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Kurzfassung

Diese Dissertation stellt ein neues, fehlertolerantes Modell für verteile Datenverarbeitung in
Echtzeitsystemen vor, das sowohl die Perspektive der klassischen verteilten Datenverarbei-
tungsmodelle als auch die der Echtzeitsystemforschung berücksichtigt. Üblicherweise wird
bei der Analyse von verteilten Algorithmen die vereinfachende Annahme getroffen, dass Re-
chenschritte in Nullzeit durchgeführt werden. Unser Modell basiert auf den bisher gängigen
Modellierungstechniken verteilter System, lässt jedoch im Unterschied dazu die Nullzeitan-
nahme fallen. Diese Vorgehensweise erlaubt größtmöglicheWiederverwendbarkeit existie-
render Ergebnisse, eröffnet jedoch auch die bisher verschlossene Möglichkeit, Scheduling-
Analysen durchzuführen. Mit Hilfe der in dieser Arbeit vorgestellten Transformationsalgo-
rithmen untersuchen wir die Beziehung zwischen dem klassischen synchronen Systemmodell
und unserem Echtzeitmodell: Wir zeigen, wie Algorithmen von einem in das andere Modell
übergeführt werden können und welche Eigenschaften echterComputersysteme durch die
Nullzeitannahme bisher nur verfälscht wahrgenommen wurden.

Um diesen Unterschied anhand eines konkreten Beispiels zu demonstrieren, untersuchen
wir das Problem der deterministischen Uhrensynchronisation in fehlerfreien Systemen mit
perfekter Ganggenauigkeit und zeigen, dass – in unserem Echtzeitmodell – kein Algorithmus
existieren kann, der optimale Synchronisationsgenauigkeit bei konstanter Laufzeit sicherstellt.
Da jedoch ein solcher Algorithmus im klassischen Systemmodell bekannt ist, haben wir hier
ein Beispiel, bei dem die klassische Analyse zu optimistische Ergebnisse liefert. Wir zeigen,
dass das Erreichen optimaler Synchronisationsgenauigkeit einen Zeitaufwand vonΩ(n) erfor-
dert und präsentieren einen dazu passendenO(n)-Algorithmus.

Allgemein gilt, dass bei diesem Synchronisationsproblem die Anzahl der Nachrichten, die
von einem Algorithmus benötigt werden, in Abhängigkeit vonder Synchronisationsgenau-
igkeit steht. Dieses Ergebnis führt uns einerseits zu der oben erwähnten Schranke vonΩ(n)
für optimale Genauigkeit, erlaubt jedoch auch Aussagen über den nicht-optimalen Fall: Es
zeigt sich, dass nicht-optimale Synchronisationsgenauigkeit auch von einem Algorithmus mit
konstanter Laufzeit erreicht werden kann, allerdings nur dann, wenn das darunterliegende
Netzwerksystem Broadcasts in konstanter Zeit erlaubt.

Auch die Synchronisation von Uhren mit Gangabweichung wirdin dieser Arbeit unter dem
Echtzeitaspekt behandelt. Konkret untersuchen wir das Teilproblem, den aktuellen Wert ei-
ner auf einem anderen Computersystem befindlichen Uhr so genau wie möglich zu schätzen,
präsentieren einen Algorithmus, der dieses Problem löst, und beweisen, dass keine bessere
Schätzgenauigkeit erzielt werden kann. Abschließend zeigen wir, wie diese Schätzmethode
mit einer optimalen Konvergenzfunktion in einem hochpräzisen, fehlertoleranten Uhrensyn-
chronisationsalgorithmus kombiniert werden kann.
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Abstract

This work introduces a fault-tolerant real-time distributed computing model for message-
passing systems, which reconciles the distributed computing and the real-time systems per-
spective: By just replacing instantaneous computing stepswith computing steps of non-zero
duration, we obtain a model that both facilitates real-timeschedulability analysis and retains
compatibility with classic distributed computing analysis techniques and results. We provide
general simulations and validity conditions for transforming algorithms from the classic syn-
chronous model to our real-time model and vice versa, and investigate whether/which proper-
ties of real systems are inaccurately or even wrongly captured when resorting to zero step-time
models.

We revisit the well-studied problem of deterministic drift- and failure-free internal clock
synchronization for this purpose, and show that no clock synchronization algorithm with con-
stant running time can achieve optimal precision in our real-time model. Since such an al-
gorithm is known for the classic model, this is an instance ofa problem where the standard
distributed computing analysis gives too optimistic results. We prove that optimal precision
is only achievable with algorithms that takeΩ(n) time in our model, and present a matching
O(n) algorithm.

As a more general result, we provide a lower bound on the number of messages required to
obtain a certain clock synchronization precision. In the case of optimal precision, this leads
to the aforementioned bound ofΩ(n). With respect to non-optimal precision equal to the
message delay uncertainty, our result implies that constant time complexity is possible if, and
only if, the system allows for constant-time broadcasts.

As a first step towards worst-case optimal deterministic clock synchronization with drifting
clocks in real-time systems, which is an open problem even inclassic distributed computing,
we define and prove correct an optimal remote clock estimation algorithm, which is a piv-
otal function in both external and internal clock synchronization, and determine a matching
lower bound for the achievable maximum clock reading error.Moreover, we show how to
combine our clock estimation method with an optimal convergence function, resulting in a
high-precision fault-tolerant clock synchronization algorithm.

This work has been supported by the Austrian Science Foundation (FWF) under grants P17757 and P20529.
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1. Introduction

The first part of this thesis, starting with Chapter 2, will present a novel framework for model-
ing executions of algorithms in distributed real-time systems. In the second part, starting with
Chapter 7, the usefulness of this model is demonstrated by applying it to some well-known
clock synchronization problems and comparing the results with those obtained by classic mod-
eling techniques. Hence, some knowledge in the areas of distributed computing, real-time
systems and clock synchronization is vital to the understanding of this thesis.

This introductory chapter shall familiarize the reader with the required basics of these lines
of research, outlines the structure and the results of this thesis and compares them to similar
approaches in dedicatedrelated worksections.

1.1. Computing Models

A distributed systemconsists of a set of individualprocessorscapable of exchanging infor-
mation. Thedistributed computingline of research is concerned with the study of algorithms
solving a givenproblemin such a distributed system, preferably in an efficient manner.

Distributed State Machines

Obviously, lots of abstraction and simplification are necessary to reduce an arrangement of
CPUs, network controllers and transmission media to a mathematical model that allows to
reason about generic results in distributed computing.

Processors(CPUs, or computers in general) are represented bystate machines: Given a set
of variable names (e.g.{participants, free_places}), astatecan be seen as values assigned
to these variables; for example,{participants = {Peter, Martin}, free_places = 3} would
be a valid state. The processor can performstate transitions, i.e., it changes from one state
to another. In general, the processor cannot make arbitrarystate transitions, but rather runs
some kind ofalgorithm. The algorithm specifies the initial state (e.g.{participants =
{}, free_places = 5}) and thestate-transition function, which can be seen as a set of rules
describing which state transitions are allowed, formalized as a function mapping a state and,
possibly, some kind ofinput, to a new state and, possibly, also to some kind ofoutput. For
example, a state transition function representing the code

1 upon receiving " subscribename":
2 if free_places > 0 andname /∈ participants:
3 free_places←free_places − 1
4 participants←participants ∪ {name}
5 send " subscription confirmed"

1



1. Introduction

would map ({participants = {Daniel}, free_places = 4}, “subscribe Josef”) to the new
state{participants = {Daniel, Josef}, free_places = 3} and to the output “subscription
confirmed”.

A distributed systemconsists of a set of such processors and some means of communica-
tion. Thus, the distributed system also specifies how processors receive their input and what
happens to their output. Common examples include

• a message bus: Once a processor outputs some message, all other processors receive
this message as input some time later.

• shared memory: All processors can read and modify a common pool of registers;
changes by one processor can be seen by all other processors immediately.

• point-to-point communication: Some processors are connected through communication
links. The output of the transition function consists of messages sent over specific links,
e.g., “send message A to processorp and message B to processorq”.

In this thesis, we will restrict our attention to message-based point-to-point communication in
fully-connected networks.Fully-connectedmeans that every processor can send a message to
every other processor.

An executionor run of an algorithm in such a distributed system can be visualized as a
space-time diagram, such as the ones found in Figures 1.1 and 1.2. A horizontal line repre-
sents a processor and arrows symbolize messages being sent and delivered. With respect to
state transitions (also known ascomputing steps), “ticks” stand for atomic, immediate state
transitions at this exact time, whereas boxes (e.g. in Fig. 1.2(c)) more generally specify that
some code is being executed, with the exact times of state transitions unknown. Note that
messages are always sent during a computing step.

When processors deviate from their specified behavior, theyare consideredfaulty. The
following list contains a few well-known examples of ways inwhich a processor can fail:

• Clean crash: A processor eventually stops working, i.e., after some point in time, no
more computing steps occur on this processor.

• Unclean crash: A processor crashes in the middle of a computing step, i.e.,at some
point in time, the processor executes apart of a computing step and then stops working
completely. This case is more difficult to tolerate, since a processor might only send a
subset of its outgoing messages while crashing—contrary tothe clean crash case, where
a computing step is either completed in full or does not occurat all.

• Byzantineor arbitrary faults: A Byzantine faulty processor can behave arbitrarily; its
computing steps do not have to conform to the algorithm’s state transition function. For
example, it can send out messages with arbitrary, misleading information, manipulate
messages while forwarding them or just stop working like in the crash failure case.
This failure model applies to “broken” processors sending out nonsensical data as well
as to malicious processors deliberately trying to prevent the distributed algorithm from
reaching its goal.

2



1.1. Computing Models

(a) Lock-step Rounds (b) Asynchronous

Figure 1.1.: Lock-step Synchronous and Asynchronous Model

A fault-tolerant algorithmis an algorithm which solves a given problem despite a certain
number of processors being faulty.

Classic Distributed Computing Models

Since the algorithm specifies the state transitions the processor may carry out, the question
remains as towhenthese transitions are performed. Together with timing bounds on message
transmission, the answer to this question determines thesynchronyof the computing model.
To understand the wide variety of models available, let us look at the two extreme cases
[Lyn96, AW04]:

• The synchronous lock-step model(Figure 1.1(a)) splits the execution intorounds: In
every round, (1) one message can be sent from every processorto every neighbor, (2)
all these messages arrive, and (3) each processor makes a state transition using the
received messages as input. Note that, in the figure, the samecomputing step performs
the state transition for roundk as well as the message sending for round(k + 1).

• At the other end of the spectrum, there is theasynchronous model(Figure 1.1(b)), which
does not bound (neither relative nor absolute) processing speeds or message transmis-
sion times in any way. The only restriction is that every message eventually gets deliv-
ered and every processor takes an infinite number of computing steps.

Both models have their advantages and their drawbacks: The strong assumptions of the syn-
chronous lock-step model make it easy to design algorithms:The developer can be sure that
during some processor’s roundk computing step, all other processors have already performed
their round(k− 1) steps and all round(k− 1) messages have already arrived. However, there
are lots of real-world systems where these assumptions justdo not hold. The assumptions
of the asynchronous system, on the other hand, are so weak that they are easily satisfied by
real-world computer systems. At the downside, many well-known problems are very hard or
even impossible to solve in the asynchronous model [FLP85].

There is a wide range ofpartially synchronousmodels, which attempt to find a compromise
between these two extreme cases: They bound, for example, the relative processing speeds of
processors (that is, between two computing steps of one processor, another processor may not
perform more thanx computing steps) or the message transmission delay (that is, no message

3



1. Introduction

transmission may take less thany or more thanz time units). A few examples from literature
will be outlined in therelated worksection below.

However, these models still suffer from one common problem,which we will illustrate by
comparing a real-world execution with its simplified representation in one of the “classic” dis-
tributed computing models. Figure 1.2(a) gives an (alreadyconsiderably simplified) glimpse
of what happens in a real-world system. Consider the second message arriving at processor
p: This message triggers the scheduler, requiring some CPU overhead (= the gray box) for
switching to the correct task responsible for processing that message. This task starts a job (=
the white box), which performs some computations and eventually sends out a few messages
via some communication medium. This sending causes some media access control overhead
(= theMAC box), which might very well occur in parallel to the CPU, if MAC is performed by
a separate network controller. The first message sent by thatjob (= m3) eventually arrives at
processorq, which is currently busy with processingm1; thus,m3 is enqueued (= the coiled
arrow) until the scheduler ofq decides that the CPU is ready to process it.

Figure 1.2(b) shows the same situation, using themessage-driven synchronous (non-lock-
step) system model: The execution of the distributed algorithm is representedby a sequence of
atomic computing steps that are triggered by an incoming message and executed in zero time.
All timing-related factors that occur in the real-world system, such as scheduling overhead,
processing time, queuing time or network delays are encapsulated in theend-to-end delay,
i.e., in the time between the zero-time action sending a message and the one receiving it. With
respect to timing assumptions, the synchronous model assumes that these end-to-end delays
are bounded: There is a constant lower bound (δ−) as well as a constant upper bound (δ+).

With this assumption, it does not make a difference, for example, whether messages ar-
rive at a processor simultaneously or nicely staggered in time: the messages are processed
instantaneously when they arrive. The zero step-time abstraction is, hence, very convenient
for analysis, and a wealth of distributed algorithms, impossibility results and lower bounds
have been developed for models that employ this assumption [Lyn96].

Scheduling Theory

In real systems, however, computing steps are neither instantaneous nor arbitrarily preempt-
able: A computing step triggered by a message arriving in themiddle of the execution of some
other computing step is usually delayed until the current computation is finished. This results
in queuing phenomenons, which depend not only on the actual message arrival pattern but
also on the queuing/scheduling discipline employed.

Traditionally, such problems are the central topic of a separate line of research, devoted to
real-time systems [But97]. Let ajob be defined as a small unit of work to be performed by a
CPU, characterized by (at least)

• anarrival time, the time by which this job is ready for execution,

• a computation time(also known asworst-case execution time), the time span required
to execute this job on the CPU, and

• adeadline, the latest time by which this job must have finished.

4



1.1. Computing Models

p

q

MAC MAC

MAC

m1

processingm1

m2

processingm2

MAC

m3

processingm3

(a) “Real” event-driven execution

p

q

m1

m2

m3

(b) Classic distributed computing
abstraction (executions)

p

q

m1

processingm1

m2

processingm2

m3

processingm3

(c) Our real-time computing model
(rt-runs)

Figure 1.2.: Modeling distributed system executions
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1. Introduction

The goal ofuniprocessor real-time schedulingis to create aschedule, which assigns these jobs
to a processor in a way such that all jobs meet their deadlines. For example, consider the job
set{(A : 1, 3, 7); (B : 2, 2, 5)}, with the numbers denoting the arrival time, the computation
time and the deadline, respectively. Figure 1.3 shows (a) a feasible schedule, in which both
jobs meet their deadlines, and (b) an infeasible schedule, in which jobB misses its deadline.
If the jobs cannot be interrupted, it is plain to see that (a) is the only solution. Otherwise, if
preemptionis permitted, other assignments, such as (c), are possible.More advanced exam-
ples includeprecedence relationsamong jobs, e.g., some jobA must be (completely) executed
before jobB may start, orshared resources, e.g.,A andB may require exclusive access to
the same resource, possibly causing schedules such as the one in Figure 1.3(c) to become
infeasible.

0 1 2 3 4 5 6 7 8

B A

(a) Feasible schedule
0 1 2 3 4 5 6 7 8

A B

(b) Infeasible schedule
0 1 2 3 4 5 6 7 8

A B A

(c) Feasible preemptive schedule

Figure 1.3.: Real-time schedules

Usually, jobs are not declared individually but rather summarized intotasks: A task consists
of an infinite sequence of jobs, all having the same executiontime and relative deadline (= the
time span between (absolute) arrival and (absolute) deadline). The arrival time of the jobs
is specified by thearrival pattern of the task: The jobs of aperiodic task arrive at regular,
constant intervals;sporadictasks release their jobs irregularly, but with some minimumtime
(sporadicity interval) in between job arrivals; andaperiodic tasks do not specify any arrival
restriction.

Determining whether a feasible schedule exists or not can besurprisingly difficult: For
example, the generalfeasibility analysisproblem is NP-hard, even in the case of only periodic
task sets (with arbitrary deadlines) [BHR90]. Thus, many analysis techniques are pessimistic
(sufficient but not necessary) and/or only apply to special cases (such as relative deadlines
being equal to the period) [SAA+04]. Worst-case response time analysisis a generalization of
feasibility analysis: Rather than finding out whether all jobs meet the a-priori given deadline,
the worst-case difference between the arrival of some particular job and its completion is
determined.

Multiprocessor real-time schedulingis a natural generalization: Instead of only one CPU,
jobs can be scheduled to multiple processing units in parallel. Although multiprocessor
scheduling is not yet as well understood as the uniprocessorcase, a lot of results and heuristics
do exist (again, cf. [SAA+04] for an overview).

Unfortunately, real-time scheduling in loosely-coupled distributed systems, i.e., scheduling
involving multiple processors connected through a network, has only been addressed for very
restricted types of problems: Informally speaking, the concept of tasks with a-priori known
arrival patterns has been extended toinformation flows, starting at some processor (again, with
some known arrival pattern) and then traveling through the network in a linear fashion. For
example, some external signal could arrive at processorp, causing a job to be executed, then
travel to processorq over a communication link, again causing a job execution, and finally
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1.1. Computing Models

arriving at processorr, initiating the last job.Holistic scheduling[TC94] or thetrajectory
approach[MMG04] allow to determine the overall worst-case responsetime of such a flow.

Nevertheless, many problems in distributed computing do not exhibit such a linear flow of
information, starting with some sensor and ending in some actuator or data aggregation node.
In particular, fault-tolerance often requires a set of “equal” processors exchanging messages
on a regular basis (rounds)—well-known examples are distributed agreement problems, such
as Byzantine consensus or non-blocking atomic commitment,and synchronization problems,
such as tick synchronization or clock synchronization. In these cases, the arrival patterns of
messages might not be known in advance; often, there is even acircular dependency: The
arrival pattern of some roundk messages determines the queuing delays, which in turn in-
fluence the time at which round(k + 1) messages are sent, and thus, the arrival pattern of
these messages. Although the approaches mentioned above are a promising start for extend-
ing schedulability analysis to loosely-coupled distributed systems, so far, no suitable generic
modeling framework for analyzing queuing effects of distributed algorithms exists.

Related Work

We are not aware of much existing work in the distributed computing area of research that also
addresses real-time aspects. Somewhat an exception is the work by Neiger & Toueg [NT93],
which identifies general problems and conditions that preserve the correctness of a solution
based on perfectly synchronized clocks when logical clocksare used instead. The underly-
ing model assumes non-zero step times, but considers them sufficiently small to completely
ignore queuing effects. Moreover, in contrast to our work, they restrict their attention only to
problems whose specification can be written in a way which does not refer to real time. An-
other example of a non-zero step time model is the remote memory reference (RMR) model
for shared-memory systems [AY96, AKH03] by Anderson et. al.It assumes computing step
times which depend on the number of conflicting shared memoryaccesses. The RMR model
has been used for deriving several algorithms, e.g. for mutual exclusion, and related lower
bounds. Since it is not applicable to message-passing systems, however, our results are not
comparable.

Another branch of research where distributed computing andreal-time systems issues are
combined are modeling frameworks [AD94, LV95, LV96, MMT91,SGSAL98, KLSV03].
Such frameworks allow formal modeling and analysis of complex distributed real-time sys-
tems. A representative example are Timed I/O Automata (TIOA) [KLSV03], which can
change state both via ordinary discrete transitions and viacontinuous trajectories. TIOAs
facilitate hierarchical composition, abstraction, and proofs of safety and liveness properties.
However, none of the above modeling frameworks supports non-zero step times and thus real-
time schedulability analysis of distributed algorithms. By contrast, our work addresses exactly
this issue.

Apart from those lines of research, we are not aware of too many distributed computing
papers that incorporate real-time scheduling issues at all: In [HLL02], for example, Hermant
and Le Lann demonstrate the power of such an integrated approach by introducing fast failure
detectors, which facilitate very fast detection times and thus quickly terminating asynchronous
consensus algorithms.
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Turning our attention to distributed system models, the partially synchronous DLS model
[DDS87, DLS88] extends the asynchronous model by adding an absolute upper bound∆ on
message transmission delays and an upper boundΦ on the relative computing speed of any
two processors. Formally, it is assumed that every processor takes at least one and at mostΦ
computing steps during any real-time interval of durationΦ; note that the unit of real-time is
actually the computing step time of the fastest processor inthe system here. A send step sends
one message to one recipient, a receive step makes some messages that arrived so far available
to the processor. A single computing step can be either a sendstep or a receive step, but not
both. Hence, receiving a message and sending a response is not possible in zero time here.
Additionally, sender queuing (but not receiver queuing) ismodeled explicitly by allowing only
one message per send step.

The semi-synchronous model [ADLS94, Mav92, PS92] uses a similar approach; however,
there is no need for separate send and receive steps, and computing steps can send out multiple
messages at once. [ADLS94] does not normalize the real time units to the speed of the fastest
processor, i.e., the real time between two consecutive steps of one processor is within some
fixed interval[c1, c2]. [Mav92] assumes thatc2 = 1, i.e., the slowest processor determines the
time base.

Both the DLS model and the semi-synchronous model conveniently abstract away queuing
effects at the receiving processor, since a single receive event (DLS model) or a single com-
puting step (semi-synchronous model) can process all messages received so far. As Chapter 7
of this thesis will show, this issue can make an important difference. Moreover, both models
lack a lower bound on the message transmission delay. In the context of clock synchroniza-
tion, this is an important difference to our model: In the case of drifting clocks, not only the
message delay uncertainty but also the absolute bounds on message transmissions affect the
achievable precision (cf. Chapter 8).

The partially synchronous Theta model [LLS03, WLLS05, HW05a] as well as the Asyn-
chronous Bounded-Cycle model (ABC model) [RS08] are mentioned here, since they provide
an additional motivation for our line of research. Both models are based on the assumption
that, due to the dynamic nature of distributed algorithms and the corresponding queuing ef-
fects, it is not feasible to assume fixed a-priori bounds on the end-to-end delay of messages.
They retain the zero step-time assumption but boundratios, either on the end-to-end delay of
messages simultaneously in transit (Theta model) or on the number of forward and backward
edges in certain message chain cycles (ABC model). Clearly,such assumptions only hold
if there is a strong relationship between the queuing delaysin different parts of the system,
either at the same physical instant of time (in case of the Theta model) or within a “causally
related” region of the space-time diagram (in case of the ABCmodel). Due to lack of appro-
priate analysis techniques, the claim that this relationship holds in real systems has only been
verified experimentally [Alb05]. We believe that the real-time distributed computing model
presented in this thesis is a mandatory prerequisite for anyattempt to verify this assumption
analytically.

There are also a few approaches in the real-time systems community that aim at an in-
tegrated schedulability analysis in distributed systems.One notable example combining lo-
cal processor scheduling with network communication issues is holistic scheduling, intro-
duced in [TC94]: Assuming synchronized clocks, end-to-enddelay bounds of “information
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flows” across a shared network bus can be derived by means of recurrence relations based
on the (a-priori known) bounds on the worst-case frequency of all tasks and messages. In
[PGGGGH98], this work is extended by adding a best-case analysis, improving the accuracy
of the estimated jitter. However, contrary to the modeling requirements of many distributed
algorithms, they assume a strictly linear sequence of actions in the system, i.e., within one
flow, every computing action on a processor sends a message toat most one other destina-
tion processor. Thetrajectory approach[MMG04] provides bounds on the end-to-end delays
which are less pessimistic; however, they also model a flow asa fixed, linear path through the
network.

The Gap

This brief overview demonstrates that the distributed computing view on system models on
one hand and the scheduling results obtained by the real-time community on the other hand
operate at entirely different levels of abstraction and solve different problems: Whereas the
former is concerned with the correctness of algorithms, usually expressed by some predicate
on the internal state of the processors involved, the latteris only interested in the ability of an
algorithm to meet some a-priori defined deadlines.

However, as we show in the second part of this thesis by means of the clock synchroniza-
tion problem, queuing issuescan berelevant for the correctness of an algorithm and/or the
tightness of a lower bound. Bridging this gap and analyzing these effects requires a model
which,

• on the one hand, is “compatible” with the classic distributed computing models, such
that the wealth of existing results can be reused, but,

• on the other hand, explicitly models queuing effects, thereby allowing us to incorporate
real-time scheduling issues and to perform a worst-case response time analysis.

Consequently, the first part of this thesis introduces a real-time distributed computing model
for message-passing systems, which reconciles the distributed computing and the real-time
systems perspective: By just replacing the zero step-time assumption with non-zero step times,
we obtain a real-time distributed computing model that admits real-time analysis without in-
validating standard distributed computing analysis techniques and results.

Consider the example in Figure 1.2(c): Introducing the processing delay as an additional
system parameter allows us to split the end-to-end delay into

• the message delay (= the arrow),

• the queuing delay (= the distance between the arrow head and the start of the corre-
sponding box), and

• the processing delay (= the box).

This model hence enables us to demonstrate the impact of queuing effects on distributed al-
gorithms (in particular, on clock synchronization), whilekeeping most of the mathematical
simplicity of the classic distributed computing abstraction (Figure 1.2(b)).

9
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Thus, in the resulting real-time computing model, a system can be specified by bounding the
message and the processing delay; the queuing delay, however, is not a system parameter here
but rather depends dynamically on the message pattern of thealgorithm and thescheduling
policy, i.e., on the order, in which queued messages are processed.In fact, this is a major
advantage of our approach: In the classic computing model, comparing algorithms running
in “the same system”, i.e., with the same bounds on the end-to-end delay, can be misleading,
since it ignores the fact that the message pattern of the algorithm itself influences the queuing
delays, and, thus, the end-to-end delays.

1.2. Clock Synchronization

Apart from making distributed algorithms amenable to real-time analysis, our model also
allows us to address the interesting question whether/which properties of real systems are in-
accurately or even wrongly captured when resorting to classic zero step-time models. In the
second part of this thesis, we revisit the well-studied problem of deterministic clock synchro-
nization for this purpose.

The termclock synchronizationspans a wide range of distributed computing challenges.
All of these try tosynchronizeactions on processors in a distributed systems, since added
synchrony allows a lot of distributed computing problems tobe solved in a much simpler
way. Clock synchronization does not necessarily require real clocks: For example, Lamport
clocks [Lam78] or vector clocks [Fid88, Mat88] use integer values, messages tagged with
these values and a simple maximum function to obtain an ordering of events in an execution,
which is applicable even in completely asynchronous systems. If there is some degree of
synchrony already present in the system, more sophisticated tick synchronizationalgorithms
[ST87, Mav92] can be used, which cause the processors in a distributed system to increment
their counter variables “as simultaneously as possible”.

In this thesis, however, we are mainly interested in “classic” clock synchronization, in sys-
tems where the processors are equipped with local, possiblyimperfecthardware clocks. Im-
perfect clocks exhibit some kind ofdrift, meaning that they do not run at the same rate as
real time but rather a bit slower or a bit faster. The goal is toadjust the local clock values of
different processors to satisfy some clock synchronization condition. In particular,external
clock synchronizationis concerned with minimizing the difference between the adjusted local
clocks and some external reference clock such as GPS time, atall points in time. In contrast,
internal clock synchronizationdoes not assume access to an external time source but rather
aims at minimizing the difference between the adjusted local clocks of any pair of processors
(for all possible pairs, at all points in real time).1 These adjusted clocks must satisfy some
progresscondition, usually requiring the clocks to stay within a linear envelope of real time.2

1To ease presentation, we will use the well-established termprecisionfor this difference, although we are aware
that “imprecision” would be more appropriate, technically. Thus, we will try to avoid misleading phrases such
as “high precision” (usually referring to a small difference) and “low precision” (usually referring to a large
difference) in the formal parts of this work and use unambiguous terminology instead.

2Interestingly, only requiring the adjusted clocks to increase without bound is not sufficient, since it allows for
impractical solutions such as logarithmically increasingclocks (Theorem 1 of [DHS86]).
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Like many other works in this area of research, much of this thesis builds on the foundations
laid by Lundelius and Lynch [LL84b]. They established a tight bound of(1 − 1

n
)ε on the

achievable clock synchronization precision in a drift- andfault-free scenario, withε denoting
the end-to-end delay uncertainty (i.e., the difference between maximum and minimum end-
to-end delay) andn the number of processors. Their work, which assumes a fully-connected
network in which every processor can directly communicate with every other processor, was
later generalized to arbitrary networks [HMM85], with [BW01] providing closed-form upper
and lower bounds for some specific topologies. In Chapter 7, we will examine the problem of
drift- and fault-free internal clock synchronization in a fully-connected network in our real-
time distributed computing model.

With respect to fault-tolerance, it should be noted that internal clock synchronization is
unsolvable if at least one third of the processors is Byzantine faulty [DHS86]; recall that a
Byzantine faulty processor can behave arbitrarily, in particular, it may lie about its current
clock value. In general, optimal-precision clock synchronization with drifting clocks is an
open problem even in classic distributed computing: Optimal results are only available in
case of a-priori given message patterns (“passive” clock synchronization) [PSR94, OPS99];
unfortunately, optimal message patterns and hence optimal“active” clock synchronization
algorithms cannot be inferred from this research.

Interestingly, existing drift- and fault-tolerant internal clock synchronization algorithms can
be reviewed in terms of a generic structure [Sch86]: Periodically, the algorithm detects the
need for resynchronization. Then, information is gatheredabout the clock values of the other
processors, usually by exchanging messages. After this data has been collected, a new local
clock value is calculated based on someconvergence function. To our surprise, the second
step—a problem known asremote clock estimation—had not been solved optimally yet. In
Chapter 8, we present a tight bound on the achievable estimation error, again using our real-
time computing model.

For calculating a new clock value based on the remote clock estimations, an optimal con-
vergence function usingfault-tolerant averaginghas been presented by Fetzer and Christian
[FC95a, FC95b]. In a fully-connected system withn processors,f of which can be faulty,
the main idea of fault-tolerant averaging is, for each processorp, to take alln clock readings
(as estimated byp), discard thef largest and thef smallest values, and then calculate the
arithmetic mean of the remaining interval [WL88]. Thedifferential fault-tolerant midpoint
functionof [FC95b] extends this approach by slightly modifying thisinterval and bounding
the maximum correction value, resulting in an optimal convergence function. Chapter 9 of
this thesis provides a sample implementation that combinestheir convergence function with
our clock reading method in one algorithm.

Related Work

Lots of results already exist for external as well as internal clock synchronization in classic
distributed computing models. A comprehensive summary would go far beyond the scope of
this work; [SLWL90] provides an exhaustive overview of fundamental results in this area of
research, whereas [AP98] classifies existing clock synchronization algorithms according to
their internal structure. A special issue of the Real-Time Systems journal assembles results

11



1. Introduction

with a focus on global time in large scale distributed real-time systems [Sch97]. Many recent
discoveries can be found in the area of clock synchronization in wireless sensor networks
[SBK05].

The main results of the second part of this thesis are lower and upper bounds on clock
synchronization (or subproblems thereof) while considering the need to schedule message
processing steps. Actually, this is a known problem: In [WL88], for example, Welch and
Lynch mention that implementing their clock synchronization algorithm in a real-world setting
required staggering the broadcast of messages (which wouldotherwise be sent almost at the
same time), to avoid the situation that too many messages arrive simultaneously at the same
processor. Still, this topic has not received much attention in literature. In fact, we are aware
of only two papers that consider deterministic clock synchronization in connection with real-
time scheduling:

• Basu and Punnekkat [BP03] propose simple variants of Srikanth & Toueg’s tick syn-
chronization algorithm [ST87]. Their algorithms stop the local clock while the resyn-
chronization is in progress, thereby avoiding the problemsthat usually occur when the
clocks being synchronized are also used to schedule tasks inheavily loaded real-time
systems.

• Mavronicolas [Mav92] provides a lower bound for the precision achievable in a “single-
shot” version of tick synchronization in the semi-synchronous model. This model dif-
fers in various significant ways from the one used in this thesis: Computing step dura-
tion and clock drift are directly related, the lower bound onthe message transmission
delay is always zero, and, like in the partially synchronousmodel of [DLS88], a single
computing step can process multiple incoming messages. As outlined in the previous
section, this last point conveniently abstracts away queuing issues; however, as Chap-
ter 7 of this thesis will show, this issue can make an important difference. Thus, our
results are not directly comparable.

To the best of our knowledge, other papers dealing with clocksynchronization in real-time
systems do not incorporate queuing issues at all [MFNT00], assume a-priori given bounds
on the receiver queue length [VRC97], circumvent this problem by delegating the task of
timestamping or processing messages to special-purpose low-level hardware [KO87, SL96,
SR87], or restrict the precision analysis to empirical evaluations [ZSSZ08].

The subproblem of remote clock estimation is handled/analyzed sub-optimally or abstracted
away entirely in the wealth of existing research on clock synchronization: Most papers employ
trivial clock estimation algorithms only, based on a one-way or round-trip time-transfer via
messages [EK73], and provide a fairly coarse analysis that (at best) incorporates clock drift
[Cri89] and clock granularity [SS97]. Alternatively, as in[FC95a, FC95b], remote clock
estimation is considered an implementation issue and just incorporated via the a-priori given
maximum clock reading error. Hence, to the best of our knowledge, optimal deterministic
clock estimation has not been addressed in the existing literature.

Since we are aiming at deterministic algorithms here, we do not consider probabilistic clock
synchronization [Cri89, Arv94], statistically optimal estimations [EK73, MST99] and similar
topics. Likewise, gradient clock synchronization [FL04, LLW08], which analyzes the effect
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of the network graph diameter on the synchronization precision between neighboring nodes,
is out of the scope of our work.

Clock Synchronization in the Real-Time Distributed Comput ing Model

As it turns out, clock synchronization is a particularly suitable choice for analysis under
our real-time distributed computing model, since the achievable synchronization precision
is known to depend on the end-to-end delay uncertainty. Since non-zero computing step times
are likely to affect end-to-end delays, one may expect that some results obtained under the
classic model do not hold under the real-time model—if thereare such effects at all.

Our analysis confirms that this is indeed the case: We show that even in the drift-free case
no clock synchronization algorithm with constant running time can achieve optimal precision
in our real-time model. Since such an algorithm has been given for the classic model [LL84b],
this is an instance of a problem where the standard distributed computing analysis gives too
optimistic results. Actually, we show that optimal precision is only achievable with algorithms
that takeΩ(n) time, even if they are provided with a constant-time broadcast primitive.

Obviously, clock synchronization in the drift-free case isa one-shot problem: After the
clocks have been synchronized to a certain precision, they stay synchronized forever. Thus,
time complexity does not really matter. However, since clock drift is practically unavoidable,
the situation changes when generalizing these algorithms to real systems. In the extreme case
of clocks with very high drift rates, a sub-optimal algorithm with low time complexity might
perform better than a drift-free-optimal algorithm with high time complexity, since the former
algorithm can be executed more frequently.

Contrary to the drift-free case, we do not solve the problem of internal clock synchroniza-
tion with drifting clocks in real-time systems conclusively in this work—recall that this is even
an open problem in the (probably easier) case of classic zerostep-time distributed computing
models. However, as a first step towards this goal, we examinethe (deceptively simple) sub-
problem ofremote clock estimationin the real-time computing model. Our results, consisting
of an algorithm and a matching lower bound, precisely quantify the effect of system parame-
ters such as clock drift, message delay uncertainty and stepduration on optimal remote clock
estimation.

Based on the classic round-based resynchronization scheme, where processors with drifting
clocks initiate a clock synchronization protocol every time their clocks reach a multiple of
some predefined time span, denoted theresynchronization period, we combine our remote
clock reading method with the optimal convergence functionof [FC95b] and determine an
upper bound on the precision achievable with this algorithm.

