the current hardware clockmgautid a local variable,
the adjustment valued;j[k]. Unless we explicitly mention “hardware clock values”, wil w
refer to this (adjusted) logical clock when talking aboulotk values” in the remainder of
this section.

Every round_len clock time units (thaesynchronization perigd every processop esti-
mates the round clock values of all remote clocks. An (optimal) fault-t@et convergence
function is applied to these clock estimates, which conmgptite initial value forp's local
round k + 1 clock. To use our remote clock estimation algorithm withtsacround-based
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9.2. Internal Clock Synchronization

algorithm, every processqr must broadcast messages containing its current réucdck
value at the end of rounkl, thereby satisfying two conditions:

(C1) Broadcasting must start early enough to ensure thay @¢ber processog receives at
least one round@ message from before applying its convergence function.

(C2) Broadcasting must not terminate too early to ensureahaecent” roundk message
from p exists aty when the clock reading method is used by the convergencéidanc

Since all processors need to broadcast simultaneoushe artti of the round, scheduling
delays are created which—in contrast to the “simple” casxtirnal clock synchronization—
influence the end-to-end delays of other messages. Thigiweglire replacing the message
delay bounds$d—, 5] in our bound on the maximum clock reading erfowith the probably
larger end-to-end delay bounf&—, A*]. Thus, given some scheduling polipy!, a detailed
real-time schedulability analysis would be needed formeitging bounds om\~ andA ™.

An alternative approach, which entirely avoids this pratlegoes by assuming a more
powerful hardware: If, upon receiving a message frgrmontaining some clock value, the
network controller of the destination procesgawvere capable of automatically (and instantly)

e storing the content of the message in some variabiel_cv[g| and
e storingp’s current hardware clock value in some variabte_hc[q]*,

then there would be no need to schedule a receive jaliso@PU at all.

Clearly, in general case, relying on instantaneous praugss incoming messages is an
unreasonable assumption—actually, demonstrating thtsgaone of the main points of this
thesis. Nevertheless, since the purpose of this sectiordisrhonstrate the applicability of our
clock reading method, rather than to analyze the effectloédaling policies, we choose this
approach for ease of presentation, well aware that thigdithe applicability of the algorithm
in this section to systems where some hardware-based woletisures that the message as
well as its arrival time are recorded by a network controlfeshort, bounded time (which
must be added t6") [SKMT00, SSHL97, HSS02].

Note that this assumption is beneficial for the analysis iotlzer respect as well: No ad-
mission control is needed, since a faulty processor cameate jobs on the CPU of another
processor just by sending messages. This also “improvesingximum clock reading error
I" (cf. Theorem 8.10) by dropping "4%) terms.

The clock synchronization algorithm itself is fault-tcet in the sense that at mgstaulty
processors may behave arbitrarily, as longrathe total number of processors, is greater than
3f. Since there is no special source processor, we assuméadrsdme drift bound holds for
all processors; formally, this corresponds to failure MofiYZANTINE , and a real-time
systems with n > 3 processors.

We also assume broadcast-based communication in thisiseatinich means that the algo-
rithm will guarantee a maximum clock reading error bothdf € + p(6~ + 1) +4pu™ — v,

with v = 4;#1%. As all jobs in this algorithm (except for the one processihg (NIT)

Sincercv_hc is only used to measure the “age” of a message, it is not negessuse an adjusted clock value
here (in contrast teend_cv, which contains a logical clock value).
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message) send— 1 messages, we will abbreviag, ,,, 5(4;1_1) andp&_l) with §—, 6+ and

pt.

9.2.2. Booting

As initial synchronization is outside the scope of this these will assume that
e HC,(0) € [0, ] for every processop, and

e the (NIT) message for each processor arrives “shortly afteez 0. In particular, it
arrives at Ieas%) time units beforey’s hardware clock reachesund_len — pre.

(See below for the definitions af;, round_len andpre.)

9.2.3. Algorithm

Figure 9.1 shows the pseudo-code of the algorithm of [FCBBtdnjunction with our optimal
clock estimation method. It includes a few optimizationsafically designed for large round
durations:

e Processors do not broadcast continuously but rather stdrstap the broadcasts within
the hardware clock time intervél’ — pre, T + post|, with T' = k - round_len denoting
the logical round switching time.

Clearly,pre andpost must be chosen to satisfy conditions (C1) and (C2) outlifeye.
Note that this means thatmust continue to broadcast its rouhdlock value even after
it has already switched to rouridt+ 1 (at or shortly after hardware clock tin¥€). Thus,
in addition tok, a second variabléc_k (always equal td or & — 1) is used to record
the round number of the clock to be broadcast currently.

e Since messages do not contain round numbers, broadcastings must not overlap,
i.e., pre, post and the round length must be chosen such that no réund message
arrives at a processarthat has not yet finished broadcasting rounchessages. This
primarily requires a sufficiently large round duration.

e Asa positive consequence of these round length assumptiolys.dj [k] andadj[k—1]
need to be kept in memory, rather than the whole array of mssament values.

Due to the requirement of broadcasting its own clock valuanyrjobs are already active
around local timel’ = k - round_len at every processor. Therefore, we do not designate
a separate job for calling the convergence function, buterasqueeze this into one of the
broadcast jobs at the right time (line 22 of the algorithmbisT however, means that the state
transition might not occur exactly at clock tinke round_len, but0 to 2™ real-time units
later?

>The case oPu™t occurs when the logical clock readls round_len — x at the start of some jold;, for some
very smallz, and the round change state transition occurs in the fatigyjob .J» at the very end of the job.
Recall thatcurrent_hc always refers to the hardware clock time of tieginningof the job.
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Network controller of processor p

1 var send_cv[], rcv_hcl]

2

3 upon receiving (CLOCK VALUE, cv) from some processar /% done in zero time:/
4 if (cv > send_cv§]) or (send_cv{] is empty)

5 rcv_hclg]«—-current_hc (); send_cyJ«cv

Processorp

const round_len, pre, post

var adj[] (adj[1] < 0)

var k «— 1, bc k— 1 /x local clock round number, current broadcast round number

function cfn(my_ac, estimates) /% convergence function as specified WC95H */

/x Simplified notation — please read the note at the end of Section3 */
function age(q) = current_hc— rcv_hclg]

function est™ (q) = send_cvf] + (1 — p) (6~ + age(q)/(1 + p))

function est™ (q) = send_cv§] + (1 + p) (5+ + min{u*, age(q)/(1 — p)})

© 00N O~ WNPRE

PP
N = O

function AC(hc) = he + adj[i] I+ convert hardware clocks to adjusted clocks!..
function HC*(ac) = ac — adjli] [ ...and vice-versax/

[~
g~ w

procedure process_message(msg, current_hc, rcv_hc[], send_cv[])
if msg = (NIT)
set GEND Now) timer for round_len— pre & = HC*(k - round_len— pre)/

e el
© o N o

if msg = GEND NOW)
send €LOCK VALUE, AC™current_hc)) to all

N NN
N O

if (bc_k = k) and AC*(current_hcy> k - round_len) # start new round?/
k—k+1; adj[k]«— cfn(AC*current_hc), for ally : (est(g) + est™(¢))/2) — current_hc

NN
V)

N
)]

if AC™Xcurrent_hc)k bc_k- round_len + post s/ continue or stop broadcasting/
set GEND Now) timer for current_hc # timer will arrive atend(current_job) x/
else
bc_k—k /% prepare for next round’s broadcast
set GEND Now) timer for HC*(k - round_len— pre)

N NN
0 N o

N
©

Figure 9.1.: Internal clock synchronization; [FC95b] canda with optimal clock reading

113



9. Examples of Fault-Tolerant Clock Synchronization

Like hardware clock values, we assume that the processds tha values ofend_cv and
rcv_hc only at the very beginning of the job, i.eyrrent_he, send_cv andrcv_he, when
used in some joly, represent a snapshot of the state at thmgn(J). That way, we ensure
that the transition sequence of a job is still independenhefactual times of theransition
st-event, and we avoid unrealistic effects suchras hec (when read instantly) being larger
thancurrent_hc (when read at the beginning of the job). Consequendlyd_cv andrcv_hc
are not modeled as global variables but rather as paranwtgrecess_message.