1.3. Roadmap

This section explains the structure of this thesis and givesa brief overview of each chapter.3

3Preliminary versions of this work have been published in [MS06a], [MS06b], [MS08] and [Mos09].
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Computing Models

In Chapter 2, we formalize theclassic computing model(M), based on the well-known syn-
chronous non-lock-step computing model for message-passing systems (both point-to-point
and broadcast-based).

In Chapter 3, we define ourreal-time computing model(M), which differs fromM by just
providing atomic computing steps of non-zero duration. Consequences of this change, such
as the need for scheduling, queuing and admission control, are discussed.

In Chapter 4, we introduce the concept offailure models. This ensures a strict separation
between (a) generic validity conditions that every instance ofM orM has to satisfy, and
(b) specific failure models, which determine to what extent the system has to adhere to its
specification.

In Chapter 5, we discuss the challenges of designing a formalnotation fordistributed comput-
ing problemsand present, as a solution, a framework for explicitly modeling state transitions
in the real-time computing model.

In Chapter 6, we analyze the relationship between the classic and the real-time computing
model by providingtransformationsin both directions: We show that a system adhering to
some particular instance ofM can simulate a system that adheres to some particular instance
of M (and vice versa). Consequently, certain distributed algorithms designed for a classic
computing model can be run under the real-time computing model, for example.

Clock Synchronization

In Chapter 7, we revisitdeterministic internal clock synchronizationin synchronous systems,
in the absence of failures and clock drift. It is known that the local clocks ofn fully-connected
processors cannot be synchronized with precision less than(1− 1/n)ε when using messages
with end-to-end delay uncertaintyε. A constant time algorithm achieving this bound in the
classic computing model also exists [LL84b].

We show that this is not true in the real-time computing model: optimal precision is only
achievable with algorithms that takeΩ(n) time. On the other hand, achieving a sub-optimal
precision ofO(ε) is achievable in constant time, if, and only if, a constant-time broadcast
primitive is available.

In Chapter 8, we provide an optimal solution for the problem of how to continuously estimate a
source processor’s clock in the case of drifting clocks. Theremote clock estimationalgorithm
is complemented by a matching lower bound on the achievable maximum clock reading error.

In Chapter 9, we give examples of how to apply this remote clock reading technique in external
as well as fault-tolerant internal clock synchronization.

In Chapter 10, we summarize our results and conclude with an outlook on further work and
open issues.
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2. Classic Distributed Computing

In clock synchronization research [LL84a, BW01, PSR94, AHR93, LL84b], system mod-
els are considered where the uncertainty comes from varyingmessage delays, failures, and
drifting clocks. Denoted “Partially Synchronous Reliable/Unreliable Models” in [SLWL90],
such models are nowadays called (non-lock-step) synchronous models in literature. In order
to solely investigate the effects of non-zero step-times, our real-time computing model will
be based on the zero step-time synchronous model commonly used in clock synchronization
research, e.g., in [LL84b]. Here it will be referred to as theclassic computing model.

Note that the model described in this chapter ismessage-driven, i.e., computing steps are
always triggered by messages [HW05b, BW06]. We do, however,retain compatibility to time-
driven models through the concept oftimer messages, which always arrive when the hardware
clock reaches a certain value.

2.1. Preliminaries

Let seq be a sequence whose elements are totally ordered by some relation ≺seq. Within
this work, the notion ofcausal dependencywill be used for various elements (actions, jobs,
receive events, drop events, aj-events, st-events) of sucha sequence. Every such elementx
has an associated processorproc(x). There can be two types of dependencies between these
elements (cf.happened beforerelation, [Lam78]).

• Message dependency (x
M−→ x′): One elementx sends or inserts a message which is

received or processed byx′. This is further formalized in the following sections.

• Local dependency (x
L−→

seq

x′): Both elements occur on the same processor andx

appears beforex′ in the sequenceseq, formally: x
L−→

seq

x′ :⇔ proc(x) = proc(x′) ∧
x ≺seq x′.

Causal dependency (x →seq x′) is defined as the transitive closure of both types of depen-
dency, i.e.,

x→seq x′ :⇔ x
M−→ x′ ∨ x

L−→
seq

x′ ∨ (∃x∗ : x→seq x∗ ∧ x∗ →seq x′).

Definition 2.1. Some sequencecaptures message causalityif the ordering of its elements

(≺seq) is consistent with the message dependency relation, formally: ∀x, x′ ∈ seq : x
M−→

x′ ⇒ x ≺seq x′.
Let seq′ be a reordering of some sequenceseq. seq′ is causally consistentwith seq if the

order of causally dependent elements is maintained, formally: ∀x, x′ ∈ seq : x →seq x′ ⇒
x ≺seq′ x′.
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Observation 2.2. If seq captures message causality,seq′ is a reordering ofseq and seq′ is
causally consistent withseq, thenseq is also causally consistent withseq′.

2.2. System Model

We consider a network ofn processorsΠ, which communicate by passing unique1 messages,
using either a unicast, multicast or broadcast primitive. The system-wide set of messages in
transit will be denotedintransit_msgs. Each processorp is equipped with a CPU, some
local memory, a hardware clockHCp, and reliable, non-FIFO links to all other processors.
The hardware clockHCp : R+ → R+ maps dense real-time2 to dense clock-time; it can be
read but not changed by its processor.HCp is hence not part of the local statestatep, but
considered separately.

The CPU is running analgorithmA, which is specified as (a) a mapping from processor
indices to a set of initial states and (b) a transition function. Processorp’s set ofinitial statesis
denotedInitp(A). Thetransition functiontakes the processor indexp, one incoming message
(taken from the currentintransit_msgs), receiver processorp’s current local stateoldstate
and hardware clock readingHCp as input, and yields a list of states andmessages to be sent,
e.g.[oldstate,msg, int.st.1, int.st.2, newstate], as output. The intermediate states,int.st.1
andint.st.2 in our example, are usually neglected in the classic computing model, as the state
transition fromoldstate to newstate is instantaneous anyway. We explicitly model these
states to retain compatibility with our real-time computing model, where they will become
more important.

Formally, a notation such asA(m, oldstate, T ) = [oldstate, . . . , newstate] will be used
to refer to the output of the transition function of algorithm A when a messagem arrives on
a processor with stateoldstate at hardware clock timeT . For ease of presentation, we will
omit the processor index since, in our model, it is implicitly contained in the message (cf.
Section 4.1).

Every message arrival (also called message reception) simultaneously causes the message
to be removed fromintransit_msgs and the receiver processor to change its state and send
out all messages according to the transition function (by adding those tointransit_msgs).
Such acomputing step(also calledmessage processing step) will be called anaction in the
following. The complete action (message arrival, processing and sending messages) is per-
formed instantly, i.e., in zero time.

Actions can be triggered by three different types of messages: ordinary messages, timer
messages and input messages.Ordinary messagesare transmitted over the links. Themessage
delayδ is the difference between the real-time of the action sending the message and the real-
time of the action receiving the message. There is a lower bound δ− and an upper boundδ+

on the message delay of every ordinary message.3

1Note that uniqueness is only required for analysis, cf. Section 4.1.
2We assume that there is some dense Newtonian reference time,referred to as real-time, which is of course only

available for analysis purposes.
3δ− andδ+ are calledµ andν in [LL84b]. To disambiguate our notation, systems, parameters (like message

delay bounds), and algorithms in the classic computing model are represented by underlined variables (usually
s, δ−, δ+,A).
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Timer messagesare used for modeling time(r)-driven execution in our message-driven set-
ting: Typical clock synchronization algorithms setup one or more local timers in a computing
step, the expiration of which triggers the execution of another computing step. A processor
setting a timer is modeled as sending a timer message (to itself) in an action, and timer expira-
tion is represented by the reception of a timer message. Notethat timer messages do not need
to obey the message delay bounds, since they are received when the hardware clock reaches
(or has already reached) the time specified in the timer message.

Input messagesarrive from outside the system. These messages are exempt from the re-
quirement of having been sent by some processor in the system, and need not satisfy the delay
bounds. (As the send time is unknown, this could not be verified anyway.) Usually, the prob-
lem specification (see Section 5.2.4) will define restrictions on input messages, e.g., which
types of input messages can arrive and their arrival pattern.

Booting We assume that every processorp in the system is in some initial stateistatep ∈
Initp(A) right from the system start, at real-timet = 0. Clearly, in our message-driven
setting, at least one input message is required to trigger the first action in an execution. For
simplicity, we assert that thealgorithmmay specify whether it requires only one such message
or one message for each processor. We will assume that all of theseinit messagesarrive within
a sufficiently short time interval, so that the initialization uncertainty does not significantly
affect the time complexity of our algorithms. On the other hand, we consider the initialization
uncertainty to be large enough to prohibit system-wide initial synchronization.

2.3. Hardware Clocks

The hardware clock of any processorp starts with some arbitrary initial valueHCp(0) and
then increases strictly, continuously and without bound. Depending on the problem under
consideration, some additional restriction on the hardware clock is usually specified. For
example,

• in Section 6.3, we assume that the hardware clocks are able tomeasure some real-time
duration within a given interval[µ−, µ+], i.e., we assume that there is some known value
µ̃, such that waiting for̃µ clock time units results in a real-time duration no shorter than
µ− and no longer thanµ+;

• in Chapter 7, we study the problem of drift-free clock synchronization and, thus, assume
that all clocks progress at the same rate as real time.

A common assumption, which we also use in Chapter 8, is that each clock HCp has a
bounded drift rate ofρp, i.e., t real-time units correspond to at least(1 − ρp)t and at most
(1 + ρp)t clock-time units. Formally, for allp, t > t′ ≥ 0:

(t− t′)(1 − ρp) ≤ HCp(t)−HCp(t
′) ≤ (t− t′)(1 + ρp)

With respect to the notation used in this work, when talking about time units, we mean
real-time units, unless otherwise noted.
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2. Classic Distributed Computing

2.4. Executions

An execution in the classic computing model is a sequenceex of actions and an associated
set ofn hardware clocksHCex = {HCex

p ,HCex
q , . . .}. An actionac occurring at real-timet

at processorp is a5-tuple, consisting of the processor indexproc(ac) = p, the received mes-
sagemsg(ac), the occurrence real-timetime(ac) = t, the hardware clock valueHC(ac) =
HCex

p (t) and the state transition sequencetrans(ac) = [oldstate, . . . , newstate] (including
messages). Letstates(ac) be defined as the list (= sequence) of all states andsent(ac) as the
list of all messages intrans(ac). The abbreviationsoldstate(ac) andnewstate(ac) will be
used for the first and the last entry instates(ac).

As an execution is asequenceof actions, there is a well-defined total order≺ex on ac-
tions. We will omit the superscripts of≺ex andHCex

p if the associated execution is clear

from context. A message dependency (ac
M−→ ac′) between two actionsac andac′ exists

if msg(ac′) ∈ sent(ac). intransit_msgs(ac) denotes the set of messages in transitafter
actionac has sent all its messages but before any following actionac′ ≻ ac in ex has had the
opportunity to send or process messages.

Formally, a valid execution of an algorithmAmust satisfy the following properties:

EX1 ex must be a sequence of actions with a well-defined total order≺ex. The sequence
must capture message causality (cf. Definition 2.1) andtime(ac) must be non-decreasing.

EX2 Processor states can only change during an action, i.e.,if there are two actionsac ≺ ac′

on the same processorp and there is no action onp betweenac andac′, newstate(ac) =
oldstate(ac′).

EX3 The first actionac at every processorp must occur in an initial state (denotedistateex
p )

of A, i.e.,istateex
p = oldstate(ac) ∈ Initp(A).

EX4 The hardware clock readings of actions must be consistent with the hardware clock
associated with the execution, i.e.,HC(ac) = HCex

proc(ac)(time(ac)). The hardware
clock readings must increase strictly (∀t, t′, p : t < t′ ⇒ HCex

p (t) < HCex
p (t′)),

continuously and without bound.

EX5 Messages must be unique, i.e., there is at most one actionsending some messagem and
at most one action receiving it. Message sending and receiving must be in the correct
causal order. Messages can only be sent by and processed by the processor specified in
the message.

EX6 Every non-input message that is received must have been sent.

Note that these properties do not require, for example, thatall ordinary messages obey the
message delay bounds or that all state transitions are in accordance with the transition function
of A. These conditions will be specified by thefailure model(see Section 4.2).
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2.5. Systems

A classic systems = (n, [δ−, δ+]) is a system adhering to the classic computing model defined
in Section 2.2, parameterized by the system sizen and the interval[δ−, δ+] specifying the
bounds on the message delay. The uncertaintyε is defined asδ+ − δ−.

In [MS06a] and [Mos09], the notion ofs-admissible executionswas used: An execution
is s-admissible w.r.t. some systems = (n, [δ−, δ+]), if the execution comprisesn processors
and the message delay for each ordinary message stays within[δ−, δ+]. This definition was
useful for modeling failure-free executions; however, in the context of this work, it has been
replaced with the more powerful concept of “failure models”. Informally speaking, a failure
model specifies additional properties that an execution must satisfy, for example, “no message
takes more thanδ+ time units to be delivered”.

Claiming that an algorithmA solves a certain problemP for a classic systems under a
given failure modelC means that all possible executions ofA that satisfyC must also satisfy
the properties required byP (see Chapter 5). The task of finding such an algorithm can be
seen as providing a winning strategy to a player in an execution-creation game against an
adversary, where the player provides the sets of initial states and the state transition function
and the adversary chooses one initial state and the hardwareclocks for every processor and
controls the message delays (within the bounds[δ−, δ+] provided by the system) as well as
other factors permitted by the failure model. Note carefully that it is the system/the adversary
and not the algorithm that determines the actual message delays in the classic computing
model.
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3. Towards the Real-Time Computing
Model

At a first glance, zero step-time computing models appear to be a good choice for modeling
real-world systems, where message delays are often much higher than message processing
times. There are applications like high speed networks, however, where this is not the case.
Additionally, and more importantly, the zero step-time assumption inevitably ignores message
queuing at the receiver: It is possible, even in the case of large message delays, that multiple
messages arrive at a single receiver at the same time. This causes the processing of some
of these messages to be delayed until the processor is idle again. Common practice so far
is to take this queuing delay into account by increasing the upper boundδ+ on the message
delay. This approach, however, has two disadvantages: First, a-priori information about the
algorithm’s message pattern is needed to determine a parameter of the system model, which
creates cyclic dependencies. Second, in lower bound proofs, the adversary can choose an
arbitrary message delay within[δ−, δ+]—even if this choice is not in accordance, i.e., not
possible, with the actual message arrival pattern. This could lead to overly pessimistic lower
bounds.

It is, of course, not the goal of this work to explicitly modelall the phenomenons (receiver
queuing, network queuing, scheduling overhead, . . . ) usually hidden within some adversary-
controlled value. Rather, our aim was to find a suitable tradeoff between model complexity
and model coverage. Explicitly modeling just non-zero steptimes and the resulting effects
turned out to be an appropriate choice. Other effects, whichdepend more on the underlying
hardware (e.g. network queuing) or which are unsuitable/too detailed for meaningful lower
bounds (e.g. different processing times for different messages) are still abstracted away in
(overly conservative) system parameters and thus subject to inappropriate exploitation by the
adversary.

3.1. System Model

The system model in our real-time computing model is the sameas in the classic computing
model, except for the following change: A computing step in areal-time system is executed
non-preemptively1 within a system-wide lower boundµ− and upper boundµ+. Note that
we allow the processing time and hence the bounds[µ−, µ+] to depend on the number of
messages sent in a computing step. In order to clearly distinguish a computing step in the

1If processing of a message has started, this computing step can neither be interrupted nor preempted. It is pos-
sible to simulate interruptable execution in our model, however, by splitting message processing into smaller
non-interruptable steps connected by “continue_processing” timers.
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Figure 3.1.: Real-time computing model

real-time computing model from a zero-time action in the classic computing model, we will
use the termjob to refer to the former.

Interestingly, this simple extension has far-reaching implications, which make the real-time
computing model more realistic but also more complex. In particular, queuing and scheduling
effects must be taken into account:

Queuing We must now distinguish two modes of a processor at any point in real-timet:
idle andbusy(i.e., currently executing a job). Since computing steps cannot be interrupted,
a queueis needed to store ordinary, timer and input messages arriving while the processor is
busy. We assume that messages are stored in the queue in the order in which they have arrived.

Scheduling When and in which order messages collected in the queue are processed is
specified by somescheduling policy, which is, in general, independent of the algorithm. For-
mally, a scheduling policy is specified as an arbitrary mapping from the current queue state
(= a sequence of messages), the hardware clock reading, and the current local processor state
onto a single message from that message sequence. The scheduling policy is used to select a
new message from the queue whenever processing of a job has been completed.

We assume that the scheduling policy isnon-idling; when the processor is idle, processing
of an incoming message starts immediately. Similarly, whenthe processor finishes a job and
the queue is non-empty, a message from the queue is taken and processing of the correspond-
ing job starts without further delay.

Admission control In the classic zero step-time computing model, under certain failure
models, a faulty processor can send an arbitrary number of messages with arbitrary content to
all other processors. This “arbitrary number”, which is notan issue when assuming zero step
times, could cause problems in the real-time model: It wouldallow a malicious processor to
create a huge number of jobs at any of its peers. Consequently, we must ensure that messages
from faulty processors do not endanger the liveness of the algorithm at correct processors.

24



3.1. System Model

Each node is equipped with anadmission controlcomponent, allowing the scheduler to
drop certain messages instead of processing them. In contrast to the scheduling policy, the
admission control function is usually specific to the algorithm. For example, in round-based
algorithms, a policy such as “accept only the first roundk message from every processorp”
could make sense. This separation of concerns between the admission control component and
the scheduling policy allows the scheduling policy to be optimized towards optimal perfor-
mance for messages from correct processors, without havingto worry about overloads created
by faulty processors.

Scheduling/admission policy Formally, both the scheduling and the admission control
policy are represented by a single functionpol such that

pol(queue state, algorithm state, HC reading) = (msg, queue statenew)

with queue statenew⊆ queue state; msg/∈ queue statenew; and

• msg∈ queue state, representing the case where one message gets scheduled (and some
messages might be dropped), or

• msg= ⊥ and queue statenew = ∅, representing the case where all messages in the queue
(if any) are dropped.

This function is used whenever a scheduling decision is made, i.e., (a) at the end of a job
and (b) whenever the queue is empty and a new message just arrived, and causes msg to be
processed.

Since we assumenon-preemptivescheduling, a message received while the processor is
currently busy will be neither scheduled nor dropped until the current job has finished. “De-
laying” the admission control decision in such a way has the advantage that no intermediate
states can ever be used for admission control decisions.

Message delay The delay of a message is measured from the real-time of thestart of
the jobsending the message to the arrival real-time at the destination processor (where the
message will be enqueued or, if the processor is idle, immediately causes the corresponding
job to start). Like in the classic computing model, message delays of ordinary messages must
be within a system-wide lower boundδ− and an upper boundδ+. Like processing delays, the
message delays and hence the bounds[δ−, δ+] may again depend on the number of messages
sent in the sending job.

It may seem counter-intuitive to measure the message delay from the beginning of the job
rather than from the actual sending time, but this approach has several advantages: First, end-
to-end delays (= message delay + queuing delay) of successive messages can just be added up
to determine the duration of a message chain. Second, a-priori knowledge about the message
sending pattern of the algorithm (e.g. always at the beginning/always at the end of the sending
job) can still be encoded in the message delay bounds. And last but not least, no additional
parameters in the system model or in the transition functionare required.
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3. Towards the Real-Time Computing Model

Hardware clock We assume that the hardware clock can only be read at the beginning
of a job.2 This restriction in conjunction with our definition of message delays will allow
us to define transition functions in exactly the same way as inthe classic computing model.
After all, the transition function just defines the “logical” semantics of a transition, but not its
timing.

State transitions Contrary to the classic computing model, the state transitionsoldstate→
. . .→ newstate in a single computing step need not happen at the same time: Typically, they
occur at different times during the job, allowing an intermediate state to be valid on a processor
for some non-zero duration.

End-to-end delay Figure 3.1 depicts an example of a single job at the sender processor
p, which sends one messagem to receiverq currently busy with processing another message.
Part (a) shows the major timing-related parameters in the real-time computing model, namely,
message delay(δ), queuing delay(ω), end-to-end delay(∆ = δ + ω), andprocessing delay
(µ) for the messagem represented by the dashed arrow. The bounds on the message delay δ
and the processing delayµ are part of the system model, although they need not necessarily be
known to the algorithm. Bounds on the queuing delayω and the end-to-end delay∆, however,
arenot parameters of the system model—in sharp contrast to the classic computing model
(recall Chapter 2), where the end-to-end delay always equals the message delay. Rather, those
bounds (if they exist) must be derived from the system parameters (n, [δ−, δ+], [µ−, µ+]),
the message pattern of the algorithm and the scheduling/admission policy, by performing a
real-time schedulability analysis.

Part (b) of Figure 3.1 shows the detailed relation between message arrival (enqueuing) and
actual message processing.

Note that messages dropped by the scheduler also have a well-defined end-to-end delay:
∆ = δ + ω, with ω denoting the queuing delay until the message is dropped (as opposed to
the queuing delay until the message starts being processed). Thus,∆ for a dropped message
is the time between the start of the job sending the message and the “drop event”. Recall that
ω need not be0, since the decision to drop messages is only made whenever a scheduling
decision is necessary.

3.2. Real-time Runs

This section formalizes the notion of areal-time run(rt-run), which corresponds to an exe-
cution in the classic computing model. Art-run ru consists of a sequence of receive events,
jobs and drop events, and of an associated set ofn hardware clocksHCru

p .
A receive eventR = (receive: p,m, t) for a messagem arriving at processorp at real-time

t consists of the processor indexproc(R) = p, the messagemsg(R) = m, and the arrival
real-timetime(R) = t. Recall thatt is the enqueuing time in Figure 3.1(b).

2This models the fact that real clocks cannot usually be read arbitrarily fast, i.e., with zero access time.
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A job J starting at real-timet on processorp is a6-tuple, consisting of the processor index
proc(J) = p, the message being processedmsg(J), the start timebegin(J) = t, the job
processing timeduration(J), the hardware clock readingHC(J) = HCru

p (t), and the state
transition sequencetrans(J) = [oldstate, . . . , newstate]. states(J), sent(J), oldstate(J)
andnewstate(J) are abbreviations for parts oftrans(J) and defined analogously to the clas-
sic computing model (see Section 2.4). Letend(J) be defined asbegin(J) + duration(J).

A drop eventD = (drop : p,m, t) at real-timet on processorp consists of the processor
indexproc(D) = p, the messagemsg(D), and the dropping real-timetime(D) = t. These
events represent messages getting dropped by the admissioncontrol component rather than
being processed by a job.

Figure 3.1 provides an example of a rt-run, containing threereceive events and three jobs
on the second processor. For example, the dashed job on the second processorq consists of
(q,m, 7, 5,HCq(7), [oldstate, . . . , newstate]), with m being the message received during
the receive event(receive: q,m, 4). Note that neither the actual state transition times nor the
actual sending times of the sent messages are recorded in a job. Measuring all message delays
from the beginning of a job and knowing that the state transitions and the message sends
occur in the listed order at arbitrary times during the job isusually sufficient for algorithm and
complexity analysis. The more detailed notion ofstate transition traceswill be introduced
later in Section 5.2.2.

Clearly, not all sequences of receive events, jobs and drop events are valid real-time system
runs. Analogous to executions in the classic computing model, a rt-run of some algorithmA
must satisfy the following properties:

RU1 ru must be a sequence of receive events, drop events and jobs with a well-defined total
order≺ru. The sequence must capture message causality, and the begintimes (begin(J)
for jobs,time(R) andtime(D) for receive and drop events) must be non-decreasing.

RU2 Processor states can only change during a job.

RU3 The first jobJ at every processorp must occur in an initial state (denotedistateru
p ) of

A, i.e.,istateru
p = oldstate(J) ∈ Initp(A).

RU4 The hardware clock readings of jobs must be consistent with the hardware clocks asso-
ciated with the rt-run. The hardware clock readings must increase strictly, continuously
and without bound.

RU5 Messages must be unique, i.e., there is at most one job sending some messagem, at
most one receive event receiving it, and at most one job processing it or drop event
dropping it. Message sending, receiving and processing/dropping must be in the correct
causal order. Messages must only be sent by and received/processed/dropped by the
processor specified in the message.

RU6 Every non-input message that is received must have been sent. Every message that is
processed or dropped must have been received.

In addition, we require the following in the real-time model:
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RU7 Jobs do not overlap: IfJ ≺ J ′ andproc(J) = proc(J ′), thenend(J) ≤ begin(J ′).

RU8 Drop events can only occur when a scheduling decision is made, i.e., immediately af-
ter a receive event when the processor is idle, or immediately after a job has finished
processing.

A message dependency (J
M−→ R) exists between a jobJ and a receive eventR if msg(R) ∈

sent(J). Clearly, RU5 and RU6 imply a local dependency between the receive event receiv-
ing a message and the job processing or the drop event dropping it. Thus, there is a (transitive)
causal dependency between a job sending a message and the jobprocessing that message.

A processorp is busyat timet if there is some jobJ such thatbegin(J) ≤ t < end(J);
otherwise, it isidle.

3.3. Systems

A real-time systems is a system adhering to the real-time computing model, parameterized
by the system sizen and two intervals[δ−, δ+] and [µ−, µ+], specifying the bounds on the
message delay and on the job duration.

Consideringδ−, δ+, µ− andµ+ to be constants would give an unfair advantage to broadcast-
based algorithms when comparing some algorithms’ time complexity: Computation steps
would take betweenµ− andµ+ time units, independently of the number of messages sent.
This makes it impossible to derive a meaningful time complexity lower bound for systems
in which a constant-time broadcast primitive is not available. Corollary 7.17 will show an
example.

Therefore, the interval boundariesδ−, δ+, µ− and µ+ can be either constants or non-
decreasing functions{0, . . . , n − 1} → R+, representing a mapping from the number of
destination processors to which ordinary messages are sentduring that computing step to the
actual message or processing delay bound.3

Example 3.1. During some job, ordinary messages to exactly three processors are sent. The
duration of this job lies within[µ−

(3), µ
+
(3)]. Each of these messages has a message delay

betweenδ−(3) andδ+
(3). The delays of the three messages need not be the same.

To be useful, these functions must satisfy some conditions:

• Intervals must be well-defined:∀ℓ : δ−(ℓ) ≤ δ+
(ℓ) ∧ µ−

(ℓ) ≤ µ+
(ℓ)

• Sendingℓ messages at once must not be more costly than sending those messages in
multiple steps. Formally,∀i, j ≥ 1 : f(i+j) ≤ f(i) + f(j) (for f = δ−, δ+, µ− andµ+).

3As the message size is not bounded, we can assume that at most one message is sent to the same processor in
a job. Hence, there is a one-to-one correspondence between ordinary messages and destination processors in
each job.

δ−(0) andδ+
(0) are assumed to be0 because this allows some formulas to be written in a more concise form.
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In addition, we assume that the message delay uncertaintyε(ℓ) := δ+
(ℓ) − δ−(ℓ) is also non-

decreasing and, therefore,ε(1) is the minimum uncertainty. This assumption is reasonable,as
usually sending more messages increases the uncertainty rather than lowering it.

Similar to executions in the classic computing model, the creation of an rt-run can be seen
as a game of a player (the algorithm) against an adversary in the “arena” of a systems, a
failure modelC (see next chapter) and a scheduling/admission policypol. For example, when
using the failure model FAULT-FREE, the player provides sets of initial states and the state
transition function, and the adversary can

• for every processor, choose an initial state from the set provided by the player, hardware
clock parameters (such as initial value or drift, dependingon the hardware clock model
used) and the time at which the init message will arrive,

• for every ordinary message sent in a job, together withℓ− 1 other messages, choose a
value within[δ−(ℓ), δ

+
(ℓ)] representing the sum of

– the time between the start of the job which sends the message and the actual send-
ing time of the message, and

– the actual transmission delay of the message (until the receive event occurs),

• for every job sendingℓ ordinary messages, choose a value within[µ−
(ℓ), µ

+
(ℓ)] for its

processing time (and associated overhead, e.g. for scheduling).
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4. Admissibility of Executions and
Real-Time Runs

This chapter will formalize the notion of amessage, introduce the concept offailure models,
and provide definitions for the well-known FAULT-FREE,f -CRASH andf -BYZANTINE
failure models.

4.1. Messages

Formally, a “real message” sent or processed during an execution or rt-run, e.g.“ordinary
message 14635 from p to q containing ‹Hello›”, is a tuple consisting of

1. some identifier which makes the message unique w.r.t. the given execution or rt-run and

2. the “message template” specified in the transition function, e.g.“ordinary message from
p to q containing ‹Hello›”, which, in turn, is a data structure consisting of

a) the “message content”content(m), e.g.“Hello” ,

b) the message type informationtype(m) ∈ {ordinary message, timer message, input
message} and

c) the delivery information, which depends on the type of message:

• For some ordinary messagemo, this is the sending processorsender(mo)
and the receiving processordestination(mo).

• For some timer messagemt, this is the processorproc(mt) and the desig-
nated arrival (hardware clock) time. LetsHC(mt) denote the hardware clock
time for which the timer messagemt is set orHC(ac)/HC(J) of the job set-
ting the timer, whichever is higher. This is the hardware clock value by which
the timer is supposed to arrive.

• For some input messagemi, the delivery information contains the destination
processordestination(mi).

To ease presentation, we will just use the term “message” forreal messages, message tem-
plates and message contents, when it is clear from context which part of the message is meant.
In addition, we will mix these types of messages without explicitly converting them. For
example,trans(J) = A(msg(J), oldstate(J),HC(J)) will be used to denote that jobJ ’s
transition sequence conforms to algorithmA’s transition function. This notation is informal
sincetrans(J) contains real messages andmsg(J) is a real message, whereas the transition
function only specifies message templates.
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Note that the uniqueness of a real message is only required for analysis. Uniqueness can
be guaranteed, for example, by referring to the unique (job that sent the message, destination
processor)-pair or by numbering messages sequentially.

4.2. Failure Models

“Conformance to a certain failure model” replaces the notion of “s-admissibility” used in
previous works ([MS06a], [Mos09]). Formally, a failure model is a predicateC on a (system,
algorithm, scheduling/admission policy, execution/rt-run) tuple. For example, in the classic
computing model and the real-time computing model with bounded-drift clocks,C can be seen
as a characteristic functionC((n, [δ−, δ+]),A, ex) or C((n, [δ−, δ+], [µ−, µ+]),A, pol, ru),
respectively, indicating whetherex/ru is anadmissibleexecution/rt-run w.r.t. the given failure
model in the given system running the given algorithm or not.

To illustrate the concept of failure models, this section will define the well-known failure
models FAULT-FREE,f -CRASH andf -BYZANTINE with bounded drift for the classic as
well as for the real-time computing model.

4.2.1. Prerequisites

For each executionex, we defineAC(ex) as the set of actions inex. Likewise, for each rt-run
ru, letR(ru),D(ru) andJ (ru) denote the sets of receive events, drop events and jobs inru,
respectively. LetJD(ru) = J (ru) ∪D(ru).

With respect to messages, letMo(ex/ru) denote the set of ordinary messages andMt(ex/ru)
the set of timer messages.1

Abbreviations

The failure models in this section will be presented as first-order logic predicates in the form
FAILURE-MODEL(ru) :⇔ ∀x : P (x) ∧ ∀y : Q(y) ∧ . . .. To ease presentation, we will

• write FAILURE-MODEL(ru) instead of FAILURE-MODEL(s,A, pol, ru) and write
P (x) instead ofP (ru, x), likewise for failure models and predicates based on classic
computing model executions,

• write ∀ac : . . . and∃ac : . . . instead of∀ac ∈ AC(ex) : . . . and∃ac ∈ AC(ex) : . . .,
with R, D, J , JD, mo, mt andp associated analogously with the setsR(ru), D(ru),
J (ru), JD(ru),Mo(ex/ru),Mt(ex/ru) andΠ, respectively,

• avoid parentheses when the desired operator precedence is clear (e.g. from context or
from indentation).

1Formally,

Mo(ex) = {m : type(m) = ordinary msg.∧ (∃ac ∈ AC(ex) : msg(ac) = m ∨m ∈ sent(ac))},

Mo(ru) = {m : type(m) = ordinary msg.∧((∃R ∈ R(ru) : msg(R) = m)∨(∃J ∈ J (ru) : m ∈ sent(J)))}.

Mt(ex/ru) are defined analogously withtype(m) = timer message.
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Scheduling and admission control

The predicatesobeys_pol(R) andobeys_pol(J) will be used to refer to the scheduling and
the admission control policy:obeys_pol(R)/(J) is satisfied, if

• at timetime(R), afterR, if no job is currently running (in the case ofobeys_pol(R))
or

• at time end(J), after J , if there are still messages that have been received but not
processed or dropped (in the case ofobeys_pol(J)),

a scheduling decision is made, causing messages to be dropped and/or a job to be started
(according to the chosen policypol).

4.2.2. FAULT-FREE

This is how a fault-free failure model with bounded drift is usually defined:

FAULT-FREEρ(ex) (classic computing model):⇔
∀mo : is_timely_msg(mo, δ

−, δ+) All ordinary msgs obey the message delay bounds.
∧ ∀mt : arrives_timely(mt) All timers arrive in time.
∧ ∀ac : follows_alg(ac) All actions execute the algorithm.
∧ ∀p : bounded_drift(p, ρ) The drift of all hardware clocks is bounded byρ.

FAULT-FREEρ(ru) (real-time computing model):⇔
∀mo : is_timely_msg(mo, δ

−, δ+) All ordinary msgs obey the message delay bounds.
∧ ∀mt : arrives_timely(mt) All timers arrive in time.
∧ ∀R : obeys_pol(R) Scheduling/admission according topol.∧ ∀J : obeys_pol(J)
∧ ∀J : follows_alg(J) All jobs execute the algorithm.
∧ ∀J : is_timely_job(J, µ−, µ+) All jobs obey the processing delay bounds.
∧ ∀p : bounded_drift(p, ρ) The drift of all hardware clocks is bounded byρ.

In addition toobeys_pol, which is defined in the previous section, the following predicates
are used in the definition of FAULT-FREE:

is_timely_msg(mo, δ
−, δ+) :⇔ ∃ac, ac′ : mo ∈ trans(ac) ∧mo = msg(ac′)

∧ time(ac′)− time(ac) ∈ [δ−, δ+]
arrives_timely(mt) :⇔ ∃ac, ac′ : mt ∈ trans(ac) ∧mt = msg(ac′) ∧HC(ac′) = sHC(mt)
follows_alg(ac) :⇔ trans(ac) = A(msg(ac), oldstate(ac),HC(ac))

is_timely_msg(mo, δ
−, δ+) :⇔ ∃J,R : mo ∈ trans(J) ∧mo = msg(R)

∧ time(R)− begin(J) ∈ [δ−, δ+]
arrives_timely(mt) :⇔ ∃J,R : mt ∈ trans(J) ∧mt = msg(R)

∧ (time(R) = max{HC−1
proc(mt)

(sHC(mt)), end(J)})
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follows_alg(J) :⇔ trans(J) = A(msg(J), oldstate(J),HC(J))
is_timely_job(J, µ−, µ+) :⇔ duration(J) ∈ [µ−, µ+]

bounded_drift(p, ρ) :⇔ ∀t > t′ ≥ 0 : (t− t′)(1− ρ) ≤ HCp(t)−HCp(t
′) ≤ (t− t′)(1 + ρ)

Note thatarrives_timely in the real-time computing model ensures that timer messages
arrive either atsHC(mt) or at the end of the job sending the message, whichever happens
later. This allows for code lines such as “set timermt for current_hc”, which cause a timer
message to arrive directly after the job containing this line has finished, possibly triggering
another job right away (unless any other messages in the queue are preferred by the scheduling
policy).