Consequently, it should be noted that the names of the famgtin Lines 8—-10dge(q),
est™(q), est™(q)) were chosen just for notational convenience. In fagk is a function
age(current_he,rcv_hc|q]); the same holds foest~ andest™, which also include a third
parametesend_cv[q]. This is important because it means that the parameterbdardnver-
gence function in line 23 are based on the stateuofent_hc, rcv_hc andsend_cv at the
begin time of the job (i.e., the values passegtocess_message) rather than at the time of
thetransition st-event.

9.2.4. Analysis

The precision analysis in [FC95b] is based on a set of assongptwhich involve the follow-
ing constantsA (maximum clock reading error margiy) 7in, "maz (lower and upper bound
on the real-time round duration), apt(maximum real-time delay between the starting of a
round at different processors).

t’; denotes the real-time by which procesgatarts roundk. Since the convergence function
is called with data corresponding to the begin time of them@king the round switch (for the
reasons outlined in the previous section), the begin tinthefob must be chosen aﬁrather
than the actual time of the-ansition st-event representing line 23. Thus, from the point of
view of the convergence function, tleth clock is started at timté;, although, from the clock
synchronization perspective, this clock is not in use wiito ™ time units later. Therefore,
we will have to compensate for this fact when determiningpecision bound.

Figure 9.2 depicts an example rt-run during a round switch> ¢ + 1, with 7" = 7 -
round_len. The current values of variables bc_k and k as well asithelogical clock are
shown explicitly.

Theorem 9.1(Theorem 1 of [FC95b]) Assume that the following conditions are satisfied for
all correct processors and all rounds:

(A1) Initially, all clocks are synchronized to within someumdr;.

i [ ' k_ k-1
(A2) The (real-time) length of a round is boundedy,, andr.,qz, I.€.,7min < tp =1, <
Tmaz, fOr all p andk.

(A3) All processors start their rounds withifhireal-time units, i.e.lt’; — t’;| < g, for all p,
q, k.

(A4) Rounds do not overlap, i.63,< rpin.

3Note thatA is I'/2: We defined the remote estimation intervallast ~, est*], with ' boundingest™ — est ™.
By contrast, [FC95b] defines a remote clock reading as aesiajue with a symmetric error of at mastA.
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9.2. Internal Clock Synchronization

Figure 9.2.: Round switch from rourido i + 1

(A5) 71 > 2A + 2prmasz + 2p0.

Then, the algorithm of [FC95b] guarantees that all logicad &djusted) clocks of correct
processorg and g are synchronized to within a bound of= 77 + 2pr42, i.€.,

[ACy(9) — ACy(g)] <

for all global statesy, with AC),(g) = HC,(time(g))+sp(g)-adj[s,(g).k]). Atthe beginning
of a round, i.e., at the firsy such that all correct processors have switched to roénthe
smaller precisionr; holds. Moreover, the maximum local clock correctiatj[k] — adj[k — 1]
IS +£2pr 4. ON all processors.

This is what would hold if the round switching state tramsitioccurred at the very begin-
ning of the job. Since this is not guaranteed in the real-tmo@puting model,

e the actual clock synchronization precision, i.e., the &dy which|AC,(g) — AC,(g)|
can be bounded, is4 = 7 + 2pu™ rather thanr; a term2pu™ is added to compensate
for the fact that the “old” round: — 1 clock can still be in use for anothgr" time units
aftert”;

p!

e the precision values; and 7 are only relevant for analysis. For exampte, holds
att = max,cr{tk} for the adjusted round clocks AC%(t) = HC)(t) + adjl. For
purposes of analysis, these values are well-defined attisiece HC,(t) is part of
the rt-run andadj]’,f, the value thap’s variable adj[k] will have once théransition
st-event for line 23 has occurred, is a deterministic fuorcof p's send_cv, rcv_he and
current_hc variables at time’; < t. Nevertheless, the algorithm might still not know
the value ofadjl’; at timet (and, thus, still use the rourid— 1 clock).

Apart from that, the combined algorithm in Figure 9.1 staesv clocks in the same way as
[FC95b]. Therefore, this theorem applies to our algoritreneell, with the aforementioned
differences.

(Al) is satisfied by our booting assumption (Section 9.8y (A5) can be guaranteed by
choosing a suitably large;. The following lemma will show that there is a choicergf;,,
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9. Examples of Fault-Tolerant Clock Synchronization

rmae @anNdS for which (A2)—(A4) are satisfied. The proof is slightly imfoal because it uses
an inductive version of Theorem 9.1, which is not stated ieitjyl but can be deduced from
the proofs of [FC95b].

Lemma 9.2. If round_len, rmin, rmae: @nd 8 are chosen such that

round_len > 7 + p (14 p) + rmin(1 4 p) (9.1)
Foae > T rOUndten g ©.2)
I—p
gy Throundlen . 9.3)
L—p

then conditions (A2)—(A4) are satisfied.

Proof. (A4) holds trivially, since it equals (9.4). Assume by intloo that (A2) and (A3)
hold for roundsl to k. By (an inductive version of) Theorem 9.1, this implies tblaicks are
synchronized to withinr; directly after the last processor switched to rounand that their
adjustment value changed by at m@gt,,,... as compared to rounkl — 1. For the induction
start, i.e., round, this is guaranteed by our booting assumption.

Let ¢ be the last processor switching to rouldSince this round switch was triggered by
g's roundk — 1 clock reachingk — 1) - round_len, t’; occurs0 to ™ real-time units later,
andq’s clock value was not changed by more tiam,, ..., it follows thatq's clock & value at
time ¢¥ is within (k — 1) - round_len + [—2prmaz; 207maz) + [0, (1 + p)]. Recall that, at
t’;, all round# clocks are synchronized to within; with ¢ and thatr = 77 4 2prymae. Thus,
att¥, it holds for the round: clock valuescu, of every correct cloclp:

cvp € (k—1) - round_len + [—m,+n] + [0, ut (1 + p)] (9.5)

Using (9.1), we can bound the number of hardware clock ueitsuntil & - round_len is
reached ap:
k- round_len — cv, € [rmin(1 + p), ™ + round_len] (9.6)
Note thatt’;Jrl might occur at most:™* real-time units after reaching- round_len. Since
(A3) holds fork and, thustk € [th — 3,t%], these bounds together with (9.2) result in

k1 k< Tmin(L+p)
tp - tp > Tp = Tmin and
7 + round_len

ol —th < B+ + 17 < Pazs

L—p
thus showing condition (A2)z i, < th+! —tk < rpg,.

To show (A3), we follow a similar line of reasoning: (9.6) enss that no processor can
reachk - round_len on its roundk clock earlier than at real tim% + rmin NOr later than at
real timet’; + W. Adding thep™ that may lie in between reachinig- round_len
andtk*!, (9.3) shows that (A3) holdgth ™ — tk+1| < 3, for all p andq. O

“Although the algorithm might not know the value of its routidlock yet, we can still use it for analysis.
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9.2. Internal Clock Synchronization

We can hence apply Theorem 9.1 to immediately get:

Theorem 9.3. For a sufficiently large round length and sufficiently closdtial synchro-
nization, the algorithm of Figure 9.1 solves internal clogjnchronization withinr, =
2T + 4prmaz + 2pB + 2puT WIthT =€ + p(6~ +61) +4pu™ —vandv = O(utp?).
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10. Conclusions