For ease of presentation,δ−, δ+, µ− andµ+ are treated as constants here; the generalization
to functions (cf. Section 3.3) is straightforward: The generic version ofis_timely_job would
be defined asduration(J) ∈ [µ−

(ℓ), µ
+
(ℓ)]; likewise, is_timely_msg would become∃J,R :

mo ∈ trans(J)∧mo = msg(R)∧ time(R)− begin(J) ∈ [δ−(ℓ), δ
+
(ℓ)]. In both cases,ℓ refers

to the number of ordinary messages insent(J).

4.2.3. f -CRASH

Other failure models can be derived from FAULT-FREE by adding exceptions to certain parts
of the predicate. Consider, for example, a model in which up to f processors may crash.
Intuitively, a crashed processor is a processor that eventually stops making state transitions
and sending messages.

In the real-time computing model, we can model this elegantly by messages still arriv-
ing through receive events but jobs no longer being scheduled. In the classic computing
model, however, message reception and processing is tightly coupled within a single action.
Thus, in the classic computing model, we will replace all state transitions after a processor
has crashed with the one-element “NOP transition sequence”[s], with s := oldstate(ac) =
newstate(ac).

The notion of crashing defined below allows forunclean crashes, i.e., the last action/job on
a processor might execute only part of its state transition sequence. Changes to FAULT-FREE
are underlined.

f -CRASHρ(ex) (classic computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt)
∧ ∀ac : follows_alg(ac) ∨ [proc(ac) ∈ F ∧ ((is_last(ac) ∧ follows_alg_partially(ac))

∨ arrives_after_crash(ac))]

∧ ∀p : bounded_drift(p, ρ)

f -CRASHρ(ru) (real-time computing model):⇔
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∃F : |F | = f ∧ F ⊆ Π
∧ ∀mo : is_timely_msg(mo, δ

−, δ+)
∧ ∀mt : arrives_timely(mt)
∧ ∀R : obeys_pol(R) ∨ [proc(R) ∈ F ∧ arrives_after_crash(R) ∧ drops_msg(R)]

∧ ∀J : obeys_pol(J) ∨ [proc(J) ∈ F ∧ is_last(J) ∧ drops_all_queued(J)]

∧ ∀J : follows_alg(J) ∨ [proc(J) ∈ F ∧ is_last(J) ∧ follows_alg_partially(J)]

∧ ∀J : is_timely_job(J, µ−, µ+)
∧ ∀p : bounded_drift(p, ρ)

The following predicates are used in addition to those defined in the previous section, with
“suffix” denoting a possibly empty sequence of states and messages:

is_last(ac) :⇔ ∀ac′ : (ac ≺ ac′ ∧ proc(ac) = proc(ac′))⇒ trans(ac′) = [oldstate(ac′)]
follows_alg_partially(ac) :⇔ ∃suffix : trans(ac) + suffix = A(msg(ac), oldstate(ac),HC(ac))
arrives_after_crash(ac) :⇔ ∃aclast : aclast ≺ ac ∧ proc(aclast) = proc(ac) ∧ is_last(aclast)

arrives_after_crash(R) :⇔ ∃J last : J last ≺ R ∧ proc(J last) = proc(R) ∧ is_last(J last)
drops_msg(R) :⇔ ∃D : time/proc/msg(D) = time/proc/msg(R)
is_last(J) :⇔ ∄J ′ : proc(J) = proc(J ′) ∧ J ≺ J ′

drops_all_queued(J last) :⇔
∀R : [proc(R) = proc(J last) ∧ (∄JD : JD ≺ J last ∧msg(JD) = msg(R))]

⇒ ∃D : time(D) = end(J last) ∧msg(D) = msg(R)
follows_alg_partially(J)⇔ ∃suffix : trans(J) + suffix = A(msg(J), oldstate(J),HC(J))

4.2.4. f -BYZANTINE

Another common extension of FAULT-FREE is a model withf Byzantine (i.e. arbitrary faulty)
processors. Note that the fact that all jobs need a receive event does not reduce the power of a
Byzantine node since it can send an arbitrary number of timermessages to itself.

f -BYZANTINEρ(ex) (classic computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt) ∨ [proc(mt) ∈ F ]

∧ ∀ac : follows_alg(ac) ∨ [proc(ac) ∈ F ]

∧ ∀p : bounded_drift(p, ρ) ∨ [p ∈ F ]

f -BYZANTINEρ(ru) (real-time computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt) ∨ [proc(mt) ∈ F ]
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∧ ∀R : obeys_pol(R) ∨ [proc(R) ∈ F ]

∧ ∀J : obeys_pol(J) ∨ [proc(J) ∈ F ]

∧ ∀J : follows_alg(J) ∨ [proc(J) ∈ F ]

∧ ∀J : is_timely_job(J, µ−, µ+) ∨ [proc(J) ∈ F ]

∧ ∀p : bounded_drift(p, ρ) ∨ [p ∈ F ]
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This chapter defines what it means to prove that some algorithm solves some given problem.
The aim of this chapter is to provide a formal framework for specifying a problem in the same
way for the classic as well as for the real-time model. The following sections present two
suitable approaches.

5.1. aj-problems

Frequently, problems are specified as sets of executions. aj-problems (action/job-based prob-
lems) are a simple generalization of this technique. First, the data structures of actions and
jobs are reduced to a common subset of attributes (calledaj-events). A sequence of such aj-
events, corresponding to an execution or a rt-run, is calledanaj-trace. Then, aj-problems can
be specified easily as sets of aj-traces.

Definition 5.1 (aj-events1). The aj-eventev corresponding to actionac or to job J is a 4-
tuple, consisting of the processor indexproc(ev) = proc(ac)/proc(J), the start real-time
begin(ev) = time(ac)/begin(J), the hardware clock valueHC(ev) = HC(ac)/HC(J)
and the state transition sequencetrans(ev) = trans(ac)/trans(J).

The action/job event trace(aj-trace) of some execution or rt-run is just the sequence of
aj-events corresponding to the actions/jobs. Within an aj-tracetr, there is a total ordering≺tr

on the aj-events, derived from the underlying execution or rt-run.
An aj-problem is a set of aj-traces, usually characterized by a predicate acting on some

aj-tracetr. In addition, an aj-problem may specify a restriction on input messages.
Note, however, that aj-problems do not restrict algorithm messages. This makes them well-

suited for system model transformation proofs, since changing the message that triggered
some computing step (for example, by encapsulating it into amessage of the simulation algo-
rithm) does not violate an algorithm’s capability to solve some particular aj-problem.

Example 5.2(Terminating (Drift-Free) Clock Synchronization). Let is_lastevent(ev, p) be
true if ev is the last aj-event on processorp. Formally: is_lastevent(ev, p) :⇔ proc(ev) =
p ∧ ∄ev′ : ((ev ≺ ev′) ∧ (proc(ev′) = p)).

• Precondition2: Apart from the init messages, there are no input messages.

• Termination:All processors eventually terminate.

∀p : ∃ev : is_lastevent(ev, p)

1Note that this definition ofaj-eventshas nothing to do withreceive eventsor drop eventsin rt-runs.
2The fact that hardware clocks do not drift is not a precondition here. Thus, this problem can only be solved

under drift-free failure models.
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Figure 5.1.: Example of a mutual exclusion violation in the real-time computing model (top:
aj-trace, bottom: rt-run).

• Agreement:After all processors have terminated, all processors have adjusted clocks
(= hardware clock plus some local adjustment variableadj) within γ of each other.

∀p, q : ∀evp, evq ∈ tr : (is_lastevent(evp, p)∧ is_lastevent(evq, q))⇒ |HC(evp)+
newstate(evp).adj−begin(evp)−(HC(evq)+newstate(evq).adj−begin(evq))| ≤ γ

This example reveals thataj-problemspecifications have some drawbacks: predicates can
only be defined for points in time where some event occurs. This is especially inconvenient for
the definition ofdrifting clock synchronization (see Example 5.9 in Section 5.2.4). In addition,
the usage of some distinguished state likenewstate is error-prone. Consider, for example, the
following mutual exclusion condition: a processorp may only enter the critical section during
eventev, if ∀q : newstate(last(q, ev)).in_cs = false, with last(q, ev) being the last event
on processorq beforeev. In the classic computing model, this condition ensures mutual
exclusion. In the real-time computing model, however, the situation depicted in Figure 5.1
can occur. While the aj-trace gives the impression that mutual exclusion is maintained, the
rt-run shows that this is not always the case. As the actual state transitions can occur at any
time during a job (marked as ticks in the figure), it may happenthat, at a certain time (marked
as a dotted vertical line),p has entered the critical section althoughq has not left yet.

5.2. st-problems

While aj-problems are an obvious approach for specifying problems in the models presented
in this thesis, they do not provide an easy way to specify predicates on “the global state of
the system at timet”. This is straightforward in classic models, where an action usually
represents a single state transition. Actions and jobs presented in this work, however, also
involve intermediate states. This section presents a method to map executions to fine-grained
state transition sequences. This method is general enough to be applicable to rt-runs in the
real-time computing model as well, where the intermediate state transitions within a job do
not necessarily occur at the same time.
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5.2.1. Requirements

To provide an easy-to-apply tool for specifying problems, amodel based on the global state
should provide the following features:

Full time coverage To allow safety properties to be defined in a natural way, the system
should be in a well-defined state at every timet, even if no state transition occurs at timet.

Full state coverage An obvious way to define a state model would be as a function
state(p, t) returning some well-defined (e.g. first or last) state of processorp at timet. While
this approach is suitable for some types of problems, it turns out that it is not appropriate for
the general case: Due to the fact that computing steps can take zero time (both in the classic
computing model and in the real-time computing model ifµ− = 0), multiple state transitions
can occur at the same point in time. Ifδ− or δ− = 0, it is even possible for causally dependent
state transitions on different processors to take place at the same real-timet. Therefore, the
model should somehow support more than one global state at the same real-timet. Otherwise,
information could be lost and certain properties not be satisfied anymore.

Consider, for example, an execution of a mutual exclusion algorithm in which processorp’s
state transitions (spread over multiple actions)want to enter→ enter→ exit→ want to enter
always occur within zero time, so that the first and the last state ofp at every timet is always
want to enter. A functionstate(p, t) returning the first or last state ofp at timet would always
returnwant to enter. A liveness property ensuring thatp eventually enters the critical section
could never be proven correct, although the algorithm mightsatisfy this requirement.

Full causal coverage A function state(p, t) returning the set of all possible states ofp
at timet would not suffice either. Consider the mutual exclusion example again and assume
an execution where the following happens:p enters the critical section;p leaves the critical
section and sends a message toq; upon receiving the messageq enters the critical section;q
leaves the critical section. All of this happens at the same time t. Clearly, without information
on the causal dependency of the states at timet, it is impossible to determine whether or not
the safety property that no two processors are inside the critical section simultaneously has
been violated.

It might seem strange to devise a system model where “simultaneously” is more fine-
grained than “at the same timet”. However, being able to use0 as the lower bound on
message transmission delays and message processing times has shown to be a valuable tool
in the analysis of distributed algorithms. Devising a modelwhere such behavior is forbidden
would invalidate such results and should hence be avoided.

5.2.2. State Transitions

As we will define formally in Section 5.2.3, theglobal stateis composed of the local state of
every processorsp and the set of not yet processed messages. We consider four distinct types
of global state changes. Formally, each of these can be represented by astate transition event
(short:st-event) ev with type(ev) ∈ {process, send, transition, input}.
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• (process : t, p,m): At time time(ev) = t, processorproc(ev) = p starts processing
messagemsg(ev) = m.

• (send : t, p,m): At time time(ev) = t, processorproc(ev) = p sends message
msg(ev) = m.

• (transition : t, p, s, s′): At time time(ev) = t, processorproc(ev) = p changes its
internal state fromoldstate(ev) = s to newstate(ev) = s′.3

• (input : t,m): At time time(ev) = t, input messagemsg(ev) = m arrives from an
external source.

In the classic computing model, every executionex with its associated hardware clocks
HCex

p can be mapped to astate transition trace(short: st-trace) tr, representing a sequence
of st-events, with associated hardware clocksHCtr

p = HCex
p (again, the superscript is omitted

if clear from context). A st-trace is created by following a simple transformation rule:

Definition 5.3. Each actionac at time t on processorp triggered by some messagem is
mapped to(process : t, p,m), followed by(send : t, p,m′) or (transition : t, p, s, s′) for
every message and every state transition intrans(ac) (in the correct order). Ifm is an input
message, there is a(input : t,m) st-event immediately before theprocess st-event. All of
these st-events carry the same timet.

A message dependency (ev
M−→ ev′) between two eventsev andev′ exists if type(ev) ∈

{send, input}, type(ev′) = process andmsg(ev) = msg(ev′). As the order of the orig-
inal execution is preserved, this definition implies that message causality is captured in the
newly created st-trace, since every execution captures message causality (condition EX1, cf.
Section 2.4).

In the real-time computing model, the mapping of a real-timerun to a st-trace is similar:

Definition 5.4. Each jobJ starting at timet with durationd on processorp triggered by some
messagem is mapped to(process : t, p,m), followed by(send : t′, p,m′) or (transition :
t′, p, s, s′) for every message and every state transition intrans(J) (in the correct order). The
state transition and send times (t′) must be within[t, t + d] and non-decreasing.

Receive events are only mapped to the st-trace if they are caused by input messages. In that
case, the receive event is mapped to(input : t,m). A drop event at timet on processorp
triggered by messagem is mapped to(process : t, p,m).

In the st-trace, the st-events are ordered by their time while preserving the original order of
the rt-run as much as possible. The times ofsend st-events (within[t, t + d]) must be chosen
such that message causality is captured.4

3Although we will useoldstate(ev) andnewstate(ev) to refer to the states of atransition st-event, note that
they do not necessarily match theoldstate andnewstate of an action or job, asoldstate andnewstate of a
st-event might, as well, be intermediate states in an actionor job.

4This is automatically satisfied if∀ℓ : δ−(ℓ) > µ+
(ℓ).
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Any st-events occurring at the same timet can be reordered as long as the reordering is
causally consistent with the original st-trace (recall Section 2.1). Every such reordering results
in another valid st-trace. Thus, for every execution, thereis one unique set of st-events, which
can be ordered into many st-traces. In the real-time computing model, however, the set of
st-events corresponding to some real-time runru is usually not unique, even if all jobs occur
at different times, as the state transitions and message sends within some job can occur at
different times within the job processing interval.

Example 5.5. Assumeδ− = 0, i.e., messages can be sent in zero time. Letex be an execution
consisting of two actionsac (p,minit, t,HCp(t), [sold, s1,m, snew]) andac′ (q,m, t,HCq(t),
[s′old, s

′
new]). Figure 5.2 shows the st-traces corresponding toex.

To ease presentation, the st-traces are presented in tabular form. For example, the first table corresponds
to the following sequence:(input : t, minit), (process : t, p,minit), (transition : t, p, sold, s1),
(send : t, p, m), (transition : t, p, s1, snew), (process : t, q, m), (transition : t, q, s′old, s′new).

input
minit

p process transition send transition
minit sold, s1 m s1, snew

q process transition
m s′old, s

′
new

input
minit

p process transition send transition
minit sold, s1 m s1, snew

q process transition
m s′old, s

′
new

input
minit

p process transition send transition
minit sold, s1 m s1, snew

q process transition
m s′old, s

′
new

Figure 5.2.: Example of three st-traces.

Note that rearranging these st-events is only possible because they all occur at the same real-
time t. Due to the causal dependency between st-events on the same processor and between
thesendandprocessof messagem, no other st-traces corresponding toex exist.

5.2.3. Global States

Let the global stateg be defined as a tuple(t, s1, . . . , sn, pending_msgs) containing the time
time(g) = t, the state of all processorss1(g) . . . sn(g) and the set of unprocessed messages
pending_msgs(g) (i.e., messages in transit and messages that have been received but not
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processed or dropped yet). To achieve time coverage (see Section 5.2.1), we can annotate a
st-trace by adding (at most countably many) sets of (either one or continuum many) global
states:

• At the beginning:
Insert a set{(t, istate1, . . . , istaten, {}) : 0 ≤ t ≤ t′}, with t′ being the time of the
first st-event andistatep being the initial state of processorp.

• Between every two consecutive st-eventsev andev′:
Insert a set{(t, s1, . . . , sn, pending_msgs) : time(ev) ≤ t ≤ time(ev′)} containing
the global state afterev but beforeev′. The effects of st-events on the global state are
as follows:

– (process : t, p,m) removesm from pending_msgs,

– (send : t, p,m) or (input : t,m) addsm to pending_msgs, and

– (transition : t, p, s, s′) changes processorp’s state tos′.

• After the last st-eventev (if such an event exists):
Insert a set{(t, s1, . . . , sn, {}) : time(ev) ≤ t} containing the global state afterev,
i.e., the final state.

The state sets are totally ordered by time.

Example 5.6. Figure 5.3 shows the first st-trace presented in Figure 5.2, annotated by the
generated state sets.

Note that this sequence of st-events alternating with global states bears a strong resemblance
with the hybrid sequences of Timed I/O Automata [KLSV03]; still, the only trajectory is time
t here.

Let gstates(tr) denote the set of all global states appearing in the annotated st-tracetr.
The annotated st-trace implies a total order≺tr on the set of all st-events and all global states,
i.e., on the settr ∪ gstates(tr).

5.2.4. Problem Definitions

A state-based problem(short: st-problem) is defined as a set of st-traces. Usually it is spec-
ified as a predicate on some st-tracetr and its associated hardware clocksHCtr

p of the form
“preconditions⇒ safetyand livenessproperties”. An algorithm solves a given st-problem if
all st-traces of all executions/rt-runs of this algorithm satisfy this predicate (see Section 5.3
for details).

Example 5.7(Mutual Exclusion). We define the following predicates:

is_enter(ev) :⇔ type(ev) = transition ∧ oldstate(ev).in_cs = false
∧newstate(ev).in_cs = true,

is_want_to_enter(ev) :⇔ type(ev) = input ∧ content(msg(ev)) = “want to enter”,
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Figure 5.3.: Example of an annotated st-trace, containing both st-events and global states

with is_exit(ev) andis_want_to_exit(ev) defined analogously. Then, mutual exclusion can
be specified as follows:

• Precondition I: For every processor, the st-events of its input messages form a (finite or
infinite) sequence starting with “init” and then alternating between “want to enter” and
“want to exit” (starting with “want to enter”).

• Precondition II: Eventually, every processor will be told to leave the critical section.
Formally, for every processorp and every integeri: If tr contains at leasti st-events
satisfyingis_want_to_enter onp and at leasti st-events satisfyingis_enter onp, then
tr also contains at leasti st-events satisfyingis_want_to_exit onp.5

• Mutual Exclusion:There is always at most one processor in the critical section.

∀g ∈ gstates(tr) : |{p : sp(g).in_cs = true}| ≤ 1

• Liveness I:If a processor wants to enter the critical section, it will eventually be inside.

∀ev ∈ tr : is_want_to_enter(ev)⇒ (∃g ≻ ev : sproc(ev)(g).in_cs = true)

5Note that the condition on theenter st-events is necessary: If this precondition just requiredan equal number of
want_to_enter andwant_to_exit st-events, an algorithm could wait for thewant_to_exit messagebefore
entering the critical section. This is not desired behavior, since it would allow the mutual exclusion algorithm
to force the duration of a critical section to be arbitrarilysmall.
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• Liveness II:If a processor wants to exit the critical section, it will eventually be
outside.

∀ev ∈ tr : is_want_to_exit(ev)⇒ (∃g ≻ ev : sproc(ev)(g).in_cs = false)

• Safety:Do not enter or exit the critical section without a reason.

∀p : ∀g ∈ gstates(tr) : count(is_enter, p, g) ≤ count(is_want_to_enter, p, g)
∧ count(is_exit, p, g) ≤ count(is_want_to_exit, p, g)

with count(P, p, g) denoting the number of st-events satisfyingP onp beforeg.

Example 5.8(Terminating (Drift-Free) Clock Synchronization [LL84b]). Note that this prob-
lem can only be solved under drift-free failure models. We define is_finalstate(g) :⇔
∀g′ ≻ g : ∀p : sp(g) = sp(g

′). Let the adjusted clock valueACp(g) be defined as
HCtr

p (time(g)) + sp(g).adj.

• Precondition: Apart from the init messages, there are no input messages.

∀ev ∈ tr : (type(ev) = input)⇒ (content(msg(ev)) = “init” )

• Termination:All processors eventually terminate.

∃g ∈ gstates(tr) : is_finalstate(g)

• Agreement:After all processors have terminated, all processors have adjusted clocks
within γ of each other.

∀g ∈ gstates(tr) : is_finalstate(g)⇒ (∀p, q : |ACp(g) −ACq(g)| ≤ γ)

Example 5.9(Drifting Clock Synchronization [AW04]). ACp(g) is defined as in the previous
example.

• Precondition I: Adjusted clocks are initially synchronized within B.

∀p, q : ∀g ∈ gstates(tr) : (∄g′ : g′ ≺ g)⇒ (|ACp(g) −ACq(g)| ≤ B)

• Precondition II: All processors start processing at time0.

∀p : ∃ev ∈ tr : type(ev) = process ∧ time(ev) = 0 ∧ proc(ev) =
p ∧ content(msg(ev)) = “init”

• Precondition III: Apart from the init messages, there are noinput messages.

∀ev ∈ tr : (type(ev) = input)⇒ (content(msg(ev)) = “init” )

• Agreement:All processors have adjusted clocks withinγ of each other.

∀p, q : ∀g ∈ gstates(tr) : |ACp(g) −ACq(g)| ≤ γ

• Validity: Adjusted clocks stay within a linear envelope (ϕ) of their hardware clocks.

∀p, t : (HCtr
p (t)−HCtr

p (0)) 1
1+ϕ
≤ ACp(t)−ACp(0) ≤ (HCtr

p (t)−HCtr
p (0))(1+ϕ)
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5.2.5. Relationship to aj-problems

Using the following algorithm, a st-tracetrst can be reduced to an aj-tracetraj: Every
process st-eventevst is mapped to an aj-eventevaj , such that

• proc(evaj) = proc(evst)

• begin(evaj) = time(evst)

• HC(evaj) = HCtrst

proc(evst)(time(evst))

• trans(evaj) can be derived from the sequence ofsend andtransition st-events on this
processor before the nextprocess.

Thus, every aj-problem can also be specified as a st-problem containing exactly those st-
traces that

• can be mapped to one aj-trace in the aj-problem and

• satisfy the input message restrictions specified in the aj-problem.

For this reason, all proofs in this thesis will be conducted solely for st-problems.

5.3. Proofs

A problemP is either an aj-problem or a st-problem. We say that an execution/rt-runsatisfiesa
problem if all aj-traces/all st-traces are∈ P, i.e. if all aj-traces/all st-traces satisfy the predicate
that specifies the problem.

The notion offailure models(cf. Section 4.2) can be used to prove that some algorithm
solvessome problemP in a certain system. In the classic computing model, we can define
correctness and impossibility in the usual way:

Definition 5.10 (Correctness). An algorithmA solves some problemP in some systems
under some failure modelC if, and only if, for every executionex ofA satisfyingC(s,A, ex),
ex also satisfiesP.

Definition 5.11 (Impossibility). A problemP is impossible to solve in some systems under
some failure modelC if, and only if, for every algorithmA there exists an executionex of A
which satisfiesC(s,A, ex) but violatesP.

The definitions for the real-time computing model are analogous:

Definition 5.12 (Correctness). An algorithmA solves some problemP in some systems
under some failure modelC with scheduling/admission policypol if, and only if, for every
rt-run ru of A satisfyingC(s,A, pol, ru), ru also satisfiesP.

Definition 5.13 (Impossibility). A problemP is impossible to solve in some systems under
some failure modelC with scheduling/admission policypol if, and only if, for every algorithm
A, there exists an rt-runru of A that satisfiesC(s,A, pol, ru) but violatesP.
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5.4. Notation for Specifying Algorithms

Recall that, in both system models, an action/a job consistsof getting a message (either from
the messaging subsystem or from the queue), reading the hardware clock, performing state
transitions and sending messages. Thus, the transition function and the initial state of some
algorithmA can be thought of as a set of global variables (including their initial values) and
some procedureA-process_message(msg, current_hc)carrying out the state transitions and
sending the messages.msg contains the message to be processed andcurrent_hc contains
the hardware clock reading at the beginning of this action/job. If it is not obvious from the
code, an informal description is given as to which operations are atomic, i.e., without an
intermediate state, and which are not.

5.5. Time Complexity

The time complexity of some terminating algorithm will be measured as the worst-case differ-
ence of the real-time of arrival of the last init message to the real-time when the last processor
has terminated.
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In this chapter, we will show that the classic computing model and the real-time computing
model are fairly equivalent from the perspective of solvability of problems: A real-time system
can simulate some particular classic system (and vice versa), and conditions for transforming
a classic computing model algorithm into a real-time computing model algorithm (and vice
versa) do exist. As a consequence, certain impossibility and lower bound results can also be
translated.

One direction (Section 6.3), simulating a real-time system(n, [δ−, δ+], [µ−, µ+]) on top of
a classic system(n, [δ−, δ+]), where the message delays of the real-time system match those
of the classic system, is quite straightforward: It sufficesto implement an artificial processing
delay, the queuing of messages arriving during such a simulated job, and the scheduling/ad-
mission policy. This simulation allows to run any real-timecomputing model algorithmA
designed for a system(n, [δ−, δ+], [µ−, µ+]) with δ− ≤ δ−, δ+ ≥ δ+ on top of it, thereby
resulting in a correct classic computing model algorithm.

For the other direction (Section 6.2), it is possible to simulate a classic system(n, [δ−, δ+])
on top of a real-time system(n, [δ−, δ+], [µ−, µ+]), where the end-to-end delays of the clas-
sic system match those of the real-time system, i.e.[δ−, δ+] = [∆−,∆+]. Recall that the
end-to-end delay bounds are equal to those of the message delay in the classic, but not in
the real-time computing model, since the end-to-end delaysadditionally depend on queuing
effects in the latter. Thus, this direction is more tricky: First, because of the uncertainty re-
garding when a job’s state transition is actually performed, the transformed algorithm solves a
slightly different problem than the original algorithm. Second, and more importantly, areal-
time schedulability analysismust be conducted in order to break the circular dependency of
algorithmA and end-to-end delays∆ ∈ [∆−,∆+] (and vice versa): On one hand, the classic
computing model algorithmA, run atop of the simulation, might need to know thesimulated
message delay bounds[δ−, δ+], which are just the end-to-end delay bounds[∆−,∆+] of the
underlying simulation. Those end-to-end delays, on the other hand, involve the queuing delay
ω and are thus dependent on (the message pattern of)A and hence on[δ−, δ+]. This circu-
lar dependency is “hidden” in the parameters of the classic computing model, but necessarily
pops up when one tries to instantiate this model in a real system.

6.1. Problem Transformations

When running a real-time computing model algorithm in a classic system (Section 6.3), the
st-traces of the simulated rt-run and the ones of the actual execution are very similar: Ignoring
variables solely used by the simulation algorithm, it turnsout that the same state transitions
occur in the rt-run and in the corresponding execution. Consequently, this transformation
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inherently preserves most correctness and impossibility proofs.
Unfortunately, this is not the case for transformations in the other direction, i.e., running

a classic computing model algorithm in a real-time system (Section 6.2): The st-traces of
a simulated execution are usually not the same as the st-traces of the corresponding rt-run.
While all state transitions of some actionac at timet always occur at this time, the transitions
of the corresponding jobJ take place at some arbitrary time betweent andt + duration(J).
Thus, there could be algorithms that solve some st-problem in the classic computing model,
but fail to do so in the real-time computing model.

Fortunately, however, it is possible to show that if some algorithm solves some st-problem
P in some classic system, the same algorithm can be used to solve a variant ofP, denoted
P∗

µ+ , in some corresponding real-time system. The following section will formalize the exact
relationship betweenP andP∗

µ+ .

6.1.1. Shuffles

Definition 6.1. Let tr be a st-trace. Aµ+-shuffleof tr is constructed by:

1. movingsend or transition st-events intr at mostµ+ time units into the future (by
increasing their time value and changing their position in the sequence, if needed).
Every send or transition st-event may of course be shifted by adifferent value v,
0 ≤ v ≤ µ+.

If µ+ is a function{0, . . . , n − 1} → R rather than a number (cf. Section 3.3), asend
or transition st-eventev may be moved by at mostµ+

(ℓ)
time units, withℓ representing

the number ofsend st-events sending non-timer messages between the lastprocess
st-event≺ ev and the firstprocess st-event≻ ev. Intuitively, this corresponds to the
number of non-timer messages sent by the action or job in the original execution.

2. movinginput st-events intr arbitrarily far into the past1 without changing their order
with respect to otherinput st-events.

None of these moving operations may violate causal dependency, i.e., the st-trace must be
causally consistent withtr to be a validµ+-shuffle oftr. Causal dependency could be violated
by changing the order of st-events occurring on the same processor or by causing messages
to be processed before they have been sent (cf. Section 2.1).Sincegstates(tr) is a function
of HCtr and tr, gstates(tr) changes during shuffling. Note thatHCtr is not modified by
shuffling operations.

Let shuffles(tr, µ+) be the set of allµ+-shuffles oftr.

Observation 6.2.The order of processor-local state transitions does not change, as otherwise
causal dependency would be violated.

1For the purpose of the proof of Theorem 6.11, this condition can be weakened. Letev′ be the event starting
the busy period (= period, whereprocess st-events are at mostµ+ time units apart). As our model assumes
a non-idling scheduler, it suffices to allow theinput st-eventev to be moved back to any time in the interval
[time(ev′), time(ev)].
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Observation 6.3. Let tr and tr′ ∈ shuffles(tr, µ+) be st-traces. Letg be a global state in
gstates(tr) andp be a processor. There is a global stateg′ in gstates(tr′) with time(g) ≤
time(g′) ≤ time(g)+µ+ such thatsp(g) = sp(g

′). Informally, this means that if a processor
is in a certain state in a st-trace, it will be in the same statein a shuffled st-trace, but this state
might be delayed by up toµ+ time units.

The same holds the other way round: If a processor is in a certain state ingstates(tr′), it
will be in the same state ingstates(tr), but maybe up toµ+ time units earlier.

Definition 6.4. Let P be a st-problem, represented as a set of st-traces. ThenP∗
µ+ is defined

as
⋃

tr∈P shuffles(tr, µ+). Informally speaking,P∗
µ+ is equivalent toP with the exception

that the problem is still solved if an arbitrary number of message sends and state transitions
may happen up toµ+ time units later (without violating causality) and external inputs arrive
earlier.

Note that, asP is a subset ofP∗
µ+ , P∗

µ+ is a weaker problem thanP, i.e., if some algorithm
solvesP (in some system under some failure model), it also solvesP∗

µ+ (in the same system

under the same failure model). In fact, for some st-problems, it even holds that∀µ+ : P∗
µ+ =

P. We will call such st-problemsshuffle-compatible problems, which informally means that
they are invariant against time shifts.

6.1.2. Simulation-Invariant Extensions

Sometimes, it can be necessary to run an algorithm within some time-preservingsimulation:
The algorithm’s state transitions are the same and occur at the same time, but the simulator
needs to add its own variables. In addition, transmission ofalgorithm messages might be han-
dled by the simulator instead (e.g., by wrapping them with additional information or receiving
them earlier and queuing them). One such simulation will be presented in Section 6.3. In that
case, we will restrict our attention tosimulation-compatible problems, which do not impose
any restrictions on messages (except the arrival of input messages) and that are only concerned
with “their own” variables.

Let tr be a st-trace andV be a set of variable names. Formally, asimulation-invariant
V-extensionof tr is constructed in the following way:

• Every state occurring in the st-trace, i.e.,oldstate andnewstate of everytransition
st-event, may be extended by variables fromV (and their valuations).

• An arbitrary number ofprocess andsend st-events may be inserted, modified or re-
moved.

• transition st-events may be inserted as long as they do not modify any variables other
than those inV.

• The result must be a valid st-trace, e.g., every message processed must have been sent by
asend st-event or must originate from aninput st-event, and everynewstate(ev) must
correspond tooldstate(ev′) of the following st-event on the same processor. Formally,
someex (satisfying EX1–EX6) orru (satisfying RU1–RU8) must exist which can be
mapped totr using Definition 5.3 or 5.4.
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A simulation-invariantV-extensionof some problemP, denotedP>
V , is defined as the set

of all simulation-invariantV-extensions of all st-traces inP. For simplicity, we assume that
V only contains variables that are not already referenced explicitly in P. A problemP where
P = P>

V for all V will be calledsimulation-compatible.

6.1.3. Examples

All examples in this section are simulation-compatible.

τ gap Mutual Exclusion Let P be the3-second gap mutual exclusionproblem, defined
by the properties in Section 5.2.4 and the additional requirement (“3s-gap”) that all processors
must have left the critical section for more than 3 seconds before the critical section can be
entered again by some processor:∀ev, ev′ ∈ tr : (is_exit(ev) ∧ ev ≺ ev′ ∧ time(ev′) ≤
time(ev) + 3)⇒ ¬is_enter(ev′).

We claim that an algorithm solvingP∗
µ+ with µ+ = 3 seconds also solves0-second gap

mutual exclusion(defined analogously). Looking ahead to Theorem 6.11, this means that a
3-second gap mutual exclusionalgorithm designed for a classic system can be used to solve
the 0-second gap mutual exclusionproblem in some real-time system withµ+ = 3 and the
other parameters determined by the feasible assignment (cf. Section 6.2).

Proof. We will show by contradiction that an algorithm solvingP∗
µ+ solves the 0-gap mutual

exclusion problem. Assume that there exists a rt-runru with st-tracetr′ satisfyingP∗
µ+ where

mutual exclusionor 0s-gapis violated, i.e., there is some timet in which two processorsp
andq are inside the critical section. This can happen either by both being inside the critical
section in the same global state, thus violating the classical mutual exclusioncondition, or by
a zero-time st-event sequenceexitp, . . . , enterq (w.l.o.g.), thus violating0s-gap.

As ru satisfiesP∗
µ+ , tr′ ∈ P∗

µ+ . By the definition ofP∗
µ+ , this means thattr′ is a 3-second

shuffle of some st-tracetr ∈ P. Thus, intr, q is in the critical section at some time within
[t− 3s, t] andp is in the critical section at some (maybe other) time within[t − 3s, t] (recall
Observation 6.3). Ifp andq are in the critical section at the same global state ingstates(tr),
mutual exclusionis violated. Otherwise, one of them exits and the other one enters, causing
the 3s-gapcondition to be violated. Both cases contradict the assumption thatP solves3-
second gap mutual exclusion.

Liveness I/IIandsafetyin P∗
µ+ follow directly from the same property inP, asenter and

exit st-events as well as local states are only moved forward w.r.t. tr (again, cf. Observa-
tion 6.3), whereaswant_to_enter andwant_to_exit st-events are only moved backwards
w.r.t. tr.

Causal Mutual Exclusion Let P be thecausal mutual exclusionproblem, defined by
the properties in Section 5.2.4 and the additional requirement that every state transition in
which a processor enters a critical section must causally depend on the last exit, formally
∀ev, ev′ ∈ tr : (ev = last(is_exit, ev′) ∧ is_enter(ev′)) ⇒ (ev → ev′), with last(P, ev)
denoting the last st-eventev′ satisfyingP with ev′ ≺ ev (or⊥, if no such st-event exists).
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In this case,P∗
µ+ = P, i.e., causal mutual exclusion is a shuffle-compatible problem and

the same algorithm used for some classic system can also be used in a real-time system with
a feasible assignment.

Proof. As an algorithm solvingP always solvesP∗
µ+ , we just have to show the other direction,

i.e., that an algorithm solvingP∗
µ+ solves causal mutual exclusion, to prove the equivalence.

As in the previous example,liveness I/IIandsafetyare unaffected by the shuffle.
In P, the newexit-enter causalitycondition and themutual exclusioncondition imply that

there is a causal sequenceenterp → exitp → enterq → exitq → · · · containingall enter and
exit st-events. Since shuffles must be causally consistent with the original st-trace,enterp ≺
exitp ≺ enterq ≺ exitq ≺ · · · still holds for all st-traces inP∗

µ+ , guaranteeing (a) thatmutual

exclusionis not violated inP∗
µ+ and (b) thatlast(is_exit, ev′) returns the same exit st-event

in tr and tr′ for each enter st-eventev′. Since shuffles neither change the processor-local
order of st-events nor modify the messages, all causal dependencies (cf. Section 2.1) still exist
in P∗

µ+ . Thus,exit-enter causalityalso holds inP∗
µ+ .

Terminating Clock Synchronization Let P be theterminating clock synchronization
problem, defined by the conditions in Section 5.2.4.P is a shuffle-compatible problem.

Proof. As terminationis guaranteed in every st-trace ofP, everyµ+-shuffle of that st-trace
terminates at mostµ+ time units later.

Assume by contradiction thatagreementis violated in someµ+-shuffletr′ of a st-tracetr
of P. Let g be the first global state in which agreement between some processorsp andq is
violated. Clearly,g must be after termination. Thus, the adjustment values ofp andq must be
the same as the ones in all terminated states oftr. However, as bothtr andtr′ reference the
same hardware clocks, this is a contradiction.

aj-problems Every aj-problem can be specified as a st-problem with restrictions solely on
process andinput st-events (cf. Section 5.2.5) and on the local order ofprocess, send and
transition st-events (specified astrans(acaj)). As process st-events are not changed by
shuffles and the local order of the aforementioned st-eventsdoes not change, every aj-problem
whose input message restrictions are not violated by shifting input st-events backwards in
time is a shuffle-compatible problem.

6.2. Reusing Classic Computing Model Algorithms

In this section, we will show how to simulate a classic system(n, [δ−, δ+]) on top of a real-
time system(n, [δ−, δ+], [µ−, µ+]) if the end-to-end delays bounds∆− and∆+ of the real-
time system equal the message delay boundsδ− and δ+ of the simulated classic system.
Thereby, we provide a transformation of a classic computingmodel algorithm solving some
problemP into a real-time computing model algorithm solvingP∗

µ+ (cf. Section 6.1.1).
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6.2.1. Feasible Assignment

The key to this transformation is a very simple simulation: Recall that an algorithm is specified
as a mapping from processor indices to a set of initial statesand a transition function, and that
the transition function is defined identically for the classic and the real-time computing model.
LetSA be an algorithm for the real-time computing model, comprising exactly the same initial
states and transition function as a given classic computingmodel algorithmA. From a more
practical point of view,SA can be expressed as given in Figure 6.1.

1 <global variables ofA>
2
3 procedureSA−process_message(msg, current_hc)
4 A−process_message(msg, current_hc)

Figure 6.1.: Simulation algorithmSA (classic computing model atop of real-time computing
model)

The major problem here is the circular dependency of the algorithm A on the real end-to-
end delays and vice versa: On one hand, the classic computingmodel algorithmA run atop of
the simulation might need to know thesimulatedmessage delay bounds[δ−, δ+], which are
just the end-to-end delay bounds[∆−,∆+] of the underlying simulation. Those end-to-end
delays, on the other hand, involve the queuing delayω and are thus dependent on (the message
pattern of)A and hence on[δ−, δ+].

Clearly, the end-to-end delay bounds ofSA are the result of some real-time schedulabil-
ity analysisf of runningSA with some scheduling/admission policypol under some failure
modelC:

[∆−,∆+] = f
(
n, [δ−, δ+], [µ−, µ+],SA, pol, C

)
. (6.1)

In turn, these end-to-end delay bounds specify the system parameters of the simulated classic
system:

[δ−, δ+] = [∆−,∆+]

SinceSA depends onA andAmight need to know the systems bounds[δ−, δ+], this leads to
a circular dependency with respect to[∆−,∆+] in eq. (6.1).

This dependency can be broken as follows: Given some classiccomputing model algorithm
A with assumed message delay bounds[δ−, δ+], considered as unvalued parameters, a real-
time schedulability analysis of the transformed algorithmSA must be conducted. This pro-
vides an equation for the resulting end-to-end delay bounds[∆−,∆+] in terms of the real-time
systems parameters(n, [δ−, δ+], [µ−, µ+]) and the algorithm parameters[δ− = ∆−, δ+ =
∆+], i.e., a functionF satisfying

[∆−,∆+] = F
(
n, [δ−, δ+], [µ−, µ+], [∆−,∆+]

)
. (6.2)

We do not want to embark on the intricacies of advanced real-time schedulability analysis
techniques here, see [SAA+04] for an overview. For the purpose of this work, quite simple
considerations are sufficient: A trivial end-to-end delay lower bound∆− is δ−(1). An upper

bound∆+ can be obtained easily if, for example, there is an upper bound on the number of
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messages a processor receives in total. This technique is used in Chapter 7, whereas Sec-
tion 8.2.3, on the other hand, presents a more complex example for determining∆+.

Anyway, if eq. (6.2) provided by the real-time schedulability analysis can be solved for
[∆−,∆+], resulting in meaningful bounds∆− ≤ ∆+, they can be assigned to the algorithm
parameters[δ−, δ+]. We will call such an assignmentfeasible. Any feasible assignment of
[δ−, δ+] results in a correct implementation of the real-time computing model algorithmSA,
since it ensures that bothA and the end-to-end delays are within their specifications. Such a
feasible assignment may not exist for some (real-time system, algorithm, scheduling/admis-
sion policy, failure model) tuples.

6.2.2. Scheduling/Admission Policy

Contrary to the classic computing model, running an algorithm in a real-time system requires a
scheduling/admission policy(cf. Section 3.1), which not only determines the processingorder
of incoming messages but also allows messages to be dropped.For runningSA, this policy
pol can be arbitrary, as long as the following two conditions aresatisfied:

• Only “irrelevant” messages are dropped when runningSA with pol in systems. More
specifically, only messages that would have caused a jobJ with a NOP state transition
(trans(J) = [oldstate(J)]) are allowed to be dropped. For example, in round-based
algorithms, this could be messages from previous rounds or roundk messages from a
processor from which such a message has already been received (indicating a link or
processor fault).

Formally,pol andA must satisfy the following condition: Ifpol drops a messagem at
hardware clock timeT on a processor with states (i.e., if ∃Q,Q′, next : pol(Q, s, T ) =
(next,Q′) ∧m ∈ Q ∧m 6= next ∧m /∈ Q′), thenA(m, s, T ) = [s].

• Input messages must be processed in FIFO order. Formally, ifinput messagesm1 and
m2 are in the queue andm1 has been received beforem2, thenm2 must not be dropped
or processed beforem1 has been dropped or processed.

6.2.3. Transformation TR→C

As shown in the outline (Figure 6.2), the proof works by transforming every rt-run ofSA
into a corresponding execution ofA. By showing that (a) this execution is a valid execution
of A and (b) the execution and the rt-run have (roughly) the same state transitions, the fact
that the rt-run satisfiesP∗

µ+ can be derived from the fact that the execution satisfiesP. This
transformation,ex = TR→C(ru), works by

• mapping each jobJ in ru to an actionac in ex:

proc(ac)← proc(J)

msg(ac)← msg(J)

time(ac)← begin(J)

HC(ac)← HC(J)

trans(ac)← trans(J)

53



6. Transformations

Given an algorithmA that solves problemP in systems under failure modelC,

we show that algorithmSA solves problemP∗
µ+ in systems under failure modelC.

simulation
algorithm
(Fig. 6.1)

problem
transformation
(Sect. 6.1.1)

failure model
transformation
(Sect. 6.2.4)

feasible
assignment
(Sect. 6.2.1)

LetA be an algorithm solvingP in s under failure modelC.

For each admissible rt-runru of SA in
s under failure modelC:

m

∆m

• Create a corresponding executionex of A in s.

m

δm

• Show thatex conforms to failure modelC.
⇒ ex satisfiesP.

• Show that every st-trace ofru is aµ+-shuffle of a st-trace ofex.

⇒ ru satisfiesP∗
µ+ .

⇒ SA solvesP∗
µ+ in s under failure modelC.

Figure 6.2.: Transformation outline (Theorem 6.11)

• mapping each drop eventD in ru to a NOP actionac in ex, with state denoting the
newstate of the last job finishing onp = proc(D) beforeD (or istateru

p , if there is no
such job), andT being defined asHCru

p (time(D)):

proc(ac)← proc(D)

msg(ac)← msg(D)

time(ac)← time(D)

HC(ac)← T

trans(ac)← [state]
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• settingHCex
p = HCru

p for all p.

Receive events inru are ignored.

Lemma 6.5. If ru is a valid rt-run ofSA, ex = TR→C(ru) is a valid execution ofA.

Proof. EX1–6 (cf. Section 2.4) are satisfied inex: EX1 follows from RU1 by ordering the
actions like their corresponding jobs and drop events. EX2 follows from RU2 and the fact that
the order of jobs inru corresponds to the order of actions inex, that the transition sequence
is not changed and that the “correct” state is chosen for actions corresponding to drop events.
EX3 is a direct consequence of RU3 and the fact that bothru andex run the same algorithm
(i.e. use the same initial state). Sinceru andex use the same hardware clocks, RU4 suffices
to satisfy EX4. EX5 follows directly from RU5, and EX6 follows from RU6. Thus,ex is a
valid execution ofA.

Lemma 6.6. For every messagem in ex, the message delayδm is equal to the end-to-end
delay∆m′ of its corresponding messagem′ in ru.

Proof. By construction ofex, the sending time of every message stays the same (time(ac) =
begin(J), with ac andJ being the sending action/job; recall that message delays are measured
from the start of the sending job rather than from thesend st-event). For dropped messages,
the drop time inru equals the receiving/processing time inex (time(ac) = time(D), with ac
being the processing action andD being the drop event). For other messages, the processing
time in ru equals the receiving/processing time inex (time(ac) = begin(J), with ac being
the processing action andJ being the processing job).

6.2.4. Failure Model Compatibility

Since the failure model is dependent on the system model (classic or real-time), we need to
establish a relationship between two failure modelsC andC, such that the following holds:

Definition 6.7. A failure modelC is calledTR→C -compatibleto C, if the following holds for
every rt-runru of some algorithmSA in some systems under failure modelC with a schedul-
ing/admission policy only dropping irrelevant messages (cf. Section 6.2.2):ex, the execution
created by applying transformationTR→C to ru, conforms to failure modelC in systems, with
s containing a feasible assignment w.r.t.s,A and the chosen scheduling/admission policy.

This relationship needs to be shown for every (classic failure model, real-time failure
model)-pair used in the transformation. As an example, we will prove compatibility for some
variants of bounded-driftf -CRASH andf -BYZANTINE (and, thus, for FAULT-FREE=
0-CRASH= 0-BYZANTINE).

f -CRASH

First, we define two variants off -CRASH. Differences tof -CRASHρ(ex) andf -CRASHρ(ru)
(cf. Section 4.2.3) are underlined.
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f -CRASHρ+latetimersα(ex) (classic computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt) ∨ is_late_timer(mt, α)

∧ ∀ac : follows_alg(ac) ∨ [proc(ac) ∈ F ∧ ((is_last(ac) ∧ follows_alg_partially(ac))
∨ arrives_after_crash(ac))]

∧ ∀p : bounded_drift(p, ρ)

f -CRASHρ+precisetimersα(ru) (real-time computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt)
∧ ∀R : obeys_pol(R) ∨ [proc(R) ∈ F ∧ arrives_after_crash(R) ∧ drops_msg(R)]
∧ ∀J : obeys_pol(J) ∨ [proc(J) ∈ F ∧ is_last(J) ∧ drops_all_queued(J)]
∧ ∀J : follows_alg(J) ∨ [proc(J) ∈ F ∧ is_last(J) ∧ follows_alg_partially(J)]
∧ ∀J : is_timely_job(J, µ−, µ+)
∧ ∀mt : gets_processed_precisely(mt, α)

∧ ∀p : bounded_drift(p, ρ)

is_late_timer(mt, α) :⇔ ∃ac, ac′ : mt ∈ trans(ac) ∧mt = msg(ac′)

∧ time(ac′) ∈ HC−1
proc(mt)

(sHC(mt)) + [0, α]

gets_processed_precisely(mt, α) :⇔
∃JD : msg(JD) = mt ∧ time(JD) ∈ HC−1

proc(mt)
(sHC(mt)) + [0, α]

As a reminder:f -CRASHρ(ex) andf -CRASHρ(ru) require every timermt to arrive at the
designated hardware clock timesHC(mt) (= the time for whichmt is set or the hardware
clock time at the beginning of the job setting the timer) or atthe hardware clock time at the
end of the job settingmt, whichever happens later (cf. Section 4.1). In the classic comput-
ing model, they must be processed immediately; in the real-time computing model, they are
allowed to be queued.

f -CRASHρ+precisetimersα(ru) requiresthat timersstart processingat mostα time units
after their designated time. On the other hand,f -CRASHρ+latetimersα(ex) allows timers to
arrive up toα real-time units later than their designated time.

Note that for allru and allα ≥ 0, f -CRASHρ+precisetimersα(ru) ⇒ f -CRASHρ(ru),
and that for allex and allα ≥ 0, f -CRASHρ(ex)⇒ f -CRASHρ+latetimersα(ex).

The following lemma shows that a classic computing model algorithm designed for thef -
CRASH failure model with bounded drift and tolerating late timer arrival by at mostα can
be used in a real-time system under the condition that queuing effects delay the processing of
timers by at mostα time units.
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Lemma 6.8.f -CRASHρ+latetimersα(ex) isTR→C-compatible tof -CRASHρ+precisetimersα(ru).

Proof. Let F denote the same set of processors in bothf -CRASHρ+latetimersα(ex) andf -
CRASHρ+precisetimersα(ru). We can show thatex = TR→C(ru) (according to Defini-
tion 6.7) satisfiesf -CRASHρ+latetimersα(ex), if ru satisfiesf -CRASHρ+precisetimersα(ru).

• |F | = f ∧ F ⊆ Π

Follows from the existence of such a setF in f -CRASHρ+precisetimersα(ru).

• ∀mo : is_timely_msg(mo, δ
−, δ+)

Follows from Lemma 6.6 and the fact that Definition 6.7 assumes a feasible assignment
(i.e. [δ−, δ+] = [∆−,∆+]).

• ∀mt : arrives_timely(mt) ∨ is_late_timer(mt, α)

Let t denoteHC−1
proc(mt)

(sHC(mt)), i.e., the real time by which timermt should arrive.
gets_processed_precisely(mt, α) ensures that the job or drop event taking care ofmt

starts at mostα real time units aftert. Due to the transformation rules ofTR→C , this
job or drop event is transformed into an actionac receiving and processingmt and
occurring at the same time as the job or drop event. Thus,is_late_timer(mt, α) is
satisfied.

• ∀ac : either
(a)follows_alg(ac) or
(b) proc(ac) ∈ F ∧ is_last(ac) ∧ follows_alg_partially(ac) or
(c) proc(ac) ∈ F ∧ arrives_after_crash(ac)

Let F ′ ⊆ F be the set of processors actually crashing (or terminating)in ru, i.e., the set
of processorsp for which some jobJ last

p with is_last(J last
p ) exists.

– Non-faulty processors:For p /∈ F ′, all jobs inru on p adhere to the algorithm.
The corresponding actions inex occur at the same hardware clock time, pro-
cess the same message and have the same state transition sequence. Thus, (a),
follows_alg(ac), holds for them as well.

W.r.t. drop events, we defined, for the purposes of this transformation, that only
messages that would have caused a NOP state transition may bedropped bypol
(cf. Section 6.2.2). Due to the∀R/J : obeys_pol(R)/(J) conditions and RU8,
drop events occurring on non-faulty processors must conform to pol. “Would
have caused a NOP state transition” means that the algorithmreturns a NOP state
transition for the current (message, hardware clock, state) tuple. Thus, the action
ac corresponding to this drop event satisfies (a),follows_alg(ac).

– Before the processor crashes:For p ∈ F ′, the same arguments hold for all jobs
J ≺ J last

p on p and all drop events beforeJ last
p . Thus, (a) also holds for their

corresponding actions.
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– During the crash:ForJ = J last
p , the definition offollows_alg_partially(ac)/(J)

directly translates to the corresponding actionaclast
p . Since there are no jobs

J ≻ J last
p on p, only actions based on drop events can occur inp after aclast

p ,
causingaclast

p to satisfyis_last(aclast
p ). Thus,aclast

p satisfies (b).

– After the processor crashes:By definition of is_last(J), no jobs occur inru af-
ter a processor has crashed. Drop events occurring after a processor has crashed
need not (and usually will not) obey the scheduling policy: Messages received
and queued before the last job are dropped directly after that job (see predi-
catedrops_all_queued(J)), and messages received afterwards are dropped im-
mediately (see predicatearrives_after_crash(R)). Sinceaclast

p ≺ ac holds
for all actionsac corresponding to such drop events (on some processorp), (c),
arrives_after_crash(ac), is satisfied.

• ∀p : bounded_drift(p, ρ)

Follows from the equivalent condition inf -CRASHρ+precisetimersα(ru) and the fact
thatTR→C ensures thatHCex

p = HCru
p for all p.

Basically, the choice ofα allows to put the burden either on the scheduler in the real-time
system (lowα, timers must be scheduled early) or on the algorithm of the classic system
(high α, the algorithm must tolerate delayed timers). Note thatis_late_timer(mt, 0) =
arrives_timely(mt), and, thus,f -CRASHρ+latetimers0(ex) = f -CRASHρ(ex). Likewise,
we can extend the domain ofα with ∞ by definingis_late_timer(mt,∞) :⇔ true and
gets_processed_precisely(mt,∞) :⇔ true. Thus,f -CRASHρ+precisetimers∞(ru) = f -
CRASHρ(ru), and it is plain to see that Lemma 6.8 still holds forα =∞.

Observation 6.9. f -CRASHρ(ex) is TR→C-compatible tof -CRASHρ+precisetimers0(ru),
andf -CRASHρ+latetimers∞(ex) is TR→C -compatible tof -CRASHρ(ru).

f -BYZANTINE

We definef -BYZANTINEρ+precisetimersα(ru) andf -BYZANTINEρ+latetimersα(ex) anal-
ogous to their crash failure counterparts:

f -BYZANTINEρ+latetimersα(ex) (classic computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt) ∨ is_late_timer(mt, α) ∨ [proc(mt) ∈ F ]

∧ ∀ac : follows_alg(ac) ∨ [proc(ac) ∈ F ]
∧ ∀p : bounded_drift(p, ρ) ∨ [p ∈ F ]

f -BYZANTINEρ+precisetimersα(ru) (real-time computing model):⇔
∃F : |F | = f ∧ F ⊆ Π

∧ ∀mo : is_timely_msg(mo, δ
−, δ+)

∧ ∀mt : arrives_timely(mt) ∨ [proc(mt) ∈ F ]
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∧ ∀R : obeys_pol(R) ∨ [proc(R) ∈ F ]
∧ ∀J : obeys_pol(J) ∨ [proc(J) ∈ F ]
∧ ∀J : follows_alg(J) ∨ [proc(J) ∈ F ]
∧ ∀J : is_timely_job(J, µ−, µ+) ∨ [proc(J) ∈ F ]
∧ ∀mt : gets_processed_precisely(mt, α) ∨ [proc(mt) ∈ F ]

∧ ∀p : bounded_drift(p, ρ) ∨ [p ∈ F ]

Lemma 6.10. f -BYZANTINEρ+latetimersα(ex) is TR→C-compatible to failure modelf -
BYZANTINEρ+precisetimersα(ru).

Proof. Let F denote the same set of processors in bothf -BYZANTINEρ+latetimersα(ex)
andf -BYZANTINEρ+precisetimersα(ru). It can be shown thatex, theTR→C transformation
of ru according to Definition 6.7, satisfiesf -BYZANTINEρ+latetimersα(ex), if ru satisfies
f -BYZANTINEρ+precisetimersα(ru).

• |F | = f ∧ F ⊆ Π

Follows from the existence of such a setF in f -BYZANTINEρ+precisetimersα(ru).

• ∀mo : is_timely_msg(mo, δ
−, δ+)

Follows from Lemma 6.6 and the fact that Definition 6.7 assumes a feasible assignment
(i.e. [δ−, δ+] = [∆−,∆+]).

• ∀mt : arrives_timely(mt) ∨ is_late_timer(mt, α) ∨ [proc(mt) ∈ F ]

For proc(mt) ∈ F , this condition is satisfied trivially. For timer messages on correct
processors,is_late_timer(mt, α) follows fromgets_processed_precisely(mt, α) by
the same reasoning as in Lemma 6.8.

• ∀ac : follows_alg(ac) ∨ [proc(ac) ∈ F ]

Again, for proc(ac) ∈ F , this condition is satisfied trivially; for correct processors,
the proof follows the same line of reasoning as the “non-faulty processors” part of
Lemma 6.8.

• ∀p : bounded_drift(p, ρ) ∨ [p ∈ F ]

This follows from the equivalent condition inf -BYZANTINEρ+precisetimersα(ru)
and the fact thatTR→C ensures thatHCex

p = HCru
p for all p.

6.2.5. Transformation Proof

Theorem 6.11.Lets = (n, [δ−, δ+], [µ−, µ+]) be a real-time system,pol be a scheduling/ad-
mission policy andP be a problem. If

• there exists an algorithmA for solvingP in some classic systems = (n, [δ−, δ+])
under some failure modelC [A1]2,

2To aid the reader in following the arguments of this proof, wewill label assumptions, definitions and lem-
mas used solely in this proof in bold face, e.g.[A1] /[D1]/[L1] , and reference them in parenthesis, e.g.
([A1] )/([D1])/([L1] ).
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• s contains a feasible assignment w.r.t.SA, s andpol (cf. Section 6.2.1)[A2],

• scheduling/admission policypol only drops irrelevant messages[A3] and ensures that
input messages are processed in FIFO order[A4] (cf. Section 6.2.2), and

• C is TR→C-compatibleto some real-time failure modelC (cf. Section 6.2.4)[A5],

thenSA given in Figure 6.1 solvesP∗
µ+ in s under failure modelC with scheduling/admission

policypol [GOAL].

Proof. Let ru be an rt-run ofSA in s under failure modelC with scheduling/admission policy
pol [D1]. By Lemma 6.5,ex = TR→C(ru) is a valid execution ofA [L1] . SinceC is TR→C-
compatible toC ([A5] ), s contains a feasible assignment ([A2] ) andpol only drops irrelevant
messages ([A3] ), Definition 6.7 ensures thatex conforms to failure modelC in s [L2] .

AsA is an algorithm solvingP in s under failure modelC ([A1] ) andex is a valid execution
ofA ([L1] ) conforming to failure modelC in s ([L2] ), ex satisfiesP (cf. Definition 5.10)[L3] .

To show thatru satisfiesP∗
µ+ , we must show that every st-tracetr′ of ru is aµ+-shuffle of

a st-tracetr of ex. Let tr′ be a st-trace ofru [D2]. We can constructtr from tr′ as follows:

• Move the time of everysend andtransition st-event back to the time of their corre-
spondingprocess st-event. Thesend andtransition st-events belonging to the same
job should directly follow theirprocess st-event and the order of theseprocess, send
andtransitions st-events must not change (of course, the order w.r.t. st-events of other
jobs will change).tr is still causally consistent withtr′ (see Sections 2.1 and 5.2.2), as
the processor-local order of st-events is not changed,process st-events are not moved
andsend st-events are only moved backwards in time.

• Move the time of everyinput st-event forward so that it has the same time as its cor-
respondingprocess st-event processing the input message. Theinput st-event must
directly precede theprocess st-event. Clearly, this does not violate causal consistency
with tr′ either.

Sincepol ensures that input messages are processed in FIFO order ([A4] ), the above op-
erations are an inverse subset of theµ+-shuffle operations (see Definition 6.1); thus,tr′ is a
µ+-shuffle oftr [L4] . Still, we need to show thattr is a st-trace ofex (cf. Definition 5.3):

• Every action inex is correctly mapped to st-events intr: Every jobJ in ru is mapped
to an actionac in ex and a sequence of oneprocess, multiple send/transition and
at most oneinput st-event intr. Following Definitions 5.3 and 5.4, there are two
differences in the mapping of some jobJ to st-events and the corresponding actionac
to st-events:

– Theprocess, state andtransition st-events all occur at the same timetime(ac)
when mapping an action. The construction oftr ensures that this is the case.
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– If msg(ac) is an input message, the correspondinginput st-event occurs at the
same time as theprocess st-event processing it. Sinceru satisfies RU6, there is
also such aninput st-event intr′, and, thus, intr. The construction oftr ensures
that thisinput st-event has the correct position intr.

Every drop eventD in ru is mapped to a NOP actionac, i.e., an action withtrans(ac) =
[s], s := oldstate(ac) = newstate(ac), in ex. BothD andac get mapped to the same
singleprocess st-event, without any followingsend or transition st-events. If the
dropped message was an input message, the same reasoning as above applies w.r.t. the
input st-event.

• Every st-event intr belongs to an action inex: Every st-event intr′ (and, thus, every
corresponding st-event intr) is based on either a job, an input message receive event or
a drop event inru. By construction ofex, every job and every drop event is mapped
to one action, requiring the same amount ofprocess, send andtransition st-events.
Every input message receive event inru results in aninput st-event. By Definition 5.3,
this input st-event belongs to the action processing it.

Thus, we can conclude thattr is a st-trace ofex [L5] . As A solvesP in s under fail-
ure modelC ([A1] ) andex is an execution ofA in s underC ([L2] ), this ([L5] ) implies that
tr ∈ P (cf. Definition 5.10)[L6] . Sincetr′ is a µ+-shuffle oftr ([L4] ) andtr ∈ P ([L6] ),
Definition 6.4 states thattr′ ∈ P∗

µ+ [L7] .

As this ([L7] ) holds for every st-tracetr′ of every rt-runru of SA in s under failure model
C with scheduling/admission policypol ([D1, D2]), Definition 5.12 states thatSA solvesP∗

µ+

in s under failure modelC with scheduling/admission policypol ([GOAL] ).

6.3. Reusing Real-Time Computing Model Algorithms

As the real-time computing model is a generalization of the classic computing model, the set
of systems covered by the classic computing model is a (strict) subset of the systems covered
by the real-time computing model. More precisely, every system in the classic computing
model (n, [δ−, δ+]) can be specified in terms of the real-time computing model(n, [δ− =
δ−, δ+ = δ+], [µ− = 0, µ+ = 0]). Thus, every result (correctness or impossibility) for some
classic system also holds in the corresponding real-time system with the same message delay
bounds,µ−

(ℓ) = µ+
(ℓ) = 0 for all ℓ, and an admission control component that does not drop any

messages. Intuition tells us that impossibility results also hold for the general case, i.e., that
an impossibility result for some classic system(n, [δ−, δ+]) holds for all real-time systems
(n, [δ− ≤ δ−, δ+ ≥ δ+], [µ−, µ+]) for arbitraryµ−, µ+ as well, because the additional delay
does not provide the algorithm with any useful information.

For simulation-compatible problems (recall Section 6.1.2) this conjecture is true, unless
the system has a very inaccurate hardware clock and there is very little uncertainty in the
processing delay, i.e.,µ+ − µ− is very low. In that case, timing information might be gained
from the processing delay, for example, by increasing a local variable by(µ− +µ+)/2 during
each computing step. If the precision of this logical clock exceeds the one of the hardware
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clock, algorithms might in fact benefit from the processing delay as opposed to the zero step-
time situation. Thus, this section will concentrate on systems where this cannot happen. In
particular, we will assume that the hardware clock is “accurate enough” to estimate a real-time
value within[µ−, µ+].

We will provide a formal general transformation of impossibility results from the classic to
the real-time computing model by using yet another simulation, this time in the other direc-
tion. Although the simulation algorithm is slightly more complex than the one in the previous
section, we do not require a schedulability analysis to obtain a feasible assignment here (since
both [δ−, δ+] and[δ−, δ+] are system parameters), and the problem transformationP → P>

V

is much less restrictive thanP → P∗
µ+ .

1 var queue←empty
2 var idle← true
3 < local state (= global variables ofA)>
4
5 procedureSµ̃,A,pol−process_message(msg, current_hc)
6
7 if msg 6= (FINISHED-PROCESSING) /∗ type (a), (b) and (e)∗/
8 queue.add(msg)
9

10 if idle or msg = (FINISHED-PROCESSING) /∗ type (a), (c), (d) and (e)∗/
11
12 var next ; /∗ apply scheduling /admission policy∗/
13 (next , queue)←pol(queue,<local state> , current_hc )
14
15 if next =⊥ /∗ type (d) and (e)∗/
16 idle← true
17 else /∗ type (a) and (c)∗/
18 idle← false
19 A−process_message(next, current_hc)
20 ℓ←number of ordinary messages sent byA
21 set timer (FINISHED-PROCESSING) for current_hc +̃µ(ℓ)

Figure 6.3.: Simulation algorithmS µ̃,A,pol (real-time computing model atop of classic com-
puting model)

6.3.1. Algorithm

Figure 6.3 provides an algorithmS µ̃,A,pol designed for the classic computing model, which
allows us to simulate a real-time system, and, thus, to use analgorithm A designed for
the real-time computing model to solve problems in a classicsystem. The algorithm es-
sentially simulates queuing, scheduling, and execution ofreal-time model computing steps
(jobs) of (hardware clock time) duratioñµ, and can hence be parameterized with some func-
tion µ̃ : {0, . . . , n − 1} → R+, some real-time computing model algorithmA and some
scheduling/admission policypol. We define thatS µ̃,A,pol has the same initial states asA, with
additionallyqueue = empty andidle = true.

Figure 6.4 outlines the five main types of state transitions (a)–(e) in the simulation algo-
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idle busy

wait for message process message

wait for timeout
(b) enqueue incoming messages

queue empty?

(a)

Yes(d)

No (c)

dropped
msg.(e)

Figure 6.4.: State diagram (algorithm in Figure 6.3)

rithm: At every point in time, the simulated processor is either idle (local variableidle =
true) or busy(idle = false). Initially, the processor is idle. As soon as the first algorithm
message3 arrives [type (a) action], the processor becomes busy and waits for µ̃(ℓ) hardware
clock time units4 (unless the message gets dropped by the scheduling/admission policy imme-
diately [type (e) action], which means that the processor stays idle). All algorithm messages
arriving while the processor is busy are enqueued [type (b) action]. After thesẽµ(ℓ) hardware
clock time units have passed (modeled as a (FINISHED-PROCESSING) timer message arriv-
ing), the queue is checked and a scheduling/admission decision is made (possibly dropping
messages). If it is empty, the processor returns to its idle state [type (d) action]; otherwise, the
next message is processed [type (c) action].

Note that this transformation requires the hardware clocksto be “sufficiently accurate”,
i.e., waiting forµ̃(ℓ) hardware clock units must always result in a (possibly varying) real-time
delay betweenµ−

(ℓ) andµ+
(ℓ). Formally:

Definition 6.12. Let d− andd+ (d− ≤ d+) be real-time durations, and letD be a hardware
clock time duration. A hardware clockHCp can “estimate[d−, d+] by D”, if it holds that
∀T : HC−1

p (T + D) − HC−1
p (T ) ∈ [d−, d+]. In particular, we say that a hardware clock

HCp can “estimate[µ−, µ+] by µ̃”, if, for every ℓ, 0 ≤ ℓ ≤ n−1, HCp can estimate[µ−
(ℓ), µ

+
(ℓ)]

by µ̃(ℓ).

6.3.2. Failure Model Requirements

Due to its extreme simplicity, the simulation algorithm forTR→C (SA, see Section 6.2) did not
impose any restrictions on the failure model. This allowed us to pursue a “modular approach”
and describe most of the proof as generally as possible (Sections 6.2.3 and 6.2.5), with only a
small part dependent on the specific failure model (Section 6.2.4).

3In this section, we will split the set of messages into “algorithm messages” (sent because they are specified in
algorithmA) and (FINISHED-PROCESSING) messages (required internally by the simulation algorithm).

4ℓ being the number of ordinary messages sent during that computing step, cf. Section 3.3.
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With respect to the transformationTC→R presented below,S µ̃,A,pol (see Figure 6.3) is
non-trivial and simulates the CPU, the scheduler and the admission control component of
a real-time system. Note, however, that some parts of this system are always assumed to
be fault-free in a real-time system as defined in Chapter 3: For example, in a valid rt-run,
messages are not allowed to “appear out of nowhere” (= condition RU6), independent of the
failure model; in addition, state transitions are only allowed during jobs (= condition RU2).
In S µ̃,A,pol, however, an execution in which some message appears inqueue which has not
been received, or an execution in which some algorithmA variable changes during a type (e)
action (which is not mapped to a job, see below) would both be perfectly valid executions in
the f -BYZANTINE failure model. Nevertheless, the corresponding simulated rt-run would
not be a valid rt-run, since it violates RU2 or RU6.

Thus, for this transformation, we assume thatC, the failure model in whichS µ̃,A,pol is
executed, is at least as restrictive as FAULT-FREEρ(ex), and thatρ is small enough (in other
words: the processing delay uncertainty is large enough) such that some value within[µ−, µ+]
can be estimated. The following lemma generalizes the relationship between clock drift and
the ability to estimate values:

Lemma 6.13. Let d− and d+ (d− ≤ d+) be real-time durations, and letD be a hardware
clock-time duration. If

(a) ρ ≤ d+ − d−

d+ + d−
and (b) D = 2

d+d−

d+ + d−
, (6.3)

then all hardware clocks whose drift is bounded byρ estimate[d−, d+] by D (according to
Definition 6.12).

Proof. Let HCp be a hardware clock with bounded driftρ. By definition ofbounded_drift
(cf. Sec. 4.2.2),

(1 + ρ) ≥ HCp(t)−HCp(t
′)

t− t′
≥ (1− ρ) ∀t > t′ ≥ 0.

Since hardware clocks in executions and rt-runs are strictly increasing, continuous and un-
bounded,HCp is an invertible function and this can be rewritten as

1

1 + ρ
≤

HC−1
p (T )−HC−1

p (T ′)

T − T ′
≤ 1

1− ρ
∀T > T ′ ≥ HCp(0);

in particular,

D

1 + ρ
≤ HC−1

p (T + D)−HC−1
p (T ) ≤ D

1− ρ
∀T ≥ HCp(0).

Applying part (b) and then part (a) of eq. (6.3) results in

2 d+d−

d++d−

1 + d+−d−

d++d−

≤
2 d+d−

d++d−

1 + ρ
≤ HC−1

p (T + D)−HC−1
p (T ) ≤

2 d+d−

d++d−

1− ρ
≤

2 d+d−

d++d−

1− d+−d−

d++d−

,

which can be simplified to

d− ≤ HC−1
p (T + D)−HC−1

p (T ) ≤ d+.
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Corollary 6.14. If, for all ℓ, ρ ≤ µ+
(ℓ)

−µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

and µ̃(ℓ) := 2
µ+

(ℓ)
µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

, then all hardware clocks

whose drift is bounded byρ estimate[µ−, µ+] by µ̃.

Note that FAULT-FREEρ(ex), i.e., a failure model with “bounded-drift clocks”, has been
chosen for ease of presentation. In fact, any other type of hardware clock guaranteeing that
there exists somẽµ(ℓ) such that Definition 6.12 is satisfied is sufficient.