As argued in the introduction, all the standard distributechputing models in use nowadays
either rely on the zero step-time assumption or use some otheept that abstracts away
gueuing effects at the receiver side. In the first part of thesis, we defined and analyzed
the real-time computing model, which differs from the classon-lock-step synchronous
model by just providing non-zero computing step times. Qurria to establish the real-time
computing model as a well-founded alternative to the atassidels used in the analysis of
distributed algorithms. Therefore, the definitions in thisrk strive to be as generic (and
formal) as possible; the model is neither restricted to caréiqular type of failure nor to one
particular class of problems. On the contrary: abstfaittire modelsand st-problemsallow
for high flexibility in the definition of real-world failurecenarios and problem specifications.

This universality is beneficial for the transformations gaeted in Chapter 6, which are
designed for arbitrary problems (and, in the case of sirmariaf 4, for arbitrary failure mod-
els). In addition, the reuse of classic algorithms in thé-tie@e model illustrates the unique
challenges arising when implementing a result of classtriduted computing research in a
real system: End-to-end delay bounds must be determineschiedulability analysisféasi-
ble assignmeit state transitions occur at slightly different times"¢shuffle of the problejn
and measures might need to be taken to ensure the timelgdetftimer message§_.c-
compatibility between classic and real-time failure majlel

Although these transformations provide a very powerful gaderal tool for the study of
problems in the real-time scenario, tight bounds usuallpire further analysis: We revisit
a well-known synchronization problem—optimal determiiici€lock synchronization in the
drift- and failure-free case—in our real-time computingdeb As it turned out, the classic
analysis gives too optimistic results, supporting ourml#iat some properties of real systems
are inaccurately or even wrongly captured when resortingassic zero step-time models.

The naive approach of transforming the tight precision toboin1 — %)g into the real-time
model resulted in a lower bound ¢f — %)5(1) and an upper bound dfl — %)(a(n,l) +
/‘?;Lq) +(n—2) -/%)) (Theorems 7.2 and 7.3)—a gap, which was closed by devisitach ¢
synchronization algorithm specifically designed for thedseof a system with non-zero step
time duration.

In a sense, the results in the classic computing model wette tho optimistic and too
pessimistic at the same time: On the one hand, synchromizatith optimal precision is
possible in constant time in the classic computing modekredis optimal synchronization
in the real-time computing model has a time complexityadf.). On the other hand, the
best precision achievable in the classic model is @ily- %)g, whereas it turned out to be
(1 - %)5(1) in the real-time model. This might not seem like a big diffexe; however,
from the system model point of view, = 6" — ¢~ is the uncertainty of thend-to-end
delay, a quantity that encompasses real-world message tranemidslay, queuing delays
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and processing delays. In contrast;) = 6?5) — 5(*1) refers to the uncertainty of just the
message transmission delay.

The explanation for this phenomenon is that the zero step-tissumption gives too much
power both to the algorithm (by being able to process mdtiptoming messages in a very
short time) and to the adversary (by being able to assignt@mad delays to messages that
are not justified by the arrival patterns). As we have showmlyesis under the real-time
computing model yields more realistic results.

A summary of all our findings related to drift-free clock symenization in the real-time
model presented in this thesis can be found in Table 10.1e Mt these results also cover
the non-optimal case: For example, we showed that clocksgnization to within a constant
factor of the message delay uncertainty can be achievednistaat time only if a constant-
time broadcast primitive is available.

| Constraint | Lower Bound | Matching Upper Bound \
- Precision> (1 — +)e () Precision< (1 — +)e(y)
Proof: Theorem 7.3 Algorithm: Section 7.1.3
- Msg. complexity =(n) Msg. complexity =O(n)
Proof: obvious Algorithm: Section 7.3.1

- 3 one processor exchanging
Q(20/=w)HY/n) msgs.
Proof: Theorem 7.15
Achieve best precision Msg. complexity =2(n?) Msg. complexity =O(n?)