6.3.3. Algorithm Properties

All actions occurring within an executionex of Sµ̃,A,pol under failure model FAULT-FREEρ(ex)
fall into one of the five groups illustrated in Figure 6.4:

(a) algorithm message arriving which is immediately processed,

(b) algorithm message arriving which is enqueued,

(c) (FINISHED-PROCESSING) timer message arriving, causing some message from the queue
to be processed,

(d) (FINISHED-PROCESSING) timer message arriving when no messages are in the queue
(or all messages in the queue get dropped),

(e) algorithm message arriving which is immediately dropped.

The following can be asserted for every such execution:

Observation 6.15. Every type (c) action has a corresponding type (b) action where the al-
gorithm message being processed in the type (c) action (Line19) is enqueued (Line 8). More
generally, every message removed fromqueue by pol in a type (c) or (d) action has been
received before by a corresponding type (b) action.

Observation 6.16.Every type (a) and every type (c) action sendingℓ ordinary messages also
sends one(FINISHED-PROCESSING) timer message which arrives̃µ(ℓ) hardware clock time
units later (Line 21).

Lemma 6.17. Initially and directly after executing some actionac, processorp = proc(ac)
is in one of two well-defined states:

• State 1 (idle): newstate(ac).idle = true, newstate(ac).queue = empty, there is no
(FINISHED-PROCESSING) timer message top in intransit_msgs(ac)5,

• State 2 (busy): newstate(ac).idle = false, there is exactly one(FINISHED-PROCESSING)
timer message top in intransit_msgs(ac).

5Recall from Section 2.4 thatintransit_msgs(ac) denotes the set of messages in transit afterac has completed.
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Proof. By induction. Initially (replacenewstate(ac) with istateex
p andintransit_msgs(ac)

with the empty set), every processor is in state 1. If a message is received while the processor is
in state 1, it is added to the queue. Then, the message is either dropped, causing the processor
to stay in state 1 [type (e) action], or the message is processed, idle is set tofalse and a
(FINISHED-PROCESSING) timer message is sent, i.e., the processor switches to state 2 [type
(a) action]. If a message is received during state 2, one of two things can happen:

• The message is a (FINISHED-PROCESSING) timer message. If the queue was empty or
all messages got dropped (Line 15; recall thatnext = ⊥ impliesqueue = empty due
to our non-idling assumption, cf. Section 3.1), the processor switches to state 1 [type (d)
action]. Otherwise, a new (FINISHED-PROCESSING) timer message is generated. Thus,
the processor stays in state 2 [type (c) action].

• The message is an algorithm message. The message is added to the queue and the
processor stays in state 2 [type (b) action].

The following observation follows directly from this lemmaand the design of the algorithm:

Observation 6.18.Type (a) and (e) actions can only occur in idle state, type (b), (c) and (d)
actions only in busy state. Type (a) and (d) actions change the state (from idle to busy and
from busy to idle, respectively), all other actions keep thestate (see Figure 6.4).

Lemma 6.19. After a type (a) or (c) actionac sendingℓ ordinary messages occurred at
hardware clock timeT on processorp in ex, the next type (a), (c), (d) or (e) action onp can
occur no earlier than at hardware clock timeT + µ̃(ℓ), when the(FINISHED-PROCESSING)
message sent byac has arrived.

Proof. Sinceac is a type (a) or (c) action,newstate(ac).idle = false, which, by Lemma 6.17,
cannot change until no more (FINISHED-PROCESSING) messages are in transit. By Observa-
tion 6.16, this cannot happen earlier than at hardware clocktime T + µ̃(ℓ). Lemma 6.17 also
states that no second (FINISHED-PROCESSING) message can be in transit simultaneously.

Thus, betweenT andT + µ̃(ℓ), idle = false and only algorithm messages arrive atp,
which means that only type (b) actions can occur.

6.3.4. Transformation TC→R

As shown in the outline (Figure 6.5), the proof works by transforming every executionex of
Sµ̃,A,pol into a corresponding rt-run ofA. By showing that (a) this rt-run is a valid rt-run of
A and (b) the execution and the rt-run have (roughly) the same state transitions, the fact that
the execution satisfiesP>

V can be derived from the fact that the rt-run satisfiesP.
The transformationru = TC→R(ex) constructs a rt-runru. We setHCru

p = HCex
p for all

p, such that bothex andru have the same hardware clocks. Depending on the type of action,
a corresponding receive event, job and/or drop event inru is constructed for each actionac:

• Definitions:
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Given an algorithmA that solves problemP in systems under failure modelC,

we show that algorithmS µ̃,A,pol solves problemP>
V in systems under failure modelC.

[δ−(ℓ), δ
+
(ℓ)] ⊆ [δ−, δ+]

simulation
algorithm
(Fig. 6.3)

problem
transform.
(Sect. 6.1.2)

failure model
transformation
(Sect. 6.3.7)

LetA be an algorithm solvingP in s under failure modelC.

For each admissible executionex of
S µ̃,A,pol in s under failure modelC:

m1 m2

(FIN.PROC.) (FIN.PROC.)

• Create a corresponding rt-runru of A in s.

m1 m2

• Show thatru conforms to failure modelC.
⇒ ru satisfiesP.

• Show that every st-trace ofex is a simulation-invariantV-extension of a st-trace of
ru.

⇒ ex satisfiesP>
V .

⇒ S µ̃,A,pol solvesP>
V in s under failure modelC.

Figure 6.5.: Transformation outline (Theorem 6.23)

– trans∗(ac): Let trans∗(ac) containtrans(ac) (1) without the simulation algo-
rithm variablesqueue andidle, (2) without state transitions only involving simula-
tion variables and (3) without any sending of (FINISHED-PROCESSING) messages.

– µ(ac): Let µ(ac) of a type (a) or (c) actionac be the real-time interval between
time(ac) and the arrival of the (FINISHED-PROCESSING) message sent byac (cf.
Observation 6.16). Note thatµ(ac) denotes a real-time interval, whereasµ̃(ℓ) is
defined in hardware clock time units.

• Type (a): This action is mapped to a receive eventR and a subsequent jobJ in ru.

proc(R)← proc(ac)

msg(R)← msg(ac)

time(R)← time(ac)

proc(J)← proc(ac)

msg(J)← msg(ac)

begin(J)← time(ac)

duration(J)← µ(ac)

HC(J)← HC(ac)

trans(J)← trans∗(ac)
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• Type (b): This action isusually6 mapped to a receive eventR in ru:

proc(R)← proc(ac) msg(R)← msg(ac) time(R)← time(ac)

• Type (c): This action is mapped to a jobJ in ru. Letm be the algorithm message of the
corresponding type (b) action (cf. Observation 6.15), i.e., the message chosen asnextin
Line 13.

proc(J)← proc(ac)

msg(J)← m

begin(J)← time(ac)

duration(J)← µ(ac)

HC(J)← HC(ac)

trans(J)← trans∗(ac)

In addition, for every messagem removed fromqueue but not chosen asnext in Line 13
(if any), a drop eventD is created right beforeJ :

proc(D)← proc(ac) msg(D)← m time(D)← time(ac)

• Type (d): Similar to type (c) actions, a drop eventD is created for every messagem
removed fromqueue in Line 13 (if any):

proc(D)← proc(ac) msg(D)← m time(D)← time(ac)

• Type (e): This action is mapped to a receive eventR and a subsequent drop eventD in
ru, both with the same parameters:

proc(R/D)← proc(ac) msg(R/D)← msg(ac) time(R/D)← time(ac)

To illustrate this transformation, Figure 6.5 shows an example with actions of types (a), (b),
(c) and (d) occurring inex (in this order) and the resulting rt-runru.

Lemma 6.20. There is a one-to-one correspondence between(FINISHED-PROCESSING) mes-
sages inex and jobs inru: A job J exists inru if, and only if, there is a corresponding
(FINISHED-PROCESSING) messagem in ex, with begin(J) = time(ac) of the actionac
sendingm andend(J) = time(ac′) of the actionac′ receivingm.

Proof. (FINISHED-PROCESSING)→ job: Note that (FINISHED-PROCESSING) messages inex
are only sent in type (a) and (c) actions.TC→R ensures that for both kinds of actions a job
exists inru which ends exactly at the time at which the (FINISHED-PROCESSING) message
arrives inex (recall the definition ofµ(ac)).

job → (FINISHED-PROCESSING): Follows from the fact that, due to the rules ofTC→R,
jobs only exist inru if there is a corresponding type (a) or (c) action inex. These actions send
(FINISHED-PROCESSING) messages, and the definition ofµ(ac) ensures that these messages
do not arrive until the job has completed.

6There is one special case in whichtime(R) is set to a different value, see below for details.
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6.3.5. Special Case: Timer Messages

As explained in Section 4.2.2, there is a subtle difference between the classic and the real-time
computing model with respect to thearrives_timely(mt) predicate of FAULT-FREE: In a
rt-run, a timer messagemt sent during some jobJ arrives at the end of the job (end(J)) if
the desired arrival hardware clock time (sHC(mt)) occurs whileJ is still in progress. On the
other hand, in an execution, the timer message always arrives atsHC(mt).

For TC→R this means that the transformation rule for type (b) actionschanges: If the type
(b) actionac for timer messagemt = msg(ac) occurs at some timet = time(ac) while the
(FINISHED-PROCESSING) message corresponding to the simulated job that sentmt is still in
transit (cf. Lemma 6.20 and note that this lemma is unaffected by this change ofTC→R), then
the corresponding receive eventR does not occur att but rather att′ = time(ac′), with ac′

denoting the type (c) or (d) action where the (FINISHED-PROCESSING) message arrives. Still,
R ≺ J andR ≺ D shall hold, for any jobJ or drop eventD created by transformingac′ with
TC→R.

This change ensures that the receive event in the simulated rt-run occurs at the correct time,
i.e., no earlier than at the end of the job sending the timer message. One inconsistency still
remains, though: The order of the messages in the queue mightdiffer between the simulated
queue in the execution (i.e., variablequeue) and the queue in the rt-run constructed byTC→R:
In the execution,mt is added toqueue at timet, whereas in the rt-run,mt is added to the
real-time queue at timet′. This could make a difference, for example, when another message
arrives betweent andt′.

SinceS µ̃,A,pol “knows” aboutA, it is obviously possible for the simulation algorithm to
detect such cases and reorderqueue accordingly. We have decided not to include these details
in Figure 6.3, since the added complexity might make it more difficult to understand the main
structure of the simulation algorithm. For the remainder ofSection 6.3, we will assume that
such a reordering takes place.

6.3.6. Validity of the Constructed Rt-run

Lemma 6.21. If ex is a valid execution ofS µ̃,A,pol under failure model FAULT-FREEρ(ex),
ru = TC→R(ex) is a valid rt-run ofA.

Proof. Let red(s) be defined as states without the simulations variablesqueue andidle. We
will show that RU1–8 defined in Section 3.2 are satisfied:

RU1 Since the transformation rules ofTC→R only create items inru whose begin times
match those of their corresponding actions, RU1 (non-decreasing begin times) follows
from EX1 by applying these transformation rules sequentially to all ac in ex. RU1 also
requires message causality: Since (1)trans(J) of every jobJ corresponds to a subset
of trans(ac) of some actionac occurring at the same time and (2)msg(R) of every
receive eventR corresponds to some messagemsg(ac) of some actionac occurring at
the same time, it is not hard to see that a messagem violating message causality (by
being sent after being received) can only exist inru if a corresponding messagem′

already existed inex, which is prohibited by EX1.

69



6. Transformations

RU2 Assume by contradiction that there are two subsequent jobsJ andJ ′ on the same pro-
cessorp such thatnewstate(J) 6= oldstate(J ′). According to the transformation rules
of TC→R, J corresponds to some type (a) or (c) actionac andred(newstate(ac)) =
newstate(J). The same holds forJ ′, which corresponds to some type (a) or (c) ac-
tion ac′ with red(oldstate(ac′)) = oldstate(J ′). Sincenewstate(J) 6= oldstate(J ′),
red(newstate(ac)) 6= red(oldstate(ac′)). As EX2 holds inex, there must be some
actionac′′ in betweenac andac′ such thatred(oldstate(ac′′)) 6= red(newstate(ac′′)).
This yields two cases, both of which lead to a contradiction:(1) ac′′ is a type (a) or (c)
action. In that case, there would be some corresponding jobJ ′′ with J ≺ J ′′ ≺ J ′ in
ru, contradicting the assumption thatJ andJ ′ are subsequent jobs. (2)ac′′ is a type
(b), (d) or (e) action. Since, in our fault-free failure model, these kinds of actions only
changequeue andidle, this contradictsred(oldstate(ac′′)) 6= red(newstate(ac′′)).

RU3 On every processorp, oldstate(J) of the first jobJ onp in ru is equal tored(oldstate(ac))
of the first type (a) or (c) actionac on p in ex. Following the same reasoning as in the
previous point, we can argue thatred(oldstate(ac)) = red(oldstate(ac′)), with ac′

being the first (any type) action onp in ex. Since, by definition ofS µ̃,A,pol, the set
of initial states ofSµ̃,A,pol equals the one ofA (extended withqueue = empty and
idle = true), RU3 follows from EX3.

RU4 Follows easily fromHCru
p = HCex

p , the transformation rules ofTC→R and the fact
that EX4 holds inex.

RU5 At most one job sending m: Follows from the fact that every actionac is mapped to at
most one jobJ , sent(J) is a subset ofsent(ac), and EX5 holds inex.

At most one receive event receiving m: Follows from the fact that every actionac is
mapped to at most one receive eventR in ru receiving the same message and EX5
holds inex.

At most one job processing m or drop event dropping m: Since EX5 holds inex, every
message received inS µ̃,A,pol is unique. Thus, every message gets put intoqueue at
most once and, sincepol is a valid scheduling/admission policy andS µ̃,A,pol is executed
fault-free, every message is removed fromqueue at most once. TransformationTC→R

is designed such that a job or drop event withmsg(J/D) = m is created inru if, and
only if, m gets removed fromqueue in the corresponding action.

Correct causal order: The correct order of message sends and receive events is already
ensured by RU1. W.r.t. jobs and drop events, consider the fivedifferent types of actions.
Type (a):J is created right afterR. Type (b): No job or drop event is created. Type (c)
and (d): By Observation 6.15, every message removed fromqueue (= every message
for which a job or drop event is created byTC→R) has been received before by a type
(b) action. ByTC→R, a receive event has been created for this message. Type (e):D is
created right afterR.

Correct processor specified in the message:Follows from the fact that EX5 holds in
ex and thatTC→R does not change the processor at which messages are sent, received,
processed or dropped.
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RU6 TC→R ensures that all message sends, except for (FINISHED-PROCESSING), are trans-
ferred intoru (recall the definition oftrans∗). Likewise, all receptions of such algo-
rithm messages (type (a), (b) and (e) actions) are transferred into corresponding receive
events inru. No new messages (i.e., messages not present inex) are introduced intoru
by TC→R. Thus, RU6 follows from EX6.

RU7 Consider two jobsJ ≺ J ′ on the same processorproc(J) = proc(J ′) = p. TC→R

ensures that there is a corresponding type (a) or (c) action for every job inru. Letac and
ac′ be the actions corresponding toJ andJ ′ and note thattime(ac) = begin(J) and
time(ac′) = begin(J ′). Lemma 6.19 implies thatac′ cannot occur until the (FINISHED-
PROCESSING) message sent byac has arrived. Sinceduration(J) is set toµ(ac) in
TC→R, the definition ofµ(ac) ensures thatJ ′ cannot start beforeJ has finished.

RU8 Drop events occur inru only when there is a corresponding type (c), (d) or (e) action
in ex. Type (c) and (d) actions are triggered by a (FINISHED-PROCESSING) message
arriving; thus, by Lemma 6.20, there is a job inru finishing at that time. W.r.t. type
(e) actions, Observation 6.18 shows thatp is idle in ex when a type (e) action occurs,
which, by Lemma 6.17, means that no (FINISHED-PROCESSING) message is in transit
and, thus, by Lemma 6.20, there is no job active inru. Thereforep is idle in ru and
TC→R ensures that a receive event occurs at the time of the type (e)action.

6.3.7. Failure Model Compatibility

Lemma 6.22.Letex be an execution of some algorithmS µ̃,A,pol in some systems = (n, [δ−, δ+])
under failure model FAULT-FREEρ(ex). Let s = (n, [δ−, δ+], [µ−, µ+]) be a real-time sys-

tem, and let̃µ(ℓ) be defined as2
µ+

(ℓ)
µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

. If, for all ℓ ∈ {0, . . . , n − 1}, δ−(ℓ) ≤ δ−, δ+
(ℓ) ≥ δ+

andρ ≤ µ+
(ℓ)

−µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

, thenru, the rt-run ofA created by applying transformationTC→R to ex,

conforms to failure model FAULT-FREEρ(ru) in systems with scheduling/admission policy
pol.

Proof. Lemma 6.21 has shown thatru is a valid rt-run ofA. Thus, we need to show thatru
satisfies FAULT-FREEρ(ru):

• ∀mo : is_timely_msg(mo, δ
−, δ+)

All actions that receive algorithm messages (types (a), (b)and (e)) are mapped to re-
ceive events occurring at the same real-time as the action. All actions possibly send-
ing algorithm messages (types (a) and (c)) are mapped to jobsstarting at the same
real time as the action. Sinceδ−(ℓ) ≤ δ− and δ+

(ℓ) ≥ δ+ for all ℓ, the required de-
lay condition forru follows directly from the fact that FAULT-FREEρ(ex), and, thus,
∀mo : is_timely_msg(mo, δ

−, δ+) holds inex.

• ∀mt : arrives_timely(mt)

Algorithm timer messages inex sent for some hardware clock valueT on some pro-
cessorp cause a type (a), (b) or (e) actionac at some timet with HC(ac) = T
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when they are received. As all of these actions are mapped to receive eventsR with
msg(R) = msg(ac) andtime(R) = t (or time(R) = end(J) of the jobJ sending
the timer, see Section 6.3.5), and the hardware clocks are the same inru andex, timer
messages arrive at the correct time inru.

• ∀R : obeys_pol(R)

Observe that, due to the design ofS µ̃,A,pol andTC→R, variablequeue in ex represents
the queue state ofru. Every receive event inru occurring while the processor is idle
corresponds to either a type (a) or a type (e) action. In everysuch action, a scheduling
decision according topol is made (Line 13) andTC→R ensures that either a drop event
(type (e) action) or a job (type (a) action) according to the output of that scheduling
decision is created.

• ∀J : obeys_pol(J)

The same reasoning as in the previous point applies: Every job in ru finishing corre-
sponds to a type (c) or (d) action inex in which the (FINISHED-PROCESSING) message
representing that job arrives. Both of these actions cause ascheduling decision (Line 13)
to be made onqueue (which corresponds toru’s queue state), and corresponding drop
events and/or a corresponding job (only type (c) actions) are created byTC→R.

• ∀J : follows_alg(J)

Let ac be the type (a) or (c) action corresponding toJ . ac executes all state transitions
of A (Line 19) for eithermsg(ac) (type (a) action) or some message from the queue
(type (c) action) and the current hardware clock time, plus some additional operations
which only affect variablesqueue and idle and (FINISHED-PROCESSING) messages.
Thus,TC→R’s choice ofHC(J) andmsg(J) as well as the definition oftrans∗ ensure
thattrans(J) conforms to algorithmA.

• ∀J : is_timely_job(J, µ−, µ+)

By definition ofTC→R, duration(J) = µ(ac), with µ(ac) denoting the transmission
time of the (FINISHED-PROCESSING) message sent by the actionac corresponding
to job J . Sincearrives_timely(mt) holds for (FINISHED-PROCESSING) messages
mt in ex, there are exactlỹµ(ℓ) hardware clock time units between the sending and
the reception of the (FINISHED-PROCESSING) message sent byac (see Line 21 of
S µ̃,A,pol). By Corollary 6.14, this corresponds to some real-time intervalµ(ac) within
[µ−

(ℓ), µ
+
(ℓ)]. Sinceℓ equals the number of ordinary messages sent inJ (see Line 20

of the algorithm and the transformation rules for type (a) and (c) actions inTC→R),
is_timely_job(J, µ−, µ+) holds.

• ∀p : bounded_drift(p, ρ)

Follows from the definition thatHCru
p = HCex

p and the fact that the corresponding
bounded_drift condition holds inex.
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6.3.8. Transformation Proof

Theorem 6.23.Lets = (n, [δ−, δ+]) be a classic system andP be a problem. If

• there exists an algorithmA which solves problemP in some real-time systems =
(n, [δ−, δ+], [µ−, µ+]) with some scheduling/admission policypol under failure model
FAULT-FREEρ(ru) [A1],

• ∀ℓ : δ−(ℓ) ≤ δ− andδ+
(ℓ) ≥ δ+ [A2], and

• ∀ℓ : ρ ≤ µ+
(ℓ)

−µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

[A3],

thenSµ̃,A,pol given in Figure 6.3 with̃µ(ℓ) = 2
µ+

(ℓ)
µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

[D1] solvesP>
V in s under failure

model FAULT-FREEρ(ex), withV = {queue, idle} [GOAL].

Proof. Let ex be such an execution ofS µ̃,A,pol in s under failure model FAULT-FREEρ(ex)
[D2]. By Lemmas 6.21 and 6.22 (in conjunction with[A2] , [A3] and[D1]), ru = TC→R(ex) is
a valid execution ofA in s with scheduling/admission policypol under failure model FAULT-
FREEρ(ru) [L1] .

AsA is an algorithm solvingP in s with policy pol under failure model FAULT-FREEρ(ru)
([A1] ) andru is a valid rt-run ofA in s with policy pol conforming to failure model FAULT-
FREEρ(ru) ([L1] ), ru satisfiesP (cf. Definition 5.12)[L2] .

To show thatex satisfiesP>
V , we must show that every st-tracetr′ of ex is a simulation-

invariantV-extension of a st-tracetr of ru (cf. Section 6.1.2). Lettr′ be a st-trace ofex [D3].
We can constructtr from tr′ by sequentially performing these operations:

1. Remove the variablesqueue andidle from all states.

2. Remove anytransition st-events that only manipulatedqueue and/oridle. Note that,
due to the previous step, these st-events satisfiedoldstate = newstate.

3. Letac be a type (b) action receiving some messagem.

a) If there is a corresponding type (c) actionac′ in which m gets processed by call-
ing A-process_message(m, current_hc) (cf. Observation 6.15), letev andev′ be
the process st-events corresponding toac andac′. Removeev and modifyev′

such thatmsg(ev′) = msg(ev), i.e., thatev′ processes the message originally
processed inev, rather than a (FINISHED-PROCESSING) message.

b) If there is a corresponding type (c) or (d) actionac′ in whichm gets dropped, i.e.,
m gets removed fromqueue in Line 13 without being chosen asnext, let ev and
ev′ be theprocess st-events corresponding toac andac′. Moveev into the future
such thattime(ev) = time(ev′) andev is right beforeev′.

4. Remove allprocess andsend st-events that are (still) processing or sending (FINISHED-
PROCESSING) messages.
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Since all of the operations used to constructtr can be reverted by using the rules outlined
in Section 6.1.2,tr′ is a simulation-invariantV-extension oftr [L3] . We now need to show
thattr is a st-trace ofru.

• Every job inru is correctly mapped to st-events intr: Every jobJ in ru is based on
either a type (a) or a type (c) actionac in ex. Following Definitions 5.3 and 5.4, the
st-events produced by mappingac are the same as the st-events produced by mapping
J , with the following differences:

– The st-events mapped byac contain the simulation variables. However, they have
been removed by the transformation fromtr′ to tr.

– If ac is a type (c) action, itsprocess st-event processes a (FINISHED-PROCESSING)
message rather than the algorithm message received in the corresponding type (b)
action. The creation oftr (step 3a) also ensures that the correct message is used
in tr.

– If ac is a type (a) action andmsg(ac) is an input message, there is an additional
input st-event before theprocess st-event. By construction ofru, however, there
is a receive event at the time of the type (a) action corresponding to theinput
st-event intr.

• Every drop event inru is correctly mapped to aprocess st-event intr: Every drop
eventD in ru is based on a type (c), (d) or (e) actionac in ex.

With respect to type (c) or (d) actions,TC→R ensures that drop events are created only
for messages that are removed fromqueue without being chosen asnext during that
action. The creation oftr (step 3b) ensures that a correspondingprocess st-event (ev)
is present intr.

With respect to type (e) actions, note that no messages are sent with this kind of action
(i.e., there are nosend st-events) and that the creation oftr removes alltransition
st-events corresponding to that action (steps 1 and 2), leaving only theprocess st-event
corresponding to the drop event inru.

• Every input message receive event inru is correctly mapped to aninput st-event intr:
Every receive event inru is based on either a type (a), (b) or (e) action. All of them have
a correspondinginput st-event intr′ if the received message was an input message. By
construction oftr, theseinput st-events still exist intr.

• Every st-event intr corresponds to a job, input message receive event or drop event in
ru: Every st-event intr′ is based on an actionac in ex—in the natural way, as specified
in Definition 5.3. Since the transformationtr′ → tr does not add any st-events, every
st-event intr is based on an actionac in ex as well. Consider the different types of
actions:

– Type (a): The st-events intr′ contain thesend and thetransition st-events ofA-
process_message(msg, current_hc) and additional steps taken by the simulation
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algorithm. The transformation fromtr′ to tr ensures that these additional steps
(and only these) are removed. Thus, the remaining st-eventsin tr correspond to
the jobJ corresponding toac. If the message received byac was an input message,
theinput st-event corresponds to the receive event created with theTC→R rule for
type (a) actions.

– Type (b): This type of action only performs state transitions w.r.t. simulation vari-
ables and does not send any messages (i.e., there are no correspondingsend st-
events). In the transformation fromtr′ to tr, all transition st-events of this action
are removed during steps 1 and 2. Theprocess st-event is either removed (dur-
ing step 3a, if the message gets processed later) or corresponds to the drop event
dropping the message (see step 3b), which is inserted intoru by theTC→R rule
for type (c)/(d) actions. The only st-event left based on this type (b) action is one
input st-event, if the received message was an input message. Thisinput st-event
corresponds to the receive event created by theTC→R rule for type (b) actions.

– Type (c): As in type (a) actions, the transformation fromtr′ to tr ensures that only
the send and thetransition st-events ofA-process_message(msg, current_hc)
are left, withmsg being the message received in the corresponding type (b) action.
The transformation fromtr′ to tr ensures that theprocess st-event intr contains
msg as the received message. Thus, theprocess st-event and the followingsend
andtransition st-events match exactly with the job created in theTC→R rule for
type (c) actions.

– Type (d): Only state transitions involving simulation variables are performed. All
of thesetransition st-events are lost during the creation oftr. As theprocess
st-event processes a (FINISHED-PROCESSING) message, it is removed as well.

– Type (e): This kind of action gets mapped to the following st-events: Aninput
st-event, ifmsg(ac) was an input message, aprocess st-event and one or more
transition st-events only modifying simulation variables. The latterare removed
by the transformation fromtr′ to tr, theinput st-event corresponds to the receive
event and theprocess st-event to the drop event created byTC→R for type (e)
actions.

Thus, we can conclude thattr is a st-trace ofru [L4] . AsA solvesP in s with policy pol
under failure model FAULT-FREEρ(ru) ([A1] ) andru is a rt-run ofA in s with policy pol
under failure model FAULT-FREEρ(ru) ([L1] ), this ([L4] ) implies thattr ∈ P (cf. Defini-
tion 5.12)[L5] . Sincetr′ is a simulation-invariantV-extension oftr ([L3] ) andtr ∈ P ([L5] ),
tr′ ∈ P>

V (cf. Section 6.1.2)[L6] .
As this ([L6] ) holds for every st-tracetr′ of every executionex of S µ̃,A,pol in s under failure

model FAULT-FREEρ(ex) ([D2,D3]), Definition 5.10 states thatS µ̃,A,pol solvesP>
V in s under

failure model FAULT-FREEρ(ex) ([GOAL] ).

6.3.9. Generalization

We finally note that the boundδ−(ℓ) ≤ δ− andδ+
(ℓ) ≥ δ+ for all ℓ in Theorem 6.23 is overly

conservative. The following bound suffices.
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(m, ℓ)

(ADD .DELAY ) (FIN.PROC.)

m

Figure 6.6.: Illustration ofS ′
µ̃,δ̃,A,pol

Theorem 6.24.Lets = (n, [δ−, δ+]) be a classic system andP be a problem. If

• there exists an algorithmA which solves problemP in some real-time systems =
(n, [δ−, δ+], [µ−, µ+]) with some scheduling/admission policypol under failure model
FAULT-FREEρ(ru),

• δ−(1) ≤ δ− andδ+
(1) ≥ δ+, and

• ∀ℓ : ρ ≤ µ+
(ℓ)

−µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

andρ ≤ (δ+
(ℓ)

−δ+
(1)

)−(δ−
(ℓ)

−δ−
(1)

)

(δ+
(ℓ)

−δ+
(1)

)+(δ−
(ℓ)

−δ−
(1)

)
,

thenS ′
µ̃,δ̃,A,pol

with µ̃(ℓ) = 2
µ+

(ℓ)
µ−

(ℓ)

µ+
(ℓ)

+µ−

(ℓ)

and δ̃(ℓ) = 2
(δ+

(ℓ)
−δ+

(1)
)(δ−

(ℓ)
−δ−

(1)
)

(δ+
(ℓ)

−δ+
(1)

)+(δ−
(ℓ)

−δ−
(1)

)
solvesP>

V in s under

failure model FAULT-FREEρ(ex).

Proof. Since algorithmS ′
µ̃,δ̃,A,pol

and its proof are very similar toSµ̃,A,pol, only an informal

description is given as follows: First, note thatδ+
(1) ≥ δ+ ⇔ ∀l : δ+

(ℓ) ≥ δ+, due toδ+
(ℓ) being

non-decreasing with respect toℓ (cf. Section 3.3). Thus, the extended simulation algorithm
mainly allowsδ−(ℓ) to be greater thanδ− for ℓ > 1. However, sinceε(ℓ) ≥ ε(1) (again, see

Section 3.3), we can ensure that the simulated message delays lie withinδ−(ℓ) andδ+
(ℓ), although

the real message delay might be smaller thanδ−(ℓ), by introducing an artificial, additional

message delay within[δ−
(ℓ)
− δ−

(1)
, δ+

(ℓ)
− δ+

(1)
] upon receiving a message sent by a job sending

ℓ ordinary messages in total. Note that Lemma 6.13, the restriction onρ and the definition of
δ̃ ensure that such a delay can be estimated byδ̃.

Of course, being able to add this delay implies that the algorithm message is wrapped into
a simulation message that also includes the valueℓ. Figure 6.6 illustrates the principle of this
algorithm and the transformation of an execution ofS ′

µ̃,δ̃,A,pol
into an rt-run.
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Clock Synchronization
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7. Optimal Drift-Free Clock
Synchronization

This chapter analyzes theterminating clock synchronizationproblem in the drift- and failure-
free case. This problem, which was already presented in Section 5.2.4 as an example, is
defined as follows:

Definition 7.1 (Terminating Clock Synchronization to withinγ). Let theadjusted clock value
ACp(g) be defined asHCtr

p (time(g)) + sp(g).adj.

• Precondition: Apart from the init messages, there are no input messages.

∀ev ∈ tr : (type(ev) = input)⇒ (content(msg(ev)) = “init” )

• Termination:All processors eventually terminate.

∃g ∈ gstates(tr) : is_finalstate(g)1

• Agreement:After all processors have terminated, all processors have adjusted clocks
within γ of each other.

∀g ∈ gstates(tr) : is_finalstate(g)⇒ (∀p, q : |ACp(g) −ACq(g)| ≤ γ)

In the classic computing model, a tight bound of(1 − 1
n
)ε has been proved in [LL84b] as

the best achievable clock synchronization precision. In addition, an algorithmA(n, δ−, δ+)
has been given, which guarantees this optimal precision in every classic system(n, [δ−, δ+])
with ε = δ+ − δ−. The algorithm works by sending one timestamped message from every
processor to every other processor, and then computing the average of the estimated clock
differences as a correction value. Every processor broadcasts its timestamped message as
soon as its init message arrives.

The transformations provided in the first part of this work can be used to generalize these
results to the real-time computing model, resulting in an upper bound of(1 − 1

n
)(ε(n−1) +

µ+
(n−1)

+ (n− 2) · µ+
(0)

) and a lower bound of(1− 1
n
)ε(1) for the achievable precision:

Theorem 7.2. In the real-time computing model, clock synchronization towithin (1− 1
n
)(ε(n−1)+

µ+
(n−1) + (n− 2) · µ+

(0)) is possible.

Proof. The existence of a real-time computing model algorithm achieving this precision will
be shown by applying Theorem 6.11 to the classic computing model algorithm of [LL84b]

1is_finalstate(g) :⇔ ∀g′ ≻ g : ∀p : sp(g) = sp(g
′)
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(henceforth called “algorithmLL”). As outlined in Section 6.1.3, terminating clock synchro-
nization is a shuffle-compatible problem. For the real-timesystem, we choose some arbi-
trary non-idling scheduling/admission policypol which does not drop any messages. Algo-
rithm LL has been shown to be correct with respect to failure model FAULT-FREE0(ex) in
[LL84b]. Since the algorithm does not use any timer message,this implies correctness in the
more relaxed modelC := FAULT-FREE0+latetimers∞(ex) (= 0-CRASH0+latetimers∞(ex),
as defined in Section 6.2.4). For the real-time computing model, we choose failure model
C := FAULT-FREE0(ru) (= 0-CRASH0(ru) = 0-CRASH0 + precisetimers∞). By Obser-
vation 6.9, these choices ofC andC areTR→C -compatible.

Thus, the only thing left to show is that there exists a feasible assignment such thatδ− =
∆− andδ+ = ∆+. We can determine general bounds∆− and∆+ with some simple ob-
servations: Since, inLL (and, thus, inSLL), all messages are sent as broadcasts ton − 1
recipients,∆− = δ−(n−1). With respect to∆+, note that every processor receives exactly one
message from every other processor. The worst-case scenario for the end-to-end delay hence
occurs if alln−1 messages plus the one init message arrive simultaneously: After delivery of
these messages (takingδ+

(n−1)), the receiver’s own broadcast send step (takingµ+
(n−1)) as well

asn − 2 receive steps (µ+
(0)) must complete before the last receive step can start. An upper

bound on the end-to-end delay of runningSLL in the real-time computing model is hence
∆+ = δ+

(n−1) + µ+
(n−1) + (n− 2) · µ+

(0).

Let s = (n, [δ−, δ+], [µ−, µ+]) be a real-time system in which we want to synchronize
clocks. We know thatLL(n,∆−,∆+) will synchronize clocks to withinγ = (1− 1

n
)(∆+ −

∆−) in the classic system(n, [δ− = ∆−, δ+ = ∆+]). Theorem 6.11 shows thatSLL provides
clock synchronization to within(1 − 1

n
)(∆+ −∆−) = (1− 1

n
)(δ+

(n−1)
+ µ+

(n−1)
+ (n− 2) ·

µ+
(0) − δ−(n−1)) = (1− 1

n
)(ε(n−1) + µ+

(n−1) + (n− 2) · µ+
(0)) in s.

As far as the time complexity of the above algorithm is concerned (cf. Section 5.5), we
observe that at mostδ+

(n−1) time units after the last init message arrived all processors have
all n − 1 messages in their queue (or already processed). Due to non-idling scheduling, this
implies a maximum time complexity ofmax

(
δ+
(n−1), µ

+
(n−1)

)
+(n− 1) ·µ+

(0), which occurs if
all processors’ init messages arrive at the same time. In sharp contrast to the classic computing
model, where the time complexity of this algorithm isO(1), the worst-case time complexity
in the real-time computing model is henceΘ(n).