E1=2eq) Time complexity =2(n) Time complexity =O(n)
Proof: Section 7.2 Algorithms: Section 7.1

Achieve best msg. Precision> ¢y Precision< ¢y

complexity (=O(n)) Proof: Theorem 7.13 Algorithm: Section 7.3.1

Table 10.1.: Summary of Results on Drift-Free Clock Synofration

As a first step towards drifting clock synchronization, weg@nted an algorithm solving
the problem of continuous remote clock estimation in thé-tiege computing model, which
guarantees a maximum clock reading errof'cf ¢ + pse(6~ +61) + 2(psre + pp)(uzfo) +

u(ﬁ)) — v. Using an elaborate shifting and scaling argument, we atbéshed a matching
lower bound. This result leads to some interesting conghssi which could aid real-time
system designers in fine-tuning their systems:

e ¢, the message delay uncertainty, dominates everythingsise it is the only param-
eter that is not scaled down by some clock dpift< 1. This matches our results on
drift-free clock synchronization.

e Both sender and receiver clock drift influence the attai@glykecision. However, the
drift of the source clock has a bigger impact, since it affewit only the term involving
the processing timqs{o) + u(ﬁ), but also the (potentially larger) term involving message

delays.
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We close this thesis by combining our optimal clock readireghmad with the optimal con-
vergence function of [FC95b] into a fault-tolerant intdrgibbck synchronization algorithm,
guaranteeing a precision oft p(6~ +6")+4put —v. The question of whether this combined
algorithm is optimal is left open (see below).

The relationship between time complexity and precisionhia drift-free case also sheds
some light on a new aspect of clock synchronization algorittesign: Clearly, all our lower
bound results also hold for drifting clocks. As time comjifgxnfluences the actual precision
achievable with drifting clocks, however, a simpler, lessgse algorithm might in fact yield
some better overall precision than a more precise but alse nwmplex algorithm, depending
on the system parameters.

Future Work/Open Issues

In this thesis, we created a sound foundation for a recatich of the distributed computing
and the real-time systems perspective, which has beemtacii to now. However, our work
has not only provided answers, but has also raised a lot ofamehexciting open questions
for future research:

The Real-Time Computing Model

e Removing the zero step-time assumption from the classicpating model was a
particularly interesting extension, since, as a directseguience, queuing delays—
previously hidden in the end-to-end delay—became visibiace all other assumptions
of the classic model have been carried over to the real-tiongpciting model, however,
one wonders whether and which other aspects are worth bedsgd out and modeled
explicitly. To name a few examples: in the real-time compgitmodel, message sizes
can be unbounded, jobs can perform computations of arpit@mplexity, preemption
is impossible, and the scheduling policy must be non-idlifigwould be interesting
to know whether dropping any of these assumptions prodursghits that justify the
additional model complexity.

We assume that message size is a particularly interestiggttaere. Starting multiple
instances of an algorithm or echoing all data received sartacommon design patterns
in the area of fault-tolerant distributed computing. Cdesj for example, lock-step
round based algorithms: Comparing such algorithms in agneddd real-time comput-
ing model with bounded message size could reveal that sayodtaim requiring a large
amount of rounds for completion might actually perform bethan a competitor with
less rounds, if the first algorithm requires less data to lmha&nged per round.

e Our simulationS; 4 ,.;, €nabling real-time algorithms to be run in a classic system
requires failure model FAULT-FRE[ex) with a “sufficiently small” clock driftp (cf.
Section 6.3.2). This failure model has been chosen for ebpeesentation. In fact,
neither bounded drift nor fault-freeness of the procesacesmandatory for this trans-
formation. With respect to the hardware clocks, any othéura model guaranteeing
that there exists somg, such that Definition 6.12 is satisfied would be sufficient. AWVit

respect to processor faults, a generalizatiofi-ttRASH should also be fairly easy. We
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believe that an extension a Byzantine failure model is jpbessis well, but it will require
a few changes to thHE-_, p transformation rules.