Likewise, we can use the other transformation to prove that clock synchronization closer
than(1− 1

n
)ε(1) is impossible in real-time systems. Note that the impossibility in a drift- and

fault-free environment (FAULT-FREE0(ru)) trivially implies the impossibility in any system
with drifting clocks and/or faulty processors.

Theorem 7.3. In the real-time computing model, no algorithm can synchronize the clocks of
a system closer than(1− 1

n
)ε(1).

Proof. Assume for a contradiction that there is some real-time computing model algorithm
A and some scheduling policypol which can provide clock synchronization for some real-
time system(n, [δ−, δ+], [µ−, µ+]) to within γ < (1 − 1

n
)ε(1) under failure model FAULT-

FREE0(ru). Applying Theorem 6.24 would imply thatS ′
µ̃,δ̃,A,pol

provides clock synchro-
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nization to withinγ < (1− 1
n
)(δ+− δ−) for some classic system(n, [δ− = δ−(1), δ

+ = δ+
(1)]).

This, however, contradicts the well-known lower bound result of [LL84b].

7.1. Algorithms

The comparison of Theorems 7.2 and 7.3 raises the obvious question of whether the lower
bound of(1 − 1

n
)ε(1) is tight in the real-time computing model. In this section, we will

answer this in the affirmative: We show how the algorithm presented in [LL84b] can be
modified to avoid queuing effects and thus provides optimal precision in a real-time sys-
tem s = (n, [δ−, δ+], [µ−, µ+]). We will first present an algorithm achieving a precision
of (1− 1

n
)ε(n−1) (which equals(1− 1

n
)ε(1) if a constant-time broadcast primitive is available)

and then describe how to extend this algorithm so that it achieves(1− 1
n
)ε(1) in every case.

7.1.1. Generalization of Existing Results

Two lemmas from [LL84b] can be generalized to our setting. Let ∆− and∆+ be the lower
and upper bound on the end-to-end delay.

Lemma 7.4. If q receives a timestamped message fromp with end-to-end delay2 uncertainty
ε∆ := ∆+ −∆−, q can estimatep’s hardware clock value within an error of at mostε∆

2 .

Proof. (Similar to Lemma 5 of [LL84b].) We defineD := HCp(t)−HCq(t) to be the actual
difference between the hardware clocks ofp andq (a constant, as clocks do not drift) andE
to be the estimated difference, as estimated byq. Thus, we have to show thatq can calculate
someE such that|E −D| ≤ ε∆

2 .
Let t be the time by whichp sends its clock value (more precisely: the start time of the job

in whichp sends its clock value) andt′ be the time by whichq starts processing this message.
Let ∆ be the arithmetic mean between the lower and the upper bound on the end-to-end delay,
i.e.,∆ = ∆−+ ε∆

2 . Processq calculates the estimate as follows:E = HCp(t)−HCq(t
′)+∆,

whereHCp(t) is the timestamp in the message,HCq(t
′) is the hardware clock reading of the

job processing the message and∆ must be known to the algorithm.

|E −D| = |HCp(t)−HCq(t
′) + ∆−D|

= |HCq(t)−HCq(t
′) + ∆| by definition ofD

= |t− t′ + ∆| since clocks run at the same rate as real-time

= |∆− (t′ − t)|

As t′− t ranges from∆− to ∆+, the expression∆− (t′− t) ranges from∆−∆+ = − ε∆
2

to ∆−∆− = ε∆
2 .

2Recall that the end-to-end delay is defined as the time between the start of the job sending the message and the
start of the job processing the message.
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1 var estimates← empty
2 var adj
3
4 procedureprocess_message(msg, current_hc )
5 /∗ start alg . by sending (SEND) to proc.0 ∗/
6 if msg = (SEND)
7 send (TIME, current_hc) to all other processors
8 elseif msg = (TIME, remote_hc)

9 estimates .add(remote_hc− current_hc +
˙δ−+ ˙δ+

2
)

10 if estimates .count = ID

11 set timer (SEND) for current_hc +max(ε̇ − ˙δ− + µ̇+, µ̇+)
12 if estimates .count = n−1
13 adj← (

P

estimates)/n

Figure 7.1.: Clock-synchronization algorithm to withinε(n−1), code for processorID

Lemma 7.5. If every processor knows the difference between its own hardware clock and the
hardware clock of every other processor within an error of atmosterr

2 , clock synchronization
to within (1− 1

n
)err is possible.

Proof. The proof can be obtained by a simple adaption of Theorem 7 of [LL84b] to a general
err.

7.1.2. Optimality for Broadcast Systems

Note.As all jobs in the algorithm of Figure 7.1 send either zero orn−1 messages, we will use
the abbreviations˙δ−, ˙δ+, µ̇−, µ̇+ andε̇ to refer toδ−(n−1), δ+

(n−1), µ−
(n−1), µ+

(n−1) andε(n−1),
respectively.

In the introduction of Chapter 7, the principle of algorithmLL [LL84b] has been described.
It can easily be modified to avoid queuing effects by “serializing” the information exchange,
rather than sending all messages simultaneously.

The modified algorithm, depicted in Figure 7.1, works as follows: Then fully-connected
processors have IDs0, . . . , n − 1. The first processor (0) sends its clock value to all other
processors. Processori waits until it has received the message from processori− 1, waits for
anothermax(ε̇ − ˙δ− + µ̇+, µ̇+) time units and then broadcasts its own hardware clock value.
That way, every processor receives the hardware clock values of all other processors with
uncertaintyε̇, provided that no queuing occurs (which will be shown below). This information
suffices to synchronize clocks to within(1− 1

n
)ε̇. We assume here that only one init message

is sent (only to processor0), as additional init messages could cause unwanted queuingeffects
and would hence necessitate a second round of message exchanges.

Lemma 7.6. No queuing occurs when running the algorithm in Figure 7.1.

Proof. Note that processori only broadcasts its message after it has received exactlyi mes-
sages. As processor0 starts the algorithm and every processor broadcasts only once, this
causes the processors to send their messages in the order of increasing processor number. For
queuing to occur, some processor must receive two messages within a time window smaller

82



7.1. Algorithms

than µ̇+. It can be shown, however, that the following invariant holds for all t: All receive
events up to timet on the same processori (a) occur in order of increasing (sending) processor
number (including the timer message fromi itself) and (b) are at leasṫµ+ time units apart.

Assume by contradiction that some message from processorj > 0 arrives on processor
i at time t, although the message from processorj − 1 has arrived (or will arrive) at time
t′ > t− µ̇+. Chooset such thatt is the first time the invariant is violated.

Case 1: j = i, i.e., the arriving message isi’s timer message. This leads to a contradiction,
as due to Line 11, the timer message must not arrive earlier than µ̇+ time units afterj − 1’s
message, which has triggered the job sending the timer message.

Case 2: j 6= i. As j’s broadcast arrived att, it has been sent no later thant − ˙δ−. Proces-
sorj’s broadcast is triggered by a timer message sent byj’s job startingmax(ε̇− ˙δ−+µ̇+, µ̇+)
time units earlier, i.e., no later thant− ˙δ−− (ε̇− ˙δ− + µ̇+) = t− ε̇− µ̇+. The job sending the
timer message has been triggered by the arrival ofj − 1’s broadcast, which must have been
sent no later thant− ε̇ − µ̇+ − ˙δ−. If j − 1 = i, we have the required contradiction, because
i must have received its timer message att′ ≤ t − ε̇ − µ̇+ − ˙δ− ≤ t− µ̇+ long ago (sincei
can only send its broadcastafter receiving its own timer message). Otherwise, ifj − 1 6= i,
processj − 1’s broadcast arrived ati no later thant − ε̇ − µ̇+ − ˙δ− + ˙δ+ = t − µ̇+, also
contradicting the assumption.

Using this lemma, it is not difficult to show the following Theorem 7.7:

Theorem 7.7(Optimal broadcasting algorithm). The algorithm of Figure 7.1 achieves a pre-
cision of(1− 1

n
)ε̇, which is tight if communication is performed by a constant-time broadcast

primitive, i.e., ifε(n−1) = ε(1). It performs exactlyn broadcasts and has a time complexity
that is at leastΩ(n).

Proof. On each processor, theestimatesset contains the estimated differences between the
local hardware clock and the hardware clocks of the other processors. As no queuing occurs
by Lemma 7.6, the end-to-end delays are just the message delays. Line 9 in the algorithm of
Figure 7.1 ensures that the estimate is calculated as specified in the proof of Lemma 7.4. Thus,
the estimates have a maximum error ofε̇

2 . According to Lemma 7.5, these estimates allow the
algorithm to calculate an adjustment value in Line 13 that guarantees clock-synchronization
to within (1− 1

n
)ε̇.

With respect to message and time complexity, the algorithm obviously performs exactlyn
broadcasts, and the worst-case time between two subsequentbroadcasts ismax( ˙δ+, 2ε̇)+ µ̇+

(= the timer delay plus one message delay). Thus, the time complexity is at least linear inn,
and depends on the complexity ofδ+

(ℓ), ε(ℓ) andµ+
(ℓ) w.r.t. ℓ.

7.1.3. Optimality for Unicast Systems

Note. As all jobs in the algorithm of Figure 7.2 send either zero or one messages, we will use
the abbreviations˙δ−, ˙δ+, µ̇−, µ̇+ andε̇ to refer toδ−(1), δ+

(1), µ−
(1), µ+

(1) andε(1), respectively.

i ⊕ j and i ⊖ j are defined as(i + j mod n) and (i − j mod n), respectively. These
operations will be used for adding and subtracting processor indices.
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1 var estimates← empty
2 var adj
3
4 procedureprocess_message(msg, current_hc )
5 /∗ start alg . by sending (SEND, 1) to proc.0 ∗/
6 if msg = (SEND, target)
7 send (TIME, current_hc) to target
8 if target + 1 mod n6= ID

9 set timer (SEND, target + 1 mod n) for current_hc +̇µ+

10 elseif msg = (TIME, remote_hc)

11 estimates .add(remote_hc− current_hc +
˙δ−+ ˙δ+

2
)

12 if estimates .count = ID

13 set timer (SEND, ID + 1 mod n) for current_hc +max(ε̇ − ˙δ− + 2µ̇+, µ̇+)
14 if estimates .count = n−1
15 adj← (

P

estimates)/n

Figure 7.2.: Clock-synchronization algorithm to withinε(1), code for processorID

The algorithm of the previous section provides clock synchronization to within(1− 1
n
)ε(n−1).

However, unless constant-time broadcast is available,ε(1) will usually be smaller thanε(n−1).
The algorithm can be adapted to unicast sends as follows (seeFigure 7.2):

Rather than sending alln − 1 messages at once, they are sent inn − 1 subsequent jobs
connected by “send” timer messages, each sending only one message. These messages are
timestamped with their corresponding HC value, e.g., the message sent during the second job
will be timestamped with the hardware clock reading of this second job.

By the design of the algorithm, every processori goes though five phases. The only excep-
tions are processor0, which starts at phase 3, and processorn − 1, which skips the second
receive phase.

1. First receive phase: i receivesTIME messages from all processors{0, . . . , i− 1} in the
order of increasing processor number.

2. Wait phase: After having receivedi − 1’s TIME message, Line 13 causesi to wait for
W := max(ε̇ − ˙δ− + 2µ̇+, µ̇+) time units.

3. Send phase: i sendsTIME messages to all processors (each in its own job, all jobsµ̇+

time units apart).

4. Second receive phase: i receivesTIME messages from all processors{i+ 1, . . . , n− 1}
in the order of increasing processor number.

5. Terminated phase: No more messages are received;i has terminated.

We will use the following abbreviations to label messages and the corresponding receive
events and jobs processing (not sending) them:TIME i→j (TIME message fromi to j), SENDi,→j

(SEND timer message occurring oni, initiating the send ofTIME i→j) andWAIT i (= TIME i−1→i,
because it initiates the wait phase).begin(. . .) denotes the beginning of the correspond-
ing job processing the message. To ease analysis, we assume a“virtual” no-op job WAIT 0
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with begin timebegin(WAIT 0) = begin(SEND0,→1) −W . (Recall thatW , the wait time, is
max(ε̇ − ˙δ− + 2µ̇+, µ̇+).)

See Figure 7.3 for an example. Note that every processor sends exactly oneTIME message
to every other processor.

i

i + 1

TIMEi−1→i = WAIT i

WAIT i

SENDi,→i+1

SENDi,→i+1

SENDi,→i+2

SENDi,→i−1

TIMEi+1→i

TIMEi+1→i

TIMEi−1→i+1

TIMEi−1→i+1

TIMEi→i+1 = WAIT i+1

WAIT i+1

SENDi+1,→i+2

SENDi+1,→i

Figure 7.3.: Processori (0 < i < n− 2) switching from first receive phase to wait, from wait
to send, and from send to second receive phase.

Lemma 7.8. If µ̇+ > 0, the following invariant holds for all rt-runs of the algorithm in Fig-
ure 7.2 under FAULT-FREE0(ru): All messages received on some processori are received in
the following order:〈TIME0→i, . . . , TIME i−1→i = WAIT i, SENDi,→i⊕1, . . . , SENDi,→i⊕(n−1),

TIME i+1→i, . . . , TIMEn−1→i〉. All receive events on the same processor are at leastµ̇+ time
units apart, which implies that no queuing occurs.3

The begin times ofSEND jobs on the same processor are exactlyµ̇+ time units apart.
SENDi,→i⊕1 arrives atbegin(WAIT i) + W .

Proof. Let Rk be thek-th receive event in the rt-run. We will show by induction onk that
all receive events occur at the right time and in the right order, and, thus, they are processed
immediately without queuing delay.

Initially, R1 contains the init messageSEND0,→1, which is the correct first message for
processor0. Assume that the condition holds forR1, . . . , Rk−1 and consider the following
possibilities in whichRk (on processori at timet) could violate the invariant by arriving too
early:

〈TIME0→i, . . . , TIME i−1→i = WAIT i
︸ ︷︷ ︸

1

, SENDi,→i⊕1
︸ ︷︷ ︸

2

, . . . , SENDi,→i⊕(n−1)
︸ ︷︷ ︸

3

, TIME i+1→i
︸ ︷︷ ︸

4

, . . . , TIMEn−1→i
︸ ︷︷ ︸

1

〉

1. First/second receive and wait phase: Assume for0 < j < i (first receive phase/wait
phase) ori+1 < j < n (second receive phase) thatTIMEj→i arrives att < begin(TIME j−1→i)+

µ̇+. TIMEj→i has been sent no later thant − ˙δ− by j’s SENDj,→i job. As the invariant

3For µ̇+ = 0, it is obvious that no queuing occurs.

85



7. Optimal Drift-Free Clock Synchronization

holds for all previous receive events (andSENDj,→i causally precedesTIMEj→i), the be-
gin times of the((i⊖ 1)⊖ j) previous send phase steps of processj (SENDj,→j⊕1, . . . ,

SENDj,→i⊖1) and SENDj,→i are exactlyµ̇+ time units apart, andWAIT j starts at least
ε̇ − ˙δ− + 2µ̇+ time units before the first send phase step. This means that

begin(WAIT j) ≤ t− ˙δ−−((i⊖1)⊖j)µ̇+−(ε̇− ˙δ−+2µ̇+) = t−(i⊖j)µ̇+−ε̇−µ̇+.

WAIT j = TIMEj−1→j has been sent duringj − 1’s SENDj−1,→j job. Thus,

begin(SENDj−1,→j) ≤ t− (i⊖ j)µ̇+ − ε̇ − µ̇+ − ˙δ−.

Clearly, SENDj−1,→j refers to the firstSEND job on j − 1. TIMEj−1→i is sent during
SENDj−1,→i, which starts exactly(i⊖ j)µ̇+ time units later:

begin(SENDj−1,→i) ≤ t−(i⊖j)µ̇+− ε̇− µ̇+− ˙δ−+(i⊖j)µ̇+ = t− ε̇− µ̇+− ˙δ−.

TIMEj−1→i arrives at most ˙δ+ time units later,

begin(TIME j−1→i) ≤ t− ε̇ − µ̇+ − ˙δ− + ˙δ+ = t− µ̇+,

contradicting the assumption thatt < begin(TIME j−1→i) + µ̇+.

2. Wait→ send phase: Assume theSENDi,→i⊕1 timer message arrives att 6= begin(WAIT i)+
W . As theSENDi,→i⊕1 timer is set inWAIT i to W , this is a contradiction.

3. Send phase: Assume fori 6= j andi 6= j⊕1 thatSENDi,→j⊕1 arrives att 6= SENDi,→j +

µ̇+. As theSENDi,→j⊕1 timer is set inSENDi,→j to µ̇+, this is a contradiction.

4. Send→ second receive phase: Assume fori < n − 1 that TIMEi+1→i arrives att <
begin(SENDi,→i⊕(n−1)) + µ̇+ (= begin time ofi’s last send job+µ̇+). TIMEi+1→i was

sent duringSENDi+1,→i = SENDi+1,→(i+1)⊕(n−1), which started no later thant − ˙δ−.
As the invariant holds for all previous receive events,SENDi+1,→(i+1)⊕1 started no later

thant− ˙δ− − (n− 2)µ̇+. This means thatWAIT i+1 = TIMEi→i+1 started no later than
t− ˙δ− − (n− 1)µ̇+ andTIME i→i+1 was sent (by jobSENDi,→i+1) no later than

begin(SENDi,→i+1) ≤ t− 2 ˙δ− − (n− 1)µ̇+

As theSEND jobs are exactlyµ̇+ time units apart,

begin(SENDi,→i⊕(n−1)) ≤ t − 2 ˙δ− − (n − 1)µ̇+ + (n − 2)µ̇+ = t − 2 ˙δ− − µ̇+

which contradicts the assumption thatt < begin(SENDi,→i⊕(n−1)) + µ̇+.

We can apply Lemma 7.4 to the algorithm of Figure 7.2 as well, resulting in estimates with
a maximum error of

ε(1)

2 rather than
ε(n−1)

2 . Thus, by Lemma 7.5, clock synchronization to
within (1− 1

n
)ε(1) can be achieved. As all job durations and message delays are independent

of n this time (δ+
(1) rather thanδ+

(n−1), etc.), the time complexity of this algorithm isO(n).
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7.2. Lower Bounds

In this section, we will establish lower bounds for message and time complexity of (close to)
optimal precision clock synchronization algorithms.

In particular, for optimal precision, we will prove that at least12n(n−1) = Ω(n2) messages
must be exchanged, since at least one message must be sent over every link. This bound is
asymptotically tight, since it is matched by the algorithmsin the previous section.

A strong indication for this result follows already from thework of Biaz and Welch [BW01].
They have shown that no algorithm can achieve better precision than1

2diam(G) for any com-
munication networkG, with diam(G) being the diameter of the graph when the edges are
weighted with the uncertainties: In the classic computing model, a fully-connected network
with equal link uncertaintyε can achieve no better precision than1

2ε, whereas removing one
link yields a lower bound ofε. Thus, after removing one link, the optimal precision of(1− 1

n
)ε

shown by [LL84b] can no longer be achieved.
Unfortunately, the proof from [BW01] cannot be used directly in our context to derive

the message complexity bound mentioned above: While they show that(1 − 1
n
)ε cannot be

achieved if the system forbids the algorithm to use one system-chosen link, we have to show
that if the algorithm is presented with a fully-connected network and decides not to use one
algorithm-chosen link (which can differ for each execution/rt-run) dynamically, this algorithm
cannot achieve optimal precision. A shifting argument similar to the one used in their proof
(Theorem 3 of [BW01]) can be used, however.

Additionally, we will show that in the real-time computing model, the message and time
complexity of clock synchronization to within suboptimal precision also depends on the com-
plexity of δ+

(ℓ) andµ+
(ℓ) with respect toℓ.

7.2.1. Shifting

A common technique in the classic computing model for proving lower bounds for the clock
synchronization problem isshifting. Shifting an executionex of n processors by(x0, . . . , xn−1)
results in another sequenceex′, where

• actions on processorpi happening at real-timet in ex happen at real-timet− xi in ex′,

• the hardware clock of processorpi is shifted such that all actions still occur at the same
hardware clock time as before, i.e.,HCex′

pi
(t) := HCex

pi
(t) + xi,

Note that this sequence might not be a valid execution, as messages could be received before
they are sent.

The same technique can be applied to the real-time computingmodel: Shifting a rt-runru
of n processors by(x0, . . . , xn−1) results in another sequenceru′, where

• receive events, jobs and drop events on processorpi starting at real-timet in ru start at
real-timet− xi in ru′,

• the hardware clock ofpi is shifted such that all receive events, jobs and drop eventsstill
occur at the same hardware clock time as before, i.e.,HCru′

pi
(t) := HCru

pi
(t) + xi.
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We assume that, just like in a valid rt-run, the receive events and jobs in a shifted rt-run are
ordered by their occurrence time and begin time, respectively. Apart from that, the reordering
must preserve the original ordering as much as possible; in particular, if two elementsa′ and
b′ occur/start at the same timet in ru′, anda ≺ b holds for the corresponding elements inru,
a′ ≺ b′ must hold inru′.

Observation 7.9. ru′, the sequence created by shifting some valid rt-runru, satisfies proper-
ties RU1–RU8 except for the fact that message sends can occurlater than the message arrival,
thus violating message causality. It hence suffices to show that every message is sent before it
is received to prove thatru′ is a valid rt-run.

Lemma 7.10. If ru conforms to FAULT-FREEρ, ru′ is a shifted rt-run ofru and all messages
in ru′ obey the message delay bounds[δ−, δ+], thenru′ conforms to FAULT-FREEρ.

Proof. Follows from the fact that all conditions of FAULT-FREEρ except foris_timely_msg
are unaffected by the shifting operation.

7.2.2. Environment

Let c ∈ R+ be a constant ands = (n, [δ−, δ+], [µ−, µ+]) be a real-time system withn >
2. Assume thatA is an algorithm running with some scheduling/admission policy pol and
providing clock synchronization to withinc ·ε(1) in s under failure model FAULT-FREE0. Let
ru be a rt-run ofA with policy pol in s under FAULT-FREE0 where the message delays of all
messages are the arithmetic mean of the lower and upper bound. Thus, modifying the delay of
any message by±ε(1)/2 still results in a value within the system model bounds. The duration
of all jobs sendingℓ messages isµ+

(ℓ). Since admission control is not needed in a fault-free
environment, we assume that no messages are dropped bypol.

7.2.3. Message Graph Diameter

Definition 7.11. Let the message graphof a rt-run ru be defined as an undirected graph
containing all processors as vertices and exactly those links as edges over which at least one
message is sent inru.

Lemma 7.12. The message graph ofru has a diameter of2c or less.

Proof. Assume by contradiction that the message graph has a diameter D > 2c. Let p andq
be two processors at distanceD. Let Πd be the set of processors at distanced from p. We can
constructru′ by shifting all processors inΠd by d · ε(1)/2, i.e., all receive events and jobs on
some processor inΠd happend · ε(1)/2 time units earlier although with the same hardware
clock readings (see Figure 7.4 for an example). As processors inΠd only exchange messages
with processors inΠd−1, Πd andΠd+1, message delays are changed by−ε(1)/2, 0 or ε(1)/2.
Thus, by Lemma 7.10,ru′ is a valid rt-run conforming to failure model FAULT-FREE0.

Let ∆ and∆′ be the final (signed) differences between the adjusted clocks of p andq in
ru andru′, respectively. As both rt-runs conform to FAULT-FREE0 andA is assumed to be
correct,|∆| ≤ c · ε(1) and|∆′| ≤ c · ε(1).
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By definition of shifting,HC ′
p(t) = HCp(t) andHC ′

q(t) = HCq(t) + D · ε(1)/2. Thus,
∆′ = HC ′

p(t)+adjp− (HC ′
q(t)+adjq) = HCp(t)+adjp− (HCq(t)+D ·ε(1)/2+adjq) =

∆−D · ε(1)/2.
Let ru′′ beru shifted by−d · ε(1)/2. The same arguments hold, resulting in∆′′ = ∆ + D ·

ε(1)/2. As |∆|, |∆′| and|∆′′| must all be≤ c · ε(1), we have the following inequalities:

|∆| ≤ c · ε(1)

|∆ + D · ε(1)/2| ≤ c · ε(1)

|∆−D · ε(1)/2| ≤ c · ε(1)

which imply thatc ≥ D/2 and provide the required contradiction toD > 2c.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

p ∈ Π0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

p′ ∈ Π1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

p′′ ∈ Π2

(a) Original

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Shifted

Figure 7.4.: Shifting byd · ε(1)/2 with ε(1) = 4

7.2.4. Message Complexity

For clock synchronization to within someγ < ε(1) (i.e., c < 1), Lemma 7.12 implies that
there exists a rt-run whose message graph has a diameter< 2, i.e., whose message graph is
fully connected, and, therefore, hasn(n−1)

2 edges. This leads to the following theorem:

Theorem 7.13.Clock synchronization to withinγ < ε(1) has a worst-case message complex-
ity of Ω(n2).

Section 7.1 presented algorithms achieving optimal precision of (1− 1
n
)ε(1) with n(n−1) =

O(n2) messages. Theorem 7.13 reveals that this bound is asymptotically tight. A weaker
lower bound can be given for suboptimal clock synchronization by using the following simple
graph-theoretical lemma:

Lemma 7.14. In an undirected graph withn > 2 nodes and diameterD or less, there is at
least one node with degree≥ D+1

√
n.4

4A result with similar order of magnitude can be derived from theMoore bound, which states that an undirected
graph with maximum degreed and diameterD has no more than1+d+d(d−1)+ · · ·+d(d−1)D−1 nodes
[GY04].
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Proof. Assume by contradiction that all nodes have a maximum degreeof some non-negative
integerd < D+1

√
n. As n > 2, d = 0 or d = 1 would cause the graph to be disconnected,

thereby contradicting the assumption of bounded diameter.Thus, we can assume thatd > 1.
Fix some nodep. Clearly, afterD hops, the number of nodes reachable fromp (including

p at distance0) cannot exceed
∑D

i=0 di = dD+1−1
d−1 ≤ dD+1 < D+1

√
n

D+1
= n. As we cannot

reachn nodes afterD hops, we have the required contradiction.

Combining Lemmas 7.12 and 7.14 shows that there is at least one processor inru which
exchanges (= sends or receives) at least⌈ 2c+1

√
n⌉messages. More general:

Theorem 7.15.When synchronizing clocks to withinc · ε(1) in some real-time systems, there
is at least one FAULT-FREE0 rt-run in which at least one processor exchanges⌈ 2c+1

√
n⌉mes-

sages.

Corollary 7.16. When synchronizing clocks to withinc ·ε(1), there is no constant upper bound
on the number of messages exchanged per processor.

It is, however, possible to either bound the number of received messagesor the number
of sent messages per processor: Section 7.3.1 presents an algorithm synchronizing clocks
to within ε(1) where every processor receives exactly one message. On the other hand, the
algorithm in Section 7.3.2 also achieves this precision butbounds the number of sent messages
per processor by 3.

7.2.5. Time Complexity

Theorem 7.15 immediately implies a lower bound on the worst-case time complexity of
any algorithm that synchronizes clocks to withinc · ε(1): Some processp must exchange
m := ⌈ 2c+1

√
n⌉ messages, somek of which are received and the remaining ones are sent by

p. Recallingδ+
(ℓ) ≤ ℓδ+

(1) from Section 3.35, the algorithm’s time complexity must be at least

minm
k=0(k · µ+

(0) + δ+
(m−k)).

6 Clearly, kµ+
(0) is linear ink, so the interesting term isδ+

(m−k),
leading to the following corollary:

Corollary 7.17. If multicasting a message in constant time is impossible, clock synchroniza-
tion to within a constant factor of the message delay uncertainty cannot be done in constant
time.

In the case of optimal precision,n processors need to send and process at leastn(n−1)
2

messages, so no algorithm can achieve a run time better thann−1
2 µ+

(0) or better thanδ+
(n−1

2
)

(assuming optimal parallelism). This shows that the algorithm presented in Section 7.1.3 is
not only tight regarding precision but also has asymptotically optimal time complexityO(n).

5Note thatδ+
(ℓ) ≤ ℓδ+

(1) follows directly fromδ+
(i+j) ≤ δ+

(i) + δ+
(j).

6This bound cannot be reduced to the minimum of both extreme cases, counterexample:µ+
(0) = 2, δ+

(1,...,6) =

{3, 6, 6, 6, 9, 12}: k = 2 is smaller thank = 0 or k = 6.
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7.3. Achievable Precision foro(n2) Messages

1 var adj
2
3 procedureprocess_message(msg, current_hc )
4 /∗ start alg . by sending (INIT) to some proc.∗/
5 if msg = (INIT)
6 send current_hc to all other processors
7 adj←0
8 else

9 adj←msg− current_hc +
δ−
(n−1)

+δ+
(n−1)

2

(INIT)

Figure 7.5.: Star Topology-based Clock Synchronization Algorithm

7.3. Achievable Precision for o(n2) Messages

In some scenarios, a quadratic number of messages might be too costly if a precision of
(1− 1

n
)ε(1) is not required. Clearly, every clock synchronization algorithm requires a minimum

of n−1 messages; otherwise, at least one processor would not participate. Interestingly,n−1
messages (plus one external init message) already suffice toachieve a precision ofε(1) by
using a simple star topology-based algorithm, presented inthe following subsection.

7.3.1. Algorithm With Least Number of Messages

Figure 7.5 is actually a simpler version of the algorithm presented in Section 7.1: Rather than
collecting the estimated differences to all other processors and then calculating the adjustment
value, this algorithm just sets the adjustment value to the estimated difference to one desig-
nated master processor, the one receiving(INIT ). Lemma 7.4 shows that the error of these
estimates is bounded by

ε(n−1)

2 . Thus, setting the adjustment value to the estimated difference
causes all clocks to be synchronized to withinε(n−1).

If δ−, δ+, µ− andµ+ are independent fromn (i.e., if constant-time broadcasting is pos-
sible), ε(n−1) = ε(1) and the algorithm achieves this precision in constant time (w.r.t. n).
Otherwise, the following modification puts the precision down to ε(1) in the general case as
well:

• Do not send all messages during the same job but during subsequent jobs on the “mas-
ter” processor.

• Replaceδ−(n−1) + δ+
(n−1) in Line 9 with δ−(1) + δ+

(1).

The algorithm still exchanges onlyn− 1 messages and has linear time complexity w.r.t. n.
As Theorem 7.13 has shown,ε(1) is the best precision that can be achieved with less than
a quadratic number of messages. As Corollary 7.17 has shown,this precision cannot be
achieved in constant time in the general case.
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7.3.2. Algorithm With Constant Bound on Number of Sent Messa ges
per Processor

This is an informal description of a proof-of-concept algorithm showing that clock synchro-
nization to withinε(1) is possible with a constant bound (3 messages) on the number of mes-
sages sent per processor.

All processors send their current hardware clock reading tosome designated processorq.
This must be done in a serialized way to avoid queuing, and, thus, requires two sent messages
per processor (one message toq and another message to the next processor; depending on the
exact system parameters, additional local timer messages might be required to avoid queuing).
After this is done,q knows the difference between its own hardware clock and the hardware
clock of any other processor to withinε(1). Clearly, this estimate can be used to calculate an
adjustment value forp, which, when applied, causes the clocks ofp andq to be synchronized to
within ε(1)/2. To inform the other processors about their adjustment values,q sends the array
of all adjustment values to some processorp, which passes them on the next processor and
so on (requires one message per processor) until all processors have received their adjustment
values. These values are finally applied, resulting in an overall clock synchronization precision
of ε(1).

92
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As a first step towards optimal-precision clock synchronization in real-time systems withdrift-
ing clocks, we direct our attention to a deceptively simple subproblem of clock synchroniza-
tion, namely,remote clock estimation. As outlined in the introduction, any existing clock
synchronization algorithm can be reviewed in terms of a generic structure [Sch86], which
consists of (1) detecting the need for resynchronization, (2) estimating the remote clock val-
ues, (3) computing a (fault-tolerant) clock adjustment value, and (4) adjusting the local clock
accordingly. Our results on remote clock estimation are hence pivotal building blocks for
finding and analyzing optimal algorithms for both external and internal clock synchronization
in real-time systems.

In this chapter, we provide an optimal solution for the problem of how to continuously
estimate a source processor’s clock; the algorithm is complemented by a matching lower
bound on the achievable maximum clock reading error. Our results precisely quantify the
effect of system parameters such as clock drift, message delay uncertainty and step duration
on optimal clock estimation.

Since optimal remote clock estimation is trivially unsolvable in case of just a single crash
failure, we assume a failure-free two-processor system with drifting clocks. Note carefully,
however, that this does not restrict the applicability of our results to fault-free distributed
clock synchronization algorithms: As outlined above, fault-tolerance in clock synchronization
is usually maintained by choosing a fault-tolerant “convergence function”, which calculates
some correct new clock adjustment value despite some faultyremote clock readings. In fact,
Chapter 9 will demonstrate how to incorporate our optimal clock estimation method in existing
fault-tolerant clock synchronization algorithms.

8.1. Interval-Based Notation

A natural way to represent remote clock estimations would bea tuple(value,margin), with
value representing the expected value of the remote clock andmargin the absolute deviation
from the remote clock’s real value, i.e.,remote_clock ∈ [value−margin, value+margin].
With non-drifting clocks, this works well [LL84b, MS06a]. However, consider the two cases
in Figure 8.1, in whichp tries to guesssrc’s value at timetr by evaluating a timestamped
message with delay∈ [δ−, δ+] and clocks with maximum driftρsrc andρp.

In the first case,src is a processor with a slow clock and the message is fast; in thesecond
case,src’s clock is fast but the message is slow. Thus, at timetr, src’s hardware clock reads
HCsrc(ts) + δ−(1 − ρsrc) in the first andHCsrc(ts) + δ+(1 + ρsrc) in the second case. In

the drift-free case (ρsrc = 0), p can assume thatsrc’s clock progressed byδ
−+δ+

2 = δ− + ε
2

and add this value toHCsrc(ts), which is contained in the message. This results in a good
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p

src

δ−

ts

tr

slow

δ+

ts

tr

fast

Figure 8.1.:p receiving a timestamped message fromsrc.

estimation ofHCsrc(tr): It matches the expected value ofHCsrc(tr), provided message
delays are uniformly distributed, with a maximum error margin of ±ε/2.

In the drifting case, the arithmetic mean ofδ−(1 − ρsrc) (= the progress ofsrc in the first
case) andδ+(1 + ρsrc) (in the second case) isδ− + ε

2(1 + ρsrc), which is larger thanδ− + ε
2 .

Thus,p can either estimatesrc’s clock to be

• HCsrc(ts) + δ− + ε
2(1 + ρsrc), which makes for a nice symmetric error margin of

±(δ−ρsrc + ε
2 (1 + ρsrc)), or

• HCsrc(ts) + δ− + ε
2 , which is the expected value, but which has asymmetric error

margins[−(ε
2 + δ−ρsrc),+(ε

2 + δ+ρsrc)].

To avoid this problem, we assume thatp outputs two valuesest− and est+, such that
src’s real value is guaranteed to be∈ [est−, est+]. Since we want to prove invariants on
[est−, est+], although there might not be a computation event at every time t, we define
est−p (g) andest+p (g) at some global stateg on processorp as functions of the current hardware
clock reading,HCp(time(g)), and the current local statesp(g) of p. Hence, the remote clock
estimation problem is formally defined as follows:

Definition 8.1 (Continuous clock estimation withinΓ). Let src (source) andp be processors.
Eventually,p must continuously estimate the hardware clock value ofsrc with a maximum
clock reading errorΓ. Formally, for all st-tracestr:

∃evstable ∈ tr : ∀g ≻ evstable :

HCsrc(time(g)) ∈ [est−p (g), est+p (g)] ∧ est+p (g)− est−p (g) ≤ Γ

8.2. Estimating a Remote Clock

The clock estimation algorithm presented in this section will repeatedly send messages from
src to p as fast as possible.