e The classic and the real-time computing model describedhignthesis assume that
algorithms are deterministic, i.e., that the transitiomdiion A(message, oldstate,
hardware_clock_time) of some algorithmA returns a single transition sequence. A
generalization of the system models and the transformatdrChapter 6 to the non-
deterministic case, wheresgtof possible state transition sequences is returned by the
transition function, should be fairly straightforward.

e Since the real-time computing model allows us to apply teaé schedulability analy-
sis techniques to distributed algorithms, we are lookingfauproblems and algorithms
where trivial upper bounds on end-to-end delays do not suffitd such an analysis is
required.

e As outlined in the introduction, one of our mid-term targest$o analytically verify the
assumptions of the Theta model and the ABC model [RS08], wétipulate that—for
certain algorithms—there is a certain correlation betwgeeuing delays in different
parts of a distributed system. Developing the real-time mating model was a manda-
tory first step for achieving this goal.

Drift-Free Clock Synchronization

e To show that constant-time synchronization to withire ;) (for any constant € R*)

is impossible (unless a constant-time broadcast primékists), we proved that there
exists at least one processor which exchanges at[léasyn | messages. However, all
algorithms presented in this thesis have at least one pocegchanging (i.e., sending
or receiving)n messages. So, although the lower bound served its purpolseling
us to derive a time complexity result, we do not think thas thound it tight, and we are
curious about the (asymptotic) number of messages stristlyired for drift-free clock
synchronization.

e For the case where an asymptotically tight bound on the rgessamplexity exists,
namely, in the case of optimal precision, there is still algefveen the precise number
of messages: The lower bound requires one message betwargrpair of processors,
while our algorithms require two.

Drifting Clock Synchronization

e Clearly, the most obvious question with respect to the @lgorpresented in Section 9.2
is: Is this algorithm optimal? After all, we used an optimaheergence function and
an optimal remote clock reading method.

Actually, there is a subtle difference between the rematekckestimation problem an-
alyzed in Chapter 8cpntinuousclock estimation) and the precise requirements of a
round-based internal clock synchronization algorithm: éfdas the former problem
aims at establishing a worst-case bound on the clock reatingin the two-processor
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case, at all points in timethe round-based clock synchronization algorithm reguire
good estimatén the multi-processor case, at the exact point of startimg new clock
As the proof of our (continuous) remote clock estimationoatfypm shows, the esti-
mation error is not constant but varies; for example, rigtérareceiving a message,
the error is smaller than shortly afterwards. Thus, in adhgh analysis of the multi-
processor, single-shot case in the real-time computingetadmight turn out that
having the messages of all processors arrive at almost the 8me (but not too close,
lest we get queuing delays) might be beneficial. We are nat wiiether this makes
a difference for round-based clock synchronization or nghtil this issue has been
resolved, we cannot claim that our algorithm is optimal.

¢ In contrast to the more general results of Chapters 7 an@é&ldck synchronization al-
gorithm of Section 9.2 assumes that processing incomingages (i.e., recording the
content of the message and the arrival time) can be donentastously (or within
constantly bounded time, which can be addeddto, §7]) upon arrival. Although
hardware-based solutions to this problem are by now commactipe in the analy-
sis of clock synchronization in real-time systems (cf. tisdssion and references in
Section 9.2.1), it is not hard to think of many real-world teyss where such special-
ized hardware is not available. Thus, clock synchroniratigthout this assumption is
a problem worth pursuing. In particular, we believe thatdpémal trade-off between
exchanging many messages (possibly causing queuingsftaad few messages (pos-
sibly causing clock readings to be out-of-date) will poseraaresting and insightful
challenge.

e Although a worst-case precision bound has been establisingde algorithm of Sec-
tion 9.2, the average-case performance could still be ingatdy a few simple modifi-
cations:

— The convergence function of [FC95b] expects remote clotknasions with a
symmetric error, i.e., for every remote clopkthe remote clock reading method
returns some valuest(p), such that’s clock lies within[est(p) — A, est(p) +
A]. To achieve the optimal error margin &f = T'/2, we returnest(p) =
(est™(p) + est™(p))/2, thereby ensuring that the clock pfis guaranteed to be
within [est(p) — I'/2,est(p) + T'/2].