8.2.1. System Model

The following parameters specify the underlying system:
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• [δ−, δ+]: Bounds on the message delay.

• [µ−
(0)

, µ+
(0)

]: Bounds on the length of a job processing an incoming message, without
sending any (non-timer) messages. In the algorithm of Section 8.2.2, all jobs onp fall
into this category.

• [µ−
(1), µ

+
(1)]: Bounds on the length of a job processing an incoming messageand sending

one message to the other processor. In our algorithm, all jobs on src fall into this
category; any such job is triggered by a timer message (or an input message, in case of
the first job).

• ρp andρsrc: Bounds on the drift ofp andsrc, respectively. We assume0 ≤ ρ < 1, for
bothρ = ρp andρ = ρsrc.

To circumvent pathological cases, we also need to assume that

µ−
(1)
≥ µ+

(0)
. (8.1)

Otherwise, the adversary could create an rt-run in which the“receiving” computing steps at
p take longer than the “sending” computing steps atsrc, causingp’s message queue to grow
without bound. Note that eq. (8.1) can also be interpreted asa bandwidth requirement: The
maximum data rate ofsrc must not exceed the available processing bandwidth atp (including
communication).

Thus, in terms of the model introduced in the first part of thiswork, we assume a real-time
system withn = 2 satisfying eq. (8.1) and a failure model FAULT-FREEρsrc,ρp , which is
a natural extension of FAULT-FREEρ(ru) to the case of two different hardware clock drift
bounds.1

8.2.2. Algorithm

Consider the algorithm in Figure 8.2, which letssrc send timestamped messages top as fast as
possible. Processorp determines an estimate forsrc’s clock by using the most recent message
from src: While the formula used for the lower error marginest− is straightforward (est−

increases withage, but with a factor≤ 1 due top’s drift), the fact that the upper error margin
est+ stays constant as soon as the last message fromsrc is older than(µ+

(0) + µ+
(1))(1 − ρp)

might seem counter-intuitive, because it means that, as thelast message fromsrc gets older,
the clock reading errorest+ − est− of the estimate becomessmallerthan it was immediately
after receiving the message.

The explanation for this phenomenon is that, in a system withreliable links, a lot of infor-
mation can be gained fromnot receiving a message. As we will show in the next section, the
end-to-end delay∆, i.e., the message delay plus the queuing delay, of every “relevant” mes-
sage is∈ [δ−, δ+] in the model of Section 8.2.1. If the last messagem from src is µ+

(1) + x

time units old (for somex > 0, plusµ+
(0) for processing on the receiver side, plus some drift

1Formally, the failure model specification of Section 4.2.2 is modified such that∀p : bounded_drift(p, ρ) is
replaced withbounded_drift(src, ρsrc) ∧ bounded_drift(p, ρp).
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8. Optimal Remote Clock Estimation

Processorsrc
1 procedureprocess_message(msg, current_hc ) /∗ start alg . by sending (SEND NOW) to src∗/
2 send current_hc top
3 set (SEND NOW) timer for current_hc /∗ will arrive at end(current_job) ∗/

Processorp
1 var rcv_hc ← −∞ /∗ local time of reception∗/
2 var send_hc← −∞ /∗ remote time of sending∗/
3
4 /∗ parameter current_hc of the following functions omitted for brevity ∗/
5 function age = current_hc− rcv_hc
6 public function est− = send_hc +(1− ρsrc)

`

δ− + age/(1 + ρp)
´

7 public function est+ = send_hc +(1 + ρsrc)
“

δ+ + min{µ+
(0) + µ+

(1), age/(1− ρp)}
”

8
9 procedureprocess_message(msg, current_hc )

10 var HCsrc← msg
11 if HCsrc > send_hc
12 rcv_hc ← current_hc ; send_hc← HCsrc /∗ one atomic step∗/

Figure 8.2.: Remote clock estimation algorithm

HCsrc

HCp

est−

est+

(a) Naive estimation

HCsrc

HCp

est−

est+

(b) Considering future messages

Figure 8.3.:p’s estimate ofsrc’s hardware clock

factor), we know that this message cannot have had an end-to-end delay∆m of δ+. Other-
wise, the next messagem′ from src should have arrived by now. Actually, we know that∆m

must be within[δ−, δ+ − x], which is much more accurate than our original assumption of
[δ−, δ+]. Clearly, the quality ofp’s estimate ofsrc’s hardware clock depends on how wellp
can estimate∆m.

As can be inferred from Figure 8.3 and the definitions ofest− andest+ in the algorithm, the
maximum clock reading error is reached when the message is(µ+

(0) + µ+
(1))(1− ρp) hardware

clock time units old:

Γ = max{est+ − est−} = (1 + ρsrc)
(

δ+ + (µ+
(0) + µ+

(1))(1− ρp)/(1 − ρp)
)

− (1− ρsrc)
(

δ− + (µ+
(0) + µ+

(1))(1 − ρp)/(1 + ρp)
)

Note that(µ+
(0)+µ+

(1))
1−ρp

1+ρp
(1−ρsrc) can be rewritten as(µ+

(0)+µ+
(1)) (1− ρsrc − 2ρp)+ν,
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with

ν = 2(µ+
(0) + µ+

(1))ρp
ρp + ρsrc

1 + ρp
(8.2)

denoting a very small term in the order ofO(µ+ρ2),2 which is usually negligible. Thus, we
have a maximum clock reading error of

Γ = ε + ρsrc(δ
− + δ+) + 2(ρsrc + ρp)(µ

+
(0) + µ+

(1))− ν . (8.3)

8.2.3. Schedulability Analysis

Applying the system model restrictions from Section 8.2.1 to the algorithm allows us to make
some general observations:

Observation 8.2. Every timer set during some job starts processing at the end of that job.
Formally, for all timer messagesmt: (mt ∈ trans(J)) ⇒ ∃J ′ : (begin(J ′) = end(J) ∧
msg(J ′) = mt).

Observation 8.3. src sends an infinite number of messages top. The begin times of the jobs
sending these messages are betweenµ−

(1) andµ+
(1) time units apart.

Given only FIFO links and a FIFO scheduling policy, a simple analysis would show that
the end-to-end delay∆m, i.e., the message (transmission) delay plus queuing delay, is within
[δ−, δ+], for all ordinary messagesm. However, in the general setting with non-FIFO links
and arbitrary scheduling policies, it could, for example, be the case that a slow (message delay
δ+) message is “overtaken” by a fast message that was sent laterbut arrives earlier. If this fast
message causes the slow one to be queued, the bound ofδ+ is exceeded. We can, however,
solve this problem by filtering (Line 11 of the algorithm) “irrelevant” messages, which have
been overtaken by faster messages and, thus, might have had alonger end-to-end delay than
δ+.

Of course, one obvious solution would be to have the admission control component filter
these irrelevant messages, thus preventing them from beingenqueued and allowing us to de-
rive the bound∆m ∈ [δ−, δ+] by some very simple observations. However, the remainder of
this section will demonstrate that this is not necessary: Byshowing that the bound is satisfied
even if every message gets queued and filtering is done withinthe algorithm, we increase the
coverage of our result to systems without low-level admission control. Formally, this means
that the scheduling/admission policypol assumed in this proof can be arbitrary as long as no
messages are dropped.

Let i ≥ 1 denote thei-th non-timer message sent fromsrc (to p). We will show, by
induction oni, that a certain bound holds for all messages. This generic bound will allow us
to derive the upper bound ofδ+ for the end-to-end delay of relevant messages. First, we need
a few definitions:

• Ji: The sending job of messagei (on processorsrc).

2We useµ+ = µ+
(1)(= max{µ+

(0), µ
+
(1)}) andρ = max{ρsrc, ρp} as abbreviations here.
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8. Optimal Remote Clock Estimation

• J ′
i : The processing job of messagei (on processorp).

• Fi := {r : begin(J ′
r) < begin(J ′

i) ∧ r > i}: The set of “fast” messagesr > i, that
were processed (atp) beforei. Informally speaking, this is the set of messages that have
overtaken messagei. Note that these messages are not necessarilyreceivedearlier than
i, butprocessedearlier.

• f(i) := begin(Ji)+δ++
∑

j∈Fi∪{i}
µj

(0). This is an upper bound on the “finishing” real

time by which all messages≤ i have been processed.µj
(0) denotes the actual processing

time∈ [µ−
(0), µ

+
(0)] of messagej (= duration(J ′

j)).

Observe thatf(i) ≥ f(i − 1), sincebegin(Ji) increases by at leastµ−
(1), whereas at most

one message (whose processing takes at mostµ+
(0)) “leaves” the setFi ∪ {i}.

Lemma 8.4. For all i holds: No later thanf(i), all J ′
j, 1 ≤ j ≤ i, finished processing;

formally,end(J ′
j) ≤ f(i).

Proof. By induction. For the induction starti = 0, the statement is void since there is no job
to complete (f(0) can be defined arbitrarily). For the induction step, we can assume that the
condition holds fori− 1 ≥ 0, i.e., that

∀1 ≤ j ≤ i− 1 : end(J ′
j) ≤ f(i− 1) . (8.4)

Assume by contradiction that the condition does not hold fori, i.e., that there is somej ≤ i
such thatend(J ′

j) > f(i). Sincef(i) ≥ f(i− 1), choosing somej < i immediately leads to
a contradiction with eq. (8.4). Thus,

end(J ′
i) > f(i) . (8.5)

Assume thatbegin(J ′
i) ≤ begin(J ′

i−1). Sinceend(J ′
i) ≤ end(J ′

i−1) ≤ f(i− 1) ≤ f(i) by
eq. (8.4), this leads to a contradiction with eq. (8.5). Thus, begin(J ′

i) > begin(J ′
i−1).

SinceJ ′
i starts later thanJ ′

i−1, Fi−1 ⊆ Fi (since i /∈ Fi−1, and, thus, allr ∈ Fi−1,
r > i − 1, are also inFi). PartitionFi into Fold = Fi−1 andFnew = Fi \ Fi−1. Note that
f(i) ≥ f(i− 1) + µ−

(1) + µi
(0) − µi−1

(0) +
∑

j∈Fnew µj
(0).

Let t = f(i) − µi
(0) −

∑

j∈Fnew µj
(0). Note thatt ≥ f(i − 1), which means that all

messagesJ ′
j , j < i, and all messages∈ Fold have been processed by that time, and that

t ≥ begin(Ji) + δ+, which means that messagei has arrived by timet. There are two cases,
both contradicting eq. (8.5):

1. There is some idle period in betweent andf(i): Sincei has arrived by timet, this
means thati has already been processed by timef(i), due to our non-idling scheduler.

2. There is no idle period in betweent andf(i). Thus, we have a busy period of length
f(i)−t = µi

(0)+
∑

j∈Fnew µj
(0), which is only used to process messages fromFnew and

messagei (all other messages are done byf(i − 1) due to the induction assumption).
This also implies thati gets processed byf(i).
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p

src

∆m

max.µ+
(1)

max.δ+

tj
t

ts

Figure 8.4.: Two consecutive messages fromsrc to p

We call i a “relevant” message ifFi = ∅. Thus, the following follows immediately from
the previous lemma and the definition off(i):

Lemma 8.5. The end-to-end delay∆m of every relevant messagem is ∈ [δ−, δ+].

8.2.4. Proof of Correctness

Fix some rt-runru and st-tracetr and letevstable be thetransition st-event3 of the first
relevant message fromsrc to p. Such a message must exist: Due to our non-idling scheduler,
the first messagem arriving atp is also the first message being processed onp. Thus,Fm =
∅ (otherwise, it could not be the first message being processed), which makes it a relevant
message. It will be shown that afterevstable, src’s hardware clock stays withinp’s values of
est− andest+.

Fix some global stateg ≻ evstable: Let m be the last relevant message fromsrc to p fully
processed beforeg, i.e., whosetransition st-event≺ g, with tj being the time that the job
processingm starts andts being the starting time of the job sendingm. Sinceg ≻ evstable,
such a messagem must exist. Observe that Line 11 in the algorithm ensures that only relevant
messages cause a state transition inp; thus,sp(g).send_hc = HCsrc(ts) andsp(g).rcv_hc =
HCp(tj). Likewise, as defined in Line 5 of the algorithm,agep(g) = HCp(time(g)) −
HCp(tj).

Let t = time(g) and∆m = tj − ts (cf. Figure 8.4). Note that∆m corresponds toδm, the
message delay, plus any queuing delaym may experience. (For simplicity, Figure 8.4 shows
a case without queuing.) Due to Lemma 8.5, we know that∆m is bounded by[δ−, δ+]. In
addition, we define the followingdrift factors:

drp =
HCp(t)−HCp(tj)

t− tj
(8.6a)

drsrc =
HCsrc(t)−HCsrc(ts)

t− ts
(8.6b)

3For ease of presentation, we assume that lines 9–12 of the algorithm are executed in one single atomic step, i.e.,
we assume that there is only onetransition st-event for every job atp.
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8. Optimal Remote Clock Estimation

Clearly,drsrc ∈ [1− ρsrc, 1 + ρsrc] anddrp ∈ [1− ρp, 1 + ρp]. These definitions allow us
to derive the following by applying eq. (8.6a) and the definition of ∆m:

HCsrc(t) = HCsrc(ts) + (t− ts)drsrc

= HCsrc(ts) + ((t− tj) + (tj − ts))drsrc

= HCsrc(ts) +

(
HCp(t)−HCp(tj)

drp
+ ∆m

)

drsrc.

SinceHCsrc(t) can never become less than the minimum of this expression,

HCsrc(t) ≥ min
drp

drsrc
∆m

{

HCsrc(ts) +

(
HCp(t)−HCp(tj)

drp
+ ∆m

)

drsrc

}

= HCsrc(ts) +

(
HCp(t)−HCp(tj)

1 + ρp
+ δ−

)

(1− ρsrc)

= sp(g).send_hc +
(
agep(g)/(1 + ρp) + δ−

)
(1− ρsrc).

Hence, we have:

Lemma 8.6. HCsrc(t) ≥ est−p (g).

Doing the same for the maximum of the above expression yieldsa similar result:

Lemma 8.7. HCsrc(t) ≤ sp(g).send_hc + (agep(g)/(1 − ρp) + δ+) (1 + ρsrc).

This value is still greater thanest+. Thus, we have to use a refined approach to prove our
upper bound onHCsrc. First, we note that the real time betweents andt is bounded:

Lemma 8.8. t− ts ≤ δ+ + µ+
(0) + µ+

(1).

Proof. We will again use the numbering of messages as in Section 8.2.3. Recall Figure 8.4
and assume by contradiction thati = m was sent earlier, i.e., thatts < t− δ+ − µ+

(0) − µ+
(1).

Since the (real-time) delay between two consecutive message send jobs onsrc is at mostµ+
(1)

(cf. Observation 8.3),t′s < t− δ+ − µ+
(0) holds fort′s, the begin time of the job sendingi + 1.

Sincei is a relevant message,i + 1 must be processed later thani.
ConsiderFi+1, the set of messages sent after messagei + 1 but processed earlier;Fi+1

might also be∅, if i + 1 is a relevant message. LetJ ′
i+1 be the job processing message

i + 1 and letJ = Fi+1 ∪ {i + 1}. By Lemma 8.4 we know thatend(J ′
i+1) ≤ f(i + 1) =

t′s + δ+ +
∑

j∈J µj
(0).

Let x be the first message∈ J that will be processed atp. Clearly,x must be a relevant
message. Otherwise, there would be somey > x ≥ i + 1 such thatJ ′

y is processed before
J ′

x. However, if begin(J ′
y) < begin(J ′

x) ≤ begin(J ′
i+1), theny ∈ J , contradicting the

assumption thatx is the first message∈ J that will be processed.
We know that all ofJ have been processed beforeend(J ′

i+1) ≤ t′s + δ+ +
∑

j∈J µj
(0) and

that processing all ofJ takes at least
∑

j∈J µj
(0) time units. Thus, att′s + δ+, at least one of
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J starts processing, is currently being processed or has already been processed. SinceJ ′
x is

the first such job,begin(J ′
x) ≤ t′s + δ+.

Recallingt′s < t−δ+−µ+
(0) from the beginning of the proof leads tobegin(J ′

x) < t−µ+
(0).

Sincex is a relevant message and processingx takes at mostµ+
(0)

time units, itstransition

st-event is no later than at somet′ < t. This contradicts our assumption thatm = i is the last
relevant message fromsrc fully processed byp beforeg.

Combining Lemma 8.8 with eq. (8.6b) results in

HCsrc(t)−HCsrc(ts)

drsrc
≤ δ+ + µ+

(0) + µ+
(1)

and hence

HCsrc(t) ≤ HCsrc(ts) + (δ+ + µ+
(0) + µ+

(1))drsrc

≤ max
drsrc

{

HCsrc(ts) + (δ+ + µ+
(0) + µ+

(1))drsrc

}

= HCsrc(ts) + (δ+ + µ+
(0) + µ+

(1))(1 + ρsrc)

= sp(g).send_hc + (δ+ + µ+
(0) + µ+

(1))(1 + ρsrc)

which, combined with Lemma 8.7 and the definition ofest+, yields the following result:

Lemma 8.9. HCsrc(t) ≤ est+p (g).

Combining Lemmas 8.6 and 8.9 finally yields the following theorem, which proves that
the algorithm in Figure 8.2 indeed solves the remote clock estimation problem according to
Definition 8.1.

Theorem 8.10.For all global statesg ≻ evstable, whereevstable is thetransition st-event of
the first message fromsrc arriving at p, it holds thatHCsrc(time(g)) ∈ [est−p (g), est+p (g)].
The maximum clock reading errorΓ = max{est+ − est−} is

Γ = ε + ρsrc(δ
− + δ+) + 2(ρsrc + ρp)(µ

+
(0) + µ+

(1))− ν,

with the usually negligible termν = O(µ+ρ2) given by eq.(8.2).

8.3. Lower Bound

In this section, we will show that the upper bound onΓ determined in Theorem 8.10 is tight,
i.e., that the algorithm in Figure 8.2 is optimal with respect to the maximum clock reading
error.
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8.3.1. System Model

For the lower bound proof, we assume a two-processor system under failure model FAULT-
FREEρsrc,ρp (analogous to the definition in Section 8.2.1). In addition,we require thatδ+(1−
ρ) ≥ δ−(1 + ρ) and thatµ+

(ℓ)(1− ρ) ≥ µ−
(ℓ)(1 + ρ), for ℓ ∈ {0, 1} andρ ∈ {ρsrc, ρp}. These

lower bounds on the message and processing delay uncertainties prevent the processors from
using their communication subsystems or their schedulers to simulate a clock that has a lower
drift rate than their hardware clocks.

To simplify the presentation, we will make three additionalassumptions. In Section 8.3.3,
we will briefly discuss the consequences of dropping these.

1. δ− ≥ µ+
(0). This allows the adversary to choose a scenario where nosend and/or

transition st-event in a job occurs earlier thanµ+
(0)(1 − ρ) hardware clock time units

after the beginning of the job without violating the messagedependency between the
send andprocess st-event of a message.

2. We assume that the algorithm knows when it has stabilized,i.e., thatp switches a
Boolean registerstable (initially false) when the algorithm has stabilized. In theal-
gorithm in Figure 8.2,p would set itsstable register after completing the processing of
the first relevant message fromsrc.

3. There is at least one message fromsrc arriving atp afterp has set itsstable register.

8.3.2. Proof

Assume by contradiction that there exists some deterministic algorithmA together with some
scheduling/admission policypol that allows processorp to continuously estimate processor
src’s hardware clock with a maximum clock reading errormax{est+ − est−} < Γ, with
Γ = ε +ρsrc(δ

− + δ+)+2(ρsrc +ρp)(µ
+
(0) +µ+

(1))−ν. Using an adaption of the well-known
shifting and drift scaling techniques to st-traces, which is technically quite intricate due to the
multiple state transitions involved in a job, we show that there are indistinguishable rt-runs of
A that cause a clock reading error of at leastΓ.

Definition 8.11. Since our proof uses an indistinguishability argument, we will use the nota-
tion p : tr[evA, evΩ] ≈ tr′[ev′A, ev′Ω] to denote that, for processorp, st-tracetr from st-event
evA to evΩ is indistinguishable from st-tracetr′ from st-eventev′A to ev′Ω, whereevA, evΩ,
ev′A andev′Ω all occur on processorp. Intuitively, this means thatp cannot detect a difference
between the two st-trace segments.

Let (ev1, ev2, . . . , evη) and (ev′1, ev
′
2, . . . , ev

′
η′) be the restrictions of st-tracestr and tr′

to send andtransition st-events occurring on processorp, beginning withevA = ev1 and
ev′A = ev′1, and ending withevΩ = evη andev′Ω = ev′η′ . Indistinguishability means that
η = η′ and evi = ev′i for all i, 1 ≤ i ≤ η, except for the real time of the events, i.e.,
time(evi) = time(ev′i) is not required. In fact, indistinguishability is even possible if the st-
trace segments are of different real time length, i.e., iftime(evΩ)−time(evA) 6= time(ev′Ω)−
time(ev′A). However,HCtr

p (time(evi)) = HCtr′

p (time(ev′i)) must of course be satisfied,
i.e., the hardware clock values of all matching st-events must be equal.
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The notationstr[tA, evΩ], tr[evA, tΩ] andtr[tA, tΩ] will be used as short forms fortr[evA, evΩ],
with evA being the first st-event withtime(evA) ≥ tA andevΩ being the last st-event with
time(evΩ) ≤ tΩ. Parenthesis are used to denote< instead of≤; for example,tr[0, tΩ) would
contain only st-eventsev with 0 ≤ time(ev) < tΩ.

Likewise, global states are sometimes used as boundaries:tr[gA, . . .] and tr[. . . , gΩ] ac-
tually include the first st-event onp succeedinggA and the last st-event onp precedinggΩ.
Clearly,sp(gΩ) = sp(g

′
Ω) if p : tr[. . . , gΩ] ≈ tr′[. . . , g′Ω].

Note: Sinceest− andest+ can be functions of the state ofp and the current hardware clock
value, it does not suffice to show thatsp(g1) = sp(g2) for some global statesg1 andg2 of
some indistinguishable st-tracestr1 andtr2. If we want to prove thatest− andest+ are equal
in g1 andg2, we also need to show thatHCtr1

p (time(g1)) = HCtr2
p (time(g2)), which is

more difficult in our setting than in a drift-free environment.

Let tr1 be an st-trace of some rt-runru1 of A where the adversary makes the following
choices:

• Both processors boot (i.e., receive an initial input message, if required) at timet = 0.

• HCp(0) = 0, HCsrc(0) = 0.

• Every message fromsrc takesδ+ time units.

• Every message tosrc takesδ− time units.

• Every job sendingℓ message takesµ+
(ℓ) time units.

• No transition or send st-event occurs earlier thanµ+
(0)(1 − ρ) hardware clock time

units after the beginning of the job (ρ = ρp for p andρ = ρsrc for src).

• src’s clock has a drift factor of1 + ρsrc.4

• p’s clock has a drift factor of1− ρp.

SinceA is a correct algorithm, the execution will eventually become stable. Letevsta,1 be
the transition st-event at whichp switches itsstable register intr1. Let m be an arbitrary
message fromsrc to p, sent by a job starting at timets and arriving through a receive event at
time tr, with tr > time(evsta,1). By assumption (cf. Section 8.3.1), such a message exists.

Let tr2 be an st-trace of another rt-runru2 of A where the adversary behaves exactly as
specified fortr1 with the following differences (cf. Figure 8.5):

• src boots at timet = ε = δ+ − δ− (instead of0).

• HCsrc(ε) = 0 (instead ofHCsrc(0) = 0).

• Every message fromsrc takesδ− time units (instead ofδ+).

• Every message tosrc takesδ+ time units (instead ofδ−).

4Formally, HC
tr1
src(t)−HC

tr1
src(t′)

t−t′
= 1 + ρsrc, for all t > t′, i.e., the clock runs constantly at maximum speed.
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ru1

p

src
HC = 0

t = 0

HC = 0
evsta,1

ts

tr

m

x1

HCp = T

ru2

p

src
HC = 0

t = ε

HC = 0
evsta,2

ts + ε
fast | slow

tr
slow | fast

x2

HCp = T

Figure 8.5.:ru1 andru2 (timer messages not shown);x1 = µ+
(0) + µ+

(1); x2 = x1
1−ρp

1+ρp

• After ts + ε, src’s clock has a drift factor of1− ρsrc.

• After tr, p’s clock has a drift factor of1 + ρp.

• After tr, onp, every job sendingℓ messages takesµ+
(ℓ)

1−ρp

1+ρp
time units (instead ofµ+

(ℓ)).

Note thatµ+
(ℓ)

1−ρp

1+ρp
∈ [µ−

(ℓ), µ
+
(ℓ)] (cf. Section 8.3.1). Likewise,send andtransition st-

events occur no earlier thanµ+
(0)

1−ρp

1+ρp
time units (and hence no earlier thanµ+

(0)(1− ρp)

hardware clock time units, as intr1) after the beginning of their job.5

Lemma 8.12. p : tr1[0, tr] ≈ tr2[0, tr] andsrc : tr1[0, ts] ≈ tr2[ε, ts + ε].

Proof. The lemma follows directly from the following observations:

• The initial states are the same inru1 andru2.

• All st-events within that time occur at the same hardware clock time and in the same
order (on each processor).

A formal proof can be obtained by induction on the st-events of ru1 or ru2, using these
properties, or by adapting any of the well-known “shifting argument” proofs.

5If there is a jobJ starting before but ending aftertr, its duration is weighted proportionally, i.e.,duration(J) =
(µ+

(ℓ)
− x) + x

1−ρp

1+ρp
, with x = end(J) − tr. The same is done with the minimum offset forsend and

transition st-events in a job.
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Sincetime(evsta,1) ≤ tr, this lemma also implies6 the existence of a corresponding st-
eventevsta,2 in tr2, in whichp sets itsstable register.

Lemma 8.13. For all t1, t2 ≥ tr : HCtr1
p (t1) = HCtr2

p (t2)⇔ t2 = (t1 − tr)
1−ρp

1+ρp
+ tr.

Proof. The proof follows directly from the drift factors ofp in tr1 andtr2, i.e., for allt1, t2 ≥
tr: HCtr1

p (t1) = t1(1− ρp) andHCtr2
p (t2) = tr(1− ρp) + (t2 − tr)(1 + ρp).

Let g1 andg2 be defined as follows:

• g1 is the first global state intr1 at timetr + µ+
(0) + µ+

(1), i.e., the global state preceding

the first st-event (if any) happening attr + µ+
(0) + µ+

(1).

• g2 is the first global state intr2 at timetr + (µ+
(0) + µ+

(1))
1−ρp

1+ρp
.

Clearly, by Lemma 8.13,p’s hardware clock values atg1 andg2 are equal (denotedT and
represented by the dotted line in Figure 8.5).

Lemma 8.14. p : tr1[0, g1] ≈ tr2[0, g2].

Proof. By Lemma 8.12,tr1 andtr2 are indistinguishable forsrc until ts andts + ε, respec-
tively. Sincesrc starts a job of durationµ+

(1) in ru1 at timets, a corresponding job is started in
ru2 at timets + ε. Both jobs send the same messagem to p. Since our system model does not
allow preemption,src’s next job sending a message top can start no earlier than atts + µ+

(1)

(tr1) and atts + ε + µ+
(1) (tr2). Thus, by the definition of message (transmission) delays in

ru1 andru2, the earliest time thatp can receive another message fromsrc (after the reception
of m) is tr + µ+

(1) (in bothtr1 andtr2, cf. Figure 8.5).
Thus, the only jobs occurring atp in ru1 and ru2 after the reception ofm (at time tr)

and beforetr + µ+
(1) are jobs caused by timer messages, by messagem or by messages that

have been received earlier. These messages, however, cannot “break” the indistinguishability:
Since (a)p’s hardware clock is speeded up and (b) the processing times of jobs on p are
shortened by the same factor (1−ρp

1+ρp
), the hardware clock times of all jobs (starting and ending

times) as well as all state transitions are equal intr1 and tr2, as long as no new external
message reachesp. Since this does not happen beforetr + µ+

(1), we can conclude thattr1

andtr2 are indistinguishable until hardware clock timeT ′ := HCtr1
p (tr + µ+

(1)), at which a

message might arrive inru1 that did not yet arrive inru2 (since, inru2, only tr + µ+
(1)

1−ρp

1+ρp

real time units have passed yet atT ′). Thus,p : tr1[0, tr + µ+
(1)) ≈ tr2[0, tr + µ+

(1)
1−ρp

1+ρp
).

If a job (J1 in tr1, J2 in tr2) which started beforeT ′ is still running at hardware clock
time T ′, a message reception does not change any (future) state transitions of that job, due
to no-preemption. Thus, the indistinguishability continues untilT ′′ := HCtr1

p (end(J1)) =
HCtr2

p (end(J2)). (If no job was running at hardware clock timeT ′, let T ′′ := T ′, cp. Fig-
ure 8.5.) At hardware clock timeT ′′, the schedulers ofru1 andru2 might choose different
jobs to be executed next (since the message fromsrc arrived at different hardware clock times

6This could not be inferred that easily if the algorithm did not know when it had stabilized.
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in ru1 andru2). However, due to our assumption that the adversary causes all state transitions
to occur no earlier thanµ+

(0)(1− ρp) hardware clock time units after the beginning of the job,

the state ofp is still equal inru1 andru2 until hardware clock timeT ′′ + µ+
(0)(1 − ρp). As

T ′′ ≥ T ′, this corresponds to some real time of at leasttr + µ+
(0) + µ+

(1) in tr1 and at least

tr + (µ+
(0) + µ+

(1))
1−ρp

1+ρp
in tr2. Sinceg1 andg2 are, by definition, the first global states at these

real times, no state transition breaking the indistinguishability can have occurred yet.

Lemma 8.15. HCtr1
src(time(g1)) − HCtr2

src(time(g2)) = ε + ρsrc(δ
− + δ+) + 2(ρsrc +

ρp)(µ
+
(0) + µ+

(1))− ν.

Proof.

HCtr1
src(time(g1)) = HCtr1

src(tr + µ+
(0) + µ+

(1)) = HCtr1
src(ts + δ+ + µ+

(0) + µ+
(1))

= (ts + δ+ + µ+
(0) + µ+

(1))(1 + ρsrc)

= ts + δ+ + µ+
(0) + µ+

(1) + ρsrc(ts + δ+ + µ+
(0) + µ+

(1))

HCtr2
src(time(g2)) = HCtr2

src

(

tr + (µ+
(0) + µ+

(1))
1− ρp

1 + ρp

)

= HCtr2
src

(

ts + ε + δ− + (µ+
(0) + µ+

(1))
1− ρp

1 + ρp

)

= HCtr2
src(ε) + ts(1 + ρsrc) +

(

δ− + (µ+
(0)

+ µ+
(1)

)
1− ρp

1 + ρp

)

(1− ρsrc)

Again,(µ+
(0) + µ+

(1))
1−ρp

1+ρp
(1− ρsrc) can be rewritten as(µ+

(0) + µ+
(1))(1− ρsrc − 2ρp) + ν,

with ν, defined in eq. (8.2), denoting a small term in the order ofO(µ+ρ2). Thus,

HCtr2
src(time(g2)) =

ts + δ− + µ+
(0) + µ+

(1) + ρsrc(ts − δ− − µ+
(0) − µ+

(1))− 2ρp(µ
+
(0) + µ+

(1)) + ν.

We can now prove our lower bound theorem:

Theorem 8.16.There is no clock estimation algorithmA that allows processorp to estimate
processorsrc’s clock with a maximum clock reading error of less thanΓ = ε + ρsrc(δ

− +
δ+) + 2(ρsrc + ρp)(µ

+
(0) + µ+

(1))− ν.

Proof. By the assumption thatA is a correct algorithm that allowsp to estimatesrc’s hard-
ware clock with a maximum clock reading error< Γ, the following condition must hold:A
always maintains two valuesest− andest+ onp, such that

HCtr1
src(time(g1)) ∈ [est−, est+] and HCtr2

src(time(g2)) ∈ [est−, est+]

with est+ − est− < Γ.
Lemmas 8.13 and 8.14 have shown thatsp(g1) = sp(g2) and thatHCtr1

src(time(g1)) =
HCtr2

src(time(g2)). Sinceest− andest+ onp are functions of the local state and the hardware
clock time, it holds thatest−p (g1) = est−p (g2) andest+p (g1) = est+p (g2).

Lemma 8.15 reveals, however, thatHCtr1
src(time(g1)) − HCtr2

src(time(g2)) = Γ, which
provides the required contradiction.

106



8.3. Lower Bound

8.3.3. System Model Revisited

In Section 8.3.1, three assumptions were introduced, whichsimplify the lower bound proof.
In this section, we will briefly discuss the consequences of dropping these assumptions.

1. In the rare case7 thatδ− ≥ µ+
(0) is not ensured, a potential message causality violation

(i.e., a message’sprocess st-event occurring before itssend st-event) might force the
adversary to execute asend or (preceding)transition st-event no later thanδ− time
units after the beginning of the job. Thus, the precision lower bound for the general
case isε + ρsrc(δ

− + δ+) + 2(ρsrc + ρp)(min{δ−, µ+
(0)}+ µ+

(1))− ν ′, i.e.,µ+
(0) gets re-

placed bymin{δ−, µ+
(0)}. Analogously,ν ′ equalsν with µ+

(0) replaced by this minimum
expression.

2. If the algorithm need not know when it has stabilized, we must prove that one can al-
ways find two st-tracestr1 andtr2 wherep has stabilized beforetr, recall Figure 8.5.
Informally, this can be guaranteed due to the fact that even eventual properties are al-
ways satisfied within bounded time in a closed model like our real-time model (where
all delays are bounded), see e.g. [RS08].

3. There is at least one message fromsrc arriving at p afterp has set itsstable register. If
this condition is not satisfied, we have two cases:

Case 1:After p has set itsstable register, no more messages are exchanged between
p andsrc. In that case, it is trivial to create an indistinguishable rt-run in whichp has
a different drift rate. Since no messages are exchanged, neither p nor src ever detects
a difference between the two rt-runs and we can choose a global stateg arbitrarily far
in the future to create an arbitrarily large discrepancy betweenp’s estimate andsrc’s
hardware clock.

Case 2: After p has set itsstable register, only messages fromp to src are sent. In
that case, the proof is quite similar to the one in Section 8.3.2. Since onlysrc receives
messages here, onlysrc can detect a difference between two rt-runs with different drift
rates. Consider Figure 8.5 with the labelsp and src reversed. In complete analogy
to Lemma 8.14, we can argue thatsrc cannot detect a difference untilm′, the second
message fromp, has arrived. Forp to change its estimate, this information needs to be
transmitted back top.8 Therefore we have an additionalδ− for the message transmission
plusµ+

(0) (or δ−, see Assumption 1) required byp until a state transition in response to

this message can be performed. Thus, detecting a change in this case takes at leastδ−

time units longer than in the case analyzed in Section 8.3.2,finally leading to the same
contradiction.

7Recall thatδ− andδ+ are measured from the beginning of the job sending the message rather than from the
send st-event. Therefore, these values include local processing until the message is sent plus the message
transmission delay.

8Sincesrc detected a difference, the rt-runs are no longer indistinguishable. Thus, messages fromsrc to p are
possible in this (shifted) rt-run.
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9. Examples of Fault-Tolerant Clock
Synchronization

In this chapter, we will move from the two-processor clock estimation problem to its ap-
plication in external and internal clock synchronization (with drifting clocks and failures, in
contrast to Chapter 7).

Since the problems analyzed in this section involve more than two processors, a job may
send (non-timer) messages to more than one recipient. Thus,we will also use subscripts(ℓ) on
the message delay boundsδ−(ℓ) andδ+

(ℓ) here, which give the number of recipients to which the

sending job sends a message. As detailed in Section 3.3,δ−(ℓ), δ
+
(ℓ) as well asε(ℓ) := δ+

(ℓ)− δ−(ℓ)
are assumed to be non-decreasing with respect toℓ.

9.1. External Clock Synchronization

In large-scale distributed systems such as the Internet, hierarchical synchronization algorithms
like NTP have proven to be very useful. With respect to smaller networks, our results indicate
that it pays off to minimize the dominant factorε, which is severely increased by multi-hop
communication. Thus, direct communication between the source and the “clients” will usually
lead to tighter synchronization.

For this section, letn specify the number of processors in the system,ρsrc the drift rate of
the source processor andρ∗ the drift rate of all other processors. The goal is for each processor
p 6= src to estimatesrc’s clock as close as possible. The maximum estimation error is called
accuracyα here. Note that external clock synchronization obviously implies internal clock
synchronization with precisionπ = 2α.

Consider a variant of the algorithm presented in Section 8.2, wheresrc sends its hardware
clock value not only top but to all of the othern − 1 processors, and the receiver uses the
midpoint of [est−, est+] as its estimation ofsrc’s clock. Admission control is performed by
only accepting messages fromsrc. An obvious generalization of the analysis in Section 8.2
shows that, ifsrc is correct, the worst case accuracy for any correct receiverp is α = Γ/2
with

Γ = ε(ℓ) + ρsrc(δ
−
(ℓ) + δ+

(ℓ)) + 2(ρsrc + ρ∗)(µ
+
(0) + µ̇)− ν̇,

(cf. Theorem 8.10), whereℓ depends on the broadcasting method,µ̇ is the transmission period
(see below), anḋν = O(µ̇ρ2) refers again to a usually negligible term. The precision achieved
by any two correct receiversp, q is henceπ = Γ.

In the real-time computing model, the required broadcasting can actually be implemented
in two ways:
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9. Examples of Fault-Tolerant Clock Synchronization

(a) src uses a single job with broadcasting to distribute its clock value. In this case, the
duration of each of its jobs is∈ [µ−

(n−1), µ
+
(n−1)] and the message delay of each message

is∈ [δ−(n−1), δ
+
(n−1)]. Thus,ℓ = n− 1 andµ̇ = µ+

(n−1).

(b) src sends unicast messages to every client, in a sequence ofn−1 separate jobs that send
only one message, i.e.,ℓ = 1. This reduces the message delay uncertainty fromε(n−1)

to ε(1), but increases the perioḋµ in which every processorp receivessrc’s message
from µ+

(n−1) to (n− 1) · µ+
(1).

9.2. Internal Clock Synchronization

As outlined in the introduction of Chapter 8, remote clock estimation is only a small, albeit
important, part of the internal clock synchronization problem. In [FC95b], Fetzer and Chris-
tian presented an optimal round- and convergence-function-based solution to this problem.
They assume the existence of a generic remote clock reading method, which returns the clock
value of a remote clock within some symmetric error. Thus, extending their work is a perfect
choice for demonstrating the applicability of our optimal clock estimation result in the context
of internal clock synchronization.

The algorithm of [FC95b] works as follows: Periodically, atthe same logical time at ev-
ery processor, the current clock values of all other clocks are estimated. These estimates are
passed on to a fault-tolerantconvergence function, which provides a new local clock value that
is immediately applied for adjusting the clock. Provided that all clocks are sufficiently syn-
chronized initially and the resynchronization period is chosen sufficiently large, the algorithm
maintains a precision of4Λ+4ρrmax+2ρβ, wherermax denotes the resulting maximum real-
time round duration andβ the maximum difference in the resynchronization times of different
processors.Λ is the maximum clock reading error margin, i.e.,Λ = Γ/2 in our setting.

In this section we present a detailed analysis of how to combine our clock estimation method
with their convergence function, resulting in an internal clock synchronization algorithm that
tolerates up tof arbitrary faulty processors, forn > 3f . The analysis includes a pseudo-code
implementation and a correctness proof, which just establishes conditions that guarantee the
preconditions of the proofs in [FC95b].

9.2.1. System Model

Since it is assumed that the local hardware clocks cannot be modified, the(logical) clock of
roundk is represented as the sum of the current hardware clock reading and a local variable,
theadjustment valueadj[k]. Unless we explicitly mention “hardware clock values”, we will
refer to this (adjusted) logical clock when talking about “clock values” in the remainder of
this section.

Every round_len clock time units (theresynchronization period), every processorp esti-
mates the roundk clock values of all remote clocks. An (optimal) fault-tolerant convergence
function is applied to these clock estimates, which computes the initial value forp’s local
roundk + 1 clock. To use our remote clock estimation algorithm with such a round-based
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9.2. Internal Clock Synchronization

algorithm, every processorp must broadcast messages containing its current roundk clock
value at the end of roundk, thereby satisfying two conditions:

(C1) Broadcasting must start early enough to ensure that every other processorq receives at
least one roundk message fromp before applying its convergence function.

(C2) Broadcasting must not terminate too early to ensure that a “recent” roundk message
from p exists atq when the clock reading method is used by the convergence function.

Since all processors need to broadcast simultaneously at the end of the round, scheduling
delays are created which—in contrast to the “simple” case ofexternal clock synchronization—
influence the end-to-end delays of other messages. This would require replacing the message
delay bounds[δ−, δ+] in our bound on the maximum clock reading errorΓ with the probably
larger end-to-end delay bounds[∆−,∆+]. Thus, given some scheduling policypol, a detailed
real-time schedulability analysis would be needed for determining bounds on∆− and∆+.

An alternative approach, which entirely avoids this problem, goes by assuming a more
powerful hardware: If, upon receiving a message fromq containing some clock value, the
network controller of the destination processorp were capable of automatically (and instantly)

• storing the content of the message in some variablesend_cv[q] and

• storingp’s current hardware clock value in some variablercv_hc[q]1,

then there would be no need to schedule a receive job onp’s CPU at all.
Clearly, in general case, relying on instantaneous processing of incoming messages is an

unreasonable assumption—actually, demonstrating this fact is one of the main points of this
thesis. Nevertheless, since the purpose of this section is to demonstrate the applicability of our
clock reading method, rather than to analyze the effect of scheduling policies, we choose this
approach for ease of presentation, well aware that this limits the applicability of the algorithm
in this section to systems where some hardware-based solution ensures that the message as
well as its arrival time are recorded by a network controllerin short, bounded time (which
must be added toδ+) [SKM+00, SSHL97, HSS+02].

Note that this assumption is beneficial for the analysis in another respect as well: No ad-
mission control is needed, since a faulty processor cannot create jobs on the CPU of another
processor just by sending messages. This also “improves” the maximum clock reading error
Γ (cf. Theorem 8.10) by dropping allµ+

(0) terms.
The clock synchronization algorithm itself is fault-tolerant in the sense that at mostf faulty

processors may behave arbitrarily, as long asn, the total number of processors, is greater than
3f . Since there is no special source processor, we assume that the same drift boundρ holds for
all processors; formally, this corresponds to failure model f -BYZANTINEρ and a real-time
systems with n > 3f processors.

We also assume broadcast-based communication in this section, which means that the algo-
rithm will guarantee a maximum clock reading error boundΓ of ε + ρ(δ− + δ+)+ 4ρµ+− ν,

with ν = 4µ+ ρ2

1+ρ
. As all jobs in this algorithm (except for the one processingthe (INIT)

1Sincercv_hc is only used to measure the “age” of a message, it is not necessary to use an adjusted clock value
here (in contrast tosend_cv, which contains a logical clock value).
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message) sendn− 1 messages, we will abbreviateδ−(n−1), δ+
(n−1) andµ+

(n−1) with δ−, δ+ and

µ+.

9.2.2. Booting

As initial synchronization is outside the scope of this thesis, we will assume that

• HCp(0) ∈ [0, πI ] for every processorp, and

• the (INIT) message for each processor arrives “shortly after”t = 0. In particular, it
arrives at leastµ+

(0) time units beforep’s hardware clock reachesround_len− pre.

(See below for the definitions ofπI , round_len andpre.)

9.2.3. Algorithm

Figure 9.1 shows the pseudo-code of the algorithm of [FC95b]in conjunction with our optimal
clock estimation method. It includes a few optimizations specifically designed for large round
durations:

• Processors do not broadcast continuously but rather start and stop the broadcasts within
the hardware clock time interval[T −pre, T +post], with T = k · round_len denoting
the logical round switching time.

Clearly,pre andpost must be chosen to satisfy conditions (C1) and (C2) outlined above.
Note that this means thatp must continue to broadcast its roundk clock value even after
it has already switched to roundk+1 (at or shortly after hardware clock timeT ). Thus,
in addition tok, a second variablebc_k (always equal tok or k − 1) is used to record
the round number of the clock to be broadcast currently.

• Since messages do not contain round numbers, broadcasting rounds must not overlap,
i.e.,pre, post and the round length must be chosen such that no roundk + 1 message
arrives at a processorp that has not yet finished broadcasting roundk messages. This
primarily requires a sufficiently large round duration.

• As a positive consequence of these round length assumptions, onlyadj[k] andadj[k−1]
need to be kept in memory, rather than the whole array of past adjustment values.

Due to the requirement of broadcasting its own clock value, many jobs are already active
around local timeT = k · round_len at every processor. Therefore, we do not designate
a separate job for calling the convergence function, but rather squeeze this into one of the
broadcast jobs at the right time (line 22 of the algorithm). This, however, means that the state
transition might not occur exactly at clock timek · round_len, but 0 to 2µ+ real-time units
later.2

2The case of2µ+ occurs when the logical clock readsk · round_len − x at the start of some jobJ1, for some
very smallx, and the round change state transition occurs in the following jobJ2 at the very end of the job.
Recall thatcurrent_hc always refers to the hardware clock time of thebeginningof the job.
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Network controller of processor p
1 var send_cv [], rcv_hc []
2
3 upon receiving (CLOCK VALUE, cv) from some processorq /∗ done in zero time∗/
4 if (cv > send_cv[q]) or (send_cv[q] is empty)
5 rcv_hc[q]←current_hc (); send_cv[q]←cv

Processorp
1 const round_len, pre , post
2 var adj [] ( adj [1] ← 0)
3 var k ← 1, bc_k← 1 /∗ local clock round number, current broadcast round number∗/
4
5 function cfn(my_ac, estimates) /∗ convergence function as specified in[FC95b] ∗/
6
7 /∗ Simplified notation− please read the note at the end of Section9.2.3 ∗/
8 function age(q) = current_hc− rcv_hc[q]
9 function est−(q) = send_cv[q] + (1− ρ)

`

δ− + age(q)/(1 + ρ)
´

10 function est+(q) = send_cv[q] + (1 + ρ)
`

δ+ + min{µ+, age(q)/(1− ρ)}
´

11

12 function ACi(hc) = hc + adj[i] /∗ convert hardware clocks to adjusted clocks...∗/
13 function HCi(ac) = ac− adj[i] /∗ ...and vice−versa∗/
14
15 procedureprocess_message(msg, current_hc , rcv_hc [], send_cv [])
16 if msg = (INIT )
17 set (SEND NOW) timer for round_len− pre /∗ = HCk(k · round_len− pre)∗/
18
19 if msg = (SEND NOW)
20 send (CLOCK VALUE, ACbc_k(current_hc)) to all
21

22 if (bc_k = k) and (ACk(current_hc)≥ k · round_len) /∗ start new round?∗/
23 k←k+1; adj [k]← cfn(ACbc_k(current_hc), for allq : (est−(q) + est+(q))/2) − current_hc
24

25 if ACbc_k(current_hc)< bc_k · round_len + post /∗ continue or stop broadcasting∗/
26 set (SEND NOW) timer for current_hc /∗ timer will arrive atend(current_job) ∗/
27 else
28 bc_k←k /∗ prepare for next round’s broadcast∗/
29 set (SEND NOW) timer for HCk(k · round_len− pre)

Figure 9.1.: Internal clock synchronization; [FC95b] combined with optimal clock reading
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Like hardware clock values, we assume that the processor reads the values ofsend_cv and
rcv_hc only at the very beginning of the job, i.e.,current_hc, send_cv andrcv_hc, when
used in some jobJ , represent a snapshot of the state at timebegin(J). That way, we ensure
that the transition sequence of a job is still independent ofthe actual times of thetransition
st-event, and we avoid unrealistic effects such asrcv_hc (when read instantly) being larger
thancurrent_hc (when read at the beginning of the job). Consequently,send_cv andrcv_hc
are not modeled as global variables but rather as parametersof process_message.

Consequently, it should be noted that the names of the functions in Lines 8–10 (age(q),
est−(q), est+(q)) were chosen just for notational convenience. In fact,age is a function
age(current_hc, rcv_hc[q]); the same holds forest− andest+, which also include a third
parametersend_cv[q]. This is important because it means that the parameters for the conver-
gence function in line 23 are based on the state ofcurrent_hc, rcv_hc andsend_cv at the
begin time of the job (i.e., the values passed toprocess_message) rather than at the time of
thetransition st-event.

9.2.4. Analysis

The precision analysis in [FC95b] is based on a set of assumptions, which involve the follow-
ing constants:Λ (maximum clock reading error margin3), rmin, rmax (lower and upper bound
on the real-time round duration), andβ (maximum real-time delay between the starting of a
round at different processors).

tkp denotes the real-time by which processorp starts roundk. Since the convergence function
is called with data corresponding to the begin time of the jobmaking the round switch (for the
reasons outlined in the previous section), the begin time ofthe job must be chosen astkp rather
than the actual time of thetransition st-event representing line 23. Thus, from the point of
view of the convergence function, thek-th clock is started at timetkp, although, from the clock
synchronization perspective, this clock is not in use untilup toµ+ time units later. Therefore,
we will have to compensate for this fact when determining ourprecision bound.

Figure 9.2 depicts an example rt-run during a round switchi → i + 1, with T = i ·
round_len. The current values of variables bc_k and k as well as thei-th logical clock are
shown explicitly.

Theorem 9.1(Theorem 1 of [FC95b]). Assume that the following conditions are satisfied for
all correct processors and all rounds:

(A1) Initially, all clocks are synchronized to within some boundπI .

(A2) The (real-time) length of a round is bounded byrmin andrmax, i.e.,rmin ≤ tkp−tk−1
p ≤

rmax, for all p andk.

(A3) All processors start their rounds withinβ real-time units, i.e.,|tkp − tkq | ≤ β, for all p,
q, k.

(A4) Rounds do not overlap, i.e.,β ≤ rmin.

3Note thatΛ is Γ/2: We defined the remote estimation interval as[est−, est+], with Γ boundingest+ − est−.
By contrast, [FC95b] defines a remote clock reading as a single value with a symmetric error of at most±Λ.
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ACi

T − pre T

ti+1
p

T + post

bc_k

k

i i + 1

i i + 1

Figure 9.2.: Round switch from roundi to i + 1

(A5) πI ≥ 2Λ + 2ρrmax + 2ρβ.

Then, the algorithm of [FC95b] guarantees that all logical (= adjusted) clocks of correct
processorsp andq are synchronized to within a bound ofπ = πI + 2ρrmax, i.e.,

|ACp(g) −ACq(g)| ≤ π

for all global statesg, withACp(g) = HCp(time(g))+sp(g).adj[sp(g).k]). At the beginning
of a round, i.e., at the firstg such that all correct processors have switched to roundk, the
smaller precisionπI holds. Moreover, the maximum local clock correctionadj[k]−adj[k−1]
is±2ρrmax on all processors.

This is what would hold if the round switching state transition occurred at the very begin-
ning of the job. Since this is not guaranteed in the real-timecomputing model,

• the actual clock synchronization precision, i.e., the value by which|ACp(g)−ACq(g)|
can be bounded, isπA = π + 2ρµ+ rather thanπ; a term2ρµ+ is added to compensate
for the fact that the “old” roundk− 1 clock can still be in use for anotherµ+ time units
aftertkp;

• the precision valuesπI andπ are only relevant for analysis. For example,πI holds
at t = maxp∈Π{tkp} for the adjusted roundk clocksACk

p (t) = HCp(t) + adjk
p . For

purposes of analysis, these values are well-defined at timet sinceHCp(t) is part of
the rt-run andadjk

p , the value thatp’s variable adj[k] will have once thetransition
st-event for line 23 has occurred, is a deterministic function ofp’s send_cv, rcv_hc and
current_hc variables at timetkp ≤ t. Nevertheless, the algorithm might still not know
the value ofadjk

p at timet (and, thus, still use the roundk − 1 clock).

Apart from that, the combined algorithm in Figure 9.1 startsnew clocks in the same way as
[FC95b]. Therefore, this theorem applies to our algorithm as well, with the aforementioned
differences.

(A1) is satisfied by our booting assumption (Section 9.2.2),and (A5) can be guaranteed by
choosing a suitably largeπI . The following lemma will show that there is a choice ofrmin,
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rmax andβ for which (A2)–(A4) are satisfied. The proof is slightly informal because it uses
an inductive version of Theorem 9.1, which is not stated explicitly but can be deduced from
the proofs of [FC95b].

Lemma 9.2. If round_len, rmin, rmax andβ are chosen such that

round_len ≥ π + µ+(1 + ρ) + rmin(1 + ρ) (9.1)

rmax ≥
π + round_len

1− ρ
+ µ+ + β (9.2)

β ≥ π + round_len

1− ρ
+ µ+ − rmin (9.3)

rmin ≥ β, (9.4)

then conditions (A2)–(A4) are satisfied.

Proof. (A4) holds trivially, since it equals (9.4). Assume by induction that (A2) and (A3)
hold for rounds1 to k. By (an inductive version of) Theorem 9.1, this implies thatclocks are
synchronized to withinπI directly after the last processor switched to roundk, and that their
adjustment value changed by at most2ρrmax as compared to roundk − 1. For the induction
start, i.e., round1, this is guaranteed by our booting assumption.

Let q be the last processor switching to roundk. Since this round switch was triggered by
q’s roundk − 1 clock reaching(k − 1) · round_len, tkq occurs0 to µ+ real-time units later,
andq’s clock value was not changed by more than2ρrmax, it follows thatq’s clockk value at
time tkq is within (k − 1) · round_len + [−2ρrmax, 2ρrmax] + [0, µ+(1 + ρ)]. Recall that, at
tkq , all roundk clocks4 are synchronized to withinπI with q and thatπ = πI + 2ρrmax. Thus,
at tkq , it holds for the roundk clock valuescvp of every correct clockp:

cvp ∈ (k − 1) · round_len + [−π,+π] + [0, µ+(1 + ρ)] (9.5)

Using (9.1), we can bound the number of hardware clock units left until k · round_len is
reached atp:

k · round_len− cvp ∈ [rmin(1 + ρ), π + round_len] (9.6)

Note thattk+1
p might occur at mostµ+ real-time units after reachingk · round_len. Since

(A3) holds fork and, thus,tkp ∈ [tkq − β, tkq ], these bounds together with (9.2) result in

tk+1
p − tkp ≥

rmin(1 + ρ)

1 + ρ
= rmin and

tk+1
p − tkp ≤ β +

π + round_len

1− ρ
+ µ+ ≤ rmax,

thus showing condition (A2):rmin ≤ tk+1
p − tkp ≤ rmax.

To show (A3), we follow a similar line of reasoning: (9.6) ensures that no processor can
reachk · round_len on its roundk clock earlier than at real timetkq + rmin nor later than at
real timetkq + π+round_len

1−ρ
. Adding theµ+ that may lie in between reachingk · round_len

andtk+1
p , (9.3) shows that (A3) holds:|tk+1

p − tk+1
q | ≤ β, for all p andq.

4Although the algorithm might not know the value of its roundk clock yet, we can still use it for analysis.
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9.2. Internal Clock Synchronization

We can hence apply Theorem 9.1 to immediately get:

Theorem 9.3. For a sufficiently large round length and sufficiently close initial synchro-
nization, the algorithm of Figure 9.1 solves internal clocksynchronization withinπA =
2Γ + 4ρrmax + 2ρβ + 2ρµ+ with Γ = ε + ρ(δ− + δ+) + 4ρµ+ − ν andν = O(µ+ρ2).

117



9. Examples of Fault-Tolerant Clock Synchronization

118



10. Conclusions

As argued in the introduction, all the standard distributedcomputing models in use nowadays
either rely on the zero step-time assumption or use some other concept that abstracts away
queuing effects at the receiver side. In the first part of thisthesis, we defined and analyzed
the real-time computing model, which differs from the classic non-lock-step synchronous
model by just providing non-zero computing step times. Our aim is to establish the real-time
computing model as a well-founded alternative to the classic models used in the analysis of
distributed algorithms. Therefore, the definitions in thiswork strive to be as generic (and
formal) as possible; the model is neither restricted to one particular type of failure nor to one
particular class of problems. On the contrary: abstractfailure modelsandst-problemsallow
for high flexibility in the definition of real-world failure scenarios and problem specifications.

This universality is beneficial for the transformations presented in Chapter 6, which are
designed for arbitrary problems (and, in the case of simulation SA, for arbitrary failure mod-
els). In addition, the reuse of classic algorithms in the real-time model illustrates the unique
challenges arising when implementing a result of classic distributed computing research in a
real system: End-to-end delay bounds must be determined viaschedulability analysis (feasi-
ble assignment), state transitions occur at slightly different times (µ+-shuffle of the problem),
and measures might need to be taken to ensure the timely delivery of timer messages (TR→C -
compatibility between classic and real-time failure models).

Although these transformations provide a very powerful andgeneral tool for the study of
problems in the real-time scenario, tight bounds usually require further analysis: We revisit
a well-known synchronization problem—optimal deterministic clock synchronization in the
drift- and failure-free case—in our real-time computing model. As it turned out, the classic
analysis gives too optimistic results, supporting our claim that some properties of real systems
are inaccurately or even wrongly captured when resorting toclassic zero step-time models.

The naive approach of transforming the tight precision bound of (1− 1
n
)ε into the real-time

model resulted in a lower bound of(1 − 1
n
)ε(1) and an upper bound of(1 − 1

n
)(ε(n−1) +

µ+
(n−1) +(n−2) ·µ+

(0)) (Theorems 7.2 and 7.3)—a gap, which was closed by devising a clock
synchronization algorithm specifically designed for the needs of a system with non-zero step
time duration.

In a sense, the results in the classic computing model were both too optimistic and too
pessimistic at the same time: On the one hand, synchronization with optimal precision is
possible in constant time in the classic computing model, whereas optimal synchronization
in the real-time computing model has a time complexity ofΘ(n). On the other hand, the
best precision achievable in the classic model is only(1 − 1

n
)ε, whereas it turned out to be

(1 − 1
n
)ε(1) in the real-time model. This might not seem like a big difference; however,

from the system model point of view,ε = δ+ − δ− is the uncertainty of theend-to-end
delay, a quantity that encompasses real-world message transmission delay, queuing delays
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10. Conclusions

and processing delays. In contrast,ε(1) = δ+
(1) − δ−(1) refers to the uncertainty of just the

message transmission delay.
The explanation for this phenomenon is that the zero step-time assumption gives too much

power both to the algorithm (by being able to process multiple incoming messages in a very
short time) and to the adversary (by being able to assign end-to-end delays to messages that
are not justified by the arrival patterns). As we have shown, analysis under the real-time
computing model yields more realistic results.

A summary of all our findings related to drift-free clock synchronization in the real-time
model presented in this thesis can be found in Table 10.1. Note that these results also cover
the non-optimal case: For example, we showed that clock synchronization to within a constant
factor of the message delay uncertainty can be achieved in constant time only if a constant-
time broadcast primitive is available.

Constraint Lower Bound Matching Upper Bound

- Precision≥ (1− 1
n
)ε(1)

Proof: Theorem 7.3
Precision≤ (1− 1

n
)ε(1)

Algorithm: Section 7.1.3
- Msg. complexity =Ω(n)

Proof: obvious
Msg. complexity =O(n)
Algorithm: Section 7.3.1

- ∃ one processor exchanging
Ω( 2(γ/ε(1))+1

√
n) msgs.

Proof: Theorem 7.15
Achieve best precision
(= (1− 1

n
)ε(1))

Msg. complexity =Ω(n2)
Time complexity =Ω(n)
Proof: Section 7.2

Msg. complexity =O(n2)
Time complexity =O(n)
Algorithms: Section 7.1

Achieve best msg.
complexity (=O(n))

Precision≥ ε(1)

Proof: Theorem 7.13
Precision≤ ε(1)

Algorithm: Section 7.3.1

Table 10.1.: Summary of Results on Drift-Free Clock Synchronization

As a first step towards drifting clock synchronization, we presented an algorithm solving
the problem of continuous remote clock estimation in the real-time computing model, which
guarantees a maximum clock reading error ofΓ = ε + ρsrc(δ

− + δ+) + 2(ρsrc + ρp)(µ
+
(0) +

µ+
(1)) − ν. Using an elaborate shifting and scaling argument, we also established a matching

lower bound. This result leads to some interesting conclusions, which could aid real-time
system designers in fine-tuning their systems:

• ε, the message delay uncertainty, dominates everything else, since it is the only param-
eter that is not scaled down by some clock driftρ ≪ 1. This matches our results on
drift-free clock synchronization.

• Both sender and receiver clock drift influence the attainable precision. However, the
drift of the source clock has a bigger impact, since it affects not only the term involving
the processing timesµ+

(0)+µ+
(1), but also the (potentially larger) term involving message

delays.
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We close this thesis by combining our optimal clock reading method with the optimal con-
vergence function of [FC95b] into a fault-tolerant internal clock synchronization algorithm,
guaranteeing a precision ofε+ρ(δ−+δ+)+4ρµ+−ν. The question of whether this combined
algorithm is optimal is left open (see below).

The relationship between time complexity and precision in the drift-free case also sheds
some light on a new aspect of clock synchronization algorithm design: Clearly, all our lower
bound results also hold for drifting clocks. As time complexity influences the actual precision
achievable with drifting clocks, however, a simpler, less precise algorithm might in fact yield
some better overall precision than a more precise but also more complex algorithm, depending
on the system parameters.

Future Work/Open Issues

In this thesis, we created a sound foundation for a reconciliation of the distributed computing
and the real-time systems perspective, which has been lacking up to now. However, our work
has not only provided answers, but has also raised a lot of newand exciting open questions
for future research:

The Real-Time Computing Model

• Removing the zero step-time assumption from the classic computing model was a
particularly interesting extension, since, as a direct consequence, queuing delays—
previously hidden in the end-to-end delay—became visible.Since all other assumptions
of the classic model have been carried over to the real-time computing model, however,
one wonders whether and which other aspects are worth being teased out and modeled
explicitly. To name a few examples: in the real-time computing model, message sizes
can be unbounded, jobs can perform computations of arbitrary complexity, preemption
is impossible, and the scheduling policy must be non-idling. It would be interesting
to know whether dropping any of these assumptions produces insights that justify the
additional model complexity.

We assume that message size is a particularly interesting target here. Starting multiple
instances of an algorithm or echoing all data received so farare common design patterns
in the area of fault-tolerant distributed computing. Consider, for example, lock-step
round based algorithms: Comparing such algorithms in an extended real-time comput-
ing model with bounded message size could reveal that some algorithm requiring a large
amount of rounds for completion might actually perform better than a competitor with
less rounds, if the first algorithm requires less data to be exchanged per round.

• Our simulationSµ̃,A,pol, enabling real-time algorithms to be run in a classic system,
requires failure model FAULT-FREEρ(ex) with a “sufficiently small” clock driftρ (cf.
Section 6.3.2). This failure model has been chosen for ease of presentation. In fact,
neither bounded drift nor fault-freeness of the processorsare mandatory for this trans-
formation. With respect to the hardware clocks, any other failure model guaranteeing
that there exists somẽµ(ℓ) such that Definition 6.12 is satisfied would be sufficient. With
respect to processor faults, a generalization tof -CRASH should also be fairly easy. We
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believe that an extension a Byzantine failure model is possible as well, but it will require
a few changes to theTC→R transformation rules.

• The classic and the real-time computing model described in this thesis assume that
algorithms are deterministic, i.e., that the transition function A(message, oldstate,
hardware_clock_time) of some algorithmA returns a single transition sequence. A
generalization of the system models and the transformations of Chapter 6 to the non-
deterministic case, where asetof possible state transition sequences is returned by the
transition function, should be fairly straightforward.

• Since the real-time computing model allows us to apply real-time schedulability analy-
sis techniques to distributed algorithms, we are looking out for problems and algorithms
where trivial upper bounds on end-to-end delays do not suffice and such an analysis is
required.

• As outlined in the introduction, one of our mid-term targetsis to analytically verify the
assumptions of the Theta model and the ABC model [RS08], which stipulate that—for
certain algorithms—there is a certain correlation betweenqueuing delays in different
parts of a distributed system. Developing the real-time computing model was a manda-
tory first step for achieving this goal.

Drift-Free Clock Synchronization

• To show that constant-time synchronization to withinc · ε(1) (for any constantc ∈ R+)
is impossible (unless a constant-time broadcast primitiveexists), we proved that there
exists at least one processor which exchanges at least⌈ 2c+1

√
n⌉ messages. However, all

algorithms presented in this thesis have at least one processor exchanging (i.e., sending
or receiving)n messages. So, although the lower bound served its purpose byhelping
us to derive a time complexity result, we do not think that this bound it tight, and we are
curious about the (asymptotic) number of messages strictlyrequired for drift-free clock
synchronization.

• For the case where an asymptotically tight bound on the message complexity exists,
namely, in the case of optimal precision, there is still a gapbetween the precise number
of messages: The lower bound requires one message between every pair of processors,
while our algorithms require two.

Drifting Clock Synchronization

• Clearly, the most obvious question with respect to the algorithm presented in Section 9.2
is: Is this algorithm optimal? After all, we used an optimal convergence function and
an optimal remote clock reading method.

Actually, there is a subtle difference between the remote clock estimation problem an-
alyzed in Chapter 8 (continuousclock estimation) and the precise requirements of a
round-based internal clock synchronization algorithm: Whereas the former problem
aims at establishing a worst-case bound on the clock readingerror in the two-processor
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case, at all points in time, the round-based clock synchronization algorithm requires a
good estimatein the multi-processor case, at the exact point of starting the new clock.
As the proof of our (continuous) remote clock estimation algorithm shows, the esti-
mation error is not constant but varies; for example, right after receiving a message,
the error is smaller than shortly afterwards. Thus, in a thorough analysis of the multi-
processor, single-shot case in the real-time computing model, it might turn out that
having the messages of all processors arrive at almost the same time (but not too close,
lest we get queuing delays) might be beneficial. We are not sure whether this makes
a difference for round-based clock synchronization or not.Until this issue has been
resolved, we cannot claim that our algorithm is optimal.

• In contrast to the more general results of Chapters 7 and 8, the clock synchronization al-
gorithm of Section 9.2 assumes that processing incoming messages (i.e., recording the
content of the message and the arrival time) can be done instantaneously (or within
constantly bounded time, which can be added to[δ−, δ+]) upon arrival. Although
hardware-based solutions to this problem are by now common practice in the analy-
sis of clock synchronization in real-time systems (cf. the discussion and references in
Section 9.2.1), it is not hard to think of many real-world systems where such special-
ized hardware is not available. Thus, clock synchronization without this assumption is
a problem worth pursuing. In particular, we believe that theoptimal trade-off between
exchanging many messages (possibly causing queuing effects) and few messages (pos-
sibly causing clock readings to be out-of-date) will pose aninteresting and insightful
challenge.

• Although a worst-case precision bound has been establishedfor the algorithm of Sec-
tion 9.2, the average-case performance could still be improved by a few simple modifi-
cations:

– The convergence function of [FC95b] expects remote clock estimations with a
symmetric error, i.e., for every remote clockp, the remote clock reading method
returns some valueest(p), such thatp’s clock lies within [est(p) − Λ, est(p) +
Λ]. To achieve the optimal error margin ofΛ = Γ/2, we returnest(p) =
(est+(p) + est−(p))/2, thereby ensuring that the clock ofp is guaranteed to be
within [est(p)− Γ/2, est(p) + Γ/2].

This method has an inconvenient side-effect, however: In a benign execution
where clocks do not drift and all messages takeδ− + ε/2 time units, one would
expectest(p) to match the real value ofp’s clock. However, as shown in Sec-
tion 8.1, this is not possible when a minimal symmetric erroris needed. Therefore,
replacing the convergence function of [FC95b] by an optimalone that supports
asymmetric error margins—like the one in [SS03]—might yield a better result in
average executions.

– The algorithm does not yet exploit all information that is available; in particular,
“round-trip information” is ignored. Assume thatp sends a fast messagem to q,
and, shortly afterm has been received,q sends a fast messagem′ back top. If
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q also includes information aboutm in m′, p can deduce thatm′ must have been
fast, thereby significantly improving its estimate ofq’s clock value. Note that this
idea is exploited in probabilistic clock synchronization [Cri89].
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Nomenclature

≈ Indistinguishability, page 102

→seq Causal dependency w.r.t. sequenceseq, page 17

L−→
seq

Local dependency w.r.t. sequenceseq, page 17

M−→ Message dependency, page 17

≺seq Ordering relation of sequenceseq

α Offset for the arrival or processing of timer messages, page55

A Algorithm of the classic computing model or its transition function, page 18

A Algorithm of the real-time computing model or its transition function, page 27

ac Computing step (action) in the classic computing model, page 20

ACp(g) Adjusted clock of processorp at global stateg, page 79

C Failure model in the classic computing model, page 32

C Failure model in the real-time computing model, page 32

Γ Maximum remote clock reading error, page 94

γ Clock synchronization precision in the drift-free case, page 79

δ−, δ+ Bounds on the message delay in the classic computing model, page 18

δ−, δ+ Bounds on the message delay in the real-time computing model, page 25

D Drop event in the real-time computing model, page 27

∆ End-to-end delay in the real-time computing model, page 26

ε Message delay uncertainty in the classic computing model, page 21

ε Message delay uncertainty in the real-time computing model, page 29

est−, est+ Bounds on the estimated remote clock value, page 94

ev State transition event, page 39
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Nomenclature

ex Execution in the classic computing model, page 20

f Number of faulty processors, page 31

g Global state, page 41

gstates(tr) Set of all global states appearing intr, page 42

HCp Hardware clock of processorp, page 18

Initp(A) Set of initial states of algorithmA, page 18

istatep Initial state of processorp, page 19

J Job in the real-time computing model, page 27

JD Job or drop event in the real-time computing model, page 32

ℓ Number of messages sent in a job, page 28

µ−, µ+ Bounds on the processing delay in the real-time computing model, page 23

mo Ordinary message, page 31

mt Timer message, page 31

n Number of processors, page 18

ω Queuing delay in the real-time computing model, page 26

Π Set of processors, page 18

P State-based problem, page 42

P∗
µ+ µ+-shuffle of problemP, page 49

P>
V Simulation-invariantV-extension of problemP, page 50

pol Scheduling/admission control policy, page 25

R Receive event in the real-time computing model, page 26

ρp Drift rate of processorp, page 19

ru Real-time run in the real-time computing model, page 26

s System in the classic computing model, page 21

s System in the real-time computing model, page 28

SA Simulation algorithm for reusing a classic algorithmA in a real-time system, page 52

Sµ̃,A,pol Simulation algorithm for reusing a real-time algorithmA in the classic model, page 62
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Nomenclature

S ′
µ̃,δ̃,A,pol

Extended simulation algorithm for reusing a real-time algorithm A in the classic
model, page 76

sHC(mt) Designated arrival (hardware clock) time for timer messagemt, page 31

sp Local state of processorp, page 39

TC→R Transformation for reusing a real-time algorithm in the classic model, page 66

TR→C Transformation for reusing a classic algorithm in the real-time model, page 53

tr State transition trace, page 40
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