This method has an inconvenient side-effect, however: Irerign execution
where clocks do not drift and all messages take+ ¢ /2 time units, one would
expectest(p) to match the real value gf's clock. However, as shown in Sec-
tion 8.1, this is not possible when a minimal symmetric eisareeded. Therefore,
replacing the convergence function of [FC95b] by an optiowa that supports
asymmetric error margins—like the one in [SS03]—might ¢fialbetter result in
average executions.

— The algorithm does not yet exploit all information that isigable; in particular,
“round-trip information” is ignored. Assume thatsends a fast messageto ¢,
and, shortly aftern has been received, sends a fast messagé€ back top. If

123



10. Conclusions

g also includes information about in m/, p can deduce that:’ must have been
fast, thereby significantly improving its estimateqs clock value. Note that this
idea is exploited in probabilistic clock synchronizatid@riB9].
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Nomenclature

%

Indistinguishability, page 102

—s¢?  Causal dependency w.r.t. sequenreg, page 17
L Local dependency w.r.t. sequenegy, page 17
M

—  Message dependency, page 17

<% Qrdering relation of sequenceq

o Offset for the arrival or processing of timer messages, f#ge

Algorithm of the classic computing model or its transitiamétion, page 18
A Algorithm of the real-time computing model or its transitifunction, page 27
ac Computing step (action) in the classic computing modelep2@

AC),(g) Adjusted clock of processgrat global state, page 79

C Failure model in the classic computing model, page 32

C Failure model in the real-time computing model, page 32
r Maximum remote clock reading error, page 94

v Clock synchronization precision in the drift-free caseg@a9

d~, " Bounds on the message delay in the classic computing mcatgs, 18
5~,6" Bounds on the message delay in the real-time computing mpagé 25
D Drop event in the real-time computing model, page 27

A End-to-end delay in the real-time computing model, page 26

Message delay uncertainty in the classic computing modgie [21

[O)

€ Message delay uncertainty in the real-time computing mque 29
est™, est™ Bounds on the estimated remote clock value, page 94

ev State transition event, page 39
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Nomenclature

ex Execution in the classic computing model, page 20

f Number of faulty processors, page 31

g Global state, page 41

gstates(tr) Set of all global states appearingtin page 42

HC, Hardware clock of processa; page 18

Init,(A) Set of initial states of algorithmil, page 18

istate, Initial state of processqy, page 19

J Job in the real-time computing model, page 27

JD  Job or drop event in the real-time computing model, page 32
14 Number of messages sent in a job, page 28

=, T Bounds on the processing delay in the real-time computindelhy@age 23
m,  Ordinary message, page 31

my Timer message, page 31

n Number of processors, page 18
w Queuing delay in the real-time computing model, page 26
II Set of processors, page 18

P State-based problem, page 42
P*,  uT-shuffle of problen?, page 49

P, Simulation-invarianf/-extension of probler®, page 50

pol  Scheduling/admission control policy, page 25

R Receive event in the real-time computing model, page 26

Pp Drift rate of processop, page 19

ru Real-time run in the real-time computing model, page 26

s System in the classic computing model, page 21

s System in the real-time computing model, page 28

S4  Simulation algorithm for reusing a classic algoritbdnin a real-time system, page 52

S

Si.Apo. Simulation algorithm for reusing a real-time algorith#nin the classic model, page 62
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Nomenclature

Q’MAM Extended simulation algorithm for reusing a real-time alipn A in the classic

model, page 76
sHC(m;) Designated arrival (hardware clock) time for timer messagepage 31
Sp Local state of processor, page 39
Tc_.r Transformation for reusing a real-time algorithm in thessia model, page 66
Tr_.c Transformation for reusing a classic algorithm in the rirale model, page 53

tr State transition trace, page 40
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